Science.gov

Sample records for area synchronized phasor

  1. Midterm Stability Evaluation of Wide-area Power System by using Synchronized Phasor Measurements

    NASA Astrophysics Data System (ADS)

    Ota, Yutaka; Ukai, Hiroyuki; Nakamura, Koichi; Fujita, Hideki

    In recent years, the PMU (Phasor Measurement Unit) receives a great deal of attention as a synchronized measurement system of power systems. Synchronized phasor angles obtained by the PMU provide the effective information for evaluating the stability of a bulk power system. The aspect of instability phenomena during midterm tends to be more complicated, and the stability analysis using the synchronized phasor measurements is significant in order to keep a complicated power system stable. This paper proposes a midterm stability evaluation method of the wide-area power system by using the synchronized phasor measurements. By clustering and aggregating the power system to some coherent groups, the step-out is effectively predicted on the basis of the two-machine equivalent power system model. The midterm stability of a longitudinal power system model of Japanese 60Hz systems constructed by the PSA, which is a hybrid-type power system simulator, is practically evaluated using the proposed method.

  2. MAP Fault Localization Based on Wide Area Synchronous Phasor Measurement Information

    NASA Astrophysics Data System (ADS)

    Zhang, Yagang; Wang, Zengping

    2015-02-01

    In the research of complicated electrical engineering, the emergence of phasor measurement units (PMU) is a landmark event. The establishment and application of wide area measurement system (WAMS) in power system has made widespread and profound influence on the safe and stable operation of complicated power system. In this paper, taking full advantage of wide area synchronous phasor measurement information provided by PMUs, we have carried out precise fault localization based on the principles of maximum posteriori probability (MAP). Large numbers of simulation experiments have confirmed that the results of MAP fault localization are accurate and reliable. Even if there are interferences from white Gaussian stochastic noise, the results from MAP classification are also identical to the actual real situation.

  3. Synchronous Phasor-like Measurements

    SciTech Connect

    Kirkham, Harold; Dagle, Jeffery E.

    2014-02-14

    Phasor measurement units struggle to make acceptable estimates of frequency and rate of change of frequency. The most important cause of the problem is that the quantity being measured is not actually a phasor. The paper substitutes a different equation for the phasor equatin, and obtains its solution by curve-fitting.

  4. Use of Synchronized Phasor Measurements for Model Validation in ERCOT

    NASA Astrophysics Data System (ADS)

    Nuthalapati, Sarma; Chen, Jian; Shrestha, Prakash; Huang, Shun-Hsien; Adams, John; Obadina, Diran; Mortensen, Tim; Blevins, Bill

    2013-05-01

    This paper discusses experiences in the use of synchronized phasor measurement technology in Electric Reliability Council of Texas (ERCOT) interconnection, USA. Implementation of synchronized phasor measurement technology in the region is a collaborative effort involving ERCOT, ONCOR, AEP, SHARYLAND, EPG, CCET, and UT-Arlington. As several phasor measurement units (PMU) have been installed in ERCOT grid in recent years, phasor data with the resolution of 30 samples per second is being used to monitor power system status and record system events. Post-event analyses using recorded phasor data have successfully verified ERCOT dynamic stability simulation studies. Real time monitoring software "RTDMS"® enables ERCOT to analyze small signal stability conditions by monitoring the phase angles and oscillations. The recorded phasor data enables ERCOT to validate the existing dynamic models of conventional and/or wind generator.

  5. Precise synchronization of phasor measurements in electric power systems

    NASA Technical Reports Server (NTRS)

    Phadke, Arun G.

    1990-01-01

    Phasors representing positive sequence voltages and currents in a power network are in the most important parameters in several monitoring, control, and protection functions in interconnected electric power networks. Recent advances in computer relaying have led to very efficient and accurate phasor measurement systems. When the phasors to be measured are separated by hundreds of miles, it becomes necessary to synchronize the measurement processes, so that a consistent description of the state of the power system can be established. Global Positioning System (GPS) transmissions offer an ideal source for synchronization of phasor measurements. The concept and implementation of this technique are described. Several uses of synchronized phasor measurements are also described. Among these are improved state estimation algorithms, state estimator enhancements, dynamic state estimates, improved control techniques, and improved protection concepts.

  6. Synchronized phasor measurements of a power system event

    SciTech Connect

    Burnett, R.O.; Butts, M.M.; Cease, T.W.; Centeno, V.; Michel, G.; Murphy, R.J.; Phadke, A.G.

    1994-08-01

    The paper describes one of the first field measurements of positive sequence voltage phasors at key system buses during a recent switching operation at Plant Scherer of the Georgia Power Company. The phasor measurements were synchronized using time transmissions from the Global Positioning System (GPS) satellites. The data show the first ever observation of power swings recorded via synchronized phasors at several points on an integrated power network. Measurements were made on the Georgia Power Company (GPC) system, the Florida Power and Light (FPL) system, and on the Tennessee Valley Authority (TVA) system. The disturbance was also simulated on a stability program. Results of the simulation, and a comparison with the observed field data are also included.

  7. Identification of Characterization Factor for Power System Oscillation Based on Multiple Synchronized Phasor Measurements

    NASA Astrophysics Data System (ADS)

    Hashiguchi, Takuhei; Watanabe, Masayuki; Matsushita, Akihiro; Mitani, Yasunori; Saeki, Osamu; Tsuji, Kiichiro; Hojo, Masahide; Ukai, Hiroyuki

    Electric power systems in Japan are composed of remote and distributed location of generators and loads mainly concentrated in large demand areas. The structures having long distance transmission tend to produce heavy power flow with increasing electric power demand. In addition, some independent power producers (IPP) and power producer and suppliers (PPS) are participating in the power generation business, which makes power system dynamics more complex. However, there was little observation as a whole power system. In this paper the authors present a global monitoring system of power system dynamics by using the synchronized phasor measurement of demand side outlets. Phasor Measurement Units (PMU) are synchronized based on the global positioning system (GPS). The purpose of this paper is to show oscillation characteristics and methods for processing original data obtained from PMU after certain power system disturbances triggered by some accidents. This analysis resulted in the observation of the lowest and the second lowest frequency mode. The derivation of eigenvalue with two degree of freedom model brings a monitoring of two oscillation modes. Signal processing based on Wavelet analysis and simulation studies to illustrate the obtained phenomena are demonstrated in detail.

  8. Phasor monitoring of DxPSK signals using software-based synchronization technique.

    PubMed

    Choi, H G; Takushima, Y; Chung, Y C

    2010-10-11

    We develop a novel phasor monitor to obtain the constellation diagram from asynchronously sampled data measured by using the delay-detection technique. This phasor monitor consists of three parts; a phase-adjustment-free delay-interferometer, an optical front-end made of three photodetectors, and analog-to-digital (A/D) convertors, and a digital signal processor. We operate the A/D convertor at the sampling rate much slower than the symbol rate and acquire the data asynchronously. However, despite the use of such a slow and asynchronous sampling rate, we obtain the clear eye and constellation diagrams by utilizing the software-based synchronization technique based on a novel phased-reference detection algorithm. Thus, the proposed phasor monitor can be implemented without using high-speed A/D convertors and buffer memories, which have been the major obstacles for the cost-effective realization of the phasor monitor. For a demonstration, we realize the proposed phasor monitor by using an A/D converter operating at 9.77 MS/s and used it for the constellation monitoring and bit-error-rate (BER) estimation of 10.7-Gsymbol/s differential quadrature phase-shift keying (DQPSK) and differential 8-ary phase-shift keying (D8PSK) signals.

  9. Analysis of Generator Oscillation Characteristics Based on Multiple Synchronized Phasor Measurements

    NASA Astrophysics Data System (ADS)

    Hashiguchi, Takuhei; Yoshimoto, Masamichi; Mitani, Yasunori; Saeki, Osamu; Tsuji, Kiichiro

    In recent years, there has been considerable interest in the on-line measurement, such as observation of power system dynamics and evaluation of machine parameters. On-line methods are particularly attractive since the machine’s service need not be interrupted and parameter estimation is performed by processing measurements obtained during the normal operation of the machine. Authors placed PMU (Phasor Measurement Unit) connected to 100V outlets in some Universities in the 60Hz power system and examine oscillation characteristics in power system. PMU is synchronized based on the global positioning system (GPS) and measured data are transmitted via Internet. This paper describes an application of PMU for generator oscillation analysis. The purpose of this paper is to show methods for processing phase difference and to estimate damping coeffcient and natural angular frequency from phase difference at steady state.

  10. Synchronized Phasor Data for Analyzing Wind Power Plant Dynamic Behavior and Model Validation

    SciTech Connect

    Wan, Y. H.

    2013-01-01

    The U.S. power industry is undertaking several initiatives that will improve the operations of the power grid. One of those is the implementation of 'wide area measurements' using phasor measurement units (PMUs) to dynamically monitor the operations and the status of the network and provide advanced situational awareness and stability assessment. This project seeks to obtain PMU data from wind power plants and grid reference points and develop software tools to analyze and visualize synchrophasor data for the purpose of better understanding wind power plant dynamic behaviors under normal and contingency conditions.

  11. Power System Observation by using Synchronized Phasor Measurements as a Smart Device

    NASA Astrophysics Data System (ADS)

    Mitani, Yasunori

    Phasor Measurement Unit (PMU) is an apparatus which detects the absolute value of phase angle in sinusoidal signal. When more than two units are located distantly apart from each other, and they are synchronized with GPS signal which tells us the information on exact time, it becomes ready to get phase differences between two distant places. Thus, PMU with GPS receiver is applied to the monitoring of AC power system dynamics and usually installed at substations of transmission lines. The states of power network are uniquely determined by the active and reactive power and the magnitude and phase angle of voltage in each node. Among these values the phase angle had not been easily obtained until the scheme of time synchronism with GPS appeared. In this report, the history of GPS and PMU, and the current status of the applications in power systems in the world are presented. In Japan we are developing a power system monitoring system with PMUs installed at University's campuses with 100V outlets, which is called Campus WAMS. This report also introduces some results from the Campus WAMS briefly.

  12. Estimation Method of Center of Inertia Frequency based on Multiple Synchronized Phasor Measurement Data

    NASA Astrophysics Data System (ADS)

    Hashiguchi, Takuhei; Watanabe, Masayuki; Goda, Tadahiro; Mitani, Yasunori; Saeki, Osamu; Hojo, Masahide; Ukai, Hiroyuki

    Open access and deregulation have been introduced into Japan and some independent power producers (IPP) and power producer and suppliers (PPS) are participating in the power generation business, which is possible to makes power system dynamics more complex. To maintain power system condition under various situations, it is essential that a real time measurement system over wide area is available. Therefore we started a project to construct an original measurement system by the use of phasor measurement units (PMU) in Japan. This paper describes the estimation method of a center of inertia frequency by applying actual measurement data. The application of this method enables us to extract power system oscillations from measurement data appropriately. Moreover, the analysis of power system dynamics for power system oscillations occurring in western Japan 60Hz system is shown. These results will lead to the clarification of power system dynamics and may make it possible to realize the monitoring of power system oscillations associated with power system stability.

  13. Wide-Area Situational Awareness of Power Grids with Limited Phasor Measurements

    SciTech Connect

    Zhou, Ning; Huang, Zhenyu; Nieplocha, Jarek; Nguyen, Tony B.

    2006-09-30

    Lack of situational awareness has been identified as one of root causes for the August 14, 2003 Northeast Blackout in North America. To improve situational awareness, the Department of Energy (DOE) launched several projects to deploy Wide Area Measurement Systems (WAMS) in different interconnections. Compared to the tens of thousands of buses, the number of Phasor Measurement Units (PMUs) is quite limited and not enough to achieve the observability for the whole interconnections. To utilize the limited number of PMU measurements to improve situational awareness, this paper proposes to combine PMU measurement data and power flow equations to form a hybrid power flow model. Technically, a model which combines the concept of observable islands and modeling of power flow conditions, is proposed. The model is called a Hybrid Power Flow Model as it has both PMU measurements and simulation assumptions, which describes prior knowledge available about whole power systems. By solving the hybrid power flow equations, the proposed method can be used to derive power system states to improve the situational awareness of a power grid.

  14. A decision modeling for phasor measurement unit location selection in smart grid systems

    NASA Astrophysics Data System (ADS)

    Lee, Seung Yup

    As a key technology for enhancing the smart grid system, Phasor Measurement Unit (PMU) provides synchronized phasor measurements of voltages and currents of wide-area electric power grid. With various benefits from its application, one of the critical issues in utilizing PMUs is the optimal site selection of units. The main aim of this research is to develop a decision support system, which can be used in resource allocation task for smart grid system analysis. As an effort to suggest a robust decision model and standardize the decision modeling process, a harmonized modeling framework, which considers operational circumstances of component, is proposed in connection with a deterministic approach utilizing integer programming. With the results obtained from the optimal PMU placement problem, the advantages and potential that the harmonized modeling process possesses are assessed and discussed.

  15. A two-phase investment model for optimal allocation of phasor measurement units considering transmission switching

    SciTech Connect

    Mousavian, Seyedamirabbas; Valenzuela, Jorge; Wang, Jianhui

    2015-02-01

    Ensuring the reliability of an electrical power system requires a wide-area monitoring and full observability of the state variables. Phasor measurement units (PMUs) collect in real time synchronized phasors of voltages and currents which are used for the observability of the power grid. Due to the considerable cost of installing PMUs, it is not possible to equip all buses with PMUs. In this paper, we propose an integer linear programming model to determine the optimal PMU placement plan in two investment phases. In the first phase, PMUs are installed to achieve full observability of the power grid whereas additional PMUs are installed in the second phase to guarantee the N - 1 observability of the power grid. The proposed model also accounts for transmission switching and single contingencies such as failure of a PMU or a transmission line. Results are provided on several IEEE test systems which show that our proposed approach is a promising enhancement to the methods available for the optimal placement of PMUs.

  16. Implementation of phasor measurements in state estimator at Sevillana de Electricidad

    SciTech Connect

    Slutsker, I.W.; Mokhtari, S.; Jaques, L.A.; Provost, J.M.G.; Perez, M.B.; Sierra, J.B.; Gonzalez, F.G.; Figueroa, J.M.M.

    1995-12-31

    The paper describes the first implementation of phase angle measurements in an industrial state estimator.Transducers for measuring phase angles using satellite clock synchronization were installed at Sevillana de Electricidad and incorporated into the data acquisition subsystem of the EMS. The State Estimator was modified to support the processing of phasor telemetry. The enhancements to the state estimator algorithm are described in the paper. The modified state estimator was subjected to intensive testing prior to installation in the field. The results of all experiments as well as classification of phasor measurement effectiveness are reported in the paper. Phasor measurements were found to provide valuable information about the power network and improve the accuracy of the state estimation.

  17. Synchronizing computer clocks using a local area network

    NASA Technical Reports Server (NTRS)

    Levine, Judah

    1990-01-01

    Researchers completed the first tests of a method to synchronize the clocks of networked computers to the National Institute of Standards and Technology (NIST) time scale. The method uses a server computer to disseminate the time to other clients on the same local-area network. The server is synchronized to NIST using the ACTS protocol over a dial-up telephone line. The software in both the server and the parameters of this model are used to adjust the time of the local clock and the interval between calibration requests in a statistically optimum way. The algorithm maximizes the time between calibrations while at the same time keeping the time of the local clock correct within a specific tolerance. The method can be extended to synchronize computers linked over wide-area networks, and an experiment to test the performance of the algorithms over such networks is being planned.

  18. Synchronizing computer clocks using a local area network

    NASA Technical Reports Server (NTRS)

    Levine, Judah

    1990-01-01

    Researchers completed the first tests of a method to synchronize the clocks of networked computers to the National Institute of Standards and Technology (NIST) time scale. The method uses a server computer to disseminate the time to other clients on the same local-area network. The server is synchronized to NIST using the ACTS protocol over a dial-up telephone line. The software in both the server and the parameters of this model are used to adjust the time of the local clock and the interval between calibration requests in a statistically optimum way. The algorithm maximizes the time between calibrations while at the same time keeping the time of the local clock correct within a specific tolerance. The method can be extended to synchronize computers linked over wide-area networks, and an experiment to test the performance of the algorithms over such networks is being planned.

  19. Enhancing synchronization stability in a multi-area power grid

    PubMed Central

    Wang, Bing; Suzuki, Hideyuki; Aihara, Kazuyuki

    2016-01-01

    Maintaining a synchronous state of generators is of central importance to the normal operation of power grids, in which many networks are generally interconnected. In order to understand the condition under which the stability can be optimized, it is important to relate network stability with feedback control strategies as well as network structure. Here, we present a stability analysis on a multi-area power grid by relating it with several control strategies and topological design of network structure. We clarify the minimal feedback gain in the self-feedback control, and build the optimal communication network for the local and global control strategies. Finally, we consider relationship between the interconnection pattern and the synchronization stability; by optimizing the network interlinks, the obtained network shows better synchronization stability than the original network does, in particular, at a high power demand. Our analysis shows that interlinks between spatially distant nodes will improve the synchronization stability. The results seem unfeasible to be implemented in real systems but provide a potential guide for the design of stable power systems. PMID:27225708

  20. Enhancing synchronization stability in a multi-area power grid

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Suzuki, Hideyuki; Aihara, Kazuyuki

    2016-05-01

    Maintaining a synchronous state of generators is of central importance to the normal operation of power grids, in which many networks are generally interconnected. In order to understand the condition under which the stability can be optimized, it is important to relate network stability with feedback control strategies as well as network structure. Here, we present a stability analysis on a multi-area power grid by relating it with several control strategies and topological design of network structure. We clarify the minimal feedback gain in the self-feedback control, and build the optimal communication network for the local and global control strategies. Finally, we consider relationship between the interconnection pattern and the synchronization stability; by optimizing the network interlinks, the obtained network shows better synchronization stability than the original network does, in particular, at a high power demand. Our analysis shows that interlinks between spatially distant nodes will improve the synchronization stability. The results seem unfeasible to be implemented in real systems but provide a potential guide for the design of stable power systems.

  1. Enhancing synchronization stability in a multi-area power grid.

    PubMed

    Wang, Bing; Suzuki, Hideyuki; Aihara, Kazuyuki

    2016-05-26

    Maintaining a synchronous state of generators is of central importance to the normal operation of power grids, in which many networks are generally interconnected. In order to understand the condition under which the stability can be optimized, it is important to relate network stability with feedback control strategies as well as network structure. Here, we present a stability analysis on a multi-area power grid by relating it with several control strategies and topological design of network structure. We clarify the minimal feedback gain in the self-feedback control, and build the optimal communication network for the local and global control strategies. Finally, we consider relationship between the interconnection pattern and the synchronization stability; by optimizing the network interlinks, the obtained network shows better synchronization stability than the original network does, in particular, at a high power demand. Our analysis shows that interlinks between spatially distant nodes will improve the synchronization stability. The results seem unfeasible to be implemented in real systems but provide a potential guide for the design of stable power systems.

  2. Phasor Analysis of Binary Diffraction Gratings with Different Fill Factors

    ERIC Educational Resources Information Center

    Martinez, Antonio; Sanchez-Lopez, Ma del Mar; Moreno, Ignacio

    2007-01-01

    In this work, we present a simple analysis of binary diffraction gratings with different slit widths relative to the grating period. The analysis is based on a simple phasor technique directly derived from the Huygens principle. By introducing a slit phasor and a grating phasor, the intensity of the diffracted orders and the grating's resolving…

  3. The phasor type model of SMES

    NASA Astrophysics Data System (ADS)

    Shi, J.; Tang, Y.; Ren, L.; Li, J.; Chen, S.

    2009-10-01

    Superconducting magnetic energy storage (SMES) compensates the dynamic power for the power system through regulating the active and reactive currents between the SMES and the power system. To analyze the influence of SMES on the operation characteristic of the power system, a second-order equivalent model of SMES is adopted in the electromagnetic transient analysis of power system, but the model makes considerable simplifications for the dynamic characteristic of SMES. This paper proposed the phasor type model of SMES. The phasor model has the following characteristics: (1) the model does not considers the switching state of the power electronic converter, which can save the computing time and improve the simulation efficiency; (2) the model considers the performance of the superconducting magnet, the converter and the DC side capacitor, which can accurately reflect the dynamic response characteristics of SMES; and (3) the model includes detailed control system of SMES, which can implement different control methods to the SMES system and evaluate the control effect. Using MATLAB SIMULINK, the dynamic characteristic of the SMES phasor model is evaluated. Then, the phasor model is introduced into the power system stability analysis to analyze the application of SMES in damping out the power system.

  4. Synchronization in area-preserving maps: Effects of mixed phase space and coherent structures.

    PubMed

    Mahata, Sasibhusan; Das, Swetamber; Gupte, Neelima

    2016-06-01

    The problem of synchronization of coupled Hamiltonian systems presents interesting features due to the mixed nature (regular and chaotic) of the phase space. We study these features by examining the synchronization of unidirectionally coupled area-preserving maps coupled by the Pecora-Caroll method. The master stability function approach is used to study the stability of the synchronous state and to identify the percentage of synchronizing initial conditions. The transient to synchronization shows intermittency with an associated power law. The mixed nature of the phase space of the studied map has notable effects on the synchronization times as is seen in the case of the standard map. Using finite-time Lyapunov exponent analysis, we show that the synchronization of the maps occurs in the neighborhood of invariant curves in the phase space. The phase differences of the coevolving trajectories show intermittency effects, due to the existence of stable periodic orbits contributing locally stable directions in the synchronizing neighborhoods. Furthermore, the value of the nonlinearity parameter, as well as the location of the initial conditions play an important role in the distribution of synchronization times. We examine drive response combinations which are chaotic-chaotic, chaotic-regular, regular-chaotic, and regular-regular. A range of scaling behavior is seen for these cases, including situations where the distributions show a power-law tail, indicating long synchronization times for at least some of the synchronizing trajectories. The introduction of coherent structures in the system changes the situation drastically. The distribution of synchronization times crosses over to exponential behavior, indicating shorter synchronization times, and the number of initial conditions which synchronize increases significantly, indicating an enhancement in the basin of synchronization. We discuss the implications of our results.

  5. Phasor Simulator for Operator Training Project

    SciTech Connect

    Dyer, Jim

    2016-09-14

    Synchrophasor systems are being deployed in power systems throughout the North American Power Grid and there are plans to integrate this technology and its associated tools into Independent System Operator (ISO)/utility control room operations. A pre-requisite to using synchrophasor technologies in control rooms is for operators to obtain training and understand how to use this technology in real-time situations. The Phasor Simulator for Operator Training (PSOT) project objective was to develop, deploy and demonstrate a pre-commercial training simulator for operators on the use of this technology and to promote acceptance of the technology in utility and ISO/Regional Transmission Owner (RTO) control centers.

  6. From modular to centralized organization of synchronization in functional areas of the cat cerebral cortex.

    PubMed

    Gómez-Gardeñes, Jesús; Zamora-López, Gorka; Moreno, Yamir; Arenas, Alex

    2010-08-26

    Recent studies have pointed out the importance of transient synchronization between widely distributed neural assemblies to understand conscious perception. These neural assemblies form intricate networks of neurons and synapses whose detailed map for mammals is still unknown and far from our experimental capabilities. Only in a few cases, for example the C. elegans, we know the complete mapping of the neuronal tissue or its mesoscopic level of description provided by cortical areas. Here we study the process of transient and global synchronization using a simple model of phase-coupled oscillators assigned to cortical areas in the cerebral cat cortex. Our results highlight the impact of the topological connectivity in the developing of synchronization, revealing a transition in the synchronization organization that goes from a modular decentralized coherence to a centralized synchronized regime controlled by a few cortical areas forming a Rich-Club connectivity pattern.

  7. Propagation phasor approach for holographic image reconstruction

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Zhang, Yibo; Göröcs, Zoltán; Feizi, Alborz; Ozcan, Aydogan

    2016-03-01

    To achieve high-resolution and wide field-of-view, digital holographic imaging techniques need to tackle two major challenges: phase recovery and spatial undersampling. Previously, these challenges were separately addressed using phase retrieval and pixel super-resolution algorithms, which utilize the diversity of different imaging parameters. Although existing holographic imaging methods can achieve large space-bandwidth-products by performing pixel super-resolution and phase retrieval sequentially, they require large amounts of data, which might be a limitation in high-speed or cost-effective imaging applications. Here we report a propagation phasor approach, which for the first time combines phase retrieval and pixel super-resolution into a unified mathematical framework and enables the synthesis of new holographic image reconstruction methods with significantly improved data efficiency. In this approach, twin image and spatial aliasing signals, along with other digital artifacts, are interpreted as noise terms that are modulated by phasors that analytically depend on the lateral displacement between hologram and sensor planes, sample-to-sensor distance, wavelength, and the illumination angle. Compared to previous holographic reconstruction techniques, this new framework results in five- to seven-fold reduced number of raw measurements, while still achieving a competitive resolution and space-bandwidth-product. We also demonstrated the success of this approach by imaging biological specimens including Papanicolaou and blood smears.

  8. Propagation phasor approach for holographic image reconstruction

    PubMed Central

    Luo, Wei; Zhang, Yibo; Göröcs, Zoltán; Feizi, Alborz; Ozcan, Aydogan

    2016-01-01

    To achieve high-resolution and wide field-of-view, digital holographic imaging techniques need to tackle two major challenges: phase recovery and spatial undersampling. Previously, these challenges were separately addressed using phase retrieval and pixel super-resolution algorithms, which utilize the diversity of different imaging parameters. Although existing holographic imaging methods can achieve large space-bandwidth-products by performing pixel super-resolution and phase retrieval sequentially, they require large amounts of data, which might be a limitation in high-speed or cost-effective imaging applications. Here we report a propagation phasor approach, which for the first time combines phase retrieval and pixel super-resolution into a unified mathematical framework and enables the synthesis of new holographic image reconstruction methods with significantly improved data efficiency. In this approach, twin image and spatial aliasing signals, along with other digital artifacts, are interpreted as noise terms that are modulated by phasors that analytically depend on the lateral displacement between hologram and sensor planes, sample-to-sensor distance, wavelength, and the illumination angle. Compared to previous holographic reconstruction techniques, this new framework results in five- to seven-fold reduced number of raw measurements, while still achieving a competitive resolution and space-bandwidth-product. We also demonstrated the success of this approach by imaging biological specimens including Papanicolaou and blood smears. PMID:26964671

  9. Attentional Stimulus Selection through Selective Synchronization between Monkey Visual Areas

    PubMed Central

    Bosman, Conrado A.; Schoffelen, Jan-Mathijs; Brunet, Nicolas; Oostenveld, Robert; Bastos, Andre M.; Womelsdorf, Thilo; Rubehn, Birthe; Stieglitz, Thomas; De Weerd, Peter; Fries, Pascal

    2012-01-01

    SUMMARY A central motif in neuronal networks is convergence, linking several input neurons to one target neuron. In visual cortex, convergence renders target neurons responsive to complex stimuli. Yet, convergence typically sends multiple stimuli to a target, and the behaviorally relevant stimulus must be selected. We used two stimuli, activating separate electrocorticographic V1 sites, and both activating an electrocorticographic V4 site equally strongly. When one of those stimuli activated one V1 site, it gamma-synchronized (60–80 Hz) to V4. When the two stimuli activated two V1 sites, primarily the relevant one gamma-synchronized to V4. Frequency bands of gamma activities showed substantial overlap containing the band of inter-areal coherence. The relevant V1 site had its gamma peak frequency 2–3 Hz higher than the irrelevant V1 site, and 4–6 Hz higher than V4. Gamma-mediated inter-areal influences were predominantly directed from V1 to V4. We propose that selective synchronization renders relevant input effective, thereby modulating effective connectivity. PMID:22958827

  10. Characterizing fibrosis in UUO mice model using multiparametric analysis of phasor distribution from FLIM images.

    PubMed

    Ranjit, Suman; Dvornikov, Alexander; Levi, Moshe; Furgeson, Seth; Gratton, Enrico

    2016-09-01

    Phasor approach to fluorescence lifetime microscopy is used to study development of fibrosis in the unilateral ureteral obstruction model (UUO) of kidney in mice. Traditional phasor analysis has been modified to create a multiparametric analysis scheme that splits the phasor points in four equidistance segments based on the height of peak of the phasor distribution and calculates six parameters including average phasor positions, the shape of each segment, the angle of the distribution and the number of points in each segment. These parameters are used to create a spectrum of twenty four points specific to the phasor distribution of each sample. Comparisons of spectra from diseased and healthy tissues result in quantitative separation and calculation of statistical parameters including AUC values, positive prediction values and sensitivity. This is a new method in the evolving field of analyzing phasor distribution of FLIM data and provides further insights. Additionally, the progression of fibrosis with time is detected using this multiparametric approach to phasor analysis.

  11. Visuomotor integration is associated with zero time-lag synchronization among cortical areas

    NASA Astrophysics Data System (ADS)

    Roelfsema, Pieter R.; Engel, Andreas K.; König, Peter; Singer, Wolf

    1997-01-01

    INFORMATION processing in the cerebral cortex invariably involves the activation of millions of neurons that are widely distributed over its various areas. These distributed activity patterns need to be integrated into coherent representational states. A candidate mechanism for the integration and coordination of neuronal activity between different brain regions is synchronization on a fine temporal scale1-3. In the visual cortex, synchronization occurs selectively between the responses of neurons that represent related features2-5 and that need to be integrated for the generation of coherent percepts; neurons in other areas of the cerebral cortex also synchronize their discharges6-10. However, little is known about the patterns and the behavioural correlates of synchrony among widely separated cortical regions. Here we report that synchronization occurs between areas of the visual and parietal cortex, and between areas of the parietal and motor cortex, in the awake cat. When cats responded to a sudden change of a visual pattern, neuronal activity in cortical areas exhibited synchrony without time lags; this synchrony was particularly strong between areas subserving related functions. During reward and inter-trial episodes, zero-time-lag synchrony was lost and replaced by interactions exhibiting large and unsystematic time lags.

  12. Phasor plotting with frequency-domain flow cytometry

    PubMed Central

    Cao, Ruofan; Jenkins, Patrick; Peria, William; Sands, Bryan; Naivar, Mark; Brent, Roger; Houston, Jessica P.

    2016-01-01

    Interest in time resolved flow cytometry is growing. In this paper, we collect time-resolved flow cytometry data and use it to create polar plots showing distributions that are a function of measured fluorescence decay rates from individual fluorescently-labeled cells and fluorescent microspheres. Phasor, or polar, graphics are commonly used in fluorescence lifetime imaging microscopy (FLIM). In FLIM measurements, the plotted points on a phasor graph represent the phase-shift and demodulation of the frequency-domain fluorescence signal collected by the imaging system for each image pixel. Here, we take a flow cytometry cell counting system, introduce into it frequency-domain optoelectronics, and process the data so that each point on a phasor plot represents the phase shift and demodulation of an individual cell or particle. In order to demonstrate the value of this technique, we show that phasor graphs can be used to discriminate among populations of (i) fluorescent microspheres, which are labeled with one fluorophore type; (ii) Chinese hamster ovary (CHO) cells labeled with one and two different fluorophore types; and (iii) Saccharomyces cerevisiae cells that express combinations of fluorescent proteins with different fluorescence lifetimes. The resulting phasor plots reveal differences in the fluorescence lifetimes within each sample and provide a distribution from which we can infer the number of cells expressing unique single or dual fluorescence lifetimes. These methods should facilitate analysis time resolved flow cytometry data to reveal complex fluorescence decay kinetics. PMID:27410612

  13. Phasor plotting with frequency-domain flow cytometry.

    PubMed

    Cao, Ruofan; Jenkins, Patrick; Peria, William; Sands, Bryan; Naivar, Mark; Brent, Roger; Houston, Jessica P

    2016-06-27

    Interest in time resolved flow cytometry is growing. In this paper, we collect time-resolved flow cytometry data and use it to create polar plots showing distributions that are a function of measured fluorescence decay rates from individual fluorescently-labeled cells and fluorescent microspheres. Phasor, or polar, graphics are commonly used in fluorescence lifetime imaging microscopy (FLIM). In FLIM measurements, the plotted points on a phasor graph represent the phase-shift and demodulation of the frequency-domain fluorescence signal collected by the imaging system for each image pixel. Here, we take a flow cytometry cell counting system, introduce into it frequency-domain optoelectronics, and process the data so that each point on a phasor plot represents the phase shift and demodulation of an individual cell or particle. In order to demonstrate the value of this technique, we show that phasor graphs can be used to discriminate among populations of (i) fluorescent microspheres, which are labeled with one fluorophore type; (ii) Chinese hamster ovary (CHO) cells labeled with one and two different fluorophore types; and (iii) Saccharomyces cerevisiae cells that express combinations of fluorescent proteins with different fluorescence lifetimes. The resulting phasor plots reveal differences in the fluorescence lifetimes within each sample and provide a distribution from which we can infer the number of cells expressing unique single or dual fluorescence lifetimes. These methods should facilitate analysis time resolved flow cytometry data to reveal complex fluorescence decay kinetics.

  14. Effects of Phasor Measurement Uncertainty on Power Line Outage Detection

    SciTech Connect

    Chen, Chen; Wang, Jianhui; Zhu, H

    2014-12-01

    Phasor measurement unit (PMU) technology provides an effective tool to enhance the wide-area monitoring systems (WAMSs) in power grids. Although extensive studies have been conducted to develop several PMU applications in power systems (e.g., state estimation, oscillation detection and control, voltage stability analysis, and line outage detection), the uncertainty aspects of PMUs have not been adequately investigated. This paper focuses on quantifying the impact of PMU uncertainty on power line outage detection and identification, in which a limited number of PMUs installed at a subset of buses are utilized to detect and identify the line outage events. Specifically, the line outage detection problem is formulated as a multi-hypothesis test, and a general Bayesian criterion is used for the detection procedure, in which the PMU uncertainty is analytically characterized. We further apply the minimum detection error criterion for the multi-hypothesis test and derive the expected detection error probability in terms of PMU uncertainty. The framework proposed provides fundamental guidance for quantifying the effects of PMU uncertainty on power line outage detection. Case studies are provided to validate our analysis and show how PMU uncertainty influences power line outage detection.

  15. Analysis of electromagnetic and electromechanical power system transients with dynamic phasors

    NASA Astrophysics Data System (ADS)

    Henschel, Sebastian

    1999-11-01

    Over the last 50 years, digital simulation of electric power systems has become an integral part for planning, design and operation in the power industry. The number of possibilities with respect to the purpose of a study, investigated frequency ranges, etc. with, in the past, limited computer resources has resulted in a spectrum of simulation tools, designed to handle very specific tasks. Simplifying assumptions were often needed to facilitate such a simulation. Recent system failures and power outages, partly due to increasingly sensitive operating conditions, have created a demand for more comprehensive studies and more general simulation tools that overcome former limitations. With regards to time-domain simulation, this demand has led to combining the areas of transient, mid-term and long-term stability. Confronted with concerns about black start and system restoration due to a global trend to a deregulated power market, several power utilities suggested to also include the area of electromagnetic transients. However, previously made assumptions as well as technical limitations complicate the implementation of this idea: Stability programs are based on the assumption that power transfer takes place at system frequency and are therefore unable to represent rapid electromagnetic transients. Electromagnetic transients programs, on the other hand, are very accurate but use too small simulation step sizes for an efficient simulation of electromechanical transients. A new method for simulating both types of transient phenomena with complex signals and dynamic phasors is presented in this thesis. Whereas in previous work three-phase transformations had been used to accomplish this task, this new method is applied directly in the phase-domain and not restricted to balanced three-phase systems. Several numerical aspects such as an appropriate variable representation, integration method and a control mechanism for variable simulation step sizes have been addressed

  16. Bad data detection in two stage estimation using phasor measurements

    NASA Astrophysics Data System (ADS)

    Tarali, Aditya

    The ability of the Phasor Measurement Unit (PMU) to directly measure the system state, has led to steady increase in the use of PMU in the past decade. However, in spite of its high accuracy and the ability to measure the states directly, they cannot completely replace the conventional measurement units due to high cost. Hence it is necessary for the modern estimators to use both conventional and phasor measurements together. This thesis presents an alternative method to incorporate the new PMU measurements into the existing state estimator in a systematic manner such that no major modification is necessary to the existing algorithm. It is also shown that if PMUs are placed appropriately, the phasor measurements can be used to detect and identify the bad data associated with critical measurements by using this model, which cannot be detected by conventional state estimation algorithm. The developed model is tested on IEEE 14, IEEE 30 and IEEE 118 bus under various conditions.

  17. Multi-component quantitative magnetic resonance imaging by phasor representation.

    PubMed

    Vergeldt, Frank J; Prusova, Alena; Fereidouni, Farzad; Amerongen, Herbert van; Van As, Henk; Scheenen, Tom W J; Bader, Arjen N

    2017-04-13

    Quantitative magnetic resonance imaging (qMRI) is a versatile, non-destructive and non-invasive tool in life, material, and medical sciences. When multiple components contribute to the signal in a single pixel, however, it is difficult to quantify their individual contributions and characteristic parameters. Here we introduce the concept of phasor representation to qMRI to disentangle the signals from multiple components in imaging data. Plotting the phasors allowed for decomposition, unmixing, segmentation and quantification of our in vivo data from a plant stem, a human and mouse brain and a human prostate. In human brain images, we could identify 3 main T 2 components and 3 apparent diffusion coefficients; in human prostate 5 main contributing spectral shapes were distinguished. The presented phasor analysis is model-free, fast and accurate. Moreover, we also show that it works for undersampled data.

  18. Phasor imaging with a widefield photon-counting detector

    NASA Astrophysics Data System (ADS)

    Colyer, Ryan A.; Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; Weiss, Shimon; Michalet, Xavier

    2012-01-01

    Fluorescence lifetime can be used as a contrast mechanism to distinguish fluorophores for localization or tracking, for studying molecular interactions, binding, assembly, and aggregation, or for observing conformational changes via Förster resonance energy transfer (FRET) between donor and acceptor molecules. Fluorescence lifetime imaging microscopy (FLIM) is thus a powerful technique but its widespread use has been hampered by demanding hardware and software requirements. FLIM data is often analyzed in terms of multicomponent fluorescence lifetime decays, which requires large signals for a good signal-to-noise ratio. This confines the approach to very low frame rates and limits the number of frames which can be acquired before bleaching the sample. Recently, a computationally efficient and intuitive graphical representation, the phasor approach, has been proposed as an alternative method for FLIM data analysis at the ensemble and single-molecule level. In this article, we illustrate the advantages of combining phasor analysis with a widefield time-resolved single photon-counting detector (the H33D detector) for FLIM applications. In particular we show that phasor analysis allows real-time subsecond identification of species by their lifetimes and rapid representation of their spatial distribution, thanks to the parallel acquisition of FLIM information over a wide field of view by the H33D detector. We also discuss possible improvements of the H33D detector's performance made possible by the simplicity of phasor analysis and its relaxed timing accuracy requirements compared to standard time-correlated single-photon counting (TCSPC) methods.

  19. Mapping diffusion in a living cell via the phasor approach.

    PubMed

    Ranjit, Suman; Lanzano, Luca; Gratton, Enrico

    2014-12-16

    Diffusion of a fluorescent protein within a cell has been measured using either fluctuation-based techniques (fluorescence correlation spectroscopy (FCS) or raster-scan image correlation spectroscopy) or particle tracking. However, none of these methods enables us to measure the diffusion of the fluorescent particle at each pixel of the image. Measurement using conventional single-point FCS at every individual pixel results in continuous long exposure of the cell to the laser and eventual bleaching of the sample. To overcome this limitation, we have developed what we believe to be a new method of scanning with simultaneous construction of a fluorescent image of the cell. In this believed new method of modified raster scanning, as it acquires the image, the laser scans each individual line multiple times before moving to the next line. This continues until the entire area is scanned. This is different from the original raster-scan image correlation spectroscopy approach, where data are acquired by scanning each frame once and then scanning the image multiple times. The total time of data acquisition needed for this method is much shorter than the time required for traditional FCS analysis at each pixel. However, at a single pixel, the acquired intensity time sequence is short; requiring nonconventional analysis of the correlation function to extract information about the diffusion. These correlation data have been analyzed using the phasor approach, a fit-free method that was originally developed for analysis of FLIM images. Analysis using this method results in an estimation of the average diffusion coefficient of the fluorescent species at each pixel of an image, and thus, a detailed diffusion map of the cell can be created.

  20. Mapping Diffusion in a Living Cell via the Phasor Approach

    PubMed Central

    Ranjit, Suman; Lanzano, Luca; Gratton, Enrico

    2014-01-01

    Diffusion of a fluorescent protein within a cell has been measured using either fluctuation-based techniques (fluorescence correlation spectroscopy (FCS) or raster-scan image correlation spectroscopy) or particle tracking. However, none of these methods enables us to measure the diffusion of the fluorescent particle at each pixel of the image. Measurement using conventional single-point FCS at every individual pixel results in continuous long exposure of the cell to the laser and eventual bleaching of the sample. To overcome this limitation, we have developed what we believe to be a new method of scanning with simultaneous construction of a fluorescent image of the cell. In this believed new method of modified raster scanning, as it acquires the image, the laser scans each individual line multiple times before moving to the next line. This continues until the entire area is scanned. This is different from the original raster-scan image correlation spectroscopy approach, where data are acquired by scanning each frame once and then scanning the image multiple times. The total time of data acquisition needed for this method is much shorter than the time required for traditional FCS analysis at each pixel. However, at a single pixel, the acquired intensity time sequence is short; requiring nonconventional analysis of the correlation function to extract information about the diffusion. These correlation data have been analyzed using the phasor approach, a fit-free method that was originally developed for analysis of FLIM images. Analysis using this method results in an estimation of the average diffusion coefficient of the fluorescent species at each pixel of an image, and thus, a detailed diffusion map of the cell can be created. PMID:25517145

  1. A synchronous fiber optic ring local area network for multigigabit/s mixed-traffic communication

    NASA Technical Reports Server (NTRS)

    Bergman, L. A.; Eng, S. T.

    1985-01-01

    A synchronous-ring fiber optic local area network is reported that facilitates the simultaneous transmission of packet and real-time traffic at gigabit/s rates, minimizes the amount of high-speed logic, and simplifies the user interface to the network. The novelty of the technique is based on (1) suspending in transit around the ring's circumference an integral number of data frames and (2) achieving this condition by skewing the frame clock rate a small amount. Rather than use the whole data frame as one packet destined to a specific user, many individual channels are instead time-multiplexed into the data frame. This technique only becomes feasible for local networks as data rates approach the Gbit/s range. This departure from other synchronous rings results in several advantages both in terms of system performance and hardware simplicity.

  2. Phasor analysis for nonlinear pump-probe microscopy

    PubMed Central

    Robles, Francisco E.; Wilson, Jesse W.; Fischer, Martin C.; Warren, Warren S.

    2012-01-01

    Pump-probe microscopy provides molecular information by probing transient, excited state dynamic properties of pigmented samples. Analysis of the transient response is typically conducted using principal component analysis or multi-exponential fitting, however these methods are not always practical or feasible. Here, we show an adaptation of phasor analysis to provide an intuitive, robust, and efficient method for analyzing and displaying pump-probe images, thereby alleviating some of the challenges associated with differentiating multiple pigments. A theoretical treatment is given to understand how the complex transient signals map onto the phasor plot. Analyses of cutaneous and ocular pigmented tissue samples, as well as historical pigments in art demonstrate the utility of this approach.

  3. Phasor imaging with a widefield photon-counting detector

    PubMed Central

    Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; Weiss, Shimon

    2012-01-01

    Abstract. Fluorescence lifetime can be used as a contrast mechanism to distinguish fluorophores for localization or tracking, for studying molecular interactions, binding, assembly, and aggregation, or for observing conformational changes via Förster resonance energy transfer (FRET) between donor and acceptor molecules. Fluorescence lifetime imaging microscopy (FLIM) is thus a powerful technique but its widespread use has been hampered by demanding hardware and software requirements. FLIM data is often analyzed in terms of multicomponent fluorescence lifetime decays, which requires large signals for a good signal-to-noise ratio. This confines the approach to very low frame rates and limits the number of frames which can be acquired before bleaching the sample. Recently, a computationally efficient and intuitive graphical representation, the phasor approach, has been proposed as an alternative method for FLIM data analysis at the ensemble and single-molecule level. In this article, we illustrate the advantages of combining phasor analysis with a widefield time-resolved single photon-counting detector (the H33D detector) for FLIM applications. In particular we show that phasor analysis allows real-time subsecond identification of species by their lifetimes and rapid representation of their spatial distribution, thanks to the parallel acquisition of FLIM information over a wide field of view by the H33D detector. We also discuss possible improvements of the H33D detector’s performance made possible by the simplicity of phasor analysis and its relaxed timing accuracy requirements compared to standard time-correlated single-photon counting (TCSPC) methods. PMID:22352658

  4. Characterizing fibrosis in UUO mice model using multiparametric analysis of phasor distribution from FLIM images

    PubMed Central

    Ranjit, Suman; Dvornikov, Alexander; Levi, Moshe; Furgeson, Seth; Gratton, Enrico

    2016-01-01

    Phasor approach to fluorescence lifetime microscopy is used to study development of fibrosis in the unilateral ureteral obstruction model (UUO) of kidney in mice. Traditional phasor analysis has been modified to create a multiparametric analysis scheme that splits the phasor points in four equidistance segments based on the height of peak of the phasor distribution and calculates six parameters including average phasor positions, the shape of each segment, the angle of the distribution and the number of points in each segment. These parameters are used to create a spectrum of twenty four points specific to the phasor distribution of each sample. Comparisons of spectra from diseased and healthy tissues result in quantitative separation and calculation of statistical parameters including AUC values, positive prediction values and sensitivity. This is a new method in the evolving field of analyzing phasor distribution of FLIM data and provides further insights. Additionally, the progression of fibrosis with time is detected using this multiparametric approach to phasor analysis. PMID:27699117

  5. Synchronization of neural activity across cortical areas correlates with conscious perception.

    PubMed

    Melloni, Lucia; Molina, Carlos; Pena, Marcela; Torres, David; Singer, Wolf; Rodriguez, Eugenio

    2007-03-14

    Subliminal stimuli can be deeply processed and activate similar brain areas as consciously perceived stimuli. This raises the question which signatures of neural activity critically differentiate conscious from unconscious processing. Transient synchronization of neural activity has been proposed as a neural correlate of conscious perception. Here we test this proposal by comparing the electrophysiological responses related to the processing of visible and invisible words in a delayed matching to sample task. Both perceived and nonperceived words caused a similar increase of local (gamma) oscillations in the EEG, but only perceived words induced a transient long-distance synchronization of gamma oscillations across widely separated regions of the brain. After this transient period of temporal coordination, the electrographic signatures of conscious and unconscious processes continue to diverge. Only words reported as perceived induced (1) enhanced theta oscillations over frontal regions during the maintenance interval, (2) an increase of the P300 component of the event-related potential, and (3) an increase in power and phase synchrony of gamma oscillations before the anticipated presentation of the test word. We propose that the critical process mediating the access to conscious perception is the early transient global increase of phase synchrony of oscillatory activity in the gamma frequency range.

  6. Comparing the techniques of defining the synchronous machine load angle

    NASA Astrophysics Data System (ADS)

    Kovalenko, P. Y.; Moiseichenkov, A. N.

    2017-07-01

    The low-frequency oscillations are natural for power systems and may arise due to both small variations of load and large disturbance. The effect of slight load changes may significantly differ for cases of low-magnitude permanent oscillations, which may be considered acceptable, and unstable oscillations, which may lead to a major system emergency. The existing trend of increasing the capacity of long-range power transmission has led to the situation where inter-area oscillations may appear underdamped or even rising in terms of magnitude. Effective oscillations detection with the corresponding countermeasures along with eliminating the prerequisites leading to the oscillations is a guarantee of minimizing their negative consequences. Therefore, it is of crucial importance to perform continuous monitoring which is to provide the information on the “source” of oscillations - a generator or a group of generators, which do not contribute to the oscillations damping or even support their development. The algorithm of quantitative estimation of synchronous generators participation in low-frequency oscillations damping based on synchronized phasor measurements has been proposed previously. It implies utilizing the concept of synchronizing power as a measure of the capability of the machine to maintain synchronous operation. The load angle of the generator is necessary to define the value of the synchronizing power and since the direct measurement of the load angle is generally not available the techniques of its derivation have been developed. The comparison of these techniques is presented with the estimation of the adopted assumptions effect on the synchronizing power evaluation results.

  7. Unified Series-Shunt Compensator for PQ Analysis using Dynamic Phasor Modeling and EMT Simulation

    NASA Astrophysics Data System (ADS)

    Hannan, M. A.; Mohamed, Azah; Hussain, Aini

    2010-06-01

    Modeling of unified series-shunt compensator (USSC) and its PQ analysis of a simple test system is simulated based on dynamic phasor model and EMT program. Its aim is to investigate the overall efficiency of USSC for power quality (PQ) analysis and results will be compared with EMTP like simulation. The dynamic phasor model is implemented in Matlab/Simulink toolbox where as the EMT model simulation of the USSC uses the PSCAD/EMTDC software. Credible solutions to the PQ problems on the distribution network have been analyzed using dynamic phasor model and EMT model simulation techniques. Simulation results of the USSC dynamic phasor model including the system makes a perfect agreement with the detailed time-domain EMTP like PSCAD/EMTDC simulation. It is found that the dynamic behavior of USSC phasor model have very good potential application in analyzing overall PQ issues, faster in speed and higher accuracy as compared with PSCAD/EMTDC simulation.

  8. Process synchronization and data communication between processes in real time local area networks

    NASA Astrophysics Data System (ADS)

    Haeger, R.

    1985-12-01

    This thesis extends the multi-computer real-time executive, MCORTEX. The multiple cluster system RTC (Real Time Cluster Star), consisting of clusters of single board computers (INTEL iSBC 86/12A), which are connected via an Ethernet Local Area Network, serves as a hardware basis for the implementation of extended MCORTEX. The extension upgrades MCORTEX to system-wide synchronization and general data communication between any processes in the system. An intercluster shared memory model is developed, that partially replicates intracluster shared memory, such that shared data replication is minimized and the system's processing speed is maximized. This implementation, by transmitting produced shared data to all consuming clusters as soon as possible after production, guarantees that only cluster local hits occur in the system. Shared memory space is used efficiently by transmitting shared data to consuming clusters only, and by the ability to store shared data contiguously in intracluster shared memory.

  9. Power system applications for phasor measurement units

    SciTech Connect

    Burnett, R.O. Jr. ); Butts, M.M.; Sterlina, P.S.

    1994-01-01

    This article examines the applications for a system that can determine the state of the power system at a given instant over any area. The topics of the article include fault recording applications, disturbance recording applications, transmission and generation modeling verification applications, power system stabilizer test applications, and a discussion of future enhancements and applications.

  10. GPS synchronized power system phase angle measurements

    NASA Astrophysics Data System (ADS)

    Wilson, Robert E.; Sterlina, Patrick S.

    1994-09-01

    This paper discusses the use of Global Positioning System (GPS) synchronized equipment for the measurement and analysis of key power system quantities. Two GPS synchronized phasor measurement units (PMU) were installed before testing. It was indicated that PMUs recorded the dynamic response of the power system phase angles when the northern California power grid was excited by the artificial short circuits. Power system planning engineers perform detailed computer generated simulations of the dynamic response of the power system to naturally occurring short circuits. The computer simulations use models of transmission lines, transformers, circuit breakers, and other high voltage components. This work will compare computer simulations of the same event with field measurement.

  11. Laboratory Performance Evaluation Report of SEL 421 Phasor Measurement Unit

    SciTech Connect

    Huang, Zhenyu; faris, Anthony J.; Martin, Kenneth E.; Hauer, John F.; Bonebrake, Christopher A.; Shaw, James M.

    2007-12-01

    PNNL and BPA have been in close collaboration on laboratory performance evaluation of phasor measurement units for over ten years. A series of evaluation tests are designed to confirm accuracy and determine measurement performance under a variety of conditions that may be encountered in actual use. Ultimately the testing conducted should provide parameters that can be used to adjust all measurements to a standardized basis. These tests are performed with a standard relay test set using recorded files of precisely generated test signals. The test set provides test signals at a level and in a format suitable for input to a PMU that accurately reproduces the signals in both signal amplitude and timing. Test set outputs are checked to confirm the accuracy of the output signal. The recorded signals include both current and voltage waveforms and a digital timing track used to relate the PMU measured value with the test signal. Test signals include steady-state waveforms to test amplitude, phase, and frequency accuracy, modulated signals to determine measurement and rejection bands, and step tests to determine timing and response accuracy. Additional tests are included as necessary to fully describe the PMU operation. Testing is done with a BPA phasor data concentrator (PDC) which provides communication support and monitors data input for dropouts and data errors.

  12. Phasor Representation of Monomer-Excimer Kinetics: General Results and Application to Pyrene.

    PubMed

    Martelo, Liliana; Fedorov, Alexander; Berberan-Santos, Mário N

    2015-12-03

    Phasor plots of the fluorescence intensity decay (plots of the Fourier sine transform versus the Fourier cosine transform, for one or several angular frequencies) are being increasingly used in studies of homogeneous and heterogeneous systems. In this work, the phasor approach is applied to monomer-excimer kinetics. The results obtained allow a clear visualization of the information contained in the decays. The monomer phasor falls inside the universal circle, whereas the excimer phasor lies outside it, but within the double-exponential outer boundary curve. The monomer and excimer phasors, along with those corresponding to the two exponential components of the decays, fall on a common straight line and obey the generalized lever rule. The clockwise trajectories described by both phasors upon monomer concentration increase are identified. The phasor approach allows discussing in a single graphic not only the effect of concentration but also that of rate constants, including the evolution from irreversible kinetics to fast excited-state equilibrium upon a temperature increase. The obtained results are applied to the fluorescence decays of pyrene monomer and excimer in methylcyclohexane at room temperature. A straightforward method of monomer-excimer lifetime data analysis based on linear plots is also introduced.

  13. Parameter estimation of an asymmetric vocal-fold system from glottal area time series using chaos synchronization.

    PubMed

    Zhang, Yu; Tao, Chao; Jiang, Jack J

    2006-06-01

    In this paper, we apply an iterative parameter adaption scheme based on chaos synchronization to estimate system parameters of the asymmetric vocal folds from glottal area time series. The original asymmetric vocal-fold system associated with recurrent laryngeal paralysis shows chaotic vibrations with positive Lyapunov exponents. Aperiodic glottal area time series from the original system will be applied as the feedback variable coupling the simulative and the original vocal-fold systems. The parameter adaption technique based on chaos synchronization is employed to manipulate the simulative system parameters. The chaotic vibrations, system parameters, and the bifurcation diagram of the original vocal-fold system can be exactly reproduced in the simulative system, and the two chaotic systems can be synchronized. Furthermore, the effects of noise, sampling rate, and equation difference due to nonlinear spring terms on vocal-fold parameter estimations are investigated. Despite large noise perturbations, large equation differences, and low sampling rate, the parameter adaption scheme can effectively estimate the original vocal-fold system parameters. This study provides a theoretical base to apply chaos synchronization to estimate the vocal-fold system parameters from the glottal area data and show its potential application in laryngeal physiology.

  14. Measurements of absolute concentrations of NADH in cells using the phasor FLIM method.

    PubMed

    Ma, Ning; Digman, Michelle A; Malacrida, Leonel; Gratton, Enrico

    2016-07-01

    We propose a graphical method using the phasor representation of the fluorescence decay to derive the absolute concentration of NADH in cells. The method requires the measurement of a solution of NADH at a known concentration. The phasor representation of the fluorescence decay accounts for the differences in quantum yield of the free and bound form of NADH, pixel by pixel of an image. The concentration of NADH in every pixel in a cell is obtained after adding to each pixel in the phasor plot a given amount of unmodulated light which causes a shift of the phasor towards the origin by an amount that depends on the intensity at the pixel and the fluorescence lifetime at the pixel. The absolute concentration of NADH is obtained by comparison of the shift obtained at each pixel of an image with the shift of the calibrated solution.

  15. Measurements of absolute concentrations of NADH in cells using the phasor FLIM method

    PubMed Central

    Ma, Ning; Digman, Michelle A.; Malacrida, Leonel; Gratton, Enrico

    2016-01-01

    We propose a graphical method using the phasor representation of the fluorescence decay to derive the absolute concentration of NADH in cells. The method requires the measurement of a solution of NADH at a known concentration. The phasor representation of the fluorescence decay accounts for the differences in quantum yield of the free and bound form of NADH, pixel by pixel of an image. The concentration of NADH in every pixel in a cell is obtained after adding to each pixel in the phasor plot a given amount of unmodulated light which causes a shift of the phasor towards the origin by an amount that depends on the intensity at the pixel and the fluorescence lifetime at the pixel. The absolute concentration of NADH is obtained by comparison of the shift obtained at each pixel of an image with the shift of the calibrated solution. PMID:27446681

  16. A multidimensional phasor approach reveals LAURDAN photophysics in NIH-3T3 cell membranes.

    PubMed

    Malacrida, Leonel; Jameson, David M; Gratton, Enrico

    2017-08-23

    Mammalian cell membranes have different phospholipid composition and cholesterol content, displaying a profile of fluidity that depends on their intracellular location. Among the dyes used in membrane studies, LAURDAN has the advantage to be sensitive to the lipid composition as well as to membrane fluidity. The LAURDAN spectrum is sensitive to the lipid composition and dipolar relaxation arising from water penetration, but disentangling lipid composition from membrane fluidity can be obtained if time resolved spectra could be measured at each cell location. Here we describe a method in which spectral and lifetime information obtained in different measurements at the same plane in a cell are used in the phasor plot providing a solution to analyze multiple lifetime or spectral data through a common visualization approach. We exploit a property of phasor plots based on the reciprocal role of the phasor plot and the image. In the phasor analysis each pixel of the image is associated with a phasor and each phasor maps to pixels and features in the image. In this paper the lifetime and spectral fluorescence data are used simultaneously to determine the contribution of polarity and dipolar relaxations of LAURDAN in each pixel of an image.

  17. Synchronization across sensory cortical areas by electrical microstimulation is sufficient for behavioral discrimination.

    PubMed

    Manzur, Hachi E; Alvarez, Joel; Babul, Cecilia; Maldonado, Pedro E

    2013-12-01

    The temporal correlation hypothesis proposes that cortical neurons engage in synchronized activity, thus configuring a general mechanism to account for a range of cognitive processes from perceptual binding to consciousness. However, most studies supporting this hypothesis have only provided correlational, but not causal evidence. Here, we used electrical microstimulation of the visual and somatosensory cortices of the rat in both hemispheres, to test whether rats could discriminate synchronous versus asynchronous patterns of stimulation applied to the same cortical sites. To disambiguate synchrony from other related parameters, our experiments independently manipulated the rate and intensity of stimulation, the spatial locations of stimulation, the exact temporal sequence of stimulation patterns, and the degree of synchrony across stimulation sites. We found that rats reliably distinguished between 2 microstimulation patterns, differing in the spatial arrangement of cortical sites stimulated synchronously. Also, their performance was proportional to the level of synchrony in the microstimulation patterns. We demonstrated that rats can recognize artificial current patterns containing precise synchronization features, thus providing the first direct evidence that artificial synchronous activity can guide behavior. Such precise temporal information can be used as feedback signals in machine interface arrangements.

  18. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Synchronization in Complex Networks with Multiple Connections

    NASA Astrophysics Data System (ADS)

    Wu, Qing-Chu; Fu, Xin-Chu; Sun, Wei-Gang

    2010-01-01

    In this paper a class of networks with multiple connections are discussed. The multiple connections include two different types of links between nodes in complex networks. For this new model, we give a simple generating procedure. Furthermore, we investigate dynamical synchronization behavior in a delayed two-layer network, giving corresponding theoretical analysis and numerical examples.

  19. A phasor approach analysis of multiphoton FLIM measurements of three-dimensional cell culture models

    NASA Astrophysics Data System (ADS)

    Lakner, P. H.; Möller, Y.; Olayioye, M. A.; Brucker, S. Y.; Schenke-Layland, K.; Monaghan, M. G.

    2016-03-01

    Fluorescence lifetime imaging microscopy (FLIM) is a useful approach to obtain information regarding the endogenous fluorophores present in biological samples. The concise evaluation of FLIM data requires the use of robust mathematical algorithms. In this study, we developed a user-friendly phasor approach for analyzing FLIM data and applied this method on three-dimensional (3D) Caco-2 models of polarized epithelial luminal cysts in a supporting extracellular matrix environment. These Caco-2 based models were treated with epidermal growth factor (EGF), to stimulate proliferation in order to determine if FLIM could detect such a change in cell behavior. Autofluorescence from nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) in luminal Caco-2 cysts was stimulated by 2-photon laser excitation. Using a phasor approach, the lifetimes of involved fluorophores and their contribution were calculated with fewer initial assumptions when compared to multiexponential decay fitting. The phasor approach simplified FLIM data analysis, making it an interesting tool for non-experts in numerical data analysis. We observed that an increased proliferation stimulated by EGF led to a significant shift in fluorescence lifetime and a significant alteration of the phasor data shape. Our data demonstrates that multiphoton FLIM analysis with the phasor approach is a suitable method for the non-invasive analysis of 3D in vitro cell culture models qualifying this method for monitoring basic cellular features and the effect of external factors.

  20. Phasor FLIM metabolic mapping of stem cells and cancer cells in live tissues

    NASA Astrophysics Data System (ADS)

    Stringari, Chiara; Donovan, Peter; Gratton, Enrico

    2012-03-01

    We use the phasor approach to fluorescence lifetime imaging and intrinsic biochemical fluorescence biomarkers in conjunction with image segmentation and the concept of cell phasor for deriving metabolic maps of cells and living tissues in vivo. In issues we identify and separate intrinsic fluorophores such as collagen, retinol, retinoic acid, porphyrin, flavins, free and bound nicotinamide adenine dinucleotide (NADH). Metabolic signatures of tissues are obtained by calculating the phasor fingerprint of single cells and by mapping the relative concentration of metabolites. This method detects small changes in metabolic signatures and redox states of cells. Phasor fingerprints of stem cells cluster according to their differentiation state in a living tissue such as the C. elegans germ line and the crypt base of small intestine and colon. Phasor FLIM provides a label-free and fit-free sensitive method to identify metabolic states of cells and to classify stem cells, normal differentiated cells and cancer cells both in vitro and in a live tissue. Our method could identify symmetric and asymmetric divisions, predict cell fate and identify pre-cancer stages in vivo. This method is a promising non-invasive optical tool for monitoring metabolic pathways during differentiation and carcinogenesis, for cell sorting and high throughput screening.

  1. Development of a reference Phasor Measurement Unit (PMU) for the monitoring and control of grid stability and quality

    NASA Astrophysics Data System (ADS)

    Ndilimabaka, Hervé; Blanc, Isabelle

    2014-08-01

    This paper discusses the details of the development of a Phasor Measurement Unit regarding the requirements of the IEEE C37.118-2005 synchrophasor standard relative to steady-state conditions on grid monitoring and control. This phasor measurement unit is intended to be used for field tests sooner.

  2. Analyzing convergence and synchronicity of business and growth cycles in the euro area using cross recurrence plots

    NASA Astrophysics Data System (ADS)

    Crowley, P. M.

    2008-10-01

    Convergence and synchronisation of business and growth cycles are important issues in the efficient formulation of euro area monetary policy by the European Central Bank (ECB). Although several studies in the economics literature address the issue of synchronicity of growth within the euro area, this is the first study to address this issue using cross recurrence analysis. The main findings are that member state growth rates have largely converged since the introduction of the euro, but there is a wide degree of different synchronisation behaviours which appear to be non-linear in nature. These differences could cause problems in future implementation of a single (ECB-determined)monetary policy in the euro area.

  3. Synchronicity from synchronized chaos

    SciTech Connect

    Duane, Gregory

    2015-04-01

    The synchronization of loosely-coupled chaotic oscillators, a phenomenon investigated intensively for the last two decades, may realize the philosophical concept of “synchronicity”—the commonplace notion that related events mysteriously occur at the same time. When extended to continuous media and/or large discrete arrays, and when general (non-identical) correspondences are considered between states, intermittent synchronous relationships indeed become ubiquitous. Meaningful synchronicity follows naturally if meaningful events are identified with coherent structures, defined by internal synchronization between remote degrees of freedom; a condition that has been posited as necessary for synchronizability with an external system. The important case of synchronization between mind and matter is realized if mind is analogized to a computer model, synchronizing with a sporadically observed system, as in meteorological data assimilation. Evidence for the ubiquity of synchronization is reviewed along with recent proposals that: (1) synchronization of different models of the same objective process may be an expeditious route to improved computational modeling and may also describe the functioning of conscious brains; and (2) the nonlocality in quantum phenomena implied by Bell’s theorem may be explained in a variety of deterministic (hidden variable) interpretations if the quantum world resides on a generalized synchronization “manifold”.

  4. Synchronicity from synchronized chaos

    DOE PAGES

    Duane, Gregory

    2015-04-01

    The synchronization of loosely-coupled chaotic oscillators, a phenomenon investigated intensively for the last two decades, may realize the philosophical concept of “synchronicity”—the commonplace notion that related events mysteriously occur at the same time. When extended to continuous media and/or large discrete arrays, and when general (non-identical) correspondences are considered between states, intermittent synchronous relationships indeed become ubiquitous. Meaningful synchronicity follows naturally if meaningful events are identified with coherent structures, defined by internal synchronization between remote degrees of freedom; a condition that has been posited as necessary for synchronizability with an external system. The important case of synchronization between mind andmore » matter is realized if mind is analogized to a computer model, synchronizing with a sporadically observed system, as in meteorological data assimilation. Evidence for the ubiquity of synchronization is reviewed along with recent proposals that: (1) synchronization of different models of the same objective process may be an expeditious route to improved computational modeling and may also describe the functioning of conscious brains; and (2) the nonlocality in quantum phenomena implied by Bell’s theorem may be explained in a variety of deterministic (hidden variable) interpretations if the quantum world resides on a generalized synchronization “manifold”.« less

  5. Synchronized sampling improves fault location

    SciTech Connect

    Kezunovic, M.; Perunicic, B.

    1995-04-01

    Transmission line faults must be located accurately to allow maintenance crews to arrive at the scene and repair the faulted section as soon as possible. Rugged terrain and geographical layout cause some sections of power transmission lines to be difficult to reach. In the past, a variety of fault location algorithms were introduced as either an add-on feature in protective relays or stand-alone implementation in fault locators. In both cases, the measurements of current and voltages were taken at one terminal of a transmission line only. Under such conditions, it may become difficult to determine the fault location accurately, since data from other transmission line ends are required for more precise computations. In the absence of data from the other end, existing algorithms have accuracy problems under several circumstances, such as varying switching and loading conditions, fault infeed from the other end, and random value of fault resistance. Most of the one-end algorithms were based on estimation of voltage and current phasors. The need to estimate phasors introduces additional difficulty in high-speed tripping situations where the algorithms may not be fast enough in determining fault location accurately before the current signals disappear due to the relay operation and breaker opening. This article introduces a unique concept of high-speed fault location that can be implemented either as a simple add-on to the digital fault recorders (DFRs) or as a stand-alone new relaying function. This advanced concept is based on the use of voltage and current samples that are synchronously taken at both ends of a transmission line. This sampling technique can be made readily available in some new DFR designs incorporating receivers for accurate sampling clock synchronization using the satellite Global Positioning System (GPS).

  6. Spectral properties and dynamics of gold nanorods revealed by EMCCD-based spectral phasor method.

    PubMed

    Chen, Hongtao; Gratton, Enrico; Digman, Michelle A

    2015-04-01

    Gold nanorods (NRs) with tunable plasmon-resonant absorption in the near-infrared region have considerable advantages over organic fluorophores as imaging agents due to their brightness and lack of photobleaching. However, the luminescence spectral properties of NRs have not been fully characterized at the single particle level due to lack of proper analytic tools. Here, we present a spectral phasor analysis method that allows investigations of NRs' spectra at single particle level showing the spectral variance and providing spatial information during imaging. The broad phasor distribution obtained by the spectral phasor analysis indicates that spectra of NRs are different from particle to particle. NRs with different spectra can be identified in images with high spectral resolution. The spectral behaviors of NRs under different imaging conditions, for example, different excitation powers and wavelengths, were revealed by our laser-scanning multiphoton microscope using a high-resolution spectrograph with imaging capability. Our results prove that the spectral phasor method is an easy and efficient tool in hyper-spectral imaging analysis to unravel subtle changes of the emission spectrum. We applied this method to study the spectral dynamics of NRs during direct optical trapping and by optothermal trapping. Interestingly, different spectral shifts were observed in both trapping phenomena.

  7. Spectral Properties and Dynamics of Gold Nanorods Revealed by EMCCD Based Spectral-Phasor Method

    PubMed Central

    Chen, Hongtao; Digman, Michelle A.

    2015-01-01

    Gold nanorods (NRs) with tunable plasmon-resonant absorption in the near-infrared region have considerable advantages over organic fluorophores as imaging agents. However, the luminescence spectral properties of NRs have not been fully explored at the single particle level in bulk due to lack of proper analytic tools. Here we present a global spectral phasor analysis method which allows investigations of NRs' spectra at single particle level with their statistic behavior and spatial information during imaging. The wide phasor distribution obtained by the spectral phasor analysis indicates spectra of NRs are different from particle to particle. NRs with different spectra can be identified graphically in corresponding spatial images with high spectral resolution. Furthermore, spectral behaviors of NRs under different imaging conditions, e.g. different excitation powers and wavelengths, were carefully examined by our laser-scanning multiphoton microscope with spectral imaging capability. Our results prove that the spectral phasor method is an easy and efficient tool in hyper-spectral imaging analysis to unravel subtle changes of the emission spectrum. Moreover, we applied this method to study the spectral dynamics of NRs during direct optical trapping and by optothermal trapping. Interestingly, spectral shifts were observed in both trapping phenomena. PMID:25684346

  8. Synchronous Energy Technology

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The synchronous technology requirements for large space power systems are summarized. A variety of technology areas including photovoltaics, thermal management, and energy storage, and power management are addressed.

  9. Monitoring and simulating real-time electric power system operation with phasor measurements

    SciTech Connect

    Phadke, A.G.; Thorp, J.S.

    1995-01-01

    In this research project, two important results have been achieved. The concept of generator axis load flow has been developed more fully, and has been tested through simulations on the 39-bus system (with 10 generators). Generator axis load flow is a load flow calculation which views the entire network from a few retained buses such as the internal nodes of the generators. As these nodes can be indirectly monitored in real time through phasor measurements of generator terminal quantities, it becomes possible to track and predict the behavior of the entire network from these few observation points. This is extremely valuable in the task of predicting network instability in real time. The task of instability prediction of a multi-machine power system is one of the most difficult analytical exercises. We investigated two of the most promising approaches: the extended equal area method, and the transient energy function method. Although both of these methods work well in many instances, we have shown that in other cases, the predictions made by the two methods are incorrect. The failure of the methods can be traced to their inability to deal with the behavior of the system after the first turning point of the motor swing curves. Instead of using these methods, we propose the direct integration of the machine swing equations following the start of a disturbance. Coupled with the generator aids load flow developed above, and using the high speed computers available now, we show that for systems of significant size (39 bus system), accurate predictions through direct computation are possible. The report also includes results on computational efficiency of the method of faster-than-real-time integration using machine equations and the generator aids load flow. It is anticipated that this technique will be useful in most practical applications in power system control centers of the future.

  10. Synchronization of chaotic systems

    SciTech Connect

    Pecora, Louis M.; Carroll, Thomas L.

    2015-09-15

    We review some of the history and early work in the area of synchronization in chaotic systems. We start with our own discovery of the phenomenon, but go on to establish the historical timeline of this topic back to the earliest known paper. The topic of synchronization of chaotic systems has always been intriguing, since chaotic systems are known to resist synchronization because of their positive Lyapunov exponents. The convergence of the two systems to identical trajectories is a surprise. We show how people originally thought about this process and how the concept of synchronization changed over the years to a more geometric view using synchronization manifolds. We also show that building synchronizing systems leads naturally to engineering more complex systems whose constituents are chaotic, but which can be tuned to output various chaotic signals. We finally end up at a topic that is still in very active exploration today and that is synchronization of dynamical systems in networks of oscillators.

  11. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: A Realistic Cellular Automaton Model for Synchronized Traffic Flow

    NASA Astrophysics Data System (ADS)

    Zhao, Bo-Han; Hu, Mao-Bin; Jiang, Rui; Wu, Qing-Song

    2009-11-01

    A cellular automaton model is proposed to consider the anticipation effect in drivers' behavior. It is shown that the anticipation effect can be one of the origins of synchronized traffic flow. With anticipation effect, the congested traffic flow simulated by the model exhibits the features of synchronized flow. The spatiotemporal patterns induced by an on-ramp are also consistent with the three-phase traffic theory. Since the origin of synchronized flow is still controversial, our work can shed some light on the mechanism of synchronized flow.

  12. Development of a Phasor Diagram Creator to Visualize the Piston and Displacer Forces in an Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Saha, Dipanjan; Lewandowski, Edward J.

    2013-01-01

    The steady state, nearly sinusoidal behavior of the components in a Free Piston Stirling Engine allows for visualization of the forces in the system using phasor diagrams. Based on Newton's second law, F=ma, any phasor diagrams modeling a given component in a system should close if all of the acting forces have been considered. Since the Advanced Stirling Radioisotope Generator (ASRG), currently being developed for future NASA deep space missions, is made up of such nearly sinusoidally oscillating components, its phasor diagrams would also be expected to close. A graphical user interface (GUI) has been written in MATLAB by taking user input data, passing it to Sage, a 1-D thermodynamic modeling program used to model the Stirling convertor, running Sage and then automatically plotting the phasor diagrams. Using this software tool, the effect of varying different Sage inputs on the phasor diagrams was determined. The parameters varied were piston amplitude, hot end temperature, cold end temperature, operating frequency, and displacer spring constant. By using these phasor diagrams, better insight can be gained as to why the convertor operates the way that it does.

  13. Development of a Phasor Diagram Creator to Visualize the Piston and Displacer Forces in an Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Saha, Dipanjan; Lewandowski, Edward J.

    2013-01-01

    The steady-state, nearly sinusoidal behavior of the components in a free-piston Stirling engine allows for visualization of the forces in the system using phasor diagrams. Based on Newton's second law, F = ma, any phasor diagrams modeling a given component in a system should close if all of the acting forces have been considered. Since the Advanced Stirling Radioisotope Generator (ASRG), currently being developed for future NASA deep space missions, is made up of such nearly sinusoidally oscillating components, its phasor diagrams would also be expected to close. A graphical user interface (GUI) has been written in MATLAB (MathWorks), which takes user input data, passes it to Sage (Gedeon Associates), a one-dimensional thermodynamic modeling program used to model the Stirling convertor, runs Sage, and then automatically plots the phasor diagrams. Using this software tool, the effect of varying different Sage inputs on the phasor diagrams was determined. The parameters varied were piston amplitude, hot-end temperature, cold-end temperature, operating frequency, and displacer spring constant. These phasor diagrams offer useful insight into convertor operation and performance.

  14. Imaging Fibrosis and Separating Collagens using Second Harmonic Generation and Phasor Approach to Fluorescence Lifetime Imaging

    PubMed Central

    Ranjit, Suman; Dvornikov, Alexander; Stakic, Milka; Hong, Suk-Hyun; Levi, Moshe; Evans, Ronald M.; Gratton, Enrico

    2015-01-01

    In this paper we have used second harmonic generation (SHG) and phasor approach to auto fluorescence lifetime imaging (FLIM) to obtain fingerprints of different collagens and then used these fingerprints to observe bone marrow fibrosis in the mouse femur. This is a label free approach towards fast automatable detection of fibrosis in tissue samples. FLIM has previously been used as a method of contrast in different tissues and in this paper phasor approach to FLIM is used to separate collagen I from collagen III, the markers of fibrosis, the largest groups of disorders that are often without any effective therapy. Often characterized by an increase in collagen content of the corresponding tissue, the samples are usually visualized by histochemical staining, which is pathologist dependent and cannot be automated. PMID:26293987

  15. Generator Dynamic Model Validation and Parameter Calibration Using Phasor Measurements at the Point of Connection

    SciTech Connect

    Huang, Zhenyu; Du, Pengwei; Kosterev, Dmitry; Yang, Steve

    2013-05-01

    Disturbance data recorded by phasor measurement units (PMU) offers opportunities to improve the integrity of dynamic models. However, manually tuning parameters through play-back events demands significant efforts and engineering experiences. In this paper, a calibration method using the extended Kalman filter (EKF) technique is proposed. The formulation of EKF with parameter calibration is discussed. Case studies are presented to demonstrate its validity. The proposed calibration method is cost-effective, complementary to traditional equipment testing for improving dynamic model quality.

  16. Application of phasor plot and autofluorescence correction for study of heterogeneous cell population

    PubMed Central

    Szmacinski, Henryk; Toshchakov, Vladimir; Lakowicz, Joseph R.

    2014-01-01

    Abstract. Protein-protein interactions in cells are often studied using fluorescence resonance energy transfer (FRET) phenomenon by fluorescence lifetime imaging microscopy (FLIM). Here, we demonstrate approaches to the quantitative analysis of FRET in cell population in a case complicated by a highly heterogeneous donor expression, multiexponential donor lifetime, large contribution of cell autofluorescence, and significant presence of unquenched donor molecules that do not interact with the acceptor due to low affinity of donor-acceptor binding. We applied a multifrequency phasor plot to visualize FRET FLIM data, developed a method for lifetime background correction, and performed a detailed time-resolved analysis using a biexponential model. These approaches were applied to study the interaction between the Toll Interleukin-1 receptor (TIR) domain of Toll-like receptor 4 (TLR4) and the decoy peptide 4BB. TLR4 was fused to Cerulean fluorescent protein (Cer) and 4BB peptide was labeled with Bodipy TMRX (BTX). Phasor displays for multifrequency FLIM data are presented. The analytical procedure for lifetime background correction is described and the effect of correction on FLIM data is demonstrated. The absolute FRET efficiency was determined based on the phasor plot display and multifrequency FLIM data analysis. The binding affinity between TLR4-Cer (donor) and decoy peptide 4BB-BTX (acceptor) was estimated in a heterogeneous HeLa cell population. PMID:24770662

  17. Transient Uncoupling Induces Synchronization

    NASA Astrophysics Data System (ADS)

    Schröder, Malte; Mannattil, Manu; Dutta, Debabrata; Chakraborty, Sagar; Timme, Marc

    2015-07-01

    Finding conditions that support synchronization is a fertile and active area of research with applications across multiple disciplines. Here we present and analyze a scheme for synchronizing chaotic dynamical systems by transiently uncoupling them. Specifically, systems coupled only in a fraction of their state space may synchronize even if fully coupled they do not. While for many standard systems coupling strengths need to be bounded to ensure synchrony, transient uncoupling removes this bound and thus enables synchronization in an infinite range of effective coupling strengths. The presented coupling scheme therefore opens up the possibility to induce synchrony in (biological or technical) systems whose parameters are fixed and cannot be modified continuously.

  18. Inhibitory effect of selenium supplementation on the reproductive performance in synchronized Merino sheep at range conditions in a selenium-deficient area.

    PubMed

    Sánchez, J; Jiménez, A; Regodón, S; Andrés, S

    2008-06-01

    The effect of selenium (Se) supplementation on the reproductive performance of Merino ewes mated out of the normal breeding season was studied in a 2 (no Se supplementation vs Se supplementation) x 2 (ewes mated at natural oestrus vs synchronized oestrus) factorial design with 50 ewes per treatment combination. Synchronization of oestrus was achieved by intravaginal insertion of 40 mg cronolone sponges for 14 days and administration of 440 IU PMSG at sponge withdrawal. Se supplementation was by the addition to the concentrate with 0.5 mg/kg of Se in the form of selenomethionin, for the 3 months prior to the mating and during gestation. Ewes were kept under range conditions in south-west Spain, and exposed to Merino rams at a female: male ratio of 4 : 1 from 2 days following sponge withdrawal, or the equivalent time, for 21 days. Se supplementation alone did not improve significantly ewe fertility or lamb birth weight, but there was a positive effect of synchronizing ewes mated out of the breeding season as more of these ewes lambed and produced more lambs than those not synchronized. However, a strong interaction was found between synchronization and Se supplementation, causing a deleterious effect on the reproductive performance of ewes. This negative effect, presumably related to high embrionary mortality caused by Se toxicity, should be taken into account for oestrus synchronizing in Se-deficient areas. The supplementation with Se, for the prevention of nutritional myodystrophy degeneration in lambs, should be conducted in a fashion which does not generate high levels of Se in the ewes around the mating period.

  19. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Modelling of intercellular synchronization in the Drosophila circadian clock

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Wei; Chen, Ai-Min; Zhang, Jia-Jun; Yuan, Zhan-Jiang; Zhou, Tian-Shou

    2009-03-01

    In circadian rhythm generation, intercellular signaling factors are shown to play a crucial role in both sustaining intrinsic cellular rhythmicity and acquiring collective behaviours across a population of circadian neurons. However, the physical mechanism behind their role remains to be fully understood. In this paper, we propose an indirectly coupled multicellular model for the synchronization of Drosophila circadian oscillators combining both intracellular and intercellular dynamics. By simulating different experimental conditions, we find that such an indirect coupling way can synchronize both heterogeneous self-sustained circadian neurons and heterogeneous mutational damped circadian neurons. Moreover, they can also be entrained to ambient light-dark (LD) cycles depending on intercellular signaling.

  20. Scoping Study on Research and Development Priorities for Distribution-System Phasor Measurement Units

    SciTech Connect

    Eto, Joseph H.; Stewart, Emma M.; Smith, Travis; Buckner, Mark; Kirkham, Harold; Tuffner, Francis; Schoenwald, David A.

    2016-04-01

    This report addresses the potential use of phasor measurement units (PMUs) within electricity distribution systems, and was written to assess whether or not PMUs could provide significant benefit, at the national level. We analyze examples of present and emerging distribution-system issues related to reliability, integration of distributed energy resources, and the changing electrical characteristics of load. We find that PMUs offer important and irreplaceable advantages over present approaches. However, we also find that additional research and development for standards, testing and calibration, demonstration projects, and information sharing is needed to help industry capture these benefits.

  1. Model-free methods to study membrane environmental probes: a comparison of the spectral phasor and generalized polarization approaches

    NASA Astrophysics Data System (ADS)

    Malacrida, Leonel; Gratton, Enrico; Jameson, David M.

    2015-12-01

    In this note, we present a discussion of the advantages and scope of model-free analysis methods applied to the popular solvatochromic probe LAURDAN, which is widely used as an environmental probe to study dynamics and structure in membranes. In particular, we compare and contrast the generalized polarization approach with the spectral phasor approach. To illustrate our points we utilize several model membrane systems containing pure lipid phases and, in some cases, cholesterol or surfactants. We demonstrate that the spectral phasor method offers definitive advantages in the case of complex systems.

  2. Model-free methods to study membrane environmental probes: a comparison of the spectral phasor and generalized polarization approaches

    PubMed Central

    Malacrida, Leonel; Gratton, Enrico; Jameson, David M

    2016-01-01

    In this note, we present a discussion of the advantages and scope of model-free analysis methods applied to the popular solvatochromic probe LAURDAN, which is widely used as an environmental probe to study dynamics and structure in membranes. In particular, we compare and contrast the generalized polarization approach with the spectral phasor approach. To illustrate our points we utilize several model membrane systems containing pure lipid phases and, in some cases, cholesterol or surfactants. We demonstrate that the spectral phasor method offers definitive advantages in the case of complex systems. PMID:27182438

  3. Model-free methods to study membrane environmental probes: a comparison of the spectral phasor and generalized polarization approaches.

    PubMed

    Malacrida, Leonel; Gratton, Enrico; Jameson, David M

    2015-12-01

    In this note, we present a discussion of the advantages and scope of model-free analysis methods applied to the popular solvatochromic probe LAURDAN, which is widely used as an environmental probe to study dynamics and structure in membranes. In particular, we compare and contrast the generalized polarization approach with the spectral phasor approach. To illustrate our points we utilize several model membrane systems containing pure lipid phases and, in some cases, cholesterol or surfactants. We demonstrate that the spectral phasor method offers definitive advantages in the case of complex systems.

  4. Reconciling Coherent Oscillation with Modulation of Irregular Spiking Activity in Selective Attention: Gamma-Range Synchronization between Sensory and Executive Cortical Areas

    PubMed Central

    Ardid, Salva; Wang, Xiao-Jing; Gomez-Cabrero, David; Compte, Albert

    2010-01-01

    In this computational work, we investigated gamma-band synchronization across cortical circuits associated with selective attention. The model explicitly instantiates a reciprocally connected loop of spiking neurons between a sensory-type (area MT) and an executive-type (prefrontal/parietal) cortical circuit (the source area for top-down attentional signaling). Moreover, unlike models in which neurons behave as clock-like oscillators, in our model single-cell firing is highly irregular (close to Possion) while local field potential exhibits a population rhythm. In this “sparsely synchronized oscillatory” regime, the model reproduces and clarifies multiple observations from behaving animals. Top-down attentional inputs have a profound effect on network oscillatory dynamics while only modestly affecting single-neuron spiking statistics. In addition, attentional synchrony modulations are highly selective: Inter-areal neuronal coherence occurs only when there is a close match between the preferred feature of neurons, the attended feature and the presented stimulus, a prediction that is experimentally testable. When inter-areal coherence was abolished attention-induced gain modulations of sensory neurons were slightly reduced. Therefore, our model reconciles the rate and synchronization effects, and suggests that interareal coherence contributes to large-scale neuronal computation in the brain through modest enhancement of rate modulations as well as a pronounced attention-specific enhancement of neural synchrony. PMID:20181583

  5. Defining the parameters of a power transmission line equivalent circuit on the basis of phasor measurements

    NASA Astrophysics Data System (ADS)

    Kovalenko, P. Y.; Berdin, A. S.

    2017-07-01

    Power system control is based on employing its computational model, the backbone of which is an equivalent circuit. The equivalent circuit is involved in solving the problems of steady-state computation and analysis, state estimation, transient analysis etc. Its elements parameters are generally defined by the corresponding equipment reference data or datasheets. Although considered to be constant, these parameters depend upon the element actual load, weather conditions and other factors. Consequently, the results of the outlined problems may be subject to significant bias due to the difference between the reference and the actual elements parameters. Hence the task of identifying the actual equivalent circuit parameters is of paramount importance. In terms of power system control the actual measurements are to be used in order to provide the relevant information on the considered power system component state. As for the transmission lines, the state measurements must include the currents and voltages at both ends of the line regarding the Π-shaped equivalent circuit. That said, at present time the equivalent circuit parameters might be defined involving modern systems of phasor measurements (WAMS) on a real-time basis. The method of defining the equivalent circuit parameters based on phasor measurements along with general relations between power system state parameters is proposed. It should be noted as well that while dealing with the actual WAMS data obtained from power system the measurement errors influence the results quite substantially.

  6. The phasor-FLIM fingerprints reveal shifts from OXPHOS to enhanced glycolysis in Huntington Disease

    PubMed Central

    Sameni, Sara; Syed, Adeela; Marsh, J. Lawrence; Digman, Michelle A.

    2016-01-01

    Huntington disease (HD) is an autosomal neurodegenerative disorder caused by the expansion of Polyglutamine (polyQ) in exon 1 of the Huntingtin protein. Glutamine repeats below 36 are considered normal while repeats above 40 lead to HD. Impairment in energy metabolism is a common trend in Huntington pathogenesis; however, this effect is not fully understood. Here, we used the phasor approach and Fluorescence Lifetime Imaging Microscopy (FLIM) to measure changes between free and bound fractions of NADH as a indirect measure of metabolic alteration in living cells. Using Phasor-FLIM, pixel maps of metabolic alteration in HEK293 cell lines and in transgenic Drosophila expressing expanded and unexpanded polyQ HTT exon1 in the eye disc were developed. We found a significant shift towards increased free NADH, indicating an increased glycolytic state for cells and tissues expressing the expanded polyQ compared to unexpanded control. In the nucleus, a further lifetime shift occurs towards higher free NADH suggesting a possible synergism between metabolic dysfunction and transcriptional regulation. Our results indicate that metabolic dysfunction in HD shifts to increased glycolysis leading to oxidative stress and cell death. This powerful label free method can be used to screen native HD tissue samples and for potential drug screening. PMID:27713486

  7. Event Classification and Identification Based on the Characteristic Ellipsoid of Phasor Measurement

    SciTech Connect

    Ma, Jian; Diao, Ruisheng; Makarov, Yuri V.; Etingov, Pavel V.; Dagle, Jeffery E.

    2011-09-23

    In this paper, a method to classify and identify power system events based on the characteristic ellipsoid of phasor measurement is presented. The decision tree technique is used to perform the event classification and identification. Event types, event locations and clearance times are identified by decision trees based on the indices of the characteristic ellipsoid. A sufficiently large number of transient events were simulated on the New England 10-machine 39-bus system based on different system configurations. Transient simulations taking into account different event types, clearance times and various locations are conducted to simulate phasor measurement. Bus voltage magnitudes and recorded reactive and active power flows are used to build the characteristic ellipsoid. The volume, eccentricity, center and projection of the longest axis in the parameter space coordinates of the characteristic ellipsoids are used to classify and identify events. Results demonstrate that the characteristic ellipsoid and the decision tree are capable to detect the event type, location, and clearance time with very high accuracy.

  8. Phasor approaches simplify the analysis of tryptophan fluorescence data in protein denaturation studies

    NASA Astrophysics Data System (ADS)

    Bader, Arjen N.; Visser, Nina V.; van Amerongen, Herbert; Visser, Antonie J. W. G.

    2014-12-01

    The intrinsic fluorescence of tryptophan is frequently used to investigate the structure of proteins. The analysis of tryptophan fluorescence data is challenging: fluorescence (anisotropy) decays typically have multiple lifetime (correlation time) components and fluorescence spectra are broad and exhibit only minor shifts. In this work, we show that phasor approaches can substantially simplify tryptophan fluorescence analysis. To demonstrate this, we re-analyse previously recorded datasets of the denaturant (guanidinium hydrochloride, GuHCl) induced unfolding of a single-tryptophan-containing variant of apoflavodoxin from Azotobacter vinelandii. For three methods—(1) time-resolved fluorescence, (2) time-resolved fluorescence anisotropy and (3) steady-state fluorescence spectroscopy—we show that the phasor analysis can readily identify the presence of a folding intermediate. Moreover, the fractional contributions of protein states at various stages of unfolding and the values of the free energy difference of the unfolding process ≤ft(Δ G\\text{UN}0\\right) are obtained. The outcomes are compared to the global analysis results published previously.

  9. The phasor-FLIM fingerprints reveal shifts from OXPHOS to enhanced glycolysis in Huntington Disease

    NASA Astrophysics Data System (ADS)

    Sameni, Sara; Syed, Adeela; Marsh, J. Lawrence; Digman, Michelle A.

    2016-10-01

    Huntington disease (HD) is an autosomal neurodegenerative disorder caused by the expansion of Polyglutamine (polyQ) in exon 1 of the Huntingtin protein. Glutamine repeats below 36 are considered normal while repeats above 40 lead to HD. Impairment in energy metabolism is a common trend in Huntington pathogenesis; however, this effect is not fully understood. Here, we used the phasor approach and Fluorescence Lifetime Imaging Microscopy (FLIM) to measure changes between free and bound fractions of NADH as a indirect measure of metabolic alteration in living cells. Using Phasor-FLIM, pixel maps of metabolic alteration in HEK293 cell lines and in transgenic Drosophila expressing expanded and unexpanded polyQ HTT exon1 in the eye disc were developed. We found a significant shift towards increased free NADH, indicating an increased glycolytic state for cells and tissues expressing the expanded polyQ compared to unexpanded control. In the nucleus, a further lifetime shift occurs towards higher free NADH suggesting a possible synergism between metabolic dysfunction and transcriptional regulation. Our results indicate that metabolic dysfunction in HD shifts to increased glycolysis leading to oxidative stress and cell death. This powerful label free method can be used to screen native HD tissue samples and for potential drug screening.

  10. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Generalized Synchronization of Time-Delayed Discrete Systems

    NASA Astrophysics Data System (ADS)

    Jing, Jian-Yi; Min, Le-Quan

    2009-06-01

    This paper establishes two theorems for two time-delayed (chaotic) discrete systems to achieve time-delayed generalized synchronization (TDGS). These two theorems uncover the general forms of two TDGS systems via a prescribed transformation. As examples, we convert the Lorenz three-dimensional chaotic map to an equal time-delayed system as the driving system, and construct the TDGS driven systems according to the Theorems 1 and 2. Numerical simulations demonstrate the effectiveness of the proposed theorems.

  11. Neocortical synchronization

    PubMed Central

    Timofeev, Igor; Bazhenov, Maksim; Seigneur, Joseé; Sejnowski, Terrence

    2011-01-01

    Summary Neuronal synchronization occurs when two or more neuronal events are coordinated across time. Local synchronization produces field potentials. Long-range synchronization between distant brain sites contributes to the electroencephalogram. Neuronal synchronization depends on synaptic (chemical/electrical), ephaptic, and extracellular interactions. For an expanded treatment of this topic see Jasper’s Basic Mechanisms of the Epilepsies, Fourth Edition (Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, eds) published by Oxford University Press (available on the National Library of Medicine Bookshelf [NCBI] at www.ncbi.nlm.nih.gov/books). PMID:24850952

  12. Uppermost synchronized generators of spike-wave activity are localized in limbic cortical areas in late-onset absence status epilepticus.

    PubMed

    Piros, Palma; Puskas, Szilvia; Emri, Miklos; Opposits, Gabor; Spisak, Tamas; Fekete, Istvan; Clemens, Bela

    2014-03-01

    Absence status (AS) epilepticus with generalized spike-wave pattern is frequently found in severely ill patients in whom several disease states co-exist. The cortical generators of the ictal EEG pattern and EEG functional connectivity (EEGfC) of this condition are unknown. The present study investigated the localization of the uppermost synchronized generators of spike-wave activity in AS. Seven patients with late-onset AS were investigated by EEG spectral analysis, LORETA (Low Resolution Electromagnetic Tomography) source imaging, and LSC (LORETA Source Correlation) analysis, which estimates cortico-cortical EEGfC among 23 ROIs (regions of interest) in each hemisphere. All the patients showed generalized ictal EEG activity. Maximum Z-scored spectral power was found in the 1-6 Hz and 12-14 Hz frequency bands. LORETA showed that the uppermost synchronized generators of 1-6 Hz band activity were localized in frontal and temporal cortical areas that are parts of the limbic system. For the 12-14 Hz band, abnormally synchronized generators were found in the antero-medial frontal cortex. Unlike the rather stereotyped spectral and LORETA findings, the individual EEGfC patterns were very dissimilar. The findings are discussed in the context of nonconvulsive seizure types and the role of the underlying cortical areas in late-onset AS. The diversity of the EEGfC patterns remains an enigma. Localizing the cortical generators of the EEG patterns contributes to understanding the neurophysiology of the condition. Copyright © 2013 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  13. Algorithm Summary and Evaluation: Automatic Implementation of Ringdown Analysis for Electromechanical Mode Identification from Phasor Measurements

    SciTech Connect

    Zhou, Ning; Huang, Zhenyu; Tuffner, Francis K.; Jin, Shuangshuang; Lin, Jenglung; Hauer, Matthew L.

    2010-02-28

    Small signal stability problems are one of the major threats to grid stability and reliability. Prony analysis has been successfully applied on ringdown data to monitor electromechanical modes of a power system using phasor measurement unit (PMU) data. To facilitate an on-line application of mode estimation, this paper develops a recursive algorithm for implementing Prony analysis and proposed an oscillation detection method to detect ringdown data in real time. By automatically detecting ringdown data, the proposed method helps guarantee that Prony analysis is applied properly and timely on the ringdown data. Thus, the mode estimation results can be performed reliably and timely. The proposed method is tested using Monte Carlo simulations based on a 17-machine model and is shown to be able to properly identify the oscillation data for on-line application of Prony analysis. In addition, the proposed method is applied to field measurement data from WECC to show the performance of the proposed algorithm.

  14. Detecting Pyronin Y labeled RNA transcripts in live cell microenvironments by phasor-FLIM analysis.

    PubMed

    Andrews, Laura M; Jones, Mark R; Digman, Michelle A; Gratton, Enrico

    2013-03-01

    Pyronin Y is an environment-sensitive probe which labels all double-stranded RNA in live cells. Methods to determine which RNA species Pyronin Y may be labeling are limited due to the lack of studies aimed at determining whether this probe has different spectroscopic properties when bound to specific transcripts. A major issue is that transcripts are difficult to isolate and study individually. We detected transcripts directly in their biological environment allowing us to identify RNA species on the basis of their location in the cell. We show that the phasor approach to lifetime analysis has the sensitivity to determine at least six different RNA species in live fibroblast cells. The detected lifetime differences were consistent among cells. To our knowledge this is the first application of a spectroscopic technique aimed at identifying Pyronin Y labeled RNA subtypes in living cells.

  15. Detecting Pyronin Y labeled RNA transcripts in live cell microenvironments by phasor-FLIM analysis

    NASA Astrophysics Data System (ADS)

    Andrews, Laura M.; Jones, Mark R.; Digman, Michelle A.; Gratton, Enrico

    2013-03-01

    Pyronin Y is an environment-sensitive probe which labels all double-stranded RNA in live cells. Methods to determine which RNA species Pyronin Y may be labeling are limited due to the lack of studies aimed at determining whether this probe has different spectroscopic properties when bound to specific transcripts. A major issue is that transcripts are difficult to isolate and study individually. We detected transcripts directly in their biological environment allowing us to identify RNA species on the basis of their location in the cell. We show that the phasor approach to lifetime analysis has the sensitivity to determine at least six different RNA species in live fibroblast cells. The detected lifetime differences were consistent among cells. To our knowledge this is the first application of a spectroscopic technique aimed at identifying Pyronin Y labeled RNA subtypes in living cells.

  16. Instantaneous phasor method for obtaining instantaneous balanced fundamental components for power quality control and continuous diagnostics

    SciTech Connect

    Hsu, J.S.

    1997-07-01

    This paper introduces an instantaneous phasor method that considers three phases simultaneously. This method produces the instantaneous fundamental balanced components of the polluted voltages or currents. A figure shows three-phase voltages that contain 5% of fundamental magnitude for each order of the 3rd, 5th, 7th, 9th and the 11th harmonics, respectively. Additionally, the voltages have 5% unbalance for all voltage components. A 10% fundamental-frequency zero-sequence component, as well as a 10% fundamental-frequency negative-sequence component are also added to the phase voltages. Furthermore, certain high-frequency pulses arbitrarily given at 5% of a 35th order to represent a possible carrier frequency of power electronic circuits are also included.

  17. A method to quantify FRET stoichiometry with phasor plot analysis and acceptor lifetime ingrowth.

    PubMed

    Chen, WeiYue; Avezov, Edward; Schlachter, Simon C; Gielen, Fabrice; Laine, Romain F; Harding, Heather P; Hollfelder, Florian; Ron, David; Kaminski, Clemens F

    2015-03-10

    FRET is widely used for the study of protein-protein interactions in biological samples. However, it is difficult to quantify both the FRET efficiency (E) and the affinity (Kd) of the molecular interaction from intermolecular FRET signals in samples of unknown stoichiometry. Here, we present a method for the simultaneous quantification of the complete set of interaction parameters, including fractions of bound donors and acceptors, local protein concentrations, and dissociation constants, in each image pixel. The method makes use of fluorescence lifetime information from both donor and acceptor molecules and takes advantage of the linear properties of the phasor plot approach. We demonstrate the capability of our method in vitro in a microfluidic device and also in cells, via the determination of the binding affinity between tagged versions of glutathione and glutathione S-transferase, and via the determination of competitor concentration. The potential of the method is explored with simulations.

  18. Rapid fluorescence lifetime estimation with modified phasor approach and Laguerre deconvolution: a comparative study

    NASA Astrophysics Data System (ADS)

    Fereidouni, Farzad; Gorpas, Dimitris; Ma, Dinglong; Fatakdawala, Hussain; Marcu, Laura

    2017-09-01

    Fluorescence lifetime imaging has been shown to serve as a valuable tool for interrogating and diagnosis of biological tissue at a mesoscopic level. The ability to analyze fluorescence decay curves to extract lifetime values in real-time is crucial for clinical translation and applications such as tumor margin delineation or intracoronary imaging of atherosclerotic plaques. In this work, we compare the performance of two popular non-parametric (fit-free) methods for determining lifetime values from fluorescence decays in real-time—the Phasor approach and Laguerre deconvolution. We demonstrate results from simulated and experimental data to compare the accuracy and speed of both methods and their dependence on noise and model parameters.

  19. Operational Synchronization

    NASA Astrophysics Data System (ADS)

    Brandt, Kevin

    Complex systems incorporate many elements, links, and actions. OpSync describes adaptive control techniques within complex systems to stimulate coherent synchronization. This approach fuses concepts from complexity theory, network theory, and non-cooperative game theory.

  20. Huygens synchronization of two clocks.

    PubMed

    Oliveira, Henrique M; Melo, Luís V

    2015-07-23

    The synchronization of two pendulum clocks hanging from a wall was first observed by Huygens during the XVII century. This type of synchronization is observed in other areas, and is fundamentally different from the problem of two clocks hanging from a moveable base. We present a model explaining the phase opposition synchronization of two pendulum clocks in those conditions. The predicted behaviour is observed experimentally, validating the model.

  1. Survival of Dentate Hilar Mossy Cells after Pilocarpine-Induced Seizures and their Synchronized Burst Discharges with Area CA3 Pyramidal Cells

    PubMed Central

    Scharfman, H. E.; Smith, K.; Goodman, J. H.; Sollas, A. L.

    2008-01-01

    The clinical and basic literature suggest that hilar cells of the dentate gyrus are damaged after seizures, particularly prolonged and repetitive seizures. Of the cell types within the hilus, it appears that the mossy cell is one of the most vulnerable. Nevertheless, hilar neurons which resemble mossy cells appear in some published reports of animal models of epilepsy, and in some cases of human temporal lobe epilepsy. Therefore, mossy cells may not always be killed after severe, repeated seizures. However, mossy cell survival in these studies was not completely clear because the methods did allow discrimination between mossy cells and other hilar cell types. Furthermore, whether surviving mossy cells might have altered physiology after seizures was not examined. Therefore, intracellular recording and intracellular dye injection were used to characterize hilar cells in hippocampal slices from pilocarpine-treated rats that had status epilepticus and recurrent seizures (‘epileptic’ rats). For comparison, mossy cells were also recorded from age-matched, saline-injected controls, and pilocarpine-treated rats that failed to develop status epilepticus. Numerous hilar cells with the morphology, axon projection, and membrane properties of mossy cells were recorded in all three experimental groups. Thus, mossy cells can survive severe seizures, and those that survive retain many of their normal characteristics. However, mossy cells from epileptic tissue were distinct from mossy cells of control rats in that they generated spontaneous and evoked epileptiform burst discharges. Area CA3 pyramidal cells also exhibited spontaneous and evoked bursts. Simultaneous intracellular recordings from mossy cells and pyramidal cells demonstrated that their burst discharges were synchronized, with pyramidal cell discharges typically beginning first. From these data we suggest that hilar mossy cells can survive status epilepticus and chronic seizures. The fact that mossy cells have

  2. An Exploration of Discontinuous Time Synchronous Averaging for Helicopter HUMS Using Cruise and Terminal Area Vibration Data

    NASA Technical Reports Server (NTRS)

    Huff, Edward M.; Mosher, Marianne; Barszcz, Eric

    2002-01-01

    Recent research using NASA Ames AH-1 and OH-58C helicopters, and NASA Glenn test rigs, has shown that in-flight vibration data are typically non-stationary [l-4]. The nature and extent of this non-stationarity is most likely produced by several factors operating simultaneously. The aerodynamic flight environment and pilot commands provide continuously changing inputs, with a complex dynamic response that includes automatic feedback control from the engine regulator. It would appear that the combined effects operate primarily through an induced torque profile, which causes concomitant stress modulation at the individual internal gear meshes in the transmission. This notion is supported by several analyses, which show that upwards of 93% of the vibration signal s variance can be explained by knowledge of torque alone. That this relationship is stronger in an AH-1 than an OH-58, where measured non-stationarity is greater, suggests that the overall mass of the vehicle is an important consideration. In the lighter aircraft, the unsteady aerodynamic influences transmit relatively greater unsteady dynamic forces on the mechanical components, quite possibly contributing to its greater non-stationarity . In a recent paper using OH-58C pinion data [5], the authors have shown that in computing a time synchronous average (TSA) for various single-value metric computations, an effective trade-off can be obtained between sample size and measured stationarity by using data from only a single mesh cycle. A mesh cycle, which is defined as the number of rotations required for the gear teeth to return to their original mating position, has the property of representing all of the discrete phase angles of the opposing gears exactly once in the average. Measured stationarity is probably maximized because a single mesh cycle of the pinion gear occurs over a very short span of time, during which time-dependent non-stationary effects are kept to a minimum. Clearly, the advantage of local

  3. Synchronizing Fireflies

    ERIC Educational Resources Information Center

    Zhou, Ying; Gall, Walter; Nabb, Karen Mayumi

    2006-01-01

    "Imagine a tenth of a mile of river front with an unbroken line of trees with fireflies on ever leaf flashing in synchronism. ... Then, if one's imagination is sufficiently vivid, he may form some conception of this amazing spectacle." So wrote the naturalist Hugh Smith. In this article we consider how one might model mathematically the…

  4. Synchronizing Fireflies

    ERIC Educational Resources Information Center

    Zhou, Ying; Gall, Walter; Nabb, Karen Mayumi

    2006-01-01

    "Imagine a tenth of a mile of river front with an unbroken line of trees with fireflies on ever leaf flashing in synchronism. ... Then, if one's imagination is sufficiently vivid, he may form some conception of this amazing spectacle." So wrote the naturalist Hugh Smith. In this article we consider how one might model mathematically the…

  5. Alpha Hemolysin Induces an Increase of Erythrocytes Calcium: A FLIM 2-Photon Phasor Analysis Approach

    PubMed Central

    Sanchez, Susana; Bakás, Laura; Gratton, Enrico; Herlax, Vanesa

    2011-01-01

    α-hemolysin (HlyA) from Escherichia coli is considered as the prototype of a family of toxins called RTX (repeat in toxin), a group of proteins that share genetic and structural features. HlyA is an important virulence factor in E. coli extraintestinal infections, such as meningitis, septicemia and urinary infections. High concentrations of the toxin cause the lysis of several cells such as erythrocytes, granulocytes, monocytes, endothelial and renal epithelial cells of different species. At low concentrations it induces the production of cytokines and apoptosis. Since many of the subcytolytic effects in other cells have been reported to be triggered by the increase of intracellular calcium, we followed the calcium concentration inside the erythrocytes while incubating with sublytic concentrations of HlyA. Calcium concentration was monitored using the calcium indicator Green 1, 2-photon excitation, and fluorescence lifetime imaging microscopy (FLIM). Data were analyzed using the phasor representation. In this report, we present evidence that, at sublytic concentrations, HlyA induces an increase of calcium concentration in rabbit erythrocytes in the first 10 s. Results are discussed in relation to the difficulties of measuring calcium concentrations in erythrocytes where hemoglobin is present, the contribution of the background and the heterogeneity of the response observed in individual cells. PMID:21698153

  6. Phasor Analysis of Local ICS Detects Heterogeneity in Size and Number of Intracellular Vesicles.

    PubMed

    Scipioni, Lorenzo; Gratton, Enrico; Diaspro, Alberto; Lanzanò, Luca

    2016-08-09

    Organelles represent the scale of organization immediately below that of the cell itself, and their composition, size, and number are tailored to their function. Monitoring the size and number of organelles in live cells is relevant for many applications but can be challenging due to their highly heterogeneous properties. Image correlation spectroscopy is a well-established analysis method capable of extracting the average size and number of particles in images. However, when image correlation spectroscopy is applied to a highly heterogeneous system, it can fail to retrieve, from a single correlation function, the characteristic size and the relative amount associated to each subspecies. Here, we describe a fast, unbiased, and fit-free algorithm based on the phasor analysis of multiple local image correlation functions, capable of mapping the sizes of elements contained in a heterogeneous system. The method correctly provides the size and number of separate subspecies, which otherwise would be hidden in the average properties of a single correlation function. We apply the method to quantify the spatial and temporal heterogeneity in the size and number of intracellular vesicles formed after endocytosis in live cells.

  7. Phasor Domain Steady-State Modeling and Design of the DC–DC Modular Multilevel Converter

    DOE PAGES

    Yang, Heng; Qin, Jiangchao; Debnath, Suman; ...

    2016-01-06

    The DC-DC Modular Multilevel Converter (MMC), which originated from the AC-DC MMC, is an attractive converter topology for interconnection of medium-/high-voltage DC grids. This paper presents design considerations for the DC-DC MMC to achieve high efficiency and reduced component sizes. A steady-state mathematical model of the DC-DC MMC in the phasor-domain is developed. Based on the developed model, a design approach is proposed to size the components and to select the operating frequency of the converter to satisfy a set of design constraints while achieving high efficiency. The design approach includes sizing of the arm inductor, Sub-Module (SM) capacitor, andmore » phase filtering inductor along with the selection of AC operating frequency of the converter. The accuracy of the developed model and the effectiveness of the design approach are validated based on the simulation studies in the PSCAD/EMTDC software environment. The analysis and developments of this paper can be used as a guideline for design of the DC-DC MMC.« less

  8. Phasor Domain Steady-State Modeling and Design of the DC–DC Modular Multilevel Converter

    SciTech Connect

    Yang, Heng; Qin, Jiangchao; Debnath, Suman; Saeedifard, Maryam

    2016-01-06

    The DC-DC Modular Multilevel Converter (MMC), which originated from the AC-DC MMC, is an attractive converter topology for interconnection of medium-/high-voltage DC grids. This paper presents design considerations for the DC-DC MMC to achieve high efficiency and reduced component sizes. A steady-state mathematical model of the DC-DC MMC in the phasor-domain is developed. Based on the developed model, a design approach is proposed to size the components and to select the operating frequency of the converter to satisfy a set of design constraints while achieving high efficiency. The design approach includes sizing of the arm inductor, Sub-Module (SM) capacitor, and phase filtering inductor along with the selection of AC operating frequency of the converter. The accuracy of the developed model and the effectiveness of the design approach are validated based on the simulation studies in the PSCAD/EMTDC software environment. The analysis and developments of this paper can be used as a guideline for design of the DC-DC MMC.

  9. Application of Phasor Measurement Units for Protection of Distribution Networks with High Penetration of Photovoltaic Sources

    NASA Astrophysics Data System (ADS)

    Meskin, Matin

    comprehensive protective system is suggested at the end of the dissertation. The proposed method is based on the application of the phasor measurement unit (PMU) and the differential protection method. All of the current magnitudes and angles are collected by PMU and are sent to the phasor data concentrator (PDC), where a differential protection algorithm is applied to these data. If any fault is detected, the trip will be sent back to the corresponding circuit breakers across the network. Higher selectivity, sensitivity, and faster operation in the differential protection are superior to those of other protection schemes. Differential protection operates as unit protection, which means that it operates only when there is a fault in the protection zone. It does not function for faults occurring out of zone. Therefore, no coordination is required between differential protections across the power system. Moreover, the misoperation of this protective scheme is less likely as compared to other protection methods.

  10. A novel pulsed STED microscopy method using FastFLIM and the phasor plots

    NASA Astrophysics Data System (ADS)

    Sun, Yuansheng; Tortarolo, Giorgio; Teng, Kai-Wen; Ishitsuka, Yuji; Coskun, Ulas C.; Liao, Shih-Chu Jeff; Diaspro, Alberto; Vicidomini, Giuseppe; Selvin, Paul R.; Barbieri, Beniamino

    2017-02-01

    Stimulated emission depletion (STED) microscopy is a powerful super-resolution microscopy technique that enables observation of macromolecular complexes and sub-cellular structures with spatial resolution below the diffraction limit. The spatial resolution of STED is limited by power of the depletion laser at the specimen plane. Higher depletion laser power will improve resolution, but at the cost of increased photo-bleaching, photo-toxicity, and anti-stoke emission background. This degrades the signal-to-noise ratio, and can significantly limit STED applications in living specimens. Here, we present an efficient multi-color STED microscopy method based on the digital frequency domain fluorescence lifetime imaging (FastFLIM) and the phasor plots. Our approach utilizes a combination of pulsed excitation and pulsed depletion lasers to record the time-resolved photons by FastFLIM. We demonstrate that the resolution is improved without increasing the depletion laser power by digital separation of the depleted species from the partially depleted species based on their different decay kinetics. We show the utility of this novel STED method applied in both fixed and live cellular samples, and also show its application to fluorescence lifetime correlation spectroscopy (FLCS) measurements. By combining fluorophores with different fluorescence lifetimes, we simultaneously record two-color STED images of cells labeled with Atto655 and Alexa647 in a single scan by using a single pair of excitation and depletion lasers. This novel approach shortens the data acquisition time while minimizing the photo-toxicity caused when using two separate depletion lasers.

  11. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Small-World Connections to Induce Firing Activity and Phase Synchronization in Neural Networks

    NASA Astrophysics Data System (ADS)

    Qin, Ying-Hua; Luo, Xiao-Shu

    2009-07-01

    We investigate how the firing activity and the subsequent phase synchronization of neural networks with small-world topological connections depend on the probability p of adding-links. Network elements are described by two-dimensional map neurons (2DMNs) in a quiescent original state. Neurons burst for a given coupling strength when the topological randomness p increases, which is absent in a regular-lattice neural network. The bursting activity becomes frequent and synchronization of neurons emerges as topological randomness further increases. The maximal firing frequency and phase synchronization appear at a particular value of p. However, if the randomness p further increases, the firing frequency decreases and synchronization is apparently destroyed.

  12. Label-free separation of human embryonic stem cells and their differentiating progenies by phasor fluorescence lifetime microscopy

    NASA Astrophysics Data System (ADS)

    Stringari, Chiara; Sierra, Robert; Donovan, Peter J.; Gratton, Enrico

    2012-04-01

    We develop a label-free optical technique to image and discriminate undifferentiated human embryonic stem cells (hESCs) from their differentiating progenies in vitro. Using intrinsic cellular fluorophores, we perform fluorescence lifetime microscopy (FLIM) and phasor analysis to obtain hESC metabolic signatures. We identify two optical biomarkers to define the differentiation status of hESCs: Nicotinamide adenine dinucleotide (NADH) and lipid droplet-associated granules (LDAGs). These granules have a unique lifetime signature and could be formed by the interaction of reactive oxygen species and unsaturated metabolic precursor that are known to be abundant in hESC. Changes in the relative concentrations of these two intrinsic biomarkers allow for the discrimination of undifferentiated hESCs from differentiating hESCs. During early hESC differentiation we show that NADH concentrations increase, while the concentration of LDAGs decrease. These results are in agreement with a decrease in oxidative phosphorylation rate. Single-cell phasor FLIM signatures reveal an increased heterogeneity in the metabolic states of differentiating H9 and H1 hESC colonies. This technique is a promising noninvasive tool to monitor hESC metabolism during differentiation, which can have applications in high throughput analysis, drug screening, functional metabolomics and induced pluripotent stem cell generation.

  13. Label-free separation of human embryonic stem cells and their differentiating progenies by phasor fluorescence lifetime microscopy

    PubMed Central

    Stringari, Chiara; Sierra, Robert; Donovan, Peter J.

    2012-01-01

    Abstract. We develop a label-free optical technique to image and discriminate undifferentiated human embryonic stem cells (hESCs) from their differentiating progenies in vitro. Using intrinsic cellular fluorophores, we perform fluorescence lifetime microscopy (FLIM) and phasor analysis to obtain hESC metabolic signatures. We identify two optical biomarkers to define the differentiation status of hESCs: Nicotinamide adenine dinucleotide (NADH) and lipid droplet-associated granules (LDAGs). These granules have a unique lifetime signature and could be formed by the interaction of reactive oxygen species and unsaturated metabolic precursor that are known to be abundant in hESC. Changes in the relative concentrations of these two intrinsic biomarkers allow for the discrimination of undifferentiated hESCs from differentiating hESCs. During early hESC differentiation we show that NADH concentrations increase, while the concentration of LDAGs decrease. These results are in agreement with a decrease in oxidative phosphorylation rate. Single-cell phasor FLIM signatures reveal an increased heterogeneity in the metabolic states of differentiating H9 and H1 hESC colonies. This technique is a promising noninvasive tool to monitor hESC metabolism during differentiation, which can have applications in high throughput analysis, drug screening, functional metabolomics and induced pluripotent stem cell generation. PMID:22559690

  14. Algorithm for Screening Phasor Measurement Unit Data for Power System Events and Categories and Common Characteristics for Events Seen in Phasor Measurement Unit Relative Phase-Angle Differences and Frequency Signals

    SciTech Connect

    Allen, A.; Santoso, S.; Muljadi, E.

    2013-08-01

    A network of multiple phasor measurement units (PMU) was created, set up, and maintained at the University of Texas at Austin to obtain actual power system measurements for power system analysis. Power system analysis in this report covers a variety of time ranges, such as short- term analysis for power system disturbances and their effects on power system behavior and long- term power system behavior using modal analysis. The first objective of this report is to screen the PMU data for events. The second objective of the report is to identify and describe common characteristics extracted from power system events as measured by PMUs. The numerical characteristics for each category and how these characteristics are used to create selection rules for the algorithm are also described. Trends in PMU data related to different levels and fluctuations in wind power output are also examined.

  15. Overview of Cell Synchronization.

    PubMed

    Banfalvi, Gaspar

    2017-01-01

    The widespread interest in cell synchronization is maintained by the studies of control mechanism involved in cell cycle regulation. During the synchronization distinct subpopulations of cells are obtained representing different stages of the cell cycle. These subpopulations are then used to study regulatory mechanisms of the cycle at the level of macromolecular biosynthesis (DNA synthesis, gene expression, protein synthesis), protein phosphorylation, development of new drugs, etc. Although several synchronization methods have been described, it is of general interest that scientists get a compilation and an updated view of these synchronization techniques. This introductory chapter summarizes: (1) the basic concepts and principal criteria of cell cycle synchronizations, (2) the most frequently used synchronization methods, such as physical fractionation (flow cytometry, dielectrophoresis, cytofluorometric purification), chemical blockade, (3) synchronization of embryonic cells, (4) synchronization at low temperature, (5) comparison of cell synchrony techniques, (6) synchronization of unicellular organisms, and (7) the effect of synchronization on transfection.

  16. Synchronization of Regular Automata

    NASA Astrophysics Data System (ADS)

    Caucal, Didier

    Functional graph grammars are finite devices which generate the class of regular automata. We recall the notion of synchronization by grammars, and for any given grammar we consider the class of languages recognized by automata generated by all its synchronized grammars. The synchronization is an automaton-related notion: all grammars generating the same automaton synchronize the same languages. When the synchronizing automaton is unambiguous, the class of its synchronized languages forms an effective boolean algebra lying between the classes of regular languages and unambiguous context-free languages. We additionally provide sufficient conditions for such classes to be closed under concatenation and its iteration.

  17. Synchronization with sound propagation delays

    NASA Astrophysics Data System (ADS)

    Haché, A.

    2010-04-01

    Complex systems that synchronize with acoustic signals, like chanting crowds and musical ensembles, have the intrinsic ability to maintain synchrony without external aid or visual cues, even when spread over wide areas. According to two models, the counterintuitive self-synchronization happens when the system's components have a spatial distribution that is sufficiently uniform. The roles of system size and density are examined for arrangements in 1, 2 and 3 dimensions. Asynchrony is predicted to become vanishingly small at high densities, and results suggest ways on how to minimize asynchrony in real-world situations.

  18. Digital data detection and synchronization

    NASA Technical Reports Server (NTRS)

    Noack, T. L.; Morris, J. F.

    1973-01-01

    The primary accomplishments have been in the analysis and simulation of receivers and bit synchronizers. It has been discovered that tracking rate effects play, a rather fundamental role in both receiver and synchronizer performance, but that data relating to recorder time-base-error, for the proper characterization of this phenomenon, is in rather short supply. It is possible to obtain operationally useful tape recorder time-base-error data from high signal-to-noise ratio tapes using synchronizers with relatively wideband tracking loops. Low signal-to-noise ratio tapes examined in the same way would not be synchronizable. Additional areas of interest covered are receiver false lock, cycle slipping, and other unusual phenomena, which have been described to some extent in this and earlier reports and simulated during the study.

  19. Development and Integration of an Advanced Stirling Convertor Linear Alternator Model for a Tool Simulating Convertor Performance and Creating Phasor Diagrams

    NASA Technical Reports Server (NTRS)

    Metscher, Jonathan F.; Lewandowski, Edward J.

    2013-01-01

    A simple model of the Advanced Stirling Convertors (ASC) linear alternator and an AC bus controller has been developed and combined with a previously developed thermodynamic model of the convertor for a more complete simulation and analysis of the system performance. The model was developed using Sage, a 1-D thermodynamic modeling program that now includes electro-magnetic components. The convertor, consisting of a free-piston Stirling engine combined with a linear alternator, has sufficiently sinusoidal steady-state behavior to allow for phasor analysis of the forces and voltages acting in the system. A MATLAB graphical user interface (GUI) has been developed to interface with the Sage software for simplified use of the ASC model, calculation of forces, and automated creation of phasor diagrams. The GUI allows the user to vary convertor parameters while fixing different input or output parameters and observe the effect on the phasor diagrams or system performance. The new ASC model and GUI help create a better understanding of the relationship between the electrical component voltages and mechanical forces. This allows better insight into the overall convertor dynamics and performance.

  20. Development and Integration of an Advanced Stirling Convertor Linear Alternator Model for a Tool Simulating Convertor Performance and Creating Phasor Diagrams

    NASA Technical Reports Server (NTRS)

    Metscher, Jonathan F.; Lewandowski, Edward J.

    2013-01-01

    A simple model of the Advanced Stirling Convertors (ASC) linear alternator and an AC bus controller has been developed and combined with a previously developed thermodynamic model of the convertor for a more complete simulation and analysis of the system performance. The model was developed using Sage, a 1-D thermodynamic modeling program that now includes electro-magnetic components. The convertor, consisting of a free-piston Stirling engine combined with a linear alternator, has sufficiently sinusoidal steady-state behavior to allow for phasor analysis of the forces and voltages acting in the system. A MATLAB graphical user interface (GUI) has been developed to interface with the Sage software for simplified use of the ASC model, calculation of forces, and automated creation of phasor diagrams. The GUI allows the user to vary convertor parameters while fixing different input or output parameters and observe the effect on the phasor diagrams or system performance. The new ASC model and GUI help create a better understanding of the relationship between the electrical component voltages and mechanical forces. This allows better insight into the overall convertor dynamics and performance.

  1. Synchronization in multistatic radar

    NASA Astrophysics Data System (ADS)

    Jubrink, H. G.

    1993-08-01

    This report gives a summary of multistatic radar principles and synchronization methods. Different methods are described using direct and indirect synchronization. The report also presents a general review of synchronization methods for the future. Two LORAN C receivers have been analyzed for use as local reference oscillators in multistatic radar.

  2. Development of Network Synchronization Predicts Language Abilities.

    PubMed

    Doesburg, Sam M; Tingling, Keriann; MacDonald, Matt J; Pang, Elizabeth W

    2016-01-01

    Synchronization of oscillations among brain areas is understood to mediate network communication supporting cognition, perception, and language. How task-dependent synchronization during word production develops throughout childhood and adolescence, as well as how such network coherence is related to the development of language abilities, remains poorly understood. To address this, we recorded magnetoencephalography while 73 participants aged 4-18 years performed a verb generation task. Atlas-guided source reconstruction was performed, and phase synchronization among regions was calculated. Task-dependent increases in synchronization were observed in the theta, alpha, and beta frequency ranges, and network synchronization differences were observed between age groups. Task-dependent synchronization was strongest in the theta band, as were differences between age groups. Network topologies were calculated for brain regions associated with verb generation and were significantly associated with both age and language abilities. These findings establish the maturational trajectory of network synchronization underlying expressive language abilities throughout childhood and adolescence and provide the first evidence for an association between large-scale neurophysiological network synchronization and individual differences in the development of language abilities.

  3. iTesla Power Systems Library (iPSL): A Modelica library for phasor time-domain simulations

    NASA Astrophysics Data System (ADS)

    Vanfretti, L.; Rabuzin, T.; Baudette, M.; Murad, M.

    The iTesla Power Systems Library (iPSL) is a Modelica package providing a set of power system components for phasor time-domain modeling and simulation. The Modelica language provides a systematic approach to develop models using a formal mathematical description, that uniquely specifies the physical behavior of a component or the entire system. Furthermore, the standardized specification of the Modelica language (Modelica Association [1]) enables unambiguous model exchange by allowing any Modelica-compliant tool to utilize the models for simulation and their analyses without the need of a specific model transformation tool. As the Modelica language is being developed with open specifications, any tool that implements these requirements can be utilized. This gives users the freedom of choosing an Integrated Development Environment (IDE) of their choice. Furthermore, any integration solver can be implemented within a Modelica tool to simulate Modelica models. Additionally, Modelica is an object-oriented language, enabling code factorization and model re-use to improve the readability of a library by structuring it with object-oriented hierarchy. The developed library is released under an open source license to enable a wider distribution and let the user customize it to their specific needs. This paper describes the iPSL and provides illustrative application examples.

  4. Complex Synchronization Phenomena in Ecological Systems

    NASA Astrophysics Data System (ADS)

    Stone, Lewi; Olinky, Ronen; Blasius, Bernd; Huppert, Amit; Cazelles, Bernard

    2002-07-01

    Ecological and biological systems provide us with many striking examples of synchronization phenomena. Here we discuss a number of intriguing cases and attempt to explain them taking advantage of a modelling framework. One main focus will concern synchronized ecological end epidemiological cycles which have Uniform Phase growth associated with their regular recurrence, and Chaotic Amplitudes - a feature we term UPCA. Examples come from different areas and include decadal cycles of small mammals, recurrent viral epidemics such as childhood infections (eg., measles), and seasonally driven phytoplankton blooms observed in lakes and the oceans. A more detailed theoretical analysis of seasonally synchronized chaotic population cycles is presented.

  5. Synchronization of genetic oscillators

    NASA Astrophysics Data System (ADS)

    Zhou, Tianshou; Zhang, Jiajun; Yuan, Zhanjiang; Chen, Luonan

    2008-09-01

    Synchronization of genetic or cellular oscillators is a central topic in understanding the rhythmicity of living organisms at both molecular and cellular levels. Here, we show how a collective rhythm across a population of genetic oscillators through synchronization-induced intercellular communication is achieved, and how an ensemble of independent genetic oscillators is synchronized by a common noisy signaling molecule. Our main purpose is to elucidate various synchronization mechanisms from the viewpoint of dynamics, by investigating the effects of various biologically plausible couplings, several kinds of noise, and external stimuli. To have a comprehensive understanding on the synchronization of genetic oscillators, we consider three classes of genetic oscillators: smooth oscillators (exhibiting sine-like oscillations), relaxation oscillators (displaying jump dynamics), and stochastic oscillators (noise-induced oscillation). For every class, we further study two cases: with intercellular communication (including phase-attractive and repulsive coupling) and without communication between cells. We find that an ensemble of smooth oscillators has different synchronization phenomena from those in the case of relaxation oscillators, where noise plays a different but key role in synchronization. To show differences in synchronization between them, we make comparisons in many aspects. We also show that a population of genetic stochastic oscillators have their own synchronization mechanisms. In addition, we present interesting phenomena, e.g., for relaxation-type stochastic oscillators coupled to a quorum-sensing mechanism, different noise intensities can induce different periodic motions (i.e., inhomogeneous limit cycles).

  6. Studying synchronization to a musical beat in nonhuman animals.

    PubMed

    Patel, Aniruddh D; Iversen, John R; Bregman, Micah R; Schulz, Irena

    2009-07-01

    The recent discovery of spontaneous synchronization to music in a nonhuman animal (the sulphur-crested cockatoo Cacatua galerita eleonora) raises several questions. How does this behavior differ from nonmusical synchronization abilities in other species, such as synchronized frog calls or firefly flashes? What significance does the behavior have for debates over the evolution of human music? What kinds of animals can synchronize to musical rhythms, and what are the key methodological issues for research in this area? This paper addresses these questions and proposes some refinements to the "vocal learning and rhythmic synchronization hypothesis."

  7. SONET synchronization: What's happening

    NASA Technical Reports Server (NTRS)

    Cubbage, Robert W.

    1993-01-01

    Almost everyone that has heard of SONET knows that the acronym stands for Synchronous Optical NETwork. There has been a host of magazine articles on SONET rings, SONET features, even SONET compatibility with digital radio. What has not been highly publicized is the critical relationship between SONET, network synchronization, and payload jitter. This topic is addressed.

  8. EEG synchronization and migraine

    NASA Astrophysics Data System (ADS)

    Stramaglia, Sebastiano; Angelini, Leonardo; Pellicoro, Mario; Hu, Kun; Ivanov, Plamen Ch.

    2004-03-01

    We investigate phase synchronization in EEG recordings from migraine patients. We use the analytic signal technique, based on the Hilbert transform, and find that migraine brains are characterized by enhanced alpha band phase synchronization in presence of visual stimuli. Our findings show that migraine patients have an overactive regulatory mechanism that renders them more sensitive to external stimuli.

  9. Quantum-phase synchronization

    NASA Astrophysics Data System (ADS)

    Fiderer, Lukas J.; Kuś, Marek; Braun, Daniel

    2016-09-01

    We study mechanisms that allow one to synchronize the quantum phase of two qubits relative to a fixed basis. Starting from one qubit in a fixed reference state and the other in an unknown state, we find that, contrary to the impossibility of perfect quantum cloning, the quantum phase can be synchronized perfectly through a joined unitary operation. When both qubits are initially in a pure unknown state, perfect quantum-phase synchronization through unitary operations becomes impossible. In this situation we determine the maximum average quantum-phase synchronization fidelity and the distribution of relative phases and fidelities, and we identify optimal quantum circuits that achieve this maximum fidelity. A subset of these optimal quantum circuits enable perfect quantum-phase synchronization for a class of unknown initial states restricted to the equatorial plane of the Bloch sphere.

  10. Synchronization On Hanoi Networks

    NASA Astrophysics Data System (ADS)

    Li, Shanshan; Boettcher, Stefan

    2015-03-01

    Synchronization of coupled oscillators has been intensively studied on a variety of structures. It is believed that the dynamics is deeply associated with its structure. To explore this relation, we study the synchronization of coupled oscillators on Hanoi networks. We analyze the evolution of coupled units over time, and characterized the convergence to the global synchronized state. For this state, the results show a close connection to the spectrum of connectivity matrix. Inspired by this connection, we try to show a dynamical pattern that describes the entire synchronization process from the onset to the final state. This may unveil the unique hierarchical structure of these self-similar Hanoi networks. Our goal is to map the dynamics to the spectrum of the connectivity matrix that encodes significant information about the structure of the underlying system. This exploration may have implications on designing networks that synchronizes coupled units efficiently. Supported through NSF Grant DMR-1207431.

  11. Synchronizing Large Systolic Arrays

    NASA Astrophysics Data System (ADS)

    Fisher, Allan L.; Kung, H. T.

    1982-12-01

    Parallel computing structures consist of many processors operating simultaneously. If a concurrent structure is regular, as in the case of a systolic array. it may be convenient to think of all processors as operating in lock step. This synchronized view, for example, often makes the definition of the structure and its correctness relatively easy to follow. However, large, totally synchronized systems controlled by central clocks are difficult to implement because of the inevitable problem of clock skews and delays. An alternative means of enforcing necessary synchronization is the use of self-timed, asynchronous schemes, at the cost of increased design complexity and hardware cost. Realizing that different circumstances call for different synchronization methods, this paper provides a spectrum of synchronization models; based on the assumptions made for each model, theoretical lower bounds on clock skew are derived, and appropriate or best-possible synchronization schemes for systolic arrays are proposed. In general, this paper represents a first step towards a systematic study of synchronization problems for large systolic arrays. One set of models is based on assumptions that allow the use of a pipelined clocking scheme, where more than one clock event is propagated at a time. In this case, it is shown that even assuming that physical variations along clock lines can produce skews between wires of the same length, any one-dimensional systolic array can be correctly synchronized by a global pipelined clock while enjoying desirable properties such as modularity, expandability and robustness in the synchronization scheme. This result cannot be extended to two-dimensional arrays, however--the paper shows that under this assumption, it is impossible to run a clock such that the maximum clock skew between two communicating cells will be bounded by a constant as systems grow. For such cases or where pipelined clocking is unworkable, a synchronization scheme

  12. Interareal synchronization in the visual cortex.

    PubMed

    Bressler, S L

    1996-04-01

    The primary visual cortex (V1) is part of a highly interconnected network of cortical areas, hierarchically organized but operating concurrently across hierarchical levels. The high degree of reciprocal interconnection among visual cortical areas provides a framework for their interaction during the performance of visual scene analysis. The functional interdependency of visual cortical areas which develops during scene analysis can be investigated by techniques which measure interareal correlated activity. Evidence from monkeys performing a visual pattern discrimination suggests that synchronization of aperiodic activity from neuronal ensembles in cortical areas at different hierarchical levels is a relevant aspect of visual function. The near-periodic nature of the synchronized response to moving light bars in earlier studies may have been a result of the type of stimulus used. Various models of visual cortex are discussed in which interareal synchronization plays a functional role.

  13. Interhemispheric Synchronization of Oscillatory Neuronal Responses in Cat Visual Cortex

    NASA Astrophysics Data System (ADS)

    Engel, Andreas K.; Konig, Peter; Kreiter, Andreas K.; Singer, Wolf

    1991-05-01

    Neurons in area 17 of cat visual cortex display oscillatory responses that can synchronize across spatially separate columns in a stimulus-specific way. Response synchronization has now been shown to occur also between neurons in area 17 of the right and left cerebral hemispheres. This synchronization was abolished by section of the corpus callosum. Thus, the response synchronization is mediated by corticocortical connections. These data are compatible with the hypothesis that temporal synchrony of neuronal discharges serves to bind features within and between the visual hemifields.

  14. Synchronous Discrete Harmonic Oscillator

    SciTech Connect

    Antippa, Adel F.; Dubois, Daniel M.

    2008-10-17

    We introduce the synchronous discrete harmonic oscillator, and present an analytical, numerical and graphical study of its characteristics. The oscillator is synchronous when the time T for one revolution covering an angle of 2{pi} in phase space, is an integral multiple N of the discrete time step {delta}t. It is fully synchronous when N is even. It is pseudo-synchronous when T/{delta}t is rational. In the energy conserving hyperincursive representation, the phase space trajectories are perfectly stable at all time scales, and in both synchronous and pseudo-synchronous modes they cycle through a finite number of phase space points. Consequently, both the synchronous and the pseudo-synchronous hyperincursive modes of time-discretization provide a physically realistic and mathematically coherent, procedure for dynamic, background independent, discretization of spacetime. The procedure is applicable to any stable periodic dynamical system, and provokes an intrinsic correlation between space and time, whereby space-discretization is a direct consequence of background-independent time-discretization. Hence, synchronous discretization moves the formalism of classical mechanics towards that of special relativity. The frequency of the hyperincursive discrete harmonic oscillator is ''blue shifted'' relative to its continuum counterpart. The frequency shift has the precise value needed to make the speed of the system point in phase space independent of the discretizing time interval {delta}t. That is the speed of the system point is the same on the polygonal (in the discrete case) and the circular (in the continuum case) phase space trajectories.

  15. Nonlocal chaotic phase synchronization

    NASA Astrophysics Data System (ADS)

    Zhan, Meng; Zheng, Zhi-Gang; Hu, Gang; Peng, Xi-Hong

    2000-09-01

    A novel synchronization behavior, nonlocal chaotic phase synchronization, is investigated. For two coupled Rossler oscillators with only one forced by an injected periodic signal, the phase of the unforced oscillator can be locked to the phase of the periodic signal while the forced one is well unlocked by the signal; in a chain of coupled chaotic oscillators with nearest coupling, the phase of an oscillator (or a cluster) can be locked to another nonneighbor one. Moreover, the mechanism underlying the transition to nonlocal synchronization is discussed in detail.

  16. Applying phasor approach analysis of multiphoton FLIM measurements to probe the metabolic activity of three-dimensional in vitro cell culture models

    PubMed Central

    Lakner, Pirmin H.; Monaghan, Michael G.; Möller, Yvonne; Olayioye, Monilola A.; Schenke-Layland, Katja

    2017-01-01

    Fluorescence lifetime imaging microscopy (FLIM) can measure and discriminate endogenous fluorophores present in biological samples. This study seeks to identify FLIM as a suitable method to non-invasively detect a shift in cellular metabolic activity towards glycolysis or oxidative phosphorylation in 3D Caco-2 models of colorectal carcinoma. These models were treated with potassium cyanide or hydrogen peroxide as controls, and epidermal growth factor (EGF) as a physiologically-relevant influencer of cell metabolic behaviour. Autofluorescence, attributed to nicotinamide adenine dinucleotide (NADH), was induced by two-photon laser excitation and its lifetime decay was analysed using a standard multi-exponential decay approach and also a novel custom-written code for phasor-based analysis. While both methods enabled detection of a statistically significant shift of metabolic activity towards glycolysis using potassium cyanide, and oxidative phosphorylation using hydrogen peroxide, employing the phasor approach required fewer initial assumptions to quantify the lifetimes of contributing fluorophores. 3D Caco-2 models treated with EGF had increased glucose consumption, production of lactate, and presence of ATP. FLIM analyses of these cultures revealed a significant shift in the contribution of protein-bound NADH towards free NADH, indicating increased glycolysis-mediated metabolic activity. This data demonstrate that FLIM is suitable to interpret metabolic changes in 3D in vitro models. PMID:28211922

  17. Applying phasor approach analysis of multiphoton FLIM measurements to probe the metabolic activity of three-dimensional in vitro cell culture models.

    PubMed

    Lakner, Pirmin H; Monaghan, Michael G; Möller, Yvonne; Olayioye, Monilola A; Schenke-Layland, Katja

    2017-02-13

    Fluorescence lifetime imaging microscopy (FLIM) can measure and discriminate endogenous fluorophores present in biological samples. This study seeks to identify FLIM as a suitable method to non-invasively detect a shift in cellular metabolic activity towards glycolysis or oxidative phosphorylation in 3D Caco-2 models of colorectal carcinoma. These models were treated with potassium cyanide or hydrogen peroxide as controls, and epidermal growth factor (EGF) as a physiologically-relevant influencer of cell metabolic behaviour. Autofluorescence, attributed to nicotinamide adenine dinucleotide (NADH), was induced by two-photon laser excitation and its lifetime decay was analysed using a standard multi-exponential decay approach and also a novel custom-written code for phasor-based analysis. While both methods enabled detection of a statistically significant shift of metabolic activity towards glycolysis using potassium cyanide, and oxidative phosphorylation using hydrogen peroxide, employing the phasor approach required fewer initial assumptions to quantify the lifetimes of contributing fluorophores. 3D Caco-2 models treated with EGF had increased glucose consumption, production of lactate, and presence of ATP. FLIM analyses of these cultures revealed a significant shift in the contribution of protein-bound NADH towards free NADH, indicating increased glycolysis-mediated metabolic activity. This data demonstrate that FLIM is suitable to interpret metabolic changes in 3D in vitro models.

  18. Influence of paroxysmal activity on background synchronization in epileptic recordings.

    PubMed

    Pastor, Jesús; Sola, Rafael G; Ortega, Guillermo J

    2014-02-15

    The presence of spikes and sharp waves in recordings of epileptic patients contaminates background signal synchronization. When estimating functional connectivity between extended cortical areas, the influence of epileptic spikes in specific areas should be considered; however, this step is sometimes overlooked. We present a simple method for quantifying the influence of epileptic activity on background signal synchronization. Standard synchronization measures were calculated for both pure correlated Gaussian signals and correlated Gaussian signals with different levels of epileptic spikes in order to determine the influence of epileptic activity on synchronization estimates. Synchronization from invasive epileptic recordings (e.g., depth electrodes) displays a much higher bias due to epileptic activity than superficial electrodes. Moreover, statistical methods such as mutual information are more affected by spike presence than phase synchronization methods. The influence of spikes is far greater at low values of background synchronization. The information provided by this procedure makes it possible to differentiate true background synchronization from spike synchronization. Thus, our procedure serves as a guide for analyzing synchronization and functional connectivity calculations in epileptic recordings. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Advanced synchronous luminescence system

    DOEpatents

    Vo-Dinh, Tuan

    1997-01-01

    A method and apparatus for determining the condition of tissue or otherwise making chemical identifications includes exposing the sample to a light source, and using a synchronous luminescence system to produce a spectrum that can be analyzed for tissue condition.

  20. Synchronization of yeast.

    PubMed

    Manukyan, Arkadi; Abraham, Lesley; Dungrawala, Huzefa; Schneider, Brandt L

    2011-01-01

    The budding yeast Saccharomyces cerevisiae and fission yeast Schizosaccharomyces pombe are amongst the simplest and most powerful model systems for studying the genetics of cell cycle control. Because yeast grows very rapidly in simple and economical media, large numbers of cells can easily be obtained for genetic, molecular, and biochemical studies of the cell cycle. The use of synchronized cultures greatly aids in the ease and interpretation of cell cycle studies. In principle, there are two general methods for obtaining synchronized yeast populations. Block and release methods can be used to induce cell cycle synchrony. Alternatively, centrifugal elutriation can be used to select synchronous populations. Because each method has innate advantages and disadvantages, the use of multiple approaches helps in generalizing results. An overview of the most commonly used methods to generate synchronized yeast cultures is presented along with working Notes, a section that includes practical comments, experimental considerations and observations, and hints regarding the pros and cons innate to each approach.

  1. Synchronization in complex networks

    SciTech Connect

    Arenas, A.; Diaz-Guilera, A.; Moreno, Y.; Zhou, C.; Kurths, J.

    2007-12-12

    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.

  2. Hydrodynamic synchronization of flagellar oscillators

    NASA Astrophysics Data System (ADS)

    Friedrich, Benjamin

    2016-11-01

    In this review, we highlight the physics of synchronization in collections of beating cilia and flagella. We survey the nonlinear dynamics of synchronization in collections of noisy oscillators. This framework is applied to flagellar synchronization by hydrodynamic interactions. The time-reversibility of hydrodynamics at low Reynolds numbers requires swimming strokes that break time-reversal symmetry to facilitate hydrodynamic synchronization. We discuss different physical mechanisms for flagellar synchronization, which break this symmetry in different ways.

  3. Synchronization in random balanced networks

    NASA Astrophysics Data System (ADS)

    García del Molino, Luis Carlos; Pakdaman, Khashayar; Touboul, Jonathan; Wainrib, Gilles

    2013-10-01

    Characterizing the influence of network properties on the global emerging behavior of interacting elements constitutes a central question in many areas, from physical to social sciences. In this article we study a primary model of disordered neuronal networks with excitatory-inhibitory structure and balance constraints. We show how the interplay between structure and disorder in the connectivity leads to a universal transition from trivial to synchronized stationary or periodic states. This transition cannot be explained only through the analysis of the spectral density of the connectivity matrix. We provide a low-dimensional approximation that shows the role of both the structure and disorder in the dynamics.

  4. Social Motor Synchronization: Insights for Understanding Social Behavior in Autism.

    PubMed

    Fitzpatrick, Paula; Romero, Veronica; Amaral, Joseph L; Duncan, Amie; Barnard, Holly; Richardson, Michael J; Schmidt, R C

    2017-07-01

    Impairments in social interaction and communication are critical features of ASD but the underlying processes are poorly understood. An under-explored area is the social motor synchronization that happens when we coordinate our bodies with others. Here, we explored the relationships between dynamical measures of social motor synchronization and assessments of ASD traits. We found (a) spontaneous social motor synchronization was associated with responding to joint attention, cooperation, and theory of mind while intentional social motor synchronization was associated with initiating joint attention and theory of mind; and (b) social motor synchronization was associated with ASD severity but not fully explained by motor problems. Findings suggest that objective measures of social motor synchronization may provide insights into understanding ASD traits.

  5. Social Motor Synchronization: Insights for Understanding Social Behavior in Autism

    ERIC Educational Resources Information Center

    Fitzpatrick, Paula; Romero, Veronica; Amaral, Joseph L.; Duncan, Amie; Barnard, Holly; Richardson, Michael J.; Schmidt, R. C.

    2017-01-01

    Impairments in social interaction and communication are critical features of ASD but the underlying processes are poorly understood. An under-explored area is the social motor synchronization that happens when we coordinate our bodies with others. Here, we explored the relationships between dynamical measures of social motor synchronization and…

  6. Optimistic barrier synchronization

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1992-01-01

    Barrier synchronization is fundamental operation in parallel computation. In many contexts, at the point a processor enters a barrier it knows that it has already processed all the work required of it prior to synchronization. The alternative case, when a processor cannot enter a barrier with the assurance that it has already performed all the necessary pre-synchronization computation, is treated. The problem arises when the number of pre-sychronization messages to be received by a processor is unkown, for example, in a parallel discrete simulation or any other computation that is largely driven by an unpredictable exchange of messages. We describe an optimistic O(log sup 2 P) barrier algorithm for such problems, study its performance on a large-scale parallel system, and consider extensions to general associative reductions as well as associative parallel prefix computations.

  7. Synchronous trifocal colorectal cancer

    PubMed Central

    Charalampoudis, Petros; Kykalos, Stylianos; Stamopoulos, Paraskevas; Kouraklis, Gregory

    2016-01-01

    Synchronous colorectal cancers (SCRCs) have been increasingly diagnosed due to emerging diagnostic modalities. The presence of three or more synchronous colorectal cancers has, however, only rarely been reported. A 76-year-old white man presented for management of two concurrent colorectal adenocarcinomas in the left colon evidenced on total colonoscopy. Preoperative abdominal ultrasonography and thoracoabdominal computed tomography were negative for metastatic disease. The patient underwent an elective left hemicolectomy. The pathology report ultimately showed the presence of three moderately differentiated, distinct colorectal cancers. The patient experienced an uneventful recovery. PMID:27695171

  8. Organization of inner cellular components as reported by a viscosity-sensitive fluorescent Bodipy probe suitable for phasor approach to FLIM.

    PubMed

    Ferri, Gianmarco; Nucara, Luca; Biver, Tarita; Battisti, Antonella; Signore, Giovanni; Bizzarri, Ranieri

    2016-01-01

    According to the recent developments in imaging strategies and in tailoring fluorescent molecule as probe for monitoring biological systems, we coupled a Bodipy-based molecular rotor (BoMe) with FLIM phasor approach to evaluate the viscosity in different intracellular domains. BoMe rapidly permeates cells, stains cytoplasmic as well as nuclear domains, and its optical properties make it perfectly suited for widely diffused confocal microscopy imaging setups. The capability of BoMe to report on intracellular viscosity was put to the test by using a cellular model of a morbid genetic pathology (Hutchinson-Gilford progeria syndrome, HGPS). Our results show that the nucleoplasm of HGPS cells display reduced viscosity as compared to normal cells. Since BoMe displays significant affinity towards DNA, as demonstrated by an in vitro essay, we hypothesize that genetic features of HGPS, namely the misassembly of lamin A protein within the nuclear lamina, modulates chromatin compaction. This hypothesis nicely agrees with literature data.

  9. The Role of Synchronization in Perception-Action

    NASA Astrophysics Data System (ADS)

    Chan, Tin-Cheung; Yue, Xiaomin; Shi, Zhuanghua; Hong, Bo

    Synchronization between brain areas can be taken as a sign of processes of self-organization modifying the connectivity between brain centers in such a way that they can engage effectively in different tasks. The results of an experiment investigating two issues concerning brain synchronization will be discussed here. First, does synchronization occur automatically, without effort, or through controlled processes? Second, is synchronization maintained or is it transient? In the experiment, eight participants watched two numbers presented on a screen. If the sum of these numbers was odd, participants were asked to press a button corresponding to the geometric figure following the presentation of the numbers, with the stimulus-onset asynchrony (SOA) varied between trials. In case of an even sum, no action was needed. EEG was collected with a 32-channel NeuroScan EEG machine. Analysis was conducted with multivariate autoregressive (MVAR) modeling in order to show coherence between brain areas on a spatio-temporal map. Results suggest that synchronization between perceptual or motor brain areas is automatic. When decisions have to be made, however, latency is affected by the proximity of the tasks, which shows that controlled processes are involved. Results also show that brain synchronization is transient in nature, therefore providing for synchronization patterns to be produced in sequence. It appears that the maintenance of a certain brain state and the related behavior is based on the embodiment of stimulus and task in brain synchronization.

  10. Carrying Synchronous Voice Data On Asynchronous Networks

    NASA Technical Reports Server (NTRS)

    Bergman, Larry A.

    1990-01-01

    Buffers restore synchronism for internal use and permit asynchronism in external transmission. Proposed asynchronous local-area digital communication network (LAN) carries synchronous voice, data, or video signals, or non-real-time asynchronous data signals. Network uses double buffering scheme that reestablishes phase and frequency references at each node in network. Concept demonstrated in token-ring network operating at 80 Mb/s, pending development of equipment operating at planned data rate of 200 Mb/s. Technique generic and used with any LAN as long as protocol offers deterministic (or bonded) access delays and sufficient capacity.

  11. Study of the Synchronous Reluctance Motor Design

    NASA Astrophysics Data System (ADS)

    Dirba, J.; Lavrinovicha, L.; Dobriyan, R.

    2016-08-01

    The paper focuses on studying the external-rotor synchronous reluctance motor. The analysis is performed to estimate the influence of the number of stator slots and non-magnetic areas in the rotor (i.e., flux barriers) on the electromagnetic torque and torque ripple of the studied motor. It is concluded that the increase in the number of stator slots Z = 6 to Z = 18 causes an approximately twofold decrease in the ripple factor, but torque increases by 5 %. Electromagnetic torque will be increased approximately by 24 %, if non-magnetic flux barriers are created in the rotor of the studied synchronous reluctance motor.

  12. Implementing the Synchronous Classroom

    ERIC Educational Resources Information Center

    Furman, Jan A.

    2010-01-01

    This commentary describes an action research project conducted by selected staff at the Northern Valley Regional High School District in New Jersey. The project focused on the idea of developing a synchronous classroom to provide world language learning opportunities to students. Relevant research is provided as are ideas regarding logistics and…

  13. Implementing the Synchronous Classroom

    ERIC Educational Resources Information Center

    Furman, Jan A.

    2010-01-01

    This commentary describes an action research project conducted by selected staff at the Northern Valley Regional High School District in New Jersey. The project focused on the idea of developing a synchronous classroom to provide world language learning opportunities to students. Relevant research is provided as are ideas regarding logistics and…

  14. Synchronized time stamp support

    SciTech Connect

    Kowalkowski, J.

    1994-02-16

    New software has been added to IOC core to maintain time stamps. The new software has the ability to maintain time stamps over all IOCs on a network. The purpose of this paper is to explain how EPICS will synchronize the time stamps. In addition, this paper will explain how to configure and use the new EPICS time stamp support software.

  15. Synchronization of Yeast.

    PubMed

    Smith, Jessica; Manukyan, Arkadi; Hua, Hui; Dungrawala, Huzefa; Schneider, Brandt L

    2017-01-01

    The budding yeast Saccharomyces cerevisiae and fission yeast Schizosaccharomyces pombe are amongst the simplest and most powerful model systems for studying the genetics of cell cycle control. Because yeast grows very rapidly in a simple and economical media, large numbers of cells can easily be obtained for genetic, molecular, and biochemical studies of the cell cycle. The use of synchronized cultures greatly aids in the ease and interpretation of cell cycle studies. In principle, there are two general methods for obtaining synchronized yeast populations. Block-and-release methods can be used to induce cell cycle synchrony. Alternatively, centrifugal elutriation can be used to select synchronous populations. Because each method has innate advantages and disadvantages, the use of multiple approaches helps in generalizing results. An overview of the most commonly used methods to generate synchronized yeast cultures is presented along with working Notes: a section that includes practical comments, experimental considerations and observations, and hints regarding the pros and cons innate to each approach.

  16. Advanced synchronous luminescence system

    DOEpatents

    Vo-Dinh, T.

    1997-02-04

    A method and apparatus are disclosed for determining the condition of tissue or otherwise making chemical identifications includes exposing the sample to a light source, and using a synchronous luminescence system to produce a spectrum that can be analyzed for tissue condition. 14 figs.

  17. Distributed Generalized Dynamic Barrier Synchronization

    NASA Astrophysics Data System (ADS)

    Agarwal, Shivali; Joshi, Saurabh; Shyamasundar, Rudrapatna K.

    Barrier synchronization is widely used in shared-memory parallel programs to synchronize between phases of data-parallel algorithms. With proliferation of many-core processors, barrier synchronization has been adapted for higher level language abstractions in new languages such as X10 wherein the processes participating in barrier synchronization are not known a priori, and the processes in distinct "places" don't share memory. Thus, the challenge here is to not only achieve barrier synchronization in a distributed setting without any centralized controller, but also to deal with dynamic nature of such a synchronization as processes are free to join and drop out at any synchronization phase. In this paper, we describe a solution for the generalized distributed barrier synchronization wherein processes can dynamically join or drop out of barrier synchronization; that is, participating processes are not known a priori. Using the policy of permitting a process to join only in the beginning of each phase, we arrive at a solution that ensures (i) Progress: a process executing phase k will enter phase k + 1 unless it wants to drop out of synchronization (assuming the phase execution of the processes terminate), and (ii) Starvation Freedom: a new process that wants to join a phase synchronization group that has already started, does so in a finite number of phases. The above protocol is further generalized to multiple groups of processes (possibly non-disjoint) engaged in barrier synchronization.

  18. Wavelet phase synchronization and chaoticity.

    PubMed

    Postnikov, E B

    2009-11-01

    It has been shown that the so-called "wavelet phase" (or "time-scale") synchronization of chaotic signals is actually synchronization of smoothed functions with reduced chaotic fluctuations. This fact is based on the representation of the wavelet transform with the Morlet wavelet as a solution of the Cauchy problem for a simple diffusion equation with initial condition in a form of harmonic function modulated by a given signal. The topological background of the resulting effect is discussed. It is argued that the wavelet phase synchronization provides information about the synchronization of an averaged motion described by bounding tori instead of the fine-level classical chaotic phase synchronization.

  19. Programmable synchronization unit

    SciTech Connect

    Kang, H.

    1984-10-01

    A Programmable Synchronization Unit (PSU, 135-726) has been designed as an element of the new timing system for the Stanford Linear Collider (SLC) project to provide synchronization signals needed for various apparatus in the SLC Damping Ring, or anywhere it is necessary to monitor longer than the fiducial period (approx. = 2.8 ..mu..s). A 119 MHz pulse train derived from the 476 MHz main drive line and superimposed with 360 Hz fiducial signal is the frequency source. Following a programmable delay D of up to 4.4 ..mu..s, the PSU can deliver N pulses of width W (in increments of 8.4 ns) with a pulse period of P (in increments of 58.8 ns, the damping ring half period). The device may be programmed at any time during the interfiducial period.

  20. Optimal synchronization in space.

    PubMed

    Brede, Markus

    2010-02-01

    In this Rapid Communication we investigate spatially constrained networks that realize optimal synchronization properties. After arguing that spatial constraints can be imposed by limiting the amount of "wire" available to connect nodes distributed in space, we use numerical optimization methods to construct networks that realize different trade offs between optimal synchronization and spatial constraints. Over a large range of parameters such optimal networks are found to have a link length distribution characterized by power-law tails P(l) proportional to l(-alpha), with exponents alpha increasing as the networks become more constrained in space. It is also shown that the optimal networks, which constitute a particular type of small world network, are characterized by the presence of nodes of distinctly larger than average degree around which long-distance links are centered.

  1. Synchronization of Sound Sources

    NASA Astrophysics Data System (ADS)

    Abel, Markus; Ahnert, Karsten; Bergweiler, Steffen

    2009-09-01

    Sound generation and interaction are highly complex, nonlinear, and self-organized. Nearly 150 years ago Rayleigh raised the following problem: two nearby organ pipes of different fundamental frequencies sound together almost inaudibly with identical pitch. This effect is now understood qualitatively by modern synchronization theory M. Abel et al. [J. Acoust. Soc. Am. 119, 2467 (2006)JASMAN0001-496610.1121/1.2170441]. For a detailed investigation, we substituted one pipe by an electric speaker. We observe that even minute driving signals force the pipe to synchronization, thus yielding three decades of synchronization—the largest range ever measured to our knowledge. Furthermore, a mutual silencing of the pipe is found, which can be explained by self-organized oscillations, of use for novel methods of noise abatement. Finally, we develop a reconstruction method which yields a perfect quantitative match of experiment and theory.

  2. Synchronously deployable truss structure

    NASA Technical Reports Server (NTRS)

    Bush, H. G. (Inventor); Mikulas, M., Jr. (Inventor); Wallsom, E. (Inventor)

    1986-01-01

    A collapsible-expandable truss structure, including first and second spaced surface truss layers having an attached core layer is described. The surface truss layers are composed of a plurality of linear struts arranged in multiple triangular configurations. Each linear strut is hinged at the center and hinge connected at each end to a nodular joint. A passive spring serves as the expansion force to move the folded struts from a stowed collapsed position to a deployed operative final truss configuration. A damper controls the rate of spring expansion for the synchronized deployment of the truss as the folded configuration is released for deployment by the restrain belts. The truss is synchronously extended under the control of motor driven spools.

  3. Synchronization and hydrodynamic interactions

    NASA Astrophysics Data System (ADS)

    Powers, Thomas; Qian, Bian; Breuer, Kenneth

    2008-03-01

    Cilia and flagella commonly beat in a coordinated manner. Examples include the flagella that Volvox colonies use to move, the cilia that sweep foreign particles up out of the human airway, and the nodal cilia that set up the flow that determines the left-right axis in developing vertebrate embryos. In this talk we present an experimental study of how hydrodynamic interactions can lead to coordination in a simple idealized system: two nearby paddles driven with fixed torques in a highly viscous fluid. The paddles attain a synchronized state in which they rotate together with a phase difference of 90 degrees. We discuss how synchronization depends on system parameters and present numerical calculations using the method of regularized stokeslets.

  4. Synchronization of micromasers

    NASA Astrophysics Data System (ADS)

    Davis-Tilley, C.; Armour, A. D.

    2016-12-01

    We investigate synchronization effects in quantum self-sustained oscillators theoretically using the micromaser as a model system. We use the probability distribution for the relative phase as a tool for quantifying the emergence of preferred phases when two micromasers are coupled together. Using perturbation theory, we show that the behavior of the phase distribution is strongly dependent on exactly how the oscillators are coupled. In the quantum regime where photon occupation numbers are low we find that, although synchronization effects are rather weak, they are nevertheless significantly stronger than expected from a semiclassical description of the phase dynamics. We also compare the behavior of the phase distribution with the mutual information of the two oscillators and show that they can behave in rather different ways.

  5. Optimal synchronization in space

    NASA Astrophysics Data System (ADS)

    Brede, Markus

    2010-02-01

    In this Rapid Communication we investigate spatially constrained networks that realize optimal synchronization properties. After arguing that spatial constraints can be imposed by limiting the amount of “wire” available to connect nodes distributed in space, we use numerical optimization methods to construct networks that realize different trade offs between optimal synchronization and spatial constraints. Over a large range of parameters such optimal networks are found to have a link length distribution characterized by power-law tails P(l)∝l-α , with exponents α increasing as the networks become more constrained in space. It is also shown that the optimal networks, which constitute a particular type of small world network, are characterized by the presence of nodes of distinctly larger than average degree around which long-distance links are centered.

  6. System Timing and Synchronization.

    DTIC Science & Technology

    1978-07-01

    The emphasis in this report is on troposcatter and line of sight link parameters and their relationship to network clock synchronization. This report...includes analysis and discussion of the important physical effects in troposcatter propagation, and a description of experiments and data acquired...during a recent measurement program designed to establish a better understanding of the relevant troposcatter and line of sight medium and equipment effects. (Author)

  7. Synchronization of Eukaryotic Flagella

    NASA Astrophysics Data System (ADS)

    Goldstein, Raymond E.

    2012-11-01

    From unicellular organisms as small as a few microns to the largest vertebrates on earth we find groups of beating flagella or cilia that exhibit striking spatio-temporal organization. This may take the form of precise frequency and phase locking as frequently found in the swimming of green algae, or beating with long-wavelength phase modulations known as metachronal waves, seen in ciliates and in our respiratory systems. The remarkable similarity in the underlying molecular structure of flagella across the whole eukaryotic world leads naturally to the hypothesis that a similarly universal mechanism might be responsible for synchronization. Although this mechanism is poorly understood, one appealing hypothesis is that it results from hydrodynamic interactions between flagella. In this talk I will describe a synthesis of recent experimental and theoretical studies of this issue that have provided the strongest evidence to date for the hydrodynamic origin of flagellar synchronization. At the unicellular level this includes studies of the beating of the two flagella of the wild type unicellular alga Chlamydomonas reinhardtii in their native state and under conditions of regrowth following autotomy, and of the flagellar dominance mutant ptx1, which displays unusual anti-phase synchronization. Analysis of the related multicellular organism Volvox carteri shows it to be an ideal model organism for the study of metachronal waves. Supported by BBSRC, EPSRC, ERC, and The Wellcome Trust.

  8. Digital Synchronizer without Metastability

    NASA Technical Reports Server (NTRS)

    Simle, Robert M.; Cavazos, Jose A.

    2009-01-01

    A proposed design for a digital synchronizing circuit would eliminate metastability that plagues flip-flop circuits in digital input/output interfaces. This metastability is associated with sampling, by use of flip-flops, of an external signal that is asynchronous with a clock signal that drives the flip-flops: it is a temporary flip-flop failure that can occur when a rising or falling edge of an asynchronous signal occurs during the setup and/or hold time of a flip-flop. The proposed design calls for (1) use of a clock frequency greater than the frequency of the asynchronous signal, (2) use of flip-flop asynchronous preset or clear signals for the asynchronous input, (3) use of a clock asynchronous recovery delay with pulse width discriminator, and (4) tying the data inputs to constant logic levels to obtain (5) two half-rate synchronous partial signals - one for the falling and one for the rising edge. Inasmuch as the flip-flop data inputs would be permanently tied to constant logic levels, setup and hold times would not be violated. The half-rate partial signals would be recombined to construct a signal that would replicate the original asynchronous signal at its original rate but would be synchronous with the clock signal.

  9. Socially synchronized circadian oscillators.

    PubMed

    Bloch, Guy; Herzog, Erik D; Levine, Joel D; Schwartz, William J

    2013-08-22

    Daily rhythms of physiology and behaviour are governed by an endogenous timekeeping mechanism (a circadian 'clock'). The alternation of environmental light and darkness synchronizes (entrains) these rhythms to the natural day-night cycle, and underlying mechanisms have been investigated using singly housed animals in the laboratory. But, most species ordinarily would not live out their lives in such seclusion; in their natural habitats, they interact with other individuals, and some live in colonies with highly developed social structures requiring temporal synchronization. Social cues may thus be critical to the adaptive function of the circadian system, but elucidating their role and the responsible mechanisms has proven elusive. Here, we highlight three model systems that are now being applied to understanding the biology of socially synchronized circadian oscillators: the fruitfly, with its powerful array of molecular genetic tools; the honeybee, with its complex natural society and clear division of labour; and, at a different level of biological organization, the rodent suprachiasmatic nucleus, site of the brain's circadian clock, with its network of mutually coupled single-cell oscillators. Analyses at the 'group' level of circadian organization will likely generate a more complex, but ultimately more comprehensive, view of clocks and rhythms and their contribution to fitness in nature.

  10. Monitoring tooth profile faults in epicyclic gearboxes using synchronously averaged motor currents: Mathematical modeling and experimental validation

    NASA Astrophysics Data System (ADS)

    Ottewill, J. R.; Ruszczyk, A.; Broda, D.

    2017-02-01

    Time-varying transmission paths and inaccessibility can increase the difficulty in both acquiring and processing vibration signals for the purpose of monitoring epicyclic gearboxes. Recent work has shown that the synchronous signal averaging approach may be applied to measured motor currents in order to diagnose tooth faults in parallel shaft gearboxes. In this paper we further develop the approach, so that it may also be applied to monitor tooth faults in epicyclic gearboxes. A low-degree-of-freedom model of an epicyclic gearbox which incorporates the possibility of simulating tooth faults, as well as any subsequent tooth contact loss due to these faults, is introduced. By combining this model with a simple space-phasor model of an induction motor it is possible to show that, in theory, tooth faults in epicyclic gearboxes may be identified from motor currents. Applying the synchronous averaging approach to experimentally recorded motor currents and angular displacements recorded from a shaft mounted encoder, validate this finding. Comparison between experiments and theory highlight the influence of operating conditions, backlash and shaft couplings on the transient response excited in the currents by the tooth fault. The results obtained suggest that the method may be a viable alternative or complement to more traditional methods for monitoring gearboxes. However, general observations also indicate that further investigations into the sensitivity and robustness of the method would be beneficial.

  11. A Semantics of Synchronization.

    DTIC Science & Technology

    1980-09-01

    AD-AQ91 015 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE --ETC F/S 9/2 A SEMANTICS OF SYNCHRONIZATION.(U) .C SEP 80 C A SEAQUIST N00015-75... COMPUTER SCIENCE TECHNOLOGY LEVL NIT/WSAIM-176 A SEMW30~CS OF SYNilUMZfTIMt DTIC ELEOTEW- OCT 30 198 Carl R. Seaquist j Septet~e3.980 C..)1tds research... coud ition$c rcatcO)I) end create silrtread =proc(rn:cvt) if inhbusy theci ondifion~wait(an.rcaders) end rn.readcrcou nt: =in.rcadcrcount + 1 comtll ion

  12. Synchronization of pathogenic protozoans.

    PubMed

    Svärd, Staffan; Troell, Karin

    2011-01-01

    Protozoans are single-cell eukaryotes and many of the best studied protozoans are parasitic to humans (e.g., Plasmodium falciparum causing malaria and Trypanosoma brucei causing sleeping sickness). These organisms are distantly related to humans but with retained eukaryotic type of cellular processes, making them good model systems for studies of the evolution of basic processes like the cell cycle. Giardia intestinalis causes 250 million cases of diarrhea yearly and is one of the earliest diverging protozoans. It has recently been possible to synchronize its cell cycle using compounds that inhibit different steps of the cell cycle and the detailed protocol is described here.

  13. Psychic energy and synchronicity.

    PubMed

    Zabriskie, Beverley

    2014-04-01

    Given Jung's interest in physics' formulations of psychic energy and the concept of time, overlaps and convergences in the themes addressed in analytical psychology and in quantum physics are to be expected. These are informed by the active intersections between the matter of mind and mindfulness re matter. In 1911, Jung initiated dinners with Einstein. Jung's definition of libido in the pivotal 1912 Fordham Lectures reveals the influence of these conversations. Twenty years later, a significant period in physics, Wolfgang Pauli contacted Jung. Their collaboration led to the theory of synchronicity.

  14. Generalized synchronization via nonlinear control.

    PubMed

    Juan, Meng; Xingyuan, Wang

    2008-06-01

    In this paper, the generalized synchronization problem of drive-response systems is investigated. Using the drive-response concept and the nonlinear control theory, a control law is designed to achieve the generalized synchronization of chaotic systems. Based on the Lyapunov stability theory, a generalized synchronization condition is derived. Theoretical analyses and numerical simulations further demonstrate the feasibility and effectiveness of the proposed technique.

  15. Planning for Victory: Joint Synchronization

    DTIC Science & Technology

    1993-02-22

    Desert Storm . . . .. 13 V A JOINT SYNCHRONIZATION MATRIX .. ........ .. 16 Proposed Synchronization Matrixes Joint Sync Matrix: D-day, 1944 . . .. 16...campaigns. I will offer two such proposals. Joint Sync Matrix: D-day, 1944 . Figure 2 is offered as one proposal of how a joint synchronization matrix...CHANNEL sweep CENTRAL CHANNEL commence sweep AfW ALLIED completeI CHERBOURG-LE HAVRE FLEET sweep UTAH OMAHA GOLD JUNO SWORD ASUW SWEEPS ALLIED

  16. Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention

    NASA Astrophysics Data System (ADS)

    Fries, Pascal; Reynolds, John H.; Rorie, Alan E.; Desimone, Robert

    2001-02-01

    In crowded visual scenes, attention is needed to select relevant stimuli. To study the underlying mechanisms, we recorded neurons in cortical area V4 while macaque monkeys attended to behaviorally relevant stimuli and ignored distracters. Neurons activated by the attended stimulus showed increased gamma-frequency (35 to 90 hertz) synchronization but reduced low-frequency (<17 hertz) synchronization compared with neurons at nearby V4 sites activated by distracters. Because postsynaptic integration times are short, these localized changes in synchronization may serve to amplify behaviorally relevant signals in the cortex.

  17. Comparison of single neuron models in terms of synchronization propensity

    NASA Astrophysics Data System (ADS)

    Sungar, N.; Allaria, E.; Leyva, I.; Arecchi, F. T.

    2008-09-01

    A plausible model for coherent perception is the synchronization of chaotically distributed neural spike trains over wide cortical areas. A recently introduced propensity criterion provides a tool for a quantitative comparison of different neuron models in terms of their ability to synchronize to an applied perturbation. We explore the propensity of several systems and indicate the requirements to be satisfied by a plausible candidate for modeling neuronal activity. Our results show that the conflicting requirements of stability and sensitivity leading to high propensity to synchronization can be satisfied by a strongly nonuniform attractor made of two distinct regions: a saddle focus plus a sufficiently separated saddle node.

  18. Content Specific Fronto-Parietal Synchronization during Visual Working Memory

    PubMed Central

    Salazar, RF; Dotson, NM; Bressler, SL; Gray, CM

    2014-01-01

    Lateral prefrontal and posterior parietal cortical areas exhibit task-dependent activation during working memory tasks in humans and monkeys. Neurons in these regions become synchronized during attention demanding tasks, but the contribution of these interactions to working memory is largely unknown. Using simultaneous recordings of neural activity from multiple areas in both regions, we find widespread, task-dependent and content specific synchronization of activity across the fronto-parietal network during visual working memory. The patterns of synchronization are prevalent among stimulus selective neurons and are governed by influences arising in parietal cortex. These results indicate that short-term memories are represented by large-scale patterns of synchronized activity across the fronto-parietal network. PMID:23118014

  19. Digitized synchronous demodulator

    NASA Technical Reports Server (NTRS)

    Woodhouse, Christopher E. (Inventor)

    1990-01-01

    A digitized synchronous demodulator is constructed entirely of digital components including timing logic, an accumulator, and means to digitally filter the digital output signal. Indirectly, it accepts, at its input, periodic analog signals which are converted to digital signals by traditional analog-to-digital conversion techniques. Broadly, the input digital signals are summed to one of two registers within an accumulator, based on the phase of the input signal and medicated by timing logic. At the end of a predetermined number of cycles of the inputted periodic signals, the contents of the register that accumulated samples from the negative half cycle is subtracted from the accumulated samples from the positive half cycle. The resulting difference is an accurate measurement of the narrow band amplitude of the periodic input signal during the measurement period. This measurement will not include error sources encountered in prior art synchronous demodulators using analog techniques such as offsets, charge injection errors, temperature drift, switching transients, settling time, analog to digital converter missing code, and linearity errors.

  20. SLAC synchronous condenser

    SciTech Connect

    Corvin, C.

    1995-06-01

    A synchronous condenser is a synchronous machine that generates reactive power that leads real power by 90{degrees} in phase. The leading reactive power generated by the condenser offsets or cancels the normal lagging reactive power consumed by inductive and nonlinear loads at the accelerator complex. The quality of SLAC`s utility power is improved with the addition of the condenser. The inertia of the condenser`s 35,000 pound rotor damps and smoothes voltage excursions on two 12 kilovolt master substation buses, improving voltage regulation site wide. The condenser absorbs high frequency transients and noise in effect ``scrubbing`` the electric system power at its primary distribution source. In addition, the condenser produces a substantial savings in power costs. Federal and investor owned utilities that supply electric power to SLAC levy a monthly penalty for lagging reactive power delivered to the site. For the 1993 fiscal year this totaled over $285,000 in added costs for the year. By generating leading reactive power on site, thereby reducing total lagging reactive power requirements, a substantial savings in electric utility bills is achieved. Actual savings of $150,000 or more a year are possible depending on experimental operations.

  1. FPGA based fast synchronous serial multi-wire links synchronization

    NASA Astrophysics Data System (ADS)

    Pozniak, Krzysztof T.

    2013-10-01

    The paper debates synchronization method of multi-wire, serial link of constant latency, by means of pseudo-random numbers generators. The solution was designed for various families of FPGA circuits. There were debated synchronization algorithm and functional structure of parameterized transmitter and receiver modules. The modules were realized in VHDL language in a behavioral form.

  2. Spectral phasor analysis reveals altered membrane order and function of root hair cells in Arabidopsis dry2/sqe1-5 drought hypersensitive mutant.

    PubMed

    Sena, Florencia; Sotelo-Silveira, Mariana; Astrada, Soledad; Botella, Miguel A; Malacrida, Leonel; Borsani, Omar

    2017-10-01

    Biological membranes allow the regulation of numerous cellular processes, which are affected when unfavorable environmental factors are perceived. Lipids and proteins are the principal components of biological membranes. Each lipid has unique biophysical properties, and, therefore the lipid composition of the membrane is critical to maintaining the bilayer structure and functionality. Membrane composition and integrity are becoming the focus of studies aiming to understand how plants adapt to its environment. In this study, using a combination of di-4-ANEPPDHQ fluorescence and spectral phasor analysis, we report that the drought hypersensitive/squalene epoxidase (dry2/sqe1-5) mutant with reduced major sterols such as sitosterol and stigmasterol in roots presented higher membrane fluidity than the wild type. Moreover, analysis of endomembrane dynamics showed that vesicle formation was affected in dry2/sqe1-5. Further analysis of proteins associated with sterol rich micro domains showed that dry2/sqe1-5 presented micro domains function altered. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Spectral phasor analysis of LAURDAN fluorescence in live A549 lung cells to study the hydration and time evolution of intracellular lamellar body-like structures.

    PubMed

    Malacrida, Leonel; Astrada, Soledad; Briva, Arturo; Bollati-Fogolín, Mariela; Gratton, Enrico; Bagatolli, Luis A

    2016-11-01

    Using LAURDAN spectral imaging and spectral phasor analysis we concurrently studied the growth and hydration state of subcellular organelles (lamellar body-like, LB-like) from live A549 lung cancer cells at different post-confluence days. Our results reveal a time dependent two-step process governing the size and hydration of these intracellular LB-like structures. Specifically, a first step (days 1 to 7) is characterized by an increase in their size, followed by a second one (days 7 to 14) where the organelles display a decrease in their global hydration properties. Interestingly, our results also show that their hydration properties significantly differ from those observed in well-characterized artificial lamellar model membranes, challenging the notion that a pure lamellar membrane organization is present in these organelles at intracellular conditions. Finally, these LB-like structures show a significant increase in their hydration state upon secretion, suggesting a relevant role of entropy during this process. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Phase synchronization of oxygenation waves in the frontal areas of children with attention-deficit hyperactivity disorder detected by optical diffusion spectroscopy correlates with medication

    NASA Astrophysics Data System (ADS)

    Wigal, Sharon B.; Polzonetti, Chiara M.; Stehli, Annamarie; Gratton, Enrico

    2012-12-01

    The beneficial effects of pharmacotherapy on children with attention-deficit hyperactivity disorder (ADHD) are well documented. We use near-infrared spectroscopy (NIRS) methodology to determine reorganization of brain neurovascular properties following the medication treatment. Twenty-six children with ADHD (ages six through 12) participated in a modified laboratory school protocol to monitor treatment response with lisdexamfetamine dimesylate (LDX; Vyvanse, Shire US Inc.). All children refrained from taking medication for at least two weeks (washout period). To detect neurovascular reorganization, we measured changes in synchronization of oxy (HbO2) and deoxy (HHb) hemoglobin waves between the two frontal lobes. Participants without medication displayed average baseline HbO2 phase difference at about -7-deg. and HHb differences at about 240-deg.. This phase synchronization index changed after pharmacological intervention. Medication induced an average phase changes of HbO2 after first medication to 280-deg. and after medication optimization to 242-deg.. Instead first medication changed of the average HHb phase difference at 186-deg. and then after medication optimization to 120-deg. In agreement with findings of White et al., and Varela et al., we associated the phase synchronization differences of brain hemodynamics in children with ADHD with lobe specific hemodynamic reorganization of HbO2- and HHB oscillations following medication status.

  5. Digital synchronization and communication techniques

    NASA Technical Reports Server (NTRS)

    Lindsey, William C.

    1992-01-01

    Information on digital synchronization and communication techniques is given in viewgraph form. Topics covered include phase shift keying, modems, characteristics of open loop digital synchronizers, an open loop phase and frequency estimator, and a digital receiver structure using an open loop estimator in a decision directed architecture.

  6. Benefits of Synchronous Online Courses

    ERIC Educational Resources Information Center

    Moser, Scott; Smith, Phil

    2015-01-01

    Most online courses are offered as "asynchronous" courses and have no real-time contact with students. The Synchronous online alternative provides normal scheduled class time and allows students to login to a virtual online classroom with the instructor. We provide an overview of two different platforms for hosting synchronous classes…

  7. RAM-Based frame synchronizer

    NASA Technical Reports Server (NTRS)

    Niswander, J. K.; Stattel, R. J.

    1980-01-01

    Frame synchronizer for serial telemetry is rapidly reconfigured for changing formats. Synchronizer generates signals marking data-word boundaries, beginning of each frame, and beginning of each paragraph. Also derived are search, check, and lock status signals. Existing unit is assembled from standard random-access memory elements and MOS and low-power-Schottky logic.

  8. Chaos synchronization by nonlinear coupling

    NASA Astrophysics Data System (ADS)

    Petereit, Johannes; Pikovsky, Arkady

    2017-03-01

    We study synchronization properties of three nonlinearly coupled chaotic maps. Coupling is introduced in such a way, that it cannot be reduced to pairwise terms, but includes combined action of all interacting units. For two models of nonlinear coupling we characterize the transition to complete synchrony, as well as partially synchronized states. Relation to hypernetworks of chaotic units is also discussed.

  9. Chua's Circuit: Control and Synchronization

    NASA Astrophysics Data System (ADS)

    Irimiciuc, Stefan-Andrei; Vasilovici, Ovidiu; Dimitriu, Dan-Gheorghe

    Chaos-based data encryption is one of the most reliable methods used in secure communications. This implies a good control of a chaotic system and a good synchronization between the involved systems. Here, experimental results are shown on the control and synchronization of Chua's circuits. The control of the chaotic circuit was achieved by using the switching method. The influence of the control signal characteristics (amplitude, frequency and shape) on the system's states was also investigated. The synchronization of two similar chaotic circuits was studied, emphasizing the importance of the chaotic state characteristics of the Master system in respect to those of Slave system. It was shown that the synchronization does not depend on the chaotic state type, neither on the dimension (x, y or z) used for synchronization.

  10. Robust Synchronization Schemes for Dynamic Channel Environments

    NASA Technical Reports Server (NTRS)

    Xiong, Fugin

    2003-01-01

    Professor Xiong will investigate robust synchronization schemes for dynamic channel environment. A sliding window will be investigated for symbol timing synchronizer and an open loop carrier estimator for carrier synchronization. Matlab/Simulink will be used for modeling and simulations.

  11. Friction and Phase Synchronization

    NASA Astrophysics Data System (ADS)

    Braiman, Y.; Protopopescu, V.; Family, F.; Hentschel, H. G. E.

    2000-03-01

    Spatiotemporal fluctuations in small discrete nonlinear arrays affect the dynamics of the center of mass. We derive the equations describing the dynamics of the center of mass and the spatial fluctuations for each coherent mode of the array. Analysis of these equations indicates that depending on array stiffness, size, and the external forcing - quantized jumps occur in the minimum friction (maximum velocity) of the array. We propose an analytical formalism to determine the occurrences of these jumps. We present numerical evidence indicating that phase synchronization is related to the frictional properties of sliding objects at the atomic scale and discuss mechanisms of tuning and controlling nanoscale friction. Y. Braiman, F. Family, H. G. E. Hentschel, C. Mak, and J. Krim, Phys. Rev. E 59, R4737 (1999). H. G. E. Hentschel, F. Family, and Y. Braiman, Phys. Rev. Lett. 83, 104 (1999).

  12. Timesharing without synchronization

    NASA Technical Reports Server (NTRS)

    Mceliece, R. J.; Rubin, A. L.

    1976-01-01

    The capacity region of a multiple-access channel has recently been identified as the convex hull (barred K) of a certain set (K) of points in the first quadrant of the (R1,R2) plane. For a pair of rates in K, a more or less standard random-coding argument can be used to show the existence of a good pair of codes. But for points in barred K-K, it is apparently necessary for the two senders to use some form of time sharing to achieve the desired rates. However, in order to share time, at least one of the senders must have knowledge of the other's phase; and in many practical situations this knowledge does not exist. This paper investigates the problems which arise in coding for multiple-access channels when the senders cannot synchronize with each other.

  13. Twin engine synchronizer

    SciTech Connect

    Kobus, J.R.

    1988-05-03

    This patent describes an apparatus for synchronizing the speeds of two engines, each having its own throttle level connected by an associated cable to a respective hand throttle lever, comprising moving means carried by the throttle lever of one of the engines for moving the throttle lever of the one engine independently of its associated cable and its respective hand throttle lever to increase or decrease the speed of the one engine until the speed of the one engine matches the speed of the other engine. The moving means moves the throttle lever of the one engine without moving its associated cable or its respective hand throttle lever, and actuating means mounted remote from the throttle lever of the one engine for actuating the moving means.

  14. Quantum Synchronization Blockade: Energy Quantization Hinders Synchronization of Identical Oscillators.

    PubMed

    Lörch, Niels; Nigg, Simon E; Nunnenkamp, Andreas; Tiwari, Rakesh P; Bruder, Christoph

    2017-06-16

    Classically, the tendency towards spontaneous synchronization is strongest if the natural frequencies of the self-oscillators are as close as possible. We show that this wisdom fails in the deep quantum regime, where the uncertainty of amplitude narrows down to the level of single quanta. Under these circumstances identical self-oscillators cannot synchronize and detuning their frequencies can actually help synchronization. The effect can be understood in a simple picture: Interaction requires an exchange of energy. In the quantum regime, the possible quanta of energy are discrete. If the extractable energy of one oscillator does not exactly match the amount the second oscillator may absorb, interaction, and thereby synchronization, is blocked. We demonstrate this effect, which we coin quantum synchronization blockade, in the minimal example of two Kerr-type self-oscillators and predict consequences for small oscillator networks, where synchronization between blocked oscillators can be mediated via a detuned oscillator. We also propose concrete implementations with superconducting circuits and trapped ions. This paves the way for investigations of new quantum synchronization phenomena in oscillator networks both theoretically and experimentally.

  15. Quantum Synchronization Blockade: Energy Quantization Hinders Synchronization of Identical Oscillators

    NASA Astrophysics Data System (ADS)

    Lörch, Niels; Nigg, Simon E.; Nunnenkamp, Andreas; Tiwari, Rakesh P.; Bruder, Christoph

    2017-06-01

    Classically, the tendency towards spontaneous synchronization is strongest if the natural frequencies of the self-oscillators are as close as possible. We show that this wisdom fails in the deep quantum regime, where the uncertainty of amplitude narrows down to the level of single quanta. Under these circumstances identical self-oscillators cannot synchronize and detuning their frequencies can actually help synchronization. The effect can be understood in a simple picture: Interaction requires an exchange of energy. In the quantum regime, the possible quanta of energy are discrete. If the extractable energy of one oscillator does not exactly match the amount the second oscillator may absorb, interaction, and thereby synchronization, is blocked. We demonstrate this effect, which we coin quantum synchronization blockade, in the minimal example of two Kerr-type self-oscillators and predict consequences for small oscillator networks, where synchronization between blocked oscillators can be mediated via a detuned oscillator. We also propose concrete implementations with superconducting circuits and trapped ions. This paves the way for investigations of new quantum synchronization phenomena in oscillator networks both theoretically and experimentally.

  16. Dynamical inference: Where phase synchronization and generalized synchronization meet

    NASA Astrophysics Data System (ADS)

    Stankovski, Tomislav; McClintock, Peter V. E.; Stefanovska, Aneta

    2014-06-01

    Synchronization is a widespread phenomenon that occurs among interacting oscillatory systems. It facilitates their temporal coordination and can lead to the emergence of spontaneous order. The detection of synchronization from the time series of such systems is of great importance for the understanding and prediction of their dynamics, and several methods for doing so have been introduced. However, the common case where the interacting systems have time-variable characteristic frequencies and coupling parameters, and may also be subject to continuous external perturbation and noise, still presents a major challenge. Here we apply recent developments in dynamical Bayesian inference to tackle these problems. In particular, we discuss how to detect phase slips and the existence of deterministic coupling from measured data, and we unify the concepts of phase synchronization and general synchronization. Starting from phase or state observables, we present methods for the detection of both phase and generalized synchronization. The consistency and equivalence of phase and generalized synchronization are further demonstrated, by the analysis of time series from analog electronic simulations of coupled nonautonomous van der Pol oscillators. We demonstrate that the detection methods work equally well on numerically simulated chaotic systems. In all the cases considered, we show that dynamical Bayesian inference can clearly identify noise-induced phase slips and distinguish coherence from intrinsic coupling-induced synchronization.

  17. Fundamentals of synchronization in chaotic systems, concepts, and applications.

    PubMed

    Pecora, Louis M.; Carroll, Thomas L.; Johnson, Gregg A.; Mar, Douglas J.; Heagy, James F.

    1997-12-01

    The field of chaotic synchronization has grown considerably since its advent in 1990. Several subdisciplines and "cottage industries" have emerged that have taken on bona fide lives of their own. Our purpose in this paper is to collect results from these various areas in a review article format with a tutorial emphasis. Fundamentals of chaotic synchronization are reviewed first with emphases on the geometry of synchronization and stability criteria. Several widely used coupling configurations are examined and, when available, experimental demonstrations of their success (generally with chaotic circuit systems) are described. Particular focus is given to the recent notion of synchronous substitution-a method to synchronize chaotic systems using a larger class of scalar chaotic coupling signals than previously thought possible. Connections between this technique and well-known control theory results are also outlined. Extensions of the technique are presented that allow so-called hyperchaotic systems (systems with more than one positive Lyapunov exponent) to be synchronized. Several proposals for "secure" communication schemes have been advanced; major ones are reviewed and their strengths and weaknesses are touched upon. Arrays of coupled chaotic systems have received a great deal of attention lately and have spawned a host of interesting and, in some cases, counterintuitive phenomena including bursting above synchronization thresholds, destabilizing transitions as coupling increases (short-wavelength bifurcations), and riddled basins. In addition, a general mathematical framework for analyzing the stability of arrays with arbitrary coupling configurations is outlined. Finally, the topic of generalized synchronization is discussed, along with data analysis techniques that can be used to decide whether two systems satisfy the mathematical requirements of generalized synchronization. (c) 1997 American Institute of Physics.

  18. Time Synchronized Wireless Sensor Network for Vibration Measurement

    NASA Astrophysics Data System (ADS)

    Uchimura, Yutaka; Nasu, Tadashi; Takahashi, Motoichi

    Network based wireless sensing has become an important area of research and various new applications for remote sensing are expected to emerge. One of the promising applications is structural health monitoring of building or civil engineering structure and it often requires vibration measurement. For the vibration measurement via wireless network, time synchronization is indispensable. In this paper, we introduce a newly developed time synchronized wireless sensor network system. The system employs IEEE 802.11 standard based TSF counter and sends the measured data with the counter value. TSF based synchronization enables consistency on common clock among different wireless nodes. We consider the scale effect on the synchronization accuracy and the effect is evaluated by stochastic analysis and simulation studies. A new wireless sensing system is developed and the hardware and software specifications are shown. The experiments are conducted in a reinforced concrete building and results show good performance enough for vibration measurement purpose.

  19. A quantitative theory of gamma synchronization in macaque V1.

    PubMed

    Lowet, Eric; Roberts, Mark Jonathan; Gips, Bart; de Weerd, Peter; Peter, Alina

    2017-08-31

    Gamma-band synchronization coordinates brief periods of excitability in oscillating neuronal populations to optimize information transmission during sensation and cognition. Commonly, a stable, shared frequency over time is considered a condition for functional neural synchronization. Here, we demonstrate the opposite: instantaneous frequency modulations are critical to regulate phase relations and synchronization. In monkey visual area V1, nearby local populations driven by different visual stimulation showed different gamma frequencies. When similar enough, these frequencies continually attracted and repulsed each other, which enabled preferred phase relations to be maintained in periods of minimized frequency difference. Crucially, the precise dynamics of frequencies and phases across a wide range of stimulus conditions was predicted from a physics theory that describes how weakly coupled oscillators influence each other's phase relations. Hence, the fundamental mathematical principle of synchronization through instantaneous frequency modulations applies to gamma in V1 and is likely generalizable to other brain regions and rhythms.

  20. A symbolic information approach to determine anticipated and delayed synchronization in neuronal circuit models.

    PubMed

    Montani, Fernando; Rosso, Osvaldo A; Matias, Fernanda S; Bressler, Steven L; Mirasso, Claudio R

    2015-12-13

    The phenomenon of synchronization between two or more areas of the brain coupled asymmetrically is a relevant issue for understanding mechanisms and functions within the cerebral cortex. Anticipated synchronization (AS) refers to the situation in which the receiver system synchronizes to the future dynamics of the sender system while the intuitively expected delayed synchronization (DS) represents exactly the opposite case. AS and DS are investigated in the context of causal information formalism. More specifically, we use a multi-scale symbolic information-theory approach for discriminating the time delay displayed between two areas of the brain when they exchange information.

  1. Generalized synchronization between chimera states

    NASA Astrophysics Data System (ADS)

    Andrzejak, Ralph G.; Ruzzene, Giulia; Malvestio, Irene

    2017-05-01

    Networks of coupled oscillators in chimera states are characterized by an intriguing interplay of synchronous and asynchronous motion. While chimera states were initially discovered in mathematical model systems, there is growing experimental and conceptual evidence that they manifest themselves also in natural and man-made networks. In real-world systems, however, synchronization and desynchronization are not only important within individual networks but also across different interacting networks. It is therefore essential to investigate if chimera states can be synchronized across networks. To address this open problem, we use the classical setting of ring networks of non-locally coupled identical phase oscillators. We apply diffusive drive-response couplings between pairs of such networks that individually show chimera states when there is no coupling between them. The drive and response networks are either identical or they differ by a variable mismatch in their phase lag parameters. In both cases, already for weak couplings, the coherent domain of the response network aligns its position to the one of the driver networks. For identical networks, a sufficiently strong coupling leads to identical synchronization between the drive and response. For non-identical networks, we use the auxiliary system approach to demonstrate that generalized synchronization is established instead. In this case, the response network continues to show a chimera dynamics which however remains distinct from the one of the driver. Hence, segregated synchronized and desynchronized domains in individual networks congregate in generalized synchronization across networks.

  2. Generalized synchronization between chimera states.

    PubMed

    Andrzejak, Ralph G; Ruzzene, Giulia; Malvestio, Irene

    2017-05-01

    Networks of coupled oscillators in chimera states are characterized by an intriguing interplay of synchronous and asynchronous motion. While chimera states were initially discovered in mathematical model systems, there is growing experimental and conceptual evidence that they manifest themselves also in natural and man-made networks. In real-world systems, however, synchronization and desynchronization are not only important within individual networks but also across different interacting networks. It is therefore essential to investigate if chimera states can be synchronized across networks. To address this open problem, we use the classical setting of ring networks of non-locally coupled identical phase oscillators. We apply diffusive drive-response couplings between pairs of such networks that individually show chimera states when there is no coupling between them. The drive and response networks are either identical or they differ by a variable mismatch in their phase lag parameters. In both cases, already for weak couplings, the coherent domain of the response network aligns its position to the one of the driver networks. For identical networks, a sufficiently strong coupling leads to identical synchronization between the drive and response. For non-identical networks, we use the auxiliary system approach to demonstrate that generalized synchronization is established instead. In this case, the response network continues to show a chimera dynamics which however remains distinct from the one of the driver. Hence, segregated synchronized and desynchronized domains in individual networks congregate in generalized synchronization across networks.

  3. Nutritional recommendations for synchronized swimming.

    PubMed

    Robertson, Sherry; Benardot, Dan; Mountjoy, Margo

    2014-08-01

    The sport of synchronized swimming is unique, because it combines speed, power, and endurance with precise synchronized movements and high-risk acrobatic maneuvers. Athletes must train and compete while spending a great amount of time underwater, upside down, and without the luxury of easily available oxygen. This review assesses the scientific evidence with respect to the physiological demands, energy expenditure, and body composition in these athletes. The role of appropriate energy requirements and guidelines for carbohydrate, protein, fat, and micronutrients for elite synchronized swimmers are reviewed. Because of the aesthetic nature of the sport, which prioritizes leanness, the risks of energy and macronutrient deficiencies are of significant concern. Relative Energy Deficiency in Sport and disordered eating/eating disorders are also of concern for these female athletes. An approach to the healthy management of body composition in synchronized swimming is outlined. Synchronized swimmers should be encouraged to consume a well-balanced diet with sufficient energy to meet demands and to time the intake of carbohydrate, protein, and fat to optimize performance and body composition. Micronutrients of concern for this female athlete population include iron, calcium, and vitamin D. This article reviews the physiological demands of synchronized swimming and makes nutritional recommendations for recovery, training, and competition to help optimize athletic performance and to reduce risks for weight-related medical issues that are of particular concern for elite synchronized swimmers.

  4. Emergent hybrid synchronization in coupled chaotic systems.

    PubMed

    Padmanaban, E; Boccaletti, Stefano; Dana, S K

    2015-02-01

    We evidence an interesting kind of hybrid synchronization in coupled chaotic systems where complete synchronization is restricted to only a subset of variables of two systems while other subset of variables may be in a phase synchronized state or desynchronized. Such hybrid synchronization is a generic emergent feature of coupled systems when a controller based coupling, designed by the Lyapunov function stability, is first engineered to induce complete synchronization in the identical case, and then a large parameter mismatch is introduced. We distinguish between two different hybrid synchronization regimes that emerge with parameter perturbation. The first, called hard hybrid synchronization, occurs when the coupled systems display global phase synchronization, while the second, called soft hybrid synchronization, corresponds to a situation where, instead, the global synchronization feature no longer exists. We verify the existence of both classes of hybrid synchronization in numerical examples of the Rössler system, a Lorenz-like system, and also in electronic experiment.

  5. How to synchronize biological clocks.

    PubMed

    Russo, G; Di Bernardo, M

    2009-02-01

    This paper is concerned with a novel algorithm to study networks of biological clocks. A new set of conditions is established that can be used to verify whether an existing network synchronizes or to give guidelines to construct a new synthetic network of biological oscillators that synchronize. The methodology uses the so-called contraction theory from dynamical system theory and Gershgorin disk theorem. The strategy is validated on two examples: a model of glycolisis in yeast cells and a synthetic network of Repressilators that synchronizes.

  6. Synchronization of periodical cicada emergences.

    PubMed

    Hoppensteadt, F C; Keller, J B

    1976-10-15

    Synchronized insect emergences are shown to be a possible consequence of predation in the presence of a limited environmental carrying capacity through a mathematical model for cicada populations that includes these two features. Synchronized emergences, like those observed in 13- and 17-year cicades, are predicted for insects with sufficiently long life-spans. Balanced solutions, in which comparable emergences occur each year, are found for insects having sufficiently short life-spans, such as 3-, 4-, and 7-year cicadas. For the values used here, synchronized emergences occur for insects with life-spans of 10 years or more, and balanced emergences occur for life-spans of fewer than 10 years.

  7. Noncoherent Symbol Synchronization Techniques

    NASA Technical Reports Server (NTRS)

    Simon, Marvin

    2005-01-01

    Traditional methods for establishing symbol synchronization (sync) in digital communication receivers assume that carrier sync has already been established, i.e., the problem is addressed at the baseband level assuming that a 'perfect' estimate of carrier phase is available. We refer to this approach as coherent symbol sync. Since, for NRZ signaling, a suppressed carrier sync loop such as an I-Q Costas loop includes integrate-and-dump (I and D) filters in its in-phase (1) and quadrature (Q) arms, the traditional approach is to first track the carrier in the absence of symbol sync information, then feed back the symbol sync estimate to these filters, and then iterate between the two to a desirable operating level In this paper, we revisit the symbol sync problem by examining methods for obtaining such sync in the absence of carrier phase information, i.e., so-called noncoherent symbol sync loops. We compare the performance of these loops with that of a well-known coherent symbol sync loop and examine the conditions under which one is preferable over the other.

  8. Time synchronized video systems

    NASA Technical Reports Server (NTRS)

    Burnett, Ron

    1994-01-01

    The idea of synchronizing multiple video recordings to some type of 'range' time has been tried to varying degrees of success in the past. Combining this requirement with existing time code standards (SMPTE) and the new innovations in desktop multimedia however, have afforded an opportunity to increase the flexibility and usefulness of such efforts without adding costs over the traditional data recording and reduction systems. The concept described can use IRIG, GPS or a battery backed internal clock as the master time source. By converting that time source to Vertical Interval Time Code or Longitudinal Time Code, both in accordance with the SMPTE standards, the user will obtain a tape that contains machine/computer readable time code suitable for use with editing equipment that is available off-the-shelf. Accuracy on playback is then determined by the playback system chosen by the user. Accuracies of +/- 2 frames are common among inexpensive systems and complete frame accuracy is more a matter of the users' budget than the capability of the recording system.

  9. Driven synchronization in random networks of oscillators

    NASA Astrophysics Data System (ADS)

    Hindes, Jason; Myers, Christopher R.

    2015-07-01

    Synchronization is a universal phenomenon found in many non-equilibrium systems. Much recent interest in this area has overlapped with the study of complex networks, where a major focus is determining how a system's connectivity patterns affect the types of behavior that it can produce. Thus far, modeling efforts have focused on the tendency of networks of oscillators to mutually synchronize themselves, with less emphasis on the effects of external driving. In this work, we discuss the interplay between mutual and driven synchronization in networks of phase oscillators of the Kuramoto type, and explore how the structure and emergence of such states depend on the underlying network topology for simple random networks with a given degree distribution. We find a variety of interesting dynamical behaviors, including bifurcations and bistability patterns that are qualitatively different for heterogeneous and homogeneous networks, and which are separated by a Takens-Bogdanov-Cusp singularity in the parameter region where the coupling strength between oscillators is weak. Our analysis is connected to the underlying dynamics of oscillator clusters for important states and transitions.

  10. Synchronous identification of friendly targets

    DOEpatents

    Telle, John M.; Roger, Stutz A.

    1998-01-01

    A synchronous communication targeting system for use in battle. The present invention includes a transceiver having a stabilizing oscillator, a synchronous amplifier and an omnidirectional receiver, all in electrical communication with each other. A remotely located beacon is attached to a blackbody radiation source and has an amplitude modulator in electrical communication with a optical source. The beacon's amplitude modulator is set so that the optical source transmits radiation frequency at approximately the same or lower amplitude than that of the blackbody radiation source to which the beacon is attached. The receiver from the transceiver is adapted to receive frequencies approximately at or below blackbody radiation signals and sends such signals to the synchronous amplifier. The synchronous amplifier then rectifies and amplifies those signals which correspond to the predetermined frequency to therefore identify whether the blackbody radiation source is friendly or not.

  11. Competing Synchronization of Nonlinear Oscillators

    NASA Astrophysics Data System (ADS)

    Rosa, Epaminondas

    2006-03-01

    Coupled nonlinear oscillators abound in nature and in man-made devices. Think for example of two neurons in the brain competing to get the attention of a third neuron, and eventually developing some sort of synchronization process. This is a common feature involving oscillators in general, and can be studied using numerical simulations and/or experimental setups. In this talk, results involving electronic circuits and plasma discharges will be presented showing interesting features related to the types of oscillators and to the types of couplings. In particular, for the case of two oscillators competing for synchronization with a third one, the target oscillator synchronizes alternately to one or the other of the competing oscillators. The time intervals of synchronous states vary in a random-like manner. Numerical and experimental results will be presented and the consistency between them will be discussed.

  12. Incoherence-Mediated Remote Synchronization

    NASA Astrophysics Data System (ADS)

    Zhang, Liyue; Motter, Adilson E.; Nishikawa, Takashi

    2017-04-01

    In previously identified forms of remote synchronization between two nodes, the intermediate portion of the network connecting the two nodes is not synchronized with them but generally exhibits some coherent dynamics. Here we report on a network phenomenon we call incoherence-mediated remote synchronization (IMRS), in which two noncontiguous parts of the network are identically synchronized while the dynamics of the intermediate part is statistically and information-theoretically incoherent. We identify mirror symmetry in the network structure as a mechanism allowing for such behavior, and show that IMRS is robust against dynamical noise as well as against parameter changes. IMRS may underlie neuronal information processing and potentially lead to network solutions for encryption key distribution and secure communication.

  13. Synchronization waves in geometric networks.

    PubMed

    Leyva, I; Navas, A; Sendiña-Nadal, I; Buldú, J M; Almendral, J A; Boccaletti, S

    2011-12-01

    We report synchronization of networked excitable nodes embedded in a metric space, where the connectivity properties are mostly determined by the distance between units. Such a high clustered structure, combined with the lack of long-range connections, prevents full synchronization and yields instead the emergence of synchronization waves. We show that this regime is optimal for information transmission through the system, as it enhances the options of reconstructing the topology from the dynamics. Measurements of topological and functional centralities reveal that the wave-synchronization state allows detection of the most structurally relevant nodes from a single observation of the dynamics, without any a priori information on the model equations ruling the evolution of the ensemble.

  14. Synchronous Photodiode-Signal Sampler

    NASA Technical Reports Server (NTRS)

    Primus, Howard K.

    1988-01-01

    Synchronous sampling circuit increases signal-to-noise ratio of measurements of chopped signal of known phase and frequency in presence of low-frequency or dc background noise. Used with linear array of photoelectric sensors for locating edge of metal plate. Multiplexing circuit cycles through 16 light-emitting-diode/photodiode pairs, under computer control. Synchronized with multiplexer so edge detector makes one background-subtracted signal measurement per emitter/detector pair in turn.

  15. Synchronized Swimming of Two Fish

    NASA Astrophysics Data System (ADS)

    Koumoutsakos, Petros; Novati, Guido; Abbati, Gabriele; Hejazialhosseini, Babak; van Rees, Wim

    2015-11-01

    We present simulations of two, self-propelled, fish-like swimmers that perform synchronized moves in a two-dimensional, viscous fluid. The swimmers learn to coordinate by receiving a reward for their synchronized actions. We analyze the swimming patterns emerging for different rewards in terms of their hydrodynamic efficiency and artistic impression. European Research Council (ERC) Advanced Investigator Award (No. 2-73985-14).

  16. Synchronous reactive programming in Ptolemy

    SciTech Connect

    Boulanger, F.; Vidal-Naquet, G.

    1996-12-31

    Synchronous reactive languages allow a high level deterministic description of reactive systems such as control-command systems. Their well defined mathematical semantics makes it possible to check formal properties on the control of a system. In previous work, we developed an object-oriented execution model for synchronous reactive modules. This model is implemented as a set of tools and a C++ class library, and allows us to use object-oriented methodologies and tools for the design of complex applications with both transformational and reactive parts. Among these design tools, the Ptolemy system stands as an object-oriented framework that supports various execution models, or {open_quotes}domains{close_quotes}. We are currently working on a translator from the output format of the Lustre and Esterel compilers to the Ptolemy language. Since no existing domain matches the reactive synchronous execution model, we also plan to develop a SEC (Synchronous Execution and Communication) domain. Such a domain will provide support for the execution of synchronous modules in Ptolemy. One of the most interesting features of Ptolemy is the communication between domains. Therefore we discuss the interface of the SEC domain to other domains to determine the meaning of communications between them. The main goal is to allow the use of synchronous reactive modules for the control of the behavior of data-flow or discrete event processes.

  17. Synchronization among neuronal pools without common inputs: in vivo study.

    PubMed

    Brama, Haya; Guberman, Shoshana; Abeles, Moshe; Stern, Edward; Kanter, Ido

    2015-11-01

    Periodic synchronization of activity among neuronal pools has been related to substantial neural processes and information throughput in the neocortical network. However, the mechanisms of generating such periodic synchronization among distributed pools of neurons remain unclear. We hypothesize that to a large extent there is interplay between the topology of the neocortical networks and their reverberating modes of activity. The firing synchronization is governed by a nonlocal mechanism, the network delay loops, such that distant neuronal pools without common drives can be synchronized. This theoretical interplay between network topology and the synchronized mode is verified using an iterative procedure of a single intracellularly recorded neuron in vivo, imitating the dynamics of the entire network. The input is injected to the neuron via the recording electrode as current and computed from the filtered, evoked spikes of its pre-synaptic sources, previously emulated by the same neuron. In this manner we approximate subthreshold synaptic inputs from afferent neuronal pools to the neuron. Embedding the activity of these recurrent motifs in the intact brain allows us to measure the effects of connection probability, synaptic strength, and ongoing activity on the neuronal synchrony. Our in vivo experiments indicate that an initial stimulus given to a single pool is dynamically evolving into the formations of zero-lag and cluster synchronization. By applying results from theoretical models and in vitro experiments to in vivo activity in the intact brain, we support the notion that this mechanism may account for the binding activity across distributed brain areas.

  18. Transient stability enhancement of modern power grid using predictive Wide-Area Monitoring and Control

    NASA Astrophysics Data System (ADS)

    Yousefian, Reza

    This dissertation presents a real-time Wide-Area Control (WAC) designed based on artificial intelligence for large scale modern power systems transient stability enhancement. The WAC using the measurements available from Phasor Measurement Units (PMUs) at generator buses, monitors the global oscillations in the system and optimally augments the local excitation system of the synchronous generators. The complexity of the power system stability problem along with uncertainties and nonlinearities makes the conventional modeling non-practical or inaccurate. In this work Reinforcement Learning (RL) algorithm on the benchmark of Neural Networks (NNs) is used to map the nonlinearities of the system in real-time. This method different from both the centralized and the decentralized control schemes, employs a number of semi-autonomous agents to collaborate with each other to perform optimal control theory well-suited for WAC applications. Also, to handle the delays in Wide-Area Monitoring (WAM) and adapt the RL toward the robust control design, Temporal Difference (TD) is proposed as a solver for RL problem or optimal cost function. However, the main drawback of such WAC design is that it is challenging to determine if an offline trained network is valid to assess the stability of the power system once the system is evolved to a different operating state or network topology. In order to address the generality issue of NNs, a value priority scheme is proposed in this work to design a hybrid linear and nonlinear controllers. The algorithm so-called supervised RL is based on mixture of experts, where it is initialized by linear controller and as the performance and identification of the RL controller improves in real-time switches to the other controller. This work also focuses on transient stability and develops Lyapunov energy functions for synchronous generators to monitor the stability stress of the system. Using such energies as a cost function guarantees the convergence

  19. Noncoherent DTTLs for Symbol Synchronization

    NASA Technical Reports Server (NTRS)

    Simon, Marvin; Tkacenko, Andre

    2007-01-01

    Noncoherent data-transition tracking loops (DTTLs) have been proposed for use as symbol synchronizers in digital communication receivers. [Communication- receiver subsystems that can perform their assigned functions in the absence of synchronization with the phases of their carrier signals ( carrier synchronization ) are denoted by the term noncoherent, while receiver subsystems that cannot function without carrier synchronization are said to be coherent. ] The proposal applies, more specifically, to receivers of binary phase-shift-keying (BPSK) signals generated by directly phase-modulating binary non-return-to-zero (NRZ) data streams onto carrier signals having known frequencies but unknown phases. The proposed noncoherent DTTLs would be modified versions of traditional DTTLs, which are coherent. The symbol-synchronization problem is essentially the problem of recovering symbol timing from a received signal. In the traditional, coherent approach to symbol synchronization, it is necessary to establish carrier synchronization in order to recover symbol timing. A traditional DTTL effects an iterative process in which it first generates an estimate of the carrier phase in the absence of symbol-synchronization information, then uses the carrier-phase estimate to obtain an estimate of the symbol-synchronization information, then feeds the symbol-synchronization estimate back to the carrier-phase-estimation subprocess. In a noncoherent symbol-synchronization process, there is no need for carrier synchronization and, hence, no need for iteration between carrier-synchronization and symbol- synchronization subprocesses. The proposed noncoherent symbolsynchronization process is justified theoretically by a mathematical derivation that starts from a maximum a posteriori (MAP) method of estimation of symbol timing utilized in traditional, coherent DTTLs. In that MAP method, one chooses the value of a variable of interest (in this case, the offset in the estimated symbol

  20. Analysis of the time structure of synchronization in multidimensional chaotic systems

    SciTech Connect

    Makarenko, A. V.

    2015-05-15

    A new approach is proposed to the integrated analysis of the time structure of synchronization of multidimensional chaotic systems. The method allows one to diagnose and quantitatively evaluate the intermittency characteristics during synchronization of chaotic oscillations in the T-synchronization mode. A system of two identical logistic mappings with unidirectional coupling that operate in the developed chaos regime is analyzed. It is shown that the widely used approach, in which only synchronization patterns are subjected to analysis while desynchronization areas are considered as a background signal and removed from analysis, should be regarded as methodologically incomplete.

  1. Synchronized femtosecond laser pulse switching system based nano-patterning technology

    NASA Astrophysics Data System (ADS)

    Sohn, Ik-Bu; Choi, Hun-Kook; Yoo, Dongyoon; Noh, Young-Chul; Sung, Jae-Hee; Lee, Seong-Ku; Ahsan, Md. Shamim; Lee, Ho

    2017-07-01

    This paper demonstrates the design and development of a synchronized femtosecond laser pulse switching system and its applications in nano-patterning of transparent materials. Due to synchronization, we are able to control the location of each irradiated laser pulse in any kind of substrate. The control over the scanning speed and scanning step of the laser beam enables us to pattern periodic micro/nano-metric holes, voids, and/or lines in various materials. Using the synchronized laser system, we pattern synchronized nano-holes on the surface of and inside various transparent materials including fused silica glass and polymethyl methacrylate to replicate any image or pattern on the surface of or inside (transparent) materials. We also investigate the application areas of the proposed synchronized femtosecond laser pulse switching system in a diverse field of science and technology, especially in optical memory, color marking, and synchronized micro/nano-scale patterning of materials.

  2. On the estimation of phase synchronization, spurious synchronization and filtering.

    PubMed

    Rios Herrera, Wady A; Escalona, Joaquín; Rivera López, Daniel; Müller, Markus F

    2016-12-01

    Phase synchronization, viz., the adjustment of instantaneous frequencies of two interacting self-sustained nonlinear oscillators, is frequently used for the detection of a possible interrelationship between empirical data recordings. In this context, the proper estimation of the instantaneous phase from a time series is a crucial aspect. The probability that numerical estimates provide a physically relevant meaning depends sensitively on the shape of its power spectral density. For this purpose, the power spectrum should be narrow banded possessing only one prominent peak [M. Chavez et al., J. Neurosci. Methods 154, 149 (2006)]. If this condition is not fulfilled, band-pass filtering seems to be the adequate technique in order to pre-process data for a posterior synchronization analysis. However, it was reported that band-pass filtering might induce spurious synchronization [L. Xu et al., Phys. Rev. E 73, 065201(R), (2006); J. Sun et al., Phys. Rev. E 77, 046213 (2008); and J. Wang and Z. Liu, EPL 102, 10003 (2013)], a statement that without further specification causes uncertainty over all measures that aim to quantify phase synchronization of broadband field data. We show by using signals derived from different test frameworks that appropriate filtering does not induce spurious synchronization. Instead, filtering in the time domain tends to wash out existent phase interrelations between signals. Furthermore, we show that measures derived for the estimation of phase synchronization like the mean phase coherence are also useful for the detection of interrelations between time series, which are not necessarily derived from coupled self-sustained nonlinear oscillators.

  3. On the estimation of phase synchronization, spurious synchronization and filtering

    NASA Astrophysics Data System (ADS)

    Rios Herrera, Wady A.; Escalona, Joaquín; Rivera López, Daniel; Müller, Markus F.

    2016-12-01

    Phase synchronization, viz., the adjustment of instantaneous frequencies of two interacting self-sustained nonlinear oscillators, is frequently used for the detection of a possible interrelationship between empirical data recordings. In this context, the proper estimation of the instantaneous phase from a time series is a crucial aspect. The probability that numerical estimates provide a physically relevant meaning depends sensitively on the shape of its power spectral density. For this purpose, the power spectrum should be narrow banded possessing only one prominent peak [M. Chavez et al., J. Neurosci. Methods 154, 149 (2006)]. If this condition is not fulfilled, band-pass filtering seems to be the adequate technique in order to pre-process data for a posterior synchronization analysis. However, it was reported that band-pass filtering might induce spurious synchronization [L. Xu et al., Phys. Rev. E 73, 065201(R), (2006); J. Sun et al., Phys. Rev. E 77, 046213 (2008); and J. Wang and Z. Liu, EPL 102, 10003 (2013)], a statement that without further specification causes uncertainty over all measures that aim to quantify phase synchronization of broadband field data. We show by using signals derived from different test frameworks that appropriate filtering does not induce spurious synchronization. Instead, filtering in the time domain tends to wash out existent phase interrelations between signals. Furthermore, we show that measures derived for the estimation of phase synchronization like the mean phase coherence are also useful for the detection of interrelations between time series, which are not necessarily derived from coupled self-sustained nonlinear oscillators.

  4. Bodily synchronization underlying joke telling

    PubMed Central

    Schmidt, R. C.; Nie, Lin; Franco, Alison; Richardson, Michael J.

    2014-01-01

    Advances in video and time series analysis have greatly enhanced our ability to study the bodily synchronization that occurs in natural interactions. Past research has demonstrated that the behavioral synchronization involved in social interactions is similar to dynamical synchronization found generically in nature. The present study investigated how the bodily synchronization in a joke telling task is spread across different nested temporal scales. Pairs of participants enacted knock–knock jokes and times series of their bodily activity were recorded. Coherence and relative phase analyses were used to evaluate the synchronization of bodily rhythms for the whole trial as well as at the subsidiary time scales of the whole joke, the setup of the punch line, the two-person exchange and the utterance. The analyses revealed greater than chance entrainment of the joke teller’s and joke responder’s movements at all time scales and that the relative phasing of the teller’s movements led those of the responder at the longer time scales. Moreover, this entrainment was greater when visual information about the partner’s movements was present but was decreased particularly at the shorter time scales when explicit gesturing in telling the joke was performed. In short, the results demonstrate that a complex interpersonal bodily “dance” occurs during structured conversation interactions and that this “dance” is constructed from a set of rhythms associated with the nested behavioral structure of the interaction. PMID:25177287

  5. How Synchronization Protects from Noise

    PubMed Central

    Tabareau, Nicolas; Slotine, Jean-Jacques; Pham, Quang-Cuong

    2010-01-01

    The functional role of synchronization has attracted much interest and debate: in particular, synchronization may allow distant sites in the brain to communicate and cooperate with each other, and therefore may play a role in temporal binding, in attention or in sensory-motor integration mechanisms. In this article, we study another role for synchronization: the so-called “collective enhancement of precision”. We argue, in a full nonlinear dynamical context, that synchronization may help protect interconnected neurons from the influence of random perturbations—intrinsic neuronal noise—which affect all neurons in the nervous system. More precisely, our main contribution is a mathematical proof that, under specific, quantified conditions, the impact of noise on individual interconnected systems and on their spatial mean can essentially be cancelled through synchronization. This property then allows reliable computations to be carried out even in the presence of significant noise (as experimentally found e.g., in retinal ganglion cells in primates). This in turn is key to obtaining meaningful downstream signals, whether in terms of precisely-timed interaction (temporal coding), population coding, or frequency coding. Similar concepts may be applicable to questions of noise and variability in systems biology. PMID:20090826

  6. Synchronization tomography: a method for three-dimensional localization of phase synchronized neuronal populations in the human brain using magnetoencephalography.

    PubMed

    Tass, P A; Fieseler, T; Dammers, J; Dolan, K; Morosan, P; Majtanik, M; Boers, F; Muren, A; Zilles, K; Fink, G R

    2003-02-28

    We present a noninvasive technique which allows the anatomical localization of phase synchronized neuronal populations in the human brain with magnetoencephalography. We study phase synchronization between the reconstructed current source density (CSD) of different brain areas as well as between the CSD and muscular activity. We asked four subjects to tap their fingers in synchrony with a rhythmic tone, and to continue tapping at the same rate after the tone was switched off. The phase synchronization behavior of brain areas relevant for movement coordination, inner voice, and time estimation changes drastically when the transition to internal pacing occurs, while their averaged amplitudes remain unchanged. Information of this kind cannot be derived with standard neuroimaging techniques like functional magnetic resonance imaging or positron emission tomography.

  7. Active control strategy for synchronization and anti-synchronization of a fractional chaotic financial system

    NASA Astrophysics Data System (ADS)

    Huang, Chengdai; Cao, Jinde

    2017-05-01

    This paper is concerned with the issues of synchronization and anti-synchronization for fractional chaotic financial system with market confidence by taking advantage of active control approach. Some sufficient conditions are derived to guarantee the synchronization and anti-synchronization for the proposed fractional system. Moreover, the relationship between the order and synchronization(anti-synchronization) is demonstrated numerically. It reveals that synchronization(anti-synchronization) is faster as the order increases. Finally, two illustrative examples are exploited to verify the efficiency of the obtained theoretical results.

  8. How to suppress undesired synchronization.

    PubMed

    Louzada, V H P; Araújo, N A M; Andrade, J S; Herrmann, H J

    2012-01-01

    Examples of synchronization can be found in a wide range of phenomena such as neurons firing, lasers cascades, chemical reactions, and opinion formation. However, in many situations the formation of a coherent state is not pleasant and should be mitigated. For example, the onset of synchronization can be the root of epileptic seizures, traffic congestion in networks, and the collapse of constructions. Here we propose the use of contrarians to suppress undesired synchronization. We perform a comparative study of different strategies, either requiring local or total knowledge, and show that the most efficient one solely requires local information. Our results also reveal that, even when the distribution of neighboring interactions is narrow, significant improvement is observed when contrarians sit at the highly connected elements. The same qualitative results are obtained for artificially generated networks and two real ones, namely, the Routers of the Internet and a neuronal network.

  9. How to suppress undesired synchronization

    PubMed Central

    Louzada, V. H. P.; Araújo, N. A. M.; Andrade, J. S.; Herrmann, H. J.

    2012-01-01

    Examples of synchronization can be found in a wide range of phenomena such as neurons firing, lasers cascades, chemical reactions, and opinion formation. However, in many situations the formation of a coherent state is not pleasant and should be mitigated. For example, the onset of synchronization can be the root of epileptic seizures, traffic congestion in networks, and the collapse of constructions. Here we propose the use of contrarians to suppress undesired synchronization. We perform a comparative study of different strategies, either requiring local or total knowledge, and show that the most efficient one solely requires local information. Our results also reveal that, even when the distribution of neighboring interactions is narrow, significant improvement is observed when contrarians sit at the highly connected elements. The same qualitative results are obtained for artificially generated networks and two real ones, namely, the Routers of the Internet and a neuronal network. PMID:22993685

  10. Remote synchronization in star networks.

    PubMed

    Bergner, A; Frasca, M; Sciuto, G; Buscarino, A; Ngamga, E J; Fortuna, L; Kurths, J

    2012-02-01

    We study phase synchronization in a network motif with a starlike structure in which the central node's (the hub's) frequency is strongly detuned against the other peripheral nodes. We find numerically and experimentally a regime of remote synchronization (RS), where the peripheral nodes form a phase synchronized cluster, while the hub remains free with its own dynamics and serves just as a transmitter for the other nodes. We explain the mechanism for this RS by the existence of a free amplitude and also show that systems with a fixed or constant amplitude, such as the classic Kuramoto phase oscillator, are not able to generate this phenomenon. Further, we derive an analytic expression which supports our explanation of the mechanism.

  11. Synchronization in uncertain complex networks

    NASA Astrophysics Data System (ADS)

    Chen, Maoyin; Zhou, Donghua

    2006-03-01

    We consider the problem of synchronization in uncertain generic complex networks. For generic complex networks with unknown dynamics of nodes and unknown coupling functions including uniform and nonuniform inner couplings, some simple linear feedback controllers with updated strengths are designed using the well-known LaSalle invariance principle. The state of an uncertain generic complex network can synchronize an arbitrary assigned state of an isolated node of the network. The famous Lorenz system is stimulated as the nodes of the complex networks with different topologies. We found that the star coupled and scale-free networks with nonuniform inner couplings can be in the state of synchronization if only a fraction of nodes are controlled.

  12. Synchronization in uncertain complex networks.

    PubMed

    Chen, Maoyin; Zhou, Donghua

    2006-03-01

    We consider the problem of synchronization in uncertain generic complex networks. For generic complex networks with unknown dynamics of nodes and unknown coupling functions including uniform and nonuniform inner couplings, some simple linear feedback controllers with updated strengths are designed using the well-known LaSalle invariance principle. The state of an uncertain generic complex network can synchronize an arbitrary assigned state of an isolated node of the network. The famous Lorenz system is stimulated as the nodes of the complex networks with different topologies. We found that the star coupled and scale-free networks with nonuniform inner couplings can be in the state of synchronization if only a fraction of nodes are controlled.

  13. Linear Synchronous Motor Repeatability Tests

    SciTech Connect

    Ward, C.R.

    2002-10-18

    A cart system using linear synchronous motors was being considered for the Plutonium Immobilization Plant (PIP). One of the applications in the PIP was the movement of a stack of furnace trays, filled with the waste form (pucks) from a stacking/unstacking station to several bottom loaded furnaces. A system was ordered to perform this function in the PIP Ceramic Prototype Test Facility (CPTF). This system was installed and started up in SRTC prior to being installed in the CPTF. The PIP was suspended and then canceled after the linear synchronous motor system was started up. This system was used to determine repeatability of a linear synchronous motor cart system for the Modern Pit Facility.

  14. Nutrition for synchronized swimming: a review.

    PubMed

    Lundy, Bronwen

    2011-10-01

    Synchronized swimming enjoys worldwide popularity and has been part of the formal Olympic program since 1984. Despite this, relatively little research has been conducted on participant nutrition practices and requirements, and there are significant gaps in the knowledge base despite the numerous areas in which nutrition could affect performance and safety. This review aimed to summarize current findings and identify areas requiring further research. Uniform physique in team or duet events may be more important than absolute values for muscularity or body fat, but a lean and athletic appearance remains key. Synchronized swimmers appear to have an increased risk of developing eating disorders, and there is evidence of delayed menarche, menstrual dysfunction, and lower bone density relative to population norms. Dietary practices remain relatively unknown, but micronutrient status for iron and magnesium may be compromised. More research is required across all aspects of nutrition status, anthropometry, and physiology, and both sports nutrition and sports medicine support may be required to reduce risks for participants.

  15. Synchronization in an optomechanical cavity

    NASA Astrophysics Data System (ADS)

    Shlomi, Keren; Yuvaraj, D.; Baskin, Ilya; Suchoi, Oren; Winik, Roni; Buks, Eyal

    2015-03-01

    We study self-excited oscillations (SEO) in an on-fiber optomechanical cavity. Synchronization is observed when the optical power that is injected into the cavity is periodically modulated. A theoretical analysis based on the Fokker-Planck equation evaluates the expected phase space distribution (PSD) of the self-oscillating mechanical resonator. A tomography technique is employed for extracting PSD from the measured reflected optical power. Time-resolved state tomography measurements are performed to study phase diffusion and phase locking of the SEO. The detuning region inside which synchronization occurs is experimentally determined and the results are compared with the theoretical prediction.

  16. State observer for synchronous motors

    DOEpatents

    Lang, Jeffrey H.

    1994-03-22

    A state observer driven by measurements of phase voltages and currents for estimating the angular orientation of a rotor of a synchronous motor such as a variable reluctance motor (VRM). Phase voltages and currents are detected and serve as inputs to a state observer. The state observer includes a mathematical model of the electromechanical operation of the synchronous motor. The characteristics of the state observer are selected so that the observer estimates converge to the actual rotor angular orientation and velocity, winding phase flux linkages or currents.

  17. Optimized multiparty quantum clock synchronization

    SciTech Connect

    Ben-Av, Radel; Exman, Iaakov

    2011-07-15

    A multiparty protocol for distributed quantum clock synchronization has been claimed to provide universal limits on the clock accuracy, viz., that accuracy monotonically decreases with the number n of party members. But this is only true for synchronization when one limits oneself to W states. This work shows that the usage of Z (Symmetric Dicke) states, a generalization of W states, results in improved accuracy, having a maximum when Left-Floor n/2 Right-Floor of its members have their qubits with a |1> eigenstate.

  18. Perceptions and Expectations of Online Graduate Students Regarding Synchronous Events

    ERIC Educational Resources Information Center

    Bailie, Jeffrey L.

    2015-01-01

    The purpose of this study was to gain an increased understanding of the perceptions and expectations of a group of experienced online student participants regarding synchronous events in the higher learning setting. Areas of inquiry posed to online student panelists included whether they expected live events to be included in their classes, and…

  19. Experiences of Advanced High School Students in Synchronous Online Recitations

    ERIC Educational Resources Information Center

    Mayer, Greg; Lingle, Jeremy; Usselman, Marion

    2017-01-01

    The question of how to best design an online course that promotes student-centred learning is an area of ongoing research. This mixed-methods study focused on a section of advanced high school students, in college-level mathematics courses, that used a synchronous online environment mediated over web-conferencing software, and whether the…

  20. Online Synchronous Communication in the Second-Language Classroom

    ERIC Educational Resources Information Center

    Murphy, Elizabeth

    2009-01-01

    The study reported on in this paper used a framework of benefits, challenges and solutions to categorize data from a design experiment using synchronous online communication for learning French as a second language (FSL). Participants were 92 Grade 6, FSL students and four teachers from urban and rural areas of Newfoundland, Canada. Data…

  1. Synchronization control for ultrafast laser parallel microdrilling system

    NASA Astrophysics Data System (ADS)

    Zhai, Zhongsheng; Kuang, Zheng; Ouyang, Jinlei; Liu, Dun; Perrie, Walter; Edwardson, Stuart P.; Dearden, Geoff

    2014-11-01

    Ultrafast lasers, emitting ultra-short pulses of light, generally of the order of femtoseconds to ten picoseconds, are widely used in micro-processing with the advantage of very little thermal damage. Parallel micro-processing is seen significant developments in laser fabrication, thanking to the spatial light modulator (SLM) which can concert single beam to multiple beams through computer generate holograms (CGHs). However, without synchronization control, on the conditions of changing different holograms or processing on large area beyond scanning galvo's ability, the fabrication will be interrupted constantly for changing holograms and moving the stages. Therefore, synchronization control is very important to improve the convenience and application of parallel micro-processing. A synchronization control method, carried out through two application software: SAMLight (or WaveRunner) and Labview, is presented in this paper. SAMLight is used to control the laser and the scanning galvo to implement microprocessing, and the developed program with Labview is used to control the SLM and motion stages. The synchronization signals, transmitted between the two software, are utilized by a National Instruments (NI) device USB-6008. Using optimal control methods, the synchronized system can easily and automatically accomplish complicated fabrications with minimum time. A multi-drilling application is provided to verify the affectivity of the synchronized control method. It uses multiple annular beams, generated by superimposing multi-beam CGH onto a diffractive axicon CGH, to drill multiple holes at one time, and it can automatically finish different patterns based on synchronization control. This drilling way is an optical trepanning and it avoids huge laser energy waste with attenuation. The multi-beam CGHs, generated by the Grating and Lens algorithm, are different for different patterns. The processing is over 200 times faster than traditional mechanical trepanning

  2. Introduction to Focus Issue: synchronization in complex networks.

    PubMed

    Suykens, Johan A K; Osipov, Grigory V

    2008-09-01

    Synchronization in large ensembles of coupled interacting units is a fundamental phenomenon relevant for the understanding of working mechanisms in neuronal networks, genetic networks, coupled electrical and laser networks, coupled mechanical systems, networks in social sciences, and others. It relates to mathematical and computational analysis of the existence of different states and its stability, clustering, bifurcations and chaos, robustness and sensitivity analysis, etc., at the intersection between synchronization and pattern formation in complex networks. This interdisciplinary oriented Focus Issue presents recent progress in this area with contributions on generic methods, specific model studies, and applications.

  3. Synchronizing Sustainment Operations

    DTIC Science & Technology

    2008-04-10

    sustaining units provide support to receiving units. Materiel readiness and management are control measures that ensure the provision of supply and...SBs provide sustainment on an area basis and are assigned to or operationally controlled by the TSCs. SBs can organize into theater opening...materiel management control points found within the corps and theater AOE logistics system. Structural changes began to streamline sustainment

  4. Leader emergence through interpersonal neural synchronization.

    PubMed

    Jiang, Jing; Chen, Chuansheng; Dai, Bohan; Shi, Guang; Ding, Guosheng; Liu, Li; Lu, Chunming

    2015-04-07

    The neural mechanism of leader emergence is not well understood. This study investigated (i) whether interpersonal neural synchronization (INS) plays an important role in leader emergence, and (ii) whether INS and leader emergence are associated with the frequency or the quality of communications. Eleven three-member groups were asked to perform a leaderless group discussion (LGD) task, and their brain activities were recorded via functional near infrared spectroscopy (fNIRS)-based hyperscanning. Video recordings of the discussions were coded for leadership and communication. Results showed that the INS for the leader-follower (LF) pairs was higher than that for the follower-follower (FF) pairs in the left temporo-parietal junction (TPJ), an area important for social mentalizing. Although communication frequency was higher for the LF pairs than for the FF pairs, the frequency of leader-initiated and follower-initiated communication did not differ significantly. Moreover, INS for the LF pairs was significantly higher during leader-initiated communication than during follower-initiated communications. In addition, INS for the LF pairs during leader-initiated communication was significantly correlated with the leaders' communication skills and competence, but not their communication frequency. Finally, leadership could be successfully predicted based on INS as well as communication frequency early during the LGD (before half a minute into the task). In sum, this study found that leader emergence was characterized by high-level neural synchronization between the leader and followers and that the quality, rather than the frequency, of communications was associated with synchronization. These results suggest that leaders emerge because they are able to say the right things at the right time.

  5. Leader emergence through interpersonal neural synchronization

    PubMed Central

    Jiang, Jing; Chen, Chuansheng; Dai, Bohan; Shi, Guang; Ding, Guosheng; Liu, Li; Lu, Chunming

    2015-01-01

    The neural mechanism of leader emergence is not well understood. This study investigated (i) whether interpersonal neural synchronization (INS) plays an important role in leader emergence, and (ii) whether INS and leader emergence are associated with the frequency or the quality of communications. Eleven three-member groups were asked to perform a leaderless group discussion (LGD) task, and their brain activities were recorded via functional near infrared spectroscopy (fNIRS)-based hyperscanning. Video recordings of the discussions were coded for leadership and communication. Results showed that the INS for the leader–follower (LF) pairs was higher than that for the follower–follower (FF) pairs in the left temporo-parietal junction (TPJ), an area important for social mentalizing. Although communication frequency was higher for the LF pairs than for the FF pairs, the frequency of leader-initiated and follower-initiated communication did not differ significantly. Moreover, INS for the LF pairs was significantly higher during leader-initiated communication than during follower-initiated communications. In addition, INS for the LF pairs during leader-initiated communication was significantly correlated with the leaders’ communication skills and competence, but not their communication frequency. Finally, leadership could be successfully predicted based on INS as well as communication frequency early during the LGD (before half a minute into the task). In sum, this study found that leader emergence was characterized by high-level neural synchronization between the leader and followers and that the quality, rather than the frequency, of communications was associated with synchronization. These results suggest that leaders emerge because they are able to say the right things at the right time. PMID:25831535

  6. Global patterns of synchronization in human communications.

    PubMed

    Morales, Alfredo J; Vavilala, Vaibhav; Benito, Rosa M; Bar-Yam, Yaneer

    2017-03-01

    Social media are transforming global communication and coordination and provide unprecedented opportunities for studying socio-technical domains. Here we study global dynamical patterns of communication on Twitter across many scales. Underlying the observed patterns is both the diurnal rotation of the Earth, day and night, and the synchrony required for contingency of actions between individuals. We find that urban areas show a cyclic contraction and expansion that resembles heartbeats linked to social rather than natural cycles. Different urban areas have characteristic signatures of daily collective activities. We show that the differences detected are consistent with a new emergent global synchrony that couples behaviour in distant regions across the world. Although local synchrony is the major force that shapes the collective behaviour in cities, a larger-scale synchronization is beginning to occur. © 2017 The Author(s).

  7. Loss of excitation of synchronous generator

    NASA Astrophysics Data System (ADS)

    Krištof, Vladimír; Mešter, Marián

    2017-01-01

    This paper presents results of study of loss-of-excitation phenomena simulations. Loss of excitation is a very common fault in synchronous machine operating and can be caused by short circuit of the field winding, unexpected field breaker open or loss-of-excitation relay mal-operation. According to the statistic [1], the generator failure due to loss-of-excitation accounts for 69% of all generator failures. There has been concern over possible incorrect operation of the relay when operating the generator in the under-excited region, during stable transient swings and during major system disturbances. This article can serve as inputs for system operators in preparation of operation area or protection relaying area.

  8. Speed control for synchronous motors

    NASA Technical Reports Server (NTRS)

    Packard, H.; Schott, J.

    1981-01-01

    Feedback circuit controls fluctuations in speed of synchronous ac motor. Voltage proportional to phase angle is developed by phase detector, rectified, amplified, compared to threshold, and reapplied positively or negatively to motor excitation circuit. Speed control reduces wow and flutter of audio turntables and tape recorders, and enhances hunting in gyroscope motors.

  9. Fermi Timing and Synchronization System

    SciTech Connect

    Wilcox, R.; Staples, J.; Doolittle, L.; Byrd, J.; Ratti, A.; Kaertner, F.X.; Kim, J.; Chen, J.; Ilday, F.O.; Ludwig, F.; Winter, A.; Ferianis, M.; Danailov, M.; D'Auria, G.

    2006-07-19

    The Fermi FEL will depend critically on precise timing of its RF, laser and diagnostic subsystems. The timing subsystem to coordinate these functions will need to reliably maintain sub-100fs synchronicity between distant points up to 300m apart in the Fermi facility. The technology to do this is not commercially available, and has not been experimentally demonstrated in a working facility. Therefore, new technology must be developed to meet these needs. Two approaches have been researched by different groups working with the Fermi staff. At MIT, a pulse transmission scheme has been developed for synchronization of RF and laser devices. And at LBL, a CW transmission scheme has been developed for RF and laser synchronization. These respective schemes have advantages and disadvantages that will become better understood in coming years. This document presents the work done by both teams, and suggests a possible system design which integrates them both. The integrated system design provides an example of how choices can be made between the different approaches without significantly changing the basic infrastructure of the system. Overall system issues common to any synchronization scheme are also discussed.

  10. Sports Medicine Meets Synchronized Swimming.

    ERIC Educational Resources Information Center

    Wenz, Betty J.; And Others

    This collection of articles contains information about synchronized swimming. Topics covered include general physiology and cardiovascular conditioning, flexibility exercises, body composition, strength training, nutrition, coach-athlete relationships, coping with competition stress and performance anxiety, and eye care. Chapters are included on…

  11. Speed control for synchronous motors

    NASA Technical Reports Server (NTRS)

    Packard, H.; Schott, J.

    1981-01-01

    Feedback circuit controls fluctuations in speed of synchronous ac motor. Voltage proportional to phase angle is developed by phase detector, rectified, amplified, compared to threshold, and reapplied positively or negatively to motor excitation circuit. Speed control reduces wow and flutter of audio turntables and tape recorders, and enhances hunting in gyroscope motors.

  12. Synchronization by elastic neuronal latencies

    NASA Astrophysics Data System (ADS)

    Vardi, Roni; Timor, Reut; Marom, Shimon; Abeles, Moshe; Kanter, Ido

    2013-01-01

    Psychological and physiological considerations entail that formation and functionality of neuronal cell assemblies depend upon synchronized repeated activation such as zero-lag synchronization. Several mechanisms for the emergence of this phenomenon have been suggested, including the global network quantity, the greatest common divisor of neuronal circuit delay loops. However, they require strict biological prerequisites such as precisely matched delays and connectivity, and synchronization is represented as a stationary mode of activity instead of a transient phenomenon. Here we show that the unavoidable increase in neuronal response latency to ongoing stimulation serves as a nonuniform gradual stretching of neuronal circuit delay loops. This apparent nuisance is revealed to be an essential mechanism in various types of neuronal time controllers, where synchronization emerges as a transient phenomenon and without predefined precisely matched synaptic delays. These findings are described in an experimental procedure where conditioned stimulations were enforced on a circuit of neurons embedded within a large-scale network of cortical cells in vitro, and are corroborated and extended by simulations of circuits composed of Hodgkin-Huxley neurons with time-dependent latencies. These findings announce a cortical time scale for time controllers based on tens of microseconds stretching of neuronal circuit delay loops per spike. They call for a reexamination of the role of the temporal periodic mode in brain functionality using advanced in vitro and in vivo experiments.

  13. Tweaking synchronization by connectivity modifications

    NASA Astrophysics Data System (ADS)

    Schultz, Paul; Peron, Thomas; Eroglu, Deniz; Stemler, Thomas; Ramírez Ávila, Gonzalo Marcelo; Rodrigues, Francisco A.; Kurths, Jürgen

    2016-06-01

    Natural and man-made networks often possess locally treelike substructures. Taking such tree networks as our starting point, we show how the addition of links changes the synchronization properties of the network. We focus on two different methods of link addition. The first method adds single links that create cycles of a well-defined length. Following a topological approach, we introduce cycles of varying length and analyze how this feature, as well as the position in the network, alters the synchronous behavior. We show that in particular short cycles can lead to a maximum change of the Laplacian's eigenvalue spectrum, dictating the synchronization properties of such networks. The second method connects a certain proportion of the initially unconnected nodes. We simulate dynamical systems on these network topologies, with the nodes' local dynamics being either discrete or continuous. Here our main result is that a certain number of additional links, with the relative position in the network being crucial, can be beneficial to ensure stable synchronization.

  14. PCM synchronization by word stuffing

    NASA Technical Reports Server (NTRS)

    Butman, S.

    1969-01-01

    When a transmitted word, consisting of a number of pulses, is detected and removed from the data stream, the space left by the removal is eliminated by a memory buffer. This eliminates the need for a clock synchronizer thereby removing instability problems.

  15. Tweaking synchronization by connectivity modifications.

    PubMed

    Schultz, Paul; Peron, Thomas; Eroglu, Deniz; Stemler, Thomas; Ramírez Ávila, Gonzalo Marcelo; Rodrigues, Francisco A; Kurths, Jürgen

    2016-06-01

    Natural and man-made networks often possess locally treelike substructures. Taking such tree networks as our starting point, we show how the addition of links changes the synchronization properties of the network. We focus on two different methods of link addition. The first method adds single links that create cycles of a well-defined length. Following a topological approach, we introduce cycles of varying length and analyze how this feature, as well as the position in the network, alters the synchronous behavior. We show that in particular short cycles can lead to a maximum change of the Laplacian's eigenvalue spectrum, dictating the synchronization properties of such networks. The second method connects a certain proportion of the initially unconnected nodes. We simulate dynamical systems on these network topologies, with the nodes' local dynamics being either discrete or continuous. Here our main result is that a certain number of additional links, with the relative position in the network being crucial, can be beneficial to ensure stable synchronization.

  16. Research on bit synchronization based on GNSS

    NASA Astrophysics Data System (ADS)

    Yu, Huanran; Liu, Yi-jun

    2017-05-01

    The signals transmitted by GPS satellites are divided into three components: carrier, pseudocode and data code. The processes of signal acquisition are acquisition, tracking, bit synchronization, frame synchronization, navigation message extraction, observation extraction and position speed calculation, among which bit synchronization is of greatest importance. The accuracy of bit synchronization and the shortening of bit synchronization time can help us to use satellite to realize positioning and acquire the information transmitted by satellite signals more accurately. Even under the condition of weak signal, how to improve bit synchronization performance is what we need to research. We adopt a method of polymorphic energy accumulation minima so as to find the bit synchronization point, as well as complete the computer simulation to conclude that under the condition of extremely weak signal power, this method still has superior synchronization performance, which can achieve high bit edge detection rate and the optimal bit error rate.

  17. Synchronization limit of weakly forced nonlinear oscillators

    NASA Astrophysics Data System (ADS)

    Tanaka, Hisa-Aki

    2014-10-01

    Nonlinear oscillators exhibit synchronization (injection-locking) to external periodic forcings, which underlies the mutual synchronization in networks of nonlinear oscillators. Despite its history of synchronization and the practical importance of injection-locking to date, there are many important open problems of an efficient injection-locking for a given oscillator. In this work, I elucidate a hidden mechanism governing the synchronization limit under weak forcings, which is related to a widely known inequality; Hölder's inequality. This mechanism enables us to understand how and why the efficient injection-locking is realized; a general theory of synchronization limit is constructed where the maximization of the synchronization range or the stability of synchronization for general forcings including pulse trains, and a fundamental limit of general m : n phase locking, are clarified systematically. These synchronization limits and their utility are systematically verified in the Hodgkin-Huxley neuron model as an example.

  18. Spontaneous, synchronous electrical activity in neonatal mouse cortical neurones

    PubMed Central

    Corlew, Rebekah; Bosma, Martha M; Moody, William J

    2004-01-01

    Spontaneous [Ca2+]i transients were measured in the mouse neocortex from embryonic day 16 (E16) to postnatal day 6 (P6). On the day of birth (P0), cortical neurones generated widespread, highly synchronous [Ca2+]i transients over large areas. On average, 52% of neurones participated in these transients, and in 20% of slices, an average of 80% participated. These transients were blocked by TTX and nifedipine, indicating that they resulted from Ca2+ influx during electrical activity, and occurred at a mean frequency of 0.91 min−1. The occurrence of this activity was highly centred at P0: at E16 and P2 an average of only 15% and 24% of neurones, respectively, participated in synchronous transients, and they occurred at much lower frequencies at both E16 and P2 than at P0. The overall frequency of [Ca2+]i transients in individual cells did not change between E16 and P2, just the degree of their synchronicity. The onset of this spontaneous, synchronous activity correlated with a large increase in Na+ current density that occurred just before P0, and its cessation with a large decrease in resting resistance that occurred just after P2. This widespread, synchronous activity may serve a variety of functions in the neonatal nervous system. PMID:15297578

  19. Synchronized dynamics of cortical neurons with time-delay feedback.

    PubMed

    Landsman, Alexandra S; Schwartz, Ira B

    2007-07-05

    The dynamics of three mutually coupled cortical neurons with time delays in the coupling are explored numerically and analytically. The neurons are coupled in a line, with the middle neuron sending a somewhat stronger projection to the outer neurons than the feedback it receives, to model for instance the relay of a signal from primary to higher cortical areas. For a given coupling architecture, the delays introduce correlations in the time series at the time-scale of the delay. It was found that the middle neuron leads the outer ones by the delay time, while the outer neurons are synchronized with zero lag times. Synchronization is found to be highly dependent on the synaptic time constant, with faster synapses increasing both the degree of synchronization and the firing rate. Analysis shows that pre-synaptic input during the inter-spike interval stabilizes the synchronous state, even for arbitrarily weak coupling, and independent of the initial phase. The finding may be of significance to synchronization of large groups of cells in the cortex that are spatially distanced from each other.

  20. Abnormal auditory synchronization in stuttering: A magnetoencephalographic study.

    PubMed

    Kikuchi, Yoshikazu; Okamoto, Tsuyoshi; Ogata, Katsuya; Hagiwara, Koichi; Umezaki, Toshiro; Kenjo, Masamutsu; Nakagawa, Takashi; Tobimatsu, Shozo

    2017-02-01

    In a previous magnetoencephalographic study, we showed both functional and structural reorganization of the right auditory cortex and impaired left auditory cortex function in people who stutter (PWS). In the present work, we reevaluated the same dataset to further investigate how the right and left auditory cortices interact to compensate for stuttering. We evaluated bilateral N100m latencies as well as indices of local and inter-hemispheric phase synchronization of the auditory cortices. The left N100m latency was significantly prolonged relative to the right N100m latency in PWS, while healthy control participants did not show any inter-hemispheric differences in latency. A phase-locking factor (PLF) analysis, which indicates the degree of local phase synchronization, demonstrated enhanced alpha-band synchrony in the right auditory area of PWS. A phase-locking value (PLV) analysis of inter-hemispheric synchronization demonstrated significant elevations in the beta band between the right and left auditory cortices in PWS. In addition, right PLF and PLVs were positively correlated with stuttering frequency in PWS. Taken together, our data suggest that increased right hemispheric local phase synchronization and increased inter-hemispheric phase synchronization are electrophysiological correlates of a compensatory mechanism for impaired left auditory processing in PWS. Published by Elsevier B.V.

  1. Pollinator coupling can induce synchronized flowering in different plant species.

    PubMed

    Tachiki, Yuuya; Iwasa, Yoh; Satake, Akiko

    2010-11-21

    Synchronous and intermittent plant reproduction has been identified widely in diverse biomes. While synchronous flowering is normally observed within the same species, different species also flower in synchrony. A well-known example of interspecific synchrony is "general flowering" in tropical rain forests of Southeast Asia. Environmental factors, such as low temperature and drought, have been considered as major trigger of general flowering. However, environmental cues are not enough to explain general flowering because some trees do not flower even when they encounter favorable environmental cues. We propose alternative explanation of general flowering; "pollinator coupling". When species flower synchronously, the elevated pollen and nectar resource may attract increased numbers of generalist pollinators, with a concomitant enhancement of pollination success (facilitation). However, under these circumstances, plants of different species may compete with one another for limited pollinator services, resulting in declines in pollination success for individual species (competition). Here, we present a model describing resource dynamics of individual trees serviced by generalist pollinators. We analyze combinations of conditions under which plants reproduce intermittently with synchronization within species, and/or (sometimes) between different species. We show that plants synchronize flowering when the number of pollinators attracted to an area increases at an accelerating rate with increasing numbers of flowers. In this case, facilitation of flowering by different species exceeds the negative influence of interspecific plant competition. We demonstrate mathematically that co-flowering of different species occurs under a much narrower range of circumstances than intraspecific co-flowering.

  2. Synchronized dynamics of cortical neurons with time-delay feedback

    PubMed Central

    Landsman, Alexandra S; Schwartz, Ira B

    2007-01-01

    The dynamics of three mutually coupled cortical neurons with time delays in the coupling are explored numerically and analytically. The neurons are coupled in a line, with the middle neuron sending a somewhat stronger projection to the outer neurons than the feedback it receives, to model for instance the relay of a signal from primary to higher cortical areas. For a given coupling architecture, the delays introduce correlations in the time series at the time-scale of the delay. It was found that the middle neuron leads the outer ones by the delay time, while the outer neurons are synchronized with zero lag times. Synchronization is found to be highly dependent on the synaptic time constant, with faster synapses increasing both the degree of synchronization and the firing rate. Analysis shows that pre-synaptic input during the inter-spike interval stabilizes the synchronous state, even for arbitrarily weak coupling, and independent of the initial phase. The finding may be of significance to synchronization of large groups of cells in the cortex that are spatially distanced from each other. PMID:17908335

  3. Rapid Synchronization of Ultra-Wideband Transmitted-Reference Receivers

    SciTech Connect

    Nekoogar, F; Dowla, F; Spiridon, A

    2004-05-21

    Time synchronization is a major challenge and a rich area of study in ultra-wideband (UWB) communication systems. Transmitted-reference (TR) receivers avoid the stringent synchronization requirements that exist in conventional pulse detection schemes. However, the performance of such receivers is highly sensitive to precise timing acquisition and tracking of integration window that defines the limits of the finite integrator prior to final decision block. In this paper we propose a novel rapid synchronization technique that allows us to extract the timing information very accurately in UWB-TR receivers in the presence of a variety of channel noise and interference. The principles of the method are presented and the BER performance of a synchronized UWB-TR receiver is investigated in the presence of a range of values for timing jitter by computer simulations. Our studies show that the proposed synchronization technique greatly improves the performance of UWB-TR receivers in the presence of jitter and AWGN with modest increase in complexity.

  4. Synchronization analysis of voltage-sensitive dye imaging during focal seizures in the rat neocortex

    NASA Astrophysics Data System (ADS)

    Takeshita, Daisuke; Bahar, Sonya

    2011-12-01

    Seizures are often assumed to result from an excess of synchronized neural activity. However, various recent studies have suggested that this is not necessarily the case. We investigate synchronization during focal neocortical seizures induced by injection of 4-aminopyridine (4AP) in the rat neocortex in vivo. Neocortical activity is monitored by field potential recording and by the fluorescence of the voltage-sensitive dye RH-1691. After removal of artifacts, the voltage-sensitive dye (VSD) signal is analyzed using the nonlinear dynamics-based technique of stochastic phase synchronization in order to determine the degree of synchronization within the neocortex during the development and spread of each seizure event. Results show a large, statistically significant increase in synchronization during seizure activity. Synchrony is typically greater between closer pixel pairs during a seizure event; the entire seizure region is synchronized almost exactly in phase. This study represents, to our knowledge, the first application of synchronization analysis methods to mammalian VSD imaging in vivo. Our observations indicate a clear increase in synchronization in this model of focal neocortical seizures across a large area of the neocortex; a sharp increase in synchronization during seizure events was observed in all 37 seizures imaged. The results are consistent with a recent computational study which simulates the effect of 4AP in a neocortical neuron model.

  5. Synchronization effect for uncertain quantum networks

    NASA Astrophysics Data System (ADS)

    Li, Wenlin; Gebremariam, Tesfay; Li, Chong; Song, Heshan

    2017-01-01

    We propose a novel technique for investigating the synchronization effect for uncertain networks with quantum chaotic behaviors in this paper. Through designing a special function to construct Lyapunov function of network and the adaptive laws of uncertain parameters, the synchronization between the uncertain network and the synchronization target can be realized, and the uncertain parameters in state equations of the network nodes are perfectly identified. All the theoretical results are verified by numerical simulations to demonstrate the effectiveness of the proposed synchronization technique.

  6. Synchronization between two coupled complex networks.

    PubMed

    Li, Changpin; Sun, Weigang; Kurths, Jürgen

    2007-10-01

    We study synchronization for two unidirectionally coupled networks. This is a substantial generalization of several recent papers investigating synchronization inside a network. We derive analytically a criterion for the synchronization of two networks which have the same (inside) topological connectivity. Then numerical examples are given which fit the theoretical analysis. In addition, numerical calculations for two networks with different topological connections are presented and interesting synchronization and desynchronization alternately appear with increasing value of the coupling strength.

  7. Don't homogenize, synchronize.

    PubMed

    Sawhney, M

    2001-01-01

    To be more responsive to customers, companies often break down organizational walls between their units--setting up all manner of cross-business and cross-functional task forces and working groups and promoting a "one-company" culture. But such attempts can backfire terribly by distracting business and functional units and by contaminating their strategies and processes. Fortunately, there's a better way, says the author. Rather than tear down organizational walls, a company can make them permeable to information. It can synchronize all its data on products, filtering the information through linked databases and applications and delivering it in a coordinated, meaningful form to customers. As a result, the organization can present a single, unified face to the customer--one that can change as market conditions warrant--without imposing homogeneity on its people. Such synchronization can lead not just to stronger customer relationships and more sales but also to greater operational efficiency. It allows a company, for example, to avoid the high costs of maintaining many different information systems with redundant data. The decoupling of product control from customer control in a synchronized company reflects a fundamental fact about business: While companies have to focus on creating great products, customers think in terms of the activities they perform and the benefits they seek. For companies, products are ends, but for customers, products are means. The disconnect between how customers think and how companies organize themselves is what leads to inefficiencies and missed opportunities, and that's exactly the problem that synchronization solves. Synchronized companies can get closer to customers, sustain product innovation, and improve operational efficiency--goals that have traditionally been very difficult to achieve simultaneously.

  8. Stochastic Resonance Modulates Neural Synchronization within and between Cortical Sources

    PubMed Central

    Ward, Lawrence M.; MacLean, Shannon E.; Kirschner, Aaron

    2010-01-01

    Neural synchronization is a mechanism whereby functionally specific brain regions establish transient networks for perception, cognition, and action. Direct addition of weak noise (fast random fluctuations) to various neural systems enhances synchronization through the mechanism of stochastic resonance (SR). Moreover, SR also occurs in human perception, cognition, and action. Perception, cognition, and action are closely correlated with, and may depend upon, synchronized oscillations within specialized brain networks. We tested the hypothesis that SR-mediated neural synchronization occurs within and between functionally relevant brain areas and thus could be responsible for behavioral SR. We measured the 40-Hz transient response of the human auditory cortex to brief pure tones. This response arises when the ongoing, random-phase, 40-Hz activity of a group of tuned neurons in the auditory cortex becomes synchronized in response to the onset of an above-threshold sound at its “preferred” frequency. We presented a stream of near-threshold standard sounds in various levels of added broadband noise and measured subjects' 40-Hz response to the standards in a deviant-detection paradigm using high-density EEG. We used independent component analysis and dipole fitting to locate neural sources of the 40-Hz response in bilateral auditory cortex, left posterior cingulate cortex and left superior frontal gyrus. We found that added noise enhanced the 40-Hz response in all these areas. Moreover, added noise also increased the synchronization between these regions in alpha and gamma frequency bands both during and after the 40-Hz response. Our results demonstrate neural SR in several functionally specific brain regions, including areas not traditionally thought to contribute to the auditory 40-Hz transient response. In addition, we demonstrated SR in the synchronization between these brain regions. Thus, both intra- and inter-regional synchronization of neural activity are

  9. A code-aided synchronization IP core for iterative channel decoders

    NASA Astrophysics Data System (ADS)

    Ali, I.; Wasenmüller, U.; Wehn, N.

    2013-07-01

    Synchronization and channel decoding are integral parts of each receiver in wireless communication systems. The task of synchronization is the estimation of the general unknown parameters of phase, frequency and timing offset as well as correction of the received symbol sequence according to the estimated parameters. The synchronized symbol sequence serves as input for the channel decoder. Advanced channel decoders are able to operate at very low signal-to-noise ratios (SNR). For small values of SNR, the parameter estimation suffers from increased noise and impacts the communication performance. To improve the synchronization quality and thus decoder performance, the synchronizers are integrated into the iterative decoding structure. Intermediate results of the channel decoder after each iteration are used to improve the synchronization. This approach is referred to as code-aided (CA) synchronization or turbo synchronization. A number of CA synchronization algorithms have already been published but there is no publication so far on a generic hardware implementation of the CA synchronization. Therefore we present an algorithm which can be implemented efficiently in hardware and demonstrate its communication performance. Furthermore we present a high throughput, flexible, area and power efficient code-aided synchronization IP core for various satellite communication standards. The core is synthesized for 65 nm low power CMOS technology. After placement and routing the core has an area of 0.194 mm2, throughput of 207 Msymbols/s and consumes 41.4 mW at 300 MHz clock frequency. The architecture is designed in such a way that it does not affect throughput of the system.

  10. Sensorimotor Synchronization across the Life Span

    ERIC Educational Resources Information Center

    Drewing, Knut; Aschersleben, Gisa; Li, Shu-Chen

    2006-01-01

    The present study investigates the contribution of general processing resources as well as other more specific factors to the life-span development of sensorimotor synchronization and its component processes. Within a synchronization tapping paradigm, a group of 286 participants, 6 to 88 years of age, were asked to synchronize finger taps with…

  11. High speed synchronizer card utilizing VLSI technology

    NASA Technical Reports Server (NTRS)

    Speciale, Nicholas; Wunderlich, Kristin

    1988-01-01

    A generic synchronizer card capable of providing standard NASA communication block telemetry frame synchronization and quality control was fabricated using VLSI technology. Four VLSI chip sets are utilized to shrink all the required functions into a single synchronizer card. The application of VLSI technology to telemetry systems resulted in an increase in performance and a decrease in cost and size.

  12. Delay synchronization of temporal Boolean networks

    NASA Astrophysics Data System (ADS)

    Wei, Qiang; Xie, Cheng-jun; Liang, Yi; Niu, Yu-jun; Lin, Da

    2016-01-01

    This paper investigates the delay synchronization between two temporal Boolean networks base on semi-tensor product method, which improve complete synchronization. Necessary and sufficient conditions for delay synchronization are drawn base on algebraic expression of temporal Boolean networks. A example is presented to show the effectiveness of theoretical analysis.

  13. Criterion of quantum synchronization and controllable quantum synchronization based on an optomechanical system

    NASA Astrophysics Data System (ADS)

    Li, Wenlin; Li, Chong; Song, Heshan

    2015-02-01

    We propose a quantitative criterion to determine whether the coupled quantum systems can achieve complete synchronization or phase synchronization in the process of analyzing quantum synchronization. Adopting the criterion, we discuss the quantum synchronization effects between optomechanical systems and find that the error between the systems and the fluctuation of error is sensitive to coupling intensity by calculating the largest Lyapunov exponent of the model and quantum fluctuation, respectively. By taking the appropriate coupling intensity, we can control quantum synchronization even under different logical relationships between switches. Finally, we simulate the dynamical evolution of the system to verify the quantum synchronization criterion and to show the ability of synchronization control.

  14. Synchronization of bursting Hodgkin-Huxley-type neurons in clustered networks

    NASA Astrophysics Data System (ADS)

    Prado, T. de L.; Lopes, S. R.; Batista, C. A. S.; Kurths, J.; Viana, R. L.

    2014-09-01

    We considered a clustered network of bursting neurons described by the Huber-Braun model. In the upper level of the network we used the connectivity matrix of the cat cerebral cortex network, and in the lower level each cortex area (or cluster) is modelled as a small-world network. There are two different coupling strengths related to inter- and intracluster dynamics. Each bursting cycle is composed of a quiescent period followed by a rapid chaotic sequence of spikes, and we defined a geometric phase which enables us to investigate the onset of synchronized bursting, as the state in which the neuron start bursting at the same time, whereas their spikes may remain uncorrelated. The bursting synchronization of a clustered network has been investigated using an order parameter and the average field of the network in order to identify regimes in which each cluster may display synchronized behavior, whereas the overall network does not. We introduce quantifiers to evaluate the relative contribution of each cluster in the partial synchronized behavior of the whole network. Our main finding is that we typically observe in the clustered network not a complete phase synchronized regime but instead a complex pattern of partial phase synchronization in which different cortical areas may be internally synchronized at distinct phase values, hence they are not externally synchronized, unless the coupling strengths are too large.

  15. Synchronization of bursting Hodgkin-Huxley-type neurons in clustered networks.

    PubMed

    Prado, T de L; Lopes, S R; Batista, C A S; Kurths, J; Viana, R L

    2014-09-01

    We considered a clustered network of bursting neurons described by the Huber-Braun model. In the upper level of the network we used the connectivity matrix of the cat cerebral cortex network, and in the lower level each cortex area (or cluster) is modelled as a small-world network. There are two different coupling strengths related to inter- and intracluster dynamics. Each bursting cycle is composed of a quiescent period followed by a rapid chaotic sequence of spikes, and we defined a geometric phase which enables us to investigate the onset of synchronized bursting, as the state in which the neuron start bursting at the same time, whereas their spikes may remain uncorrelated. The bursting synchronization of a clustered network has been investigated using an order parameter and the average field of the network in order to identify regimes in which each cluster may display synchronized behavior, whereas the overall network does not. We introduce quantifiers to evaluate the relative contribution of each cluster in the partial synchronized behavior of the whole network. Our main finding is that we typically observe in the clustered network not a complete phase synchronized regime but instead a complex pattern of partial phase synchronization in which different cortical areas may be internally synchronized at distinct phase values, hence they are not externally synchronized, unless the coupling strengths are too large.

  16. Synchronized, interactive teleconferencing with digital cardiac images.

    PubMed

    Walsh, C; Cosgrave, J; Crean, P; Murray, D; Walsh, R; Kennedy, J; Buckley, M; O'Hare, N

    2006-03-01

    St James's Hospital is a tertiary referral center for percutaneous intervention and cardiothoracic surgery for a number of referring hospitals. This article reports on the development and implementation of a synchronized, interactive teleconferencing system for cardiac images that links St. James's Hospital with a remote site (Sligo General Hospital) and overcomes the problems of transmission of large image files. Teleconferencing was achieved by setting up lossless auto transmission of patient files overnight and conferencing the next morning with linked control signals and databases. As a suitable product was not available, a commercially new software was developed. The system links the imaging databases, monitors and synchronizes progress through imaging sequences, and links a range of image processing and control functions. All parties to the conference are ensured that they are looking at the same images as they are played or at specific aspects of an image that the other party is highlighting. The system allows patient management decisions to be made at a weekly joint teleconference with cardiothoracic surgeons and interventional cardiologists from both sites. Rapid decision making was facilitated with 70% of decisions obtained within 24 h, and 88% within 1 week of their procedure. In urgent cases, data can be transmitted within 20 min of the diagnostic procedure. The system allows increased access to angiography for patients living in rural areas, and provides a more focused referral for revascularization. Participation of the referring cardiologist has improved the quality of decision making.

  17. Multistatic radar: Synchronization and time reference system

    NASA Astrophysics Data System (ADS)

    Jubrink, H. G.

    1994-08-01

    A synchronization and time reference system for multistatic radar (MSR) is presented. The report also gives a summary of the most important parameter values of the synchronization process in MSR. Some reference oscillator systems using Loran C and global positioning system (GPS) receivers have been briefly analyzed. The synchronization method is based on a multioscillator system from the HP time and frequency standard system, the HP 55000 system. The multioscillator concept gives a more robust and redundant solution of the synchronization problem. The synchronization system can also be given external support by other time precision systems, for instance the GPS system.

  18. Intermittent phase synchronization in human epileptic brain

    NASA Astrophysics Data System (ADS)

    Moskalenko, Olga I.; Koloskova, Anastasya D.; Zhuravlev, Maksim O.; Koronovskii, Alexey A.; Hramov, Alexander E.

    2017-03-01

    We found the intermittent phase synchronization in human epileptic brain. We show that the phases of the synchronous behavior are observed both during the epileptic seizures and in the fields of the background activity of the brain. We estimate the degree of intermittent phase synchronization in both considered cases and found that the epileptic seizures are characterized by the higher degree of synchronization in comparison with the fields of background activity. For estimation of synchronization degree the modification of the method for estimation of zero conditional Lyapunov exponent from time series proposed in [PRE 92 (2015) 012913] has been used.

  19. Different Synchronization Schemes for Chaotic Rikitake Systems

    NASA Astrophysics Data System (ADS)

    Khan, M. Ali

    2013-06-01

    This paper presents the chaos synchronization by designing a different type of controllers. Firstly, we propose the synchronization of bi-directional coupled chaotic Rikitake systems via hybrid feedback control. Secondly, we study the synchronization of unidirectionally coupled Rikitake systems using hybrid feedback control. Lastly, we investigate the synchronization of unidirectionally coupled Rikitake chaotic systems using tracking control. Comparing all the results, finally, we conclude that tracking control is more effective than feedback control. Simulation results are presented to show the efficiency of synchronization schemes.

  20. Partial Synchronization of Interconnected Boolean Networks.

    PubMed

    Chen, Hongwei; Liang, Jinling; Lu, Jianquan

    2017-01-01

    This paper addresses the partial synchronization problem for the interconnected Boolean networks (BNs) via the semi-tensor product (STP) of matrices. First, based on an algebraic state space representation of BNs, a necessary and sufficient criterion is presented to ensure the partial synchronization of the interconnected BNs. Second, by defining an induced digraph of the partial synchronized states set, an equivalent graphical description for the partial synchronization of the interconnected BNs is established. Consequently, the second partial synchronization criterion is derived in terms of adjacency matrix of the induced digraph. Finally, two examples (including an epigenetic model) are provided to illustrate the efficiency of the obtained results.

  1. Inhomogeneity induces relay synchronization in complex networks

    NASA Astrophysics Data System (ADS)

    Gambuzza, Lucia Valentina; Frasca, Mattia; Fortuna, Luigi; Boccaletti, Stefano

    2016-04-01

    Relay synchronization is a collective state, originally found in chains of interacting oscillators, in which uncoupled dynamical units synchronize through the action of mismatched inner nodes that relay the information but do not synchronize with them. It is demonstrated herein that relay synchronization is not limited to such simple motifs, rather it can emerge in larger and arbitrary network topologies. In particular, we show how this phenomenon can be observed in networks of chaotic systems in the presence of some mismatched units, the relay nodes, and how it is actually responsible for an enhancement of synchronization in the network.

  2. Photonic cavity synchronization of nanomechanical oscillators.

    PubMed

    Bagheri, Mahmood; Poot, Menno; Fan, Linran; Marquardt, Florian; Tang, Hong X

    2013-11-22

    Synchronization in oscillatory systems is a frequent natural phenomenon and is becoming an important concept in modern physics. Nanomechanical resonators are ideal systems for studying synchronization due to their controllable oscillation properties and engineerable nonlinearities. Here we demonstrate synchronization of two nanomechanical oscillators via a photonic resonator, enabling optomechanical synchronization between mechanically isolated nanomechanical resonators. Optical backaction gives rise to both reactive and dissipative coupling of the mechanical resonators, leading to coherent oscillation and mutual locking of resonators with dynamics beyond the widely accepted phase oscillator (Kuramoto) model. In addition to the phase difference between the oscillators, also their amplitudes are coupled, resulting in the emergence of sidebands around the synchronized carrier signal.

  3. Inhomogeneity induces relay synchronization in complex networks.

    PubMed

    Gambuzza, Lucia Valentina; Frasca, Mattia; Fortuna, Luigi; Boccaletti, Stefano

    2016-04-01

    Relay synchronization is a collective state, originally found in chains of interacting oscillators, in which uncoupled dynamical units synchronize through the action of mismatched inner nodes that relay the information but do not synchronize with them. It is demonstrated herein that relay synchronization is not limited to such simple motifs, rather it can emerge in larger and arbitrary network topologies. In particular, we show how this phenomenon can be observed in networks of chaotic systems in the presence of some mismatched units, the relay nodes, and how it is actually responsible for an enhancement of synchronization in the network.

  4. Experience dependent plasticity alters cortical synchronization

    PubMed Central

    Kilgard, M.P.; Vazquez, J.L.; Engineer, N.D.; Pandya, P.K.

    2008-01-01

    Theories of temporal coding by cortical neurons are supported by observations that individual neurons can respond to sensory stimulation with millisecond precision and that activity in large populations is often highly correlated. Synchronization is highest between neurons with overlapping receptive fields and modulated by both sensory stimulation and behavioral state. It is not yet clear whether cortical synchronization is an epiphenomenon or a critical component of efficient information transmission. Experimental manipulations that generate receptive field plasticity can be used to test the relationship between synchronization and receptive fields. Here we demonstrate that increasing receptive field size in primary auditory cortex by repeatedly pairing a train of tones with nucleus basalis (NB) stimulation increases synchronization, and decreasing receptive field size by pairing different tone frequencies with NB stimulation decreases synchronization. These observations seem to support the conclusion that neural synchronization is simply an artifact caused by common inputs. However, pairing tone trains of different carrier frequencies with NB stimulation increases receptive field size without increasing synchronization, and environmental enrichment increases synchronization without increasing receptive field size. The observation that receptive fields and synchronization can be manipulated independently suggests that common inputs are only one of many factors shaping the strength and temporal precision of cortical synchronization and supports the hypothesis that precise neural synchronization contributes to sensory information processing. PMID:17317055

  5. Detecting synchronization in coupled stochastic ecosystem networks

    NASA Astrophysics Data System (ADS)

    Kouvaris, N.; Provata, A.; Kugiumtzis, D.

    2010-01-01

    Instantaneous phase difference, synchronization index and mutual information are considered in order to detect phase transitions, collective behaviours and synchronization phenomena that emerge for different levels of diffusive and reactive activity in stochastic networks. The network under investigation is a spatial 2D lattice which serves as a substrate for Lotka-Volterra dynamics with 3rd order nonlinearities. Kinetic Monte Carlo simulations demonstrate that the system spontaneously organizes into a number of asynchronous local oscillators, when only nearest neighbour interactions are considered. In contrast, the oscillators can be correlated, phase synchronized and completely synchronized when introducing different interactivity rules (diffusive or reactive) for nearby and distant species. The quantitative measures of synchronization show that long distance diffusion coupling induces phase synchronization after a well defined transition point, while long distance reaction coupling induces smeared phase synchronization.

  6. Synchronization of electronic genetic networks.

    PubMed

    Wagemakers, Alexandre; Buldú, Javier M; García-Ojalvo, Jordi; Sanjuán, Miguel A F

    2006-03-01

    We describe a simple analog electronic circuit that mimics the behavior of a well-known synthetic gene oscillator, the repressilator, which represents a set of three genes repressing one another. Synchronization of a population of such units is thoroughly studied, with the aim to compare the role of global coupling with that of global forcing on the population. Our results show that coupling is much more efficient than forcing in leading the gene population to synchronized oscillations. Furthermore, a modification of the proposed analog circuit leads to a simple electronic version of a genetic toggle switch, which is a simple network of two mutual repressor genes, where control by external forcing is also analyzed.

  7. Producing Newborn Synchronous Mammalian Cells

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Helmstetter, Charles E.; Thornton, Maureen

    2008-01-01

    A method and bioreactor for the continuous production of synchronous (same age) population of mammalian cells have been invented. The invention involves the attachment and growth of cells on an adhesive-coated porous membrane immersed in a perfused liquid culture medium in a microgravity analog bioreactor. When cells attach to the surface divide, newborn cells are released into the flowing culture medium. The released cells, consisting of a uniform population of synchronous cells are then collected from the effluent culture medium. This invention could be of interest to researchers investigating the effects of the geneotoxic effects of the space environment (microgravity, radiation, chemicals, gases) and to pharmaceutical and biotechnology companies involved in research on aging and cancer, and in new drug development and testing.

  8. Synchronous clock stopper for microprocessor

    NASA Technical Reports Server (NTRS)

    Kitchin, David A. (Inventor)

    1985-01-01

    A synchronous clock stopper circuit for inhibiting clock pulses to a microprocessor in response to a stop request signal, and for reinstating the clock pulses in response to a start request signal thereby to conserve power consumption of the microprocessor when used in an environment of limited power. The stopping and starting of the microprocessor is synchronized, by a phase tracker, with the occurrences of a predetermined phase in the instruction cycle of the microprocessor in which the I/O data and address lines of the microprocessor are of high impedance so that a shared memory connected to the I/O lines may be accessed by other peripheral devices. The starting and stopping occur when the microprocessor initiates and completes, respectively, an instruction, as well as before and after transferring data with a memory. Also, the phase tracker transmits phase information signals over a bus to other peripheral devices which signals identify the current operational phase of the microprocessor.

  9. [Synchronous diverticulitis: a case report.].

    PubMed

    Castañeda-Argáiz, R; Rodríguez-Zentner, H A; Tapia, H; González-Contreras, Q H

    2010-01-01

    Diverticular colonic disease is not as common in developing nations as in western and industrialized societies, accounting for approximately 130 000 hospitalizations per year in the United States, being diverticulitis the most frequent complication. Synchronous presentation of this complication is very rare, with only one case reported in literature. We present a patient who presented with diffuse abdominal pain. Colonoscopy was performed identifying a mass in the sigmoid colon and a perforation in the cecum. Patient underwent total abdominal colectomy with ileorectal anastomosis and protective loop ileostomy. Histopathologic examination revealed synchronous complicated diverticular disease of the sigmoid and cecum. In this report we disclose this type of atypical presentation of diverticular disease and establish that the approach taken is safe and feasible.

  10. Parallel integrated frame synchronizer chip

    NASA Technical Reports Server (NTRS)

    Ghuman, Parminder Singh (Inventor); Solomon, Jeffrey Michael (Inventor); Bennett, Toby Dennis (Inventor)

    2000-01-01

    A parallel integrated frame synchronizer which implements a sequential pipeline process wherein serial data in the form of telemetry data or weather satellite data enters the synchronizer by means of a front-end subsystem and passes to a parallel correlator subsystem or a weather satellite data processing subsystem. When in a CCSDS mode, data from the parallel correlator subsystem passes through a window subsystem, then to a data alignment subsystem and then to a bit transition density (BTD)/cyclical redundancy check (CRC) decoding subsystem. Data from the BTD/CRC decoding subsystem or data from the weather satellite data processing subsystem is then fed to an output subsystem where it is output from a data output port.

  11. New Solutions for Synchronized Domineering

    NASA Astrophysics Data System (ADS)

    Bahri, Sahil; Kruskal, Clyde P.

    Cincotti and Iida invented the game of Synchronized Domineering, and analyzed a few special cases. We develop a more general technique of analysis, and obtain results for many more special cases. We obtain complete results for board sizes 3 ×n, 5 ×n, 7 ×n, and 9 ×n (for n large enough) and partial results for board sizes 2×n, 4 ×n, and 6 ×n.

  12. High Accuracy Time Transfer Synchronization

    DTIC Science & Technology

    1994-12-01

    HIGH ACCURACY TIME TRANSFER SYNCHRONIZATION Paul Wheeler, Paul Koppang, David Chalmers, Angela Davis, Anthony Kubik and William Powell U.S. Naval...Observatory Washington, DC 20392 Abstract In July 1994, the US Naval Observatory (USNO) Time Service System Engineering Division conducted a...field test to establish a baseline accuracy for two-way satellite time transfer synchro- nization. Three Hewlett-Packard model 5071 high performance

  13. Digital-data receiver synchronization

    DOEpatents

    Smith, Stephen F.; Turner, Gary W.

    2005-08-02

    Digital-data receiver synchronization is provided with composite phase-frequency detectors, mutually cross-connected comparison feedback or both to provide robust reception of digital data signals. A single master clock can be used to provide frequency signals. Advantages can include fast lock-up time in moderately to severely noisy conditions, greater tolerance to noise and jitter when locked, and improved tolerance to clock asymmetries.

  14. Conveyor-belt clock synchronization

    SciTech Connect

    Giovannetti, Vittorio; Maccone, Lorenzo; Shapiro, Jeffrey H.; Wong, Franco N.C.; Lloyd, Seth

    2004-10-01

    A protocol for synchronizing distant clocks is proposed that does not rely on the arrival times of the signals which are exchanged, and an optical implementation based on coherent-state pulses is described. This protocol is not limited by any dispersion that may be present in the propagation medium through which the light signals are exchanged. Possible improvements deriving from the use of quantum-mechanical effects are also addressed.

  15. Network synchronization in hippocampal neurons.

    PubMed

    Penn, Yaron; Segal, Menahem; Moses, Elisha

    2016-03-22

    Oscillatory activity is widespread in dynamic neuronal networks. The main paradigm for the origin of periodicity consists of specialized pacemaking elements that synchronize and drive the rest of the network; however, other models exist. Here, we studied the spontaneous emergence of synchronized periodic bursting in a network of cultured dissociated neurons from rat hippocampus and cortex. Surprisingly, about 60% of all active neurons were self-sustained oscillators when disconnected, each with its own natural frequency. The individual neuron's tendency to oscillate and the corresponding oscillation frequency are controlled by its excitability. The single neuron intrinsic oscillations were blocked by riluzole, and are thus dependent on persistent sodium leak currents. Upon a gradual retrieval of connectivity, the synchrony evolves: Loose synchrony appears already at weak connectivity, with the oscillators converging to one common oscillation frequency, yet shifted in phase across the population. Further strengthening of the connectivity causes a reduction in the mean phase shifts until zero-lag is achieved, manifested by synchronous periodic network bursts. Interestingly, the frequency of network bursting matches the average of the intrinsic frequencies. Overall, the network behaves like other universal systems, where order emerges spontaneously by entrainment of independent rhythmic units. Although simplified with respect to circuitry in the brain, our results attribute a basic functional role for intrinsic single neuron excitability mechanisms in driving the network's activity and dynamics, contributing to our understanding of developing neural circuits.

  16. Forced Synchronization of Eukaryotic Cells

    NASA Astrophysics Data System (ADS)

    Battogtokh, Dorjsuren

    A comprehensive mathematical model of the budding yeast cell cycle, accounting for several dozen published experiments, has thirty five variables and one hundred and forty parameters.5 Detailed models describing cell cycle regulation in other organisms have also a large number of variables and parameters. Complexity rises further upon integrating the cell cycle network to other pathways in the cell. For some practical and theoretical issues, abundant complexity in realistic models can be tackled by studying first a functional subset of a model to understand the mechanism of a concerned process, and then by revealing the conditions of its occurrence in a detailed model. Here we review this approach applied to the problem of cell synchronization. Using analytic results obtained from a minimal model, we simulate cell synchronization in comprehensive mathematical models for budding and fission yeast cell cycles. Our results demonstrate that an experimental method based on periodic forcing of the synthesis of cell cycle regulators can be a powerful tool for cell synchronization.

  17. Network synchronization in hippocampal neurons

    PubMed Central

    Penn, Yaron; Segal, Menahem; Moses, Elisha

    2016-01-01

    Oscillatory activity is widespread in dynamic neuronal networks. The main paradigm for the origin of periodicity consists of specialized pacemaking elements that synchronize and drive the rest of the network; however, other models exist. Here, we studied the spontaneous emergence of synchronized periodic bursting in a network of cultured dissociated neurons from rat hippocampus and cortex. Surprisingly, about 60% of all active neurons were self-sustained oscillators when disconnected, each with its own natural frequency. The individual neuron’s tendency to oscillate and the corresponding oscillation frequency are controlled by its excitability. The single neuron intrinsic oscillations were blocked by riluzole, and are thus dependent on persistent sodium leak currents. Upon a gradual retrieval of connectivity, the synchrony evolves: Loose synchrony appears already at weak connectivity, with the oscillators converging to one common oscillation frequency, yet shifted in phase across the population. Further strengthening of the connectivity causes a reduction in the mean phase shifts until zero-lag is achieved, manifested by synchronous periodic network bursts. Interestingly, the frequency of network bursting matches the average of the intrinsic frequencies. Overall, the network behaves like other universal systems, where order emerges spontaneously by entrainment of independent rhythmic units. Although simplified with respect to circuitry in the brain, our results attribute a basic functional role for intrinsic single neuron excitability mechanisms in driving the network’s activity and dynamics, contributing to our understanding of developing neural circuits. PMID:26961000

  18. Insolation patterns on synchronous exoplanets with obliquity

    NASA Astrophysics Data System (ADS)

    Dobrovolskis, Anthony R.

    2009-11-01

    A previous paper [Dobrovolskis, A.R., 2007. Icarus 192, 1-23] showed that eccentricity can have profound effects on the climate, habitability, and detectability of extrasolar planets. This complementary study shows that obliquity can have comparable effects. The known exoplanets exhibit a wide range of orbital eccentricities, but those within several million kilometers of their suns are generally in near-circular orbits. This fact is widely attributed to the dissipation of tides in the planets. Tides in a planet affect its spin even more than its orbit, and such tidally evolved planets often are assumed to be in synchronous rotation, so that their rotation periods are identical to their orbital periods. The canonical example of synchronous spin is the way that our Moon always keeps nearly the same hemisphere facing the Earth. Tides also tend to reduce the planet's obliquity (the angle between its spin and orbital angular velocities). However, orbit precession can cause the rotation to become locked in a "Cassini state", where it retains a nearly constant non-zero obliquity. For example, our Moon maintains an obliquity of about 6.7° with respect to its orbit about the Earth. In comparison, stable Cassini states can exist for practically any obliquity up to ˜90° or more for planets of binary stars, or in multi-planet systems with high mutual inclinations, such as are produced by scattering or by the Kozai mechanism. This work considers planets in synchronous rotation with circular orbits, but arbitrary obliquity β; this affects the distribution of insolation over the planet's surface, particularly near its poles. For β=0, one hemisphere bakes in perpetual sunshine, while the opposite hemisphere experiences eternal darkness. As β increases, the region of permanent daylight and the antipodal realm of endless night both shrink, while a more temperate area of alternating day and night spreads in longitude, and especially in latitude. The regions of permanent day or

  19. Synchronization transition in networked chaotic oscillators: the viewpoint from partial synchronization.

    PubMed

    Fu, Chenbo; Lin, Weijie; Huang, Liang; Wang, Xingang

    2014-05-01

    Synchronization transition in networks of nonlocally coupled chaotic oscillators is investigated. It is found that in reaching the state of global synchronization the networks can stay in various states of partial synchronization. The stability of the partial synchronization states is analyzed by the method of eigenvalue analysis, in which the important roles of the network topological symmetry on synchronization transition are identified. Moreover, for networks possessing multiple topological symmetries, it is found that the synchronization transition can be divided into different stages, with each stage characterized by a unique synchronous pattern of the oscillators. Synchronization transitions in networks of nonsymmetric topology and nonidentical oscillators are also investigated, where the partial synchronization states, although unstable, are found to be still playing important roles in the transitions.

  20. Stimulus repetition modulates gamma-band synchronization in primate visual cortex.

    PubMed

    Brunet, Nicolas M; Bosman, Conrado A; Vinck, Martin; Roberts, Mark; Oostenveld, Robert; Desimone, Robert; De Weerd, Peter; Fries, Pascal

    2014-03-04

    When a sensory stimulus repeats, neuronal firing rate and functional MRI blood oxygen level-dependent responses typically decline, yet perception and behavioral performance either stay constant or improve. An additional aspect of neuronal activity is neuronal synchronization, which can enhance the impact of neurons onto their postsynaptic targets independent of neuronal firing rates. We show that stimulus repetition leads to profound changes of neuronal gamma-band (∼40-90 Hz) synchronization. Electrocorticographic recordings in two awake macaque monkeys demonstrated that repeated presentations of a visual grating stimulus resulted in a steady increase of visually induced gamma-band activity in area V1, gamma-band synchronization between areas V1 and V4, and gamma-band activity in area V4. Microelectrode recordings in area V4 of two additional monkeys under the same stimulation conditions allowed a direct comparison of firing rates and gamma-band synchronization strengths for multiunit activity (MUA), as well as for isolated single units, sorted into putative pyramidal cells and putative interneurons. MUA and putative interneurons showed repetition-related decreases in firing rate, yet increases in gamma-band synchronization. Putative pyramidal cells showed no repetition-related firing rate change, but a decrease in gamma-band synchronization for weakly stimulus-driven units and constant gamma-band synchronization for strongly driven units. We propose that the repetition-related changes in gamma-band synchronization maintain the interareal stimulus signaling and sharpen the stimulus representation by gamma-synchronized pyramidal cell spikes.

  1. Synchronous implementation of optoelectronic NOR and XNOR logic gates using parallel synchronization of three chaotic lasers

    NASA Astrophysics Data System (ADS)

    Yan, Sen-Lin

    2014-09-01

    The parallel synchronization of three chaotic lasers is used to emulate optoelectronic logic NOR and XNOR gates via modulating the light and the current. We deduce a logical computational equation that governs the chaotic synchronization, logical input, and logical output. We construct fundamental gates based on the three chaotic lasers and define the computational principle depending on the parallel synchronization. The logic gate can be implemented by appropriately synchronizing two chaotic lasers. The system shows practicability and flexibility because it can emulate synchronously an XNOR gate, two NOR gates, and so on. The synchronization can still be deteceted when mismatches exist with a certain range.

  2. Determining the degree of synchronism for intermittent phase synchronization in human electroencephalography data

    NASA Astrophysics Data System (ADS)

    Koloskova, A. D.; Moskalenko, O. I.

    2017-05-01

    The phenomenon of intermittent phase synchronization during development of epileptic activity in human beings has been discovered based on EEG data. The presence of synchronous behavior phases has been detected both during spike-wave discharges and in the regions of background activity of the brain. The degree of synchronism in the intermittent phase-synchronization regime in both cases has been determined, and it has been established that spike-wave discharges are characterized by a higher degree of synchronism than exists in the regions of background activity of the brain. To determine the degree of synchronism, a modified method of evaluating zero conditional Lyapunov exponents from time series is proposed.

  3. Evaluation of performance and magnetic characteristics of a radial-radial flux compound-structure permanent-magnet synchronous machine used for hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Zheng, Ping; Liu, Ranran; Shen, Lin; Li, Lina; Fan, Weiguang; Wu, Qian; Zhao, Jing

    2008-04-01

    A breed of compound-structure permanent-magnet synchronous machine (CS-PMSM) is used for power-split hybrid electric vehicles (HEVs). It can help to fulfill both the speed and torque control of the internal combustion engine and, thus, realize the optimum operation of the HEV. In this paper, a radial-radial flux CS-PMSM, which is integrated by two machines radially [one stator machine (SM) and one double-rotor machine (DRM)], is designed and investigated. The machine performance is evaluated with finite-element method (FEM) and satisfactory results are obtained. The back electromotive force curves of the two machines are somewhat similar to sinusoidal ones; the average torques both meet the requirements; and due to the adoption of skewed slots, the cogging torques and torque ripples are quite small. The inductance parameter is calculated with a phasor diagram based two-dimensional FEM and the magnetic saturation and cross-magnetization effect are discussed. It is concluded that the SM is slightly saturated with no or little cross-magnetization phenomenon, whereas the DRM has deep-degree magnetic saturation and the cross-magnetization effect is notable.

  4. Airborne experiment results for spaceborne atmospheric synchronous correction system

    NASA Astrophysics Data System (ADS)

    Cui, Wenyu; Yi, Weining; Du, Lili; Liu, Xiao

    2015-10-01

    The image quality of optical remote sensing satellite is affected by the atmosphere, thus the image needs to be corrected. Due to the spatial and temporal variability of atmospheric conditions, correction by using synchronous atmospheric parameters can effectively improve the remote sensing image quality. For this reason, a small light spaceborne instrument, the atmospheric synchronous correction device (airborne prototype), is developed by AIOFM of CAS(Anhui Institute of Optics and Fine Mechanics of Chinese Academy of Sciences). With this instrument, of which the detection mode is timing synchronization and spatial coverage, the atmospheric parameters consistent with the images to be corrected in time and space can be obtained, and then the correction is achieved by radiative transfer model. To verify the technical process and treatment effect of spaceborne atmospheric correction system, the first airborne experiment is designed and completed. The experiment is implemented by the "satellite-airborne-ground" synchronous measuring method. A high resolution(0.4 m) camera and the atmospheric correction device are equipped on the aircraft, which photograph the ground with the satellite observation over the top simultaneously. And aerosol optical depth (AOD) and columnar water vapor (CWV) in the imagery area are also acquired, which are used for the atmospheric correction for satellite and aerial images. Experimental results show that using the AOD and CWV of imagery area retrieved by the data obtained by the device to correct aviation and satellite images, can improve image definition and contrast by more than 30%, and increase MTF by more than 1 time, which means atmospheric correction for satellite images by using the data of spaceborne atmospheric synchronous correction device is accurate and effective.

  5. Synchronizing noisy nonidentical oscillators by transient uncoupling

    SciTech Connect

    Tandon, Aditya Mannattil, Manu; Schröder, Malte; Timme, Marc; Chakraborty, Sagar

    2016-09-15

    Synchronization is the process of achieving identical dynamics among coupled identical units. If the units are different from each other, their dynamics cannot become identical; yet, after transients, there may emerge a functional relationship between them—a phenomenon termed “generalized synchronization.” Here, we show that the concept of transient uncoupling, recently introduced for synchronizing identical units, also supports generalized synchronization among nonidentical chaotic units. Generalized synchronization can be achieved by transient uncoupling even when it is impossible by regular coupling. We furthermore demonstrate that transient uncoupling stabilizes synchronization in the presence of common noise. Transient uncoupling works best if the units stay uncoupled whenever the driven orbit visits regions that are locally diverging in its phase space. Thus, to select a favorable uncoupling region, we propose an intuitive method that measures the local divergence at the phase points of the driven unit's trajectory by linearizing the flow and subsequently suppresses the divergence by uncoupling.

  6. Continuous and discontinuous transitions to synchronization

    NASA Astrophysics Data System (ADS)

    Wang, Chaoqing; Garnier, Nicolas B.

    2016-11-01

    We describe how the transition to synchronization in a system of globally coupled Stuart-Landau oscillators changes from continuous to discontinuous when the nature of the coupling is moved from diffusive to reactive. We explain this drastic qualitative change as resulting from the co-existence of a particular synchronized macrostate together with the trivial incoherent macrostate, in a range of parameter values for which the latter is linearly stable. In contrast to the paradigmatic Kuramoto model, this particular state observed at the synchronization transition contains a finite, non-vanishing number of synchronized oscillators, which results in a discontinuous transition. We consider successively two situations where either a fully synchronized state or a partially synchronized state exists at the transition. Thermodynamic limit and finite size effects are briefly discussed, as well as connections with recently observed discontinuous transitions.

  7. Spatio-temporal synchronization of recurrent epidemics.

    PubMed Central

    He, Daihai; Stone, Lewi

    2003-01-01

    Long-term spatio-temporal datasets of disease incidences have made it clear that many recurring epidemics, especially childhood infections, tend to synchronize in-phase across suburbs. In some special cases, epidemics between suburbs have been found to oscillate in an out-of-phase ('antiphase') relationship for lengthy periods. Here, we use modelling techniques to help explain the presence of in-phase and antiphase synchronization. The nonlinearity of the epidemic dynamics is often such that the intensity of the outbreak influences the phase of the oscillation thereby introducing 'shear', a factor that is found to be important for generating antiphase synchronization. By contrast, the coupling between suburbs via the immigration of infectives tends to enhance in-phase synchronization. The emerging synchronization depends delicately on these opposite factors. We use theoretical results from continuous time models to provide a framework for understanding the relationship between synchronization patterns for different model structures. PMID:12965019

  8. A chimeric path to neuronal synchronization

    SciTech Connect

    Essaki Arumugam, Easwara Moorthy; Spano, Mark L.

    2015-01-15

    Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an “all or none” phenomenon, but can pass through an intermediate stage (chimera)

  9. A chimeric path to neuronal synchronization

    NASA Astrophysics Data System (ADS)

    Essaki Arumugam, Easwara Moorthy; Spano, Mark L.

    2015-01-01

    Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an "all or none" phenomenon, but can pass through an intermediate stage (chimera).

  10. A chimeric path to neuronal synchronization.

    PubMed

    Essaki Arumugam, Easwara Moorthy; Spano, Mark L

    2015-01-01

    Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an "all or none" phenomenon, but can pass through an intermediate stage (chimera).

  11. Synchronization of chaotic systems with different order.

    PubMed

    Femat, Ricardo; Solís-Perales, Gualberto

    2002-03-01

    The chaotic synchronization of third-order systems and second-order driven oscillator is studied in this paper. Such a problem is related to synchronization of strictly different chaotic systems. We show that dynamical evolution of second-order driven oscillators can be synchronized with the canonical projection of a third-order chaotic system. In this sense, it is said that synchronization is achieved in reduced order. Duffing equation is chosen as slave system whereas Chua oscillator is defined as master system. The synchronization scheme has nonlinear feedback structure. The reduced-order synchronization is attained in a practical sense, i.e., the difference e=x(3)-x(1)(') is close to zero for all time t> or =t(0)> or =0, where t(0) denotes the time of the control activation.

  12. Explosive synchronization coexists with classical synchronization in the Kuramoto model

    SciTech Connect

    Danziger, Michael M. Havlin, Shlomo; Moskalenko, Olga I.; Kurkin, Semen A.; Zhang, Xiyun; Boccaletti, Stefano

    2016-06-15

    Explosive synchronization has recently been reported in a system of adaptively coupled Kuramoto oscillators, without any conditions on the frequency or degree of the nodes. Here, we find that, in fact, the explosive phase coexists with the standard phase of the Kuramoto oscillators. We determine this by extending the mean-field theory of adaptively coupled oscillators with full coupling to the case with partial coupling of a fraction f. This analysis shows that a metastable region exists for all finite values of f > 0, and therefore explosive synchronization is expected for any perturbation of adaptively coupling added to the standard Kuramoto model. We verify this theory with GPU-accelerated simulations on very large networks (N ∼ 10{sup 6}) and find that, in fact, an explosive transition with hysteresis is observed for all finite couplings. By demonstrating that explosive transitions coexist with standard transitions in the limit of f → 0, we show that this behavior is far more likely to occur naturally than was previously believed.

  13. Explosive synchronization coexists with classical synchronization in the Kuramoto model.

    PubMed

    Danziger, Michael M; Moskalenko, Olga I; Kurkin, Semen A; Zhang, Xiyun; Havlin, Shlomo; Boccaletti, Stefano

    2016-06-01

    Explosive synchronization has recently been reported in a system of adaptively coupled Kuramoto oscillators, without any conditions on the frequency or degree of the nodes. Here, we find that, in fact, the explosive phase coexists with the standard phase of the Kuramoto oscillators. We determine this by extending the mean-field theory of adaptively coupled oscillators with full coupling to the case with partial coupling of a fraction f. This analysis shows that a metastable region exists for all finite values of f > 0, and therefore explosive synchronization is expected for any perturbation of adaptively coupling added to the standard Kuramoto model. We verify this theory with GPU-accelerated simulations on very large networks (N ∼ 10(6)) and find that, in fact, an explosive transition with hysteresis is observed for all finite couplings. By demonstrating that explosive transitions coexist with standard transitions in the limit of f → 0, we show that this behavior is far more likely to occur naturally than was previously believed.

  14. Nondestructive synchronous beam current monitor

    SciTech Connect

    Covo, Michel Kireeff

    2014-12-15

    A fast current transformer is mounted after the deflectors of the Berkeley 88-Inch Cyclotron. The measured signal is amplified and connected to the input of a lock-in amplifier. The lock-in amplifier performs a synchronous detection of the signal at the cyclotron second harmonic frequency. The magnitude of the signal detected is calibrated against a Faraday cup and corresponds to the beam intensity. It has exceptional resolution, long term stability, and can measure the beam current leaving the cyclotron as low as 1 nA.

  15. Synchronous Sampling for Distributed Experiments

    NASA Astrophysics Data System (ADS)

    Wittkamp, M.; Ettl, J.

    2015-09-01

    Sounding Rocket payloads, especially for atmospheric research, often consists of several independent sensors or experiments with different objectives. The data of these sensors can be combined in the post processing to improve the scientific results of the flight. One major requirement for this data-correlation is a common timeline for the measurements of the distributed experiments. Within this paper we present two ways to achieve absolute timing for asynchronously working experiments. The synchronization process is using the Global Positioning System (GPS) and a standard serial communication protocol for transport of timestamps and flight-states.

  16. [Respiratory synchronization and breast radiotherapy].

    PubMed

    Mège, A; Ziouèche-Mottet, A; Bodez, V; Garcia, R; Arnaud, A; de Rauglaudre, G; Pourel, N; Chauvet, B

    2016-10-01

    Adjuvant radiation therapy following breast cancer surgery continues to improve locoregional control and overall survival. But the success of highly targeted-conformal radiotherapy such as intensity-modulated techniques, can be compromised by respiratory motion. The intrafraction motion can potentially result in significant under- or overdose, and also expose organs at risk. This article summarizes the respiratory motion and its effects on imaging, dose calculation and dose delivery by radiotherapy for breast cancer. We will review the methods of respiratory synchronization available for breast radiotherapy to minimize the respiratory impact and to spare organs such as heart and lung.

  17. Desynchronization of stochastically synchronized chemical oscillators

    SciTech Connect

    Snari, Razan; Tinsley, Mark R. E-mail: kshowalt@wvu.edu; Faramarzi, Sadegh; Showalter, Kenneth E-mail: kshowalt@wvu.edu; Wilson, Dan; Moehlis, Jeff; Netoff, Theoden Ivan

    2015-12-15

    Experimental and theoretical studies are presented on the design of perturbations that enhance desynchronization in populations of oscillators that are synchronized by periodic entrainment. A phase reduction approach is used to determine optimal perturbation timing based upon experimentally measured phase response curves. The effectiveness of the perturbation waveforms is tested experimentally in populations of periodically and stochastically synchronized chemical oscillators. The relevance of the approach to therapeutic methods for disrupting phase coherence in groups of stochastically synchronized neuronal oscillators is discussed.

  18. Mutual synchronization of weakly coupled gyrotrons

    SciTech Connect

    Rozental, R. M.; Glyavin, M. Yu.; Sergeev, A. S.; Zotova, I. V.; Ginzburg, N. S.

    2015-09-15

    The processes of synchronization of two weakly coupled gyrotrons are studied within the framework of non-stationary equations with non-fixed longitudinal field structure. With the allowance for a small difference of the free oscillation frequencies of the gyrotrons, we found a certain range of parameters where mutual synchronization is possible while a high electronic efficiency is remained. It is also shown that synchronization regimes can be realized even under random fluctuations of the parameters of the electron beams.

  19. Complexity and synchronization in stochastic chaotic systems

    NASA Astrophysics Data System (ADS)

    Dang, Thai Son; Palit, Sanjay Kumar; Mukherjee, Sayan; Hoang, Thang Manh; Banerjee, Santo

    2016-02-01

    We investigate the complexity of a hyperchaotic dynamical system perturbed by noise and various nonlinear speech and music signals. The complexity is measured by the weighted recurrence entropy of the hyperchaotic and stochastic systems. The synchronization phenomenon between two stochastic systems with complex coupling is also investigated. These criteria are tested on chaotic and perturbed systems by mean conditional recurrence and normalized synchronization error. Numerical results including surface plots, normalized synchronization errors, complexity variations etc show the effectiveness of the proposed analysis.

  20. Synchronization analysis of cultured epileptic human astrocytes

    NASA Astrophysics Data System (ADS)

    Balazsi, Gabor; Cornell-Bell, Ann; Neiman, Alexander; Moss, Frank

    2001-03-01

    Astrocyte cultures from severely epileptic patients were cultured, and the fluctuations of the intracellular calcium ion concentration were visualized using the fluorescent dye Fluo-3. The resulting image sequences were analyzed by methods of stochastic synchronization. Increased synchronization was observed in the epileptic tissues, when compared to normal tissues from rats. The more pathological the tissue, the more synchronized the calcium oscillations. The results might lead to a better understanding of intracellular calcium dynamics and could help drug development.

  1. Topological speed limits to network synchronization.

    PubMed

    Timme, Marc; Wolf, Fred; Geisel, Theo

    2004-02-20

    We study collective synchronization of pulse-coupled oscillators interacting on asymmetric random networks. We demonstrate that random matrix theory can be used to accurately predict the speed of synchronization in such networks in dependence on the dynamical and network parameters. Furthermore, we show that the speed of synchronization is limited by the network connectivity and remains finite, even if the coupling strength becomes infinite. In addition, our results indicate that synchrony is robust under structural perturbations of the network dynamics.

  2. Synchronization reveals topological scales in complex networks.

    PubMed

    Arenas, Alex; Díaz-Guilera, Albert; Pérez-Vicente, Conrad J

    2006-03-24

    We study the relationship between topological scales and dynamic time scales in complex networks. The analysis is based on the full dynamics towards synchronization of a system of coupled oscillators. In the synchronization process, modular structures corresponding to well-defined communities of nodes emerge in different time scales, ordered in a hierarchical way. The analysis also provides a useful connection between synchronization dynamics, complex networks topology, and spectral graph analysis.

  3. Public-channel cryptography using chaos synchronization.

    PubMed

    Klein, Einat; Mislovaty, Rachel; Kanter, Ido; Kinzel, Wolfgang

    2005-07-01

    We present a key-exchange protocol that comprises two parties with chaotic dynamics that are mutually coupled and undergo a synchronization process, at the end of which they can use their identical dynamical state as an encryption key. The transferred coupling- signals are based nonlinearly on time-delayed states of the parties, and therefore they conceal the parties' current state and can be transferred over a public channel. Synchronization time is linear in the number of synchronized digits alpha, while the probability for an attacker to synchronize with the parties drops exponentially with alpha. To achieve security with finite alpha we use a network.

  4. Variety of synchronous regimes in neuronal ensembles.

    PubMed

    Komarov, M A; Osipov, G V; Suykens, J A K

    2008-09-01

    We consider a Hodgkin-Huxley-type model of oscillatory activity in neurons of the snail Helix pomatia. This model has a distinctive feature: It demonstrates multistability in oscillatory and silent modes that is typical for the thalamocortical neurons. A single neuron cell can demonstrate a variety of oscillatory activity: Regular and chaotic spiking and bursting behavior. We study collective phenomena in small and large arrays of nonidentical cells coupled by models of electrical and chemical synapses. Two single elements coupled by electrical coupling show different types of synchronous behavior, in particular in-phase and antiphase synchronous regimes. In an ensemble of three inhibitory synaptically coupled elements, the phenomenon of sequential synchronous dynamics is observed. We study the synchronization phenomena in the chain of nonidentical neurons at different oscillatory behavior coupled with electrical and chemical synapses. Various regimes of phase synchronization are observed: (i) Synchronous regular and chaotic spiking; (ii) synchronous regular and chaotic bursting; and (iii) synchronous regular and chaotic bursting with different numbers of spikes inside the bursts. We detect and study the effect of collective synchronous burst generation due to the cluster formation and the oscillatory death.

  5. When inhibition not excitation synchronizes neural firing.

    PubMed

    Van Vreeswijk, C; Abbott, L F; Ermentrout, G B

    1994-12-01

    Excitatory and inhibitory synaptic coupling can have counter-intuitive effects on the synchronization of neuronal firing. While it might appear that excitatory coupling would lead to synchronization, we show that frequently inhibition rather than excitation synchronizes firing. We study two identical neurons described by integrate-and-fire models, general phase-coupled models or the Hodgkin-Huxley model with mutual, non-instantaneous excitatory or inhibitory synapses between them. We find that if the rise time of the synapse is longer than the duration of an action potential, inhibition not excitation leads to synchronized firing.

  6. Tape-recorded Lectures With Slide Synchronization

    ERIC Educational Resources Information Center

    Goodhue, D.

    1969-01-01

    Describes "Taped Explanation Slide Synchronization" programs used for individual study or group showing in college zoology. Discusses preparation of programs, class organization, equipment, and costs. (EB)

  7. Coupled lasers: phase versus chaos synchronization.

    PubMed

    Reidler, I; Nixon, M; Aviad, Y; Guberman, S; Friesem, A A; Rosenbluh, M; Davidson, N; Kanter, I

    2013-10-15

    The synchronization of chaotic lasers and the optical phase synchronization of light originating in multiple coupled lasers have both been extensively studied. However, the interplay between these two phenomena, especially at the network level, is unexplored. Here, we experimentally compare these phenomena by controlling the heterogeneity of the coupling delay times of two lasers. While chaotic lasers exhibit deterioration in synchronization as the time delay heterogeneity increases, phase synchronization is found to be independent of heterogeneity. The experimental results are found to be in agreement with numerical simulations for semiconductor lasers.

  8. Tape-recorded Lectures With Slide Synchronization

    ERIC Educational Resources Information Center

    Goodhue, D.

    1969-01-01

    Describes "Taped Explanation Slide Synchronization" programs used for individual study or group showing in college zoology. Discusses preparation of programs, class organization, equipment, and costs. (EB)

  9. Pilotless Frame Synchronization Using LDPC Code Constraints

    NASA Technical Reports Server (NTRS)

    Jones, Christopher; Vissasenor, John

    2009-01-01

    A method of pilotless frame synchronization has been devised for low- density parity-check (LDPC) codes. In pilotless frame synchronization , there are no pilot symbols; instead, the offset is estimated by ex ploiting selected aspects of the structure of the code. The advantag e of pilotless frame synchronization is that the bandwidth of the sig nal is reduced by an amount associated with elimination of the pilot symbols. The disadvantage is an increase in the amount of receiver data processing needed for frame synchronization.

  10. Phase synchronization of two anharmonic nanomechanical oscillators.

    PubMed

    Matheny, Matthew H; Grau, Matt; Villanueva, Luis G; Karabalin, Rassul B; Cross, M C; Roukes, Michael L

    2014-01-10

    We investigate the synchronization of oscillators based on anharmonic nanoelectromechanical resonators. Our experimental implementation allows unprecedented observation and control of parameters governing the dynamics of synchronization. We find close quantitative agreement between experimental data and theory describing reactively coupled Duffing resonators with fully saturated feedback gain. In the synchronized state we demonstrate a significant reduction in the phase noise of the oscillators, which is key for sensor and clock applications. Our work establishes that oscillator networks constructed from nanomechanical resonators form an ideal laboratory to study synchronization--given their high-quality factors, small footprint, and ease of cointegration with modern electronic signal processing technologies.

  11. Synchronization of fractional order complex dynamical networks

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Li, Tianzeng

    2015-06-01

    In this letter the synchronization of complex dynamical networks with fractional order chaotic nodes is studied. A fractional order controller for synchronization of complex network is presented. Some new sufficient synchronization criteria are proposed based on the Lyapunov stability theory and the LaSalle invariance principle. These synchronization criteria can apply to an arbitrary fractional order complex network in which the coupling-configuration matrix and the inner-coupling matrix are not assumed to be symmetric or irreducible. It means that this method is more general and effective. Numerical simulations of two fractional order complex networks demonstrate the universality and the effectiveness of the proposed method.

  12. Map synchronization in optical communication systems

    NASA Technical Reports Server (NTRS)

    Gagliardi, R. M.; Mohanty, N.

    1973-01-01

    The time synchronization problem in an optical communication system is approached as a problem of estimating the arrival time (delay variable) of a known transmitted field. Maximum aposteriori (MAP) estimation procedures are used to generate optimal estimators, with emphasis placed on their interpretation as a practical system device, Estimation variances are used to aid in the design of the transmitter signals for best synchronization. Extension is made to systems that perform separate acquisition and tracking operations during synchronization. The closely allied problem of maintaining timing during pulse position modulation is also considered. The results have obvious application to optical radar and ranging systems, as well as the time synchronization problem.

  13. Chaotic synchronization of coupled ergodic maps.

    PubMed

    Sterling, D. G.

    2001-03-01

    With few exceptions, studies of chaotic synchronization have focused on dissipative chaos. Though less well known, chaotic systems that lack dissipation may also synchronize. Motivated by an application in communication systems, we couple a family of ergodic maps on the N-torus and study the global stability of the synchronous state. While most trajectories synchronize at some time, there is a measure zero set that never synchronizes. We give explicit examples of these asynchronous orbits in dimensions two and four. On more typical trajectories, the synchronization error reaches arbitrarily small values and, in practice, converges. In dimension two we derive bounds on the average synchronization time for trajectories resulting from randomly chosen initial conditions. Numerical experiments suggest similar bounds exist in higher dimensions as well. Adding noise to the coupling signal destroys the invariance of the synchronous state and causes typical trajectories to desynchronize. We propose a modification of the standard coupling scheme that corrects this problem resulting in robust synchronization in the presence of noise.

  14. Formal development of a clock synchronization circuit

    NASA Technical Reports Server (NTRS)

    Miner, Paul S.

    1995-01-01

    This talk presents the latest stage in formal development of a fault-tolerant clock synchronization circuit. The development spans from a high level specification of the required properties to a circuit realizing the core function of the system. An abstract description of an algorithm has been verified to satisfy the high-level properties using the mechanical verification system EHDM. This abstract description is recast as a behavioral specification input to the Digital Design Derivation system (DDD) developed at Indiana University. DDD provides a formal design algebra for developing correct digital hardware. Using DDD as the principle design environment, a core circuit implementing the clock synchronization algorithm was developed. The design process consisted of standard DDD transformations augmented with an ad hoc refinement justified using the Prototype Verification System (PVS) from SRI International. Subsequent to the above development, Wilfredo Torres-Pomales discovered an area-efficient realization of the same function. Establishing correctness of this optimization requires reasoning in arithmetic, so a general verification is outside the domain of both DDD transformations and model-checking techniques. DDD represents digital hardware by systems of mutually recursive stream equations. A collection of PVS theories was developed to aid in reasoning about DDD-style streams. These theories include a combinator for defining streams that satisfy stream equations, and a means for proving stream equivalence by exhibiting a stream bisimulation. DDD was used to isolate the sub-system involved in Torres-Pomales' optimization. The equivalence between the original design and the optimized verified was verified in PVS by exhibiting a suitable bisimulation. The verification depended upon type constraints on the input streams and made extensive use of the PVS type system. The dependent types in PVS provided a useful mechanism for defining an appropriate bisimulation.

  15. Increased Entorhinal–Prefrontal Theta Synchronization Parallels Decreased Entorhinal–Hippocampal Theta Synchronization during Learning and Consolidation of Associative Memory

    PubMed Central

    Takehara-Nishiuchi, Kaori; Maal-Bared, Geith; Morrissey, Mark D.

    2012-01-01

    Memories are thought to be encoded as a distributed representation in the neocortex. The medial prefrontal cortex (mPFC) has been shown to support the expression of memories that initially depend on the hippocampus (HPC), yet the mechanisms by which the HPC and mPFC access the distributed representations in the neocortex are unknown. By measuring phase synchronization of local field potential (LFP) oscillations, we found that learning initiated changes in neuronal communication of the HPC and mPFC with the lateral entorhinal cortex (LEC), an area that is connected with many other neocortical regions. LFPs were recorded simultaneously from the three brain regions while rats formed an association between an auditory stimulus (CS) and eyelid stimulation (US) in a trace eyeblink conditioning paradigm, as well as during retention 1 month following learning. Over the course of learning, theta oscillations in the LEC and mPFC became strongly synchronized following presentation of the CS on trials in which rats exhibited a conditioned response (CR), and this strengthened synchronization was also observed during remote retention. In contrast, CS-evoked theta synchronization between the LEC and HPC decreased with learning. Our results suggest that communication between the LEC and mPFC are strengthened with learning whereas the communication between the LEC and HPC are concomitantly weakened, suggesting that enhanced LEC–mPFC communication may be a neuronal correlate for theoretically proposed neocortical reorganization accompanying encoding and consolidation of a memory. PMID:22319482

  16. Coronal Modeling and Synchronic Maps

    NASA Astrophysics Data System (ADS)

    Linker, Jon A.; Lionello, R.; Mikic, Z.; Riley, P.; Downs, C.; Henney, C. J.; Arge, C.

    2013-07-01

    MHD simulations of the solar corona rely on maps of the solar magnetic field (typically measured at the photosphere) for input as boundary conditions. These "synoptic" maps (available from a number of ground-based and space-based solar observatories), which are perhaps better described as "diachronic," are built up over a solar rotation. A well-known problem with this approach is that the maps contain data that is as much as 27 days old. The Sun's magnetic flux is always evolving, and these changes in the flux affect coronal and heliospheric structure. Flux evolution models can in principle provide a more accurate specification, by estimating the likely state of the photospheric magnetic field on unobserved portions of the Sun. The Air Force Data Assimilative Photospheric flux Transport (ADAPT) model (Arge et al. 2010), which incorporates data assimilation techniques into the Worden and Harvey (2000) flux evolution model, is especially well-suited for this purpose. In this presentation we describe the use of such "synchronic" maps with coronal models. We compare results using synchronic maps versus the traditional synoptic maps. Research supported by AFOSR, NASA, and NSF.

  17. Gait synchronization in Caenorhabditis elegans

    PubMed Central

    Yuan, Jinzhou; Raizen, David M.; Bau, Haim H.

    2014-01-01

    Collective motion is observed in swarms of swimmers of various sizes, ranging from self-propelled nanoparticles to fish. The mechanisms that govern interactions among individuals are debated, and vary from one species to another. Although the interactions among relatively large animals, such as fish, are controlled by their nervous systems, the interactions among microorganisms, which lack nervous systems, are controlled through physical and chemical pathways. Little is known, however, regarding the mechanism of collective movements in microscopic organisms with nervous systems. To attempt to remedy this, we studied collective swimming behavior in the nematode Caenorhabditis elegans, a microorganism with a compact nervous system. We evaluated the contributions of hydrodynamic forces, contact forces, and mechanosensory input to the interactions among individuals. We devised an experiment to examine pair interactions as a function of the distance between the animals and observed that gait synchronization occurred only when the animals were in close proximity, independent of genes required for mechanosensation. Our measurements and simulations indicate that steric hindrance is the dominant factor responsible for motion synchronization in C. elegans, and that hydrodynamic interactions and genotype do not play a significant role. We infer that a similar mechanism may apply to other microscopic swimming organisms and self-propelled particles. PMID:24778261

  18. High accuracy time transfer synchronization

    NASA Technical Reports Server (NTRS)

    Wheeler, Paul J.; Koppang, Paul A.; Chalmers, David; Davis, Angela; Kubik, Anthony; Powell, William M.

    1995-01-01

    In July 1994, the U.S. Naval Observatory (USNO) Time Service System Engineering Division conducted a field test to establish a baseline accuracy for two-way satellite time transfer synchronization. Three Hewlett-Packard model 5071 high performance cesium frequency standards were transported from the USNO in Washington, DC to Los Angeles, California in the USNO's mobile earth station. Two-Way Satellite Time Transfer links between the mobile earth station and the USNO were conducted each day of the trip, using the Naval Research Laboratory(NRL) designed spread spectrum modem, built by Allen Osborne Associates(AOA). A Motorola six channel GPS receiver was used to track the location and altitude of the mobile earth station and to provide coordinates for calculating Sagnac corrections for the two-way measurements, and relativistic corrections for the cesium clocks. This paper will discuss the trip, the measurement systems used and the results from the data collected. We will show the accuracy of using two-way satellite time transfer for synchronization and the performance of the three HP 5071 cesium clocks in an operational environment.

  19. Synchronizing with music: intercultural differences.

    PubMed

    Drake, Carolyn; Ben El Heni, Jamel

    2003-11-01

    The way in which listeners perceive music changes throughout childhood, but little is known about the factors responsible for these changes. One factor, explicit music training, has received considerable attention, with studies indicating that musicians demonstrate a more complex hierarchical mental representation for music and superior temporal organizational skills. But does acculturation-the passive exposure to a particular type of music since birth-also influence the acquisition of these skills? We compared the music synchronization performance of Tunisian and French subjects with music from these two contrasting musical cultures. Twelve musical excerpts were selected from the two popular music cultures, matched for perceived tempo, complexity, and familiarity, and subjects were asked to tap in time with the music. Tapping mode (rate and hierarchical level) varied with subjects' familiarity with the musical idiom, as evidenced by an interaction between musical culture and type of music: participants synchronized at higher hierarchical levels (and over a wider range) with music from their own culture than with an unfamiliar type of music. Thus, passive acculturation as well as explicit music tuition influence our perception and cognition of music.

  20. Driving and braking control of PM synchronous motor based on low-resolution hall sensor for battery electric vehicle

    NASA Astrophysics Data System (ADS)

    Gu, Jing; Ouyang, Minggao; Li, Jianqiu; Lu, Dongbin; Fang, Chuan; Ma, Yan

    2013-01-01

    Resolvers are normally employed for rotor positioning in motors for electric vehicles, but resolvers are expensive and vulnerable to vibrations. Hall sensors have the advantages of low cost and high reliability, but the positioning accuracy is low. Motors with Hall sensors are typically controlled by six-step commutation algorithm, which brings high torque ripple. This paper studies the high-performance driving and braking control of the in-wheel permanent magnetic synchronous motor (PMSM) based on low-resolution Hall sensors. Field oriented control (FOC) based on Hall-effect sensors is developed to reduce the torque ripple. The positioning accuracy of the Hall sensors is improved by interpolation between two consecutive Hall signals using the estimated motor speed. The position error from the misalignment of the Hall sensors is compensated by the precise calibration of Hall transition timing. The braking control algorithms based on six-step commutation and FOC are studied. Two variants of the six-step commutation braking control, namely, half-bridge commutation and full-bridge commutation, are discussed and compared, which shows that the full-bridge commutation could better explore the potential of the back electro-motive forces (EMF), thus can deliver higher efficiency and smaller current ripple. The FOC braking is analyzed with the phasor diagrams. At a given motor speed, the motor turns from the regenerative braking mode into the plug braking mode if the braking torque exceeds a certain limit, which is proportional to the motor speed. Tests in the dynamometer show that a smooth control could be realized by FOC driving control and the highest efficiency and the smallest current ripple could be achieved by FOC braking control, compared to six-step commutation braking control. Therefore, FOC braking is selected as the braking control algorithm for electric vehicles. The proposed research ensures a good motor control performance while maintaining low cost and high

  1. Emotional speech synchronizes brains across listeners and engages large-scale dynamic brain networks

    PubMed Central

    Nummenmaa, Lauri; Saarimäki, Heini; Glerean, Enrico; Gotsopoulos, Athanasios; Jääskeläinen, Iiro P.; Hari, Riitta; Sams, Mikko

    2014-01-01

    Speech provides a powerful means for sharing emotions. Here we implement novel intersubject phase synchronization and whole-brain dynamic connectivity measures to show that networks of brain areas become synchronized across participants who are listening to emotional episodes in spoken narratives. Twenty participants' hemodynamic brain activity was measured with functional magnetic resonance imaging (fMRI) while they listened to 45-s narratives describing unpleasant, neutral, and pleasant events spoken in neutral voice. After scanning, participants listened to the narratives again and rated continuously their feelings of pleasantness–unpleasantness (valence) and of arousal–calmness. Instantaneous intersubject phase synchronization (ISPS) measures were computed to derive both multi-subject voxel-wise similarity measures of hemodynamic activity and inter-area functional dynamic connectivity (seed-based phase synchronization, SBPS). Valence and arousal time series were subsequently used to predict the ISPS and SBPS time series. High arousal was associated with increased ISPS in the auditory cortices and in Broca's area, and negative valence was associated with enhanced ISPS in the thalamus, anterior cingulate, lateral prefrontal, and orbitofrontal cortices. Negative valence affected functional connectivity of fronto-parietal, limbic (insula, cingulum) and fronto-opercular circuitries, and positive arousal affected the connectivity of the striatum, amygdala, thalamus, cerebellum, and dorsal frontal cortex. Positive valence and negative arousal had markedly smaller effects. We propose that high arousal synchronizes the listeners' sound-processing and speech-comprehension networks, whereas negative valence synchronizes circuitries supporting emotional and self-referential processing. PMID:25128711

  2. Using Synchronous Technology to Enrich Student Learning

    ERIC Educational Resources Information Center

    Wang, Charles Xiaoxue; Jaeger, David; Liu, Jinxia; Guo, Xiaoning; Xie, Nan

    2013-01-01

    To explore the potential applications of synchronous technology to enrich student learning, faculty members from an American regional state university and a Chinese regional university collaborated to find appropriate ways to integrate synchronous technology (e.g., Adobe Connect) into an educational technology program in the American university…

  3. Examining Interactivity in Synchronous Virtual Classrooms

    ERIC Educational Resources Information Center

    Martin, Florence; Parker, Michele A.; Deale, Deborah F.

    2012-01-01

    Interaction is crucial to student satisfaction in online courses. Adding synchronous components (virtual classroom technologies) to online courses can facilitate interaction. In this study, interaction within a synchronous virtual classroom was investigated by surveying 21 graduate students in an instructional technology program in the…

  4. Multiple-access channels without synchronization

    NASA Technical Reports Server (NTRS)

    Mceliece, R. J.; Posner, E. C.

    1977-01-01

    This paper discusses models for multiple-access communications which take into account the fact that the channel users may not be able to synchronize their transmissions. It is shown that for a broad class of such channels, the capacity region is the same as it would be with user synchronization. Some open problems are discussed.

  5. Complexity in synchronized and non-synchronized states: A comparative analysis and application

    NASA Astrophysics Data System (ADS)

    Palit, Sanjay K.; Fataf, Nur Aisyah Abdul; Md Said, Mohd Rushdan; Mukherjee, Sayan; Banerjee, Santo

    2017-07-01

    This analysis shows the dynamics of a hyperchaotic system changes from its original state to a synchronized state with nonlinear controller. The decreasing complexity of the coupled systems also quantifies the loss of information from its original state to the synchronized state. We proposed and modified a chaos synchronization based secure communication scheme to implement in case of non synchronization. The scheme is designed and illustrated using examples and simulations. Security analysis of the proposed scheme is also investigated. This analysis gives a new direction on chaos based cryptography in case of the coupled systems completely in non synchronized state.

  6. Complexity in synchronized and non-synchronized states: A comparative analysis and application

    NASA Astrophysics Data System (ADS)

    Palit, Sanjay K.; Fataf, Nur Aisyah Abdul; Said, Mohd Rushdan Md; Mukherjee, Sayan; Banerjee, Santo

    2017-01-01

    This analysis shows the dynamics of a hyperchaotic system changes from its original state to a synchronized state with nonlinear controller. The decreasing complexity of the coupled systems also quantifies the loss of information from its original state to the synchronized state. We proposed and modified a chaos synchronization based secure communication scheme to implement in case of non synchronization. The scheme is designed and illustrated using examples and simulations. Security analysis of the proposed scheme is also investigated. This analysis gives a new direction on chaos based cryptography in case of the coupled systems completely in non synchronized state.

  7. Partially synchronized states in an ensemble of chemo-mechanical oscillators

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Verma, Dinesh Kumar; Parmananda, P.

    2017-08-01

    Partially synchronized (clustered) states are defined as coexisting coherent (synchronized) and incoherent (unsynchronized) domains in an ensemble of interacting oscillators. We report these clustered states in experiments involving an ensemble of sixteen mercury beating heart (MBH) oscillators. These oscillators interact via resistors and are subjected to two different network schemes: 1) All to all and 2) Nonlocal. For the all to all network, the coupling strengths were inhomogeneously distributed, whereas for the nonlocal network scenario, each oscillator was coupled, with an identical coupling strength, with four of its nearest neighbors in either direction. For both of these network schemes, partially synchronized states results into grouping of these oscillators, wherein some oscillators are synchronized and rest are unsynchronized. For all to all network, the partially synchronized states are observed, for the intermediate inhomogeneities, when subjected to the power law and the 'U' shape profiles of coupling strengths. Irrespective of the coupling profile chosen, low inhomogeneities in the coupling strengths leaves all the oscillators in a single coherent state whereas for the high inhomogeneities scenarios oscillators are located in the incoherent domain. In comparison, for the nonlocal network partially synchronized states emerge when the coupling constant is appropriately chosen. The experimental results for both these network scenarios have been analyzed using the redox time series (chemical activity) and the time evolution of the normalized areas for the mercury drop (mechanical activity). The existence of partially synchronized states in the experiments was verified using different diagnostic tools such as time series plot, space-time plot and average frequency.

  8. Amplitude dynamics favors synchronization in complex networks

    PubMed Central

    Gambuzza, Lucia Valentina; Gómez-Gardeñes, Jesus; Frasca, Mattia

    2016-01-01

    In this paper we study phase synchronization in random complex networks of coupled periodic oscillators. In particular, we show that, when amplitude dynamics is not negligible, phase synchronization may be enhanced. To illustrate this, we compare the behavior of heterogeneous units with both amplitude and phase dynamics and pure (Kuramoto) phase oscillators. We find that in small network motifs the behavior crucially depends on the topology and on the node frequency distribution. Surprisingly, the microscopic structures for which the amplitude dynamics improves synchronization are those that are statistically more abundant in random complex networks. Thus, amplitude dynamics leads to a general lowering of the synchronization threshold in arbitrary random topologies. Finally, we show that this synchronization enhancement is generic of oscillators close to Hopf bifurcations. To this aim we consider coupled FitzHugh-Nagumo units modeling neuron dynamics. PMID:27108847

  9. Decoder synchronization for deep space missions

    NASA Technical Reports Server (NTRS)

    Statman, J. I.; Cheung, K.-M.; Chauvin, T. H.; Rabkin, J.; Belongie, M. L.

    1994-01-01

    The Consultative Committee for Space Data Standards (CCSDS) recommends that space communication links employ a concatenated, error-correcting, channel-coding system in which the inner code is a convolutional (7,1/2) code and the outer code is a (255,223) Reed-Solomon code. The traditional implementation is to perform the node synchronization for the Viterbi decoder and the frame synchronization for the Reed-Solomon decoder as separate, sequential operations. This article discusses a unified synchronization technique that is required for deep space missions that have data rates and signal-to-noise ratios (SNR's) that are extremely low. This technique combines frame synchronization in the bit and symbol domains and traditional accumulated-metric growth techniques to establish a joint frame and node synchronization. A variation on this technique is used for the Galileo spacecraft on its Jupiter-bound mission.

  10. Clustering versus non-clustering phase synchronizations

    SciTech Connect

    Liu, Shuai; Zhan, Meng

    2014-03-15

    Clustering phase synchronization (CPS) is a common scenario to the global phase synchronization of coupled dynamical systems. In this work, a novel scenario, the non-clustering phase synchronization (NPS), is reported. It is found that coupled systems do not transit to the global synchronization until a certain sufficiently large coupling is attained, and there is no clustering prior to the global synchronization. To reveal the relationship between CPS and NPS, we further analyze the noise effect on coupled phase oscillators and find that the coupled oscillator system can change from CPS to NPS with the increase of noise intensity or system disorder. These findings are expected to shed light on the mechanism of various intriguing self-organized behaviors in coupled systems.

  11. Transient performance of permanent magnet synchronous motors

    NASA Astrophysics Data System (ADS)

    Borger, W. U.

    The performance of a permanent magnet synchronous machine is presented for transient conditions including: starting, load application and load removal. The machine studied possesses asynchronous torque for starting as well as synchronous torque for high efficiency and high power factor during normal operation. The transient performance of the synchronous machine is compared with a high efficiency induction machine of the same rating. The comparison presented is strictly analytical and is approached by developing the required equations for the idealized synchronous and induction machines. Solutions for the equations are approximated on the digital computer. Although the study is not universal in scope, it shows that the permanent magnet synchronous motor rivals the induction machine in weight and in transient performance while at the same time besting the induction machine from an efficiency and power factor standpoint.

  12. Chaos synchronization in networks of semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Li, Wen; Aviad, Yaara; Reidler, Igor; Song, Helun; Huang, Yuyang; Biermann, Klaus; Rosenbluh, Michael; Zhang, Yaohui; Grahn, Holger T.; Kanter, Ido

    2015-11-01

    Chaos synchronization has been demonstrated as a useful building block for various tasks in secure communications, including a source of all-electronic ultrafast physical random number generators based on room temperature spontaneous chaotic oscillations in a DC-biased weakly coupled GaAs/Al0.45Ga0.55As semiconductor superlattice (SSL). Here, we experimentally demonstrate the emergence of several types of chaos synchronization, e.g. leader-laggard, face-to-face and zero-lag synchronization in network motifs of coupled SSLs consisting of unidirectional and mutual coupling as well as self-feedback coupling. Each type of synchronization clearly reflects the symmetry of the topology of its network motif. The emergence of a chaotic SSL without external feedback and synchronization among different structured SSLs open up the possibility for advanced secure multi-user communication methods based on large networks of coupled SSLs.

  13. Amplitude dynamics favors synchronization in complex networks

    NASA Astrophysics Data System (ADS)

    Gambuzza, Lucia Valentina; Gómez-Gardeñes, Jesus; Frasca, Mattia

    2016-04-01

    In this paper we study phase synchronization in random complex networks of coupled periodic oscillators. In particular, we show that, when amplitude dynamics is not negligible, phase synchronization may be enhanced. To illustrate this, we compare the behavior of heterogeneous units with both amplitude and phase dynamics and pure (Kuramoto) phase oscillators. We find that in small network motifs the behavior crucially depends on the topology and on the node frequency distribution. Surprisingly, the microscopic structures for which the amplitude dynamics improves synchronization are those that are statistically more abundant in random complex networks. Thus, amplitude dynamics leads to a general lowering of the synchronization threshold in arbitrary random topologies. Finally, we show that this synchronization enhancement is generic of oscillators close to Hopf bifurcations. To this aim we consider coupled FitzHugh-Nagumo units modeling neuron dynamics.

  14. [Synchronous carcinoma of the colorectum].

    PubMed

    Pisciotta, M; Gulotta, G; Profita, G; Amoroso, S; Mineo, R; Rodolico, V

    1991-06-30

    The incidence of synchronous carcinoma of the large intestine is rising in relation to a greater oncogenic environmental charge and increased average life expectancy. There is also a constant risk of not recognising the disease, especially in the case of small carcinoma and, to a greater extent, in patients operated during the occlusive phase. Having underlined the diagnostic value of a correct preparation of the colon prior to instrumental tests, the authors emphasise the importance of a careful intraoperative exploration of the viscera, its preliminary confinement in occluded subjects and repeated surgery in the event of doubts regarding the monolocation of the tumour. Lastly, they underline the importance of postoperative radiological and endoscopic controls since these tests mark both the successful outcome of treatment and the start of follow-up.

  15. Synchronous computer mediated group discussion.

    PubMed

    Gallagher, Peter

    2005-01-01

    Over the past 20 years, focus groups have become increasingly popular with nursing researchers as a data collection method, as has the use of computer-based technologies to support all forms of nursing research. This article describes the conduct of a series of focus groups in which the participants were in the same room as part of a "real-time" discussion during which they also used personal computers as an interface between each other and the moderator. Synchronous Computer Mediated Group Discussion differed from other forms of focus group discussion in that participants used personal computers rather than verbal expressions to respond to specific questions, engage in communication with other participants, and to record their thoughts. This form of focus group maintained many of the features of spoken exchanges, a cornerstone of the focus group, while capturing the advantages of online discussion.

  16. Probing scale interaction in brain dynamics through synchronization

    PubMed Central

    Barardi, Alessandro; Malagarriga, Daniel; Sancristobal, Belén; Garcia-Ojalvo, Jordi; Pons, Antonio J.

    2014-01-01

    The mammalian brain operates in multiple spatial scales simultaneously, ranging from the microscopic scale of single neurons through the mesoscopic scale of cortical columns, to the macroscopic scale of brain areas. These levels of description are associated with distinct temporal scales, ranging from milliseconds in the case of neurons to tens of seconds in the case of brain areas. Here, we examine theoretically how these spatial and temporal scales interact in the functioning brain, by considering the coupled behaviour of two mesoscopic neural masses (NMs) that communicate with each other through a microscopic neuronal network (NN). We use the synchronization between the two NM models as a tool to probe the interaction between the mesoscopic scales of those neural populations and the microscopic scale of the mediating NN. The two NM oscillators are taken to operate in a low-frequency regime with different peak frequencies (and distinct dynamical behaviour). The microscopic neuronal population, in turn, is described by a network of several thousand excitatory and inhibitory spiking neurons operating in a synchronous irregular regime, in which the individual neurons fire very sparsely but collectively give rise to a well-defined rhythm in the gamma range. Our results show that this NN, which operates at a fast temporal scale, is indeed sufficient to mediate coupling between the two mesoscopic oscillators, which evolve dynamically at a slower scale. We also establish how this synchronization depends on the topological properties of the microscopic NN, on its size and on its oscillation frequency. PMID:25180311

  17. Damage visualization using synchronized noncontact laser ultrasonic scanning

    NASA Astrophysics Data System (ADS)

    Liu, Peipei; Sunarsa, Timotius Yonathan; Sohn, Hoon

    2016-04-01

    This paper presents a damage visualization technique using a fully noncontact laser ultrasonic measurement system and a synchronized scanning strategy. The noncontact laser ultrasonic measurement system is composed of a Q-switched Nd:YAG laser for ultrasonic wave generation and a laser Doppler vibrometer (LDV) for ultrasonic wave detection. The laser beams for ultrasonic wave generation and detection are shot on the target structure with a constant and tiny distance, and these two laser beams are synchronously moved over the scanning area. Compared with conventional laser scanning strategies, the ultrasonic responses detected through the synchronized scanning strategy owns a much higher and more stable signal to noise ratio and the scanning time can be significantly reduced with less time averaging. By spatial comparison in the scanning area, damage can be detected and visualized without relying on baseline data obtained from the pristine condition of the target structure. In this paper, the developed technique is validated by visualization hidden corrosion in a steel straight pipe and a steel elbow pipe.

  18. Probing scale interaction in brain dynamics through synchronization.

    PubMed

    Barardi, Alessandro; Malagarriga, Daniel; Sancristobal, Belén; Garcia-Ojalvo, Jordi; Pons, Antonio J

    2014-10-05

    The mammalian brain operates in multiple spatial scales simultaneously, ranging from the microscopic scale of single neurons through the mesoscopic scale of cortical columns, to the macroscopic scale of brain areas. These levels of description are associated with distinct temporal scales, ranging from milliseconds in the case of neurons to tens of seconds in the case of brain areas. Here, we examine theoretically how these spatial and temporal scales interact in the functioning brain, by considering the coupled behaviour of two mesoscopic neural masses (NMs) that communicate with each other through a microscopic neuronal network (NN). We use the synchronization between the two NM models as a tool to probe the interaction between the mesoscopic scales of those neural populations and the microscopic scale of the mediating NN. The two NM oscillators are taken to operate in a low-frequency regime with different peak frequencies (and distinct dynamical behaviour). The microscopic neuronal population, in turn, is described by a network of several thousand excitatory and inhibitory spiking neurons operating in a synchronous irregular regime, in which the individual neurons fire very sparsely but collectively give rise to a well-defined rhythm in the gamma range. Our results show that this NN, which operates at a fast temporal scale, is indeed sufficient to mediate coupling between the two mesoscopic oscillators, which evolve dynamically at a slower scale. We also establish how this synchronization depends on the topological properties of the microscopic NN, on its size and on its oscillation frequency.

  19. Fault Location Based on Synchronized Measurements: A Comprehensive Survey

    PubMed Central

    Al-Mohammed, A. H.; Abido, M. A.

    2014-01-01

    This paper presents a comprehensive survey on transmission and distribution fault location algorithms that utilize synchronized measurements. Algorithms based on two-end synchronized measurements and fault location algorithms on three-terminal and multiterminal lines are reviewed. Series capacitors equipped with metal oxide varistors (MOVs), when set on a transmission line, create certain problems for line fault locators and, therefore, fault location on series-compensated lines is discussed. The paper reports the work carried out on adaptive fault location algorithms aiming at achieving better fault location accuracy. Work associated with fault location on power system networks, although limited, is also summarized. Additionally, the nonstandard high-frequency-related fault location techniques based on wavelet transform are discussed. Finally, the paper highlights the area for future research. PMID:24701191

  20. Fault location based on synchronized measurements: a comprehensive survey.

    PubMed

    Al-Mohammed, A H; Abido, M A

    2014-01-01

    This paper presents a comprehensive survey on transmission and distribution fault location algorithms that utilize synchronized measurements. Algorithms based on two-end synchronized measurements and fault location algorithms on three-terminal and multiterminal lines are reviewed. Series capacitors equipped with metal oxide varistors (MOVs), when set on a transmission line, create certain problems for line fault locators and, therefore, fault location on series-compensated lines is discussed. The paper reports the work carried out on adaptive fault location algorithms aiming at achieving better fault location accuracy. Work associated with fault location on power system networks, although limited, is also summarized. Additionally, the nonstandard high-frequency-related fault location techniques based on wavelet transform are discussed. Finally, the paper highlights the area for future research.

  1. High-order synchronization of hair cell bundles

    NASA Astrophysics Data System (ADS)

    Levy, Michael; Molzon, Adrian; Lee, Jae-Hyun; Kim, Ji-Wook; Cheon, Jinwoo; Bozovic, Dolores

    2016-12-01

    Auditory and vestibular hair cell bundles exhibit active mechanical oscillations at natural frequencies that are typically lower than the detection range of the corresponding end organs. We explore how these noisy nonlinear oscillators mode-lock to frequencies higher than their internal clocks. A nanomagnetic technique is used to stimulate the bundles without an imposed mechanical load. The evoked response shows regimes of high-order mode-locking. Exploring a broad range of stimulus frequencies and intensities, we observe regions of high-order synchronization, analogous to Arnold Tongues in dynamical systems literature. Significant areas of overlap occur between synchronization regimes, with the bundle intermittently flickering between different winding numbers. We demonstrate how an ensemble of these noisy spontaneous oscillators could be entrained to efficiently detect signals significantly above the characteristic frequencies of the individual cells.

  2. Postmovement beta synchronization in patients with Parkinson's disease.

    PubMed

    Pfurtscheller, G; Pichler-Zalaudek, K; Ortmayr, B; Diez, J; Reisecker, F

    1998-05-01

    Event-related synchronization (ERS) after self-paced, voluntary brisk movement of the right and left thumb was studied in 17 patients with Parkinson's disease (PD) and 17 age-matched control subjects. All patients were receiving L-DOPA and/or DOPA-agonists. The movement-offset-triggered EEG data were analyzed in the 12- to 16-Hz, 16- to 20-Hz, and 20- to 24-Hz bands for eight time intervals after termination of movement. Significant differences in postmovement beta synchronization were observed in all three frequency bands. As compared with the control group, patients with PD showed a remarkably smaller beta ERS. This was the overall main effect for groups, as well as for interactions concerning side of movement and electrode positions. If beta ERS is a measure of recovery of the primary motor area after movement, our results indicate that this ability is impaired in PD patients.

  3. Chimera states and synchronization in magnetically driven SQUID metamaterials

    NASA Astrophysics Data System (ADS)

    Hizanidis, J.; Lazarides, N.; Neofotistos, G.; Tsironis, G. P.

    2016-09-01

    One-dimensional arrays of Superconducting QUantum Interference Devices (SQUIDs) form magnetic metamaterials exhibiting extraordinary properties, including tunability, dynamic multistability, negative magnetic permeability, and broadband transparency. The SQUIDs in a metamaterial interact through non-local, magnetic dipole-dipole forces, that makes it possible for multiheaded chimera states and coexisting patterns, including solitary states, to appear. The spontaneous emergence of chimera states and the role of multistability is demonstrated numerically for a SQUID metamaterial driven by an alternating magnetic field. The spatial synchronization and temporal complexity are discussed and the parameter space for the global synchronization reveals the areas of coherence-incoherence transition. Given that both one- and two-dimensional SQUID metamaterials have been already fabricated and investigated in the lab, the presence of a chimera state could in principle be detected with presently available experimental set-ups.

  4. High-order synchronization of hair cell bundles

    PubMed Central

    Levy, Michael; Molzon, Adrian; Lee, Jae-Hyun; Kim, Ji-wook; Cheon, Jinwoo; Bozovic, Dolores

    2016-01-01

    Auditory and vestibular hair cell bundles exhibit active mechanical oscillations at natural frequencies that are typically lower than the detection range of the corresponding end organs. We explore how these noisy nonlinear oscillators mode-lock to frequencies higher than their internal clocks. A nanomagnetic technique is used to stimulate the bundles without an imposed mechanical load. The evoked response shows regimes of high-order mode-locking. Exploring a broad range of stimulus frequencies and intensities, we observe regions of high-order synchronization, analogous to Arnold Tongues in dynamical systems literature. Significant areas of overlap occur between synchronization regimes, with the bundle intermittently flickering between different winding numbers. We demonstrate how an ensemble of these noisy spontaneous oscillators could be entrained to efficiently detect signals significantly above the characteristic frequencies of the individual cells. PMID:27974743

  5. Synchronization to a bouncing ball with a realistic motion trajectory.

    PubMed

    Gan, Lingyu; Huang, Yingyu; Zhou, Liang; Qian, Cheng; Wu, Xiang

    2015-07-07

    Daily music experience involves synchronizing movements in time with a perceived periodic beat. It has been established for over a century that beat synchronization is less stable for the visual than for the auditory modality. This auditory advantage of beat synchronization gives rise to the hypotheses that the neural and evolutionary mechanisms underlying beat synchronization are modality-specific. Here, however, we found that synchronization to a periodically bouncing ball with a realistic motion trajectory was not less stable than synchronization to an auditory metronome. This finding challenges the auditory advantage of beat synchronization, and has important implications for the understanding of the biological substrates of beat synchronization.

  6. Subthalamic stimulation modulates cortical motor network activity and synchronization in Parkinson's disease.

    PubMed

    Weiss, Daniel; Klotz, Rosa; Govindan, Rathinaswamy B; Scholten, Marlieke; Naros, Georgios; Ramos-Murguialday, Ander; Bunjes, Friedemann; Meisner, Christoph; Plewnia, Christian; Krüger, Rejko; Gharabaghi, Alireza

    2015-03-01

    Dynamic modulations of large-scale network activity and synchronization are inherent to a broad spectrum of cognitive processes and are disturbed in neuropsychiatric conditions including Parkinson's disease. Here, we set out to address the motor network activity and synchronization in Parkinson's disease and its modulation with subthalamic stimulation. To this end, 20 patients with idiopathic Parkinson's disease with subthalamic nucleus stimulation were analysed on externally cued right hand finger movements with 1.5-s interstimulus interval. Simultaneous recordings were obtained from electromyography on antagonistic muscles (right flexor digitorum and extensor digitorum) together with 64-channel electroencephalography. Time-frequency event-related spectral perturbations were assessed to determine cortical and muscular activity. Next, cross-spectra in the time-frequency domain were analysed to explore the cortico-cortical synchronization. The time-frequency modulations enabled us to select a time-frequency range relevant for motor processing. On these time-frequency windows, we developed an extension of the phase synchronization index to quantify the global cortico-cortical synchronization and to obtain topographic differentiations of distinct electrode sites with respect to their contributions to the global phase synchronization index. The spectral measures were used to predict clinical and reaction time outcome using regression analysis. We found that movement-related desynchronization of cortical activity in the upper alpha and beta range was significantly facilitated with 'stimulation on' compared to 'stimulation off' on electrodes over the bilateral parietal, sensorimotor, premotor, supplementary-motor, and prefrontal areas, including the bilateral inferior prefrontal areas. These spectral modulations enabled us to predict both clinical and reaction time improvement from subthalamic stimulation. With 'stimulation on', interhemispheric cortico

  7. System Synchronizes Recordings from Separated Video Cameras

    NASA Technical Reports Server (NTRS)

    Nail, William; Nail, William L.; Nail, Jasper M.; Le, Doung T.

    2009-01-01

    A system of electronic hardware and software for synchronizing recordings from multiple, physically separated video cameras is being developed, primarily for use in multiple-look-angle video production. The system, the time code used in the system, and the underlying method of synchronization upon which the design of the system is based are denoted generally by the term "Geo-TimeCode(TradeMark)." The system is embodied mostly in compact, lightweight, portable units (see figure) denoted video time-code units (VTUs) - one VTU for each video camera. The system is scalable in that any number of camera recordings can be synchronized. The estimated retail price per unit would be about $350 (in 2006 dollars). The need for this or another synchronization system external to video cameras arises because most video cameras do not include internal means for maintaining synchronization with other video cameras. Unlike prior video-camera-synchronization systems, this system does not depend on continuous cable or radio links between cameras (however, it does depend on occasional cable links lasting a few seconds). Also, whereas the time codes used in prior video-camera-synchronization systems typically repeat after 24 hours, the time code used in this system does not repeat for slightly more than 136 years; hence, this system is much better suited for long-term deployment of multiple cameras.

  8. Global interactions, information flow, and chaos synchronization.

    PubMed

    Paredes, G; Alvarez-Llamoza, O; Cosenza, M G

    2013-10-01

    We investigate the relationship between the emergence of chaos synchronization and the information flow in dynamical systems possessing homogeneous or heterogeneous global interactions whose origin can be external (driven systems) or internal (autonomous systems). By employing general models of coupled chaotic maps for such systems, we show that the presence of a homogeneous global field, either external or internal, for all times is not indispensable for achieving complete or generalized synchronization in a system of chaotic elements. Complete synchronization can also appear with heterogeneous global fields; it does not requires the simultaneous sharing of the field by all the elements in a system. We use the normalized mutual information and the information transfer between global and local variables to characterize complete and generalized synchronization. We show that these information measures can characterize both types of synchronized states and also allow us to discern the origin of a global interaction field. A synchronization state emerges when a sufficient amount of information provided by a field is shared by all the elements in the system, on the average over long times. Thus, the maximum value of the top-down information transfer can be used as a predictor of synchronization in a system, as a parameter is varied.

  9. Periodic and Aperiodic Synchronization in Skilled Action

    PubMed Central

    Cummins, Fred

    2011-01-01

    Synchronized action is considered as a manifestation of shared skill. Most synchronized behaviors in humans and other animals are based on periodic repetition. Aperiodic synchronization of complex action is found in the experimental task of synchronous speaking, in which naive subjects read a common text in lock step. The demonstration of synchronized behavior without a periodic basis is presented as a challenge for theoretical understanding. A unified treatment of periodic and aperiodic synchronization is suggested by replacing the sequential processing model of cognitivist approaches with the more local notion of a task-specific sensorimotor coordination. On this view, skilled action is the imposition of constraints on the co-variation of movement and sensory flux such that the boundary conditions that define the skill are met. This non-cognitivist approach originates in the work of John Dewey. It allows a unification of the treatment of sensorimotor synchronization in simple rhythmic behavior and in complex skilled behavior and it suggests that skill sharing is a uniquely human trait of considerable import. PMID:22232583

  10. Periodic and aperiodic synchronization in skilled action.

    PubMed

    Cummins, Fred

    2011-01-01

    Synchronized action is considered as a manifestation of shared skill. Most synchronized behaviors in humans and other animals are based on periodic repetition. Aperiodic synchronization of complex action is found in the experimental task of synchronous speaking, in which naive subjects read a common text in lock step. The demonstration of synchronized behavior without a periodic basis is presented as a challenge for theoretical understanding. A unified treatment of periodic and aperiodic synchronization is suggested by replacing the sequential processing model of cognitivist approaches with the more local notion of a task-specific sensorimotor coordination. On this view, skilled action is the imposition of constraints on the co-variation of movement and sensory flux such that the boundary conditions that define the skill are met. This non-cognitivist approach originates in the work of John Dewey. It allows a unification of the treatment of sensorimotor synchronization in simple rhythmic behavior and in complex skilled behavior and it suggests that skill sharing is a uniquely human trait of considerable import.

  11. An extended active control for chaos synchronization

    NASA Astrophysics Data System (ADS)

    Tang, Rong-An; Liu, Ya-Li; Xue, Ju-Kui

    2009-04-01

    By introducing a control strength matrix, the active control theory in chaotic synchronization is developed. With this extended method, chaos complete synchronization can be achieved more easily, i.e., a much smaller control signal is enough to reach synchronization in most cases. Numerical simulations on Rossler, Liu's four-scroll, and Chen system confirmed this and show that the synchronization result depends on the control strength significantly. Especially, in the case of Liu and Chen systems, the response systems' largest Lyapunov exponents' variation with the control strength is not monotone and there exist minima. It is novel for Chen system that the synchronization speed with a special small strength is higher than that of the usual active control which, as a special case of the extended method, has a much larger control strength. All these results indicate that the control strength is an important factor in the actual synchronization. So, with this extended active control, one can make a better and more practical synchronization scheme by adjusting the control strength matrix.

  12. V123 BEAM SYNCHRONOUS ENCODER MODULE.

    SciTech Connect

    KERNER,T.; CONKLING,C.R.; OERTER,B.

    1999-03-29

    The V123 Synchronous Encoder Module transmits events to distributed trigger modules and embedded decoders around the RHIC rings where they are used to provide beam instrumentation triggers [1,2,3]. The RHIC beam synchronous event link hardware is mainly comprised of three VMEbus board designs, the central input modules (V201), and encoder modules (V123), and the distributed trigger modules (V124). Two beam synchronous links, one for each ring, are distributed via fiber optics and fanned out via twisted wire pair cables. The V123 synchronizes with the RF system clock derived from the beam bucket frequency and a revolution fiducial pulse. The RF system clock is used to create the beam synchronous event link carrier and events are synchronized with the rotation fiducial. A low jitter RF clock is later recovered from this carrier by phase lock loops in the trigger modules. Prioritized hardware and software triggers fill up to 15 beam event code transmission slots per revolution while tracking the ramping RF acceleration frequency and storage frequency. The revolution fiducial event is always the first event transmitted which is used to synchronize the firing of the abort kicker and to locate the first bucket for decoders distributed about the ring.

  13. Physiological Synchronization in a Vigilance Dual Task.

    PubMed

    Guastello, Stephen J

    2016-01-01

    The synchronization of autonomic arousal levels and other physio-logical responses between people is a potentially important component of work team performance, client-therapist relationships, and other types of human interaction. This study addressed several problems: What statistical models are viable for identifying synchronization for loosely coupled human systems? How is the level of synchronization related to psychosocial variables such as empathy, subjective ratings of workload, and actual performance? Participants were 70 undergraduates who worked in pairs on a vigilance dual task in which they watched a virtual reality security camera, rang a bell when they saw the target intruder, and completed a jig-saw puzzle. Event rates either increased or decreased during the 90 min work period. The average R2 values for each person were .66, .66, .62, and .53 for the linear autoregressive model, linear autoregressive model with a synchronization component, the nonlinear autoregressive model, and the nonlinear autoregressive model with a synchronization component, respectively. All models were more accurate at a lag of 20 sec compared to 50 sec or customized lag lengths. Although the linear models were more accurate overall, the nonlinear synchronization parameters were more often related to psychological variables and performance. In particular, greater synchronization was observed with the nonlinear model when the target event rate increased, compared to when it decreased, which was expected from the general theory of synchronization. Nonlinear models were also more effective for uncovering inhibitory or dampening relationships between the co-workers as well as mutually excitatory relationships. Future research should explore the comparative model results for tasks that induce higher levels of synchronization and involve different types of internal group coordination.

  14. Synchronization of Boolean Networks with Different Update Schemes.

    PubMed

    Zhang, Hao; Wang, Xingyuan; Lin, Xiaohui

    2014-01-01

    In this paper, the synchronizations of Boolean networks with different update schemes (synchronized Boolean networks and asynchronous Boolean networks) are investigated. All nodes in Boolean network are represented in terms of semi-tensor product. First, we give the concept of inner synchronization and observe that all nodes in a Boolean network are synchronized with each other. Second, we investigate the outer synchronization between a driving Boolean network and a corresponding response Boolean network. We provide not only the concept of traditional complete synchronization, but also the anti-synchronization and get the anti-synchronization in simulation. Third, we extend the outer synchronization to asynchronous Boolean network and get the complete synchronization between an asynchronous Boolean network and a response Boolean network. Consequently, theorems for synchronization of Boolean networks and asynchronous Boolean networks are derived. Examples are provided to show the correctness of our theorems.

  15. Using GLONASS signal for clock synchronization

    NASA Technical Reports Server (NTRS)

    Gouzhva, Yuri G.; Gevorkyan, Arvid G.; Bogdanov, Pyotr P.; Ovchinnikov, Vitaly V.

    1994-01-01

    Although in accuracy parameters GLONASS is correlated with GPS, using GLONASS signals for high-precision clock synchronization was, up to the recent time, of limited utility due to the lack of specialized time receivers. In order to improve this situation, in late 1992 the Russian Institute of Radionavigation and Time (RMT) began to develop a GLONASS time receiver using as a basis the airborne ASN-16 receiver. This paper presents results of estimating user clock synchronization accuracy via GLONASS signals using ASN-16 receiver in the direct synchronization and common-view modes.

  16. Synchronization Phenomena and Epoch Filter of Electroencephalogram

    NASA Astrophysics Data System (ADS)

    Matani, Ayumu

    Nonlinear electrophysiological synchronization phenomena in the brain, such as event-related (de)synchronization, long distance synchronization, and phase-reset, have received much attention in neuroscience over the last decade. These phenomena contain more electrical than physiological keywords and actually require electrical techniques to capture with electroencephalography (EEG). For instance, epoch filters, which have just recently been proposed, allow us to investigate such phenomena. Moreover, epoch filters are still developing and would hopefully generate a new paradigm in neuroscience from an electrical engineering viewpoint. Consequently, electrical engineers could be interested in EEG once again or from now on.

  17. Synchronization System for Next Generation Light Sources

    SciTech Connect

    Zavriyev, Anton

    2014-03-27

    An alternative synchronization technique – one that would allow explicit control of the pulse train including its repetition rate and delay is clearly desired. We propose such a scheme. Our method is based on optical interferometry and permits synchronization of the pulse trains generated by two independent mode-locked lasers. As the next generation x-ray sources will be driven by a clock signal derived from a mode-locked optical source, our technique will provide a way to synchronize x-ray probe with the optical pump pulses.

  18. Synchronous Behavior of Two Coupled Biological Neurons

    SciTech Connect

    Elson, R.C.; Selverston, A.I.; Elson, R.C.; Selverston, A.I.; Huerta, R.; Rulkov, N.F.; Rabinovich, M.I.; Abarbanel, H.D.; Selverston, A.I.; Huerta, R.; Abarbanel, H.D.

    1998-12-01

    We report experimental studies of synchronization phenomena in a pair of biological neurons that interact through naturally occurring, electrical coupling. When these neurons generate irregular bursts of spikes, the natural coupling synchronizes slow oscillations of membrane potential, but not the fast spikes. By adding artificial electrical coupling we studied transitions between synchrony and asynchrony in both slow oscillations and fast spikes. We discuss the dynamics of bursting and synchronization in living neurons with distributed functional morphology. {copyright} {ital 1998} {ital The American Physical Society}

  19. Synchronization Of Parallel Discrete Event Simulations

    NASA Technical Reports Server (NTRS)

    Steinman, Jeffrey S.

    1992-01-01

    Adaptive, parallel, discrete-event-simulation-synchronization algorithm, Breathing Time Buckets, developed in Synchronous Parallel Environment for Emulation and Discrete Event Simulation (SPEEDES) operating system. Algorithm allows parallel simulations to process events optimistically in fluctuating time cycles that naturally adapt while simulation in progress. Combines best of optimistic and conservative synchronization strategies while avoiding major disadvantages. Algorithm processes events optimistically in time cycles adapting while simulation in progress. Well suited for modeling communication networks, for large-scale war games, for simulated flights of aircraft, for simulations of computer equipment, for mathematical modeling, for interactive engineering simulations, and for depictions of flows of information.

  20. Quantum Clock Synchronization with a Single Qudit

    PubMed Central

    Tavakoli, Armin; Cabello, Adán; Żukowski, Marek; Bourennane, Mohamed

    2015-01-01

    Clock synchronization for nonfaulty processes in multiprocess networks is indispensable for a variety of technologies. A reliable system must be able to resynchronize the nonfaulty processes upon some components failing causing the distribution of incorrect or conflicting information in the network. The task of synchronizing such networks is related to Byzantine agreement (BA), which can classically be solved using recursive algorithms if and only if less than one-third of the processes are faulty. Here we introduce a nonrecursive quantum algorithm, based on a quantum solution of the detectable BA, which achieves clock synchronization in the presence of arbitrary many faulty processes by using only a single quantum system. PMID:25613754

  1. Synchronization of stochastic oscillators in biochemical systems.

    PubMed

    Challenger, Joseph D; McKane, Alan J

    2013-07-01

    We investigate the synchronization of stochastic oscillations in biochemical models by calculating the complex coherence function within the linear noise approximation. The method is illustrated on a simple example and then applied to study the synchronization of chemical concentrations in social amoeba. The degree to which variation of rate constants in different cells and the volume of the cells affects synchronization of the oscillations is explored and the phase lag calculated. In all cases the analytical results are shown to be in good agreement with those obtained through numerical simulations.

  2. Are feedback loops destructive to synchronization?

    NASA Astrophysics Data System (ADS)

    Sheshbolouki, A.; Zarei, M.; Sarbazi-Azad, H.

    2015-08-01

    We study the effects of directionality on synchronization of dynamical networks. Performing the linear stability analysis and the numerical simulation of the Kuramoto model in directed networks, we show that balancing in- and out-degrees of all nodes enhances the synchronization of sparse networks, especially in networks with high clustering coefficient and homogeneous degree distribution. Furthermore, by omitting all the feedback loops, we show that while hierarchical directed acyclic graphs are structurally highly synchronizable, their global synchronization is too sensitive to the choice of natural frequencies and is strongly affected by noise.

  3. Gamma-band synchronization in visual cortex predicts speed of change detection.

    PubMed

    Womelsdorf, Thilo; Fries, Pascal; Mitra, Partha P; Desimone, Robert

    2006-02-09

    Our capacity to process and respond behaviourally to multiple incoming stimuli is very limited. To optimize the use of this limited capacity, attentional mechanisms give priority to behaviourally relevant stimuli at the expense of irrelevant distractors. In visual areas, attended stimuli induce enhanced responses and an improved synchronization of rhythmic neuronal activity in the gamma frequency band (40-70 Hz). Both effects probably improve the neuronal signalling of attended stimuli within and among brain areas. Attention also results in improved behavioural performance and shortened reaction times. However, it is not known how reaction times are related to either response strength or gamma-band synchronization in visual areas. Here we show that behavioural response times to a stimulus change can be predicted specifically by the degree of gamma-band synchronization among those neurons in monkey visual area V4 that are activated by the behaviourally relevant stimulus. When there are two visual stimuli and monkeys have to detect a change in one stimulus while ignoring the other, their reactions are fastest when the relevant stimulus induces strong gamma-band synchronization before and after the change in stimulus. This enhanced gamma-band synchronization is also followed by shorter neuronal response latencies on the fast trials. Conversely, the monkeys' reactions are slowest when gamma-band synchronization is high in response to the irrelevant distractor. Thus, enhanced neuronal gamma-band synchronization and shortened neuronal response latencies to an attended stimulus seem to have direct effects on visually triggered behaviour, reflecting an early neuronal correlate of efficient visuo-motor integration.

  4. From synchronous neuronal discharges to subjective awareness?

    PubMed

    John, E Roy

    2005-01-01

    For practical clinical purposes, as well as because of their deep philosophical implications, it becomes increasingly important to be aware of contemporary studies of the brain mechanisms that generate subjective experiences. Current research has progressed to the point where plausible theoretical proposals can be made about the neurophysiological and neurochemical processes which mediate perception and sustain subjective awareness. An adequate theory of consciousness must describe how information about the environment is encoded by the exogenous system, how memories are stored in the endogenous system and released appropriately for the present circumstances, how the exogenous and endogenous systems interact to produce perception, and explain how consciousness arises from that interaction. Evidence assembled from a variety of neuroscience areas, together with the invariant reversible electrophysiological changes observed with loss and return of consciousness in anesthesia as well as distinctive quantitative electroencephalographic profiles of various psychiatric disorders, provides an empirical foundation for this theory of consciousness. This evidence suggests the need for a paradigm shift to explain how the brain accomplishes the transformation from synchronous and distributed neuronal discharges to seamless global subjective awareness. This chapter undertakes to provide a detailed description and explanation of these complex processes by experimental evidence marshaled from a wide variety of sources.

  5. Suppressing explosive synchronization by contrarians

    NASA Astrophysics Data System (ADS)

    Zhang, Xiyun; Guan, Shuguang; Zou, Yong; Chen, Xiaosong; Liu, Zonghua

    2016-01-01

    Explosive synchronization (ES) has recently received increasing attention and studies have mainly focused on the conditions of its onset so far. However, its inverse problem, i.e. the suppression of ES, has not been systematically studied so far. As ES is usually considered to be harmful in certain circumstances such as the cascading failure of power grids and epileptic seizure, etc., its suppression is definitely important and deserves to be studied. We here study this inverse problem by presenting an efficient approach to suppress ES from a first-order to second-order transition, without changing the intrinsic network structure. We find that ES can be suppressed by only changing a small fraction of oscillators into contrarians with negative couplings and the critical fraction for the transition from the first order to the second order increases with both the network size and the average degree. A brief theory is presented to explain the underlying mechanism. This finding underlines the importance of our method to improve the understanding of neural interactions underlying cognitive processes.

  6. Artificial apnea classification with quantitative sleep EEG synchronization.

    PubMed

    Akṣahin, Mehmet; Aydın, Serap; Fırat, Hikmet; Eroǧul, Osman

    2012-02-01

    In the present study, both linear and nonlinear EEG synchronization methods so called Coherence Function (CF) and Mutual Information (MI) are performed to obtain high quality signal features in discriminating the Central Sleep Apnea (CSA) and Obstructive Sleep Apnea (OSA) from controls. For this purpose, sleep EEG series recorded from patients and healthy volunteers are classified by using several Feed Forward Neural Network (FFNN) architectures with respect to synchronic activities between C3 and C4 recordings. Among the sleep stages, stage2 is considered in tests. The NN approaches are trained with several numbers of neurons and hidden layers. The results show that the degree of central EEG synchronization during night sleep is closely related to sleep disorders like CSA and OSA. The MI and CF give us cooperatively meaningful information to support clinical findings. Those three groups determined with an expert physician can be classified by addressing two hidden layers with very low absolute error where the average area of CF curves ranged form 0 to 10 Hz and the average MI values are assigned as two features. In a future work, these two features can be combined to create an integrated single feature for error free apnea classification.

  7. Synchronization-based approach for detecting functional activation of brain

    NASA Astrophysics Data System (ADS)

    Hong, Lei; Cai, Shi-Min; Zhang, Jie; Zhuo, Zhao; Fu, Zhong-Qian; Zhou, Pei-Ling

    2012-09-01

    In this paper, we investigate a synchronization-based, data-driven clustering approach for the analysis of functional magnetic resonance imaging (fMRI) data, and specifically for detecting functional activation from fMRI data. We first define a new measure of similarity between all pairs of data points (i.e., time series of voxels) integrating both complete phase synchronization and amplitude correlation. These pairwise similarities are taken as the coupling between a set of Kuramoto oscillators, which in turn evolve according to a nearest-neighbor rule. As the network evolves, similar data points naturally synchronize with each other, and distinct clusters will emerge. The clustering behavior of the interaction network of the coupled oscillators, therefore, mirrors the clustering property of the original multiple time series. The clustered regions whose cross-correlation coefficients are much greater than other regions are considered as the functionally activated brain regions. The analysis of fMRI data in auditory and visual areas shows that the recognized brain functional activations are in complete correspondence with those from the general linear model of statistical parametric mapping, but with a significantly lower time complexity. We further compare our results with those from traditional K-means approach, and find that our new clustering approach can distinguish between different response patterns more accurately and efficiently than the K-means approach, and therefore more suitable in detecting functional activation from event-related experimental fMRI data.

  8. Synchronous brain activity across individuals underlies shared psychological perspectives

    PubMed Central

    Lahnakoski, Juha M.; Glerean, Enrico; Jääskeläinen, Iiro P.; Hyönä, Jukka; Hari, Riitta; Sams, Mikko; Nummenmaa, Lauri

    2014-01-01

    For successful communication, we need to understand the external world consistently with others. This task requires sufficiently similar cognitive schemas or psychological perspectives that act as filters to guide the selection, interpretation and storage of sensory information, perceptual objects and events. Here we show that when individuals adopt a similar psychological perspective during natural viewing, their brain activity becomes synchronized in specific brain regions. We measured brain activity with functional magnetic resonance imaging (fMRI) from 33 healthy participants who viewed a 10-min movie twice, assuming once a ‘social’ (detective) and once a ‘non-social’ (interior decorator) perspective to the movie events. Pearson's correlation coefficient was used to derive multisubject voxelwise similarity measures (inter-subject correlations; ISCs) of functional MRI data. We used k-nearest-neighbor and support vector machine classifiers as well as a Mantel test on the ISC matrices to reveal brain areas wherein ISC predicted the participants' current perspective. ISC was stronger in several brain regions—most robustly in the parahippocampal gyrus, posterior parietal cortex and lateral occipital cortex—when the participants viewed the movie with similar rather than different perspectives. Synchronization was not explained by differences in visual sampling of the movies, as estimated by eye gaze. We propose that synchronous brain activity across individuals adopting similar psychological perspectives could be an important neural mechanism supporting shared understanding of the environment. PMID:24936687

  9. Minimal model for spontaneous quantum synchronization

    NASA Astrophysics Data System (ADS)

    Benedetti, Claudia; Galve, Fernando; Mandarino, Antonio; Paris, Matteo G. A.; Zambrini, Roberta

    2016-11-01

    We show the emergence of spontaneous synchronization between a pair of detuned quantum oscillators within a harmonic network. Our model does not involve any nonlinearity, driving, or external dissipation, thus providing the simplest scenario for the occurrence of local coherent dynamics in an extended harmonic system. A sufficient condition for synchronization is established by building upon the Rayleigh normal mode approach to vibrational systems. Our results show that mechanisms favoring synchronization, even between oscillators that are not directly coupled to each other, are transient energy depletion and crosstalk. We also address the possible buildup of quantum correlations during synchronization and show that indeed entanglement may be generated in detuned systems, starting from uncorrelated states and without any direct coupling between the two oscillators.

  10. Method and system for downhole clock synchronization

    DOEpatents

    Hall, David R.; Bartholomew, David B.; Johnson, Monte; Moon, Justin; Koehler, Roger O.

    2006-11-28

    A method and system for use in synchronizing at least two clocks in a downhole network are disclosed. The method comprises determining a total signal latency between a controlling processing element and at least one downhole processing element in a downhole network and sending a synchronizing time over the downhole network to the at least one downhole processing element adjusted for the signal latency. Electronic time stamps may be used to measure latency between processing elements. A system for electrically synchronizing at least two clocks connected to a downhole network comprises a controlling processing element connected to a synchronizing clock in communication over a downhole network with at least one downhole processing element comprising at least one downhole clock. Preferably, the downhole network is integrated into a downhole tool string.

  11. Slot synchronization in optical PPM communications

    NASA Astrophysics Data System (ADS)

    Ling, Ger; Gagliardi, Robert M.

    1986-12-01

    Maintaining slot clock synchronization in a baseband pulse position modulated (PPM) communication link is vital to its performance. This paper examines the slot clocking design associated with a direct detection, photodetecting optical PPM system. Although theoretical PPM synchronizers for optical links have been derived in the past, there is still interest in finding more practical, simpler, and easier-to-implement clocking subsystems. In this paper several types of practical slot synchronizers are considered. A basic design involving analog correlators and slot gating is presented, along with an indication of its performance. Several alternative designs are also presented, including digital synchronizers in which time samples are used for loop control. The advantage in digital systems is that more extensive processing can be handled in software, allowing the loop to perform closer to the ideal. Design procedures for digital clocking are presented, and optimal laser pulse shaping and filtering are discussed. Performance in terms of loop models and tracking error variance is included.

  12. Visual Feedback Leader-following Attitude Synchronization

    NASA Astrophysics Data System (ADS)

    Ibuki, Tatsuya; Hatanaka, Takeshi; Fujita, Masayuki

    In this paper we investigate visual feedback attitude synchronization in leader-follower type visibility structures on the Special Euclidean group SE(3). We first define visual robotic networks consisting of the dynamics describing rigid body motion, visibility structures among bodies and visual measurements. We then propose a visual feedback attitude synchronization law combining a vision-based observer with the attitude synchronization law presented in our previous works. We then prove that when the leader does not rotate, the visual robotic network with the control law achieves visual feedback attitude synchronization. Moreover, for a rotating leader, we evaluate the tracking performance of the other bodies. In analysis, we employ the notion of input-to-state stability and L2-gain performance regarding the leader’s angular velocity as an external disturbance. Finally, the validity of the proposed control law and the analysis is demonstrated through simulations.

  13. Synchronization of spin torque nano-oscillators

    NASA Astrophysics Data System (ADS)

    Turtle, James; Buono, Pietro-Luciano; Palacios, Antonio; Dabrowski, Christine; In, Visarath; Longhini, Patrick

    2017-04-01

    Synchronization of spin torque nano-oscillators (STNOs) has been a subject of extensive research as various groups try to harness the collective power of STNOs to produce a strong enough microwave signal at the nanoscale. Achieving synchronization has proven to be, however, rather difficult for even small arrays while in larger ones the task of synchronization has eluded theorists and experimentalists altogether. In this work we solve the synchronization problem, analytically and computationally, for networks of STNOs connected in series. The procedure is valid for networks of arbitrary size and it is readily extendable to other network topologies. These results should help guide future experiments and, eventually, lead to the design and fabrication of a nanoscale microwave signal generator.

  14. Modified impulsive synchronization of hyperchaotic systems

    NASA Astrophysics Data System (ADS)

    Haeri, Mohammad; Dehghani, Mahsa

    2010-03-01

    In an original impulsive synchronization only instantaneous errors are used to determine the impulsive inputs. To improve the synchronization performance, addition of an integral term of the errors is proposed here. In comparison with the original form, the proposed modification increases the impulse distances which leads to reduction in the control cost as the most important characteristic of the impulsive synchronization technique. It can also decrease the error magnitude in the presence of noise. Sufficient conditions are presented through four theorems for different situations (nominal, uncertain, noisy, and noisy uncertain cases) under which stability of the error dynamics is guaranteed. Results from computer based simulations are provided to illustrate feasibility and effectiveness of the modified impulsive synchronization method applied on Rossler hyperchaotic systems.

  15. Synchronous correlation matrices and Connes’ embedding conjecture

    SciTech Connect

    Dykema, Kenneth J.; Paulsen, Vern

    2016-01-15

    In the work of Paulsen et al. [J. Funct. Anal. (in press); preprint arXiv:1407.6918], the concept of synchronous quantum correlation matrices was introduced and these were shown to correspond to traces on certain C*-algebras. In particular, synchronous correlation matrices arose in their study of various versions of quantum chromatic numbers of graphs and other quantum versions of graph theoretic parameters. In this paper, we develop these ideas further, focusing on the relations between synchronous correlation matrices and microstates. We prove that Connes’ embedding conjecture is equivalent to the equality of two families of synchronous quantum correlation matrices. We prove that if Connes’ embedding conjecture has a positive answer, then the tracial rank and projective rank are equal for every graph. We then apply these results to more general non-local games.

  16. Synchronization of coupled nonidentical genetic oscillators

    NASA Astrophysics Data System (ADS)

    Li, Chunguang; Chen, Luonan; Aihara, Kazuyuki

    2006-03-01

    The study of the collective dynamics of synchronization among genetic oscillators is essential for the understanding of the rhythmic phenomena of living organisms at both molecular and cellular levels. Genetic oscillators are biochemical networks, which can generally be modelled as nonlinear dynamic systems. We show in this paper that many genetic oscillators can be transformed into Lur'e form by exploiting the special structure of biological systems. By using a control theory approach, we provide a theoretical method for analysing the synchronization of coupled nonidentical genetic oscillators. Sufficient conditions for the synchronization as well as the estimation of the bound of the synchronization error are also obtained. To demonstrate the effectiveness of our theoretical results, a population of genetic oscillators based on the Goodwin model are adopted as numerical examples.

  17. Synchronization of Arbitrarily Switched Boolean Networks.

    PubMed

    Chen, Hongwei; Liang, Jinling; Huang, Tingwen; Cao, Jinde

    2017-03-01

    This paper investigates the complete synchronization problem for the drive-response switched Boolean networks (SBNs) under arbitrary switching signals, where the switching signals of the response SBN follow those generated by the drive SBN at each time instant. First, the definition of complete synchronization is introduced for the drive-response SBNs under arbitrary switching signals. Second, the concept of switching reachable set starting from a given initial state set is put forward. Based on it, a necessary and sufficient condition is derived for the complete synchronization of the drive-response SBNs. Last, we give a simple algebraic expression for the switching reachable set in a given number of time steps, and two computable algebraic criteria are obtained for the complete synchronization of the SBNs. A biological example is given to demonstrate the effectiveness of the obtained main results.

  18. Optimal Synchronization of a Memristive Chaotic Circuit

    NASA Astrophysics Data System (ADS)

    Kountchou, Michaux; Louodop, Patrick; Bowong, Samuel; Fotsin, Hilaire; Kurths, Jurgen

    2016-06-01

    This paper deals with the problem of optimal synchronization of two identical memristive chaotic systems. We first study some basic dynamical properties and behaviors of a memristor oscillator with a simple topology. An electronic circuit (analog simulator) is proposed to investigate the dynamical behavior of the system. An optimal synchronization strategy based on the controllability functions method with a mixed cost functional is investigated. A finite horizon is explicitly computed such that the chaos synchronization is achieved at an established time. Numerical simulations are presented to verify the effectiveness of the proposed synchronization strategy. Pspice analog circuit implementation of the complete master-slave-controller systems is also presented to show the feasibility of the proposed scheme.

  19. Amplitude envelope synchronization in coupled chaotic oscillators.

    PubMed

    Gonzalez-Miranda, J M

    2002-03-01

    A peculiar type of synchronization has been found when two Van der Pol-Duffing oscillators, evolving in different chaotic attractors, are coupled. As the coupling increases, the frequencies of the two oscillators remain different, while a synchronized modulation of the amplitudes of a signal of each system develops, and a null Lyapunov exponent of the uncoupled systems becomes negative and gradually larger in absolute value. This phenomenon is characterized by an appropriate correlation function between the returns of the signals, and interpreted in terms of the mutual excitation of new frequencies in the oscillators power spectra. This form of synchronization also occurs in other systems, but it shows up mixed with or screened by other forms of synchronization, as illustrated in this paper by means of the examples of the dynamic behavior observed for three other different models of chaotic oscillators.

  20. Synchronization in complex networks with adaptive coupling

    NASA Astrophysics Data System (ADS)

    Zhang, Rong; Hu, Manfeng; Xu, Zhenyuan

    2007-08-01

    Generally it is very difficult to realized synchronization for some complex networks. In order to synchronize, the coupling coefficient of networks has to be very large, especially when the number of coupled nodes is larger. In this Letter, we consider the problem of synchronization in complex networks with adaptive coupling. A new concept about asymptotic stability is presented, then we proved by using the well-known LaSalle invariance principle, that the state of such a complex network can synchronize an arbitrary assigned state of an isolated node of the network as long as the feedback gain is positive. Unified system is simulated as the nodes of adaptive coupling complex networks with different topologies.

  1. Asymmetry-induced synchronization in oscillator networks

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanzhao; Nishikawa, Takashi; Motter, Adilson E.

    2017-06-01

    A scenario has recently been reported in which in order to stabilize complete synchronization of an oscillator network—a symmetric state—the symmetry of the system itself has to be broken by making the oscillators nonidentical. But how often does such behavior—which we term asymmetry-induced synchronization (AISync)—occur in oscillator networks? Here we present the first general scheme for constructing AISync systems and demonstrate that this behavior is the norm rather than the exception in a wide class of physical systems that can be seen as multilayer networks. Since a symmetric network in complete synchrony is the basic building block of cluster synchronization in more general networks, AISync should be common also in facilitating cluster synchronization by breaking the symmetry of the cluster subnetworks.

  2. High Efficiency Synchronous Rectification in Spacecraft

    NASA Technical Reports Server (NTRS)

    Krauhamer, S.; Das, R.; Vorperian, V.; White, J.; Bennett, J.; Rogers, D.

    1993-01-01

    This paper examines the implementaion of MOSFETs as synchronous rectifiers which results in a substantial improvement in power processing efficency and therefore may result in significant reduction of spacecraft mass and volum for the same payload.

  3. Synchronized flow in oversaturated city traffic.

    PubMed

    Kerner, Boris S; Klenov, Sergey L; Hermanns, Gerhard; Hemmerle, Peter; Rehborn, Hubert; Schreckenberg, Michael

    2013-11-01

    Based on numerical simulations with a stochastic three-phase traffic flow model, we reveal that moving queues (moving jams) in oversaturated city traffic dissolve at some distance upstream of the traffic signal while transforming into synchronized flow. It is found that, as in highway traffic [Kerner, Phys. Rev. E 85, 036110 (2012)], such a jam-absorption effect in city traffic is explained by a strong driver's speed adaptation: Time headways (space gaps) between vehicles increase upstream of a moving queue (moving jam), resulting in moving queue dissolution. It turns out that at given traffic signal parameters, the stronger the speed adaptation effect, the shorter the mean distance between the signal location and the road location at which moving queues dissolve fully and oversaturated traffic consists of synchronized flow only. A comparison of the synchronized flow in city traffic found in this Brief Report with synchronized flow in highway traffic is made.

  4. Synchronization phenomena in nephron-nephron interaction

    NASA Astrophysics Data System (ADS)

    Holstein-Rathlou, Niels-Henrik; Yip, Kay-Pong; Sosnovtseva, Olga V.; Mosekilde, Erik

    2001-06-01

    Experimental data for tubular pressure oscillations in rat kidneys are analyzed in order to examine the different types of synchronization that can arise between neighboring functional units. For rats with normal blood pressure, the individual unit (the nephron) typically exhibits regular oscillations in its tubular pressure and flow variations. For such rats, both in-phase and antiphase synchronization can be demonstrated in the experimental data. For spontaneously hypertensive rats, where the pressure variations in the individual nephrons are highly irregular, signs of chaotic phase and frequency synchronization can be observed. Accounting for a hemodynamic as well as for a vascular coupling between nephrons that share a common interlobular artery, we develop a mathematical model of the pressure and flow regulation in a pair of adjacent nephrons. We show that this model, for appropriate values of the parameters, can reproduce the different types of experimentally observed synchronization.

  5. Synchronization in networks of mobile oscillators.

    PubMed

    Fujiwara, Naoya; Kurths, Jürgen; Díaz-Guilera, Albert

    2011-02-01

    We present a model of synchronization in networks of autonomous agents where the topology changes due to agents motion. We introduce two timescales, one for the topological change and another one for local synchronization. If the former scale is much shorter, an approximation that averages out the effect of motion is available. Here we show, however, that the time required for synchronization achievement is larger than the prediction of the approximation in the opposite case, especially close to the continuum percolation transition point. The simulation results are confirmed by means of spectral analysis of the time-dependent Laplacian matrix. Our results show that the tradeoff between these two timescales, which have opposite effects on synchronization, should be taken into account for the design of mobile device networks.

  6. Chaos synchronization of general complex dynamical networks

    NASA Astrophysics Data System (ADS)

    Lü, Jinhu; Yu, Xinghuo; Chen, Guanrong

    2004-03-01

    Recently, it has been demonstrated that many large-scale complex dynamical networks display a collective synchronization motion. Here, we introduce a time-varying complex dynamical network model and further investigate its synchronization phenomenon. Based on this new complex network model, two network chaos synchronization theorems are proved. We show that the chaos synchronization of a time-varying complex network is determined by means of the inner coupled link matrix, the eigenvalues and the corresponding eigenvectors of the coupled configuration matrix, rather than the conventional eigenvalues of the coupled configuration matrix for a uniform network. Especially, we do not assume that the coupled configuration matrix is symmetric and its off-diagonal elements are nonnegative, which in a way generalizes the related results existing in the literature.

  7. Repeat-PPM Super-Symbol Synchronization

    NASA Astrophysics Data System (ADS)

    Connelly, J.

    2016-11-01

    To attain a wider range of data rates in pulse position modulation (PPM) schemes with constrained pulse durations, the sender can repeat a PPM symbol multiple times, forming a super-symbol. In addition to the slot and symbol synchronization typically required for PPM, the receiver must also properly align the noisy super-symbols. We present a low-complexity approximation of the maximum-likelihood method for performing super-symbol synchronization without use of synchronization sequences. We provide simulation results demonstrating performance advantage when PPM symbols are spread by a pseudo-noise sequence, as opposed to simply repeating. Additionally, the results suggest that this super-symbol synchronization technique requires signal levels below those required for reliable communication. This validates that the PPM spreading approach proposed to CCSDS can work properly as part of the overall scheme.

  8. Mechanisms of Zero-Lag Synchronization in Cortical Motifs

    PubMed Central

    Gollo, Leonardo L.; Mirasso, Claudio; Sporns, Olaf; Breakspear, Michael

    2014-01-01

    Zero-lag synchronization between distant cortical areas has been observed in a diversity of experimental data sets and between many different regions of the brain. Several computational mechanisms have been proposed to account for such isochronous synchronization in the presence of long conduction delays: Of these, the phenomenon of “dynamical relaying” – a mechanism that relies on a specific network motif – has proven to be the most robust with respect to parameter mismatch and system noise. Surprisingly, despite a contrary belief in the community, the common driving motif is an unreliable means of establishing zero-lag synchrony. Although dynamical relaying has been validated in empirical and computational studies, the deeper dynamical mechanisms and comparison to dynamics on other motifs is lacking. By systematically comparing synchronization on a variety of small motifs, we establish that the presence of a single reciprocally connected pair – a “resonance pair” – plays a crucial role in disambiguating those motifs that foster zero-lag synchrony in the presence of conduction delays (such as dynamical relaying) from those that do not (such as the common driving triad). Remarkably, minor structural changes to the common driving motif that incorporate a reciprocal pair recover robust zero-lag synchrony. The findings are observed in computational models of spiking neurons, populations of spiking neurons and neural mass models, and arise whether the oscillatory systems are periodic, chaotic, noise-free or driven by stochastic inputs. The influence of the resonance pair is also robust to parameter mismatch and asymmetrical time delays amongst the elements of the motif. We call this manner of facilitating zero-lag synchrony resonance-induced synchronization, outline the conditions for its occurrence, and propose that it may be a general mechanism to promote zero-lag synchrony in the brain. PMID:24763382

  9. Competition and cooperation in a synchronous bushcricket chorus

    PubMed Central

    Hartbauer, M.; Haitzinger, L.; Kainz, M.; Römer, H.

    2014-01-01

    Synchronous signalling within choruses of the same species either emerges from cooperation or competition. In our study on the katydid Mecopoda elongata, we aim to identify mechanisms driving evolution towards synchrony. The increase of signal amplitude owing to synchronous signalling and the preservation of a conspecific signal period may represent cooperative mechanisms, whereas chorus synchrony may also result from the preference of females for leading signals and the resulting competition for the leader role. We recorded the timing of signals and the resulting communal signal amplitudes in small choruses and performed female choice experiments to identify such mechanisms. Males frequently timed their signals either as leader or follower with an average time lag of about 70 ms. Females selected males in such choruses on the basis of signal order and signal duration. Two-choice experiments revealed a time lag of only 70 ms to bias mate choice in favour of the leader. Furthermore, a song model with a conspecific signal period of 2 s was more attractive than a song model with an irregular or longer and shorter than average signal period. Owing to a high degree of overlap and plasticity of signals produced in ‘four male choruses’, peak and root mean square amplitudes increased by about 7 dB relative to lone singers. Modelling active space of synchronous males and solo singing males revealed a strongly increased broadcast area of synchronous signallers, but a slightly reduced per capita mating possibility compared with lone singers. These results suggest a strong leader preference of females as the ultimate causation of inter-male competition for timing signals as leader. The emerging synchrony increases the amplitude of signals produced in a chorus and has the potential to compensate a reduction of mating advantage in a chorus. We discuss a possible fitness benefit of males gained through a beacon effect and the possibility that signalling as follower is

  10. Synchronized Flashing Lights For Approach And Docking

    NASA Technical Reports Server (NTRS)

    Book, Michael L.; Howard, Richard T.; Bryan, Thomas C.; Bell, Joseph L.

    1994-01-01

    Proposed optoelectronic system for guiding vehicle in approaching and docking with another vehicle includes active optical targets (flashing lights) on approached vehicle synchronized with sensor and image-processing circuitry on approaching vehicle. Conceived for use in automated approach and docking of two spacecraft. Also applicable on Earth to manually controlled and automated approach and docking of land vehicles, aircraft, boats, and submersible vehicles, using GPS or terrestrial broadcast time signals for synchronization. Principal advantage: optical power reduced, with consequent enhancement of safety.

  11. LETTER: Synchronization model for stock market asymmetry

    NASA Astrophysics Data System (ADS)

    Donangelo, Raul; Jensen, Mogens H.; Simonsen, Ingve; Sneppen, Kim

    2006-11-01

    The waiting time needed for a stock market index to undergo a given percentage change in its value is found to have an up down asymmetry, which, surprisingly, is not observed for the individual stocks composing that index. To explain this, we introduce a market model consisting of randomly fluctuating stocks that occasionally synchronize their short term draw-downs. These synchronous events are parametrized by a 'fear factor', that reflects the occurrence of dramatic external events which affect the financial market.

  12. Control of ventilation in elite synchronized swimmers.

    PubMed

    Bjurström, R L; Schoene, R B

    1987-09-01

    Synchronized swimmers perform strenuous underwater exercise during prolonged breath holds. To investigate the role of the control of ventilation and lung volumes in these athletes, we studied the 10 members of the National Synchronized Swim Team including an olympic gold medalist and 10 age-matched controls. We evaluated static pulmonary function, hypoxic and hypercapnic ventilatory drives, and normoxic and hyperoxic breath holding. Synchronized swimmers had an increased total lung capacity and vital capacity compared with controls (P less than 0.005). The hypoxic ventilatory response (expressed as the hyperbolic shape parameter A) was lower in the synchronized swimmers than controls with a mean value of 29.2 +/- 2.6 (SE) and 65.6 +/- 7.1, respectively (P less than 0.001). The hypercapnic ventilatory response [expressed as S, minute ventilation (1/min)/alveolar CO2 partial pressure (Torr)] was no different between synchronized swimmers and controls. Breath-hold duration during normoxia was greater in the synchronized swimmers, with a mean value of 108.6 +/- 4.8 (SE) vs. 68.03 +/- 8.1 s in the controls (P less than 0.001). No difference was seen in hyperoxic breath-hold times between groups. During breath holding synchronized swimmers demonstrated marked apneic bradycardia expressed as either absolute or heart rate change from basal heart rate as opposed to the controls, in whom heart rate increased during breath holds. Therefore the results show that elite synchronized swimmers have increased lung volumes, blunted hypoxic ventilatory responses, and a marked apneic bradycardia that may provide physiological characteristics that offer a competitive advantage for championship performance.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Non-Synchronous Vibration of Turbomachinery Airfoils

    DTIC Science & Technology

    2006-03-01

    study and prevention of non-synchronous vibrations. Non-synchronous vibrations in turbine engine blades are the result of the interaction of an...was a modern fan vane blade known as the H2 case. This blade encountered NSV in experimental rig testing. An analysis was performed with TURBO ...design stage for flow over turbine engine blades . REFERENCES Anagnostopoulos, P., ed. Flow-Induced Vibrations in Engineering

  14. Optimized synchronization of chaotic and hyperchaotic systems

    NASA Astrophysics Data System (ADS)

    Bryant, Paul H.

    2010-07-01

    A method of synchronization is presented which, unlike existing methods, can, for generic dynamical systems, force all conditional Lyapunov exponents to go to -∞ . It also has improved noise immunity compared to existing methods, and unlike most of them it can synchronize hyperchaotic systems with almost any single coupling variable from the drive system. Results are presented for the Rossler hyperchaos system and the Lorenz system.

  15. Automated ILA design for synchronous sequential circuits

    NASA Technical Reports Server (NTRS)

    Liu, M. N.; Liu, K. Z.; Maki, G. K.; Whitaker, S. R.

    1991-01-01

    An iterative logic array (ILA) architecture for synchronous sequential circuits is presented. This technique utilizes linear algebra to produce the design equations. The ILA realization of synchronous sequential logic can be fully automated with a computer program. A programmable design procedure is proposed to fullfill the design task and layout generation. A software algorithm in the C language has been developed and tested to generate 1 micron CMOS layouts using the Hewlett-Packard FUNGEN module generator shell.

  16. Stochastic synchronization in finite size spiking networks.

    PubMed

    Doiron, Brent; Rinzel, John; Reyes, Alex

    2006-09-01

    We study a stochastic synchronization of spiking activity in feedforward networks of integrate-and-fire model neurons. A stochastic mean field analysis shows that synchronization occurs only when the network size is sufficiently small. This gives evidence that the dynamics, and hence processing, of finite size populations can be drastically different from that observed in the infinite size limit. Our results agree with experimentally observed synchrony in cortical networks, and further strengthen the link between synchrony and propagation in cortical systems.

  17. Empirical synchronized flow in oversaturated city traffic

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.; Hemmerle, Peter; Koller, Micha; Hermanns, Gerhard; Klenov, Sergey L.; Rehborn, Hubert; Schreckenberg, Michael

    2014-09-01

    Based on a study of anonymized GPS probe vehicle traces measured by personal navigation devices in vehicles randomly distributed in city traffic, empirical synchronized flow in oversaturated city traffic has been revealed. It turns out that real oversaturated city traffic resulting from speed breakdown in a city in most cases can be considered random spatiotemporal alternations between sequences of moving queues and synchronized flow patterns in which the moving queues do not occur.

  18. Synchronized Flashing Lights For Approach And Docking

    NASA Technical Reports Server (NTRS)

    Book, Michael L.; Howard, Richard T.; Bryan, Thomas C.; Bell, Joseph L.

    1994-01-01

    Proposed optoelectronic system for guiding vehicle in approaching and docking with another vehicle includes active optical targets (flashing lights) on approached vehicle synchronized with sensor and image-processing circuitry on approaching vehicle. Conceived for use in automated approach and docking of two spacecraft. Also applicable on Earth to manually controlled and automated approach and docking of land vehicles, aircraft, boats, and submersible vehicles, using GPS or terrestrial broadcast time signals for synchronization. Principal advantage: optical power reduced, with consequent enhancement of safety.

  19. Empirical synchronized flow in oversaturated city traffic.

    PubMed

    Kerner, Boris S; Hemmerle, Peter; Koller, Micha; Hermanns, Gerhard; Klenov, Sergey L; Rehborn, Hubert; Schreckenberg, Michael

    2014-09-01

    Based on a study of anonymized GPS probe vehicle traces measured by personal navigation devices in vehicles randomly distributed in city traffic, empirical synchronized flow in oversaturated city traffic has been revealed. It turns out that real oversaturated city traffic resulting from speed breakdown in a city in most cases can be considered random spatiotemporal alternations between sequences of moving queues and synchronized flow patterns in which the moving queues do not occur.

  20. Synchronization of two interacting populations of oscillators

    NASA Astrophysics Data System (ADS)

    Montbrió, Ernest; Kurths, Jürgen; Blasius, Bernd

    2004-11-01

    We analyze synchronization between two interacting populations of different phase oscillators. For the important case of asymmetric coupling functions, we find a much richer dynamical behavior compared to that of symmetrically coupled populations of identical oscillators. It includes three types of bistabilities, higher order entrainment, and the existence of states with unusual stability properties. All possible routes to synchronization of the populations are presented and some stability boundaries are obtained analytically. The impact of these findings for neuroscience is discussed.

  1. Synchronization of coupled large-scale Boolean networks

    SciTech Connect

    Li, Fangfei

    2014-03-15

    This paper investigates the complete synchronization and partial synchronization of two large-scale Boolean networks. First, the aggregation algorithm towards large-scale Boolean network is reviewed. Second, the aggregation algorithm is applied to study the complete synchronization and partial synchronization of large-scale Boolean networks. Finally, an illustrative example is presented to show the efficiency of the proposed results.

  2. Synchronization of coupled large-scale Boolean networks

    NASA Astrophysics Data System (ADS)

    Li, Fangfei

    2014-03-01

    This paper investigates the complete synchronization and partial synchronization of two large-scale Boolean networks. First, the aggregation algorithm towards large-scale Boolean network is reviewed. Second, the aggregation algorithm is applied to study the complete synchronization and partial synchronization of large-scale Boolean networks. Finally, an illustrative example is presented to show the efficiency of the proposed results.

  3. An algorithm for the automatic synchronization of Omega receivers

    NASA Technical Reports Server (NTRS)

    Stonestreet, W. M.; Marzetta, T. L.

    1977-01-01

    The Omega navigation system and the requirement for receiver synchronization are discussed. A description of the synchronization algorithm is provided. The numerical simulation and its associated assumptions were examined and results of the simulation are presented. The suggested form of the synchronization algorithm and the suggested receiver design values were surveyed. A Fortran of the synchronization algorithm used in the simulation was also included.

  4. Synchronization in a semiclassical Kuramoto model

    NASA Astrophysics Data System (ADS)

    Hermoso de Mendoza, Ignacio; Pachón, Leonardo A.; Gómez-Gardeñes, Jesús; Zueco, David

    2014-11-01

    Synchronization is a ubiquitous phenomenon occurring in social, biological, and technological systems when the internal rythms of their constituents are adapted to be in unison as a result of their coupling. This natural tendency towards dynamical consensus has spurred a large body of theoretical and experimental research in recent decades. The Kuramoto model constitutes the most studied and paradigmatic framework in which to study synchronization. In particular, it shows how synchronization appears as a phase transition from a dynamically disordered state at some critical value for the coupling strength between the interacting units. The critical properties of the synchronization transition of this model have been widely studied and many variants of its formulations have been considered to address different physical realizations. However, the Kuramoto model has been studied only within the domain of classical dynamics, thus neglecting its applications for the study of quantum synchronization phenomena. Based on a system-bath approach and within the Feynman path-integral formalism, we derive equations for the Kuramoto model by taking into account the first quantum fluctuations. We also analyze its critical properties, the main result being the derivation of the value for the synchronization onset. This critical coupling increases its value as quantumness increases, as a consequence of the possibility of tunneling that quantum fluctuations provide.

  5. Frame Synchronization Without Attached Sync Markers

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon

    2011-01-01

    We describe a method to synchronize codeword frames without making use of attached synchronization markers (ASMs). Instead, the synchronizer identifies the code structure present in the received symbols, by operating the decoder for a handful of iterations at each possible symbol offset and forming an appropriate metric. This method is computationally more complex and doesn't perform as well as frame synchronizers that utilize an ASM; nevertheless, the new synchronizer acquires frame synchronization in about two seconds when using a 600 kbps software decoder, and would take about 15 milliseconds on prototype hardware. It also eliminates the need for the ASMs, which is an attractive feature for short uplink codes whose coding gain would be diminished by the overheard of ASM bits. The lack of ASMs also would simplify clock distribution for the AR4JA low-density parity-check (LDPC) codes and adds a small amount to the coding gain as well (up to 0.2 dB).

  6. Synchronization of mobile chaotic oscillator networks

    SciTech Connect

    Fujiwara, Naoya; Kurths, Jürgen; Díaz-Guilera, Albert

    2016-09-15

    We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.

  7. Gear synchronizer assembly for power transmission

    SciTech Connect

    Ikemoto, K.; Terakura, Y.

    1986-12-02

    This patent describes a gear synchronizer assembly comprising a gear member rotatable on a transmission shaft, a spline piece formed at one side thereof with a conical portion and thereon with external splines and mounted on a hub portion of the gear member for rotation therewith, and a synchronizer ring mounted on the conical portion of the spline piece for frictional engagement therewith. A hub member is fixedly mounted on the shaft for rotation therewith and has a cylindrical hub portion encircling the synchronizer ring and is formed thereon with external splines. A clutch sleeve encircles the cylindrical hub portion of the hub member and has internal splines in continual engagement with the external splines of the hub member. The clutch sleeve is axially shiftable toward and away from the gear member to be engaged at the internal splines thereof with the external splines of the spline piece. A thrust means is included for moving the synchronizer ring toward the spline piece in shifting operation of the clutch sleeve toward the gear member to effect the frictional engagement of the synchronizer ring with the spline piece. The improvement described here wherein the clutch sleeve is formed at its inner periphery with an internal radial projection axially movable in a corresponding axial groove formed in the cylindrical hub portion of the hub member, and wherein the thrust means comprises a radially contractible annular resilient member arranged in surrounding relationship with the synchronizer ring.

  8. Frame Synchronization Without Attached Sync Markers

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon

    2011-01-01

    We describe a method to synchronize codeword frames without making use of attached synchronization markers (ASMs). Instead, the synchronizer identifies the code structure present in the received symbols, by operating the decoder for a handful of iterations at each possible symbol offset and forming an appropriate metric. This method is computationally more complex and doesn't perform as well as frame synchronizers that utilize an ASM; nevertheless, the new synchronizer acquires frame synchronization in about two seconds when using a 600 kbps software decoder, and would take about 15 milliseconds on prototype hardware. It also eliminates the need for the ASMs, which is an attractive feature for short uplink codes whose coding gain would be diminished by the overheard of ASM bits. The lack of ASMs also would simplify clock distribution for the AR4JA low-density parity-check (LDPC) codes and adds a small amount to the coding gain as well (up to 0.2 dB).

  9. Synchronization of mobile chaotic oscillator networks

    NASA Astrophysics Data System (ADS)

    Fujiwara, Naoya; Kurths, Jürgen; Díaz-Guilera, Albert

    2016-09-01

    We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.

  10. Synchronization of weakly coupled canard oscillators

    NASA Astrophysics Data System (ADS)

    Köksal Ersöz, Elif; Desroches, Mathieu; Krupa, Martin

    2017-06-01

    Synchronization has been studied extensively in the context of weakly coupled oscillators using the so-called phase response curve (PRC) which measures how a change of the phase of an oscillator is affected by a small perturbation. This approach was based upon the work of Malkin, and it has been extended to relaxation oscillators. Namely, synchronization conditions were established under the weak coupling assumption, leading to a criterion for the existence of synchronous solutions of weakly coupled relaxation oscillators. Previous analysis relies on the fact that the slow nullcline does not intersect the fast nullcline near one of its fold points, where canard solutions can arise. In the present study we use numerical continuation techniques to solve the adjoint equations and we show that synchronization properties of canard cycles are different than those of classical relaxation cycles. In particular, we highlight a new special role of the maximal canard in separating two distinct synchronization regimes: the Hopf regime and the relaxation regime. Phase plane analysis of slow-fast oscillators undergoing a canard explosion provides an explanation for this change of synchronization properties across the maximal canard.

  11. Nonlinear transfer function encodes synchronization in a neural network from the mammalian brain

    NASA Astrophysics Data System (ADS)

    Menendez de La Prida, L.; Sanchez-Andres, J. V.

    1999-09-01

    Synchronization is one of the mechanisms by which the brain encodes information. The observed synchronization of neuronal activity has, however, several levels of fluctuations, which presumably regulate local features of specific areas. This means that biological neural networks should have an intrinsic mechanism able to synchronize the neuronal activity but also to preserve the firing capability of individual cells. Here, we investigate the input-output relationship of a biological neural network from developing mammalian brain, i.e., the hippocampus. We show that the probability of occurrence of synchronous output activity (which consists in stereotyped population bursts recorded throughout the hippocampus) is encoded by a sigmoidal transfer function of the input frequency. Under this scope, low-frequency inputs will not produce any coherent output while high-frequency inputs will determine a synchronous pattern of output activity (population bursts). We analyze the effect of the network size (N) on the parameters of the transfer function (threshold and slope). We found that sigmoidal functions realistically simulate the synchronous output activity of hippocampal neural networks. This outcome is particularly important in the application of results from neural network models to neurobiology.

  12. Synchronization Design and Error Analysis of Near-Infrared Cameras in Surgical Navigation.

    PubMed

    Cai, Ken; Yang, Rongqian; Chen, Huazhou; Huang, Yizhou; Wen, Xiaoyan; Huang, Wenhua; Ou, Shanxing

    2016-01-01

    The accuracy of optical tracking systems is important to scientists. With the improvements reported in this regard, such systems have been applied to an increasing number of operations. To enhance the accuracy of these systems further and to reduce the effect of synchronization and visual field errors, this study introduces a field-programmable gate array (FPGA)-based synchronization control method, a method for measuring synchronous errors, and an error distribution map in field of view. Synchronization control maximizes the parallel processing capability of FPGA, and synchronous error measurement can effectively detect the errors caused by synchronization in an optical tracking system. The distribution of positioning errors can be detected in field of view through the aforementioned error distribution map. Therefore, doctors can perform surgeries in areas with few positioning errors, and the accuracy of optical tracking systems is considerably improved. The system is analyzed and validated in this study through experiments that involve the proposed methods, which can eliminate positioning errors attributed to asynchronous cameras and different fields of view.

  13. Visually evoked phase synchronization changes of alpha rhythm in migraine: correlations with clinical features.

    PubMed

    de Tommaso, Marina; Marinazzo, Daniele; Guido, Marco; Libro, Giuseppe; Stramaglia, Sebastiano; Nitti, Luigi; Lattanzi, Gianluca; Angelini, Leonardo; Pellicoro, Mario

    2005-09-01

    This study aimed to compute phase synchronization of the alpha band from a multichannel electroencephalogram (EEG) recorded under repetitive flash stimulation from migraine patients without aura. This allowed examination of ongoing EEG activity during visual stimulation in the pain-free phase of migraine. Flash stimuli at frequencies of 3, 6, 9, 12, 15, 18, 21, 24, and 27 Hz were delivered to 15 migraine patients without aura and 15 controls, with the EEG recorded from 18 scalp electrodes, referred to the linked earlobes. The EEG signals were filtered in the alpha (7.5-13 Hz) band. For all stimulus frequencies that we evaluated, the phase synchronization index was based on the Hilbert transformation. Phase synchronization separated the patients and controls for the 9, 24 and 27 Hz stimulus frequencies; hyper phase synchronization was observed in patients, whereas healthy subjects were characterized by a reduced phase synchronization. These differences were found in all regions of the scalp. During migraine, the brain synchronizes to the idling rhythm of the visual areas under certain photic stimulations; in normal subjects however, brain regions involved in the processing of sensory information demonstrate desynchronized activity. Hypersynchronization of the alpha rhythm may suggest a state of cortical hypoexcitability during the interictal phase of migraine. The employment of non-linear EEG analysis may identify subtle functional changes in the migraine brain.

  14. Resting-State Temporal Synchronization Networks Emerge from Connectivity Topology and Heterogeneity

    PubMed Central

    Ponce-Alvarez, Adrián; Deco, Gustavo; Hagmann, Patric; Romani, Gian Luca; Mantini, Dante; Corbetta, Maurizio

    2015-01-01

    Spatial patterns of coherent activity across different brain areas have been identified during the resting-state fluctuations of the brain. However, recent studies indicate that resting-state activity is not stationary, but shows complex temporal dynamics. We were interested in the spatiotemporal dynamics of the phase interactions among resting-state fMRI BOLD signals from human subjects. We found that the global phase synchrony of the BOLD signals evolves on a characteristic ultra-slow (<0.01Hz) time scale, and that its temporal variations reflect the transient formation and dissolution of multiple communities of synchronized brain regions. Synchronized communities reoccurred intermittently in time and across scanning sessions. We found that the synchronization communities relate to previously defined functional networks known to be engaged in sensory-motor or cognitive function, called resting-state networks (RSNs), including the default mode network, the somato-motor network, the visual network, the auditory network, the cognitive control networks, the self-referential network, and combinations of these and other RSNs. We studied the mechanism originating the observed spatiotemporal synchronization dynamics by using a network model of phase oscillators connected through the brain’s anatomical connectivity estimated using diffusion imaging human data. The model consistently approximates the temporal and spatial synchronization patterns of the empirical data, and reveals that multiple clusters that transiently synchronize and desynchronize emerge from the complex topology of anatomical connections, provided that oscillators are heterogeneous. PMID:25692996

  15. Quantum synchronization in an optomechanical system based on Lyapunov control.

    PubMed

    Li, Wenlin; Li, Chong; Song, Heshan

    2016-06-01

    We extend the concepts of quantum complete synchronization and phase synchronization, which were proposed in A. Mari et al., Phys. Rev. Lett. 111, 103605 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.103605, to more widespread quantum generalized synchronization. Generalized synchronization can be considered a necessary condition or a more flexible derivative of complete synchronization, and its criterion and synchronization measure are proposed and analyzed in this paper. As examples, we consider two typical generalized synchronizations in a designed optomechanical system. Unlike the effort to construct a special coupling synchronization system, we purposefully design extra control fields based on Lyapunov control theory. We find that the Lyapunov function can adapt to more flexible control objectives, which is more suitable for generalized synchronization control, and the control fields can be achieved simply with a time-variant voltage. Finally, the existence of quantum entanglement in different generalized synchronizations is also discussed.

  16. Quantum synchronization in an optomechanical system based on Lyapunov control

    NASA Astrophysics Data System (ADS)

    Li, Wenlin; Li, Chong; Song, Heshan

    2016-06-01

    We extend the concepts of quantum complete synchronization and phase synchronization, which were proposed in A. Mari et al., Phys. Rev. Lett. 111, 103605 (2013), 10.1103/PhysRevLett.111.103605, to more widespread quantum generalized synchronization. Generalized synchronization can be considered a necessary condition or a more flexible derivative of complete synchronization, and its criterion and synchronization measure are proposed and analyzed in this paper. As examples, we consider two typical generalized synchronizations in a designed optomechanical system. Unlike the effort to construct a special coupling synchronization system, we purposefully design extra control fields based on Lyapunov control theory. We find that the Lyapunov function can adapt to more flexible control objectives, which is more suitable for generalized synchronization control, and the control fields can be achieved simply with a time-variant voltage. Finally, the existence of quantum entanglement in different generalized synchronizations is also discussed.

  17. Self synchronization of surface discharges

    NASA Astrophysics Data System (ADS)

    Allegraud, Katia; Rousseau, Antoine

    2008-10-01

    Surface dielectric barrier discharges (SDBD) are mainly investigated for airflow control. In this paper, they are used to study surface processes in dielectric barrier discharges. A previous study has shown the self triggered behavior of a SDBD: the plasma initiates through several simultaneous and adjacent filaments around the electrode [1]. This phenomenon has been investigated under the name of collective effects, where the light of a first filament can trigger the ignitions its neighbors [1, 2]. It allows initiating several tens of streamers during a current peak of ˜50 ns. In the present study, we propose to investigate the self synchronization of the discharge in a two electrodes system: the setup consists of two high voltage electrodes on the same glass plate. A third electrode, under the plate, is grounded. ICCD measurements show that the discharge appears simultaneously on both electrodes on a 50 ns time scale. Nanosecond resolved measurements of the streamers propagation reveal that the ignitions on one electrode can be delayed by few nanoseconds in respect to the other one. This means that the discharge from a first electrode can trigger the second one. Finally, iCCD measurements allow calculating the streamers propagation velocity, varying from 3.4x10^7 cm/s at the beginning of the propagation to 0.7x10^7cm/s at the end of the propagation [3]. [1] K. Allegraud, O. Guaitella, A. Rousseau, J. Phys. D. : Appl. Phys. 40 7698--7706 (2007) [2] O. Guaitella, F. Thevenet, C. Guillard, A. Rousseau, J. Phys. D.: Appl. Phys. 39 2964--72 (2006) [3] K. Allegraud, A. Rousseau, submitted to IEEE Transactions on Dielectrics and Electrical Insulation

  18. Nonlinear Chemical Dynamics and Synchronization

    NASA Astrophysics Data System (ADS)

    Li, Ning

    Alan Turing's work on morphogenesis, more than half a century ago, continues to motivate and inspire theoretical and experimental biologists even today. That said, there are very few experimental systems for which Turing's theory is applicable. In this thesis we present an experimental reaction-diffusion system ideally suited for testing Turing's ideas in synthetic "cells" consisting of microfluidically produced surfactant-stabilized emulsions in which droplets containing the Belousov-Zhabotinsky (BZ) oscillatory chemical reactants are dispersed in oil. The BZ reaction has become the prototype of nonlinear dynamics in chemistry and a preferred system for exploring the behavior of coupled nonlinear oscillators. Our system consists of a surfactant stabilized monodisperse emulsion of drops of aqueous BZ solution dispersed in a continuous phase of oil. In contrast to biology, here the chemistry is understood, rate constants are measured and interdrop coupling is purely diffusive. We explore a large set of parameters through control of rate constants, drop size, spacing, and spatial arrangement of the drops in lines and rings in one-dimension (1D) and hexagonal arrays in two-dimensions (2D). The Turing model is regarded as a metaphor for morphogenesis in biology but not for prediction. Here, we develop a quantitative and falsifiable reaction-diffusion model that we experimentally test with synthetic cells. We quantitatively establish the extent to which the Turing model in 1D describes both stationary pattern formation and temporal synchronization of chemical oscillators via reaction-diffusion and in 2D demonstrate that chemical morphogenesis drives physical differentiation in synthetic cells.

  19. Use of the WECC WAMS in Wide Area Probing Tests for Validation of System Performance & Modeling

    SciTech Connect

    Hauer, John F.; Mittelstadt, William; Martin, Kenneth E.; Burns, J. W.; Lee, Harry; Pierre, John W.; Trudnowski, Daniel

    2009-02-01

    During 2005 and 2006 the Western Electricity Coordinating Council (WECC) performed three major tests of western system dynamics. These tests used a Wide Area Measurement System (WAMS) based primarily on Phasor Measurement Units (PMUs) to determine response to events including the insertion of the 1400-MW Chief Joseph braking resistor, probing signals, and ambient events. Test security was reinforced through real-time analysis of wide area effects, and high-quality data provided dynamic profiles for interarea modes across the entire western interconnection. The tests established that low-level optimized pseudo-random ±20-MW probing with the Pacific DC Intertie (PDCI) roughly doubles the apparent noise that is natural to the power system, providing sharp dynamic information with negligible interference to system operations. Such probing is an effective alternative to use of the 1400-MW Chief Joseph dynamic brake, and it is under consideration as a standard means for assessing dynamic security.

  20. Electrotonic vascular signal conduction and nephron synchronization.

    PubMed

    Marsh, Donald J; Toma, Ildiko; Sosnovtseva, Olga V; Peti-Peterdi, Janos; Holstein-Rathlou, Niels-Henrik

    2009-04-01

    Tubuloglomerular feedback (TGF) and the myogenic mechanism control afferent arteriolar diameter in each nephron and regulate blood flow. Both mechanisms generate self-sustained oscillations, the oscillations interact, TGF modulates the frequency and amplitude of the myogenic oscillation, and the oscillations synchronize; a 5:1 frequency ratio is the most frequent. TGF oscillations synchronize in nephron pairs supplied from a common cortical radial artery, as do myogenic oscillations. We propose that electrotonic vascular signal propagation from one juxtaglomerular apparatus interacts with similar signals from other nephrons to produce synchronization. We tested this idea in tubular-vascular preparations from mice. Vascular smooth muscle cells were loaded with a fluorescent voltage-sensitive dye; fluorescence intensity was measured with confocal microscopy. Perfusion of the thick ascending limb activated TGF and depolarized afferent arteriolar smooth muscle cells. The depolarization spread to the cortical radial artery and other afferent arterioles and declined with distance from the perfused juxtaglomerular apparatus, consistent with electrotonic vascular signal propagation. With a mathematical model of two coupled nephrons, we estimated the conductance of nephron coupling by fitting simulated vessel diameters to experimental data. With this value, we simulated nephron pairs to test for synchronization. In single-nephron simulations, the frequency of the TGF oscillation varied with nephron length. Coupling nephrons of different lengths forced TGF frequencies of both pair members to converge to a common value. The myogenic oscillations also synchronized, and the synchronization between the TGF and the myogenic oscillations showed an increased stability against parameter perturbations. Electronic vascular signal propagation is a plausible mechanism for nephron synchronization. Coupling increased the stability of the various oscillations.

  1. Markers of criticality in phase synchronization

    PubMed Central

    Botcharova, Maria; Farmer, Simon F.; Berthouze, Luc

    2014-01-01

    The concept of the brain as a critical dynamical system is very attractive because systems close to criticality are thought to maximize their dynamic range of information processing and communication. To date, there have been two key experimental observations in support of this hypothesis: (i) neuronal avalanches with power law distribution of size and (ii) long-range temporal correlations (LRTCs) in the amplitude of neural oscillations. The case for how these maximize dynamic range of information processing and communication is still being made and because a significant substrate for information coding and transmission is neural synchrony it is of interest to link synchronization measures with those of criticality. We propose a framework for characterizing criticality in synchronization based on an analysis of the moment-to-moment fluctuations of phase synchrony in terms of the presence of LRTCs. This framework relies on an estimation of the rate of change of phase difference and a set of methods we have developed to detect LRTCs. We test this framework against two classical models of criticality (Ising and Kuramoto) and recently described variants of these models aimed to more closely represent human brain dynamics. From these simulations we determine the parameters at which these systems show evidence of LRTCs in phase synchronization. We demonstrate proof of principle by analysing pairs of human simultaneous EEG and EMG time series, suggesting that LRTCs of corticomuscular phase synchronization can be detected in the resting state and experimentally manipulated. The existence of LRTCs in fluctuations of phase synchronization suggests that these fluctuations are governed by non-local behavior, with all scales contributing to system behavior. This has important implications regarding the conditions under which one should expect to see LRTCs in phase synchronization. Specifically, brain resting states may exhibit LRTCs reflecting a state of readiness facilitating

  2. Markers of criticality in phase synchronization.

    PubMed

    Botcharova, Maria; Farmer, Simon F; Berthouze, Luc

    2014-01-01

    The concept of the brain as a critical dynamical system is very attractive because systems close to criticality are thought to maximize their dynamic range of information processing and communication. To date, there have been two key experimental observations in support of this hypothesis: (i) neuronal avalanches with power law distribution of size and (ii) long-range temporal correlations (LRTCs) in the amplitude of neural oscillations. The case for how these maximize dynamic range of information processing and communication is still being made and because a significant substrate for information coding and transmission is neural synchrony it is of interest to link synchronization measures with those of criticality. We propose a framework for characterizing criticality in synchronization based on an analysis of the moment-to-moment fluctuations of phase synchrony in terms of the presence of LRTCs. This framework relies on an estimation of the rate of change of phase difference and a set of methods we have developed to detect LRTCs. We test this framework against two classical models of criticality (Ising and Kuramoto) and recently described variants of these models aimed to more closely represent human brain dynamics. From these simulations we determine the parameters at which these systems show evidence of LRTCs in phase synchronization. We demonstrate proof of principle by analysing pairs of human simultaneous EEG and EMG time series, suggesting that LRTCs of corticomuscular phase synchronization can be detected in the resting state and experimentally manipulated. The existence of LRTCs in fluctuations of phase synchronization suggests that these fluctuations are governed by non-local behavior, with all scales contributing to system behavior. This has important implications regarding the conditions under which one should expect to see LRTCs in phase synchronization. Specifically, brain resting states may exhibit LRTCs reflecting a state of readiness facilitating

  3. Stimulus-induced visual cortical networks are recapitulated by spontaneous local and interareal synchronization

    PubMed Central

    Lewis, Christopher M.; Fries, Pascal

    2016-01-01

    Intrinsic covariation of brain activity has been studied across many levels of brain organization. Between visual areas, neuronal activity covaries primarily among portions with similar retinotopic selectivity. We hypothesized that spontaneous interareal coactivation is subserved by neuronal synchronization. We performed simultaneous high-density electrocorticographic recordings across the dorsal aspect of several visual areas in one hemisphere in each of two awake monkeys to investigate spatial patterns of local and interareal synchronization. We show that stimulation-induced patterns of interareal coactivation were reactivated in the absence of stimulation for the visual quadrant covered. Reactivation occurred through both interareal cofluctuation of local activity and interareal phase synchronization. Furthermore, the trial-by-trial covariance of the induced responses recapitulated the pattern of interareal coupling observed during stimulation, i.e., the signal correlation. Reactivation-related synchronization showed distinct peaks in the theta, alpha, and gamma frequency bands. During passive states, this rhythmic reactivation was augmented by specific patterns of arrhythmic correspondence. These results suggest that networks of intrinsic covariation observed at multiple levels and with several recording techniques are related to synchronization and that behavioral state may affect the structure of intrinsic dynamics. PMID:26787906

  4. Synchronization of sacral skin blood flow oscillations in response to local heating.

    PubMed

    Jan, Yih-Kuen; Liao, Fuyuan

    2011-01-01

    Local heating causes an increase in skin blood flow by activating sensory axon reflex and metabolic nitric oxide controls. It has been observed that the remote skin area without temperature changes also shows a slightly increase in blood flow. The responsible mechanism of this indirect vasodilation remains unclear. We hypothesized that the remote skin area will have enhanced synchronization of blood flow oscillations (BFO), thus inducing a vasodilatory response. We studied BFO in two sites separated 10 cm of the sacral skin in 12 healthy people. Ensemble empirical mode decomposition method was used to decompose blood flow signals into a set of intrinsic mode functions (IMFs), and an IMF was selected to quantify each of myogenic, neurogenic, and metabolic modes of BFO. Then the instantaneous phase of the mode was calculated using the Hilbert transform. From the time series of phase difference between a pair of characteristic modes, we detected the epochs of phase synchronization and estimated the level of statistical significance using surrogate time series. The results showed that phase synchronization between neurogenic BFO was significantly higher in the period of the maximal vasodilation. We also observed a weak synchronization between myogenic BFO of the two skin sites. Our results suggested that synchronization of BFO may be associated with the changes in skin blood flow at the non-heated site.

  5. The transition to chaotic phase synchronization

    NASA Astrophysics Data System (ADS)

    Mosekilde, E.; Laugesen, J. L.; Zhusubaliyev, Zh. T.

    2012-08-01

    The transition to chaotic phase synchronization for a periodically driven spiral-type chaotic oscillator is known to involve a dense set of saddle-node bifurcations. By following the synchronization transition through the cascade of period-doubling bifurcations in a forced Rössler system, this paper describes how these saddle-node bifurcations arise and how their characteristic cyclic organisation develops. We identify the cycles that are involved in the various saddle-node bifurcations and descibe how the formation of multi-layered resonance cycles in the synchronization domain is related to the torus doubling bifurcations that take place outside this domain. By examining a physiology-based model of the blood flow regulation to the individual functional unit (nephron) of the kidney we demonstrate how a similar bifurcation structure may arise in this system as a response to a periodically varying arterial blood pressure. The paper finally discusses how an alternative transition to chaotic phase synchronization may occur in the mutual synchronization of two chaotically oscillating period-doubling systems.

  6. Model bridging chimera state and explosive synchronization.

    PubMed

    Zhang, Xiyun; Bi, Hongjie; Guan, Shuguang; Liu, Jinming; Liu, Zonghua

    2016-07-01

    Global synchronization and partial synchronization are the two distinctive forms of synchronization in coupled oscillators and have been well studied in recent decades. Recent attention on synchronization is focused on the chimera state (CS) and explosive synchronization (ES), but little attention has been paid to their relationship. Here we study this topic by presenting a model to bridge these two phenomena, which consists of two groups of coupled oscillators, and its coupling strength is adaptively controlled by a local order parameter. We find that this model displays either CS or ES in two limits. In between the two limits, this model exhibits both CS and ES, where CS can be observed for a fixed coupling strength and ES appears when the coupling is increased adiabatically. Moreover, we show both theoretically and numerically that there are a variety of CS basin patterns for the case of identical oscillators, depending on the distributions of both the initial order parameters and the initial average phases. This model suggests a way to easily observe CS, in contrast to other models having some (weak or strong) dependence on initial conditions.

  7. Model bridging chimera state and explosive synchronization

    NASA Astrophysics Data System (ADS)

    Zhang, Xiyun; Bi, Hongjie; Guan, Shuguang; Liu, Jinming; Liu, Zonghua

    2016-07-01

    Global synchronization and partial synchronization are the two distinctive forms of synchronization in coupled oscillators and have been well studied in recent decades. Recent attention on synchronization is focused on the chimera state (CS) and explosive synchronization (ES), but little attention has been paid to their relationship. Here we study this topic by presenting a model to bridge these two phenomena, which consists of two groups of coupled oscillators, and its coupling strength is adaptively controlled by a local order parameter. We find that this model displays either CS or ES in two limits. In between the two limits, this model exhibits both CS and ES, where CS can be observed for a fixed coupling strength and ES appears when the coupling is increased adiabatically. Moreover, we show both theoretically and numerically that there are a variety of CS basin patterns for the case of identical oscillators, depending on the distributions of both the initial order parameters and the initial average phases. This model suggests a way to easily observe CS, in contrast to other models having some (weak or strong) dependence on initial conditions.

  8. Synchronization in time-varying networks.

    PubMed

    Kohar, Vivek; Ji, Peng; Choudhary, Anshul; Sinha, Sudeshna; Kurths, Jüergen

    2014-08-01

    We study the stability of the synchronized state in time-varying complex networks using the concept of basin stability, which is a nonlocal and nonlinear measure of stability that can be easily applied to high-dimensional systems [P. J. Menck, J. Heitzig, N. Marwan, and J. Kurths, Nature Phys. 9, 89 (2013)]. The time-varying character is included by stochastically rewiring each link with the average frequency f. We find that the time taken to reach synchronization is lowered and the stability range of the synchronized state increases considerably in dynamic networks. Further we uncover that small-world networks are much more sensitive to link changes than random ones, with the time-varying character of the network having a significant effect at much lower rewiring frequencies. At very high rewiring frequencies, random networks perform better than small-world networks and the synchronized state is stable over a much wider window of coupling strengths. Lastly we show that the stability range of the synchronized state may be quite different for small and large perturbations, and so the linear stability analysis and the basin stability criterion provide complementary indicators of stability.

  9. Adaptive Deadband Synchronization for a Spacecraft Formation

    NASA Technical Reports Server (NTRS)

    Scharf, Daniel; Hadaegh, Fred; Kang, Bryan

    2007-01-01

    A paper discusses general problems in estimation and control of the states (positions, attitudes, and velocities) of spacecraft flying in formation, then addresses the particular formation-flying-control problem of synchronization of deadbands. The paper presents a deadband synchronization algorithm for the case in which the spacecraft are equipped with pulse-width-modulated thrusters for maintaining their required states. The algorithm synchronizes thruster-firing times across all six degrees of freedom of all the spacecraft. The algorithm is scalable, inherently adapts to disturbances, and does not require knowledge of spacecraft masses and disturbance forces. In this algorithm, one degree of freedom of one spacecraft is designated the leader, and all other degrees of freedom of all spacecraft as followers. The Cassini adaptive optimum deadband drift controller is the subalgorithm for control in each degree of freedom, and the adaptation is run until each spacecraft achieves a specified drift period. The adaptation is critical because a different disturbance affects each different degree of freedom. Then the leader communicates its thruster-firing starting times to the followers. Then, for each follower, a deadband-synchronization subalgorithm determines the shift needed to synchronize its drift period with that of the leader.

  10. Phase Synchronization Detection of Financial Market Crises

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Xia; Wu, Hong-Fa; Zhang, Ying-Chao; Xia, Bing-Ying; Itoh, Masaru

    Financial market is a complex system whose characteristic behaviors can be caught in corresponding time series. Analyzing such time series by appropriate methods will aid in making inferences and predictions. Here phase synchronization approach is used for visual pattern recognition of crises. Based on Empirical Mode Decomposition and the Hilbert transform, phase evolution of various rhythmic components exiting in the market is extracted. Then the concept of synchronization can be successfully applied to crises detection. Unlike other approaches, this detection distinguishes crises from normal state according to variations of interaction among rhythmic components. The empirical results mentioned here convince us of the fact that financial crises take place at the time when the adjustment processes of other quasi-periodic oscillations and the trend are out of synchronization. On the contrary, when other rhythmic oscillations can be synchronized with the trend, the market will develop healthily. The presence and duration of synchronization reflect dynamics of financial market. All these results will enlighten people to disclose its reasons and probe methods for controlling its pathological rhythms.

  11. Hydrodynamic Synchronization of Light Driven Microrotors

    NASA Astrophysics Data System (ADS)

    Di Leonardo, R.; Búzás, A.; Kelemen, L.; Vizsnyiczai, G.; Oroszi, L.; Ormos, P.

    2012-07-01

    Hydrodynamic synchronization is a fundamental physical phenomenon by which self-sustained oscillators communicate through perturbations in the surrounding fluid and converge to a stable synchronized state. This is an important factor for the emergence of regular and coordinated patterns in the motions of cilia and flagella. When dealing with biological systems, however, it is always hard to disentangle internal signaling mechanisms from external purely physical couplings. We have used the combination of two-photon polymerization and holographic optical trapping to build a mesoscale model composed of chiral propellers rotated by radiation pressure. The two microrotors can be synchronized by hydrodynamic interactions alone although the relative torques have to be finely tuned. Dealing with a micron sized system we treat synchronization as a stochastic phenomenon and show that the phase lag between the two microrotors is distributed according to a stationary Fokker-Planck equation for an overdamped particle over a tilted periodic potential. Synchronized states correspond to minima in this potential whose locations are shown to depend critically on the detailed geometry of the propellers.

  12. Synchronization in time-varying networks

    NASA Astrophysics Data System (ADS)

    Kohar, Vivek; Ji, Peng; Choudhary, Anshul; Sinha, Sudeshna; Kurths, Jüergen

    2014-08-01

    We study the stability of the synchronized state in time-varying complex networks using the concept of basin stability, which is a nonlocal and nonlinear measure of stability that can be easily applied to high-dimensional systems [P. J. Menck, J. Heitzig, N. Marwan, and J. Kurths, Nature Phys. 9, 89 (2013), 10.1038/nphys2516]. The time-varying character is included by stochastically rewiring each link with the average frequency f. We find that the time taken to reach synchronization is lowered and the stability range of the synchronized state increases considerably in dynamic networks. Further we uncover that small-world networks are much more sensitive to link changes than random ones, with the time-varying character of the network having a significant effect at much lower rewiring frequencies. At very high rewiring frequencies, random networks perform better than small-world networks and the synchronized state is stable over a much wider window of coupling strengths. Lastly we show that the stability range of the synchronized state may be quite different for small and large perturbations, and so the linear stability analysis and the basin stability criterion provide complementary indicators of stability.

  13. Sun-synchronous satellite orbit determination

    NASA Astrophysics Data System (ADS)

    Ma, Der-Ming; Zhai, Shen-You

    2004-02-01

    The linearized dynamic equations used for on-board orbit determination of Sun-synchronous satellite are derived. Sun-synchronous orbits are orbits with the secular rate of the right ascension of the ascending node equal to the right ascension rate of the mean sun. Therefore the orbit is no more a closed circle but a tight helix about the Earth. In the paper, instead of treating the orbit as a closed circle, the actual helix orbit is taken as nominal trajectory. The details of the linearized equations of motion for the satellite in the Sun-synchronous orbit are derived. The linearized equations are obtained by perturbing the Keplerian motion with the J2 correction and the effect of sun's attraction being neglected. Combined with the GPS navigation equations, the Kalman filter formulation is given. The particular application considered is the circular Sun-synchronous orbit with the altitude of 800 km and inclination of 98.6°. The numerical example simulated by MATLAB® shows that only the pseudo-range data used in the algorithm still gives acceptable results. Based on the simulation results, we can use the on-board GPS receivers' signal only as an alternative to determine the orbit of Sun-Synchronous satellite and therefore circumvents the need for extensive ground support.

  14. Performance bounds on optimal watermark synchronizers

    NASA Astrophysics Data System (ADS)

    Licks, Vinicius; Ourique, Fabricio; Jordan, Ramiro

    2004-06-01

    The inability of existing countermeasures to consistently cope against localized geometric attacks has precluded the widespread acceptance of image watermarking for commercial applications. The efficiency of these attacks against the so-called spread spectrum methods resides in their ability to affect the synchronization between the watermark reference and the extracted watermark at the detector end. In systems based on quantization schemes, geometric attacks have the effect of moving the watermark vector away from its actual quantization centroid, thus causing the watermark decoder to output wrong message symbols. In this paper, our goal is to gain a better understanding of the challenges imposed by the watermark synchronization problem in the context of localized geometric attacks. For that matter, we propose a model for the watermark synchronization problem based on maximum-likelihood (ML) estimation techniques. In that way, we derive theoretically optimal watermark synchronizer structures for either blind or non-blind schemes and based on the Cramer-Rao inequality we set lower bounds on the variance of these attack parameter estimates as a means to assess the accuracy of such synchronizers.

  15. Intra-layer synchronization in multiplex networks

    NASA Astrophysics Data System (ADS)

    Gambuzza, L. V.; Frasca, M.; Gómez-Gardeñes, J.

    2015-04-01

    We study synchronization of N oscillators indirectly coupled through a medium which is inhomogeneous and has its own dynamics. The system is formalized in terms of a multilayer network, where the top layer is made of disconnected oscillators and the bottom one, modeling the medium, consists of oscillators coupled according to a given topology. The different dynamics of the medium and the top layer is accounted for by including a frequency mismatch between them. We show a novel regime of synchronization as intra-layer coherence does not necessarily require inter-layer coherence. This regime appears under mild conditions on the bottom layer: arbitrary topologies may be considered, provided that they support synchronization of the oscillators of the medium. The existence of a density-dependent threshold as in quorum-sensing phenomena is also demonstrated.

  16. Unstable attractors induce perpetual synchronization and desynchronization.

    PubMed

    Timme, Marc; Wolf, Fred; Geisel, Theo

    2003-03-01

    Common experience suggests that attracting invariant sets in nonlinear dynamical systems are generally stable. Contrary to this intuition, we present a dynamical system, a network of pulse-coupled oscillators, in which unstable attractors arise naturally. From random initial conditions, groups of synchronized oscillators (clusters) are formed that send pulses alternately, resulting in a periodic dynamics of the network. Under the influence of arbitrarily weak noise, this synchronization is followed by a desynchronization of clusters, a phenomenon induced by attractors that are unstable. Perpetual synchronization and desynchronization lead to a switching among attractors. This is explained by the geometrical fact, that these unstable attractors are surrounded by basins of attraction of other attractors, whereas the full measure of their own basin is located remote from the attractor. Unstable attractors do not only exist in these systems, but moreover dominate the dynamics for large networks and a wide range of parameters.

  17. Development of synchronous machines with HTS rotor

    NASA Astrophysics Data System (ADS)

    Kummeth, P.; Frank, M.; Nick, W.; Nerowski, G.; Neumueller, H.-W.

    2005-10-01

    Optimized design of synchronous machines can be achieved by use of HTS tape conductors. The introduction of an iron-free air-core stator winding and replacement of the rotor's copper windings by Bi-2223 tapes allows to develop very compact HTS machines with less than half the weight and volume, higher efficiency and excellent operational behavior compared to conventional devices. In consequence these rotating machines with HTS rotors become very attractive for ship drives, power generation and industrial applications. A 400 kW synchronous HTS machine was designed, manufactured and tested at Siemens. Main goal was to demonstrate the feasibility of basic concepts. Development of a 4 MVA synchronous HTS generator is currently under way.

  18. Robust synchronization in fiber laser arrays

    NASA Astrophysics Data System (ADS)

    Peleš, Slaven; Rogers, Jeffrey L.; Wiesenfeld, Kurt

    2006-02-01

    Synchronization of coupled fiber lasers has been reported in recent experiments [Bruesselbach , Opt. Lett. 30, 1339 (2005); Minden , Proc. SPIE 5335, 89 (2004)]. While these results may lead to dramatic advances in laser technology, the mechanism by which these lasers synchronize is not understood. We analyze a recently proposed [Rogers , IEEE J. Quantum Electron. 41, 767 (2005)] iterated map model of fiber laser arrays to explore this phenomenon. In particular, we look at synchronous solutions of the maps when the gain fields are constant. Determining the stability of these solutions is analytically tractable for a number of different coupling schemes. We find that in the most symmetric physical configurations the most symmetric solution is either unstable or stable over insufficient parameter range to be practical. In contrast, a lower symmetry configuration yields surprisingly robust coherence. This coherence persists beyond the pumping threshold for which the gain fields become time dependent.

  19. Noise Induced Jumping Dynamics Between Synchronized Modes

    NASA Astrophysics Data System (ADS)

    Algar, Shannon D.; Stemler, Thomas; de Saedeleer, Bernard

    Synchronization is a common phenomenon whereby a dynamical system follows the pacemaker provided by an external forcing. Often, such systems have multiple synchronization modes, which are equivalent solutions. We investigate the specific case of two to one synchronization produced by the periodic forcing of a van der Pol oscillator where two possible modes, shifted by one period of the modulation, exist. By studying the flow and the local Lyapunov exponents along the orbit we give an explanation of the noise induced jumps observed in a stochastic forced oscillator. While this investigation gives results that are specific to this system, the framework presented is more general and can be applied to any system showing similar jumping dynamics.

  20. Experiments with synchronized sCMOS cameras

    NASA Astrophysics Data System (ADS)

    Steele, Iain A.; Jermak, Helen; Copperwheat, Chris M.; Smith, Robert J.; Poshyachinda, Saran; Soonthorntham, Boonrucksar

    2016-07-01

    Scientific-CMOS (sCMOS) cameras can combine low noise with high readout speeds and do not suffer the charge multiplication noise that effectively reduces the quantum efficiency of electron multiplying CCDs by a factor 2. As such they have strong potential in fast photometry and polarimetry instrumentation. In this paper we describe the results of laboratory experiments using a pair of commercial off the shelf sCMOS cameras based around a 4 transistor per pixel architecture. In particular using a both stable and a pulsed light sources we evaluate the timing precision that may be obtained when the cameras readouts are synchronized either in software or electronically. We find that software synchronization can introduce an error of 200-msec. With electronic synchronization any error is below the limit ( 50-msec) of our simple measurement technique.

  1. Spark gaps synchronization using electrical trigger pulses

    SciTech Connect

    Agarwal, Ritu; Saroj, P.C.; Sharma, Archana; Roy, Vikas; Mittal, K.C.

    2014-07-01

    In pulse power systems, it is required to have synchronized triggering of two or more high voltage spark gaps capable of switching large currents, using electrical trigger pulses. This paper intends to study the synchronization of spark gaps using electrical trigger. The trigger generator consists of dc supply, IGBT switch and driver circuit which generates 8kV, 400ns (FWHM) pulses. The experiment was carried out using two 0.15uF/50kV energy storage capacitors charged to 12kV and discharged through stainless steel spark gaps of diameter 9 mm across 10 ohm non inductive load. The initial experiment shows that synchronization has been achieved with jitter of 50 to 100ns. Further studies carried out to reduce the jitter time by varying various electrical parameters will be presented. (author)

  2. Controlled Modes of Synchronized Coupled Chaotic Systems

    NASA Astrophysics Data System (ADS)

    Olsen, Thomas; Trail, Collin; Wiener, Richard; Snyder, Michael

    2001-05-01

    Previous investigations have reported on the synchronization of the output of coupled chaotic systems(G. L. Baker, J. A. Blackburn, & H. J. T. Smith, Phys. Rev. Lett. 81), 554 (1998).. We have reported on the control of chaotic pattern dynamics in Taylor vortex Flow by proportional feedback of a system parameter(R. J. Wiener, et al., Phys. Rev. Lett. 83), 2340 (1999).. We have performed numerical investigations attempting to control coupled chaotic pendula in a regime where synchronization may be effected. We find that control of a single chaotic pendulum may be transferred to the second pendulum by synchronization. We also obtain control of novel system modes. We comment on the possibility of realization of analogous behaviors in the Taylor-Couette system.

  3. Robust synchronization in fiber laser arrays.

    PubMed

    Peles, Slaven; Rogers, Jeffrey L; Wiesenfeld, Kurt

    2006-02-01

    Synchronization of coupled fiber lasers has been reported in recent experiments [Bruesselbach, Opt. Lett. 30, 1339 (2005); Minden, Proc. SPIE 5335, 89 (2004)]. While these results may lead to dramatic advances in laser technology, the mechanism by which these lasers synchronize is not understood. We analyze a recently proposed [Rogers, IEEE J. Quantum Electron. 41, 767 (2005)] iterated map model of fiber laser arrays to explore this phenomenon. In particular, we look at synchronous solutions of the maps when the gain fields are constant. Determining the stability of these solutions is analytically tractable for a number of different coupling schemes. We find that in the most symmetric physical configurations the most symmetric solution is either unstable or stable over insufficient parameter range to be practical. In contrast, a lower symmetry configuration yields surprisingly robust coherence. This coherence persists beyond the pumping threshold for which the gain fields become time dependent.

  4. Quantum-coherent phase oscillations in synchronization

    NASA Astrophysics Data System (ADS)

    Weiss, Talitha; Walter, Stefan; Marquardt, Florian

    2017-04-01

    Recently, several studies have investigated synchronization in quantum-mechanical limit-cycle oscillators. However, the quantum nature of these systems remained partially hidden, since the dynamics of the oscillator's phase was overdamped and therefore incoherent. We show that there exist regimes of underdamped and even quantum-coherent phase motion, opening up new possibilities to study quantum synchronization dynamics. To this end, we investigate the Van der Pol oscillator (a paradigm for a self-oscillating system) synchronized to an external drive. We derive an effective quantum model which fully describes the regime of underdamped phase motion and additionally allows us to identify the quality of quantum coherence. Finally, we identify quantum limit cycles of the phase itself.

  5. Synchronization trigger control system for flow visualization

    NASA Technical Reports Server (NTRS)

    Chun, K. S.

    1987-01-01

    The use of cinematography or holographic interferometry for dynamic flow visualization in an internal combustion engine requires a control device that globally synchronizes camera and light source timing at a predefined shaft encoder angle. The device is capable of 0.35 deg resolution for rotational speeds of up to 73 240 rpm. This was achieved by implementing the shaft encoder signal addressed look-up table (LUT) and appropriate latches. The developed digital signal processing technique achieves 25 nsec of high speed triggering angle detection by using direct parallel bit comparison of the shaft encoder digital code with a simulated angle reference code, instead of using angle value comparison which involves more complicated computation steps. In order to establish synchronization to an AC reference signal whose magnitude is variant with the rotating speed, a dynamic peak followup synchronization technique has been devised. This method scrutinizes the reference signal and provides the right timing within 40 nsec. Two application examples are described.

  6. Method of synchronizing independent functional unit

    DOEpatents

    Kim, Changhoan

    2017-02-14

    A system for synchronizing parallel processing of a plurality of functional processing units (FPU), a first FPU and a first program counter to control timing of a first stream of program instructions issued to the first FPU by advancement of the first program counter; a second FPU and a second program counter to control timing of a second stream of program instructions issued to the second FPU by advancement of the second program counter, the first FPU is in communication with a second FPU to synchronize the issuance of a first stream of program instructions to the second stream of program instructions and the second FPU is in communication with the first FPU to synchronize the issuance of the second stream program instructions to the first stream of program instructions.

  7. Gear synchronizer assembly for power transmission

    SciTech Connect

    Ikemoto, K.; Terakura, Y.; Funato, Y.

    1987-06-23

    This patent describes a gear synchronizer assembly comprising a gear member rotatable on a transmission shaft, a spline piece mounted on the gear member for rotation and formed at one side with a conical portion with external spline teeth. The improvement on the clutch sleeve is formed at an inner periphery with a first internal radial projection of large circumferential width. A pair of circumferentially spaced second internal radial projections of small circumferential width are arranged at opposite sides of the first internal radial projection. The first and second internal radial projections each are formed at one side with a pair of chamfers and axially movable in corresponding axial grooves in the cylindrical hub portion of the hub member. The synchronizer ring is formed with a pair of raised portions arranged to be engaged with the first internal radial projection. Synchronizer ring is further formed with another pair of raised portions which are arranged to be engaged with the second internal radial projections.

  8. Maximum entropy model for business cycle synchronization

    NASA Astrophysics Data System (ADS)

    Xi, Ning; Muneepeerakul, Rachata; Azaele, Sandro; Wang, Yougui

    2014-11-01

    The global economy is a complex dynamical system, whose cyclical fluctuations can mainly be characterized by simultaneous recessions or expansions of major economies. Thus, the researches on the synchronization phenomenon are key to understanding and controlling the dynamics of the global economy. Based on a pairwise maximum entropy model, we analyze the business cycle synchronization of the G7 economic system. We obtain a pairwise-interaction network, which exhibits certain clustering structure and accounts for 45% of the entire structure of the interactions within the G7 system. We also find that the pairwise interactions become increasingly inadequate in capturing the synchronization as the size of economic system grows. Thus, higher-order interactions must be taken into account when investigating behaviors of large economic systems.

  9. The Scheme of Beam Synchronization in MEIC

    SciTech Connect

    Zhang, Yuhong; Derbenev, Yaroslav S.; Hutton, Andrew M.

    2013-06-01

    Synchronizing colliding beams at single or multiple collision points is a critical R&D issue in the design of a medium energy electron-ion collider (MEIC) at Jefferson Lab. The path-length variation due to changes in the ion energy, which varies over 20 to 100 GeV, could be more than several times the bunch spacing. The scheme adopted in the present MEIC baseline is centered on varying the number of bunches (i.e., harmonic number) stored in the collider ring. This could provide a set of discrete energies for proton or ions such that the beam synchronization condition is satisfied. To cover the ion energy between these synchronized values, we further propose to vary simultaneously the electron ring circumference and the frequency of the RF systems in both collider rings. We also present in this paper the requirement of frequency tunability of SRF cavities to support the scheme.

  10. Interplay between synchronization, observability, and dynamics

    NASA Astrophysics Data System (ADS)

    Letellier, Christophe; Aguirre, Luis A.

    2010-07-01

    Synchronizing nonidentical chaotic oscillators is very often achieved by using various types of couplings. In the practice of synchronization the “right choice” of the coupling variable— y for the Rössler system, x for the Lorenz equations, and so on—is usually stated rather than explained or justified. Using the Rössler and Rucklidge system, in this paper, it is shown that such “optimal” choices are strongly related to observability properties which, in turn, can be quantified. In this paper it will also be shown that synchronizability does not only depend on the observability of the system but it is also a consequence of the dynamical regimes under study. The paper aims at providing important insight into the critical problem of making the “right choice” when it comes to choosing the coupling variable in synchronization schemes.

  11. Synchronization of extended systems from internal coherence

    NASA Astrophysics Data System (ADS)

    Duane, Gregory S.

    2009-07-01

    A condition for the synchronizability of a pair of extended systems governed by partial differential equations (PDEs), coupled through a finite set of variables, is commonly the existence of internal synchronization or internal coherence in each system separately. The condition was previously illustrated in a forced-dissipative system and is here extended to Hamiltonian systems using an example from particle physics. Full synchronization is precluded by Liouville’s theorem. A form of synchronization weaker than “measure synchronization” is manifest as the positional coincidence of coherent oscillations (“breathers” or “oscillons”) in a pair of coupled scalar field models in an expanding universe with a nonlinear potential, and does not occur with a variant of the model that does not exhibit oscillons.

  12. Phase synchronization inside a superradiant laser

    NASA Astrophysics Data System (ADS)

    Weiner, Joshua M.; Cox, Kevin C.; Bohnet, Justin G.; Thompson, James K.

    2017-03-01

    Superradiant lasers may soon achieve state-of-the-art frequency purity, with linewidths of 1 mHz or less. In a superradiant (or bad-cavity) laser, coherence is primarily stored in the atomic gain medium instead of the optical field. This phase storage is characterized by spontaneous quantum synchronization of the optical dipole moments of each atom. To observe this synchronization, we create two independent superradiant atomic ensembles lasing in a single optical cavity and observe the dynamics of phase realignment, collective power enhancement, and steady-state frequency locking. This work introduces superradiant ensembles as a testbed for fundamental study of quantum synchronization as well and informs research on narrow linewidth superradiant lasers.

  13. Adaptive elimination of synchronization in coupled oscillator

    NASA Astrophysics Data System (ADS)

    Zhou, Shijie; Ji, Peng; Zhou, Qing; Feng, Jianfeng; Kurths, Jürgen; Lin, Wei

    2017-08-01

    We present here an adaptive control scheme with a feedback delay to achieve elimination of synchronization in a large population of coupled and synchronized oscillators. We validate the feasibility of this scheme not only in the coupled Kuramoto’s oscillators with a unimodal or bimodal distribution of natural frequency, but also in two representative models of neuronal networks, namely, the FitzHugh-Nagumo spiking oscillators and the Hindmarsh-Rose bursting oscillators. More significantly, we analytically illustrate the feasibility of the proposed scheme with a feedback delay and reveal how the exact topological form of the bimodal natural frequency distribution influences the scheme performance. We anticipate that our developed scheme will deepen the understanding and refinement of those controllers, e.g. techniques of deep brain stimulation, which have been implemented in remedying some synchronization-induced mental disorders including Parkinson disease and epilepsy.

  14. Synchronous characterization of semiconductor microcavity laser beam.

    PubMed

    Wang, T; Lippi, G L

    2015-06-01

    We report on a high-resolution double-channel imaging method used to synchronously map the intensity- and optical-frequency-distribution of a laser beam in the plane orthogonal to the propagation direction. The synchronous measurement allows us to show that the laser frequency is an inhomogeneous distribution below threshold, but that it becomes homogeneous across the fundamental Gaussian mode above threshold. The beam's tails deviations from the Gaussian shape, however, are accompanied by sizeable fluctuations in the laser wavelength, possibly deriving from manufacturing details and from the influence of spontaneous emission in the very low intensity wings. In addition to the synchronous spatial characterization, a temporal analysis at any given point in the beam cross section is carried out. Using this method, the beam homogeneity and spatial shape, energy density, energy center, and the defects-related spectrum can also be extracted from these high-resolution pictures.

  15. Synchronization tracking in pulse position modulation receiver

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor A.

    1987-01-01

    A clock pulse generator for decoding pulse position modulation in an optical communication receiver is synchronized by a delay tracking loop which multiplies impulses of a data pulse by the square wave clock pulses from the generator to produce positive impulses when the clock pulse is of one level, and negative impulses when the clock pulse is of another level. A delay tracking loop integrates the impulses and produces an error signal that adjusts the delay so the clock pulses will be synchronized with data pulses. A dead-time tau sub d is provided between data pulses of an interval tau sub p in the data pulse period tau. When synchronized, the average number of positive impulses integrated will equal the average number of negative impulses over the continuous stream of data pulses.

  16. Elastic interactions synchronize beating in cardiomyocytes.

    PubMed

    Cohen, Ohad; Safran, Samuel A

    2016-07-13

    Motivated by recent experimental results, we study theoretically the synchronization of the beating phase and frequency of two nearby cardiomyocyte cells. Each cell is represented as an oscillating force dipole in an infinite, viscoelastic medium and the propagation of the elastic signal within the medium is predicted. We examine the steady-state beating of two nearby cells, and show that elastic interactions result in forces that synchronize the phase and frequency of beating in a manner that depends on their mutual orientation. The theory predicts both in-phase and anti-phase steady-state beating depending on the relative cell orientations, as well as how synchronized beating varies with substrate elasticity and the inter-cell distance. These results suggest how mechanics plays a role in cardiac efficiency, and may be relevant for the design of cardiomyocyte based micro devices and other biomedical applications.

  17. Synchronous characterization of semiconductor microcavity laser beam

    SciTech Connect

    Wang, T. Lippi, G. L.

    2015-06-15

    We report on a high-resolution double-channel imaging method used to synchronously map the intensity- and optical-frequency-distribution of a laser beam in the plane orthogonal to the propagation direction. The synchronous measurement allows us to show that the laser frequency is an inhomogeneous distribution below threshold, but that it becomes homogeneous across the fundamental Gaussian mode above threshold. The beam’s tails deviations from the Gaussian shape, however, are accompanied by sizeable fluctuations in the laser wavelength, possibly deriving from manufacturing details and from the influence of spontaneous emission in the very low intensity wings. In addition to the synchronous spatial characterization, a temporal analysis at any given point in the beam cross section is carried out. Using this method, the beam homogeneity and spatial shape, energy density, energy center, and the defects-related spectrum can also be extracted from these high-resolution pictures.

  18. Synchronization in symmetric bipolar population networks.

    PubMed

    Buzna, Lubos; Lozano, Sergi; Díaz-Guilera, Albert

    2009-12-01

    We analyze populations of Kuramoto oscillators with a particular distribution of natural frequencies. Inspired by networks where there are two groups of nodes with opposite behaviors, as for instance, in power-grids where energy is either generated or consumed at different locations, we assume that the frequencies can take only two different values. Correlations between the value of the frequency of a given node and its topological localization are considered in both regular and random topologies. Synchronization is enhanced when nodes are surrounded by nodes of the opposite frequency. The theoretical result presented in this paper is an analytical estimation for the minimum value of the coupling strength between oscillators that guarantees the achievement of a globally synchronized state. This analytical estimation, which is in a very good agreement with numerical simulations, provides a better understanding of the effect of topological localization of natural frequencies on synchronization dynamics.

  19. EEG synchronization characteristics of functional connectivity and complex network properties of memory maintenance in the delta and theta frequency bands.

    PubMed

    Tóth, Brigitta; Boha, Roland; Pósfai, Márton; Gaál, Zsófia Anna; Kónya, Anikó; Stam, Cornelis Jan; Molnár, Márk

    2012-03-01

    Task-dependent changes of nonlinear-linear synchronization features and graph theoretical properties of the delta and theta frequencies were analyzed in the present EEG study that were related to episodic memory maintenance processes. Synchronization was found to increase with respect to both the delta and theta bands within the frontal and parietal areas and also between these regions. Results of graph theoretical analysis indicated a task-related shift towards small-world network topology in the theta band.

  20. Phase Synchronization of Coupled Rossler Oscillators: Amplitude Effect

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Wen; Zheng, Zhi-Gang

    2007-02-01

    Phase synchronization of two linearly coupled Rossler oscillators with parameter misfits is explored. It is found that depending on parameter mismatches, the synchronization of phases exhibits different manners. The synchronization regime can be divided into three regimes. For small mismatches, the amplitude-insensitive regime gives the phase-dominant synchronization; When the parameter misfit increases, the amplitudes and phases of oscillators are correlated, and the amplitudes will dominate the synchronous dynamics for very large mismatches. The lag time among phases exhibits a power law when phase synchronization is achieved.

  1. Synchronous generator wind energy conversion control system

    SciTech Connect

    Medeiros, A.L.R.; Lima, A.M.N.; Jacobina, C.B.; Simoes, F.J.

    1996-12-31

    This paper presents the performance evaluation and the design of the control system of a WECS (Wind Energy Conversion System) that employs a synchronous generator based on its digital simulation. The WECS discussed in this paper is connected to the utility grid through two Pulse Width Modulated (PWM) power converters. The structure of the proposed WECS enables us to achieve high performance energy conversion by: (i) maximizing the wind energy capture and (ii) minimizing the reactive power flowing between the grid and the synchronous generator. 8 refs., 19 figs.

  2. Carrier and symbol synchronization system performance study

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.

    1976-01-01

    Results pertinent to predicting the performance of convolutionally encoded binary phase-shift keyed communication links were presented. The details of the development are provided in four sections. These sections are concerned with developing the bit error probability performance degradations due to PN despreading by a time-shared delay locked loop, the Costas demodulation process, symbol synchronization effects and cycle slipping phenomena in the Costas loop. In addition, Costas cycle slipping probabilities are studied as functions of Doppler count time and signal-to-noise conditions. The effect of cycle slipping in the symbol synchronizer is also studied as a function of channel Doppler and other frequency uncertainties.

  3. Synchronization of chaotic systems with different orders

    NASA Astrophysics Data System (ADS)

    Lü, Ling; Luan, Ling; Guo, Zhi-An

    2007-02-01

    A controller is designed to realize the synchronization between chaotic systems with different orders. The structure of the controller, the error equations and the Lyapunov functions are determined based on stability theory. Hyperchaotic Chen system and Rossler system are taken for example to demonstrate the method to be effective and feasible. Simulation results show that all the state variables of Rossler system can be synchronized with those of hyperchaotic Chen system by using only one controller, and the error signals approach zero smoothly and quickly.

  4. Control of Synchronized Coupled Chaotic Systems

    NASA Astrophysics Data System (ADS)

    Olsen, Thomas; Smiley, Alison; Wiener, Richard

    2000-11-01

    Recent investigations have reported on the synchronization of the output of coupled chaotic systems(G. L. Baker, J. A. Blackburn, & H. J. T. Smith, Phys. Rev. Lett. 81), 554 (1998).. We have reported on the control of chaotic pattern dynamics in Taylor Vortex Flow by proportional feedback of a system parameter(R. J. Wiener, et al., Phys. Rev. Lett. 83), 2340 (1999).. We perform numerical investigations seeking to control coupled chaotic pendula in a regime which displays synchronization. We report the results of these numerical studies and comment on the prospects for experimental attempts to control coupled regions of super-critical Taylor Vortex Flow.

  5. Synchronization system for Gamma-4 electrophysical facility

    NASA Astrophysics Data System (ADS)

    Grishin, A. V.; Nazarenko, S. T.; Kozachek, A. V.; Kalashnikov, D. A.; Glushkov, S. L.; Mironychev, B. P.; Martynov, V. M.; Turutin, V. V.; Kul'dyushov, D. A.; Pavlov, V. S.; Demanov, V. A.; Shikhanova, T. F.; Esaeva, Yu. A.

    2015-01-01

    A synchronization system for the Gamma-4 four-module electrophysical facility has been developed. It has been shown that the synchronization system should provide triggering (with precision not worse than ±3 ns) of the high-voltage gas-filled trigatron-type switches of the facility modules (144 spark gaps with an operating voltage of 1 MV), the pre-pulse switches of the modules (24 spark gaps with an operating voltage of 3 MV) and eight Arkad'ev-Marx generators (40 spark gaps with an operating voltage of 100 kV).

  6. Network response synchronization enhanced by synaptic plasticity

    NASA Astrophysics Data System (ADS)

    Lobov, S.; Simonov, A.; Kastalskiy, I.; Kazantsev, V.

    2016-02-01

    Synchronization of neural network response on spatially localized periodic stimulation was studied. The network consisted of synaptically coupled spiking neurons with spike-timing-dependent synaptic plasticity (STDP). Network connectivity was defined by time evolving matrix of synaptic weights. We found that the steady-state spatial pattern of the weights could be rearranged due to locally applied external periodic stimulation. A method for visualization of synaptic weights as vector field was introduced to monitor the evolving connectivity matrix. We demonstrated that changes in the vector field and associated weight rearrangements underlay an enhancement of synchronization range.

  7. Robust hyperchaotic synchronization via analog transmission line

    NASA Astrophysics Data System (ADS)

    Sadoudi, S.; Tanougast, C.

    2016-02-01

    In this paper, a novel experimental chaotic synchronization technique via analog transmission is discussed. We demonstrate through Field-Programmable Gate Array (FPGA) implementation design the robust synchronization of two embedded hyperchaotic Lorenz generators interconnected with an analog transmission line. The basic idea of this work consists in combining a numerical generation of chaos and transmitting it with an analog signal. The numerical chaos allows to overcome the callback parameter mismatch problem and the analog transmission offers robust data security. As application, this technique can be applied to all families of chaotic systems including time-delayed chaotic systems.

  8. Synchronization of Asynchronous Switched Boolean Network.

    PubMed

    Zhang, Hao; Wang, Xingyuan; Lin, Xiaohui

    2015-01-01

    In this paper, the complete synchronizations for asynchronous switched Boolean network with free Boolean sequence controllers and close-loop controllers are studied. First, the basic asynchronous switched Boolean network model is provided. With the method of semi-tensor product, the Boolean dynamics is translated into linear representation. Second, necessary and sufficient conditions for ASBN synchronization with free Boolean sequence control and close-loop control are derived, respectively. Third, some illustrative examples are provided to show the efficiency of the proposed methods.

  9. Systematic Review of Two Decades (1995 to 2014) of Research on Synchronous Online Learning

    ERIC Educational Resources Information Center

    Martin, Florence; Ahlgrim-Delzell, Lynn; Budhrani, Kiran

    2017-01-01

    Systematic reviews of literature are studies that strategically search for published research on a specific topic in order to synthesize what is known about the topic. This systematic review describes 157 articles on synchronous online learning (SOL) from thirty-four different countries on instructional setting, content areas, participant…

  10. Student Perceptions of Asynchronous and Synchronous Web Based Tools and Perceived Attainment of Academic Outcomes

    ERIC Educational Resources Information Center

    Parenti, Melissa A.

    2013-01-01

    With an increasing presence and continual adaptations related to distance learning, there is a recognized need for up-to-date research in the area of effectiveness of online education programs. More specifically, assessing the capacity to attain academic goals by use of asynchronous and synchronous web based tools within Learning Management…

  11. A Survey on Chinese Students' Online English Language Learning Experience through Synchronous Web Conferencing Classrooms

    ERIC Educational Resources Information Center

    Li, Chenxi

    2016-01-01

    The online education industry has had a rapid economic development in China since 2013, but this area received little attention in research. This study investigates Chinese undergraduate students' online English learning experiences and online teacher-learner interaction in synchronous web conferencing classes. This article reports the findings…

  12. Clock Synchronization for Multihop Wireless Sensor Networks

    ERIC Educational Resources Information Center

    Solis Robles, Roberto

    2009-01-01

    In wireless sensor networks, more so generally than in other types of distributed systems, clock synchronization is crucial since by having this service available, several applications such as media access protocols, object tracking, or data fusion, would improve their performance. In this dissertation, we propose a set of algorithms to achieve…

  13. My metronomes won't synchronize

    NASA Astrophysics Data System (ADS)

    Pykett, Colin

    2017-01-01

    Soon after Dutch scientist Christiaan Huygens invented the pendulum clock in the 17th century, he observed that pendulums in nearby clocks often synchronize such that eventually their phases are locked. So why then do my two metronomes not follow the herd?

  14. Synchronous bilateral breast cancer in a male

    PubMed Central

    Rubio Hernández, María Caridad; Díaz Prado, Yenia Ivet; Pérez, Suanly Rodríguez; Díaz, Ronald Rodríguez; Aleaga, Zaili Gutiérrez

    2013-01-01

    Male breast cancer, which represents only 1% of all breast cancers, is occasionally associated with a family history of breast cancer. Sporadic male breast cancers presenting with another primary breast cancer are extremely rare. In this article, we report on a 70-year-old male patient with bilateral multifocal and synchronous breast cancer and without a family history of breast cancer. PMID:24319497

  15. Synchronous Computer-Mediated Communication and Interaction

    ERIC Educational Resources Information Center

    Ziegler, Nicole

    2016-01-01

    The current study reports on a meta-analysis of the relative effectiveness of interaction in synchronous computer-mediated communication (SCMC) and face-to-face (FTF) contexts. The primary studies included in the analysis were journal articles and dissertations completed between 1990 and 2012 (k = 14). Results demonstrate that interaction in SCMC…

  16. An Online Synchronous Test for Professional Interpreters

    ERIC Educational Resources Information Center

    Chen, Nian-Shing; Ko, Leong

    2010-01-01

    This article is based on an experiment designed to conduct an interpreting test for multiple candidates online, using web-based synchronous cyber classrooms. The test model was based on the accreditation test for Professional Interpreters produced by the National Accreditation Authority of Translators and Interpreters (NAATI) in Australia.…

  17. An Online Synchronous Test for Professional Interpreters

    ERIC Educational Resources Information Center

    Chen, Nian-Shing; Ko, Leong

    2010-01-01

    This article is based on an experiment designed to conduct an interpreting test for multiple candidates online, using web-based synchronous cyber classrooms. The test model was based on the accreditation test for Professional Interpreters produced by the National Accreditation Authority of Translators and Interpreters (NAATI) in Australia.…

  18. Thalamocortical synchronization and cognition: implications for schizophrenia?

    PubMed

    Uhlhaas, Peter J; Roux, Frederic; Singer, Wolf

    2013-03-20

    Cognitive deficits are a core dysfunction in schizophrenia. In this issue of Neuron, Parnaudeau et al. (2013) investigated synchronization in thalamocortical pathways in an animal model to address the disconnection between brain regions as a mechanism for working memory impairments in the disorder. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Efficient Distribution of Triggered Synchronous Block Diagrams

    DTIC Science & Technology

    2011-10-21

    called a trigger. At a given synchronous step, if the trigger is true , the block fires normally; otherwise, the block stutters , that is, keeps its...trigger is false, no updates are made and the values written at the outputs are the same as in the previous step (i.e., the process “ stutters ”). All

  20. Synchronized flow in oversaturated city traffic

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.; Klenov, Sergey L.; Hermanns, Gerhard; Hemmerle, Peter; Rehborn, Hubert; Schreckenberg, Michael

    2013-11-01

    Based on numerical simulations with a stochastic three-phase traffic flow model, we reveal that moving queues (moving jams) in oversaturated city traffic dissolve at some distance upstream of the traffic signal while transforming into synchronized flow. It is found that, as in highway traffic [Kerner, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.85.036110 85, 036110 (2012)], such a jam-absorption effect in city traffic is explained by a strong driver's speed adaptation: Time headways (space gaps) between vehicles increase upstream of a moving queue (moving jam), resulting in moving queue dissolution. It turns out that at given traffic signal parameters, the stronger the speed adaptation effect, the shorter the mean distance between the signal location and the road location at which moving queues dissolve fully and oversaturated traffic consists of synchronized flow only. A comparison of the synchronized flow in city traffic found in this Brief Report with synchronized flow in highway traffic is made.