Science.gov

Sample records for area synchronized phasor

  1. Synchronous Phasor-like Measurements

    SciTech Connect

    Kirkham, Harold; Dagle, Jeffery E.

    2014-02-14

    Phasor measurement units struggle to make acceptable estimates of frequency and rate of change of frequency. The most important cause of the problem is that the quantity being measured is not actually a phasor. The paper substitutes a different equation for the phasor equatin, and obtains its solution by curve-fitting.

  2. Precise synchronization of phasor measurements in electric power systems

    NASA Technical Reports Server (NTRS)

    Phadke, Arun G.

    1990-01-01

    Phasors representing positive sequence voltages and currents in a power network are in the most important parameters in several monitoring, control, and protection functions in interconnected electric power networks. Recent advances in computer relaying have led to very efficient and accurate phasor measurement systems. When the phasors to be measured are separated by hundreds of miles, it becomes necessary to synchronize the measurement processes, so that a consistent description of the state of the power system can be established. Global Positioning System (GPS) transmissions offer an ideal source for synchronization of phasor measurements. The concept and implementation of this technique are described. Several uses of synchronized phasor measurements are also described. Among these are improved state estimation algorithms, state estimator enhancements, dynamic state estimates, improved control techniques, and improved protection concepts.

  3. Real-Time Dynamics Monitoring System with Synchronized Phasor Measurements

    2005-01-01

    The Real-Time Dynamics Monitoring System is designed to monitor the dynamics within the power grid and assess the system behavior during normal and disturbance conditions. The RTDMS application was built on the Grid-3P technology platform and takes real-time information collected by Synchronized Phasor Measurement Units (PMU5) or other collection devices and transmitted to a central Phasor Data Concentrator (PDC) for monitoring grid dynamics. The data is sampled 30 times per second and is time-synchronized. Thismore » data is processed to create graphical and geographical displays to provide visualization for frequency/frequency response, voltage magnitudes and angles, voltage angle differences across critical paths as well as real and reactive power-flows on a sub-second and second basis. Software allows for monitoring, tracking, historical data archiving and electric system troubleshooting for reliability management.« less

  4. A PLL Scheme for Synchronization with Grid Voltage Phasor in Active Power Filter Systems

    NASA Astrophysics Data System (ADS)

    Krievs, Oskars; Steiks, Ingars; Ribickis, Leonids

    2010-01-01

    Voltage source inverters connected to the grid in applications such as active power filters require synchronization with the grid voltage. Since in practice the grid voltage can be unbalanced and distorted, but the operation of the whole active filter control system is strongly dependant on precise estimation of grid voltage phase, the fundamental positive sequence phasor of the grid voltage has to be extracted. In this paper a system for smooth estimation of the position of the voltage phasor at the point of common coupling of a parallel active filter system is presented using a sinusoidal signal integrator and a simple software PLL. The performance of the proposed system is verified by simulation and experimental results. The proposed PLL scheme can also be used in other vector oriented control systems.

  5. Synchronized Phasor Data for Analyzing Wind Power Plant Dynamic Behavior and Model Validation

    SciTech Connect

    Wan, Y. H.

    2013-01-01

    The U.S. power industry is undertaking several initiatives that will improve the operations of the power grid. One of those is the implementation of 'wide area measurements' using phasor measurement units (PMUs) to dynamically monitor the operations and the status of the network and provide advanced situational awareness and stability assessment. This project seeks to obtain PMU data from wind power plants and grid reference points and develop software tools to analyze and visualize synchrophasor data for the purpose of better understanding wind power plant dynamic behaviors under normal and contingency conditions.

  6. Wide-Area Situational Awareness of Power Grids with Limited Phasor Measurements

    SciTech Connect

    Zhou, Ning; Huang, Zhenyu; Nieplocha, Jarek; Nguyen, Tony B.

    2006-09-30

    Lack of situational awareness has been identified as one of root causes for the August 14, 2003 Northeast Blackout in North America. To improve situational awareness, the Department of Energy (DOE) launched several projects to deploy Wide Area Measurement Systems (WAMS) in different interconnections. Compared to the tens of thousands of buses, the number of Phasor Measurement Units (PMUs) is quite limited and not enough to achieve the observability for the whole interconnections. To utilize the limited number of PMU measurements to improve situational awareness, this paper proposes to combine PMU measurement data and power flow equations to form a hybrid power flow model. Technically, a model which combines the concept of observable islands and modeling of power flow conditions, is proposed. The model is called a Hybrid Power Flow Model as it has both PMU measurements and simulation assumptions, which describes prior knowledge available about whole power systems. By solving the hybrid power flow equations, the proposed method can be used to derive power system states to improve the situational awareness of a power grid.

  7. Performance Evaluation of Phasor Measurement Systems

    SciTech Connect

    Huang, Zhenyu; Kasztenny, Bogdan; Madani, Vahid; Martin, Kenneth E.; Meliopoulos, Sakis; Novosel, Damir; Stenbakken, Jerry

    2008-07-20

    After two decades of phasor network deployment, phasor measurements are now available at many major substations and power plants. The North American SynchroPhasor Initiative (NASPI), supported by both the US Department of Energy and the North American Electricity Reliability Council (NERC), provides a forum to facilitate the efforts in phasor technology in North America. Phasor applications have been explored and some are in today’s utility practice. IEEE C37.118 Standard is a milestone in standardizing phasor measurements and defining performance requirements. To comply with IEEE C37.118 and to better understand the impact of phasor quality on applications, the NASPI Performance and Standards Task Team (PSTT) initiated and accomplished the development of two important documents to address characterization of PMUs and instrumentation channels, which leverage prior work (esp. in WECC) and international experience. This paper summarizes the accomplished PSTT work and presents the methods for phasor measurement evaluation.

  8. Phasor Measurement Unit and Its Application in Modern Power Systems

    SciTech Connect

    Ma, Jian; Makarov, Yuri V.; Dong, Zhao Yang

    2010-06-01

    The introduction of phasor measuring units (PMUs) in power systems significantly improves the possibilities for monitoring and analyzing power system dynamics. Synchronized measurements make it possible to directly measure phase angles between corresponding phasors in different locations within the power system. Improved monitoring and remedial action capabilities allow network operators to utilize the existing power system in a more efficient way. Improved information allows fast and reliable emergency actions, which reduces the need for relatively high transmission margins required by potential power system disturbances. In this chapter, the applications of PMU in modern power systems are presented. Specifically, the topics touched in this chapter include state estimation, voltage and transient stability, oscillation monitoring, event and fault detection, situation awareness, and model validation. A case study using Characteristic Ellipsoid method based on PMU to monitor power system dynamic is presented.

  9. Synchronizing computer clocks using a local area network

    NASA Technical Reports Server (NTRS)

    Levine, Judah

    1990-01-01

    Researchers completed the first tests of a method to synchronize the clocks of networked computers to the National Institute of Standards and Technology (NIST) time scale. The method uses a server computer to disseminate the time to other clients on the same local-area network. The server is synchronized to NIST using the ACTS protocol over a dial-up telephone line. The software in both the server and the parameters of this model are used to adjust the time of the local clock and the interval between calibration requests in a statistically optimum way. The algorithm maximizes the time between calibrations while at the same time keeping the time of the local clock correct within a specific tolerance. The method can be extended to synchronize computers linked over wide-area networks, and an experiment to test the performance of the algorithms over such networks is being planned.

  10. Enhancing synchronization stability in a multi-area power grid.

    PubMed

    Wang, Bing; Suzuki, Hideyuki; Aihara, Kazuyuki

    2016-01-01

    Maintaining a synchronous state of generators is of central importance to the normal operation of power grids, in which many networks are generally interconnected. In order to understand the condition under which the stability can be optimized, it is important to relate network stability with feedback control strategies as well as network structure. Here, we present a stability analysis on a multi-area power grid by relating it with several control strategies and topological design of network structure. We clarify the minimal feedback gain in the self-feedback control, and build the optimal communication network for the local and global control strategies. Finally, we consider relationship between the interconnection pattern and the synchronization stability; by optimizing the network interlinks, the obtained network shows better synchronization stability than the original network does, in particular, at a high power demand. Our analysis shows that interlinks between spatially distant nodes will improve the synchronization stability. The results seem unfeasible to be implemented in real systems but provide a potential guide for the design of stable power systems. PMID:27225708

  11. Enhancing synchronization stability in a multi-area power grid

    PubMed Central

    Wang, Bing; Suzuki, Hideyuki; Aihara, Kazuyuki

    2016-01-01

    Maintaining a synchronous state of generators is of central importance to the normal operation of power grids, in which many networks are generally interconnected. In order to understand the condition under which the stability can be optimized, it is important to relate network stability with feedback control strategies as well as network structure. Here, we present a stability analysis on a multi-area power grid by relating it with several control strategies and topological design of network structure. We clarify the minimal feedback gain in the self-feedback control, and build the optimal communication network for the local and global control strategies. Finally, we consider relationship between the interconnection pattern and the synchronization stability; by optimizing the network interlinks, the obtained network shows better synchronization stability than the original network does, in particular, at a high power demand. Our analysis shows that interlinks between spatially distant nodes will improve the synchronization stability. The results seem unfeasible to be implemented in real systems but provide a potential guide for the design of stable power systems. PMID:27225708

  12. Enhancing synchronization stability in a multi-area power grid

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Suzuki, Hideyuki; Aihara, Kazuyuki

    2016-05-01

    Maintaining a synchronous state of generators is of central importance to the normal operation of power grids, in which many networks are generally interconnected. In order to understand the condition under which the stability can be optimized, it is important to relate network stability with feedback control strategies as well as network structure. Here, we present a stability analysis on a multi-area power grid by relating it with several control strategies and topological design of network structure. We clarify the minimal feedback gain in the self-feedback control, and build the optimal communication network for the local and global control strategies. Finally, we consider relationship between the interconnection pattern and the synchronization stability; by optimizing the network interlinks, the obtained network shows better synchronization stability than the original network does, in particular, at a high power demand. Our analysis shows that interlinks between spatially distant nodes will improve the synchronization stability. The results seem unfeasible to be implemented in real systems but provide a potential guide for the design of stable power systems.

  13. Phasor Analysis of Binary Diffraction Gratings with Different Fill Factors

    ERIC Educational Resources Information Center

    Martinez, Antonio; Sanchez-Lopez, Ma del Mar; Moreno, Ignacio

    2007-01-01

    In this work, we present a simple analysis of binary diffraction gratings with different slit widths relative to the grating period. The analysis is based on a simple phasor technique directly derived from the Huygens principle. By introducing a slit phasor and a grating phasor, the intensity of the diffracted orders and the grating's resolving…

  14. The phasor type model of SMES

    NASA Astrophysics Data System (ADS)

    Shi, J.; Tang, Y.; Ren, L.; Li, J.; Chen, S.

    2009-10-01

    Superconducting magnetic energy storage (SMES) compensates the dynamic power for the power system through regulating the active and reactive currents between the SMES and the power system. To analyze the influence of SMES on the operation characteristic of the power system, a second-order equivalent model of SMES is adopted in the electromagnetic transient analysis of power system, but the model makes considerable simplifications for the dynamic characteristic of SMES. This paper proposed the phasor type model of SMES. The phasor model has the following characteristics: (1) the model does not considers the switching state of the power electronic converter, which can save the computing time and improve the simulation efficiency; (2) the model considers the performance of the superconducting magnet, the converter and the DC side capacitor, which can accurately reflect the dynamic response characteristics of SMES; and (3) the model includes detailed control system of SMES, which can implement different control methods to the SMES system and evaluate the control effect. Using MATLAB SIMULINK, the dynamic characteristic of the SMES phasor model is evaluated. Then, the phasor model is introduced into the power system stability analysis to analyze the application of SMES in damping out the power system.

  15. Synchronization in area-preserving maps: Effects of mixed phase space and coherent structures.

    PubMed

    Mahata, Sasibhusan; Das, Swetamber; Gupte, Neelima

    2016-06-01

    The problem of synchronization of coupled Hamiltonian systems presents interesting features due to the mixed nature (regular and chaotic) of the phase space. We study these features by examining the synchronization of unidirectionally coupled area-preserving maps coupled by the Pecora-Caroll method. The master stability function approach is used to study the stability of the synchronous state and to identify the percentage of synchronizing initial conditions. The transient to synchronization shows intermittency with an associated power law. The mixed nature of the phase space of the studied map has notable effects on the synchronization times as is seen in the case of the standard map. Using finite-time Lyapunov exponent analysis, we show that the synchronization of the maps occurs in the neighborhood of invariant curves in the phase space. The phase differences of the coevolving trajectories show intermittency effects, due to the existence of stable periodic orbits contributing locally stable directions in the synchronizing neighborhoods. Furthermore, the value of the nonlinearity parameter, as well as the location of the initial conditions play an important role in the distribution of synchronization times. We examine drive response combinations which are chaotic-chaotic, chaotic-regular, regular-chaotic, and regular-regular. A range of scaling behavior is seen for these cases, including situations where the distributions show a power-law tail, indicating long synchronization times for at least some of the synchronizing trajectories. The introduction of coherent structures in the system changes the situation drastically. The distribution of synchronization times crosses over to exponential behavior, indicating shorter synchronization times, and the number of initial conditions which synchronize increases significantly, indicating an enhancement in the basin of synchronization. We discuss the implications of our results. PMID:27415260

  16. Synchronization in area-preserving maps: Effects of mixed phase space and coherent structures.

    PubMed

    Mahata, Sasibhusan; Das, Swetamber; Gupte, Neelima

    2016-06-01

    The problem of synchronization of coupled Hamiltonian systems presents interesting features due to the mixed nature (regular and chaotic) of the phase space. We study these features by examining the synchronization of unidirectionally coupled area-preserving maps coupled by the Pecora-Caroll method. The master stability function approach is used to study the stability of the synchronous state and to identify the percentage of synchronizing initial conditions. The transient to synchronization shows intermittency with an associated power law. The mixed nature of the phase space of the studied map has notable effects on the synchronization times as is seen in the case of the standard map. Using finite-time Lyapunov exponent analysis, we show that the synchronization of the maps occurs in the neighborhood of invariant curves in the phase space. The phase differences of the coevolving trajectories show intermittency effects, due to the existence of stable periodic orbits contributing locally stable directions in the synchronizing neighborhoods. Furthermore, the value of the nonlinearity parameter, as well as the location of the initial conditions play an important role in the distribution of synchronization times. We examine drive response combinations which are chaotic-chaotic, chaotic-regular, regular-chaotic, and regular-regular. A range of scaling behavior is seen for these cases, including situations where the distributions show a power-law tail, indicating long synchronization times for at least some of the synchronizing trajectories. The introduction of coherent structures in the system changes the situation drastically. The distribution of synchronization times crosses over to exponential behavior, indicating shorter synchronization times, and the number of initial conditions which synchronize increases significantly, indicating an enhancement in the basin of synchronization. We discuss the implications of our results.

  17. Synchronization in area-preserving maps: Effects of mixed phase space and coherent structures

    NASA Astrophysics Data System (ADS)

    Mahata, Sasibhusan; Das, Swetamber; Gupte, Neelima

    2016-06-01

    The problem of synchronization of coupled Hamiltonian systems presents interesting features due to the mixed nature (regular and chaotic) of the phase space. We study these features by examining the synchronization of unidirectionally coupled area-preserving maps coupled by the Pecora-Caroll method. The master stability function approach is used to study the stability of the synchronous state and to identify the percentage of synchronizing initial conditions. The transient to synchronization shows intermittency with an associated power law. The mixed nature of the phase space of the studied map has notable effects on the synchronization times as is seen in the case of the standard map. Using finite-time Lyapunov exponent analysis, we show that the synchronization of the maps occurs in the neighborhood of invariant curves in the phase space. The phase differences of the coevolving trajectories show intermittency effects, due to the existence of stable periodic orbits contributing locally stable directions in the synchronizing neighborhoods. Furthermore, the value of the nonlinearity parameter, as well as the location of the initial conditions play an important role in the distribution of synchronization times. We examine drive response combinations which are chaotic-chaotic, chaotic-regular, regular-chaotic, and regular-regular. A range of scaling behavior is seen for these cases, including situations where the distributions show a power-law tail, indicating long synchronization times for at least some of the synchronizing trajectories. The introduction of coherent structures in the system changes the situation drastically. The distribution of synchronization times crosses over to exponential behavior, indicating shorter synchronization times, and the number of initial conditions which synchronize increases significantly, indicating an enhancement in the basin of synchronization. We discuss the implications of our results.

  18. Propagation phasor approach for holographic image reconstruction

    PubMed Central

    Luo, Wei; Zhang, Yibo; Göröcs, Zoltán; Feizi, Alborz; Ozcan, Aydogan

    2016-01-01

    To achieve high-resolution and wide field-of-view, digital holographic imaging techniques need to tackle two major challenges: phase recovery and spatial undersampling. Previously, these challenges were separately addressed using phase retrieval and pixel super-resolution algorithms, which utilize the diversity of different imaging parameters. Although existing holographic imaging methods can achieve large space-bandwidth-products by performing pixel super-resolution and phase retrieval sequentially, they require large amounts of data, which might be a limitation in high-speed or cost-effective imaging applications. Here we report a propagation phasor approach, which for the first time combines phase retrieval and pixel super-resolution into a unified mathematical framework and enables the synthesis of new holographic image reconstruction methods with significantly improved data efficiency. In this approach, twin image and spatial aliasing signals, along with other digital artifacts, are interpreted as noise terms that are modulated by phasors that analytically depend on the lateral displacement between hologram and sensor planes, sample-to-sensor distance, wavelength, and the illumination angle. Compared to previous holographic reconstruction techniques, this new framework results in five- to seven-fold reduced number of raw measurements, while still achieving a competitive resolution and space-bandwidth-product. We also demonstrated the success of this approach by imaging biological specimens including Papanicolaou and blood smears. PMID:26964671

  19. Propagation phasor approach for holographic image reconstruction

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Zhang, Yibo; Göröcs, Zoltán; Feizi, Alborz; Ozcan, Aydogan

    2016-03-01

    To achieve high-resolution and wide field-of-view, digital holographic imaging techniques need to tackle two major challenges: phase recovery and spatial undersampling. Previously, these challenges were separately addressed using phase retrieval and pixel super-resolution algorithms, which utilize the diversity of different imaging parameters. Although existing holographic imaging methods can achieve large space-bandwidth-products by performing pixel super-resolution and phase retrieval sequentially, they require large amounts of data, which might be a limitation in high-speed or cost-effective imaging applications. Here we report a propagation phasor approach, which for the first time combines phase retrieval and pixel super-resolution into a unified mathematical framework and enables the synthesis of new holographic image reconstruction methods with significantly improved data efficiency. In this approach, twin image and spatial aliasing signals, along with other digital artifacts, are interpreted as noise terms that are modulated by phasors that analytically depend on the lateral displacement between hologram and sensor planes, sample-to-sensor distance, wavelength, and the illumination angle. Compared to previous holographic reconstruction techniques, this new framework results in five- to seven-fold reduced number of raw measurements, while still achieving a competitive resolution and space-bandwidth-product. We also demonstrated the success of this approach by imaging biological specimens including Papanicolaou and blood smears.

  20. Attentional Stimulus Selection through Selective Synchronization between Monkey Visual Areas

    PubMed Central

    Bosman, Conrado A.; Schoffelen, Jan-Mathijs; Brunet, Nicolas; Oostenveld, Robert; Bastos, Andre M.; Womelsdorf, Thilo; Rubehn, Birthe; Stieglitz, Thomas; De Weerd, Peter; Fries, Pascal

    2012-01-01

    SUMMARY A central motif in neuronal networks is convergence, linking several input neurons to one target neuron. In visual cortex, convergence renders target neurons responsive to complex stimuli. Yet, convergence typically sends multiple stimuli to a target, and the behaviorally relevant stimulus must be selected. We used two stimuli, activating separate electrocorticographic V1 sites, and both activating an electrocorticographic V4 site equally strongly. When one of those stimuli activated one V1 site, it gamma-synchronized (60–80 Hz) to V4. When the two stimuli activated two V1 sites, primarily the relevant one gamma-synchronized to V4. Frequency bands of gamma activities showed substantial overlap containing the band of inter-areal coherence. The relevant V1 site had its gamma peak frequency 2–3 Hz higher than the irrelevant V1 site, and 4–6 Hz higher than V4. Gamma-mediated inter-areal influences were predominantly directed from V1 to V4. We propose that selective synchronization renders relevant input effective, thereby modulating effective connectivity. PMID:22958827

  1. Characterizing fibrosis in UUO mice model using multiparametric analysis of phasor distribution from FLIM images

    PubMed Central

    Ranjit, Suman; Dvornikov, Alexander; Levi, Moshe; Furgeson, Seth; Gratton, Enrico

    2016-01-01

    Phasor approach to fluorescence lifetime microscopy is used to study development of fibrosis in the unilateral ureteral obstruction model (UUO) of kidney in mice. Traditional phasor analysis has been modified to create a multiparametric analysis scheme that splits the phasor points in four equidistance segments based on the height of peak of the phasor distribution and calculates six parameters including average phasor positions, the shape of each segment, the angle of the distribution and the number of points in each segment. These parameters are used to create a spectrum of twenty four points specific to the phasor distribution of each sample. Comparisons of spectra from diseased and healthy tissues result in quantitative separation and calculation of statistical parameters including AUC values, positive prediction values and sensitivity. This is a new method in the evolving field of analyzing phasor distribution of FLIM data and provides further insights. Additionally, the progression of fibrosis with time is detected using this multiparametric approach to phasor analysis.

  2. Phasor analysis for nonlinear pump-probe microscopy

    PubMed Central

    Robles, Francisco E.; Wilson, Jesse W.; Fischer, Martin C.; Warren, Warren S.

    2012-01-01

    Pump-probe microscopy provides molecular information by probing transient, excited state dynamic properties of pigmented samples. Analysis of the transient response is typically conducted using principal component analysis or multi-exponential fitting, however these methods are not always practical or feasible. Here, we show an adaptation of phasor analysis to provide an intuitive, robust, and efficient method for analyzing and displaying pump-probe images, thereby alleviating some of the challenges associated with differentiating multiple pigments. A theoretical treatment is given to understand how the complex transient signals map onto the phasor plot. Analyses of cutaneous and ocular pigmented tissue samples, as well as historical pigments in art demonstrate the utility of this approach.

  3. Characterizing fibrosis in UUO mice model using multiparametric analysis of phasor distribution from FLIM images

    PubMed Central

    Ranjit, Suman; Dvornikov, Alexander; Levi, Moshe; Furgeson, Seth; Gratton, Enrico

    2016-01-01

    Phasor approach to fluorescence lifetime microscopy is used to study development of fibrosis in the unilateral ureteral obstruction model (UUO) of kidney in mice. Traditional phasor analysis has been modified to create a multiparametric analysis scheme that splits the phasor points in four equidistance segments based on the height of peak of the phasor distribution and calculates six parameters including average phasor positions, the shape of each segment, the angle of the distribution and the number of points in each segment. These parameters are used to create a spectrum of twenty four points specific to the phasor distribution of each sample. Comparisons of spectra from diseased and healthy tissues result in quantitative separation and calculation of statistical parameters including AUC values, positive prediction values and sensitivity. This is a new method in the evolving field of analyzing phasor distribution of FLIM data and provides further insights. Additionally, the progression of fibrosis with time is detected using this multiparametric approach to phasor analysis. PMID:27699117

  4. Phasor Representation of Monomer-Excimer Kinetics: General Results and Application to Pyrene.

    PubMed

    Martelo, Liliana; Fedorov, Alexander; Berberan-Santos, Mário N

    2015-12-01

    Phasor plots of the fluorescence intensity decay (plots of the Fourier sine transform versus the Fourier cosine transform, for one or several angular frequencies) are being increasingly used in studies of homogeneous and heterogeneous systems. In this work, the phasor approach is applied to monomer-excimer kinetics. The results obtained allow a clear visualization of the information contained in the decays. The monomer phasor falls inside the universal circle, whereas the excimer phasor lies outside it, but within the double-exponential outer boundary curve. The monomer and excimer phasors, along with those corresponding to the two exponential components of the decays, fall on a common straight line and obey the generalized lever rule. The clockwise trajectories described by both phasors upon monomer concentration increase are identified. The phasor approach allows discussing in a single graphic not only the effect of concentration but also that of rate constants, including the evolution from irreversible kinetics to fast excited-state equilibrium upon a temperature increase. The obtained results are applied to the fluorescence decays of pyrene monomer and excimer in methylcyclohexane at room temperature. A straightforward method of monomer-excimer lifetime data analysis based on linear plots is also introduced.

  5. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Synchronization in Complex Networks with Multiple Connections

    NASA Astrophysics Data System (ADS)

    Wu, Qing-Chu; Fu, Xin-Chu; Sun, Wei-Gang

    2010-01-01

    In this paper a class of networks with multiple connections are discussed. The multiple connections include two different types of links between nodes in complex networks. For this new model, we give a simple generating procedure. Furthermore, we investigate dynamical synchronization behavior in a delayed two-layer network, giving corresponding theoretical analysis and numerical examples.

  6. Phasor FLIM metabolic mapping of stem cells and cancer cells in live tissues

    NASA Astrophysics Data System (ADS)

    Stringari, Chiara; Donovan, Peter; Gratton, Enrico

    2012-03-01

    We use the phasor approach to fluorescence lifetime imaging and intrinsic biochemical fluorescence biomarkers in conjunction with image segmentation and the concept of cell phasor for deriving metabolic maps of cells and living tissues in vivo. In issues we identify and separate intrinsic fluorophores such as collagen, retinol, retinoic acid, porphyrin, flavins, free and bound nicotinamide adenine dinucleotide (NADH). Metabolic signatures of tissues are obtained by calculating the phasor fingerprint of single cells and by mapping the relative concentration of metabolites. This method detects small changes in metabolic signatures and redox states of cells. Phasor fingerprints of stem cells cluster according to their differentiation state in a living tissue such as the C. elegans germ line and the crypt base of small intestine and colon. Phasor FLIM provides a label-free and fit-free sensitive method to identify metabolic states of cells and to classify stem cells, normal differentiated cells and cancer cells both in vitro and in a live tissue. Our method could identify symmetric and asymmetric divisions, predict cell fate and identify pre-cancer stages in vivo. This method is a promising non-invasive optical tool for monitoring metabolic pathways during differentiation and carcinogenesis, for cell sorting and high throughput screening.

  7. A phasor approach analysis of multiphoton FLIM measurements of three-dimensional cell culture models

    NASA Astrophysics Data System (ADS)

    Lakner, P. H.; Möller, Y.; Olayioye, M. A.; Brucker, S. Y.; Schenke-Layland, K.; Monaghan, M. G.

    2016-03-01

    Fluorescence lifetime imaging microscopy (FLIM) is a useful approach to obtain information regarding the endogenous fluorophores present in biological samples. The concise evaluation of FLIM data requires the use of robust mathematical algorithms. In this study, we developed a user-friendly phasor approach for analyzing FLIM data and applied this method on three-dimensional (3D) Caco-2 models of polarized epithelial luminal cysts in a supporting extracellular matrix environment. These Caco-2 based models were treated with epidermal growth factor (EGF), to stimulate proliferation in order to determine if FLIM could detect such a change in cell behavior. Autofluorescence from nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) in luminal Caco-2 cysts was stimulated by 2-photon laser excitation. Using a phasor approach, the lifetimes of involved fluorophores and their contribution were calculated with fewer initial assumptions when compared to multiexponential decay fitting. The phasor approach simplified FLIM data analysis, making it an interesting tool for non-experts in numerical data analysis. We observed that an increased proliferation stimulated by EGF led to a significant shift in fluorescence lifetime and a significant alteration of the phasor data shape. Our data demonstrates that multiphoton FLIM analysis with the phasor approach is a suitable method for the non-invasive analysis of 3D in vitro cell culture models qualifying this method for monitoring basic cellular features and the effect of external factors.

  8. Synchronicity from synchronized chaos

    DOE PAGESBeta

    Duane, Gregory

    2015-04-01

    The synchronization of loosely-coupled chaotic oscillators, a phenomenon investigated intensively for the last two decades, may realize the philosophical concept of “synchronicity”—the commonplace notion that related events mysteriously occur at the same time. When extended to continuous media and/or large discrete arrays, and when general (non-identical) correspondences are considered between states, intermittent synchronous relationships indeed become ubiquitous. Meaningful synchronicity follows naturally if meaningful events are identified with coherent structures, defined by internal synchronization between remote degrees of freedom; a condition that has been posited as necessary for synchronizability with an external system. The important case of synchronization between mind andmore » matter is realized if mind is analogized to a computer model, synchronizing with a sporadically observed system, as in meteorological data assimilation. Evidence for the ubiquity of synchronization is reviewed along with recent proposals that: (1) synchronization of different models of the same objective process may be an expeditious route to improved computational modeling and may also describe the functioning of conscious brains; and (2) the nonlocality in quantum phenomena implied by Bell’s theorem may be explained in a variety of deterministic (hidden variable) interpretations if the quantum world resides on a generalized synchronization “manifold”.« less

  9. Synchronicity from synchronized chaos

    SciTech Connect

    Duane, Gregory

    2015-04-01

    The synchronization of loosely-coupled chaotic oscillators, a phenomenon investigated intensively for the last two decades, may realize the philosophical concept of “synchronicity”—the commonplace notion that related events mysteriously occur at the same time. When extended to continuous media and/or large discrete arrays, and when general (non-identical) correspondences are considered between states, intermittent synchronous relationships indeed become ubiquitous. Meaningful synchronicity follows naturally if meaningful events are identified with coherent structures, defined by internal synchronization between remote degrees of freedom; a condition that has been posited as necessary for synchronizability with an external system. The important case of synchronization between mind and matter is realized if mind is analogized to a computer model, synchronizing with a sporadically observed system, as in meteorological data assimilation. Evidence for the ubiquity of synchronization is reviewed along with recent proposals that: (1) synchronization of different models of the same objective process may be an expeditious route to improved computational modeling and may also describe the functioning of conscious brains; and (2) the nonlocality in quantum phenomena implied by Bell’s theorem may be explained in a variety of deterministic (hidden variable) interpretations if the quantum world resides on a generalized synchronization “manifold”.

  10. Analyzing convergence and synchronicity of business and growth cycles in the euro area using cross recurrence plots

    NASA Astrophysics Data System (ADS)

    Crowley, P. M.

    2008-10-01

    Convergence and synchronisation of business and growth cycles are important issues in the efficient formulation of euro area monetary policy by the European Central Bank (ECB). Although several studies in the economics literature address the issue of synchronicity of growth within the euro area, this is the first study to address this issue using cross recurrence analysis. The main findings are that member state growth rates have largely converged since the introduction of the euro, but there is a wide degree of different synchronisation behaviours which appear to be non-linear in nature. These differences could cause problems in future implementation of a single (ECB-determined)monetary policy in the euro area.

  11. Applications of Phasors to In Vitro Time-Resolved Fluorescence Measurements

    PubMed Central

    Štefl, Martin; James, Nicholas G.; Ross, Justin A.; Jameson, David M.

    2010-01-01

    The phasor method of treating fluorescence lifetime data provides a facile and convenient approach to characterize lifetime heterogeneity and to detect the presence of excited state reactions, such as solvent relaxation and Förster Resonance Energy Transfer. The method utilizes a plot of M sin(Φ) versus M cos(Φ), where M is the modulation ratio and Φ is the phase angle taken from frequency domain fluorometry. A principle advantage of the phasor method is that it provides a model-less approach to time-resolved data, amenable to visual inspection. Although the phasor approach has been recently applied to Fluorescence Lifetime Imaging Microscopy it has not been extensively utilized for cuvette studies. In the present study we explore the applications of the method to in vitro samples. The phasors of binary and ternary mixtures of fluorescent dyes demonstrates the utility of the method for investigating complex mixtures. Data from excited state reactions, such as dipolar relaxation in membrane and protein systems and also energy transfer from the tryptophan residue to the chromophore in EGFP, are also presented. PMID:21078290

  12. Synchronous Energy Technology

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The synchronous technology requirements for large space power systems are summarized. A variety of technology areas including photovoltaics, thermal management, and energy storage, and power management are addressed.

  13. Synchronization of chaotic systems

    SciTech Connect

    Pecora, Louis M.; Carroll, Thomas L.

    2015-09-15

    We review some of the history and early work in the area of synchronization in chaotic systems. We start with our own discovery of the phenomenon, but go on to establish the historical timeline of this topic back to the earliest known paper. The topic of synchronization of chaotic systems has always been intriguing, since chaotic systems are known to resist synchronization because of their positive Lyapunov exponents. The convergence of the two systems to identical trajectories is a surprise. We show how people originally thought about this process and how the concept of synchronization changed over the years to a more geometric view using synchronization manifolds. We also show that building synchronizing systems leads naturally to engineering more complex systems whose constituents are chaotic, but which can be tuned to output various chaotic signals. We finally end up at a topic that is still in very active exploration today and that is synchronization of dynamical systems in networks of oscillators.

  14. Synchronization of chaotic systems.

    PubMed

    Pecora, Louis M; Carroll, Thomas L

    2015-09-01

    We review some of the history and early work in the area of synchronization in chaotic systems. We start with our own discovery of the phenomenon, but go on to establish the historical timeline of this topic back to the earliest known paper. The topic of synchronization of chaotic systems has always been intriguing, since chaotic systems are known to resist synchronization because of their positive Lyapunov exponents. The convergence of the two systems to identical trajectories is a surprise. We show how people originally thought about this process and how the concept of synchronization changed over the years to a more geometric view using synchronization manifolds. We also show that building synchronizing systems leads naturally to engineering more complex systems whose constituents are chaotic, but which can be tuned to output various chaotic signals. We finally end up at a topic that is still in very active exploration today and that is synchronization of dynamical systems in networks of oscillators.

  15. Development of a Phasor Diagram Creator to Visualize the Piston and Displacer Forces in an Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Saha, Dipanjan; Lewandowski, Edward J.

    2013-01-01

    The steady-state, nearly sinusoidal behavior of the components in a free-piston Stirling engine allows for visualization of the forces in the system using phasor diagrams. Based on Newton's second law, F = ma, any phasor diagrams modeling a given component in a system should close if all of the acting forces have been considered. Since the Advanced Stirling Radioisotope Generator (ASRG), currently being developed for future NASA deep space missions, is made up of such nearly sinusoidally oscillating components, its phasor diagrams would also be expected to close. A graphical user interface (GUI) has been written in MATLAB (MathWorks), which takes user input data, passes it to Sage (Gedeon Associates), a one-dimensional thermodynamic modeling program used to model the Stirling convertor, runs Sage, and then automatically plots the phasor diagrams. Using this software tool, the effect of varying different Sage inputs on the phasor diagrams was determined. The parameters varied were piston amplitude, hot-end temperature, cold-end temperature, operating frequency, and displacer spring constant. These phasor diagrams offer useful insight into convertor operation and performance.

  16. Development of a Phasor Diagram Creator to Visualize the Piston and Displacer Forces in an Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Saha, Dipanjan; Lewandowski, Edward J.

    2013-01-01

    The steady state, nearly sinusoidal behavior of the components in a Free Piston Stirling Engine allows for visualization of the forces in the system using phasor diagrams. Based on Newton's second law, F=ma, any phasor diagrams modeling a given component in a system should close if all of the acting forces have been considered. Since the Advanced Stirling Radioisotope Generator (ASRG), currently being developed for future NASA deep space missions, is made up of such nearly sinusoidally oscillating components, its phasor diagrams would also be expected to close. A graphical user interface (GUI) has been written in MATLAB by taking user input data, passing it to Sage, a 1-D thermodynamic modeling program used to model the Stirling convertor, running Sage and then automatically plotting the phasor diagrams. Using this software tool, the effect of varying different Sage inputs on the phasor diagrams was determined. The parameters varied were piston amplitude, hot end temperature, cold end temperature, operating frequency, and displacer spring constant. By using these phasor diagrams, better insight can be gained as to why the convertor operates the way that it does.

  17. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: A Realistic Cellular Automaton Model for Synchronized Traffic Flow

    NASA Astrophysics Data System (ADS)

    Zhao, Bo-Han; Hu, Mao-Bin; Jiang, Rui; Wu, Qing-Song

    2009-11-01

    A cellular automaton model is proposed to consider the anticipation effect in drivers' behavior. It is shown that the anticipation effect can be one of the origins of synchronized traffic flow. With anticipation effect, the congested traffic flow simulated by the model exhibits the features of synchronized flow. The spatiotemporal patterns induced by an on-ramp are also consistent with the three-phase traffic theory. Since the origin of synchronized flow is still controversial, our work can shed some light on the mechanism of synchronized flow.

  18. Analysis of complex anisotropy decays from single-frequency polarized-phasor ellipse plots

    NASA Astrophysics Data System (ADS)

    Kozer, Noga; Clayton, Andrew H. A.

    2016-06-01

    The anisotropy decay of a fluorescently-labelled macromolecule provides information on the internal and global dynamics of the macromolecule. Weber was a pioneer of fluorescent probes, polarization and polarized phase-modulation methods and revealed the power of combining or comparing these methods to disentangle complex modes of emission depolarization. In this paper we take a similar course and show that when measurements of dynamic depolarization are combined with steady-state anisotropy, complex anisotropy decays can be deduced from measurements at a single modulation frequency. Specifically, a double exponential anisotropy decay can be resolved by combining one of the polarized emission phasors with the steady-state anisotropy. The key is the polarized phasor ellipse plot which provides a convenient visualisation aid and reduces the dimensionality of the minimisation problem from three variables to one variable. We illustrate these concepts with an experimental measurement of the anisotropy decay of a small cytoplasmic fluorescent probe in live cells.

  19. Dynamic measurement by digital holographic interferometry based on complex phasor method

    NASA Astrophysics Data System (ADS)

    Tay, C. J.; Quan, C.; Chen, W.

    2009-03-01

    In this paper, complex phasor (CP) method is employed in digital holographic interferometry. Unlike commonly used digital phase subtraction (DPS), the proposed technique processes a CP instead of phase. It is shown that the results obtained by directly filtering the phase produce large errors. It is demonstrated that the phase is not a signal but rather a property of a signal. In addition, the results obtained by the CP method are also compared with those obtained by conventional sine/cosine transformation method.

  20. Generator Dynamic Model Validation and Parameter Calibration Using Phasor Measurements at the Point of Connection

    SciTech Connect

    Huang, Zhenyu; Du, Pengwei; Kosterev, Dmitry; Yang, Steve

    2013-05-01

    Disturbance data recorded by phasor measurement units (PMU) offers opportunities to improve the integrity of dynamic models. However, manually tuning parameters through play-back events demands significant efforts and engineering experiences. In this paper, a calibration method using the extended Kalman filter (EKF) technique is proposed. The formulation of EKF with parameter calibration is discussed. Case studies are presented to demonstrate its validity. The proposed calibration method is cost-effective, complementary to traditional equipment testing for improving dynamic model quality.

  1. The phasor-FLIM fingerprints reveal shifts from OXPHOS to enhanced glycolysis in Huntington Disease

    NASA Astrophysics Data System (ADS)

    Sameni, Sara; Syed, Adeela; Marsh, J. Lawrence; Digman, Michelle A.

    2016-10-01

    Huntington disease (HD) is an autosomal neurodegenerative disorder caused by the expansion of Polyglutamine (polyQ) in exon 1 of the Huntingtin protein. Glutamine repeats below 36 are considered normal while repeats above 40 lead to HD. Impairment in energy metabolism is a common trend in Huntington pathogenesis; however, this effect is not fully understood. Here, we used the phasor approach and Fluorescence Lifetime Imaging Microscopy (FLIM) to measure changes between free and bound fractions of NADH as a indirect measure of metabolic alteration in living cells. Using Phasor-FLIM, pixel maps of metabolic alteration in HEK293 cell lines and in transgenic Drosophila expressing expanded and unexpanded polyQ HTT exon1 in the eye disc were developed. We found a significant shift towards increased free NADH, indicating an increased glycolytic state for cells and tissues expressing the expanded polyQ compared to unexpanded control. In the nucleus, a further lifetime shift occurs towards higher free NADH suggesting a possible synergism between metabolic dysfunction and transcriptional regulation. Our results indicate that metabolic dysfunction in HD shifts to increased glycolysis leading to oxidative stress and cell death. This powerful label free method can be used to screen native HD tissue samples and for potential drug screening.

  2. Event Classification and Identification Based on the Characteristic Ellipsoid of Phasor Measurement

    SciTech Connect

    Ma, Jian; Diao, Ruisheng; Makarov, Yuri V.; Etingov, Pavel V.; Dagle, Jeffery E.

    2011-09-23

    In this paper, a method to classify and identify power system events based on the characteristic ellipsoid of phasor measurement is presented. The decision tree technique is used to perform the event classification and identification. Event types, event locations and clearance times are identified by decision trees based on the indices of the characteristic ellipsoid. A sufficiently large number of transient events were simulated on the New England 10-machine 39-bus system based on different system configurations. Transient simulations taking into account different event types, clearance times and various locations are conducted to simulate phasor measurement. Bus voltage magnitudes and recorded reactive and active power flows are used to build the characteristic ellipsoid. The volume, eccentricity, center and projection of the longest axis in the parameter space coordinates of the characteristic ellipsoids are used to classify and identify events. Results demonstrate that the characteristic ellipsoid and the decision tree are capable to detect the event type, location, and clearance time with very high accuracy.

  3. The phasor-FLIM fingerprints reveal shifts from OXPHOS to enhanced glycolysis in Huntington Disease

    PubMed Central

    Sameni, Sara; Syed, Adeela; Marsh, J. Lawrence; Digman, Michelle A.

    2016-01-01

    Huntington disease (HD) is an autosomal neurodegenerative disorder caused by the expansion of Polyglutamine (polyQ) in exon 1 of the Huntingtin protein. Glutamine repeats below 36 are considered normal while repeats above 40 lead to HD. Impairment in energy metabolism is a common trend in Huntington pathogenesis; however, this effect is not fully understood. Here, we used the phasor approach and Fluorescence Lifetime Imaging Microscopy (FLIM) to measure changes between free and bound fractions of NADH as a indirect measure of metabolic alteration in living cells. Using Phasor-FLIM, pixel maps of metabolic alteration in HEK293 cell lines and in transgenic Drosophila expressing expanded and unexpanded polyQ HTT exon1 in the eye disc were developed. We found a significant shift towards increased free NADH, indicating an increased glycolytic state for cells and tissues expressing the expanded polyQ compared to unexpanded control. In the nucleus, a further lifetime shift occurs towards higher free NADH suggesting a possible synergism between metabolic dysfunction and transcriptional regulation. Our results indicate that metabolic dysfunction in HD shifts to increased glycolysis leading to oxidative stress and cell death. This powerful label free method can be used to screen native HD tissue samples and for potential drug screening. PMID:27713486

  4. Intracellular pH measurements made simple by fluorescent protein probes and the phasor approach to fluorescence lifetime imaging.

    PubMed

    Battisti, Antonella; Digman, Michelle A; Gratton, Enrico; Storti, Barbara; Beltram, Fabio; Bizzarri, Ranieri

    2012-05-25

    A versatile pH-dependent fluorescent protein was applied to intracellular pH measurements by means of the phasor approach to fluorescence lifetime imaging. By this fit-less method we obtain intracellular pH maps under resting or altered physiological conditions by single-photon confocal or two-photon microscopy.

  5. Algorithm Summary and Evaluation: Automatic Implementation of Ringdown Analysis for Electromechanical Mode Identification from Phasor Measurements

    SciTech Connect

    Zhou, Ning; Huang, Zhenyu; Tuffner, Francis K.; Jin, Shuangshuang; Lin, Jenglung; Hauer, Matthew L.

    2010-02-28

    Small signal stability problems are one of the major threats to grid stability and reliability. Prony analysis has been successfully applied on ringdown data to monitor electromechanical modes of a power system using phasor measurement unit (PMU) data. To facilitate an on-line application of mode estimation, this paper develops a recursive algorithm for implementing Prony analysis and proposed an oscillation detection method to detect ringdown data in real time. By automatically detecting ringdown data, the proposed method helps guarantee that Prony analysis is applied properly and timely on the ringdown data. Thus, the mode estimation results can be performed reliably and timely. The proposed method is tested using Monte Carlo simulations based on a 17-machine model and is shown to be able to properly identify the oscillation data for on-line application of Prony analysis. In addition, the proposed method is applied to field measurement data from WECC to show the performance of the proposed algorithm.

  6. Using phasors to analyze power system negative phase sequence voltages caused by unbalanced loads

    SciTech Connect

    Ledwich, G. ); George, T.A. )

    1994-08-01

    An analytical method is demonstrated which allows the level of negative phase sequence (NPS) voltage at a busbar to be expressed as a sum of phasors representing independent sources. The method is extended to enable the balancing capability of Static Var Compensators (SVCs) with individual phase voltage control to be assessed. The capability of such SVCs and the allowable levels of NPS voltage on the system, including any short term limits, can be combined in a capability chart showing the unbalanced loads which can be supplied from a substation. The approach facilitates the treatment of fixed unbalances due to filters or intentional offsets designed to maximize the SVC balancing range for specific loads. Field test results are presented which validate the analytical methods used.

  7. Synchronization between beating cilia.

    PubMed

    Gheber, L; Priel, Z

    1989-01-01

    A novel quantitative parameter is proposed to define and measure the degree of synchronization between two small ciliary areas. These areas can be close to or far from one another. The Pearson correlation factor is used to define the degree of synchronization by a single number. This approach is based on a computerized, dual photoelectric method which simulataneously measures the scattered light from two small areas on the ciliary epithelium or its tissue culture. The measurements were performed on tissue culture from frog's palate epithelium. It was found that: (a) the degree of synchronization decreases, as a function of distance; (b) the correlation is fairly high even at relatively large separations, when measured on the same patch; (c) on a given patch the synchronization factor is independent of the direction of the metachronal wave; (d) close disconnected ciliary cells exhibit fairly high correlation; (e) disconnected randomly choosen ciliary cells at relatively large separation distances exhibit relatively low correlation, smaller by a factor of 2 than the correlation factor at the same distances when measured along the metachronal wave; (f) the average frequencies' ratio and the metachronal wavelength can be used as first-order indicators of ciliary synchronization; (g) there is a spread of metachronal wavelengths even over a single well-organized patch.

  8. Synchronization between beating cilia.

    PubMed Central

    Gheber, L; Priel, Z

    1989-01-01

    A novel quantitative parameter is proposed to define and measure the degree of synchronization between two small ciliary areas. These areas can be close to or far from one another. The Pearson correlation factor is used to define the degree of synchronization by a single number. This approach is based on a computerized, dual photoelectric method which simulataneously measures the scattered light from two small areas on the ciliary epithelium or its tissue culture. The measurements were performed on tissue culture from frog's palate epithelium. It was found that: (a) the degree of synchronization decreases, as a function of distance; (b) the correlation is fairly high even at relatively large separations, when measured on the same patch; (c) on a given patch the synchronization factor is independent of the direction of the metachronal wave; (d) close disconnected ciliary cells exhibit fairly high correlation; (e) disconnected randomly choosen ciliary cells at relatively large separation distances exhibit relatively low correlation, smaller by a factor of 2 than the correlation factor at the same distances when measured along the metachronal wave; (f) the average frequencies' ratio and the metachronal wavelength can be used as first-order indicators of ciliary synchronization; (g) there is a spread of metachronal wavelengths even over a single well-organized patch. PMID:2930819

  9. Estimation of the Dynamic States of Synchronous Machines Using an Extended Particle Filter

    SciTech Connect

    Zhou, Ning; Meng, Da; Lu, Shuai

    2013-11-11

    In this paper, an extended particle filter (PF) is proposed to estimate the dynamic states of a synchronous machine using phasor measurement unit (PMU) data. A PF propagates the mean and covariance of states via Monte Carlo simulation, is easy to implement, and can be directly applied to a non-linear system with non-Gaussian noise. The extended PF modifies a basic PF to improve robustness. Using Monte Carlo simulations with practical noise and model uncertainty considerations, the extended PF’s performance is evaluated and compared with the basic PF and an extended Kalman filter (EKF). The extended PF results showed high accuracy and robustness against measurement and model noise.

  10. Synchronous demodulator

    NASA Technical Reports Server (NTRS)

    Sutton, John F. (Inventor)

    1991-01-01

    A synchronous demodulator includes a switch which is operated in synchronism with an incoming periodic signal and both divides and applies that signal to two signal channels. The two channels each include a network for computing and holding, for a predetermined length of time, the average signal value on that channel and applies those valves, in the form of two other signals, to the inputs of a differential amplifier. The networks may be R-C networks. The output of the differential amplifier may or may not form the output of the synchronous detector and may or may not be filtered. The output will not include a periodic signal due to the presence of a dc offset. Additionally, the output will not contain any substantial ripple due to periodic components in the input signal. In a somewhat more complex version, containing twice the structural components of the above synchronous demodulator with a more complex switching mechanism, essentially all ripple due to periodic components in the input signal are eliminated.

  11. Synchronizing Fireflies

    ERIC Educational Resources Information Center

    Zhou, Ying; Gall, Walter; Nabb, Karen Mayumi

    2006-01-01

    "Imagine a tenth of a mile of river front with an unbroken line of trees with fireflies on ever leaf flashing in synchronism. ... Then, if one's imagination is sufficiently vivid, he may form some conception of this amazing spectacle." So wrote the naturalist Hugh Smith. In this article we consider how one might model mathematically the…

  12. Phasor Analysis of Local ICS Detects Heterogeneity in Size and Number of Intracellular Vesicles.

    PubMed

    Scipioni, Lorenzo; Gratton, Enrico; Diaspro, Alberto; Lanzanò, Luca

    2016-08-01

    Organelles represent the scale of organization immediately below that of the cell itself, and their composition, size, and number are tailored to their function. Monitoring the size and number of organelles in live cells is relevant for many applications but can be challenging due to their highly heterogeneous properties. Image correlation spectroscopy is a well-established analysis method capable of extracting the average size and number of particles in images. However, when image correlation spectroscopy is applied to a highly heterogeneous system, it can fail to retrieve, from a single correlation function, the characteristic size and the relative amount associated to each subspecies. Here, we describe a fast, unbiased, and fit-free algorithm based on the phasor analysis of multiple local image correlation functions, capable of mapping the sizes of elements contained in a heterogeneous system. The method correctly provides the size and number of separate subspecies, which otherwise would be hidden in the average properties of a single correlation function. We apply the method to quantify the spatial and temporal heterogeneity in the size and number of intracellular vesicles formed after endocytosis in live cells. PMID:27508445

  13. An Expectation-Maximization Method for Calibrating Synchronous Machine Models

    SciTech Connect

    Meng, Da; Zhou, Ning; Lu, Shuai; Lin, Guang

    2013-07-21

    The accuracy of a power system dynamic model is essential to its secure and efficient operation. Lower confidence in model accuracy usually leads to conservative operation and lowers asset usage. To improve model accuracy, this paper proposes an expectation-maximization (EM) method to calibrate the synchronous machine model using phasor measurement unit (PMU) data. First, an extended Kalman filter (EKF) is applied to estimate the dynamic states using measurement data. Then, the parameters are calculated based on the estimated states using maximum likelihood estimation (MLE) method. The EM method iterates over the preceding two steps to improve estimation accuracy. The proposed EM method’s performance is evaluated using a single-machine infinite bus system and compared with a method where both state and parameters are estimated using an EKF method. Sensitivity studies of the parameter calibration using EM method are also presented to show the robustness of the proposed method for different levels of measurement noise and initial parameter uncertainty.

  14. An Exploration of Discontinuous Time Synchronous Averaging for Helicopter HUMS Using Cruise and Terminal Area Vibration Data

    NASA Technical Reports Server (NTRS)

    Huff, Edward M.; Mosher, Marianne; Barszcz, Eric

    2002-01-01

    Recent research using NASA Ames AH-1 and OH-58C helicopters, and NASA Glenn test rigs, has shown that in-flight vibration data are typically non-stationary [l-4]. The nature and extent of this non-stationarity is most likely produced by several factors operating simultaneously. The aerodynamic flight environment and pilot commands provide continuously changing inputs, with a complex dynamic response that includes automatic feedback control from the engine regulator. It would appear that the combined effects operate primarily through an induced torque profile, which causes concomitant stress modulation at the individual internal gear meshes in the transmission. This notion is supported by several analyses, which show that upwards of 93% of the vibration signal s variance can be explained by knowledge of torque alone. That this relationship is stronger in an AH-1 than an OH-58, where measured non-stationarity is greater, suggests that the overall mass of the vehicle is an important consideration. In the lighter aircraft, the unsteady aerodynamic influences transmit relatively greater unsteady dynamic forces on the mechanical components, quite possibly contributing to its greater non-stationarity . In a recent paper using OH-58C pinion data [5], the authors have shown that in computing a time synchronous average (TSA) for various single-value metric computations, an effective trade-off can be obtained between sample size and measured stationarity by using data from only a single mesh cycle. A mesh cycle, which is defined as the number of rotations required for the gear teeth to return to their original mating position, has the property of representing all of the discrete phase angles of the opposing gears exactly once in the average. Measured stationarity is probably maximized because a single mesh cycle of the pinion gear occurs over a very short span of time, during which time-dependent non-stationary effects are kept to a minimum. Clearly, the advantage of local

  15. Synchronization Dynamics in Complex Networks

    NASA Astrophysics Data System (ADS)

    Zhou, Changsong; Zemanová, Lucia; Kurths, Jürgen

    Previous chapters have discussed tools from graph theory and their contribution to our understanding of the structural organization of mammalian brains and its functional implications. The brain functions are mediated by complicated dynamical processes which arise from the underlying complex neural networks, and synchronization has been proposed as an important mechanism for neural information processing. In this chapter, we discuss synchronization dynamics on complex networks. We first present a general theory and tools to characterize the relationship of some structural measures of networks to their synchronizability (the ability of the networks to achieve complete synchronization) and to the organization of effective synchronization patterns on the networks. Then, we study synchronization in a realistic network of cat cortical connectivity by modeling the nodes (which are cortical areas composed of large ensembles of neurons) by a neural mass model or a subnetwork of interacting neurons. We show that if the dynamics is characterized by well-defined oscillations (neural mass model and subnetworks with strong couplings), the synchronization patterns can be understood by the general principles discussed in the first part of the chapter. With weak couplings, the model with subnetworks displays biologically plausible dynamics and the synchronization pattern reveals a hierarchically clustered organization in the network structure. Thus, the study of synchronization of complex networks can provide insights into the relationship between network topology and functional organization of complex brain networks.

  16. Emergency Response Synchronization Matrix

    1999-06-01

    An emergency response to a disaster is complex, requiring the rapid integration, coordination, and synchronization of multiple levels of governmental and non-governmental organizations from numerous jurisdictions into a unified community response. For example, a community’s response actions to a fixed site hazardous materials incident could occur in an area extending from an on-site storage location to points 25 or more miles away. Response actions are directed and controlled by local governments and agencies situated withinmore » the response area, as well as by state and federal operaticns centers quite removed from the area of impact. Time is critical and the protective action decision-making process is greatly compressed. The response community must carefully plan and coordinate response operations in order to have confidence that they will be effectively implemented when faced with the potentially catastrophic nature of such releases. A graphical depiction of the entire response process via an emergency response synchronization matrix is an effective tool in optimizing the planning, exercising, and implementation of emergency plans. This system—based approach to emergency planning depicts how a community organizes its response tasks across space and time in relation to hazard actions. It provides the opportunity to make real—time adjustments as necessary for maximizing the often limited resources in protecting area residents. A response must involve the entire community and must not be limited by individual jurisdictions and organizations acting on their own without coordination, integration, and synchronization.« less

  17. Label-free separation of human embryonic stem cells and their differentiating progenies by phasor fluorescence lifetime microscopy

    NASA Astrophysics Data System (ADS)

    Stringari, Chiara; Sierra, Robert; Donovan, Peter J.; Gratton, Enrico

    2012-04-01

    We develop a label-free optical technique to image and discriminate undifferentiated human embryonic stem cells (hESCs) from their differentiating progenies in vitro. Using intrinsic cellular fluorophores, we perform fluorescence lifetime microscopy (FLIM) and phasor analysis to obtain hESC metabolic signatures. We identify two optical biomarkers to define the differentiation status of hESCs: Nicotinamide adenine dinucleotide (NADH) and lipid droplet-associated granules (LDAGs). These granules have a unique lifetime signature and could be formed by the interaction of reactive oxygen species and unsaturated metabolic precursor that are known to be abundant in hESC. Changes in the relative concentrations of these two intrinsic biomarkers allow for the discrimination of undifferentiated hESCs from differentiating hESCs. During early hESC differentiation we show that NADH concentrations increase, while the concentration of LDAGs decrease. These results are in agreement with a decrease in oxidative phosphorylation rate. Single-cell phasor FLIM signatures reveal an increased heterogeneity in the metabolic states of differentiating H9 and H1 hESC colonies. This technique is a promising noninvasive tool to monitor hESC metabolism during differentiation, which can have applications in high throughput analysis, drug screening, functional metabolomics and induced pluripotent stem cell generation.

  18. Label-free separation of human embryonic stem cells and their differentiating progenies by phasor fluorescence lifetime microscopy

    PubMed Central

    Stringari, Chiara; Sierra, Robert; Donovan, Peter J.

    2012-01-01

    Abstract. We develop a label-free optical technique to image and discriminate undifferentiated human embryonic stem cells (hESCs) from their differentiating progenies in vitro. Using intrinsic cellular fluorophores, we perform fluorescence lifetime microscopy (FLIM) and phasor analysis to obtain hESC metabolic signatures. We identify two optical biomarkers to define the differentiation status of hESCs: Nicotinamide adenine dinucleotide (NADH) and lipid droplet-associated granules (LDAGs). These granules have a unique lifetime signature and could be formed by the interaction of reactive oxygen species and unsaturated metabolic precursor that are known to be abundant in hESC. Changes in the relative concentrations of these two intrinsic biomarkers allow for the discrimination of undifferentiated hESCs from differentiating hESCs. During early hESC differentiation we show that NADH concentrations increase, while the concentration of LDAGs decrease. These results are in agreement with a decrease in oxidative phosphorylation rate. Single-cell phasor FLIM signatures reveal an increased heterogeneity in the metabolic states of differentiating H9 and H1 hESC colonies. This technique is a promising noninvasive tool to monitor hESC metabolism during differentiation, which can have applications in high throughput analysis, drug screening, functional metabolomics and induced pluripotent stem cell generation. PMID:22559690

  19. Algorithm for Screening Phasor Measurement Unit Data for Power System Events and Categories and Common Characteristics for Events Seen in Phasor Measurement Unit Relative Phase-Angle Differences and Frequency Signals

    SciTech Connect

    Allen, A.; Santoso, S.; Muljadi, E.

    2013-08-01

    A network of multiple phasor measurement units (PMU) was created, set up, and maintained at the University of Texas at Austin to obtain actual power system measurements for power system analysis. Power system analysis in this report covers a variety of time ranges, such as short- term analysis for power system disturbances and their effects on power system behavior and long- term power system behavior using modal analysis. The first objective of this report is to screen the PMU data for events. The second objective of the report is to identify and describe common characteristics extracted from power system events as measured by PMUs. The numerical characteristics for each category and how these characteristics are used to create selection rules for the algorithm are also described. Trends in PMU data related to different levels and fluctuations in wind power output are also examined.

  20. Synchronization with sound propagation delays

    NASA Astrophysics Data System (ADS)

    Haché, A.

    2010-04-01

    Complex systems that synchronize with acoustic signals, like chanting crowds and musical ensembles, have the intrinsic ability to maintain synchrony without external aid or visual cues, even when spread over wide areas. According to two models, the counterintuitive self-synchronization happens when the system's components have a spatial distribution that is sufficiently uniform. The roles of system size and density are examined for arrangements in 1, 2 and 3 dimensions. Asynchrony is predicted to become vanishingly small at high densities, and results suggest ways on how to minimize asynchrony in real-world situations.

  1. Digital data detection and synchronization

    NASA Technical Reports Server (NTRS)

    Noack, T. L.; Morris, J. F.

    1973-01-01

    The primary accomplishments have been in the analysis and simulation of receivers and bit synchronizers. It has been discovered that tracking rate effects play, a rather fundamental role in both receiver and synchronizer performance, but that data relating to recorder time-base-error, for the proper characterization of this phenomenon, is in rather short supply. It is possible to obtain operationally useful tape recorder time-base-error data from high signal-to-noise ratio tapes using synchronizers with relatively wideband tracking loops. Low signal-to-noise ratio tapes examined in the same way would not be synchronizable. Additional areas of interest covered are receiver false lock, cycle slipping, and other unusual phenomena, which have been described to some extent in this and earlier reports and simulated during the study.

  2. Inverse anticipating chaos synchronization.

    PubMed

    Shahverdiev, E M; Sivaprakasam, S; Shore, K A

    2002-07-01

    We derive conditions for achieving inverse anticipating synchronization where a driven time-delay chaotic system synchronizes to the inverse future state of the driver. The significance of inverse anticipating chaos in delineating synchronization regimes in time-delay systems is elucidated. The concept is extended to cascaded time-delay systems.

  3. Development and Integration of an Advanced Stirling Convertor Linear Alternator Model for a Tool Simulating Convertor Performance and Creating Phasor Diagrams

    NASA Technical Reports Server (NTRS)

    Metscher, Jonathan F.; Lewandowski, Edward J.

    2013-01-01

    A simple model of the Advanced Stirling Convertors (ASC) linear alternator and an AC bus controller has been developed and combined with a previously developed thermodynamic model of the convertor for a more complete simulation and analysis of the system performance. The model was developed using Sage, a 1-D thermodynamic modeling program that now includes electro-magnetic components. The convertor, consisting of a free-piston Stirling engine combined with a linear alternator, has sufficiently sinusoidal steady-state behavior to allow for phasor analysis of the forces and voltages acting in the system. A MATLAB graphical user interface (GUI) has been developed to interface with the Sage software for simplified use of the ASC model, calculation of forces, and automated creation of phasor diagrams. The GUI allows the user to vary convertor parameters while fixing different input or output parameters and observe the effect on the phasor diagrams or system performance. The new ASC model and GUI help create a better understanding of the relationship between the electrical component voltages and mechanical forces. This allows better insight into the overall convertor dynamics and performance.

  4. A new automatic synchronizer

    SciTech Connect

    Malm, C.F.

    1995-12-31

    A phase lock loop automatic synchronizer, PLLS, matches generator speed starting from dead stop to bus frequency, and then locks the phase difference at zero, thereby maintaining zero slip frequency while the generator breaker is being closed to the bus. The significant difference between the PLLS and a conventional automatic synchronizer is that there is no slip frequency difference between generator and bus. The PLL synchronizer is most advantageous when the penstock pressure fluctuates the grid frequency fluctuates, or both. The PLL synchronizer is relatively inexpensive. Hydroplants with multiple units can economically be equipped with a synchronizer for each unit.

  5. Collapse of Synchronization in a Memristive Network

    NASA Astrophysics Data System (ADS)

    Lü, Mi; Wang, Chun-Ni; Tang, Jun; Ma, Jun

    2015-12-01

    For an oscillating circuit or coupled circuits, damage in electric devices such as inductor, resistance, memristor even capacitor can cause breakdown or collapse of the circuits. These damage could be associated with external attack or aging in electric devices, and then the bifurcation parameters could be deformed from normal values. Resonators or signal generators are often synchronized to produce powerful signal series and this problem could be investigated by using synchronization in network. Complete synchronization could be induced by linear coupling in a two-dimensional network of identical oscillators when the coupling intensity is beyond certain threshold. The collective behavior and synchronization state are much dependent on the bifurcation parameters. Any slight fluctuation in parameter and breakdown in bifurcation parameter can cause transition of synchronization even collapse of synchronization in the network. In this paper, a two-dimensional network composed of the resonators coupled with memristors under nearest-neighbor connection is designed, and the network can reach complete synchronization by carefully selecting coupling intensity. The network keeps synchronization after certain transient period, then a bifurcation parameter in a resonator is switched from the previous value and the adjacent resonators (oscillators) are affected in random. It is found that the synchronization area could be invaded greatly in a diffusive way. The damage area size is much dependent on the selection of diffusive period of damage and deformation degree in the parameter. Indeed, the synchronization area could keep intact at largest size under intermediate deformation degree and coupling intensity. Supported by the National Natural Science of China under Grant Nos. 11265008 and 11365014

  6. Synchronization of clocks

    NASA Astrophysics Data System (ADS)

    Kapitaniak, Marcin; Czolczynski, Krzysztof; Perlikowski, Przemysław; Stefanski, Andrzej; Kapitaniak, Tomasz

    2012-08-01

    In this report we recall the famous Huygens’ experiment which gave the first evidence of the synchronization phenomenon. We consider the synchronization of two clocks which are accurate (show the same time) but have pendula with different masses. It has been shown that such clocks hanging on the same beam can show the almost complete (in-phase) and almost antiphase synchronizations. By almost complete and almost antiphase synchronization we defined the periodic motion of the pendula in which the phase shift between the displacements of the pendula is respectively close (but not equal) to 0 or π. We give evidence that almost antiphase synchronization was the phenomenon observed by Huygens in XVII century. We support our numerical studies by considering the energy balance in the system and showing how the energy is transferred between the pendula via oscillating beam allowing the pendula’s synchronization. Additionally we discuss the synchronization of a number of different pendulum clocks hanging from a horizontal beam which can roll on the parallel surface. It has been shown that after a transient, different types of synchronization between pendula can be observed; (i) the complete synchronization in which all pendula behave identically, (ii) pendula create three or five clusters of synchronized pendula. We derive the equations for the estimation of the phase differences between phase synchronized clusters. The evidence, why other configurations with a different number of clusters are not observed, is given.

  7. Development of Network Synchronization Predicts Language Abilities.

    PubMed

    Doesburg, Sam M; Tingling, Keriann; MacDonald, Matt J; Pang, Elizabeth W

    2016-01-01

    Synchronization of oscillations among brain areas is understood to mediate network communication supporting cognition, perception, and language. How task-dependent synchronization during word production develops throughout childhood and adolescence, as well as how such network coherence is related to the development of language abilities, remains poorly understood. To address this, we recorded magnetoencephalography while 73 participants aged 4-18 years performed a verb generation task. Atlas-guided source reconstruction was performed, and phase synchronization among regions was calculated. Task-dependent increases in synchronization were observed in the theta, alpha, and beta frequency ranges, and network synchronization differences were observed between age groups. Task-dependent synchronization was strongest in the theta band, as were differences between age groups. Network topologies were calculated for brain regions associated with verb generation and were significantly associated with both age and language abilities. These findings establish the maturational trajectory of network synchronization underlying expressive language abilities throughout childhood and adolescence and provide the first evidence for an association between large-scale neurophysiological network synchronization and individual differences in the development of language abilities.

  8. Synchronizing large systolic arrays

    SciTech Connect

    Fisher, A.L.; Kung, H.T.

    1982-04-01

    Parallel computing structures consist of many processors operating simultaneously. If a concurrent structure is regular, as in the case of systolic array, it may be convenient to think of all processors as operating in lock step. Totally synchronized systems controlled by central clocks are difficult to implement because of the inevitable problem of clock skews and delays. An alternate means of enforcing necessary synchronization is the use of self-timed, asynchronous schemes, at the cost of increased design complexity and hardware cost. Realizing that different circumstances call for different synchronization methods, this paper provides a spectrum of synchronization models; based on the assumptions made for each model, theoretical lower bounds on clock skew are derived, and appropriate or best-possible synchronization schemes for systolic arrays are proposed. This paper represents a first step towards a systematic study of synchronization problems for large systolic arrays.

  9. Complex Synchronization Phenomena in Ecological Systems

    NASA Astrophysics Data System (ADS)

    Stone, Lewi; Olinky, Ronen; Blasius, Bernd; Huppert, Amit; Cazelles, Bernard

    2002-07-01

    Ecological and biological systems provide us with many striking examples of synchronization phenomena. Here we discuss a number of intriguing cases and attempt to explain them taking advantage of a modelling framework. One main focus will concern synchronized ecological end epidemiological cycles which have Uniform Phase growth associated with their regular recurrence, and Chaotic Amplitudes - a feature we term UPCA. Examples come from different areas and include decadal cycles of small mammals, recurrent viral epidemics such as childhood infections (eg., measles), and seasonally driven phytoplankton blooms observed in lakes and the oceans. A more detailed theoretical analysis of seasonally synchronized chaotic population cycles is presented.

  10. Synchronization via Hydrodynamic Interactions

    NASA Astrophysics Data System (ADS)

    Kendelbacher, Franziska; Stark, Holger

    2013-12-01

    An object moving in a viscous fluid creates a flow field that influences the motion of neighboring objects. We review examples from nature in the microscopic world where such hydrodynamic interactions synchronize beating or rotating filaments. Bacteria propel themselves using a bundle of rotating helical filaments called flagella which have to be synchronized in phase. Other micro-organisms are covered with a carpet of smaller filaments called cilia on their surfaces. They beat highly synchronized so that metachronal waves propagate along the cell surfaces. We explore both examples with the help of simple model systems and identify generic properties for observing synchronization by hydrodynamic interactions.

  11. Studying synchronization to a musical beat in nonhuman animals.

    PubMed

    Patel, Aniruddh D; Iversen, John R; Bregman, Micah R; Schulz, Irena

    2009-07-01

    The recent discovery of spontaneous synchronization to music in a nonhuman animal (the sulphur-crested cockatoo Cacatua galerita eleonora) raises several questions. How does this behavior differ from nonmusical synchronization abilities in other species, such as synchronized frog calls or firefly flashes? What significance does the behavior have for debates over the evolution of human music? What kinds of animals can synchronize to musical rhythms, and what are the key methodological issues for research in this area? This paper addresses these questions and proposes some refinements to the "vocal learning and rhythmic synchronization hypothesis." PMID:19673824

  12. Frame synchronization in PCM telemetry.

    NASA Technical Reports Server (NTRS)

    Peavey, B.

    1971-01-01

    The frame synchronization performance characteristics are defined that can be measured under actual operating conditions. The frame synchronization process is explained, and test data on the performance of frame synchronizers and frame synchronization codes are presented. The application of frame synchronization methods in specific cases is considered in the light of code selection, frame length, and data recovery.

  13. Precise clock synchronization protocol

    NASA Astrophysics Data System (ADS)

    Luit, E. J.; Martin, J. M. M.

    1993-12-01

    A distributed clock synchronization protocol is presented which achieves a very high precision without the need for very frequent resynchronizations. The protocol tolerates failures of the clocks: clocks may be too slow or too fast, exhibit omission failures and report inconsistent values. Synchronization takes place in synchronization rounds as in many other synchronization protocols. At the end of each round, clock times are exchanged between the clocks. Each clock applies a convergence function (CF) to the values obtained. This function estimates the difference between its clock and an average clock and corrects its clock accordingly. Clocks are corrected for drift relative to this average clock during the next synchronization round. The protocol is based on the assumption that clock reading errors are small with respect to the required precision of synchronization. It is shown that the CF resynchronizes the clocks with high precision even when relatively large clock drifts are possible. It is also shown that the drift-corrected clocks remain synchronized until the end of the next synchronization round. The stability of the protocol is proven.

  14. EEG synchronization and migraine

    NASA Astrophysics Data System (ADS)

    Stramaglia, Sebastiano; Angelini, Leonardo; Pellicoro, Mario; Hu, Kun; Ivanov, Plamen Ch.

    2004-03-01

    We investigate phase synchronization in EEG recordings from migraine patients. We use the analytic signal technique, based on the Hilbert transform, and find that migraine brains are characterized by enhanced alpha band phase synchronization in presence of visual stimuli. Our findings show that migraine patients have an overactive regulatory mechanism that renders them more sensitive to external stimuli.

  15. Disorder induces explosive synchronization.

    PubMed

    Skardal, Per Sebastian; Arenas, Alex

    2014-06-01

    We study explosive synchronization, a phenomenon characterized by first-order phase transitions between incoherent and synchronized states in networks of coupled oscillators. While explosive synchronization has been the subject of many recent studies, in each case strong conditions on the heterogeneity of the network, its link weights, or its initial construction are imposed to engineer a first-order phase transition. This raises the question of how robust explosive synchronization is in view of more realistic structural and dynamical properties. Here we show that explosive synchronization can be induced in mildly heterogeneous networks by the addition of quenched disorder to the oscillators' frequencies, demonstrating that it is not only robust to, but moreover promoted by, this natural mechanism. We support these findings with numerical and analytical results, presenting simulations of a real neural network as well as a self-consistency theory used to study synthetic networks.

  16. Interhemispheric Synchronization of Oscillatory Neuronal Responses in Cat Visual Cortex

    NASA Astrophysics Data System (ADS)

    Engel, Andreas K.; Konig, Peter; Kreiter, Andreas K.; Singer, Wolf

    1991-05-01

    Neurons in area 17 of cat visual cortex display oscillatory responses that can synchronize across spatially separate columns in a stimulus-specific way. Response synchronization has now been shown to occur also between neurons in area 17 of the right and left cerebral hemispheres. This synchronization was abolished by section of the corpus callosum. Thus, the response synchronization is mediated by corticocortical connections. These data are compatible with the hypothesis that temporal synchrony of neuronal discharges serves to bind features within and between the visual hemifields.

  17. Synchronous Discrete Harmonic Oscillator

    SciTech Connect

    Antippa, Adel F.; Dubois, Daniel M.

    2008-10-17

    We introduce the synchronous discrete harmonic oscillator, and present an analytical, numerical and graphical study of its characteristics. The oscillator is synchronous when the time T for one revolution covering an angle of 2{pi} in phase space, is an integral multiple N of the discrete time step {delta}t. It is fully synchronous when N is even. It is pseudo-synchronous when T/{delta}t is rational. In the energy conserving hyperincursive representation, the phase space trajectories are perfectly stable at all time scales, and in both synchronous and pseudo-synchronous modes they cycle through a finite number of phase space points. Consequently, both the synchronous and the pseudo-synchronous hyperincursive modes of time-discretization provide a physically realistic and mathematically coherent, procedure for dynamic, background independent, discretization of spacetime. The procedure is applicable to any stable periodic dynamical system, and provokes an intrinsic correlation between space and time, whereby space-discretization is a direct consequence of background-independent time-discretization. Hence, synchronous discretization moves the formalism of classical mechanics towards that of special relativity. The frequency of the hyperincursive discrete harmonic oscillator is ''blue shifted'' relative to its continuum counterpart. The frequency shift has the precise value needed to make the speed of the system point in phase space independent of the discretizing time interval {delta}t. That is the speed of the system point is the same on the polygonal (in the discrete case) and the circular (in the continuum case) phase space trajectories.

  18. Synchronization of Swimming Microorganisms

    NASA Astrophysics Data System (ADS)

    Elfring, Gwynn; Lauga, Eric

    2009-11-01

    Flagellated eukaryotic cells (such as spermatozoa) have been observed to synchronize their flagella when swimming in close proximity. Using a 2D model, we find that hydrodynamic interactions alone can lead to synchronization if the waveforms of the flagella display front-back asymmetry. Depending on the nature of the asymmetry, the phase-locked conformation can minimize or maximize the energy dissipated by the co-swimming cells. We show that due to kinematic reversibility, this front-back asymmetry is necessary for synchronization in a Newtonian fluid, and discuss the differences in a non-Newtonian fluid.

  19. Synchronization in complex networks

    SciTech Connect

    Arenas, A.; Diaz-Guilera, A.; Moreno, Y.; Zhou, C.; Kurths, J.

    2007-12-12

    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.

  20. Advanced synchronous luminescence system

    DOEpatents

    Vo-Dinh, Tuan

    1997-01-01

    A method and apparatus for determining the condition of tissue or otherwise making chemical identifications includes exposing the sample to a light source, and using a synchronous luminescence system to produce a spectrum that can be analyzed for tissue condition.

  1. Avoided Crossing and Synchronization

    NASA Astrophysics Data System (ADS)

    Sekii, T.; Shibahashi, H.

    2013-12-01

    We examine avoided crossing of stellar pulsations in the nonlinear regime, where synchronization may occur, based on a simple model of weakly coupled van der Pol oscillators with close frequencies. For this simple case, avoided crossing is unaffected in the sense that there is a frequency difference between the symmetric and antisymmetric modes, but as a result of synchronization, unlike the linear oscillations case, the system can vibrate in only one of the modes.

  2. Synchronization of cells.

    PubMed

    Sonoda, Eiichiro

    2006-01-01

    Synchronization of cells is essential to study cell cycle specific events. If, for example, one suspects that a given DNA repair pathway is used in a particular cell cycle phase, the protocol can be used to enrich cells in each phase of the cell cycle and analyze the cellular response to DNA damage. Synchronization is also useful, when a gene is essential for a particular phase of the cell cycle. If a gene is, for example, essential for mitosis, synchronization of the cells in G1 phase with concomitant inactivation of the gene enables us to study the function of the gene in interphase, and to follow synchronous cell cycle progression to M phase. Two synchronization methods: centrifugal elutriation to enrich G1, S or G2 phase cells and nocodazole-mimocine sequential treatment to enrich cells at the G1/S boundary are described. Centrifugal elutriation can be achieved in less time (0.5-2 h) and with very little physiological stress to the cells whereas synchronization by drugs, such as nocodazole and mimocine, may result in unfavorable side effects.

  3. Phase and Complete Synchronizations in Time-Delay Systems

    NASA Astrophysics Data System (ADS)

    Senthilkumar, D. V.; Manju Shrii, M.; Kurths, J.

    2013-01-01

    Synchronization is a fundamental nonlinear phenomenon that has been intensively investigated during a couple of decades. Recently, synchronization of time-delay systems with or without delay coupling and even synchronization of low-dimensional dynamical systems described by ordinary differential equations and maps with delay coupling have become an active area of research in view of its potential applications. In this article, we provide an overview of our recent results on phase synchronization in time-delay systems, which usually exhibits hyperchaotic attractors with complex topological properties, noise-enhanced phase and noise-induced complete synchronizations in time-delay systems. Further, we demonstrate the phenomena of delay-enhanced and delay-induced stable synchronous chaos in a delay coupled network of time continuous dynamical system using the framework of master stability formalism (MSF) for the first time.

  4. Optimistic barrier synchronization

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1992-01-01

    Barrier synchronization is fundamental operation in parallel computation. In many contexts, at the point a processor enters a barrier it knows that it has already processed all the work required of it prior to synchronization. The alternative case, when a processor cannot enter a barrier with the assurance that it has already performed all the necessary pre-synchronization computation, is treated. The problem arises when the number of pre-sychronization messages to be received by a processor is unkown, for example, in a parallel discrete simulation or any other computation that is largely driven by an unpredictable exchange of messages. We describe an optimistic O(log sup 2 P) barrier algorithm for such problems, study its performance on a large-scale parallel system, and consider extensions to general associative reductions as well as associative parallel prefix computations.

  5. Synchronous trifocal colorectal cancer

    PubMed Central

    Charalampoudis, Petros; Kykalos, Stylianos; Stamopoulos, Paraskevas; Kouraklis, Gregory

    2016-01-01

    Synchronous colorectal cancers (SCRCs) have been increasingly diagnosed due to emerging diagnostic modalities. The presence of three or more synchronous colorectal cancers has, however, only rarely been reported. A 76-year-old white man presented for management of two concurrent colorectal adenocarcinomas in the left colon evidenced on total colonoscopy. Preoperative abdominal ultrasonography and thoracoabdominal computed tomography were negative for metastatic disease. The patient underwent an elective left hemicolectomy. The pathology report ultimately showed the presence of three moderately differentiated, distinct colorectal cancers. The patient experienced an uneventful recovery. PMID:27695171

  6. Synchronous trifocal colorectal cancer

    PubMed Central

    Charalampoudis, Petros; Kykalos, Stylianos; Stamopoulos, Paraskevas; Kouraklis, Gregory

    2016-01-01

    Synchronous colorectal cancers (SCRCs) have been increasingly diagnosed due to emerging diagnostic modalities. The presence of three or more synchronous colorectal cancers has, however, only rarely been reported. A 76-year-old white man presented for management of two concurrent colorectal adenocarcinomas in the left colon evidenced on total colonoscopy. Preoperative abdominal ultrasonography and thoracoabdominal computed tomography were negative for metastatic disease. The patient underwent an elective left hemicolectomy. The pathology report ultimately showed the presence of three moderately differentiated, distinct colorectal cancers. The patient experienced an uneventful recovery.

  7. Organization of inner cellular components as reported by a viscosity-sensitive fluorescent Bodipy probe suitable for phasor approach to FLIM.

    PubMed

    Ferri, Gianmarco; Nucara, Luca; Biver, Tarita; Battisti, Antonella; Signore, Giovanni; Bizzarri, Ranieri

    2016-01-01

    According to the recent developments in imaging strategies and in tailoring fluorescent molecule as probe for monitoring biological systems, we coupled a Bodipy-based molecular rotor (BoMe) with FLIM phasor approach to evaluate the viscosity in different intracellular domains. BoMe rapidly permeates cells, stains cytoplasmic as well as nuclear domains, and its optical properties make it perfectly suited for widely diffused confocal microscopy imaging setups. The capability of BoMe to report on intracellular viscosity was put to the test by using a cellular model of a morbid genetic pathology (Hutchinson-Gilford progeria syndrome, HGPS). Our results show that the nucleoplasm of HGPS cells display reduced viscosity as compared to normal cells. Since BoMe displays significant affinity towards DNA, as demonstrated by an in vitro essay, we hypothesize that genetic features of HGPS, namely the misassembly of lamin A protein within the nuclear lamina, modulates chromatin compaction. This hypothesis nicely agrees with literature data.

  8. Synchronous presentation of Epstein-Barr virus-associated Hodgkin's disease and adult T-cell leukemia/lymphoma (ATLL) in a patient from an endemic area of ATLL.

    PubMed

    Hayashi, T; Yamabe, H; Haga, H; Akasaka, T; Kadowaki, N; Ohno, H; Okuma, M; Fukuhara, S

    1995-06-01

    We report a patient from an endemic area of adult T-cell leukemia/lymphoma (ATLL), who developed lymphoma with features characteristic of Hodgkin's disease (HD). Large atypical Reed-Sternberg/Hodgkin's cells (RS/H cells) had a CD3-CD15+CD20-CD30+CD45RO- immunophenotype. Epstein-Barr virus (EBV) latent membrane protein and EBV-encoded small RNA were detected in the RS/H cells. The patient received C-MOPP/ABVD chemotherapy for the HD resulting in a partial response. However, relapse occurred and he died of disease progression associated with serious bacterial infection. Although serial lymph node biopsies revealed consistent presence of the EBV-positive RS/H cells, the background small lymphocytes showed progressive increase in pleomorphism and nuclear irregularity. The lymphocytes had the T-cell phenotype, CD3+CD4+CD7-CD8-. Southern blot analysis using DNA probes for the human T-cell lymphotrophic virus-I (HTLV-I) and the T-cell receptor beta-chain gene demonstrated expansion of the HTLV-I infected monoclonal T-cells with the disease progression. We concluded that the patient synchronously presented two independent lymphoproliferative disorders; EBV-associated HD and ATLL resulting from HTLV-I infection.

  9. Carrying Synchronous Voice Data On Asynchronous Networks

    NASA Technical Reports Server (NTRS)

    Bergman, Larry A.

    1990-01-01

    Buffers restore synchronism for internal use and permit asynchronism in external transmission. Proposed asynchronous local-area digital communication network (LAN) carries synchronous voice, data, or video signals, or non-real-time asynchronous data signals. Network uses double buffering scheme that reestablishes phase and frequency references at each node in network. Concept demonstrated in token-ring network operating at 80 Mb/s, pending development of equipment operating at planned data rate of 200 Mb/s. Technique generic and used with any LAN as long as protocol offers deterministic (or bonded) access delays and sufficient capacity.

  10. Synchronized time stamp support

    SciTech Connect

    Kowalkowski, J.

    1994-02-16

    New software has been added to IOC core to maintain time stamps. The new software has the ability to maintain time stamps over all IOCs on a network. The purpose of this paper is to explain how EPICS will synchronize the time stamps. In addition, this paper will explain how to configure and use the new EPICS time stamp support software.

  11. Advanced synchronous luminescence system

    DOEpatents

    Vo-Dinh, T.

    1997-02-04

    A method and apparatus are disclosed for determining the condition of tissue or otherwise making chemical identifications includes exposing the sample to a light source, and using a synchronous luminescence system to produce a spectrum that can be analyzed for tissue condition. 14 figs.

  12. Synchronous semiconductor memory device

    SciTech Connect

    Onno, C.; Hirata, M.

    1989-11-21

    This patent describes a synchronous semiconductor memory device. It comprises: first latch means for latching a write command in synchronism with clock signal; second latch means for latching a write data in synchronism with the clock signal and for outputting two write process signals based on the write data latched thereby; pulse generating means for generating an internal write pulse signal based on the write command latched by the first latch means. The internal write pulse signal having a semiconductor memory device; write control means supplied with the internal write pulse signal and the write process signals for controlling write and read operations of the synchronous semiconductor memory device; memory means for storing the write data latched by the second latch means; and noise preventing means coupled to the second latch means and the write control means for supplying the write process signals to the write control means only in the write mode responsive to the internal write pulse signal and for setting the write process signals to fixed potentials during a time other than the write mode.

  13. Estimating synchronization signal phase

    NASA Astrophysics Data System (ADS)

    Lyons, Robert G.; Lord, John D.

    2015-03-01

    To read a watermark from printed images requires that the watermarking system read correctly after affine distortions. One way to recover from affine distortions is to add a synchronization signal in the Fourier frequency domain and use this synchronization signal to estimate the applied affine distortion. Using the Fourier Magnitudes one can estimate the linear portion of the affine distortion. To estimate the translation one must first estimate the phase of the synchronization signal and then use phase correlation to estimate the translation. In this paper we provide a new method to measure the phase of the synchronization signal using only the data from the complex Fourier domain. This data is used to compute the linear portion, so it is quite convenient to estimate the phase without further data manipulation. The phase estimation proposed in this paper is computationally simple and provides a significant computational advantage over previous methods while maintaining similar accuracy. In addition, the phase estimation formula gives a general way to interpolate images in the complex frequency domain.

  14. Robust microcircuit synchronization by inhibitory connections

    PubMed Central

    Szücs, Attila; Huerta, Ramon; Rabinovich, Mikhail I.; Selverston, Allen I.

    2009-01-01

    SUMMARY Microcircuits in different brain areas share similar architectural and biophysical properties with compact motor network known as central pattern generators (CPGs). Consequently, CPGs have been suggested as valuable biological models for the understanding of microcircuit dynamics and particularly, their synchronization. In the present paper we use a well known compact motor network, the lobster pyloric CPG to study principles of intercircuit synchronization. We couple separate pyloric circuits obtained from two animals via artificial synapses and observe how their synchronization depends on the topology and kinetic parameters of the computer-generated synapses. Stable in-phase synchronization appears when electrically coupling the pacemaker groups of the two networks, but reciprocal inhibitory connections produce more robust and regular cooperative activity. Contralateral inhibitory connections offer effective synchronization and flexible setting of the burst phases of the interacting networks. We also show that a conductance-based mathematical model of the coupled circuits correctly reproduces the observed dynamics illustrating the generality of the phenomena. PMID:19217380

  15. Synchronization and hydrodynamic interactions

    NASA Astrophysics Data System (ADS)

    Powers, Thomas; Qian, Bian; Breuer, Kenneth

    2008-03-01

    Cilia and flagella commonly beat in a coordinated manner. Examples include the flagella that Volvox colonies use to move, the cilia that sweep foreign particles up out of the human airway, and the nodal cilia that set up the flow that determines the left-right axis in developing vertebrate embryos. In this talk we present an experimental study of how hydrodynamic interactions can lead to coordination in a simple idealized system: two nearby paddles driven with fixed torques in a highly viscous fluid. The paddles attain a synchronized state in which they rotate together with a phase difference of 90 degrees. We discuss how synchronization depends on system parameters and present numerical calculations using the method of regularized stokeslets.

  16. Socially synchronized circadian oscillators

    PubMed Central

    Bloch, Guy; Herzog, Erik D.; Levine, Joel D.; Schwartz, William J.

    2013-01-01

    Daily rhythms of physiology and behaviour are governed by an endogenous timekeeping mechanism (a circadian ‘clock’). The alternation of environmental light and darkness synchronizes (entrains) these rhythms to the natural day–night cycle, and underlying mechanisms have been investigated using singly housed animals in the laboratory. But, most species ordinarily would not live out their lives in such seclusion; in their natural habitats, they interact with other individuals, and some live in colonies with highly developed social structures requiring temporal synchronization. Social cues may thus be critical to the adaptive function of the circadian system, but elucidating their role and the responsible mechanisms has proven elusive. Here, we highlight three model systems that are now being applied to understanding the biology of socially synchronized circadian oscillators: the fruitfly, with its powerful array of molecular genetic tools; the honeybee, with its complex natural society and clear division of labour; and, at a different level of biological organization, the rodent suprachiasmatic nucleus, site of the brain's circadian clock, with its network of mutually coupled single-cell oscillators. Analyses at the ‘group’ level of circadian organization will likely generate a more complex, but ultimately more comprehensive, view of clocks and rhythms and their contribution to fitness in nature. PMID:23825203

  17. Synchronization of Eukaryotic Flagella

    NASA Astrophysics Data System (ADS)

    Goldstein, Raymond E.

    2012-11-01

    From unicellular organisms as small as a few microns to the largest vertebrates on earth we find groups of beating flagella or cilia that exhibit striking spatio-temporal organization. This may take the form of precise frequency and phase locking as frequently found in the swimming of green algae, or beating with long-wavelength phase modulations known as metachronal waves, seen in ciliates and in our respiratory systems. The remarkable similarity in the underlying molecular structure of flagella across the whole eukaryotic world leads naturally to the hypothesis that a similarly universal mechanism might be responsible for synchronization. Although this mechanism is poorly understood, one appealing hypothesis is that it results from hydrodynamic interactions between flagella. In this talk I will describe a synthesis of recent experimental and theoretical studies of this issue that have provided the strongest evidence to date for the hydrodynamic origin of flagellar synchronization. At the unicellular level this includes studies of the beating of the two flagella of the wild type unicellular alga Chlamydomonas reinhardtii in their native state and under conditions of regrowth following autotomy, and of the flagellar dominance mutant ptx1, which displays unusual anti-phase synchronization. Analysis of the related multicellular organism Volvox carteri shows it to be an ideal model organism for the study of metachronal waves. Supported by BBSRC, EPSRC, ERC, and The Wellcome Trust.

  18. Digital Synchronizer without Metastability

    NASA Technical Reports Server (NTRS)

    Simle, Robert M.; Cavazos, Jose A.

    2009-01-01

    A proposed design for a digital synchronizing circuit would eliminate metastability that plagues flip-flop circuits in digital input/output interfaces. This metastability is associated with sampling, by use of flip-flops, of an external signal that is asynchronous with a clock signal that drives the flip-flops: it is a temporary flip-flop failure that can occur when a rising or falling edge of an asynchronous signal occurs during the setup and/or hold time of a flip-flop. The proposed design calls for (1) use of a clock frequency greater than the frequency of the asynchronous signal, (2) use of flip-flop asynchronous preset or clear signals for the asynchronous input, (3) use of a clock asynchronous recovery delay with pulse width discriminator, and (4) tying the data inputs to constant logic levels to obtain (5) two half-rate synchronous partial signals - one for the falling and one for the rising edge. Inasmuch as the flip-flop data inputs would be permanently tied to constant logic levels, setup and hold times would not be violated. The half-rate partial signals would be recombined to construct a signal that would replicate the original asynchronous signal at its original rate but would be synchronous with the clock signal.

  19. Psychic energy and synchronicity.

    PubMed

    Zabriskie, Beverley

    2014-04-01

    Given Jung's interest in physics' formulations of psychic energy and the concept of time, overlaps and convergences in the themes addressed in analytical psychology and in quantum physics are to be expected. These are informed by the active intersections between the matter of mind and mindfulness re matter. In 1911, Jung initiated dinners with Einstein. Jung's definition of libido in the pivotal 1912 Fordham Lectures reveals the influence of these conversations. Twenty years later, a significant period in physics, Wolfgang Pauli contacted Jung. Their collaboration led to the theory of synchronicity.

  20. Sun synchronous solar refrigeration

    NASA Astrophysics Data System (ADS)

    The primary goal of this project was to prototype a complete Sun Synchronous Solar Powered Refrigerator. The key element to the technology is the development of the hermetic motor compressor assembly. The prototype was to be developed to either the stage where Polar Products could receive additional venture capital or to the point whereby Polar could use their own capital to manufacture the systems. Our goal was to construct a prototype which would be the next step to a proven and market ready product. To demonstrate the technology under laboratory conditions was a very minimal goal.

  1. Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention

    NASA Astrophysics Data System (ADS)

    Fries, Pascal; Reynolds, John H.; Rorie, Alan E.; Desimone, Robert

    2001-02-01

    In crowded visual scenes, attention is needed to select relevant stimuli. To study the underlying mechanisms, we recorded neurons in cortical area V4 while macaque monkeys attended to behaviorally relevant stimuli and ignored distracters. Neurons activated by the attended stimulus showed increased gamma-frequency (35 to 90 hertz) synchronization but reduced low-frequency (<17 hertz) synchronization compared with neurons at nearby V4 sites activated by distracters. Because postsynaptic integration times are short, these localized changes in synchronization may serve to amplify behaviorally relevant signals in the cortex.

  2. Phase tracking with a spatial synchronous method

    SciTech Connect

    Munoz-Maciel, Jesus; Pena-Lecona, Francisco G.; Castillo-Quevedo, Cesar; Casillas-Rodriguez, Francisco J.; Duran-Ramirez, Victor M.; Mora-Gonzalez, Miguel; Rodriguez-Zavala, Jaime G

    2007-06-10

    A modified form of a phase tracking method to demodulate a single fringe pattern ispresented. Phase values from local areas of the interferogram are recovered by means of aspatial synchronous technique instead of solving the set of nonlinear equations obtained from the implementation of the ordinary algorithm. This results in a significant speedimprovement of the method. Additionally, the robustness against noise is maintained, andthe sensitivity to contrast variations is decremented with respect to the phase tracking technique.

  3. Digitized synchronous demodulator

    NASA Technical Reports Server (NTRS)

    Woodhouse, Christopher E. (Inventor)

    1990-01-01

    A digitized synchronous demodulator is constructed entirely of digital components including timing logic, an accumulator, and means to digitally filter the digital output signal. Indirectly, it accepts, at its input, periodic analog signals which are converted to digital signals by traditional analog-to-digital conversion techniques. Broadly, the input digital signals are summed to one of two registers within an accumulator, based on the phase of the input signal and medicated by timing logic. At the end of a predetermined number of cycles of the inputted periodic signals, the contents of the register that accumulated samples from the negative half cycle is subtracted from the accumulated samples from the positive half cycle. The resulting difference is an accurate measurement of the narrow band amplitude of the periodic input signal during the measurement period. This measurement will not include error sources encountered in prior art synchronous demodulators using analog techniques such as offsets, charge injection errors, temperature drift, switching transients, settling time, analog to digital converter missing code, and linearity errors.

  4. Synchronized dynamic dose reconstruction

    SciTech Connect

    Litzenberg, Dale W.; Hadley, Scott W.; Tyagi, Neelam; Balter, James M.; Ten Haken, Randall K.; Chetty, Indrin J.

    2007-01-15

    Variations in target volume position between and during treatment fractions can lead to measurable differences in the dose distribution delivered to each patient. Current methods to estimate the ongoing cumulative delivered dose distribution make idealized assumptions about individual patient motion based on average motions observed in a population of patients. In the delivery of intensity modulated radiation therapy (IMRT) with a multi-leaf collimator (MLC), errors are introduced in both the implementation and delivery processes. In addition, target motion and MLC motion can lead to dosimetric errors from interplay effects. All of these effects may be of clinical importance. Here we present a method to compute delivered dose distributions for each treatment beam and fraction, which explicitly incorporates synchronized real-time patient motion data and real-time fluence and machine configuration data. This synchronized dynamic dose reconstruction method properly accounts for the two primary classes of errors that arise from delivering IMRT with an MLC: (a) Interplay errors between target volume motion and MLC motion, and (b) Implementation errors, such as dropped segments, dose over/under shoot, faulty leaf motors, tongue-and-groove effect, rounded leaf ends, and communications delays. These reconstructed dose fractions can then be combined to produce high-quality determinations of the dose distribution actually received to date, from which individualized adaptive treatment strategies can be determined.

  5. Organization of inner cellular components as reported by a viscosity-sensitive fluorescent Bodipy probe suitable for phasor approach to FLIM.

    PubMed

    Ferri, Gianmarco; Nucara, Luca; Biver, Tarita; Battisti, Antonella; Signore, Giovanni; Bizzarri, Ranieri

    2016-01-01

    According to the recent developments in imaging strategies and in tailoring fluorescent molecule as probe for monitoring biological systems, we coupled a Bodipy-based molecular rotor (BoMe) with FLIM phasor approach to evaluate the viscosity in different intracellular domains. BoMe rapidly permeates cells, stains cytoplasmic as well as nuclear domains, and its optical properties make it perfectly suited for widely diffused confocal microscopy imaging setups. The capability of BoMe to report on intracellular viscosity was put to the test by using a cellular model of a morbid genetic pathology (Hutchinson-Gilford progeria syndrome, HGPS). Our results show that the nucleoplasm of HGPS cells display reduced viscosity as compared to normal cells. Since BoMe displays significant affinity towards DNA, as demonstrated by an in vitro essay, we hypothesize that genetic features of HGPS, namely the misassembly of lamin A protein within the nuclear lamina, modulates chromatin compaction. This hypothesis nicely agrees with literature data. PMID:26127025

  6. Robust Sliding Window Synchronizer Developed

    NASA Technical Reports Server (NTRS)

    Chun, Kue S.; Xiong, Fuqin; Pinchak, Stanley

    2004-01-01

    The development of an advanced robust timing synchronization scheme is crucial for the support of two NASA programs--Advanced Air Transportation Technologies and Aviation Safety. A mobile aeronautical channel is a dynamic channel where various adverse effects--such as Doppler shift, multipath fading, and shadowing due to precipitation, landscape, foliage, and buildings--cause the loss of symbol timing synchronization.

  7. RAM-Based frame synchronizer

    NASA Technical Reports Server (NTRS)

    Niswander, J. K.; Stattel, R. J.

    1980-01-01

    Frame synchronizer for serial telemetry is rapidly reconfigured for changing formats. Synchronizer generates signals marking data-word boundaries, beginning of each frame, and beginning of each paragraph. Also derived are search, check, and lock status signals. Existing unit is assembled from standard random-access memory elements and MOS and low-power-Schottky logic.

  8. Digital synchronization and communication techniques

    NASA Technical Reports Server (NTRS)

    Lindsey, William C.

    1992-01-01

    Information on digital synchronization and communication techniques is given in viewgraph form. Topics covered include phase shift keying, modems, characteristics of open loop digital synchronizers, an open loop phase and frequency estimator, and a digital receiver structure using an open loop estimator in a decision directed architecture.

  9. Chua's Circuit: Control and Synchronization

    NASA Astrophysics Data System (ADS)

    Irimiciuc, Stefan-Andrei; Vasilovici, Ovidiu; Dimitriu, Dan-Gheorghe

    Chaos-based data encryption is one of the most reliable methods used in secure communications. This implies a good control of a chaotic system and a good synchronization between the involved systems. Here, experimental results are shown on the control and synchronization of Chua's circuits. The control of the chaotic circuit was achieved by using the switching method. The influence of the control signal characteristics (amplitude, frequency and shape) on the system's states was also investigated. The synchronization of two similar chaotic circuits was studied, emphasizing the importance of the chaotic state characteristics of the Master system in respect to those of Slave system. It was shown that the synchronization does not depend on the chaotic state type, neither on the dimension (x, y or z) used for synchronization.

  10. Twin engine synchronizer

    SciTech Connect

    Kobus, J.R.

    1988-05-03

    This patent describes an apparatus for synchronizing the speeds of two engines, each having its own throttle level connected by an associated cable to a respective hand throttle lever, comprising moving means carried by the throttle lever of one of the engines for moving the throttle lever of the one engine independently of its associated cable and its respective hand throttle lever to increase or decrease the speed of the one engine until the speed of the one engine matches the speed of the other engine. The moving means moves the throttle lever of the one engine without moving its associated cable or its respective hand throttle lever, and actuating means mounted remote from the throttle lever of the one engine for actuating the moving means.

  11. Synchronization in neural nets

    NASA Technical Reports Server (NTRS)

    Vidal, Jacques J.; Haggerty, John

    1988-01-01

    The paper presents an artificial neural network concept (the Synchronizable Oscillator Networks) where the instants of individual firings in the form of point processes constitute the only form of information transmitted between joining neurons. In the model, neurons fire spontaneously and regularly in the absence of perturbation. When interaction is present, the scheduled firings are advanced or delayed by the firing of neighboring neurons. Networks of such neurons become global oscillators which exhibit multiple synchronizing attractors. From arbitrary initial states, energy minimization learning procedures can make the network converge to oscillatory modes that satisfy multi-dimensional constraints. Such networks can directly represent routing and scheduling problems that consist of ordering sequences of events.

  12. Phase synchronization of oxygenation waves in the frontal areas of children with attention-deficit hyperactivity disorder detected by optical diffusion spectroscopy correlates with medication

    NASA Astrophysics Data System (ADS)

    Wigal, Sharon B.; Polzonetti, Chiara M.; Stehli, Annamarie; Gratton, Enrico

    2012-12-01

    The beneficial effects of pharmacotherapy on children with attention-deficit hyperactivity disorder (ADHD) are well documented. We use near-infrared spectroscopy (NIRS) methodology to determine reorganization of brain neurovascular properties following the medication treatment. Twenty-six children with ADHD (ages six through 12) participated in a modified laboratory school protocol to monitor treatment response with lisdexamfetamine dimesylate (LDX; Vyvanse, Shire US Inc.). All children refrained from taking medication for at least two weeks (washout period). To detect neurovascular reorganization, we measured changes in synchronization of oxy (HbO2) and deoxy (HHb) hemoglobin waves between the two frontal lobes. Participants without medication displayed average baseline HbO2 phase difference at about -7-deg. and HHb differences at about 240-deg.. This phase synchronization index changed after pharmacological intervention. Medication induced an average phase changes of HbO2 after first medication to 280-deg. and after medication optimization to 242-deg.. Instead first medication changed of the average HHb phase difference at 186-deg. and then after medication optimization to 120-deg. In agreement with findings of White et al., and Varela et al., we associated the phase synchronization differences of brain hemodynamics in children with ADHD with lobe specific hemodynamic reorganization of HbO2- and HHB oscillations following medication status.

  13. Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention.

    PubMed

    Siegel, Markus; Donner, Tobias H; Oostenveld, Robert; Fries, Pascal; Engel, Andreas K

    2008-11-26

    Oscillatory neuronal synchronization, within and between cortical areas, may mediate the selection of attended visual stimuli. However, it remains unclear at and between which processing stages visuospatial attention modulates oscillatory synchronization in the human brain. We thus combined magnetoencephalography (MEG) in a spatially cued motion discrimination task with source-reconstruction techniques and characterized attentional effects on neuronal synchronization across key stages of the human dorsal visual pathway. We found that visuospatial attention modulated oscillatory synchronization between visual, parietal, and prefrontal cortex in a spatially selective fashion. Furthermore, synchronized activity within these stages was selectively modulated by attention, but with markedly distinct spectral signatures and stimulus dependence between regions. Our data indicate that regionally specific oscillatory synchronization at most stages of the human dorsal visual pathway may enhance the processing of attended visual stimuli and suggest that attentional selection is mediated by frequency-specific synchronization between prefrontal, parietal, and early visual cortex.

  14. Fundamentals of synchronization in chaotic systems, concepts, and applications.

    PubMed

    Pecora, Louis M.; Carroll, Thomas L.; Johnson, Gregg A.; Mar, Douglas J.; Heagy, James F.

    1997-12-01

    The field of chaotic synchronization has grown considerably since its advent in 1990. Several subdisciplines and "cottage industries" have emerged that have taken on bona fide lives of their own. Our purpose in this paper is to collect results from these various areas in a review article format with a tutorial emphasis. Fundamentals of chaotic synchronization are reviewed first with emphases on the geometry of synchronization and stability criteria. Several widely used coupling configurations are examined and, when available, experimental demonstrations of their success (generally with chaotic circuit systems) are described. Particular focus is given to the recent notion of synchronous substitution-a method to synchronize chaotic systems using a larger class of scalar chaotic coupling signals than previously thought possible. Connections between this technique and well-known control theory results are also outlined. Extensions of the technique are presented that allow so-called hyperchaotic systems (systems with more than one positive Lyapunov exponent) to be synchronized. Several proposals for "secure" communication schemes have been advanced; major ones are reviewed and their strengths and weaknesses are touched upon. Arrays of coupled chaotic systems have received a great deal of attention lately and have spawned a host of interesting and, in some cases, counterintuitive phenomena including bursting above synchronization thresholds, destabilizing transitions as coupling increases (short-wavelength bifurcations), and riddled basins. In addition, a general mathematical framework for analyzing the stability of arrays with arbitrary coupling configurations is outlined. Finally, the topic of generalized synchronization is discussed, along with data analysis techniques that can be used to decide whether two systems satisfy the mathematical requirements of generalized synchronization. (c) 1997 American Institute of Physics. PMID:12779679

  15. Nonlocal mechanism for cluster synchronization in neural circuits

    NASA Astrophysics Data System (ADS)

    Kanter, I.; Kopelowitz, E.; Vardi, R.; Zigzag, M.; Kinzel, W.; Abeles, M.; Cohen, D.

    2011-03-01

    The interplay between the topology of cortical circuits and synchronized activity modes in distinct cortical areas is a key enigma in neuroscience. We present a new nonlocal mechanism governing the periodic activity mode: the greatest common divisor (GCD) of network loops. For a stimulus to one node, the network splits into GCD-clusters in which cluster neurons are in zero-lag synchronization. For complex external stimuli, the number of clusters can be any common divisor. The synchronized mode and the transients to synchronization pinpoint the type of external stimuli. The findings, supported by an information mixing argument and simulations of Hodgkin-Huxley population dynamic networks with unidirectional connectivity and synaptic noise, call for reexamining sources of correlated activity in cortex and shorter information processing time scales.

  16. Nutritional recommendations for synchronized swimming.

    PubMed

    Robertson, Sherry; Benardot, Dan; Mountjoy, Margo

    2014-08-01

    The sport of synchronized swimming is unique, because it combines speed, power, and endurance with precise synchronized movements and high-risk acrobatic maneuvers. Athletes must train and compete while spending a great amount of time underwater, upside down, and without the luxury of easily available oxygen. This review assesses the scientific evidence with respect to the physiological demands, energy expenditure, and body composition in these athletes. The role of appropriate energy requirements and guidelines for carbohydrate, protein, fat, and micronutrients for elite synchronized swimmers are reviewed. Because of the aesthetic nature of the sport, which prioritizes leanness, the risks of energy and macronutrient deficiencies are of significant concern. Relative Energy Deficiency in Sport and disordered eating/eating disorders are also of concern for these female athletes. An approach to the healthy management of body composition in synchronized swimming is outlined. Synchronized swimmers should be encouraged to consume a well-balanced diet with sufficient energy to meet demands and to time the intake of carbohydrate, protein, and fat to optimize performance and body composition. Micronutrients of concern for this female athlete population include iron, calcium, and vitamin D. This article reviews the physiological demands of synchronized swimming and makes nutritional recommendations for recovery, training, and competition to help optimize athletic performance and to reduce risks for weight-related medical issues that are of particular concern for elite synchronized swimmers. PMID:24667278

  17. A symbolic information approach to determine anticipated and delayed synchronization in neuronal circuit models.

    PubMed

    Montani, Fernando; Rosso, Osvaldo A; Matias, Fernanda S; Bressler, Steven L; Mirasso, Claudio R

    2015-12-13

    The phenomenon of synchronization between two or more areas of the brain coupled asymmetrically is a relevant issue for understanding mechanisms and functions within the cerebral cortex. Anticipated synchronization (AS) refers to the situation in which the receiver system synchronizes to the future dynamics of the sender system while the intuitively expected delayed synchronization (DS) represents exactly the opposite case. AS and DS are investigated in the context of causal information formalism. More specifically, we use a multi-scale symbolic information-theory approach for discriminating the time delay displayed between two areas of the brain when they exchange information.

  18. Synchronization in growing heterogeneous media

    NASA Astrophysics Data System (ADS)

    Chen, W.; Cheng, S. C.; Avalos, E.; Drugova, O.; Osipov, G.; Lai, Pik-Yin; Chan, C. K.

    2009-04-01

    Synchronization of heterogeneous systems that consist of oscillatory and passive elements are studied in cardiac myocytes/fibroblasts co-cultures. It is found that beating clusters of cardiac myocytes surrounded by fibroblasts will be formed. The beatings of the cardiac myocyte clusters are not correlated at early times, but get synchronized as the cultures mature. This synchronization can be understood by a Kuramoto model with a time-increasing coupling strength. Our findings show that the growth of the coupling strength between clusters is linear, while the overall wave dynamics of the system is controlled by the passive fibroblast in the system which presumably is growing exponentially.

  19. Time synchronized video systems

    NASA Technical Reports Server (NTRS)

    Burnett, Ron

    1994-01-01

    The idea of synchronizing multiple video recordings to some type of 'range' time has been tried to varying degrees of success in the past. Combining this requirement with existing time code standards (SMPTE) and the new innovations in desktop multimedia however, have afforded an opportunity to increase the flexibility and usefulness of such efforts without adding costs over the traditional data recording and reduction systems. The concept described can use IRIG, GPS or a battery backed internal clock as the master time source. By converting that time source to Vertical Interval Time Code or Longitudinal Time Code, both in accordance with the SMPTE standards, the user will obtain a tape that contains machine/computer readable time code suitable for use with editing equipment that is available off-the-shelf. Accuracy on playback is then determined by the playback system chosen by the user. Accuracies of +/- 2 frames are common among inexpensive systems and complete frame accuracy is more a matter of the users' budget than the capability of the recording system.

  20. Noncoherent Symbol Synchronization Techniques

    NASA Technical Reports Server (NTRS)

    Simon, Marvin

    2005-01-01

    Traditional methods for establishing symbol synchronization (sync) in digital communication receivers assume that carrier sync has already been established, i.e., the problem is addressed at the baseband level assuming that a 'perfect' estimate of carrier phase is available. We refer to this approach as coherent symbol sync. Since, for NRZ signaling, a suppressed carrier sync loop such as an I-Q Costas loop includes integrate-and-dump (I and D) filters in its in-phase (1) and quadrature (Q) arms, the traditional approach is to first track the carrier in the absence of symbol sync information, then feed back the symbol sync estimate to these filters, and then iterate between the two to a desirable operating level In this paper, we revisit the symbol sync problem by examining methods for obtaining such sync in the absence of carrier phase information, i.e., so-called noncoherent symbol sync loops. We compare the performance of these loops with that of a well-known coherent symbol sync loop and examine the conditions under which one is preferable over the other.

  1. Driven synchronization in random networks of oscillators.

    PubMed

    Hindes, Jason; Myers, Christopher R

    2015-07-01

    Synchronization is a universal phenomenon found in many non-equilibrium systems. Much recent interest in this area has overlapped with the study of complex networks, where a major focus is determining how a system's connectivity patterns affect the types of behavior that it can produce. Thus far, modeling efforts have focused on the tendency of networks of oscillators to mutually synchronize themselves, with less emphasis on the effects of external driving. In this work, we discuss the interplay between mutual and driven synchronization in networks of phase oscillators of the Kuramoto type, and explore how the structure and emergence of such states depend on the underlying network topology for simple random networks with a given degree distribution. We find a variety of interesting dynamical behaviors, including bifurcations and bistability patterns that are qualitatively different for heterogeneous and homogeneous networks, and which are separated by a Takens-Bogdanov-Cusp singularity in the parameter region where the coupling strength between oscillators is weak. Our analysis is connected to the underlying dynamics of oscillator clusters for important states and transitions. PMID:26232970

  2. Synchronization by small time delays

    NASA Astrophysics Data System (ADS)

    Pruessner, G.; Cheang, S.; Jensen, H. J.

    2015-02-01

    Synchronization is a phenomenon observed in all of the living and in much of the non-living world, for example in the heart beat, Huygens' clocks, the flashing of fireflies and the clapping of audiences. Depending on the number of degrees of freedom involved, different mathematical approaches have been used to describe it, most prominently integrate-and-fire oscillators and the Kuramoto model of coupled oscillators. In the present work, we study a very simple and general system of smoothly evolving oscillators, which continue to interact even in the synchronized state. We find that under very general circumstances, synchronization generically occurs in the presence of a (small) time delay. Strikingly, the synchronization time is inversely proportional to the time delay.

  3. Synchronous identification of friendly targets

    SciTech Connect

    Telle, John M.; Roger, Stutz A.

    1998-01-01

    A synchronous communication targeting system for use in battle. The present invention includes a transceiver having a stabilizing oscillator, a synchronous amplifier and an omnidirectional receiver, all in electrical communication with each other. A remotely located beacon is attached to a blackbody radiation source and has an amplitude modulator in electrical communication with a optical source. The beacon's amplitude modulator is set so that the optical source transmits radiation frequency at approximately the same or lower amplitude than that of the blackbody radiation source to which the beacon is attached. The receiver from the transceiver is adapted to receive frequencies approximately at or below blackbody radiation signals and sends such signals to the synchronous amplifier. The synchronous amplifier then rectifies and amplifies those signals which correspond to the predetermined frequency to therefore identify whether the blackbody radiation source is friendly or not.

  4. Optimistic barrier synchronization. Contractor report

    SciTech Connect

    Nicol, D.M.

    1992-07-01

    Barrier synchronization is a fundamental operation in parallel computation. In many contexts, at the point a processor enters a barrier it knows that is has already processed all work required of it prior to the synchronization. This paper treats the alternative case, when a processor cannot enter a barrier with the assurance that it has already performed all necessary pre-synchronization computation. The proble marises when the number of pre-synchronization messages to be received by a processor is unknown, for example, in a parallel discrete simulation or any other computation that is largely driven by an unpredictable exchange of messages. The authors describe an optimistic O(log2P) barrier algorithm for such problems, study its performance on a large-scale parallel system, and consider extensions to general associative reductions, as well as associative parallel prefix computations.

  5. Engineering synchronization of chaotic oscillators

    SciTech Connect

    Padmanaban, E.; Dana, Syamal K.

    2011-04-19

    We propose a controller based coupling design for engineering synchronization in chaotic oscillators for unidirectional as well as bi-directional mode. In the synchronization regimes, it is possible to amplify/ attenuate a chaotic attractor with respect to other chaotic attractors. Numerical examples are presented for a Lorenz system, a Roessler oscillator, and a Sprott system. Physical implementation of the scheme is done in electronic circuit to design the controller for verification of the theory.

  6. Synchronous reactive programming in Ptolemy

    SciTech Connect

    Boulanger, F.; Vidal-Naquet, G.

    1996-12-31

    Synchronous reactive languages allow a high level deterministic description of reactive systems such as control-command systems. Their well defined mathematical semantics makes it possible to check formal properties on the control of a system. In previous work, we developed an object-oriented execution model for synchronous reactive modules. This model is implemented as a set of tools and a C++ class library, and allows us to use object-oriented methodologies and tools for the design of complex applications with both transformational and reactive parts. Among these design tools, the Ptolemy system stands as an object-oriented framework that supports various execution models, or {open_quotes}domains{close_quotes}. We are currently working on a translator from the output format of the Lustre and Esterel compilers to the Ptolemy language. Since no existing domain matches the reactive synchronous execution model, we also plan to develop a SEC (Synchronous Execution and Communication) domain. Such a domain will provide support for the execution of synchronous modules in Ptolemy. One of the most interesting features of Ptolemy is the communication between domains. Therefore we discuss the interface of the SEC domain to other domains to determine the meaning of communications between them. The main goal is to allow the use of synchronous reactive modules for the control of the behavior of data-flow or discrete event processes.

  7. Cardiorespiratory synchronization during Zen meditation.

    PubMed

    Cysarz, Dirk; Büssing, Arndt

    2005-09-01

    The impact of meditation on cardiorespiratory synchronization with respect to breathing oscillations and the modulations of heart rate induced by respiration (respiratory sinus arrhythmia, RSA) was investigated in this study. Four different exercises (spontaneous breathing, mental task, Zen meditation, and Kinhin meditation) were consecutively performed by nine subjects mainly without any experience in meditation. An electrocardiogram and a respiratory trace were recorded simultaneously. On this basis the degree of cardiorespiratory synchronization was quantified by a technique which has been adopted from the analysis of weakly coupled chaotic oscillators. Both types of meditation showed a high degree of synchronization, whereas heartbeat and respiration were hardly synchronized during spontaneous breathing. During the mental task exercise the extent of synchronization was slightly higher than during spontaneous breathing. These results were largely determined by the breathing frequency because the two types of meditation induce low breathing frequencies which led to a pronounced and in-phase RSA. During the meditation the low breathing frequencies led to a decrease in the high frequency of heart rate variability, whereas the low frequency and the extent of RSA increased. The heart rate primarily reflected the degree of physical effort. The high degree of cardiorespiratory synchronization during meditation in unexperienced meditators suggests that the physiological implications of meditation does not require prior experience in meditation.

  8. Periodicity, synchronization and persistence in pre-vaccination measles.

    PubMed

    Marguta, Ramona; Parisi, Andrea

    2016-06-01

    We investigate the relationship between periodicity, synchronization and persistence of measles through simulations of geographical spread on the British Isles. We show that the establishment of areas of biennial periodicity depends on the interplay between human mobility and local population size and that locations undergoing biennial cycles tend to be, on average, synchronized in phase. We show however that occurrences of opposition of phase are actually quite common and correspond to stable dynamics. We also show that persistence is strictly related to circulation of the disease in the highly populated area of London and that this ensures survival of the disease even when human mobility drops to extremely low levels. PMID:27278363

  9. Synchronization among neuronal pools without common inputs: in vivo study.

    PubMed

    Brama, Haya; Guberman, Shoshana; Abeles, Moshe; Stern, Edward; Kanter, Ido

    2015-11-01

    Periodic synchronization of activity among neuronal pools has been related to substantial neural processes and information throughput in the neocortical network. However, the mechanisms of generating such periodic synchronization among distributed pools of neurons remain unclear. We hypothesize that to a large extent there is interplay between the topology of the neocortical networks and their reverberating modes of activity. The firing synchronization is governed by a nonlocal mechanism, the network delay loops, such that distant neuronal pools without common drives can be synchronized. This theoretical interplay between network topology and the synchronized mode is verified using an iterative procedure of a single intracellularly recorded neuron in vivo, imitating the dynamics of the entire network. The input is injected to the neuron via the recording electrode as current and computed from the filtered, evoked spikes of its pre-synaptic sources, previously emulated by the same neuron. In this manner we approximate subthreshold synaptic inputs from afferent neuronal pools to the neuron. Embedding the activity of these recurrent motifs in the intact brain allows us to measure the effects of connection probability, synaptic strength, and ongoing activity on the neuronal synchrony. Our in vivo experiments indicate that an initial stimulus given to a single pool is dynamically evolving into the formations of zero-lag and cluster synchronization. By applying results from theoretical models and in vitro experiments to in vivo activity in the intact brain, we support the notion that this mechanism may account for the binding activity across distributed brain areas.

  10. Synchronization configurations of two coupled double pendula

    NASA Astrophysics Data System (ADS)

    Koluda, Piotr; Perlikowski, Przemyslaw; Czolczynski, Krzysztof; Kapitaniak, Tomasz

    2014-04-01

    We consider the synchronization of two self-excited double pendula hanging from a horizontal beam which can roll on the parallel surface. We show that such pendula can obtain four different robust synchronous configurations. Our approximate analytical analysis allows to derive the synchronization conditions and explains the observed types of synchronizations. We consider the energy balance in the system and show how the energy is transferred between the pendula via the oscillating beam allowing the pendula' synchronization.

  11. Noncoherent DTTLs for Symbol Synchronization

    NASA Technical Reports Server (NTRS)

    Simon, Marvin; Tkacenko, Andre

    2007-01-01

    Noncoherent data-transition tracking loops (DTTLs) have been proposed for use as symbol synchronizers in digital communication receivers. [Communication- receiver subsystems that can perform their assigned functions in the absence of synchronization with the phases of their carrier signals ( carrier synchronization ) are denoted by the term noncoherent, while receiver subsystems that cannot function without carrier synchronization are said to be coherent. ] The proposal applies, more specifically, to receivers of binary phase-shift-keying (BPSK) signals generated by directly phase-modulating binary non-return-to-zero (NRZ) data streams onto carrier signals having known frequencies but unknown phases. The proposed noncoherent DTTLs would be modified versions of traditional DTTLs, which are coherent. The symbol-synchronization problem is essentially the problem of recovering symbol timing from a received signal. In the traditional, coherent approach to symbol synchronization, it is necessary to establish carrier synchronization in order to recover symbol timing. A traditional DTTL effects an iterative process in which it first generates an estimate of the carrier phase in the absence of symbol-synchronization information, then uses the carrier-phase estimate to obtain an estimate of the symbol-synchronization information, then feeds the symbol-synchronization estimate back to the carrier-phase-estimation subprocess. In a noncoherent symbol-synchronization process, there is no need for carrier synchronization and, hence, no need for iteration between carrier-synchronization and symbol- synchronization subprocesses. The proposed noncoherent symbolsynchronization process is justified theoretically by a mathematical derivation that starts from a maximum a posteriori (MAP) method of estimation of symbol timing utilized in traditional, coherent DTTLs. In that MAP method, one chooses the value of a variable of interest (in this case, the offset in the estimated symbol

  12. Analysis of the time structure of synchronization in multidimensional chaotic systems

    SciTech Connect

    Makarenko, A. V.

    2015-05-15

    A new approach is proposed to the integrated analysis of the time structure of synchronization of multidimensional chaotic systems. The method allows one to diagnose and quantitatively evaluate the intermittency characteristics during synchronization of chaotic oscillations in the T-synchronization mode. A system of two identical logistic mappings with unidirectional coupling that operate in the developed chaos regime is analyzed. It is shown that the widely used approach, in which only synchronization patterns are subjected to analysis while desynchronization areas are considered as a background signal and removed from analysis, should be regarded as methodologically incomplete.

  13. How Synchronization Protects from Noise

    PubMed Central

    Tabareau, Nicolas; Slotine, Jean-Jacques; Pham, Quang-Cuong

    2010-01-01

    The functional role of synchronization has attracted much interest and debate: in particular, synchronization may allow distant sites in the brain to communicate and cooperate with each other, and therefore may play a role in temporal binding, in attention or in sensory-motor integration mechanisms. In this article, we study another role for synchronization: the so-called “collective enhancement of precision”. We argue, in a full nonlinear dynamical context, that synchronization may help protect interconnected neurons from the influence of random perturbations—intrinsic neuronal noise—which affect all neurons in the nervous system. More precisely, our main contribution is a mathematical proof that, under specific, quantified conditions, the impact of noise on individual interconnected systems and on their spatial mean can essentially be cancelled through synchronization. This property then allows reliable computations to be carried out even in the presence of significant noise (as experimentally found e.g., in retinal ganglion cells in primates). This in turn is key to obtaining meaningful downstream signals, whether in terms of precisely-timed interaction (temporal coding), population coding, or frequency coding. Similar concepts may be applicable to questions of noise and variability in systems biology. PMID:20090826

  14. Bodily synchronization underlying joke telling

    PubMed Central

    Schmidt, R. C.; Nie, Lin; Franco, Alison; Richardson, Michael J.

    2014-01-01

    Advances in video and time series analysis have greatly enhanced our ability to study the bodily synchronization that occurs in natural interactions. Past research has demonstrated that the behavioral synchronization involved in social interactions is similar to dynamical synchronization found generically in nature. The present study investigated how the bodily synchronization in a joke telling task is spread across different nested temporal scales. Pairs of participants enacted knock–knock jokes and times series of their bodily activity were recorded. Coherence and relative phase analyses were used to evaluate the synchronization of bodily rhythms for the whole trial as well as at the subsidiary time scales of the whole joke, the setup of the punch line, the two-person exchange and the utterance. The analyses revealed greater than chance entrainment of the joke teller’s and joke responder’s movements at all time scales and that the relative phasing of the teller’s movements led those of the responder at the longer time scales. Moreover, this entrainment was greater when visual information about the partner’s movements was present but was decreased particularly at the shorter time scales when explicit gesturing in telling the joke was performed. In short, the results demonstrate that a complex interpersonal bodily “dance” occurs during structured conversation interactions and that this “dance” is constructed from a set of rhythms associated with the nested behavioral structure of the interaction. PMID:25177287

  15. Visual motion induces synchronous oscillations in turtle visual cortex.

    PubMed

    Prechtl, J C

    1994-12-20

    In mammalian brains, multielectrode recordings during sensory stimulation have revealed oscillations in different cortical areas that are transiently synchronous. These synchronizations have been hypothesized to support integration of sensory information or represent the operation of attentional mechanisms, but their stimulus requirements and prevalence are still unclear. Here I report an analogous synchronization in a reptilian cortex induced by moving visual stimuli. The synchronization, as measured by the coherence function, applies to spindle-like 20-Hz oscillations recorded with multiple electrodes implanted in the dorsal cortex and the dorsal ventricular ridge of the pond turtle. Additionally, widespread increases in coherence are observed in the 1- to 2-Hz band, and widespread decreases in coherence are seen in the 10- and 30- to 45-Hz bands. The 20-Hz oscillations induced by the moving bar or more natural stimuli are nonstationary and can be sustained for seconds. Early reptile studies may have interpreted similar spindles as electroencephalogram correlates of arousal; however, the absence of these spindles during arousing stimuli in the dark suggests a more specific role in visual processing. Thus, visually induced synchronous oscillations are not unique to the mammalian cortex but also occur in the visual area of the primitive three-layered cortex of reptiles.

  16. 76 FR 36883 - Defense Federal Acquisition Regulation Supplement; Synchronized Predeployment and Operational...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ... Acquisition Regulation Supplement; Synchronized Predeployment and Operational Tracker (SPOT) (DFARS Case 2011... Synchronized Predeployment and Operational Tracker (SPOT) system. DATES: Effective date: June 23, 2011. FOR... operational area (see DFARS 225.7402-3). This final rule will revise the generic letter of authorization...

  17. Synchronization Tomography: A Method for Three-Dimensional Localization of Phase Synchronized Neuronal Populations in the Human Brain using Magnetoencephalography

    NASA Astrophysics Data System (ADS)

    Tass, P. A.; Fieseler, T.; Dammers, J.; Dolan, K.; Morosan, P.; Majtanik, M.; Boers, F.; Muren, A.; Zilles, K.; Fink, G. R.

    2003-02-01

    We present a noninvasive technique which allows the anatomical localization of phase synchronized neuronal populations in the human brain with magnetoencephalography. We study phase synchronization between the reconstructed current source density (CSD) of different brain areas as well as between the CSD and muscular activity. We asked four subjects to tap their fingers in synchrony with a rhythmic tone, and to continue tapping at the same rate after the tone was switched off. The phase synchronization behavior of brain areas relevant for movement coordination, inner voice, and time estimation changes drastically when the transition to internal pacing occurs, while their averaged amplitudes remain unchanged. Information of this kind cannot be derived with standard neuroimaging techniques like functional magnetic resonance imaging or positron emission tomography.

  18. Remote synchronization in star networks.

    PubMed

    Bergner, A; Frasca, M; Sciuto, G; Buscarino, A; Ngamga, E J; Fortuna, L; Kurths, J

    2012-02-01

    We study phase synchronization in a network motif with a starlike structure in which the central node's (the hub's) frequency is strongly detuned against the other peripheral nodes. We find numerically and experimentally a regime of remote synchronization (RS), where the peripheral nodes form a phase synchronized cluster, while the hub remains free with its own dynamics and serves just as a transmitter for the other nodes. We explain the mechanism for this RS by the existence of a free amplitude and also show that systems with a fixed or constant amplitude, such as the classic Kuramoto phase oscillator, are not able to generate this phenomenon. Further, we derive an analytic expression which supports our explanation of the mechanism.

  19. Cluster synchronization in oscillatory networks

    NASA Astrophysics Data System (ADS)

    Belykh, Vladimir N.; Osipov, Grigory V.; Petrov, Valentin S.; Suykens, Johan A. K.; Vandewalle, Joos

    2008-09-01

    Synchronous behavior in networks of coupled oscillators is a commonly observed phenomenon attracting a growing interest in physics, biology, communication, and other fields of science and technology. Besides global synchronization, one can also observe splitting of the full network into several clusters of mutually synchronized oscillators. In this paper, we study the conditions for such cluster partitioning into ensembles for the case of identical chaotic systems. We focus mainly on the existence and the stability of unique unconditional clusters whose rise does not depend on the origin of the other clusters. Also, conditional clusters in arrays of globally nonsymmetrically coupled identical chaotic oscillators are investigated. The design problem of organizing clusters into a given configuration is discussed.

  20. Chaotic synchronization system and electrocardiogram

    NASA Astrophysics Data System (ADS)

    Pei, Liuqing; Dai, Xinlai; Li, Baodong

    1997-01-01

    A mathematical model of chaotic synchronization of the heart-blood flow coupling dynamics is proposed, which is based on a seven dimension nonlinear dynamical system constructed by three subsystems of the sinoatrial node natural pacemaker, the cardiac relaxation oscillator and the dynamics of blood-fluid in heart chambers. The existence and robustness of the self-chaotic synchronization of the system are demonstrated by both methods of theoretical analysis and numerical simulation. The spectrum of Lyapunov exponent, the Lyapunov dimension and the Kolmogorov entropy are estimated when the system was undergoing the state of self-chaotic synchronization evolution. The time waveform of the dynamical variable, which represents the membrane potential of the cardiac integrative cell, shows a shape which is similar to that of the normal electrocardiogram (ECG) of human, thus implies that the model possesses physiological significance functionally.

  1. State observer for synchronous motors

    DOEpatents

    Lang, Jeffrey H.

    1994-03-22

    A state observer driven by measurements of phase voltages and currents for estimating the angular orientation of a rotor of a synchronous motor such as a variable reluctance motor (VRM). Phase voltages and currents are detected and serve as inputs to a state observer. The state observer includes a mathematical model of the electromechanical operation of the synchronous motor. The characteristics of the state observer are selected so that the observer estimates converge to the actual rotor angular orientation and velocity, winding phase flux linkages or currents.

  2. Optimized multiparty quantum clock synchronization

    SciTech Connect

    Ben-Av, Radel; Exman, Iaakov

    2011-07-15

    A multiparty protocol for distributed quantum clock synchronization has been claimed to provide universal limits on the clock accuracy, viz., that accuracy monotonically decreases with the number n of party members. But this is only true for synchronization when one limits oneself to W states. This work shows that the usage of Z (Symmetric Dicke) states, a generalization of W states, results in improved accuracy, having a maximum when Left-Floor n/2 Right-Floor of its members have their qubits with a |1> eigenstate.

  3. Online Synchronous Communication in the Second-Language Classroom

    ERIC Educational Resources Information Center

    Murphy, Elizabeth

    2009-01-01

    The study reported on in this paper used a framework of benefits, challenges and solutions to categorize data from a design experiment using synchronous online communication for learning French as a second language (FSL). Participants were 92 Grade 6, FSL students and four teachers from urban and rural areas of Newfoundland, Canada. Data…

  4. Perceptions and Expectations of Online Graduate Students Regarding Synchronous Events

    ERIC Educational Resources Information Center

    Bailie, Jeffrey L.

    2015-01-01

    The purpose of this study was to gain an increased understanding of the perceptions and expectations of a group of experienced online student participants regarding synchronous events in the higher learning setting. Areas of inquiry posed to online student panelists included whether they expected live events to be included in their classes, and…

  5. Synchronization control for ultrafast laser parallel microdrilling system

    NASA Astrophysics Data System (ADS)

    Zhai, Zhongsheng; Kuang, Zheng; Ouyang, Jinlei; Liu, Dun; Perrie, Walter; Edwardson, Stuart P.; Dearden, Geoff

    2014-11-01

    Ultrafast lasers, emitting ultra-short pulses of light, generally of the order of femtoseconds to ten picoseconds, are widely used in micro-processing with the advantage of very little thermal damage. Parallel micro-processing is seen significant developments in laser fabrication, thanking to the spatial light modulator (SLM) which can concert single beam to multiple beams through computer generate holograms (CGHs). However, without synchronization control, on the conditions of changing different holograms or processing on large area beyond scanning galvo's ability, the fabrication will be interrupted constantly for changing holograms and moving the stages. Therefore, synchronization control is very important to improve the convenience and application of parallel micro-processing. A synchronization control method, carried out through two application software: SAMLight (or WaveRunner) and Labview, is presented in this paper. SAMLight is used to control the laser and the scanning galvo to implement microprocessing, and the developed program with Labview is used to control the SLM and motion stages. The synchronization signals, transmitted between the two software, are utilized by a National Instruments (NI) device USB-6008. Using optimal control methods, the synchronized system can easily and automatically accomplish complicated fabrications with minimum time. A multi-drilling application is provided to verify the affectivity of the synchronized control method. It uses multiple annular beams, generated by superimposing multi-beam CGH onto a diffractive axicon CGH, to drill multiple holes at one time, and it can automatically finish different patterns based on synchronization control. This drilling way is an optical trepanning and it avoids huge laser energy waste with attenuation. The multi-beam CGHs, generated by the Grating and Lens algorithm, are different for different patterns. The processing is over 200 times faster than traditional mechanical trepanning

  6. Leader emergence through interpersonal neural synchronization

    PubMed Central

    Jiang, Jing; Chen, Chuansheng; Dai, Bohan; Shi, Guang; Ding, Guosheng; Liu, Li; Lu, Chunming

    2015-01-01

    The neural mechanism of leader emergence is not well understood. This study investigated (i) whether interpersonal neural synchronization (INS) plays an important role in leader emergence, and (ii) whether INS and leader emergence are associated with the frequency or the quality of communications. Eleven three-member groups were asked to perform a leaderless group discussion (LGD) task, and their brain activities were recorded via functional near infrared spectroscopy (fNIRS)-based hyperscanning. Video recordings of the discussions were coded for leadership and communication. Results showed that the INS for the leader–follower (LF) pairs was higher than that for the follower–follower (FF) pairs in the left temporo-parietal junction (TPJ), an area important for social mentalizing. Although communication frequency was higher for the LF pairs than for the FF pairs, the frequency of leader-initiated and follower-initiated communication did not differ significantly. Moreover, INS for the LF pairs was significantly higher during leader-initiated communication than during follower-initiated communications. In addition, INS for the LF pairs during leader-initiated communication was significantly correlated with the leaders’ communication skills and competence, but not their communication frequency. Finally, leadership could be successfully predicted based on INS as well as communication frequency early during the LGD (before half a minute into the task). In sum, this study found that leader emergence was characterized by high-level neural synchronization between the leader and followers and that the quality, rather than the frequency, of communications was associated with synchronization. These results suggest that leaders emerge because they are able to say the right things at the right time. PMID:25831535

  7. Leader emergence through interpersonal neural synchronization.

    PubMed

    Jiang, Jing; Chen, Chuansheng; Dai, Bohan; Shi, Guang; Ding, Guosheng; Liu, Li; Lu, Chunming

    2015-04-01

    The neural mechanism of leader emergence is not well understood. This study investigated (i) whether interpersonal neural synchronization (INS) plays an important role in leader emergence, and (ii) whether INS and leader emergence are associated with the frequency or the quality of communications. Eleven three-member groups were asked to perform a leaderless group discussion (LGD) task, and their brain activities were recorded via functional near infrared spectroscopy (fNIRS)-based hyperscanning. Video recordings of the discussions were coded for leadership and communication. Results showed that the INS for the leader-follower (LF) pairs was higher than that for the follower-follower (FF) pairs in the left temporo-parietal junction (TPJ), an area important for social mentalizing. Although communication frequency was higher for the LF pairs than for the FF pairs, the frequency of leader-initiated and follower-initiated communication did not differ significantly. Moreover, INS for the LF pairs was significantly higher during leader-initiated communication than during follower-initiated communications. In addition, INS for the LF pairs during leader-initiated communication was significantly correlated with the leaders' communication skills and competence, but not their communication frequency. Finally, leadership could be successfully predicted based on INS as well as communication frequency early during the LGD (before half a minute into the task). In sum, this study found that leader emergence was characterized by high-level neural synchronization between the leader and followers and that the quality, rather than the frequency, of communications was associated with synchronization. These results suggest that leaders emerge because they are able to say the right things at the right time.

  8. Fermi Timing and Synchronization System

    SciTech Connect

    Wilcox, R.; Staples, J.; Doolittle, L.; Byrd, J.; Ratti, A.; Kaertner, F.X.; Kim, J.; Chen, J.; Ilday, F.O.; Ludwig, F.; Winter, A.; Ferianis, M.; Danailov, M.; D'Auria, G.

    2006-07-19

    The Fermi FEL will depend critically on precise timing of its RF, laser and diagnostic subsystems. The timing subsystem to coordinate these functions will need to reliably maintain sub-100fs synchronicity between distant points up to 300m apart in the Fermi facility. The technology to do this is not commercially available, and has not been experimentally demonstrated in a working facility. Therefore, new technology must be developed to meet these needs. Two approaches have been researched by different groups working with the Fermi staff. At MIT, a pulse transmission scheme has been developed for synchronization of RF and laser devices. And at LBL, a CW transmission scheme has been developed for RF and laser synchronization. These respective schemes have advantages and disadvantages that will become better understood in coming years. This document presents the work done by both teams, and suggests a possible system design which integrates them both. The integrated system design provides an example of how choices can be made between the different approaches without significantly changing the basic infrastructure of the system. Overall system issues common to any synchronization scheme are also discussed.

  9. Synchronization by elastic neuronal latencies

    NASA Astrophysics Data System (ADS)

    Vardi, Roni; Timor, Reut; Marom, Shimon; Abeles, Moshe; Kanter, Ido

    2013-01-01

    Psychological and physiological considerations entail that formation and functionality of neuronal cell assemblies depend upon synchronized repeated activation such as zero-lag synchronization. Several mechanisms for the emergence of this phenomenon have been suggested, including the global network quantity, the greatest common divisor of neuronal circuit delay loops. However, they require strict biological prerequisites such as precisely matched delays and connectivity, and synchronization is represented as a stationary mode of activity instead of a transient phenomenon. Here we show that the unavoidable increase in neuronal response latency to ongoing stimulation serves as a nonuniform gradual stretching of neuronal circuit delay loops. This apparent nuisance is revealed to be an essential mechanism in various types of neuronal time controllers, where synchronization emerges as a transient phenomenon and without predefined precisely matched synaptic delays. These findings are described in an experimental procedure where conditioned stimulations were enforced on a circuit of neurons embedded within a large-scale network of cortical cells in vitro, and are corroborated and extended by simulations of circuits composed of Hodgkin-Huxley neurons with time-dependent latencies. These findings announce a cortical time scale for time controllers based on tens of microseconds stretching of neuronal circuit delay loops per spike. They call for a reexamination of the role of the temporal periodic mode in brain functionality using advanced in vitro and in vivo experiments.

  10. Tweaking synchronization by connectivity modifications

    NASA Astrophysics Data System (ADS)

    Schultz, Paul; Peron, Thomas; Eroglu, Deniz; Stemler, Thomas; Ramírez Ávila, Gonzalo Marcelo; Rodrigues, Francisco A.; Kurths, Jürgen

    2016-06-01

    Natural and man-made networks often possess locally treelike substructures. Taking such tree networks as our starting point, we show how the addition of links changes the synchronization properties of the network. We focus on two different methods of link addition. The first method adds single links that create cycles of a well-defined length. Following a topological approach, we introduce cycles of varying length and analyze how this feature, as well as the position in the network, alters the synchronous behavior. We show that in particular short cycles can lead to a maximum change of the Laplacian's eigenvalue spectrum, dictating the synchronization properties of such networks. The second method connects a certain proportion of the initially unconnected nodes. We simulate dynamical systems on these network topologies, with the nodes' local dynamics being either discrete or continuous. Here our main result is that a certain number of additional links, with the relative position in the network being crucial, can be beneficial to ensure stable synchronization.

  11. Tweaking synchronization by connectivity modifications.

    PubMed

    Schultz, Paul; Peron, Thomas; Eroglu, Deniz; Stemler, Thomas; Ramírez Ávila, Gonzalo Marcelo; Rodrigues, Francisco A; Kurths, Jürgen

    2016-06-01

    Natural and man-made networks often possess locally treelike substructures. Taking such tree networks as our starting point, we show how the addition of links changes the synchronization properties of the network. We focus on two different methods of link addition. The first method adds single links that create cycles of a well-defined length. Following a topological approach, we introduce cycles of varying length and analyze how this feature, as well as the position in the network, alters the synchronous behavior. We show that in particular short cycles can lead to a maximum change of the Laplacian's eigenvalue spectrum, dictating the synchronization properties of such networks. The second method connects a certain proportion of the initially unconnected nodes. We simulate dynamical systems on these network topologies, with the nodes' local dynamics being either discrete or continuous. Here our main result is that a certain number of additional links, with the relative position in the network being crucial, can be beneficial to ensure stable synchronization.

  12. Tweaking synchronization by connectivity modifications.

    PubMed

    Schultz, Paul; Peron, Thomas; Eroglu, Deniz; Stemler, Thomas; Ramírez Ávila, Gonzalo Marcelo; Rodrigues, Francisco A; Kurths, Jürgen

    2016-06-01

    Natural and man-made networks often possess locally treelike substructures. Taking such tree networks as our starting point, we show how the addition of links changes the synchronization properties of the network. We focus on two different methods of link addition. The first method adds single links that create cycles of a well-defined length. Following a topological approach, we introduce cycles of varying length and analyze how this feature, as well as the position in the network, alters the synchronous behavior. We show that in particular short cycles can lead to a maximum change of the Laplacian's eigenvalue spectrum, dictating the synchronization properties of such networks. The second method connects a certain proportion of the initially unconnected nodes. We simulate dynamical systems on these network topologies, with the nodes' local dynamics being either discrete or continuous. Here our main result is that a certain number of additional links, with the relative position in the network being crucial, can be beneficial to ensure stable synchronization. PMID:27415259

  13. PCM synchronization by word stuffing

    NASA Technical Reports Server (NTRS)

    Butman, S.

    1969-01-01

    When a transmitted word, consisting of a number of pulses, is detected and removed from the data stream, the space left by the removal is eliminated by a memory buffer. This eliminates the need for a clock synchronizer thereby removing instability problems.

  14. Sports Medicine Meets Synchronized Swimming.

    ERIC Educational Resources Information Center

    Wenz, Betty J.; And Others

    This collection of articles contains information about synchronized swimming. Topics covered include general physiology and cardiovascular conditioning, flexibility exercises, body composition, strength training, nutrition, coach-athlete relationships, coping with competition stress and performance anxiety, and eye care. Chapters are included on…

  15. Speed control for synchronous motors

    NASA Technical Reports Server (NTRS)

    Packard, H.; Schott, J.

    1981-01-01

    Feedback circuit controls fluctuations in speed of synchronous ac motor. Voltage proportional to phase angle is developed by phase detector, rectified, amplified, compared to threshold, and reapplied positively or negatively to motor excitation circuit. Speed control reduces wow and flutter of audio turntables and tape recorders, and enhances hunting in gyroscope motors.

  16. Slow dynamics in features of synchronized neural network responses

    PubMed Central

    Haroush, Netta; Marom, Shimon

    2015-01-01

    In this report trial-to-trial variations in the synchronized responses of neural networks are explored over time scales of minutes, in ex-vivo large scale cortical networks. We show that sub-second measures of the individual synchronous response, namely—its latency and decay duration, are related to minutes-scale network response dynamics. Network responsiveness is reflected as residency in, or shifting amongst, areas of the latency-decay plane. The different sensitivities of latency and decay durations to synaptic blockers imply that these two measures reflect aspects of inhibitory and excitatory activities. Taken together, the data suggest that trial-to-trial variations in the synchronized responses of neural networks might be related to effective excitation-inhibition ratio being a dynamic variable over time scales of minutes. PMID:25926787

  17. Model mission study for laser synchronization of clocks

    NASA Astrophysics Data System (ADS)

    Pianca, G.; Pulitina, P.

    1983-06-01

    The effect of satellite orbit and stabilization on the Laser Synchronization for Synchronous Orbit (LASSO) Sirio 2 mission are discussed, and retroreflector panel dimensions are proposed. Altitude between 5000 and 10,000 km is suggested. For orbits between 5000 and 7000 km, a 50 to 60 deg tilt is recommended, for higher altitudes, 90 deg. Ascension node longitude has no effect if phasing period exceeds 5 to 9 days. Apogee should be above the Northern Hemisphere. An excentric orbit could be used to pass quickly over areas with few ground stations. Three axis stabilization is advocated. Errors introduced by orbit parameters are less than those calculated for Sirio 2 in geostationary orbit. The Ariane transfer orbit could be advantageous, but Sun synchronous orbits do not meet experiment requirements.

  18. Rapid Synchronization of Ultra-Wideband Transmitted-Reference Receivers

    SciTech Connect

    Nekoogar, F; Dowla, F; Spiridon, A

    2004-05-21

    Time synchronization is a major challenge and a rich area of study in ultra-wideband (UWB) communication systems. Transmitted-reference (TR) receivers avoid the stringent synchronization requirements that exist in conventional pulse detection schemes. However, the performance of such receivers is highly sensitive to precise timing acquisition and tracking of integration window that defines the limits of the finite integrator prior to final decision block. In this paper we propose a novel rapid synchronization technique that allows us to extract the timing information very accurately in UWB-TR receivers in the presence of a variety of channel noise and interference. The principles of the method are presented and the BER performance of a synchronized UWB-TR receiver is investigated in the presence of a range of values for timing jitter by computer simulations. Our studies show that the proposed synchronization technique greatly improves the performance of UWB-TR receivers in the presence of jitter and AWGN with modest increase in complexity.

  19. Synchronized dynamics of cortical neurons with time-delay feedback

    PubMed Central

    Landsman, Alexandra S; Schwartz, Ira B

    2007-01-01

    The dynamics of three mutually coupled cortical neurons with time delays in the coupling are explored numerically and analytically. The neurons are coupled in a line, with the middle neuron sending a somewhat stronger projection to the outer neurons than the feedback it receives, to model for instance the relay of a signal from primary to higher cortical areas. For a given coupling architecture, the delays introduce correlations in the time series at the time-scale of the delay. It was found that the middle neuron leads the outer ones by the delay time, while the outer neurons are synchronized with zero lag times. Synchronization is found to be highly dependent on the synaptic time constant, with faster synapses increasing both the degree of synchronization and the firing rate. Analysis shows that pre-synaptic input during the inter-spike interval stabilizes the synchronous state, even for arbitrarily weak coupling, and independent of the initial phase. The finding may be of significance to synchronization of large groups of cells in the cortex that are spatially distanced from each other. PMID:17908335

  20. Non-conventional synchronization of weakly coupled active oscillators

    NASA Astrophysics Data System (ADS)

    Manevitch, L. I.; Kovaleva, M. A.; Pilipchuk, V. N.

    2013-03-01

    We present a new type of self-sustained vibrations in the fundamental physical model covering a broad area of applications from wave generation in radiophysics and nonlinear optics to the heart muscle contraction and eyesight disorder in biophysics. Such a diversity of applications is due to the universal physical phenomenon of synchronization. Previous studies of this phenomenon, originating from Huygens famous observation, are based mainly on the model of two weakly coupled Van der Pol oscillators and usually deal with their synchronization in the regimes close to nonlinear normal modes (NNMs). In this work, we show for the first time that, in the important case of threshold excitation, an alternative synchronization mechanism can develop when the conventional synchronization becomes impossible. We identify this mechanism as an appearance of dynamic attractor with the complete periodic energy exchange between the oscillators, which is the dissipative analogue of highly intensive beats in a conservative system. This type of motion is therefore opposite to the NNM-type synchronization with no energy exchange by definition. The analytical description of these vibrations employs the concept of Limiting Phase Trajectories (LPTs) introduced by one of the authors earlier for conservative systems. Finally, within the LPT approach, we describe the transition from the complete energy exchange between the oscillators to the energy localization mostly on one of the two oscillators. The localized mode is an attractor in the range of model parameters wherein the LPT as well as the in-phase and out-of-phase NNMs become unstable.

  1. Stochastic Resonance Modulates Neural Synchronization within and between Cortical Sources

    PubMed Central

    Ward, Lawrence M.; MacLean, Shannon E.; Kirschner, Aaron

    2010-01-01

    Neural synchronization is a mechanism whereby functionally specific brain regions establish transient networks for perception, cognition, and action. Direct addition of weak noise (fast random fluctuations) to various neural systems enhances synchronization through the mechanism of stochastic resonance (SR). Moreover, SR also occurs in human perception, cognition, and action. Perception, cognition, and action are closely correlated with, and may depend upon, synchronized oscillations within specialized brain networks. We tested the hypothesis that SR-mediated neural synchronization occurs within and between functionally relevant brain areas and thus could be responsible for behavioral SR. We measured the 40-Hz transient response of the human auditory cortex to brief pure tones. This response arises when the ongoing, random-phase, 40-Hz activity of a group of tuned neurons in the auditory cortex becomes synchronized in response to the onset of an above-threshold sound at its “preferred” frequency. We presented a stream of near-threshold standard sounds in various levels of added broadband noise and measured subjects' 40-Hz response to the standards in a deviant-detection paradigm using high-density EEG. We used independent component analysis and dipole fitting to locate neural sources of the 40-Hz response in bilateral auditory cortex, left posterior cingulate cortex and left superior frontal gyrus. We found that added noise enhanced the 40-Hz response in all these areas. Moreover, added noise also increased the synchronization between these regions in alpha and gamma frequency bands both during and after the 40-Hz response. Our results demonstrate neural SR in several functionally specific brain regions, including areas not traditionally thought to contribute to the auditory 40-Hz transient response. In addition, we demonstrated SR in the synchronization between these brain regions. Thus, both intra- and inter-regional synchronization of neural activity are

  2. Sensorimotor Synchronization across the Life Span

    ERIC Educational Resources Information Center

    Drewing, Knut; Aschersleben, Gisa; Li, Shu-Chen

    2006-01-01

    The present study investigates the contribution of general processing resources as well as other more specific factors to the life-span development of sensorimotor synchronization and its component processes. Within a synchronization tapping paradigm, a group of 286 participants, 6 to 88 years of age, were asked to synchronize finger taps with…

  3. High speed synchronizer card utilizing VLSI technology

    NASA Technical Reports Server (NTRS)

    Speciale, Nicholas; Wunderlich, Kristin

    1988-01-01

    A generic synchronizer card capable of providing standard NASA communication block telemetry frame synchronization and quality control was fabricated using VLSI technology. Four VLSI chip sets are utilized to shrink all the required functions into a single synchronizer card. The application of VLSI technology to telemetry systems resulted in an increase in performance and a decrease in cost and size.

  4. Delay synchronization of temporal Boolean networks

    NASA Astrophysics Data System (ADS)

    Wei, Qiang; Xie, Cheng-jun; Liang, Yi; Niu, Yu-jun; Lin, Da

    2016-01-01

    This paper investigates the delay synchronization between two temporal Boolean networks base on semi-tensor product method, which improve complete synchronization. Necessary and sufficient conditions for delay synchronization are drawn base on algebraic expression of temporal Boolean networks. A example is presented to show the effectiveness of theoretical analysis.

  5. A code-aided synchronization IP core for iterative channel decoders

    NASA Astrophysics Data System (ADS)

    Ali, I.; Wasenmüller, U.; Wehn, N.

    2013-07-01

    Synchronization and channel decoding are integral parts of each receiver in wireless communication systems. The task of synchronization is the estimation of the general unknown parameters of phase, frequency and timing offset as well as correction of the received symbol sequence according to the estimated parameters. The synchronized symbol sequence serves as input for the channel decoder. Advanced channel decoders are able to operate at very low signal-to-noise ratios (SNR). For small values of SNR, the parameter estimation suffers from increased noise and impacts the communication performance. To improve the synchronization quality and thus decoder performance, the synchronizers are integrated into the iterative decoding structure. Intermediate results of the channel decoder after each iteration are used to improve the synchronization. This approach is referred to as code-aided (CA) synchronization or turbo synchronization. A number of CA synchronization algorithms have already been published but there is no publication so far on a generic hardware implementation of the CA synchronization. Therefore we present an algorithm which can be implemented efficiently in hardware and demonstrate its communication performance. Furthermore we present a high throughput, flexible, area and power efficient code-aided synchronization IP core for various satellite communication standards. The core is synthesized for 65 nm low power CMOS technology. After placement and routing the core has an area of 0.194 mm2, throughput of 207 Msymbols/s and consumes 41.4 mW at 300 MHz clock frequency. The architecture is designed in such a way that it does not affect throughput of the system.

  6. Time synchronization within the ALMA software infrastructure

    NASA Astrophysics Data System (ADS)

    Amestica, Rodrigo; Gustafsson, Birger; Marson, Ralph

    2006-06-01

    The Atacama Large Millimeter Array (ALMA) is an international telescope project currently under construction in the Atacama desert of Chile. It has a provision for 64 antennas of 12m each, arranged over a geographical area of a few square kilometers. Antenna control and correlated data acquisition is implemented by means of a distributed set of realtime Linux computers, each one hosting ALMA Common Software (ACS) based applications and connected to a common time base distributed by the ALMA Master Clock as a 48ms electronic pulse signal (time event). All these computers require to be time synchronized for achieving coordination between commands and data acquisition. For this purpose, the ArrayTime system presented here implements a real-time software facility that makes possible to unambiguously time-stamp each time event arriving at each computer node (distributed clock), relative to an external time source of 1Hz and in phase to the TAI second. Array time is the absolute time of each time event, and synchronization of distributed clocks is resolved by communicating the array time, via ACS services, for the next time event interrupt at least once during the operational cycle of the distributed clock. Thereafter, it is possible to schedule application tasks within a latency range of 100us by extrapolating from the last interrupt and based on the current CPU Time Stamp Counter (TSC) and the estimated frequency of the CPU clock. In the following, we present a description of the elements that constitute the ArrayTime facility.

  7. Managing Documents in the Wider Area: Intelligent Document Management.

    ERIC Educational Resources Information Center

    Bittleston, Richard

    1995-01-01

    Discusses techniques for managing documents in wide area networks, reviews technique limitations, and offers recommendations to database designers. Presented techniques include: increasing bandwidth, reducing data traffic, synchronizing documentation, partial synchronization, audit trials, navigation, and distribution control and security. Two…

  8. Targeting engineering synchronization in chaotic systems

    NASA Astrophysics Data System (ADS)

    Bhowmick, Sourav K.; Ghosh, Dibakar

    2016-07-01

    A method of targeting engineering synchronization states in two identical and mismatch chaotic systems is explained in detail. The method is proposed using linear feedback controller coupling for engineering synchronization such as mixed synchronization, linear and nonlinear generalized synchronization and targeting fixed point. The general form of coupling design to target any desire synchronization state under unidirectional coupling with the help of Lyapunov function stability theory is derived analytically. A scaling factor is introduced in the coupling definition to smooth control without any loss of synchrony. Numerical results are done on two mismatch Lorenz systems and two identical Sprott oscillators.

  9. Experience dependent plasticity alters cortical synchronization

    PubMed Central

    Kilgard, M.P.; Vazquez, J.L.; Engineer, N.D.; Pandya, P.K.

    2008-01-01

    Theories of temporal coding by cortical neurons are supported by observations that individual neurons can respond to sensory stimulation with millisecond precision and that activity in large populations is often highly correlated. Synchronization is highest between neurons with overlapping receptive fields and modulated by both sensory stimulation and behavioral state. It is not yet clear whether cortical synchronization is an epiphenomenon or a critical component of efficient information transmission. Experimental manipulations that generate receptive field plasticity can be used to test the relationship between synchronization and receptive fields. Here we demonstrate that increasing receptive field size in primary auditory cortex by repeatedly pairing a train of tones with nucleus basalis (NB) stimulation increases synchronization, and decreasing receptive field size by pairing different tone frequencies with NB stimulation decreases synchronization. These observations seem to support the conclusion that neural synchronization is simply an artifact caused by common inputs. However, pairing tone trains of different carrier frequencies with NB stimulation increases receptive field size without increasing synchronization, and environmental enrichment increases synchronization without increasing receptive field size. The observation that receptive fields and synchronization can be manipulated independently suggests that common inputs are only one of many factors shaping the strength and temporal precision of cortical synchronization and supports the hypothesis that precise neural synchronization contributes to sensory information processing. PMID:17317055

  10. Analysis of remote synchronization in complex networks.

    PubMed

    Gambuzza, Lucia Valentina; Cardillo, Alessio; Fiasconaro, Alessandro; Fortuna, Luigi; Gómez-Gardeñes, Jesus; Frasca, Mattia

    2013-12-01

    A novel regime of synchronization, called remote synchronization, where the peripheral nodes form a phase synchronized cluster not including the hub, was recently observed in star motifs [Bergner et al., Phys. Rev. E 85, 026208 (2012)]. We show the existence of a more general dynamical state of remote synchronization in arbitrary networks of coupled oscillators. This state is characterized by the synchronization of pairs of nodes that are not directly connected via a physical link or any sequence of synchronized nodes. This phenomenon is almost negligible in networks of phase oscillators as its underlying mechanism is the modulation of the amplitude of those intermediary nodes between the remotely synchronized units. Our findings thus show the ubiquity and robustness of these states and bridge the gap from their recent observation in simple toy graphs to complex networks. PMID:24387542

  11. Synchronous clock stopper for microprocessor

    NASA Technical Reports Server (NTRS)

    Kitchin, David A. (Inventor)

    1985-01-01

    A synchronous clock stopper circuit for inhibiting clock pulses to a microprocessor in response to a stop request signal, and for reinstating the clock pulses in response to a start request signal thereby to conserve power consumption of the microprocessor when used in an environment of limited power. The stopping and starting of the microprocessor is synchronized, by a phase tracker, with the occurrences of a predetermined phase in the instruction cycle of the microprocessor in which the I/O data and address lines of the microprocessor are of high impedance so that a shared memory connected to the I/O lines may be accessed by other peripheral devices. The starting and stopping occur when the microprocessor initiates and completes, respectively, an instruction, as well as before and after transferring data with a memory. Also, the phase tracker transmits phase information signals over a bus to other peripheral devices which signals identify the current operational phase of the microprocessor.

  12. Multiobjective synchronization of coupled systems

    NASA Astrophysics Data System (ADS)

    Tang, Yang; Wang, Zidong; Wong, W. K.; Kurths, Jürgen; Fang, Jian-an

    2011-06-01

    In this paper, multiobjective synchronization of chaotic systems is investigated by especially simultaneously minimizing optimization of control cost and convergence speed. The coupling form and coupling strength are optimized by an improved multiobjective evolutionary approach that includes a hybrid chromosome representation. The hybrid encoding scheme combines binary representation with real number representation. The constraints on the coupling form are also considered by converting the multiobjective synchronization into a multiobjective constraint problem. In addition, the performances of the adaptive learning method and non-dominated sorting genetic algorithm-II as well as the effectiveness and contributions of the proposed approach are analyzed and validated through the Rössler system in a chaotic or hyperchaotic regime and delayed chaotic neural networks.

  13. Parallel integrated frame synchronizer chip

    NASA Technical Reports Server (NTRS)

    Ghuman, Parminder Singh (Inventor); Solomon, Jeffrey Michael (Inventor); Bennett, Toby Dennis (Inventor)

    2000-01-01

    A parallel integrated frame synchronizer which implements a sequential pipeline process wherein serial data in the form of telemetry data or weather satellite data enters the synchronizer by means of a front-end subsystem and passes to a parallel correlator subsystem or a weather satellite data processing subsystem. When in a CCSDS mode, data from the parallel correlator subsystem passes through a window subsystem, then to a data alignment subsystem and then to a bit transition density (BTD)/cyclical redundancy check (CRC) decoding subsystem. Data from the BTD/CRC decoding subsystem or data from the weather satellite data processing subsystem is then fed to an output subsystem where it is output from a data output port.

  14. Synchronous network of distant telescopes

    NASA Astrophysics Data System (ADS)

    Zhilyaev, B.; Svyatogorov, O.; Verlyuk, I.; Andreev, M.; Sergeev, A.; Lovkaya, M.; Antov, A.; Konstantinova-Antova, R.; Bogdanovski, R.; Avgoloupis, S.; Seiradakis, J.; Contadakis, M. E.

    The Synchronous Network of distant Telescopes (SNT) represents an innovative approach in observational astrophysics. The authors present an unique existing realization of the SNT-conception. It was founded within the international collaboration between astronomical observatories of Ukraine, Russia, Bulgaria and Greece. All the telescopes of the Network are equipped with standardized photometric systems (based on photo-multipliers). The unified timing systems (based on GPS-receivers) synchronize all the apertures to UTC with an accuracy of 1 microsecond and better. The essential parts of the SNT are the original software for operating and data processing. The described international Network successfully works for more than 10 years. The obtained unique observational data made it possible to discover new fine-scale features and flare-triggered phenomena in flaring red dwarfs, as well as the recently found high-frequency variability in some chromospherically active stars.

  15. Producing Newborn Synchronous Mammalian Cells

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Helmstetter, Charles E.; Thornton, Maureen

    2008-01-01

    A method and bioreactor for the continuous production of synchronous (same age) population of mammalian cells have been invented. The invention involves the attachment and growth of cells on an adhesive-coated porous membrane immersed in a perfused liquid culture medium in a microgravity analog bioreactor. When cells attach to the surface divide, newborn cells are released into the flowing culture medium. The released cells, consisting of a uniform population of synchronous cells are then collected from the effluent culture medium. This invention could be of interest to researchers investigating the effects of the geneotoxic effects of the space environment (microgravity, radiation, chemicals, gases) and to pharmaceutical and biotechnology companies involved in research on aging and cancer, and in new drug development and testing.

  16. Conveyor-belt clock synchronization

    SciTech Connect

    Giovannetti, Vittorio; Maccone, Lorenzo; Shapiro, Jeffrey H.; Wong, Franco N.C.; Lloyd, Seth

    2004-10-01

    A protocol for synchronizing distant clocks is proposed that does not rely on the arrival times of the signals which are exchanged, and an optical implementation based on coherent-state pulses is described. This protocol is not limited by any dispersion that may be present in the propagation medium through which the light signals are exchanged. Possible improvements deriving from the use of quantum-mechanical effects are also addressed.

  17. The LASSO experiment. [clock synchronization

    NASA Technical Reports Server (NTRS)

    Serene, B.

    1979-01-01

    An international coordinated experimental assessment of a system which promises to provide a synchronization of clocks bound to time and frequency standard laboratories, with an accuracy of one nanosecond using existing or near ground-based laser stations via a geostationary satellite (SIRIO-2) is detailed. The system performance and the technical details concerning the on-board equiment, the ground segment, and the operational configuration are discussed. Finally, the future prospects of the LASSO experiment and possible implementations are examined together.

  18. Digital-data receiver synchronization

    DOEpatents

    Smith, Stephen F.; Turner, Gary W.

    2005-08-02

    Digital-data receiver synchronization is provided with composite phase-frequency detectors, mutually cross-connected comparison feedback or both to provide robust reception of digital data signals. A single master clock can be used to provide frequency signals. Advantages can include fast lock-up time in moderately to severely noisy conditions, greater tolerance to noise and jitter when locked, and improved tolerance to clock asymmetries.

  19. Network synchronization in hippocampal neurons.

    PubMed

    Penn, Yaron; Segal, Menahem; Moses, Elisha

    2016-03-22

    Oscillatory activity is widespread in dynamic neuronal networks. The main paradigm for the origin of periodicity consists of specialized pacemaking elements that synchronize and drive the rest of the network; however, other models exist. Here, we studied the spontaneous emergence of synchronized periodic bursting in a network of cultured dissociated neurons from rat hippocampus and cortex. Surprisingly, about 60% of all active neurons were self-sustained oscillators when disconnected, each with its own natural frequency. The individual neuron's tendency to oscillate and the corresponding oscillation frequency are controlled by its excitability. The single neuron intrinsic oscillations were blocked by riluzole, and are thus dependent on persistent sodium leak currents. Upon a gradual retrieval of connectivity, the synchrony evolves: Loose synchrony appears already at weak connectivity, with the oscillators converging to one common oscillation frequency, yet shifted in phase across the population. Further strengthening of the connectivity causes a reduction in the mean phase shifts until zero-lag is achieved, manifested by synchronous periodic network bursts. Interestingly, the frequency of network bursting matches the average of the intrinsic frequencies. Overall, the network behaves like other universal systems, where order emerges spontaneously by entrainment of independent rhythmic units. Although simplified with respect to circuitry in the brain, our results attribute a basic functional role for intrinsic single neuron excitability mechanisms in driving the network's activity and dynamics, contributing to our understanding of developing neural circuits.

  20. Network synchronization in hippocampal neurons

    PubMed Central

    Penn, Yaron; Segal, Menahem; Moses, Elisha

    2016-01-01

    Oscillatory activity is widespread in dynamic neuronal networks. The main paradigm for the origin of periodicity consists of specialized pacemaking elements that synchronize and drive the rest of the network; however, other models exist. Here, we studied the spontaneous emergence of synchronized periodic bursting in a network of cultured dissociated neurons from rat hippocampus and cortex. Surprisingly, about 60% of all active neurons were self-sustained oscillators when disconnected, each with its own natural frequency. The individual neuron’s tendency to oscillate and the corresponding oscillation frequency are controlled by its excitability. The single neuron intrinsic oscillations were blocked by riluzole, and are thus dependent on persistent sodium leak currents. Upon a gradual retrieval of connectivity, the synchrony evolves: Loose synchrony appears already at weak connectivity, with the oscillators converging to one common oscillation frequency, yet shifted in phase across the population. Further strengthening of the connectivity causes a reduction in the mean phase shifts until zero-lag is achieved, manifested by synchronous periodic network bursts. Interestingly, the frequency of network bursting matches the average of the intrinsic frequencies. Overall, the network behaves like other universal systems, where order emerges spontaneously by entrainment of independent rhythmic units. Although simplified with respect to circuitry in the brain, our results attribute a basic functional role for intrinsic single neuron excitability mechanisms in driving the network’s activity and dynamics, contributing to our understanding of developing neural circuits. PMID:26961000

  1. Network synchronization in hippocampal neurons.

    PubMed

    Penn, Yaron; Segal, Menahem; Moses, Elisha

    2016-03-22

    Oscillatory activity is widespread in dynamic neuronal networks. The main paradigm for the origin of periodicity consists of specialized pacemaking elements that synchronize and drive the rest of the network; however, other models exist. Here, we studied the spontaneous emergence of synchronized periodic bursting in a network of cultured dissociated neurons from rat hippocampus and cortex. Surprisingly, about 60% of all active neurons were self-sustained oscillators when disconnected, each with its own natural frequency. The individual neuron's tendency to oscillate and the corresponding oscillation frequency are controlled by its excitability. The single neuron intrinsic oscillations were blocked by riluzole, and are thus dependent on persistent sodium leak currents. Upon a gradual retrieval of connectivity, the synchrony evolves: Loose synchrony appears already at weak connectivity, with the oscillators converging to one common oscillation frequency, yet shifted in phase across the population. Further strengthening of the connectivity causes a reduction in the mean phase shifts until zero-lag is achieved, manifested by synchronous periodic network bursts. Interestingly, the frequency of network bursting matches the average of the intrinsic frequencies. Overall, the network behaves like other universal systems, where order emerges spontaneously by entrainment of independent rhythmic units. Although simplified with respect to circuitry in the brain, our results attribute a basic functional role for intrinsic single neuron excitability mechanisms in driving the network's activity and dynamics, contributing to our understanding of developing neural circuits. PMID:26961000

  2. Intonation contour in synchronous speech

    NASA Astrophysics Data System (ADS)

    Wang, Bei; Cummins, Fred

    2003-10-01

    Synchronous Speech (Syn-S), obtained by having pairs of speakers read a prepared text together, has been shown to result in interesting properties in the temporal domain, especially in the reduction of inter-speaker variability in supersegmental timing [F. Cummins, ARLO 3, 7-11 (2002)]. Here we investigate the effect of synchronization among speakers on the intonation contour, with a view to informing models of intonation. Six pairs of speakers (all females) read a short text (176 words) both synchronously and solo. Results show that (1) the pitch accent height above a declining baseline is reduced in Syn-S, compared with solo speech, while the pitch accent location is consistent across speakers in both conditions; (2) in contrast to previous findings on duration matching, there is an asymmetry between speakers, with one speaker exerting a stronger influence on the observed intonation contour than the other; (3) agreement on the boundaries of intonational phrases is greater in Syn-S and intonation contours are well matched from the first syllable of the phrase and throughout.

  3. Synchronizer of transmission for vehicles

    SciTech Connect

    Katayama, N.

    1986-02-25

    A synchronizer of a transmission for vehicles is described comprising: a double-mesh prevention member provided on a shift-and-select lever shaft and adapted to restrict the movement of fork shafts of the transmission. The double-mesh prevention member has at least two engaging portions for engaging first and second forward fork shafts, a first gap between the first engaging portion and the first forward fork shaft is greater than a second gap between the second engaging portion and the second forward fork shaft; a pin carried by the first forward fork shaft and biased substantially radially outwardly from the first forward fork shaft by resilient means; and a cam provided on the shift-and-select lever shaft, the cam is shaped and adapted to engage the pin, when the shift-and-select lever shaft is operated to shift to the reverse position, to press the pin so as to move the first forward fork shaft axially until the first forward fork shaft engages the first engaging portion, and thereafter to press the pin radially into the first forward fork shaft; whereby, upon shifting to the reverse position, the first forward fork shaft is moved by the pin and cam to put a synchronizer for forward gears into effect, thereby to attain synchronization between an input shaft and an output shaft of the transmission, but is prevented by the first engaging portion from moving far enough to engage a forward gear.

  4. Temporal integration in sensorimotor synchronization.

    PubMed

    Mates, J; Müller, U; Radil, T; Pöppel, E

    1994-01-01

    Abstract The concept of a temporal integration process in the timing mechanisms in the brain, postulated on the basis of experimental observations from various paradigms (for a review see P$oUppel, 1978), has been explored in a sensorimotor synchronization task. Subjects synchronized their finger taps to sequences of auditory stimuli with interstimulus-onset intervals (ISIs) between 300 and 4800 msec in different trials. Each tonal sequence consisted of 110 stimuli; the tones had a frequency of 500 Hz and a duration of 100 msec. As observed previously, response onsets preceded onsets of the stimuli by some tens of milliseconcls for ISIs in the range from about 600 to 1800 msec. For ISIs longer than or equal to 2400 msec, the ability to time the response sequence in such a way that the response 5 were placed right ahead of the stimuli started to break clown, i.e., the task was fulfilled by reactions to the stimuli rather than by advanced responses. This observation can he understood within the general framework of a temporal integration puce 55 that is supposed to have a maximal capacity (integration interval) of approximately 3 sec. Only if successive stimuli fall within one integration period, can motor programs be initiated properly by a prior stimulus and thus lead to an appropriate synchronization between the stimulus sequence and corresponding motor acts.

  5. Coordinating, integrating, and synchronizing disaster response : use of an emergency response synchronization matrix in emergency planning, exercises, and operations.

    SciTech Connect

    Hewett, P. L., Jr.; Mitrani, J. E.; Metz, W. C.; Vercellone, J. J.; Decision and Information Sciences

    2001-11-01

    The Chemical Stockpile Emergency Preparedness (CSEP) Program is a wide-ranging activity in support of a national initiative involving the U.S. Army Chemical Materiel Command (CMA), the Federal Emergency Management Agency (FEMA), 9 states, and 37 counties. Established in 1988, the CSEP Program enhances emergency planning for the unlikely event of a release of hazardous chemical weapons agent from one of the Army's chemical weapons storage installations currently storing chemical weapons. These obsolete weapons are scheduled to be destroyed; meanwhile, however, they pose a threat to installation workers and residents of the surrounding communities. Argonne's CSEP Program includes a variety of components that serve the needs of multiple program participants. Among the major activities are: (1) Development of the Emergency Planning Synchronization Matrix to facilitate integration of multi-jurisdictional emergency plans: (a) Coordinating, Integrating, and Synchronizing Disaster Response: Use of an Emergency Response Synchronization Matrix in Emergency Planning, Exercises, and Operations. A graphical depiction of the entire emergency response process via a synchronization matrix is an effective management tool for optimizing the design, exercise, and real-life implementation of emergency plans. This system-based approach to emergency planning depicts how a community organizes its response tasks across space and time. It gives responders the opportunity to make real-time adjustments to maximizing the often limited resources in protecting area residents. An effective response to any natural or technological hazard must involve the entire community and must not be limited by individual jurisdictions and organizations acting on their own without coordination, integration, and synchronization. An emergency response to an accidental release of chemical warfare agents from one of this nation's eight chemical weapons stockpile sites, like any other disaster response, is complex

  6. Cooperative synchronized assemblies enhance orientation discrimination

    PubMed Central

    Samonds, Jason M.; Allison, John D.; Brown, Heather A.; Bonds, A. B.

    2004-01-01

    There is no clear link between the broad tuning of single neurons and the fine behavioral capabilities of orientation discrimination. We recorded from populations of cells in the cat visual cortex (area 17) to examine whether the joint activity of cells can support finer discrimination than found in individual responses. Analysis of joint firing yields a substantial advantage (i.e., cooperation) in fine-angle discrimination. This cooperation increases to more considerable levels as the population of an assembly is increased. The cooperation in a population of six cells provides encoding of orientation with an information advantage that is at least 2-fold in terms of requiring either fewer cells or less time than independent coding. This cooperation suggests that correlated or synchronized activity can increase information. PMID:15096595

  7. Insolation patterns on synchronous exoplanets with obliquity

    NASA Astrophysics Data System (ADS)

    Dobrovolskis, Anthony R.

    2009-11-01

    A previous paper [Dobrovolskis, A.R., 2007. Icarus 192, 1-23] showed that eccentricity can have profound effects on the climate, habitability, and detectability of extrasolar planets. This complementary study shows that obliquity can have comparable effects. The known exoplanets exhibit a wide range of orbital eccentricities, but those within several million kilometers of their suns are generally in near-circular orbits. This fact is widely attributed to the dissipation of tides in the planets. Tides in a planet affect its spin even more than its orbit, and such tidally evolved planets often are assumed to be in synchronous rotation, so that their rotation periods are identical to their orbital periods. The canonical example of synchronous spin is the way that our Moon always keeps nearly the same hemisphere facing the Earth. Tides also tend to reduce the planet's obliquity (the angle between its spin and orbital angular velocities). However, orbit precession can cause the rotation to become locked in a "Cassini state", where it retains a nearly constant non-zero obliquity. For example, our Moon maintains an obliquity of about 6.7° with respect to its orbit about the Earth. In comparison, stable Cassini states can exist for practically any obliquity up to ˜90° or more for planets of binary stars, or in multi-planet systems with high mutual inclinations, such as are produced by scattering or by the Kozai mechanism. This work considers planets in synchronous rotation with circular orbits, but arbitrary obliquity β; this affects the distribution of insolation over the planet's surface, particularly near its poles. For β=0, one hemisphere bakes in perpetual sunshine, while the opposite hemisphere experiences eternal darkness. As β increases, the region of permanent daylight and the antipodal realm of endless night both shrink, while a more temperate area of alternating day and night spreads in longitude, and especially in latitude. The regions of permanent day or

  8. Synchronization transition in networked chaotic oscillators: the viewpoint from partial synchronization.

    PubMed

    Fu, Chenbo; Lin, Weijie; Huang, Liang; Wang, Xingang

    2014-05-01

    Synchronization transition in networks of nonlocally coupled chaotic oscillators is investigated. It is found that in reaching the state of global synchronization the networks can stay in various states of partial synchronization. The stability of the partial synchronization states is analyzed by the method of eigenvalue analysis, in which the important roles of the network topological symmetry on synchronization transition are identified. Moreover, for networks possessing multiple topological symmetries, it is found that the synchronization transition can be divided into different stages, with each stage characterized by a unique synchronous pattern of the oscillators. Synchronization transitions in networks of nonsymmetric topology and nonidentical oscillators are also investigated, where the partial synchronization states, although unstable, are found to be still playing important roles in the transitions.

  9. Spectral Analysis of Synchronization in Mobile Networks

    NASA Astrophysics Data System (ADS)

    Fujiwara, Naoya; Kurths, Jürgen; Díaz-Guilera, Albert

    2011-09-01

    We here analyze a system consisting of agents moving in a two-dimensional space that interact with other agents if they are within a finite range. Considering the motion and the interaction of the agents, the system can be understood as a network with a time-dependent topology. Dynamically, the agents are assumed to be identical oscillators, and the system will eventually reach a state of complete synchronization. In a previous work, we have shown that two qualitatively different mechanisms leading to synchronization in such mobile networks exist, namely global synchronization and local synchronization, depending on the parameters that characterize the oscillatory dynamics and the motion of the agents [1]. In this contribution we show that the spectral pattern differs between the two synchronization mechanisms. For global synchronization the spectrum is flat, which means that all eigenmodes contribute identically. For local synchronization, instead, the synchronization dynamics is determined mostly by the eigenmodes whose eigenvalues are close to zero. This result suggests that the global synchronization mechanism achieves fast synchronization by efficiently using the fast decaying eigenmodes (larger eigenvalues).

  10. Synchronizing noisy nonidentical oscillators by transient uncoupling

    NASA Astrophysics Data System (ADS)

    Tandon, Aditya; Schröder, Malte; Mannattil, Manu; Timme, Marc; Chakraborty, Sagar

    2016-09-01

    Synchronization is the process of achieving identical dynamics among coupled identical units. If the units are different from each other, their dynamics cannot become identical; yet, after transients, there may emerge a functional relationship between them—a phenomenon termed "generalized synchronization." Here, we show that the concept of transient uncoupling, recently introduced for synchronizing identical units, also supports generalized synchronization among nonidentical chaotic units. Generalized synchronization can be achieved by transient uncoupling even when it is impossible by regular coupling. We furthermore demonstrate that transient uncoupling stabilizes synchronization in the presence of common noise. Transient uncoupling works best if the units stay uncoupled whenever the driven orbit visits regions that are locally diverging in its phase space. Thus, to select a favorable uncoupling region, we propose an intuitive method that measures the local divergence at the phase points of the driven unit's trajectory by linearizing the flow and subsequently suppresses the divergence by uncoupling.

  11. A chimeric path to neuronal synchronization

    SciTech Connect

    Essaki Arumugam, Easwara Moorthy; Spano, Mark L.

    2015-01-15

    Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an “all or none” phenomenon, but can pass through an intermediate stage (chimera)

  12. Spatio-temporal synchronization of recurrent epidemics.

    PubMed Central

    He, Daihai; Stone, Lewi

    2003-01-01

    Long-term spatio-temporal datasets of disease incidences have made it clear that many recurring epidemics, especially childhood infections, tend to synchronize in-phase across suburbs. In some special cases, epidemics between suburbs have been found to oscillate in an out-of-phase ('antiphase') relationship for lengthy periods. Here, we use modelling techniques to help explain the presence of in-phase and antiphase synchronization. The nonlinearity of the epidemic dynamics is often such that the intensity of the outbreak influences the phase of the oscillation thereby introducing 'shear', a factor that is found to be important for generating antiphase synchronization. By contrast, the coupling between suburbs via the immigration of infectives tends to enhance in-phase synchronization. The emerging synchronization depends delicately on these opposite factors. We use theoretical results from continuous time models to provide a framework for understanding the relationship between synchronization patterns for different model structures. PMID:12965019

  13. A chimeric path to neuronal synchronization

    NASA Astrophysics Data System (ADS)

    Essaki Arumugam, Easwara Moorthy; Spano, Mark L.

    2015-01-01

    Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an "all or none" phenomenon, but can pass through an intermediate stage (chimera).

  14. Explosive synchronization coexists with classical synchronization in the Kuramoto model.

    PubMed

    Danziger, Michael M; Moskalenko, Olga I; Kurkin, Semen A; Zhang, Xiyun; Havlin, Shlomo; Boccaletti, Stefano

    2016-06-01

    Explosive synchronization has recently been reported in a system of adaptively coupled Kuramoto oscillators, without any conditions on the frequency or degree of the nodes. Here, we find that, in fact, the explosive phase coexists with the standard phase of the Kuramoto oscillators. We determine this by extending the mean-field theory of adaptively coupled oscillators with full coupling to the case with partial coupling of a fraction f. This analysis shows that a metastable region exists for all finite values of f > 0, and therefore explosive synchronization is expected for any perturbation of adaptively coupling added to the standard Kuramoto model. We verify this theory with GPU-accelerated simulations on very large networks (N ∼ 10(6)) and find that, in fact, an explosive transition with hysteresis is observed for all finite couplings. By demonstrating that explosive transitions coexist with standard transitions in the limit of f → 0, we show that this behavior is far more likely to occur naturally than was previously believed. PMID:27369869

  15. Explosive synchronization coexists with classical synchronization in the Kuramoto model.

    PubMed

    Danziger, Michael M; Moskalenko, Olga I; Kurkin, Semen A; Zhang, Xiyun; Havlin, Shlomo; Boccaletti, Stefano

    2016-06-01

    Explosive synchronization has recently been reported in a system of adaptively coupled Kuramoto oscillators, without any conditions on the frequency or degree of the nodes. Here, we find that, in fact, the explosive phase coexists with the standard phase of the Kuramoto oscillators. We determine this by extending the mean-field theory of adaptively coupled oscillators with full coupling to the case with partial coupling of a fraction f. This analysis shows that a metastable region exists for all finite values of f > 0, and therefore explosive synchronization is expected for any perturbation of adaptively coupling added to the standard Kuramoto model. We verify this theory with GPU-accelerated simulations on very large networks (N ∼ 10(6)) and find that, in fact, an explosive transition with hysteresis is observed for all finite couplings. By demonstrating that explosive transitions coexist with standard transitions in the limit of f → 0, we show that this behavior is far more likely to occur naturally than was previously believed.

  16. Explosive synchronization coexists with classical synchronization in the Kuramoto model

    NASA Astrophysics Data System (ADS)

    Danziger, Michael M.; Moskalenko, Olga I.; Kurkin, Semen A.; Zhang, Xiyun; Havlin, Shlomo; Boccaletti, Stefano

    2016-06-01

    Explosive synchronization has recently been reported in a system of adaptively coupled Kuramoto oscillators, without any conditions on the frequency or degree of the nodes. Here, we find that, in fact, the explosive phase coexists with the standard phase of the Kuramoto oscillators. We determine this by extending the mean-field theory of adaptively coupled oscillators with full coupling to the case with partial coupling of a fraction f. This analysis shows that a metastable region exists for all finite values of f > 0, and therefore explosive synchronization is expected for any perturbation of adaptively coupling added to the standard Kuramoto model. We verify this theory with GPU-accelerated simulations on very large networks (N ˜ 106) and find that, in fact, an explosive transition with hysteresis is observed for all finite couplings. By demonstrating that explosive transitions coexist with standard transitions in the limit of f → 0, we show that this behavior is far more likely to occur naturally than was previously believed.

  17. Nondestructive synchronous beam current monitor

    SciTech Connect

    Covo, Michel Kireeff

    2014-12-15

    A fast current transformer is mounted after the deflectors of the Berkeley 88-Inch Cyclotron. The measured signal is amplified and connected to the input of a lock-in amplifier. The lock-in amplifier performs a synchronous detection of the signal at the cyclotron second harmonic frequency. The magnitude of the signal detected is calibrated against a Faraday cup and corresponds to the beam intensity. It has exceptional resolution, long term stability, and can measure the beam current leaving the cyclotron as low as 1 nA.

  18. Synchronous Sampling for Distributed Experiments

    NASA Astrophysics Data System (ADS)

    Wittkamp, M.; Ettl, J.

    2015-09-01

    Sounding Rocket payloads, especially for atmospheric research, often consists of several independent sensors or experiments with different objectives. The data of these sensors can be combined in the post processing to improve the scientific results of the flight. One major requirement for this data-correlation is a common timeline for the measurements of the distributed experiments. Within this paper we present two ways to achieve absolute timing for asynchronously working experiments. The synchronization process is using the Global Positioning System (GPS) and a standard serial communication protocol for transport of timestamps and flight-states.

  19. Mutual synchronization of weakly coupled gyrotrons

    SciTech Connect

    Rozental, R. M.; Glyavin, M. Yu.; Sergeev, A. S.; Zotova, I. V.; Ginzburg, N. S.

    2015-09-15

    The processes of synchronization of two weakly coupled gyrotrons are studied within the framework of non-stationary equations with non-fixed longitudinal field structure. With the allowance for a small difference of the free oscillation frequencies of the gyrotrons, we found a certain range of parameters where mutual synchronization is possible while a high electronic efficiency is remained. It is also shown that synchronization regimes can be realized even under random fluctuations of the parameters of the electron beams.

  20. Desynchronization of stochastically synchronized chemical oscillators

    SciTech Connect

    Snari, Razan; Tinsley, Mark R. E-mail: kshowalt@wvu.edu; Faramarzi, Sadegh; Showalter, Kenneth E-mail: kshowalt@wvu.edu; Wilson, Dan; Moehlis, Jeff; Netoff, Theoden Ivan

    2015-12-15

    Experimental and theoretical studies are presented on the design of perturbations that enhance desynchronization in populations of oscillators that are synchronized by periodic entrainment. A phase reduction approach is used to determine optimal perturbation timing based upon experimentally measured phase response curves. The effectiveness of the perturbation waveforms is tested experimentally in populations of periodically and stochastically synchronized chemical oscillators. The relevance of the approach to therapeutic methods for disrupting phase coherence in groups of stochastically synchronized neuronal oscillators is discussed.

  1. Complexity and synchronization in stochastic chaotic systems

    NASA Astrophysics Data System (ADS)

    Son Dang, Thai; Palit, Sanjay Kumar; Mukherjee, Sayan; Hoang, Thang Manh; Banerjee, Santo

    2016-02-01

    We investigate the complexity of a hyperchaotic dynamical system perturbed by noise and various nonlinear speech and music signals. The complexity is measured by the weighted recurrence entropy of the hyperchaotic and stochastic systems. The synchronization phenomenon between two stochastic systems with complex coupling is also investigated. These criteria are tested on chaotic and perturbed systems by mean conditional recurrence and normalized synchronization error. Numerical results including surface plots, normalized synchronization errors, complexity variations etc show the effectiveness of the proposed analysis.

  2. Tape-recorded Lectures With Slide Synchronization

    ERIC Educational Resources Information Center

    Goodhue, D.

    1969-01-01

    Describes "Taped Explanation Slide Synchronization" programs used for individual study or group showing in college zoology. Discusses preparation of programs, class organization, equipment, and costs. (EB)

  3. Phase synchronization of two anharmonic nanomechanical oscillators.

    PubMed

    Matheny, Matthew H; Grau, Matt; Villanueva, Luis G; Karabalin, Rassul B; Cross, M C; Roukes, Michael L

    2014-01-10

    We investigate the synchronization of oscillators based on anharmonic nanoelectromechanical resonators. Our experimental implementation allows unprecedented observation and control of parameters governing the dynamics of synchronization. We find close quantitative agreement between experimental data and theory describing reactively coupled Duffing resonators with fully saturated feedback gain. In the synchronized state we demonstrate a significant reduction in the phase noise of the oscillators, which is key for sensor and clock applications. Our work establishes that oscillator networks constructed from nanomechanical resonators form an ideal laboratory to study synchronization--given their high-quality factors, small footprint, and ease of cointegration with modern electronic signal processing technologies. PMID:24483899

  4. Robustness of optimal synchronization in real networks.

    PubMed

    Ravoori, Bhargava; Cohen, Adam B; Sun, Jie; Motter, Adilson E; Murphy, Thomas E; Roy, Rajarshi

    2011-07-15

    Experimental studies can provide powerful insights into the physics of complex networks. Here, we report experimental results on the influence of connection topology on synchronization in fiber-optic networks of chaotic optoelectronic oscillators. We find that the recently predicted nonmonotonic, cusplike synchronization landscape manifests itself in the rate of convergence to the synchronous state. We also observe that networks with the same number of nodes, same number of links, and identical eigenvalues of the coupling matrix can exhibit fundamentally different approaches to synchronization. This previously unnoticed difference is determined by the degeneracy of associated eigenvectors in the presence of noise and mismatches encountered in real-world conditions. PMID:21838362

  5. Phase synchronization of two anharmonic nanomechanical oscillators.

    PubMed

    Matheny, Matthew H; Grau, Matt; Villanueva, Luis G; Karabalin, Rassul B; Cross, M C; Roukes, Michael L

    2014-01-10

    We investigate the synchronization of oscillators based on anharmonic nanoelectromechanical resonators. Our experimental implementation allows unprecedented observation and control of parameters governing the dynamics of synchronization. We find close quantitative agreement between experimental data and theory describing reactively coupled Duffing resonators with fully saturated feedback gain. In the synchronized state we demonstrate a significant reduction in the phase noise of the oscillators, which is key for sensor and clock applications. Our work establishes that oscillator networks constructed from nanomechanical resonators form an ideal laboratory to study synchronization--given their high-quality factors, small footprint, and ease of cointegration with modern electronic signal processing technologies.

  6. Calculation principles for a synchronous electromagnetic clutch

    NASA Technical Reports Server (NTRS)

    Panasenkov, M. A.

    1978-01-01

    A detailed explanation of the calculation principles, for a synchronous salient-pole electromagnetic clutch with lumped excitation windings is supplied by direct current. Practical recommendations are given.

  7. Pilotless Frame Synchronization Using LDPC Code Constraints

    NASA Technical Reports Server (NTRS)

    Jones, Christopher; Vissasenor, John

    2009-01-01

    A method of pilotless frame synchronization has been devised for low- density parity-check (LDPC) codes. In pilotless frame synchronization , there are no pilot symbols; instead, the offset is estimated by ex ploiting selected aspects of the structure of the code. The advantag e of pilotless frame synchronization is that the bandwidth of the sig nal is reduced by an amount associated with elimination of the pilot symbols. The disadvantage is an increase in the amount of receiver data processing needed for frame synchronization.

  8. Coupled lasers: phase versus chaos synchronization.

    PubMed

    Reidler, I; Nixon, M; Aviad, Y; Guberman, S; Friesem, A A; Rosenbluh, M; Davidson, N; Kanter, I

    2013-10-15

    The synchronization of chaotic lasers and the optical phase synchronization of light originating in multiple coupled lasers have both been extensively studied. However, the interplay between these two phenomena, especially at the network level, is unexplored. Here, we experimentally compare these phenomena by controlling the heterogeneity of the coupling delay times of two lasers. While chaotic lasers exhibit deterioration in synchronization as the time delay heterogeneity increases, phase synchronization is found to be independent of heterogeneity. The experimental results are found to be in agreement with numerical simulations for semiconductor lasers.

  9. Variety of synchronous regimes in neuronal ensembles

    NASA Astrophysics Data System (ADS)

    Komarov, M. A.; Osipov, G. V.; Suykens, J. A. K.

    2008-09-01

    We consider a Hodgkin-Huxley-type model of oscillatory activity in neurons of the snail Helix pomatia. This model has a distinctive feature: It demonstrates multistability in oscillatory and silent modes that is typical for the thalamocortical neurons. A single neuron cell can demonstrate a variety of oscillatory activity: Regular and chaotic spiking and bursting behavior. We study collective phenomena in small and large arrays of nonidentical cells coupled by models of electrical and chemical synapses. Two single elements coupled by electrical coupling show different types of synchronous behavior, in particular in-phase and antiphase synchronous regimes. In an ensemble of three inhibitory synaptically coupled elements, the phenomenon of sequential synchronous dynamics is observed. We study the synchronization phenomena in the chain of nonidentical neurons at different oscillatory behavior coupled with electrical and chemical synapses. Various regimes of phase synchronization are observed: (i) Synchronous regular and chaotic spiking; (ii) synchronous regular and chaotic bursting; and (iii) synchronous regular and chaotic bursting with different numbers of spikes inside the bursts. We detect and study the effect of collective synchronous burst generation due to the cluster formation and the oscillatory death.

  10. Increased Entorhinal–Prefrontal Theta Synchronization Parallels Decreased Entorhinal–Hippocampal Theta Synchronization during Learning and Consolidation of Associative Memory

    PubMed Central

    Takehara-Nishiuchi, Kaori; Maal-Bared, Geith; Morrissey, Mark D.

    2012-01-01

    Memories are thought to be encoded as a distributed representation in the neocortex. The medial prefrontal cortex (mPFC) has been shown to support the expression of memories that initially depend on the hippocampus (HPC), yet the mechanisms by which the HPC and mPFC access the distributed representations in the neocortex are unknown. By measuring phase synchronization of local field potential (LFP) oscillations, we found that learning initiated changes in neuronal communication of the HPC and mPFC with the lateral entorhinal cortex (LEC), an area that is connected with many other neocortical regions. LFPs were recorded simultaneously from the three brain regions while rats formed an association between an auditory stimulus (CS) and eyelid stimulation (US) in a trace eyeblink conditioning paradigm, as well as during retention 1 month following learning. Over the course of learning, theta oscillations in the LEC and mPFC became strongly synchronized following presentation of the CS on trials in which rats exhibited a conditioned response (CR), and this strengthened synchronization was also observed during remote retention. In contrast, CS-evoked theta synchronization between the LEC and HPC decreased with learning. Our results suggest that communication between the LEC and mPFC are strengthened with learning whereas the communication between the LEC and HPC are concomitantly weakened, suggesting that enhanced LEC–mPFC communication may be a neuronal correlate for theoretically proposed neocortical reorganization accompanying encoding and consolidation of a memory. PMID:22319482

  11. Synchronization and Partial Synchronization Experiments with Networks of Time-Delay Coupled Hindmarsh-Rose Neurons

    NASA Astrophysics Data System (ADS)

    Steur, Erik; Murguia, Carlos; Fey, Rob H. B.; Nijmeijer, Henk

    2016-06-01

    We study experimentally synchronization and partial synchronization in networks of Hindmarsh-Rose model neurons that interact through linear time-delay couplings. Our experimental setup consists of electric circuit board realizations of the Hindmarsh-Rose model neuron and a coupling interface in which the interaction between the circuits is defined. With this experimental setup we test the predictive value of theoretical results about synchronization and partial synchronization in networks.

  12. Gait synchronization in Caenorhabditis elegans

    PubMed Central

    Yuan, Jinzhou; Raizen, David M.; Bau, Haim H.

    2014-01-01

    Collective motion is observed in swarms of swimmers of various sizes, ranging from self-propelled nanoparticles to fish. The mechanisms that govern interactions among individuals are debated, and vary from one species to another. Although the interactions among relatively large animals, such as fish, are controlled by their nervous systems, the interactions among microorganisms, which lack nervous systems, are controlled through physical and chemical pathways. Little is known, however, regarding the mechanism of collective movements in microscopic organisms with nervous systems. To attempt to remedy this, we studied collective swimming behavior in the nematode Caenorhabditis elegans, a microorganism with a compact nervous system. We evaluated the contributions of hydrodynamic forces, contact forces, and mechanosensory input to the interactions among individuals. We devised an experiment to examine pair interactions as a function of the distance between the animals and observed that gait synchronization occurred only when the animals were in close proximity, independent of genes required for mechanosensation. Our measurements and simulations indicate that steric hindrance is the dominant factor responsible for motion synchronization in C. elegans, and that hydrodynamic interactions and genotype do not play a significant role. We infer that a similar mechanism may apply to other microscopic swimming organisms and self-propelled particles. PMID:24778261

  13. High accuracy time transfer synchronization

    NASA Technical Reports Server (NTRS)

    Wheeler, Paul J.; Koppang, Paul A.; Chalmers, David; Davis, Angela; Kubik, Anthony; Powell, William M.

    1995-01-01

    In July 1994, the U.S. Naval Observatory (USNO) Time Service System Engineering Division conducted a field test to establish a baseline accuracy for two-way satellite time transfer synchronization. Three Hewlett-Packard model 5071 high performance cesium frequency standards were transported from the USNO in Washington, DC to Los Angeles, California in the USNO's mobile earth station. Two-Way Satellite Time Transfer links between the mobile earth station and the USNO were conducted each day of the trip, using the Naval Research Laboratory(NRL) designed spread spectrum modem, built by Allen Osborne Associates(AOA). A Motorola six channel GPS receiver was used to track the location and altitude of the mobile earth station and to provide coordinates for calculating Sagnac corrections for the two-way measurements, and relativistic corrections for the cesium clocks. This paper will discuss the trip, the measurement systems used and the results from the data collected. We will show the accuracy of using two-way satellite time transfer for synchronization and the performance of the three HP 5071 cesium clocks in an operational environment.

  14. High accuracy time transfer synchronization

    NASA Astrophysics Data System (ADS)

    Wheeler, Paul J.; Koppang, Paul A.; Chalmers, David; Davis, Angela; Kubik, Anthony; Powell, William M.

    1995-05-01

    In July 1994, the U.S. Naval Observatory (USNO) Time Service System Engineering Division conducted a field test to establish a baseline accuracy for two-way satellite time transfer synchronization. Three Hewlett-Packard model 5071 high performance cesium frequency standards were transported from the USNO in Washington, DC to Los Angeles, California in the USNO's mobile earth station. Two-Way Satellite Time Transfer links between the mobile earth station and the USNO were conducted each day of the trip, using the Naval Research Laboratory(NRL) designed spread spectrum modem, built by Allen Osborne Associates(AOA). A Motorola six channel GPS receiver was used to track the location and altitude of the mobile earth station and to provide coordinates for calculating Sagnac corrections for the two-way measurements, and relativistic corrections for the cesium clocks. This paper will discuss the trip, the measurement systems used and the results from the data collected. We will show the accuracy of using two-way satellite time transfer for synchronization and the performance of the three HP 5071 cesium clocks in an operational environment.

  15. Coronal Modeling and Synchronic Maps

    NASA Astrophysics Data System (ADS)

    Linker, Jon A.; Lionello, R.; Mikic, Z.; Riley, P.; Downs, C.; Henney, C. J.; Arge, C.

    2013-07-01

    MHD simulations of the solar corona rely on maps of the solar magnetic field (typically measured at the photosphere) for input as boundary conditions. These "synoptic" maps (available from a number of ground-based and space-based solar observatories), which are perhaps better described as "diachronic," are built up over a solar rotation. A well-known problem with this approach is that the maps contain data that is as much as 27 days old. The Sun's magnetic flux is always evolving, and these changes in the flux affect coronal and heliospheric structure. Flux evolution models can in principle provide a more accurate specification, by estimating the likely state of the photospheric magnetic field on unobserved portions of the Sun. The Air Force Data Assimilative Photospheric flux Transport (ADAPT) model (Arge et al. 2010), which incorporates data assimilation techniques into the Worden and Harvey (2000) flux evolution model, is especially well-suited for this purpose. In this presentation we describe the use of such "synchronic" maps with coronal models. We compare results using synchronic maps versus the traditional synoptic maps. Research supported by AFOSR, NASA, and NSF.

  16. Synchronously pumped nuclear magnetic oscillator

    NASA Astrophysics Data System (ADS)

    Korver, Anna; Thrasher, Daniel; Bulatowicz, Michael; Walker, Thad

    2015-05-01

    We present progress towards a synchronously pumped nuclear magnetic oscillator. Alkali frequency shifts and quadrupole shifts are the dominant systematic effects in dual Xe isotope co-magnetometers. By synchronously pumping the Xe nuclei using spin-exchange with an oscillating Rb polarization, the Rb and Xe spins precess transverse to the longitudinal bias field. This configuration is predicted to be insensitive to first order quadrupole interactions and alkali spin-exchange frequency shifts. A key feature that allows co-precession of the Rb and Xe spins, despite a ~ 1000 fold ratio of their gyromagnetic ratios, is to apply the bias field in the form of a sequence of Rb 2 π pulses whose repetition frequency is equal to the Rb Larmor frequency. The 2 π pulses result in an effective Rb magnetic moment of zero, while the Xe precession depends only on the time average of the pulsed field amplitude. Polarization modulation of the pumping light at the Xe NMR frequency allows co-precession of the Rb and Xe spins. We will present our preliminary experimental studies of this new approach to NMR of spin-exchange pumped Xe. Support by the NSF and Northrop Grumman Co.

  17. Elliptical multi-sun-synchronous orbits for Mars exploration

    NASA Astrophysics Data System (ADS)

    Circi, Christian; Ortore, Emiliano; Bunkheila, Federico; Ulivieri, Carlo

    2012-11-01

    The multi-sun-synchronous orbits allow cycles of observation of the same area in which solar illumination repetitively changes according to the value of the orbit elements and returns to the initial condition after a temporal interval multiple of the repetition of observation. This paper generalizes the concept of multi-sun-synchronous orbits, whose classical sun-synchronous orbits represent particular solutions, taking into consideration the elliptical case. The feasibility of using this typology of orbits, referred to as elliptical periodic multi-sun-synchronous orbits, has been investigated for the exploration of Mars and particular solutions have been selected. Such solutions considerably reduce the manoeuvre of velocity variation at the end of the interplanetary transfer with respect to the case of a target circular orbit around Mars. They are based on the use of quasi-critical inclinations in order to minimize the apsidal line motion and thus reduce orbit maintenance costs. Moreover, in the case of high eccentricities, the argument of pericentre may be set in order to obtain, around the apocentre, a condition of quasi-synchronism with the planet (the footprint of the probe on the surface presents a small shift with respect to a fixed point on the Martian surface). The low altitude of pericentre allows observation of the planet at a higher spatial resolution, while the orbit arc around the apocentre may be used to observe Mars with a wide spatial coverage in quasi-stationary conditions. This latter characteristic is useful for analysing atmospheric and meteorological phenomena and it allows for most of the orbital period a link between a rover on the surface of Mars and a probe orbiting around the planet.

  18. Driving and braking control of PM synchronous motor based on low-resolution hall sensor for battery electric vehicle

    NASA Astrophysics Data System (ADS)

    Gu, Jing; Ouyang, Minggao; Li, Jianqiu; Lu, Dongbin; Fang, Chuan; Ma, Yan

    2013-01-01

    Resolvers are normally employed for rotor positioning in motors for electric vehicles, but resolvers are expensive and vulnerable to vibrations. Hall sensors have the advantages of low cost and high reliability, but the positioning accuracy is low. Motors with Hall sensors are typically controlled by six-step commutation algorithm, which brings high torque ripple. This paper studies the high-performance driving and braking control of the in-wheel permanent magnetic synchronous motor (PMSM) based on low-resolution Hall sensors. Field oriented control (FOC) based on Hall-effect sensors is developed to reduce the torque ripple. The positioning accuracy of the Hall sensors is improved by interpolation between two consecutive Hall signals using the estimated motor speed. The position error from the misalignment of the Hall sensors is compensated by the precise calibration of Hall transition timing. The braking control algorithms based on six-step commutation and FOC are studied. Two variants of the six-step commutation braking control, namely, half-bridge commutation and full-bridge commutation, are discussed and compared, which shows that the full-bridge commutation could better explore the potential of the back electro-motive forces (EMF), thus can deliver higher efficiency and smaller current ripple. The FOC braking is analyzed with the phasor diagrams. At a given motor speed, the motor turns from the regenerative braking mode into the plug braking mode if the braking torque exceeds a certain limit, which is proportional to the motor speed. Tests in the dynamometer show that a smooth control could be realized by FOC driving control and the highest efficiency and the smallest current ripple could be achieved by FOC braking control, compared to six-step commutation braking control. Therefore, FOC braking is selected as the braking control algorithm for electric vehicles. The proposed research ensures a good motor control performance while maintaining low cost and high

  19. Emotional speech synchronizes brains across listeners and engages large-scale dynamic brain networks.

    PubMed

    Nummenmaa, Lauri; Saarimäki, Heini; Glerean, Enrico; Gotsopoulos, Athanasios; Jääskeläinen, Iiro P; Hari, Riitta; Sams, Mikko

    2014-11-15

    Speech provides a powerful means for sharing emotions. Here we implement novel intersubject phase synchronization and whole-brain dynamic connectivity measures to show that networks of brain areas become synchronized across participants who are listening to emotional episodes in spoken narratives. Twenty participants' hemodynamic brain activity was measured with functional magnetic resonance imaging (fMRI) while they listened to 45-s narratives describing unpleasant, neutral, and pleasant events spoken in neutral voice. After scanning, participants listened to the narratives again and rated continuously their feelings of pleasantness-unpleasantness (valence) and of arousal-calmness. Instantaneous intersubject phase synchronization (ISPS) measures were computed to derive both multi-subject voxel-wise similarity measures of hemodynamic activity and inter-area functional dynamic connectivity (seed-based phase synchronization, SBPS). Valence and arousal time series were subsequently used to predict the ISPS and SBPS time series. High arousal was associated with increased ISPS in the auditory cortices and in Broca's area, and negative valence was associated with enhanced ISPS in the thalamus, anterior cingulate, lateral prefrontal, and orbitofrontal cortices. Negative valence affected functional connectivity of fronto-parietal, limbic (insula, cingulum) and fronto-opercular circuitries, and positive arousal affected the connectivity of the striatum, amygdala, thalamus, cerebellum, and dorsal frontal cortex. Positive valence and negative arousal had markedly smaller effects. We propose that high arousal synchronizes the listeners' sound-processing and speech-comprehension networks, whereas negative valence synchronizes circuitries supporting emotional and self-referential processing.

  20. Using Synchronous Technology to Enrich Student Learning

    ERIC Educational Resources Information Center

    Wang, Charles Xiaoxue; Jaeger, David; Liu, Jinxia; Guo, Xiaoning; Xie, Nan

    2013-01-01

    To explore the potential applications of synchronous technology to enrich student learning, faculty members from an American regional state university and a Chinese regional university collaborated to find appropriate ways to integrate synchronous technology (e.g., Adobe Connect) into an educational technology program in the American university…

  1. Examining Interactivity in Synchronous Virtual Classrooms

    ERIC Educational Resources Information Center

    Martin, Florence; Parker, Michele A.; Deale, Deborah F.

    2012-01-01

    Interaction is crucial to student satisfaction in online courses. Adding synchronous components (virtual classroom technologies) to online courses can facilitate interaction. In this study, interaction within a synchronous virtual classroom was investigated by surveying 21 graduate students in an instructional technology program in the…

  2. Synchronization Properties of Random Piecewise Isometries

    NASA Astrophysics Data System (ADS)

    Gorodetski, Anton; Kleptsyn, Victor

    2016-08-01

    We study the synchronization properties of the random double rotations on tori. We give a criterion that show when synchronization is present in the case of random double rotations on the circle and prove that it is always absent in dimensions two and higher.

  3. Interference, Integration and the Synchronic Fallacy.

    ERIC Educational Resources Information Center

    Mackey, William F.

    The purposes of this paper are to examine the effects of synchronic description in distinguishing between interference and integration in cases of language contact, and to suggest alternative methods of description suitable for the analysis of systems in motion. The "synchronic fallacy" is defined here as the belief that one can describe a…

  4. Quasars as very-accurate clock synchronizers

    NASA Technical Reports Server (NTRS)

    Hurd, W. J.; Goldstein, R. M.

    1975-01-01

    Quasars can be employed to synchronize global data communications, geophysical measurements, and atomic clocks. It is potentially two to three orders of magnitude better than presently-used Moon-bounce system. Comparisons between quasar and clock pulses are used to develop correction or synchronization factors for station clocks.

  5. Complete synchronization and generalized synchronization of one-way coupled time-delay systems.

    PubMed

    Zhan, Meng; Wang, Xingang; Gong, Xiaofeng; Wei, G W; Lai, C-H

    2003-09-01

    The complete synchronization and generalized synchronization (GS) of one-way coupled time-delay systems are studied. We find that GS can be achieved by a single scalar signal, and its synchronization threshold for different delay times shows the parameter resonance effect, i.e., we can obtain stable synchronization at a smaller coupling if the delay time of the driven system is chosen such that it is in resonance with the driving system. Near chaos synchronization, the desynchronization dynamics displays periodic bursts with the period equal to the delay time of the driven system. These features can be easily applied to the recovery of time-delay systems.

  6. Amplitude dynamics favors synchronization in complex networks

    NASA Astrophysics Data System (ADS)

    Gambuzza, Lucia Valentina; Gómez-Gardeñes, Jesus; Frasca, Mattia

    2016-04-01

    In this paper we study phase synchronization in random complex networks of coupled periodic oscillators. In particular, we show that, when amplitude dynamics is not negligible, phase synchronization may be enhanced. To illustrate this, we compare the behavior of heterogeneous units with both amplitude and phase dynamics and pure (Kuramoto) phase oscillators. We find that in small network motifs the behavior crucially depends on the topology and on the node frequency distribution. Surprisingly, the microscopic structures for which the amplitude dynamics improves synchronization are those that are statistically more abundant in random complex networks. Thus, amplitude dynamics leads to a general lowering of the synchronization threshold in arbitrary random topologies. Finally, we show that this synchronization enhancement is generic of oscillators close to Hopf bifurcations. To this aim we consider coupled FitzHugh-Nagumo units modeling neuron dynamics.

  7. Amplitude dynamics favors synchronization in complex networks

    PubMed Central

    Gambuzza, Lucia Valentina; Gómez-Gardeñes, Jesus; Frasca, Mattia

    2016-01-01

    In this paper we study phase synchronization in random complex networks of coupled periodic oscillators. In particular, we show that, when amplitude dynamics is not negligible, phase synchronization may be enhanced. To illustrate this, we compare the behavior of heterogeneous units with both amplitude and phase dynamics and pure (Kuramoto) phase oscillators. We find that in small network motifs the behavior crucially depends on the topology and on the node frequency distribution. Surprisingly, the microscopic structures for which the amplitude dynamics improves synchronization are those that are statistically more abundant in random complex networks. Thus, amplitude dynamics leads to a general lowering of the synchronization threshold in arbitrary random topologies. Finally, we show that this synchronization enhancement is generic of oscillators close to Hopf bifurcations. To this aim we consider coupled FitzHugh-Nagumo units modeling neuron dynamics. PMID:27108847

  8. Clustering versus non-clustering phase synchronizations

    SciTech Connect

    Liu, Shuai; Zhan, Meng

    2014-03-15

    Clustering phase synchronization (CPS) is a common scenario to the global phase synchronization of coupled dynamical systems. In this work, a novel scenario, the non-clustering phase synchronization (NPS), is reported. It is found that coupled systems do not transit to the global synchronization until a certain sufficiently large coupling is attained, and there is no clustering prior to the global synchronization. To reveal the relationship between CPS and NPS, we further analyze the noise effect on coupled phase oscillators and find that the coupled oscillator system can change from CPS to NPS with the increase of noise intensity or system disorder. These findings are expected to shed light on the mechanism of various intriguing self-organized behaviors in coupled systems.

  9. Synchronization of oscillators coupled through an environment

    NASA Astrophysics Data System (ADS)

    Katriel, Guy

    2008-11-01

    We study synchronization of oscillators that are indirectly coupled through their interaction with an environment. We give criteria for the stability or instability of a synchronized oscillation. Using these criteria we investigate synchronization of systems of oscillators which are weakly coupled, in the sense that the influence of the oscillators on the environment is weak. We prove that arbitrarily weak coupling will synchronize the oscillators, provided that this coupling is of the ‘right’ sign. We illustrate our general results by applications to a model of coupled GnRH neuron oscillators proposed by Khadra and Li [A. Khadra, Y.X. Li, A model for the pulsatile secretion of gonadotropin-releasing hormone from synchronized hypothalamic neurons, Biophys. J. 91 (2006) 74-83.], and to indirectly weakly-coupled λ- ω oscillators.

  10. Hydrodynamic synchronization of colloidal oscillators

    PubMed Central

    Kotar, Jurij; Leoni, Marco; Bassetti, Bruno; Lagomarsino, Marco Cosentino; Cicuta, Pietro

    2010-01-01

    Two colloidal spheres are maintained in oscillation by switching the position of an optical trap when a sphere reaches a limit position, leading to oscillations that are bounded in amplitude but free in phase and period. The interaction between the oscillators is only through the hydrodynamic flow induced by their motion. We prove that in the absence of stochastic noise the antiphase dynamical state is stable, and we show how the period depends on coupling strength. Both features are observed experimentally. As the natural frequencies of the oscillators are made progressively different, the coordination is quickly lost. These results help one to understand the origin of hydrodynamic synchronization and how the dynamics can be tuned. Cilia and flagella are biological systems coupled hydrodynamically, exhibiting dramatic collective motions. We propose that weakly correlated phase fluctuations, with one of the oscillators typically precessing the other, are characteristic of hydrodynamically coupled systems in the presence of thermal noise. PMID:20385848

  11. Pulse code modulated signal synchronizer

    NASA Technical Reports Server (NTRS)

    Kobayashi, H. S. (Inventor)

    1974-01-01

    A bit synchronizer for a split phase PCM transmission is reported that includes three loop circuits which receive incoming phase coded PCM signals. In the first loop, called a Q-loop, a generated, phase coded, PCM signal is multiplied with the incoming signals, and the frequency and phase of the generated signal are nulled to that of the incoming subcarrier signal. In the second loop, called a B-loop, a circuit multiplies a generated signal with incoming signals to null the phase of the generated signal in a bit phase locked relationship to the incoming signal. In a third loop, called the I-loop, a phase coded PCM signal is multiplied with the incoming signals for decoding the bit information from the PCM signal. A counter means is used for timing of the generated signals and timing of sample intervals for each bit period.

  12. Probing scale interaction in brain dynamics through synchronization.

    PubMed

    Barardi, Alessandro; Malagarriga, Daniel; Sancristobal, Belén; Garcia-Ojalvo, Jordi; Pons, Antonio J

    2014-10-01

    The mammalian brain operates in multiple spatial scales simultaneously, ranging from the microscopic scale of single neurons through the mesoscopic scale of cortical columns, to the macroscopic scale of brain areas. These levels of description are associated with distinct temporal scales, ranging from milliseconds in the case of neurons to tens of seconds in the case of brain areas. Here, we examine theoretically how these spatial and temporal scales interact in the functioning brain, by considering the coupled behaviour of two mesoscopic neural masses (NMs) that communicate with each other through a microscopic neuronal network (NN). We use the synchronization between the two NM models as a tool to probe the interaction between the mesoscopic scales of those neural populations and the microscopic scale of the mediating NN. The two NM oscillators are taken to operate in a low-frequency regime with different peak frequencies (and distinct dynamical behaviour). The microscopic neuronal population, in turn, is described by a network of several thousand excitatory and inhibitory spiking neurons operating in a synchronous irregular regime, in which the individual neurons fire very sparsely but collectively give rise to a well-defined rhythm in the gamma range. Our results show that this NN, which operates at a fast temporal scale, is indeed sufficient to mediate coupling between the two mesoscopic oscillators, which evolve dynamically at a slower scale. We also establish how this synchronization depends on the topological properties of the microscopic NN, on its size and on its oscillation frequency.

  13. Damage visualization using synchronized noncontact laser ultrasonic scanning

    NASA Astrophysics Data System (ADS)

    Liu, Peipei; Sunarsa, Timotius Yonathan; Sohn, Hoon

    2016-04-01

    This paper presents a damage visualization technique using a fully noncontact laser ultrasonic measurement system and a synchronized scanning strategy. The noncontact laser ultrasonic measurement system is composed of a Q-switched Nd:YAG laser for ultrasonic wave generation and a laser Doppler vibrometer (LDV) for ultrasonic wave detection. The laser beams for ultrasonic wave generation and detection are shot on the target structure with a constant and tiny distance, and these two laser beams are synchronously moved over the scanning area. Compared with conventional laser scanning strategies, the ultrasonic responses detected through the synchronized scanning strategy owns a much higher and more stable signal to noise ratio and the scanning time can be significantly reduced with less time averaging. By spatial comparison in the scanning area, damage can be detected and visualized without relying on baseline data obtained from the pristine condition of the target structure. In this paper, the developed technique is validated by visualization hidden corrosion in a steel straight pipe and a steel elbow pipe.

  14. Chimera states and synchronization in magnetically driven SQUID metamaterials

    NASA Astrophysics Data System (ADS)

    Hizanidis, J.; Lazarides, N.; Neofotistos, G.; Tsironis, G. P.

    2016-09-01

    One-dimensional arrays of Superconducting QUantum Interference Devices (SQUIDs) form magnetic metamaterials exhibiting extraordinary properties, including tunability, dynamic multistability, negative magnetic permeability, and broadband transparency. The SQUIDs in a metamaterial interact through non-local, magnetic dipole-dipole forces, that makes it possible for multiheaded chimera states and coexisting patterns, including solitary states, to appear. The spontaneous emergence of chimera states and the role of multistability is demonstrated numerically for a SQUID metamaterial driven by an alternating magnetic field. The spatial synchronization and temporal complexity are discussed and the parameter space for the global synchronization reveals the areas of coherence-incoherence transition. Given that both one- and two-dimensional SQUID metamaterials have been already fabricated and investigated in the lab, the presence of a chimera state could in principle be detected with presently available experimental set-ups.

  15. Fault Location Based on Synchronized Measurements: A Comprehensive Survey

    PubMed Central

    Al-Mohammed, A. H.; Abido, M. A.

    2014-01-01

    This paper presents a comprehensive survey on transmission and distribution fault location algorithms that utilize synchronized measurements. Algorithms based on two-end synchronized measurements and fault location algorithms on three-terminal and multiterminal lines are reviewed. Series capacitors equipped with metal oxide varistors (MOVs), when set on a transmission line, create certain problems for line fault locators and, therefore, fault location on series-compensated lines is discussed. The paper reports the work carried out on adaptive fault location algorithms aiming at achieving better fault location accuracy. Work associated with fault location on power system networks, although limited, is also summarized. Additionally, the nonstandard high-frequency-related fault location techniques based on wavelet transform are discussed. Finally, the paper highlights the area for future research. PMID:24701191

  16. Fault location based on synchronized measurements: a comprehensive survey.

    PubMed

    Al-Mohammed, A H; Abido, M A

    2014-01-01

    This paper presents a comprehensive survey on transmission and distribution fault location algorithms that utilize synchronized measurements. Algorithms based on two-end synchronized measurements and fault location algorithms on three-terminal and multiterminal lines are reviewed. Series capacitors equipped with metal oxide varistors (MOVs), when set on a transmission line, create certain problems for line fault locators and, therefore, fault location on series-compensated lines is discussed. The paper reports the work carried out on adaptive fault location algorithms aiming at achieving better fault location accuracy. Work associated with fault location on power system networks, although limited, is also summarized. Additionally, the nonstandard high-frequency-related fault location techniques based on wavelet transform are discussed. Finally, the paper highlights the area for future research.

  17. [The synchroneous tumors of different histopathology in the parotid salivary gland].

    PubMed

    Bień, Stanisław; Kamiński, Bartłomiej; Kopczyński, Janusz; Sygut, Jacek

    2006-01-01

    Ipsilateral salivary gland tumors of different histological types are very rare. Out of 196 parotidectomies performed (from 03. 2001 to 12. 2005), in 6 (3.06%) cases synchronous tumors of different type has been found in pathologic specimens. In 5 cases pleomorphic adenoma was one of synchronous tumor--in 2 cases with adenocarcinoma and in single cases with salivary duct carcinoma, adenolymphoma, and myoepithelioma. In one case, the adenolymphoma was synchronous with carcinoma planoepitheliale metastaticum from the primary in the skin post auricular area (late metastasis). Following the review of literature concerning the problem, two concepts has been critically discussed--the real synchronous occurrence of two different tumors, and transformation of benign tumor of salivary neoplasm to its malignant form.

  18. V123 BEAM SYNCHRONOUS ENCODER MODULE.

    SciTech Connect

    KERNER,T.; CONKLING,C.R.; OERTER,B.

    1999-03-29

    The V123 Synchronous Encoder Module transmits events to distributed trigger modules and embedded decoders around the RHIC rings where they are used to provide beam instrumentation triggers [1,2,3]. The RHIC beam synchronous event link hardware is mainly comprised of three VMEbus board designs, the central input modules (V201), and encoder modules (V123), and the distributed trigger modules (V124). Two beam synchronous links, one for each ring, are distributed via fiber optics and fanned out via twisted wire pair cables. The V123 synchronizes with the RF system clock derived from the beam bucket frequency and a revolution fiducial pulse. The RF system clock is used to create the beam synchronous event link carrier and events are synchronized with the rotation fiducial. A low jitter RF clock is later recovered from this carrier by phase lock loops in the trigger modules. Prioritized hardware and software triggers fill up to 15 beam event code transmission slots per revolution while tracking the ramping RF acceleration frequency and storage frequency. The revolution fiducial event is always the first event transmitted which is used to synchronize the firing of the abort kicker and to locate the first bucket for decoders distributed about the ring.

  19. System Synchronizes Recordings from Separated Video Cameras

    NASA Technical Reports Server (NTRS)

    Nail, William; Nail, William L.; Nail, Jasper M.; Le, Doung T.

    2009-01-01

    A system of electronic hardware and software for synchronizing recordings from multiple, physically separated video cameras is being developed, primarily for use in multiple-look-angle video production. The system, the time code used in the system, and the underlying method of synchronization upon which the design of the system is based are denoted generally by the term "Geo-TimeCode(TradeMark)." The system is embodied mostly in compact, lightweight, portable units (see figure) denoted video time-code units (VTUs) - one VTU for each video camera. The system is scalable in that any number of camera recordings can be synchronized. The estimated retail price per unit would be about $350 (in 2006 dollars). The need for this or another synchronization system external to video cameras arises because most video cameras do not include internal means for maintaining synchronization with other video cameras. Unlike prior video-camera-synchronization systems, this system does not depend on continuous cable or radio links between cameras (however, it does depend on occasional cable links lasting a few seconds). Also, whereas the time codes used in prior video-camera-synchronization systems typically repeat after 24 hours, the time code used in this system does not repeat for slightly more than 136 years; hence, this system is much better suited for long-term deployment of multiple cameras.

  20. Periodic and aperiodic synchronization in skilled action.

    PubMed

    Cummins, Fred

    2011-01-01

    Synchronized action is considered as a manifestation of shared skill. Most synchronized behaviors in humans and other animals are based on periodic repetition. Aperiodic synchronization of complex action is found in the experimental task of synchronous speaking, in which naive subjects read a common text in lock step. The demonstration of synchronized behavior without a periodic basis is presented as a challenge for theoretical understanding. A unified treatment of periodic and aperiodic synchronization is suggested by replacing the sequential processing model of cognitivist approaches with the more local notion of a task-specific sensorimotor coordination. On this view, skilled action is the imposition of constraints on the co-variation of movement and sensory flux such that the boundary conditions that define the skill are met. This non-cognitivist approach originates in the work of John Dewey. It allows a unification of the treatment of sensorimotor synchronization in simple rhythmic behavior and in complex skilled behavior and it suggests that skill sharing is a uniquely human trait of considerable import.

  1. Transition to complete synchronization and global intermittent synchronization in an array of time-delay systems.

    PubMed

    Suresh, R; Senthilkumar, D V; Lakshmanan, M; Kurths, J

    2012-07-01

    We report the nature of transitions from the nonsynchronous to a complete synchronization (CS) state in arrays of time-delay systems, where the systems are coupled with instantaneous diffusive coupling. We demonstrate that the transition to CS occurs distinctly for different coupling configurations. In particular, for unidirectional coupling, locally (microscopically) synchronization transition occurs in a very narrow range of coupling strength but for a global one (macroscopically) it occurs sequentially in a broad range of coupling strength preceded by an intermittent synchronization. On the other hand, in the case of mutual coupling, a very large value of coupling strength is required for local synchronization and, consequently, all the local subsystems synchronize immediately for the same value of the coupling strength and, hence, globally, synchronization also occurs in a narrow range of the coupling strength. In the transition regime, we observe a type of synchronization transition where long intervals of high-quality synchronization which are interrupted at irregular times by intermittent chaotic bursts simultaneously in all the systems and which we designate as global intermittent synchronization. We also relate our synchronization transition results to the above specific types using unstable periodic orbit theory. The above studies are carried out in a well-known piecewise linear time-delay system.

  2. Transition to complete synchronization and global intermittent synchronization in an array of time-delay systems

    NASA Astrophysics Data System (ADS)

    Suresh, R.; Senthilkumar, D. V.; Lakshmanan, M.; Kurths, J.

    2012-07-01

    We report the nature of transitions from the nonsynchronous to a complete synchronization (CS) state in arrays of time-delay systems, where the systems are coupled with instantaneous diffusive coupling. We demonstrate that the transition to CS occurs distinctly for different coupling configurations. In particular, for unidirectional coupling, locally (microscopically) synchronization transition occurs in a very narrow range of coupling strength but for a global one (macroscopically) it occurs sequentially in a broad range of coupling strength preceded by an intermittent synchronization. On the other hand, in the case of mutual coupling, a very large value of coupling strength is required for local synchronization and, consequently, all the local subsystems synchronize immediately for the same value of the coupling strength and, hence, globally, synchronization also occurs in a narrow range of the coupling strength. In the transition regime, we observe a type of synchronization transition where long intervals of high-quality synchronization which are interrupted at irregular times by intermittent chaotic bursts simultaneously in all the systems and which we designate as global intermittent synchronization. We also relate our synchronization transition results to the above specific types using unstable periodic orbit theory. The above studies are carried out in a well-known piecewise linear time-delay system.

  3. Physiological Synchronization in a Vigilance Dual Task.

    PubMed

    Guastello, Stephen J

    2016-01-01

    The synchronization of autonomic arousal levels and other physio-logical responses between people is a potentially important component of work team performance, client-therapist relationships, and other types of human interaction. This study addressed several problems: What statistical models are viable for identifying synchronization for loosely coupled human systems? How is the level of synchronization related to psychosocial variables such as empathy, subjective ratings of workload, and actual performance? Participants were 70 undergraduates who worked in pairs on a vigilance dual task in which they watched a virtual reality security camera, rang a bell when they saw the target intruder, and completed a jig-saw puzzle. Event rates either increased or decreased during the 90 min work period. The average R2 values for each person were .66, .66, .62, and .53 for the linear autoregressive model, linear autoregressive model with a synchronization component, the nonlinear autoregressive model, and the nonlinear autoregressive model with a synchronization component, respectively. All models were more accurate at a lag of 20 sec compared to 50 sec or customized lag lengths. Although the linear models were more accurate overall, the nonlinear synchronization parameters were more often related to psychological variables and performance. In particular, greater synchronization was observed with the nonlinear model when the target event rate increased, compared to when it decreased, which was expected from the general theory of synchronization. Nonlinear models were also more effective for uncovering inhibitory or dampening relationships between the co-workers as well as mutually excitatory relationships. Future research should explore the comparative model results for tasks that induce higher levels of synchronization and involve different types of internal group coordination.

  4. Synchronization of Boolean Networks with Different Update Schemes.

    PubMed

    Zhang, Hao; Wang, Xingyuan; Lin, Xiaohui

    2014-01-01

    In this paper, the synchronizations of Boolean networks with different update schemes (synchronized Boolean networks and asynchronous Boolean networks) are investigated. All nodes in Boolean network are represented in terms of semi-tensor product. First, we give the concept of inner synchronization and observe that all nodes in a Boolean network are synchronized with each other. Second, we investigate the outer synchronization between a driving Boolean network and a corresponding response Boolean network. We provide not only the concept of traditional complete synchronization, but also the anti-synchronization and get the anti-synchronization in simulation. Third, we extend the outer synchronization to asynchronous Boolean network and get the complete synchronization between an asynchronous Boolean network and a response Boolean network. Consequently, theorems for synchronization of Boolean networks and asynchronous Boolean networks are derived. Examples are provided to show the correctness of our theorems.

  5. Synchronous Behavior of Two Coupled Biological Neurons

    SciTech Connect

    Elson, R.C.; Selverston, A.I.; Elson, R.C.; Selverston, A.I.; Huerta, R.; Rulkov, N.F.; Rabinovich, M.I.; Abarbanel, H.D.; Selverston, A.I.; Huerta, R.; Abarbanel, H.D.

    1998-12-01

    We report experimental studies of synchronization phenomena in a pair of biological neurons that interact through naturally occurring, electrical coupling. When these neurons generate irregular bursts of spikes, the natural coupling synchronizes slow oscillations of membrane potential, but not the fast spikes. By adding artificial electrical coupling we studied transitions between synchrony and asynchrony in both slow oscillations and fast spikes. We discuss the dynamics of bursting and synchronization in living neurons with distributed functional morphology. {copyright} {ital 1998} {ital The American Physical Society}

  6. Synchronization of eukaryotic cells by periodic forcing.

    PubMed

    Battogtokh, Dorjsuren; Aihara, Kazuyuki; Tyson, John J

    2006-04-14

    We study a cell population described by a minimal mathematical model of the eukaryotic cell cycle subject to periodic forcing that simultaneously perturbs the dynamics of the cell cycle engine and cell growth, and we show that the population can be synchronized in a mode-locked regime. By simplifying the model to two variables, for the phase of cell cycle progression and the mass of the cell, we calculate the Lyapunov exponents to obtain the parameter window for synchronization. We also discuss the effects of intrinsic mitotic fluctuations, asymmetric division, and weak mutual coupling on the pace of synchronization. PMID:16712125

  7. Multistability of synchronous regimes in rotator ensembles.

    PubMed

    Kryukov, A K; Petrov, V S; Osipov, G V; Kurths, J

    2015-12-01

    We study collective dynamics in rotator ensembles and focus on the multistability of synchronous regimes in a chain of coupled rotators. We provide a detailed analysis of the number of coexisting regimes and estimate in particular, the synchronization boundary for different types of individual frequency distribution. The number of wave-based regimes coexisting for the same parameters and its dependence on the chain length are estimated. We give an analytical estimation for the synchronization frequency of the in-phase regime for a uniform individual frequency distribution. PMID:26723160

  8. Quantum Clock Synchronization with a Single Qudit

    PubMed Central

    Tavakoli, Armin; Cabello, Adán; Żukowski, Marek; Bourennane, Mohamed

    2015-01-01

    Clock synchronization for nonfaulty processes in multiprocess networks is indispensable for a variety of technologies. A reliable system must be able to resynchronize the nonfaulty processes upon some components failing causing the distribution of incorrect or conflicting information in the network. The task of synchronizing such networks is related to Byzantine agreement (BA), which can classically be solved using recursive algorithms if and only if less than one-third of the processes are faulty. Here we introduce a nonrecursive quantum algorithm, based on a quantum solution of the detectable BA, which achieves clock synchronization in the presence of arbitrary many faulty processes by using only a single quantum system. PMID:25613754

  9. Quantum clock synchronization with a single qudit.

    PubMed

    Tavakoli, Armin; Cabello, Adán; Żukowski, Marek; Bourennane, Mohamed

    2015-01-23

    Clock synchronization for nonfaulty processes in multiprocess networks is indispensable for a variety of technologies. A reliable system must be able to resynchronize the nonfaulty processes upon some components failing causing the distribution of incorrect or conflicting information in the network. The task of synchronizing such networks is related to Byzantine agreement (BA), which can classically be solved using recursive algorithms if and only if less than one-third of the processes are faulty. Here we introduce a nonrecursive quantum algorithm, based on a quantum solution of the detectable BA, which achieves clock synchronization in the presence of arbitrary many faulty processes by using only a single quantum system.

  10. Quantum Clock Synchronization with a Single Qudit

    NASA Astrophysics Data System (ADS)

    Tavakoli, Armin; Cabello, Adán; Żukowski, Marek; Bourennane, Mohamed

    2015-01-01

    Clock synchronization for nonfaulty processes in multiprocess networks is indispensable for a variety of technologies. A reliable system must be able to resynchronize the nonfaulty processes upon some components failing causing the distribution of incorrect or conflicting information in the network. The task of synchronizing such networks is related to Byzantine agreement (BA), which can classically be solved using recursive algorithms if and only if less than one-third of the processes are faulty. Here we introduce a nonrecursive quantum algorithm, based on a quantum solution of the detectable BA, which achieves clock synchronization in the presence of arbitrary many faulty processes by using only a single quantum system.

  11. Synchronization regimes in conjugate coupled chaotic oscillators.

    PubMed

    Karnatak, Rajat; Ramaswamy, Ram; Prasad, Awadhesh

    2009-09-01

    Nonlinear oscillators that are mutually coupled via dissimilar (or conjugate) variables display distinct regimes of synchronous behavior. In identical chaotic oscillators diffusively coupled in this manner, complete synchronization occurs only by chaos suppression when the coupled subsystems drive each other into a regime of periodic dynamics. Furthermore, the coupling does not vanish but acts as an "internal" drive. When the oscillators are mismatched, phase synchronization occurs, while in a master slave configuration, generalized synchrony results. These effects are demonstrated in a system of coupled chaotic Rossler oscillators.

  12. Paths to synchronization on complex networks.

    PubMed

    Gómez-Gardeñes, Jesús; Moreno, Yamir; Arenas, Alex

    2007-01-19

    The understanding of emergent collective phenomena in natural and social systems has driven the interest of scientists from different disciplines during decades. Among these phenomena, the synchronization of a set of interacting individuals or units has been intensively studied because of its ubiquity in the natural world. In this Letter, we show how for fixed coupling strengths local patterns of synchronization emerge differently in homogeneous and heterogeneous complex networks, driving the process towards a certain global synchronization degree following different paths. The dependence of the dynamics on the coupling strength and on the topology is unveiled. This study provides a new perspective and tools to understand this emerging phenomena. PMID:17358685

  13. Enhancing synchronization based on complex gradient networks.

    PubMed

    Wang, Xingang; Lai, Ying-Cheng; Lai, Choy Heng

    2007-05-01

    The ubiquity of scale-free networks in nature and technological applications and the finding that such networks may be more difficult to synchronize than homogeneous networks pose an interesting phenomenon for study in network science. We argue and demonstrate that, in the presence of some proper gradient fields, scale-free networks can be more synchronizable than homogeneous networks. The gradient structure can in fact arise naturally in any weighted and asymmetrical networks; based on this we propose a coupling scheme that permits effective synchronous dynamics on the network. The synchronization scheme is verified by eigenvalue analysis and by direct numerical simulations using networks of nonidentical chaotic oscillators. PMID:17677146

  14. Conditional ramsey spectroscopy with synchronized atoms.

    PubMed

    Xu, Minghui; Holland, M J

    2015-03-13

    We investigate Ramsey spectroscopy performed on a synchronized ensemble of two-level atoms. The synchronization is induced by the collective coupling of the atoms to a heavily damped mode of an optical cavity. We show that, in principle, with this synchronized system it is possible to observe Ramsey fringes indefinitely, even in the presence of spontaneous emission and other sources of individual-atom dephasing. This could have important consequences for atomic clocks and a wide range of precision metrology applications. PMID:25815931

  15. Using GLONASS signal for clock synchronization

    NASA Technical Reports Server (NTRS)

    Gouzhva, Yuri G.; Gevorkyan, Arvid G.; Bogdanov, Pyotr P.; Ovchinnikov, Vitaly V.

    1994-01-01

    Although in accuracy parameters GLONASS is correlated with GPS, using GLONASS signals for high-precision clock synchronization was, up to the recent time, of limited utility due to the lack of specialized time receivers. In order to improve this situation, in late 1992 the Russian Institute of Radionavigation and Time (RMT) began to develop a GLONASS time receiver using as a basis the airborne ASN-16 receiver. This paper presents results of estimating user clock synchronization accuracy via GLONASS signals using ASN-16 receiver in the direct synchronization and common-view modes.

  16. Synchronization Phenomena and Epoch Filter of Electroencephalogram

    NASA Astrophysics Data System (ADS)

    Matani, Ayumu

    Nonlinear electrophysiological synchronization phenomena in the brain, such as event-related (de)synchronization, long distance synchronization, and phase-reset, have received much attention in neuroscience over the last decade. These phenomena contain more electrical than physiological keywords and actually require electrical techniques to capture with electroencephalography (EEG). For instance, epoch filters, which have just recently been proposed, allow us to investigate such phenomena. Moreover, epoch filters are still developing and would hopefully generate a new paradigm in neuroscience from an electrical engineering viewpoint. Consequently, electrical engineers could be interested in EEG once again or from now on.

  17. Synchronization System for Next Generation Light Sources

    SciTech Connect

    Zavriyev, Anton

    2014-03-27

    An alternative synchronization technique – one that would allow explicit control of the pulse train including its repetition rate and delay is clearly desired. We propose such a scheme. Our method is based on optical interferometry and permits synchronization of the pulse trains generated by two independent mode-locked lasers. As the next generation x-ray sources will be driven by a clock signal derived from a mode-locked optical source, our technique will provide a way to synchronize x-ray probe with the optical pump pulses.

  18. Synchronization Analysis of Nonstationary Bivariate Time Series

    NASA Astrophysics Data System (ADS)

    Kurths, J.

    First the concept of synchronization in coupled complex systems is presented and it is shown that synchronization phenomena are abundant in science, nature, engineer- ing etc. We use this concept to treat the inverse problem and to reveal interactions between oscillating systems from observational data. First it is discussed how time varying phases and frequencies can be estimated from time series and second tech- niques for detection and quantification of hidden synchronization is presented. We demonstrate that this technique is effective for the analysis of systems' interrelation from noisy nonstationary bivariate data and provides other insights than traditional cross correlation and spectral analysis. For this, model examples and geophysical data are discussed.

  19. A wireless time synchronized event control system

    NASA Astrophysics Data System (ADS)

    Klug, Robert; Williams, Jonathan; Scheffel, Peter

    2014-05-01

    McQ has developed a wireless, time-synchronized, event control system to control, monitor, and record events with precise timing over large test sites for applications such as high speed rocket sled payload testing. Events of interest may include firing rocket motors and launch sleds, initiating flares, ejecting bombs, ejecting seats, triggering high speed cameras, measuring sled velocity, and triggering events based on a velocity window or other criteria. The system consists of Event Controllers, a Launch Controller, and a wireless network. The Event Controllers can be easily deployed at areas of interest within the test site and maintain sub-microsecond timing accuracy for monitoring sensors, electronically triggering other equipment and events, and providing timing signals to other test equipment. Recorded data and status information is reported over the wireless network to a server and user interface. Over the wireless network, the user interface configures the system based on a user specified mission plan and provides real time command, control, and monitoring of the devices and data. An overview of the system, its features, performance, and potential uses is presented.

  20. Temperature synchronized molecular layer epitaxy

    NASA Astrophysics Data System (ADS)

    Kurabayashi, T.; Nishizawa, J.

    1994-12-01

    This paper reports the first results on a modified molecular layer epitaxy (MLE) technique to deposit epitaxial GaAs films by changing the substrate temperature for alternate TEG (or TMG) and AsH 3 injection. This method of temperature synchronized molecular layer epitaxy (TSMLE) is a new concept for MLE and atomic layer epitaxy (ALE). The growth rates and the doping phenomena showed different characteristics to the conventional methods which were performed at a constant temperature. This method was effective not only for the study of monolayer growth, but also for device application, especially for the heavily doped p-type layer of which carrier concentration is 10 20 cm -3 order. Carbon doped p-type layer was achieved by TMG-AsH 3 TSMLE. The carbon concentration increased by decreasing the temperature during AsH 3 injection and by increasing the temperature during TMG injection. Zn-doped layer was achieved by TEG-AsH 3 TSMLE using DEZn as a dopant gas for p-type layer fabrication. To doped heavily, DEZn injected after AsH 3 injection and the temperature during AsH 3 injection had a suitable value at 393°C.

  1. Transition from anticipatory to lag synchronization via complete synchronization in time-delay systems.

    PubMed

    Senthilkumar, D V; Lakshmanan, M

    2005-01-01

    The existence of anticipatory, complete, and lag synchronization in a single system having two different time delays, that is, feedback delay tau1 and coupling delay tau2, is identified. The transition from anticipatory to complete synchronization and from complete to lag synchronization as a function of coupling delay tau2 with a suitable stability condition is discussed. In particular, it is shown that the stability condition is independent of the delay times tau1 and tau2. Consequently, for a fixed set of parameters, all the three types of synchronizations can be realized. Further, the emergence of exact anticipatory, complete, or lag synchronization from the desynchronized state via approximate synchronization, when one of the system parameters (b2) is varied, is characterized by a minimum of the similarity function and the transition from on-off intermittency via periodic structure in the laminar phase distribution.

  2. Synchronous brain activity across individuals underlies shared psychological perspectives

    PubMed Central

    Lahnakoski, Juha M.; Glerean, Enrico; Jääskeläinen, Iiro P.; Hyönä, Jukka; Hari, Riitta; Sams, Mikko; Nummenmaa, Lauri

    2014-01-01

    For successful communication, we need to understand the external world consistently with others. This task requires sufficiently similar cognitive schemas or psychological perspectives that act as filters to guide the selection, interpretation and storage of sensory information, perceptual objects and events. Here we show that when individuals adopt a similar psychological perspective during natural viewing, their brain activity becomes synchronized in specific brain regions. We measured brain activity with functional magnetic resonance imaging (fMRI) from 33 healthy participants who viewed a 10-min movie twice, assuming once a ‘social’ (detective) and once a ‘non-social’ (interior decorator) perspective to the movie events. Pearson's correlation coefficient was used to derive multisubject voxelwise similarity measures (inter-subject correlations; ISCs) of functional MRI data. We used k-nearest-neighbor and support vector machine classifiers as well as a Mantel test on the ISC matrices to reveal brain areas wherein ISC predicted the participants' current perspective. ISC was stronger in several brain regions—most robustly in the parahippocampal gyrus, posterior parietal cortex and lateral occipital cortex—when the participants viewed the movie with similar rather than different perspectives. Synchronization was not explained by differences in visual sampling of the movies, as estimated by eye gaze. We propose that synchronous brain activity across individuals adopting similar psychological perspectives could be an important neural mechanism supporting shared understanding of the environment. PMID:24936687

  3. Synchronous brain activity across individuals underlies shared psychological perspectives.

    PubMed

    Lahnakoski, Juha M; Glerean, Enrico; Jääskeläinen, Iiro P; Hyönä, Jukka; Hari, Riitta; Sams, Mikko; Nummenmaa, Lauri

    2014-10-15

    For successful communication, we need to understand the external world consistently with others. This task requires sufficiently similar cognitive schemas or psychological perspectives that act as filters to guide the selection, interpretation and storage of sensory information, perceptual objects and events. Here we show that when individuals adopt a similar psychological perspective during natural viewing, their brain activity becomes synchronized in specific brain regions. We measured brain activity with functional magnetic resonance imaging (fMRI) from 33 healthy participants who viewed a 10-min movie twice, assuming once a 'social' (detective) and once a 'non-social' (interior decorator) perspective to the movie events. Pearson's correlation coefficient was used to derive multisubject voxelwise similarity measures (inter-subject correlations; ISCs) of functional MRI data. We used k-nearest-neighbor and support vector machine classifiers as well as a Mantel test on the ISC matrices to reveal brain areas wherein ISC predicted the participants' current perspective. ISC was stronger in several brain regions--most robustly in the parahippocampal gyrus, posterior parietal cortex and lateral occipital cortex--when the participants viewed the movie with similar rather than different perspectives. Synchronization was not explained by differences in visual sampling of the movies, as estimated by eye gaze. We propose that synchronous brain activity across individuals adopting similar psychological perspectives could be an important neural mechanism supporting shared understanding of the environment.

  4. High Efficiency Synchronous Rectification in Spacecraft

    NASA Technical Reports Server (NTRS)

    Krauhamer, S.; Das, R.; Vorperian, V.; White, J.; Bennett, J.; Rogers, D.

    1993-01-01

    This paper examines the implementaion of MOSFETs as synchronous rectifiers which results in a substantial improvement in power processing efficency and therefore may result in significant reduction of spacecraft mass and volum for the same payload.

  5. Controlling synchronous patterns in complex networks.

    PubMed

    Lin, Weijie; Fan, Huawei; Wang, Ying; Ying, Heping; Wang, Xingang

    2016-04-01

    Although the set of permutation symmetries of a complex network could be very large, few of them give rise to stable synchronous patterns. Here we present a general framework and develop techniques for controlling synchronization patterns in complex network of coupled chaotic oscillators. Specifically, according to the network permutation symmetry, we design a small-size and weighted network, namely the control network, and use it to control the large-size complex network by means of pinning coupling. We argue mathematically that for any of the network symmetries, there always exists a critical pinning strength beyond which the unstable synchronous pattern associated to this symmetry can be stabilized. The feasibility of the control method is verified by numerical simulations of both artificial and real-world networks and demonstrated experimentally in systems of coupled chaotic circuits. Our studies show the controllability of synchronous patterns in complex networks of coupled chaotic oscillators.

  6. Synchronization in chaotic oscillators by cyclic coupling

    NASA Astrophysics Data System (ADS)

    Olusola, O. I.; Njah, A. N.; Dana, S. K.

    2013-07-01

    We introduce a type of cyclic coupling to investigate synchronization of chaotic oscillators. We derive analytical solutions of the critical coupling for stable synchronization under the cyclic coupling for the Rössler system and the Lorenz oscillator as paradigmatic illustration. Based on the master stability function (MSF) approach, the analytical results on critical coupling are verified numerically. An enhancing effect in terms of lowering the critical coupling or enlarging the synchronization window in a critical coupling space is noticed. The cyclic coupling is also applied in other models, Hindmarsh-Rose model, Sprott system, Chen system and forced Duffing system to confirm the enhancing effect. The cyclic coupling allows tuning of two coupling constants in reverse directions when an optimal control of synchronization is feasible.

  7. Synchronous correlation matrices and Connes' embedding conjecture

    NASA Astrophysics Data System (ADS)

    Dykema, Kenneth J.; Paulsen, Vern

    2016-01-01

    In the work of Paulsen et al. [J. Funct. Anal. (in press); preprint arXiv:1407.6918], the concept of synchronous quantum correlation matrices was introduced and these were shown to correspond to traces on certain C*-algebras. In particular, synchronous correlation matrices arose in their study of various versions of quantum chromatic numbers of graphs and other quantum versions of graph theoretic parameters. In this paper, we develop these ideas further, focusing on the relations between synchronous correlation matrices and microstates. We prove that Connes' embedding conjecture is equivalent to the equality of two families of synchronous quantum correlation matrices. We prove that if Connes' embedding conjecture has a positive answer, then the tracial rank and projective rank are equal for every graph. We then apply these results to more general non-local games.

  8. Method and system for downhole clock synchronization

    DOEpatents

    Hall, David R.; Bartholomew, David B.; Johnson, Monte; Moon, Justin; Koehler, Roger O.

    2006-11-28

    A method and system for use in synchronizing at least two clocks in a downhole network are disclosed. The method comprises determining a total signal latency between a controlling processing element and at least one downhole processing element in a downhole network and sending a synchronizing time over the downhole network to the at least one downhole processing element adjusted for the signal latency. Electronic time stamps may be used to measure latency between processing elements. A system for electrically synchronizing at least two clocks connected to a downhole network comprises a controlling processing element connected to a synchronizing clock in communication over a downhole network with at least one downhole processing element comprising at least one downhole clock. Preferably, the downhole network is integrated into a downhole tool string.

  9. Remote bistatic receiver synchronization using DLL techniques

    NASA Astrophysics Data System (ADS)

    Aguasca, A.; Broquetas, A.; Fdez de Muniain, J.; Ambros, A.

    An experimental staggered pulse repetition frequency synchronizer, based on a delay-lock loop (DLL) was tested using a transmitter signal simulator that simulates the staggering sequence windowed by the antenna beam. The measured system performance ensures synchronization with a 30-ms direct illumination, with an accumulated delay error in the order of the resolution cell positioning error in range. An artificial time expansion of the received pulses is performed in order to reduce the acquisition time synchronization. A bistatic radar synchronization method based on DLL was is analyzed by linearization of the different parts and signals involved. The parameters that degrade system performance are obtained. And some solutions are represented in order to minimize their effects.

  10. Dynamic visuomotor synchronization: quantification of predictive timing.

    PubMed

    Maruta, Jun; Heaton, Kristin J; Kryskow, Elisabeth M; Maule, Alexis L; Ghajar, Jamshid

    2013-03-01

    When a moving target is tracked visually, spatial and temporal predictions are used to circumvent the neural delay required for the visuomotor processing. In particular, the internally generated predictions must be synchronized with the external stimulus during continuous tracking. We examined the utility of a circular visual-tracking paradigm for assessment of predictive timing, using normal human subjects. Disruptions of gaze-target synchronization were associated with anticipatory saccades that caused the gaze to be temporarily ahead of the target along the circular trajectory. These anticipatory saccades indicated preserved spatial prediction but suggested impaired predictive timing. We quantified gaze-target synchronization with several indices, whose distributions across subjects were such that instances of extremely poor performance were identifiable outside the margin of error determined by test-retest measures. Because predictive timing is an important element of attention functioning, the visual-tracking paradigm and dynamic synchronization indices described here may be useful for attention assessment.

  11. Optimal Synchronization of a Memristive Chaotic Circuit

    NASA Astrophysics Data System (ADS)

    Kountchou, Michaux; Louodop, Patrick; Bowong, Samuel; Fotsin, Hilaire; Kurths, Jurgen

    2016-06-01

    This paper deals with the problem of optimal synchronization of two identical memristive chaotic systems. We first study some basic dynamical properties and behaviors of a memristor oscillator with a simple topology. An electronic circuit (analog simulator) is proposed to investigate the dynamical behavior of the system. An optimal synchronization strategy based on the controllability functions method with a mixed cost functional is investigated. A finite horizon is explicitly computed such that the chaos synchronization is achieved at an established time. Numerical simulations are presented to verify the effectiveness of the proposed synchronization strategy. Pspice analog circuit implementation of the complete master-slave-controller systems is also presented to show the feasibility of the proposed scheme.

  12. Competition and cooperation in a synchronous bushcricket chorus

    PubMed Central

    Hartbauer, M.; Haitzinger, L.; Kainz, M.; Römer, H.

    2014-01-01

    Synchronous signalling within choruses of the same species either emerges from cooperation or competition. In our study on the katydid Mecopoda elongata, we aim to identify mechanisms driving evolution towards synchrony. The increase of signal amplitude owing to synchronous signalling and the preservation of a conspecific signal period may represent cooperative mechanisms, whereas chorus synchrony may also result from the preference of females for leading signals and the resulting competition for the leader role. We recorded the timing of signals and the resulting communal signal amplitudes in small choruses and performed female choice experiments to identify such mechanisms. Males frequently timed their signals either as leader or follower with an average time lag of about 70 ms. Females selected males in such choruses on the basis of signal order and signal duration. Two-choice experiments revealed a time lag of only 70 ms to bias mate choice in favour of the leader. Furthermore, a song model with a conspecific signal period of 2 s was more attractive than a song model with an irregular or longer and shorter than average signal period. Owing to a high degree of overlap and plasticity of signals produced in ‘four male choruses’, peak and root mean square amplitudes increased by about 7 dB relative to lone singers. Modelling active space of synchronous males and solo singing males revealed a strongly increased broadcast area of synchronous signallers, but a slightly reduced per capita mating possibility compared with lone singers. These results suggest a strong leader preference of females as the ultimate causation of inter-male competition for timing signals as leader. The emerging synchrony increases the amplitude of signals produced in a chorus and has the potential to compensate a reduction of mating advantage in a chorus. We discuss a possible fitness benefit of males gained through a beacon effect and the possibility that signalling as follower is

  13. Competition and cooperation in a synchronous bushcricket chorus.

    PubMed

    Hartbauer, M; Haitzinger, L; Kainz, M; Römer, H

    2014-10-01

    Synchronous signalling within choruses of the same species either emerges from cooperation or competition. In our study on the katydid Mecopoda elongata, we aim to identify mechanisms driving evolution towards synchrony. The increase of signal amplitude owing to synchronous signalling and the preservation of a conspecific signal period may represent cooperative mechanisms, whereas chorus synchrony may also result from the preference of females for leading signals and the resulting competition for the leader role. We recorded the timing of signals and the resulting communal signal amplitudes in small choruses and performed female choice experiments to identify such mechanisms. Males frequently timed their signals either as leader or follower with an average time lag of about 70 ms. Females selected males in such choruses on the basis of signal order and signal duration. Two-choice experiments revealed a time lag of only 70 ms to bias mate choice in favour of the leader. Furthermore, a song model with a conspecific signal period of 2 s was more attractive than a song model with an irregular or longer and shorter than average signal period. Owing to a high degree of overlap and plasticity of signals produced in 'four male choruses', peak and root mean square amplitudes increased by about 7 dB relative to lone singers. Modelling active space of synchronous males and solo singing males revealed a strongly increased broadcast area of synchronous signallers, but a slightly reduced per capita mating possibility compared with lone singers. These results suggest a strong leader preference of females as the ultimate causation of inter-male competition for timing signals as leader. The emerging synchrony increases the amplitude of signals produced in a chorus and has the potential to compensate a reduction of mating advantage in a chorus. We discuss a possible fitness benefit of males gained through a beacon effect and the possibility that signalling as follower is

  14. Flagellar Synchronization Independent of Hydrodynamic Interactions

    NASA Astrophysics Data System (ADS)

    Friedrich, Benjamin M.; Jülicher, Frank

    2012-09-01

    Inspired by the coordinated beating of the flagellar pair of the green algae Chlamydomonas, we study theoretically a simple, mirror-symmetric swimmer, which propels itself at low Reynolds number by a revolving motion of a pair of spheres. We show that perfect synchronization between these two driven spheres can occur due to the motion of the swimmer and local hydrodynamic friction forces. Hydrodynamic interactions, though crucial for net propulsion, contribute little to synchronization for this free-moving swimmer.

  15. Synchronized Flashing Lights For Approach And Docking

    NASA Technical Reports Server (NTRS)

    Book, Michael L.; Howard, Richard T.; Bryan, Thomas C.; Bell, Joseph L.

    1994-01-01

    Proposed optoelectronic system for guiding vehicle in approaching and docking with another vehicle includes active optical targets (flashing lights) on approached vehicle synchronized with sensor and image-processing circuitry on approaching vehicle. Conceived for use in automated approach and docking of two spacecraft. Also applicable on Earth to manually controlled and automated approach and docking of land vehicles, aircraft, boats, and submersible vehicles, using GPS or terrestrial broadcast time signals for synchronization. Principal advantage: optical power reduced, with consequent enhancement of safety.

  16. Experimental network synchronization via plastic optical fiber

    NASA Astrophysics Data System (ADS)

    Arellano-Delgado, A.; López-Gutiérrez, R. M.; Cruz-Hernández, C.; Posadas-Castillo, C.; Cardoza-Avendaño, L.; Serrano-Guerrero, H.

    2013-03-01

    In this paper, network synchronization of coupled Chua's circuits in star configuration is experimentally studied. In particular, plastic optical fiber (POF) is used in the network like communication channels among chaotic nodes to achieve synchronization. The master signal is sent to multiple slaves through a fiber optical coupler with corresponding electrical/optical and optical/electrical stages. An application to encrypted chaotic communication to transmit analogical signal and image messages to multiple receivers is also given.

  17. Empirical synchronized flow in oversaturated city traffic

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.; Hemmerle, Peter; Koller, Micha; Hermanns, Gerhard; Klenov, Sergey L.; Rehborn, Hubert; Schreckenberg, Michael

    2014-09-01

    Based on a study of anonymized GPS probe vehicle traces measured by personal navigation devices in vehicles randomly distributed in city traffic, empirical synchronized flow in oversaturated city traffic has been revealed. It turns out that real oversaturated city traffic resulting from speed breakdown in a city in most cases can be considered random spatiotemporal alternations between sequences of moving queues and synchronized flow patterns in which the moving queues do not occur.

  18. Automated ILA design for synchronous sequential circuits

    NASA Technical Reports Server (NTRS)

    Liu, M. N.; Liu, K. Z.; Maki, G. K.; Whitaker, S. R.

    1991-01-01

    An iterative logic array (ILA) architecture for synchronous sequential circuits is presented. This technique utilizes linear algebra to produce the design equations. The ILA realization of synchronous sequential logic can be fully automated with a computer program. A programmable design procedure is proposed to fullfill the design task and layout generation. A software algorithm in the C language has been developed and tested to generate 1 micron CMOS layouts using the Hewlett-Packard FUNGEN module generator shell.

  19. Synchronization of coupled large-scale Boolean networks

    SciTech Connect

    Li, Fangfei

    2014-03-15

    This paper investigates the complete synchronization and partial synchronization of two large-scale Boolean networks. First, the aggregation algorithm towards large-scale Boolean network is reviewed. Second, the aggregation algorithm is applied to study the complete synchronization and partial synchronization of large-scale Boolean networks. Finally, an illustrative example is presented to show the efficiency of the proposed results.

  20. An algorithm for the automatic synchronization of Omega receivers

    NASA Technical Reports Server (NTRS)

    Stonestreet, W. M.; Marzetta, T. L.

    1977-01-01

    The Omega navigation system and the requirement for receiver synchronization are discussed. A description of the synchronization algorithm is provided. The numerical simulation and its associated assumptions were examined and results of the simulation are presented. The suggested form of the synchronization algorithm and the suggested receiver design values were surveyed. A Fortran of the synchronization algorithm used in the simulation was also included.

  1. Optimal synchronization of directed complex networks

    NASA Astrophysics Data System (ADS)

    Skardal, Per Sebastian; Taylor, Dane; Sun, Jie

    2016-09-01

    We study optimal synchronization of networks of coupled phase oscillators. We extend previous theory for optimizing the synchronization properties of undirected networks to the important case of directed networks. We derive a generalized synchrony alignment function that encodes the interplay between the network structure and the oscillators' natural frequencies and serves as an objective measure for the network's degree of synchronization. Using the generalized synchrony alignment function, we show that a network's synchronization properties can be systematically optimized. This framework also allows us to study the properties of synchrony-optimized networks, and in particular, investigate the role of directed network properties such as nodal in- and out-degrees. For instance, we find that in optimally rewired networks, the heterogeneity of the in-degree distribution roughly matches the heterogeneity of the natural frequency distribution, but no such relationship emerges for out-degrees. We also observe that a network's synchronization properties are promoted by a strong correlation between the nodal in-degrees and the natural frequencies of oscillators, whereas the relationship between the nodal out-degrees and the natural frequencies has comparatively little effect. This result is supported by our theory, which indicates that synchronization is promoted by a strong alignment of the natural frequencies with the left singular vectors corresponding to the largest singular values of the Laplacian matrix.

  2. Frame Synchronization Without Attached Sync Markers

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon

    2011-01-01

    We describe a method to synchronize codeword frames without making use of attached synchronization markers (ASMs). Instead, the synchronizer identifies the code structure present in the received symbols, by operating the decoder for a handful of iterations at each possible symbol offset and forming an appropriate metric. This method is computationally more complex and doesn't perform as well as frame synchronizers that utilize an ASM; nevertheless, the new synchronizer acquires frame synchronization in about two seconds when using a 600 kbps software decoder, and would take about 15 milliseconds on prototype hardware. It also eliminates the need for the ASMs, which is an attractive feature for short uplink codes whose coding gain would be diminished by the overheard of ASM bits. The lack of ASMs also would simplify clock distribution for the AR4JA low-density parity-check (LDPC) codes and adds a small amount to the coding gain as well (up to 0.2 dB).

  3. Synchronization in a semiclassical Kuramoto model.

    PubMed

    Hermoso de Mendoza, Ignacio; Pachón, Leonardo A; Gómez-Gardeñes, Jesús; Zueco, David

    2014-11-01

    Synchronization is a ubiquitous phenomenon occurring in social, biological, and technological systems when the internal rythms of their constituents are adapted to be in unison as a result of their coupling. This natural tendency towards dynamical consensus has spurred a large body of theoretical and experimental research in recent decades. The Kuramoto model constitutes the most studied and paradigmatic framework in which to study synchronization. In particular, it shows how synchronization appears as a phase transition from a dynamically disordered state at some critical value for the coupling strength between the interacting units. The critical properties of the synchronization transition of this model have been widely studied and many variants of its formulations have been considered to address different physical realizations. However, the Kuramoto model has been studied only within the domain of classical dynamics, thus neglecting its applications for the study of quantum synchronization phenomena. Based on a system-bath approach and within the Feynman path-integral formalism, we derive equations for the Kuramoto model by taking into account the first quantum fluctuations. We also analyze its critical properties, the main result being the derivation of the value for the synchronization onset. This critical coupling increases its value as quantumness increases, as a consequence of the possibility of tunneling that quantum fluctuations provide. PMID:25493855

  4. Synchronization of mobile chaotic oscillator networks

    NASA Astrophysics Data System (ADS)

    Fujiwara, Naoya; Kurths, Jürgen; Díaz-Guilera, Albert

    2016-09-01

    We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.

  5. Quantum synchronization in an optomechanical system based on Lyapunov control

    NASA Astrophysics Data System (ADS)

    Li, Wenlin; Li, Chong; Song, Heshan

    2016-06-01

    We extend the concepts of quantum complete synchronization and phase synchronization, which were proposed in A. Mari et al., Phys. Rev. Lett. 111, 103605 (2013), 10.1103/PhysRevLett.111.103605, to more widespread quantum generalized synchronization. Generalized synchronization can be considered a necessary condition or a more flexible derivative of complete synchronization, and its criterion and synchronization measure are proposed and analyzed in this paper. As examples, we consider two typical generalized synchronizations in a designed optomechanical system. Unlike the effort to construct a special coupling synchronization system, we purposefully design extra control fields based on Lyapunov control theory. We find that the Lyapunov function can adapt to more flexible control objectives, which is more suitable for generalized synchronization control, and the control fields can be achieved simply with a time-variant voltage. Finally, the existence of quantum entanglement in different generalized synchronizations is also discussed.

  6. Synchronization Design and Error Analysis of Near-Infrared Cameras in Surgical Navigation.

    PubMed

    Cai, Ken; Yang, Rongqian; Chen, Huazhou; Huang, Yizhou; Wen, Xiaoyan; Huang, Wenhua; Ou, Shanxing

    2016-01-01

    The accuracy of optical tracking systems is important to scientists. With the improvements reported in this regard, such systems have been applied to an increasing number of operations. To enhance the accuracy of these systems further and to reduce the effect of synchronization and visual field errors, this study introduces a field-programmable gate array (FPGA)-based synchronization control method, a method for measuring synchronous errors, and an error distribution map in field of view. Synchronization control maximizes the parallel processing capability of FPGA, and synchronous error measurement can effectively detect the errors caused by synchronization in an optical tracking system. The distribution of positioning errors can be detected in field of view through the aforementioned error distribution map. Therefore, doctors can perform surgeries in areas with few positioning errors, and the accuracy of optical tracking systems is considerably improved. The system is analyzed and validated in this study through experiments that involve the proposed methods, which can eliminate positioning errors attributed to asynchronous cameras and different fields of view. PMID:26573644

  7. Synchronization Design and Error Analysis of Near-Infrared Cameras in Surgical Navigation.

    PubMed

    Cai, Ken; Yang, Rongqian; Chen, Huazhou; Huang, Yizhou; Wen, Xiaoyan; Huang, Wenhua; Ou, Shanxing

    2016-01-01

    The accuracy of optical tracking systems is important to scientists. With the improvements reported in this regard, such systems have been applied to an increasing number of operations. To enhance the accuracy of these systems further and to reduce the effect of synchronization and visual field errors, this study introduces a field-programmable gate array (FPGA)-based synchronization control method, a method for measuring synchronous errors, and an error distribution map in field of view. Synchronization control maximizes the parallel processing capability of FPGA, and synchronous error measurement can effectively detect the errors caused by synchronization in an optical tracking system. The distribution of positioning errors can be detected in field of view through the aforementioned error distribution map. Therefore, doctors can perform surgeries in areas with few positioning errors, and the accuracy of optical tracking systems is considerably improved. The system is analyzed and validated in this study through experiments that involve the proposed methods, which can eliminate positioning errors attributed to asynchronous cameras and different fields of view.

  8. Nonlinear Chemical Dynamics and Synchronization

    NASA Astrophysics Data System (ADS)

    Li, Ning

    Alan Turing's work on morphogenesis, more than half a century ago, continues to motivate and inspire theoretical and experimental biologists even today. That said, there are very few experimental systems for which Turing's theory is applicable. In this thesis we present an experimental reaction-diffusion system ideally suited for testing Turing's ideas in synthetic "cells" consisting of microfluidically produced surfactant-stabilized emulsions in which droplets containing the Belousov-Zhabotinsky (BZ) oscillatory chemical reactants are dispersed in oil. The BZ reaction has become the prototype of nonlinear dynamics in chemistry and a preferred system for exploring the behavior of coupled nonlinear oscillators. Our system consists of a surfactant stabilized monodisperse emulsion of drops of aqueous BZ solution dispersed in a continuous phase of oil. In contrast to biology, here the chemistry is understood, rate constants are measured and interdrop coupling is purely diffusive. We explore a large set of parameters through control of rate constants, drop size, spacing, and spatial arrangement of the drops in lines and rings in one-dimension (1D) and hexagonal arrays in two-dimensions (2D). The Turing model is regarded as a metaphor for morphogenesis in biology but not for prediction. Here, we develop a quantitative and falsifiable reaction-diffusion model that we experimentally test with synthetic cells. We quantitatively establish the extent to which the Turing model in 1D describes both stationary pattern formation and temporal synchronization of chemical oscillators via reaction-diffusion and in 2D demonstrate that chemical morphogenesis drives physical differentiation in synthetic cells.

  9. Markers of criticality in phase synchronization.

    PubMed

    Botcharova, Maria; Farmer, Simon F; Berthouze, Luc

    2014-01-01

    The concept of the brain as a critical dynamical system is very attractive because systems close to criticality are thought to maximize their dynamic range of information processing and communication. To date, there have been two key experimental observations in support of this hypothesis: (i) neuronal avalanches with power law distribution of size and (ii) long-range temporal correlations (LRTCs) in the amplitude of neural oscillations. The case for how these maximize dynamic range of information processing and communication is still being made and because a significant substrate for information coding and transmission is neural synchrony it is of interest to link synchronization measures with those of criticality. We propose a framework for characterizing criticality in synchronization based on an analysis of the moment-to-moment fluctuations of phase synchrony in terms of the presence of LRTCs. This framework relies on an estimation of the rate of change of phase difference and a set of methods we have developed to detect LRTCs. We test this framework against two classical models of criticality (Ising and Kuramoto) and recently described variants of these models aimed to more closely represent human brain dynamics. From these simulations we determine the parameters at which these systems show evidence of LRTCs in phase synchronization. We demonstrate proof of principle by analysing pairs of human simultaneous EEG and EMG time series, suggesting that LRTCs of corticomuscular phase synchronization can be detected in the resting state and experimentally manipulated. The existence of LRTCs in fluctuations of phase synchronization suggests that these fluctuations are governed by non-local behavior, with all scales contributing to system behavior. This has important implications regarding the conditions under which one should expect to see LRTCs in phase synchronization. Specifically, brain resting states may exhibit LRTCs reflecting a state of readiness facilitating

  10. Markers of criticality in phase synchronization

    PubMed Central

    Botcharova, Maria; Farmer, Simon F.; Berthouze, Luc

    2014-01-01

    The concept of the brain as a critical dynamical system is very attractive because systems close to criticality are thought to maximize their dynamic range of information processing and communication. To date, there have been two key experimental observations in support of this hypothesis: (i) neuronal avalanches with power law distribution of size and (ii) long-range temporal correlations (LRTCs) in the amplitude of neural oscillations. The case for how these maximize dynamic range of information processing and communication is still being made and because a significant substrate for information coding and transmission is neural synchrony it is of interest to link synchronization measures with those of criticality. We propose a framework for characterizing criticality in synchronization based on an analysis of the moment-to-moment fluctuations of phase synchrony in terms of the presence of LRTCs. This framework relies on an estimation of the rate of change of phase difference and a set of methods we have developed to detect LRTCs. We test this framework against two classical models of criticality (Ising and Kuramoto) and recently described variants of these models aimed to more closely represent human brain dynamics. From these simulations we determine the parameters at which these systems show evidence of LRTCs in phase synchronization. We demonstrate proof of principle by analysing pairs of human simultaneous EEG and EMG time series, suggesting that LRTCs of corticomuscular phase synchronization can be detected in the resting state and experimentally manipulated. The existence of LRTCs in fluctuations of phase synchronization suggests that these fluctuations are governed by non-local behavior, with all scales contributing to system behavior. This has important implications regarding the conditions under which one should expect to see LRTCs in phase synchronization. Specifically, brain resting states may exhibit LRTCs reflecting a state of readiness facilitating

  11. Markers of criticality in phase synchronization.

    PubMed

    Botcharova, Maria; Farmer, Simon F; Berthouze, Luc

    2014-01-01

    The concept of the brain as a critical dynamical system is very attractive because systems close to criticality are thought to maximize their dynamic range of information processing and communication. To date, there have been two key experimental observations in support of this hypothesis: (i) neuronal avalanches with power law distribution of size and (ii) long-range temporal correlations (LRTCs) in the amplitude of neural oscillations. The case for how these maximize dynamic range of information processing and communication is still being made and because a significant substrate for information coding and transmission is neural synchrony it is of interest to link synchronization measures with those of criticality. We propose a framework for characterizing criticality in synchronization based on an analysis of the moment-to-moment fluctuations of phase synchrony in terms of the presence of LRTCs. This framework relies on an estimation of the rate of change of phase difference and a set of methods we have developed to detect LRTCs. We test this framework against two classical models of criticality (Ising and Kuramoto) and recently described variants of these models aimed to more closely represent human brain dynamics. From these simulations we determine the parameters at which these systems show evidence of LRTCs in phase synchronization. We demonstrate proof of principle by analysing pairs of human simultaneous EEG and EMG time series, suggesting that LRTCs of corticomuscular phase synchronization can be detected in the resting state and experimentally manipulated. The existence of LRTCs in fluctuations of phase synchronization suggests that these fluctuations are governed by non-local behavior, with all scales contributing to system behavior. This has important implications regarding the conditions under which one should expect to see LRTCs in phase synchronization. Specifically, brain resting states may exhibit LRTCs reflecting a state of readiness facilitating

  12. Synchronization controller design of two coupling permanent magnet synchronous motors system with nonlinear constraints.

    PubMed

    Deng, Zhenhua; Shang, Jing; Nian, Xiaohong

    2015-11-01

    In this paper, two coupling permanent magnet synchronous motors system with nonlinear constraints is studied. First of all, the mathematical model of the system is established according to the engineering practices, in which the dynamic model of motor and the nonlinear coupling effect between two motors are considered. In order to keep the two motors synchronization, a synchronization controller based on load observer is designed via cross-coupling idea and interval matrix. Moreover, speed, position and current signals of two motor all are taken as self-feedback signal as well as cross-feedback signal in the proposed controller, which is conducive to improving the dynamical performance and the synchronization performance of the system. The proposed control strategy is verified by simulation via Matlab/Simulink program. The simulation results show that the proposed control method has a better control performance, especially synchronization performance, than that of the conventional PI controller.

  13. Spatial synchronization using watermark key structure

    NASA Astrophysics Data System (ADS)

    Lin, Eugene T.; Delp, Edward J., III

    2004-06-01

    Recently, we proposed a method for constructing a template for efficient temporal synchronization in video watermarking. Our temporal synchronization method uses a state machine key generator for producing the watermark embedded in successive frames of video. A feature extractor allows the watermark key schedule to be content dependent, increasing the difficulty of copy and ownership attacks. It was shown that efficient synchronization can be achieved by adding temporal redundancy into the key schedule. In this paper, we explore and extend the concepts of our temporal synchronization method to spatial synchronization. The key generator is used to construct the embedded watermark of non-overlapping blocks of the video, creating a tiled structure. The autocorrelation of the tiled watermark contains local maxima or peaks with a grid-like structure, where the distance between the peaks indicates the scale of the watermark and the orientation of the peaks indicate the watermark rotation. Experimental results are obtained using digital image watermarks. Scaling and rotation attacks are investigated.

  14. Disrupted Intrinsic Local Synchronization in Poststroke Aphasia.

    PubMed

    Yang, Mi; Li, Jiao; Yao, Dezhong; Chen, Huafu

    2016-03-01

    Evidence has accumulated from the task-related and task-free (i.e., resting state) studies that alternations of intrinsic neural networks exist in poststroke aphasia (PSA) patients. However, information is lacking on the changes in the local synchronization of spontaneous functional magnetic resonance imaging blood-oxygen level-dependent fluctuations in PSA at rest. We investigated the altered intrinsic local synchronization using regional homogeneity (ReHo) on PSA (n = 17) and age- and sex-matched healthy controls (HCs) (n = 20). We examined the correlations between the abnormal ReHo values and the aphasia severity and language performance in PSA. Compared with HCs, the PSA patients exhibited decreased intrinsic local synchronization in the right lingual gyrus, the left calcarine, the left cuneus, the left superior frontal gyrus (SFG), and the left medial of SFG. The local synchronization (ReHo value) in the left medial of SFG was positively correlated with aphasia severity (r = 0.55, P = 0.027) and the naming scores of Aphasia Battery of Chinese (r = 0.66, P = 0.005). This result is consistent with the important role of this value in language processing even in the resting state. The pathogenesis of PSA may be attributed to abnormal intrinsic local synchronous in multiple brain regions. PMID:26986152

  15. Model bridging chimera state and explosive synchronization

    NASA Astrophysics Data System (ADS)

    Zhang, Xiyun; Bi, Hongjie; Guan, Shuguang; Liu, Jinming; Liu, Zonghua

    2016-07-01

    Global synchronization and partial synchronization are the two distinctive forms of synchronization in coupled oscillators and have been well studied in recent decades. Recent attention on synchronization is focused on the chimera state (CS) and explosive synchronization (ES), but little attention has been paid to their relationship. Here we study this topic by presenting a model to bridge these two phenomena, which consists of two groups of coupled oscillators, and its coupling strength is adaptively controlled by a local order parameter. We find that this model displays either CS or ES in two limits. In between the two limits, this model exhibits both CS and ES, where CS can be observed for a fixed coupling strength and ES appears when the coupling is increased adiabatically. Moreover, we show both theoretically and numerically that there are a variety of CS basin patterns for the case of identical oscillators, depending on the distributions of both the initial order parameters and the initial average phases. This model suggests a way to easily observe CS, in contrast to other models having some (weak or strong) dependence on initial conditions.

  16. Model bridging chimera state and explosive synchronization.

    PubMed

    Zhang, Xiyun; Bi, Hongjie; Guan, Shuguang; Liu, Jinming; Liu, Zonghua

    2016-07-01

    Global synchronization and partial synchronization are the two distinctive forms of synchronization in coupled oscillators and have been well studied in recent decades. Recent attention on synchronization is focused on the chimera state (CS) and explosive synchronization (ES), but little attention has been paid to their relationship. Here we study this topic by presenting a model to bridge these two phenomena, which consists of two groups of coupled oscillators, and its coupling strength is adaptively controlled by a local order parameter. We find that this model displays either CS or ES in two limits. In between the two limits, this model exhibits both CS and ES, where CS can be observed for a fixed coupling strength and ES appears when the coupling is increased adiabatically. Moreover, we show both theoretically and numerically that there are a variety of CS basin patterns for the case of identical oscillators, depending on the distributions of both the initial order parameters and the initial average phases. This model suggests a way to easily observe CS, in contrast to other models having some (weak or strong) dependence on initial conditions. PMID:27575120

  17. Disrupted Intrinsic Local Synchronization in Poststroke Aphasia

    PubMed Central

    Yang, Mi; Li, Jiao; Yao, Dezhong; Chen, Huafu

    2016-01-01

    Abstract Evidence has accumulated from the task-related and task-free (i.e., resting state) studies that alternations of intrinsic neural networks exist in poststroke aphasia (PSA) patients. However, information is lacking on the changes in the local synchronization of spontaneous functional magnetic resonance imaging blood–oxygen level-dependent fluctuations in PSA at rest. We investigated the altered intrinsic local synchronization using regional homogeneity (ReHo) on PSA (n = 17) and age- and sex-matched healthy controls (HCs) (n = 20). We examined the correlations between the abnormal ReHo values and the aphasia severity and language performance in PSA. Compared with HCs, the PSA patients exhibited decreased intrinsic local synchronization in the right lingual gyrus, the left calcarine, the left cuneus, the left superior frontal gyrus (SFG), and the left medial of SFG. The local synchronization (ReHo value) in the left medial of SFG was positively correlated with aphasia severity (r = 0.55, P = 0.027) and the naming scores of Aphasia Battery of Chinese (r = 0.66, P = 0.005). This result is consistent with the important role of this value in language processing even in the resting state. The pathogenesis of PSA may be attributed to abnormal intrinsic local synchronous in multiple brain regions. PMID:26986152

  18. Synchronization in time-varying networks.

    PubMed

    Kohar, Vivek; Ji, Peng; Choudhary, Anshul; Sinha, Sudeshna; Kurths, Jüergen

    2014-08-01

    We study the stability of the synchronized state in time-varying complex networks using the concept of basin stability, which is a nonlocal and nonlinear measure of stability that can be easily applied to high-dimensional systems [P. J. Menck, J. Heitzig, N. Marwan, and J. Kurths, Nature Phys. 9, 89 (2013)]. The time-varying character is included by stochastically rewiring each link with the average frequency f. We find that the time taken to reach synchronization is lowered and the stability range of the synchronized state increases considerably in dynamic networks. Further we uncover that small-world networks are much more sensitive to link changes than random ones, with the time-varying character of the network having a significant effect at much lower rewiring frequencies. At very high rewiring frequencies, random networks perform better than small-world networks and the synchronized state is stable over a much wider window of coupling strengths. Lastly we show that the stability range of the synchronized state may be quite different for small and large perturbations, and so the linear stability analysis and the basin stability criterion provide complementary indicators of stability. PMID:25215786

  19. Stimulus-induced visual cortical networks are recapitulated by spontaneous local and interareal synchronization

    PubMed Central

    Lewis, Christopher M.; Fries, Pascal

    2016-01-01

    Intrinsic covariation of brain activity has been studied across many levels of brain organization. Between visual areas, neuronal activity covaries primarily among portions with similar retinotopic selectivity. We hypothesized that spontaneous interareal coactivation is subserved by neuronal synchronization. We performed simultaneous high-density electrocorticographic recordings across the dorsal aspect of several visual areas in one hemisphere in each of two awake monkeys to investigate spatial patterns of local and interareal synchronization. We show that stimulation-induced patterns of interareal coactivation were reactivated in the absence of stimulation for the visual quadrant covered. Reactivation occurred through both interareal cofluctuation of local activity and interareal phase synchronization. Furthermore, the trial-by-trial covariance of the induced responses recapitulated the pattern of interareal coupling observed during stimulation, i.e., the signal correlation. Reactivation-related synchronization showed distinct peaks in the theta, alpha, and gamma frequency bands. During passive states, this rhythmic reactivation was augmented by specific patterns of arrhythmic correspondence. These results suggest that networks of intrinsic covariation observed at multiple levels and with several recording techniques are related to synchronization and that behavioral state may affect the structure of intrinsic dynamics. PMID:26787906

  20. Synchronization of sacral skin blood flow oscillations in response to local heating.

    PubMed

    Jan, Yih-Kuen; Liao, Fuyuan

    2011-01-01

    Local heating causes an increase in skin blood flow by activating sensory axon reflex and metabolic nitric oxide controls. It has been observed that the remote skin area without temperature changes also shows a slightly increase in blood flow. The responsible mechanism of this indirect vasodilation remains unclear. We hypothesized that the remote skin area will have enhanced synchronization of blood flow oscillations (BFO), thus inducing a vasodilatory response. We studied BFO in two sites separated 10 cm of the sacral skin in 12 healthy people. Ensemble empirical mode decomposition method was used to decompose blood flow signals into a set of intrinsic mode functions (IMFs), and an IMF was selected to quantify each of myogenic, neurogenic, and metabolic modes of BFO. Then the instantaneous phase of the mode was calculated using the Hilbert transform. From the time series of phase difference between a pair of characteristic modes, we detected the epochs of phase synchronization and estimated the level of statistical significance using surrogate time series. The results showed that phase synchronization between neurogenic BFO was significantly higher in the period of the maximal vasodilation. We also observed a weak synchronization between myogenic BFO of the two skin sites. Our results suggested that synchronization of BFO may be associated with the changes in skin blood flow at the non-heated site.

  1. Use of the WECC WAMS in Wide Area Probing Tests for Validation of System Performance & Modeling

    SciTech Connect

    Hauer, John F.; Mittelstadt, William; Martin, Kenneth E.; Burns, J. W.; Lee, Harry; Pierre, John W.; Trudnowski, Daniel

    2009-02-01

    During 2005 and 2006 the Western Electricity Coordinating Council (WECC) performed three major tests of western system dynamics. These tests used a Wide Area Measurement System (WAMS) based primarily on Phasor Measurement Units (PMUs) to determine response to events including the insertion of the 1400-MW Chief Joseph braking resistor, probing signals, and ambient events. Test security was reinforced through real-time analysis of wide area effects, and high-quality data provided dynamic profiles for interarea modes across the entire western interconnection. The tests established that low-level optimized pseudo-random ±20-MW probing with the Pacific DC Intertie (PDCI) roughly doubles the apparent noise that is natural to the power system, providing sharp dynamic information with negligible interference to system operations. Such probing is an effective alternative to use of the 1400-MW Chief Joseph dynamic brake, and it is under consideration as a standard means for assessing dynamic security.

  2. Microscopic dynamics of synchronization in driven colloids

    PubMed Central

    Juniper, Michael P.N.; Straube, Arthur V.; Besseling, Rut; Aarts, Dirk G.A.L.; Dullens, Roel P.A.

    2015-01-01

    Synchronization of coupled oscillators has been scrutinized for over three centuries, from Huygens' pendulum clocks to physiological rhythms. One such synchronization phenomenon, dynamic mode locking, occurs when naturally oscillating processes are driven by an externally imposed modulation. Typically only averaged or integrated properties are accessible, leaving underlying mechanisms unseen. Here, we visualize the microscopic dynamics underlying mode locking in a colloidal model system, by using particle trajectories to produce phase portraits. Furthermore, we use this approach to examine the enhancement of mode locking in a flexible chain of magnetically coupled particles, which we ascribe to breathing modes caused by mode-locked density waves. Finally, we demonstrate that an emergent density wave in a static colloidal chain mode locks as a quasi-particle, with microscopic dynamics analogous to those seen for a single particle. Our results indicate that understanding the intricate link between emergent behaviour and microscopic dynamics is key to controlling synchronization. PMID:25994921

  3. Synchronous characterization of semiconductor microcavity laser beam

    SciTech Connect

    Wang, T. Lippi, G. L.

    2015-06-15

    We report on a high-resolution double-channel imaging method used to synchronously map the intensity- and optical-frequency-distribution of a laser beam in the plane orthogonal to the propagation direction. The synchronous measurement allows us to show that the laser frequency is an inhomogeneous distribution below threshold, but that it becomes homogeneous across the fundamental Gaussian mode above threshold. The beam’s tails deviations from the Gaussian shape, however, are accompanied by sizeable fluctuations in the laser wavelength, possibly deriving from manufacturing details and from the influence of spontaneous emission in the very low intensity wings. In addition to the synchronous spatial characterization, a temporal analysis at any given point in the beam cross section is carried out. Using this method, the beam homogeneity and spatial shape, energy density, energy center, and the defects-related spectrum can also be extracted from these high-resolution pictures.

  4. Brain activities during synchronized tapping task.

    PubMed

    Hiroyasu, Tomoyuki; Murakami, Akiho; Mao Gto; Yokouchi, Hisatake

    2015-01-01

    This study aims to investigate how people process information about other people to determine a response during human-to-human cooperative work. As a preliminary study, the mechanism of cooperative work was examined using interaction between a machine and a human. This machine was designed to have an "other person" model that simulates an emotional model of another person. The task performed in the experiment was a synchronized tapping task. Two models were prepared for this experiment, a simple model that does not employ the other person model and a synchronized model that employs the other person model. Subjects performed cooperative work with these machines. During the experiment, brain activities were measured using functional near-infrared spectroscopy. It was observed that the left inferior frontal gyrus was activated more with the synchronized model than the simple model. PMID:26737670

  5. Noise Induced Jumping Dynamics Between Synchronized Modes

    NASA Astrophysics Data System (ADS)

    Algar, Shannon D.; Stemler, Thomas; de Saedeleer, Bernard

    Synchronization is a common phenomenon whereby a dynamical system follows the pacemaker provided by an external forcing. Often, such systems have multiple synchronization modes, which are equivalent solutions. We investigate the specific case of two to one synchronization produced by the periodic forcing of a van der Pol oscillator where two possible modes, shifted by one period of the modulation, exist. By studying the flow and the local Lyapunov exponents along the orbit we give an explanation of the noise induced jumps observed in a stochastic forced oscillator. While this investigation gives results that are specific to this system, the framework presented is more general and can be applied to any system showing similar jumping dynamics.

  6. Synchronous characterization of semiconductor microcavity laser beam.

    PubMed

    Wang, T; Lippi, G L

    2015-06-01

    We report on a high-resolution double-channel imaging method used to synchronously map the intensity- and optical-frequency-distribution of a laser beam in the plane orthogonal to the propagation direction. The synchronous measurement allows us to show that the laser frequency is an inhomogeneous distribution below threshold, but that it becomes homogeneous across the fundamental Gaussian mode above threshold. The beam's tails deviations from the Gaussian shape, however, are accompanied by sizeable fluctuations in the laser wavelength, possibly deriving from manufacturing details and from the influence of spontaneous emission in the very low intensity wings. In addition to the synchronous spatial characterization, a temporal analysis at any given point in the beam cross section is carried out. Using this method, the beam homogeneity and spatial shape, energy density, energy center, and the defects-related spectrum can also be extracted from these high-resolution pictures.

  7. Phase synchronization in time-delay systems.

    PubMed

    Senthilkumar, D V; Lakshmanan, M; Kurths, J

    2006-09-01

    Though the notion of phase synchronization has been well studied in chaotic dynamical systems without delay, it has not been realized yet in chaotic time-delay systems exhibiting non-phase-coherent hyperchaotic attractors. In this paper we report identification of phase synchronization in coupled time-delay systems exhibiting hyperchaotic attractor. We show that there is a transition from nonsynchronized behavior to phase and then to generalized synchronization as a function of coupling strength. These transitions are characterized by recurrence quantification analysis, by phase differences based on a transformation of the attractors, and also by the changes in the Lyapunov exponents. We have found these transitions in coupled piecewise linear and in Mackey-Glass time-delay systems.

  8. Elastic interactions synchronize beating in cardiomyocytes.

    PubMed

    Cohen, Ohad; Safran, Samuel A

    2016-07-13

    Motivated by recent experimental results, we study theoretically the synchronization of the beating phase and frequency of two nearby cardiomyocyte cells. Each cell is represented as an oscillating force dipole in an infinite, viscoelastic medium and the propagation of the elastic signal within the medium is predicted. We examine the steady-state beating of two nearby cells, and show that elastic interactions result in forces that synchronize the phase and frequency of beating in a manner that depends on their mutual orientation. The theory predicts both in-phase and anti-phase steady-state beating depending on the relative cell orientations, as well as how synchronized beating varies with substrate elasticity and the inter-cell distance. These results suggest how mechanics plays a role in cardiac efficiency, and may be relevant for the design of cardiomyocyte based micro devices and other biomedical applications.

  9. The Scheme of Beam Synchronization in MEIC

    SciTech Connect

    Zhang, Yuhong; Derbenev, Yaroslav S.; Hutton, Andrew M.

    2013-06-01

    Synchronizing colliding beams at single or multiple collision points is a critical R&D issue in the design of a medium energy electron-ion collider (MEIC) at Jefferson Lab. The path-length variation due to changes in the ion energy, which varies over 20 to 100 GeV, could be more than several times the bunch spacing. The scheme adopted in the present MEIC baseline is centered on varying the number of bunches (i.e., harmonic number) stored in the collider ring. This could provide a set of discrete energies for proton or ions such that the beam synchronization condition is satisfied. To cover the ion energy between these synchronized values, we further propose to vary simultaneously the electron ring circumference and the frequency of the RF systems in both collider rings. We also present in this paper the requirement of frequency tunability of SRF cavities to support the scheme.

  10. Maximum entropy model for business cycle synchronization

    NASA Astrophysics Data System (ADS)

    Xi, Ning; Muneepeerakul, Rachata; Azaele, Sandro; Wang, Yougui

    2014-11-01

    The global economy is a complex dynamical system, whose cyclical fluctuations can mainly be characterized by simultaneous recessions or expansions of major economies. Thus, the researches on the synchronization phenomenon are key to understanding and controlling the dynamics of the global economy. Based on a pairwise maximum entropy model, we analyze the business cycle synchronization of the G7 economic system. We obtain a pairwise-interaction network, which exhibits certain clustering structure and accounts for 45% of the entire structure of the interactions within the G7 system. We also find that the pairwise interactions become increasingly inadequate in capturing the synchronization as the size of economic system grows. Thus, higher-order interactions must be taken into account when investigating behaviors of large economic systems.

  11. Elastic interactions synchronize beating in cardiomyocytes.

    PubMed

    Cohen, Ohad; Safran, Samuel A

    2016-07-13

    Motivated by recent experimental results, we study theoretically the synchronization of the beating phase and frequency of two nearby cardiomyocyte cells. Each cell is represented as an oscillating force dipole in an infinite, viscoelastic medium and the propagation of the elastic signal within the medium is predicted. We examine the steady-state beating of two nearby cells, and show that elastic interactions result in forces that synchronize the phase and frequency of beating in a manner that depends on their mutual orientation. The theory predicts both in-phase and anti-phase steady-state beating depending on the relative cell orientations, as well as how synchronized beating varies with substrate elasticity and the inter-cell distance. These results suggest how mechanics plays a role in cardiac efficiency, and may be relevant for the design of cardiomyocyte based micro devices and other biomedical applications. PMID:27352146

  12. Synchronization trigger control system for flow visualization

    NASA Technical Reports Server (NTRS)

    Chun, K. S.

    1987-01-01

    The use of cinematography or holographic interferometry for dynamic flow visualization in an internal combustion engine requires a control device that globally synchronizes camera and light source timing at a predefined shaft encoder angle. The device is capable of 0.35 deg resolution for rotational speeds of up to 73 240 rpm. This was achieved by implementing the shaft encoder signal addressed look-up table (LUT) and appropriate latches. The developed digital signal processing technique achieves 25 nsec of high speed triggering angle detection by using direct parallel bit comparison of the shaft encoder digital code with a simulated angle reference code, instead of using angle value comparison which involves more complicated computation steps. In order to establish synchronization to an AC reference signal whose magnitude is variant with the rotating speed, a dynamic peak followup synchronization technique has been devised. This method scrutinizes the reference signal and provides the right timing within 40 nsec. Two application examples are described.

  13. Measuring synchronization of stochastic oscillators in biology

    NASA Astrophysics Data System (ADS)

    Deng, Z.; Arsenault, S.; Mao, L.; Arnold, J.

    2016-09-01

    A fundamental problem in physics is measuring and modeling the synchronization of coupled stochastic oscillators. The problem is relatively recent in biology, where it has become possible to measure stochastic oscillators in single cells. A variety of synchronization measures have been proposed to describe a field of coupled stochastic oscillators. We introduce a synchronization measure new to this problem (but old to Genetics) called the intraclass correlation (ICC). The ICC is simple to interpret and has a statistical framework for inference. We illustrate ICC behaviour in the Kuramoto phase-locking model and on a field of over 25,000 oscillators in single cells measured every half-hour over a ten day interval.

  14. Synchronous characterization of semiconductor microcavity laser beam.

    PubMed

    Wang, T; Lippi, G L

    2015-06-01

    We report on a high-resolution double-channel imaging method used to synchronously map the intensity- and optical-frequency-distribution of a laser beam in the plane orthogonal to the propagation direction. The synchronous measurement allows us to show that the laser frequency is an inhomogeneous distribution below threshold, but that it becomes homogeneous across the fundamental Gaussian mode above threshold. The beam's tails deviations from the Gaussian shape, however, are accompanied by sizeable fluctuations in the laser wavelength, possibly deriving from manufacturing details and from the influence of spontaneous emission in the very low intensity wings. In addition to the synchronous spatial characterization, a temporal analysis at any given point in the beam cross section is carried out. Using this method, the beam homogeneity and spatial shape, energy density, energy center, and the defects-related spectrum can also be extracted from these high-resolution pictures. PMID:26133832

  15. Intra-layer synchronization in multiplex networks

    NASA Astrophysics Data System (ADS)

    Gambuzza, L. V.; Frasca, M.; Gómez-Gardeñes, J.

    2015-04-01

    We study synchronization of N oscillators indirectly coupled through a medium which is inhomogeneous and has its own dynamics. The system is formalized in terms of a multilayer network, where the top layer is made of disconnected oscillators and the bottom one, modeling the medium, consists of oscillators coupled according to a given topology. The different dynamics of the medium and the top layer is accounted for by including a frequency mismatch between them. We show a novel regime of synchronization as intra-layer coherence does not necessarily require inter-layer coherence. This regime appears under mild conditions on the bottom layer: arbitrary topologies may be considered, provided that they support synchronization of the oscillators of the medium. The existence of a density-dependent threshold as in quorum-sensing phenomena is also demonstrated.

  16. Clocking and synchronization circuits in multiprocessor systems

    SciTech Connect

    Jeong, Deog-Kyoon.

    1989-01-01

    Microprocessors based on RISC (Reduced Instruction Set Computer) concepts have demonstrated an ability to provide more computing power at a given level of integration than conventional microprocessors. The next step is multiprocessors composed of RISC processing elements. Communication bandwidth among such microprocessors is critical in achieving efficient hardware utilization. This thesis focuses on the communication capability of VLSI circuits and presents new circuit techniques as a guide to build an interconnection network of VLSI microprocessors. Two of the most prominent problems in a synchronous system, which most of the current computer systems are based on, have been clock skew and synchronization failure. A new concept called self-timed systems solves such problems but has not been accepted in microprocessor implementations yet because of its complex design procedure and increased overhead. With this in mind, this thesis concentrates on a system in which individual synchronous subsystems are connected asynchronously. Synchronous subsystems operate with a better control over clock skew using a phase locked loop (PLL) technique. Communication among subsystems is done asynchronously with a controlled synchronization failure rate. One advantage is that conventional VLSI design methodologies which are more efficient can still be applied. Circuit techniques for PLL-based clock generation are described along with stability criteria. The main objective of the circuit is to realize a zero delay buffer. Experimental results show the feasibility of such circuits in VLSI. Synchronizer circuit configurations in both bipolar and MOS technology that best utilize each device, or overcome the technology limit using a bandwidth doubling technique are shown. Interface techniques including handshake mechanisms in such a system are also described.

  17. Measures of quantum synchronization in continuous variable systems.

    PubMed

    Mari, A; Farace, A; Didier, N; Giovannetti, V; Fazio, R

    2013-09-01

    We introduce and characterize two different measures which quantify the level of synchronization of coupled continuous variable quantum systems. The two measures allow us to extend to the quantum domain the notions of complete and phase synchronization. The Heisenberg principle sets a universal bound to complete synchronization. The measure of phase synchronization is, in principle, unbounded; however, in the absence of quantum resources (e.g., squeezing) the synchronization level is bounded below a certain threshold. We elucidate some interesting connections between entanglement and synchronization and, finally, discuss an application based on quantum optomechanical systems. PMID:25166668

  18. Decoding and synchronization of error correcting codes

    NASA Astrophysics Data System (ADS)

    Madkour, S. A.

    1983-01-01

    Decoding devices for hard quantization and soft decision error correcting codes are discussed. A Meggit decoder for Reed-Solomon polynominal codes was implemented and tested. It uses 49 TTL logic IC. A maximum binary frequency of 30 Mbit/sec is demonstrated. A soft decision decoding approach was applied to hard decision decoding, using the principles of threshold decoding. Simulation results indicate that the proposed schema achieves satisfactory performance using only a small number of parity checks. The combined correction of substitution and synchronization errors is analyzed. The algorithm presented shows the capability of convolutional codes to correct synchronization errors as well as independent additive errors without any additional redundancy.

  19. Carrier and symbol synchronization system performance study

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.

    1976-01-01

    Results pertinent to predicting the performance of convolutionally encoded binary phase-shift keyed communication links were presented. The details of the development are provided in four sections. These sections are concerned with developing the bit error probability performance degradations due to PN despreading by a time-shared delay locked loop, the Costas demodulation process, symbol synchronization effects and cycle slipping phenomena in the Costas loop. In addition, Costas cycle slipping probabilities are studied as functions of Doppler count time and signal-to-noise conditions. The effect of cycle slipping in the symbol synchronizer is also studied as a function of channel Doppler and other frequency uncertainties.

  20. Stochastic synchronization of neural activity waves.

    PubMed

    Kilpatrick, Zachary P

    2015-04-01

    We demonstrate that waves in distinct layers of a neuronal network can become phase locked by common spatiotemporal noise. This phenomenon is studied for stationary bumps, traveling waves, and breathers. A weak noise expansion is used to derive an effective equation for the position of the wave in each layer, yielding a stochastic differential equation with multiplicative noise. Stability of the synchronous state is characterized by a Lyapunov exponent, which we can compute analytically from the reduced system. Our results extend previous work on limit-cycle oscillators, showing common noise can synchronize waves in a broad class of models.

  1. Onset of synchronization in complex gradient networks.

    PubMed

    Wang, Xingang; Huang, Liang; Guan, Shuguang; Lai, Ying-Cheng; Lai, Choy Heng

    2008-09-01

    Recently, it has been found that the synchronizability of a scale-free network can be enhanced by introducing some proper gradient in the coupling. This result has been obtained by using eigenvalue-spectrum analysis under the assumption of identical node dynamics. Here we obtain an analytic formula for the onset of synchronization by incorporating the Kuramoto model on gradient scale-free networks. Our result provides quantitative support for the enhancement of synchronization in such networks, further justifying their ubiquity in natural and in technological systems. PMID:19045491

  2. Synchronous generator wind energy conversion control system

    SciTech Connect

    Medeiros, A.L.R.; Lima, A.M.N.; Jacobina, C.B.; Simoes, F.J.

    1996-12-31

    This paper presents the performance evaluation and the design of the control system of a WECS (Wind Energy Conversion System) that employs a synchronous generator based on its digital simulation. The WECS discussed in this paper is connected to the utility grid through two Pulse Width Modulated (PWM) power converters. The structure of the proposed WECS enables us to achieve high performance energy conversion by: (i) maximizing the wind energy capture and (ii) minimizing the reactive power flowing between the grid and the synchronous generator. 8 refs., 19 figs.

  3. Cycle slipping in phase synchronization systems

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Huang, Lin

    2007-02-01

    Cycle slipping is a characteristically nonlinear phenomenon in phase synchronization systems, which is highly dependent of the initial state of the system. Slipping a cycle means that the phase error is increased to such an extent that the generator to be synchronized slips one complete cycle with respect to the input phase. In this Letter, a linear matrix inequality (LMI) based approach is proposed and the estimation of the number of cycles which slips a solution of the system is obtained by solving a quasi-convex optimization problem of LMI. Applications to phase locked loops demonstrate the validity of the proposed approach.

  4. A relativistic analysis of clock synchronization

    NASA Technical Reports Server (NTRS)

    Thomas, J. B.

    1974-01-01

    The relativistic conversion between coordinate time and atomic time is reformulated to allow simpler time calculations relating analysis in solar-system barycentric coordinates (using coordinate time) with earth-fixed observations (measuring earth-bound proper time or atomic time.) After an interpretation of terms, this simplified formulation, which has a rate accuracy of about 10 to the minus 15th power, is used to explain the conventions required in the synchronization of a world wide clock network and to analyze two synchronization techniques-portable clocks and radio interferometry. Finally, pertinent experiment tests of relativity are briefly discussed in terms of the reformulated time conversion.

  5. Synchronization of Asynchronous Switched Boolean Network.

    PubMed

    Zhang, Hao; Wang, Xingyuan; Lin, Xiaohui

    2015-01-01

    In this paper, the complete synchronizations for asynchronous switched Boolean network with free Boolean sequence controllers and close-loop controllers are studied. First, the basic asynchronous switched Boolean network model is provided. With the method of semi-tensor product, the Boolean dynamics is translated into linear representation. Second, necessary and sufficient conditions for ASBN synchronization with free Boolean sequence control and close-loop control are derived, respectively. Third, some illustrative examples are provided to show the efficiency of the proposed methods.

  6. Synchronized Drumming Enhances Activity in the Caudate and Facilitates Prosocial Commitment - If the Rhythm Comes Easily

    PubMed Central

    Kokal, Idil; Engel, Annerose; Kirschner, Sebastian; Keysers, Christian

    2011-01-01

    Why does chanting, drumming or dancing together make people feel united? Here we investigate the neural mechanisms underlying interpersonal synchrony and its subsequent effects on prosocial behavior among synchronized individuals. We hypothesized that areas of the brain associated with the processing of reward would be active when individuals experience synchrony during drumming, and that these reward signals would increase prosocial behavior toward this synchronous drum partner. 18 female non-musicians were scanned with functional magnetic resonance imaging while they drummed a rhythm, in alternating blocks, with two different experimenters: one drumming in-synchrony and the other out-of-synchrony relative to the participant. In the last scanning part, which served as the experimental manipulation for the following prosocial behavioral test, one of the experimenters drummed with one half of the participants in-synchrony and with the other out-of-synchrony. After scanning, this experimenter “accidentally” dropped eight pencils, and the number of pencils collected by the participants was used as a measure of prosocial commitment. Results revealed that participants who mastered the novel rhythm easily before scanning showed increased activity in the caudate during synchronous drumming. The same area also responded to monetary reward in a localizer task with the same participants. The activity in the caudate during experiencing synchronous drumming also predicted the number of pencils the participants later collected to help the synchronous experimenter of the manipulation run. In addition, participants collected more pencils to help the experimenter when she had drummed in-synchrony than out-of-synchrony during the manipulation run. By showing an overlap in activated areas during synchronized drumming and monetary reward, our findings suggest that interpersonal synchrony is related to the brain's reward system. PMID:22110623

  7. Clock synchronization by the Symphonie and Laser Synchronization from Stationary Orbit (LASSO) geostationary satellites

    NASA Astrophysics Data System (ADS)

    Brunet, M.

    The use of atomic clocks is described, and the use of satellites to assure their intercontinental synchronization is discussed. The Symphonie satellites assure a transatlantic (France-Canada) synchronization in the 4 to 6 GHz band with nanosec accuracy. Atmospheric and relativistic effects are corrected to within 5 nsec, but instrument delay calibration remains a problem. The Laser Synchronization from Stationary Orbit (LASSO) experiment is based on the measurement of the time it takes a laser pulse to complete the return journey from a ground station to the satellite. The LASSO was designed for the SIRIO-2 satellite, whose launch failed, and is now proposed for Meteosat-2.

  8. Geothermal heating enhances atmospheric asymmetries on synchronously rotating planets

    NASA Astrophysics Data System (ADS)

    Haqq-Misra, Jacob; Kopparapu, Ravi Kumar

    2015-01-01

    Earth-like planets within the liquid water habitable zone of M-type stars may evolve into synchronous rotators. On these planets, the substellar hemisphere experiences perpetual daylight while the opposing antistellar hemisphere experiences perpetual darkness. Because the night-side hemisphere has no direct source of energy, the air over this side of the planet is prone to freeze out and deposit on the surface, which could result in atmospheric collapse. However, general circulation models (GCMs) have shown that atmospheric dynamics can counteract this problem and provide sufficient energy transport to the antistellar side. Here, we use an idealized GCM to consider the impact of geothermal heating on the habitability of synchronously rotating planets. Geothermal heating may be expected due to tidal interactions with the host star, and the effects of geothermal heating provide additional habitable surface area and may help to induce melting of ice on the antistellar hemisphere. We also explore the persistence of atmospheric asymmetries between the Northern and Southern hemispheres, and we find that the direction of the meridional circulation (for rapidly rotating planets) or the direction of zonal wind (for slowly rotating planets) reverses on either side of the substellar point. We show that the zonal circulation approaches a theoretical state similar to a Walker circulation only for slowly rotating planets, while rapidly rotating planets show a zonal circulation with the opposite direction. We find that a cross-polar circulation is present in all cases and provides an additional mechanism of mass and energy transport from the substellar to antistellar point. Characterization of the atmospheres of synchronously rotating planets should include consideration of hemispheric differences in meridional circulation and examination of transport due to cross-polar flow.

  9. Compatibility of Motion Facilitates Visuomotor Synchronization

    ERIC Educational Resources Information Center

    Hove, Michael J.; Spivey, Michael J.; Krumhansl, Carol L.

    2010-01-01

    Prior research indicates that synchronized tapping performance is very poor with flashing visual stimuli compared with auditory stimuli. Three finger-tapping experiments compared flashing visual metronomes with visual metronomes containing a spatial component, either compatible, incompatible, or orthogonal to the tapping action. In Experiment 1,…

  10. Synchronicity and the meaning-making psyche.

    PubMed

    Colman, Warren

    2011-09-01

    This paper contrasts Jung's account of synchronicity as evidence of an objective principle of meaning in Nature with a view that emphasizes human meaning-making. All synchronicities generate indicative signs but only where this becomes a 'living symbol' of a transcendent intentionality at work in a living universe does synchronicity generate the kind of symbolic meaning that led Jung to posit the existence of a Universal Mind. This is regarded as a form of personal, experiential knowledge belonging to the 'imaginal world of meaning' characteristic of the 'primordial mind', as opposed to the 'rational world of knowledge' in which Jung attempted to present his experiences as if they were empirically and publicly verifiable. Whereas rational knowledge depends on a form of meaning in which causal chains and logical links are paramount, imaginal meaning is generated by forms of congruent correspondence-a feature that synchronicity shares with metaphor and symbol-and the creation of narratives by means of retroactive organization of its constituent elements. PMID:21884094

  11. Synchronous transfer circuits for redundant systems

    NASA Technical Reports Server (NTRS)

    Nagano, S.

    1978-01-01

    Circuit arrangements for flip-flops, counters, and clock drivers in redundant systems ensure that control is synchronously transferred to surviving components when failure occurs. In addition to original application to spacecraft systems, redundant circuits have terrestrial uses in power generators, solar-energy converters, computers, vehicle controllers, and other systems demanding high reliability.

  12. Circuit increases capability of hysteresis synchronous motor

    NASA Technical Reports Server (NTRS)

    Markowitz, I. N.

    1967-01-01

    Frequency and phase detector circuit enables a hysteresis synchronous motor to drive a load of given torque value at a precise speed determined by a stable reference. This technique permits driving larger torque loads with smaller motors and lower power drain.

  13. Digital phase shifter synchronizes local oscillators

    NASA Technical Reports Server (NTRS)

    Ali, S. M.

    1978-01-01

    Digital phase-shifting network is used as synchronous frequency multiplier for applications such as phase-locking two signals that may differ in frequency. Circuit has various phase-shift capability. Possible applications include data-communication systems and hybrid digital/analog phase-locked loops.

  14. Synchronized flow in oversaturated city traffic

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.; Klenov, Sergey L.; Hermanns, Gerhard; Hemmerle, Peter; Rehborn, Hubert; Schreckenberg, Michael

    2013-11-01

    Based on numerical simulations with a stochastic three-phase traffic flow model, we reveal that moving queues (moving jams) in oversaturated city traffic dissolve at some distance upstream of the traffic signal while transforming into synchronized flow. It is found that, as in highway traffic [Kerner, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.85.036110 85, 036110 (2012)], such a jam-absorption effect in city traffic is explained by a strong driver's speed adaptation: Time headways (space gaps) between vehicles increase upstream of a moving queue (moving jam), resulting in moving queue dissolution. It turns out that at given traffic signal parameters, the stronger the speed adaptation effect, the shorter the mean distance between the signal location and the road location at which moving queues dissolve fully and oversaturated traffic consists of synchronized flow only. A comparison of the synchronized flow in city traffic found in this Brief Report with synchronized flow in highway traffic is made.

  15. Student Perceptions of Online Synchronous Courses.

    ERIC Educational Resources Information Center

    Cereijo, Maria Victora Perez; Tyler-Wood, Tandra; Young, Jon

    This study identified student reasons for participating in synchronous Web-based learning environments. Students were interviewed after completing a series of surveys designed to elicit their perceptions of the strengths and weaknesses of the delivery methodology. Responses indicated that both convenience and learning enhancement were considered…

  16. An Online Synchronous Test for Professional Interpreters

    ERIC Educational Resources Information Center

    Chen, Nian-Shing; Ko, Leong

    2010-01-01

    This article is based on an experiment designed to conduct an interpreting test for multiple candidates online, using web-based synchronous cyber classrooms. The test model was based on the accreditation test for Professional Interpreters produced by the National Accreditation Authority of Translators and Interpreters (NAATI) in Australia.…

  17. Clock Synchronization for Multihop Wireless Sensor Networks

    ERIC Educational Resources Information Center

    Solis Robles, Roberto

    2009-01-01

    In wireless sensor networks, more so generally than in other types of distributed systems, clock synchronization is crucial since by having this service available, several applications such as media access protocols, object tracking, or data fusion, would improve their performance. In this dissertation, we propose a set of algorithms to achieve…

  18. Synchronous Computer-Mediated Communication and Interaction

    ERIC Educational Resources Information Center

    Ziegler, Nicole

    2016-01-01

    The current study reports on a meta-analysis of the relative effectiveness of interaction in synchronous computer-mediated communication (SCMC) and face-to-face (FTF) contexts. The primary studies included in the analysis were journal articles and dissertations completed between 1990 and 2012 (k = 14). Results demonstrate that interaction in SCMC…

  19. Synchronicity and the meaning-making psyche.

    PubMed

    Colman, Warren

    2011-09-01

    This paper contrasts Jung's account of synchronicity as evidence of an objective principle of meaning in Nature with a view that emphasizes human meaning-making. All synchronicities generate indicative signs but only where this becomes a 'living symbol' of a transcendent intentionality at work in a living universe does synchronicity generate the kind of symbolic meaning that led Jung to posit the existence of a Universal Mind. This is regarded as a form of personal, experiential knowledge belonging to the 'imaginal world of meaning' characteristic of the 'primordial mind', as opposed to the 'rational world of knowledge' in which Jung attempted to present his experiences as if they were empirically and publicly verifiable. Whereas rational knowledge depends on a form of meaning in which causal chains and logical links are paramount, imaginal meaning is generated by forms of congruent correspondence-a feature that synchronicity shares with metaphor and symbol-and the creation of narratives by means of retroactive organization of its constituent elements.

  20. Synchronization in Disordered Josephson Junction Arrays

    NASA Astrophysics Data System (ADS)

    Trees, B. R.; Dissanayake, S. T. M.

    2002-03-01

    We have studied the dynamics of a ladder array of overdamped Josephson junctions with periodic boundary conditions. The junctions have critical current and resistive disorder, are current biased above the critical current, and their voltages oscillate with nonidentical bare frequencies. We have been interested in the onset of synchronization in the rung junctions of the ladder, in which nearest neighbor interactions of strength α renormalize the bare frequencies to a common value. The degree of synchronization of the array is measured by an order parameter, r (0<= r<= 1), as a function of α and the spread of bare frequencies. For a given frequency spread, a synchronization phase transition is clearly visible with an increase in α. We have also determined that a time-averaged version of the resistively-shunted junction equations can be used as an accurate description of the dynamics of the junctions. The solutions to the averaged equations exhibit phase slips between pairs of junctions for certain ranges of values of α and also demonstrate that the relationship between the array size, N, and the critical coupling strength for the onset of synchronization scales as N^2. This research was partially funded by a grant to Ohio Wesleyan University from the McGregor Foundation to support student research.

  1. Angular Synchronization by Eigenvectors and Semidefinite Programming

    PubMed Central

    Singer, A.

    2010-01-01

    The angular synchronization problem is to obtain an accurate estimation (up to a constant additive phase) for a set of unknown angles θ1, …, θn from m noisy measurements of their offsets θi − θj mod 2π. Of particular interest is angle recovery in the presence of many outlier measurements that are uniformly distributed in [0, 2π) and carry no information on the true offsets. We introduce an efficient recovery algorithm for the unknown angles from the top eigenvector of a specially designed Hermitian matrix. The eigenvector method is extremely stable and succeeds even when the number of outliers is exceedingly large. For example, we successfully estimate n = 400 angles from a full set of m=(4002) offset measurements of which 90% are outliers in less than a second on a commercial laptop. The performance of the method is analyzed using random matrix theory and information theory. We discuss the relation of the synchronization problem to the combinatorial optimization problem Max-2-Lin mod L and present a semidefinite relaxation for angle recovery, drawing similarities with the Goemans-Williamson algorithm for finding the maximum cut in a weighted graph. We present extensions of the eigenvector method to other synchronization problems that involve different group structures and their applications, such as the time synchronization problem in distributed networks and the surface reconstruction problems in computer vision and optics. PMID:21179593

  2. Synchronous bilateral breast cancer in a male

    PubMed Central

    Rubio Hernández, María Caridad; Díaz Prado, Yenia Ivet; Pérez, Suanly Rodríguez; Díaz, Ronald Rodríguez; Aleaga, Zaili Gutiérrez

    2013-01-01

    Male breast cancer, which represents only 1% of all breast cancers, is occasionally associated with a family history of breast cancer. Sporadic male breast cancers presenting with another primary breast cancer are extremely rare. In this article, we report on a 70-year-old male patient with bilateral multifocal and synchronous breast cancer and without a family history of breast cancer. PMID:24319497

  3. Blending Online Asynchronous and Synchronous Learning

    ERIC Educational Resources Information Center

    Yamagata-Lynch, Lisa C.

    2014-01-01

    In this article I will share a qualitative self-study about a 15-week blended 100% online graduate level course facilitated through synchronous meetings on Blackboard Collaborate and asynchronous discussions on Blackboard. I taught the course at the University of Tennessee (UT) during the spring 2012 semester and the course topic was online…

  4. VLBI clock synchronization. [for atomic clock rate

    NASA Technical Reports Server (NTRS)

    Counselman, C. C., III; Shapiro, I. I.; Rogers, A. E. E.; Hinteregger, H. F.; Knight, C. A.; Whitney, A. R.; Clark, T. A.

    1977-01-01

    The potential accuracy of VLBI (very long baseline interferometry) for clock epoch and rate comparisons was demonstrated by results from long- and short-baseline experiments. It was found that atomic clocks at widely separated sites (several thousand kilometers apart) can be synchronized to within several nanoseconds from a few minutes of VLBI observations and to within one nanosecond from several hours of observations.

  5. Behavior Matching in Multimodal Communication Is Synchronized

    ERIC Educational Resources Information Center

    Louwerse, Max M.; Dale, Rick; Bard, Ellen G.; Jeuniaux, Patrick

    2012-01-01

    A variety of theoretical frameworks predict the resemblance of behaviors between two people engaged in communication, in the form of coordination, mimicry, or alignment. However, little is known about the time course of the behavior matching, even though there is evidence that dyads synchronize oscillatory motions (e.g., postural sway). This study…

  6. Complete chaotic synchronization in mutually coupled time-delay systems.

    PubMed

    Landsman, Alexandra S; Schwartz, Ira B

    2007-02-01

    Complete chaotic synchronization of end lasers has been observed in a line of mutually coupled, time-delayed system of three lasers, with no direct communication between the end lasers. The present paper uses ideas from generalized synchronization to explain the complete synchronization in the presence of long coupling delays, applied to a model of mutually coupled semiconductor lasers in a line. These ideas significantly simplify the analysis by casting the stability in terms of the local dynamics of each laser. The variational equations near the synchronization manifold are analyzed, and used to derive the synchronization condition that is a function of parameters. The results explain and predict the dependence of synchronization on various parameters, such as time delays, strength of coupling and dissipation. The ideas can be applied to understand complete synchronization in other chaotic systems with coupling delays and no direct communication between synchronized subsystems.

  7. A Simple Circuit for Demonstrating Regular and Synchronized Chaos.

    ERIC Educational Resources Information Center

    Carroll, Thomas L.

    1995-01-01

    Discusses the physics behind the synchronization of chaos. Describes an easy to build an electronic circuit which can be used to demonstrate chaos and the synchronization of chaos. Contains 19 references. (JRH)

  8. Current Trend Towards Using Soft Computing Approaches to Phase Synchronization in Communication Systems

    NASA Technical Reports Server (NTRS)

    Drake, Jeffrey T.; Prasad, Nadipuram R.

    1999-01-01

    This paper surveys recent advances in communications that utilize soft computing approaches to phase synchronization. Soft computing, as opposed to hard computing, is a collection of complementary methodologies that act in producing the most desirable control, decision, or estimation strategies. Recently, the communications area has explored the use of the principal constituents of soft computing, namely, fuzzy logic, neural networks, and genetic algorithms, for modeling, control, and most recently for the estimation of phase in phase-coherent communications. If the receiver in a digital communications system is phase-coherent, as is often the case, phase synchronization is required. Synchronization thus requires estimation and/or control at the receiver of an unknown or random phase offset.

  9. Synchronization properties of coupled chaotic neurons: The role of random shared input.

    PubMed

    Kumar, Rupesh; Bilal, Shakir; Ramaswamy, Ram

    2016-06-01

    Spike-time correlations of neighbouring neurons depend on their intrinsic firing properties as well as on the inputs they share. Studies have shown that periodically firing neurons, when subjected to random shared input, exhibit asynchronicity. Here, we study the effect of random shared input on the synchronization of weakly coupled chaotic neurons. The cases of so-called electrical and chemical coupling are both considered, and we observe a wide range of synchronization behaviour. When subjected to identical shared random input, there is a decrease in the threshold coupling strength needed for chaotic neurons to synchronize in-phase. The system also supports lag-synchronous states, and for these, we find that shared input can cause desynchronization. We carry out a master stability function analysis for a network of such neurons and show agreement with the numerical simulations. The contrasting role of shared random input for complete and lag synchronized neurons is useful in understanding spike-time correlations observed in many areas of the brain. PMID:27368783

  10. Behavioral stochastic resonance associated with large-scale synchronization of human brain activity

    NASA Astrophysics Data System (ADS)

    Kitajo, Keiichi; Yamanaka, Kentaro; Nozaki, Daichi; Ward, Lawrence M.; Yamamoto, Yoshiharu

    2004-05-01

    We demonstrate experimentally that enhanced detection of weak visual signals by addition of visual noise is accompanied by an increase in phase synchronization of EEG signals across widely-separated areas of the human brain. In our sensorimotor integration task, observers responded to a weak rectangular gray-level signal presented to their right eyes by pressing and releasing a button whenever they detected an increment followed by a decrement in brightness. Signal detection performance was optimized by presenting randomly-changing-gray-level noise separately to observers' left eyes using a mirror stereoscope. We measured brain electrical activity at the scalp by electroencephalograph (EEG), calculated the instantaneous phase for each EEG signal, and evaluated the degree of large-scale phase synchronization between pairs of EEG signals. Dynamic synchronization-desynchronization patterns were observed and we found evidence of noise-enhanced large-scale synchronization associated with detection of the brightness changes under conditions of noise-enhanced performance. Our results suggest that behavioral stochastic resonance might arise from noise-enhanced synchronization of neural activities across widespread brain regions.

  11. Structure function relationship in complex brain networks expressed by hierarchical synchronization

    NASA Astrophysics Data System (ADS)

    Zhou, Changsong; Zemanová, Lucia; Zamora-López, Gorka; Hilgetag, Claus C.; Kurths, Jürgen

    2007-06-01

    The brain is one of the most complex systems in nature, with a structured complex connectivity. Recently, large-scale corticocortical connectivities, both structural and functional, have received a great deal of research attention, especially using the approach of complex network analysis. Understanding the relationship between structural and functional connectivity is of crucial importance in neuroscience. Here we try to illuminate this relationship by studying synchronization dynamics in a realistic anatomical network of cat cortical connectivity. We model the nodes (cortical areas) by a neural mass model (population model) or by a subnetwork of interacting excitable neurons (multilevel model). We show that if the dynamics is characterized by well-defined oscillations (neural mass model and subnetworks with strong couplings), the synchronization patterns are mainly determined by the node intensity (total input strengths of a node) and the detailed network topology is rather irrelevant. On the other hand, the multilevel model with weak couplings displays more irregular, biologically plausible dynamics, and the synchronization patterns reveal a hierarchical cluster organization in the network structure. The relationship between structural and functional connectivity at different levels of synchronization is explored. Thus, the study of synchronization in a multilevel complex network model of cortex can provide insights into the relationship between network topology and functional organization of complex brain networks.

  12. Synchronization properties of coupled chaotic neurons: The role of random shared input

    NASA Astrophysics Data System (ADS)

    Kumar, Rupesh; Bilal, Shakir; Ramaswamy, Ram

    2016-06-01

    Spike-time correlations of neighbouring neurons depend on their intrinsic firing properties as well as on the inputs they share. Studies have shown that periodically firing neurons, when subjected to random shared input, exhibit asynchronicity. Here, we study the effect of random shared input on the synchronization of weakly coupled chaotic neurons. The cases of so-called electrical and chemical coupling are both considered, and we observe a wide range of synchronization behaviour. When subjected to identical shared random input, there is a decrease in the threshold coupling strength needed for chaotic neurons to synchronize in-phase. The system also supports lag-synchronous states, and for these, we find that shared input can cause desynchronization. We carry out a master stability function analysis for a network of such neurons and show agreement with the numerical simulations. The contrasting role of shared random input for complete and lag synchronized neurons is useful in understanding spike-time correlations observed in many areas of the brain.

  13. Generalized synchronization in mutually coupled oscillators and complex networks.

    PubMed

    Moskalenko, Olga I; Koronovskii, Alexey A; Hramov, Alexander E; Boccaletti, Stefano

    2012-09-01

    We introduce a concept of generalized synchronization, able to encompass the setting of collective synchronized behavior for mutually coupled systems and networking systems featuring complex topologies in their connections. The onset of the synchronous regime is confirmed by the dependence of the system's Lyapunov exponents on the coupling parameter. The presence of a generalized synchronization regime is verified by means of the nearest neighbor method.

  14. Broadband Criticality of Human Brain Network Synchronization

    PubMed Central

    Kitzbichler, Manfred G.; Smith, Marie L.; Christensen, Søren R.; Bullmore, Ed

    2009-01-01

    Self-organized criticality is an attractive model for human brain dynamics, but there has been little direct evidence for its existence in large-scale systems measured by neuroimaging. In general, critical systems are associated with fractal or power law scaling, long-range correlations in space and time, and rapid reconfiguration in response to external inputs. Here, we consider two measures of phase synchronization: the phase-lock interval, or duration of coupling between a pair of (neurophysiological) processes, and the lability of global synchronization of a (brain functional) network. Using computational simulations of two mechanistically distinct systems displaying complex dynamics, the Ising model and the Kuramoto model, we show that both synchronization metrics have power law probability distributions specifically when these systems are in a critical state. We then demonstrate power law scaling of both pairwise and global synchronization metrics in functional MRI and magnetoencephalographic data recorded from normal volunteers under resting conditions. These results strongly suggest that human brain functional systems exist in an endogenous state of dynamical criticality, characterized by a greater than random probability of both prolonged periods of phase-locking and occurrence of large rapid changes in the state of global synchronization, analogous to the neuronal “avalanches” previously described in cellular systems. Moreover, evidence for critical dynamics was identified consistently in neurophysiological systems operating at frequency intervals ranging from 0.05–0.11 to 62.5–125 Hz, confirming that criticality is a property of human brain functional network organization at all frequency intervals in the brain's physiological bandwidth. PMID:19300473

  15. Theta-Modulated Gamma-Band Synchronization Among Activated Regions During a Verb Generation Task

    PubMed Central

    Doesburg, Sam M.; Vinette, Sarah A.; Cheung, Michael J.; Pang, Elizabeth W.

    2012-01-01

    Expressive language is complex and involves processing within a distributed network of cortical regions. Functional MRI and magnetoencephalography (MEG) have identified brain areas critical for expressive language, but how these regions communicate across the network remains poorly understood. It is thought that synchronization of oscillations between neural populations, particularly at a gamma rate (>30 Hz), underlies functional integration within cortical networks. Modulation of gamma rhythms by theta-band oscillations (4–8 Hz) has been proposed as a mechanism for the integration of local cell coalitions into large-scale networks underlying cognition and perception. The present study tested the hypothesis that these oscillatory mechanisms of functional integration were present within the expressive language network. We recorded MEG while subjects performed a covert verb generation task. We localized activated cortical regions using beamformer analysis, calculated inter-regional phase locking between activated areas, and measured modulation of inter-regional gamma synchronization by theta phase. The results show task-dependent gamma-band synchronization among regions activated during the performance of the verb generation task, and we provide evidence that these transient and periodic instances of high-frequency connectivity were modulated by the phase of cortical theta oscillations. These findings suggest that oscillatory synchronization and cross-frequency interactions are mechanisms for functional integration among distributed brain areas supporting expressive language processing. PMID:22707946

  16. Topography of Synchronization of Somatosensory Evoked Potentials Elicited by Stimulation of the Sciatic Nerve in Rat

    PubMed Central

    Qu, Xuefeng; Yan, Jiaqing; Li, Xiaoli; Zhang, Peixun; Liu, Xianzeng

    2016-01-01

    Purpose: Traditionally, the topography of somatosensory evoked potentials (SEPs) is generated based on amplitude and latency. However, this operation focuses on the physical morphology and field potential-power, so it suffers from difficulties in performing identification in an objective manner. In this study, measurement of the synchronization of SEPs is proposed as a method to explore brain functional networks as well as the plasticity after peripheral nerve injury. Method: SEPs elicited by unilateral sciatic nerve stimulation in twelve adult male Sprague-Dawley (SD) rats in the normal group were compared with SEPs evoked after unilateral sciatic nerve hemisection in four peripheral nerve injured SD rats. The characterization of synchronized networks from SEPs was conducted using equal-time correlation, correlation matrix analysis, and comparison to randomized surrogate data. Eigenvalues of the correlation matrix were used to identify the clusters of functionally synchronized neuronal activity, and the participation index (PI) was calculated to indicate the involvement of each channel in the cluster. The PI value at the knee point of the PI histogram was used as a threshold to demarcate the cortical boundary. Results: Ten out of the twelve normal rats showed only one synchronized brain network. The remaining two normal rats showed one strong and one weak network. In the peripheral nerve injured group, only one synchronized brain network was found in each rat. In the normal group, all network shapes appear regular and the network is largely contained in the posterior cortex. In the injured group, the network shapes appear irregular, the network extends anteriorly and posteriorly, and the network area is significantly larger. There are considerable individual variations in the shape and location of the network after peripheral nerve injury. Conclusion: The proposed method can detect functional brain networks. Compared to the results of the traditional SEP

  17. Synchronous Control Method and Realization of Automated Pharmacy Elevator

    NASA Astrophysics Data System (ADS)

    Liu, Xiang-Quan

    Firstly, the control method of elevator's synchronous motion is provided, the synchronous control structure of double servo motor based on PMAC is accomplished. Secondly, synchronous control program of elevator is implemented by using PMAC linear interpolation motion model and position error compensation method. Finally, the PID parameters of servo motor were adjusted. The experiment proves the control method has high stability and reliability.

  18. 21 CFR 892.1970 - Radiographic ECG/respirator synchronizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiographic ECG/respirator synchronizer. 892.1970... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1970 Radiographic ECG/respirator synchronizer. (a) Identification. A radiographic ECG/respirator synchronizer is a device intended to be used...

  19. 21 CFR 892.1410 - Nuclear electrocardiograph synchronizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear electrocardiograph synchronizer. 892.1410... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1410 Nuclear electrocardiograph synchronizer. (a) Identification. A nuclear electrocardiograph synchronizer is a device intended for use...

  20. 21 CFR 892.1410 - Nuclear electrocardiograph synchronizer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear electrocardiograph synchronizer. 892.1410... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1410 Nuclear electrocardiograph synchronizer. (a) Identification. A nuclear electrocardiograph synchronizer is a device intended for use...

  1. 21 CFR 892.1410 - Nuclear electrocardiograph synchronizer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear electrocardiograph synchronizer. 892.1410... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1410 Nuclear electrocardiograph synchronizer. (a) Identification. A nuclear electrocardiograph synchronizer is a device intended for use...

  2. 21 CFR 892.1410 - Nuclear electrocardiograph synchronizer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear electrocardiograph synchronizer. 892.1410... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1410 Nuclear electrocardiograph synchronizer. (a) Identification. A nuclear electrocardiograph synchronizer is a device intended for use...

  3. 21 CFR 892.1410 - Nuclear electrocardiograph synchronizer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear electrocardiograph synchronizer. 892.1410... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1410 Nuclear electrocardiograph synchronizer. (a) Identification. A nuclear electrocardiograph synchronizer is a device intended for use...

  4. New diagnostic potentialities of cardiorespiratory synchronization in children.

    PubMed

    Potyagailo, E G; Pokrovskii, V M

    2003-11-01

    The study demonstrated that the method of cardiorespiratory synchronization provides valuable information on the nature of arrhythmia and helps to evaluate the regulatory adaptive potentialities of a child. The width of synchronization range and the latency of synchronization at the lower boundary are the indicators of regulatory adaptive potentialities. PMID:14968176

  5. 21 CFR 892.1970 - Radiographic ECG/respirator synchronizer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radiographic ECG/respirator synchronizer. 892.1970... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1970 Radiographic ECG/respirator synchronizer. (a) Identification. A radiographic ECG/respirator synchronizer is a device intended to be used...

  6. Feedback Controller Design for the Synchronization of Boolean Control Networks.

    PubMed

    Liu, Yang; Sun, Liangjie; Lu, Jianquan; Liang, Jinling

    2016-09-01

    This brief investigates the partial and complete synchronization of two Boolean control networks (BCNs). Necessary and sufficient conditions for partial and complete synchronization are established by the algebraic representations of logical dynamics. An algorithm is obtained to construct the feedback controller that guarantees the synchronization of master and slave BCNs. Two biological examples are provided to illustrate the effectiveness of the obtained results.

  7. The linear synchronization measures of uterine EMG signals: Evidence of synchronized action potentials during propagation.

    PubMed

    Domino, Malgorzata; Pawlinski, Bartosz; Gajewski, Zdzislaw

    2016-11-01

    Evaluation of synchronization between myoelectric signals can give new insights into the functioning of the complex system of porcine myometrium. We propose a model of uterine contractions according to the hypothesis of action potentials similarity which is possible to detect during propagation in the uterine wall. We introduce similarity measures based on the concept of synchronization as used in matching linear signals such as electromyographic (EMG) time series data. The aim was to present linear measures to assess synchronization between contractions in different topographic regions of the uterus. We use the cross-correlation function (ƒx,y[l], ƒy,z[l]) and the cross-coherence function (Cxy[ƒ], Cyz[ƒ]) to assess synchronization between three data series of a diestral uterine EMG bundles in porcine reproductive tract. Spontaneous uterine activity was recorded using telemetry method directly by three-channel transmitter and three silver bipolar needle electrodes sutured on different topographic regions of the reproductive tract in the sow. The results show the usefulness of the cross-coherence function in that synchronization between uterine horn and corpus uteri for multiple action potentials (bundles) could be observed. The EMG bundles synchronization may be used to investigate the direction and velocity of EMG signals propagation in porcine reproductive tract. PMID:27570104

  8. Experience with synchronous and asynchronous digital control systems

    NASA Technical Reports Server (NTRS)

    Regenie, V. A.; Chacon, C. V.; Lock, W. P.

    1986-01-01

    Flight control systems have undergone a revolution since the days of simple mechanical linkages; presently the most advanced systems are full-authority, full-time digital systems controlling unstable aircraft. With the use of advanced control systems, the aerodynamic design can incorporate features that allow greater performance and fuel savings, as can be seen on the new Airbus design and advanced tactical fighter concepts. These advanced aircraft will be and are relying on the flight control system to provide the stability and handling qualities required for safe flight and to allow the pilot to control the aircraft. Various design philosophies have been proposed and followed to investigate system architectures for these advanced flight control systems. One major area of discussion is whether a multichannel digital control system should be synchronous or asynchronous. This paper addressed the flight experience at the Dryden Flight Research Facility of NASA's Ames Research Center with both synchronous and asynchronous digital flight control systems. Four different flight control systems are evaluated against criteria such as software reliability, cost increases, and schedule delays.

  9. A high-precision synchronization circuit for clock distribution

    NASA Astrophysics Data System (ADS)

    Chong, Lu; Hongzhou, Tan; Zhikui, Duan; Yi, Ding

    2015-10-01

    In this paper, a novel structure of a high-precision synchronization circuit, HPSC, using interleaved delay units and a dynamic compensation circuit is proposed. HPSCs are designed for synchronization of clock distribution networks in large-scale integrated circuits, where high-quality clocks are required. The application of a hybrid structure of a coarse delay line and dynamic compensation circuit performs roughly the alignment of the clock signal in two clock cycles, and finishes the fine tuning in the next three clock cycles with the phase error suppressed under 3.8 ps. The proposed circuit is implemented and fabricated using a SMIC 0.13 μm 1P6M process with a supply voltage at 1.2 V. The allowed operation frequency ranges from 200 to 800 MHz, and the duty cycle ranges between [20%, 80%]. The active area of the core circuits is 245 × 134 μm2, and the power consumption is 1.64 mW at 500 MHz.

  10. Synchronization techniques for medium data rate EHF MILSATCOM systems

    NASA Astrophysics Data System (ADS)

    Boudreau, G.; Schefter, M.

    1993-02-01

    In the area of MILSATCOM, considerable effort is currently being expended on the development of systems operating in the EHF frequency bands and employing onboard processing. Two of the principal advantages of employing these features are that the MILSATCOM system will be capable of increased throughput and will possess increased immunity to jamming and other channel impairments. Most of the previous research and development in EHF MILSATCOM has concentrated on Low Data Rate (LDR) waveforms, for data rates up to 2.4 kbps. In order to meet the requirements for increased throughput, Medium Data Rate (MDR) waveforms are being developed. These systems include data rates up to and including T1. This paper examines the constraints that communicating at MDR data rates places on synchronization and provides an overview of some of the various techniques and algorithms that can be employed for both spatial and time acquisition as well as tracking. Both channel and equipment impairments affecting synchronization are examined. Robust open and closed loop acquisition and tracking algorithms are examined in conjunction with onboard processing techniques. Performance is discussed in terms of SNR, acquisition time, probability of correct acquisition and probability of false acquisition. Tradeoffs in a MILSATCOM system design based on various user requirements are also presented.

  11. Illumination-based synchronization of high-speed vision sensors.

    PubMed

    Hou, Lei; Kagami, Shingo; Hashimoto, Koichi

    2010-01-01

    To acquire images of dynamic scenes from multiple points of view simultaneously, the acquisition time of vision sensors should be synchronized. This paper describes an illumination-based synchronization method derived from the phase-locked loop (PLL) algorithm. Incident light to a vision sensor from an intensity-modulated illumination source serves as the reference signal for synchronization. Analog and digital computation within the vision sensor forms a PLL to regulate the output signal, which corresponds to the vision frame timing, to be synchronized with the reference. Simulated and experimental results show that a 1,000 Hz frame rate vision sensor was successfully synchronized with 32 μs jitters.

  12. Isochronal chaos synchronization of delay-coupled optoelectronic oscillators.

    PubMed

    Illing, Lucas; Panda, Cristian D; Shareshian, Lauren

    2011-07-01

    We study experimentally chaos synchronization of nonlinear optoelectronic oscillators with time-delayed mutual coupling and self-feedback. Coupling three oscillators in a chain, we find that the outer two oscillators always synchronize. In contrast, isochronal synchronization of the mediating middle oscillator is found only when self-feedback is added to the middle oscillator. We show how the stability of the isochronal solution of any network, including the case of three coupled oscillators, can be determined by measuring the synchronization threshold of two unidirectionally coupled systems. In addition, we provide a sufficient condition that guarantees global asymptotic stability of the synchronized solution.

  13. Synchronization of two self-excited double pendula

    NASA Astrophysics Data System (ADS)

    Koluda, P.; Perlikowski, P.; Czolczynski, Krzysztof; Kapitaniak, T.

    2014-04-01

    We consider the synchronization of two self-excited double pendula. We show that such pendula hanging on the same beam can have four different synchronous configurations. Our approximate analytical analysis allows us to derive the synchronization conditions and explain the observed types of synchronization. We consider an energy balance in the system and describe how the energy is transferred between the pendula via the oscillating beam, allowing thus the pendula synchronization. Changes and stability ranges of the obtained solutions with increasing and decreasing masses of the pendula are shown using path-following.

  14. Frequency synchronization of a frequency-hopped MFSK communication system

    NASA Technical Reports Server (NTRS)

    Huth, G. K.; Polydoros, A.; Simon, M. K.

    1981-01-01

    This paper presents the performance of fine-frequency synchronization. The performance degradation due to imperfect frequency synchronization is found in terms of the effect on bit error probability as a function of full-band or partial-band noise jamming levels and of the number of frequency hops used in the estimator. The effect of imperfect fine-time synchronization is also included in the calculation of fine-frequency synchronization performance to obtain the overall performance degradation due to synchronization errors.

  15. Synchronization of two identical and non-identical Rulkov models

    NASA Astrophysics Data System (ADS)

    Sun, Huijing; Cao, Hongjun

    2016-11-01

    In this paper, the synchronization of two chaotic Rulkov map-based neurons is taken into account. Firstly, based on the master stability function (MSF) analysis, the complete synchronization of two electrical coupled chaotic Rulkov neurons is investigated in detail. The two-dimensional parameter-space plot that displays directly the values of the MSF in different colors is numerically obtained. The numerical values of the MSF show that the two electrical coupled Rulkov neurons are likely to achieve the complete synchronization when each single neuron is in a silent state or a period-1 bursting state, while are unable to reach the complete synchronous state when each single neuron is in a chaotic bursting state or a spiking state. Secondly, Pearson's correlation coefficient is employed to measure the synchronization degree, which demonstrates the nonexistence of the complete synchronization for non-identical electrical coupled Rulkov neurons. Importantly, the complete synchronization can not be reached with the increase of the electrical coupling strength, which is different from the continuous-time neuronal models. Finally, based on the active control method, a synchronization scheme is presented to study the complete synchronization for two Rulkov neurons no matter whether they are identical or not. The scheme is also applied to investigate the anticipated synchronization and the lag synchronization for any two Rulkov neurons. Numerical simulations verify the correctness of our analytical results and the effectiveness of our methods.

  16. Spontaneous synchronization of arm motion between Japanese macaques.

    PubMed

    Nagasaka, Yasuo; Chao, Zenas C; Hasegawa, Naomi; Notoya, Tomonori; Fujii, Naotaka

    2013-01-01

    Humans show spontaneous synchronization of movements during social interactions; this coordination has been shown to facilitate smooth communication. Although human studies exploring spontaneous synchronization are increasing in number, little is known about this phenomenon in other species. In this study, we examined spontaneous behavioural synchronization between monkeys in a laboratory setting. Synchronization was quantified by changes in button-pressing behaviour while pairs of monkeys were facing one another. Synchronization between the monkeys was duly observed and it was participant-partner dependent. Further tests confirmed that the speed of button pressing changed to harmonic or sub-harmonic levels in relation to the partner's speed. In addition, the visual information from the partner induced a higher degree of synchronization than auditory information. This study establishes advanced tasks for testing social coordination in monkeys, and illustrates ways in which monkeys coordinate their actions to establish synchronization.

  17. System and method for time synchronization in a wireless network

    DOEpatents

    Gonia, Patrick S.; Kolavennu, Soumitri N.; Mahasenan, Arun V.; Budampati, Ramakrishna S.

    2010-03-30

    A system includes multiple wireless nodes forming a cluster in a wireless network, where each wireless node is configured to communicate and exchange data wirelessly based on a clock. One of the wireless nodes is configured to operate as a cluster master. Each of the other wireless nodes is configured to (i) receive time synchronization information from a parent node, (ii) adjust its clock based on the received time synchronization information, and (iii) broadcast time synchronization information based on the time synchronization information received by that wireless node. The time synchronization information received by each of the other wireless nodes is based on time synchronization information provided by the cluster master so that the other wireless nodes substantially synchronize their clocks with the clock of the cluster master.

  18. Prescribed performance synchronization for fractional-order chaotic systems

    NASA Astrophysics Data System (ADS)

    Liu, Heng; Li, Sheng-Gang; Sun, Ye-Guo; Wang, Hong-Xing

    2015-09-01

    In this paper the synchronization for two different fractional-order chaotic systems, capable of guaranteeing synchronization error with prescribed performance, is investigated by means of the fractional-order control method. By prescribed performance synchronization we mean that the synchronization error converges to zero asymptotically, with convergence rate being no less than a certain prescribed function. A fractional-order synchronization controller and an adaptive fractional-order synchronization controller, which can guarantee the prescribed performance of the synchronization error, are proposed for fractional-order chaotic systems with and without disturbances, respectively. Finally, our simulation studies verify and clarify the proposed method. Project supported by the National Natural Science Foundation of China (Grant Nos. 11401243 and 61403157), the Fundamental Research Funds for the Central Universities of China (Grant No. GK201504002), and the Natural Science Foundation for the Higher Education Institutions of Anhui Province of China (Grant No. KJ2015A256).

  19. Signal processing techniques for synchronization of wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Lee, Jaehan; Wu, Yik-Chung; Chaudhari, Qasim; Qaraqe, Khalid; Serpedin, Erchin

    2010-11-01

    Clock synchronization is a critical component in wireless sensor networks, as it provides a common time frame to different nodes. It supports functions such as fusing voice and video data from different sensor nodes, time-based channel sharing, and sleep wake-up scheduling, etc. Early studies on clock synchronization for wireless sensor networks mainly focus on protocol design. However, clock synchronization problem is inherently related to parameter estimation, and recently, studies of clock synchronization from the signal processing viewpoint started to emerge. In this article, a survey of latest advances on clock synchronization is provided by adopting a signal processing viewpoint. We demonstrate that many existing and intuitive clock synchronization protocols can be interpreted by common statistical signal processing methods. Furthermore, the use of advanced signal processing techniques for deriving optimal clock synchronization algorithms under challenging scenarios will be illustrated.

  20. Synchronization in networks of spatially extended systems

    SciTech Connect

    Filatova, Anastasiya E.; Hramov, Alexander E.; Koronovskii, Alexey A.; Boccaletti, Stefano

    2008-06-15

    Synchronization processes in networks of spatially extended dynamical systems are analytically and numerically studied. We focus on the relevant case of networks whose elements (or nodes) are spatially extended dynamical systems, with the nodes being connected with each other by scalar signals. The stability of the synchronous spatio-temporal state for a generic network is analytically assessed by means of an extension of the master stability function approach. We find an excellent agreement between the theoretical predictions and the data obtained by means of numerical calculations. The efficiency and reliability of this method is illustrated numerically with networks of beam-plasma chaotic systems (Pierce diodes). We discuss also how the revealed regularities are expected to take place in other relevant physical and biological circumstances.

  1. Application of synchronous fluorescence to parchment characterization.

    PubMed

    Dolgin, Bella; Bulatov, Valery; Schechter, Israel

    2009-12-01

    A nondestructive method for quantitative parchment characterization and sensitive indication of its deterioration stage was developed. Synchronous fluorescence (SF) measurements were applied for the first time to parchment samples. The method provides detailed spectral features, which are useful for parchment characterization. The discrimination of parchment samples into groups (modern, historical, and artificially aged) was successfully performed. The SF spectra could be resolved into specific fluorophores, which were related to the parchment condition. The spectral data indicate a continuous change in the collagen-to-gelatin ratio during the aging process. Depth-resolved synchronous fluorescence spectra were also measured. The data indicate that parchments possess a layered structure, and the dominant fluorophore in the upper layer is different from those in the lower layers. Layer-resolved profiling allows for quantifying the contribution of each fluorophore in each given layer. This way, significant differences between modern, artificially aged, and historical samples can be observed.

  2. Statistical modeling approach for detecting generalized synchronization

    NASA Astrophysics Data System (ADS)

    Schumacher, Johannes; Haslinger, Robert; Pipa, Gordon

    2012-05-01

    Detecting nonlinear correlations between time series presents a hard problem for data analysis. We present a generative statistical modeling method for detecting nonlinear generalized synchronization. Truncated Volterra series are used to approximate functional interactions. The Volterra kernels are modeled as linear combinations of basis splines, whose coefficients are estimated via l1 and l2 regularized maximum likelihood regression. The regularization manages the high number of kernel coefficients and allows feature selection strategies yielding sparse models. The method's performance is evaluated on different coupled chaotic systems in various synchronization regimes and analytical results for detecting m:n phase synchrony are presented. Experimental applicability is demonstrated by detecting nonlinear interactions between neuronal local field potentials recorded in different parts of macaque visual cortex.

  3. Pursuit and Synchronization in Hydrodynamic Dipoles

    NASA Astrophysics Data System (ADS)

    Kanso, Eva; Tsang, Alan Cheng Hou

    2015-10-01

    We study theoretically the behavior of a class of hydrodynamic dipoles. This study is motivated by recent experiments on synthetic and biological swimmers in microfluidic Hele-Shaw type geometries. Under such confinement, a swimmer's hydrodynamic signature is that of a potential source dipole, and the long-range interactions among swimmers are obtained from the superposition of dipole singularities. Here, we recall the equations governing the positions and orientations of interacting asymmetric swimmers in doubly periodic domains and focus on the dynamics of pairs of swimmers. We obtain two families of "relative equilibria"-type solutions that correspond to pursuit and synchronization of the two swimmers. Interestingly, the pursuit mode is stable for large-tail swimmers, whereas the synchronization mode is stable for large-head swimmers. These results have profound implications on the collective behavior reported in several recent studies on populations of confined microswimmers.

  4. Noise suppressions in synchronized chaos lidars.

    PubMed

    Wu, Wen-Ting; Liao, Yi-Huan; Lin, Fan-Yi

    2010-12-01

    The noise suppressions in the chaos lidar (CLIDAR) and the synchronized chaos lidar (S-CLIDAR) systems with the optoelectronic feedback (OEF) and optical feedback (OF) schemes are studied numerically. Compared with the CLIDAR system, the S-CLIDAR system with the OEF scheme has better correlation coefficients in the large noise regime for SNR < 15 dB. For the S-CLIDAR system with the OF scheme, better detections are also achieved in wide ranges depending on the levels of the phase noise presented in the channel. To have the best synchronization and detection quality, the optimized conditions for the coupling and feedback strengths in the S-CLIDAR system are also discussed.

  5. Synchronized charge oscillations in correlated electron systems

    PubMed Central

    Shukla, Nikhil; Parihar, Abhinav; Freeman, Eugene; Paik, Hanjong; Stone, Greg; Narayanan, Vijaykrishnan; Wen, Haidan; Cai, Zhonghou; Gopalan, Venkatraman; Engel-Herbert, Roman; Schlom, Darrell G.; Raychowdhury, Arijit; Datta, Suman

    2014-01-01

    Strongly correlated phases exhibit collective carrier dynamics that if properly harnessed can enable novel functionalities and applications. In this article, we investigate the phenomenon of electrical oscillations in a prototypical MIT system, vanadium dioxide (VO2). We show that the key to such oscillatory behaviour is the ability to induce and stabilize a non-hysteretic and spontaneously reversible phase transition using a negative feedback mechanism. Further, we investigate the synchronization and coupling dynamics of such VO2 based relaxation oscillators and show, via experiment and simulation, that this coupled oscillator system exhibits rich non-linear dynamics including charge oscillations that are synchronized in both frequency and phase. Our approach of harnessing a non-hysteretic reversible phase transition region is applicable to other correlated systems exhibiting metal-insulator transitions and can be a potential candidate for oscillator based non-Boolean computing.

  6. Synchronous and Cogged Fan Belt Performance Assessment

    SciTech Connect

    Cutler, D.; Dean, J.; Acosta, J.

    2014-02-01

    The GSA Regional GPG Team commissioned the National Renewable Energy Laboratory (NREL) to perform monitoring of cogged V-belts and synchronous belts on both a constant volume and a variable air volume fan at the Byron G. Rodgers Federal Building and U.S. Courthouse in Denver, Colorado. These motor/fan combinations were tested with their original, standard V-belts (appropriately tensioned by an operation and maintenance professional) to obtain a baseline for standard operation. They were then switched to the cogged V-belts, and finally to synchronous belts. The power consumption by the motor was normalized for both fan speed and air density changes. This was necessary to ensure that the power readings were not influenced by a change in rotational fan speed or by the power required to push denser air. Finally, energy savings and operation and maintenance savings were compiled into an economic life-cycle cost analysis of the different belt options.

  7. Forced synchronization of autonomous dynamical Boolean networks

    SciTech Connect

    Rivera-Durón, R. R. Campos-Cantón, E.; Campos-Cantón, I.; Gauthier, Daniel J.

    2015-08-15

    We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enable future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics.

  8. Electro-hydrodynamic synchronization of piezoelectric flags

    NASA Astrophysics Data System (ADS)

    Xia, Yifan; Doaré, Olivier; Michelin, Sébastien

    2016-08-01

    Hydrodynamic coupling of flexible flags in axial flows may profoundly influence their flapping dynamics, in particular driving their synchronization. This work investigates the effect of such coupling on the harvesting efficiency of coupled piezoelectric flags, that convert their periodic deformation into an electrical current. Considering two flags connected to a single output circuit, we investigate using numerical simulations the relative importance of hydrodynamic coupling to electrodynamic coupling of the flags through the output circuit due to the inverse piezoelectric effect. It is shown that electrodynamic coupling is dominant beyond a critical distance, and induces a synchronization of the flags' motion resulting in enhanced energy harvesting performance. We further show that this electrodynamic coupling can be strengthened using resonant harvesting circuits.

  9. Another look at synchronized neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Akhmedov, Evgeny; Mirizzi, Alessandro

    2016-07-01

    In dense neutrino backgrounds present in supernovae and in the early Universe neutrino oscillations may exhibit complex collective phenomena, such as synchronized oscillations, bipolar oscillations and spectral splits and swaps. We consider in detail possible decoherence effects on the simplest of these phenomena - synchronized neutrino oscillations that can occur in a uniform and isotropic neutrino gas. We develop an exact formalism of spectral moments of the flavour spin vectors describing such a system and then apply it to find analytical approaches that allow one to study decoherence effects on its late-time evolution. This turns out to be possible in part due to the existence of the (previously unknown) exact conservation law satisfied by the quantities describing the considered neutrino system. Interpretation of the decoherence effects in terms of neutrino wave packet separation is also given, both in the adiabatic and non-adiabatic regimes of neutrino flavour evolution.

  10. Anticipated synchronization in neuronal network motifs

    NASA Astrophysics Data System (ADS)

    Matias, F. S.; Gollo, L. L.; Carelli, P. V.; Copelli, M.; Mirasso, C. R.

    2013-01-01

    Two identical dynamical systems coupled unidirectionally (in a so called master-slave configuration) exhibit anticipated synchronization (AS) if the one which receives the coupling (the slave) also receives a negative delayed self-feedback. In oscillatory neuronal systems AS is characterized by a phase-locking with negative time delay τ between the spikes of the master and of the slave (slave fires before the master), while in the usual delayed synchronization (DS) regime τ is positive (slave fires after the master). A 3-neuron motif in which the slave self-feedback is replaced by a feedback loop mediated by an interneuron can exhibits both AS and DS regimes. Here we show that AS is robust in the presence of noise in a 3 Hodgkin-Huxley type neuronal motif. We also show that AS is stable for large values of τ in a chain of connected slaves-interneurons.

  11. Synchronous imaging of coherent plasma fluctuations

    NASA Astrophysics Data System (ADS)

    Haskey, S. R.; Thapar, N.; Blackwell, B. D.; Howard, J.

    2014-03-01

    A new method for imaging high frequency plasma fluctuations is described. A phase locked loop and field programmable gate array are used to generate gating triggers for an intensified CCD camera. A reference signal from another diagnostic such as a magnetic probe ensures that the triggers are synchronous with the fluctuation being imaged. The synchronous imaging technique allows effective frame rates exceeding millions per second, good signal to noise through the accumulation of multiple exposures per frame, and produces high resolution images without generating excessive quantities of data. The technique can be used to image modes in the MHz range opening up the possibility of spectrally filtered high resolution imaging of MHD instabilities that produce sufficient light fluctuations. Some examples of projection images of plasma fluctuations on the H-1NF heliac obtained using this approach are presented here.

  12. Synchronous imaging of coherent plasma fluctuations.

    PubMed

    Haskey, S R; Thapar, N; Blackwell, B D; Howard, J

    2014-03-01

    A new method for imaging high frequency plasma fluctuations is described. A phase locked loop and field programmable gate array are used to generate gating triggers for an intensified CCD camera. A reference signal from another diagnostic such as a magnetic probe ensures that the triggers are synchronous with the fluctuation being imaged. The synchronous imaging technique allows effective frame rates exceeding millions per second, good signal to noise through the accumulation of multiple exposures per frame, and produces high resolution images without generating excessive quantities of data. The technique can be used to image modes in the MHz range opening up the possibility of spectrally filtered high resolution imaging of MHD instabilities that produce sufficient light fluctuations. Some examples of projection images of plasma fluctuations on the H-1NF heliac obtained using this approach are presented here.

  13. Social argumentation in online synchronous communication

    NASA Astrophysics Data System (ADS)

    Angiono, Ivan

    In education, argumentation has an increasing importance because it can be used to foster learning in various fields including philosophy, history, sciences, and mathematics. Argumentation is also at the heart of scientific inquiry. Many educational technology researchers have been interested in finding out how technologies can be employed to improve students' learning of argumentation. Therefore, many computer-based tools or argumentation systems have been developed to assist students in their acquisition of argumentation skills. While the argumentation systems incorporating online debating tools present a good resource in formal settings, there is limited research revealing what argumentative skills students are portraying in informal online settings without the presence of a moderator. This dissertation investigates the nature of argumentative practices in a massively multiplayer online game where the system successfully incorporates the authentic use of online synchronous communication tools and the patterns that emerge from the interplay between a number of contextual variables including synchronicity, interest, authenticity, and topical knowledge.

  14. Hidden imperfect synchronization of wall turbulence

    NASA Astrophysics Data System (ADS)

    Tardu, Sedat F.

    2010-03-01

    Instantaneous amplitude and phase concept emerging from analytical signal formulation is applied to the wavelet coefficients of streamwise velocity fluctuations in the buffer layer of a near wall turbulent flow. Experiments and direct numerical simulations show both the existence of long periods of inert zones wherein the local phase is constant. These regions are separated by random phase jumps. The local amplitude is globally highly intermittent, but not in the phase locked regions wherein it varies smoothly. These behaviors are reminiscent of phase synchronization phenomena observed in stochastic chaotic systems. The lengths of the constant phase inert (laminar) zones reveal a type I intermittency behavior, in concordance with saddle-node bifurcation, and the periodic orbits of saddle nature recently identified in Couette turbulence. The imperfect synchronization is related to the footprint of coherent Reynolds shear stress producing eddies convecting in the low buffer.

  15. EEG phase synchronization during hypnosis induction.

    PubMed

    Baghdadi, G; Nasrabadi, A M

    2012-05-01

    Hypnosis is a mental state or set of attitudes usually induced by a procedure known as hypnotic induction. In order to provide the basic physiological conditions for potentially successful hypnosis treatment of medical and psychological problems, the determination of a subject's hypnotizability level is important. Currently, the hypnotizability level is determined using different standard subjective tests. To avoid the different drawbacks of these subjective clinical tests, a practical objective method based on the correlation between electroencephalograph (EEG) phase synchronization and hypnosis susceptibility levels is presented in this study. This method can be used by clinicians instead of the traditional subjective methods to classify hypnotizability level. Thirty-two subjects with different hypnosis susceptibility levels contributed to this research. Using statistical analyses, it was concluded that, in highly hypnotizable people, the EEG phase synchronization between different paired channels, located on the frontal lobe, is significantly different from that in subjects with medium or low hypnotizability.

  16. Forced synchronization of autonomous dynamical Boolean networks.

    PubMed

    Rivera-Durón, R R; Campos-Cantón, E; Campos-Cantón, I; Gauthier, Daniel J

    2015-08-01

    We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enable future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics.

  17. Traveling-wave synchronous coil gun

    NASA Technical Reports Server (NTRS)

    Elliott, David G.

    1991-01-01

    An outline is presented of the coilgun concept, excitation, switching, brush commutation, power supply, and performance. It is shown that a traveling-wave synchronous coilgun permits independent adjustment of the magnetic field and armature current for high velocity at low armature mass fraction. Magnetic field energy is transferred from the rear of the wave to the front without passing through the power supply. Elaborate switching is required.

  18. Synchronization Dynamics of Coupled Chemical Oscillators

    NASA Astrophysics Data System (ADS)

    Tompkins, Nathan

    The synchronization dynamics of complex networks have been extensively studied over the past few decades due to their ubiquity in the natural world. Prominent examples include cardiac rhythms, circadian rhythms, the flashing of fireflies, predator/prey population dynamics, mammalian gait, human applause, pendulum clocks, the electrical grid, and of the course the brain. Detailed experiments have been done to map the topology of many of these systems and significant advances have been made to describe the mathematics of these networks. Compared to these bodies of work relatively little has been done to directly test the role of topology in the synchronization dynamics of coupled oscillators. This Dissertation develops technology to examine the dynamics due to topology within networks of discrete oscillatory components. The oscillatory system used here consists of the photo-inhibitable Belousov-Zhabotinsky (BZ) reaction water-in-oil emulsion where the oscillatory drops are diffusively coupled to one another and the topology is defined by the geometry of the diffusive connections. Ring networks are created from a close-packed 2D array of drops using the Programmable Illumination Microscope (PIM) in order to test Turing's theory of morphogenesis directly. Further technology is developed to create custom planar networks of BZ drops in more complicated topologies which can be individually perturbed using illumination from the PIM. The work presented here establishes the validity of using the BZ emulsion system with a PIM to study the topology induced effects on the synchronization dynamics of coupled chemical oscillators, tests the successes and limitations of Turing's theory of morphogenesis, and develops new technology to further probe the effects of network topology on a system of coupled oscillators. Finally, this Dissertation concludes by describing ongoing experiments which utilize this new technology to examine topology induced transitions of synchronization

  19. Phase synchronization of instrumental music signals

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sayan; Palit, Sanjay Kumar; Banerjee, Santo; Ariffin, M. R. K.; Bhattacharya, D. K.

    2014-06-01

    Signal analysis is one of the finest scientific techniques in communication theory. Some quantitative and qualitative measures describe the pattern of a music signal, vary from one to another. Same musical recital, when played by different instrumentalists, generates different types of music patterns. The reason behind various patterns is the psycho-acoustic measures - Dynamics, Timber, Tonality and Rhythm, varies in each time. However, the psycho-acoustic study of the music signals does not reveal any idea about the similarity between the signals. For such cases, study of synchronization of long-term nonlinear dynamics may provide effective results. In this context, phase synchronization (PS) is one of the measures to show synchronization between two non-identical signals. In fact, it is very critical to investigate any other kind of synchronization for experimental condition, because those are completely non identical signals. Also, there exists equivalence between the phases and the distances of the diagonal line in Recurrence plot (RP) of the signals, which is quantifiable by the recurrence quantification measure τ-recurrence rate. This paper considers two nonlinear music signals based on same raga played by two eminent sitar instrumentalists as two non-identical sources. The psycho-acoustic study shows how the Dynamics, Timber, Tonality and Rhythm vary for the two music signals. Then, long term analysis in the form of phase space reconstruction is performed, which reveals the chaotic phase spaces for both the signals. From the RP of both the phase spaces, τ-recurrence rate is calculated. Finally by the correlation of normalized tau-recurrence rate of their 3D phase spaces and the PS of the two music signals has been established. The numerical results well support the analysis.

  20. Bilateral synchronous plasmacytoma of the testis.

    PubMed

    Narayanan, Geetha; Joseph, Rona; Soman, Lali V

    2016-04-01

    Extramedullary plasmacytoma (EMP) is usually seen in the head and neck regions and in the upper respiratory, gastrointestinal, and central nervous systems. Testis is a rare site for EMP, and bilateral synchronous testicular plasmacytoma occurring as an isolated event at initial presentation has been reported only once previously. We present herein the second such report in a 70-year-old man who underwent bilateral orchidectomy. PMID:27034568

  1. Assessing cortical synchronization during transcranial direct current stimulation: A graph-theoretical analysis.

    PubMed

    Mancini, Matteo; Brignani, Debora; Conforto, Silvia; Mauri, Piercarlo; Miniussi, Carlo; Pellicciari, Maria Concetta

    2016-10-15

    Transcranial direct current stimulation (tDCS) is a neuromodulation technique that can alter cortical excitability and modulate behaviour in a polarity-dependent way. Despite the widespread use of this method in the neuroscience field, its effects on ongoing local or global (network level) neuronal activity are still not foreseeable. A way to shed light on the neuronal mechanisms underlying the cortical connectivity changes induced by tDCS is provided by the combination of tDCS with electroencephalography (EEG). In this study, twelve healthy subjects underwent online tDCS-EEG recording (i.e., simultaneous), during resting-state, using 19 EEG channels. The protocol involved anodal, cathodal and sham stimulation conditions, with the active and the reference electrodes in the left frontocentral area (FC3) and on the forehead over the right eyebrow, respectively. The data were processed using a network model, based on graph theory and the synchronization likelihood. The resulting graphs were analysed for four frequency bands (theta, alpha, beta and gamma) to evaluate the presence of tDCS-induced differences in synchronization patterns and graph theory measures. The resting state network connectivity resulted altered during tDCS, in a polarity-specific manner for theta and alpha bands. Anodal tDCS weakened synchronization with respect to the baseline over the fronto-central areas in the left hemisphere, for theta band (p<0.05). In contrast, during cathodal tDCS a significant increase in inter-hemispheric synchronization connectivity was observed over the centro-parietal, centro-occipital and parieto-occipital areas for the alpha band (p<0.05). Local graph measures showed a tDCS-induced polarity-specific differences that regarded modifications of network activities rather than specific region properties. Our results show that applying tDCS during the resting state modulates local synchronization as well as network properties in slow frequency bands, in a polarity

  2. Hybrid synchronization in coupled ultracold atomic gases

    NASA Astrophysics Data System (ADS)

    Qiu, Haibo; Zambrini, Roberta; Polls, Artur; Martorell, Joan; Juliá-Díaz, Bruno

    2015-10-01

    We study the time evolution of two coupled many-body quantum systems, one of which is assumed to be Bose condensed. Specifically, we consider two ultracold atomic clouds each populating two localized single-particle states, i.e., a two-component bosonic Josephson junction. The cold atom cloud can retain its coherence when coupled to the condensate and displays synchronization with the latter, differing from usual entrainment. We term this effect among the ultracold and the condensed clouds as hybrid synchronization. The onset of synchronization, which we observe in the evolution of average properties of both gases when increasing their coupling, is found to be related to the many-body properties of the quantum gas, e.g., condensed fraction quantum fluctuations of the particle number differences. We discuss the effects of different initial preparations and the influence of unequal particle numbers for the two clouds, and we explore the dependence on the initial quantum state, e.g., coherent state, squeezed state, and Fock state, finding essentially the same phenomenology in all cases.

  3. Synchronous Renal Cell Carcinoma and Gastrointestinal Malignancies

    PubMed Central

    Dafashy, Tamer J.; Ghaffary, Cameron K.; Keyes, Kyle T.; Sonstein, Joseph

    2016-01-01

    While renal cell carcinoma is the most commonly diagnosed neoplasm of the kidney, its simultaneous diagnosis with a gastrointestinal malignancy is a rare, but well reported phenomenon. This discussion focuses on three independent cases in which each patient was diagnosed with renal cell carcinoma and a unique synchronous gastrointestinal malignancy. Case 1 explores the diagnosis and surgical intervention of a 66-year-old male patient synchronously diagnosed with clear cell renal cell carcinoma and a carcinoid tumor of the small bowel. Case 2 describes the diagnosis and surgical intervention of a 61-year-old male found to have clear cell renal cell carcinoma and a mucinous appendiceal neoplasm. Lastly, Case 3 focuses on the interventions and management of a 36-year-old female diagnosed with synchronous clear cell renal carcinoma and hereditary nonpolyposis colorectal cancer. This case series examines each distinct patient's presentation, discusses the diagnosis, and compares and contrasts the findings while discussing the literature on this topic. PMID:26904353

  4. Synchronizing genetic relaxation oscillators by intercell signaling.

    PubMed

    McMillen, David; Kopell, Nancy; Hasty, Jeff; Collins, J J

    2002-01-22

    The ability to design and construct synthetic gene regulatory networks offers the prospect of studying issues related to cellular function in a simplified context; such networks also have many potential applications in biotechnology. A synthetic network exhibiting oscillatory behavior has recently been constructed [Elowitz, M. B. & Leibler, S. (2000) Nature (London) 403, 335-338]. It has also been shown that a natural bacterial quorum-sensing mechanism can be used in a synthetic system to communicate a signal between two populations of cells, such that receipt of the signal causes expression of a target gene [Weiss, R. & Knight, T. F. (2000) in DNA6: Sixth International Meeting on DNA-Based Computers, June 13-17, 2000, Leiden, The Netherlands]. We propose a synthetic gene network in Escherichia coli which combines these two features: the system acts as a relaxation oscillator and uses an intercell signaling mechanism to couple the oscillators and induce synchronous oscillations. We model the system and show that the proposed coupling scheme does lead to synchronous behavior across a population of cells. We provide an analytical treatment of the synchronization process, the dominant mechanism of which is "fast threshold modulation."

  5. Symbol synchronization for the TDRSS decoder

    NASA Technical Reports Server (NTRS)

    Costello, D. J., Jr.

    1983-01-01

    Each 8 bits out of the Viterbi decoder correspond to one symbol of the R/S code. Synchronization must be maintained here so that each 8-bit symbol delivered to the R/S decoder corresponds to an 8-bit symbol from the R/S encoder. Lack of synchronization, would cause an error in almost every R/S symbol since even a - 1-bit sync slip shifts every bit in each 8-bit symbol by one position, therby confusing the mapping betweeen 8-bit sequences and symbols. The error correcting capability of the R/S code would be exceeded. Possible ways to correcting this condition include: (1) designing the R/S decoder to recognize the overload and shifting the output sequence of the inner decoder to establish a different sync state; (2) using the characteristics of the inner decoder to establish symbol synchronization for the outer code, with or without a deinterleaver and an interleaver; and (3) modifying the encoder to alternate periodically between two sets of generators.

  6. Inter-Brain Synchronization during Social Interaction

    PubMed Central

    Dumas, Guillaume; Nadel, Jacqueline; Soussignan, Robert; Martinerie, Jacques

    2010-01-01

    During social interaction, both participants are continuously active, each modifying their own actions in response to the continuously changing actions of the partner. This continuous mutual adaptation results in interactional synchrony to which both members contribute. Freely exchanging the role of imitator and model is a well-framed example of interactional synchrony resulting from a mutual behavioral negotiation. How the participants' brain activity underlies this process is currently a question that hyperscanning recordings allow us to explore. In particular, it remains largely unknown to what extent oscillatory synchronization could emerge between two brains during social interaction. To explore this issue, 18 participants paired as 9 dyads were recorded with dual-video and dual-EEG setups while they were engaged in spontaneous imitation of hand movements. We measured interactional synchrony and the turn-taking between model and imitator. We discovered by the use of nonlinear techniques that states of interactional synchrony correlate with the emergence of an interbrain synchronizing network in the alpha-mu band between the right centroparietal regions. These regions have been suggested to play a pivotal role in social interaction. Here, they acted symmetrically as key functional hubs in the interindividual brainweb. Additionally, neural synchronization became asymmetrical in the higher frequency bands possibly reflecting a top-down modulation of the roles of model and imitator in the ongoing interaction. PMID:20808907

  7. Synchronization and Propagation of Global Sleep Spindles

    PubMed Central

    de Souza, Rafael Toledo Fernandes; Gerhardt, Günther Johannes Lewczuk; Schönwald, Suzana Veiga; Rybarczyk-Filho, José Luiz; Lemke, Ney

    2016-01-01

    Sleep spindles occur thousands of times during normal sleep and can be easily detected by visual inspection of EEG signals. These characteristics make spindles one of the most studied EEG structures in mammalian sleep. In this work we considered global spindles, which are spindles that are observed simultaneously in all EEG channels. We propose a methodology that investigates both the signal envelope and phase/frequency of each global spindle. By analysing the global spindle phase we showed that 90% of spindles synchronize with an average latency time of 0.1 s. We also measured the frequency modulation (chirp) of global spindles and found that global spindle chirp and synchronization are not correlated. By investigating the signal envelopes and implementing a homogeneous and isotropic propagation model, we could estimate both the signal origin and velocity in global spindles. Our results indicate that this simple and non-invasive approach could determine with reasonable precision the spindle origin, and allowed us to estimate a signal speed of 0.12 m/s. Finally, we consider whether synchronization might be useful as a non-invasive diagnostic tool. PMID:26963102

  8. Synchronous particle and non-adiabatic capture

    SciTech Connect

    Kats, J.M.

    1988-01-01

    In the theory of particle longitudinal motion, a classical definition of synchronous particle (synchronous energy, phase, and orbit) assumes that there is a one-to-one correspondence between the guiding magnetic field and the frequency of the accelerating electrical field. In practice, that correspondence may not be sustained because of errors in the magnetic field, in the frequency, or because sometimes one does not want to keep that relationship for some reason. In this paper, a definition of synchronous particle is introduced when the magnetic field and the frequency are independent functions of time. The result is that the size and shape of the bucket (separatrix) depends not only on the field rate of change but also on the frequency rate of change. This means, for example, that one can have a stationary bucket even with a rising field. Having the frequency, in addition to the field and voltage, as parameters controlling the shape and the size of the bucket, it is shown how to decrease particle losses during injection and capture. 2 refs., 2 figs.

  9. Synchronous behavior of two coupled electronic neurons

    SciTech Connect

    Pinto, R. D.; Varona, P.; Volkovskii, A. R.; Szuecs, A.; Abarbanel, Henry D. I.; Rabinovich, M. I.

    2000-08-01

    We report on experimental studies of synchronization phenomena in a pair of analog electronic neurons (ENs). The ENs were designed to reproduce the observed membrane voltage oscillations of isolated biological neurons from the stomatogastric ganglion of the California spiny lobster Panulirus interruptus. The ENs are simple analog circuits which integrate four-dimensional differential equations representing fast and slow subcellular mechanisms that produce the characteristic regular/chaotic spiking-bursting behavior of these cells. In this paper we study their dynamical behavior as we couple them in the same configurations as we have done for their counterpart biological neurons. The interconnections we use for these neural oscillators are both direct electrical connections and excitatory and inhibitory chemical connections: each realized by analog circuitry and suggested by biological examples. We provide here quantitative evidence that the ENs and the biological neurons behave similarly when coupled in the same manner. They each display well defined bifurcations in their mutual synchronization and regularization. We report briefly on an experiment on coupled biological neurons and four-dimensional ENs, which provides further ground for testing the validity of our numerical and electronic models of individual neural behavior. Our experiments as a whole present interesting new examples of regularization and synchronization in coupled nonlinear oscillators. (c) 2000 The American Physical Society.

  10. Pulse Ejection Presentation System Synchronized with Breathing

    NASA Astrophysics Data System (ADS)

    Kadowaki, Ami; Sato, Junta; Ohtsu, Kaori; Bannai, Yuichi; Okada, Kenichi

    Trials on transmission of olfactory information together with audio/visual information are currently being conducted in the field of multimedia. However, continuous emission of scents in high concentration creates problems of human adaptation and remnant odors in air. To overcome such problems we developed an olfactory display in conjunction with Canon Inc. This display has high emission control in the ink-jet so that it can provide stable pulse emission of scents. Humans catch a scent when they breathe in and inhale smell molecules in air. Therefore, it is important that the timing of scent presentation is synchronized with human breathing. We also developed a breath sensor which detects human inspiration. In this study, we combined the olfactory display with the breath sensor to make a pulse ejection presentation system synchronized the breath. The experimental evaluation showed that the system had more than 90 percent of detection rate. Another evaluation was held at KEIO TECHNO-MALL 2007. From questionnaire results of the participants, we found that the system made the user feel continuous sense of smell avoiding adaptation. It is expected that our system enables olfactory information to be synchronized with audio/visual information in arbitrary duration at any time.

  11. Explosive synchronization with asymmetric frequency distribution

    NASA Astrophysics Data System (ADS)

    Zhou, Wenchang; Chen, Lumin; Bi, Hongjie; Hu, Xin; Liu, Zonghua; Guan, Shuguang

    2015-07-01

    In this work, we study the synchronization in a generalized Kuramoto model with frequency-weighted coupling. In particular, we focus on the situations in which the frequency distributions of oscillators are asymmetric. For typical unimodal frequency distributions, such as Lorentzian, Gaussian, triangle, and even special Rayleigh, we find that the synchronization transition in the model generally converts from the first order to the second order as the central frequency shifts toward positive direction. We characterize two interesting coherent states in the system: In the former, two phase-locking clusters are formed, rotating with the same frequency. They correspond to those oscillators with relatively high frequencies while the oscillators with relatively small frequencies are not entrained. In the latter, two phase-locking clusters rotate with different frequencies, leading to the oscillation of the order parameter. We further conduct theoretical analysis to reveal the relation between the asymmetric frequency distribution and the conversion of synchronization type, and justify the coherent states observed in the system.

  12. Subthalamic stimulation modulates cortical motor network activity and synchronization in Parkinson’s disease

    PubMed Central

    Klotz, Rosa; Govindan, Rathinaswamy B.; Scholten, Marlieke; Naros, Georgios; Ramos-Murguialday, Ander; Bunjes, Friedemann; Meisner, Christoph; Plewnia, Christian; Krüger, Rejko

    2015-01-01

    Dynamic modulations of large-scale network activity and synchronization are inherent to a broad spectrum of cognitive processes and are disturbed in neuropsychiatric conditions including Parkinson’s disease. Here, we set out to address the motor network activity and synchronization in Parkinson’s disease and its modulation with subthalamic stimulation. To this end, 20 patients with idiopathic Parkinson’s disease with subthalamic nucleus stimulation were analysed on externally cued right hand finger movements with 1.5-s interstimulus interval. Simultaneous recordings were obtained from electromyography on antagonistic muscles (right flexor digitorum and extensor digitorum) together with 64-channel electroencephalography. Time-frequency event-related spectral perturbations were assessed to determine cortical and muscular activity. Next, cross-spectra in the time-frequency domain were analysed to explore the cortico-cortical synchronization. The time-frequency modulations enabled us to select a time-frequency range relevant for motor processing. On these time-frequency windows, we developed an extension of the phase synchronization index to quantify the global cortico-cortical synchronization and to obtain topographic differentiations of distinct electrode sites with respect to their contributions to the global phase synchronization index. The spectral measures were used to predict clinical and reaction time outcome using regression analysis. We found that movement-related desynchronization of cortical activity in the upper alpha and beta range was significantly facilitated with ‘stimulation on’ compared to ‘stimulation off’ on electrodes over the bilateral parietal, sensorimotor, premotor, supplementary-motor, and prefrontal areas, including the bilateral inferior prefrontal areas. These spectral modulations enabled us to predict both clinical and reaction time improvement from subthalamic stimulation. With ‘stimulation on’, interhemispheric cortico

  13. Multiple synchronous primary tumours in a single lobe

    PubMed Central

    Sepehripour, Amir H.; Nasir, Abdul; Shah, Rajesh

    2012-01-01

    We present the case of a 70-year-old man with three synchronous histologically different primary tumours in the same lobe. He initially presented with an intermittent productive cough, dyspnoea and non-specific abdominal pains. Radiological investigation revealed three areas of high-intensity fludeoxyglucose uptake of varying size within the right upper lobe. He underwent thoracoscopic right upper lobectomy. Histological analysis confirmed the three lesions to be undifferentiated squamous cell carcinoma, adenocarcinoma and atypical adenomatous hyperplasia. The reclassification of the T descriptors of the tumour–node–metastasis staging of a lung cancer has lead to the transition of classification of tumour nodules in the ipsilateral primary tumour lobe from T4 to T3. In the case of our patient, this has lead to the downstaging of the tumour allowing consideration for surgical management. PMID:22159234

  14. A Mobile GPS Application: Mosque Tracking with Prayer Time Synchronization

    NASA Astrophysics Data System (ADS)

    Hashim, Rathiah; Ikhmatiar, Mohammad Sibghotulloh; Surip, Miswan; Karmin, Masiri; Herawan, Tutut

    Global Positioning System (GPS) is a popular technology applied in many areas and embedded in many devices, facilitating end-users to navigate effectively to user's intended destination via the best calculated route. The ability of GPS to track precisely according to coordinates of specific locations can be utilized to assist a Muslim traveler visiting or passing an unfamiliar place to find the nearest mosque in order to perform his prayer. However, not many techniques have been proposed for Mosque tracking. This paper presents the development of GPS technology in tracking the nearest mosque using mobile application software embedded with the prayer time's synchronization system on a mobile application. The prototype GPS system developed has been successfully incorporated with a map and several mosque locations.

  15. Rupture Synchronicity in Complex Fault Systems

    NASA Astrophysics Data System (ADS)

    Milner, K. R.; Jordan, T. H.

    2013-12-01

    While most investigators would agree that the timing of large earthquakes within a fault system depends on stress-mediated interactions among its elements, much of the debate relevant to time-dependent forecasting has been centered on single-fault concepts, such as characteristic earthquake behavior. We propose to broaden this discussion by quantifying the multi-fault concept of rupture synchronicity. We consider a finite set of small, fault-spanning volumes {Vk} within a fault system of arbitrary (fractal) complexity. We let Ck be the catalog of length tmax comprising Nk discrete times {ti(k)} that mark when the kth volume participates in a rupture of magnitude > M. The main object of our analysis is the complete set of event time differences {τij(kk') = ti(k) - tj(k')}, which we take to be a random process with an expected density function ρkk'(t). When k = k', we call this function the auto-catalog density function (ACDF); when k ≠ k', we call it the cross-catalog density function (CCDF). The roles of the ACDF and CCDF in synchronicity theory are similar to those of autocorrelation and cross-correlation functions in time-series analysis. For a renewal process, the ACDF can be written in terms of convolutions of the interevent-time distribution, and many of its properties (e.g., large-t asymptote) can be derived analytically. The interesting information in the CCDF, like that in the ACDF, is concentrated near t = 0. If two catalogs are completely asynchronous, the CCDF collapses to an asymptote given by the harmonic mean of the ACDF asymptotes. Synchronicity can therefore be characterized by the variability of the CCDF about this asymptote. The brevity of instrumental catalogs makes the identification of synchronicity at large M difficult, but we will illustrate potentially interesting behaviors through the analysis of a million-year California catalog generated by the earthquake simulator, RSQSim (Deiterich & Richards-Dinger, 2010), which we sampled at a

  16. Robust finite-time chaos synchronization of uncertain permanent magnet synchronous motors.

    PubMed

    Chen, Qiang; Ren, Xuemei; Na, Jing

    2015-09-01

    In this paper, a robust finite-time chaos synchronization scheme is proposed for two uncertain third-order permanent magnet synchronous motors (PMSMs). The whole synchronization error system is divided into two cascaded subsystems: a first-order subsystem and a second-order subsystem. For the first subsystem, we design a finite-time controller based on the finite-time Lyapunov stability theory. Then, according to the backstepping idea and the adding a power integrator technique, a second finite-time controller is constructed recursively for the second subsystem. No exogenous forces are required in the controllers design but only the direct-axis (d-axis) and the quadrature-axis (q-axis) stator voltages are used as manipulated variables. Comparative simulations are provided to show the effectiveness and superior performance of the proposed method. PMID:26250587

  17. Robust finite-time chaos synchronization of uncertain permanent magnet synchronous motors.

    PubMed

    Chen, Qiang; Ren, Xuemei; Na, Jing

    2015-09-01

    In this paper, a robust finite-time chaos synchronization scheme is proposed for two uncertain third-order permanent magnet synchronous motors (PMSMs). The whole synchronization error system is divided into two cascaded subsystems: a first-order subsystem and a second-order subsystem. For the first subsystem, we design a finite-time controller based on the finite-time Lyapunov stability theory. Then, according to the backstepping idea and the adding a power integrator technique, a second finite-time controller is constructed recursively for the second subsystem. No exogenous forces are required in the controllers design but only the direct-axis (d-axis) and the quadrature-axis (q-axis) stator voltages are used as manipulated variables. Comparative simulations are provided to show the effectiveness and superior performance of the proposed method.

  18. Synchronization Analysis of Master-Slave Probabilistic Boolean Networks

    PubMed Central

    Lu, Jianquan; Zhong, Jie; Li, Lulu; Ho, Daniel W. C.; Cao, Jinde

    2015-01-01

    In this paper, we analyze the synchronization problem of master-slave probabilistic Boolean networks (PBNs). The master Boolean network (BN) is a deterministic BN, while the slave BN is determined by a series of possible logical functions with certain probability at each discrete time point. In this paper, we firstly define the synchronization of master-slave PBNs with probability one, and then we investigate synchronization with probability one. By resorting to new approach called semi-tensor product (STP), the master-slave PBNs are expressed in equivalent algebraic forms. Based on the algebraic form, some necessary and sufficient criteria are derived to guarantee synchronization with probability one. Further, we study the synchronization of master-slave PBNs in probability. Synchronization in probability implies that for any initial states, the master BN can be synchronized by the slave BN with certain probability, while synchronization with probability one implies that master BN can be synchronized by the slave BN with probability one. Based on the equivalent algebraic form, some efficient conditions are derived to guarantee synchronization in probability. Finally, several numerical examples are presented to show the effectiveness of the main results. PMID:26315380

  19. Phase-lag synchronization in networks of coupled chemical oscillators.

    PubMed

    Totz, Jan F; Snari, Razan; Yengi, Desmond; Tinsley, Mark R; Engel, Harald; Showalter, Kenneth

    2015-08-01

    Chemical oscillators with a broad frequency distribution are photochemically coupled in network topologies. Experiments and simulations show that the network synchronization occurs by phase-lag synchronization of clusters of oscillators with zero- or nearly zero-lag synchronization. Symmetry also plays a role in the synchronization, the extent of which is explored as a function of coupling strength, frequency distribution, and the highest frequency oscillator location. The phase-lag synchronization occurs through connected synchronized clusters, with the highest frequency node or nodes setting the frequency of the entire network. The synchronized clusters successively "fire," with a constant phase difference between them. For low heterogeneity and high coupling strength, the synchronized clusters are made up of one or more clusters of nodes with the same permutation symmetries. As heterogeneity is increased or coupling strength decreased, the phase-lag synchronization occurs partially through clusters of nodes sharing the same permutation symmetries. As heterogeneity is further increased or coupling strength decreased, partial synchronization and, finally, independent unsynchronized oscillations are observed. The relationships between these classes of behavior are explored with numerical simulations, which agree well with the experimentally observed behavior.

  20. Synchronization Analysis of Master-Slave Probabilistic Boolean Networks.

    PubMed

    Lu, Jianquan; Zhong, Jie; Li, Lulu; Ho, Daniel W C; Cao, Jinde

    2015-08-28

    In this paper, we analyze the synchronization problem of master-slave probabilistic Boolean networks (PBNs). The master Boolean network (BN) is a deterministic BN, while the slave BN is determined by a series of possible logical functions with certain probability at each discrete time point. In this paper, we firstly define the synchronization of master-slave PBNs with probability one, and then we investigate synchronization with probability one. By resorting to new approach called semi-tensor product (STP), the master-slave PBNs are expressed in equivalent algebraic forms. Based on the algebraic form, some necessary and sufficient criteria are derived to guarantee synchronization with probability one. Further, we study the synchronization of master-slave PBNs in probability. Synchronization in probability implies that for any initial states, the master BN can be synchronized by the slave BN with certain probability, while synchronization with probability one implies that master BN can be synchronized by the slave BN with probability one. Based on the equivalent algebraic form, some efficient conditions are derived to guarantee synchronization in probability. Finally, several numerical examples are presented to show the effectiveness of the main results.

  1. System and method to allow a synchronous motor to successfully synchronize with loads that have high inertia and/or high torque

    SciTech Connect

    Melfi, Michael J.

    2015-10-20

    A mechanical soft-start type coupling is used as an interface between a line start, synchronous motor and a heavy load to enable the synchronous motor to bring the heavy load up to or near synchronous speed. The soft-start coupling effectively isolates the synchronous motor from the load for enough time to enable the synchronous motor to come up to full speed. The soft-start coupling then brings the load up to or near synchronous speed.

  2. Network structure, topology, and dynamics in generalized models of synchronization

    NASA Astrophysics Data System (ADS)

    Lerman, Kristina; Ghosh, Rumi

    2012-08-01

    Network structure is a product of both its topology and interactions between its nodes. We explore this claim using the paradigm of distributed synchronization in a network of coupled oscillators. As the network evolves to a global steady state, nodes synchronize in stages, revealing the network's underlying community structure. Traditional models of synchronization assume that interactions between nodes are mediated by a conservative process similar to diffusion. However, social and biological processes are often nonconservative. We propose a model of synchronization in a network of oscillators coupled via nonconservative processes. We study the dynamics of synchronization of a synthetic and real-world networks and show that the traditional and nonconservative models of synchronization reveal different structures within the same network.

  3. A three-sphere swimmer for flagellar synchronization

    NASA Astrophysics Data System (ADS)

    Polotzek, Katja; Friedrich, Benjamin M.

    2013-04-01

    In a recent letter (Friedrich et al 2012 Phys. Rev. Lett. 109 138102), a minimal model swimmer has been proposed that propels itself at low Reynolds numbers by the revolving motion of a pair of spheres. The motion of the two spheres can synchronize by virtue of a hydrodynamic coupling that depends on the motion of the swimmer, but is rather independent of direct hydrodynamic interactions. This novel synchronization mechanism could account for the synchronization of a pair of flagella, e.g. in the green algae Chlamydomonas. In this paper, we discuss in detail how swimming and synchronization depend on the geometry of the model swimmer and compute the swimmer design for optimal synchronization. Our analysis highlights the role of broken symmetries in swimming and synchronization.

  4. Synchronization, quantum correlations and entanglement in oscillator networks.

    PubMed

    Manzano, Gonzalo; Galve, Fernando; Giorgi, Gian Luca; Hernández-García, Emilio; Zambrini, Roberta

    2013-01-01

    Synchronization is one of the paradigmatic phenomena in the study of complex systems. It has been explored theoretically and experimentally mostly to understand natural phenomena, but also in view of technological applications. Although several mechanisms and conditions for synchronous behavior in spatially extended systems and networks have been identified, the emergence of this phenomenon has been largely unexplored in quantum systems until very recently. Here we discuss synchronization in quantum networks of different harmonic oscillators relaxing towards a stationary state, being essential the form of dissipation. By local tuning of one of the oscillators, we establish the conditions for synchronous dynamics, in the whole network or in a motif. Beyond the classical regime we show that synchronization between (even unlinked) nodes witnesses the presence of quantum correlations and entanglement. Furthermore, synchronization and entanglement can be induced between two different oscillators if properly linked to a random network.

  5. Modulation and synchronization technique for MF-TDMA system

    NASA Technical Reports Server (NTRS)

    Faris, Faris; Inukai, Thomas; Sayegh, Soheil

    1994-01-01

    This report addresses modulation and synchronization techniques for a multi-frequency time division multiple access (MF-TDMA) system with onboard baseband processing. The types of synchronization techniques analyzed are asynchronous (conventional) TDMA, preambleless asynchronous TDMA, bit synchronous timing with a preamble, and preambleless bit synchronous timing. Among these alternatives, preambleless bit synchronous timing simplifies onboard multicarrier demultiplexer/demodulator designs (about 2:1 reduction in mass and power), requires smaller onboard buffers (10:1 to approximately 3:1 reduction in size), and provides better frame efficiency as well as lower onboard processing delay. Analysis and computer simulation illustrate that this technique can support a bit rate of up to 10 Mbit/s (or higher) with proper selection of design parameters. High bit rate transmission may require Doppler compensation and multiple phase error measurements. The recommended modulation technique for bit synchronous timing is coherent QPSK with differential encoding for the uplink and coherent QPSK for the downlink.

  6. Explosive or Continuous: Incoherent state determines the route to synchronization

    NASA Astrophysics Data System (ADS)

    Xu, Can; Gao, Jian; Sun, Yuting; Huang, Xia; Zheng, Zhigang

    2015-07-01

    Abrupt and continuous spontaneous emergence of collective synchronization of coupled oscillators have attracted much attention. In this paper, we propose a dynamical ensemble order parameter equation that enables us to grasp the essential low-dimensional dynamical mechanism of synchronization in networks of coupled oscillators. Different solutions of the dynamical ensemble order parameter equation build correspondences with diverse collective states, and different bifurcations reveal various transitions among these collective states. The structural relationship between the incoherent state and the synchronous state leads to different routes of transitions to synchronization, either continuous or discontinuous. The explosive synchronization is determined by the bistable state where the measure of each state and the critical points are obtained analytically by using the dynamical ensemble order parameter equation. Our method and results hold for heterogeneous networks with star graph motifs such as scale-free networks, and hence, provide an effective approach in understanding the routes to synchronization in more general complex networks.

  7. Explosive or Continuous: Incoherent state determines the route to synchronization.

    PubMed

    Xu, Can; Gao, Jian; Sun, Yuting; Huang, Xia; Zheng, Zhigang

    2015-07-10

    Abrupt and continuous spontaneous emergence of collective synchronization of coupled oscillators have attracted much attention. In this paper, we propose a dynamical ensemble order parameter equation that enables us to grasp the essential low-dimensional dynamical mechanism of synchronization in networks of coupled oscillators. Different solutions of the dynamical ensemble order parameter equation build correspondences with diverse collective states, and different bifurcations reveal various transitions among these collective states. The structural relationship between the incoherent state and the synchronous state leads to different routes of transitions to synchronization, either continuous or discontinuous. The explosive synchronization is determined by the bistable state where the measure of each state and the critical points are obtained analytically by using the dynamical ensemble order parameter equation. Our method and results hold for heterogeneous networks with star graph motifs such as scale-free networks, and hence, provide an effective approach in understanding the routes to synchronization in more general complex networks.

  8. Exact synchronization bound for coupled time-delay systems.

    PubMed

    Senthilkumar, D V; Pesquera, Luis; Banerjee, Santo; Ortín, Silvia; Kurths, J

    2013-04-01

    We obtain an exact bound for synchronization in coupled time-delay systems using the generalized Halanay inequality for the general case of time-dependent delay, coupling, and coefficients. Furthermore, we show that the same analysis is applicable to both uni- and bidirectionally coupled time-delay systems with an appropriate evolution equation for their synchronization manifold, which can also be defined for different types of synchronization. The exact synchronization bound assures an exponential stabilization of the synchronization manifold which is crucial for applications. The analytical synchronization bound is independent of the nature of the modulation and can be applied to any time-delay system satisfying a Lipschitz condition. The analytical results are corroborated numerically using the Ikeda system.

  9. Exact synchronization bound for coupled time-delay systems

    NASA Astrophysics Data System (ADS)

    Senthilkumar, D. V.; Pesquera, Luis; Banerjee, Santo; Ortín, Silvia; Kurths, J.

    2013-04-01

    We obtain an exact bound for synchronization in coupled time-delay systems using the generalized Halanay inequality for the general case of time-dependent delay, coupling, and coefficients. Furthermore, we show that the same analysis is applicable to both uni- and bidirectionally coupled time-delay systems with an appropriate evolution equation for their synchronization manifold, which can also be defined for different types of synchronization. The exact synchronization bound assures an exponential stabilization of the synchronization manifold which is crucial for applications. The analytical synchronization bound is independent of the nature of the modulation and can be applied to any time-delay system satisfying a Lipschitz condition. The analytical results are corroborated numerically using the Ikeda system.

  10. Research on synchronization technique of the DRM system

    NASA Astrophysics Data System (ADS)

    Guo, Wen-fei; Zheng, Jian-sheng; Cheng, Wen; Su, Fan

    2011-10-01

    To deal with the degradation of the synchronization performance in low SNR condition, a novel DRM (Digital Radio Mondiale) synchronization algorithm is proposed. The proposed algorithm employs cyclic prefix for timing synchronization and fractional frequency offset estimation like conventional methods, but accomplishes frame synchronization and integer frequency offset estimation using time pilot cells and differential coding technologies, which are designed specially for the DRM system. After channel estimation and equalization, frequency pilot cells are used to estimate residue fractional frequency offset and subsequent sample offset as well as fixed phase offset to achieve complete synchronization. Simulation results show that the proposed algorithm can possesses better time and frequency synchronization performance than the conventional method in the multi-path fading channel with low SNR condition.

  11. Beyond synchronicity: the worldview of Carl Gustav Jung and Wolfgang Pauli.

    PubMed

    Donati, Marialuisa

    2004-11-01

    While exploring the phenomena of synchronicity, Carl Gustav Jung became acquainted with the quantum physicist Wolfgang Pauli and eventually began a collaboration with him. During that collaboration Jung's study of synchronistic phenomena underwent a considerable change; prior to the collaboration, Jung had stressed mainly the phenomenological and empirical features of synchronistic phenomena, while in association with Pauli, he focused his attention upon their ontological, archetypal character. Pauli, on the other hand, became increasingly sensitive to the philosophical aspects concerning the unconscious. Jung and Pauli's common reflections went far beyond psychology and physics, entering into the realm where the two areas meet in the philosophy of nature. In fact, as a consequence of their collaboration, synchronicity was transformed from an empirical concept into a fundamental explanatory-interpretative principle, which together with causality could possibly lead to a more complete worldview. Exploring the problematic character of the synchronicity concept has a heuristic value because it leads to the reconsideration of the philosophical issues that drove Jung and Pauli to clear up the conceptual background of their thoughts. Within the philosophical worldview arising from Jung and Pauli's discussions about synchronicity, there are many symbolic aspects that go against mainstream science and that represent a sort of criticism to some of the commonly held views of present day science. PMID:15533199

  12. Frontoparietal Structural Connectivity Mediates the Top-Down Control of Neuronal Synchronization Associated with Selective Attention

    PubMed Central

    Marshall, Tom Rhys; Bergmann, Til Ole; Jensen, Ole

    2015-01-01

    Neuronal synchronization reflected by oscillatory brain activity has been strongly implicated in the mechanisms supporting selective gating. We here aimed at identifying the anatomical pathways in humans supporting the top-down control of neuronal synchronization. We first collected diffusion imaging data using magnetic resonance imaging to identify the medial branch of the superior longitudinal fasciculus (SLF), a white-matter tract connecting frontal control areas to parietal regions. We then quantified the modulations in oscillatory activity using magnetoencephalography in the same subjects performing a spatial attention task. We found that subjects with a stronger SLF volume in the right compared to the left hemisphere (or vice versa) also were the subjects who had a better ability to modulate right compared to left hemisphere alpha and gamma band synchronization, with the latter also predicting biases in reaction time. Our findings implicate the medial branch of the SLF in mediating top-down control of neuronal synchronization in sensory regions that support selective attention. PMID:26441286

  13. Cross-frequency synchronization connects networks of fast and slow oscillations during visual working memory maintenance

    PubMed Central

    Siebenhühner, Felix; Wang, Sheng H; Palva, J Matias; Palva, Satu

    2016-01-01

    Neuronal activity in sensory and fronto-parietal (FP) areas underlies the representation and attentional control, respectively, of sensory information maintained in visual working memory (VWM). Within these regions, beta/gamma phase-synchronization supports the integration of sensory functions, while synchronization in theta/alpha bands supports the regulation of attentional functions. A key challenge is to understand which mechanisms integrate neuronal processing across these distinct frequencies and thereby the sensory and attentional functions. We investigated whether such integration could be achieved by cross-frequency phase synchrony (CFS). Using concurrent magneto- and electroencephalography, we found that CFS was load-dependently enhanced between theta and alpha–gamma and between alpha and beta-gamma oscillations during VWM maintenance among visual, FP, and dorsal attention (DA) systems. CFS also connected the hubs of within-frequency-synchronized networks and its strength predicted individual VWM capacity. We propose that CFS integrates processing among synchronized neuronal networks from theta to gamma frequencies to link sensory and attentional functions. DOI: http://dx.doi.org/10.7554/eLife.13451.001 PMID:27669146

  14. Frontoparietal Structural Connectivity Mediates the Top-Down Control of Neuronal Synchronization Associated with Selective Attention.

    PubMed

    Marshall, Tom Rhys; Bergmann, Til Ole; Jensen, Ole

    2015-10-01

    Neuronal synchronization reflected by oscillatory brain activity has been strongly implicated in the mechanisms supporting selective gating. We here aimed at identifying the anatomical pathways in humans supporting the top-down control of neuronal synchronization. We first collected diffusion imaging data using magnetic resonance imaging to identify the medial branch of the superior longitudinal fasciculus (SLF), a white-matter tract connecting frontal control areas to parietal regions. We then quantified the modulations in oscillatory activity using magnetoencephalography in the same subjects performing a spatial attention task. We found that subjects with a stronger SLF volume in the right compared to the left hemisphere (or vice versa) also were the subjects who had a better ability to modulate right compared to left hemisphere alpha and gamma band synchronization, with the latter also predicting biases in reaction time. Our findings implicate the medial branch of the SLF in mediating top-down control of neuronal synchronization in sensory regions that support selective attention. PMID:26441286

  15. Beyond synchronicity: the worldview of Carl Gustav Jung and Wolfgang Pauli.

    PubMed

    Donati, Marialuisa

    2004-11-01

    While exploring the phenomena of synchronicity, Carl Gustav Jung became acquainted with the quantum physicist Wolfgang Pauli and eventually began a collaboration with him. During that collaboration Jung's study of synchronistic phenomena underwent a considerable change; prior to the collaboration, Jung had stressed mainly the phenomenological and empirical features of synchronistic phenomena, while in association with Pauli, he focused his attention upon their ontological, archetypal character. Pauli, on the other hand, became increasingly sensitive to the philosophical aspects concerning the unconscious. Jung and Pauli's common reflections went far beyond psychology and physics, entering into the realm where the two areas meet in the philosophy of nature. In fact, as a consequence of their collaboration, synchronicity was transformed from an empirical concept into a fundamental explanatory-interpretative principle, which together with causality could possibly lead to a more complete worldview. Exploring the problematic character of the synchronicity concept has a heuristic value because it leads to the reconsideration of the philosophical issues that drove Jung and Pauli to clear up the conceptual background of their thoughts. Within the philosophical worldview arising from Jung and Pauli's discussions about synchronicity, there are many symbolic aspects that go against mainstream science and that represent a sort of criticism to some of the commonly held views of present day science.

  16. Polyrhythmic synchronization in bursting networking motifs

    NASA Astrophysics Data System (ADS)

    Shilnikov, Andrey; Gordon, René; Belykh, Igor

    2008-09-01

    We study the emergence of polyrhythmic dynamics of motifs which are the building block for small inhibitory-excitatory networks, such as central pattern generators controlling various locomotive behaviors of animals. We discover that the pacemaker determining the specific rhythm of such a network composed of realistic Hodgkin-Huxley-type neurons is identified through the order parameter, which is the ratio of the neurons' burst durations or of duty cycles. We analyze different configurations of the motifs and describe the universal mechanisms for synergetics of the bursting patterns. We discuss also the multistability of inhibitory networks that results in polyrhythmicity of its emergent synchronous behaviors.

  17. Automatic Mode Switch (AMS) Causes Less Synchronization

    PubMed Central

    Jorat, Mohammadvahid; Nikoo, Mohammadhossein

    2016-01-01

    Introduction: Cardiac resynchronization devices are part of modern heart failure management. After implantation, we analyze and program devices in an attempt to ensure their success. Biventricular pacing should be 98% or more for the lowest mortality and best symptom improvement. Case Presentation: In this case series, we present a combination of far field sensing and automatic mode switching (AMS) in six patients. It is found that this combination causes ventricular sensing (VS) episodes with wide QRS and no synchronization. We turn off the AMS and alleviate the problem. Conclusions: Switching AMS off may increase biventricular pacing in some patients. PMID:26949695

  18. Permanent-magnet-less synchronous reluctance system

    DOEpatents

    Hsu, John S

    2012-09-11

    A permanent magnet-less synchronous system includes a stator that generates a magnetic revolving field when sourced by an alternating current. An uncluttered rotor is disposed within the magnetic revolving field and spaced apart from the stator to form an air gap relative to an axis of rotation. The rotor includes a plurality of rotor pole stacks having an inner periphery biased by single polarity of a north-pole field and a south-pole field, respectively. The outer periphery of each of the rotor pole stacks are biased by an alternating polarity.

  19. Magnetic switch coupling to synchronize magnetic modulators

    DOEpatents

    Reed, Kim W.; Kiekel, Paul

    1999-01-01

    Apparatus for synchronizing the output pulses from a pair of magnetic switches. An electrically conductive loop is provided between the pair of switches with the loop having windlings about the core of each of the magnetic switches. The magnetic coupling created by the loop removes voltage and timing variations between the outputs of the two magnetic switches caused by any of a variety of factors. The only remaining variation is a very small fixed timing offset caused by the geometry and length of the loop itself.

  20. Synchronous luminescence spectroscopy of human breast tissues

    NASA Astrophysics Data System (ADS)

    Majumdar, S. K.; Gupta, P. K.

    1998-06-01

    We report, to our knowledge, the first use of synchronous luminescence (SL) spectroscopy for autofluorescence diagnosis of cancer. The spectral narrowing effect of the SL spectroscopy led to an easier identification of the different fluorophores present in human breast tissues and provided relative estimate of their concentration in qualitative agreement with the estimates obtained from conventional excitation and emission spectroscopy. Further, the SL spectra from human breast tissues could discriminate cancerous tissues from benign tumors and normal tissues with a sensitivity and specificity of 100% in a study involving 34 patients with breast tumor (19 ductal carcinomas and 15 fibroadenomas).

  1. Bioreactor and methods for producing synchronous cells

    NASA Technical Reports Server (NTRS)

    Helmstetter, Charles E. (Inventor); Thornton, Maureen (Inventor); Gonda, Steve (Inventor)

    2005-01-01

    Apparatus and methods are directed to a perfusion culture system in which a rotating bioreactor is used to grow cells in a liquid culture medium, while these cells are attached to an adhesive-treated porous surface. As a result of this arrangement and its rotation, the attached cells divide, with one cell remaining attached to the substrate, while the other cell, a newborn cell is released. These newborn cells are of approximately the same age, that are collected upon leaving the bioreactor. The populations of newborn cells collected are of synchronous and are minimally, if at all, disturbed metabolically.

  2. Synchronization of Data Recorded on Different Recorders

    NASA Technical Reports Server (NTRS)

    Wise, J. H.; Mcgregor, J. W.

    1986-01-01

    Electrical and mechanical timing errors corrected. Electronic timing system enables time correlation of analog and digital signals recorded on different magnetic tapes or on different tracks of same tape. Recorded simultaneously on different magnetic-tape tracks along with data signals to enable subsequent time correlation of data. Concept improves analysis of Space Shuttle flight-data tapes containing signals with frequency components up to 50 Hz, used for higher frequencies, in kilohertz region. Useful in other applications requiring synchronization of data on different data tracks.

  3. Synchronous Fibrolamellar Hepatocellular Carcinoma and Auricular Myxoma

    PubMed Central

    González-Cantú, Yessica M.; Rodriguez-Padilla, Cristina; Tena-Suck, Martha Lilia; García de la Fuente, Alberto; Mejía-Bañuelos, Rosa María; Díaz Mendoza, Raymundo; Quintanilla-Garza, Samuel; Batisda-Acuña, Yolaester

    2015-01-01

    Synchronic occurrence of benign and malignant tumors is extremely rare. Fibrolamellar hepatocellular carcinoma represents 1% to 2% of all hepatocarcinomas, while myxomas represent about half of all the cases of primary tumors of the heart. We present the case of a 53-year-old woman with a left atrial myxoma that was surgically removed. Several weeks later, the patient returned to the hospital with abdominal pain. CT scan showed a mass in the left lobe of the liver that was resected and diagnosed as fibrolamellar hepatocellular carcinoma. As of this writing, the patient is healthy. PMID:26509093

  4. Synchronous Fibrolamellar Hepatocellular Carcinoma and Auricular Myxoma.

    PubMed

    González-Cantú, Yessica M; Rodriguez-Padilla, Cristina; Tena-Suck, Martha Lilia; García de la Fuente, Alberto; Mejía-Bañuelos, Rosa María; Díaz Mendoza, Raymundo; Quintanilla-Garza, Samuel; Batisda-Acuña, Yolaester

    2015-01-01

    Synchronic occurrence of benign and malignant tumors is extremely rare. Fibrolamellar hepatocellular carcinoma represents 1% to 2% of all hepatocarcinomas, while myxomas represent about half of all the cases of primary tumors of the heart. We present the case of a 53-year-old woman with a left atrial myxoma that was surgically removed. Several weeks later, the patient returned to the hospital with abdominal pain. CT scan showed a mass in the left lobe of the liver that was resected and diagnosed as fibrolamellar hepatocellular carcinoma. As of this writing, the patient is healthy.

  5. Atmospheric dynamics of tidally synchronized extrasolar planets.

    PubMed

    Cho, James Y-K

    2008-12-13

    Tidally synchronized planets present a new opportunity for enriching our understanding of atmospheric dynamics on planets. Subject to an unusual forcing arrangement (steady irradiation on the same side of the planet throughout its orbit), the dynamics on these planets may be unlike that on any of the Solar System planets. Characterizing the flow pattern and temperature distribution on the extrasolar planets is necessary for reliable interpretation of data currently being collected, as well as for guiding future observations. In this paper, several fundamental concepts from atmospheric dynamics, likely to be central for characterization, are discussed. Theoretical issues that need to be addressed in the near future are also highlighted.

  6. Regional business cycle synchronization through expectations

    NASA Astrophysics Data System (ADS)

    Onozaki, Tamotsu; Yanagita, Tatsuo; Kaizoji, Taisei; Toyabe, Kazutaka

    2007-09-01

    This paper provides an example in which regional business cycles may synchronize via producers’ expectations, even though there is no interregional trade, by means of a system of globally coupled, noninvertible maps. We concentrate on the dependence of the dynamics on a parameter η which denotes the inverse of price elasticity of demand. Simulation results show that several phases (the short transient, the complete asynchronous, the long transient and the intermediate transient) appear one after another as η increases. In the long transient phase, the intermittent clustering process with a long chaotic transient appears repeatedly.

  7. Synchronous extra-parotid Warthin's tumour.

    PubMed

    Nishikawa, H; Kirkham, N; Hogbin, B M

    1989-08-01

    Warthin's tumour (also known as adenolymphoma or papillary cystadenoma lymphomatosum) is benign and accounts for 12 per cent of all neoplasms of the parotid gland. A case of extra-parotid Warthin's tumour occurring synchronously in a peri-parotid lymph node is described. This is not a metastatic phenomenon and occurs as a result of salivary gland inclusions of local lymph nodes during the embryological development of the parotid. Extra-parotid Warthin's tumour should be regarded as a benign incidental finding and the prognosis is excellent.

  8. Hydrodynamics Versus Intracellular Coupling in the Synchronization of Eukaryotic Flagella.

    PubMed

    Quaranta, Greta; Aubin-Tam, Marie-Eve; Tam, Daniel

    2015-12-01

    The influence of hydrodynamic forces on eukaryotic flagella synchronization is investigated by triggering phase locking between a controlled external flow and the flagella of C. reinhardtii. Hydrodynamic forces required for synchronization are over an order of magnitude larger than hydrodynamic forces experienced in physiological conditions. Our results suggest that synchronization is due instead to coupling through cell internal fibers connecting the flagella. This conclusion is confirmed by observations of the vfl3 mutant, with impaired mechanical connection between the flagella. PMID:26684142

  9. Synchronization between uncertain nonidentical networks with quantum chaotic behavior

    NASA Astrophysics Data System (ADS)

    Li, Wenlin; Li, Chong; Song, Heshan

    2016-11-01

    Synchronization between uncertain nonidentical networks with quantum chaotic behavior is researched. The identification laws of unknown parameters in state equations of network nodes, the adaptive laws of configuration matrix elements and outer coupling strengths are determined based on Lyapunov theorem. The conditions of realizing synchronization between uncertain nonidentical networks are discussed and obtained. Further, Jaynes-Cummings model in physics are taken as the nodes of two networks and simulation results show that the synchronization performance between networks is very stable.

  10. Hydrodynamics Versus Intracellular Coupling in the Synchronization of Eukaryotic Flagella

    NASA Astrophysics Data System (ADS)

    Quaranta, Greta; Aubin-Tam, Marie-Eve; Tam, Daniel

    2015-12-01

    The influence of hydrodynamic forces on eukaryotic flagella synchronization is investigated by triggering phase locking between a controlled external flow and the flagella of C. reinhardtii. Hydrodynamic forces required for synchronization are over an order of magnitude larger than hydrodynamic forces experienced in physiological conditions. Our results suggest that synchronization is due instead to coupling through cell internal fibers connecting the flagella. This conclusion is confirmed by observations of the vfl3 mutant, with impaired mechanical connection between the flagella.

  11. Maximum likelihood synchronizer for binary overlapping PCM/NRZ signals.

    NASA Technical Reports Server (NTRS)

    Wang, C. D.; Noack, T. L.; Morris, J. F.

    1973-01-01

    A maximum likelihood parameter estimation technique for the self bit synchronization problem is investigated. The input sequence to the bit synchronizer is a sequence of binary overlapping PCM/NRZ signal in the presence of white Gaussian noise with zero mean and known variance. The resulting synchronizer consists of matched filters, a transition device and a weighting function. Finally, the performance is examined by Monte Carlo simulations.

  12. Hydrodynamics Versus Intracellular Coupling in the Synchronization of Eukaryotic Flagella.

    PubMed

    Quaranta, Greta; Aubin-Tam, Marie-Eve; Tam, Daniel

    2015-12-01

    The influence of hydrodynamic forces on eukaryotic flagella synchronization is investigated by triggering phase locking between a controlled external flow and the flagella of C. reinhardtii. Hydrodynamic forces required for synchronization are over an order of magnitude larger than hydrodynamic forces experienced in physiological conditions. Our results suggest that synchronization is due instead to coupling through cell internal fibers connecting the flagella. This conclusion is confirmed by observations of the vfl3 mutant, with impaired mechanical connection between the flagella.

  13. Is whole-culture synchronization biology's 'perpetual-motion machine'?

    PubMed

    Cooper, Stephen

    2004-06-01

    Whole-culture or batch synchronization cannot, in theory, produce a synchronized culture because it violates a fundamental law that proposes that no batch treatment can alter the cell-age order of a culture. In analogy with the history of perpetual-motion machines, it is suggested that the study of these whole-culture 'synchronization' methods might lead to an understanding of general biological principles even though these methods cannot be used to study the normal cell cycle.

  14. Endogenous Crisis Waves: Stochastic Model with Synchronized Collective Behavior

    NASA Astrophysics Data System (ADS)

    Gualdi, Stanislao; Bouchaud, Jean-Philippe; Cencetti, Giulia; Tarzia, Marco; Zamponi, Francesco

    2015-02-01

    We propose a simple framework to understand commonly observed crisis waves in macroeconomic agent-based models, which is also relevant to a variety of other physical or biological situations where synchronization occurs. We compute exactly the phase diagram of the model and the location of the synchronization transition in parameter space. Many modifications and extensions can be studied, confirming that the synchronization transition is extremely robust against various sources of noise or imperfections.

  15. Synchronous benign and malignant tumors in the ipsilateral parotid gland.

    PubMed

    Roh, Jong-Lyel; Kim, Jin-Man; Park, Chan Il

    2007-01-01

    Synchronous benign and malignant tumors in the ipsilateral salivary glands are extremely rare. We report a unique case of synchronous unilateral parotid tumors in a 71-year-old man. The main parotid lesion was preoperatively suggested to be adenocarcinoma by fine needle aspiration cytology. A coexisting Warthin's tumor was also diagnosed on microscopic examination of total parotidectomy specimens. We describe this case of rare synchronous salivary gland tumors exhibiting both benign and malignant components with a review of the literature.

  16. Self-Organized Near-Zero-Lag Synchronization Induced by Spike-Timing Dependent Plasticity in Cortical Populations

    PubMed Central

    Matias, Fernanda S.; Carelli, Pedro V.; Mirasso, Claudio R.; Copelli, Mauro

    2015-01-01

    Several cognitive tasks related to learning and memory exhibit synchronization of macroscopic cortical areas together with synaptic plasticity at neuronal level. Therefore, there is a growing effort among computational neuroscientists to understand the underlying mechanisms relating synchrony and plasticity in the brain. Here we numerically study the interplay between spike-timing dependent plasticity (STDP) and anticipated synchronization (AS). AS emerges when a dominant flux of information from one area to another is accompanied by a negative time lag (or phase). This means that the receiver region pulses before the sender does. In this paper we study the interplay between different synchronization regimes and STDP at the level of three-neuron microcircuits as well as cortical populations. We show that STDP can promote auto-organized zero-lag synchronization in unidirectionally coupled neuronal populations. We also find synchronization regimes with negative phase difference (AS) that are stable against plasticity. Finally, we show that the interplay between negative phase difference and STDP provides limited synaptic weight distribution without the need of imposing artificial boundaries. PMID:26474165

  17. Low Cost Time Synchronization Protocol for Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Hyeon; Hong, Won-Kee; Kim, Hie-Cheol

    A time synchronization protocol for WSN is required to compensate time discrepancy. Time discrepancy among sensor nodes inevitably happens in WSN due to several internal and external factors. In order to make WSN's own job done effectively, a time synchronization protocol should be designed to achieve low execution time and low network traffic as well as accurate synchronization. Several synchronization protocols have been proposed to provide accurate time synchronization but do not consider execution time and network traffic for time synchronization. This paper proposes MNTP; it provides rapid and accurate time synchronization in multi-hop communication range. It presents a new broadcast scheme and time stamping mechanism to achieve low execution time and low network traffic along with accurate synchronization. Evaluation results show that MNTP improves synchronization accuracy up to 22% in single-hop and 51% in multi-hop respectively. MNTP also has 67 times and 58 times lower execution time and network traffic when 300 nodes are deployed in 20 × 20m2 sensor field.

  18. Novel synchronization technique for two parallel connected sparkgap switches.

    PubMed

    Kumar, Rohit; Mitra, S; Patel, A; Dwivedi, Rajesh; Kolge, T; Sharma, Ranjeet Archana; Chakravarthy, D P

    2012-08-01

    In this article a novel way of synchronizing two parallel connected sparkgap switches with accuracies of 1-5 ns for high frequency pulsed power applications is described. The circuit design of a synchronized sparkgap switch circuit is discussed. The circuit uses a combination of one master sparkgap and a set of inductor and capacitors to synchronize two sparkgaps and can be controlled via an IGBT switch. Critical issues for circuit design are presented together with analytical calculations and simulations. Experimental verification of the novel topology is carried out in a prototype experimental setup. Results showing nanosecond level of accuracy in synchronization are reported in this paper along with simulations and analysis.

  19. Coevolution of synchronous activity and connectivity in coupled chaotic oscillators.

    PubMed

    Chen, Li; Qiu, Can; Huang, Hongbin; Qi, Guanxiao; Wang, Haijun

    2010-11-01

    We investigate the coevolution dynamics of node activities and coupling strengths in coupled chaotic oscillators via a simple threshold adaptive scheme. The coupling strength is synchronous activity regulated, which in turn is able to boost the synchronization remarkably. In the case of weak coupling, the globally coupled oscillators present a highly clustered functional connectivity with a power-law distribution in the tail with γ≃3.1 , while for strong coupling, they self-organize into a network with a heterogeneously rich connectivity at the onset of synchronization but exhibit rather sparse structure to maintain the synchronization in noisy environment. The relevance of the results is briefly discussed.

  20. Remote Synchronization Reveals Network Symmetries and Functional Modules

    NASA Astrophysics Data System (ADS)

    Nicosia, Vincenzo; Valencia, Miguel; Chavez, Mario; Díaz-Guilera, Albert; Latora, Vito

    2013-04-01

    We study a Kuramoto model in which the oscillators are associated with the nodes of a complex network and the interactions include a phase frustration, thus preventing full synchronization. The system organizes into a regime of remote synchronization where pairs of nodes with the same network symmetry are fully synchronized, despite their distance on the graph. We provide analytical arguments to explain this result, and we show how the frustration parameter affects the distribution of phases. An application to brain networks suggests that anatomical symmetry plays a role in neural synchronization by determining correlated functional modules across distant locations.

  1. Renormalized time scale for anticipating and lagging synchronization.

    PubMed

    Hayashi, Yoshikatsu; Nasuto, Slawomir J; Eberle, Henry

    2016-05-01

    Anticipating synchronization has been recently proposed as a mechanism of interaction in dynamical systems which are able to bring about predictions of future states of a driver system. We suggest that an interesting insight into anticipating synchronization can be obtained by the renormalization of the time scale in the driven system. Our approach directly links the feedback delay of the driven system with the renormalized time scale of the driven system, identifying the main component in the anticipating synchronization paradigm and suggesting an alternative method to generate anticipating and lagging synchronization. PMID:27300902

  2. Synchronization of EEG activity in patients with bipolar disorder

    NASA Astrophysics Data System (ADS)

    Panischev, O. Yu; Demin, S. A.; Muhametshin, I. G.; Demina, N. Yu

    2015-12-01

    In paper we apply the method based on the Flicker-Noise Spectroscopy (FNS) to determine the differences in frequency-phase synchronization of the cortical electroencephalographic (EEG) activities in patients with bipolar disorder (BD). We found that for healthy subjects the frequency-phase synchronization of EEGs from long-range electrodes was significantly better for BD patients. In BD patients a high synchronization of EEGs was observed only for short-range electrodes. Thus, the FNS is a simple graphical method for qualitative analysis can be applied to identify the synchronization effects in EEG activity and, probably, may be used for the diagnosis of this syndrome.

  3. Comparative study of synchronization methods of fractional order chaotic systems

    NASA Astrophysics Data System (ADS)

    Singh, Ajit K.; Yadav, Vijay K.; Das, S.

    2016-09-01

    In this article, the active control method and the backstepping method are used during the synchronization of fractional order chaotic systems. The salient feature of the article is the analysis of time of synchronization between fractional order Chen and Qi systems using both the methods. Numerical simulation and graphical results clearly exhibit that backstepping approach is better than active control method for synchronization of the considered pair of systems, as it takes less time to synchronize while using the first one compare to second one.

  4. Spontaneous Group Synchronization of Movements and Respiratory Rhythms

    PubMed Central

    Vandoni, Matteo; Bernardi, Luciano

    2014-01-01

    We tested whether pre-assigned arm movements performed in a group setting spontaneously synchronized and whether synchronization extended to heart and respiratory rhythms. We monitored arm movements, respiration and electrocardiogram at rest and during spontaneous, music and metronome-associated arm-swinging. No directions were given on whether or how the arm swinging were to be synchronized between participants or with the external cues. Synchronization within 3 groups of 10 participants studied collectively was compared with pseudo-synchronization of 3 groups of 10 participants that underwent an identical protocol but in an individual setting. Motor synchronization was found to be higher in the collective groups than in the individuals for the metronome-associated condition. On a repetition of the protocol on the following day, motor synchronization in the collective groups extended to the spontaneous, un-cued condition. Breathing was also more synchronized in the collective groups than in the individuals, particularly at rest and in the music-associated condition. Group synchronization occurs without explicit instructions, and involves both movements and respiratory control rhythms. PMID:25216280

  5. Systems and methods for self-synchronized digital sampling

    NASA Technical Reports Server (NTRS)

    Samson, Jr., John R. (Inventor)

    2008-01-01

    Systems and methods for self-synchronized data sampling are provided. In one embodiment, a system for capturing synchronous data samples is provided. The system includes an analog to digital converter adapted to capture signals from one or more sensors and convert the signals into a stream of digital data samples at a sampling frequency determined by a sampling control signal; and a synchronizer coupled to the analog to digital converter and adapted to receive a rotational frequency signal from a rotating machine, wherein the synchronizer is further adapted to generate the sampling control signal, and wherein the sampling control signal is based on the rotational frequency signal.

  6. Optimization of noise-induced synchronization of oscillator networks

    NASA Astrophysics Data System (ADS)

    Kawamura, Yoji; Nakao, Hiroya

    2016-09-01

    We investigate common-noise-induced synchronization between two identical networks of coupled phase oscillators exhibiting fully locked collective oscillations. Using the collective phase description method for fully locked oscillators, we demonstrate that two noninteracting networks of coupled phase oscillators can exhibit in-phase synchronization between the networks when driven by weak common noise. We derive the Lyapunov exponent characterizing the relaxation time for synchronization and develop a method of obtaining the optimal input pattern of common noise to achieve fast synchronization. We illustrate the theory using three representative networks with heterogeneous, global, and local coupling. The theoretical results are validated by direct numerical simulations.

  7. Hybrid function projective synchronization in complex dynamical networks

    SciTech Connect

    Wei, Qiang; Wang, Xing-yuan Hu, Xiao-peng

    2014-02-15

    This paper investigates hybrid function projective synchronization in complex dynamical networks. When the complex dynamical networks could be synchronized up to an equilibrium or periodic orbit, a hybrid feedback controller is designed to realize the different component of vector of node could be synchronized up to different desired scaling function in complex dynamical networks with time delay. Hybrid function projective synchronization (HFPS) in complex dynamical networks with constant delay and HFPS in complex dynamical networks with time-varying coupling delay are researched, respectively. Finally, the numerical simulations show the effectiveness of theoretical analysis.

  8. Study for incorporating time-synchronized approach control into the CH-47/VALT digital navigation system

    NASA Technical Reports Server (NTRS)

    Mcconnell, W. J., Jr.

    1979-01-01

    Techniques for obtaining time synchronized (4D) approach control in the VALT research helicopter is described. Various 4D concepts and their compatibility with the existing VALT digital computer navigation and guidance system hardware and software are examined. Modifications to various techniques were investigated in order to take advantage of the unique operating characteristics of the helicopter in the terminal area. A 4D system is proposed, combining the direct to maneuver with the existing VALT curved path generation capability.

  9. Two synchronous periungual BCC treated with Mohs surgery. Nail polish related?

    PubMed

    Dika, Emi; Patrizi, Annalisa; Fanti, Pier Alessandro; Alessandrini, Aurora; Sorci, Rita; Piraccini, Bianca Maria; Vaccari, Sabina; Misciali, Cosimo; Maibach, Howard I

    2013-06-01

    Basal cell carcinoma (BCC), the most frequent malignant skin tumor observed in Caucasian adults, especially males, occurs mainly in sun-exposed areas of the body. BCC in the periungual tissues, such as proximal nail fold, nail matrix, nail bed and hyponychium, is rarely reported. We report a patient with two synchronous BCC of the periungual tissue localized in the IV and V fingernail, effectively treated with Mohs micrographic surgery. PMID:22849570

  10. Stochastic Resonance and Global Synchronization In The Climate System

    NASA Astrophysics Data System (ADS)

    Ganopolski, A.; Rahmstorf, S.; Calov, R.

    Paleoclimate data present strong evidences that during glacial age the climate sys- tem unlike recent 10,000 yr was characterized by strong variability on millennial time scale. Moreover, two the most pronounced types of variability, Dansgaard-Oeshger (D/O) oscillations and Heinrich events, were closely locked in time and the latter re- veal clear 1500 years pacing. The goal of this paper is to demonstrate that peculiar timing and synchronism of different types of abrupt climate events during glacial age is a consequence of internal instability of the components of the climate system. In Ganopolski and Rahmstorf (2001) we proposed an explanation of D/O oscillations as a temporary state transitions triggered by a small-amplitude freshwater forcing in the high latitude North Atlantic, which causes rapid jumps of the thermohaline ocean cir- culation from the stable (cold) mode to the unstable (warm) mode. Such an excitable system is prone to stochastic resonance. In Ganopolski and Rahmstorf (2002) we have shown that when the climate system is driven by random noise of realistic amplitude, combined with a very weak climate cycle of 1500 yr, D/O oscillations result which are similar in time evolution and spatial patterns to those recorded in the Greenland ice core. In particularly, simulated warm events have preferred interspike intervals of 1500, 3000 and 4500 yr. Ice sheets alike thermohaline ocean circulation can be de- scribed as an excitable system. In Calov et al. (2002), using coupled climate-ice sheet mode, we simulated large-scale oscillations of the Laurentide Ice Sheet resembling Heinrich events in geographical pattern, amplitude and temporal evolution. Although, a typical period of simulated Heinrich events is controlled by climate forcing and in- ternal ice sheet dynamics, the precise timing of individual Heinrich events is locked to small-scale instabilities in the area of Hudson Strait. We speculate that in the real climate system such perturbations can

  11. A Timer for Synchronous Digital Systems

    NASA Technical Reports Server (NTRS)

    McKenney, Elizabeth; Irwin, Philip

    2003-01-01

    The Real-Time Interferometer Control Systems Testbed (RICST) timing board is a VersaModule Eurocard (VME)-based board that can generate up to 16 simultaneous, phase-locked timing signals at a rate defined by the user. It can also generate all seven VME interrupt requests (IRQs). The RICST timing board is suitable mainly for robotic, aerospace, and real-time applications. Several circuit boards on the market are capable of generating periodic IRQs. Most are associated with Global Positioning System (GPS) receivers and Inter Range Instrumentation Group (IRIG) time-code generators, whereas this board uses either an internal VME clock or an externally generated clock signal to synchronize multiple components of the system. The primary advantage of this board is that there is no discernible jitter in the output clock waveforms because the signals are divided down from a high-frequency clock signal instead of being phase-locked from a lower frequency. The primary disadvantage to this board, relative to other periodic-IRQ-generating boards, is that it is more difficult to synchronize the system to wall clock time.

  12. Linear synchronous motor having enhanced levitational forces

    SciTech Connect

    Tozoni, O.

    1993-07-06

    A linear synchronous motor for a high speed vehicle is described comprising: (a) a linear stator assembly divided into sections and having an air gap, the stator assembly generating a magnetic field traveling wave in the air gap from an alternating current source, the traveling wave having variable speeds and accelerations along different sections of the stator assembly; (b) a rotor assembly having at least one propulsion magnet forming at least one pole-pitch of a selected length that is selectively variable while the vehicle is in motion, the magnet including an upper portion, a lower portion spaced apart from the upper portion, and a nonmagnetic coupler rigidly coupling the upper portion to the lower portion, the rotor assembly coupled to the vehicle and disposed in the air gap of the stator and movable laterally with respect to the stator, the rotor assembly generating a magnetic flux that produces an attractive force between a magnetic field of the rotor assembly and the traveling wave of the stator assembly, the magnetic field of the rotor assembly propelling the vehicle and generating a levitation force levitating the vehicle; and (c) a synchronizing unit operatively associated with the rotor assembly to vary the length of the pole-pitch such that the pole-pitch length is substantially equal to one-half the length of the traveling wave at any given position along the linear stator assembly.

  13. Experimental validation of clock synchronization algorithms

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L.; Graham, R. Lynn

    1992-01-01

    The objective of this work is to validate mathematically derived clock synchronization theories and their associated algorithms through experiment. Two theories are considered, the Interactive Convergence Clock Synchronization Algorithm and the Midpoint Algorithm. Special clock circuitry was designed and built so that several operating conditions and failure modes (including malicious failures) could be tested. Both theories are shown to predict conservative upper bounds (i.e., measured values of clock skew were always less than the theory prediction). Insight gained during experimentation led to alternative derivations of the theories. These new theories accurately predict the behavior of the clock system. It is found that a 100 percent penalty is paid to tolerate worst-case failures. It is also shown that under optimal conditions (with minimum error and no failures) the clock skew can be as much as three clock ticks. Clock skew grows to six clock ticks when failures are present. Finally, it is concluded that one cannot rely solely on test procedures or theoretical analysis to predict worst-case conditions.

  14. Chaos Synchronization in Navier-Stokes Turbulence

    NASA Astrophysics Data System (ADS)

    Lalescu, Cristian; Meneveau, Charles; Eyink, Gregory

    2013-03-01

    Chaos synchronization (CS) has been studied for some time now (Pecora & Carroll 1990), for systems with only a few degrees of freedom as well as for systems described by partial differential equations (Boccaletti et al 2002). CS in general is said to be present in coupled dynamical systems when a specific property of each system has the same time evolution for all, even though the evolution itself is chaotic. The Navier-Stokes (NS) equations describe the velocity for a wide range of fluids, and their solutions are usually called turbulent if fluctuation amplitudes decrease as a power of their wavenumber. There have been some studies of CS for continuous systems (Kocarev et al 1997), but CS for NS turbulence seems not to have been investigated so far. We focus on the synchronization of the small scales of a turbulent flow for which the time history of large scales is prescribed. Our DNS results show that high-wavenumbers in turbulence are fully slaved to modes with wavenumbers up to a critical fraction of the Kolmogorov dissipation wavenumber. The motivation for our work is to study deeply sub-Kolmogorov scales in fully developed turbulence (Schumacher 2007), which we found to be recoverable even at very high Reynolds number from simulations with moderate resolutions. This work is supported by the National Science Foundation's CDI-II program, project CMMI-0941530

  15. Chaos Synchronization in Navier-Stokes Turbulence

    NASA Astrophysics Data System (ADS)

    Lalescu, Cristian C.; Meneveau, Charles; Eyink, Gregory L.

    2012-11-01

    Chaos synchronization (CS) has been studied for some time now (Pecora & Carroll 1990), for systems with only a few degrees of freedom as well as for systems described by partial differential equations (Boccaletti et al. 2002). CS in general is said to be present in a pair of coupled dynamical systems when a specific property of each system has the same time evolution for both, even though the evolution itself is chaotic. There have been some studies of CS for systems with an infinite number of degrees of freedom (Kocarev et al. 1997), but CS for Navier-Stokes (NS) turbulence seems not to have been investigated so far. We focus on the synchronization of the small scales of a turbulent flow for which the time history of large scales is prescribed. We present DNS results which show that high-wavenumbers in turbulence are fully slaved to modes with wavenumbers up to a critical fraction of the Kolmogorov dissipation wavenumber. We compare our results with related ideas of ``approximate inertial manifolds.'' The motivation for our work is to study deeply sub-Kolmogorov scales in fully developed turbulence (Schumacher 2007), which we show are recoverable even at very high Reynolds number from simulations that only resolve down to about the Kolmogorov scale. This work is supported by the National Science Foundation's CDI-II program, project CMMI-0941530.

  16. Inside black holes with synchronized hair

    NASA Astrophysics Data System (ADS)

    Brihaye, Yves; Herdeiro, Carlos; Radu, Eugen

    2016-09-01

    Recently, various examples of asymptotically flat, rotating black holes (BHs) with synchronized hair have been explicitly constructed, including Kerr BHs with scalar or Proca hair, and Myers-Perry BHs with scalar hair and a mass gap, showing there is a general mechanism at work. All these solutions have been found numerically, integrating the fully non-linear field equations of motion from the event horizon outwards. Here, we address the spacetime geometry of these solutions inside the event horizon. Firstly, we provide arguments, within linear theory, that there is no regular inner horizon for these solutions. Then, we address this question fully non-linearly, using as a tractable model five dimensional, equal spinning, Myers-Perry hairy BHs. We find that, for non-extremal solutions: (1) the inside spacetime geometry in the vicinity of the event horizon is smooth and the equations of motion can be integrated inwards; (2) before an inner horizon is reached, the spacetime curvature grows (apparently) without bound. In all cases, our results suggest the absence of a smooth Cauchy horizon, beyond which the metric can be extended, for hairy BHs with synchronized hair.

  17. Climate model studies of synchronously rotating planets.

    PubMed

    Joshi, Manoj

    2003-01-01

    M stars constitute 75% of main sequence stars though, until recently, their star systems have not been considered suitable places for habitable planets to exist. In this study the climate of a synchronously rotating planet around an M dwarf star is evaluated using a three-dimensional global atmospheric circulation model. The presence of clouds and evaporative cooling at the surface of the planet result in a cooler surface temperature at the subsolar point. Water ice forms at the polar regions and on the dark side, where the minimum temperature lies between -30 degrees C and 0 degrees C. As expected, rainfall is extremely high on the starlit side and extremely low on the dark side. The presence of a dry continent causes higher temperatures on the dayside, and allows accumulation of snow on the nightside. The absence of any oceans leads to higher day-night temperature differences, consistent with previous work. The present study reinforces recent conclusions that synchronously rotating planets within the circumstellar habitable zones of M dwarf stars should be habitable, and therefore M dwarf systems should not be excluded in future searches for exoplanets.

  18. Environmental synchronizers of squirrel monkey circadian rhythms

    NASA Technical Reports Server (NTRS)

    Sulzman, F. M.; Fuller, C. A.; Moore-Ede, M. C.

    1977-01-01

    Various temporal signals in the environment were tested to determine if they could synchronize the circadian timing system of the squirrel monkey (Saimiri sciureus). The influence of cycles of light and dark, eating and fasting, water availability and deprivation, warm and cool temperature, sound and quiet, and social interaction and isolation on the drinking and activity rhythms of unrestrained monkeys was examined. In the absence of other time cues, 24-hr cycles of each of these potential synchronizers were applied for up to 3 wk, and the periods of the monkey's circadian rhythms were examined. Only light-dark cycles and cycles of food availability were shown to be entraining agents, since they were effective in determining the period and phase of the rhythmic variables. In the presence of each of the other environmental cycles, the monkey's circadian rhythms exhibited free-running periods which were significantly different from 24 hr with all possible phase relationships between the rhythms and the environmental cycles being examined.

  19. Synchronized Cell Cycle Arrest Promotes Osteoclast Differentiation

    PubMed Central

    Kwon, Minsuk; Kim, Jin-Man; Lee, Kyunghee; Park, So-Young; Lim, Hyun-Sook; Kim, Taesoo; Jeong, Daewon

    2016-01-01

    Osteoclast progenitors undergo cell cycle arrest before differentiation into osteoclasts, induced by exposure to macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). The role of such cell cycle arrest in osteoclast differentiation has remained unclear, however. We here examined the effect of synchronized cell cycle arrest on osteoclast formation. Osteoclast progenitors deprived of M-CSF in culture adopted a uniform morphology and exhibited cell cycle arrest at the G0–G1 phase in association with both down-regulation of cyclins A and D1 as well as up-regulation of the cyclin-dependent kinase inhibitor p27Kip1. Such M-CSF deprivation also promoted the differentiation of osteoclast progenitors into multinucleated osteoclasts expressing high levels of osteoclast marker proteins such as NFATc1, c-Fos, Atp6v0d2, cathepsin K, and integrin β3 on subsequent exposure to M-CSF and RANKL. Our results suggest that synchronized arrest and reprogramming of osteoclast progenitors renders them poised to respond to inducers of osteoclast formation. Further characterization of such effects may facilitate induction of the differentiation of heterogeneous and multipotent cells into desired cell lineages. PMID:27517906

  20. Environmental synchronizers of squirrel monkey circadian rhythms.

    PubMed

    Sulzman, F M; Fuller, C A; Moore-Ede, M C

    1977-11-01

    Various temporal signals in the environment were tested to determine if they could synchronize the circadian timing system of the squirrel monkey (Saimiri sciureus). The influence of cycles of light and dark, eating and fasting, water availability and deprivation, warm and cool temperature, sound and quiet, and social interaction and isolation was examined on the drinking and activity rhythms of unrestrained monkeys. In the absence of other time cues, 24-h cycles of each of these potential synchronizers were applied for up to 3 wk, and the periods of the monkey's circadian rhythms were examined. Only light-dark cycles and cycles of food availability were shown to be entraining agents, since they were effective in determining the period and phase of rhythmic variables. In the presence of each of the other environmental cycles, the monkey's circadian rhythms exhibited free-running periods which were significantly different from 24 h with all possible phase relationships between the rhythms and the environmental cycles being examined. PMID:412829

  1. Synchronization in Disordered Josephson Junction Arrays

    NASA Astrophysics Data System (ADS)

    Dissanayake, S. T. M.; Trees, B. R.

    2001-10-01

    There is considerable scientific and technological interest in the time-dependent behavior of arrays of non-identical Josephson junctions, whose voltages oscillate with individual bare frequencies that can be made, through interactions, to renormalize their frequencies to a common value. We have studied the degree of synchronization of a subset of overdamped junctions in a ladder geometry, in which the voltages across the ``rung'' junctions of the ladder oscillate with the same, renormalized frequency and a fixed phase difference. We measure the degree of synchronization of the junctions with an order parameter, r (0<= r<= 1), as a function of the nearest-neighbor junction coupling strength. We also determined that a time-averaged version of the resistively-shunted junction (RSJ) equations could be used as an accurate description of the dynamics of the junctions. The solutions to the averaged equations exhibit phase slips between pairs of junctions for certain ranges of the junction coupling strength and also demonstrated that the relationship between the array size N and the critical coupling strength for all junctions to oscillate with the same frequency scales as N^2. This research was partially funded by a grant to Ohio Wesleyan University from the McGregor Foundation to support student research.

  2. A fiber optic synchronization system for LUX

    SciTech Connect

    Wilcox, R.B.; Staples, J.W.; Doolittle, L.R.

    2004-06-30

    The LUX femtosecond light source concept would support pump-probe experiments that need to synchronize laser light pulses with electron-beam-generated X-ray pulses to less than 50 fs at the experimenter endstations. To synchronize multiple endstation lasers with the X-ray pulse, we are developing a fiber-distributed optical timing network. A high frequency clock signal is distributed via fiber to RF cavities (controlling X-ray probe pulse timing) and mode-locked lasers at endstations (controlling pump pulse timing). The superconducting cavities are actively locked to the optical clock phase. Most of the RF timing error is contained within a 10 kHz bandwidth, so these errors and any others affecting X-ray pulse timing (such as RF gun phase) can be detected and transmitted digitally to correct laser timing at the endstations. Time delay through the fibers will be stabilized by comparing a retro-reflected pulse from the experimenter endstation end with a reference pulse from the sending en d, and actively controlling the fiber length.

  3. Synchronized Cell Cycle Arrest Promotes Osteoclast Differentiation.

    PubMed

    Kwon, Minsuk; Kim, Jin-Man; Lee, Kyunghee; Park, So-Young; Lim, Hyun-Sook; Kim, Taesoo; Jeong, Daewon

    2016-01-01

    Osteoclast progenitors undergo cell cycle arrest before differentiation into osteoclasts, induced by exposure to macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). The role of such cell cycle arrest in osteoclast differentiation has remained unclear, however. We here examined the effect of synchronized cell cycle arrest on osteoclast formation. Osteoclast progenitors deprived of M-CSF in culture adopted a uniform morphology and exhibited cell cycle arrest at the G₀-G₁ phase in association with both down-regulation of cyclins A and D1 as well as up-regulation of the cyclin-dependent kinase inhibitor p27(Kip1). Such M-CSF deprivation also promoted the differentiation of osteoclast progenitors into multinucleated osteoclasts expressing high levels of osteoclast marker proteins such as NFATc1, c-Fos, Atp6v0d2, cathepsin K, and integrin β3 on subsequent exposure to M-CSF and RANKL. Our results suggest that synchronized arrest and reprogramming of osteoclast progenitors renders them poised to respond to inducers of osteoclast formation. Further characterization of such effects may facilitate induction of the differentiation of heterogeneous and multipotent cells into desired cell lineages. PMID:27517906

  4. Robust Timing Synchronization in Aeronautical Mobile Communication Systems

    NASA Technical Reports Server (NTRS)

    Xiong, Fu-Qin; Pinchak, Stanley

    2004-01-01

    This work details a study of robust synchronization schemes suitable for satellite to mobile aeronautical applications. A new scheme, the Modified Sliding Window Synchronizer (MSWS), is devised and compared with existing schemes, including the traditional Early-Late Gate Synchronizer (ELGS), the Gardner Zero-Crossing Detector (GZCD), and the Sliding Window Synchronizer (SWS). Performance of the synchronization schemes is evaluated by a set of metrics that indicate performance in digital communications systems. The metrics are convergence time, mean square phase error (or root mean-square phase error), lowest SNR for locking, initial frequency offset performance, midstream frequency offset performance, and system complexity. The performance of the synchronizers is evaluated by means of Matlab simulation models. A simulation platform is devised to model the satellite to mobile aeronautical channel, consisting of a Quadrature Phase Shift Keying modulator, an additive white Gaussian noise channel, and a demodulator front end. Simulation results show that the MSWS provides the most robust performance at the cost of system complexity. The GZCD provides a good tradeoff between robustness and system complexity for communication systems that require high symbol rates or low overall system costs. The ELGS has a high system complexity despite its average performance. Overall, the SWS, originally designed for multi-carrier systems, performs very poorly in single-carrier communications systems. Table 5.1 in Section 5 provides a ranking of each of the synchronization schemes in terms of the metrics set forth in Section 4.1. Details of comparison are given in Section 5. Based on the results presented in Table 5, it is safe to say that the most robust synchronization scheme examined in this work is the high-sample-rate Modified Sliding Window Synchronizer. A close second is its low-sample-rate cousin. The tradeoff between complexity and lowest mean-square phase error determines

  5. Detection of Nonverbal Synchronization through Phase Difference in Human Communication.

    PubMed

    Kwon, Jinhwan; Ogawa, Ken-ichiro; Ono, Eisuke; Miyake, Yoshihiro

    2015-01-01

    Nonverbal communication is an important factor in human communication, and body movement synchronization in particular is an important part of nonverbal communication. Some researchers have analyzed body movement synchronization by focusing on changes in the amplitude of body movements. However, the definition of "body movement synchronization" is still unclear. From a theoretical viewpoint, phase difference is the most important factor in synchronization analysis. Therefore, there is a need to measure the synchronization of body movements using phase difference. The purpose of this study was to provide a quantitative definition of the phase difference distribution for detecting body movement synchronization in human communication. The phase difference distribution was characterized using four statistical measurements: density, mean phase difference, standard deviation (SD) and kurtosis. To confirm the effectiveness of our definition, we applied it to human communication in which the roles of speaker and listener were defined. Specifically, we examined the difference in the phase difference distribution between two different communication situations: face-to-face communication with visual interaction and remote communication with unidirectional visual perception. Participant pairs performed a task supposing lecture in the face-to-face communication condition and in the remote communication condition via television. Throughout the lecture task, we extracted a set of phase differences from the time-series data of the acceleration norm of head nodding motions between two participants. Statistical analyses of the phase difference distribution revealed the characteristics of head nodding synchronization. Although the mean phase differences in synchronized head nods did not differ significantly between the conditions, there were significant differences in the densities, the SDs and the kurtoses of the phase difference distributions of synchronized head nods. These

  6. Detection of Nonverbal Synchronization through Phase Difference in Human Communication.

    PubMed

    Kwon, Jinhwan; Ogawa, Ken-ichiro; Ono, Eisuke; Miyake, Yoshihiro

    2015-01-01

    Nonverbal communication is an important factor in human communication, and body movement synchronization in particular is an important part of nonverbal communication. Some researchers have analyzed body movement synchronization by focusing on changes in the amplitude of body movements. However, the definition of "body movement synchronization" is still unclear. From a theoretical viewpoint, phase difference is the most important factor in synchronization analysis. Therefore, there is a need to measure the synchronization of body movements using phase difference. The purpose of this study was to provide a quantitative definition of the phase difference distribution for detecting body movement synchronization in human communication. The phase difference distribution was characterized using four statistical measurements: density, mean phase difference, standard deviation (SD) and kurtosis. To confirm the effectiveness of our definition, we applied it to human communication in which the roles of speaker and listener were defined. Specifically, we examined the difference in the phase difference distribution between two different communication situations: face-to-face communication with visual interaction and remote communication with unidirectional visual perception. Participant pairs performed a task supposing lecture in the face-to-face communication condition and in the remote communication condition via television. Throughout the lecture task, we extracted a set of phase differences from the time-series data of the acceleration norm of head nodding motions between two participants. Statistical analyses of the phase difference distribution revealed the characteristics of head nodding synchronization. Although the mean phase differences in synchronized head nods did not differ significantly between the conditions, there were significant differences in the densities, the SDs and the kurtoses of the phase difference distributions of synchronized head nods. These

  7. Fast synchronous oscillations of firing rate in cultured rat suprachiasmatic nucleus neurons: possible role in circadian synchronization in the intact nucleus.

    PubMed

    Kononenko, Nikolai I; Honma, Sato; Honma, Ken-Ichi

    2013-03-01

    The coherent circadian rhythm of the brain's master circadian pacemaker, the suprachiasmatic nucleus (SCN), is a result of synchronization of electrical activity of many SCN neurons possessing their own circadian oscillators. However, how the activity of these neurons is synchronized is not precisely known. By plotting the electrical firing rates of dispersed rat SCN neurons in multi-electrode array dishes with 20-s averaging of action-potential activity, we have investigated a novel phenomenon: fast (relative to the circadian cycle) oscillations of firing rate (FOFR) with duration of bursts ∼10min and interburst interval varying in a range from 20 to 60min in different cells, remaining nevertheless rather regular in individual cells. In many cases, separate neurons in distant parts of the 1mm recording area of an array exhibited correlated FOFR. FOFR of individual cells were positively or negatively correlated with those of other cells in a functioning neural network. Intriguingly, in occasional neuron pairs, transformation of their irregular firing to circadian peaks was accompanied by appearance of FOFR and an increase in the magnitude of firing correlation. We hypothesize that this FOFR observed in cultured SCN neurons contribute to synchronization of the circadian rhythm in the intact SCN.

  8. Synchronized drumming enhances activity in the caudate and facilitates prosocial commitment--if the rhythm comes easily.

    PubMed

    Kokal, Idil; Engel, Annerose; Kirschner, Sebastian; Keysers, Christian

    2011-01-01

    Why does chanting, drumming or dancing together make people feel united? Here we investigate the neural mechanisms underlying interpersonal synchrony and its subsequent effects on prosocial behavior among synchronized individuals. We hypothesized that areas of the brain associated with the processing of reward would be active when individuals experience synchrony during drumming, and that these reward signals would increase prosocial behavior toward this synchronous drum partner. 18 female non-musicians were scanned with functional magnetic resonance imaging while they drummed a rhythm, in alternating blocks, with two different experimenters: one drumming in-synchrony and the other out-of-synchrony relative to the participant. In the last scanning part, which served as the experimental manipulation for the following prosocial behavioral test, one of the experimenters drummed with one half of the participants in-synchrony and with the other out-of-synchrony. After scanning, this experimenter "accidentally" dropped eight pencils, and the number of pencils collected by the participants was used as a measure of prosocial commitment. Results revealed that participants who mastered the novel rhythm easily before scanning showed increased activity in the caudate during synchronous drumming. The same area also responded to monetary reward in a localizer task with the same participants. The activity in the caudate during experiencing synchronous drumming also predicted the number of pencils the participants later collected to help the synchronous experimenter of the manipulation run. In addition, participants collected more pencils to help the experimenter when she had drummed in-synchrony than out-of-synchrony during the manipulation run. By showing an overlap in activated areas during synchronized drumming and monetary reward, our findings suggest that interpersonal synchrony is related to the brain's reward system. PMID:22110623

  9. Zur Darstellung von Synchronie und Diachronie des Vokalismus im Deutschen (On the Synchronic and Diachronic Representation of Vocalization in German)

    ERIC Educational Resources Information Center

    Pauly, Peter

    1974-01-01

    A combination matrix could be very useful to illustrate the synchronic and diachronic representation of German diphthongs. Examples are provided. It is further suggested that such a matrix could be utilized for phonological research in the areas of historical linguistics, sociolinguistics and dialectology. (Text is in German.) (DS)

  10. Synchronization and Phase Dynamics of Oscillating Foils

    NASA Astrophysics Data System (ADS)

    Finkel, Cyndee L.

    In this work, a two-dimensional model representing the vortices that animals produce, when they are ying/swimming, was constructed. A D{shaped cylinder and an oscillating airfoil were used to mimic these body{shed and wing{generated vortices, respectively. The parameters chosen are based on the Reynolds numbers similar to that which is observed in nature (˜10 4). In order to imitate the motion of ying/swimming, the entire system was suspended into a water channel from frictionless air{bearings. The position of the apparatus in the channel was regulated with a linear, closed loop PI controller. Thrust/drag forces were measured with strain gauges and particle image velocimetry (PIV) was used to examine the wake structure that develops. The Strouhal number of the oscillating airfoil was compared to the values observed in nature as the system transitions between the accelerated and steady states. The results suggest that self-regulation restricts the values of the Strouhal number to a certain range where no other external sensory input is necessary. As suggested by previous work, this self-regulation is a result of a limit cycle process that stems from nonlinear periodic oscillations. The limit cycles were used to examine the synchronous conditions due to the coupling of the foil and wake vortices. Noise is a factor that can mask details of the synchronization. In order to control its effect, we study the locking conditions using an analytic technique that only considers the phases. Our results show that the phase locking indices are dependent on the Strouhal value as it converges to a frequency locking ratio of ≃0:5. This indicates that synchronization occurs during cruising between the motion of the foil and the measured thrust/drag response of the uid forces. The results suggest that Strouhal number selection in steady forward natural swimming and ying is the result of a limit cycle process and not actively controlled by an organism. An implication of this is

  11. Leadership Styles in Synchronous and Asynchronous Virtual Learning Environments

    ERIC Educational Resources Information Center

    Ruggieri, Stefano; Boca, Stefano; Garro, Maria

    2013-01-01

    A comparison of the effects of transactional and transformational leadership in synchronous and a synchronous online teamwork was conducted. In the study, groups of four participants interacted in online text chat and online text forum in problem solving tasks. The groups were lead by a confederate who acted as a transactional or a…

  12. 40 CFR 93.128 - Traffic signal synchronization projects.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... projects. 93.128 Section 93.128 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Conformity to State or Federal Implementation Plans of Transportation Plans, Programs, and Projects Developed... synchronization projects. Traffic signal synchronization projects may be approved, funded, and implemented...

  13. 40 CFR 93.128 - Traffic signal synchronization projects.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... projects. 93.128 Section 93.128 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Conformity to State or Federal Implementation Plans of Transportation Plans, Programs, and Projects Developed... synchronization projects. Traffic signal synchronization projects may be approved, funded, and implemented...

  14. Active synchronization between two different chaotic dynamical system

    NASA Astrophysics Data System (ADS)

    Maheri, M.; Arifin, N. Md; Ismail, F.

    2015-05-01

    In this paper we investigate on the synchronization problem between two different chaotic dynamical system based on the Lyapunov stability theorem by using nonlinear control functions. Active control schemes are used for synchronization Liu system as drive and Rossler system as response. Numerical simulation by using Maple software are used to show effectiveness of the proposed schemes.

  15. Optical system design for femtosecond-level synchronization of clocks

    NASA Astrophysics Data System (ADS)

    Sinclair, Laura C.; Swann, William C.; Deschênes, Jean-Daniel; Bergeron, Hugo; Giorgetta, Fabrizio R.; Baumann, Esther; Cermak, Michael; Coddington, Ian; Newbury, Nathan R.

    2016-03-01

    Synchronization of optical clocks via optical two-way time-frequency transfer across free-space links can result in time offsets between the two clocks below tens of femtoseconds over many hours. The complex optical system necessary to support such synchronization is described in detail here.

  16. Dual transponder time synchronization at C band using ATS-3.

    NASA Technical Reports Server (NTRS)

    Mazur, W. E., Jr.

    1972-01-01

    The use of artificial satellites for time synchronization of geographically distant clocks is hindered by problems due to satellite motion or equipment delay measurements. The ATS-3 satellite with its two C-band transponder channels helps solve these problems through techniques for synchronization to accuracies of tenths of microseconds. Portable cesium clocks were used to verify the accuracy of the described system.

  17. Comparing Synchronous Virtual Classrooms: Student, Instructor and Course Designer Perspectives

    ERIC Educational Resources Information Center

    Lavolette, Elizabeth; Venable, Melissa A.; Gose, Eddie; Huang, Eric

    2010-01-01

    The synchronous tool that is right for developing an online course depends on the context, needs and priorities. This report compares synchronous, virtual classroom systems Elluminate Live! v. 9 and Dimdim v. 4.5. The researchers compared the features of each system in terms of facilitation of communication, presentation of course content and…

  18. Exploring Asynchronous and Synchronous Tool Use in Online Courses

    ERIC Educational Resources Information Center

    Oztok, Murat; Zingaro, Daniel; Brett, Clare; Hewitt, Jim

    2013-01-01

    While the independent contributions of synchronous and asynchronous interaction in online learning are clear, comparatively less is known about the pedagogical consequences of using both modes in the same environment. In this study, we examine relationships between students' use of asynchronous discussion forums and synchronous private messages…

  19. Management factors influencing fertility in synchronized and natural breeding programs.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mechanisms involved in pregnancy establishment and maintenance in cattle are complex. This review has focused on some of the factors that affect pregnancy rates in both natural service and AI and synchronized and non-synchronized breeding programs. One of the best methods to look at factors influen...

  20. Instructional Design for Best Practice in the Synchronous Cyber Classroom

    ERIC Educational Resources Information Center

    Hastie, Megan; Chen, Nian-Shing; Kuo, Yen-Hung

    2007-01-01

    This paper investigates the correlation between the quality of instructional design and learning outcomes for early childhood students in the online synchronous cyber classroom. Today's generation of e-learners has access to highly engaging and well-designed multi-media synchronous classrooms. However little data exists on what constitutes "good…