Finer, Matt; Jenkins, Clinton N; Pimm, Stuart L; Keane, Brian; Ross, Carl
2008-08-13
The western Amazon is the most biologically rich part of the Amazon basin and is home to a great diversity of indigenous ethnic groups, including some of the world's last uncontacted peoples living in voluntary isolation. Unlike the eastern Brazilian Amazon, it is still a largely intact ecosystem. Underlying this landscape are large reserves of oil and gas, many yet untapped. The growing global demand is leading to unprecedented exploration and development in the region. We synthesized information from government sources to quantify the status of oil development in the western Amazon. National governments delimit specific geographic areas or "blocks" that are zoned for hydrocarbon activities, which they may lease to state and multinational energy companies for exploration and production. About 180 oil and gas blocks now cover approximately 688,000 km(2) of the western Amazon. These blocks overlap the most species-rich part of the Amazon. We also found that many of the blocks overlap indigenous territories, both titled lands and areas utilized by peoples in voluntary isolation. In Ecuador and Peru, oil and gas blocks now cover more than two-thirds of the Amazon. In Bolivia and western Brazil, major exploration activities are set to increase rapidly. Without improved policies, the increasing scope and magnitude of planned extraction means that environmental and social impacts are likely to intensify. We review the most pressing oil- and gas-related conservation policy issues confronting the region. These include the need for regional Strategic Environmental Impact Assessments and the adoption of roadless extraction techniques. We also consider the conflicts where the blocks overlap indigenous peoples' territories.
Finer, Matt; Jenkins, Clinton N.; Pimm, Stuart L.; Keane, Brian; Ross, Carl
2008-01-01
Background The western Amazon is the most biologically rich part of the Amazon basin and is home to a great diversity of indigenous ethnic groups, including some of the world's last uncontacted peoples living in voluntary isolation. Unlike the eastern Brazilian Amazon, it is still a largely intact ecosystem. Underlying this landscape are large reserves of oil and gas, many yet untapped. The growing global demand is leading to unprecedented exploration and development in the region. Methodology/Principal Findings We synthesized information from government sources to quantify the status of oil development in the western Amazon. National governments delimit specific geographic areas or “blocks” that are zoned for hydrocarbon activities, which they may lease to state and multinational energy companies for exploration and production. About 180 oil and gas blocks now cover ∼688,000 km2 of the western Amazon. These blocks overlap the most species-rich part of the Amazon. We also found that many of the blocks overlap indigenous territories, both titled lands and areas utilized by peoples in voluntary isolation. In Ecuador and Peru, oil and gas blocks now cover more than two-thirds of the Amazon. In Bolivia and western Brazil, major exploration activities are set to increase rapidly. Conclusions/Significance Without improved policies, the increasing scope and magnitude of planned extraction means that environmental and social impacts are likely to intensify. We review the most pressing oil- and gas-related conservation policy issues confronting the region. These include the need for regional Strategic Environmental Impact Assessments and the adoption of roadless extraction techniques. We also consider the conflicts where the blocks overlap indigenous peoples' territories. PMID:18716679
Morais, Sirlei Antunes; Urbinatti, Paulo Roberto; Sallum, Maria Anice Mureb; Kuniy, Adriana Akemi; Moresco, Gilberto Gilmar; Fernandes, Aristides; Nagaki, Sandra Sayuri; Natal, Delsio
2012-12-01
This study contributes to knowledge of Anopheles species, including vectors of Plasmodium from the western Brazilian Amazon in Porto Velho, Rondônia State. The sampling area has undergone substantial environmental changes as a consequence of agricultural and hydroelectric projects, which have caused intensive deforestation and favored habitats for some mosquito species. The purpose of this study was to diagnose the occurrence of anopheline species from collections in three locations along an electric-power transmission line. Each locality was sampled three times from 2010 to 2011. The principal adult mosquitoes captured in Shannon trap were Anopheles darlingi, An. triannulatus, An. nuneztovari l.s., An.gilesi and An. costai. In addition, larvae were collected in ground breeding sites for Anopheles braziliensis, An. triannulatus, An. darlingi, An. deaneorum, An. marajoara, An. peryassui, An. nuneztovari l.s. and An. oswaldoi-konderi. Anopheles darlingi was the most common mosquito in the region. We discuss Culicidae systematics, fauna distribution, and aspects of malaria in altered habitats of the western Amazon.
Deforestation effects on Amazon forest resilience
NASA Astrophysics Data System (ADS)
Zemp, D. C.; Schleussner, C.-F.; Barbosa, H. M. J.; Rammig, A.
2017-06-01
Through vegetation-atmosphere feedbacks, rainfall reductions as a result of Amazon deforestation could reduce the resilience on the remaining forest to perturbations and potentially lead to large-scale Amazon forest loss. We track observation-based water fluxes from sources (evapotranspiration) to sinks (rainfall) to assess the effect of deforestation on continental rainfall. By studying 21st century deforestation scenarios, we show that deforestation can reduce dry season rainfall by up to 20% far from the deforested area, namely, over the western Amazon basin and the La Plata basin. As a consequence, forest resilience is systematically eroded in the southwestern region covering a quarter of the current Amazon forest. Our findings suggest that the climatological effects of deforestation can lead to permanent forest loss in this region. We identify hot spot regions where forest loss should be avoided to maintain the ecological integrity of the Amazon forest.
Monteiro, Wuelton Marcelo; Magalhães, Laylah Kelre Costa; de Sá, Amanda Regina Nichi; Gomes, Mônica Lúcia; Toledo, Max Jean de Ornelas; Borges, Lara; Pires, Isa; Guerra, Jorge Augusto de Oliveira; Silveira, Henrique; Barbosa, Maria das Graças Vale
2012-01-01
Chagas disease is an emergent tropical disease in the Brazilian Amazon Region, with an increasing number of cases in recent decades. In this region, the sylvatic cycle of Trypanosoma cruzi transmission, which constitutes a reservoir of parasites that might be associated with specific molecular, epidemiological and clinical traits, has been little explored. The objective of this work is to genetically characterize stocks of T. cruzi from human cases, triatomines and reservoir mammals in the State of Amazonas, in the Western Brazilian Amazon. We analyzed 96 T. cruzi samples from four municipalities in distant locations of the State of Amazonas. Molecular characterization of isolated parasites from cultures in LIT medium or directly from vectors or whole human blood was performed by PCR of the non-transcribed spacer of the mini-exon and of the 24 S alfa ribosomal RNA gene, RFLP and sequencing of the mitochondrial cytochrome c oxidase subunit II (COII) gene, and by sequencing of the glucose-phosphate isomerase gene. The T. cruzi parasites from two outbreaks of acute disease were all typed as TcIV. One of the outbreaks was triggered by several haplotypes of the same DTU. TcIV also occurred in isolated cases and in Rhodnius robustus. Incongruence between mitochondrial and nuclear phylogenies is likely to be indicative of historical genetic exchange events resulting in mitochondrial introgression between TcIII and TcIV DTUs from Western Brazilian Amazon. TcI predominated among triatomines and was the unique DTU infecting marsupials. DTU TcIV, rarely associated with human Chagas disease in other areas of the Amazon basin, is the major strain responsible for the human infections in the Western Brazilian Amazon, occurring in outbreaks as single or mixed infections by different haplotypes.
Barthem, Ronaldo B; Goulding, Michael; Leite, Rosseval G; Cañas, Carlos; Forsberg, Bruce; Venticinque, Eduardo; Petry, Paulo; Ribeiro, Mauro L de B; Chuctaya, Junior; Mercado, Armando
2017-02-06
We mapped the inferred long-distance migrations of four species of Amazonian goliath catfishes (Brachyplatystoma rousseauxii, B. platynemum, B. juruense and B. vaillantii) based on the presence of individuals with mature gonads and conducted statistical analysis of the expected long-distance downstream migrations of their larvae and juveniles. By linking the distribution of larval, juvenile and mature adult size classes across the Amazon, the results showed: (i) that the main spawning regions of these goliath catfish species are in the western Amazon; (ii) at least three species-B. rousseauxii, B. platynemum, and B. juruense-spawn partially or mainly as far upstream as the Andes; (iii) the main spawning area of B. rousseauxii is in or near the Andes; and (iv) the life history migration distances of B. rousseauxii are the longest strictly freshwater fish migrations in the world. These results provide an empirical baseline for tagging experiments, life histories extrapolated from otolith microchemistry interpretations and other methods to establish goliath catfish migratory routes, their seasonal timing and possible return (homing) to western headwater tributaries where they were born.
NASA Astrophysics Data System (ADS)
Fernandes, Katia; Giannini, Alessandra; Verchot, Louis; Baethgen, Walter; Pinedo-Vasquez, Miguel
2015-08-01
The unusual severity and return time of the 2005 and 2010 dry-season droughts in western Amazon is attributed partly to decadal climate fluctuations and a modest drying trend. Decadal variability of western Amazon hydroclimate is highly correlated to the Atlantic sea surface temperature (SST) north-south gradient (NSG). Shifts of dry and wet events frequencies are also related to the NSG phase, with a 66% chance of 3+ years of dry events per decade when NSG > 0 and 19% when NSG < 0. The western Amazon and NSG decadal covariability is well reproduced in general circulation models (GCMs) historical (HIST) and preindustrial control (PIC) experiments of the Coupled Model Intercomparison Project Phase 5 (CMIP5). The HIST and PIC also reproduce the shifts in dry and wet events probabilities, indicating potential for decadal predictability based on GCMs. Persistence of the current NSG positive phase favors above normal frequency of western Amazon dry events in coming decades.
Monitoring selective logging in western Amazonia with repeat lidar flights
H.E. Andersen; S.E. Reutebuch; R.J. McGaughey; M.V.N. d' Oliveira; M. Keller
2014-01-01
The objective of this study was to test the use of repeat flight, airborne laser scanning data (lidar) for estimating changes associated with low-impact selective logging (approx. 10-15 m3 ha−1 = 5-7% of total standing volume harvested) in natural tropical forests in the Western Brazilian Amazon. Specifically, we investigated change in area...
NASA Astrophysics Data System (ADS)
Häggi, Christoph; Sawakuchi, André O.; Chiessi, Cristiano M.; Mulitza, Stefan; Mollenhauer, Gesine; Sawakuchi, Henrique O.; Baker, Paul A.; Zabel, Matthias; Schefuß, Enno
2016-11-01
Paleoenvironmental studies based on terrigenous biomarker proxies from sediment cores collected close to the mouth of large river systems rely on a proper understanding of the processes controlling origin, transport and deposition of biomarkers. Here, we contribute to the understanding of these processes by analyzing long-chain n-alkanes from the Amazon River system. We use the δD composition of long-chain n-alkanes from river bed sediments from the Amazon River and its major tributaries, as well as marine core-top samples collected off northeastern South America as tracers for different source areas. The δ13C composition of the same compounds is used to differentiate between long-chain n-alkanes from modern forest vegetation and petrogenic organic matter. Our δ13C results show depleted δ13C values (-33 to -36‰) in most samples, indicating a modern forest source for most of the samples. Enriched values (-31 to -33‰) are only found in a few samples poor in organic carbon indicating minor contributions from a fossil petrogenic source. Long-chain n-alkane δD analyses show more depleted values for the western tributaries, the Madeira and Solimões Rivers (-152 to -168‰), while n-alkanes from the lowland tributaries, the Negro, Xingu and Tocantins Rivers (-142 to -154‰), yield more enriched values. The n-alkane δD values thus reflect the mean annual isotopic composition of precipitation, which is most deuterium-depleted in the western Amazon Basin and more enriched in the eastern sector of the basin. Samples from the Amazon estuary show a mixed long-chain n-alkane δD signal from both eastern lowland and western tributaries. Marine core-top samples underlying the Amazon freshwater plume yield δD values similar to those from the Amazon estuary, while core-top samples from outside the plume showed more enriched values. Although the variability in the river bed data precludes quantitative assessment of relative contributions, our results indicate that long-chain n-alkanes from the Amazon estuary and plume represent an integrated signal of different regions of the onshore basin. Our results also imply that n-alkanes are not extensively remineralized during transport and that the signal at the Amazon estuary and plume includes refractory compounds derived from the western sector of the Basin. These findings will aid in the interpretation of plant wax-based records of marine sediment cores collected from the adjacent ocean.
Barthem, Ronaldo B.; Goulding, Michael; Leite, Rosseval G.; Cañas, Carlos; Forsberg, Bruce; Venticinque, Eduardo; Petry, Paulo; Ribeiro, Mauro L. de B.; Chuctaya, Junior; Mercado, Armando
2017-01-01
We mapped the inferred long-distance migrations of four species of Amazonian goliath catfishes (Brachyplatystoma rousseauxii, B. platynemum, B. juruense and B. vaillantii) based on the presence of individuals with mature gonads and conducted statistical analysis of the expected long-distance downstream migrations of their larvae and juveniles. By linking the distribution of larval, juvenile and mature adult size classes across the Amazon, the results showed: (i) that the main spawning regions of these goliath catfish species are in the western Amazon; (ii) at least three species—B. rousseauxii, B. platynemum, and B. juruense—spawn partially or mainly as far upstream as the Andes; (iii) the main spawning area of B. rousseauxii is in or near the Andes; and (iv) the life history migration distances of B. rousseauxii are the longest strictly freshwater fish migrations in the world. These results provide an empirical baseline for tagging experiments, life histories extrapolated from otolith microchemistry interpretations and other methods to establish goliath catfish migratory routes, their seasonal timing and possible return (homing) to western headwater tributaries where they were born. PMID:28165499
Ribeiro Castro, Mariane Albuquerque Lima; de Souza Castro, Gabriela Vieira; de Souza, Janis Lunier; de Souza, Cláudio Rodrigues; Ramos, Leandro José; de Oliveira, Jader; da Rosa, João Aristeu; Aranha Camargo, Luis Marcelo; Meneguetti, Dionatas Ulises de Oliveira
2018-06-01
This article reports, for the first time, the occurrence of Panstrongylus megistus in the Brazilian Western Amazon. Specimens of P. megistus were collected in the cities of Rio Branco, Acre and Extrema, Rondônia. The number of triatomine species in the State of Acre increased from eight to nine and in Rondônia from seven to eight. This was also the first report of P. megistus in the Brazilian Western Amazon. The occurrence of P. megistus in the Western Amazon evidences an epidemiological alert, since it is an important vector of T. cruzi. Copyright © 2018 Elsevier B.V. All rights reserved.
Monteiro, Wuelton Marcelo; Magalhães, Laylah Kelre Costa; de Sá, Amanda Regina Nichi; Gomes, Mônica Lúcia; Toledo, Max Jean de Ornelas; Borges, Lara; Pires, Isa; de Oliveira Guerra, Jorge Augusto; Silveira, Henrique; Barbosa, Maria das Graças Vale
2012-01-01
Background Chagas disease is an emergent tropical disease in the Brazilian Amazon Region, with an increasing number of cases in recent decades. In this region, the sylvatic cycle of Trypanosoma cruzi transmission, which constitutes a reservoir of parasites that might be associated with specific molecular, epidemiological and clinical traits, has been little explored. The objective of this work is to genetically characterize stocks of T. cruzi from human cases, triatomines and reservoir mammals in the State of Amazonas, in the Western Brazilian Amazon. Methodology/Principal Findings We analyzed 96 T. cruzi samples from four municipalities in distant locations of the State of Amazonas. Molecular characterization of isolated parasites from cultures in LIT medium or directly from vectors or whole human blood was performed by PCR of the non-transcribed spacer of the mini-exon and of the 24 S alfa ribosomal RNA gene, RFLP and sequencing of the mitochondrial cytochrome c oxidase subunit II (COII) gene, and by sequencing of the glucose-phosphate isomerase gene. The T. cruzi parasites from two outbreaks of acute disease were all typed as TcIV. One of the outbreaks was triggered by several haplotypes of the same DTU. TcIV also occurred in isolated cases and in Rhodnius robustus. Incongruence between mitochondrial and nuclear phylogenies is likely to be indicative of historical genetic exchange events resulting in mitochondrial introgression between TcIII and TcIV DTUs from Western Brazilian Amazon. TcI predominated among triatomines and was the unique DTU infecting marsupials. Conclusion/Significance DTU TcIV, rarely associated with human Chagas disease in other areas of the Amazon basin, is the major strain responsible for the human infections in the Western Brazilian Amazon, occurring in outbreaks as single or mixed infections by different haplotypes. PMID:22848457
Moreira, Fatima Maria de Souza; Nóbrega, Rafaela Simão Abrahão; Jesus, Ederson da Conceição; Ferreira, Daniel Furtado; Pérez, Daniel Vidal
2009-12-20
The Upper Solimões river region, western Amazon, is the homeland of indigenous populations and contains small-scale agricultural systems that are important for biodiversity conservation. Although traditional slash-and-burn agriculture is being practiced over many years, deforestation there is relatively small compared to other Amazon regions. Pastures are restricted to the vicinity of cities and do not spread to the small communities along the river. Inceptisols are the main soil order (>90%) in the area and have unique attributes including high Al content and high cation exchange capacity (CEC) due to the enrichment of the clay fraction with 2:1 secondary aluminosilicates. Despite its importance, few studies have focussed on this soil order when considering land use effects on the fertility of Amazon soils. Thus, the objective of this study was to evaluate changes in soil fertility of representative land use systems (LUSs) in the Upper Solimões region, namely: primary rainforest, old secondary forest, young secondary forest, agroforestry, pasture and agriculture. LUSs were significantly differentiated by the chemical attributes of their topsoil (0-20 cm). Secondary forests presented soil chemical attributes more similar to primary rainforest areas, while pastures exhibited the highest dissimilarity from all the other LUSs. As a whole, soil chemical changes among Inceptisols dominated LUSs showed patterns that were distinct from those reported from other Amazon soils like Oxisols and Ultisols. This is probably related to the presence of high-activity clays enriched in exchangeable aluminum that heavily influenced the soil chemical reactions over the expected importance of organic matter found in most studies conducted over Oxisol and Ultisol.
Santana, Marli S; Monteiro, Wuelton M; Costa, Mônica R F; Sampaio, Vanderson S; Brito, Marcelo A M; Lacerda, Marcus V G; Alecrim, Maria G C
2014-07-01
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most common human genetic abnormalities, and it has a significant prevalence in the male population (X chromosome linked). The purpose of this study was to estimate the frequency of impaired fasting glucose and diabetes among G6PD-deficient persons in Manaus, Brazil, an area in the Western Brazilian Amazon to which malaria is endemic. Glucose-6-phosphate dehydrogenase-deficient males had more impaired fasting glucose and diabetes. This feature could be used as a screening tool for G6PD-deficient persons who are unable to use primaquine for the radical cure of Plasmodium vivax malaria. © The American Society of Tropical Medicine and Hygiene.
Galvão, R C F; Holanda, I B B; De Carvalho, D P; Almeida, R; Souza, C M M; Lacerda, L D; Bastos, W R
2018-01-10
Total mercury (THg) concentrations measured in two freshwater shrimp species (Macrobrachium depressimanum and Macrobrachium jelskii) showed a relationship with the location of artisanal and small-scale gold mining (ASGM) from the Madeira River Basin, Western Amazon. Between August 2009 and May 2010, 212 shrimp samples were collected in the confluence of the Madeira River with three of its tributaries (Western Amazon). THg concentration was quantified in the exoskeleton, hepatopancreas and muscle tissue of the shrimps by cold vapor atomic absorption spectrophotometry. There were no significant differences between the two shrimp species when samples came from the Madeira River, but Hg concentrations were significantly lower in a tributary outside the influence of the gold mining area. Average THg concentrations were higher in the hepatopancreas (up to 160.0 ng g -1 ) and lower in the exoskeleton and muscle tissue (10.0-35.0 ng g -1 and < 0.9-42.0 ng g -1 , respectively). Freshwater shrimps from the Madeira River respond to local environmental levels of Hg and can be considered as biomonitors for environmental Hg at this spatial scale. These organisms are important for moving Hg up food webs including those that harbor economic significant fish species and thus enhancing human exposure.
Marcus V.N. d' Oliveira; Stephen E. Reutebuch; Robert J. McGaughey; Hans-Erik. Andersen
2012-01-01
The objectives of this study were to estimate above ground forest biomass and identify areas disturbed by selective logging in a 1000 ha Brazilian tropical forest in the Antimary State Forest using airborne lidar data. The study area consisted of three management units, two of which were unlogged, while the third unit was selectively logged at a low intensity. A...
NASA Astrophysics Data System (ADS)
Carlo Espinoza, Jhan; Marengo, José Antonio; Ronchail, Josyane; Molina Carpio, Jorge; Noriega Flores, Luís; Loup Guyot, Jean
2014-12-01
Unprecedented wet conditions are reported in the 2014 summer (December-March) in South-western Amazon, with rainfall about 100% above normal. Discharge in the Madeira River (the main southern Amazon tributary) has been 74% higher than normal (58 000 m3 s-1) at Porto Velho and 380% (25 000 m3 s-1) at Rurrenabaque, at the exit of the Andes in summer, while levels of the Rio Negro at Manaus were 29.47 m in June 2014, corresponding to the fifth highest record during the 113 years record of the Rio Negro. While previous floods in Amazonia have been related to La Niña and/or warmer than normal tropical South Atlantic, the 2014 rainfall and flood anomalies are associated with warm condition in the western Pacific-Indian Ocean and with an exceptionally warm Subtropical South Atlantic. Our results suggest that the tropical and subtropical South Atlantic SST gradient is a main driver for moisture transport from the Atlantic toward south-western Amazon, and this became exceptionally intense during summer of 2014.
Forecasting Malaria in the Western Amazon
NASA Astrophysics Data System (ADS)
Pan, W. K.; Zaitchik, B. F.; Pizzitutti, F.; Berky, A.; Feingold, B.; Mena, C.; Janko, M.
2017-12-01
Reported cases of malaria in the western Amazon regions of Peru, Colombia and Ecuador have more than tripled since 2011. Responding to this epidemic has been challenging given large-scale environmental impacts and demographic changes combined with changing financial and political priorities. In Peru alone, malaria cases increased 5-fold since 2011. Reasons include changes in the Global Malaria Fund, massive flooding in 2012, the "mega" El Nino in 2016, and continued natural resource extraction via logging and mining. These challenges prompted the recent creation of the Malaria Cero program in 2017 with the goal to eradicate malaria by 2021. To assist in malaria eradiation, a team of investigators supported by NASA have been developing an Early Warning System for Malaria. The system leverages demographic, epidemiological, meteorological and land use/cover data to develop a four-component system that will improve detection of malaria across the western Amazon Basin. System components include a land data assimilation system (LDAS) to estimate past and future hydrological states and flux, a seasonal human population model to estimate population at risk and spatial connectivity to high risk transmission areas, a sub-regional statistical model to identify when and where observed malaria cases have exceeded those expected, and an Agent Based Model (ABM) to integrate human, environmental, and entomological transmission dynamics with potential strategies for control. Data include: daily case detection reports between 2000 and 2017 from all health posts in the region of Loreto in the northern Peruvian Amazon; LDAS outputs (precipitation, temperature, humidity, solar radiation) at a 1km and weekly scale; satellite-derived estimates of land cover; and human population size from census and health data. This presentation will provide an overview of components, focusing on how the system identifies an outbreak and plans for technology transfer.
NASA Astrophysics Data System (ADS)
De Linage, C.; Famiglietti, J. S.; Randerson, J. T.
2013-12-01
Floods and droughts frequently affect the Amazon River basin, impacting the transportation, river navigation, agriculture, economy and the carbon balance and biodiversity of several South American countries. The present study aims to find the main variables controlling the natural interannual variability of terrestrial water storage in the Amazon region and to propose a modeling framework for flood and drought forecasting. We propose three simple empirical models using a linear combination of lagged spatial averages of central Pacific (Niño 4 index) and tropical North Atlantic (TNAI index) sea surface temperatures (SST) to predict a decade-long record of 3°, monthly terrestrial water storage anomalies (TWSA) observed by the Gravity Recovery And Climate Experiment (GRACE) mission. In addition to a SST forcing term, the models included a relaxation term to simulate the memory of water storage anomalies in response to external variability in forcing. Model parameters were spatially-variable and individually optimized for each 3° grid cell. We also investigated the evolution of the predictive capability of our models with increasing minimum lead times for TWSA forecasts. TNAI was the primary external forcing for the central and western regions of the southern Amazon (35% of variance explained with a 3-month forecast), whereas Niño 4 was dominant in the northeastern part of the basin (61% of variance explained with a 3-month forecast). Forcing the model with a combination of the two indices improved the fit significantly (p<0.05) for at least 64% of the grid cells, compared to models forced solely with Niño 4 or TNAI. The combined model was able to explain 43% of the variance in the Amazon basin as a whole with a 3-month lead time. While 66% of the observed variance was explained in the northeastern Amazon, only 39% of the variance was captured by the combined model in the central and western regions, suggesting that other, more local, forcing sources were important in these regions. The predictive capability of the combined model was monotonically degraded with increasing lead times. Degradation was smaller in the northeastern Amazon (where 49% of the variance was explained using a 8-month lead time versus 69% for a 1 month lead time) compared to the western and central regions of southern Amazon (where 22% of the variance was explained at 8 months versus 43% at 1 month). Our model may provide early warning information about flooding in the northeastern region of the Amazon basin, where floodplain areas are extensive and the sensitivity of floods to external SST forcing was shown to be high. This work also strengthens our understanding of the mechanisms regulating interannual variability in Amazon fires, as TWSA deficits may subsequently lead to atmospheric water vapor deficits and reduced cloudiness via water-limited evapotranspiration. Finally, this work helps to bridge the gap between the current GRACE mission and the follow-on gravity mission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedlowski, M.A.; Dale, V.H.
Road development and colonization projects have brought about wide-scale deforestation in the Brazilian Amazon. The state of Rondonia, located in the western Amazon Basin, best exemplifies the problems related to land-use changes because it has the highest rates of deforestation in the Amazon Basin. In order to identify the main land-use practices in Rondonia, interviews with local farmers were carried out in the central part of Rondonia, in the PIC (Integrated Colonization Project) Ouro Preto do Oeste. This is the oldest colonization project in the state. The governmental colonization programs attracted migrants to the area through the construction of roadsmore » and infrastructure necessary for the colonists to occupy the land for agricultural practices. The interviews were done on lots of the PIC Ouro Preto and in PAD Urupa to define the background of the colonists, their land-use practices, their economic situation, and their relationships with governmental institutions.« less
Global conservation significance of Ecuador's Yasuní National Park.
Bass, Margot S; Finer, Matt; Jenkins, Clinton N; Kreft, Holger; Cisneros-Heredia, Diego F; McCracken, Shawn F; Pitman, Nigel C A; English, Peter H; Swing, Kelly; Villa, Gorky; Di Fiore, Anthony; Voigt, Christian C; Kunz, Thomas H
2010-01-19
The threats facing Ecuador's Yasuní National Park are emblematic of those confronting the greater western Amazon, one of the world's last high-biodiversity wilderness areas. Notably, the country's second largest untapped oil reserves--called "ITT"--lie beneath an intact, remote section of the park. The conservation significance of Yasuní may weigh heavily in upcoming state-level and international decisions, including whether to develop the oil or invest in alternatives. We conducted the first comprehensive synthesis of biodiversity data for Yasuní. Mapping amphibian, bird, mammal, and plant distributions, we found eastern Ecuador and northern Peru to be the only regions in South America where species richness centers for all four taxonomic groups overlap. This quadruple richness center has only one viable strict protected area (IUCN levels I-IV): Yasuní. The park covers just 14% of the quadruple richness center's area, whereas active or proposed oil concessions cover 79%. Using field inventory data, we compared Yasuní's local (alpha) and landscape (gamma) diversity to other sites, in the western Amazon and globally. These analyses further suggest that Yasuní is among the most biodiverse places on Earth, with apparent world richness records for amphibians, reptiles, bats, and trees. Yasuní also protects a considerable number of threatened species and regional endemics. Yasuní has outstanding global conservation significance due to its extraordinary biodiversity and potential to sustain this biodiversity in the long term because of its 1) large size and wilderness character, 2) intact large-vertebrate assemblage, 3) IUCN level-II protection status in a region lacking other strict protected areas, and 4) likelihood of maintaining wet, rainforest conditions while anticipated climate change-induced drought intensifies in the eastern Amazon. However, further oil development in Yasuní jeopardizes its conservation values. These findings form the scientific basis for policy recommendations, including stopping any new oil activities and road construction in Yasuní and creating areas off-limits to large-scale development in adjacent northern Peru.
Fine, Paul V A; Daly, Douglas C; Villa Muñoz, Gorky; Mesones, Italo; Cameron, Kenneth M
2005-07-01
Environmental heterogeneity in the tropics is thought to lead to specialization in plants and thereby contribute to the diversity of the tropical flora. We examine this idea with data on the habitat specificity of 35 western Amazonian species from the genera Protium, Crepidospermum, and Tetragastris in the monophyletic tribe Protieae (Burseraceae) mapped on a molecular-based phylogeny. We surveyed three edaphic habitats that occur throughout terra firme Amazonia: white-sand, clay, and terrace soils in eight forests across more than 2000 km in the western Amazon. Twenty-six of the 35 species were found to be associated with only one of three soil types, and no species was associated with all three habitats; this pattern of edaphic specialization was consistent across the entire region. Habitat association mapped onto the phylogenetic tree shows association with terrace soils to be the probable ancestral state in the group, with subsequent speciation events onto clay and white-sand soils. The repeated gain of clay association within the clade likely coincides with the emergence of large areas of clay soils in the Miocene deposited during the Andean uplift. Character optimizations revealed that soil association was not phylogenetically clustered for white-sand and clay specialists, suggesting repeated independent evolution of soil specificity is common within the Protieae. This phylogenetic analysis also showed that multiple cases of putative sister taxa with parapatric distributions differ in their edaphic associations, suggesting that edaphic heterogeneity was an important driver of speciation in the Protieae in the Amazon basin.
NASA Astrophysics Data System (ADS)
Otto, Marco; Seidel, Jochen; Trachte, Katja
2013-04-01
The main moisture source for precipitation on the western slopes of the Central Andes is located east of the mountain range known as the Amazon basin. However, the Andean mountains, which reach up to 6000 m a.s.l., strongly influence climatic conditions along the Pacific coastline of South America as a climatic barrier for the low-level tropospheric flow and associated moisture transport from the Amazon basin. Additional, large scale subsidence caused by the South Pacific High inhabits convective rainfall at the Pacific coast where large metropolitan areas such as the Peruvian capital Lima are located. Two contrasts in precipitation can be found while crossing the Andean mountains from West to East. On the Pacific coast, at the location of the metropolitan area of Lima, no more than 10 mm mean annual rainfall occurs. In contrast, up to 1000 mm mean annual rainfall occur only 100 km east of Lima within the upper region (4000 m .a.s.l.) of the Western Cordillera. The transition takes place along the western slopes of the Western Cordillera and is characterised by a strong precipitation gradient. Here, catchment areas are located that provide most of the water resources needed to sustain an urban area of approximately 10 million people. This study investigates the interannual variability of the precipitation gradient between 1998 and 2012. The analysis is based on daily precipitation data of 22 rain gauge station, daily rainfall data of the Tropical Rainfall Mission (TRMM 3B42) at 0.25 degrees and reanalysis data at 36 km spatial resolution at the mesoscale. The reanalysis data was produced using the Weather Research and Forecasting Model. Station data was provided by the Peruvian weather service during the project "Sustainable Water and Wastewater Management in Urban Growth Centres Coping with Climate Change - Concepts for Lima Metropolitana (Peru) (LiWa)", which is financed by the German Federal Ministry of Education and Research (BMBF). We are interested in the following questions. How is the interannual variability of the observed precipitation gradient related to atmospheric circulation east (Amazon basin) and west (south-east Pacific) of the study region? If those relations are quantifiable, are there any forecast potentials for the characteristics of the precipitation gradient during the raining season? The results of the study provide valuable information needed to understand the generation of rainfall in the frame of a case study for the largest metropolitan area that is located at the arid Pacific coast of Peru. This information may also be useful for local managers in order to optimise water resource management and land use strategies.
Drinking water and rural schools in the Western Amazon: an environmental intervention study
Ribeiro, Maura Regina; de Abreu, Luiz Carlos
2018-01-01
Background Although water and sanitation are considered human rights, worldwide approximately three of 10 people (2.1 billion) do not have access to safe drinking water. In 2016, 5.6 million students were enrolled in the 34% of Brazilian schools located in rural areas, but only 72% had a public water supply network. The objective was to evaluate effectiveness of environmental intervention for water treatment in rural schools of the Western Amazonia, and determine the efficacy of water treatment using a simplified chlorinator on potability standards for turbidity, fecal coliforms and Escherichia coli. Methods A simplified chlorinator was installed for treatment of potable water in 20 public schools in the rural area of Rio Branco municipality, Acre state, Brazil. Results Before the intervention, 20% (n = 4), 100% (n = 20) and 70% (n = 14) of schools had water that failed to meet potability standards for turbidity, fecal coliforms and E. coli, respectively. However, after intervention, 70% (p = 0.68), 75% (p < 0.001) and 100% (p < 0.001) of schools complied with potability standards. Discussion This intervention considerably improved schools’ water quality, thus decreasing children’s health vulnerability due to inadequate water. Ancillary activities including training, educational lectures, installation of equipment, supply of materials and supplies (65% calcium hypochlorite and reagents) were considered fundamental to achieving success full outcomes. Installation of a simplified chlorinator in rural schools of the Western Amazon is therefore proposed as a social technology aiming at social inclusion, as well as economic and environmental sustainability. PMID:29922512
Drinking water and rural schools in the Western Amazon: an environmental intervention study.
Ribeiro, Maura Regina; de Abreu, Luiz Carlos; Laporta, Gabriel Zorello
2018-01-01
Although water and sanitation are considered human rights, worldwide approximately three of 10 people (2.1 billion) do not have access to safe drinking water. In 2016, 5.6 million students were enrolled in the 34% of Brazilian schools located in rural areas, but only 72% had a public water supply network. The objective was to evaluate effectiveness of environmental intervention for water treatment in rural schools of the Western Amazonia, and determine the efficacy of water treatment using a simplified chlorinator on potability standards for turbidity, fecal coliforms and Escherichia coli . A simplified chlorinator was installed for treatment of potable water in 20 public schools in the rural area of Rio Branco municipality, Acre state, Brazil. Before the intervention, 20% ( n = 4), 100% ( n = 20) and 70% ( n = 14) of schools had water that failed to meet potability standards for turbidity, fecal coliforms and E. coli , respectively. However, after intervention, 70% ( p = 0.68), 75% ( p < 0.001) and 100% ( p < 0.001) of schools complied with potability standards. This intervention considerably improved schools' water quality, thus decreasing children's health vulnerability due to inadequate water. Ancillary activities including training, educational lectures, installation of equipment, supply of materials and supplies (65% calcium hypochlorite and reagents) were considered fundamental to achieving success full outcomes. Installation of a simplified chlorinator in rural schools of the Western Amazon is therefore proposed as a social technology aiming at social inclusion, as well as economic and environmental sustainability.
Tada, Mauro Shugiro; Marques, Russimeire Paula; Mesquita, Elieth; Dalla Martha, Rosimeire Cristina; Rodrigues, Juan Abel; Costa, Joana D'Arc Neves; Pepelascov, Rosario Rocha; Katsuragawa, Tony Hiroshi; Pereira-da-Silva, Luiz Hildebrando
2007-06-01
Cross sectional studies on malaria prevalence was performed in 2001, 2002, and 2004 in Vila Candelária, an urban riverside area of Porto Velho, Rondônia, in the Brazilian Western Amazon, followed by longitudinal surveys on malaria incidence. Vila Candelária is a working class district, provided with electricity, water supply, and basic sanitation. Previous preliminary surveys indicated high malaria incidence in this community. At the end of year 2000 regular diagnostic and treatment measures for malaria were introduced, with active search of febrile cases among residents. Despite of both rapid treatment of cases and relative good sanitary and housing conditions, the malaria incidence persisted at high levels during the following years with an annual parasite index of 150 to 300/1000 inhabitants. Parasite surveys in 2001, 2002, and 2004 achieved through microscopy and polymerase chain reaction to diagnose malaria showed a constant high prevalence of asymptomatic carriers for both Plasmodium falciparum and P. vivax parasites. It was concluded that asymptomatic carriers represent an important reservoirs of parasites and that the carriers might contribute to maintaining the high level of transmission. Comparing our findings to similar geo-demographic situations found in other important urban communities of the Brazilian Amazon, we propose that asymptomatic carriers could explain malaria's outbreaks like the one recently observed in Manaus.
Global Conservation Significance of Ecuador's Yasuní National Park
Bass, Margot S.; Finer, Matt; Jenkins, Clinton N.; Kreft, Holger; Cisneros-Heredia, Diego F.; McCracken, Shawn F.; Pitman, Nigel C. A.; English, Peter H.; Swing, Kelly; Villa, Gorky; Di Fiore, Anthony; Voigt, Christian C.; Kunz, Thomas H.
2010-01-01
Background The threats facing Ecuador's Yasuní National Park are emblematic of those confronting the greater western Amazon, one of the world's last high-biodiversity wilderness areas. Notably, the country's second largest untapped oil reserves—called “ITT”—lie beneath an intact, remote section of the park. The conservation significance of Yasuní may weigh heavily in upcoming state-level and international decisions, including whether to develop the oil or invest in alternatives. Methodology/Principal Findings We conducted the first comprehensive synthesis of biodiversity data for Yasuní. Mapping amphibian, bird, mammal, and plant distributions, we found eastern Ecuador and northern Peru to be the only regions in South America where species richness centers for all four taxonomic groups overlap. This quadruple richness center has only one viable strict protected area (IUCN levels I–IV): Yasuní. The park covers just 14% of the quadruple richness center's area, whereas active or proposed oil concessions cover 79%. Using field inventory data, we compared Yasuní's local (alpha) and landscape (gamma) diversity to other sites, in the western Amazon and globally. These analyses further suggest that Yasuní is among the most biodiverse places on Earth, with apparent world richness records for amphibians, reptiles, bats, and trees. Yasuní also protects a considerable number of threatened species and regional endemics. Conclusions/Significance Yasuní has outstanding global conservation significance due to its extraordinary biodiversity and potential to sustain this biodiversity in the long term because of its 1) large size and wilderness character, 2) intact large-vertebrate assemblage, 3) IUCN level-II protection status in a region lacking other strict protected areas, and 4) likelihood of maintaining wet, rainforest conditions while anticipated climate change-induced drought intensifies in the eastern Amazon. However, further oil development in Yasuní jeopardizes its conservation values. These findings form the scientific basis for policy recommendations, including stopping any new oil activities and road construction in Yasuní and creating areas off-limits to large-scale development in adjacent northern Peru. PMID:20098736
Assessing Mammal Exposure to Climate Change in the Brazilian Amazon.
Ribeiro, Bruno R; Sales, Lilian P; De Marco, Paulo; Loyola, Rafael
2016-01-01
Human-induced climate change is considered a conspicuous threat to biodiversity in the 21st century. Species' response to climate change depends on their exposition, sensitivity and ability to adapt to novel climates. Exposure to climate change is however uneven within species' range, so that some populations may be more at risk than others. Identifying the regions most exposed to climate change is therefore a first and pivotal step on determining species' vulnerability across their geographic ranges. Here, we aimed at quantifying mammal local exposure to climate change across species' ranges. We identified areas in the Brazilian Amazon where mammals will be critically exposed to non-analogue climates in the future with different variables predicted by 15 global circulation climate forecasts. We also built a null model to assess the effectiveness of the Amazon protected areas in buffering the effects of climate change on mammals, using an innovative and more realistic approach. We found that 85% of species are likely to be exposed to non-analogue climatic conditions in more than 80% of their ranges by 2070. That percentage is even higher for endemic mammals; almost all endemic species are predicted to be exposed in more than 80% of their range. Exposure patterns also varied with different climatic variables and seem to be geographically structured. Western and northern Amazon species are more likely to experience temperature anomalies while northeastern species will be more affected by rainfall abnormality. We also observed an increase in the number of critically-exposed species from 2050 to 2070. Overall, our results indicate that mammals might face high exposure to climate change and that protected areas will probably not be efficient enough to avert those impacts.
Assessing Mammal Exposure to Climate Change in the Brazilian Amazon
Ribeiro, Bruno R.; Sales, Lilian P.; De Marco, Paulo; Loyola, Rafael
2016-01-01
Human-induced climate change is considered a conspicuous threat to biodiversity in the 21st century. Species’ response to climate change depends on their exposition, sensitivity and ability to adapt to novel climates. Exposure to climate change is however uneven within species’ range, so that some populations may be more at risk than others. Identifying the regions most exposed to climate change is therefore a first and pivotal step on determining species’ vulnerability across their geographic ranges. Here, we aimed at quantifying mammal local exposure to climate change across species’ ranges. We identified areas in the Brazilian Amazon where mammals will be critically exposed to non-analogue climates in the future with different variables predicted by 15 global circulation climate forecasts. We also built a null model to assess the effectiveness of the Amazon protected areas in buffering the effects of climate change on mammals, using an innovative and more realistic approach. We found that 85% of species are likely to be exposed to non-analogue climatic conditions in more than 80% of their ranges by 2070. That percentage is even higher for endemic mammals; almost all endemic species are predicted to be exposed in more than 80% of their range. Exposure patterns also varied with different climatic variables and seem to be geographically structured. Western and northern Amazon species are more likely to experience temperature anomalies while northeastern species will be more affected by rainfall abnormality. We also observed an increase in the number of critically-exposed species from 2050 to 2070. Overall, our results indicate that mammals might face high exposure to climate change and that protected areas will probably not be efficient enough to avert those impacts. PMID:27829036
Deforestation, Rondonia, Brazil
NASA Technical Reports Server (NTRS)
1992-01-01
This view of deforestation in Rondonia, far western Brazil, (10.0S, 63.0W) is part of an agricultural resettlement project which ultimately covers an area about 80% the size of France. The patterns of deforestation in this part of the Amazon River Basin are usually aligned adjacent to highways, secondary roads, and streams for ease of access and transportation. Compare this view with the earlier 51G-37-062 for a comparison of deforestation in the region.
Deforestation, Rondonia, Brazil
1992-08-08
This view of deforestation in Rondonia, far western Brazil, (10.0S, 63.0W) is part of an agricultural resettlement project which ultimately covers an area about 80% the size of France. The patterns of deforestation in this part of the Amazon River Basin are usually aligned adjacent to highways, secondary roads, and streams for ease of access and transportation. Compare this view with the earlier 51G-37-062 for a comparison of deforestation in the region.
NASA Technical Reports Server (NTRS)
Potter, C.; Klooster, S.; Huete, A.; Genovese, V.; Bustamante, M.; Ferreira, L. Guimaraes; deOliveira, R. C., Jr.; Zepp, R.
2009-01-01
A simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2004. Net ecosystem production (NEP) flux for atmospheric CO2 in the region for these years was estimated. Consistently high carbon sink fluxes in terrestrial ecosystems on a yearly basis were found in the western portions of the states of Acre and Rondonia and the northern portions of the state of Par a. These areas were not significantly impacted by the 2002-2003 El Nino event in terms of net annual carbon gains. Areas of the region that show periodically high carbon source fluxes from terrestrial ecosystems to the atmosphere on yearly basis were found throughout the state of Maranhao and the southern portions of the state of Amazonas. As demonstrated though tower site comparisons, NEP modeled with monthly MODIS Enhanced Vegetation Index (EVI) inputs closely resembles the measured seasonal carbon fluxes at the LBA Tapajos tower site. Modeling results suggest that the capacity for use of MODIS Enhanced Vegetation Index (EVI) data to predict seasonal uptake rates of CO2 in Amazon forests and Cerrado woodlands is strong.
NASA Astrophysics Data System (ADS)
Aguilera, Orangel; Marceniuk, Alexandre Pires
2018-03-01
Herein we describe five new fossil species of the catfish family Ariidae: †Amphiarius paleoorinocoensis, †Ariopsis ariopsilus, †Bagre urumacoensis, †Sciades latissimum and †Sciades peregrinus from the late Miocene Urumaco Formation in Venezuela, South America. These identifications were based on comparison of morphological characters between the fossil skulls and the skulls of extant specimens from tropical America. The extant ariids from the Atlantic plume of the Orinoco-Amazon rivers reveal close taxonomic relationship to the fossil species. †Amphiarius paleoorinocoensis n. sp. and †Aspistor verumquadriscutis are closely related to Amphiarius rugispinis, Amphiarius phrygiatus and Aspistor quadriscutis, species endemic to areas under the influence of the Orinoco-Amazon plume. Another genus whose extant species are almost exclusively found in this region of the Atlantic is Sciades. Nevertheless, †Sciades latissimus n. sp. and †Sciades peregrinus n. sp., are closely related with Sciades dowii, found in the Pacific. This condition supports the extinction of Sciades dowii lineage in the Atlantic. The fossil †Ariopsis ariopsilus n. sp. shares many characters with extant species of the genus, which does not occur in the Amazon delta and which has no representative species in the Atlantic plume. The close relationship of †Bagre urumacoensis n. sp. to Bagre aff. marinus suggests a marine paleoenvironment with average to higher salinities. These new fossil catfish specimens from the Urumaco Formation suggest that they are ancestral lineages from both the Orinoco-Amazon Atlantic plume influence area (Aspistor and Amphiarius) and the Caribbean-Western Pacific (Ariopsis), and extinct lineage of Sciades from the Atlantic.
Aerial and surface rivers: downwind impacts on water availability from land use changes in Amazonia
NASA Astrophysics Data System (ADS)
Weng, Wei; Luedeke, Matthias K. B.; Zemp, Delphine C.; Lakes, Tobia; Kropp, Juergen P.
2018-02-01
The abundant evapotranspiration provided by the Amazon forests is an important component of the hydrological cycle, both regionally and globally. Since the last century, deforestation and expanding agricultural activities have been changing the ecosystem and its provision of moisture to the atmosphere. However, it remains uncertain how the ongoing land use change will influence rainfall, runoff, and water availability as findings from previous studies differ. Using moisture tracking experiments based on observational data, we provide a spatially detailed analysis recognizing potential teleconnection between source and sink regions of atmospheric moisture. We apply land use scenarios in upwind moisture sources and quantify the corresponding rainfall and runoff changes in downwind moisture sinks. We find spatially varying responses of water regimes to land use changes, which may explain the diverse results from previous studies. Parts of the Peruvian Amazon and western Bolivia are identified as the sink areas most sensitive to land use change in the Amazon and we highlight the current water stress by Amazonian land use change on these areas in terms of the water availability. Furthermore, we also identify the influential source areas where land use change may considerably reduce a given target sink's water reception (from our example of the Ucayali River basin outlet, rainfall by 5-12 % and runoff by 19-50 % according to scenarios). Sensitive sinks and influential sources are therefore suggested as hotspots for achieving sustainable land-water management.
Forest-rainfall cascades buffer against drought across the Amazon
NASA Astrophysics Data System (ADS)
Staal, Arie; Tuinenburg, Obbe A.; Bosmans, Joyce H. C.; Holmgren, Milena; van Nes, Egbert H.; Scheffer, Marten; Zemp, Delphine Clara; Dekker, Stefan C.
2018-06-01
Tree transpiration in the Amazon may enhance rainfall for downwind forests. Until now it has been unclear how this cascading effect plays out across the basin. Here, we calculate local forest transpiration and the subsequent trajectories of transpired water through the atmosphere in high spatial and temporal detail. We estimate that one-third of Amazon rainfall originates within its own basin, of which two-thirds has been transpired. Forests in the southern half of the basin contribute most to the stability of other forests in this way, whereas forests in the south-western Amazon are particularly dependent on transpired-water subsidies. These forest-rainfall cascades buffer the effects of drought and reveal a mechanism by which deforestation can compromise the resilience of the Amazon forest system in the face of future climatic extremes.
Santos, Mônica; Ribeiro-Rodrigues, Rodrigo; Lobo, Rogério; Talhari, Sinésio
2010-05-01
In the present study, we report the occurrence of borreliosis in patients from the Brazilian Amazonic region. Nineteen (7.2%) out of 270 dermatological patients with different skin diseases (no one with clinical Lyme disease), tested positive by ELISA for Borrelia burgdorferi. Serum samples from 15 out of the 19 ELISA-positive patients were further evaluated by Western blot. Presence of Borrelia burgdorferi specific IgG was confirmed in eight (53.3%) out of the 15 patients. All eight patients with ELISA and Western blot positive reactions were treated with doxycycline, according to the Centers for Disease Control and Prevention guidelines. One of them had clinical manifestations of colagenosis and was sent to the Department of Internal Medicine for further investigation. Data presented here suggested that borreliosis "lato sensu" is in the Brazilian Amazon region.
A century of Amazon burning driven by Atlantic climate
NASA Astrophysics Data System (ADS)
Makou, M.; Thompson, L. G.; Davis, M. E.; Eglinton, T. I.
2011-12-01
Very little is known about annual burning trends in the Amazon Basin prior to remote sensing of fires beginning in the late 1970's. Fires reduce Amazon forest biomass and species richness, release pollutant aerosols, and impact the carbon cycle, compelling further investigation of fire-climate dynamics. We measured organic compounds derived from vegetation burning in ice core samples from the Quelccaya Ice Cap in Peru at better than annual resolution to reconstruct wet and dry season burning throughout the Twentieth Century. Variations in the abundance of methyl hexadecanoate, which is produced by thermal alteration of vascular plant alkanoic acids, were used as a proxy for past fire activity. Concentrations of this compound in Quelccaya ice varied strongly on seasonal, interannual, and decadal time scales over the last 100 years, with high-amplitude dry season variability and muted, decadal-scale changes in wet season fire activity. Decade-long periods of repeatedly enhanced burning occurred during the 1930's and 1960's when dry season precipitation was perpetually reduced, as evidenced by low stages of the Rio Negro. These decadal trends suggest that changes in dry season precipitation drive fire activity in the western Amazon and highlight the potential of Amazon forests to undergo repeated strong burning. Fires occurred during years when sea surface temperatures (SSTs) in the north tropical Atlantic were elevated and the north-south tropical Atlantic SST gradient was enhanced; this SST pattern likely displaced the intertropical convergence zone northward, driving subsidence and drought in the western and southern Amazon basin. Thus, our novel ice core record suggests that Amazon forest fire activity during the Twentieth Century was driven primarily by Atlantic climate processes, and future forest health will depend heavily on the evolution of tropical climate.
Basin-Wide Amazon Forest Tree Mortality From a Large 2005 Storm
NASA Astrophysics Data System (ADS)
Negron Juarez, R. I.; Chambers, J. Q.; Guimaraes, G.; Zeng, H.; Raupp, C.; Marra, D. M.; Ribeiro, G.; Saatchi, S. S.; Higuchi, N.
2010-12-01
Blowdowns are a recurrent characteristic of Amazon forests and are produced, among others, by squall lines. Squall lines are aligned clusters (typical length of 1000 km, width of 200 km) of deep convective cells that produce heavy rainfall during the dry season and significant rainfall during the wet season. These squall lines (accompanied by intense downbursts from convective cells) have been associated with large blowdowns characterized by uprooted, snapped trees, and trees being dragged down by other falling trees. Most squall lines in Amazonia form along the northeastern coast of South America as sea breeze-induced instability lines and propagate inside the continent. They occur frequently (~4 times per month), and can reach the central and even extreme western parts of Amazonia. Squall lines can also be generated inside the Amazon and propagate toward the equator. In January 2005 a squall line propagated from south to north across the entire Amazon basin producing widespread forest tree mortality and contributed to the elevated mortality observed that year. Over the Manaus region (3.4 x104 km2), disturbed forest patches generated by the squall produced a mortality of 0.3-0.5 million trees, equivalent to 30% of the observed annual deforestation reported in 2005 over the same area. The elevated mortality observed in the Central Amazon in 2005 is unlikely to be related to the 2005 Amazon drought since drought did not affect Central or Eastern Amazonia. Assuming a similar rate of forest mortality across the basin, the squall line could have potentially produced tree mortality estimated at 542 ± 121 million trees, equivalent to 23% of the mean annual biomass accumulation estimated for these forests. Our results highlight the vulnerability of Amazon trees to wind-driven mortality associated with convective storms. This vulnerability is likely to increase in a warming climate with models projecting an increase in storm intensity.
Distribution of Aboveground Live Biomass in the Amazon Basin
NASA Technical Reports Server (NTRS)
Saatchi, S. S.; Houghton, R. A.; DosSantos Alvala, R. C.; Soares, J. V.; Yu, Y.
2007-01-01
The amount and spatial distribution of forest biomass in the Amazon basin is a major source of uncertainty in estimating the flux of carbon released from land-cover and land-use change. Direct measurements of aboveground live biomass (AGLB) are limited to small areas of forest inventory plots and site-specific allometric equations that cannot be readily generalized for the entire basin. Furthermore, there is no spaceborne remote sensing instrument that can measure tropical forest biomass directly. To determine the spatial distribution of forest biomass of the Amazon basin, we report a method based on remote sensing metrics representing various forest structural parameters and environmental variables, and more than 500 plot measurements of forest biomass distributed over the basin. A decision tree approach was used to develop the spatial distribution of AGLB for seven distinct biomass classes of lowland old-growth forests with more than 80% accuracy. AGLB for other vegetation types, such as the woody and herbaceous savanna and secondary forests, was directly estimated with a regression based on satellite data. Results show that AGLB is highest in Central Amazonia and in regions to the east and north, including the Guyanas. Biomass is generally above 300Mgha(sup 1) here except in areas of intense logging or open floodplains. In Western Amazonia, from the lowlands of Peru, Ecuador, and Colombia to the Andean mountains, biomass ranges from 150 to 300Mgha(sup 1). Most transitional and seasonal forests at the southern and northwestern edges of the basin have biomass ranging from 100 to 200Mgha(sup 1). The AGLB distribution has a significant correlation with the length of the dry season. We estimate that the total carbon in forest biomass of the Amazon basin, including the dead and below ground biomass, is 86 PgC with +/- 20% uncertainty.
Potential of best practice to reduce impacts from oil and gas projects in the Amazon.
Finer, Matt; Jenkins, Clinton N; Powers, Bill
2013-01-01
The western Amazon continues to be an active and controversial zone of hydrocarbon exploration and production. We argue for the urgent need to implement best practices to reduce the negative environmental and social impacts associated with the sector. Here, we present a three-part study aimed at resolving the major obstacles impeding the advancement of best practice in the region. Our focus is on Loreto, Peru, one of the largest and most dynamic hydrocarbon zones in the Amazon. First, we develop a set of specific best practice guidelines to address the lack of clarity surrounding the issue. These guidelines incorporate both engineering-based criteria and key ecological and social factors. Second, we provide a detailed analysis of existing and planned hydrocarbon activities and infrastructure, overcoming the lack of information that typically hampers large-scale impact analysis. Third, we evaluate the planned activities and infrastructure with respect to the best practice guidelines. We show that Loreto is an extremely active hydrocarbon front, highlighted by a number of recent oil and gas discoveries and a sustained government push for increased exploration. Our analyses reveal that the use of technical best practice could minimize future impacts by greatly reducing the amount of required infrastructure such as drilling platforms and access roads. We also document a critical need to consider more fully the ecological and social factors, as the vast majority of planned infrastructure overlaps sensitive areas such as protected areas, indigenous territories, and key ecosystems and watersheds. Lastly, our cost analysis indicates that following best practice does not impose substantially greater costs than conventional practice, and may in fact reduce overall costs. Barriers to the widespread implementation of best practice in the Amazon clearly exist, but our findings show that there can be great benefits to its implementation.
Usme-Ciro, Jose A.; Paredes, Andrea; Walteros, Diana M.; Tolosa-Pérez, Erica Natalia; Laiton-Donato, Katherine; Pinzón, Maria del Carmen; Petersen, Brett W.; Gallardo-Romero, Nadia F.; Li, Yu; Wilkins, Kimberly; Davidson, Whitni; Gao, Jinxin; Patel, Nishi; Nakazawa, Yoshinori; Reynolds, Mary G.; Satheshkumar, P. S.; Emerson, Ginny L.
2017-01-01
During 2014, cutaneous lesions were reported in dairy cattle and farmworkers in the Amazon Region of western Colombia. Samples from 6 patients were analyzed by serologic and PCR testing, and results demonstrated the presence of vaccinia virus and pseudocowpox virus. These findings highlight the need for increased poxvirus surveillance in Colombia. PMID:28322708
The Amazon forest-rainfall feedback: the roles of transpiration and interception
NASA Astrophysics Data System (ADS)
Dekker, Stefan; Staal, Arie; Tuinenburg, Obbe
2017-04-01
In the Amazon, deep-rooted trees increase local transpiration and high tree cover increase local interception evaporation. These increased local evapotranspiration fluxes to the atmosphere have both positive effects on forests down-wind, as they stimulate rainfall. Although important for the functioning of the Amazon, we have an inadequate assessment on the strength and the timing of these forest-rainfall feedbacks. In this study we (i) estimate local forest transpiration and local interception evaporation, (ii) simulate the trajectories of these moisture flows through the atmosphere and (iii) quantify their contributions to the forest-rainfall feedback for the whole Amazon basin. To determine the atmospheric moisture flows in tropical South America we use a Lagrangian moisture tracking algorithm on 0.25° (c. 25 km) resolution with eight atmospheric layers on a monthly basis for the period 2003-2015. With our approach we account for multiple re-evaporation cycles of this moisture. We also calculate for each month the potential effects of forest loss on evapotranspiration. Combined, these calculations allow us to simulate the effects of land-cover changes on rainfall in downwind areas and estimate the effect on the forest. We found large regional and temporal differences in the importance how forest contribute to rainfall. The transpiration-rainfall feedback is highly important during the dry season. Between September-November, when large parts of the Amazon are at the end of the dry season, more than 50% of the rainfall is caused by the forests upstream. This means that droughts in the Amazon are alleviated by the forest. Furthermore, we found that much moisture cycles several times during its trajectory over the Amazon. After one evapotranspiration-rainfall cycle, more than 40% of the moisture is re-evaporated again. The interception-evaporation feedback is less important during droughts. Finally from our analysis, we show that the forest-rainfall feedback is essential for the resilience of the south-western and northern parts of the Amazon forest. Without the forest-rainfall feedbacks, these forest wouldn't exist.
STS-65 Earth observation of Bahama Islands with dust pall, taken from OV-102
NASA Technical Reports Server (NTRS)
1994-01-01
During STS-65 a significant dust pall that originated in western Africa was recorded by a series of low oblique color photographs as it continued its westward trek across the Atlantic Ocean and then the Caribbean Sea and the Gulf of Mexico area. This particular view captures the northern edge of the dust, positioned just slightly north of the Bahama Islands. This major transport of African dust to the western hemisphere has been recorded periodically by other Shuttle astronauts and earlier Shuttle missions. Scientifically, there is evidence that some of this African dust even reaches the Amazon rainforest and serves as a source of airborne nutrients for rainforest vegetation. This photograph was taken aboard Columbia, Orbiter Vehicle (OV) 102.
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Tardin, A. T.; Dossantos, A. P.; Lee, D. C. L.; Soaresmaia, F. C.; Mendonca, F. J.; Assuncao, G. V.; Rodrigues, J. E.; Demouraabdon, M.; Novaes, R. A.
1979-01-01
LANDSAT imagery was used to determine the amount of deforestation in a study area comprising 55 million hectares of the Amazon region. Results show that more than 4 million hectares were deforested. Maps and pictures of the deforested area in relation to the total area of the Amazon are included.
2010-01-01
Background Economic development is often evoked as a driving force that has the capacity to improve the social and health conditions of remote areas. However, development projects produce uneven impacts on local communities, according to their different positions within society. This study examines the spatial distribution of three major health threats in the Brazilian Amazon region that may undergo changes through highway construction. Homicide mortality, AIDS incidence and malaria prevalence rates were calculated for 70 municipalities located within the areas of influence of the Cuiabá-Santarém highway (BR-163), i.e. in the western part of the state of Pará state and the northern part of Mato Grosso. Results The municipalities were characterized using social and economic indicators such as gross domestic product (GDP), urban and indigenous populations, and recent migration. The municipalities' connections to the region's main transportation routes (BR-163 and Trans-Amazonian highways, along with the Amazon and Tapajós rivers) were identified by tagging the municipalities that have boundaries crossing these routes, using GIS overlay operations. Multiple regression was used to identify the major driving forces and constraints relating to the distribution of health threats. The main explanatory variables for higher malaria prevalence were: proximity to the Trans-Amazonian highway, high proportion of indigenous population and low proportion of migrants. High homicide rates were associated with high proportions of migrants, while connection to the Amazon River played a protective role. AIDS incidence was higher in municipalities with recent increases in GDP and high proportions of urban population. Conclusions Highways induce social and environmental changes and play different roles in spreading and maintaining diseases and health threats. The most remote areas are still protected against violence but are vulnerable to malaria. Rapid economic and demographic growth increases the risk of AIDS transmission and violence. Highways connect secluded localities and may threaten local populations. This region has been undergoing rapid localized development booms, thus creating outposts of rapid and temporary migration, which may introduce health risks to remote areas. PMID:20553625
Projected increases in the annual flood pulse of the Western Amazon
NASA Astrophysics Data System (ADS)
Zulkafli, Zed; Buytaert, Wouter; Manz, Bastian; Véliz Rosas, Claudia; Willems, Patrick; Lavado-Casimiro, Waldo; Guyot, Jean-Loup; Santini, William
2016-01-01
The impact of a changing climate on the Amazon basin is a subject of intensive research because of its rich biodiversity and the significant role of rainforests in carbon cycling. Climate change has also a direct hydrological impact, and increasing efforts have focused on understanding the hydrological dynamics at continental and subregional scales, such as the Western Amazon. New projections from the Coupled Model Inter-comparison Project Phase 5 ensemble indicate consistent climatic warming and increasing seasonality of precipitation in the Peruvian Amazon basin. Here we use a distributed land surface model to quantify the potential impact of this change in the climate on the hydrological regime of the upper Amazon river. Using extreme value analysis, historical and future projections of the annual minimum, mean, and maximum river flows are produced for a range of return periods between 1 and 100 yr. We show that the RCP 4.5 and 8.5 scenarios of climate change project an increased severity of the wet season flood pulse (7.5% and 12% increases respectively for the 100 yr return floods). These findings agree with previously projected increases in high extremes under the Special Report on Emissions Scenarios climate projections, and are important to highlight due to the potential consequences on reproductive processes of in-stream species, swamp forest ecology, and socio-economy in the floodplain, amidst a growing literature that more strongly emphasises future droughts and their impact on the viability of the rainforest system over greater Amazonia.
An extensive reef system at the Amazon River mouth
Moura, Rodrigo L.; Amado-Filho, Gilberto M.; Moraes, Fernando C.; Brasileiro, Poliana S.; Salomon, Paulo S.; Mahiques, Michel M.; Bastos, Alex C.; Almeida, Marcelo G.; Silva, Jomar M.; Araujo, Beatriz F.; Brito, Frederico P.; Rangel, Thiago P.; Oliveira, Braulio C. V.; Bahia, Ricardo G.; Paranhos, Rodolfo P.; Dias, Rodolfo J. S.; Siegle, Eduardo; Figueiredo, Alberto G.; Pereira, Renato C.; Leal, Camille V.; Hajdu, Eduardo; Asp, Nils E.; Gregoracci, Gustavo B.; Neumann-Leitão, Sigrid; Yager, Patricia L.; Francini-Filho, Ronaldo B.; Fróes, Adriana; Campeão, Mariana; Silva, Bruno S.; Moreira, Ana P. B.; Oliveira, Louisi; Soares, Ana C.; Araujo, Lais; Oliveira, Nara L.; Teixeira, João B.; Valle, Rogerio A. B.; Thompson, Cristiane C.; Rezende, Carlos E.; Thompson, Fabiano L.
2016-01-01
Large rivers create major gaps in reef distribution along tropical shelves. The Amazon River represents 20% of the global riverine discharge to the ocean, generating up to a 1.3 × 106–km2 plume, and extensive muddy bottoms in the equatorial margin of South America. As a result, a wide area of the tropical North Atlantic is heavily affected in terms of salinity, pH, light penetration, and sedimentation. Such unfavorable conditions were thought to imprint a major gap in Western Atlantic reefs. We present an extensive carbonate system off the Amazon mouth, underneath the river plume. Significant carbonate sedimentation occurred during lowstand sea level, and still occurs in the outer shelf, resulting in complex hard-bottom topography. A permanent near-bottom wedge of ocean water, together with the seasonal nature of the plume’s eastward retroflection, conditions the existence of this extensive (~9500 km2) hard-bottom mosaic. The Amazon reefs transition from accretive to erosional structures and encompass extensive rhodolith beds. Carbonate structures function as a connectivity corridor for wide depth–ranging reef-associated species, being heavily colonized by large sponges and other structure-forming filter feeders that dwell under low light and high levels of particulates. The oxycline between the plume and subplume is associated with chemoautotrophic and anaerobic microbial metabolisms. The system described here provides several insights about the responses of tropical reefs to suboptimal and marginal reef-building conditions, which are accelerating worldwide due to global changes. PMID:27152336
An extensive reef system at the Amazon River mouth.
Moura, Rodrigo L; Amado-Filho, Gilberto M; Moraes, Fernando C; Brasileiro, Poliana S; Salomon, Paulo S; Mahiques, Michel M; Bastos, Alex C; Almeida, Marcelo G; Silva, Jomar M; Araujo, Beatriz F; Brito, Frederico P; Rangel, Thiago P; Oliveira, Braulio C V; Bahia, Ricardo G; Paranhos, Rodolfo P; Dias, Rodolfo J S; Siegle, Eduardo; Figueiredo, Alberto G; Pereira, Renato C; Leal, Camille V; Hajdu, Eduardo; Asp, Nils E; Gregoracci, Gustavo B; Neumann-Leitão, Sigrid; Yager, Patricia L; Francini-Filho, Ronaldo B; Fróes, Adriana; Campeão, Mariana; Silva, Bruno S; Moreira, Ana P B; Oliveira, Louisi; Soares, Ana C; Araujo, Lais; Oliveira, Nara L; Teixeira, João B; Valle, Rogerio A B; Thompson, Cristiane C; Rezende, Carlos E; Thompson, Fabiano L
2016-04-01
Large rivers create major gaps in reef distribution along tropical shelves. The Amazon River represents 20% of the global riverine discharge to the ocean, generating up to a 1.3 × 10(6)-km(2) plume, and extensive muddy bottoms in the equatorial margin of South America. As a result, a wide area of the tropical North Atlantic is heavily affected in terms of salinity, pH, light penetration, and sedimentation. Such unfavorable conditions were thought to imprint a major gap in Western Atlantic reefs. We present an extensive carbonate system off the Amazon mouth, underneath the river plume. Significant carbonate sedimentation occurred during lowstand sea level, and still occurs in the outer shelf, resulting in complex hard-bottom topography. A permanent near-bottom wedge of ocean water, together with the seasonal nature of the plume's eastward retroflection, conditions the existence of this extensive (~9500 km(2)) hard-bottom mosaic. The Amazon reefs transition from accretive to erosional structures and encompass extensive rhodolith beds. Carbonate structures function as a connectivity corridor for wide depth-ranging reef-associated species, being heavily colonized by large sponges and other structure-forming filter feeders that dwell under low light and high levels of particulates. The oxycline between the plume and subplume is associated with chemoautotrophic and anaerobic microbial metabolisms. The system described here provides several insights about the responses of tropical reefs to suboptimal and marginal reef-building conditions, which are accelerating worldwide due to global changes.
Sparse pre-Columbian human habitation in western Amazonia.
McMichael, C H; Piperno, D R; Bush, M B; Silman, M R; Zimmerman, A R; Raczka, M F; Lobato, L C
2012-06-15
Locally extensive pre-Columbian human occupation and modification occurred in the forests of the central and eastern Amazon Basin, but whether comparable impacts extend westward and into the vast terra firme (interfluvial) zones, remains unclear. We analyzed soils from 55 sites across central and western Amazonia to assess the history of human occupation. Sparse occurrences of charcoal and the lack of phytoliths from agricultural and disturbance species in the soils during pre-Columbian times indicated that human impacts on interfluvial forests were small, infrequent, and highly localized. No human artifacts or modified soils were found at any site surveyed. Riverine bluff areas also appeared less heavily occupied and disturbed than similar settings elsewhere. Our data indicate that human impacts on Amazonian forests were heterogeneous across this vast landscape.
Contrasting andean geodynamics drive evolution of lowland taxa in western Amazonia
USDA-ARS?s Scientific Manuscript database
Using a palm lineage of 15 species (Astrocaryum sect. Huicungo), we tested an hypothesis that past geologic events in western Amazonia influenced the modern configuration of the upper Amazon drainage and thus diversification and distribution of these palsm, which found only in this region. The chang...
Cruz, Rafael Mesquita Bastos; Gil, Luiz Herman Soares; de Almeida e Silva, Alexandre; da Silva Araújo, Maisa; Katsuragawa, Tony Hiroshi
2009-11-01
Malaria is currently highly prevalent and restricted to the north of Brazil, and its dynamics are severely affected by human environmental changes, such as the large dam construction recently approved by the Brazilian Government in Rondônia. We studied the mosquito fauna and behavior before hydroelectric construction. Mosquitoes were captured by human landing catches on the riversides of the Madeira River in Porto Velho, Rondônia. A total of 3121 mosquitoes from eight different genera were collected; only Mansonia and Anopheles darlingi were found in all 21 collection sites throughout the night. These results suggest that the riverines of the study area are exposed to malaria.
Galardo, Allan Kardec Ribeiro; Galardo, Clícia Denis; Silveira, Guilherme Abbad; Ribeiro, Kaio Augusto Nabas; Hijjar, Andréa Valadão; Oliveira, Liliane Leite; Dos Santos, Thiago Vasconcelos
2015-01-01
An entomological study was conducted as part of a vector-monitoring program in the area associated with the Santo Antônio hydroelectric system in State of Rondônia, Western Amazonian Brazil. Fourteen sampling sites were surveyed to obtain data on the potential vectors of Leishmania spp. in the area. Sand flies were collected from 2011 to 2014 during the months of January/February (rainy season), May/June (dry season), and September/October (intermediary season) using light traps arranged in three vertical strata (0.5, 1, and 20m). A total of 7,575 individuals belonging to 62 species/subspecies were collected. The five most frequently collected sand flies were Psychodopygus davisi (Root) (36.67%), Trichophoromyia ubiquitalis (Mangabeira) (8.51%), Nyssomyia umbratilis (Ward & Fraiha) (6.14%), Bichromomyia flaviscutellata (Mangabeira) (5.74%), and Psychodopygus complexus (Mangabeira) (5.25%). These species have been implicated in the transmission of American cutaneous leishmaniasis agents in the Brazilian Amazon region and described as potential vectors of this disease in the study area. Additional surveillance is needed, especially in areas where these five species of sand fly are found.
Model gives a 3-month warning of Amazonian forest fires
NASA Astrophysics Data System (ADS)
Schultz, Colin
2011-08-01
The widespread drought suffered by the Amazon rain forest in the summer of 2005 was heralded at the time as the drought of the century. Because of the dehydrated conditions, supplemented by slash and burn agricultural practices, the drought led to widespread forest fires throughout the western Amazon, a portion of the rain forest usually too lush to support spreading wildfires. Only 5 years later, the 2005 season was outdone by even more widespread drought, with fires decimating more than 3000 square kilometers of western Amazonian rain forest. Blame for the wildfires has been consistently laid on deforestation and agricultural practices, but a convincing climatological explanation exists as well. (Geophysical Research Letters, doi:10.1029/2011GL047392, 2011)
Severity of Scorpion Stings in the Western Brazilian Amazon: A Case-Control Study
Queiroz, Amanda M.; Sampaio, Vanderson S.; Mendonça, Iran; Fé, Nelson F.; Sachett, Jacqueline; Ferreira, Luiz Carlos L.; Feitosa, Esaú; Wen, Fan Hui; Lacerda, Marcus; Monteiro, Wuelton
2015-01-01
Background Scorpion stings are a major public health problem in Brazil, with an increasing number of registered cases every year. Affecting mostly vulnerable populations, the phenomenon is not well described and is considered a neglected disease. In Brazil, the use of anti-venom formulations is provided free of charge. The associate scorpion sting case is subject to compulsory reporting. This paper describes the epidemiology and identifies factors associated with severity of scorpions stings in the state of Amazonas, in the Western Brazilian Amazon. Methodology/Principal Findings This study included all cases of scorpion stings in the state of Amazonas reported to the Brazilian Diseases Surveillance System from January 1, 2007 to December 31, 2014. A case-control study was conducted to identify factors associated with scorpions sting severity. A total of 2,120 cases were reported during this period. The mean incidence rate in the Amazonas was 7.6 per 100,000 inhabitants/year. Scorpion stings showed a large spatial distribution in the state and represent a potential occupational health problem for rural populations. There was a positive correlation between the absolute number of cases and the altimetric river levels in the Central (p<0.001; Rs = 0.479 linear) and Southwest (p = 0.032; linear Rs = 0.261) regions of the state. Cases were mostly classified as mild (68.6%), followed by moderate (26.8%), and severe (4.6%). The overall lethality rate was 0.3%. Lethality rate among children ≤10 years was 1.3%. Age <10 years [OR = 2.58 (95%CI = 1.47–4.55; p = 0.001)], stings occurring in the rural area [OR = 1.97 (95%CI = 1.18–3.29; p = 0.033) and in the South region of the state [OR = 1.85 (95%CI = 1.17–2.93; p = 0.008)] were independently associated with the risk of developing severity. Conclusions/Significance Scorpion stings show an extensive distribution in the Western Brazilian Amazon threatening especially rural populations, children ≤10 in particular. Thus, the mapping of scorpions fauna in different Amazon localities is essential and must be accompanied by the characterization of the main biological activities of the venoms. Urban and farming planning, in parallel with awareness of workers at risk for scorpion stings on the need for personal protective equipment use should be considered as public policies for preventing scorpionism. PMID:26061734
Potential of Best Practice to Reduce Impacts from Oil and Gas Projects in the Amazon
Finer, Matt; Jenkins, Clinton N.; Powers, Bill
2013-01-01
The western Amazon continues to be an active and controversial zone of hydrocarbon exploration and production. We argue for the urgent need to implement best practices to reduce the negative environmental and social impacts associated with the sector. Here, we present a three-part study aimed at resolving the major obstacles impeding the advancement of best practice in the region. Our focus is on Loreto, Peru, one of the largest and most dynamic hydrocarbon zones in the Amazon. First, we develop a set of specific best practice guidelines to address the lack of clarity surrounding the issue. These guidelines incorporate both engineering-based criteria and key ecological and social factors. Second, we provide a detailed analysis of existing and planned hydrocarbon activities and infrastructure, overcoming the lack of information that typically hampers large-scale impact analysis. Third, we evaluate the planned activities and infrastructure with respect to the best practice guidelines. We show that Loreto is an extremely active hydrocarbon front, highlighted by a number of recent oil and gas discoveries and a sustained government push for increased exploration. Our analyses reveal that the use of technical best practice could minimize future impacts by greatly reducing the amount of required infrastructure such as drilling platforms and access roads. We also document a critical need to consider more fully the ecological and social factors, as the vast majority of planned infrastructure overlaps sensitive areas such as protected areas, indigenous territories, and key ecosystems and watersheds. Lastly, our cost analysis indicates that following best practice does not impose substantially greater costs than conventional practice, and may in fact reduce overall costs. Barriers to the widespread implementation of best practice in the Amazon clearly exist, but our findings show that there can be great benefits to its implementation. PMID:23650541
Thomas, Evert; van Zonneveld, Maarten; Loo, Judy; Hodgkin, Toby; Galluzzi, Gea; van Etten, Jacob
2012-01-01
Cacao (Theobroma cacao L.) is indigenous to the Amazon basin, but is generally believed to have been domesticated in Mesoamerica for the production of chocolate beverage. However, cacao's distribution of genetic diversity in South America is also likely to reflect pre-Columbian human influences that were superimposed on natural processes of genetic differentiation. Here we present the results of a spatial analysis of the intra-specific diversity of cacao in Latin America, drawing on a dataset of 939 cacao trees genotypically characterized by means of 96 SSR markers. To assess continental diversity patterns we performed grid-based calculations of allelic richness, Shannon diversity and Nei gene diversity, and distinguished different spatially coherent genetic groups by means of cluster analysis. The highest levels of genetic diversity were observed in the Upper Amazon areas from southern Peru to the Ecuadorian Amazon and the border areas between Colombia, Peru and Brazil. On the assumption that the last glaciation (22,000-13,000 BP) had the greatest pre-human impact on the current distribution and diversity of cacao, we modeled the species' Pleistocene niche suitability and overlaid this with present-day diversity maps. The results suggest that cacao was already widely distributed in the Western Amazon before the onset of glaciation. During glaciations, cacao populations were likely to have been restricted to several refugia where they probably underwent genetic differentiation, resulting in a number of genetic clusters which are representative for, or closest related to, the original wild cacao populations. The analyses also suggested that genetic differentiation and geographical distribution of a number of other clusters seem to have been significantly affected by processes of human management and accompanying genetic bottlenecks. We discuss the implications of these results for future germplasm collection and in situ, on farm and ex situ conservation of cacao.
Thomas, Evert; van Zonneveld, Maarten; Loo, Judy; Hodgkin, Toby; Galluzzi, Gea; van Etten, Jacob
2012-01-01
Cacao (Theobroma cacao L.) is indigenous to the Amazon basin, but is generally believed to have been domesticated in Mesoamerica for the production of chocolate beverage. However, cacao’s distribution of genetic diversity in South America is also likely to reflect pre-Columbian human influences that were superimposed on natural processes of genetic differentiation. Here we present the results of a spatial analysis of the intra-specific diversity of cacao in Latin America, drawing on a dataset of 939 cacao trees genotypically characterized by means of 96 SSR markers. To assess continental diversity patterns we performed grid-based calculations of allelic richness, Shannon diversity and Nei gene diversity, and distinguished different spatially coherent genetic groups by means of cluster analysis. The highest levels of genetic diversity were observed in the Upper Amazon areas from southern Peru to the Ecuadorian Amazon and the border areas between Colombia, Peru and Brazil. On the assumption that the last glaciation (22,000–13,000 BP) had the greatest pre-human impact on the current distribution and diversity of cacao, we modeled the species’ Pleistocene niche suitability and overlaid this with present-day diversity maps. The results suggest that cacao was already widely distributed in the Western Amazon before the onset of glaciation. During glaciations, cacao populations were likely to have been restricted to several refugia where they probably underwent genetic differentiation, resulting in a number of genetic clusters which are representative for, or closest related to, the original wild cacao populations. The analyses also suggested that genetic differentiation and geographical distribution of a number of other clusters seem to have been significantly affected by processes of human management and accompanying genetic bottlenecks. We discuss the implications of these results for future germplasm collection and in situ, on farm and ex situ conservation of cacao. PMID:23112832
Model uncertainties do not affect observed patterns of species richness in the Amazon.
Sales, Lilian Patrícia; Neves, Olívia Viana; De Marco, Paulo; Loyola, Rafael
2017-01-01
Climate change is arguably a major threat to biodiversity conservation and there are several methods to assess its impacts on species potential distribution. Yet the extent to which different approaches on species distribution modeling affect species richness patterns at biogeographical scale is however unaddressed in literature. In this paper, we verified if the expected responses to climate change in biogeographical scale-patterns of species richness and species vulnerability to climate change-are affected by the inputs used to model and project species distribution. We modeled the distribution of 288 vertebrate species (amphibians, birds and mammals), all endemic to the Amazon basin, using different combinations of the following inputs known to affect the outcome of species distribution models (SDMs): 1) biological data type, 2) modeling methods, 3) greenhouse gas emission scenarios and 4) climate forecasts. We calculated uncertainty with a hierarchical ANOVA in which those different inputs were considered factors. The greatest source of variation was the modeling method. Model performance interacted with data type and modeling method. Absolute values of variation on suitable climate area were not equal among predictions, but some biological patterns were still consistent. All models predicted losses on the area that is climatically suitable for species, especially for amphibians and primates. All models also indicated a current East-western gradient on endemic species richness, from the Andes foot downstream the Amazon river. Again, all models predicted future movements of species upwards the Andes mountains and overall species richness losses. From a methodological perspective, our work highlights that SDMs are a useful tool for assessing impacts of climate change on biodiversity. Uncertainty exists but biological patterns are still evident at large spatial scales. As modeling methods are the greatest source of variation, choosing the appropriate statistics according to the study objective is also essential for estimating the impacts of climate change on species distribution. Yet from a conservation perspective, we show that Amazon endemic fauna is potentially vulnerable to climate change, due to expected reductions on suitable climate area. Climate-driven faunal movements are predicted towards the Andes mountains, which might work as climate refugia for migrating species.
Model uncertainties do not affect observed patterns of species richness in the Amazon
Sales, Lilian Patrícia; Neves, Olívia Viana; De Marco, Paulo
2017-01-01
Background Climate change is arguably a major threat to biodiversity conservation and there are several methods to assess its impacts on species potential distribution. Yet the extent to which different approaches on species distribution modeling affect species richness patterns at biogeographical scale is however unaddressed in literature. In this paper, we verified if the expected responses to climate change in biogeographical scale—patterns of species richness and species vulnerability to climate change—are affected by the inputs used to model and project species distribution. Methods We modeled the distribution of 288 vertebrate species (amphibians, birds and mammals), all endemic to the Amazon basin, using different combinations of the following inputs known to affect the outcome of species distribution models (SDMs): 1) biological data type, 2) modeling methods, 3) greenhouse gas emission scenarios and 4) climate forecasts. We calculated uncertainty with a hierarchical ANOVA in which those different inputs were considered factors. Results The greatest source of variation was the modeling method. Model performance interacted with data type and modeling method. Absolute values of variation on suitable climate area were not equal among predictions, but some biological patterns were still consistent. All models predicted losses on the area that is climatically suitable for species, especially for amphibians and primates. All models also indicated a current East-western gradient on endemic species richness, from the Andes foot downstream the Amazon river. Again, all models predicted future movements of species upwards the Andes mountains and overall species richness losses. Conclusions From a methodological perspective, our work highlights that SDMs are a useful tool for assessing impacts of climate change on biodiversity. Uncertainty exists but biological patterns are still evident at large spatial scales. As modeling methods are the greatest source of variation, choosing the appropriate statistics according to the study objective is also essential for estimating the impacts of climate change on species distribution. Yet from a conservation perspective, we show that Amazon endemic fauna is potentially vulnerable to climate change, due to expected reductions on suitable climate area. Climate-driven faunal movements are predicted towards the Andes mountains, which might work as climate refugia for migrating species. PMID:29023503
Albert, James S; Carvalho, Tiago P; Petry, Paulo; Holder, Meghan A; Maxime, Emmanuel L; Espino, Jessica; Corahua, Isabel; Quispe, Roberto; Rengifo, Blanca; Ortega, Hernan; Reis, Roberto E
2011-04-29
The Neotropical freshwater ichthyofauna has among the highest species richness and density of any vertebrate fauna on Earth, with more than 5,600 species compressed into less than 12% of the world's land surface area, and less than 0.002% of the world's total liquid water supply. How have so many species come to co-exist in such a small amount of total habitat space? Here we report results of an aquatic faunal survey of the Fitzcarrald region in southeastern Peru, an area of low-elevation upland (200-500 m above sea level) rainforest in the Western Amazon, that straddles the headwaters of four large Amazonian tributaries; the Juruá (Yurúa), Ucayali, Purús, and Madre de Dios rivers. All measures of fish species diversity in this region are high; there is high alpha diversity with many species coexisting in the same locality, high beta diversity with high turnover between habitats, and high gamma diversity with high turnover between adjacent tributary basins. Current data show little species endemism, and no known examples of sympatric sister species, within the Fitzcarrald region, suggesting a lack of localized or recent adaptive divergences. These results support the hypothesis that the fish species of the Fitzcarrald region are relatively ancient, predating the Late Miocene-Pliocene (c. 4 Ma) uplift that isolated its several headwater basins. The results also suggest that habitat specialization (phylogenetic niche conservatism) and geographic isolation (dispersal limitation) have contributed to the maintenance of high species richness in this region of the Amazon Basin.
Olivares, Ingrid; Svenning, Jens-Christian; van Bodegom, Peter M; Valencia, Renato; Balslev, Henrik
2017-03-01
Are the hyperdiverse local forests of the western Amazon undergoing changes linked to global and local drivers such as climate change, or successional dynamics? We analyzed local climatic records to assess potential climatic changes in Yasuní National Park, Ecuador, and compared two censuses (1995, 2012) of a palm community to assess changes in community structure and composition. Over 17 years, the structure and composition of this palm community remained remarkably stable. Soil humidity was significantly lower and canopy conditions were significantly more open in 2012 compared to 1995, but local climatic records showed that no significant changes in precipitation, temperature or river level have occurred during the last decade. Thus, we found no evidence of recent directional shifts in climate or the palm community in Yasuní. The absence of changes in local climate and plant community dynamics in Yasuní contrasts with recent findings from eastern Amazon, where environmental change is driving significant changes in ecosystem dynamics. Our findings suggest that until now, local forests in the northwest Amazon may have escaped pressure from climate change. The stability of this rich palm community embedded in the hyperdiverse Yasuní National Park underlines its uniqueness as a sanctuary for the protection of Amazonian diversity from global change impacts. © 2016 John Wiley & Sons Ltd.
2017-01-01
Background Since 1996, when Vivo questioned how many species of mammals occur in Brazil, there has been a huge effort to assess this biodiversity. In this contribution, we present new records for rare species of the sigmodontine rodent genera Rhagomys and Neusticomys previously unknown to Brazilian Amazon. We provided detailed information on the morphologic variation to allow the proper identification of these species. We also furnished updated information on their collection, aiming to establish hypothesis of their geographic distribution, based on SDM’s, aiming to hypothesize potential occurrence areas for these species. Methods Rodent specimens were sampled in separate inventories in two sites of Rondônia State (Hydroelectric Dam Jirau and Parque Nacional de Pacaás Novos) and one site in Pará State (Pacajá), Brazil, and were compared to specimens from museum collections to apply appropriate names. The SDM were conducted using two algorithms for rare species, MaxEnt and randomForest (RF), and were based on seven localities for Rhagomys, and 10 for Neusticomys. Results All specimens were collected with pitfall traps. One specimen of genus Rhagomys was trapped in the Hydroelectric Dam Jirau. We identified this specimen as R. longilingua, and the SDM species indicates suitable areas for its occurrence at high elevations near on the Andes and lowlands of Amazon Basin to the South of the Rio Amazonas. Two specimens of Neusticomys were recorded, and we identified the specimen from Pacaás Novos as N. peruviensis, with SDM suggesting main areas of occurrence on Western Amazon. We applied the name N. ferreirai to the specimen from Pacajá, with SDM recovering suitable areas in Eastern Amazon. Discussion We reinforced the importance of pitfall traps on the study of Neotropical rodents. We described morphologic variation within and among all species that do not invalidate their specific status, but in the near future a re-evaluation will be mandatory. The new records extended the species distribution considerably. SDM was successful to predict their distributions, as the two algorithms presented important differences in range size recovered by the models that can be explained by differences in the thresholds used for the construction of the models. Most suitable areas coincide with the areas facing most of the deforestation in Amazon. We added two rare species of sigmodontine rodents to the list of Brazilian Mammals, which now comprises 722 species (or 775 valid nominal taxa). Although more information is available than in 1996, it is essential that mammal experts maintain inventory and revisionary programs to update and revise this information. This is even more important, as changes in Brazilian environmental legislation are being discussed, suggesting reduced need for environmental impact reports prior to beginning commercial enterprises, resulting in the loss of information about native biodiversity in the affected areas. PMID:29259840
Percequillo, Alexandre R; Dalapicolla, Jeronymo; Abreu-Júnior, Edson F; Roth, Paulo Ricardo O; Ferraz, Katia M P M B; Chiquito, Elisandra A
2017-01-01
Since 1996, when Vivo questioned how many species of mammals occur in Brazil, there has been a huge effort to assess this biodiversity. In this contribution, we present new records for rare species of the sigmodontine rodent genera Rhagomys and Neusticomys previously unknown to Brazilian Amazon. We provided detailed information on the morphologic variation to allow the proper identification of these species. We also furnished updated information on their collection, aiming to establish hypothesis of their geographic distribution, based on SDM's, aiming to hypothesize potential occurrence areas for these species. Rodent specimens were sampled in separate inventories in two sites of Rondônia State (Hydroelectric Dam Jirau and Parque Nacional de Pacaás Novos) and one site in Pará State (Pacajá), Brazil, and were compared to specimens from museum collections to apply appropriate names. The SDM were conducted using two algorithms for rare species, MaxEnt and randomForest (RF), and were based on seven localities for Rhagomys , and 10 for Neusticomys . All specimens were collected with pitfall traps. One specimen of genus Rhagomys was trapped in the Hydroelectric Dam Jirau. We identified this specimen as R. longilingua , and the SDM species indicates suitable areas for its occurrence at high elevations near on the Andes and lowlands of Amazon Basin to the South of the Rio Amazonas. Two specimens of Neusticomys were recorded, and we identified the specimen from Pacaás Novos as N. peruviensis , with SDM suggesting main areas of occurrence on Western Amazon. We applied the name N. ferreirai to the specimen from Pacajá, with SDM recovering suitable areas in Eastern Amazon. We reinforced the importance of pitfall traps on the study of Neotropical rodents. We described morphologic variation within and among all species that do not invalidate their specific status, but in the near future a re-evaluation will be mandatory. The new records extended the species distribution considerably. SDM was successful to predict their distributions, as the two algorithms presented important differences in range size recovered by the models that can be explained by differences in the thresholds used for the construction of the models. Most suitable areas coincide with the areas facing most of the deforestation in Amazon. We added two rare species of sigmodontine rodents to the list of Brazilian Mammals, which now comprises 722 species (or 775 valid nominal taxa). Although more information is available than in 1996, it is essential that mammal experts maintain inventory and revisionary programs to update and revise this information. This is even more important, as changes in Brazilian environmental legislation are being discussed, suggesting reduced need for environmental impact reports prior to beginning commercial enterprises, resulting in the loss of information about native biodiversity in the affected areas.
Revisiting the hierarchy of urban areas in the Brazilian Amazon: a multilevel approach
Costa, Sandra; Brondízio, Eduardo
2012-01-01
The Legal Brazilian Amazon, while the largest rainforest in the world, is also a region where most residents are urban. Despite close linkages between rural and urban processes in the region, rural areas have been the predominant focus of Amazon-based population-environment scholarship. Offering a focus on urban areas within the Brazilian Amazon, this paper examines the emergence of urban hierarchies within the region. Using a combination of nationally representative data and community based surveys, applied to a multivariate cluster methodology (Grade of Membership), we observe the emergence of sub-regional urban networks characterized by economic and political inter-dependency, population movement, and provision of services. These networks link rural areas, small towns, and medium and large cities. We also identify the emergence of medium-size cities as important nodes at a sub-regional level. In all, the work provides insight on the proposed model of ‘disarticulated urbanization’ within the Amazon by calling attention to the increasing role of regional and sub-regional urban networks in shaping the future expansion of land use and population distribution in the Amazon. We conclude with a discussion of implications for increasing intra-regional connectivity and fragmentation of conservation areas and ecosystems in the region. PMID:23129877
Sampaio, Vanderson Souza; Gomes, André Alexandre; Silva, Iran Mendonça; Sachett, Jacqueline; Ferreira, Luiz Carlos Lima; Oliveira, Sâmella; Sabidò, Meritxell; Chalkidis, Hipócrates; Barbosa Guerra, Maria Graças Vale; Salinas, Jorge Luis; Wen, Fan Hui; Lacerda, Marcus Vinícius Guimarães; Monteiro, Wuelton Marcelo
2016-01-01
Background A better knowledge of the burden and risk factors associated with severity due to spider bites would lead to improved management with a reduction of sequelae usually seen for this neglected health problem, and would ensure proper use of antivenoms in remote localities in the Brazilian Amazon. The aim of this study was to analyze the profile of spider bites reported in the state of Amazonas in the Western Brazilian Amazon, and to investigate potential risk factors associated with severity of envenomation. Methodology/Principal Findings We used a case-control study in order to identify factors associated with spider bite severity in the Western Brazilian Amazon from 2007 to 2014. Patients evolving to any severity criteria were considered cases and those with non-severe bites were included in the control group. All variables were retrieved from the official Brazilian reporting systems. Socioeconomical and environmental components were also included in a multivariable analysis in order to identify ecological determinants of incidence and severity. A total of 1,181 spider bites were recorded, resulting in an incidence of 4 cases per 100,000 person/year. Most of the spider bites occurred in males (65.8%). Bites mostly occurred in rural areas (59.5%). The most affected age group was between 16 and 45 years old (50.9%). A proportion of 39.7% of the bites were related to work activities. Antivenom was prescribed to 39% of the patients. Envenomings recorded from urban areas [Odds ratio (OR) = 0.40 (95%CI = 0.30–0.71; p<0.001)] and living in a municipality with a mean health system performance index (MHSPI >median [OR = 0.64 (95%CI = 0.39–0.75; p<0.001)] were independently associated with decreased risk of severity. Work related accidents [OR = 2.09 (95%CI = 1.49–2.94; p<0.001)], Indigenous status [OR = 2.15 (95%CI = 1.19–3.86; p = 0.011)] and living in a municipality located >300 km away from the state capital Manaus [OR = 1.90 (95%CI = 1.28–2.40; p<0.001)] were independently associated with a risk of severity. Living in a municipality located >300 km away from the state capital Manaus [OR = 1.53 (95%CI = 1.15–2.02; p = 0.003)] and living in a municipality with a MHSPI
A comparison of traditional healers' medicinal plant knowledge in the Bolivian Andes and Amazon.
Vandebroek, Ina; Van Damme, Patrick; Van Puyvelde, Luc; Arrazola, Susana; De Kimpe, Norbert
2004-08-01
Medicinal plant knowledge of two groups of traditional healers was thoroughly studied during a 2-year ethnobotanical survey in the Bolivian Andes (Quechua farmers from Apillapampa) and Amazon rainforest (Yuracaré-Trinitario slash-and-burn cultivators from Isiboro-Sécure National Park), respectively. Both areas represent ecologically and culturally diverse zones, differing in floristic diversity, physical accessibility to health care and degree of modernization, the latter evidenced by presence or intensity in use of modern services such as electricity, water distribution, and materials for house construction. It is generally believed that indigenous people have an impressive knowledge of useful plant species and that this knowledge reflects the plant wealth of their living environment. However, the present study shows that healers' knowledge of collected medicinal plants (expressed as percentage of plants known by name and use by the majority of healers) is higher in the Andean area characterised by a long history of anthropogenic activity, than in the biodiversity-rich rainforest (protected since 1965). Therefore, medicinal plant knowledge does not seem to depend on the level of plant diversity, degree of modernization or absence of Western health care infrastructure. Indeed, although Andean healers live in a floristically poorer environment, have adopted more modern services and have easier access to primary health care facilities, they are more knowledgeable about medicinal plants than rainforest healers who live isolated in an environment with considerable floristic/ecological variation and lack of Western health care. It is hypothesised that social factors underlying traditional medical practices (background of extensive family in traditional medicine) play an important role in transmission--and hence survival of knowledge on medicinal plants.
Martins-Campos, Keillen M; Kuehn, Andrea; Almeida, Anne; Duarte, Ana Paula M; Sampaio, Vanderson S; Rodriguez, Íria C; da Silva, Sara G M; Ríos-Velásquez, Claudia María; Lima, José Bento Pereira; Pimenta, Paulo Filemon Paolucci; Bassat, Quique; Müller, Ivo; Lacerda, Marcus; Monteiro, Wuelton M; Barbosa Guerra, Maria das Graças V
2018-05-04
Asymptomatic individuals are one of the major challenges for malaria elimination programs in endemic areas. In the absence of clinical symptoms and with a lower parasite density they constitute silent reservoirs considered important for maintaining transmission of human malaria. Studies from Brazil have shown that infected individuals may carry these parasites for long periods. Patients were selected from three periurban endemic areas of the city of Manaus, in the western Brazilian Amazon. Symptomatic and asymptomatic patients with positive thick blood smear and quantitative real-time PCR (qPCR) positive for Plasmodium vivax were invited to participate in the study. A standardised pvs25 gene amplification by qPCR was used for P. vivax gametocytes detection. Anopheles aquasalis were fed using membrane feeding assays (MFA) containing blood from malaria patients. Parasitemia of 42 symptomatic and 25 asymptomatic individuals was determined by microscopic examination of blood smears and qPCR. Parasitemia density and gametocyte density were assessed as determinants of infection rates and oocysts densities. A strong correlation between gametocyte densities (microscopy and molecular techniques) and mosquito infectivity (P < 0.001) and oocysts median numbers (P < 0.05) was found in both groups. The ability to infect mosquitoes was higher in the symptomatic group (41%), but infectivity in the asymptomatic group was also seen (1.42%). Although their infectivity to mosquitoes is relatively low, given the high prevalence of P. vivax asymptomatic carriers they are likely to play and important role in malaria transmission in the city of Manaus. The role of asymptomatic infections therefore needs to be considered in future malaria elimination programs in Brazil.
NASA Astrophysics Data System (ADS)
Muller-Karger, F. E.; Richardson, P. L.; Mcgillicuddy, D.
1995-11-01
Coastal Zone Color Scanner (CZCS) satellite images show extensive plumes of discolored water extending from South America into the western tropical Atlantic. The most conspicuous plumes originate at the mouths of the Amazon and Orinoco Rivers, and plumes originating at smaller rivers can also be seen from space. In a recent paper by Longhurst (1993), the plume associated with the Amazon River was attributed to phytoplankton blooms stimulated by nutrients supplied via eddy upwelling. We revisit the argument that this plume is of riverine origin, and offer evidence that material present near continental margins can be advected offshore and trace circulation patterns in the adjacent ocean.
ERIC Educational Resources Information Center
Angemeer, Alicia Dorothea
2012-01-01
Since September 11, 2001, Western readers have been turning to bestselling texts written by or about Muslims in their need to learn more about Muslims. These texts promise an insider's view of predominantly Muslim countries and peoples and are informally influencing and educating many Western readers in their perceptions of Muslims because…
NASA Technical Reports Server (NTRS)
Alencar, A.; Nepstad, D.; Ver-Diaz, M. Del. C.
2004-01-01
"Understory fires" that burn the floor of standing forests are one of the most important types of forest impoverishment in the Amazon, especially during the severe droughts of El Nino Southern Oscillation (ENSO) episodes. However, we are aware of no estimates of the areal extent of these fires for the Brazilian Amazon and, hence, of their contribution to Amazon carbon fluxes to the atmosphere. We calculated the area of forest understory fires for the Brazilian Amazon region during an El Nino (1998) and a non El Nino (1995) year based on forest fire scars mapped with satellite images for three locations in eastern and southern Amazon, where deforestation is concentrated. The three study sites represented a gradient of both forest types and dry season severity. The burning scar maps were used to determine how the percentage of forest that burned varied with distance from agricultural clearings. These spatial functions were then applied to similar forest/climate combinations outside of the study sites to derive an initial estimate for the Brazilian Amazon. Ninety-one percent of the forest area that burned in the study sites was within the first kilometer of a clearing for the non ENSO year and within the first four kilometers for the ENSO year. The area of forest burned by understory forest fire during the severe drought (ENSO) year (3.9 millions of hectares) was 13 times greater than the area burned during the average rainfall year (0.2 million hectares), and twice the area of annual deforestation rate. Dense forest was, proportionally, the forest area most affected by understory fires during the El Nino year, while understory fires were concentrated in transitional forests during the year of average rainfall. Our estimate of aboveground tree biomass killed by fire ranged from 0.06 Pg to 0.38 Pg during the ENSO and from 0,004 Pg to 0,024 Pg during the non ENSO.
[Epidemiology of encephalitis caused by arbovirus in the Brazilian Amazonia].
Vasconcelos, P F; Da Rosa, J F; Da Rosa, A P; Dégallier, N; Pinheiro, F de P; Sá Filho, G C
1991-01-01
An overview of ecological, epidemiological and clinical findings of potential arthropod-borne encephalitis viruses circulating in the Amazon Region of Brazil are discussed. These viruses are the Eastern Equine Encephalitis (EEE), Western Equine Encephalitis (WEE), St. Louis Encephalitis (SLE), Mucambo (MUC) and Pixuna (PIX). These last two are subtypes (III and IV) of Venezuelan Equine Encephalitis virus. The areas of study were the highways and projects of development, as well as places where outbreaks of human diseases caused by arboviruses had been detected. These viruses are widespread in all Amazonia, and at least four of them, EEE, WEE, SLE and MUC are pathogenic to man. EEE and WEE infections were detected by serology, while SLE and MUC by either serology and virus isolation. The PIX virus has the lowest prevalence and, it was isolated in only a few cases, one being from a laboratory infection. Wild birds are the main hosts for all these viruses, except MUC, whose major hosts are rodents. The symptoms presented by infected people were generally a mild febrile illness. Although, jaundice was observed in two individuals from whom SLE was isolated. A comparison of the clinical symptoms presented by the patients in the Amazon Region and other areas of America, especially in the USA is made. In Brazilian Amazon region epidemics have not been detected although, at least, one EEE epizootic was recorded in Bragança, Para State, in 1960. At that time, of 500 horses that were examined 61% were positive to EEE by HI and of them 8.2% died. On the other hand, SLE has caused four epizootics in a forest near Belem. Wild birds and sentinel monkeys were infected, but no human cases were reported.
Changes in the Carbon Cycle of Amazon Ecosystems During the 2010 Drought
NASA Technical Reports Server (NTRS)
Potter, Christophera; Klooster, Steven; Hiatt, Cyrus; Genovese, Vanessa; Castilla-Rubino, Juan Carlos
2011-01-01
Satellite remote sensing was combined with the NASA-CASA carbon cycle simulation model to evaluate the impact of the 2010 drought (July through September) throughout tropical South America. Results indicated that net primary production (NPP) in Amazon forest areas declined by an average of 7% in 2010 compared to 2008. This represented a loss of vegetation CO2 uptake and potential Amazon rainforest growth of nearly 0.5 Pg C in 2010. The largest overall decline in ecosystem carbon gains by land cover type was predicted for closed broadleaf forest areas of the Amazon River basin, including a large fraction of regularly flooded forest areas. Model results support the hypothesis that soil and dead wood carbon decomposition fluxes of CO2 to the atmosphere were elevated during the drought period of 2010 in periodically flooded forest areas, compared to forests outside the main river floodplains.
Rivers in the sea - Can we quantify pigments in the Amazon and the Orinoco River plumes from space?
NASA Technical Reports Server (NTRS)
Muller-Karger, Frank E.; Walsh, John J.; Carder, Kendall L.; Zika, Rod G.
1989-01-01
Coastal Zone Color Scanner (CZCS) images of the western tropical Atlantic (1979-1982) were combined into monthly mean surface pigment fields. These suggest that Amazon River water flows along northeastern South America directly toward the Caribbean sea early in the year. After June, however, the North Brazil Current is shunted eastward, carrying a large fraction of Amazon water into the North Equatorial Countercurrent (NECC). This eastward flow causes diminished flow through the Caribbean, which permits northwestward dispersal of Orinoco River water due to local Ekman forcing. The Orinoco plume crosses the Caribbean, leading to seasonal variation in surface salinity near Puerto Rico. At least 50 percent of the pigment concentration estimated in these plumes seems due to viable phytoplankton.
Frazão, Paulo; Benicio, Maria H D; Narvai, Paulo C; Cardoso, Marly A
2014-06-01
We analyzed the association between food insecurity and dental caries in 7- to 9-yr-old schoolchildren. We performed a cross-sectional survey nested in a population-based cohort study of 203 schoolchildren. The participants lived in the urban area of a small town within the western Brazilian Amazon. Dental examinations were performed according to criteria recommended by the World Health Organization. The number of decayed deciduous and permanent teeth as a count variable was the outcome measure. Socio-economic status, food security, behavioral variables, and child nutritional status, measured by Z-score for body mass index (BMI), were investigated, and robust Poisson regression models were used. The results showed a mean (SD) of 3.63 (3.26) teeth affected by untreated caries. Approximately 80% of schoolchildren had at least one untreated decayed tooth, and nearly 60% lived in food-insecure households. Sex, household wealth index, mother's education level, and food-insecurity scores were associated with dental caries in the crude analysis. Dental caries was 1.5 times more likely to be associated with high food-insecurity scores after adjusting for socio-economic status and sex. A significant dose-response relationship was observed. In conclusion, food insecurity is highly associated with dental caries in 7- to 9-yr-old children and may be seen as a risk factor. These findings suggest that food-security policies could reduce dental caries. © 2014 Eur J Oral Sci.
Rainfall trends in the Brazilian Amazon Basin in the past eight decades
NASA Astrophysics Data System (ADS)
Satyamurty, Prakki; de Castro, Aline Anderson; Tota, Julio; da Silva Gularte, Lucia Eliane; Manzi, Antonio Ocimar
2010-01-01
Rainfall series at 18 stations along the major rivers of the Brazilian Amazon Basin, having data since 1920s or 1930s, are analyzed to verify if there are appreciable long-term trends. Annual, rainy-season, and dry-season rainfalls are individually analyzed for each station and for the region as a whole. Some stations showed positive trends and some negative trends. The trends in the annual rainfall are significant at only six stations, five of which reporting increasing trends (Barcelos, Belem, Manaus, Rio Branco, and Soure stations) and just one (Itaituba station) reporting decreasing trend. The climatological values of rainfall before and after 1970 show significant differences at six stations (Barcelos, Belem, Benjamin Constant, Iaurete, Itaituba, and Soure). The region as a whole shows an insignificant and weak downward trend; therefore, we cannot affirm that the rainfall in the Brazilian Amazon basin is experiencing a significant change, except at a few individual stations. Subregions with upward and downward trends are interspersed in space from the far eastern Amazon to western Amazon. Most of the seasonal trends follow the annual trends, thus, indicating a certain consistency in the datasets and analysis.
Gender-specific out-migration, deforestation and urbanization in the Ecuadorian Amazon
NASA Astrophysics Data System (ADS)
Barbieri, Alisson F.; Carr, David L.
2005-07-01
The Ecuadorian Amazon, one of the richest reserves of biodiversity in the world, has faced one of the highest rates of deforestation of any Amazonian nation. Most of this forest elimination has been caused by agricultural colonization that followed the discovery of oil fields in 1967. Since the 1990s, an increasing process of urbanization has also engendered new patterns of population mobility within the Amazon, along with traditional ways by which rural settlers make their living. However, while very significant in its effects on deforestation, urbanization and regional development, population mobility within the Amazon has hardly been studied at all, as well as the distinct migration patterns between men and women. This paper uses a longitudinal dataset of 250 farm households in the Northern Ecuadorian Amazon to understand differentials between men and women migrants to urban and rural destinations and between men and women non-migrants. First, we use hazard analysis based on the Kaplan-Meier (KM) estimator to obtain the cumulative probability that an individual living in the study area in 1990 or at time t, will out-migrated at some time, t+ n, before 1999. Results indicate that out-migration to other rural areas in the Amazon, especially pristine areas is considerably greater than out-migration to the growing, but still incipient, Amazonian urban areas. Furthermore, men are more likely to out-migrate to rural areas than women, while the reverse occurs for urban areas. Difference-of-means tests were employed to examine potential factors accounting for differentials between male and female out-migration to urban and rural areas. Among the key results, relative to men younger women are more likely to out-migrate to urban areas; more difficult access from farms to towns and roads constrains women's migration; and access to new lands in the Amazon-an important cause of further deforestation-is more associated with male out-migration. Economic factors such as engagement in on-farm work, increasing resource scarcity-measured by higher population density at the farm and reduction in farm land on forest and crops-and increase in pasture land are more associated with male out-migration to rural areas. On the other hand, increasing resource scarcity, higher population density and weaker migration networks are more associated with female out-migration to urban areas. Thus, a "vicious cycle" is created: Pressure over land leads to deforestation in most or all farm forest areas and reduces the possibilities for further agricultural extensification (deforestation); out-migration, especially male out-migration, occurs to other rural or forest areas in the Amazon (with women being more likely to choose urban destinations); and, giving continuing population growth and pressures in the new settled areas, new pressures promote further out-migration to rural destinations and unabated deforestation.
Rachid Viana, Giselle Maria; Akinyi Okoth, Sheila; Silva-Flannery, Luciana; Lima Barbosa, Danielle Regina; Macedo de Oliveira, Alexandre; Goldman, Ira F; Morton, Lindsay C; Huber, Curtis; Anez, Arletta; Dantas Machado, Ricardo Luiz; Aranha Camargo, Luís Marcelo; Costa Negreiros do Valle, Suiane; Marins Póvoa, Marinete; Udhayakumar, Venkatachalam; Barnwell, John W
2017-01-01
More than 80% of available malaria rapid diagnostic tests (RDTs) are based on the detection of histidine-rich protein-2 (PfHRP2) for diagnosis of Plasmodium falciparum malaria. Recent studies have shown the genes that code for this protein and its paralog, histidine-rich protein-3 (PfHRP3), are absent in parasites from the Peruvian Amazon Basin. Lack of PfHRP2 protein through deletion of the pfhrp2 gene leads to false-negative RDT results for P. falciparum. We have evaluated the extent of pfhrp2 and pfhrp3 gene deletions in a convenience sample of 198 isolates from six sites in three states across the Brazilian Amazon Basin (Acre, Rondonia and Para) and 25 isolates from two sites in Bolivia collected at different times between 2010 and 2012. Pfhrp2 and pfhrp3 gene and their flanking genes on chromosomes 7 and 13, respectively, were amplified from 198 blood specimens collected in Brazil. In Brazil, the isolates collected in Acre state, located in the western part of the Brazilian Amazon, had the highest percentage of deletions for pfhrp2 25 (31.2%) of 79, while among those collected in Rondonia, the prevalence of pfhrp2 gene deletion was only 3.3% (2 out of 60 patients). In isolates from Para state, all parasites were pfhrp2-positive. In contrast, we detected high proportions of isolates from all 3 states that were pfhrp3-negative ranging from 18.3% (11 out of 60 samples) to 50.9% (30 out of 59 samples). In Bolivia, only one of 25 samples (4%) tested had deleted pfhrp2 gene, while 68% (17 out of 25 samples) were pfhrp3-negative. Among the isolates tested, P. falciparum pfhrp2 gene deletions were present mainly in those from Acre State in the Brazilian Amazon. These results indicate it is important to reconsider the use of PfHRP2-based RDTs in the western region of the Brazilian Amazon and to implement appropriate surveillance systems to monitor pfhrp2 gene deletions in this and other parts of the Amazon region.
Rachid Viana, Giselle Maria; Akinyi Okoth, Sheila; Silva-Flannery, Luciana; Lima Barbosa, Danielle Regina; Macedo de Oliveira, Alexandre; Goldman, Ira F.; Morton, Lindsay C.; Huber, Curtis; Anez, Arletta; Dantas Machado, Ricardo Luiz; Aranha Camargo, Luís Marcelo; Costa Negreiros do Valle, Suiane; Marins Póvoa, Marinete; Barnwell, John W.
2017-01-01
More than 80% of available malaria rapid diagnostic tests (RDTs) are based on the detection of histidine-rich protein-2 (PfHRP2) for diagnosis of Plasmodium falciparum malaria. Recent studies have shown the genes that code for this protein and its paralog, histidine-rich protein-3 (PfHRP3), are absent in parasites from the Peruvian Amazon Basin. Lack of PfHRP2 protein through deletion of the pfhrp2 gene leads to false-negative RDT results for P. falciparum. We have evaluated the extent of pfhrp2 and pfhrp3 gene deletions in a convenience sample of 198 isolates from six sites in three states across the Brazilian Amazon Basin (Acre, Rondonia and Para) and 25 isolates from two sites in Bolivia collected at different times between 2010 and 2012. Pfhrp2 and pfhrp3 gene and their flanking genes on chromosomes 7 and 13, respectively, were amplified from 198 blood specimens collected in Brazil. In Brazil, the isolates collected in Acre state, located in the western part of the Brazilian Amazon, had the highest percentage of deletions for pfhrp2 25 (31.2%) of 79, while among those collected in Rondonia, the prevalence of pfhrp2 gene deletion was only 3.3% (2 out of 60 patients). In isolates from Para state, all parasites were pfhrp2-positive. In contrast, we detected high proportions of isolates from all 3 states that were pfhrp3-negative ranging from 18.3% (11 out of 60 samples) to 50.9% (30 out of 59 samples). In Bolivia, only one of 25 samples (4%) tested had deleted pfhrp2 gene, while 68% (17 out of 25 samples) were pfhrp3-negative. Among the isolates tested, P. falciparum pfhrp2 gene deletions were present mainly in those from Acre State in the Brazilian Amazon. These results indicate it is important to reconsider the use of PfHRP2-based RDTs in the western region of the Brazilian Amazon and to implement appropriate surveillance systems to monitor pfhrp2 gene deletions in this and other parts of the Amazon region. PMID:28301474
G6PD deficiency alleles in a malaria-endemic region in the Western Brazilian Amazon.
Dombrowski, Jamille G; Souza, Rodrigo M; Curry, Jonathan; Hinton, Laura; Silva, Natercia R M; Grignard, Lynn; Gonçalves, Ligia A; Gomes, Ana Rita; Epiphanio, Sabrina; Drakeley, Chris; Huggett, Jim; Clark, Taane G; Campino, Susana; Marinho, Claudio R F
2017-06-15
Plasmodium vivax parasites are the predominant cause of malaria infections in the Brazilian Amazon. Infected individuals are treated with primaquine, which can induce haemolytic anaemia in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals and may lead to severe and fatal complications. This X-linked disorder is distributed globally and is caused by allelic variants with a geographical distribution that closely reflects populations exposed historically to endemic malaria. In Brazil, few studies have reported the frequency of G6PD deficiency (G6PDd) present in malaria-endemic areas. This is particularly important, as G6PDd screening is not currently performed before primaquine treatment. The aim of this study was to determine the prevalence of G6PDd in the region of Alto do Juruá, in the Western Brazilian Amazon, an area characterized by a high prevalence of P. vivax infection. Five-hundred and sixteen male volunteers were screened for G6PDd using the fluorescence spot test (Beutler test) and CareStart™ G6PD Biosensor system. Demographic and clinical-epidemiological data were acquired through an individual interview. To assess the genetic basis of G6PDd, 24 SNPs were genotyped using the Kompetitive Allele Specific PCR assay. Twenty-three (4.5%) individuals were G6PDd. No association was found between G6PDd and the number of malaria cases. An increased risk of reported haemolysis symptoms and blood transfusions was evident among the G6PDd individuals. Twenty-two individuals had the G6PDd A(-) variant and one the G6PD A(+) variant. The Mediterranean variant was not present. Apart from one polymorphism, almost all SNPs were monomorphic or with low frequencies (0-0.04%). No differences were detected among ethnic groups. The data indicates that ~1/23 males from the Alto do Juruá could be G6PD deficient and at risk of haemolytic anaemia if treated with primaquine. G6PD A(-) is the most frequent deficiency allele in this population. These results concur with reported G6PDd in other regions in Brazil. Routine G6PDd screening to personalize primaquine administration should be considered, particularly as complete treatment of patients with vivax malaria using chloroquine and primaquine, is crucial for malaria elimination.
2014-01-01
Background Hepatitis B virus (HBV) and hepatitis D virus (HDV) represent important public health problems in the Western Amazon region with reported cases of fulminant hepatitis. This cross sectional study describes HBV and HDV genotypes circulating in the Brazilian Amazon region. Methods HBsAg positive individuals (n = 224) were recruited in Manaus/Amazonas State (130 blood donors from the Hematology and Hemotherapy Foundation from Amazonas/HEMOAM; 60 subjects from outpatient clinic) and in Eirunepe city (n = 34) from 2003–2009. Most participants (n = 153) lived in Manaus, 63 were from 20 remote isolated municipalities, 8 lived outside Amazonas State. Genotyping was based on PCR products: HBV genotype A-F specific primers, restricted length polymorphism for HDV. HDV isolates were directly sequenced (delta antigen 405 nucleotide fragment) and phylogenetic analysis performed (MEGA; neighbor-joining, Kimura’s two parameter). Results Most participants were young adult males and HBV mono-infection predominated (70.5%, 158/224). Among blood donors, outpatient subjects and individuals from Eirunepe, HBV/A prevailed followed by HBV/D and F (p > 0.05). HBV/A was more frequent in blood donors (p < 0.05). HBV-HDV coinfection rate was 8.5% in blood donors (11/130), 65.0% (39/60) in outpatient subjects and 47.0% (16/34) in individuals from Eirunepe. Compared to blood donors, coinfection was higher in outpatient subjects (65.0% versus 8.5%; RR = 5.0; CI 3.4-7.9; p < 0.0001) and in subjects from Eirunepe (47.0% versus 8.5%; RR = 5.5; CI 3.0-9.9; p < 0.0001). HBV-HDV coinfection rates were higher in patients from highly endemic remote cities. Only HDV genotype 3 was detected, HBV/F-HDV/3 predominated (20/38; 52.7%), followed by HBV/A-HDV/3 (31.6%; 12/38) and HBV/D-HDV/3 (15.8%; 6/38). Conclusions The description of HBV and HDV genotypes circulating in the western Amazon can contribute to a better understanding of their relevance on the regional epidemics. These infections are highly endemic in the Amazon where their control is challenged by its vast territorial dimension with small, hard-to-reach municipalities dispersed into the jungle and populated by diverse ethnic groups. PMID:24555665
Regional rainfall climatologies derived from Special Sensor Microwave Imager (SSM/I) data
NASA Technical Reports Server (NTRS)
Negri, Andrew J.; Adler, Robert F.; Nelkin, Eric J.; Huffman, George J.
1994-01-01
Climatologies of convective precipitation were derived from passive microwave observations from the Special Sensor Microwave Imager using a scattering-based algorithm of Adler et al. Data were aggregated over periods of 3-5 months using data from 4 to 5 years. Data were also stratified by satellite overpass times (primarily 06 00 and 18 00 local time). Four regions (Mexico, Amazonia, western Africa, and the western equatorial Pacific Ocean (TOGA COARE area) were chosen for their meteorological interest and relative paucity of conventional observations. The strong diurnal variation over Mexico and the southern United States was the most striking aspect of the climatologies. Pronounced morning maxima occured offshore, often in concativities in the coastline, the result of the increased convergence caused by the coastline shape. The major feature of the evening rain field was a linear-shaped maximum along the western slope of the Sierra Madre Occidental. Topography exerted a strong control on the rainfall in other areas, particularly near the Nicaragua/Honduras border and in Guatemala, where maxima in excess of 700 mm/month were located adjacent to local maxima in terrain. The correlation between the estimates and monthly gage data over the southern United States was low (0.45), due mainly to poor temporal sampling in any month and an inadequate sampling of the diurnal cycle. Over the Amazon Basin the differences in morning versus evening rainfall were complex, with an alternating series of morning/evening maxima aligned southwest to northeast from the Andes to the northeast Brazilian coast. A real extent of rainfall in Amazonia was slightly higher in the evening, but a maximum in morning precipitation was found on the Amazon River just east of Manaus. Precipitation over the water in the intertropical convergence zone (ITCZ) north of Brazil was more pronounced in the morning, and a pronounced land-/sea-breeze circulation was found along the northeast coast of Brazil. Inter-comparison of four years revealed 1992 to be the driest over Amazonia, with about a 23% decrease in mean rate compared to the 4-year mean estimated rain rate.
Projected increases in the annual flood pulse of the western Amazon
NASA Astrophysics Data System (ADS)
Zulkafli, Zed; Buytaert, Wouter; Manz, Bastian; Veliz Rosas, Claudia; Willems, Patrick; Lavado-Casimiro, Waldo; Guyot, Jean-Loup; Santini, William
2016-04-01
The impact of a changing climate on the Amazon basin is a subject of intensive research due to its rich biodiversity and the significant role of rain forest in carbon cycling. Climate change has also direct hydrological impact, and there have been increasing efforts to understand such dynamics at continental and subregional scales such as the scale of the western Amazon. New projections from the Coupled Model Inter- comparison Project Phase 5 (CMIP5) ensemble indicate consistent climatic warming and increasing seasonality of precipitation in the Peruvian Amazon basin. Here we use a distributed land surface model to quantify the potential impact of this change in the climate on the hydrological regime of the river. Using extremes value analysis, historical and future projections of the annual minimum, mean, and maximum river flows are produced for a range of return periods between 1 and 100 years. We show that the RCP 4.5 and 8.5 scenarios of climate change project an increased severity of the wet season flood pulse (7.5% and 12% increases respectively for the 100- year return floods). These findings are in agreement with previously projected increases in high extremes under the Special Report on Emissions Scenarios (SRES) climate projections, and are important to highlight due to the potential consequences on reproductive processes of in-stream species, swamp forest ecology, and socio-economy in the floodplain, amid a growing literature that more strongly emphasises future droughts and their impact on the viability of the rain forest system over the greater Amazonia.
Security of the Brazilian Amazon Area
1992-04-01
effect in Amazonia". Brazil’s Institute for Space Research. Sio Paulo, April 1991: 5-6. Thompson, Dick. "A Global Agenda for the Amazon." Time, 18...to be overcome as Brazil pursues settlement and development of the Amazon. The natural ecologic systems of the Amazon must be defended with...agricultural techniques appropriate to the region and developed within the context of a comprehensive, responsible program that meets Brazil’s needs for
NASA Astrophysics Data System (ADS)
Fernandes, K.; Baethgen, W.; Verchot, L. V.; Giannini, A.; Pinedo-Vasquez, M.
2014-12-01
A complete assessment of climate change projections requires understanding the combined effects of decadal variability and long-term trends and evaluating the ability of models to simulate them. The western Amazon severe droughts of the 2000s were the result of a modest drying trend enhanced by reduced moisture transport from the tropical Atlantic. Most of the WA dry-season precipitation decadal variability is attributable to decadal fluctuations of the north-south gradient (NSG) in Atlantic sea surface temperature (SST). The observed WA and NSG decadal co-variability is well reproduced in Global Climate Models (GCMs) pre-industrial control (PIC) and historical (HIST) experiments that were part of the Intergovernmental Panel on Climate Change fifth assessment report (IPCC-AR5). This suggests that unforced or natural climate variability, characteristic of the PIC simulations, determines the nature of this coupling, as the results from HIST simulations (forced with greenhouse gases (GHG) and natural and anthropogenic aerosols) are comparable in magnitude and spatial distribution. Decadal fluctuation in the NSG also determines shifts in the probability of repeated droughts and pluvials in WA, as there is a 65% chance of 3 or more years of droughts per decade when NSG>0 compared to 18% when NSG<0. The HIST and PIC model simulations also reproduce the observed shifts in probability distribution of droughts and pluvials as a function of the NSG decadal phase, suggesting there is great potential for decadal predictability based on GCMs. Persistence of the current NSG positive phase may lead to continuing above normal frequencies of western Amazon dry-season droughts.
Silva, Carlos Eduardo Faresin e; de Andrade, Rodrigo Amaral; de Souza, Érica Martinha Silva; Eler, Eduardo Schmidt; da Silva, Maria Nazareth Ferreira; Feldberg, Eliana
2017-01-01
Abstract We investigated the karyotype of 18 didelphid species captured at 13 localities in the Brazilian Amazon, after conventional staining, C-banding, Ag-NOR and fluorescent in situ hybridization (FISH) using the 18S rDNA probe. Variations were found in the X chromosome, heterochromatin distribution and the 18S rDNA sequence. The main variation observed was in the position of the centromere in the X chromosome of Caluromys philander Linnaeus, 1758 and Marmosa murina Linnaeus, 1758. For both species, the X chromosome showed a geographical segregation in the pattern of variation between eastern and western Brazil, with a possible contact area in the central Amazon. C-banding on the X chromosome revealed two patterns for the species of Marmosops Matschie, 1916, apparently without geographic or specific relationships. The nucleolus organizer region (NOR) of all species was confirmed with the 18S rDNA probe, except on the Y chromosome of Monodelphis touan Shaw, 1800. The distribution of this marker varied only in the genus Marmosa Gray, 1821 [M. murina Thomas, 1905 and M. demerarae Thomas, 1905]. Considering that simple NORs are seen as a plesiomorphic character, we conclude that the species Marmosa spp. and Didelphis marsupialis Linnaeus, 1758 evolved independently to the multiple condition. By increasing the sample, using chromosomal banding, and FISH, we verified that marsupials present intra- and interspecific chromosomal variations, which suggests the occurrence of frequent chromosomal rearrangements in the evolution of this group. This observation contrasts with the chromosomal conservatism expected for didelphids. PMID:29114362
Carbon Emissions from Deforestation in the Brazilian Amazon Region
NASA Technical Reports Server (NTRS)
Potter, C.; Klooster, S.; Genovese, V.
2009-01-01
A simulation model based on satellite observations of monthly vegetation greenness from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2002. The NASA-CASA (Carnegie Ames Stanford Approach) model estimates of annual forest production were used for the first time as the basis to generate a prediction for the standing pool of carbon in above-ground biomass (AGB; gC/sq m) for forested areas of the Brazilian Amazon region. Plot-level measurements of the residence time of carbon in wood in Amazon forest from Malhi et al. (2006) were interpolated by inverse distance weighting algorithms and used with CASA to generate a new regional map of AGB. Data from the Brazilian PRODES (Estimativa do Desflorestamento da Amazonia) project were used to map deforested areas. Results show that net primary production (NPP) sinks for carbon varied between 4.25 Pg C/yr (1 Pg=10(exp 15)g) and 4.34 Pg C for the region and were highest across the eastern and northern Amazon areas, whereas deforestation sources of CO2 flux from decomposition of residual woody debris were higher and less seasonal in the central Amazon than in the eastern and southern areas. Increased woody debris from past deforestation events was predicted to alter the net ecosystem carbon balance of the Amazon region to generate annual CO2 source fluxes at least two times higher than previously predicted by CASA modeling studies. Variations in climate, land cover, and forest burning were predicted to release carbon at rates of 0.5 to 1 Pg C/yr from the Brazilian Amazon. When direct deforestation emissions of CO2 from forest burning of between 0.2 and 0.6 Pg C/yr in the Legal Amazon are overlooked in regional budgets, the year-to-year variations in this net biome flux may appear to be large, whereas our model results implies net biome fluxes had actually been relatively consistent from year to year during the period 2000-2002. This is the first study to use MODIS data to model all carbon pools (wood, leaf, root) dynamically in simulations of Amazon forest deforestation from clearing and burning of all kinds.
Selective logging in the Brazilian Amazon.
G. P. Asner; D. E. Knapp; E. N. Broadbent; P. J. C. Oliveira; M Keller; J. N. Silva
2005-01-01
Amazon deforestation has been measured by remote sensing for three decades. In comparison, selective logging has been mostly invisible to satellites. We developed a large-scale, high-resolution, automated remote-sensing analysis of selective logging in the top five timber-producing states of the Brazilian Amazon. Logged areas ranged from 12,075 to 19,823 square...
NASA Astrophysics Data System (ADS)
Potter, Christopher; Klooster, Steven; de Carvalho, Claudio Reis; Genovese, Vanessa Brooks; Torregrosa, Alicia; Dungan, Jennifer; Bobo, Matthew; Coughlan, Joseph
2001-05-01
Previous field measurements have implied that undisturbed Amazon forests may represent a substantial terrestrial sink for atmospheric carbon dioxide. We investigated this hypothesis using a regional ecosystem model for net primary production (NPP) and soil biogeochemical cycling. Seasonal and interannual controls on net ecosystem production (NEP) were studied with integration of high-resolution (8-km) multiyear satellite data to characterize Amazon land surface properties over time. Background analysis of temporal and spatial relationships between regional rainfall patterns and satellite observations (for vegetation land cover, fire counts, and smoke aerosol effects) reveals several notable patterns in the model driver data. Autocorrelation analysis for monthly vegetation "greenness" index (normalized difference vegetation index, NDVI) from the advanced very high resolution radiometer (AVHRR) and monthly rainfall indicates a significant lag time correlation of up to 12 months. At lag times approaching 36 months, autocorrelation function (ACF) values did not exceed the 95% confidence interval at locations west of about 47°W, which is near the transition zone of seasonal tropical forest and other (nonforest) vegetation types. Even at lag times of 12 months or less, the location near Manaus (approximately 60°W) represents the farthest western point in the Amazon region where seasonality of rainfall accounts significantly for monthly variations in forest phenology, as observed using NDVI. Comparisons of NDVI seasonal profiles in areas of the eastern Amazon widely affected by fires (as observed from satellite) suggest that our adjusted AVHRR-NDVI captures year-to-year variation in land cover greenness with minimal interference from small fires and smoke aerosols. Ecosystem model results using this newly generated combination of regional forcing data from satellite suggest that undisturbed Amazon forests can be strong net sinks for atmospheric carbon dioxide, particularly during wet (non El Niño) years. However, drought effects during El Niño years can reduce NPP in primary forests of the eastern Amazon by 10-20%, compared to long-term average estimates of regional productivity. Annual NEP for the region is predicted to range from -0.4 Pg C yr-1 (net CO2 source) to 0.5 Pg C yr-1 (net CO2 sink), with large interannual variability over the states of Pará, Maranhao, and Amazonas. As in the case of predicted NPP, it appears that periods of relatively high solar surface irradiance combined with several months of adequate rainfall are required to sustain the forest carbon sink for positive yearly NEP estimates.
Deep mycoses in Amazon region.
Talhari, S; Cunha, M G; Schettini, A P; Talhari, A C
1988-09-01
Patients with deep mycoses diagnosed in dermatologic clinics of Manaus (state of Amazonas, Brazil) were studied from November 1973 to December 1983. They came from the Brazilian states of Amazonas, Pará, Acre, and Rondônia and the Federal Territory of Roraima. All of these regions, with the exception of Pará, are situated in the western part of the Amazon Basin. The climatic conditions in this region are almost the same: tropical forest, high rainfall, and mean annual temperature of 26C. The deep mycoses diagnosed, in order of frequency, were Jorge Lobo's disease, paracoccidioidomycosis, chromomycosis, sporotrichosis, mycetoma, cryptococcosis, zygomycosis, and histoplasmosis.
Valle, Denis; Lima, Joanna M Tucker
2014-11-20
Most of the malaria burden in the Americas is concentrated in the Brazilian Amazon but a detailed spatial characterization of malaria risk has yet to be undertaken. Utilizing 2004-2008 malaria incidence data collected from six Brazilian Amazon states, large-scale spatial patterns of malaria risk were characterized with a novel Bayesian multi-pathogen geospatial model. Data included 2.4 million malaria cases spread across 3.6 million sq km. Remotely sensed variables (deforestation rate, forest cover, rainfall, dry season length, and proximity to large water bodies), socio-economic variables (rural population size, income, and literacy rate, mortality rate for children age under five, and migration patterns), and GIS variables (proximity to roads, hydro-electric dams and gold mining operations) were incorporated as covariates. Borrowing information across pathogens allowed for better spatial predictions of malaria caused by Plasmodium falciparum, as evidenced by a ten-fold cross-validation. Malaria incidence for both Plasmodium vivax and P. falciparum tended to be higher in areas with greater forest cover. Proximity to gold mining operations was another important risk factor, corroborated by a positive association between migration rates and malaria incidence. Finally, areas with a longer dry season and areas with higher average rural income tended to have higher malaria risk. Risk maps reveal striking spatial heterogeneity in malaria risk across the region, yet these mean disease risk surface maps can be misleading if uncertainty is ignored. By combining mean spatial predictions with their associated uncertainty, several sites were consistently classified as hotspots, suggesting their importance as priority areas for malaria prevention and control. This article provides several contributions. From a methodological perspective, the benefits of jointly modelling multiple pathogens for spatial predictions were illustrated. In addition, maps of mean disease risk were contrasted with that of statistically significant disease clusters, highlighting the critical importance of uncertainty in determining disease hotspots. From an epidemiological perspective, forest cover and proximity to gold mining operations were important large-scale drivers of disease risk in the region. Finally, the hotspot in Western Acre was identified as the area that should receive highest priority from the Brazilian national malaria prevention and control programme.
Vasconcelos, Helena B; Azevedo, Raimunda S S; Casseb, Samir M; Nunes-Neto, Joaquim P; Chiang, Jannifer O; Cantuária, Patrick C; Segura, Maria N O; Martins, Lívia C; Monteiro, Hamilton A O; Rodrigues, Sueli G; Nunes, Márcio R T; Vasconcelos, Pedro F C
2009-02-01
Oropouche fever virus is an important arbovirus associated with febrile disease that re-emerged in 2006 in several municipalities of Pará State, Bragantina region, Amazon, Brazil, 26 years after the last epidemic. To investigate an Oropouche fever outbreak in this region. A serologic survey and prospective study of acute febrile cases were performed in Magalhães Barata (urban and rural areas) and Maracanã (rural area) municipalities. Serology (IgM-ELISA and hemagglutination-inhibition [HI]), virus isolation, RT-PCR and real-time-PCR were used to confirm Oropouche virus (OROV) as responsible for the febrile outbreaks. Real-time-PCR showed high titers of OROV in acute-phase serum samples from febrile patients. From 113 of 119 acutely febrile patients with paired serum samples, OROV infections was confirmed by serologic conversion (n=76) or high titers (n=37) for both HI and IgM-ELISA. Patients had a febrile disease characterized by headache, chills, dizziness, photophobia, myalgia, nausea, and vomiting. Females and children under 15 years of age were most affected. Nucleotide sequencing of six OROV isolates identified that genotype II was associated with the human disease epidemic. Oropouche fever, which has re-emerged in the Bragantina region in eastern Amazon 26 years after the last epidemic, is caused by genotype II, a lineage previously found only in Peru and western Brazil.
Ribeiro, Igor Oliveira; Andreoli, Rita Valéria; Kayano, Mary Toshie; de Sousa, Thaiane Rodrigues; Medeiros, Adan Sady; Guimarães, Patrícia Costa; Barbosa, Cybelli G G; Godoi, Ricardo H M; Martin, Scot T; de Souza, Rodrigo Augusto Ferreira
2018-05-15
The present study examines the spatiotemporal variability and interrelations of the atmospheric methane (CH 4 ), carbon monoxide (CO) and biomass burning (BB) outbreaks retrieved from satellite data over the Amazon region during the 2003-2012 period. In the climatological context, we found consistent seasonal cycles of BB outbreaks and CO in the Amazon, both variables showing a peak during the dry season. The dominant CO variability mode features the largest positive loadings in the southern Amazon, and describes the interannual CO variations related to BB outbreaks along the deforestation arc during the dry season. In line with CO variability and BB outbreaks, the results show strong correspondence with the spatiotemporal variability of CH 4 in the southern Amazon during years of intense drought. Indeed, the areas with the largest positive CH 4 anomalies in southern Amazon overlap the areas with high BB outbreaks and positive CO anomalies. The analyses also showed that high (low) BB outbreaks in the southern Amazon occur during dry (wet) years. In consequence, the interannual climate variability modulates the BB outbreaks in the southern Amazon, which in turn have considerable impacts on CO and CH 4 interannual variability in the region. Therefore, the BB outbreaks might play a major role in modulating the CH 4 and CO variations, at least in the southern Amazon. This study also provides a comparison between the estimate of satellite and aircraft measurements for the CH 4 over the southern Amazon, which indicates relatively small differences from the aircraft measurements in the lower troposphere, with errors ranging from 0.18% to 1.76%. Copyright © 2017 Elsevier B.V. All rights reserved.
Coura, José Rodrigues; Junqueira, Angela CV
2015-01-01
We refer to Oswaldo Cruz's reports dating from 1913 about the necessities of a healthcare system for the Brazilian Amazon Region and about the journey of Carlos Chagas to 27 locations in this region and the measures that would need to be adopted. We discuss the risks of endemicity of Chagas disease in the Amazon Region. We recommend that epidemiological surveillance of Chagas disease in the Brazilian Amazon Region and Pan-Amazon region should be implemented through continuous monitoring of the human population that lives in the area, their housing, the environment and the presence of triatomines. The monitoring should be performed with periodic seroepidemiological surveys, semi-annual visits to homes by health agents and the training of malaria microscopists and healthcare technicians to identify Trypanosoma cruzi from patients' samples and T. cruzi infection rates among the triatomines caught. We recommend health promotion and control of Chagas disease through public health policies, especially through sanitary education regarding the risk factors for Chagas disease. Finally, we propose a healthcare system through base hospitals, intermediate-level units in the areas of the Brazilian Amazon Region and air transportation, considering the distances to be covered for medical care. PMID:26560976
Reconstructing Rodinia: the view from Amazonia
NASA Astrophysics Data System (ADS)
Tohver, E.; van der Pluijm, B.; Van der Voo, R.; Scandolara, J.; Rizzotto, G.
2001-05-01
Many Rodinia reconstructions propose that the North American Grenville orogeny at c.1.1 Ga was due to collision between Laurentia and the western Amazon craton, the position of which is presently unrestricted by paleomagnetic data. New paleomagnetic data was collected from the flat-lying basalts and gabbros of the Nova Floresta Formation (K-Ar whole rock, 982 +/-10 Ma, 1038 +/-14 Ma) of Rondonia, western Brazil to constrain the paleogeography of the proposed Laurentia-Amazonia link. Measurement of the anisotropy of magnetic susceptibility (AMS) on the gabbroic samples reveals a flat-lying foliation with a radiating pattern of lineations, demonstrating that the gabbros are part of a large, undeformed sill. Thermal and alternating field (AF) demagnetization of the basalt samples reveals a single component that is oriented WNW and steeply upward. For the gabbro samples, AF demagnetization is more successful than thermal demagnetization at resolving individual components. A characteristic remanence isolated in fields commonly above 40 mT is identical to the single component recorded in the basalts, suggesting that this magnetization was acquired at the same time. A paleomagnetic N-pole calculated from the Nova Floresta Formation (n = 16 sites, Plat. = 26.1N, PLon. = 163.4E, A95 = 5.9) can be matched to the Laurentia APWP for the 1150-750 Ma interval and permits geographic proximity of the two cratons during Grenvillian times. However, the orientation of the Aguapee-Sunsas belt based on this pole suggests a N-S oriented belt, in contrast with the E-W orientation of the Grenville belt on the Laurentian margin. It is proposed that the Amazon craton was rotated 90 degrees counterclockwise from the orientation required by the Laurentia-Amazonia connection. This N-S orientation of the Sunsas-Aguapei belt suggests that the western margin of the Amazon craton was juxtaposed with the Namaqua belt of the western Kalahari craton. This configuration is supported by a common Neoproterozoic rift stratigraphy between Namibia and Mato Grosso.
Projections of future meteorological drought and wet periods in the Amazon
Duffy, Philip B.; Brando, Paulo; Asner, Gregory P.; Field, Christopher B.
2015-01-01
Future intensification of Amazon drought resulting from climate change may cause increased fire activity, tree mortality, and emissions of carbon to the atmosphere across large areas of Amazonia. To provide a basis for addressing these issues, we examine properties of recent and future meteorological droughts in the Amazon in 35 climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). We find that the CMIP5 climate models, as a group, simulate important properties of historical meteorological droughts in the Amazon. In addition, this group of models reproduces observed relationships between Amazon precipitation and regional sea surface temperature anomalies in the tropical Pacific and the North Atlantic oceans. Assuming the Representative Concentration Pathway 8.5 scenario for future drivers of climate change, the models project increases in the frequency and geographic extent of meteorological drought in the eastern Amazon, and the opposite in the West. For the region as a whole, the CMIP5 models suggest that the area affected by mild and severe meteorological drought will nearly double and triple, respectively, by 2100. Extremes of wetness are also projected to increase after 2040. Specifically, the frequency of periods of unusual wetness and the area affected by unusual wetness are projected to increase after 2040 in the Amazon as a whole, including in locations where annual mean precipitation is projected to decrease. Our analyses suggest that continued emissions of greenhouse gases will increase the likelihood of extreme events that have been shown to alter and degrade Amazonian forests. PMID:26460046
Methylmercury Modulation in Amazon Rivers Linked to Basin Characteristics and Seasonal Flood-Pulse.
Kasper, Daniele; Forsberg, Bruce R; Amaral, João H F; Py-Daniel, Sarah S; Bastos, Wanderley R; Malm, Olaf
2017-12-19
We investigated the impact of the seasonal inundation of wetlands on methylmercury (MeHg) concentration dynamics in the Amazon river system. We sampled 38 sites along the Solimões/Amazon and Negro rivers and their tributaries during distinct phases of the annual flood-pulse. MeHg dynamics in both basins was contrasted to provide insight into the factors controlling export of MeHg to the Amazon system. The export of MeHg by rivers was substantially higher during high-water in both basins since elevated MeHg concentrations and discharge occurred during this time. MeHg concentration was positively correlated to %flooded area upstream of the sampling site in the Solimões/Amazon Basin with the best correlation obtained using 100 km buffers instead of whole basin areas. The lower correlations obtained with the whole basin apparently reflected variable losses of MeHg exported from upstream wetlands due to demethylation, absorption, deposition, and degradation before reaching the sampling site. A similar correlation between %flooded area and MeHg concentrations was not observed in the Negro Basin probably due to the variable export of MeHg from poorly drained soils that are abundant in this basin but not consistently flooded.
NASA Astrophysics Data System (ADS)
Fu, Rong; Dickinson, Robert E.; Chen, Mingxuan; Wang, Hui
2001-10-01
Although the correlation between precipitation over tropical South America and sea surface temperatures (SSTs) over the Pacific and Atlantic has been documented since the early twentieth century, the impact of each ocean on the timing and intensity of the wet season over tropical South America and the underlying mechanisms have remained unclear. Numerical experiments have been conducted using the National Center for Atmospheric Research Community Climate Model Version 3 to explore these impacts. The results suggest the following.1)Seasonality of SSTs in the tropical Pacific and Atlantic has an important influence on precipitation in the eastern Amazon during the equinox seasons. The eastern side of the Amazon is influenced both by the direct thermal circulation of the Atlantic intertropical convergence zone (ITCZ) and by Rossby waves. These processes are enhanced by the seasonal cycles of SSTs in the tropical Atlantic and Pacific. SSTs affect Amazon precipitation much less during the solstice seasons and in the western Amazon.2)The seasonality of SSTs in the Atlantic more strongly affects Amazon rainfall than does that of the Pacific. Without the former, austral spring in the eastern equatorial Amazon would be a wet season, rather than the observed dry season. As a consequence of the lag at that time of the southward seasonal migration of the Atlantic SSTs behind that of the insolation, the Atlantic ITCZ centers itself near 10°N, instead of at the equator, imposing subsidence and low-level anticyclonic flow over the eastern equatorial Amazon, thus drying the air above the planetary boundary layer and reducing the low-level moisture convergence. Consequently, convection in the eastern Amazon is suppressed despite strong surface heating.3)Seasonality of the SSTs in the tropical Pacific also tends to reduce precipitation in the eastern Amazon during both spring and fall. In spring, subsidence is enhanced not only through a zonal direct circulation, but also through Rossby waves propagating from the extratropical South Pacific to subtropical South America. This teleconnection strengthens the South Atlantic convergence zone (SACZ) and the Nordeste low, in both cases reducing precipitation in the eastern Amazon. A direct thermal response to the Pacific SSTs enhances lower-level divergence and reduces precipitation from the northern tropical Atlantic to the northeastern Amazon.
Navarrete, Acacio A.; Venturini, Andressa M.; Meyer, Kyle M.; Klein, Ann M.; Tiedje, James M.; Bohannan, Brendan J. M.; Nüsslein, Klaus; Tsai, Siu M.; Rodrigues, Jorge L. M.
2015-01-01
Members of the phylum Acidobacteria are among the most abundant soil bacteria on Earth, but little is known about their response to environmental changes. We asked how the relative abundance and biogeographic patterning of this phylum and its subgroups responded to forest-to-pasture conversion in soils of the western Brazilian Amazon. Pyrosequencing of 16S rRNA genes was employed to assess the abundance and composition of the Acidobacteria community across 54 soil samples taken using a spatially nested sampling scheme at the landscape level. Numerically, Acidobacteria represented 20% of the total bacterial community in forest soils and 11% in pasture soils. Overall, 15 different Acidobacteria subgroups of the current 26 subgroups were detected, with Acidobacteria subgroups 1, 3, 5, and 6 accounting together for 87% of the total Acidobacteria community in forest soils and 75% in pasture soils. Concomitant with changes in soil chemistry after forest-to-pasture conversion—particularly an increase in properties linked to soil acidity and nutrient availability—we observed an increase in the relative abundances of Acidobacteria subgroups 4, 10, 17, and 18, and a decrease in the relative abundances of other Acidobacteria subgroups in pasture relative to forest soils. The composition of the total Acidobacteria community as well as the most abundant Acidobacteria subgroups (1, 3, 5, and 6) was significantly more similar in composition across space in pasture soils than in forest soils. These results suggest that preponderant responses of Acidobacteria subgroups, especially subgroups 1, 3, 4, 5, and 6, to forest-to-pasture conversion effects in soils could be used to define management-indicators of agricultural practices in the Amazon Basin. These acidobacterial responses are at least in part through alterations on acidity- and nutrient-related properties of the Amazon soils. PMID:26733981
Modelling conservation in the Amazon basin.
Soares-Filho, Britaldo Silveira; Nepstad, Daniel Curtis; Curran, Lisa M; Cerqueira, Gustavo Coutinho; Garcia, Ricardo Alexandrino; Ramos, Claudia Azevedo; Voll, Eliane; McDonald, Alice; Lefebvre, Paul; Schlesinger, Peter
2006-03-23
Expansion of the cattle and soy industries in the Amazon basin has increased deforestation rates and will soon push all-weather highways into the region's core. In the face of this growing pressure, a comprehensive conservation strategy for the Amazon basin should protect its watersheds, the full range of species and ecosystem diversity, and the stability of regional climates. Here we report that protected areas in the Amazon basin--the central feature of prevailing conservation approaches--are an important but insufficient component of this strategy, based on policy-sensitive simulations of future deforestation. By 2050, current trends in agricultural expansion will eliminate a total of 40% of Amazon forests, including at least two-thirds of the forest cover of six major watersheds and 12 ecoregions, releasing 32 +/- 8 Pg of carbon to the atmosphere. One-quarter of the 382 mammalian species examined will lose more than 40% of the forest within their Amazon ranges. Although an expanded and enforced network of protected areas could avoid as much as one-third of this projected forest loss, conservation on private lands is also essential. Expanding market pressures for sound land management and prevention of forest clearing on lands unsuitable for agriculture are critical ingredients of a strategy for comprehensive conservation.
Tree-Ring Reconstruction of Wet Season Rainfall Totals in the Amazon
NASA Astrophysics Data System (ADS)
Stahle, D. W.; Lopez, L.; Granato-Souza, D.; Barbosa, A. C. M. C.; Torbenson, M.; Villalba, R.; Pereira, G. D. A.; Feng, S.; Schongart, J.; Cook, E. R.
2017-12-01
The Amazon Basin is a globally important center of deep atmospheric convection, energy balance, and biodiversity, but only a handful of weather stations in this vast Basin have recorded rainfall measurements for at least 50 years. The available rainfall and river level observations suggest that the hydrologic cycle in the Amazon may have become amplified in the last 40-years, with more extreme rainfall and streamflow seasonality, deeper droughts, and more severe flooding. These changes in the largest hydrological system on earth may be early evidence of the expected consequences of anthropogenic climate change and deforestation in the coming century. Placing these observed and simulated changes in the context of natural climate variability during the late Holocene is a significant challenge for high-resolution paleoclimatology. We have developed exactly dated and well-replicated annual tree-ring chronologies from two native Amazonian tree species (Cedrela sp and Centrolobium microchaete). These moisture sensitive chronologies have been used to compute two reconstructions of wet season rainfall totals, one in the southern Amazon based on Centrolobium and another in the eastern equatorial Amazon using Cedrela. Both reconstructions are over 200-years long and extend the available instrumental observations in each region by over 150-years. These reconstructions are well correlated with the same regional and large-scale climate dynamics that govern the inter-annual variability of the instrumental wet season rainfall totals. Increased multi-decadal variability is reconstructed after 1950 with the Centrolobium chronologies in the southern Amazon. The Cedrela reconstruction from the eastern Amazon exhibits changes in the spatial pattern of correlation with regional rainfall stations and the large-scale sea surface temperature field after 1990 that may be consistent with recent changes in the mean position of the Inter-Tropical Convergence Zone in March over the western Atlantic and South American sector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burleyson, Casey D.; Feng, Zhe; Hagos, Samson M.
The Amazon rainforest is one of a few regions of the world where continental tropical deep convection occurs. The Amazon’s isolation makes it challenging to observe, but also creates a unique natural laboratory to study anthropogenic impacts on clouds and precipitation in an otherwise pristine environment. Extensive measurements were made upwind and downwind of the large city of Manaus, Brazil during the Observations and Modeling of the Green Ocean Amazon 2014-2015 (GoAmazon2014/5) field campaign. In this study, 15 years of high-resolution satellite data are analyzed to examine the spatial and diurnal variability of convection occurring around the GoAmazon2014/5 sites. Interpretationmore » of anthropogenic differences between the upwind (T0) and downwind (T1-T3) sites is complicated by naturally-occurring spatial variability between the sites. During the rainy season, the inland propagation of the previous day’s sea-breeze front happens to be in phase with the background diurnal cycle near Manaus, but is out of phase elsewhere. Enhanced convergence between the river-breezes and the easterly trade winds generates up to 10% more frequent deep convection at the GoAmazon2014/5 sites east of the river (T0a, T0t/k, and T1) compared to the T3 site which was located near the western bank. In general, the annual and diurnal cycles during 2014 were representative of the 2000-2013 distributions. The only exceptions were in March when the monthly mean rainrate was above the 95th percentile and September when both rain frequency and intensity were suppressed. The natural spatial variability must be accounted for before interpreting anthropogenically-induced differences among the GoAmazon2014/5 sites.« less
NASA Astrophysics Data System (ADS)
Heinrich, S.; Zonneveld, K. A. F.; Willems, H.
2010-09-01
The middle- and upper Miocene represent a time-interval of major changes in palaeoceanography that favoured the cooling of the climate and culminated in the Northern Hemisphere Glaciation (NHG). The basis for the development of the modern deepwater circulation pattern, e.g. thermohaline circulation, was hereby established. Tectonic events played a key role in the progressing Miocene oceanography, such as the narrowing of the Panama gateway (e.g. Duque-Caro 1990) and the possible linked changes in North Atlantic Deep Water formation (Lear et al. 2003). However, the complex interaction between the closing of the Panama Gateway, the development of NADW, and thus the oceanographic progression towards our present day circulation is far from being fully understood. We want to improve the understanding of these processes by establishing a detailed palaeoceanographic reconstruction of the western equatorial Atlantic Ocean on the basis of calcareous dinoflagellate cyst (dinocyst) associations. Within this study, we investigated sediment samples from ODP Site 926A by defining the calcareous dinocyst assemblage. Site 926A is located at the southwestern flank of the Ceara Rise, an area of highest sensitivity to global deep water circulation changes. At about 12 Ma, when NADW production increased (e.g. Wright et al. 1992), we see a distinct increase in the absolute abundances of the calcareous dinocysts. This might be related to enhanced productivity or to better carbonate preservation. At 11.3 Ma, Leonella granifera, a species known to be strongly related to terrestrial input occurs. This could be a signal for the initiation of the Amazon River as a transcontinental river with the development of the Amazon fan (11.8 - 11.3 Ma; Figueiredo et al. 2009) in relation to Andean tectonism. References: Duque-Caro, H. (1990): Neogene stratigraphy, paleoceanography and palebiology in Northwest South America and the evolution of the Panama Seaway. Palaeogeography, Palaeoclimatology, Palaeoecology 77, 203-234. Figueiredo, J., Hoorn, C., van der Veen, P., Soares, E. (2009): Late Miocene onset of the Amazon River and the Amazon deep-sea fan: Evidence from the Foz do Amazonas Basin. Geology; v. 37, no. 7; p. 619-622. Lear, C.H., Rosenthal, Y., Wright, J.D. (2003): The closing of a seaway: ocean water masses and global climate change. Earth and Planetary Science Letters 210, 425-436. Wright, J.D., Miller, K.G., Fairbanks, R.G. (1992): Early and middle Miocene stable isotopes: implications for deepwater circulation and climate. Paloceanography 7(3): 357-398.
Patterns of diversification in the discus fishes (Symphysodon spp. Cichlidae) of the Amazon basin.
Farias, Izeni Pires; Hrbek, Tomas
2008-10-01
We carried out a phylogeograhic and population genetic analysis of fishes of the taxonomically contentious genus Symphysodon from the Amazon basin in order to test hypotheses of relationships among taxonomic units, and potential processes driving diversification within this genus. We sampled 334 individuals of the genus Symphysodon from 24 localities that span the complete geographic distribution of this genus. The sampling scheme included all known phenotypic groups, species and subspecies. Analyses were based on 474 bp of the mitochondrial control region and 1443 bp of the exon 3 of RAG1 gene. We observed 102 mtDNA haplotypes defined by 89 segregating sites, and 5 nuDNA alleles defined by three segregating sites. Maximum-likelihood, Bayesian-inference and statistical parsimony analyses revealed three well defined monophyletic groups. These clades corresponded to the 'green' and 'blue' groups of Symphysodon aequifasciatus, and to a previously morphologically unrecognized clade from the Xingu River drainage. These three clades were nested within a paraphyletic assemblage consisting of the 'brown' group of S. aequifasciatus and of both described subspecies of S. discus, the 'Heckel' and the 'abacaxi' discus. Nuclear allele sharing was observed among groups, but there were significant differences in frequencies. We inferred several processes including past fragmentation among groups, and restricted gene flow with isolation by distance within the paraphyletic 'brown+Heckel+abacaxi' groups, and suggest that differences among the 'blue', 'Heckel' and 'brown' groups are potentially maintained by differences in water chemistry preferences. We further inferred colonization of the western Amazon basin by an ancestor of the 'green' clade. The 'green' group was the only group with a pattern of haplotype distribution consistent of a demographic expansion, and the divergence of this clade from other groups of discus was consistent with recent geologic evidence on the breach of the Purus Arch which separates western Amazon from eastern Amazon. We further hypothesized that the differentiation of the 'Xingu' clade could be due to vicariance events resulting from Pleistocene sea level, and thus Amazon River level fluctuations. We discuss the bearings of our results on the current taxonomy of this group, and on the biological reality of the different forms, subspecies and species of Symphysodon concluding that we are probably observing a process of diversification, and therefore taxonomy will remain contentious.
Depopulation of rural landscapes exacerbates fire activity in the western Amazon.
Uriarte, María; Pinedo-Vasquez, Miquel; DeFries, Ruth S; Fernandes, Katia; Gutierrez-Velez, Victor; Baethgen, Walter E; Padoch, Christine
2012-12-26
Destructive fires in Amazonia have occurred in the past decade, leading to forest degradation, carbon emissions, impaired air quality, and property damage. Here, we couple climate, geospatial, and province-level census data, with farmer surveys to examine the climatic, demographic, and land use factors associated with fire frequency in the Peruvian Amazon from 2000 to 2010. Although our results corroborate previous findings elsewhere that drought and proximity to roads increase fire frequency, the province-scale analysis further identifies decreases in rural populations as an additional factor. Farmer survey data suggest that increased burn scar frequency and size reflect increased flammability of emptying rural landscapes and reduced capacity to control fire. With rural populations projected to decline, more frequent drought, and expansion of road infrastructure, fire risk is likely to increase in western Amazonia. Damage from fire can be reduced through warning systems that target high-risk locations, coordinated fire fighting efforts, and initiatives that provide options for people to remain in rural landscapes.
Depopulation of rural landscapes exacerbates fire activity in the western Amazon
Uriarte, María; Pinedo-Vasquez, Miquel; DeFries, Ruth S.; Fernandes, Katia; Gutierrez-Velez, Victor; Baethgen, Walter E.; Padoch, Christine
2012-01-01
Destructive fires in Amazonia have occurred in the past decade, leading to forest degradation, carbon emissions, impaired air quality, and property damage. Here, we couple climate, geospatial, and province-level census data, with farmer surveys to examine the climatic, demographic, and land use factors associated with fire frequency in the Peruvian Amazon from 2000 to 2010. Although our results corroborate previous findings elsewhere that drought and proximity to roads increase fire frequency, the province-scale analysis further identifies decreases in rural populations as an additional factor. Farmer survey data suggest that increased burn scar frequency and size reflect increased flammability of emptying rural landscapes and reduced capacity to control fire. With rural populations projected to decline, more frequent drought, and expansion of road infrastructure, fire risk is likely to increase in western Amazonia. Damage from fire can be reduced through warning systems that target high-risk locations, coordinated fire fighting efforts, and initiatives that provide options for people to remain in rural landscapes. PMID:23236144
NASA Astrophysics Data System (ADS)
Davidson, Eric A.; Neill, Christopher; Krusche, Alex V.; Ballester, Victoria V. R.; Markewitz, Daniel; Figueiredo, Ricardo de O.
Rates of deforestation in the Amazon region have been accelerating, but the quantity and timing of nutrient losses from forested and deforested ecosystems are poorly understood. This paper investigates the broad variation in soil properties of the Amazon Basin as they influence transfers of plant nutrients from the terrestrial biosphere to the atmosphere and the aquatic biosphere. The dominant lowland soils are highly weathered Oxisols and Ultisols, but significant areas of Alfisols also exist, resulting in a wide range of weatherable primary minerals. Despite this considerable variation among Amazonian soils, a common feature in most mature lowland Amazonian forests is a conservative P cycle and excess N availability. In cattle pastures and secondary forests, however, low rates of internal terrestrial N cycling, low N export to streams, and low gaseous N emissions from soils are common, due to significant previous losses of N through repeated fire. Export of P to streams may increase or remain nearly undetectable after forest-to-pasture conversion, depending on soil type. Oxisols exhibit very low P export, whereas increased P export to pasture streams has been observed in Ultisols of western Amazonia. Calcium is mostly retained in terrestrial ecosystems following deforestation, although increased inputs to streams can be detected when background fluxes are naturally low. Because soil mineralogy and soil texture are both variable and important, the effects of land-use change on nutrient export to aquatic ecosystems and to the atmosphere must be understood within the context of varying soil properties across the Amazon Basin.
Camargo, L M; Noronha, E; Salcedo, J M; Dutra, A P; Krieger, H; Pereira da Silva, L H; Camargo, E P
1999-01-15
We report on a longitudinal study concerning the incidence of malaria in a riverine population (Portuchuelo) settled on the riverbanks of Rio Madeira, in the State of Rondonia, Brazil. We found the incidence of malaria to be seasonal, prevailing in the dry months of June and July. The Annual Parasite Index (API) was 292/1000 inhabitants, almost three times that of the state of Rondonia for the same period. In contrast with other studied Rondonian populations, malaria in Portuchuelo was more prevalent in youngsters < 16 years old, particularly in the 0-1 year age group. Adults were relatively spared, particularly those over 50 years. Besides being indicative of indoor transmission, these facts may suggest the existence of a certain degree of acquired resistance to infection and/or of lessened symptoms in older people. Riverine populations are spread over the entire Amazon region where most of its members were born. Due to the permanent presence of malaria among riverine populations, we are proposing that they may act as perennial reserves of malaria and, therefore, as sources of infection for migrants or eventual settlers at their vicinity. To date, the opposite view has been generally held. Anopheles darlingi, the main vector species in the area, is essentially sylvatic, which contributes to make the control of malaria highly problematic. The only hopes for control rest on permanent surveillance and the prompt treatment of patients, which are also problematic considering the vastness of the Amazon region and the remoteness of some of its riverine settlements.
NASA Astrophysics Data System (ADS)
Ribeiro, A. I.; Fengler, F. H.; Longo, R. M.; Mello, G. F.; Damame, D. B.; Crowley, D. E.
2015-12-01
Brazil has a high mineral potential that have been explored over the years. A large fraction of these mineral resources are located in Amazon region, which is known for its large biodiversity and world climate importance. As the policies that control the Amazon preservation are relatively new, several mining activities have been exploring the Amazon territory, promoting a large process of degradation. Once the mining activities have a high potential of environmental changes the government created polices to restrain the mining in Amazon forests and obligate mining companies to reclaim theirs minded areas. However, the measurement of reclamation development still is a challenging task for the Professionals involved. The volume and complexity of the variables, allied to the difficulty in identifying the reclamation of ecosystem functionalities are still lack to ensure the reclamation success. In this sense this work aims to investigate the representativeness of morphometric soil aggregates parameters in the understanding of reclamation development. The study area is located in the National Forest of Jamari, State of Rondônia. In the past mining companies explored the region producing eight closed mines that are now in reclamation process. The soil aggregates morphometric measurements: geometric mean diameter (GMD), aggregate circularity index, and aggregate roundness, were choose based in its obtaining facility, and their association to biological activity. To achieve the proposed objective the aggregates of eight sites in reclamation, from different closed mines, where chosen and compared to Amazon forest and open mine soil aggregates. The results were analyzed to one way ANOVA to identifying differences between areas in reclamation, natural ecosystem, and open mine. It was obtained differences for GMD and circularity index. However, only the circularity index allowed to identifying differences between the reclamation sites. The results allowed concluding: (1) Morphometric aggregates measurements can represent the reclamation process in Amazon territory; (2) To validate the results more areas in reclamation process in different ecosystems must be investigated; (3) Roundness didn't represented any differences.Key words: circularity index, ecosystem, geometric mean diameter.
Atmospheric correction analysis on LANDSAT data over the Amazon region. [Manaus, Brazil
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Dias, L. A. V.; Dossantos, J. R.; Formaggio, A. R.
1983-01-01
The Amazon Region natural resources were studied in two ways and compared. A LANDSAT scene and its attributes were selected, and a maximum likelihood classification was made. The scene was atmospherically corrected, taking into account Amazonic peculiarities revealed by (ground truth) of the same area, and the subsequent classification. Comparison shows that the classification improves with the atmospherically corrected images.
Nobre, Carlos A.; Sampaio, Gilvan; Borma, Laura S.; Castilla-Rubio, Juan Carlos; Silva, José S.; Cardoso, Manoel
2016-01-01
For half a century, the process of economic integration of the Amazon has been based on intensive use of renewable and nonrenewable natural resources, which has brought significant basin-wide environmental alterations. The rural development in the Amazonia pushed the agricultural frontier swiftly, resulting in widespread land-cover change, but agriculture in the Amazon has been of low productivity and unsustainable. The loss of biodiversity and continued deforestation will lead to high risks of irreversible change of its tropical forests. It has been established by modeling studies that the Amazon may have two “tipping points,” namely, temperature increase of 4 °C or deforestation exceeding 40% of the forest area. If transgressed, large-scale “savannization” of mostly southern and eastern Amazon may take place. The region has warmed about 1 °C over the last 60 y, and total deforestation is reaching 20% of the forested area. The recent significant reductions in deforestation—80% reduction in the Brazilian Amazon in the last decade—opens up opportunities for a novel sustainable development paradigm for the future of the Amazon. We argue for a new development paradigm—away from only attempting to reconcile maximizing conservation versus intensification of traditional agriculture and expansion of hydropower capacity—in which we research, develop, and scale a high-tech innovation approach that sees the Amazon as a global public good of biological assets that can enable the creation of innovative high-value products, services, and platforms through combining advanced digital, biological, and material technologies of the Fourth Industrial Revolution in progress. PMID:27638214
Nobre, Carlos A; Sampaio, Gilvan; Borma, Laura S; Castilla-Rubio, Juan Carlos; Silva, José S; Cardoso, Manoel
2016-09-27
For half a century, the process of economic integration of the Amazon has been based on intensive use of renewable and nonrenewable natural resources, which has brought significant basin-wide environmental alterations. The rural development in the Amazonia pushed the agricultural frontier swiftly, resulting in widespread land-cover change, but agriculture in the Amazon has been of low productivity and unsustainable. The loss of biodiversity and continued deforestation will lead to high risks of irreversible change of its tropical forests. It has been established by modeling studies that the Amazon may have two "tipping points," namely, temperature increase of 4 °C or deforestation exceeding 40% of the forest area. If transgressed, large-scale "savannization" of mostly southern and eastern Amazon may take place. The region has warmed about 1 °C over the last 60 y, and total deforestation is reaching 20% of the forested area. The recent significant reductions in deforestation-80% reduction in the Brazilian Amazon in the last decade-opens up opportunities for a novel sustainable development paradigm for the future of the Amazon. We argue for a new development paradigm-away from only attempting to reconcile maximizing conservation versus intensification of traditional agriculture and expansion of hydropower capacity-in which we research, develop, and scale a high-tech innovation approach that sees the Amazon as a global public good of biological assets that can enable the creation of innovative high-value products, services, and platforms through combining advanced digital, biological, and material technologies of the Fourth Industrial Revolution in progress.
NASA Astrophysics Data System (ADS)
Nobre, Carlos A.; Sampaio, Gilvan; Borma, Laura S.; Castilla-Rubio, Juan Carlos; Silva, José S.; Cardoso, Manoel
2016-09-01
For half a century, the process of economic integration of the Amazon has been based on intensive use of renewable and nonrenewable natural resources, which has brought significant basin-wide environmental alterations. The rural development in the Amazonia pushed the agricultural frontier swiftly, resulting in widespread land-cover change, but agriculture in the Amazon has been of low productivity and unsustainable. The loss of biodiversity and continued deforestation will lead to high risks of irreversible change of its tropical forests. It has been established by modeling studies that the Amazon may have two “tipping points,” namely, temperature increase of 4 °C or deforestation exceeding 40% of the forest area. If transgressed, large-scale “savannization” of mostly southern and eastern Amazon may take place. The region has warmed about 1 °C over the last 60 y, and total deforestation is reaching 20% of the forested area. The recent significant reductions in deforestation—80% reduction in the Brazilian Amazon in the last decade—opens up opportunities for a novel sustainable development paradigm for the future of the Amazon. We argue for a new development paradigm—away from only attempting to reconcile maximizing conservation versus intensification of traditional agriculture and expansion of hydropower capacity—in which we research, develop, and scale a high-tech innovation approach that sees the Amazon as a global public good of biological assets that can enable the creation of innovative high-value products, services, and platforms through combining advanced digital, biological, and material technologies of the Fourth Industrial Revolution in progress.
Holocene palaeoenvironmental history of the Amazonian mangrove belt
NASA Astrophysics Data System (ADS)
Cohen, Marcelo Cancela Lisboa; Pessenda, Luiz Carlos Ruiz; Behling, Hermann; de Fátima Rossetti, Dilce; França, Marlon Carlos; Guimarães, José Tasso Felix; Friaes, Yuri; Smith, Clarisse Beltrão
2012-11-01
Wetland dynamic in the northern Brazilian Amazon region during the Holocene was reviewed using palynological, carbon and nitrogen isotopes records, and C/N ratio previously published. The integration of 72 radiocarbon dates recorded in 34 sediment cores sampled along the marine and fluvial littoral, and mainly influenced by the Amazon River, reveals that marine influence and mangrove vegetation were wider than today on the mouth of Amazon River between >8990-8690 and 2300-2230 cal yr BP, forming a continuous mangrove belt along the northern Brazilian Amazon littoral. The establishment of this mangrove strip is a direct consequence of the marine incursion caused by post-glacial sea-level rise possibly associated with tectonic subsidence during the Early and Middle Holocene. In the Late Holocene, in areas influenced by the Amazon River discharge, the mangroves were replaced by freshwater vegetation, and the coast morphology evolved from an estuarine dominated into a rectilinear coast due to coastal progradation. Nevertheless, the marine-influenced littoral, which is currently dominated by mangroves and salt-marsh vegetation, has persistently had brackish water vegetation over tidal mud flats throughout the entire Holocene. Likely, the fragmentation of this continuous mangrove line during the Late Holocene was caused by the increase of river freshwater discharge associated to the change from dry into wet climates in the Late Holocene. This caused a significant decrease of tidal water salinity in areas near the mouth of Amazon River. These changes in the Amazon discharge are probably associated with dry and wet periods in the northern Amazon region during the Holocene.
Deforestation in Brazil: motivations, journeys and tendencies
NASA Astrophysics Data System (ADS)
Leite, J. C.; Ferreira, A. J. D.; Esteves, T. C. J.; Bento, C. P. M.
2012-04-01
José Carlos Leite1; António José Dinis Ferreira2; Tanya Cristina de Jesus Esteves2; Célia Patrícia Martins Bento2 1Universidade Federal de Mato Grosso, Brazil; 2IPC - Escola Superior Agrária de Coimbra, Portugal Over the last three decades, deforestation in Brazil occurred systematically in the area known as the "arc of deforestation", an extensive geographical area located in the interface of the Cerrado and the Amazon biomes. This work encompasses the reasons, causes and/or motivations of that recent deforestation, focusing on the Central-West and Northern regions. A number of reasons will be presented, seeking to build an approach able to identify the deepest roots of deforestation of those regions. Our actions over the environment are framed by our cultural matrix that stream from a western philosophic attitude. This way, to understand the framework where the deforestation actions are justified requires a multidisciplinary approach to understand the deforestation of the Cerrado and Amazon biomes, since the motivations for forest destruction in Brazil are complex and not entirely understood within the domains of a single disciplinary area. To search for an isolated cause to understand the recent deforestation can only be plausible if we ignore information on what actually happens. The methodology used in this work is based on a bibliographical revision, analysis of georeferrenced information, participative processes implementation and observation of stakeholder behavior, and field research. It departs from a general vision on deforestation that initially occurred at the littoral region, by the Atlantic Rainforest, right after the arrival of the Europeans, and throughout the centuries penetrates towards the interior, hitting the Cerrado and Amazon biomes. In this last case, we focused on the Vale do Alto Guaporé region, near Bolivia, where the intensity of the deforestation was verified from 1970 to 1990. Ultimately, the final result is a mosaic of reasons for deforestation - that has been done by both large and small land owners - that incorporates other views that have been absent in the explanations given by so-called specialized literature of Brazil's deforestation.
Input of particulate organic and dissolved inorganic carbon from the Amazon to the Atlantic Ocean
NASA Astrophysics Data System (ADS)
Druffel, E. R. M.; Bauer, J. E.; Griffin, S.
2005-03-01
We report concentrations and isotope measurements (radiocarbon and stable carbon) of dissolved inorganic carbon (DIC) and suspended particulate organic carbon (POC) in waters collected from the mouth of the Amazon River and the North Brazil Current. Samples were collected in November 1991, when the Amazon hydrograph was at its annual minimum and the North Brazil Current had retroflected into the equatorial North Atlantic. The DIC Δ14C results revealed postbomb carbon in river and ocean waters, with slightly higher values at the river mouth. The low DIC δ13C signature of the river end-member (-11‰) demonstrates that about half of the DIC originated from the remineralization of terrestrially derived organic matter. A linear relationship between DIC and salinity indicates that DIC was mixed nearly conservatively in the transition zone from the river mouth to the open ocean, though there was a small amount (≤10%) of organic matter remineralization in the mesohaline region. The POC Δ14C values in the river mouth were markedly lower than those values from the western Amazon region (Hedges et al., 1986). We conclude that the dominant source of POC near the river mouth and in the inner Amazon plume during November 1991 was aged, resuspended material of significant terrestrial character derived from shelf sediments, while the outer plume contained mainly marine-derived POC.
NASA Astrophysics Data System (ADS)
Sawakuchi, A. O.; Jain, M.; Mineli, T. D.; Nogueira, L.; Bertassoli, D. J.; Häggi, C.; Sawakuchi, H. O.; Pupim, F. N.; Grohmann, C. H.; Chiessi, C. M.; Zabel, M.; Mulitza, S.; Mazoca, C. E. M.; Cunha, D. F.
2018-06-01
The Amazon region hosts the world's largest watershed spanning from high elevation Andean terrains to lowland cratonic shield areas in tropical South America. This study explores variations in optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL) signals in suspended silt and riverbed sands retrieved from major Amazon rivers. These rivers drain Pre-Cambrian to Cenozoic source rocks in areas with contrasting denudation rates. In contrast to the previous studies, we do not observe an increase in the OSL sensitivity of quartz with transport distance; for example, Tapajós and Xingu Rivers show more sensitive quartz than Solimões and Madeira Rivers, even though the latter have a significantly larger catchment area and longer sediment transport distance. Interestingly, high sensitivity quartz is observed in rivers draining relatively stable Central Brazil and Guiana shield areas (denudation rate ξ = 0.04 mmyr-1), while low sensitivity quartz occurs in less stable Andean terrains (ξ = 0.24 mmyr-1). An apparent linear correlation between quartz OSL sensitivity and denudation rate suggests that OSL sensitivity may be used as a proxy for erosion rates in the Amazon basin. Furthermore, luminescence sensitivity measured in sand or silt arises from the same mineral components (quartz and feldspar) and clearly discriminates between Andean and shield sediments, avoiding the grain size bias in provenance analysis. These results have implications for using luminescence sensitivity as a proxy for Andean and shield contributions in the stratigraphic record, providing a new tool to reconstruct past drainage configurations within the Amazon basin.
A deforestation-induced tipping point for the South American monsoon system.
Boers, Niklas; Marwan, Norbert; Barbosa, Henrique M J; Kurths, Jürgen
2017-01-25
The Amazon rainforest has been proposed as a tipping element of the earth system, with the possibility of a dieback of the entire ecosystem due to deforestation only of parts of the rainforest. Possible physical mechanisms behind such a transition are still subject to ongoing debates. Here, we use a specifically designed model to analyse the nonlinear couplings between the Amazon rainforest and the atmospheric moisture transport from the Atlantic to the South American continent. These couplings are associated with a westward cascade of precipitation and evapotranspiration across the Amazon. We investigate impacts of deforestation on the South American monsoonal circulation with particular focus on a previously neglected positive feedback related to condensational latent heating over the rainforest, which strongly enhances atmospheric moisture inflow from the Atlantic. Our results indicate the existence of a tipping point. In our model setup, crossing the tipping point causes precipitation reductions of up to 40% in non-deforested parts of the western Amazon and regions further downstream. The responsible mechanism is the breakdown of the aforementioned feedback, which occurs when deforestation reduces transpiration to a point where the available atmospheric moisture does not suffice anymore to release the latent heat needed to maintain the feedback.
A deforestation-induced tipping point for the South American monsoon system
Boers, Niklas; Marwan, Norbert; Barbosa, Henrique M. J.; Kurths, Jürgen
2017-01-01
The Amazon rainforest has been proposed as a tipping element of the earth system, with the possibility of a dieback of the entire ecosystem due to deforestation only of parts of the rainforest. Possible physical mechanisms behind such a transition are still subject to ongoing debates. Here, we use a specifically designed model to analyse the nonlinear couplings between the Amazon rainforest and the atmospheric moisture transport from the Atlantic to the South American continent. These couplings are associated with a westward cascade of precipitation and evapotranspiration across the Amazon. We investigate impacts of deforestation on the South American monsoonal circulation with particular focus on a previously neglected positive feedback related to condensational latent heating over the rainforest, which strongly enhances atmospheric moisture inflow from the Atlantic. Our results indicate the existence of a tipping point. In our model setup, crossing the tipping point causes precipitation reductions of up to 40% in non-deforested parts of the western Amazon and regions further downstream. The responsible mechanism is the breakdown of the aforementioned feedback, which occurs when deforestation reduces transpiration to a point where the available atmospheric moisture does not suffice anymore to release the latent heat needed to maintain the feedback. PMID:28120928
Suspended sediments of the modern Amazon and Orinoco rivers
Meade, R.H.
1994-01-01
The Amazon and Orinoco Rivers are massive transcontinental conveyance systems for suspended sediment. They derive about 90% of their sediment from the Andes that support their western headwaters, transport it for thousands of kilometers across the breadth of the continent and deposit it in the coastal zones of the Atlantic. At their points of maximum suspended-sediment discharge, the Amazon transports an average of 1100-1300 ?? 106 tons per year and the Orinoco transports about 150 ?? 106 tons per year. Relations of sediment discharge to water discharge are complicated by unusual patterns of seasonal storage and remobilization, increased storage and reduced transport of sediment in the middle Orinoco during periods of peak water discharge, and storage of suspended sediment in the lower Amazon during rising discharge and resuspension during falling discharge. Spatial distributions of suspended sediment in cross-sections of both rivers are typically heterogeneous, not only in the vertical sense but also in the lateral. The cross-channel mixing of tributary inputs into the mainstem waters is a slow process that requires several hundred kilometers of downriver transport to complete. Considerable fine-grained sediment is exchanged between rivers and floodplains by the combination of overbank deposition and bank erosion. ?? 1994.
A deforestation-induced tipping point for the South American monsoon system
NASA Astrophysics Data System (ADS)
Boers, Niklas; Marwan, Norbert; Barbosa, Henrique M. J.; Kurths, Jürgen
2017-01-01
The Amazon rainforest has been proposed as a tipping element of the earth system, with the possibility of a dieback of the entire ecosystem due to deforestation only of parts of the rainforest. Possible physical mechanisms behind such a transition are still subject to ongoing debates. Here, we use a specifically designed model to analyse the nonlinear couplings between the Amazon rainforest and the atmospheric moisture transport from the Atlantic to the South American continent. These couplings are associated with a westward cascade of precipitation and evapotranspiration across the Amazon. We investigate impacts of deforestation on the South American monsoonal circulation with particular focus on a previously neglected positive feedback related to condensational latent heating over the rainforest, which strongly enhances atmospheric moisture inflow from the Atlantic. Our results indicate the existence of a tipping point. In our model setup, crossing the tipping point causes precipitation reductions of up to 40% in non-deforested parts of the western Amazon and regions further downstream. The responsible mechanism is the breakdown of the aforementioned feedback, which occurs when deforestation reduces transpiration to a point where the available atmospheric moisture does not suffice anymore to release the latent heat needed to maintain the feedback.
Measurement of deforestation in the Brazilian Amazon using satellite remote sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skole, D.L.
1992-01-01
Understanding of the role of the biota in the global carbon cycle is limited by an absence of accurate measurements of deforestation rates in the tropics. This study measures the rate and extent of deforestation in the Brazilian Amazon, the largest extant tropical forest biome in the world. The study uses remote sensing measurements of deforestation rates, the area of secondary vegetation, and tabular data to document deforestation. The analysis concludes: (1) AVHRR will greatly overestimate deforestation and be highly variable; the use of a brightness temperature threshold is highly sensitive and unreliable. The upward bias of AVHRR is amore » function of the density of deforestation. (2) Accurate measurement of deforestation requires Landsat TM data, and can be accomplished using low cost visual interpretation of photographic products at 1:250,000 scales. (3) Secondary growth in the Brazilian Amazon represents a large fraction of the total deforested area, and the abandonment of agricultural land is an important land cover transition. Abandonment rates were 70--83% of clearing rates from primary forests. At any one point in time, approximately 30% of the deforested area is in some stage of abandonment, and quite likely nearly all deforested land becomes abandoned after approximately 5 years. (4) Previous estimates of the total area deforested in the Amazon, as well as deforestation rates, have been too high by as much as 4-fold. A complete assessment of the entire Legal Amazon using over 200 Landsat images measures 251 [times] 10[sup 3] km[sup 2] deforestation as of 1988, or approximately 6% of the closed forests of the region. The average annual rate of deforestation between 1978 and 1988 was 18 [times] 10[sup 3] km[sup 2] yr[sup [minus]1]. These findings suggest the estimates of carbon emissions from the Amazon for the late 1980s have been too high, since the area of regrowth is large and rates of deforestation are lower than previously believed.« less
NASA Astrophysics Data System (ADS)
Li, Wenhong; Fu, Rong; Dickinson, Robert E.
2006-01-01
The global climate models for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) predict very different changes of rainfall over the Amazon under the SRES A1B scenario for global climate change. Five of the eleven models predict an increase of annual rainfall, three models predict a decrease of rainfall, and the other three models predict no significant changes in the Amazon rainfall. We have further examined two models. The UKMO-HadCM3 model predicts an El Niño-like sea surface temperature (SST) change and warming in the northern tropical Atlantic which appear to enhance atmospheric subsidence and consequently reduce clouds over the Amazon. The resultant increase of surface solar absorption causes a stronger surface sensible heat flux and thus reduces relative humidity of the surface air. These changes decrease the rate and length of wet season rainfall and surface latent heat flux. This decreased wet season rainfall leads to drier soil during the subsequent dry season, which in turn can delay the transition from the dry to wet season. GISS-ER predicts a weaker SST warming in the western Pacific and the southern tropical Atlantic which increases moisture transport and hence rainfall in the Amazon. In the southern Amazon and Nordeste where the strongest rainfall increase occurs, the resultant higher soil moisture supports a higher surface latent heat flux during the dry and transition season and leads to an earlier wet season onset.
Amazon water lenses and the influence of the North Brazil Current on the continental shelf
NASA Astrophysics Data System (ADS)
Prestes, Yuri O.; Silva, Alex Costa da; Jeandel, Catherine
2018-05-01
The exchange processes on the Amazon continental shelf in northern Brazil are subject to complex interactions that involve forcings derived from distinct sources. The Amazon shelf is a unique and highly dynamic environment in which considerable discharge of freshwater enters the Atlantic Ocean, producing extensive Amazon Water Lenses (AWL). In addition to the presence of the AWL, the shelf is influenced by the semidiurnal oscillations of the tides and the strong North Brazil Current (NBC), a boundary current of the western Atlantic. The present study was based primarily on the influence of the freshwater input and the NBC on the shelf and the Amazon Shelf Break (ASB) off the mouth of the Pará River. For this purpose, hydrographic and hydrodynamic data were obtained by moorings of the AMANDES Project (April-July 2008), located on the Amazon shelf and the ASB. Spectral analysis and the continuous wavelet transform were applied to define tidal (high frequency/short period) and subtidal (low frequency/long period) signals. The results indicated that on both the shelf and the break, the semidiurnal tides are responsible for the residual landward transport and are predominantly across-shelf. Low-frequency motions in the synoptic bands and the AWL are related to spatial changes in the velocity field, mainly on the ASB in the along-shelf direction. The flow of the NBC can be interpreted as an along-shelf low-frequency oscillation capable of altering the spatial configuration of the velocity field, although its influence is perceived only in the absence of the AWL.
Efficiency of protected areas in Amazon and Atlantic Forest conservation: A spatio-temporal view
NASA Astrophysics Data System (ADS)
Sobral-Souza, Thadeu; Vancine, Maurício Humberto; Ribeiro, Milton Cezar; Lima-Ribeiro, Matheus S.
2018-02-01
The Amazon and Atlantic Forest are considered the world's most biodiverse biomes. Human and climate change impacts are the principal drivers of species loss in both biomes, more severely in the Atlantic Forest. In response to species loss, the main conservation action is the creation of protected areas (PAs). Current knowledge and research on the PA network's conservation efficiency is scarce, and existing studies have mainly considered a past temporal view. In this study, we tested the efficiency of the current PA network to maintain climatically stable areas (CSAs) across the Amazon and Atlantic Forest. To this, we used an ecological niche modeling approach to biome and paleoclimatic simulations. We propose three categories of conservation priority areas for both biomes, considering CSAs, PAs and intact forest remnants. The biomes vary in their respective PA networks' protection efficiency. Regarding protect CSAs, the Amazon PA network is four times more efficient than the Atlantic Forest PA network. New conservation efforts in these two forest biomes require different approaches. We discussed the conservation actions that should be taken in each biome to increase the efficiency of the PA network, considering both the creation and expansion of PAs as well as restoration programs.
NASA Astrophysics Data System (ADS)
Tohver, Eric; van der Pluijm, B. A.; Van der Voo, R.; Rizzotto, G.; Scandolara, J. E.
2002-05-01
A paleomagnetic, geochronologic and petrographic study was undertaken on the flat-lying gabbros and basalts of the Nova Floresta Formation of Rondônia state, western Brazil in order to constrain the Mesoproterozoic paleogeography of the Amazon craton. Measurement of the anisotropy of magnetic susceptibility on the gabbroic samples reveals a flat-lying foliation with a radiating pattern of lineations, supporting the field evidence that the gabbros are part of a large, undeformed sill. Petrographic observations of oxides in the gabbros reveals two populations of magnetite grains produced during the original cooling of the sill: large, oxyexsolved titanomagnetite grains and fine-grained magnetite in igneous reaction rims. New 40Ar/39Ar age dating of biotite and plagioclase yield ages of ∼1.2 Ga, which represent the rapid cooling following emplacement of the mafic magma. Whole rock dating of basalt samples yields total gas ages of 1062±3 Ma, similar to the ∼1.0 Ga K/Ar ages reported by previous workers. However, the strong compositional dependence of the age spectrum renders this younger whole rock age unreliable except as a minimum constraint. A single magnetic component is found in the basalts, indistinguishable from the characteristic remanence found in the gabbros that is oriented WNW and steeply upward. This magnetization is considered to be primary and was acquired during the cooling of the sill and associated lavas. A paleomagnetic pole calculated from the Nova Floresta Formation (n=16 sites, Plat.=24.6°N, Plong.=164.6°E, A95=5.5°, Q=5), the first reported pole for the Amazon craton for the 1200-600 Ma Rodinia time period, constrains the paleogeographic position of Amazonia at ∼1.2 Ga. Juxtaposition of the western Amazon craton with the Llano segment of the Laurentia's Grenville margin causes the NF pole to lie on the 1.2 Ga portion of the combined APWP for Laurentia and Greenland, which indicates that a collision with the Amazon craton could have caused the Llano deformation in early Grenvillian times.
The Late Miocene paleogeography of the Amazon Basin and the evolution of the Amazon River system
NASA Astrophysics Data System (ADS)
Latrubesse, Edgardo M.; Cozzuol, Mario; da Silva-Caminha, Silane A. F.; Rigsby, Catherine A.; Absy, Maria Lucia; Jaramillo, Carlos
2010-05-01
On the basis of paleontological content (vertebrates and palynology) and facies analysis from river banks, road cuts, and three wells, we have assigned the uppermost levels of the Solimões Formation in western Amazonia, Brazil, to the Late Miocene. The vertebrate fossil record from outcropping sediments is assigned to the Huayquerian-Mesopotamian mammalian biozones, spanning 9-6.5 Ma. Additionally, we present results that demonstrate that deposits in Peruvian Amazonia attributed to Miocene tidal environments are actually fluvial sediments that have been misinterpreted (both environmentally and chronologically) by several authors. The entire Late Miocene sequence was deposited in a continental environment within a subsiding basin. The facies analysis, fossil fauna content, and palynological record indicate that the environment of deposition was dominated by avulsive rivers associated with megafan systems, and avulsive rivers in flood basins (swamps, lakes, internal deltas, and splays). Soils developed on the flatter, drier areas, which were dominated by grasslands and gallery forest in a tropical to subtropical climate. These Late Miocene sediments were deposited from westward of the Purus arch up to the border of Brazil with Peru (Divisor Ranges) and Bolivia (Pando block). Eastward of the Iquitos structural high, however, more detailed studies, including vertebrate paleontology, need to be performed to calibrate with more precision the ages of the uppermost levels of the Solimões Formation. The evolution of the basin during the late Miocene is mainly related to the tectonic behavior of the Central Andes (˜ 3°-15°S). At approximately 5 Ma, a segment of low angle of subduction was well developed in the Nazca Plate, and the deformation in the Subandean foreland produced the inland reactivation of the Divisor/Contamana Ranges and tectonic arrangements in the Eastern Andes. During the Pliocene southwestern Brazilian Amazonia ceased to be an effective sedimentary basin, and became instead an erosional area that contributed sediments to the Amazon fluvial system. At that time, the lowland fluvial systems of southwestern Amazonia (the Purus, Jurua and Javarí basins) become isolated from the Andes by the newly formed north-flowing Ucayali system and south-east flowing Madre de Dios System. It was during the early Pliocene that the Amazon fluvial system integrated regionally and acquired its present appearance, and also when it started to drain water and sediments on a large scale to the Atlantic Ocean.
Scherer, W F; Madalengoitia, J; Flores, W; Acosta, M
1975-01-01
Two strains of eastern encephalitis (EE) virus were isolated in the Amazon region of Peru near Pucallpa, Loreto Department, using sentinel hamsters. EE virus antibodies were found in healthy horses at both Pucallpa and Iquitos in the same Department. Fourteen group C and four Guama group arboviruses were recovered from sentenel hamsters and mosquitoes near Iquitos. The group C agents were Caraparu-Ossa, Marituba, and Oriboca-Itaqui viruses, and the Guama group agents were Bimiti virus. Besides providing a detailed account of these investigations, this article includes a current list of known arboviruses of the American tropics that can be detected with sentinel hamsters.
Physical stature of adult Tsimane' Amerindians, Bolivian Amazon in the 20th century.
Godoy, Ricardo A; Leonard, William R; Reyes-García, Victoria; Goodman, Elizabeth; McDade, Thomas; Huanca, Tomás; Tanner, Susan; Vadez, Vincent
2006-06-01
We examine the association between exposure to the market and Western society on the height of adult Tsimane', a foraging-farming society in the Bolivian Amazon. As with other contemporary native peoples, we find little evidence of a significant secular change in height during 1920-1980. Female height bore a positive association with own schooling and fluency in spoken Spanish and with maternal modern human capital (schooling, writing ability, and fluency in spoken Spanish), but male heights bore no association with parental height or with modern human capital. The absence of a secular change likely reflects the persistence of traditional forms of social organization and production that protect health.
A long pollen record from lowland Amazonia: Forest and cooling in glacial times
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colinvaux, P.A.; Moreno, J.E.; Bush, M.B.
A continuous pollen history of more than 40,000 years was obtained from a lake in the lowland Amazon rain forest. Pollen spectra demonstrate that tropical rain forest occupied the region continuously and that savannas or grasslands were not present during the last glacial maximum. The data suggest that the western Amazon forest was not fragmented into refugia in glacial times and that the lowlands were not a source of dust. Glacial age forests were comparable to modern forests but also included species now restricted to higher evaluations by temperature, suggesting a cooling of the order of 5{degrees} to 6{degrees}C. 23more » refs., 22 tabs.« less
Protecting the Amazon with protected areas
Walker, Robert; Moore, Nathan J.; Arima, Eugenio; Perz, Stephen; Simmons, Cynthia; Caldas, Marcellus; Vergara, Dante; Bohrer, Claudio
2009-01-01
This article addresses climate-tipping points in the Amazon Basin resulting from deforestation. It applies a regional climate model to assess whether the system of protected areas in Brazil is able to avoid such tipping points, with massive conversion to semiarid vegetation, particularly along the south and southeastern margins of the basin. The regional climate model produces spatially distributed annual rainfall under a variety of external forcing conditions, assuming that all land outside protected areas is deforested. It translates these results into dry season impacts on resident ecosystems and shows that Amazonian dry ecosystems in the southern and southeastern basin do not desiccate appreciably and that extensive areas experience an increase in precipitation. Nor do the moist forests dry out to an excessive amount. Evidently, Brazilian environmental policy has created a sustainable core of protected areas in the Amazon that buffers against potential climate-tipping points and protects the drier ecosystems of the basin. Thus, all efforts should be made to manage them effectively. PMID:19549819
Protecting the Amazon with protected areas.
Walker, Robert; Moore, Nathan J; Arima, Eugenio; Perz, Stephen; Simmons, Cynthia; Caldas, Marcellus; Vergara, Dante; Bohrer, Claudio
2009-06-30
This article addresses climate-tipping points in the Amazon Basin resulting from deforestation. It applies a regional climate model to assess whether the system of protected areas in Brazil is able to avoid such tipping points, with massive conversion to semiarid vegetation, particularly along the south and southeastern margins of the basin. The regional climate model produces spatially distributed annual rainfall under a variety of external forcing conditions, assuming that all land outside protected areas is deforested. It translates these results into dry season impacts on resident ecosystems and shows that Amazonian dry ecosystems in the southern and southeastern basin do not desiccate appreciably and that extensive areas experience an increase in precipitation. Nor do the moist forests dry out to an excessive amount. Evidently, Brazilian environmental policy has created a sustainable core of protected areas in the Amazon that buffers against potential climate-tipping points and protects the drier ecosystems of the basin. Thus, all efforts should be made to manage them effectively.
Lessmann, Janeth; Fajardo, Javier; Muñoz, Jesús; Bonaccorso, Elisa
2016-07-01
Ecuador will experience a significant expansion of the oil industry in its Amazonian region, one of the most biodiverse areas of the world. In view of the changes that are about to come, we explore the conflicts between oil extraction interests and biodiversity protection and apply systematic conservation planning to identify priority areas that should be protected in different oil exploitation scenarios. First, we quantified the current extent of oil blocks and protected zones and their overlap with two biodiversity indicators: 25 ecosystems and 745 species (whose distributions were estimated via species distribution models). With the new scheme of oil exploitation, oil blocks cover 68% (68,196 km(2)) of the Ecuadorian Amazon; half of it occupied by new blocks open for bids in the southern Amazon. This region is especially vulnerable to biodiversity losses, because peaks of species diversity, 19 ecosystems, and a third of its protected zones coincide spatially with oil blocks. Under these circumstances, we used Marxan software to identify priority areas for conservation outside oil blocks, but their coverage was insufficient to completely represent biodiversity. Instead, priority areas that include southern oil blocks provide a higher representation of biodiversity indicators. Therefore, preserving the southern Amazon becomes essential to improve the protection of Amazonian biodiversity in Ecuador, and avoiding oil exploitation in these areas (33% of the extent of southern oil blocks) should be considered a conservation alternative. Also, it is highly recommended to improve current oil exploitation technology to reduce environmental impacts in the region, especially within five oil blocks that we identified as most valuable for the conservation of biodiversity. The application of these and other recommendations depends heavily on the Ecuadorian government, which needs to find a better balance between the use of the Amazon resources and biodiversity conservation.
Sabroza, Paulo Chagastelles; de Carvalho, Lino Augusto Sander; Nobre, Carlos Afonso
2017-01-01
Background This study aims to describe the role of mobility in malaria transmission by discussing recent changes in population movements in the Brazilian Amazon and developing a flow map of disease transmission in this region. Methodology/Principal findings This study presents a descriptive analysis using an ecological approach on regional and local scales. The study location was the municipality of Porto Velho, which is the capital of Rondônia state, Brazil. Our dataset was obtained from the official health database, the population census and an environmental database. During 2000–2007 and 2007–2010, the Porto Velho municipality had an annual population growth of 1.42% and 5.07%, respectively. This population growth can be attributed to migration, which was driven by the construction of the Madeira River hydroelectric complex. From 2010 to 2012, 63,899 malaria-positive slides were reported for residents of Porto Velho municipality; 92% of the identified samples were autochthonous, and 8% were allochthonous. The flow map of patients' movements between residential areas and areas of suspected infection showed two patterns of malaria transmission: 1) commuting between residential areas and the Jirau hydropower dam reservoir, and 2) movements between urban areas and farms and resorts in rural areas. It was also observed that areas with greater occurrences of malaria were characterized by a low rate of deforestation. Conclusions The Porto Velho municipality exhibits high malaria endemicity and plays an important role in disseminating the parasite to other municipalities in the Amazon and even to non-endemic areas of the country. Migration remains an important factor for the occurrence of malaria. However, due to recent changes in human occupation of the Brazilian Amazon, characterized by intense expansion of transportation networks, commuting has also become an important factor in malaria transmission. The magnitude of this change necessitates a new model to explain malaria transmission in the Brazilian Amazon. PMID:28222159
Angelo, Jussara Rafael; Katsuragawa, Tony Hiroshi; Sabroza, Paulo Chagastelles; de Carvalho, Lino Augusto Sander; Silva, Luiz Hildebrando Pereira da; Nobre, Carlos Afonso
2017-01-01
This study aims to describe the role of mobility in malaria transmission by discussing recent changes in population movements in the Brazilian Amazon and developing a flow map of disease transmission in this region. This study presents a descriptive analysis using an ecological approach on regional and local scales. The study location was the municipality of Porto Velho, which is the capital of Rondônia state, Brazil. Our dataset was obtained from the official health database, the population census and an environmental database. During 2000-2007 and 2007-2010, the Porto Velho municipality had an annual population growth of 1.42% and 5.07%, respectively. This population growth can be attributed to migration, which was driven by the construction of the Madeira River hydroelectric complex. From 2010 to 2012, 63,899 malaria-positive slides were reported for residents of Porto Velho municipality; 92% of the identified samples were autochthonous, and 8% were allochthonous. The flow map of patients' movements between residential areas and areas of suspected infection showed two patterns of malaria transmission: 1) commuting between residential areas and the Jirau hydropower dam reservoir, and 2) movements between urban areas and farms and resorts in rural areas. It was also observed that areas with greater occurrences of malaria were characterized by a low rate of deforestation. The Porto Velho municipality exhibits high malaria endemicity and plays an important role in disseminating the parasite to other municipalities in the Amazon and even to non-endemic areas of the country. Migration remains an important factor for the occurrence of malaria. However, due to recent changes in human occupation of the Brazilian Amazon, characterized by intense expansion of transportation networks, commuting has also become an important factor in malaria transmission. The magnitude of this change necessitates a new model to explain malaria transmission in the Brazilian Amazon.
Source area and seasonal variation of dissolved Sr isotope composition in rivers of the Amazon basin
NASA Astrophysics Data System (ADS)
Santos, Roberto V.; Sondag, Francis; Cochonneau, Gerard; Lagane, Christelle; Brunet, Pierre; Hattingh, Karina; Chaves, Jeane G. S.
2014-05-01
We present dissolved Sr isotope data collected over 8 years from three main river systems from the Amazon Basin: Beni-Madeira, Solimões, Amazon, and Negro. The data show large 87Sr/86Sr ratio variations that were correlated with the water discharge and geology of the source areas of the suspended sediments. The Beni-Madeira system displays a high average 87Sr/86Sr ratio and large 87Sr/86Sr fluctuations during the hydrological cycle. This large average value and fluctuations were related to the presence of Precambrian rocks and Ordovician sediments in the source area of the suspended sediment of the river. In contrast, the Solimões system displays a narrow range of Sr isotope ratio variations and an average value close to 0.709. This river drains mostly Phanerozoic rocks of northern Peru and Ecuador that are characterized by low Sr isotope ratios. Despite draining areas underlain by Precambrian rocks and having high 87Sr/86Sr ratios, such rivers as the Negro and Tapajós play a minor role in the total Sr budget of the Amazon Basin. The isotopic fluctuations in the Beni-Madeira River were observed to propagate downstream at least as far as Óbidos, in the Amazon River. This signal is characterized by an inverse relationship between the concentration of elemental Sr and its isotopic ratios. During the raining season there is an increase in Sr isotopic ratio accompanied by a decrease in elemental Sr concentration. During the dry season, the Sr isotopic ration decreases and the elemental Sr concentration increases.
2008-11-01
and malarial activity in the Amazon Basin, Loreto Department, Peru , to determine the relative abundance, species diversity, and seasonal and vertical...populations. KEY WORDS Anopheles, bionomics, mosquito ecology, Amazon Basin, Peru Malaria and other arthropod-vectored diseases are on the increase...in the Amazon Basin region of Peru to date. The Puerto Almendra area was selected because human cases of dengue, malaria, Mayaro, Oropouche
Matthias, Michael A; Ricaldi, Jessica N; Cespedes, Manuel; Diaz, M Monica; Galloway, Renee L; Saito, Mayuko; Steigerwalt, Arnold G; Patra, Kailash P; Ore, Carlos Vidal; Gotuzzo, Eduardo; Gilman, Robert H; Levett, Paul N; Vinetz, Joseph M
2008-04-02
As part of a prospective study of leptospirosis and biodiversity of Leptospira in the Peruvian Amazon, a new Leptospira species was isolated from humans with acute febrile illness. Field trapping identified this leptospire in peridomestic rats (Rattus norvegicus, six isolates; R. rattus, two isolates) obtained in urban, peri-urban, and rural areas of the Iquitos region. Novelty of this species was proven by serological typing, 16S ribosomal RNA gene sequencing, pulsed-field gel electrophoresis, and DNA-DNA hybridization analysis. We have named this species "Leptospira licerasiae" serovar Varillal, and have determined that it is phylogenetically related to, but genetically distinct from, other intermediate Leptospira such as L. fainei and L. inadai. The type strain is serovar Varillal strain VAR 010(T), which has been deposited into internationally accessible culture collections. By microscopic agglutination test, "Leptospira licerasiae" serovar Varillal was antigenically distinct from all known serogroups of Leptospira except for low level cross-reaction with rabbit anti-L. fainei serovar Hurstbridge at a titer of 1:100. LipL32, although not detectable by PCR, was detectable in "Leptospira licerasiae" serovar Varillal by both Southern blot hybridization and Western immunoblot, although on immunoblot, the predicted protein was significantly smaller (27 kDa) than that of L. interrogans and L. kirschneri (32 kDa). Isolation was rare from humans (2/45 Leptospira isolates from 881 febrile patients sampled), but high titers of MAT antibodies against "Leptospira licerasiae" serovar Varillal were common (30%) among patients fulfilling serological criteria for acute leptospirosis in the Iquitos region, and uncommon (7%) elsewhere in Peru. This new leptospiral species reflects Amazonian biodiversity and has evolved to become an important cause of leptospirosis in the Peruvian Amazon.
Cespedes, Manuel; Diaz, M. Monica; Galloway, Renee L.; Saito, Mayuko; Steigerwalt, Arnold G.; Patra, Kailash P.; Ore, Carlos Vidal; Gotuzzo, Eduardo; Gilman, Robert H.; Levett, Paul N.; Vinetz, Joseph M.
2008-01-01
As part of a prospective study of leptospirosis and biodiversity of Leptospira in the Peruvian Amazon, a new Leptospira species was isolated from humans with acute febrile illness. Field trapping identified this leptospire in peridomestic rats (Rattus norvegicus, six isolates; R. rattus, two isolates) obtained in urban, peri-urban, and rural areas of the Iquitos region. Novelty of this species was proven by serological typing, 16S ribosomal RNA gene sequencing, pulsed-field gel electrophoresis, and DNA-DNA hybridization analysis. We have named this species “Leptospira licerasiae” serovar Varillal, and have determined that it is phylogenetically related to, but genetically distinct from, other intermediate Leptospira such as L. fainei and L. inadai. The type strain is serovar Varillal strain VAR 010T, which has been deposited into internationally accessible culture collections. By microscopic agglutination test, “Leptospira licerasiae” serovar Varillal was antigenically distinct from all known serogroups of Leptospira except for low level cross-reaction with rabbit anti–L. fainei serovar Hurstbridge at a titer of 1∶100. LipL32, although not detectable by PCR, was detectable in “Leptospira licerasiae” serovar Varillal by both Southern blot hybridization and Western immunoblot, although on immunoblot, the predicted protein was significantly smaller (27 kDa) than that of L. interrogans and L. kirschneri (32 kDa). Isolation was rare from humans (2/45 Leptospira isolates from 881 febrile patients sampled), but high titers of MAT antibodies against “Leptospira licerasiae” serovar Varillal were common (30%) among patients fulfilling serological criteria for acute leptospirosis in the Iquitos region, and uncommon (7%) elsewhere in Peru. This new leptospiral species reflects Amazonian biodiversity and has evolved to become an important cause of leptospirosis in the Peruvian Amazon. PMID:18382606
Applying NASA Imaging Radar Datasets to Investigate the Geomorphology of the Amazon's Planalto
NASA Astrophysics Data System (ADS)
McDonald, K. C.; Campbell, K.; Islam, R.; Alexander, P. M.; Cracraft, J.
2016-12-01
The Amazon basin is a biodiversity rich biome and plays a significant role into shaping Earth's climate, ocean and atmospheric gases. Understanding the history of the formation of this basin is essential to our understanding of the region's biodiversity and its response to climate change. During March 2013, the NASA/JPL L-band polarimetric airborne imaging radar, UAVSAR, conducted airborne studies over regions of South America including portions of the western Amazon basin. We utilize UAVSAR imagery acquired during that time over the Planalto, in the Madre de Dios region of southeastern Peru in an assessment of the underlying geomorphology, its relationship to the current distribution of vegetation, and its relationship to geologic processes through deep time. We employ UAVSAR data collections to assess the utility of these high quality imaging radar data for use in identifying geomorphologic features and vegetation communities within the context of improving the understanding of evolutionary processes, and their utility in aiding interpretation of datasets from Earth-orbiting satellites to support a basin-wide characterization across the Amazon. We derive maps of landcover and river branching structure from UAVSAR imagery. We compare these maps to those derived using imaging radar datasets from the Japanese Space Agency's ALOS PALSAR and Digital Elevation Models (DEMs) from NASA's Shuttle Radar Topography Mission (SRTM). Results provide an understanding of the underlying geomorphology of the Amazon planalto as well as its relationship to geologic processes and will support interpretation of the evolutionary history of the Amazon Basin. Portions of this work have been carried out within the framework of the ALOS Kyoto & Carbon Initiative. PALSAR data were provided by JAXA/EORC and the Alaska Satellite Facility.This work is carried out with support from the NASA Biodiversity Program and the NSF DIMENSIONS of Biodiversity Program.
Ruiz-García, Manuel; Vásquez, Catalina; Sandoval, Sergio; Kaston, Franz; Luengas-Villamil, Kelly; Shostell, Joseph Mark
2016-07-01
We sequenced the mitochondrial cytochrome b gene of 141 lowland tapirs (Tapirus terrestris) - representing the largest geographical distribution sample of this species studied across of South America to date. We compare our new data regard to two previous works on population structure and molecular systematics of T. terrestris. Our data agree with the Thoisy et al.'s work in (1) the Northern Western Amazon basin was the area with the highest gene diversity levels in T. terrestris, being probably the area of initial diversification; (2) there was no clear association between haplogroups and specific geographical areas; (3) there were clear population decreases during the last glacial maximum for the different haplogroups detected, followed by population expansions during the Holocene; and (4) our temporal splits among different T. terrestris haplogroups coincided with the first molecular clock approach carried out by these authors (fossil calibration). Nevertheless, our study disagreed regard to other aspects of the Thoisy et al.'s claims: (1) meanwhile, they detected four relevant clades in their data, we put forward six different relevant clades; (2) the Amazon River was not a strong barrier for haplotype dispersion in T. terrestris; and (3) we found reciprocal monophyly between T. terrestris and T. pinchaque. Additionally, we sequenced 42 individuals (T. terrestris, T. pinchaque, T. bairdii, and the alleged "new species", T. kabomani) for three concatenated mitochondrial genes (Cyt-b, COI, and COII) agreeing quite well with the view of Voss et al., and against of the claims of Cozzuol et al. Tapirus kabomani should be not considered as a full species with the results obtained throughout the mitochondrial sequences.
Net Primary Production of Terrestrial Ecosystems from 2000 to 2009
NASA Technical Reports Server (NTRS)
Potter, Christopher; Klooster, Steven; Genovese, Vanessa
2012-01-01
The CASA (Carnegie-Ames-Stanford) ecosystem model has been used to estimate monthly carbon fluxes in terrestrial ecosystems from 2000 to 2009, with global data inputs from NASA's Terra Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation cover mapping. Net primary production (NPP) flux for atmospheric carbon dioxide has varied slightly from year-to-year, but was predicted to have increased over short multi-year periods in the regions of the high-latitude Northern Hemisphere, South Asia, Central Africa, and the western Amazon since the year 2000. These CASA results for global NPP were found to be in contrast to other recently published modeling trends for terrestrial NPP with high sensitivity to regional drying patterns. Nonetheless, periodic declines in regional NPP were predicted by CASA for the southern and western Untied States, the southern Amazon, and southern and eastern Africa. NPP in tropical forest zones was examined in greater detail to discover lower annual production values than previously reported in many global models across the tropical rainforest zones, likely due to the enhanced detection of lower production ecosystems replacing primary rainforest.
NASA Astrophysics Data System (ADS)
Santos, Hudson P.; Mángano, M. Gabriela; Soares, Joelson L.; Nogueira, Afonso C. R.; Bandeira, José; Rudnitzki, Isaac D.
2017-07-01
Colonization of the infaunal ecospace by burrowing bilaterians is one of the most important behavioral innovations during the Ediacaran-Cambrian transition. The establishment of vertical burrows by suspension feeders in high-energy nearshore settings during Cambrian Age 2 is reflected by the appearance of the Skolithos Ichnofacies. For the first time, unquestionable vertical burrows typical of the Skolithos Ichnofacies, such as Skolithos linearis, Diplocraterion parallelum and Arenicolites isp., are recorded from nearshore siliciclastic deposits of the Raizama Formation, southeastern Amazon Craton, Brazil. Integration of ichnologic and sedimentologic datasets suggests that these trace fossils record colonization of high-energy and well-oxygenated nearshore sandy environments. Chronostratigraphically, the presence of these vertical burrows indicates an age not older than early Cambrian for the Raizama Formation, which traditionally has been regarded as Ediacaran. Therefore, the Raizama ichnofauna illustrates the advent of modern Phanerozoic ecology marked by the Agronomic Revolution. The discovery of the Skolithos Ichnofacies in these shallow-marine strata suggests possible connections between some central Western Gondwana basins.
Insight on the Peruvian Amazon River: A Planform Metric Characterization of its Morphodynamics
NASA Astrophysics Data System (ADS)
Garcia, A. M. P.; Ortals, C.; Frias, C. E.; Abad, J. D.; Vizcarra, J.
2014-12-01
Starting in Peru, the Amazon River flows through Colombia and Brazil; additionally, tributaries from Bolivia, Venezuela, and Ecuador contribute to the massive river and its unique geomorphic features. Accordingly, the Amazon Basin has become an important aspect of South America; it is an area of extraordinary biodiversity, rich resources, and unique cultures. However, due to the sheer magnitude and exceptionality of the Amazon River, research regarding the morphodynamic processes that shape and define the river has been difficult. Consequently, current research has not completely understood the planform dynamics of some portions of this river that present a main channel and secondary channels known as "anabranching structures". The purpose of this research was to gain an understanding of the geomorphology of the upper Amazon, the Peruvian section, by obtaining migration rates and planform metrics, including channel count, length, width, and sinuosity, as well as island count, area, and shape. With this data, the morphodynamics of the Peruvian Amazon, especially the relationship between the main channel and its secondary channels in each "anabranching structure" along the river, could be analyzed according to correlations found between various metrics. This analysis was carried out for 5-year time spans over a period of 25 years. Preliminary results showed that the average migration rate versus channel bend radius envelope peak is lower for the secondary channels than for the main channel. However, the maximum migration rate was not always found in the main channel; for several structures, the most dynamic channels were the secondary ones. This implies a certain periodicity to the river's migratory patterns that could be related to the valley boundaries, the local channel sinuosity or geological formations in the study area.
NASA Technical Reports Server (NTRS)
2002-01-01
This Moderate resolution Imaging Spectroradiometer (MODIS) true-color image was acquired on October 19, 2000, over a region in Brazil large enough to show much of the country's diverse landscape. Spanning some 8.5 million square kilometers (3.2 million square miles), Brazil is by far the largest South American nation--both in terms of land and population. The region known as the Amazon Basin lies to the northwest (upper left) and extends well beyond the northern and western edges of this scene. Typically, from this perspective Amazonia appears as a lush, dark green carpet due to the thick canopy of vegetation growing there. Some of the Amazon Basin is visible in this image, but much is obscured by clouds (bright white pixels), as is the Amazon River. This region is home to countless plant and animal species and some 150,000 native South Americans. The clusters of square and rectangular patterns toward the center of the image (light green or reddish-brown pixels) are where people have cleared away trees and vegetation to make room for development and agriculture. Toward the western side of the scene there is considerable haze and smoke from widespread biomass burning in parts of Brazil and Bolivia, which shares its eastern border with Brazil. Toward the east in this image is the highland, or 'cerrado,' region, which is more sparsely vegetated and has a somewhat drier climate than the Amazon Basin. The capital city, Brasilia, lies within this region just southwest of the Geral de Goias Mountains (orangish pixels running north-south). There are two large water reservoirs visible in this scene--the Sobradinho Reservoir about 800 km (500 miles) northeast of Brasilia, and the Paranaiba about 500 km (300 miles) southwest of Brasilia. MODIS flies aboard NASA's Terra spacecraft. Image courtesy Brian Montgomery, Reto Stockli, and Robert Simmon, based on data from the MODIS Science Team.
Hydroclimate changes across the Amazon lowlands over the past 45,000 years
NASA Astrophysics Data System (ADS)
Wang, Xianfeng; Edwards, R. Lawrence; Auler, Augusto S.; Cheng, Hai; Kong, Xinggong; Wang, Yongjin; Cruz, Francisco W.; Dorale, Jeffrey A.; Chiang, Hong-Wei
2017-01-01
Reconstructing the history of tropical hydroclimates has been difficult, particularly for the Amazon basin—one of Earth’s major centres of deep atmospheric convection. For example, whether the Amazon basin was substantially drier or remained wet during glacial times has been controversial, largely because most study sites have been located on the periphery of the basin, and because interpretations can be complicated by sediment preservation, uncertainties in chronology, and topographical setting. Here we show that rainfall in the basin responds closely to changes in glacial boundary conditions in terms of temperature and atmospheric concentrations of carbon dioxide. Our results are based on a decadally resolved, uranium/thorium-dated, oxygen isotopic record for much of the past 45,000 years, obtained using speleothems from Paraíso Cave in eastern Amazonia; we interpret the record as being broadly related to precipitation. Relative to modern levels, precipitation in the region was about 58% during the Last Glacial Maximum (around 21,000 years ago) and 142% during the mid-Holocene epoch (about 6,000 years ago). We find that, as compared with cave records from the western edge of the lowlands, the Amazon was widely drier during the last glacial period, with much less recycling of water and probably reduced plant transpiration, although the rainforest persisted throughout this time.
Hydroclimate changes across the Amazon lowlands over the past 45,000 years.
Wang, Xianfeng; Edwards, R Lawrence; Auler, Augusto S; Cheng, Hai; Kong, Xinggong; Wang, Yongjin; Cruz, Francisco W; Dorale, Jeffrey A; Chiang, Hong-Wei
2017-01-11
Reconstructing the history of tropical hydroclimates has been difficult, particularly for the Amazon basin-one of Earth's major centres of deep atmospheric convection. For example, whether the Amazon basin was substantially drier or remained wet during glacial times has been controversial, largely because most study sites have been located on the periphery of the basin, and because interpretations can be complicated by sediment preservation, uncertainties in chronology, and topographical setting. Here we show that rainfall in the basin responds closely to changes in glacial boundary conditions in terms of temperature and atmospheric concentrations of carbon dioxide. Our results are based on a decadally resolved, uranium/thorium-dated, oxygen isotopic record for much of the past 45,000 years, obtained using speleothems from Paraíso Cave in eastern Amazonia; we interpret the record as being broadly related to precipitation. Relative to modern levels, precipitation in the region was about 58% during the Last Glacial Maximum (around 21,000 years ago) and 142% during the mid-Holocene epoch (about 6,000 years ago). We find that, as compared with cave records from the western edge of the lowlands, the Amazon was widely drier during the last glacial period, with much less recycling of water and probably reduced plant transpiration, although the rainforest persisted throughout this time.
Mercado, Lina M.; Patiño, Sandra; Domingues, Tomas F.; Fyllas, Nikolaos M.; Weedon, Graham P.; Sitch, Stephen; Quesada, Carlos Alberto; Phillips, Oliver L.; Aragão, Luiz E. O. C.; Malhi, Yadvinder; Dolman, A. J.; Restrepo-Coupe, Natalia; Saleska, Scott R.; Baker, Timothy R.; Almeida, Samuel; Higuchi, Niro; Lloyd, Jon
2011-01-01
The rate of above-ground woody biomass production, WP, in some western Amazon forests exceeds those in the east by a factor of 2 or more. Underlying causes may include climate, soil nutrient limitations and species composition. In this modelling paper, we explore the implications of allowing key nutrients such as N and P to constrain the photosynthesis of Amazon forests, and also we examine the relationship between modelled rates of photosynthesis and the observed gradients in WP. We use a model with current understanding of the underpinning biochemical processes as affected by nutrient availability to assess: (i) the degree to which observed spatial variations in foliar [N] and [P] across Amazonia affect stand-level photosynthesis; and (ii) how these variations in forest photosynthetic carbon acquisition relate to the observed geographical patterns of stem growth across the Amazon Basin. We find nutrient availability to exert a strong effect on photosynthetic carbon gain across the Basin and to be a likely important contributor to the observed gradient in WP. Phosphorus emerges as more important than nitrogen in accounting for the observed variations in productivity. Implications of these findings are discussed in the context of future tropical forests under a changing climate. PMID:22006971
A framework for the identification of hotspots of climate change risk for mammals.
Pacifici, Michela; Visconti, Piero; Rondinini, Carlo
2018-04-01
As rates of global warming increase rapidly, identifying species at risk of decline due to climate impacts and the factors affecting this risk have become key challenges in ecology and conservation biology. Here, we present a framework for assessing three components of climate-related risk for species: vulnerability, exposure and hazard. We used the relationship between the observed response of species to climate change and a set of intrinsic traits (e.g. weaning age) and extrinsic factors (e.g. precipitation seasonality within a species geographic range) to predict, respectively, the vulnerability and exposure of all data-sufficient terrestrial non-volant mammals (3,953 species). Combining this information with hazard (the magnitude of projected climate change within a species geographic range), we identified global hotspots of species at risk from climate change that includes the western Amazon basin, south-western Kenya, north-eastern Tanzania, north-eastern South Africa, Yunnan province in China, and mountain chains in Papua-New Guinea. Our framework identifies priority areas for monitoring climate change effects on species and directing climate mitigation actions for biodiversity. © 2017 John Wiley & Sons Ltd.
Effects of future land use on biogeography of aquatic ecosystems of Amazonia
NASA Astrophysics Data System (ADS)
Howard, E. A.; Coe, M. T.; Foley, J. A.; Costa, M. H.
2006-12-01
Amazonian ecosystems provide key ecosystem services, such as regulating the amount and timing of water and carbon flows through the Amazon Basin. Land use in these ecosystems affects regional water balance, which in turn affects biogeography of aquatic ecosystems, including wetlands and floodplains. We combined a hydrological model (Terrestrial Hydrology Model with Biogeochemistry, THMB), remote sensing observations (Hess et al. 2003), and empirical data to identify the distribution of aquatic biogeographic types throughout the central Amazon basin over time. We explored how future land-use scenarios for the Amazon Basin through 2030 (Soares-Filho et al. 2004) would modify the spatial and temporal patterns of aquatic ecosystems as compared to a baseline of natural potential vegetation cover under historical climate variability for the 20th century. We calibrated monthly simulation results with remotely sensed observations of flooded area and extent of different wetland categories for high and low water periods over a 1.7 million sq. km region of the central Amazon. Two additional dimensions of floodplain biogeography (river size and color) were added to provide insight into the geographic distribution of key ecosystem types and their flooding seasonality. For historical conditions, the model results reproduced regional differences in seasonal flood extent and timing north and south of the Amazon mainstem, reflecting the dominant climatic regimes. Black-water streams and medium-sized rivers, followed by large white-water rivers, were the most extensive types across the study region. However much of the black water was in areas likely to be influenced by white-water rivers while flooded. The monthly extent of flooded areas dominated by woody vegetation was consistently more strongly seasonal than non-woody areas. Also, the extent of flooding in muddy and semi-muddy rivers and floodplains tended to be more highly seasonal than in black- and clear-water areas. We discuss our efforts to use our simulation results to extrapolate and bound estimates and patterns of aquatic ecosystem extent in the Amazon River system under future land-use scenarios. Regional flooding variability has disproportionate effects on different ecosystem types, suggesting that persistent, long-term changes to flooding regimes may have long-lasting consequences for floodplain vegetation, wildlife, and human residents.
Selective logging in the Brazilian Amazon.
Asner, Gregory P; Knapp, David E; Broadbent, Eben N; Oliveira, Paulo J C; Keller, Michael; Silva, Jose N
2005-10-21
Amazon deforestation has been measured by remote sensing for three decades. In comparison, selective logging has been mostly invisible to satellites. We developed a large-scale, high-resolution, automated remote-sensing analysis of selective logging in the top five timber-producing states of the Brazilian Amazon. Logged areas ranged from 12,075 to 19,823 square kilometers per year (+/-14%) between 1999 and 2002, equivalent to 60 to 123% of previously reported deforestation area. Up to 1200 square kilometers per year of logging were observed on conservation lands. Each year, 27 million to 50 million cubic meters of wood were extracted, and a gross flux of approximately 0.1 billion metric tons of carbon was destined for release to the atmosphere by logging.
Tinbergen, Jan; Wilts, Bodo D; Stavenga, Doekele G
2013-12-01
The feathers of Amazon parrots are brightly coloured. They contain a unique class of pigments, the psittacofulvins, deposited in both barbs and barbules, causing yellow or red coloured feathers. In specific feather areas, spongy nanostructured barb cells exist, reflecting either in the blue or blue-green wavelength range. The blue-green spongy structures are partly enveloped by a blue-absorbing, yellow-colouring pigment acting as a spectral filter, thus yielding a green coloured barb. Applying reflection and transmission spectroscopy, we characterized the Amazons' pigments and spongy structures, and investigated how they contribute to the feather coloration. The reflectance spectra of Amazon feathers are presumably tuned to the sensitivity spectra of the visual photoreceptors.
Local and remote climatic impacts due to land use degradation in the Amazon "Arc of Deforestation"
NASA Astrophysics Data System (ADS)
Silva, Maria Elisa Siqueira; Pereira, Gabriel; da Rocha, Rosmeri Porfírio
2016-08-01
Many numerical studies, among them, global and regional models, have been used to simulate climatic impact due to Amazon deforestation. Most of them did not consider deforestation as usually observed and the induced dynamic changes. The present study explores the physical impacts due to Amazon deforestation by considering local and remote changes in the circulation and thermodynamics. For this, numerical experiments were conducted with RegCM3 using a relatively fine horizontal grid spacing (50 km), more realistic deforested areas (similar to the highway-network-shaped), and an updated land use map. The studied period was 2001-2006 October-March. As in most previous studies focusing on Amazon deforestation, the RegCM3-simulated air temperature increases over degraded areas, ranging from 1.0 to 2.5 °C, and precipitation decreases of around 10 %. This result is mainly related to depletion in evapotranspiration rates provided by lesser soil water extraction by the degraded vegetation. The weakening of upward motion in the mid-upper troposphere is an associated mechanism that explains the precipitation decrease after Amazon deforestation. A new result is the simulated precipitation increase, about 10 %, over the eastern South America and the adjacent South Atlantic Ocean. In these areas, the precipitation increase during October-March is associated with intensification of upper-level high pressure (the Bolivian high) coupled with negative geopotential height anomalies southeastward of the center of the high.
NASA Astrophysics Data System (ADS)
Boers, Niklas; Marwan, Norbert; Barbosa, Henrique; Kurths, Jürgen
2015-04-01
A key driver of South American climate are the low-level trade winds from the tropical Atlantic Ocean towards the continent. After crossing the Amazon Basin, they are blocked by the Andes mountain range, and forced southward to the subtropics. These winds are crucial for the atmospheric moisture supply in most parts of South America. In particular, the hydrology of the two largest river basins of the Continent, namely the Amazon and the La Plata Basins, strongly depend on the moisture inflow provided by the trade winds. In turn, the Amazon rainforest can be assumed to have a strong influence on this low-level moisture circulation over South America by exchanging moisture with the atmosphere through precipitation and evapotranspiration. A pronounced positive feedback in this context is established through precipitation-induced release of latent heat over the Amazon Basin, which significantly enhances the moisture inflow from the tropical Atlantic Ocean toward the continent and can thus be considered to be crucial for the existence of today's South American climate. Ongoing deforestation and resulting reduction in evapotranspiration rates in particular in the eastern Amazon carry the risk of a strongly nonlinear response in these interactions with the low-level atmosphere. We propose a simple differential transport model describing the cascading moisture transport from the eastern coast of South America across the Amazon Basin to the Andes, taking into account the nonlinearity associated with the release of latent heat. The results of the model suggest that the system is indeed very sensitive to relatively small reductions of the evapotranspiration rates in the eastern Amazon Basin. These reductions increase river runoff, but limit the moisture availability farther west. This leads to a reduction in precipitation rates and thereby diminishes the release of latent heat which, in turn, reduces the overall moisture inflow. We show that, according to our model, there exist critical thresholds on the spatial extents and intensities of deforestation. Beyond these thresholds, the positive feedback between the Amazon rainforest and the low-level circulation would collapse, resulting in substantial reductions in moisture available for precipitation in the western part of the Amazon Basin and further downstream of the low-level flow, including most of subtropical South America.
Nolte, Christoph; Agrawal, Arun; Silvius, Kirsten M; Soares-Filho, Britaldo S
2013-03-26
Protected areas in tropical countries are managed under different governance regimes, the relative effectiveness of which in avoiding deforestation has been the subject of recent debates. Participants in these debates answer appeals for more strict protection with the argument that sustainable use areas and indigenous lands can balance deforestation pressures by leveraging local support to create and enforce protective regulations. Which protection strategy is more effective can also depend on (i) the level of deforestation pressures to which an area is exposed and (ii) the intensity of government enforcement. We examine this relationship empirically, using data from 292 protected areas in the Brazilian Amazon. We show that, for any given level of deforestation pressure, strictly protected areas consistently avoided more deforestation than sustainable use areas. Indigenous lands were particularly effective at avoiding deforestation in locations with high deforestation pressure. Findings were stable across two time periods featuring major shifts in the intensity of government enforcement. We also observed shifting trends in the location of protected areas, documenting that between 2000 and 2005 strictly protected areas were more likely to be established in high-pressure locations than in sustainable use areas and indigenous lands. Our findings confirm that all protection regimes helped reduce deforestation in the Brazilian Amazon.
Nolte, Christoph; Agrawal, Arun; Silvius, Kirsten M.; Soares-Filho, Britaldo S.
2013-01-01
Protected areas in tropical countries are managed under different governance regimes, the relative effectiveness of which in avoiding deforestation has been the subject of recent debates. Participants in these debates answer appeals for more strict protection with the argument that sustainable use areas and indigenous lands can balance deforestation pressures by leveraging local support to create and enforce protective regulations. Which protection strategy is more effective can also depend on (i) the level of deforestation pressures to which an area is exposed and (ii) the intensity of government enforcement. We examine this relationship empirically, using data from 292 protected areas in the Brazilian Amazon. We show that, for any given level of deforestation pressure, strictly protected areas consistently avoided more deforestation than sustainable use areas. Indigenous lands were particularly effective at avoiding deforestation in locations with high deforestation pressure. Findings were stable across two time periods featuring major shifts in the intensity of government enforcement. We also observed shifting trends in the location of protected areas, documenting that between 2000 and 2005 strictly protected areas were more likely to be established in high-pressure locations than in sustainable use areas and indigenous lands. Our findings confirm that all protection regimes helped reduce deforestation in the Brazilian Amazon. PMID:23479648
New records of tick-associated spotted fever group Rickettsia in an Amazon-Savannah ecotone, Brazil.
Aguirre, A A R; Garcia, Marcos Valério; Costa, Ivaneide Nunes da; Csordas, Bárbara Guimarães; Rodrigues, Vinícius da Silva; Medeiros, Jansen Fernandes; Andreotti, Renato
2018-05-01
Human rickettsiosis has been recorded in the Amazon Biome. However, the epidemiological cycle of causative rickettsiae has not been fully accounted for in the Amazon region. This study investigates the presence of spotted fever group (SFG) Rickettsia spp. in free-living unfed ticks of the Amblyomma genus. The study was conducted in seven municipalities in Rondonia State, Brazil, where the main biomes are Amazon forest, Brazilian Savannah and their ecotones (areas of ecological tension between open ombrophilous forest and savannah). The following tick species were collected: Amblyomma cajennense (sensu lato) s.l., A. cajennense (sensu stricto) s.s., A. coelebs, A. naponense, A. oblongoguttatum, A. romitii, A. scalpturatum and A. sculptum. A total of 167 adults, 248 nymphs and 1004 larvae were subjected to DNA extraction and polymerase chain reaction (PCR) to determine the presence of SFG Rickettsia spp. PCR-positive samples included: one A. cajennense s.s. female and one A. cajennense s.l. male from a rural area in Vilhena Municipality; 10 nymphs and a sample of larvae of A. cajennense s.l. from a peri-urban area in Cacoal Municipality; and an A. oblongoguttatum adult male from a rural area of Pimenta Bueno Municipality. All sequences obtained exhibited 100% identity with Rickettsia amblyommatis sequences. This is the first confirmation of SFG Rickettsia in an A. oblongoguttatum tick. Furthermore, this is the first record of SFG Rickettsia in the municipalities targeted by this study. These results warn that SFG Rickettsia circulation poses a threat in Rondonia State (among Amazon-Savannah ecotones), and that this threat is increased by the fact that SFG Rickettsia infect a human-biting tick species hitherto unconfirmed as a vector. Copyright © 2018 Elsevier GmbH. All rights reserved.
The phylogeography of Amazonia revisited: new evidence from riodinid butterflies.
Hall, Jason P W; Harvey, Donald J
2002-07-01
A fully resolved cladogram for 19 species in the Charis cleonus group of riodinid butterflies, which have closely parapatric ranges throughout the Amazon basin, is used to derive an area cladogram for the region. This represents the first comprehensive species-level analysis using insects and results in a hypothesis of Amazonian area relationships that is the most detailed to date. The Charis area cladogram is interpreted as supporting an historical vicariant split between the Guianas and the remainder of the Amazon and then between the upper and lower Amazon. The latter two clades can be further divided into the six most widely recognized areas of endemism and even smaller endemic centers within these, some of which, especially along the Madeira and lower Amazon Rivers, have never been previously hypothesized for butterflies. The overall pattern of historical interrelationships indicated is Guiana + ((Rondĵnia + (Pará + Belém)) + (Imeri + (Napo + Inambari))). The area relationships for riodinid butterflies show substantial congruence with those presented from the literature for amphibians, reptiles, birds, primates, rodents, and marsupials, suggesting a common vicariant history for these organisms. A summary area cladogram generated by combining area cladograms for all the aforementioned groups of organisms indicated the pattern of historical interrelationships to be (Guiana + (Rondĵnia + (Pará + Belém))) + (Imeri + (Napo + Inambari)). Charis cleonus group species distributions are noticeably larger around the upland periphery of Amazonia and smaller in the central and lower regions. A significant positive correlation between the proportion of range area above 100 m and total range size for each species is used to suggest that past sea-level rises may explain smaller range sizes in low-lying regions and that riverine barriers have been important in shaping the current distribution of C. cleonus group species.
Arsenic, manganese and aluminum contamination in groundwater resources of Western Amazonia (Peru).
de Meyer, Caroline M C; Rodríguez, Juan M; Carpio, Edward A; García, Pilar A; Stengel, Caroline; Berg, Michael
2017-12-31
This paper presents a first integrated survey on the occurrence and distribution of geogenic contaminants in groundwater resources of Western Amazonia in Peru. An increasing number of groundwater wells have been constructed for drinking water purposes in the last decades; however, the chemical quality of the groundwater resources in the Amazon region is poorly studied. We collected groundwater from the regions of Iquitos and Pucallpa to analyze the hydrochemical characteristics, including trace elements. The source aquifer of each well was determined by interpretation of the available geological information, which identified four different aquifer types with distinct hydrochemical properties. The majority of the wells in two of the aquifer types tap groundwater enriched in aluminum, arsenic, or manganese at levels harmful to human health. Holocene alluvial aquifers along the main Amazon tributaries with anoxic, near pH-neutral groundwater contained high concentrations of arsenic (up to 700μg/L) and manganese (up to 4mg/L). Around Iquitos, the acidic groundwater (4.2≤pH≤5.5) from unconfined aquifers composed of pure sand had dissolved aluminum concentrations of up to 3.3mg/L. Groundwater from older or deeper aquifers generally was of good chemical quality. The high concentrations of toxic elements highlight the urgent need to assess the groundwater quality throughout Western Amazonia. Copyright © 2017 Elsevier B.V. All rights reserved.
Black carbon over the Amazon during SAMBBA: it gets everywhere
NASA Astrophysics Data System (ADS)
Morgan, W.; Allan, J. D.; Flynn, M.; Darbyshire, E.; Liu, D.; Szpek, K.; Langridge, J.; Johnson, B. T.; Haywood, J.; Longo, K.; Artaxo, P.; Coe, H.
2014-12-01
Biomass burning represents a major source of Black Carbon (BC) aerosol to the atmosphere, which can result in major perturbations to weather, climate and ecosystem development. Large uncertainties in these impacts prevail, particularly on regional scales. One such region is the Amazon Basin, where large, intense and frequent burning occurs on an annual basis during the dry season. Absorption by atmospheric aerosols is underestimated by models over South America, which points to significant uncertainties relating to BC aerosol properties. Results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft, are presented here. Aerosol chemical composition was measured by a DMT Single Particle Soot Photometer (SP2) and an Aerodyne Aerosol Mass Spectrometer (AMS). The physical, chemical and optical properties of BC-containing particles across the region will be characterised, with particular emphasis on the vertical distribution. BC was ubiquitous across the region, with measurements extending from heavily deforested regions in the Western Amazon Basin, through to agricultural fires in the Cerrado (Savannah-like) region and more pristine areas over the Amazon Rainforest. Measurements in the vicinity of Manaus (a city located deep into the jungle) were also conducted. BC concentrations peaked within the boundary layer at a height of around 1.5km. BC-containing particles were found to be rapidly coated in the near-field, with little evidence for additional coating upon advection and dilution. Biomass burning layers within the free troposphere were routinely observed. BC-containing particles within such layers were typically associated with less coating than those within the boundary layer, suggestive of wet removal of more coated BC particles. The importance of such properties in relation to the optical properties of BC and its resultant impact will be investigated. The prevalence of elevated biomass burning layers above the frequent build-up of shallow cumulus clouds during the afternoon will also be characterised. This will provide improved constraint upon the highly uncertain impact of biomass burning aerosol over the region.
Polycystic echinococcosis in Pacas, Amazon region, Peru.
Mayor, Pedro; Baquedano, Laura E; Sanchez, Elisabeth; Aramburu, Javier; Gomez-Puerta, Luis A; Mamani, Victor J; Gavidia, Cesar M
2015-03-01
In the Peruvian Amazon, paca meat is consumed by humans. To determine human risk for polycystic echinococcosis, we examined wild pacas from 2 villages; 15 (11.7%) of 128 were infected with Echinococcus vogeli tapeworms. High E. vogeli prevalence among pacas indicates potential risk for humans living in E. vogeli-contaminated areas.
NASA Astrophysics Data System (ADS)
Potter, Christopher; Brooks Genovese, Vanessa; Klooster, Steven; Bobo, Matthew; Torregrosa, Alicia
To produce a new daily record of gross carbon emissions from biomass burning events and post-burning decomposition fluxes in the states of the Brazilian Legal Amazon (Instituto Brasileiro de Geografia e Estatistica (IBGE), 1991. Anuario Estatistico do Brasil, Vol. 51. Rio de Janeiro, Brazil pp. 1-1024). We have used vegetation greenness estimates from satellite images as inputs to a terrestrial ecosystem production model. This carbon allocation model generates new estimates of regional aboveground vegetation biomass at 8-km resolution. The modeled biomass product is then combined for the first time with fire pixel counts from the advanced very high-resolution radiometer (AVHRR) to overlay regional burning activities in the Amazon. Results from our analysis indicate that carbon emission estimates from annual region-wide sources of deforestation and biomass burning in the early 1990s are apparently three to five times higher than reported in previous studies for the Brazilian Legal Amazon (Houghton et al., 2000. Nature 403, 301-304; Fearnside, 1997. Climatic Change 35, 321-360), i.e., studies which implied that the Legal Amazon region tends toward a net-zero annual source of terrestrial carbon. In contrast, our analysis implies that the total source fluxes over the entire Legal Amazon region range from 0.2 to 1.2 Pg C yr -1, depending strongly on annual rainfall patterns. The reasons for our higher burning emission estimates are (1) use of combustion fractions typically measured during Amazon forest burning events for computing carbon losses, (2) more detailed geographic distribution of vegetation biomass and daily fire activity for the region, and (3) inclusion of fire effects in extensive areas of the Legal Amazon covered by open woodland, secondary forests, savanna, and pasture vegetation. The total area of rainforest estimated annually to be deforested did not differ substantially among the previous analyses cited and our own.
NASA Technical Reports Server (NTRS)
Morton, Douglas C.; Nagol, Jyoteshwar; Carabajal, Claudia C.; Rosette, Jacqueline; Palace, Michael; Cook, Bruce D.; Vermote, Eric F.; Harding, David J.; North, Peter R. J.
2016-01-01
Multiple mechanisms could lead to up-regulation of dry-season photosynthesis in Amazon forests, including canopy phenology and illumination geometry. We specifically tested two mechanisms for phenology-driven changes in Amazon forests during dry-season months, and the combined evidence from passive optical and lidar satellite data was incompatible with large net changes in canopy leaf area or leaf reflectance suggested by previous studies. We therefore hypothesized that seasonal changes in the fraction of sunlit and shaded canopies, one aspect of bidirectional reflectance effects in Moderate Resolution Imaging Spectroradiometer (MODIS) data, could alter light availability for dry-season photosynthesis and the photosynthetic capacity of Amazon forests without large net changes in canopy composition. Subsequent work supports the hypothesis that seasonal changes in illumination geometry and diffuse light regulate light saturation in Amazon forests. These studies clarify the physical mechanisms that govern light availability in Amazon forests from seasonal variability in direct and diffuse illumination. Previously, in the debate over light limitation of Amazon forest productivity, seasonal changes in the distribution of light within complex Amazon forest canopies were confounded with dry-season increases in total incoming photosynthetically active radiation. In the accompanying Comment, Saleska et al. do not fully account for this confounding effect of forest structure on photosynthetic capacity.
How Kindle Could Change the Textbook Market
ERIC Educational Resources Information Center
Young, Jeffrey R.
2009-01-01
Amazon is subsidizing pilot projects at six institutions--Arizona State, Case Western Reserve, Pace, and Princeton Universities, Reed College, and the University of Virginia's business school. It's picking up half the tab for the experiment on each campus, in which some sections of a few courses will be given the new Kindle DX, as the device is…
Trees of the Tapajós: a photographic field guide
John A. Parrotta; John K. Francis; Rionaldo R. de Almeida
1995-01-01
This book contains illustrations and descriptions, in English and Portuguese, of 172 tree species comÂmonly found in primary and secondary forests of the centrai Brazilian Amazon region, focussing on the Tapajos National Forest in western Para State. Photographic illustrations for each species include foliage (plus flowers and/or fruits for some species), seedling,...
NASA Astrophysics Data System (ADS)
Ronchail, Josyane; Cochonneau, Gérard; Molinier, Michel; Guyot, Jean-Loup; Chaves, Adriana Goretti De Miranda; Guimarães, Valdemar; de Oliveira, Eurides
2002-11-01
Rainfall variability in the Amazon basin is studied in relation to sea-surface temperatures (SSTs) in the equatorial Pacific and the northern and southern tropical Atlantic during the 1977-99 period, using the HiBAm original rainfall data set and complementary cluster and composite analyses.The northeastern part of the basin, north of 5 °S and east of 60 °W, is significantly related with tropical SSTs: a rainier wet season is observed when the equatorial Pacific and the northern (southern) tropical Atlantic are anomalously cold (warm). A shorter and drier wet season is observed during El Niño events and negative rainfall anomalies are also significantly associated with a warm northern Atlantic in the austral autumn and a cold southern Atlantic in the spring. The northeastern Amazon rainfall anomalies are closely related with El Niño-southern oscillation during the whole year, whereas the relationships with the tropical Atlantic SST anomalies are mainly observed during the autumn. A time-space continuity is observed between El Niño-related rainfall anomalies in the northeastern Amazon, those in the northern Amazon and south-eastern Amazon, and those in northern South America and in the Nordeste of Brazil.A reinforcement of certain rainfall anomalies is observed when specific oceanic events combine. For instance, when El Niño and cold SSTs in the southern Atlantic are associated, very strong negative anomalies are observed in the whole northern Amazon basin. Nonetheless, the comparison of the cluster and the composite analyses results shows that the rainfall anomalies in the northeastern Amazon are not always associated with tropical SST anomalies.In the southern and western Amazon, significant tropical SST-related rainfall anomalies are very few and spatially variable. The precipitation origins differ from those of the northeastern Amazon: land temperature variability, extratropical perturbations and moisture advection are important rainfall factors, as well as SSTs. This could partially explain why: (a) the above-mentioned signals weaken or disappear, with the exception of the relative dryness that is observed at the peak of an El Niño event and during the dry season when northern Atlantic SSTs are warmer than usual; (b) rainfall anomalies tend to resemble those of southeastern South America, noticeably at the beginning and the end of El Niño and La Niña events; (c) some strong excesses of rain are not associated with any SST anomalies and merit further investigation.
Seroprevalence of Toxoplasma gondii antibodies in cats and pigs from rural Western Amazon, Brazil.
Cavalcante, G T; Aguiar, D M; Chiebao, D; Dubey, J P; Ruiz, V L A; Dias, R A; Camargo, L M A; Labruna, M B; Gennari, S M
2006-08-01
Antibodies to Toxoplasma gondii were assayed in sera of 63 cats and 80 pigs from 71 farms located at Rondônia State, Western Amazon, Brazil, by the modified agglutination test (MAT) and the indirect immunofluorescent antibody test (IFAT). Antibodies (MAT > or = 1: 25) were found in 55 of 63 cats (87.3%) with titers of 1:25 in 2, 1:50 in 2, 1:100 in 7, 1:200 in 1, 1:400 in 2, 1:800 in 9, 1:1,600 in 6, and 1:3,200 or higher in 26 cats. By IFAT, antibodies were found in 55 cats (87.3%) with titers of 1:25 in 2, 1:50 in 1, 1:100 in 4, 1:200 in 4, 1: 400 in 1, 1:800 in 13, 1:1,600 in 12, and 1:3,200 or higher in 18 cats. In pig sera, by MAT, antibodies were found in 30 of 80 pigs (37.5%) with titers of 1:25 in 2, 1:50 in 3, 1:100 in 2, 1:200 in 8, 1:400 in 3, 1:800 in 5, 1:1,600 in 3, and 1:3,200 or higher in 4 pigs. By using the IFAT (titers > or = 1:64), antibodies were found in 35 (43.7%) pigs. The ingestion of undercooked tissues of infected pigs can be a source of T. gondii infection for humans and cats. However, the high seroprevalence of T. gondii in cats from the Amazon seems most likely to be indicative of high contamination of the environment by oocysts.
Condition and fate of logged forests in the Brazilian Amazon.
Asner, Gregory P; Broadbent, Eben N; Oliveira, Paulo J C; Keller, Michael; Knapp, David E; Silva, José N M
2006-08-22
The long-term viability of a forest industry in the Amazon region of Brazil depends on the maintenance of adequate timber volume and growth in healthy forests. Using extensive high-resolution satellite analyses, we studied the forest damage caused by recent logging operations and the likelihood that logged forests would be cleared within 4 years after timber harvest. Across 2,030,637 km2 of the Brazilian Amazon from 1999 to 2004, at least 76% of all harvest practices resulted in high levels of canopy damage sufficient to leave forests susceptible to drought and fire. We found that 16+/-1% of selectively logged areas were deforested within 1 year of logging, with a subsequent annual deforestation rate of 5.4% for 4 years after timber harvests. Nearly all logging occurred within 25 km of main roads, and within that area, the probability of deforestation for a logged forest was up to four times greater than for unlogged forests. In combination, our results show that logging in the Brazilian Amazon is dominated by highly damaging operations, often followed rapidly by deforestation decades before forests can recover sufficiently to produce timber for a second harvest. Under the management regimes in effect at the time of our study in the Brazilian Amazon, selective logging would not be sustained.
Condition and fate of logged forests in the Brazilian Amazon
Asner, Gregory P.; Broadbent, Eben N.; Oliveira, Paulo J. C.; Keller, Michael; Knapp, David E.; Silva, José N. M.
2006-01-01
The long-term viability of a forest industry in the Amazon region of Brazil depends on the maintenance of adequate timber volume and growth in healthy forests. Using extensive high-resolution satellite analyses, we studied the forest damage caused by recent logging operations and the likelihood that logged forests would be cleared within 4 years after timber harvest. Across 2,030,637 km2 of the Brazilian Amazon from 1999 to 2004, at least 76% of all harvest practices resulted in high levels of canopy damage sufficient to leave forests susceptible to drought and fire. We found that 16 ± 1% of selectively logged areas were deforested within 1 year of logging, with a subsequent annual deforestation rate of 5.4% for 4 years after timber harvests. Nearly all logging occurred within 25 km of main roads, and within that area, the probability of deforestation for a logged forest was up to four times greater than for unlogged forests. In combination, our results show that logging in the Brazilian Amazon is dominated by highly damaging operations, often followed rapidly by deforestation decades before forests can recover sufficiently to produce timber for a second harvest. Under the management regimes in effect at the time of our study in the Brazilian Amazon, selective logging would not be sustained. PMID:16901980
NASA Astrophysics Data System (ADS)
Heinrich, Sonja; Zonneveld, Karin A. F.; Willems, Helmut
2010-05-01
The middle- and upper Miocene represent a time-interval of major changes in palaeoclimate leading to global cooling forming the precursor of the onset of Northern Hemisphere Glaciations (NHG). These climate changes are thought to be strongly controlled by oceanographic modifications although the nature of the relationship between ocean and climate change is far from clear. It has for instance been observed that in this time interval the modern deepwater circulation system; the thermohaline circulation was established. It is thought that tectonic events, such as the narrowing of the Panama gateway, played a key role in the progressing of these Miocene oceanographic changes (e.g. Duque-Caro 1990; Lear et al. 2003). However, the complex interaction between the closing of the Panama Gateway, the development of NADW, and thus the oceanographic progression towards our present day circulation is far from being fully understood. A key region to study these interactions is the Caribbean region, notably the Ceara Rise since it is an area of highest sensitivity to global deep water circulation changes. Here we intent to improve the understanding of these processes by establishing a detailed palaeoceanographic reconstruction of the western equatorial Atlantic Ocean on the basis of calcareous dinoflagellate cyst (dinocyst) associations. For this, we investigated sediment samples from ODP Site 926A by defining the calcareous dinocyst assemblage. Site 926A is located at the southwestern flank of the Ceara Rise, an area of highest sensitivity to global deep water circulation changes. At about 11 Ma, we see a distinct increase in the absolute abundances of the calcareous dinocysts suggesting enhanced productivity and better carbonate preservation that can be related to the intensification of NADW formation (Woodruff & Savin 1989). At 11.3 Ma, Leonella granifera, a species known to be strongly related to terrestrial input increases. This could be a signal for the initiation of the Amazon River as a transcontinental river (11.8 - 11.3 Ma; Figueiredo et al. 2009) in relation to Andean tectonism. References: Duque-Caro, H. (1990): Neogene stratigraphy, paleoceanography and palebiology in Northwest South America and the evolution of the Panama Seaway. Palaeogeography, Palaeoclimatology, Palaeoecology 77, 203-234. Figueiredo, J., Hoorn, C., van der Veen, P., Soares, E. (2009): Late Miocene onset of the Amazon River and the Amazon deep-sea fan: Evidence from the Foz do Amazonas Basin. Geology; v. 37, no. 7; p. 619 - 622. Lear, C.H., Rosenthal, Y., Wright, J.D. (2003): The closing of a seaway: ocean water masses and global climate change. Earth and Planetary Science Letters 210, 425-436. Woodruff, F., Savin, S.M. (1989): Miocene deepwater oceanography. Paloceanography 4, 87-140.
NASA Astrophysics Data System (ADS)
Guerreiro, Catarina V.; Baumann, Karl-Heinz; Brummer, Geert-Jan A.; Fischer, Gerhard; Korte, Laura F.; Merkel, Ute; Sá, Carolina; de Stigter, Henko; Stuut, Jan-Berend W.
2017-10-01
Coccolithophores are calcifying phytoplankton and major contributors to both the organic and inorganic oceanic carbon pumps. Their export fluxes, species composition, and seasonal patterns were determined in two sediment trap moorings (M4 at 12° N, 49° W and M2 at 14° N, 37° W) collecting settling particles synchronously from October 2012 to November 2013 at 1200 m of water depth in the open equatorial North Atlantic. The two trap locations showed a similar seasonal pattern in total coccolith export fluxes and a predominantly tropical coccolithophore settling assemblage. Species fluxes were dominated throughout the year by lower photic zone (LPZ) taxa (Florisphaera profunda, Gladiolithus flabellatus) but also included upper photic zone (UPZ) taxa (Umbellosphaera spp., Rhabdosphaera spp., Umbilicosphaera spp., Helicosphaera spp.). The LPZ flora was most abundant during fall 2012, whereas the UPZ flora was more important during summer. In spite of these similarities, the western part of the study area produced persistently higher fluxes, averaging 241×107 ± 76×107 coccoliths m-2 d-1 at station M4 compared to only 66×107 ± 31×107 coccoliths m-2 d-1 at station M2. Higher fluxes at M4 were mainly produced by the LPZ species, favoured by the westward deepening of the thermocline and nutricline. Still, most UPZ species also contributed to higher fluxes, reflecting enhanced productivity in the western equatorial North Atlantic. Such was the case of two marked flux peaks of the more opportunistic species Gephyrocapsa muellerae and Emiliania huxleyi in January and April 2013 at M4, indicating a fast response to the nutrient enrichment of the UPZ, probably by wind-forced mixing. Later, increased fluxes of G. oceanica and E. huxleyi in October-November 2013 coincided with the occurrence of Amazon-River-affected surface waters. Since the spring and fall events of 2013 were also accompanied by two dust flux peaks, we propose a scenario in which atmospheric dust also provided fertilizing nutrients to this area. Enhanced surface buoyancy associated with the river plume indicates that the Amazon acted not only as a nutrient source, but also as a surface density retainer for nutrients supplied from the atmosphere. Nevertheless, lower total coccolith fluxes during these events compared to the maxima recorded in November 2012 and July 2013 indicate that transient productivity by opportunistic species was less important than background
tropical productivity in the equatorial North Atlantic. This study illustrates how two apparently similar sites in the tropical open ocean actually differ greatly in ecological and oceanographic terms. The results presented here provide valuable insights into the processes governing the ecological dynamics and the downward export of coccolithophores in the tropical North Atlantic.
Albert, James S.; Carvalho, Tiago P.; Petry, Paulo; Holder, Meghan A.; Maxime, Emmanuel L.; Espino, Jessica; Corahua, Isabel; Quispe, Roberto; Rengifo, Blanca; Ortega, Hernan; Reis, Roberto E.
2011-01-01
Simple Summary The immense rainforest ecosystems of tropical America represent some of the greatest concentrations of biodiversity on the planet. Prominent among these are evolutionary radiations of freshwater fishes, including electric eels, piranhas, stingrays, and a myriad of small-bodied and colorful tetras, cichlids, and armored catfishes. In all, the many thousands of these forms account for nearly 10% of all the vertebrate species on Earth. This article explores the complimentary roles that ecological and geographic filters play in limiting dispersal in aquatic species, and how these factors contribute to the accumulation of species richness over broad geographic and evolutionary time scales. Abstract The Neotropical freshwater ichthyofauna has among the highest species richness and density of any vertebrate fauna on Earth, with more than 5,600 species compressed into less than 12% of the world's land surface area, and less than 0.002% of the world's total liquid water supply. How have so many species come to co-exist in such a small amount of total habitat space? Here we report results of an aquatic faunal survey of the Fitzcarrald region in southeastern Peru, an area of low-elevation upland (200–500 m above sea level) rainforest in the Western Amazon, that straddles the headwaters of four large Amazonian tributaries; the Juruá (Yurúa), Ucayali, Purús, and Madre de Dios rivers. All measures of fish species diversity in this region are high; there is high alpha diversity with many species coexisting in the same locality, high beta diversity with high turnover between habitats, and high gamma diversity with high turnover between adjacent tributary basins. Current data show little species endemism, and no known examples of sympatric sister species, within the Fitzcarrald region, suggesting a lack of localized or recent adaptive divergences. These results support the hypothesis that the fish species of the Fitzcarrald region are relatively ancient, predating the Late Miocene-Pliocene (c. 4 Ma) uplift that isolated its several headwater basins. The results also suggest that habitat specialization (phylogenetic niche conservatism) and geographic isolation (dispersal limitation) have contributed to the maintenance of high species richness in this region of the Amazon Basin. PMID:26486313
Da Silva Sovano, Rafael S; Cadena-Castañeda, Oscar J
2015-03-26
A regional study is performed for the Amazonian species of the genus Microcentrum Scudder, 1862, its proposed Microcentrum punctifrons Brunner von Wattenwyl, 1891 as nomen dubium n. stat. and two new species are described: Microcentrum amacayacu Cadena-Casteñada, Sovano n. sp. and Microcentrum xavieri Sovano, Cadena-Casteñada n. sp. the Colombian and Brazilian Amazon, respectively. A list and a key to the Amazonian species are also provided, along with a discussion on their distribution, according to endemism areas established to Amazon rainforest.
Reserves Protect against Deforestation Fires in the Amazon
Adeney, J. Marion; Christensen, Norman L.; Pimm, Stuart L.
2009-01-01
Background Reserves are the principal means to conserve forests and biodiversity, but the question of whether reserves work is still debated. In the Amazon, fires are closely linked to deforestation, and thus can be used as a proxy for reserve effectiveness in protecting forest cover. We ask whether reserves in the Brazilian Amazon provide effective protection against deforestation and consequently fires, whether that protection is because of their location or their legal status, and whether some reserve types are more effective than others. Methodology/Principal Findings Previous work has shown that most Amazonian fires occur close to roads and are more frequent in El Niño years. We quantified these relationships for reserves and unprotected areas by examining satellite-detected hot pixels regressed against road distance across the entire Brazilian Amazon and for a decade with 2 El Niño-related droughts. Deforestation fires, as measured by hot pixels, declined exponentially with increasing distance from roads in all areas. Fewer deforestation fires occurred within protected areas than outside and the difference between protected and unprotected areas was greatest near roads. Thus, reserves were especially effective at preventing these fires where they are known to be most likely to burn; but they did not provide absolute protection. Even within reserves, at a given distance from roads, there were more deforestation fires in regions with high human impact than in those with low impact. The effect of El Niño on deforestation fires was greatest outside of reserves and near roads. Indigenous reserves, limited-use reserves, and fully protected reserves all had fewer fires than outside areas and did not appear to differ in their effectiveness. Conclusions/Significance Taking time, regional factors, and climate into account, our results show that reserves are an effective tool for curbing destructive burning in the Amazon. PMID:19352423
NASA Astrophysics Data System (ADS)
Coe, M. T.; Costa, M. H.; Howard, E. A.
2006-12-01
In this paper we analyze the hydrology of the Amazon River system for the latter half of the 20th century with our recently completed model of terrestrial hydrology (Terrestrial Hydrology Model with Biogeochemistry, THMB). We evaluate the simulated hydrology of the Central Amazon basin against limited observations of river discharge, floodplain inundation, and water height and analyze the spatial and temporal variability of the hydrology for the period 1939-1998. We compare the simulated discharge and floodplain inundated area to the simulations by Coe et al., 2002 using a previous version of this model. The new model simulates the discharge and flooded area in better agreement with the observations than the previous model. The coefficient of correlation between the simulated and observed discharge for the greater than 27000 monthly observations of discharge at 120 sites throughout the Brazilian Amazon is 0.9874 compared to 0.9744 for the previous model. The coefficient of correlation between the simulated monthly flooded area and the satellite-based estimates by Sippel et al., 1998 exceeds 0.7 for 8 of the 12 mainstem reaches. The seasonal and inter-annual variability of the water height and the river slope compares favorably to the satellite altimetric measurements of height reported by Birkett et al., 2002.
Atmospheric mercury concentrations in the basin of the amazon, Brazil.
Hachiya, N; Takizawa, Y; Hisamatsu, S; Abe, T; Abe, Y; Motohashi, Y
1998-01-01
A wide regional mercury pollution in Amazon, Brazil is closely associated with goldmining that has been carried out in the basin of tributaries of the Amazon since the eighteenth century. Possible involvement has been discussed on atmospheric circulation in distributing the volatile pollutant. We developed a portable air sampler for the collection of mercury compounds and determined atmospheric mercury concentrations at several sites in Brazil including the basin of the Amazon tributaries. The mean concentration of total mercury was between 9.1 and 14.0 ng/m(3) in the basin of the Uatumã River located in the tropical rain forest far from goldmining sites and from urbanized area. These mercury levels exceeded the background level previously reported in rural area and, furthermore, were higher than concentrations observed in Rio de Janeiro and in Manaus that were compatible with the reference values for urban area. Mercury concentrations were also determined in gold refineries in the basin of the Tapajos River, and detected at a significant but not a health deteriorating level. Although only preliminary data were available, the present observations were in favor of the hypothesis that mercury is distributed widely by long distant transport by the atmospheric circulation after released at gold mining sites.
Role of Brazilian Amazon protected areas in climate change mitigation
Soares-Filho, Britaldo; Moutinho, Paulo; Nepstad, Daniel; Anderson, Anthony; Rodrigues, Hermann; Garcia, Ricardo; Dietzsch, Laura; Merry, Frank; Bowman, Maria; Hissa, Letícia; Silvestrini, Rafaella; Maretti, Cláudio
2010-01-01
Protected areas (PAs) now shelter 54% of the remaining forests of the Brazilian Amazon and contain 56% of its forest carbon. However, the role of these PAs in reducing carbon fluxes to the atmosphere from deforestation and their associated costs are still uncertain. To fill this gap, we analyzed the effect of each of 595 Brazilian Amazon PAs on deforestation using a metric that accounts for differences in probability of deforestation in areas of pairwise comparison. We found that the three major categories of PA (indigenous land, strictly protected, and sustainable use) showed an inhibitory effect, on average, between 1997 and 2008. Of 206 PAs created after the year 1999, 115 showed increased effectiveness after their designation as protected. The recent expansion of PAs in the Brazilian Amazon was responsible for 37% of the region's total reduction in deforestation between 2004 and 2006 without provoking leakage. All PAs, if fully implemented, have the potential to avoid 8.0 ± 2.8 Pg of carbon emissions by 2050. Effectively implementing PAs in zones under high current or future anthropogenic threat offers high payoffs for reducing carbon emissions, and as a result should receive special attention in planning investments for regional conservation. Nevertheless, this strategy demands prompt and predictable resource streams. The Amazon PA network represents a cost of US$147 ± 53 billion (net present value) for Brazil in terms of forgone profits and investments needed for their consolidation. These costs could be partially compensated by an international climate accord that includes economic incentives for tropical countries that reduce their carbon emissions from deforestation and forest degradation. PMID:20505122
Role of Brazilian Amazon protected areas in climate change mitigation.
Soares-Filho, Britaldo; Moutinho, Paulo; Nepstad, Daniel; Anderson, Anthony; Rodrigues, Hermann; Garcia, Ricardo; Dietzsch, Laura; Merry, Frank; Bowman, Maria; Hissa, Letícia; Silvestrini, Rafaella; Maretti, Cláudio
2010-06-15
Protected areas (PAs) now shelter 54% of the remaining forests of the Brazilian Amazon and contain 56% of its forest carbon. However, the role of these PAs in reducing carbon fluxes to the atmosphere from deforestation and their associated costs are still uncertain. To fill this gap, we analyzed the effect of each of 595 Brazilian Amazon PAs on deforestation using a metric that accounts for differences in probability of deforestation in areas of pairwise comparison. We found that the three major categories of PA (indigenous land, strictly protected, and sustainable use) showed an inhibitory effect, on average, between 1997 and 2008. Of 206 PAs created after the year 1999, 115 showed increased effectiveness after their designation as protected. The recent expansion of PAs in the Brazilian Amazon was responsible for 37% of the region's total reduction in deforestation between 2004 and 2006 without provoking leakage. All PAs, if fully implemented, have the potential to avoid 8.0 +/- 2.8 Pg of carbon emissions by 2050. Effectively implementing PAs in zones under high current or future anthropogenic threat offers high payoffs for reducing carbon emissions, and as a result should receive special attention in planning investments for regional conservation. Nevertheless, this strategy demands prompt and predictable resource streams. The Amazon PA network represents a cost of US$147 +/- 53 billion (net present value) for Brazil in terms of forgone profits and investments needed for their consolidation. These costs could be partially compensated by an international climate accord that includes economic incentives for tropical countries that reduce their carbon emissions from deforestation and forest degradation.
Polycystic Echinococcosis in Pacas, Amazon Region, Peru
Mayor, Pedro; Baquedano, Laura E.; Sanchez, Elisabeth; Aramburu, Javier; Gomez-Puerta, Luis A.; Mamani, Victor J.
2015-01-01
In the Peruvian Amazon, paca meat is consumed by humans. To determine human risk for polycystic echinococcosis, we examined wild pacas from 2 villages; 15 (11.7%) of 128 were infected with Echinococcus vogeli tapeworms. High E. vogeli prevalence among pacas indicates potential risk for humans living in E. vogeli–contaminated areas. PMID:25695937
Seasonal dynamics in methane emissions from the Amazon River floodplain to the troposphere
NASA Technical Reports Server (NTRS)
Devol, Allan H.; Richey, Jeffrey E.; Forsberg, Bruce R.; Martinelli, Luiz A.
1990-01-01
Methane fluxes to the troposphere from the three principal habitats of the floodplain of the Amazon River main stem (open waters, emergent macrophyte beds, and flooded forests) were determined along a 1700-km reach of the river during the low-water period of the annual flood cycle (November-December 1988). Overall, emissions averaged 68 mg CH4/sq m per day and were significantly lower than similar emissions determined previously for the high-water period, 184 mg CH4/sq m per day (July-August 1986). This difference was due to significantly lower emissions from floating macrophyte environments. Low-water emissions from open waters and flooded forest areas were not significantly different than at high water. A monthly time series of methane emission from eight lakes located in the central Amazon basis showed similar results. The data were used to calculate a seasonally weighted annual emission to the troposphere from the Amazon River main stem floodplain of 5.1 Tg/yr, which indicates the importance of the area in global atmospheric chemistry.
Garcia, Diego; Porras, Alexandra; Rico Mendoza, Alejadro; Alvis, Nelson; Navas, Maria Cristina; De La Hoz, Fernando; De Neira, Marlen; Osorio, Elkin; Valderrama, José Fernando
2018-05-03
Hepatitis B virus (HBV) infection is highly endemic in the Colombian Amazon basin. In Colombia, the universal hepatitis B vaccination in that area has been active since 1993. The program targets children aged under five years. Newborns receive at least three doses, and in 2001, HBV vaccine birth dose was included. This study aimed to evaluate the advances on HBV control in the Colombian Amazon. A population-based cross-sectional study was conducted in children less than 11 years old in rural areas of the Colombian Amazon, in order to assess the current levels of HBV prevalence and evaluate the effectiveness of HBV vaccination. Participants were selected from villages scattered along the Amazon, Putumayo and Loretoyaco Rivers. Blood samples were taken from children. All the samples were examined for surface antigen (HBsAg) and IgG antibodies against core antigen (AntiHBc) of HBV. Data on HBV vaccination status and other risk factors were also collected. Blood samples from 1275 children were included in the study. The positivity for IgG AntiHBC and HBsAg was 3.8% and 0.5%, respectively. It was observed that receiving a dose of HBV vaccine within 48 h after birth decreased the risk of HBV infection and carriage by 95%. Being born to an AntiHBc positive mother increased 8 times the risk of HBV infection (OR = 7.8 CI 95% 3.3-10.2) and 7 times the risk of HBsAg carriage (OR = 6.6 CI 95% 2.1-10.1). The prevalence of HBV infection and HBsAg carriage continues to decrease among children living in the Colombian Amazon. The high protective effectiveness of an HBV birth does suggest that perinatal transmission is important in endemic areas of Latin America, an aspect that has not been fully studied in the region. Copyright © 2017 Elsevier Ltd. All rights reserved.
Deforestation control in Mato Grosso: a new model for slowing the loss of Brazil's Amazon forest.
Fearnside, Philip M
2003-08-01
Controlling deforestation in Brazil's Amazon region has long been illusive despite repeated efforts of government authorities to slow the process. From 1997 to 2000, deforestation rates in Brazil's 9-state "Legal Amazon" region continually crept upward. Now, a licensing and enforcement program for clearing by large farmers and ranchers in the state of Mato Grosso appears to be having an effect. The deforestation rate in Mato Grosso was already beginning to slacken before initiation of the program in 1999, but examination of county-level data suggests that deforestation in already heavily cleared areas was falling due to lack of suitable uncleared land, while little-cleared areas were experiencing rapid deforestation. Following initiation of the program, the clearing rates declined in the recent frontiers. Areas with greater enforcement effort also appear to have experienced greater declines. Demonstration of government ability to enforce regulations and influence trends is important to domestic and international debates regarding use of avoided deforestation to mitigate global warming.
Hydrological Retrospective of floods and droughts: Case study in the Amazon
NASA Astrophysics Data System (ADS)
Wongchuig Correa, Sly; Cauduro Dias de Paiva, Rodrigo; Carlo Espinoza Villar, Jhan; Collischonn, Walter
2017-04-01
Recent studies have reported an increase in intensity and frequency of hydrological extreme events in many regions of the Amazon basin over last decades, these events such as seasonal floods and droughts have originated a significant impact in human and natural systems. Recently, methodologies such as climatic reanalysis are being developed in order to create a coherent register of climatic systems, thus taking this notion, this research efforts to produce a methodology called Hydrological Retrospective (HR), that essentially simulate large rainfall datasets over hydrological models in order to develop a record over past hydrology, enabling the analysis of past floods and droughts. We developed our methodology on the Amazon basin, thus we used eight large precipitation datasets (more than 30 years) through a large scale hydrological and hydrodynamic model (MGB-IPH), after that HR products were validated against several in situ discharge gauges dispersed throughout Amazon basin, given focus in maximum and minimum events. For better HR results according performance metrics, we performed a forecast skill of HR to detect floods and droughts considering in-situ observations. Furthermore, statistical temporal series trend was performed for intensity of seasonal floods and drought in the whole Amazon basin. Results indicate that better HR represented well most past extreme events registered by in-situ observed data and also showed coherent with many events cited by literature, thus we consider viable to use some large precipitation datasets as climatic reanalysis mainly based on land surface component and datasets based in merged products for represent past regional hydrology and seasonal hydrological extreme events. On the other hand, an increase trend of intensity was realized for maximum annual discharges (related to floods) in north-western regions and for minimum annual discharges (related to drought) in central-south regions of the Amazon basin, these features were previously detected by other researches. In the whole basin, we estimated an upward trend of maximum annual discharges at Amazon River. In order to estimate better future hydrological behavior and their impacts on the society, HR could be used as a methodology to understand past extreme events occurrence in many places considering the global coverage of rainfall datasets.
A large-scale deforestation experiment: Effects of patch area and isolation on Amazon birds
Ferraz, G.; Nichols, J.D.; Hines, J.E.; Stouffer, P.C.; Bierregaard, R.O.; Lovejoy, T.E.
2007-01-01
As compared with extensive contiguous areas, small isolated habitat patches lack many species. Some species disappear after isolation; others are rarely found in any small patch, regardless of isolation. We used a 13-year data set of bird captures from a large landscape-manipulation experiment in a Brazilian Amazon forest to model the extinction-colonization dynamics of 55 species and tested basic predictions of island biogeography and metapopulation theory. From our models, we derived two metrics of species vulnerability to changes in isolation and patch area. We found a strong effect of area and a variable effect of isolation on the predicted patch occupancy by birds.
Land Use Dynamics in the Brazilian Amazon
Robert Walker
1996-01-01
The articles presented in this special issue of Ecological Economics address the important theme of land use dynamics as it pertains to the Brazilian Amazon. Much environmental change is an ecological artifact of human agency, and such agency is often manifested in land use impacts, particularly in tropical areas. The critical problem of tropical deforestation is but...
Vega, Claudia M; Godoy, José M; Barrocas, Paulo R G; Gonçalves, Rodrigo A; De Oliveira, Beatriz F A; Jacobson, Ludmilla V; Mourão, Dennys S; Hacon, Sandra S
2017-01-01
Selenium (Se) is an essential micronutrient that exerts multiple functions in the organism, and both its deficiency and excess can cause health impairments. Thus, it is important to monitor its levels in the population, especially in vulnerable groups, such as children from the Brazilian Amazon region, where there is a lack of information in this regard. The aim of this research was to study Se levels in the whole blood of children and teenagers (5-16 years old) from two riparian communities at the Madeira River (Cuniã RESEX and Belmont). Se level variations related to the communities' location, seasonality, diet, and body mass index (BMI) were assessed. Blood samples were collected in both communities for Se determinations, using ICP-MS and hemogram analyses, during May and September of 2011. Food frequency questionnaires were applied to assess consumption rates of specific food items. Non-parametric tests and linear multiple regressions were applied in the data analyses. Median Se levels were significantly higher during May (Cuniã RESEX 149 μg L -1 ; Belmont 85 μg L -1 ) compared to September (Cuniã RESEX 79 μg L -1 ; Belmont 53 μg L -1 ). No significant differences were found between the communities regarding BMI measurements and anemia prevalence. However, Se blood levels were significantly higher at the Cuniã RESEX compared to Belmont. In addition, the former showed higher fish and Brazil nut intakes, which may be the main Se sources for this community. These results contribute to a better understanding of Se reference levels for children and teenagers of Western Amazon riparian communities.
Jennings, Yara Lins; de Souza, Adelson Alcimar Almeida; Ishikawa, Edna Aoba; Shaw, Jeffrey; Lainson, Ralph; Silveira, Fernando
2014-01-01
We phenotypically characterized 43 leishmanial parasites from cutaneous leishmaniasis by isoenzyme electrophoresis and the indirect immunofluorescence antibody test (23 McAbs). Identifications revealed 11 (25.6%) strains of Leishmania (V.) braziliensis, 4 (9.3%) of L. (V.) shawi shawi, 7 (16.3%) of L. (V.) shawi santarensis, 6 (13.9%) of L. (V.) guyanensis and L. (V.) lainsoni, 2 (4.7%) of L. (L.) amazonensis, and 7 (16.3%) of a putative hybrid parasite, L. (V.) guyanensis/L. (V.) shawi shawi. McAbs detected three different serodemes of L. (V.) braziliensis: I-7, II-1, and III-3 strains. Among the strains of L. (V.) shawi we identified two populations: one (7 strains) expressing the B19 epitope that was previously considered to be species-specific for L. (V.) guyanensis. We have given this population sub-specific rank, naming it L. (V.) s. santarensis. The other one (4 strains) did not express the B19 epitope like the L. (V.) shawi reference strain, which we now designate as L. (V.) s. shawi. For the first time in the eastern Brazilian Amazon we register a putative hybrid parasite (7 strains), L. (V.) guyanensis/L. (V.) s. shawi, characterized by a new 6PGDH three-band profile at the level of L. (V.) guyanensis. Its PGM profile, however, was very similar to that of L. (V.) s. shawi. These results suggest that the lower Amazon region – western Pará state, Brazil, represents a biome where L. (V.) guyanensis and L. (V.) s. shawi exchange genetic information. PMID:25083790
Ragusa-Netto, J
2014-11-01
Seed predation has major effects on the reproductive success of individuals, spatial patterns of populations, genetic variability, interspecific interactions and ultimately in the diversity of tree communities. At a Brazilian savanna, I evaluated the proportional crop loss of Eriotheca gracilipes due the Blue-Fronted Amazon (Amazona aestiva) during a fruiting period. Also, I analyzed the relationship between proportional crop loss to Amazons and both fruit crop size and the distance from the nearest damaged conspecific. Trees produced from 1 to 109 fruits, so that Amazons foraged more often on trees bearing larger fruit crop size, while seldom visited less productive trees. Moreover, the relationship between fruit crop sizes and the number of depredated fruits was significant. However, when only damaged trees were assessed, I found a negative and significant relation between fruit crop size and proportional crop loss to Blue-Fronted Amazons. Taking into account this as a measure more directly related to the probability of seed survival, a negative density dependent effect emerged. Also, Amazons similarly damaged the fruit crops of either close or distant neighboring damaged trees. Hence, in spite of Blue-Fronted Amazons searched for E. gracilipes bearing large fruit crops, they were swamped due to the presence of more fruits than they could eat. Moderate seed predation by Blue-Fronted Amazons either at trees with large fruit crops or in areas where fruiting trees were aggregated implies in an enhanced probability of E. gracilipes seed survival and consequent regeneration success.
NASA Astrophysics Data System (ADS)
Silva, M. E. S.; Da Rocha, R.; Pereira, G.
2015-12-01
In this study we investigated the climatic impact over South America region due to the increasing of deforestation at the eastern and southern regions of Amazon through the use of the climate model RegCM3 with 50 km of spatial resolution. Many studies, among global and regional models have been used to simulate climatic impact due to deforestation. Most of them used relatively coarse resolution, small domains over South America, besides do not consider deforestation as usually observed. In order to verify the RegCM3 ability to simulate climate impacts due to Amazon deforestation including relatively higher horizontal resolutions, 50 km, a larger domain, the whole South America, deforested areas more similar to the route-shaped commonly seen, and a landuse updating, the model was run for the 2001-2006 period. As the major part of the previous studies focusing Amazon deforestation, RegCM3-50km simulated over degraded areas air temperature increase, ranging from 1.0 to 2.5oC, and precipitation decreasing, ~10%. These aspects are mainly resulting from soil water depletion and roughness vegetation decreasing, both inhibiting evapotranspiration processes. Apart from these results, the model with 50 km simulated precipitation increasing, ~10%, over the eastern South America and adjacent South Atlantic ocean, after Amazon deforestation. Seeking for physical related reasons able to provide the precipitation increasing during rainy seasons, over eastern South America, we found out that upper levels high pressure system (the Bolivian High) intensification, coupled to the southeastward trough, what follows the low troposphere warming, seems to contribute to the precipitation increasing. The climatic impact simulated for winter seasons presents strongest values for areas with altered landuse, over the north region of South America.
Branco, Fernando Luiz Cunha Castelo; Pereira, Thasciany Moraes; Delfino, Breno Matos; Braña, Athos Muniz; Oliart-Guzmán, Humberto; Mantovani, Saulo Augusto Silva; Martins, Antonio Camargo; Oliveira, Cristieli Sérgio de Menezes; Ramalho, Alanderson Alves; Codeço, Claudia Torres; da Silva-Nunes, Mônica
2014-11-27
Vaccines are very important to reduce morbidity and mortality by preventable infectious diseases, especially during childhood. Optimal coverage is not always achieved, for several reasons. Here we assessed vaccine coverage for the first 12 months of age in children between 12 and 59 months old, residing in the urban area of a small Amazonian city, and factors associated with incomplete vaccination. A census was performed in the urban area of Assis Brasil, in the Brazilian Amazon, in January 2010, with mothers of 282 children aged 12 to 59 months old, using structured interviews and data from vaccination cards. Mixed logistic regression was used to determine factors associated with incomplete vaccination schemes. Only 82.6% of all children had a completed the basic vaccine scheme for the first year of life. Vaccine coverage ranged from 52.7% coverage (oral rotavirus vaccine) to 99.7% coverage (for Bacille Calmette-Guérin). The major deficiencies occurred in doses administered after the first six months of life. Incomplete vaccination was associated with not having enough income to buy a house (aOR = 2.12, 95% CI 1.06-4.21), low maternal schooling (aOR = 2.60, 95% CI 1.28 - 5.29) , and time of residence of the child in the urban area of the city (aOR = 0.73, 95% CI 0.55 - 0.95). This study showed that vaccine coverage in the first twelve months of life in Assis Brasil is similar to other areas in the Amazon and it is below the coverage postulated by the Brazilian Ministry of Health. Low vaccine coverage was associated with socioeconomic inequities that still prevail in the Brazilian Amazon. Short and long-term strategies must be taken to update child vaccines and increase vaccine coverage in the Amazon.
Hepatitis Delta virus genotype 8 infection in Northeast Brazil: inheritance from African slaves?
Barros, L M F; Gomes-Gouvêa, M S; Pinho, J R R; Alvarado-Mora, M V; Dos Santos, A; Mendes-Corrêa, M C J; Caldas, A J M; Sousa, M T; Santos, M D C; Ferreira, A S P
2011-09-01
Hepatitis Delta virus (HDV) is endemic worldwide, but its prevalence varies in different geographical areas. While in the Brazilian Amazon, HDV is known to be endemic and to represent a significant public health problem, few studies have assessed its prevalence in other regions in the country. This study evaluated the seroprevalence of HDV among HBsAg chronic carriers from Maranhão state, a region located in the Northeast of Brazil. Among 133 patients, 5 had anti-HD, of whom 3 had HDV RNA. HDV genotypes were characterized by Bayesian phylogenetic analysis of nucleotide sequences from the HDAg coding region. HDV-3 was identified in one patient who lives in Maranhão, but was born in Amazonas state (Western Amazon basin). Phylogenetic analysis shows that this HDV-3 sequence grouped with other HDV-3 sequences isolated in this state, which suggests that the patient probably contracted HDV infection there. Surprisingly, the other two patients were infected with HDV-8, an African genotype. These patients were born and have always lived in Urbano Santos, a rural county of Maranhão state, moreover they had never been to Africa and denied any contact with people from that continent. This is the first description of the HDV-8 in non-native African populations. This genotype may have been introduced to Brazil through the slaves brought to the country from the West Africa regions during the 16-18th centuries. Our results indicate that the need of clinical and epidemiological studies to investigate the presence of this infection in other areas in Brazil. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
McDonald, K. C.; Jensen, K.; Alvarez, J.; Azarderakhsh, M.; Schroeder, R.; Podest, E.; Chapman, B. D.; Zimmermann, R.
2015-12-01
We have been assembling a global-scale Earth System Data Record (ESDR) of natural Inundated Wetlands to facilitate investigations on their role in climate, biogeochemistry, hydrology, and biodiversity. The ESDR comprises (1) Fine-resolution (100 meter) maps, delineating wetland extent, vegetation type, and seasonal inundation dynamics for regional to continental-scale areas, and (2) global coarse-resolution (~25 km), multi-temporal mappings of inundated area fraction (Fw) across multiple years. During March 2013, the NASA/JPL L-band polarimetric airborne imaging radar, UAVSAR, conducted airborne studies over regions of South America including portions of the western Amazon basin. We collected UAVSAR datasets over regions of the Amazon basin during that time to support systematic analyses of error sources related to the Inundated Wetlands ESDR. UAVSAR datasets were collected over Pacaya Samiria, Peru, Madre de Dios, Peru, and the Napo River in Ecuador. We derive landcover classifications from the UAVSAR datasets emphasizing wetlands regions, identifying regions of open water and inundated vegetation. We compare the UAVSAR-based datasets with those comprising the ESDR to assess uncertainty associated with the high resolution and the coarse resolution ESDR components. Our goal is to create an enhanced ESDR of inundated wetlands with statistically robust uncertainty estimates. The ESDR documentation will include a detailed breakdown of error sources and associated uncertainties within the data record. This work was carried out in part within the framework of the ALOS Kyoto & Carbon Initiative. PALSAR data were provided by JAXA/EORC and the Alaska Satellite Facility. Portions of this work were conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract to the National Aeronautics and Space Administration.
Araújo, Thiago Santos de; Oliveira, Cristieli Sérgio de Menezes; Muniz, Pascoal Torres; Silva-Nunes, Mônica da; Cardoso, Marly Augusto
2016-01-01
To estimate the prevalence of child undernutrition and associated factors in a municipality with high nutritional risk in Brazil. This cross-sectional, population-based study was conducted with a sample of 478 children aged under 5 years in the city of Jordão, Acre, Brazil. The following indicators were calculated: weight for age (W/A), height for age (H/A), and weight for height (W/H), using the growth curves of the WHO as reference, which adopts a cutoff of -2 z scores for identification of malnourished children. Adjusted prevalence ratios (PRs) were obtained using multiple Poisson regression models with robust error estimate (p < 0.05). A high prevalence of stunting (35.8%) was observed. Children with indigenous ancestry living in rural areas showed the highest prevalence of malnutrition (59.4%). After controlling for age, gender, and indigenous ancestry, the factors associated with stunting risk were: living in rural area (PR = 1.6; 95%CI 1.2 - 2.1); lower tertile of household wealth index (PR = 1.6; 95%CI 1.1 - 2.3); living in houses made of walking palm (PR = 1.6; 95%CI 1.1 - 2.4); maternal height less than or equal to 146.4 cm (PR = 3.1; 95%CI 1.9 - 5.0); and history of introduction of cow's milk before 30 days of age (PR = 1.4; 95%CI 1.0 - 1.8). Children with updated vaccination cards were inversely associated with stunting risk (PR = 0.7; 95%CI 0.5 - 0.9). Child undernutrition remains a serious public health problem in the Amazon, indicating additional difficulties in facing the problem in this region of the country.
Mantovani, Saulo A S; Delfino, Breno Matos; Martins, Antonio C; Oliart-Guzmán, Humberto; Pereira, Thasciany M; Branco, Fernando L C C; Braña, Athos Muniz; Filgueira-Júnior, José A; Santos, Ana P; Arruda, Rayanne A; Guimarães, Andréia S; Ramalho, Alanderson A; Oliveira, Cristieli Sergio de Menezes; Araújo, Thiago S; Arróspide, Nancy; Estrada, Carlos H M L; Codeço, Cláudia T; da Silva-Nunes, Mônica
2015-10-16
Hepatitis A is still a neglected health problem in the world. The most affected areas are the ones with disadvantaged socioeconomic conditions. In Brazil, seroprevalence studies showed that 64.7 % of the general population has antibodies against HAV (hepatitis A virus), and the Amazon region has the highest seroprevalence in the country. In the present study the seroprevalence of total HAV antibodies in children between 1 and 5 years old residing in the urban area of Assis Brasil, Acre was measured and spatial distribution of several socioeconomic inequities was evaluated. In the year of 2011, seroprevalence rate was 16.66 %. Factors associated with having a positive serology identified by multivariate analysis were being of indigenous ethnicity [adjusted Odds Ratio (aOR) = 3.27, CI 1.45-7.28], usage of water from the public system (aOR = 8.18, CI 1.07-62.53), living in a house not located in a street (aOR = 3.48, CI 1.54-7.87), and child age over 4 years old (aOR = 2.43, CI 1.23-4.79). The distribution of seropositive children was clustered in the eastern part of the city, where several socioeconomic inequities (lack of flushed toilets, lack of piped water inside the household and susceptibility of the household to flooding during rain, low maternal education, having wood or ground floor at home, and not owning a house, lack of piped water at home, and type of drinking water) also clustered. The findings highlight that sanitation and water treatment still need improvement in the Brazilian Amazon, and that socioeconomic development is warranted in order to decrease this and other infectious diseases.
Methane emissions to the troposphere from the Amazon floodplain
NASA Technical Reports Server (NTRS)
Devol, Allen H.; Richey, Jeffrey E.; Clark, Wayne A.; King, Stagg L.; Martinelli, Luiz A.
1988-01-01
The magnitudes of CH4 emissions to the troposphere from the Amazon River floodplain and the mechanism of these emissions were investigated using the data of 94 individual flux measurements made along a 1700-km stretch of the river during July/August 1985. The overall average rate of CH4 emission from wetlands was found to be 390 mg CH4/sq m per day, with the highest emissions (590 mg CH4/sq m per day) attributed to the water surfaces covered by aquatic macrophytes. Ebullition was the dominant mechanism of emission, accounting for 85 percent of the total. Surface-water CH4 concentrations were highly supersaturated, averaging 6.4 micromolar. The annual emission of CH4 from the Amazon Basin to the troposphere, estimated from the area and the known emission rate, is about 10 CH4 Tg/yr, indicating the importance of the area in the global atmospheric CH4 cycle.
Demographic and health attributes of the Nahua, initial contact population of the Peruvian Amazon.
Culqui, Dante R; Ayuso-Alvarez, Ana; Munayco, Cesar V; Quispe-Huaman, Carlos; Mayta-Tristán, Percy; Campos, Juan de Mata Donado
2016-01-01
We present the case of the Nahua population of Santa Rosa de Serjali, Peruvian Amazon's population, considered of initial contact. This population consists of human groups that for a long time decided to live in isolation, but lately have begun living a more sedentary lifestyle and in contact with Western populations. There are two fully identified initial contact groups in Peru: the Nahua and the Nanti. The health statistics of the Nahua are scarce. This study offers an interpretation of demographic and epidemiological indicators of the Nahua people, trying to identify if a certain degree of health vulnerability exists. We performed a cross sectional study, and after analyzing their health indicators, as well as the supplemental qualitative analysis of the population, brought us to conclude that in 2006, the Nahua, remained in a state of health vulnerability.
Geographical patterns of human diet derived from stable-isotope analysis of fingernails
Nardoto, G.B.; Silva, S.; Kendall, C.; Ehleringer, J.R.; Chesson, L.A.; Ferraz, E.S.B.; Moreira, M.Z.; Ometto, Jean P. H. B.; Martinelli, L.A.
2006-01-01
Carbon and nitrogen isotope ratios of human fingernails were measured in 490 individuals in the western US and 273 individuals in southeastern Brazil living in urban areas, and 53 individuals living in a moderately isolated area in the central Amazon region of Brazil and consuming mostly locally grown foods. In addition, we measured the carbon and nitrogen isotope ratios of common food items to assess the extent to which these isotopic signatures remain distinct for people eating both omnivorous and vegetarian diets and living in different parts of the world, and the extent to which dietary information can be interpreted from these analyses. Fingernail ??13C values (mean ?? standard deviation) were -15.4 ?? 1.0 and -18.8 ?? 0.8??? and ??15N values were 10.4 ?? 0.7 and 9.4 ?? 0.6??? for southeastern Brazil and western US populations, respectively. Despite opportunities for a "global supermarket" effect to swamp out carbon and nitrogen isotope ratios in these two urbanized regions of the world, differences in the fingernail isotope ratios between southeastern Brazil and western US populations persisted, and appeared to be more associated with regional agricultural and animal production practices. Omnivores and vegetarians from Brazil and the US were isotopically distinct, both within and between regions. In a comparison of fingernails of individuals from an urban city and isolated communities in the Amazonian region, the urban region was similar to southeastern Brazil, whereas individuals from isolated nonurban communities showed distinctive isotopic values consistent with their diets and with the isotopic values of local foods. Although there is a tendency for a "global supermarket" diet, carbon and nitrogen isotopes of human fingernails hold dietary information directly related to both food sources and dietary practices in a region. ?? 2006 Wiley-Liss, Inc.
Geographical patterns of human diet derived from stable-isotope analysis of fingernails.
Nardoto, Gabriela B; Silva, Steven; Kendall, Carol; Ehleringer, James R; Chesson, Lesley A; Ferraz, Epaminondas S B; Moreira, Marcelo Z; Ometto, Jean P H B; Martinelli, Luiz A
2006-09-01
Carbon and nitrogen isotope ratios of human fingernails were measured in 490 individuals in the western US and 273 individuals in southeastern Brazil living in urban areas, and 53 individuals living in a moderately isolated area in the central Amazon region of Brazil and consuming mostly locally grown foods. In addition, we measured the carbon and nitrogen isotope ratios of common food items to assess the extent to which these isotopic signatures remain distinct for people eating both omnivorous and vegetarian diets and living in different parts of the world, and the extent to which dietary information can be interpreted from these analyses. Fingernail delta13C values (mean +/- standard deviation) were -15.4 +/- 1.0 and -18.8 +/- 0.8 per thousand and delta15N values were 10.4 +/- 0.7 and 9.4 +/- 0.6 per thousand for southeastern Brazil and western US populations, respectively. Despite opportunities for a "global supermarket" effect to swamp out carbon and nitrogen isotope ratios in these two urbanized regions of the world, differences in the fingernail isotope ratios between southeastern Brazil and western US populations persisted, and appeared to be more associated with regional agricultural and animal production practices. Omnivores and vegetarians from Brazil and the US were isotopically distinct, both within and between regions. In a comparison of fingernails of individuals from an urban city and isolated communities in the Amazonian region, the urban region was similar to southeastern Brazil, whereas individuals from isolated nonurban communities showed distinctive isotopic values consistent with their diets and with the isotopic values of local foods. Although there is a tendency for a "global supermarket" diet, carbon and nitrogen isotopes of human fingernails hold dietary information directly related to both food sources and dietary practices in a region. 2006 Wiley-Liss, Inc.
Nolte, Christoph; Agrawal, Arun
2013-02-01
Management-effectiveness scores are used widely by donors and implementers of conservation projects to prioritize, track, and evaluate investments in protected areas. However, there is little evidence that these scores actually reflect the capacity of protected areas to deliver conservation outcomes. We examined the relation between indicators of management effectiveness in protected areas and the effectiveness of protected areas in reducing fire occurrence in the Amazon rainforest. We used data collected with the Management Effectiveness Tracking Tool (METT) scorecard, adopted by some of the world's largest conservation organizations to track management characteristics believed to be crucial for protected-area effectiveness. We used the occurrence of forest fires from 2000 through 2010 as a measure of the effect of protected areas on undesired land-cover change in the Amazon basin. We used matching to compare the estimated effect of protected areas with low versus high METT scores on fire occurrence. We also estimated effects of individual protected areas on fire occurrence and explored the relation between these effects and METT scores. The relations between METT scores and effects of protected areas on fire occurrence were weak. Protected areas with higher METT scores in 2005 did not seem to have performed better than protected areas with lower METT scores at reducing fire occurrence over the last 10 years. Further research into the relations between management-effectiveness indicators and conservation outcomes in protected areas seems necessary, and our results show that the careful application of matching methods can be a suitable method for that purpose. ©2012 Society for Conservation Biology.
Michalski, Fernanda; Gibbs, James P.
2018-01-01
The global expansion of energy demands combined with abundant rainfall, large water volumes and high flow in tropical rivers have led to an unprecedented expansion of dam constructions in the Amazon. This expansion generates an urgent need for refined approaches to river management; specifically a move away from decision-making governed by overly generalized guidelines. For the first time we quantify direct impacts of hydropower reservoir establishment on an Amazon fresh water turtle. We conducted surveys along 150 km of rivers upstream of a new dam construction during the low water months that correspond to the nesting season of Podocnemis unifilis in the study area. Comparison of nest-areas before (2011, 2015) and after (2016) reservoir filling show that reservoir impacts extend 13% beyond legally defined limits. The submerged nesting areas accounted for a total of 3.8 ha of nesting habitat that was inundated as a direct result of the reservoir filling in 2016. Our findings highlight limitations in the development and implementation of existing Brazilian environmental impact assessment process. We also propose potential ways to mitigate the negative impacts of dams on freshwater turtles and the Amazonian freshwater ecosystems they inhabit. PMID:29333347
Increasing incidence of malaria in the Negro River basin, Brazilian Amazon.
Cabral, A C; Fé, N F; Suárez-Mutis, M C; Bóia, M N; Carvalho-Costa, F A
2010-08-01
Malaria in Brazil is virtually restricted to the Amazon Region, where it has a heterogeneous geographic distribution. We reviewed secondary data in order to describe the regional and temporal distribution of 8018 malaria cases seen between 2003 and 2007 in Santa Isabel do Rio Negro, a municipality in the northwest Brazilian Amazon. A significant rise in malaria incidence, mainly in the Yanomami Indian reservation, was observed during this time. Anopheline breeding sites were also mapped and entomological data were obtained through the capture of larval and adult mosquitoes. Thirty-three potential breeding sites were identified in the urban and periurban areas, 28 of which were positive for anopheline larvae. Anopheles darlingi specimens were captured in both intra- and peridomicile locations in the urban areas. Demographic data were also assessed via a sectional survey, revealing that the majority of dwellings were vulnerable to mosquitoes. This study suggests that urban and periurban areas of this municipality are highly susceptible to epidemic malaria, which is endemic in the Yanomami Indian reservation near the city. In addition, transmission can be perpetuated autochthonously in the urban area, drawing attention to the continuous need for preventative measures such as controlling adult and aquatic stages of mosquitoes and improving housing.
Norris, Darren; Michalski, Fernanda; Gibbs, James P
2018-01-01
The global expansion of energy demands combined with abundant rainfall, large water volumes and high flow in tropical rivers have led to an unprecedented expansion of dam constructions in the Amazon. This expansion generates an urgent need for refined approaches to river management; specifically a move away from decision-making governed by overly generalized guidelines. For the first time we quantify direct impacts of hydropower reservoir establishment on an Amazon fresh water turtle. We conducted surveys along 150 km of rivers upstream of a new dam construction during the low water months that correspond to the nesting season of Podocnemis unifilis in the study area. Comparison of nest-areas before (2011, 2015) and after (2016) reservoir filling show that reservoir impacts extend 13% beyond legally defined limits. The submerged nesting areas accounted for a total of 3.8 ha of nesting habitat that was inundated as a direct result of the reservoir filling in 2016. Our findings highlight limitations in the development and implementation of existing Brazilian environmental impact assessment process. We also propose potential ways to mitigate the negative impacts of dams on freshwater turtles and the Amazonian freshwater ecosystems they inhabit.
Spectral Mixture Analysis to map burned areas in Brazil's deforestation arc from 1992 to 2011
NASA Astrophysics Data System (ADS)
Antunes Daldegan, G.; Ribeiro, F.; Roberts, D. A.
2017-12-01
The two most extensive biomes in South America, the Amazon and the Cerrado, are subject to several fire events every dry season. Both are known for their ecological and environmental importance. However, due to the intensive human occupation over the last four decades, they have been facing high deforestation rates. The Cerrado biome is adapted to fire and is considered a fire-dependent landscape. In contrast, the Amazon as a tropical moist broadleaf forest does not display similar characteristics and is classified as a fire-sensitive landscape. Nonetheless, studies have shown that forest areas that have already been burned become more prone to experience recurrent burns. Remote sensing has been extensively used by a large number of researchers studying fire occurrence at a global scale, as well as in both landscapes aforementioned. Digital image processing aiming to map fire activity has been applied to a number of imagery from sensors of various spatial, temporal, and spectral resolutions. More specifically, several studies have used Landsat data to map fire scars in the Amazon forest and in the Cerrado. An advantage of using Landsat data is the potential to map fire scars at a finer spatial resolution, when compared to products derived from imagery of sensors featuring better temporal resolution but coarser spatial resolution, such as MODIS (Moderate Resolution Imaging Spectrometer) and GOES (Geostationary Operational Environmental Satellite). This study aimed to map burned areas present in the Amazon-Cerrado transition zone by applying Spectral Mixture Analysis on Landsat imagery for a period of 20 years (1992-2011). The study area is a subset of this ecotone, centered at the State of Mato Grosso. By taking advantage of the Landsat 5TM and Landsat 7ETM+ imagery collections available in Google Earth Engine platform and applying Spectral Mixture Analysis (SMA) techniques over them permitted to model fire scar fractions and delimitate burned areas. Overlaying yearly burned areas allowed to identify areas with high fire recurrence.
Phylogenetic relationships, diversification and expansion of chili peppers (Capsicum, Solanaceae)
Carrizo García, Carolina; Barfuss, Michael H. J.; Sehr, Eva M.; Barboza, Gloria E.; Samuel, Rosabelle; Moscone, Eduardo A.; Ehrendorfer, Friedrich
2016-01-01
Background and Aims Capsicum (Solanaceae), native to the tropical and temperate Americas, comprises the well-known sweet and hot chili peppers and several wild species. So far, only partial taxonomic and phylogenetic analyses have been done for the genus. Here, the phylogenetic relationships between nearly all taxa of Capsicum were explored to test the monophyly of the genus and to obtain a better knowledge of species relationships, diversification and expansion. Methods Thirty-four of approximately 35 Capsicum species were sampled. Maximum parsimony and Bayesian inference analyses were performed using two plastid markers (matK and psbA-trnH) and one single-copy nuclear gene (waxy). The evolutionary changes of nine key features were reconstructed following the parsimony ancestral states method. Ancestral areas were reconstructed through a Bayesian Markov chain Monte Carlo analysis. Key Results Capsicum forms a monophyletic clade, with Lycianthes as a sister group, following both phylogenetic approaches. Eleven well-supported clades (four of them monotypic) can be recognized within Capsicum, although some interspecific relationships need further analysis. A few features are useful to characterize different clades (e.g. fruit anatomy, chromosome base number), whereas some others are highly homoplastic (e.g. seed colour). The origin of Capsicum is postulated in an area along the Andes of western to north-western South America. The expansion of the genus has followed a clockwise direction around the Amazon basin, towards central and south-eastern Brazil, then back to western South America, and finally northwards to Central America. Conclusions New insights are provided regarding interspecific relationships, character evolution, and geographical origin and expansion of Capsicum. A clearly distinct early-diverging clade can be distinguished, centred in western–north-western South America. Subsequent rapid speciation has led to the origin of the remaining clades. The diversification of Capsicum has culminated in the origin of the main cultivated species in several regions of South to Central America. PMID:27245634
Fernandez, Roberto; Lopez, Victor; Cardenas, Roldan; Requena, Edwin
2015-01-01
A new species of sand fly, which we describe as Lutzomyia (Trichophoromyia) nautaensis n. sp., was collected in the northern Peruvian Amazon Basin. In this region of Peru, cutaneous leishmaniasis is transmitted primarily by anthropophilic sand flies; however, zoophilic sand flies of the subgenus Trichophoromyia may also be incriminated in disease transmission. Detection of Leishmania spp. in Lutzomyia auraensis Mangabeira captured in the southern Peruvian Amazon indicates the potential of this and other zoophilic sand flies for human disease transmission, particularly in areas undergoing urban development. Herein, we describe Lutzomyia (Trichophoromyia) nautaensis n. sp., and report new records of sand flies in Peru. PMID:26335468
Potential contribution of groundwater to dry-season ET in the Amazon
NASA Astrophysics Data System (ADS)
Miguez-Macho, Gonzalo; Fan, Ying
2010-05-01
Climate and land ecosystem models simulate vegetation stress in the Amazon forest in the dry season, but observations show enhanced growth in response to higher radiation under less cloudy skies indicating an adequate water supply. The question is: how does the vegetation obtain sufficient water, and what is missing in the models? Shallow model soil and rooting depth is a factor; the ability of roots to move water up and down (hydraulic redistribution) may be another, but another cause may lie in the buffering effect of the groundwater found in nature but absent in models. We present observational and modeling evidence that the vast groundwater store, consequence of high annual rainfall combined with poor drainage in the Amazon, may provide a stable source for dry-season photosynthesis. The water table beneath the Amazon is sufficiently shallow (38% area <5m and 63% area <10m deep) as to contribute >2mm/day to dry-season evapotranspiration, a non-negligible portion of tower-observed flux of 3-4mm/day, the latter including canopy-interception loss and open-water evaporation. This may have important implications to our understanding of Amazonia ecosystem response and feedback to climate change. Current models, lacking groundwater, predict a significant reduction in dry-season photosynthesis under current climate and large-scale dieback under projected future climate converting the Amazon from a net carbon sink to a net source and accelerating warming. If groundwater is considered in the models, the magnitude of the responses and feedbacks may be reduced.
Bahar, Nur H A; Ishida, F Yoko; Weerasinghe, Lasantha K; Guerrieri, Rossella; O'Sullivan, Odhran S; Bloomfield, Keith J; Asner, Gregory P; Martin, Roberta E; Lloyd, Jon; Malhi, Yadvinder; Phillips, Oliver L; Meir, Patrick; Salinas, Norma; Cosio, Eric G; Domingues, Tomas F; Quesada, Carlos A; Sinca, Felipe; Escudero Vega, Alberto; Zuloaga Ccorimanya, Paola P; Del Aguila-Pasquel, Jhon; Quispe Huaypar, Katherine; Cuba Torres, Israel; Butrón Loayza, Rosalbina; Pelaez Tapia, Yulina; Huaman Ovalle, Judit; Long, Benedict M; Evans, John R; Atkin, Owen K
2017-05-01
We examined whether variations in photosynthetic capacity are linked to variations in the environment and/or associated leaf traits for tropical moist forests (TMFs) in the Andes/western Amazon regions of Peru. We compared photosynthetic capacity (maximal rate of carboxylation of Rubisco (V cmax ), and the maximum rate of electron transport (J max )), leaf mass, nitrogen (N) and phosphorus (P) per unit leaf area (M a , N a and P a , respectively), and chlorophyll from 210 species at 18 field sites along a 3300-m elevation gradient. Western blots were used to quantify the abundance of the CO 2 -fixing enzyme Rubisco. Area- and N-based rates of photosynthetic capacity at 25°C were higher in upland than lowland TMFs, underpinned by greater investment of N in photosynthesis in high-elevation trees. Soil [P] and leaf P a were key explanatory factors for models of area-based V cmax and J max but did not account for variations in photosynthetic N-use efficiency. At any given N a and P a , the fraction of N allocated to photosynthesis was higher in upland than lowland species. For a small subset of lowland TMF trees examined, a substantial fraction of Rubisco was inactive. These results highlight the importance of soil- and leaf-P in defining the photosynthetic capacity of TMFs, with variations in N allocation and Rubisco activation state further influencing photosynthetic rates and N-use efficiency of these critically important forests. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Monteiro, Wuelton Marcelo; Margioto Teston, Ana Paula; Gruendling, Ana Paula; dos Reis, Daniele; Gomes, Mônica Lúcia; Marques de Araújo, Silvana; Bahia, Maria Terezinha; Costa Magalhães, Laylah Kelre; de Oliveira Guerra, Jorge Augusto; Silveira, Henrique; de Ornelas Toledo, Max Jean; Vale Barbosa, Maria das Graças
2013-01-01
Background In the Brazilian Amazon, clinical and epidemiological frameworks of Chagas disease are very dissimilar in relation to the endemic classical areas of transmission, possibly due to genetic and biological characteristics of the circulating Trypanosoma cruzi stocks. Twenty six T. cruzi stocks from Western Amazon Region attributed to the TcI and TcIV DTUs were comparatively studied in Swiss mice to test the hypothesis that T. cruzi clonal structure has a major impact on its biological and medical properties. Methodology/Principal Findings Seventeen parameters were assayed in mice infected with 14 T. cruzi strains belonging to DTU TcI and 11 strains typed as TcIV. In comparison with TcI, TcIV stocks promoted a significantly shorter pre-patent period (p<0.001), a longer patent period (p<0.001), higher values of mean daily parasitemia (p = 0.009) and maximum of parasitemia (p = 0.015), earlier days of maximum parasitemia (p<0.001) and mortality (p = 0.018), higher mortality rates in the acute phase (p = 0.047), higher infectivity rates (p = 0.002), higher positivity in the fresh blood examination (p<0.001), higher positivity in the ELISA at the early chronic phase (p = 0.022), and a higher positivity in the ELISA at the late chronic phase (p = 0.003). On the other hand TcI showed higher values of mortality rates in the early chronic phase (p = 0.014), higher frequency of mice with inflammatory process in any organ (p = 0.005), higher frequency of mice with tissue parasitism in any organ (p = 0.027) and a higher susceptibility to benznidazole (p = 0.002) than TcIV. Survival analysis showing the time elapsed from the day of inoculation to the beginning of the patent period was significantly shorter for TcIV strains and the death episodes triggered following the infection with TcI occurred significantly later in relation to TcIV. The notable exceptions come from positivity in the hemocultures and PCR, for which the results were similar. Conclusion/Significance T. cruzi stocks belonging to TcI and TcIV DTUs from Brazilian Amazon are divergent in terms of biological and medical properties in mice. PMID:23437410
Costa, Francisco B; da Costa, Andréa P; Moraes-Filho, Jonas; Martins, Thiago F; Soares, Herbert S; Ramirez, Diego G; Dias, Ricardo A; Labruna, Marcelo B
2017-01-01
This study was performed in Maranhão state, a transition area two Brazilian biomes, Amazon and Cerrado. During 2011-2013, 1,560 domestic dogs were sampled for collection of serum blood samples and ticks in eight counties (3 within the Amazon and 5 within the Cerrado). A total of 959 ticks were collected on 150 dogs (9.6%). Rhipicephalus sanguineus sensu lato (s.l.) was the most abundant tick (68% of all collected specimens), followed by Amblyomma cajennense sensu lato (s.l.) (12.9%), Amblyomma parvum (9.2%), and Amblyomma ovale (5.2%). Other less abundant species (<1%) were Amblyomma oblongoguttatum, Rhipicephalus microplus, Haemaphysalis juxtakochi, and Amblyomma rotundatum. Females of A. cajennense s.l. ticks were morphologically identified as A. cajennense sensu stricto (s.s.) or A. sculptum. Molecular analyses of 779 canine ticks revealed three Rickettsia species: Rickettsia amblyommatis in 1% (1/100) A. cajennense s.l., 'Candidatus Rickettsia andeanae' in 20.7% (12/58) A. parvum, Rickettsia bellii in 6.8% (3/44) A. ovale and 100% (1/1) A. rotundatum ticks. An additional collection of A. sculptum from horses in a Cerrado area, and A. cajennense s.s. from pigs in an Amazon area revealed R. amblyommatis infecting only the A. cajennense s.s. ticks. Serological analysis of the 1,560 canine blood samples revealed 12.6% canine seroreactivity to Rickettsia spp., with the highest specific seroreactivity rate (10.2%) for R. amblyommatis. Endpoint titers to R. amblyommatis were significantly higher than those for the other Rickettsia antigens, suggesting that most of the seroreactive dogs were exposed to R. amblyommatis-infected ticks. Highest canine seroreactivity rates per locality (13.1-30.8%) were found in Amazon biome, where A. cajennense s.s. predominated. Lowest seroreactivity rates (1.9-6.5%) were found in Cerrado localities that were further from the Amazon, where A. sculptum predominated. Multivariate analyses revealed that canine seroreactivity to Rickettsia spp. or R. amblyommatis was statistically associated with rural dogs, exposed to Amblyomma ticks.
NASA Astrophysics Data System (ADS)
Sanders, Luciana M.; Taffs, Kathryn; Stokes, Debra; Sanders, Christian J.; Enrich-Prast, Alex; Amora-Nogueira, Leonardo; Marotta, Humberto
2018-01-01
Forests along the Amazon Basin produce significant quantities of organic material, a portion of which is deposited in floodplain lakes. Deforestation in the watershed may then have potentially important effects on the carbon fluxes. In this study, a sediment core was extracted from an Amazon floodplain lake to examine the relationship between carbon burial and changing land cover and land use. Historical records from the 1930s and satellite data from the 1970s were used to calculate deforestation rates between 1930 to 1970 and 1970 to 2010 in four zones with different distances from the margins of the lake and its tributaries (100, 500, 1000 and 6000 m buffers). A sediment accumulation rate of ˜ 4 mm yr-1 for the previous ˜ 120 years was determined from the 240+239Pu signatures and the excess 210Pb method. The carbon burial rates ranged between 85 and 298 g C m-2 yr-1, with pulses of high carbon burial in the 1950s, originating from the forest vegetation as indicated by δ13C and δ15N signatures. Our results revealed a potentially important spatial dependence of the organic carbon (OC) burial in Amazon lacustrine sediments in relation to deforestation rates in the catchment. These deforestation rates were more intense in the riparian vegetation (100 m buffer) during the period 1930 to 1970 and the larger open water areas (500, 1000 and 6000 m buffer) during 1970 to 2010. The continued removal of vegetation from the interior of the forest was not related to the peak of OC burial in the lake, but only the riparian deforestation which peaked during the 1950s. Therefore, this supports the conservation priority of riparian forests as an important management practice for Amazon flooded areas. Our findings suggest the importance of abrupt and temporary events in which some of the biomass released by deforestation, especially restricted to areas along open water edges, might reach the depositional environments in the floodplain of the Amazon Basin.
NASA Astrophysics Data System (ADS)
Beck, V.; Gerbig, C.; Koch, T.; Bela, M. M.; Longo, K. M.; Freitas, S. R.; Kaplan, J. O.; Prigent, C.; Bergamaschi, P.; Heimann, M.
2012-09-01
The Amazon region as a large source of methane (CH4) contributes significantly to the global annual CH4 budget. For the first time in the Amazon region, a forward and inverse modelling framework on regional scale for the purpose of assessing the CH4 budget of the Amazon region is implemented. Here, we present forward simulations of CH4 based on a modified version of the Weather Research and Forecasting model with chemistry that allows for passive tracer transport of CH4, carbon monoxide, and carbon dioxide (WRF-GHG), in combination with two different process-based bottom-up models of CH4 emissions from anaerobic microbial production in wetlands and additional datasets prescribing CH4 emissions from other sources such as biomass burning, termites, or other anthropogenic emissions. We compare WRF-GHG simulations on 10 km horizontal resolution to flask and continuous CH4 observations obtained during two airborne measurement campaigns within the Balanço Atmosférico Regional de Carbono na Amazônia (BARCA) project in November 2008 and May 2009. In addition, three different wetland inundation maps, prescribing the fraction of inundated area per grid cell, are evaluated. Our results indicate that the wetland inundation map with inundated area changing in time represents the observations best except for the northern part of the Amazon basin and the Manaus area. WRF-GHG was able to represent the observed CH4 mixing ratios best at days with less convective activity. After adjusting wetland emissions to match the averaged observed mixing ratios of flights with little convective activity, the monthly CH4 budget of the Amazon lowland region obtained from four different simulations ranges from 1.5 to 4.8 Tg for November 2008 and from 1.3 to 5.5 Tg for May 2009. This corresponds to an average CH4 flux of 9-31 mg m-2 d-1 for November 2008 and 8-36 mg m-2 d-1 for May 2009.
Costa, Francisco B.; da Costa, Andréa P.; Moraes-Filho, Jonas; Martins, Thiago F.; Soares, Herbert S.; Ramirez, Diego G.; Dias, Ricardo A.
2017-01-01
This study was performed in Maranhão state, a transition area two Brazilian biomes, Amazon and Cerrado. During 2011–2013, 1,560 domestic dogs were sampled for collection of serum blood samples and ticks in eight counties (3 within the Amazon and 5 within the Cerrado). A total of 959 ticks were collected on 150 dogs (9.6%). Rhipicephalus sanguineus sensu lato (s.l.) was the most abundant tick (68% of all collected specimens), followed by Amblyomma cajennense sensu lato (s.l.) (12.9%), Amblyomma parvum (9.2%), and Amblyomma ovale (5.2%). Other less abundant species (<1%) were Amblyomma oblongoguttatum, Rhipicephalus microplus, Haemaphysalis juxtakochi, and Amblyomma rotundatum. Females of A. cajennense s.l. ticks were morphologically identified as A. cajennense sensu stricto (s.s.) or A. sculptum. Molecular analyses of 779 canine ticks revealed three Rickettsia species: Rickettsia amblyommatis in 1% (1/100) A. cajennense s.l., ‘Candidatus Rickettsia andeanae’ in 20.7% (12/58) A. parvum, Rickettsia bellii in 6.8% (3/44) A. ovale and 100% (1/1) A. rotundatum ticks. An additional collection of A. sculptum from horses in a Cerrado area, and A. cajennense s.s. from pigs in an Amazon area revealed R. amblyommatis infecting only the A. cajennense s.s. ticks. Serological analysis of the 1,560 canine blood samples revealed 12.6% canine seroreactivity to Rickettsia spp., with the highest specific seroreactivity rate (10.2%) for R. amblyommatis. Endpoint titers to R. amblyommatis were significantly higher than those for the other Rickettsia antigens, suggesting that most of the seroreactive dogs were exposed to R. amblyommatis-infected ticks. Highest canine seroreactivity rates per locality (13.1–30.8%) were found in Amazon biome, where A. cajennense s.s. predominated. Lowest seroreactivity rates (1.9–6.5%) were found in Cerrado localities that were further from the Amazon, where A. sculptum predominated. Multivariate analyses revealed that canine seroreactivity to Rickettsia spp. or R. amblyommatis was statistically associated with rural dogs, exposed to Amblyomma ticks. PMID:28594882
Spatial Pattern of Standing Timber Value across the Brazilian Amazon
Ahmed, Sadia E.; Ewers, Robert M.
2012-01-01
The Amazon is a globally important system, providing a host of ecosystem services from climate regulation to food sources. It is also home to a quarter of all global diversity. Large swathes of forest are removed each year, and many models have attempted to predict the spatial patterns of this forest loss. The spatial patterns of deforestation are determined largely by the patterns of roads that open access to frontier areas and expansion of the road network in the Amazon is largely determined by profit seeking logging activities. Here we present predictions for the spatial distribution of standing value of timber across the Amazon. We show that the patterns of timber value reflect large-scale ecological gradients, determining the spatial distribution of functional traits of trees which are, in turn, correlated with timber values. We expect that understanding the spatial patterns of timber value across the Amazon will aid predictions of logging movements and thus predictions of potential future road developments. These predictions in turn will be of great use in estimating the spatial patterns of deforestation in this globally important biome. PMID:22590520
Amazon Forests Maintain Consistent Canopy Structure and Greenness During the Dry Season
NASA Technical Reports Server (NTRS)
Morton, Douglas C.; Nagol, Jyoteshwar; Carabajal, Claudia C.; Rosette, Jacqueline; Palace, Michael; Cook, Bruce D.; Vermote, Eric F.; Harding, David J.; North, Peter R. J.
2014-01-01
The seasonality of sunlight and rainfall regulates net primary production in tropical forests. Previous studies have suggested that light is more limiting than water for tropical forest productivity, consistent with greening of Amazon forests during the dry season in satellite data.We evaluated four potential mechanisms for the seasonal green-up phenomenon, including increases in leaf area or leaf reflectance, using a sophisticated radiative transfer model and independent satellite observations from lidar and optical sensors. Here we show that the apparent green up of Amazon forests in optical remote sensing data resulted from seasonal changes in near-infrared reflectance, an artefact of variations in sun-sensor geometry. Correcting this bidirectional reflectance effect eliminated seasonal changes in surface reflectance, consistent with independent lidar observations and model simulations with unchanging canopy properties. The stability of Amazon forest structure and reflectance over seasonal timescales challenges the paradigm of light-limited net primary production in Amazon forests and enhanced forest growth during drought conditions. Correcting optical remote sensing data for artefacts of sun-sensor geometry is essential to isolate the response of global vegetation to seasonal and interannual climate variability.
Amazon forests maintain consistent canopy structure and greenness during the dry season.
Morton, Douglas C; Nagol, Jyoteshwar; Carabajal, Claudia C; Rosette, Jacqueline; Palace, Michael; Cook, Bruce D; Vermote, Eric F; Harding, David J; North, Peter R J
2014-02-13
The seasonality of sunlight and rainfall regulates net primary production in tropical forests. Previous studies have suggested that light is more limiting than water for tropical forest productivity, consistent with greening of Amazon forests during the dry season in satellite data. We evaluated four potential mechanisms for the seasonal green-up phenomenon, including increases in leaf area or leaf reflectance, using a sophisticated radiative transfer model and independent satellite observations from lidar and optical sensors. Here we show that the apparent green up of Amazon forests in optical remote sensing data resulted from seasonal changes in near-infrared reflectance, an artefact of variations in sun-sensor geometry. Correcting this bidirectional reflectance effect eliminated seasonal changes in surface reflectance, consistent with independent lidar observations and model simulations with unchanging canopy properties. The stability of Amazon forest structure and reflectance over seasonal timescales challenges the paradigm of light-limited net primary production in Amazon forests and enhanced forest growth during drought conditions. Correcting optical remote sensing data for artefacts of sun-sensor geometry is essential to isolate the response of global vegetation to seasonal and interannual climate variability.
Blue Water Trade-Offs With Vegetation in a CO2-Enriched Climate
NASA Astrophysics Data System (ADS)
Mankin, Justin S.; Seager, Richard; Smerdon, Jason E.; Cook, Benjamin I.; Williams, A. Park; Horton, Radley M.
2018-04-01
Present and future freshwater availability and drought risks are physically tied to the responses of surface vegetation to increasing CO2. A single-model large ensemble identifies the occurrence of colocated warming- and CO2-induced leaf area index increases with summer soil moisture declines. This pattern of "greening" and "drying," which occurs over 42% of global vegetated land area, is largely attributable to changes in the partitioning of precipitation at the land surface away from runoff and toward terrestrial vegetation ecosystems. Changes in runoff and ecosystem partitioning are inversely related, with changes in runoff partitioning being governed by changes in precipitation (mean and extremes) and ecosystem partitioning being governed by ecosystem water use and surface resistance to evapotranspiration (ET). Projections show that warming-influenced and CO2-enriched terrestrial vegetation ecosystems use water that historically would have been partitioned to runoff over 48% of global vegetated land areas, largely in Western North America, the Amazon, and Europe, many of the same regions with colocated greening and drying. These results have implications for how water available for people will change in response to anthropogenic warming and raise important questions about model representations of vegetation water responses to high CO2.
Accord No. 334 of 18 August 1989.
1989-01-01
This Accord creates the Programme for Forestation and Reforestation of the Amazon Region of Ecuador with Native Species, under the control of the National Forestry Directorate. The preamble to the Accord states that the Programme has been created, in part, to stop the indiscriminate exploitation of natural trees. Accord No. 332 of 18 August 1989, issued by the Ministry of Agriculture and Livestock, creates under the Regional Subsecretariat for the Amazon the Agency of Natural Resources of the Amazon Region of Ecuador to coordinate activities taking place in that area with the Institute for Settlement of the Amazon Region of Ecuador and relevant state organizations. The preamble to the Accord states that the Agency has been created, in part, to ensure the rational and harmonic development of the region and to preserve the region's natural resources. See Registro Oficial, No. 262, 28 August 1989, p. 2.
Systematic land climate and evapotranspiration biases in CMIP5 simulations.
Mueller, B; Seneviratne, S I
2014-01-16
[1] Land climate is important for human population since it affects inhabited areas. Here we evaluate the realism of simulated evapotranspiration (ET), precipitation, and temperature in the CMIP5 multimodel ensemble on continental areas. For ET, a newly compiled synthesis data set prepared within the Global Energy and Water Cycle Experiment-sponsored LandFlux-EVAL project is used. The results reveal systematic ET biases in the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations, with an overestimation in most regions, especially in Europe, Africa, China, Australia, Western North America, and part of the Amazon region. The global average overestimation amounts to 0.17 mm/d. This bias is more pronounced than in the previous CMIP3 ensemble (overestimation of 0.09 mm/d). Consistent with the ET overestimation, precipitation is also overestimated relative to existing reference data sets. We suggest that the identified biases in ET can explain respective systematic biases in temperature in many of the considered regions. The biases additionally display a seasonal dependence and are generally of opposite sign (ET underestimation and temperature overestimation) in boreal summer (June-August).
Balancing conservation and economic sustainability: the future of the Amazon timber industry.
Merry, Frank; Soares-Filho, Britaldo; Nepstad, Daniel; Amacher, Gregory; Rodrigues, Hermann
2009-09-01
Logging has been a much maligned feature of frontier development in the Amazon. Most discussions ignore the fact that logging can be part of a renewable, environmentally benign, and broadly equitable economic activity in these remote places. We estimate there to be some 4.5 +/- 1.35 billion m(3) of commercial timber volume in the Brazilian Amazon today, of which 1.2 billion m(3) is currently profitable to harvest, with a total potential stumpage value of $15.4 billion. A successful forest sector in the Brazilian Amazon will integrate timber harvesting on private lands and on unprotected and unsettled government lands with timber concessions on public lands. If a legal, productive, timber industry can be established outside of protected areas, it will deliver environmental benefits in synergy with those provided by the region's network of protected areas, the latter of which we estimate to have an opportunity cost from lost timber revenues of $2.3 billion over 30 years. Indeed, on all land accessible to harvesting, the timber industry could produce an average of more than 16 million m(3) per year over a 30-year harvest cycle-entirely outside of current protected areas-providing $4.8 billion in returns to landowners and generating $1.8 billion in sawnwood sales tax revenue. This level of harvest could be profitably complemented with an additional 10% from logging concessions on National Forests. This advance, however, should be realized only through widespread adoption of reduced impact logging techniques.
Arellano, Paul; Tansey, Kevin; Balzter, Heiko; Tellkamp, Markus
2017-01-01
In recent decades petroleum pollution in the tropical rainforest has caused significant environmental damage in vast areas of the Amazon region. At present the extent of this damage is not entirely clear. Little is known about the specific impacts of petroleum pollution on tropical vegetation. In a field expedition to the Ecuadorian Amazon over 1100 leaf samples were collected from tropical trees in polluted and unpolluted sites. Plant families were identified for 739 of the leaf samples and compared between sites. Plant biodiversity indices show a reduction of the plant biodiversity when the site was affected by petroleum pollution. In addition, reflectance and transmittance were measured with a field spectroradiometer for every leaf sample and leaf chlorophyll content was estimated using reflectance model inversion with the radiative tranfer model PROSPECT. Four of the 15 plant families that are most representative of the ecoregion (Melastomataceae, Fabaceae, Rubiaceae and Euphorbiaceae) had significantly lower leaf chlorophyll content in the polluted areas compared to the unpolluted areas. This suggests that these families are more sensitive to petroleum pollution. The polluted site is dominated by Melastomataceae and Rubiaceae, suggesting that these plant families are particularly competitive in the presence of pollution. This study provides evidence of a decrease of plant diversity and richness caused by petroleum pollution and of a plant family-specific response of leaf chlorophyll content to petroleum pollution in the Ecuadorian Amazon using information from field spectroscopy and radiative transfer modelling. PMID:28103307
Arellano, Paul; Tansey, Kevin; Balzter, Heiko; Tellkamp, Markus
2017-01-01
In recent decades petroleum pollution in the tropical rainforest has caused significant environmental damage in vast areas of the Amazon region. At present the extent of this damage is not entirely clear. Little is known about the specific impacts of petroleum pollution on tropical vegetation. In a field expedition to the Ecuadorian Amazon over 1100 leaf samples were collected from tropical trees in polluted and unpolluted sites. Plant families were identified for 739 of the leaf samples and compared between sites. Plant biodiversity indices show a reduction of the plant biodiversity when the site was affected by petroleum pollution. In addition, reflectance and transmittance were measured with a field spectroradiometer for every leaf sample and leaf chlorophyll content was estimated using reflectance model inversion with the radiative tranfer model PROSPECT. Four of the 15 plant families that are most representative of the ecoregion (Melastomataceae, Fabaceae, Rubiaceae and Euphorbiaceae) had significantly lower leaf chlorophyll content in the polluted areas compared to the unpolluted areas. This suggests that these families are more sensitive to petroleum pollution. The polluted site is dominated by Melastomataceae and Rubiaceae, suggesting that these plant families are particularly competitive in the presence of pollution. This study provides evidence of a decrease of plant diversity and richness caused by petroleum pollution and of a plant family-specific response of leaf chlorophyll content to petroleum pollution in the Ecuadorian Amazon using information from field spectroscopy and radiative transfer modelling.
NASA Technical Reports Server (NTRS)
Blair, J. Bryan; Nelson, B.; dosSantos, J.; Valeriano, D.; Houghton, R.; Hofton, M.; Lutchke, S.; Sun, Q.
2002-01-01
A flight mission of NASA GSFC's Laser Vegetation Imaging Sensor (LVIS) is planned for June-August 2003 in the Amazon region of Brazil. The goal of this flight mission is to map the vegetation height and structure and ground topography of a large area of the Amazon. This data will be used to produce maps of true ground topography, vegetation height, and estimated above-ground biomass and for comparison with and potential calibration of Synthetic Aperture Radar (SAR) data. Approximately 15,000 sq. km covering various regions of the Amazon will be mapped. The LVIS sensor has the unique ability to accurately sense the ground topography beneath even the densest of forest canopies. This is achieved by using a high signal-to-noise laser altimeter to detect the very weak reflection from the ground that is available only through small gaps in between leaves and between tree canopies. Often the amount of ground signal is 1% or less of the total returned echo. Once the ground elevation is identified, that is used as the reference surface from which we measure the vertical height and structure of the vegetation. Test data over tropical forests have shown excellent correlation between LVIS measurements and biomass, basal area, stem density, ground topography, and canopy height. Examples of laser altimetry data over forests and the relationships to biophysical parameters will be shown. Also, recent advances in the LVIS instrument will be discussed.
Garcia, Elizabeth S; Swann, Abigail L S; Villegas, Juan C; Breshears, David D; Law, Darin J; Saleska, Scott R; Stark, Scott C
2016-01-01
Forest loss in hotspots around the world impacts not only local climate where loss occurs, but also influences climate and vegetation in remote parts of the globe through ecoclimate teleconnections. The magnitude and mechanism of remote impacts likely depends on the location and distribution of forest loss hotspots, but the nature of these dependencies has not been investigated. We use global climate model simulations to estimate the distribution of ecologically-relevant climate changes resulting from forest loss in two hotspot regions: western North America (wNA), which is experiencing accelerated dieoff, and the Amazon basin, which is subject to high rates of deforestation. The remote climatic and ecological net effects of simultaneous forest loss in both regions differed from the combined effects of loss from the two regions simulated separately, as evident in three impacted areas. Eastern South American Gross Primary Productivity (GPP) increased due to changes in seasonal rainfall associated with Amazon forest loss and changes in temperature related to wNA forest loss. Eurasia's GPP declined with wNA forest loss due to cooling temperatures increasing soil ice volume. Southeastern North American productivity increased with simultaneous forest loss, but declined with only wNA forest loss due to changes in VPD. Our results illustrate the need for a new generation of local-to-global scale analyses to identify potential ecoclimate teleconnections, their underlying mechanisms, and most importantly, their synergistic interactions, to predict the responses to increasing forest loss under future land use change and climate change.
Phylogenetic relationships, diversification and expansion of chili peppers (Capsicum, Solanaceae).
Carrizo García, Carolina; Barfuss, Michael H J; Sehr, Eva M; Barboza, Gloria E; Samuel, Rosabelle; Moscone, Eduardo A; Ehrendorfer, Friedrich
2016-07-01
Capsicum (Solanaceae), native to the tropical and temperate Americas, comprises the well-known sweet and hot chili peppers and several wild species. So far, only partial taxonomic and phylogenetic analyses have been done for the genus. Here, the phylogenetic relationships between nearly all taxa of Capsicum were explored to test the monophyly of the genus and to obtain a better knowledge of species relationships, diversification and expansion. Thirty-four of approximately 35 Capsicum species were sampled. Maximum parsimony and Bayesian inference analyses were performed using two plastid markers (matK and psbA-trnH) and one single-copy nuclear gene (waxy). The evolutionary changes of nine key features were reconstructed following the parsimony ancestral states method. Ancestral areas were reconstructed through a Bayesian Markov chain Monte Carlo analysis. Capsicum forms a monophyletic clade, with Lycianthes as a sister group, following both phylogenetic approaches. Eleven well-supported clades (four of them monotypic) can be recognized within Capsicum, although some interspecific relationships need further analysis. A few features are useful to characterize different clades (e.g. fruit anatomy, chromosome base number), whereas some others are highly homoplastic (e.g. seed colour). The origin of Capsicum is postulated in an area along the Andes of western to north-western South America. The expansion of the genus has followed a clockwise direction around the Amazon basin, towards central and south-eastern Brazil, then back to western South America, and finally northwards to Central America. New insights are provided regarding interspecific relationships, character evolution, and geographical origin and expansion of Capsicum A clearly distinct early-diverging clade can be distinguished, centred in western-north-western South America. Subsequent rapid speciation has led to the origin of the remaining clades. The diversification of Capsicum has culminated in the origin of the main cultivated species in several regions of South to Central America. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Recovery of Methane Consumption by Secondary Forests in the Amazon River Basin
NASA Astrophysics Data System (ADS)
Webster, K. D.; Meredith, L. K.; Piccini, W.; Pedrinho, A.; Nüsslein, K.; Van Haren, J. L. M.; Camargo, P. B. D.; Mui, T. S.; Saleska, S. R.
2017-12-01
Methane (CH4) is a major greenhouse gas in Earth's atmosphere and its atmospheric global mole fraction has roughly doubled since the start of the industrial revolution. The tropics are thought to be a major CH4 emitter, with the Amazon River Basin estimated to contribute 7 % of the annual flux to the atmosphere. The Amazon has experienced extensive land use change during the past 30 years, but we lack an understanding of the qualitative and quantitative effects of land use change on CH4 flux from the Amazon and the associated reasons. To illuminate the factors controlling CH4 flux across land use gradients in the Amazon we measured the CH4 fluxes and will measure the associated stable isotopic composition from pastures, primary forests, and secondary forests, at Ariquemes (Western Amazon, more deforested), and Santarem (Eastern Amazon, less deforested), Brazil. The sites near Santarem were sampled in June of 2016 and the sites near Ariquemes were sampled in March and April of 2017, both at the end of the wet season. Little difference was observed between land use types in Santarem with each land use type slightly consuming atmospheric CH4. However, pasture fluxes at Ariquemes were higher (+520 μg-C m-2 hr-1) than in primary (0 μg-C m-2 hr-1) and secondary forests (-20 μg-C m-2 hr-1; p = 6*10-4). CH4 flux from individual Santarem sites was not correlated with environmental variables. CH4 flux from Airquemes was correlated with several parameters across all samples including soil temperature (p = 7*10-4), and soil humidity (p = 0.02). Despite the fact that pastures experienced higher soil temperatures than forest soils this appears to be a low predictor of CH4 flux from these environments as it was seen at both Santarem and Ariquemes. The analysis of the stable isotopic composition of CH4 from these chambers will aid in understanding the competing processes of microbial CH4 consumption and production in these soils and why pastures may become CH4 sources and secondary forests are able to regain the function as a CH4 sink in some instances. Support: NSF, FAPESP-Biota, CNPq, CAPES.
Alexandre, Márcia Almeida Araújo; Benzecry, Silvana Gomes; Siqueira, Andre Machado; Vitor-Silva, Sheila; Melo, Gisely Cardoso; Monteiro, Wuelton Marcelo; Leite, Heitor Pons; Lacerda, Marcus Vinícius Guimarães; Alecrim, Maria das Graças Costa
2015-01-01
Background The relationship between malaria and undernutrition is controversial and complex. Synergistic associations between malnutrition and malaria morbidity and mortality have been suggested, as well as undernutrition being protective against infection, while other studies found no association. We sought to evaluate the relationship between the number of malaria episodes and nutritional statuses in a cohort of children below 15 years of age living in a rural community in the Brazilian Amazon. Methodology/Principal Findings Following a baseline survey of clinical, malaria and nutritional assessment including anthropometry measurements and hemoglobin concentration, 202 children ranging from 1 month to 14 years of age were followed for one year through passive case detection for malaria episodes. After follow-up, all children were assessed again in order to detect changes in nutritional indicators associated with malaria infection. We also examined the risk of presenting malaria episodes during follow-up according to presence of stunting at baseline. Children who suffered malaria episodes during follow-up presented worse anthropometric parameters values during this period. The main change was a reduction of the linear growth velocity, associated with both the number of episodes and how close the last or only malaria episode and the second anthropometric assessment were. Changes were also observed for indices associated with chronic changes, such as weight-for-age and BMI-for-age, which conversely, were more frequently observed in children with the last or only episode occurring between 6 and 12 months preceding the second nutritional assessment survey. Children with inadequate height-for-age at baseline (Z-score < -2) presented lower risk of suffering malaria episodes during follow-up as assessed by both the log-rank test (p =0.057) and the multivariable Cox-proportional hazards regression (Hazard Ratio = 0.31, 95%CI [0.10; 0.99] p=0.049). Conclusions Malaria was associated with impaired nutritional status amongst children in an endemic area of the Western Brazilian Amazon where P. vivax predominates. Our data all supports that the association presents differential effects for each age group, suggesting distinct pathophysiology pathways. We were also able to demonstrate that undernourishment at baseline was protective to malaria during follow-up. These findings support an intriguing interaction between these conditions in the rural Amazon and the need for a more integrative approach by health systems in endemic areas. PMID:25928774
2003-01-01
predictability is traditionally at its lowest. El Niño-Induced Disease Outbreak: In a study in Peru , causal links between El Niño and bartonellosis (a...Cover Change in the Amazon Region: Document areas and rates of all major forms of disturbance in the Amazon region: deforestation, regenera- tion...NIEHS are investigating molecular changes in DNA that lead to aberrations and mutations in human tissue, rodents , fruit flies, and bacteria, and the
GREGORY P. ASNER; MICHAEL KELLER; JOSEN M. SILVA
2004-01-01
Selective logging is a dominant form of land use in the Amazon basin and throughout the humid tropics, yet little is known about the spatial variability of forest canopy gap formation and closure following timber harvests. We established chronosequences of large-area (14â158 ha) selective logging sites spanning a 3.5-year period of forest regeneration and two distinct...
An overview of malaria transmission from the perspective of Amazon Anopheles vectors
Pimenta, Paulo FP; Orfano, Alessandra S; Bahia, Ana C; Duarte, Ana PM; Ríos-Velásquez, Claudia M; Melo, Fabrício F; Pessoa, Felipe AC; Oliveira, Giselle A; Campos, Keillen MM; Villegas, Luis Martínez; Rodrigues, Nilton Barnabé; Nacif-Pimenta, Rafael; Simões, Rejane C; Monteiro, Wuelton M; Amino, Rogerio; Traub-Cseko, Yara M; Lima, José BP; Barbosa, Maria GV; Lacerda, Marcus VG; Tadei, Wanderli P; Secundino, Nágila FC
2015-01-01
In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Ano- pheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence. PMID:25742262
An overview of malaria transmission from the perspective of Amazon Anopheles vectors.
Pimenta, Paulo F P; Orfano, Alessandra S; Bahia, Ana C; Duarte, Ana P M; Ríos-Velásquez, Claudia M; Melo, Fabrício F; Pessoa, Felipe A C; Oliveira, Giselle A; Campos, Keillen M M; Villegas, Luis Martínez; Rodrigues, Nilton Barnabé; Nacif-Pimenta, Rafael; Simões, Rejane C; Monteiro, Wuelton M; Amino, Rogerio; Traub-Cseko, Yara M; Lima, José B P; Barbosa, Maria G V; Lacerda, Marcus V G
2015-02-01
In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Anopheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence.
Pre-Columbian urbanism, anthropogenic landscapes, and the future of the Amazon.
Heckenberger, Michael J; Russell, J Christian; Fausto, Carlos; Toney, Joshua R; Schmidt, Morgan J; Pereira, Edithe; Franchetto, Bruna; Kuikuro, Afukaka
2008-08-29
The archaeology of pre-Columbian polities in the Amazon River basin forces a reconsideration of early urbanism and long-term change in tropical forest landscapes. We describe settlement and land-use patterns of complex societies on the eve of European contact (after 1492) in the Upper Xingu region of the Brazilian Amazon. These societies were organized in articulated clusters, representing small independent polities, within a regional peer polity. These patterns constitute a "galactic" form of prehistoric urbanism, sharing features with small-scale urban polities in other areas. Understanding long-term change in coupled human-environment systems relating to these societies has implications for conservation and sustainable development, notably to control ecological degradation and maintain regional biodiversity.
NASA Astrophysics Data System (ADS)
van Soesbergen, A. J. J.; Mulligan, M.
2014-01-01
This paper describes the application of WaterWorld (www.policysupport.org/waterworld) to the Peruvian Amazon, an area that is increasingly under pressure from deforestation and water pollution as a result of population growth, rural-to-urban migration and oil and gas extraction, potentially impacting both water quantity and water quality. By applying single and combined plausible scenarios of climate change, deforestation around existing and planned roads, population growth and rural-urban migration, mining and oil and gas exploitation, we explore the potential combined impacts of these multiple changes on water resources in the Peruvian Amazon.
Carneiro, Lorena Ribeiro de A; Lima, Albertina P; Machado, Ricardo B; Magnusson, William E
2016-01-01
Species-distribution models (SDM) are tools with potential to inform environmental-impact studies (EIA). However, they are not always appropriate and may result in improper and expensive mitigation and compensation if their limitations are not understood by decision makers. Here, we examine the use of SDM for frogs that were used in impact assessment using data obtained from the EIA of a hydroelectric project located in the Amazon Basin in Brazil. The results show that lack of knowledge of species distributions limits the appropriate use of SDM in the Amazon region for most target species. Because most of these targets are newly described and their distributions poorly known, data about their distributions are insufficient to be effectively used in SDM. Surveys that are mandatory for the EIA are often conducted only near the area under assessment, and so models must extrapolate well beyond the sampled area to inform decisions made at much larger spatial scales, such as defining areas to be used to offset the negative effects of the projects. Using distributions of better-known species in simulations, we show that geographical-extrapolations based on limited information of species ranges often lead to spurious results. We conclude that the use of SDM as evidence to support project-licensing decisions in the Amazon requires much greater area sampling for impact studies, or, alternatively, integrated and comparative survey strategies, to improve biodiversity sampling. When more detailed distribution information is unavailable, SDM will produce results that generate uncertain and untestable decisions regarding impact assessment. In many cases, SDM is unlikely to be better than the use of expert opinion.
Carneiro, Lorena Ribeiro de A.; Lima, Albertina P.; Machado, Ricardo B.; Magnusson, William E.
2016-01-01
Species-distribution models (SDM) are tools with potential to inform environmental-impact studies (EIA). However, they are not always appropriate and may result in improper and expensive mitigation and compensation if their limitations are not understood by decision makers. Here, we examine the use of SDM for frogs that were used in impact assessment using data obtained from the EIA of a hydroelectric project located in the Amazon Basin in Brazil. The results show that lack of knowledge of species distributions limits the appropriate use of SDM in the Amazon region for most target species. Because most of these targets are newly described and their distributions poorly known, data about their distributions are insufficient to be effectively used in SDM. Surveys that are mandatory for the EIA are often conducted only near the area under assessment, and so models must extrapolate well beyond the sampled area to inform decisions made at much larger spatial scales, such as defining areas to be used to offset the negative effects of the projects. Using distributions of better-known species in simulations, we show that geographical-extrapolations based on limited information of species ranges often lead to spurious results. We conclude that the use of SDM as evidence to support project-licensing decisions in the Amazon requires much greater area sampling for impact studies, or, alternatively, integrated and comparative survey strategies, to improve biodiversity sampling. When more detailed distribution information is unavailable, SDM will produce results that generate uncertain and untestable decisions regarding impact assessment. In many cases, SDM is unlikely to be better than the use of expert opinion. PMID:26784891
Sedimentation and near-bottom currents in the South-Western Atlantic
NASA Astrophysics Data System (ADS)
Emelyanov, Emelyan M.
2008-01-01
The aims of the paper are: 1) to study the bottom relief and Late Quaternary bottom sediments of the South-Western Atlantic from the Amazon cone to the Vema Channel and Rio Grande Rise, and 2) to reconstruct recent and palaeo-Antarctic near-bottom currents (AABW). For this purpose, we used three main Parasound seismic profiles: 30 cores (up to 500 cm in length), the nanoplankton stratigraphy of 9 cores from the Brazilian lithological profile (along 24 °W), and literature sources. No soft sedimentes were found in the Vema channel; the bottom of the channel is acoustically "hard". Our geological data confirm that AABW flows mainly through this channel. The velocity of this flow should be higher than 100 cm.s-1. Only this strong current is able to rewash not only soft Holocene sediments, but also consolidated Quaternary deposits. Soft layered sediments occur at a depth less than 4200 m in the Hunter channel. Consequently, the AABW is able to flow from the Argentine Basin to the Brazil Basin only at a depth of more than 4200 m in this channel. Brown red clay or yellowish gray miopelagic clay prevail in the Brazil Deep. The age of red clay in the cores is different: Early or Late Pleistocene, or Holocene. Clay was rewashed and re-deposited in many areas of the deep. This means that the hydrodynamics sometimes was very active at a depth of 4000-5000 m in the Brazil Deep. The presence of conturite and turbidite interlayers in the red clay of the S. America continental base confirms the occurrence of a strong jet of the AABW (Deep Western Boundary current - DWBC) here. Antarctic and other diatoms were brought by AABW from Antarctica up to 10-5 °S. An unusual Pleistocene Ethmodiscus rex ooze was discovered at the latitude of 20 °S. Our data confirm the occurrence in the area between 10-5 °S of two mid-oceanic channels, one of them (EMOC) being located on a large sedimentary swell. The AABW in the cross-section from the Amazon River to the MAR flows through the Nara (depth 4640-4660 m) plain. This flow was confirmed by hydrochemical data. The AABW started to appear in the Rio Grande Rise region, about 50-30 mill. years. Cyclic events of glaciation and interglacial transitions throughout the Miocene-Pleistocene is a mechanism that caused the AABW currents to become more intensive or passive, with the result that the intensity of the influx of these waters from the Brazilian Basin into the Guiana Basin also changed from strong to weak.
Detection of Green up Phenomenon in Amazon Forests Using Spaceborne Solar-induced Fluorescence
NASA Astrophysics Data System (ADS)
Chen, S.; Chen, X.; Chen, J.; Cao, X.
2016-12-01
The role of Amazon forests in the global carbon budget still remains uncertain. The critical issue is whether tropical forest productivity is more limited by sunlight or rainfall. Recent studies using satellite data have challenged the paradigm of light-limited net primary production in Amazon forests and enhanced forest growth during drought conditions because of the adding effects of variations in sun-sensor geometry. To reducing uncertainties in knowing the sensitivity of Amazon rainforests to dry season droughts, we evaluated a newly emerging satellite retrieval, solar-induced fluorescence (SIF) of chlorophyll for the seasonal green-up phenomenon, providing for the first time a direct measurement related to vegetation photosynthetic activity as well as unaffected by sun-sensor geometry. Moreover, NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) products (the enhanced vegetation index (EVI) and leaf area index (LAI)) and Landsat Operational Land Imager (OLI) data are also compared to evaluate this phenomenon. Here we show that the green up of Amazon forests in the study area around manas site did show in SIF of chlorophyll data in 2015 drought resulted from seasonal changes. The EVI has more apparent green up phenomenon than the NDVI data both in MODIS and OLI data, suggesting that the EVI can better reflect near-infrared (NIR) and LAI information of vegetation. The OLI data is less influenced by variations caused by bidirectional reflectance effect. In addition, SIF of chlorophyll data shows well correlation relationship with the EVI, LAI and NDVI, suggesting that the SIF of chlorophyll data present well quality to capture the characteristics of the phenology of vegetation.
NASA Astrophysics Data System (ADS)
Dantas, Elton Luiz; Silva Souza, Valmir; Nogueira, Afonso C. R.; Ventura Santos, Roberto; Poitrasson, Franck; Vieira Cruz, Lucieth; Mendes Conceição, Anderson
2014-05-01
Previous provenance studies along the Amazonas river have demonstrated that the Amazon drainage basin has been reorganized since the Late Cretaceous with the uplift of the Andes and the establishment of the transcontinental Amazon fluvial system from Late Miocene to Late Pleistocene (Hoorn et al., 1995; Potter, 1997, Wesselingh et al., 2002; Figueiredo et al. 2009, Campbell et al., 2006, Nogueira et al. 2013).There is a lack of data from Eastern and Central Amazonia and only limited core data from the Continental Platform near to current Amazonas river mouth. Central Amazonia is strategic to unveil the origin of Amazonas River because it represents the region where the connection of the Solimões and Amazonas basin can be studied through time (Nogueira et al. 2013). Also, there is a shortage of information on the old Precambrian and Paleozoic sediment sources relative to Cretaceous and Miocene siliciclastic deposits of the Solimões and Amazonas basins. We collected stratigraphic data, detrital zircon U-Pb ages and Nd and Hf isotopes from Precambrian, Paleozoic, Cretaceous and Miocene siliciclastic deposits of the Northwestern border of Amazonas Basin. They are exposed in the Presidente Figueiredo region and in the scarps of Amazon River, and occur to the east of the Purus Arch. This Northwest-Southeast trending structural feature that divides the Solimões and Amazonas basin was active at various times since the Paleozoic. Detrital zircon ages for the Neoproterozoic Prosperança Formation yielded a complex signature, with different populations of Neoproterozoic (550, 630 and 800 Ma) and Paleoproterozoic to Archean sources (1.6, 2.1 and 2.6 Ga). Also Nd and Hf isotopes show two groups of TDM model ages between 1.4 to 1.53 Ga and 2.2 and 3.1 Ga. Sediments typical of Paleozoic sedimentary rocks of the Nhamundá and Manacapuru Formations revealed NdTDM model ages of 1.7, 2.2 and 2.7 Ga, but Hf isotopes and U-Pb zircon ages are more varied. They characterize a provenance dominated by Mesoproterozoic sources (1.0, 1.2 Ga) and subordinate Neoproterozoic(550-800 Ma) and Archean derivation (2.67 Ga). On the other hand, detrital zircon and Hf and NdTDM model ages for the Cretaceous Alter do Chão Formation yielded a unique Paleoproterozoicages between 2.0 and 2.3 Ga that can be correlated to sources derived from Maroni-Itacaiúnas and Central Amazonian basement provinces. The contribution of Precambrian and Paleozoic rocks exposed during the installationof the Amazonas drainage were probably significant .Such a large contribution from Neoproterozoic and Mesoproterozoic sources are not common in the proximal Amazon Craton basement .This new proposal open new perspectives to understand better the initial history of Amazon River with indication of the probable source areas during Late Cenozoic. Campbell Jr.; Frailey,C.D.; Romero-Pittman, G. 2006. The Pan-Amazonian UcayliPeneplain, late Neogenesedimentacion in Amazonia, and the Birth on the Modern Amazon River system.Palaeogeography,Palaeoclimatology, Palaeoecology. 239 (2006) 166-219 Figueiredo, J.,Hoorn, C., Van der Vem, P., Soares, E. 2009. Late Miocene onset of the Amazon River and the Amazon deep-sea fan: Evidence from the Fozdo Amazonas Basin. Geology, 37(7):619-622. Hoorn,C.; Guerrero, J.; Sarmiento, G. 1995. Andean tectonics as a cause for changing drainage patterns in Miocene Northern South America. Geology, v.23, p-237-240. Nogueira, A.C.R.; Silveira, R.R.; Guimarães, J.T.F. 2013. Neogene-Quaternary sedimentary and paleovegetation history of the eastern Solimões Basin, central Amazon region.Journal of South American Earth Sciences , v. 46, p. 89-99, 2013. Potter, P.E. 1997. The Mesozoic and Cenozoic paleodrainage of South America: a natural history. Journal of South American Earth Science.v.10. p.331-344 Wesselingh, F. P., et al., 2002. Lake-Pebas: a palaeocological reconstruction of a Miocene long-lived lake comples in Western Amazônia. Cainozoic Research 1 (1-2), 35-81.
Monitoring Subsidence in California with InSAR
NASA Astrophysics Data System (ADS)
Farr, T. G.; Jones, C. E.; Liu, Z.; Neff, K. L.; Gurrola, E. M.; Manipon, G.
2016-12-01
Subsidence caused by groundwater pumping in the rich agricultural area of California's Central Valley has been a problem for decades. Over the last few years, interferometric synthetic aperture radar (InSAR) observations from satellite and aircraft platforms have been used to produce maps of subsidence with cm accuracy. We are continuing work reported previously, using ESA's Sentinel-1 to extend our maps of subsidence in time and space, in order to eventually cover all of California. The amount of data to be processed has expanded exponentially in the course of our work and we are now transitioning to the use of the ARIA project at JPL to produce the time series. ARIA processing employs large Amazon cloud instances to process single or multiple frames each, scaling from one to many (20+) instances working in parallel to meet the demand (700 GB InSAR products within 3 hours). The data are stored in Amazon long-term storage and an http view of the products are available for users of the ARIA system to download the products. Higher resolution InSAR data were also acquired along the California Aqueduct by the NASA UAVSAR from 2013 - 2016. Using multiple scenes acquired by these systems, we are able to produce time series of subsidence at selected locations and transects showing how subsidence varies both spatially and temporally. The maps show that subsidence is continuing in areas with a history of subsidence and that the rates and areas affected have increased due to increased groundwater extraction during the extended western US drought. Our maps also identify and quantify new, localized areas of accelerated subsidence. The California Department of Water Resources (DWR) funded this work to provide the background and an update on subsidence in the Central Valley to support future policy. Geographic Information System (GIS) files are being furnished to DWR for further analysis of the 4 dimensional subsidence time-series maps. Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA.
Fernandes, Tiótrefis Gomes; Benseñor, Isabela Martins; Goulart, Alessandra Carvalho; Tavares, Bruno Mendes; Alencar, Airlane Pereira; Santos, Itamar Souza; Lotufo, Paulo Andrade
2014-01-01
Our objective was to determine the cerebrovascular prevalence in a town in the Brazilian Amazon basin and compare the ribeirinhos (riparians) to the urban population in the same municipality. From May to October 2011, 6,216 residents over 35 years of age in the town of Coari were interviewed using a screening questionnaire, the Stroke Symptom Questionnaire. Cerebrovascular prevalence rates (PRs) from the door-to-door surveillance were calculated according to the location of the home. Respondent totals were 4,897 in the urban area and 1,028 in the rural area. The crude prevalence of stroke was 6.3% in rural and 3.7% in urban areas with differences maintained after sex and age adjustment. Among stroke cases, the ribeirinhos were those with less access to medical care in comparison to the urban area (32.1 vs. 52.5%, p = 0.01), and a positive association between rural area and no medical care for stroke remained (PR, 1.33; 95% confidence interval, 1.03-1.71), independently of age, sex, education and functional impairment. This study provides the first population-based cerebrovascular prevalence comparison between an urban and a rural population in the Amazon rain forest. The PRs were higher in the ribeirinha compared to the urban population in the same municipality. © 2014 S. Karger AG, Basel.
Nepstad, Daniel C; Stickler, Claudia M; Filho, Britaldo Soares-; Merry, Frank
2008-05-27
Some model experiments predict a large-scale substitution of Amazon forest by savannah-like vegetation by the end of the twenty-first century. Expanding global demands for biofuels and grains, positive feedbacks in the Amazon forest fire regime and drought may drive a faster process of forest degradation that could lead to a near-term forest dieback. Rising worldwide demands for biofuel and meat are creating powerful new incentives for agro-industrial expansion into Amazon forest regions. Forest fires, drought and logging increase susceptibility to further burning while deforestation and smoke can inhibit rainfall, exacerbating fire risk. If sea surface temperature anomalies (such as El Niño episodes) and associated Amazon droughts of the last decade continue into the future, approximately 55% of the forests of the Amazon will be cleared, logged, damaged by drought or burned over the next 20 years, emitting 15-26Pg of carbon to the atmosphere. Several important trends could prevent a near-term dieback. As fire-sensitive investments accumulate in the landscape, property holders use less fire and invest more in fire control. Commodity markets are demanding higher environmental performance from farmers and cattle ranchers. Protected areas have been established in the pathway of expanding agricultural frontiers. Finally, emerging carbon market incentives for reductions in deforestation could support these trends.
Longo, Marcos; Knox, Ryan G; Levine, Naomi M; Alves, Luciana F; Bonal, Damien; Camargo, Plinio B; Fitzjarrald, David R; Hayek, Matthew N; Restrepo-Coupe, Natalia; Saleska, Scott R; da Silva, Rodrigo; Stark, Scott C; Tapajós, Raphael P; Wiedemann, Kenia T; Zhang, Ke; Wofsy, Steven C; Moorcroft, Paul R
2018-05-22
The impact of increases in drought frequency on the Amazon forest's composition, structure and functioning remain uncertain. We used a process- and individual-based ecosystem model (ED2) to quantify the forest's vulnerability to increased drought recurrence. We generated meteorologically realistic, drier-than-observed rainfall scenarios for two Amazon forest sites, Paracou (wetter) and Tapajós (drier), to evaluate the impacts of more frequent droughts on forest biomass, structure and composition. The wet site was insensitive to the tested scenarios, whereas at the dry site biomass declined when average rainfall reduction exceeded 15%, due to high mortality of large-sized evergreen trees. Biomass losses persisted when year-long drought recurrence was shorter than 2-7 yr, depending upon soil texture and leaf phenology. From the site-level scenario results, we developed regionally applicable metrics to quantify the Amazon forest's climatological proximity to rainfall regimes likely to cause biomass loss > 20% in 50 yr according to ED2 predictions. Nearly 25% (1.8 million km 2 ) of the Amazon forests could experience frequent droughts and biomass loss if mean annual rainfall or interannual variability changed by 2σ. At least 10% of the high-emission climate projections (CMIP5/RCP8.5 models) predict critically dry regimes over 25% of the Amazon forest area by 2100. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Richards, Peter; VanWey, Leah
2015-07-01
Developing the Amazon into a major provider of internationally traded mineral and food commodities has dramatically transformed broad expanses of tropical forests to farm and pasturelands, and to mining sites. The environmental impacts of this transformation, as well as the drivers underlying the process, have already been well documented. In this article we turn our analytical lenses to another, less examined effect of Amazon land use and environmental change, namely the creation and development of new urban areas. Here we argue that urban growth in the Amazon is a direct residual of international interest in the production of traded commodities, and of the capacity of local urban residents to capture capital and value before it is extracted from the region. Specifically, we suggest that urban growth is occurring fastest where cities have access to both rural export commodities and export corridors. We also show correlations between urban growth and lower rural population density, and cities' capacities to draw migrants from beyond their immediate rural surroundings. More broadly, we argue that urbanization in the Amazon is better interpreted as a symptom rather than a driver of the region's land use and land cover change.
VanWey, Leah
2015-01-01
Developing the Amazon into a major provider of internationally traded mineral and food commodities has dramatically transformed broad expanses of tropical forests to farm and pasturelands, and to mining sites. The environmental impacts of this transformation, as well as the drivers underlying the process, have already been well documented. In this article we turn our analytical lenses to another, less examined effect of Amazon land use and environmental change, namely the creation and development of new urban areas. Here we argue that urban growth in the Amazon is a direct residual of international interest in the production of traded commodities, and of the capacity of local urban residents to capture capital and value before it is extracted from the region. Specifically, we suggest that urban growth is occurring fastest where cities have access to both rural export commodities and export corridors. We also show correlations between urban growth and lower rural population density, and cities’ capacities to draw migrants from beyond their immediate rural surroundings. More broadly, we argue that urbanization in the Amazon is better interpreted as a symptom rather than a driver of the region’s land use and land cover change. PMID:26985079
Social and health dimensions of climate change in the Amazon.
Brondízio, Eduardo S; de Lima, Ana C B; Schramski, Sam; Adams, Cristina
2016-07-01
The Amazon region has been part of climate change debates for decades, yet attention to its social and health dimensions has been limited. This paper assesses literature on the social and health dimensions of climate change in the Amazon. A conceptual framework underscores multiple stresses and exposures created by interactions between climate change and local social-environmental conditions. Using the Thomson-Reuter Web of Science, this study bibliometrically assessed the overall literature on climate change in the Amazon, including Physical Sciences, Social Sciences, Anthropology, Environmental Science/Ecology and Public, Environmental/Occupational Health. From this assessment, a relevant sub-sample was selected and complemented with literature from the Brazilian database SciELO. This sample discusses three dimensions of climate change impacts in the region: livelihood changes, vector-borne diseases and microbial proliferation, and respiratory diseases. This analysis elucidates imbalance and disconnect between ecological, physical and social and health dimensions of climate change and between continental and regional climate analysis, and sub-regional and local levels. Work on the social and health implications of climate change in the Amazon falls significantly behind other research areas, limiting reliable information for analytical models and for Amazonian policy-makers and society at large. Collaborative research is called for.
Multi-decadal Hydrological Retrospective: Case study of Amazon floods and droughts
NASA Astrophysics Data System (ADS)
Wongchuig Correa, Sly; Paiva, Rodrigo Cauduro Dias de; Espinoza, Jhan Carlo; Collischonn, Walter
2017-06-01
Recently developed methodologies such as climate reanalysis make it possible to create a historical record of climate systems. This paper proposes a methodology called Hydrological Retrospective (HR), which essentially simulates large rainfall datasets, using this as input into hydrological models to develop a record of past hydrology, making it possible to analyze past floods and droughts. We developed a methodology for the Amazon basin, where studies have shown an increase in the intensity and frequency of hydrological extreme events in recent decades. We used eight large precipitation datasets (more than 30 years) as input for a large scale hydrological and hydrodynamic model (MGB-IPH). HR products were then validated against several in situ discharge gauges controlling the main Amazon sub-basins, focusing on maximum and minimum events. For the most accurate HR, based on performance metrics, we performed a forecast skill of HR to detect floods and droughts, comparing the results with in-situ observations. A statistical temporal series trend was performed for intensity of seasonal floods and droughts in the entire Amazon basin. Results indicate that HR could represent most past extreme events well, compared with in-situ observed data, and was consistent with many events reported in literature. Because of their flow duration, some minor regional events were not reported in literature but were captured by HR. To represent past regional hydrology and seasonal hydrological extreme events, we believe it is feasible to use some large precipitation datasets such as i) climate reanalysis, which is mainly based on a land surface component, and ii) datasets based on merged products. A significant upward trend in intensity was seen in maximum annual discharge (related to floods) in western and northwestern regions and for minimum annual discharge (related to droughts) in south and central-south regions of the Amazon basin. Because of the global coverage of rainfall datasets, this methodology can be transferred to other regions for better estimation of future hydrological behavior and its impact on society.
Mendes, Daniella G; Lauria-Pires, Liana; Nitz, Nadjar; Lozzi, Silene P; Nascimento, Rubens J; Monteiro, Pedro S; Rebelo, Manuel M; Rosa, Ana de Cássia; Santana, Jaime M; Teixeira, Antonio R L
2007-05-01
Lack of conservation of the Amazon tropical rainforest has imposed severe threats to its human population living in newly settled villages, resulting in outbreaks of some infectious diseases. We conducted a seroepidemiological survey of 1100 inhabitants of 15 villages of Paço do Lumiar County, Brazil. Thirty-five (3%) individuals had been exposed to Trypanosoma cruzi (Tc), 41 (4%) to Leishmania braziliensis (Lb) and 50 (4.5%) to Leishmania chagasi (Lc) infections. Also, 35 cases had antibodies that were cross-reactive against the heterologous kinetoplastid antigens. Amongst these, the Western blot assays revealed that 11 (1%) had Tc and Lb, that seven (0.6%) had Lc and Tc, and that 17 (1.6%) had Lb and Lc infections. All of these cases of exposures to mixed infections with Leishmania sp, and eight of 11 cases of Tc and Lb were confirmed by specific PCR assays and Southern hybridizations. Two cases had triple infections. We consider these asymptomatic cases showing phenotype and genotype markers consistent with mixed infections by two or more kinetoplastid flagellates a high risk factor for association with Psychodidae and Triatominae vectors blood feeding and transmitting these protozoa infections. This is the first publication showing human exposure to mixed asymptomatic kinetoplastid infections in the Amazon.
Evaluation of organic compounds and trace elements in Amazon Creek Basin, Oregon, September 1990
Rinella, F.A.
1993-01-01
Water and bottom sediment were collected from Amazon Creek, Oregon during a summer low-flow condition and analyzed for different classes of organic compounds, including many from the U.S. Environmental Protection Agency's priority pollutant list. Bottom sediment also was analyzed for trace elements typically associated with urban runoff. Trace-element concentrations in the less than 63 micrometer fraction of Amazon Creek bottom-sediment samples were compared with baseline concentrations (expected 95 percent confidence range) for soils from the Western United States and with concen- trations found in bottom sediment from the Willamette River Basin. Total-digestion concentrations of antimony, arsenic, cadmium, chromium, cobalt, copper, lead, manganese, mercury, nickel, silver, titanium, and zinc were enriched at some or all sites sampled. Whole-water samples from some sites contained concentrations of several chlorophenoxy-acid herbicides, the organophosphorus insecticide diazinon, and several semivolatile priority pollutants. Classes of compounds not detected in whole-water samples included carbamate insecticides, triazine and other nitrogen-containing herbicides, and purgeable organic compounds. Bottom-sediment samples contained many organochlorine compounds, including chlordane, DDT plus metabolites, dieldrin, endrin, heptachlor epoxide (a metabolite of heptachlor), and PCBs at some or all sites sampled. Twenty-four of 54 semivolatile compounds were detected in bottom- sediment samples at some or all sites sampled.
NASA Astrophysics Data System (ADS)
Li, Xing; Xiao, Jingfeng; He, Binbin
2018-04-01
Amazon forests play an important role in the global carbon cycle and Earth’s climate. The vulnerability of Amazon forests to drought remains highly controversial. Here we examine the impacts of the 2015 drought on the photosynthesis of Amazon forests to understand how solar radiation and precipitation jointly control forest photosynthesis during the severe drought. We use a variety of gridded vegetation and climate datasets, including solar-induced chlorophyll fluorescence (SIF), photosynthetic active radiation (PAR), the fraction of absorbed PAR (APAR), leaf area index (LAI), precipitation, soil moisture, cloud cover, and vapor pressure deficit (VPD) in our analysis. Satellite-derived SIF observations provide a direct diagnosis of plant photosynthesis from space. The decomposition of SIF to SIF yield (SIFyield) and APAR (the product of PAR and fPAR) reveals the relative effects of precipitation and solar radiation on photosynthesis. We found that the drought significantly reduced SIFyield, the emitted SIF per photon absorbed. The higher APAR resulting from lower cloud cover and higher LAI partly offset the negative effects of water stress on the photosynthesis of Amazon forests, leading to a smaller reduction in SIF than in SIFyield and precipitation. We further found that SIFyield anomalies were more sensitive to precipitation and VPD anomalies in the southern regions of the Amazon than in the central and northern regions. Our findings shed light on the relative and combined effects of precipitation and solar radiation on photosynthesis, and can improve our understanding of the responses of Amazon forests to drought.
Distribution of CO2 parameters in the Western Tropical Atlantic Ocean
NASA Astrophysics Data System (ADS)
Araujo, Moacyr; Bonou, Frédéric; Noriega, Carlos; Lefèvre, Nathalie
2016-04-01
The variability of sea surface Total Alkalinity (TA) and sea surface Total Inorganic Carbon (CT) is examined using all available data in the western tropical Atlantic (WTA: 20° S-20° N, 60° W-20° W). Lowest TA and CTare observed for the region located between 0°N-15°N/60°W-50°W and are explained by the influence of the Amazon plume during boreal summer. In the southern part of the area, 20°S-10°S/40°W-60°W, the highest values of TA and CTare linked to the CO2-rich waters due to the equatorial upwelling, which are transported by the South Equatorial Current (SEC) flowing from the African coast to the Brazilian shore. An increase of CT of 0.9 ± 0.3 μmol kg-1yr-1has been observed in the SEC region and is consistent with previous published estimates. A revised CT-Sea Surface Salinity (SSS) relationship is proposed for the WTA to take into account the variability of CT at low salinities. This new CT-SSS relationship together with a published TA-SSS relationship allow to calculate pCO2 values that compare well with observed pCO2 (R2=0.90).
Distribution of CO2 parameters in the Western Tropical Atlantic Ocean
NASA Astrophysics Data System (ADS)
Bonou, Frédéric Kpèdonou; Noriega, Carlos; Lefèvre, Nathalie; Araujo, Moacyr
2016-03-01
The variability of sea surface Total Alkalinity (TA) and sea surface Total Inorganic Carbon (CT) is examined using all available data in the western tropical Atlantic (WTA: 20°S-20°N, 60°W-20°W). Lowest TA and CT are observed for the region located between 0°N-15°N/60°W-50°W and are explained by the influence of the Amazon plume during boreal summer. In the southern part of the area, 20°S-10°S/40°W-60°W, the highest values of TA and CT are linked to the CO2-rich waters due to the equatorial upwelling, which are transported by the South Equatorial Current (SEC) flowing from the African coast to the Brazilian shore. An increase of CT of 0.9 ± 0.3 μmol kg-1yr-1 has been observed in the SEC region and is consistent with previous published estimates. A revised CT-Sea Surface Salinity (SSS) relationship is proposed for the WTA to take into account the variability of CT at low salinities. This new CT-SSS relationship together with a published TA-SSS relationship allow to calculate pCO2 values that compare well with observed pCO2 (R2 = 0.90).
Basso, Luana S; Gatti, Luciana V; Gloor, Manuel; Miller, John B; Domingues, Lucas G; Correia, Caio S C; Borges, Viviane F
2016-01-16
The Amazon Basin is an important region for global CH 4 emissions. It hosts the largest area of humid tropical forests, and around 20% of this area is seasonally flooded. In a warming climate it is possible that CH 4 emissions from the Amazon will increase both as a result of increased temperatures and precipitation. To examine if there are indications of first signs of such changes we present here a 13 year (2000-2013) record of regularly measured vertical CH 4 mole fraction profiles above the eastern Brazilian Amazon, sensitive to fluxes from the region upwind of Santarém (SAN), between SAN and the Atlantic coast. Using a simple mass balance approach, we find substantial CH 4 emissions with an annual average flux of 52.8 ± 6.8 mg CH 4 m -2 d -1 over an area of approximately 1 × 10 6 km 2 . Fluxes are highest in two periods of the year: in the beginning of the wet season and during the dry season. Using a CO:CH 4 emission factor estimated from the profile data, we estimated a contribution of biomass burning of around 15% to the total flux in the dry season, indicating that biogenic emissions dominate the CH 4 flux. This 13 year record shows that CH 4 emissions upwind of SAN varied over the years, with highest emissions in 2008 (around 25% higher than in 2007), mainly during the wet season, representing 19% of the observed global increase in this year.
Multi-stage approach to estimate forest biomass in degraded area by fire and selective logging
NASA Astrophysics Data System (ADS)
Santos, E. G.; Shimabukuro, Y. E.; Arai, E.; Duarte, V.; Jorge, A.; Gasparini, K.
2017-12-01
The Amazon forest has been the target of several threats throughout the years. Anthropogenic disturbances in the region can significantly alter this environment, affecting directly the dynamics and structure of tropical forests. Monitoring these threats of forest degradation across the Amazon is of paramount to understand the impacts of disturbances in the tropics. With the advance of new technologies such as Light Detection and Ranging (LiDAR) the quantification and development of methodologies to monitor forest degradation in the Amazon is possible and may bring considerable contributions to this topic. The objective of this study was to use remote sensing data to assess and estimate the aboveground biomass (AGB) across different levels of degradation (fire and selective logging) using multi-stage approach between airborne LiDAR and orbital image. The study area is in the northern part of the state of Mato Grosso, Brazil. It is predominantly characterized by agricultural land and remnants of the Amazon Forest intact and degraded by either anthropic or natural reasons (selective logging and/or fire). More specifically, the study area corresponds to path/row 226/69 of OLI/Landsat 8 image. With a forest mask generated from the multi-resolution segmentation, agriculture and forest areas, forest biomass was calculated from LiDAR data and correlated with texture images, vegetation indices and fraction images by Linear Spectral Unmixing of OLI/Landsat 8 image and extrapolated to the entire scene 226/69 and validated with field inventories. The results showed that there is a moderate to strong correlation between forest biomass and texture data, vegetation indices and fraction images. With that, it is possible to extract biomass information and create maps using optical data, specifically by combining vegetation indices, which contain forest greening information with texture data that contains forest structure information. Then it was possible to extrapolate the biomass to the entire scene (226/69) from the optical data and to obtain an overview of the biomass distribution throughout the area.
NASA Astrophysics Data System (ADS)
Jung, H.; Alsdorf, D.
2006-12-01
Monitoring discharge in the main channels of rivers and upland tributaries as well as storage changes in floodplain lakes is necessary for understanding flooding hazards, methane production, sediment transport, and nutrient exchange. Interferometric processing of synthetic aperture radar (SAR) data may enable hydrologists to detect environmental and ecological changes in hydrological systems over space and time. An aim of our experiments is to characterize interferometric SAR coherence variations that occur in Amazon aquatic habitats. We analyze coherence variations in JERS-1 data at three central Amazon sites; Lake Balbina, the Cabaliana floodplain, and the confluence of the Purus and Amazon rivers. Because radar pulse interactions with inundated vegetation typically follow a double-bounce travel path which returns energy to the antenna, coherence will vary with vegetation type, physical baseline, and temporal baseline. Balbina's vegetation consists mostly of forest and inundated trunks of dead, leafless trees as opposed to Cabaliana and Amazon- Purus (dominated by flooded forests), thus it serves to isolate the vegetation signal. Coherence variations with baselines were determined from 253 interferograms at Balbina, 210 at Calbaliana, and 153 at Purus. The average temporal and perpendicular baselines (mean std.) are 574 394 days and 1708 1159 m at Balbina, 637 435 days and 1381 981 m at Cabaliana, and 587 425 days and 1430 964 m at Purus. Balbina has a stronger coherence than either Cabaliana or Amazon-Purus. With results of Mann-Whitney statistical tests, Balbina has a difference between terre-firme and flooded coherence values plotted with perpendicular baseline but Cabaliana and Amazon-Purus do not show this difference. Balbina has a linearly decreasing trend in coherence plotted with temporal baseline whereas Cabaliana and Amazon-Purus have a steep drop-off, non- linear change. A strong annual periodicity is evident on power spectrums of the coherence values for Cabaliana and Amazon-Purus, but not in Balbina and is likely an indicator of the annual Amazon flood wave. Each ecological habitat is delineated in the Balbina coherence values plotted with temporal baseline, but only during high water and time-periods less than 2 years is such delineation visible in the Cabaliana and Amazon-Purus regions. Taken together, these observations suggest terre-firme does not have a seasonal variation whereas flooded areas vary with the season.
Dating Amazonian laterites through the novel geochronometers kaolinite and iron oxides
NASA Astrophysics Data System (ADS)
Allard, Thierry; Bressan Riffel, Silvana; Gautheron, Cécile; Fernandes Soares, Bruna; Pinna-Jamme, Rosella; Morin, Guillaume
2016-04-01
Soils on Earth's surface are in constant interaction with climate. As a matter of fact, soils cannot only produce greenhouse effect gases, such as NO2 and CH4, but also behave as sinks for CO2, especially by silicate weathering. Major processes of silicate weathering are known and exhibit climatic zonation at the global scale. Laterites are particularly relevant because they are ancient and deeply weathered soils of major significance. They occupy 30 % of the continental surface and can keep records of past climates and landscape modifications (paleosurface) through specific mineral markers. These formations reach several tens of meters and are mainly composed of kaolinite, iron and aluminium oxides as well as relicts of parent minerals such as quartz and ancillary minerals. Once the major processes of laterite formation are known, their age will allow a growth of researches, owing to the implementation of various chronometers. Moreover, it is fundamental to date laterites in order to improve our understanding of soil formation related to paleoclimates, and to build predictive models of their evolution. In this study, we focus on comparing kaolinite ages with the still unknown ages of lateritic duricrusts from the central Amazon region (Brazil), where strong weathering processes were developed from the early Tertiary, after the Andean uplift. The central Amazon region displays flat areas and dissected plateaus (100-180 m a.s.l.) sustained by weathered clastic sedimentary rocks and latosols. The region contains horizons of duricrusts, relatively continuous layers of Fe-cuirasses, stratified lateritic profiles, and kaolin deposits. Here we employed two methods to date ubiquitous secondary minerals of laterite, which are consistent with geological time-scale. The corresponding geochronometers are the following: (i) radiation-induced defects in kaolinite (trapped in duricrusts) analysed by electron paramagnetic resonance spectroscopy (EPR) (Balan et al., 2005), and (ii) (U-Th)/He on millimetric-sized pisolites of iron oxides. Goethite (U-Th)/He ages range from Late Pliocene to Pleistocene. Taking advantage of the crystallographic characterization of samples and the use of a new He production/diffusion code for iron oxides, we interpret that the results correspond to the ages of Fe oxides crystallization. In addition, these ages are younger than those assessed by kaolinite, which yielded Oligocene-Miocene ages for the weathered sediments of Alter do Chão Formation (Cretaceous-Paleogene unit) and Miocene-Pliocene ages for the topsoil. As a result of the Andean uplift and drainage reversal of the Amazon River, Miocene sediments were deposited in the western Amazon. Dated Fe-cuirasses suggest a minimum age of Early Pliocene for the Solimões formation A probability density plot of Goethite ages suggests an intensification and/or preservation of weathering processes during the Late Pliocene, revealing warm and humid conditions for that period. Both geochronometers are providing an opportunity to constrain the geodynamics and climatic history for the central Amazon region. Balan, E., Allard, T., Fritsch, E., Sélo, M., Falguères, C., Chabaux, F., Pierret, M.C. and Calas, G. (2005) Formation and evolution of lateritic profiles in the middle Amazon basin: insights from radiation-induced defects in kaolinite. Geochimi. Cosmochimi. Acta. 69, 2193-2204.
Reduced precipitation over large water bodies in the Brazilian Amazon shown from TRMM data
NASA Astrophysics Data System (ADS)
Paiva, Rodrigo Cauduro Dias; Buarque, Diogo Costa; Clarke, Robin T.; Collischonn, Walter; Allasia, Daniel Gustavo
2011-02-01
Tropical Rainfall Measurement Mission (TRMM) data show lower rainfall over large water bodies in the Brazilian Amazon. Mean annual rainfall (P), number of wet days (rainfall > 2 mm) (W) and annual rainfall accumulated over 3-hour time intervals (P3hr) were computed from TRMM 3B42 data for 1998-2009. Reduced rainfall was marked over the Rio Solimões/Amazon, along most Amazon tributaries and over the Balbina reservoir. In a smaller test area, a heuristic argument showed that P and W were reduced by 5% and 6.5% respectively. Allowing for TRMM 3B42 spatial resolution, the reduction may be locally greater. Analyses of diurnal rainfall patterns showed that rainfall is lowest over large rivers during the afternoon, when most rainfall is convective, but at night and early morning the opposite occurs, with increased rainfall over rivers, although this pattern is less marked. Rainfall patterns reported from studies of smaller Amazonian regions therefore exist more widely.
The Amazon hydrometeorology: Climatology, variability and links to changes in weather patterns
NASA Astrophysics Data System (ADS)
Fernandes, Katia De Avila
My thesis focuses on improving the quantification of the hydrological cycle and understanding the atmospheric processes that link weather to climate in the Amazon River basin. By using ERA40 and independent observations, I assess how well we can estimate the surface water budget in the Amazon River basin. I find that ERA40 basin wide annual precipitation (P) overall agrees with observations showing a slight underestimation of 10% in average, whereas runoff (R) is underestimated by a larger margin (˜25%). Observed residual of precipitation and runoff (denoted as P-R) is better estimated by ERA40 P-R than actual ET which includes soil moisture nudging. The causes for said discrepancies were found to partly relate to soil moisture nudging that needs to be applied during the dry season to produce realistic ET and compensate for the low soil moisture recharge during the previous wet season. Insufficient recharge may in part be caused by underestimation of rainfall amount and intensity; moreover the shallow root layer in the model does not represent the deep soil water reservoir characteristic of the Amazonian forest. Whether the hydrological cycle and weather patterns in the Amazon have changed during the past few decades is a highly debatable but central question for detecting climate change in the region. The second part of my thesis focus on the physical links between rainfall changes detected in observations, and changes of synoptic scale systems as represented by ERA40. My results suggest that an observed delayed wet season onset is consistent with a decreasing number of cold air incursion (CAI) days in southern Amazon for the period 1979--2001. The variability of CAI into southern Amazon is related to the variability of SST upstream of South America in the tropical Pacific and Indian Oceans. A Singular Value Decomposition Analysis (SVD) between CAI days and global SST reveal three main modes of co-variability. The first mode describes the effect of the El Nino-Southern Oscillation. During El Nino (La Nina) a strong (weak) subtropical jet stream over South America tends to prevent transient systems from moving to southern Amazon, resulting in decreased (increased) CAI days during SON. The second mode of co-variability shows an anomalously warm western Indian Ocean also related to strong subtropical jet stream, except the jet is positioned farther north in South America, which along with the absence of a well defined subpolar jet stream, favors the northward displacement of transient waves into central South America, but show little response in southern Amazon. The CAI days reconstructed from the first and second modes do not present any significant trend in southern Amazon. CAI days reconstructed from the third mode of co-variability on the other hand, reproduces the SON observed trend in almost its entirety. The third mode of co-variability describes negative (positive) anomalies in CAI days associated with cold (warm) SST anomalies in the eastern tropical Pacific, anomalous wavetrain in the Southern Hemisphere and Walker Cell displacement that are unfavorable (favorable) to the incursion of CAI into southern Amazon. The temporal evolution of this mode correlates negatively with the Pacific Decadal Oscillation, suggesting that the recent gradual shift in PDO polarity reflected on the interannual response of Southern Pacific atmospheric patterns, hence on the behavior of transients propagation. The negative PDO index and its related atmospheric patterns are in agreement with the reduced observed CAI days, which also related to a delayed wet season onset in the southern Amazon.
Lujan, Nathan K; Cramer, Christian A; Covain, Raphael; Fisch-Muller, Sonia; López-Fernández, Hernán
2017-04-01
Approximately two-dozen species in three genera of the Neotropical suckermouth armored catfish family Loricariidae are the only described fishes known to specialize on diets consisting largely of wood. We conducted a molecular phylogenetic analysis of 10 described species and 14 undescribed species or morphotypes assigned to the wood-eating catfish genus Panaqolus, and four described species and three undescribed species or morphotypes assigned to the distantly related wood-eating catfish genus Panaque. Our analyses included individuals and species from both genera that are broadly distributed throughout tropical South America east of the Andes Mountains and 13 additional genera hypothesized to have also descended from the most recent common ancestor of Panaqolus and Panaque. Bayesian and maximum likelihood analyses of two mitochondrial and three nuclear loci totaling 4293bp confirmed respective monophyly of Panaqolus, exclusive of the putative congener 'Panaqolus' koko, and Panaque. Members of Panaqolus sensu stricto were distributed across three strongly monophyletic clades: a clade of 10 generally darkly colored, lyretail species distributed across western headwaters of the Amazon Basin, a clade of three irregularly and narrowly banded species from the western Orinoco Basin, and a clade of 11 generally brown, broadly banded species that are widely distributed throughout the Amazon Basin. We erect new subgenera for each of these clades and a new genus for the morphologically, biogeographically and ecologically distinct species 'Panaqolus' koko. Our finding that perhaps half of the species-level diversity in the widespread genus Panaqolus remains undescribed illustrates the extent to which total taxonomic diversity of small and philopatric, yet apparently widely distributed, Amazonian fishes may remain underestimated. Ranges for two Panaqolus subgenera and the genus Panaque overlap with the wood-eating genus Cochliodon in central Andean tributaries of the upper Amazon Basin, which appear to be a global epicenter of wood-eating catfish diversity. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Johnson, N.; Alsdorf, D.; Thompson, L.; Mosley-Thompson, E.; Melack, J.
2006-12-01
Prior to the last 100 years, there is a significant lack of hydrologic knowledge for the Amazon Basin. A 100- year record of discharge from the city of Manaus, located at the confluence of the Solimoes and Negro rivers, is the most complete record for the basin. Inundated wetlands play a key role in carbon out-gassing to the atmosphere whereas discharge from the Amazon River contributes about 20% of the total freshwater flux delivered to the world's oceans. As discharge (Q) and inundation are directly related to precipitation, we are developing a method to extend our understanding of Q and inundation into the 19^{th} century. Using proxy data preserved in Andean glaciers and ice caps and recovered from ice cores, annually resolved histories of δ^{18)O and mass accumulation are available. The latter is a proxy for local precipitation amount whereas δ18O is influenced by continental scale processes (i.e., evaporation, convection) as well as by temperature and hence, by varying climate regimes. We have correlated the accumulation and δ18O records from Core 1 drilled on the Quelccaya ice-cap in the southern Andes of Peru with the Manaus discharge data. As ice core annual layers correspond to the thermal year (in Peru, July to June of the following year) and the discharge records are kept daily (January to December), we averaged 365 days of Q data seeking the optimal correlation for each start and end date. The best statistical relationship between δ18O and Q (r = -0.41, p = < 0.001) is attained when Q is averaged from March 16 to March 15 of the following year. We also correlated 23 years of ENSO events, which are linked to both Amazon River discharge and ice core δ18O (r = -0.60, p = < 0.001). These linear relationships are used to create Amazon discharge for the 20^{th} century and to extrapolate Q into the 19^{th} century. Previously developed relationships between Q and mainstem inundated area are then used to estimate inundated area along the main Amazon channel for the past 200 years. The ice core-derived estimate of inundated area for the past 100 years compares well with the previous and more straightforward estimates based on discharge and remote sensing data.
Amazon River dissolved load: temporal dynamics and annual budget from the Andes to the ocean.
Moquet, Jean-Sébastien; Guyot, Jean-Loup; Crave, Alain; Viers, Jérôme; Filizola, Naziano; Martinez, Jean-Michel; Oliveira, Tereza Cristina; Sánchez, Liz Stefanny Hidalgo; Lagane, Christelle; Casimiro, Waldo Sven Lavado; Noriega, Luis; Pombosa, Rodrigo
2016-06-01
The aim of the present study is to estimate the export fluxes of major dissolved species at the scale of the Amazon basin, to identify the main parameters controlling their spatial distribution and to identify the role of discharge variability in the variability of the total dissolved solid (TDS) flux through the hydrological cycle. Data are compiled from the monthly hydrochemistry and daily discharge database of the "Programa Climatologico y Hidrologico de la Cuenca Amazonica de Bolivia" (PHICAB) and the HYBAM observatories from 34 stations distributed over the Amazon basin (for the 1983-1992 and 2000-2012 periods, respectively). This paper consists of a first global observation of the fluxes and temporal dynamics of each geomorphological domain of the Amazon basin. Based on mean interannual monthly flux calculations, we estimated that the Amazon basin delivered approximately 272 × 10(6) t year(-1) (263-278) of TDS during the 2003-2012 period, which represents approximately 7 % of the continental inputs to the oceans. This flux is mainly made up by HCO3, Ca and SiO2, reflecting the preferential contributions of carbonate and silicate chemical weathering to the Amazon River Basin. The main tributaries contributing to the TDS flux are the Marañon and Ucayali Rivers (approximately 50 % of the TDS production over 14 % of the Amazon basin area) due to the weathering of carbonates and evaporites drained by their Andean tributaries. An Andes-sedimentary area-shield TDS flux (and specific flux) gradient is observed throughout the basin and is first explained by the TDS concentration contrast between these domains, rather than variability in runoff. This observation highlights that, under tropical context, the weathering flux repartition is primarily controlled by the geomorphological/geological setting and confirms that sedimentary areas are currently active in terms of the production of dissolved load. The log relationships of concentration vs discharge have been characterized over all the studied stations and for all elements. The analysis of the slope of the relationship within the selected contexts reveals that the variability in TDS flux is mainly controlled by the discharge variability throughout the hydrological year. At the outlet of the basin, a clockwise hysteresis is observed for TDS concentration and is mainly controlled by Ca and HCO3 hysteresis, highlighting the need for a sampling strategy with a monthly frequency to accurately determine the TDS fluxes of the basin. The evaporite dissolution flux tends to be constant, whereas dissolved load fluxes released from other sources (silicate weathering, carbonate weathering, biological and/or atmospheric inputs) are mainly driven by variability in discharge. These results suggest that past and further climate variability had or will have a direct impact on the variability of dissolved fluxes in the Amazon. Further studies need to be performed to better understand the processes controlling the dynamics of weathering fluxes and their applicability to present-day concentration-discharge relationships at longer timescales.
Amazon Rain Forest Classification Using J-ERS-1 SAR Data
NASA Technical Reports Server (NTRS)
Freeman, A.; Kramer, C.; Alves, M.; Chapman, B.
1994-01-01
The Amazon rain forest is a region of the earth that is undergoing rapid change. Man-made disturbance, such as clear cutting for agriculture or mining, is altering the rain forest ecosystem. For many parts of the rain forest, seasonal changes from the wet to the dry season are also significant. Changes in the seasonal cycle of flooding and draining can cause significant alterations in the forest ecosystem.Because much of the Amazon basin is regularly covered by thick clouds, optical and infrared coverage from the LANDSAT and SPOT satellites is sporadic. Imaging radar offers a much better potential for regular monitoring of changes in this region. In particular, the J-ERS-1 satellite carries an L-band HH SAR system, which via an on-board tape recorder, can collect data from almost anywhere on the globe at any time of year.In this paper, we show how J-ERS-1 radar images can be used to accurately classify different forest types (i.e., forest, hill forest, flooded forest), disturbed areas such as clear cuts and urban areas, and river courses in the Amazon basin. J-ERS-1 data has also shown significant differences between the dry and wet season, indicating a strong potential for monitoring seasonal change. The algorithm used to classify J-ERS-1 data is a standard maximum-likelihood classifier, using the radar image local mean and standard deviation of texture as input. Rivers and clear cuts are detected using edge detection and region-growing algorithms. Since this classifier is intended to operate successfully on data taken over the entire Amazon, several options are available to enable the user to modify the algorithm to suit a particular image.
Illegal use of natural resources in federal protected areas of the Brazilian Amazon
Silva, Jose M.C.; Michalski, Fernanda
2017-01-01
Background The Brazilian Amazon is the world’s largest rainforest regions and plays a key role in biodiversity conservation as well as climate adaptation and mitigation. The government has created a network of protected areas (PAs) to ensure long-term conservation of the region. However, despite the importance of and positive advances in the establishment of PAs, natural resource depletion in the Brazilian Amazon is pervasive. Methods We evaluated a total of 4,243 official law enforcement records generated between 2010 and 2015 to understand the geographical distribution of the illegal use of resources in federal PAs in the Brazilian Amazon. We classified illegal activities into ten categories and used generalized additive models (GAMs) to evaluate the relationship between illegal use of natural resources inside PAs with management type, age of PAs, population density, and accessibility. Results We found 27 types of illegal use of natural resources that were grouped into 10 categories of illegal activities. Most infractions were related to suppression and degradation of vegetation (37.40%), followed by illegal fishing (27.30%) and hunting activities (18.20%). The explanatory power of the GAMs was low for all categories of illegal activity, with a maximum explained variation of 41.2% for illegal activities as a whole, and a minimum of 14.6% for hunting activities. Discussion These findings demonstrate that even though PAs are fundamental for nature conservation in the Brazilian Amazon, the pressures and threats posed by human activities include a broad range of illegal uses of natural resources. Population density up to 50 km from a PA is a key variable, influencing illegal activities. These threats endanger long-term conservation and many efforts are still needed to maintain PAs that are large enough and sufficiently intact to maintain ecosystem functions and protect biodiversity. PMID:29038758
Illegal use of natural resources in federal protected areas of the Brazilian Amazon.
Kauano, Érico E; Silva, Jose M C; Michalski, Fernanda
2017-01-01
The Brazilian Amazon is the world's largest rainforest regions and plays a key role in biodiversity conservation as well as climate adaptation and mitigation. The government has created a network of protected areas (PAs) to ensure long-term conservation of the region. However, despite the importance of and positive advances in the establishment of PAs, natural resource depletion in the Brazilian Amazon is pervasive. We evaluated a total of 4,243 official law enforcement records generated between 2010 and 2015 to understand the geographical distribution of the illegal use of resources in federal PAs in the Brazilian Amazon. We classified illegal activities into ten categories and used generalized additive models (GAMs) to evaluate the relationship between illegal use of natural resources inside PAs with management type, age of PAs, population density, and accessibility. We found 27 types of illegal use of natural resources that were grouped into 10 categories of illegal activities. Most infractions were related to suppression and degradation of vegetation (37.40%), followed by illegal fishing (27.30%) and hunting activities (18.20%). The explanatory power of the GAMs was low for all categories of illegal activity, with a maximum explained variation of 41.2% for illegal activities as a whole, and a minimum of 14.6% for hunting activities. These findings demonstrate that even though PAs are fundamental for nature conservation in the Brazilian Amazon, the pressures and threats posed by human activities include a broad range of illegal uses of natural resources. Population density up to 50 km from a PA is a key variable, influencing illegal activities. These threats endanger long-term conservation and many efforts are still needed to maintain PAs that are large enough and sufficiently intact to maintain ecosystem functions and protect biodiversity.
Wu, Jin; Kobayashi, Hideki; Stark, Scott C; Meng, Ran; Guan, Kaiyu; Tran, Ngoc Nguyen; Gao, Sicong; Yang, Wei; Restrepo-Coupe, Natalia; Miura, Tomoaki; Oliviera, Raimundo Cosme; Rogers, Alistair; Dye, Dennis G; Nelson, Bruce W; Serbin, Shawn P; Huete, Alfredo R; Saleska, Scott R
2018-03-01
Satellite observations of Amazon forests show seasonal and interannual variations, but the underlying biological processes remain debated. Here we combined radiative transfer models (RTMs) with field observations of Amazon forest leaf and canopy characteristics to test three hypotheses for satellite-observed canopy reflectance seasonality: seasonal changes in leaf area index, in canopy-surface leafless crown fraction and/or in leaf demography. Canopy RTMs (PROSAIL and FLiES), driven by these three factors combined, simulated satellite-observed seasonal patterns well, explaining c. 70% of the variability in a key reflectance-based vegetation index (MAIAC EVI, which removes artifacts that would otherwise arise from clouds/aerosols and sun-sensor geometry). Leaf area index, leafless crown fraction and leaf demography independently accounted for 1, 33 and 66% of FLiES-simulated EVI seasonality, respectively. These factors also strongly influenced modeled near-infrared (NIR) reflectance, explaining why both modeled and observed EVI, which is especially sensitive to NIR, captures canopy seasonal dynamics well. Our improved analysis of canopy-scale biophysics rules out satellite artifacts as significant causes of satellite-observed seasonal patterns at this site, implying that aggregated phenology explains the larger scale remotely observed patterns. This work significantly reconciles current controversies about satellite-detected Amazon phenology, and improves our use of satellite observations to study climate-phenology relationships in the tropics. No claim to original US Government works New Phytologist © 2017 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Mattingly, Kyle S.; Mote, Thomas L.
2017-01-01
Warm-season precipitation variability over subtropical South America is characterized by an inverse relationship between the South Atlantic convergence zone (SACZ) and precipitation over the central and western La Plata basin of southeastern South America. This study extends the analysis of this "South American Seesaw" precipitation dipole to relationships between the SACZ and large, long-lived mesoscale convective systems (LLCSs) over the La Plata basin. By classifying SACZ events into distinct continental and oceanic categories and building a logistic regression model that relates LLCS activity across the region to continental and oceanic SACZ precipitation, a detailed account of spatial variability in the out-of-phase coupling between the SACZ and large-scale organized convection over the La Plata basin is provided. Enhanced precipitation in the continental SACZ is found to result in increased LLCS activity over northern, northeastern, and western sections of the La Plata basin, in association with poleward atmospheric moisture flux from the Amazon basin toward these regions, and a decrease in the probability of LLCS occurrence over the southeastern La Plata basin. Increased oceanic SACZ precipitation, however, was strongly related to reduced atmospheric moisture and decreased probability of LLCS occurrence over nearly the entire La Plata basin. These results suggest that continental SACZ activity and large-scale organized convection over the northern and eastern sections of the La Plata basin are closely tied to atmospheric moisture transport from the Amazon basin, while the warm coastal Brazil Current may also play an important role as an evaporative moisture source for LLCSs over the central and western La Plata basin.
Fonseca, Allex Jardim; Taeko, Daniela; Chaves, Thiciane Araújo; Amorim, Lucia Dayanny da Costa; Murari, Raisa Saron Wanderley; Miranda, Angélica Espinosa; Chen, Zigui; Burk, Robert David; Ferreira, Luiz Carlos Lima
2015-01-01
Objective Indigenous women from the Amazon regions have some of the highest rates of cervical cancer in the world. This study evaluated cervical cytology and human papillomavirus (HPV) in native women that differ by lifestyle and interaction with western society. Yanomami women are isolated deep in the Amazon with a hunter/gatherer lifestyle. Macuxi and Wapishana women live in proximity to western society. Methods To select a representative group of women from each district, random cluster sampling was used, considering each registered village as a cluster. Cervical samples were collected for cytology and HPV detection and typing by PCR amplification and next generation sequencing. The study was approved by the National IRB and by tribal leaders. Results 664 native women were enrolled from 13 indigenous villages (76% participation rate). Yanomami women had higher rates of abnormal cytology (5.1% vs. 1.8%, p = 0.04) and prevalent HR-HPV (34.1% vs. 19.2%, p<0.001). Yanomami women >35y of age were significantly more likely to have HR-HPV, whereas women ≤35y did not significantly differ between groups. Prevalence of HPV was significantly different amongst geographically clustered Yanomami women (p<0.004). The most prevalent HPV types in the entire group were HPV31 (8.7%), HPV16 (5.9%) and HPV18 (4.4%). Conclusion Isolated endogenous Yanomami women were more likely to be HPV+ and rates increased with age. Study of HPV in isolated hunter-gather peoples suggests that long-term persistence is a characteristic of prehistoric humans and patterns reflecting decreased prevalence with age in western society represents recent change. These studies have implications for cervical cancer prevention and viral-host relationships. PMID:26207895
Fonseca, Allex Jardim; Taeko, Daniela; Chaves, Thiciane Araújo; Amorim, Lucia Dayanny da Costa; Murari, Raisa Saron Wanderley; Miranda, Angélica Espinosa; Chen, Zigui; Burk, Robert David; Ferreira, Luiz Carlos Lima
2015-01-01
Indigenous women from the Amazon regions have some of the highest rates of cervical cancer in the world. This study evaluated cervical cytology and human papillomavirus (HPV) in native women that differ by lifestyle and interaction with western society. Yanomami women are isolated deep in the Amazon with a hunter/gatherer lifestyle. Macuxi and Wapishana women live in proximity to western society. To select a representative group of women from each district, random cluster sampling was used, considering each registered village as a cluster. Cervical samples were collected for cytology and HPV detection and typing by PCR amplification and next generation sequencing. The study was approved by the National IRB and by tribal leaders. 664 native women were enrolled from 13 indigenous villages (76% participation rate). Yanomami women had higher rates of abnormal cytology (5.1% vs. 1.8%, p = 0.04) and prevalent HR-HPV (34.1% vs. 19.2%, p<0.001). Yanomami women >35 y of age were significantly more likely to have HR-HPV, whereas women ≤ 35 y did not significantly differ between groups. Prevalence of HPV was significantly different amongst geographically clustered Yanomami women (p<0.004). The most prevalent HPV types in the entire group were HPV31 (8.7%), HPV16 (5.9%) and HPV18 (4.4%). Isolated endogenous Yanomami women were more likely to be HPV+ and rates increased with age. Study of HPV in isolated hunter-gather peoples suggests that long-term persistence is a characteristic of prehistoric humans and patterns reflecting decreased prevalence with age in western society represents recent change. These studies have implications for cervical cancer prevention and viral-host relationships.
Seroprevalence of Toxoplasma gondii antibodies in humans from rural Western Amazon, Brazil.
Cavalcante, G T; Aguilar, D M; Camargo, L M A; Labruna, M B; de Andrade, H F; Meireles, L R; Dubey, J P; Thulliez, P; Dias, R A; Gennari, S M
2006-06-01
Antibodies to Toxoplasma gondii were assayed in sera of 266 humans from 71 farms located at Rondônia State, Western Amazon, Brazil, by the modified agglutination test (MAT) and the indirect immunofluorescent antibody test (IFAT). Antibodies were found in 195 humans (73.3%), with MAT titers of 1:25 in 11, 1:50 in 11, 1:100 in 16, 1:200 in 27, 1:400 in 38, 1:800 in 37, 1:1,600 in 22, and 1:3,200 or higher in 33. From the 71 farms visited, 69 had seropositive humans. Prevalence of anti-T. gondii antibodies increased with age of the people (P < 0.05), and no difference was observed in the occurrence by gender (P > 0.05). A sanitary questionnaire was applied in each farm, and statistical association between the serologic status and several variables were analyzed. Home-grown vegetable consumption and origin of drinking water (well or river) were the independent variables that displayed significant association (P = 0.002 and 0.02, respectively). Higher values of occurrence were found in people with consumption of home-grown vegetables (76.1%) and people that drink well water (75.4%) compared with people that did not consume this type of food (61.9%) and drink river water (55.2%). By IFAT (> or = 1:16), 194 of 266 (73%) humans were seropositive and there was a good correlation between MAT and IFAT.
Modelling basin-wide variations in Amazon forest photosynthesis
NASA Astrophysics Data System (ADS)
Mercado, Lina; Lloyd, Jon; Domingues, Tomas; Fyllas, Nikolaos; Patino, Sandra; Dolman, Han; Sitch, Stephen
2010-05-01
Given the importance of Amazon rainforest in the global carbon and hydrological cycles, there is a need to use parameterized and validated ecosystem gas exchange and vegetation models for this region in order to adequately simulate present and future carbon and water balances. Recent research has found major differences in above-ground net primary productivity (ANPP), above ground biomass and tree dynamics across Amazonia. West Amazonia is more dynamic, with younger trees, higher stem growth rates and lower biomass than central and eastern Amazon (Baker et al. 2004; Malhi et al. 2004; Phillips et al. 2004). A factor of three variation in above-ground net primary productivity has been estimated across Amazonia by Malhi et al. (2004). Different hypotheses have been proposed to explain the observed spatial variability in ANPP (Malhi et al. 2004). First, due to the proximity to the Andes, sites from western Amazonia tend to have richer soils than central and eastern Amazon and therefore soil fertility could possibly be highly related to the high wood productivity found in western sites. Second, if GPP does not vary across the Amazon basin then different patterns of carbon allocation to respiration could also explain the observed ANPP gradient. However since plant growth depends on the interaction between photosynthesis, transport of assimilates, plant respiration, water relations and mineral nutrition, variations in plant gross photosynthesis (GPP) could also explain the observed variations in ANPP. In this study we investigate whether Amazon GPP can explain variations of observed ANPP. We use a sun and shade canopy gas exchange model that has been calibrated and evaluated at five rainforest sites (Mercado et al. 2009) to simulate gross primary productivity of 50 sites across the Amazon basin during the period 1980-2001. Such simulation differs from the ones performed with global vegetation models (Cox et al. 1998; Sitch et al. 2003) where i) single plant functional type parameter values are assigned and assumed invariant with environmental condition but also ii) these models use leaf N as a factor that limit photosynthesis. Instead, since leaf P may also limit photosynthesis of the tropical forest (Reich et al. 2009), we use a more specific description of photosynthetic capacity across the basin based on the model evaluation done in Mercado et al. (2009) in which canopy photosynthetic capacity is related to foliar P but also using the relationships derived between canopy photosynthesis and leaf nutrients (N and P) from measurements in tropical trees (Domingues et al.In review). A study of this kind can inform the global vegetation/climate community as to the need for variability in key model parameters in order to accurately simulate carbon fluxes across the Amazon basin. Baker, T. R., et al. 2004. Increasing biomass in Amazonian forest plots. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 359 (1443):353-365. Phillips, O. L. et al. 2004. Pattern and process in Amazon tree turnover, 1976-2001. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 359 (1443):381-407. Malhi, Y. et al. 2004. The above-ground coarse wood productivity of 104 Neotropical forest plots. Global Change Biology 10 (5):563-591. Mercado, L.M. et al. 2009. Impact of changes in diffuse radiation on the global land carbon sink. Nature 458 (7241), 1014. Cox, P. M. et al. 1998. A canopy conductance and photosynthesis model for use in a GCM land surface scheme. Journal of Hydrology 213 (1-4):79-9 Sitch, S. et al. 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology 9 (2):161-185. Reich B. R. et al. 2009. Leaf phosphorus influences the photosynhtesis-nitrogen relation: a cross-biome analysis of 314 species. Oecologia, doi 10.1007/s00442-009-1291-3. Domingues, T. et al. In review. Co-limitation of photosynthetic capacity by nitrogen and phosphorus along a precipitation gradient in West Africa. Plant Cell and Environment.
NASA Astrophysics Data System (ADS)
Santos, João Orestes Schneider; Hartmann, Léo Afraneo; McNaughton, Neal Jesse; Fletcher, Ian Robert
2002-09-01
The precise timing and possible sources of the mafic rocks in the Amazon craton are critical for reconstruction of the Atlantica supercontinent and correlation of mafic magmatism worldwide. New SHRIMP U-Pb baddeleyite and zircon ages and the reinterpretation of 207 existing dates indicate one orogenic (Ingarana) and four postorogenic (Crepori, Cachoeira Seca, Piranhas, and Periquito) basaltic events in the Tapajós Province, south central Amazon craton. Orogenic gabbro dikes that host gold mineralization are 1893 Ma and interpreted as associated with the Ingarana gabbro intrusions of the bimodal calk-alkalic Parauari intrusive suite. The age of 1893 Ma can be used as a guide to discriminate older and mineralized orogenic dikes from younger and nonmineralized Crepori- and Cachoeira Seca-related mafic dikes. The baddeleyite U-Pb age of the postorogenic Crepori dolerite (gabbro-dolerite sills and dikes) is 1780±9 Ma, ˜150 my older than the ages provided by K-Ar. This value correlates well with the Avanavero tholeiitic intrusions in the Roraima group, in the northern part of the craton in Guyana, Venezuela, and Roraima in Brazil. Early Statherian tholeiitic magmatism was widespread not only in the Amazon craton, but also in the La Plata craton of southern South America, where it is known as the giant Piedra Alta swarm of Uruguay and the post-Trans-Amazonian dikes of Tandil in Argentina. The Cachoeira Seca troctolite represents laccoliths, Feixes, and São Domingos, whose baddeleyite U-Pb age is 1186±12 Ma, 120-150 my older than the known K-Ar ages. This age is comparable to other Stenian gabbroic rocks with alkalic affinity in the craton, such as the Seringa Formation in NE Amazonas and the basaltic flows of the Nova Floresta formation in Rondônia. Dolerite from the giant Piranhas dike swarm in the western Tapajós Province has a Middle Cambrian age (507±4 Ma, baddeleyite) and inherited zircons in the 2238-1229 Ma range. The Piranhas dikes fill extensional NNE and NE faults that are possibly related to an early rifting period before the Ordovician onset of the Amazon Basin sedimentation. Representative rocks of the Paleozoic Taiano magmatism of the northern Amazon craton were not detected in the Tapajós Province. Mesozoic dikes are widespread in the Amazon craton, related to Gondwana continental break-up with K-Ar ages in the 260-124 Ma range.
de Oliveira, Rodrigo Leonardo Costa; Farias, Hugo Leonardo Sousa; Perdiz, Ricardo de Oliveira; Scudeller, Veridiana Vizoni; Imbrozio Barbosa, Reinaldo
2017-01-01
Woody plant diversity from the Amazonian savannas has been poorly quantified. In order to improve the knowledge on wood plants of these regional ecosystems, a tree inventory was carried out in four different habitats used by indigenous people living in the savanna areas of the Northern Brazilian Amazon. The habitats were divided into two types (or groups) of vegetation formations: forest (riparian forest, forest island, and buritizal = Mauritia palm formation) and non-forest (typical savanna). The inventory was carried out in two hectares established in the Darora Indigenous Community region, north of the state of Roraima. The typical savanna is the most densely populated area (709 stems ha -1 ); however, it has the lowest tree species richness (nine species, seven families) in relation to typical forest habitats: riparian forest (22 species, 13 families and 202 stems ha -1 ), forest islands (13 species, 10 families and 264 stems ha -1 ), and buritizal (19 species, 15 families and 600 stems ha -1 ). The tree structure (density and dominance) of the forest habitats located in the savanna areas studied in this work is smaller in relation to forest habitats derived from continuous areas of other parts of the Amazon. These environments are derived from Paleoclimatic fragmentation, and are currently affected by the impact of intensive use of natural resources as timberselective logging and some land conversion for agriculture.
NASA Astrophysics Data System (ADS)
Saleska, S.; Goncalves, L. G.; Baker, I.; Costa, M.; Poulter, B.; Christoffersen, B.; Da Rocha, H. R.; Didan, K.; Huete, A.; Imbuziero, H.; Kruijt, B.; Manzi, A.; von Randow, C.; Restrepo-Coupe, N.; Silva, R.; Tota, J.; Denning, S.; Gulden, L.; Rosero, E.; Zeng, X.
2008-12-01
Amazon forests play an important and complex role in the global carbon cycle, and important advances have been made in understanding Amazon processes in recent years. However, reconciling modeled mechanisms of carbon cycling with observations across scales remains a challenge. To better address this challenge, we initiated a Model intercomparison Project for the 'Large-Scale Biosphere Atmosphere Experiment in Amazonia' (LBA-MIP) to integrate modeling and observational studies for improved understanding of Amazon basin carbon cycling. Here, we report on the initial results of this project, which used the network of meteorological and climate data (sunlight, radiation, precipitation) from Amazon tower sites in forest and converted lands to drive a suite of 20 ecosystem models that simulate energy, water and CO2 fluxes. We compared model mechanisms to each other and to the relevant flux observations from those towers, as well as from satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS). Remote sensing and flux tower observations tend to show higher primary forest photosynthetic activity in the dry season than in the wet season in central Amazon, a broad pattern that is now captured in many models, but for different reasons. A reversal from the primary forest pattern was observed in areas converted to pasture, agriculture, or secondary forests, likely a consequence of the elimination of deep root access to deep soil waters which often persist through the dry season. Testing the models with observed fluxes under different land use patterns, and across different spatial scales with remote sensing, is enabling us to distinguish correct vs. incorrect model mechanisms and improve understanding of Amazon processes.
A geomorphological assessments of the distribution of sediment sinks along the lower Amazon River
NASA Astrophysics Data System (ADS)
Park, E.; Latrubesse, E. M.
2017-12-01
Floodplain sediment storage budget is examined along the 1,000 km reach of the lower Amazon River based on extensive sets of remote sensing data and field measurements. Incorporating the washload discharges at gauge stations at the main channel and major tributaries, we analyzed the roles of vast floodplain on the Amazon River seasonal variability in sediment discharges. Annual washload accumulation rate on floodplain along the reach in between Manacapuru and Obidos of is estimated to be 79 Mt over inter-annual average. Period that the net loss over to the floodplain of washload coincide with discharge rising phase of the Amazon River at Obidos, when the river water level rises to make hydrologic connections to floodplain. Only during the early falling phase (July-August), 3.6 Mt of washload net gain occurred in a year, which was less than 5% of the annual net loss to the floodplain. To assess the spatial distribution of sediment sinks along the lower Amazon, we incorporated various hydro-geomorphic factors regarding floodplain geomorphic styles and morphometric parameters, such floodplain width, levee heights, water-saturated area, suspended sediment distribution over floodplain and distribution of impeded floodplain. Impeded floodplain that contains numerous large rounded lakes is the definition of active sediment sinks along the lower Amazon, which seasonally stores most of the water and traps sediment from the river. The results of these hydro-geomorphic factors collectively indicate that the extent and magnitudes of sediment sinks becomes larger downstream (from Manacapuru to Monte Alegre), which is proportionally related to the development of the water-saturated floodplain. This indicates the nonlinear geomorphic evolution of the Amazon floodplain through its longitudinal profile since the late Holocene that downstream reaches are still to be infilled with sediments (incomplete floodplain) thus acting as sediment sinks.
Garcia, Elizabeth S.; Swann, Abigail L. S.; Villegas, Juan C.; Breshears, David D.; Law, Darin J.; Saleska, Scott R.; Stark, Scott C.
2016-01-01
Forest loss in hotspots around the world impacts not only local climate where loss occurs, but also influences climate and vegetation in remote parts of the globe through ecoclimate teleconnections. The magnitude and mechanism of remote impacts likely depends on the location and distribution of forest loss hotspots, but the nature of these dependencies has not been investigated. We use global climate model simulations to estimate the distribution of ecologically-relevant climate changes resulting from forest loss in two hotspot regions: western North America (wNA), which is experiencing accelerated dieoff, and the Amazon basin, which is subject to high rates of deforestation. The remote climatic and ecological net effects of simultaneous forest loss in both regions differed from the combined effects of loss from the two regions simulated separately, as evident in three impacted areas. Eastern South American Gross Primary Productivity (GPP) increased due to changes in seasonal rainfall associated with Amazon forest loss and changes in temperature related to wNA forest loss. Eurasia’s GPP declined with wNA forest loss due to cooling temperatures increasing soil ice volume. Southeastern North American productivity increased with simultaneous forest loss, but declined with only wNA forest loss due to changes in VPD. Our results illustrate the need for a new generation of local-to-global scale analyses to identify potential ecoclimate teleconnections, their underlying mechanisms, and most importantly, their synergistic interactions, to predict the responses to increasing forest loss under future land use change and climate change. PMID:27851740
Garcia, Elizabeth S.; Swann, Abigail L. S.; Villegas, Juan C.; ...
2016-11-16
Forest loss in hotspots around the world impacts not only local climate where loss occurs, but also influences climate and vegetation in remote parts of the globe through ecoclimate teleconnections. The magnitude and mechanism of remote impacts likely depends on the location and distribution of forest loss hotspots, but the nature of these dependencies has not been investigated. We use global climate model simulations to estimate the distribution of ecologically-relevant climate changes resulting from forest loss in two hotspot regions: western North America (wNA), which is experiencing accelerated dieoff, and the Amazon basin, which is subject to high rates ofmore » deforestation. The remote climatic and ecological net effects of simultaneous forest loss in both regions differed from the combined effects of loss from the two regions simulated separately, as evident in three impacted areas. Eastern South American Gross Primary Productivity (GPP) increased due to changes in seasonal rainfall associated with Amazon forest loss and changes in temperature related to wNA forest loss. Eurasia's GPP declined with wNA forest loss due to cooling temperatures increasing soil ice volume. Southeastern North American productivity increased with simultaneous forest loss, but declined with only wNA forest loss due to changes in VPD. In conclusion, our results illustrate the need for a new generation of local-to-global scale analyses to identify potential ecoclimate teleconnections, their underlying mechanisms, and most importantly, their synergistic interactions, to predict the responses to increasing forest loss under future land use change and climate change.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, Elizabeth S.; Swann, Abigail L. S.; Villegas, Juan C.
Forest loss in hotspots around the world impacts not only local climate where loss occurs, but also influences climate and vegetation in remote parts of the globe through ecoclimate teleconnections. The magnitude and mechanism of remote impacts likely depends on the location and distribution of forest loss hotspots, but the nature of these dependencies has not been investigated. We use global climate model simulations to estimate the distribution of ecologically-relevant climate changes resulting from forest loss in two hotspot regions: western North America (wNA), which is experiencing accelerated dieoff, and the Amazon basin, which is subject to high rates ofmore » deforestation. The remote climatic and ecological net effects of simultaneous forest loss in both regions differed from the combined effects of loss from the two regions simulated separately, as evident in three impacted areas. Eastern South American Gross Primary Productivity (GPP) increased due to changes in seasonal rainfall associated with Amazon forest loss and changes in temperature related to wNA forest loss. Eurasia's GPP declined with wNA forest loss due to cooling temperatures increasing soil ice volume. Southeastern North American productivity increased with simultaneous forest loss, but declined with only wNA forest loss due to changes in VPD. In conclusion, our results illustrate the need for a new generation of local-to-global scale analyses to identify potential ecoclimate teleconnections, their underlying mechanisms, and most importantly, their synergistic interactions, to predict the responses to increasing forest loss under future land use change and climate change.« less
Impacts of land-use and land-cover change on stream hydrochemistry in the Cerrado and Amazon biomes.
Nóbrega, Rodolfo L B; Guzha, Alphonce C; Lamparter, Gabriele; Amorim, Ricardo S S; Couto, Eduardo G; Hughes, Harold J; Jungkunst, Hermann F; Gerold, Gerhard
2018-09-01
Studies on the impacts of land-use and land-cover change on stream hydrochemistry in active deforestation zones of the Amazon agricultural frontier are limited and have often used low-temporal-resolution datasets. Moreover, these impacts are not concurrently assessed in well-established agricultural areas and new deforestations hotspots. We aimed to identify these impacts using an experimental setup to collect high-temporal-resolution hydrological and hydrochemical data in two pairs of low-order streams in catchments under contrasting land use and land cover (native vegetation vs. pasture) in the Amazon and Cerrado biomes. Our results indicate that the conversion of natural landscapes to pastures increases carbon and nutrient fluxes via streamflow in both biomes. These changes were the greatest in total inorganic carbon in the Amazon and in potassium in the Cerrado, representing a 5.0- and 5.5-fold increase in the fluxes of each biome, respectively. We found that stormflow, which is often neglected in studies on stream hydrochemistry in the tropics, plays a substantial role in the carbon and nutrient fluxes, especially in the Amazon biome, as its contributions to hydrochemical fluxes are mostly greater than the volumetric contribution to the total streamflow. These findings demonstrate that assessments of the impacts of deforestation in the Amazon and Cerrado biomes should also take into account rapid hydrological pathways; however, this can only be achieved through collection of high-temporal-resolution data. Copyright © 2018 Elsevier B.V. All rights reserved.
Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhl, C.; Kauffman, J.B.
1990-04-01
In the state of Para, Brazil, in the eastern Amazon, the authors studied the potential for sustained fire events within four dominant vegetation cover types (undisturbed rain forest, selectively logged forest, second-growth forest, and open pasture), by measuring fuel availability, microclimate, and rates of fuel moisture loss. They also estimated the potential tree mortality that might result from a wide-scale Amazon forest fire by measuring the thermal properties of bark for all trees in a 5-ha stand of mature forest, followed by measurements of heat flux through bark during simulated fires. In pastures the average midday temperature was almost 10{degree}Cmore » greater and the average midday relative humidity was 30% lower than in primary forest. The most five-prone ecosystem was the open pasture followed by selectively logged forest, second growth forest, and undisturbed rain forest in which sustained combustion was not possible even after prolonged rainless periods. Even though the autogenic factors in primary forest of the eastern Amazon create a microclimate that virtually eliminates the probability of fire, they are currently a common event in disturbed areas of Amazonia. As many as 8 {times} 10{sup 6} ha burned in the Amazon Basin of Brazil in 1987 alone. In terms of current land-use patterns, altered microclimates, and fuel mass, there are also striking similarities between the eastern Amazon and East Kalimantan, Indonesia (the site of recent rain forest wildfires that burned 3.5 {times} 10{sup 6} ha).« less
Regional dry-season climate changes due to three decades of Amazonian deforestation
NASA Astrophysics Data System (ADS)
Khanna, Jaya; Medvigy, David; Fueglistaler, Stephan; Walko, Robert
2017-02-01
More than 20% of the Amazon rainforest has been cleared in the past three decades, triggering important hydroclimatic changes. Small-scale (a few kilometres) deforestation in the 1980s has caused thermally triggered atmospheric circulations that increase regional cloudiness and precipitation frequency. However, these circulations are predicted to diminish as deforestation increases. Here we use multi-decadal satellite records and numerical model simulations to show a regime shift in the regional hydroclimate accompanying increasing deforestation in Rondônia, Brazil. Compared with the 1980s, present-day deforested areas in downwind western Rondônia are found to be wetter than upwind eastern deforested areas during the local dry season. The resultant precipitation change in the two regions is approximately +/-25% of the deforested area mean. Meso-resolution simulations robustly reproduce this transition when forced with increasing deforestation alone, showing that large-scale climate variability plays a negligible role. Furthermore, deforestation-induced surface roughness reduction is found to play an essential role in the present-day dry-season hydroclimate. Our study illustrates the strong scale sensitivity of the climatic response to Amazonian deforestation and suggests that deforestation is sufficiently advanced to have caused a shift from a thermally to a dynamically driven hydroclimatic regime.
Salinero, María Celeste; Michalski, Fernanda
2016-01-01
The quantity of wildlife extracted from the Amazon has increased in the past decades as a consequence of an increase in human population density and income growth. To evaluate the spatial distribution of studies on subsistence and/or commercial hunting conducted in the Brazilian Amazon, we selected eight mid-sized and large-bodied aquatic vertebrate species with a history of human exploitation in the region. We used a combination of searches in the gray and scientific literature from the past 24 years to provide an updated distributional map of studies on the target species. We calculated the distances between the study sites and the locations of the research institutes/universities that the first and last authors of the same study were affiliated to. For the period of 1990 to 2014, we found 105 studies on the subsistence and/or commercial hunting of aquatic vertebrates in the Brazilian Amazon in 271 locations that involved 43 institutions (37 Brazilian and 6 international). The spatial distribution of the studies across the Brazilian Amazon varied, but over 80% took place in the northeast and central Amazon, encompassing three States of the Legal Brazilian Amazon (Amazonas, 51.42%; Pará, 19.05%; and Amapá, 16.19%). Over half of the research study sites (52.91%) were within 500 km of the research institute/university of the first or last authors. Some research institutes/universities did not have any inter-institutional collaborations, while others collaborated with eight or more institutes. Some research institutes/universities conducted many studies, had an extensive collaboration network, and contributed greatly to the network of studies on Amazonian aquatic vertebrates. Our research contributes to the knowledge of studies on the subsistence and/or commercial hunting of the most exploited aquatic vertebrates of the Brazilian Amazon, illustrates the impact that collaboration networks have on research, and highlights potential areas for improvement and the generation of new collaborations.
Salinero, María Celeste; Michalski, Fernanda
2016-01-01
The quantity of wildlife extracted from the Amazon has increased in the past decades as a consequence of an increase in human population density and income growth. To evaluate the spatial distribution of studies on subsistence and/or commercial hunting conducted in the Brazilian Amazon, we selected eight mid-sized and large-bodied aquatic vertebrate species with a history of human exploitation in the region. We used a combination of searches in the gray and scientific literature from the past 24 years to provide an updated distributional map of studies on the target species. We calculated the distances between the study sites and the locations of the research institutes/universities that the first and last authors of the same study were affiliated to. For the period of 1990 to 2014, we found 105 studies on the subsistence and/or commercial hunting of aquatic vertebrates in the Brazilian Amazon in 271 locations that involved 43 institutions (37 Brazilian and 6 international). The spatial distribution of the studies across the Brazilian Amazon varied, but over 80% took place in the northeast and central Amazon, encompassing three States of the Legal Brazilian Amazon (Amazonas, 51.42%; Pará, 19.05%; and Amapá, 16.19%). Over half of the research study sites (52.91%) were within 500 km of the research institute/university of the first or last authors. Some research institutes/universities did not have any inter-institutional collaborations, while others collaborated with eight or more institutes. Some research institutes/universities conducted many studies, had an extensive collaboration network, and contributed greatly to the network of studies on Amazonian aquatic vertebrates. Our research contributes to the knowledge of studies on the subsistence and/or commercial hunting of the most exploited aquatic vertebrates of the Brazilian Amazon, illustrates the impact that collaboration networks have on research, and highlights potential areas for improvement and the generation of new collaborations. PMID:27352247
NASA Astrophysics Data System (ADS)
Paralovo, Sarah L.; Borillo, Guilherme C.; Barbosa, Cybelli G. G.; Godoi, Ana Flavia L.; Yamamoto, Carlos I.; de Souza, Rodrigo A. F.; Andreoli, Rita V.; Costa, Patrícia S.; Almeida, Gerson P.; Manzi, Antonio O.; Pöhlker, Christopher; Yáñez-Serrano, Ana M.; Kesselmeier, Jürgen; Godoi, Ricardo H. M.
2016-03-01
The Amazon region is one of the most significant natural ecosystems on the planet. Of special interest as a major study area is the interface between the forest and Manaus city, a state capital in Brazil embedded in the heart of the Amazon forest. In view of the interactions between natural and anthropogenic processes, an integrated experiment was conducted measuring the concentrations of the volatile organic compounds (VOCs) benzene, toluene, ethylbenzene and meta, ortho, para-xylene (known as BTEX), all of them regarded as pollutants with harmful effects on human health and vegetation and acting also as important precursors of tropospheric ozone. Furthermore, these compounds also take part in the formation of secondary organic aerosols, which can influence the pattern of cloud formation, and thus the regional water cycle and climate. The samples were collected in 2012/2013 at three different sites: (i) The Amazon Tall Tower Observatory (ATTO), a pristine rain forest region in the central Amazon Basin; (ii) Manacapuru, a semi-urban site located southwest and downwind of Manaus as a preview of the Green Ocean Amazon Experiment (GoAmazon 2014/15); and (iii) the city of Manaus (distributed over three sites). Results indicate that there is an increase in pollutant concentrations with increasing proximity to urban areas. For instance, the benzene concentration ranges were 0.237-19.6 (Manaus), 0.036-0.948 (Manacapuru) and 0.018-0.313 μg m-3 (ATTO). Toluene ranges were 0.700-832 (Manaus), 0.091-2.75 μg m-3 (Manacapuru) and 0.011-4.93 (ATTO). For ethylbenzene, they were 0.165-447 (Manaus), 0.018-1.20 μg m-3 (Manacapuru) and 0.047-0.401 (ATTO). Some indication was found for toluene to be released from the forest. No significant difference was found between the BTEX levels measured in the dry season and the wet seasons. Furthermore, it was observed that, in general, the city of Manaus seems to be less impacted by these pollutants than other cities in Brazil and in other countries, near the coastline or on the continent. A risk analysis for the health of Manaus' population was performed and indicated that the measured concentrations posed a risk for development of chronic diseases and cancer for the population of Manaus.
Cutaneous lymphosarcoma in a double yellow-headed Amazon parrot (Amazona ochrocephala oratrix).
Burgos-Rodríguez, Armando G; Garner, Michael; Ritzman, Tracey K; Orcutt, Connie J
2007-12-01
A 2-year-old double yellow-headed Amazon parrot (Amazona ochrocephala oratrix) was presented for evaluation of a mass on the left wing. A second soft tissue swelling was present under the left mandible and a third in the right inguinal region. The bird had pale mucous membranes, but no other abnormalities were observed on physical examination. Results of the complete blood count and plasma biochemical profile were anemia and decreased total solids. Cytologic findings from fine needle aspirates of the 3 affected areas were nondiagnostic. Whole-body radiographs revealed focal soft tissue swellings. Doppler ultrasound demonstrated significant vascularity in the inguinal swelling; therefore, biopsy of the area was considered contraindicated. Because of the rapid and extensive progression of disease, the owners elected euthanasia. Gross postmortem examination revealed marked and generalized skin thickening. The spleen was slightly enlarged and the bone marrow prominent and gelatinous. The histologic diagnosis was lymphosarcoma, which involved the skin, spleen, and bone marrow. Immunohistochemistry results were consistent with lymphosarcoma of T-cell origin. This case presents an unusual cutaneous manifestation of lymphosarcoma in an Amazon parrot.
Seasonal Changes in Leaf Area of Amazon Forests from Leaf Flushing and Abscission
NASA Astrophysics Data System (ADS)
Samanta, A.; Knyazikhin, Y.; Xu, L.; Dickinson, R.; Fu, R.; Costa, M. H.; Ganguly, S.; Saatchi, S. S.; Nemani, R. R.; Myneni, R.
2011-12-01
A large increase in near-infrared (NIR) reflectance of Amazon forests during the light-rich dry season and a corresponding decrease during the light-poor wet season has been observed in satellite measurements. This has been variously interpreted as seasonal changes in leaf area resulting from net leaf flushing in the dry season and net leaf abscission in the wet season, enhanced photosynthetic activity during the dry season from flushing new leaves and as change in leaf scattering and absorption properties between younger and older leaves covered with epiphylls. Reconciling these divergent views using theory and observations is the goal of this article. The observed changes in NIR reflectance of Amazon forests could be due to similar, but small, changes in NIR leaf albedo (reflectance plus transmittance) only, from exchanging older leaves with newer ones, with total leaf area unchanged. However, this argument ignores accumulating evidence from ground-based studies of higher leaf area in the dry season relative to the wet season, seasonal changes in litterfall and does not satisfactorily explain why NIR reflectance of these forests decreases in the wet season. A more convincing explanation for the observed increase in NIR reflectance during the dry season and decrease during the wet season is one that invokes changes in both leaf area and leaf optical properties. Such an argument is consistent with known phonological behavior of tropical forests, ground-based reports of seasonal changes in leaf area, litterfall, leaf optical properties and fluxes of evapotranspiration, and thus, reconciles the various seemingly divergent views.
Seasonal changes in leaf area of Amazon forests from leaf flushing and abscission
NASA Astrophysics Data System (ADS)
Samanta, Arindam; Knyazikhin, Yuri; Xu, Liang; Dickinson, Robert E.; Fu, Rong; Costa, Marcos H.; Saatchi, Sassan S.; Nemani, Ramakrishna R.; Myneni, Ranga B.
2012-03-01
A large increase in near-infrared (NIR) reflectance of Amazon forests during the light-rich dry season and a corresponding decrease during the light-poor wet season has been observed in satellite measurements. This increase has been variously interpreted as seasonal change in leaf area resulting from net leaf flushing in the dry season or net leaf abscission in the wet season, enhanced photosynthetic activity during the dry season from flushing new leaves and as change in leaf scattering and absorption properties between younger and older leaves covered with epiphylls. Reconciling these divergent views using theory and observations is the goal of this article. The observed changes in NIR reflectance of Amazon forests could be due to similar, but small, changes in NIR leaf albedo (reflectance plus transmittance) resulting from the exchange of older leaves for newer ones, but with the total leaf area unchanged. However, this argument ignores accumulating evidence from ground-based reports of higher leaf area in the dry season than the wet season, seasonal changes in litterfall and does not satisfactorily explain why NIR reflectance of these forests decreases in the wet season. More plausibly, the increase in NIR reflectance during the dry season and the decrease during the wet season would result from changes in both leaf area and leaf optical properties. Such change would be consistent with known phenological behavior of tropical forests, ground-based reports of seasonal changes in leaf area, litterfall, leaf optical properties and fluxes of evapotranspiration, and thus, would reconcile the various seemingly divergent views.
Ferreira, Paulo Dias Júnior; Castro, Paulo de Tarso Amorim
2005-05-01
The giant Amazon river turtle (Podocnemis expansa) nests on extensive sand bars on the margins and interior of the channel during the dry season. The high concentration of nests in specific points of certain beaches indicates that the selection of nest placement is not random but is related to some geological aspects, such as bar margin inclination and presence of a high, sandy platform. The presence of access channels to high platform points or ramp morphology are decisive factors in the choice of nesting areas. The eroded and escarped margins of the beaches hinder the Amazon river turtle arriving at the most suitable places for nesting. Through the years, changes in beach morphology can alter nest distribution.
Tree rings and rainfall in the equatorial Amazon
NASA Astrophysics Data System (ADS)
Granato-Souza, Daniela; Stahle, David W.; Barbosa, Ana Carolina; Feng, Song; Torbenson, Max C. A.; de Assis Pereira, Gabriel; Schöngart, Jochen; Barbosa, Joao Paulo; Griffin, Daniel
2018-05-01
The Amazon basin is a global center of hydroclimatic variability and biodiversity, but there are only eight instrumental rainfall stations with continuous records longer than 80 years in the entire basin, an area nearly the size of the coterminous US. The first long moisture-sensitive tree-ring chronology has been developed in the eastern equatorial Amazon of Brazil based on dendrochronological analysis of Cedrela cross sections cut during sustainable logging operations near the Rio Paru. The Rio Paru chronology dates from 1786 to 2016 and is significantly correlated with instrumental precipitation observations from 1939 to 2016. The strength and spatial scale of the precipitation signal vary during the instrumental period, but the Rio Paru chronology has been used to develop a preliminary reconstruction of February to November rainfall totals from 1786 to 2016. The reconstruction is related to SSTs in the Atlantic and especially the tropical Pacific, similar to the stronger pattern of association computed for the instrumental rainfall data from the eastern Amazon. The tree-ring data estimate extended drought and wet episodes in the mid- to late-nineteenth century, providing a valuable, long-term perspective on the moisture changes expected to emerge over the Amazon in the coming century due to deforestation and anthropogenic climate change.
Oil extraction in the Amazon basin and exposure to metals in indigenous populations.
O'Callaghan-Gordo, Cristina; Flores, Juan A; Lizárraga, Pilar; Okamoto, Tami; Papoulias, Diana M; Barclay, Federica; Orta-Martínez, Martí; Kogevinas, Manolis; Astete, John
2018-04-01
Most oil extraction areas in the Peruvian Amazon are within indigenous territories. Poor environmental practices have exposed the indigenous population to metals. We conducted a survey in two indigenous Kukama communities to assess body burdens of metals after the occurrence of two major oil spills in 2014. Urine levels above those recommended by the Peruvian Ministry of Health were observed in 50% and 17% of the study population for mercury and cadmium, respectively. Copyright © 2018 Elsevier Inc. All rights reserved.
Scherer, W F; Chin, J
1983-07-01
In 1971, an unusual strain of Venezuelan encephalitis (VE) virus (71D1252) was recovered from the same small area of a rain forest in the western Amazon basin of South America near Iquitos, Loreto, Peru, from which strains of subtype I-D were recovered. The marker characteristics of this strain resembled most closely those of VE subtype III (Mucambo) and were distinctly different from coexisting I-D strains. Thus the concurrent presence of two different VE virus subtypes in one place was a striking exception to the usual geographic allopatry of VE virus subtypes. Strain 71D1252 also contained temperature sensitive (ts) (37 degrees C versus 39 degrees C) virions in the original mosquito suspension and first suckling mouse passage brain tissue suspensions. It thus represents one of the few so-far-reported ts strains of viruses found in nature, and the only natural ts strain of VE virus.
Moisture origin and transport processes in Colombia, northern South America
NASA Astrophysics Data System (ADS)
Hoyos, I.; Dominguez, F.; Cañón-Barriga, J.; Martínez, J. A.; Nieto, R.; Gimeno, L.; Dirmeyer, P. A.
2018-02-01
We assess the spatial structure of moisture flux divergence, regional moisture sources and transport processes over Colombia, in northern South America. Using three independent methods the dynamic recycling model (DRM), FLEXPART and the Quasi-isentropic back-trajectory (QIBT) models we quantify the moisture sources that contribute to precipitation over the region. We find that moisture from the Atlantic Ocean and terrestrial recycling are the most important sources of moisture for Colombia, highlighting the importance of the Orinoco and Amazon basins as regional providers of atmospheric moisture. The results show the influence of long-range cross-equatorial flow from the Atlantic Ocean into the target region and the role of the study area as a passage of moisture into South America. We also describe the seasonal moisture transport mechanisms of the well-known low-level westerly and Caribbean jets that originate in the Pacific Ocean and Caribbean Sea, respectively. We find that these dynamical systems play an important role in the convergence of moisture over western Colombia.
NASA Astrophysics Data System (ADS)
Irio Ribeiro, Admilson; Hashimoto Fengler, Felipe; Araújo de Medeiros, Gerson; Márcia Longo, Regina; Frederici de Mello, Giovanna; José de Melo, Wanderley
2015-04-01
The revegetation of areas degraded by mining usually requires adequate mobilization of surface soil for the development of the species to be implemented. Unlike the traditional tillage, which has periodicity, the mobilization of degraded areas for revegetation can only occur at the beginning of the recovery stage. In this sense, the process of revegetation has as purpose the establishment of local native vegetation with least possible use of inputs and superficial tillage in order to catalyze the process of natural ecological succession, promoting the reintegration of areas and minimizing the negative impacts of mining activities in environmental. In this context, this work describes part of a study of land reclamation by tin exploitation in the Amazon ecosystem in the National Forest Jamari- Rondonia Brazil. So, studied the influence of surface soil mobilization in pit mine areas and tailings a view to the implementation of legumes. The results show that the surface has areas of mobilizing a significant effect on the growth of leguminous plants, areas for both mining and to tailings and pit mine areas.
Gatti, Luciana V.; Gloor, Manuel; Miller, John B.; Domingues, Lucas G.; Correia, Caio S. C.; Borges, Viviane F.
2016-01-01
Abstract The Amazon Basin is an important region for global CH4 emissions. It hosts the largest area of humid tropical forests, and around 20% of this area is seasonally flooded. In a warming climate it is possible that CH4 emissions from the Amazon will increase both as a result of increased temperatures and precipitation. To examine if there are indications of first signs of such changes we present here a 13 year (2000–2013) record of regularly measured vertical CH4 mole fraction profiles above the eastern Brazilian Amazon, sensitive to fluxes from the region upwind of Santarém (SAN), between SAN and the Atlantic coast. Using a simple mass balance approach, we find substantial CH4 emissions with an annual average flux of 52.8 ± 6.8 mg CH4 m−2 d−1 over an area of approximately 1 × 106 km2. Fluxes are highest in two periods of the year: in the beginning of the wet season and during the dry season. Using a CO:CH4 emission factor estimated from the profile data, we estimated a contribution of biomass burning of around 15% to the total flux in the dry season, indicating that biogenic emissions dominate the CH4 flux. This 13 year record shows that CH4 emissions upwind of SAN varied over the years, with highest emissions in 2008 (around 25% higher than in 2007), mainly during the wet season, representing 19% of the observed global increase in this year. PMID:27642546
Barros, Fábio S. M.; Honório, Nildimar A.
2015-01-01
We performed bimonthly mosquito larval collections during 1 year, in an agricultural settlement in the Brazilian Amazon, as well as an analysis of malaria incidence in neighboring houses. Water collections located at forest fringes were more commonly positive for Anopheles darlingi larvae and Kulldorff spatial analysis pinpointed significant larval clusters at sites directly beneath forest fringes, which were called larval “hotspots.” Remote sensing identified 43 “potential” hotspots. Sampling of these areas revealed an 85.7% positivity rate for A. darlingi larvae. Malaria was correlated with shorter distances to potential hotpots and settlers living within 400 m of potential hotspots had a 2.60 higher risk of malaria. Recently arrived settlers, usually located closer to the tip of the triangularly shaped deforestation imprints of side roads, may be more exposed to malaria due to their proximity to the forest fringe. As deforestation progresses, transmission decreases. However, forest remnants inside deforested areas conferred an increased risk of malaria. We propose a model for explaining frontier malaria in the Amazon: because of adaptation of A. darlingi to the forest fringe ecotone, humans are exposed to an increased transmission risk when in proximity to these areas, especially when small dams are created on naturally running water collections. PMID:26416110
NASA Astrophysics Data System (ADS)
de Souza, Carlos Moreira, Jr.
Large forested areas have recently been impoverished by degradation caused by selective logging, forest fires and fragmentation in the Amazon region, causing partial change of the original forest structure and composition. As opposed to deforestation that has been monitored with Landsat images since the late 70's, degraded forests have not been monitored in the Amazon region. In this dissertation, remote sensing techniques for identifying and mapping unambiguously degraded forests with Landsat images are proposed. The test area was the region of Sinop, located in the state of Mato Grosso, Brazil. This region was selected because a gradient of degraded forest environments exist and a robust time-series of Landsat images and forest transect data were available. First, statistical analyses were applied to identify the best set of spectral information extracted from Landsat images to detect several types of degraded forest environments. Fraction images derived from Spectral Mixture Analysis (SMA) were the best type of information for that purpose. A new spectral index based on fraction images---Normalized Difference Fraction Index (NDFI)---was proposed to enhance the detection of canopy damaged areas in degraded forests. Second, a contextual classification algorithm was implemented to separate unambiguously forest degradation caused by anthropogenic activities from natural forest disturbances. These techniques were validated using forest transects and high resolution aerial videography images and proved to be highly accurate. Next, these techniques were applied to a time-series data set of Landsat images, encompassing 20 years, to evaluate the relationship between forest degradation and deforestation. The most important finding of the forest change detection analysis was that forest degradation and deforestation are independent events in the study area, making worse the current forest impacts in the Amazon region. Finally, the techniques developed and tested in the Sinop region were successfully applied to forty Landsat images covering other regions of the Brazilian Amazon. Standard fractions and NDFI images were computed for these other regions and both physically and spatially consistent results were obtained. An automated decision tree classification using genetic algorithm was implemented successfully to classify land cover types and sub-classes of degraded forests. The remote sensing techniques proposed in this dissertation are fully automated and have the potential to be used in tropical forest monitoring programs.
Choconta-Piraquive, Luz Angela; De la Hoz-Restrepo, Fernando; Sarmiento-Limas, Carlos Arturo
2016-07-21
Hepatitis B vaccination was introduced into the Expanded Program of Immunization in Colombia in 1992, in response to WHO recommendations on hepatitis B immunization. Colombia is a low endemic country for Hepatitis B virus infection (HBV) but it has several high endemic areas like the Amazon basin where more than 70 % of adults had been infected. A cross- sectional study was carried out in three rural areas of the Colombian Amazon to evaluate compliance with the recommended schedule for hepatitis B vaccine in Colombian children (one monovalent dose given in the first 24 h after birth + 3 doses of a pentavalent containing Hepatitis B. (DPT + Hib + Hep B). A household survey was conducted in order to collect vaccination data from children aged from 6 months to <8 years. Vaccination status was related to sociodemographic data obtained from children caretakers. Among 938 children above 6 months and < 8 years old studied, 79 % received a monovalent dose of hepatitis B vaccine, but only 30.7 % were vaccinated in the first 24 h after birth. This proportion did not increase by age or subsequent birth cohorts. Coverage with three doses of a DTP-Hib-HepB vaccine was 98 %, but most children did not receive them according to the recommended schedule. Being born in a health facility was the strongest predictor of receiving a timely birth dose. This study suggests that more focused strategies on improving compliance with hepatitis B birth dose should be implemented in rural areas of the Amazon, if elimination of perinatal transmission of HBV is to be achieved. Increasing the proportion of newborns delivered at health facilities should be one of the priorities to reach that goal.
Links between land use change and recent dry season droughts in Amazonia
NASA Astrophysics Data System (ADS)
Khanna, J.; Medvigy, D.
2012-12-01
The Amazon region experienced catastrophic and unusually severe droughts in 2005 and 2010. These two droughts were phenomenologically different from the other, more common, El Niño-related droughts. Whereas El Niño-related droughts mostly affect the eastern and south-eastern parts of the region during the wet season (December-March), the droughts of 2005 and 2010 were most severe during the dry season (June-August) and affected the southern and western parts of the Amazon. A global warming driven mechanism has been suggested for these droughts wherein decreased moisture transport into the basin during the dry season is caused by anomalously high tropical north Atlantic SSTs, which weaken the northern hemisphere Hadley cell. But the facts that dry season droughts have been historically rare in this region and that the 2005 and 2010 droughts were strongest around locations of recent land use change activity suggest that deforestation may be contributing to this inter-annual variability in precipitation. This study addresses this research question by numerically modeling the 2005 and 2010 drought events for two land use scenarios, one of which (Deforested or DEF) represents the current state of land use in the Amazon and the other (Pristine Forest or PRF) represents a scenario of no deforestation. A variable resolution GCM, the Ocean-Land-Atmosphere Model (OLAM), is used to model these events. Land surface processes and soil moisture during the drought period are simulated using the Land Ecosystem Atmosphere Feedback model. The state of land cover in the Amazon in the two drought years is obtained from satellite-based land cover maps. The land grid has a variable resolution ranging from ≈75km in the South American sector to ≈200km elsewhere. This variable-resolution approach helps resolve topographic features and the medium-to-large scale land use patches in the Amazon area. The atmospheric runs are forced by National Oceanic and Atmospheric Administration weekly sea-surface temperature data. Soil moisture initial conditions were obtained from 8-year spin-ups for DEF and PRF. Then, ensembles of 18 month simulations were carried out, starting in June of 2004 and 2009. The ensembles consisted of 5 runs for each of the DEF and PRF experiments and are designed to reduce the effects of natural climate variability on the model results. Results are analyzed to test whether the intensity of the droughts, as measured by a water deficit index like maximum climatological water deficit (MCWD), increases from the PRF to the DEF case. An analysis of the statistical differences between the values of various meteorological and hydrological variables as obtained from the two land use scenarios will be presented. Thus this study will help both qualify and quantify the extent to which land use change can intensify a drought event.
Rufalco-Moutinho, Paulo; Schweigmann, Nicolás; Bergamaschi, Denise Pimentel; Mureb Sallum, Maria Anice
2016-12-01
Rural settlements are social arrangements expanding in the Amazon region, which generate disturbances in the natural environment, thus affecting the ecology of the species of Anopheles and thus the malaria transmission. Larval habitats are important sources for maintenance of mosquito vector populations, and holding back a natural watercourse is a usual process in the establishment of rural settlements, since the formation of micro-dams represents a water resource for the new settlers. Identifying characteristics of the larval habitats that may be associated with both the presence and abundance of Anopheles vectors species in an environment under ecological transition is background for planning vector control strategies in rural areas in the Amazon. Anopheles larvae collections were performed in two major types of habitats: natural and flow-limited water collections that were constructed by holding back the original watercourse. A total of 3123 Anopheles spp. larvae were captured in three field-sampling collections. The majority of the larvae identified were taken from flow-limited water collections belonged to species of the Nyssorhynchus subgenus (92%), whereas in the natural larval habitats a fewer number of individuals belonged to the Stethomyia (5%) and Anopheles (3%) subgenera. The total of Nyssorhynchus identified (1818), 501 specimens belonged to An. darlingi, 750 to An. triannulatus and 567 for others remaining species. In addition, 1152 could not be identified to subgenus/species level, because they were either in the first-instar or damaged. The primary vector in areas of the Amazon river basin, An. darlingi, was found exclusively in man-made habitats. Statistical analysis display An. triannulatus with specialist behavior for characteristics of man-made habitats. Modifications in the natural environment facilitate the rise of larval habitats for species with epidemiological importance for malaria in the region. This study showed that man-made habitats flow-limited water collections from dry lands could be a factor associated with the increase of An. darlingi and An. triannulatus populations, and other Nyssorhynchus species as well in endemic areas of the Amazon Region. Copyright © 2016 Elsevier B.V. All rights reserved.
Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring.
Asner, Gregory P; Llactayo, William; Tupayachi, Raul; Luna, Ernesto Ráez
2013-11-12
Gold mining has rapidly increased in western Amazonia, but the rates and ecological impacts of mining remain poorly known and potentially underestimated. We combined field surveys, airborne mapping, and high-resolution satellite imaging to assess road- and river-based gold mining in the Madre de Dios region of the Peruvian Amazon from 1999 to 2012. In this period, the geographic extent of gold mining increased 400%. The average annual rate of forest loss as a result of gold mining tripled in 2008 following the global economic recession, closely associated with increased gold prices. Small clandestine operations now comprise more than half of all gold mining activities throughout the region. These rates of gold mining are far higher than previous estimates that were based on traditional satellite mapping techniques. Our results prove that gold mining is growing more rapidly than previously thought, and that high-resolution monitoring approaches are required to accurately quantify human impacts on tropical forests.
Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring
Asner, Gregory P.; Llactayo, William; Tupayachi, Raul; Luna, Ernesto Ráez
2013-01-01
Gold mining has rapidly increased in western Amazonia, but the rates and ecological impacts of mining remain poorly known and potentially underestimated. We combined field surveys, airborne mapping, and high-resolution satellite imaging to assess road- and river-based gold mining in the Madre de Dios region of the Peruvian Amazon from 1999 to 2012. In this period, the geographic extent of gold mining increased 400%. The average annual rate of forest loss as a result of gold mining tripled in 2008 following the global economic recession, closely associated with increased gold prices. Small clandestine operations now comprise more than half of all gold mining activities throughout the region. These rates of gold mining are far higher than previous estimates that were based on traditional satellite mapping techniques. Our results prove that gold mining is growing more rapidly than previously thought, and that high-resolution monitoring approaches are required to accurately quantify human impacts on tropical forests. PMID:24167281
NASA Astrophysics Data System (ADS)
Kunert, N.; Barros, P.; Higuchi, N.
2012-12-01
Native fruiting plants are widely cultivated in the Amazon but only little information on their water use characteristics can be found in the literature. Due to the growing local consumption and the increasing popularity for new "exotic" fruits all over Brazil and worldwide, additional new plantations cultivating such fruit-bearing species might be established in the Amazon in the future. These new plantations will affect the water table of the cultivated areas, however, the impact of these changes on the regional hydrology are not known. We, therefore, decided to study plant water use characteristics of two native fruit plants commonly occurring in the Amazon region, a tree species (Cupuaçu, Theobroma grandiflorum, (Willd. ex Spreng.) Schum., Malvaceae) and a palm species (Açai, Euterpe oleraceae Mart., Arecaceae). This study was conducted in a fruit plantation close to the city of Manaus, in the Central Amazon, Brazil. The objectives of our study were 1) to compare variables controlling plant water use and 2) to identify differences in water use between woody monocot and dicot plant species. We chose three representative individuals with well-sun-exposed crowns for each species, which were equipped with Granier-type thermal dissipation probes to measure sap flux density continuously for six weeks from August 1st 2011 until September 6th 2011. We used a simple sap flux model with two environmental variables, photosynthetic photon flux density and vapor pressure deficit, to compare sap flux densities between species. We achieved a good model fit and modeled sap flux densities corresponded very well with the actual measured values. No significant differences among species in sap flux densities were indicated by the model. Overall, palms had a 3.5 fold higher water consumption compared to trees with similar diameter. Water use scaled independent from species with the size of the conductive xylem area (r2 = 0.85), so that the higher water use of the palms was largely explained by higher conductivity of the xylem cross section area. Palms transpired a mean of 1.67 mm m-2 of water per unit crown projection area per day, whereas trees transpired only 0.30 mm m-2 per day, resulting in a 5.6 times lower transpiration rate. We conclude that changes in the water table due to land use change are predictable and highly depending on the species planted in the area with altered land use.
IN11B-1621: Quantifying How Climate Affects Vegetation in the Amazon Rainforest
NASA Technical Reports Server (NTRS)
Das, Kamalika; Kodali, Anuradha; Szubert, Marcin; Ganguly, Sangram; Bongard, Joshua
2016-01-01
Amazon droughts in 2005 and 2010 have raised serious concern about the future of the rainforest. Amazon forests are crucial because of their role as the largest carbon sink in the world which would effect the global warming phenomena with decreased photosynthesis activity. Especially, after a decline in plant growth in 1.68 million km2 forest area during the once-in-a-century severe drought in 2010, it is of primary importance to understand the relationship between different climatic variables and vegetation. In an earlier study, we have shown that non-linear models are better at capturing the relation dynamics of vegetation and climate variables such as temperature and precipitation, compared to linear models. In this research, we learn precise models between vegetation and climatic variables (temperature, precipitation) for normal conditions in the Amazon region using genetic programming based symbolic regression. This is done by removing high elevation and drought affected areas and also considering the slope of the region as one of the important factors while building the model. The model learned reveals new and interesting ways historical and current climate variables affect the vegetation at any location. MAIAC data has been used as a vegetation surrogate in our study. For temperature and precipitation, we have used TRMM and MODIS Land Surface Temperature data sets while learning the non-linear regression model. However, to generalize the model to make it independent of the data source, we perform transfer learning where we regress a regularized least squares to learn the parameters of the non-linear model using other data sources such as the precipitation and temperature from the Climatic Research Center (CRU). This new model is very similar in structure and performance compared to the original learned model and verifies the same claims about the nature of dependency between these climate variables and the vegetation in the Amazon region. As a result of this study, we are able to learn, for the very first time how exactly different climate factors influence vegetation at any location in the Amazon rainforests, independent of the specific sources from which the data has been obtained.
NASA Astrophysics Data System (ADS)
Potter, Christopher; Brooks-Genovese, Vanessa; Klooster, Steven; Torregrosa, Alicia
2002-10-01
To produce a new daily record of trace gas emissions from biomass burning events for the Brazilian Legal Amazon, we have combined satellite advanced very high resolution radiometer (AVHRR) data on fire counts together for the first time with vegetation greenness imagery as inputs to an ecosystem biomass model at 8 km spatial resolution. This analysis goes beyond previous estimates for reactive gas emissions from Amazon fires, owing to a more detailed geographic distribution estimate of vegetation biomass, coupled with daily fire activity for the region (original 1 km resolution), and inclusion of fire effects in extensive areas of the Legal Amazon (defined as the Brazilian states of Acre, Amapá, Amazonas, Maranhao, Mato Grosso, Pará, Rondônia, Roraima, and Tocantins) covered by open woodland, secondary forests, savanna, and pasture vegetation. Results from our emissions model indicate that annual emissions from Amazon deforestation and biomass burning in the early 1990s total to 102 Tg yr-1 carbon monoxide (CO) and 3.5 Tg yr-1 nitrogen oxides (NOx). Peak daily burning emissions, which occurred in early September 1992, were estimated at slightly more than 3 Tg d-1for CO and 0.1 Tg d-1for NOx flux to the atmosphere. Other burning source fluxes of gases with relatively high emission factors are reported, including methane (CH4), nonmethane hydrocarbons (NMHC), and sulfur dioxide (SO2), in addition to total particulate matter (TPM). We estimate the Brazilian Amazon region to be a source of between one fifth and one third for each of these global emission fluxes to the atmosphere. The regional distribution of burning emissions appears to be highest in the Brazilian states of Maranhao and Tocantins, mainly from burning outside of moist forest areas, and in Pará and Mato Grosso, where we identify important contributions from primary forest cutting and burning. These new daily emission estimates of reactive gases from biomass burning fluxes are designed to be used as detailed spatial and temporal inputs to computer models and data analysis of tropospheric chemistry over the tropical region.
Quantifying How Climate Affects Vegetation in the Amazon Rainforest
NASA Astrophysics Data System (ADS)
Das, K.; Kodali, A.; Szubert, M.; Ganguly, S.; Bongard, J.
2016-12-01
Amazon droughts in 2005 and 2010 have raised serious concern about the future of the rainforest. Amazon forests are crucial because of their role as the largest carbon sink in the world which would effect the global warming phenomena with decreased photosynthesis activity. Especially, after a decline in plant growth in 1.68 million km2 forest area during the once-in-a-century severe drought in 2010, it is of primary importance to understand the relationship between different climatic variables and vegetation. In an earlier study, we have shown that non-linear models are better at capturing the relation dynamics of vegetation and climate variables such as temperature and precipitation, compared to linear models. In this research, we learn precise models between vegetation and climatic variables (temperature, precipitation) for normal conditions in the Amazon region using genetic programming based symbolic regression. This is done by removing high elevation and drought affected areas and also considering the slope of the region as one of the important factors while building the model. The model learned reveals new and interesting ways historical and current climate variables affect the vegetation at any location. MAIAC data has been used as a vegetation surrogate in our study. For temperature and precipitation, we have used TRMM and MODIS Land Surface Temperature data sets while learning the non-linear regression model. However, to generalize the model to make it independent of the data source, we perform transfer learning where we regress a regularized least squares to learn the parameters of the non-linear model using other data sources such as the precipitation and temperature from the Climatic Research Center (CRU). This new model is very similar in structure and performance compared to the original learned model and verifies the same claims about the nature of dependency between these climate variables and the vegetation in the Amazon region. As a result of this study, we are able to learn, for the very first time how exactly different climate factors influence vegetation at any location in the Amazon rainforests, independent of the specific sources from which the data has been obtained.
CO2 and CO emission rates from three forest fire controlled experiments in Western Amazonia
NASA Astrophysics Data System (ADS)
Carvalho, J. A., Jr.; Amaral, S. S.; Costa, M. A. M.; Soares Neto, T. G.; Veras, C. A. G.; Costa, F. S.; van Leeuwen, T. T.; Krieger Filho, G. C.; Tourigny, E.; Forti, M. C.; Fostier, A. H.; Siqueira, M. B.; Santos, J. C.; Lima, B. A.; Cascão, P.; Ortega, G.; Frade, E. F., Jr.
2016-06-01
Forests represent an important role in the control of atmospheric emissions through carbon capture. However, in forest fires, the carbon stored during photosynthesis is released into the atmosphere. The carbon quantification, in forest burning, is important for the development of measures for its control. The aim of this study was to quantify CO2 and CO emissions of forest fires in Western Amazonia. In this paper, results are described of forest fire experiments conducted in Cruzeiro do Sul and Rio Branco, state of Acre, and Candeias do Jamari, state of Rondônia, Brazil. These cities are located in the Western portion of the Brazilian Amazon region. The biomass content per hectare, in the virgin forest, was measured by indirect methods using formulas with parameters of forest inventories in the central hectare of the test site. The combustion completeness was estimated by randomly selecting 10% of the total logs and twelve 2 × 2 m2 areas along three transects and examining their consumption rates by the fire. The logs were used to determine the combustion completeness of the larger materials (characteristic diameters larger than 10 cm) and the 2 × 2 m2 areas to determine the combustion completeness of small-size materials (those with characteristic diameters lower than 10 cm) and the. The overall biomass consumption by fire was estimated to be 40.0%, 41.2% and 26.2%, in Cruzeiro do Sul, Rio Branco and Candeias do Jamari, respectively. Considering that the combustion gases of carbon in open fires contain approximately 90.0% of CO2 and 10.0% of CO in volumetric basis, the average emission rates of these gases by the burning process, in the three sites, were estimated as 191 ± 46.7 t ha-1 and 13.5 ± 3.3 t ha-1, respectively.
Potential Impact of Planned Andean Dams on the Amazon Fluvial Ecosystem
NASA Astrophysics Data System (ADS)
Forsberg, B.; Melack, J. M.; Dunne, T.; Barthem, R. B.; Paiva, R. C. D.; Sorribas, M.; Silva, U. L., Jr.
2016-12-01
Increased energy demand has led to plans for building 151 new dams in the western Amazon, mostly in the Andes Region. Historical data and simulation scenarios were used to explore potential impacts above and below six of the largest storage dams planned for the region. These impacts included: 1) reduction in the downstream sediment supply 2) reduction in the downstream nutrient supply, 3) attenuation of the downstream flood pulse and 4) increased greenhouse gas emissions. Together, the six dams are expected to reduce the total downstream supply of sediments, total phosphorus (TP) and total nitrogen (TN) from the Andes by 66, 65 and 49%, respectively. These large reductions in sediment and nutrient supplies will have major impacts on channel geomorphology, floodplain fertility and aquatic productivity. These impacts are expected to be greatest close to the dams but could also extend to the central Amazon floodplain and delta regions. The attenuation of the downstream flood pulse following impoundment is expected to alter the survival, phenology and growth patterns of floodplain vegetation and result in lower fish yields in the downstream regions closest to the dams. Greenhouse gas emissions above and below the dams are expected to increase, contributing to significantly higher regional and global emissions for dams. Gas fired power plants are suggested as a cleaner, less impactful alternative to meeting regional energy demands.
A Simulation Model of Carbon Cycling and Methane Emissions in Amazon Wetlands
NASA Technical Reports Server (NTRS)
Potter, Christopher; Melack, John; Hess, Laura; Forsberg, Bruce; Novo, Evlyn Moraes; Klooster, Steven
2004-01-01
An integrative carbon study is investigating the hypothesis that measured fluxes of methane from wetlands in the Amazon region can be predicted accurately using a combination of process modeling of ecosystem carbon cycles and remote sensing of regional floodplain dynamics. A new simulation model has been build using the NASA- CASA concept for predicting methane production and emission fluxes in Amazon river and floodplain ecosystems. Numerous innovations area being made to model Amazon wetland ecosystems, including: (1) prediction of wetland net primary production (NPP) as the source for plant litter decomposition and accumulation of sediment organic matter in two major vegetation classes - flooded forests (varzea or igapo) and floating macrophytes, (2) representation of controls on carbon processing and methane evasion at the diffusive boundary layer, through the lake water column, and in wetland sediments as a function of changes in floodplain water level, (3) inclusion of surface emissions controls on wetland methane fluxes, including variations in daily surface temperature and of hydrostatic pressure linked to water level fluctuations. A model design overview and early simulation results are presented.
Petrobras eyes LNG project in Amazon region
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-08-07
The Brazilian state oil company has proved gas reserves in the Rio Urucu area of the Amazon jungle totaling 1.84 tcf. That compares with 3.08 tcf contained in the offshore Campos basin, source of most of Brazil`s oil and gas production. The environmentally sensitive Urucu region is one of the most dense, remote jungles in the world. Because of environmental concerns about pipelines in the rain forest and a government emphasis on boosting the natural gas share of Brazil`s energy mix, a small liquefied natural gas project is shaping up as the best option for developing and marketing Urucu gas.more » The amazon campaign underscores a government initiative to boost Brazilian consumption of natural gas. In Brazil natural gas accounts for only 4% of primary energy consumption. Some years ago, the government set an official goal of boosting the gas share of the primary energy mix to 10% by 2000. The paper discusses current drilling activities, gas production and processing, the logistics of the upper Amazon, and gas markets.« less
Viana, Ana Luiza d'Avila; Machado, Cristiani Vieira; Baptista, Tatiana Wargas de Faria; Lima, Luciana Dias de; Mendonça, Maria Helena Magalhães de; Heimann, Luiza S; Albuquerque, Mariana Vercesi; Iozzi, Fabíola Lana; David, Virna Carvalho; Ibañez, Pablo; Frederico, Samuel
2007-01-01
This article presents the results of a study on Federal health policy in the Brazilian Legal Amazon (BLA) from 2003 to 2005, aimed at backing the development of regional health policies. The region has peculiar dynamics, an extensive border area, and adverse social indicators. The methodology included documental and financial analysis, participatory observation, interviews with heads of various Federal Ministries and State and Municipal health secretaries from the BLA; characterization of geographic situations in the BLA; and field studies in 15 municipalities. Institutional consolidation of health policy proved to be low in the Amazon during the study period, due to structural, institutional, and political difficulties. The identification of six geographic situations was useful for systematizing land use differences with repercussions on health, and which should be considered when implementing public policies. There is a certain gap between Federal actions and territorial dynamics, expressed as a mismatch between the current policy and its recognition by local administrators. In addition to establishing a regional policy for the Amazon, there is an evident need for differentiated policies within the region.
Balancing Conservation and Economic Sustainability: The Future of the Amazon Timber Industry
NASA Astrophysics Data System (ADS)
Merry, Frank; Soares-Filho, Britaldo; Nepstad, Daniel; Amacher, Gregory; Rodrigues, Hermann
2009-09-01
Logging has been a much maligned feature of frontier development in the Amazon. Most discussions ignore the fact that logging can be part of a renewable, environmentally benign, and broadly equitable economic activity in these remote places. We estimate there to be some 4.5 ± 1.35 billion m3 of commercial timber volume in the Brazilian Amazon today, of which 1.2 billion m3 is currently profitable to harvest, with a total potential stumpage value of 15.4 billion. A successful forest sector in the Brazilian Amazon will integrate timber harvesting on private lands and on unprotected and unsettled government lands with timber concessions on public lands. If a legal, productive, timber industry can be established outside of protected areas, it will deliver environmental benefits in synergy with those provided by the region’s network of protected areas, the latter of which we estimate to have an opportunity cost from lost timber revenues of 2.3 billion over 30 years. Indeed, on all land accessible to harvesting, the timber industry could produce an average of more than 16 million m3 per year over a 30-year harvest cycle—entirely outside of current protected areas—providing 4.8 billion in returns to landowners and generating 1.8 billion in sawnwood sales tax revenue. This level of harvest could be profitably complemented with an additional 10% from logging concessions on National Forests. This advance, however, should be realized only through widespread adoption of reduced impact logging techniques.
Fernandez, Roberto; Lopez, Victor; Cardenas, Roldan; Requena, Edwin
2015-07-01
A new species of sand fly, which we describe as Lutzomyia (Trichophoromyia) nautaensis n. sp., was collected in the northern Peruvian Amazon Basin. In this region of Peru, cutaneous leishmaniasis is transmitted primarily by anthropophilic sand flies; however, zoophilic sand flies of the subgenus Trichophoromyia may also be incriminated in disease transmission. Detection of Leishmania spp. in Lutzomyia auraensis Mangabeira captured in the southern Peruvian Amazon indicates the potential of this and other zoophilic sand flies for human disease transmission, particularly in areas undergoing urban development. Herein, we describe Lutzomyia (Trichophoromyia) nautaensis n. sp., and report new records of sand flies in Peru. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.
Full-genome sequences of hepatitis B virus subgenotype D3 isolates from the Brazilian Amazon Region.
Spitz, Natália; Mello, Francisco C A; Araujo, Natalia Motta
2015-02-01
The Brazilian Amazon Region is a highly endemic area for hepatitis B virus (HBV). However, little is known regarding the genetic variability of the strains circulating in this geographical region. Here, we describe the first full-length genomes of HBV isolated in the Brazilian Amazon Region; these genomes are also the first complete HBV subgenotype D3 genomes reported for Brazil. The genomes of the five Brazilian isolates were all 3,182 base pairs in length and the isolates were classified as belonging to subgenotype D3, subtypes ayw2 (n = 3) and ayw3 (n = 2). Phylogenetic analysis suggested that the Brazilian sequences are not likely to be closely related to European D3 sequences. Such results will contribute to further epidemiological and evolutionary studies of HBV.
NASA Astrophysics Data System (ADS)
Ribeiro, A. I.; Mello, G. F.; Longo, R. M.; Fengler, F. H.; Peche Filho, A., Sr.
2017-12-01
One of the greatest natural riches of Brazil is the Amazon rainforest. The Amazon region is known for its abundance of mineral resources, and may include topaz, oil, and especially cassiterite. In this scope, the mining sector in Brazil has great strategic importance because it accounts for approximately 30% of the country's exports with a mineral production of 40 billion dollars (Brazilian Mining Institute, 2015). In this scenario, as a consequence of mining, the Amazonian ecosystem has been undergoing a constant process of degradation. An important artifice in the exploitation of mineral resources is the rehabilitation and/or recovery of degraded areas. This recovery requires the establishment of degradation indicators and also the quality of the soil associated with its biota, since the Amazonian environment is dynamic, heterogeneous and complex in its physical, chemical and biological characteristics. In this way, this work presupposes that it is possible to characterize the different stages of recovery of tillage floor areas in deactivated cassiterite mines, within the Amazonian forest, in order to evaluate the interactions between the level of biological activity (Serrapilheira Height, Coefficient Metabolic, Basal Breath) and physical soil characteristics (aggregate DMG, Porosity, Total Soil Density, Moisture Content), through canonical correlation analysis. The results present correlations between the groups of indicators. Thus, from the use of the groups defined by canonical correlations, it was possible to identify the response of the set of physical and biological variables to the areas at different stages of recovery.
Tosdal, R.M.
1996-01-01
Middle Proterozoic rocks underlying the Andes in western Bolivia, western Argentina, and northern Chile and Early Proterozoic rocks of the Arequipa massif in southern Peru?? from the Arequipa-Antofalla craton. These rocks are discontinuously exposed beneath Mesozoic and Cenozoic rocks, but abundant crystalline clasts in Tertiary sedimentary rocks in the western altiplano allow indirect samples of the craton. Near Berenguela, western Bolivia, the Oligocene and Miocene Mauri Formation contains boulders of granodiorite augen gneiss (1171??20 Ma and 1158??12 Ma; U-Pb zircon), quartzose gneiss and granofels that are inferred to have arkosic protoliths (1100 Ma source region; U-Pb zircon), quartzofeldspathic and mafic orthogneisses that have amphibolite- and granulite-facies metamorphic mineral assemblages (???1080 Ma metamorphism; U-Pb zircon), and undeformed granitic rocks of Phanerozoic(?) age. The Middle Proterozoic crystalline rocks from Berenguela and elsewhere in western Bolivia and from the Middle Proterozoic Bele??n Schist in northern Chile generally have present-day low 206Pb/204Pb ( 15.57), and elevated 208Pb/204Pb (37.2 to 50.7) indicative of high time-averaged Th/U values. The Middle Proterozoic rocks in general have higher presentday 206Pb/204Pb values than those of the Early Proterozoic rocks of the Arequipa massif (206Pb/204Pb between 16.1 and 17.1) but lower than rocks of the southern Arequipa-Antofalla craton (206Pb/204Pb> 18.5), a difference inferred to reflect Grenvillian granulite metamorphism. The Pb isotopic compositions for the various Proterozoic rocks lie on common Pb isotopic growth curves, implying that Pb incorporated in rocks composing the Arequipa-Antofalla craton was extracted from a similar evolving Pb isotopic reservoir. Evidently, the craton has been a coherent terrane since the Middle Proterozoic. Moreover, the Pb isotopic compositions for the Arequipa-Antofalla craton overlap those of the Amazon craton, thereby supporting a link between these cratons and seemingly precluding part of the Arequipa-Antofalla craton from being a detached fragment of another craton such as eastern Laurentia, which has been characterized by a different U/Pb history. Pb isotopic compositions for the Arequipa-Antofalla craton are, furthermore, distinct from those of the Proterozoic basement in the Precordillera terrane, western Argentina, indicating a Pb isotopic and presumably a tectonic boundary between them. The Pb isotopic compositions for the Precordillera basement are similar to those of eastern Laurentia, and support other data indicating that these rocks are a detached fragment of North America. Finally, the distinct Pb isotopic evolution history of the Arequipa-Antofalla craton and eastern Laurentia require minor modification to tectonic models linking eastern North America-Scotland to the oroclinal bend in western South America.
Impact of Amazon deforestation on climate simulations using the NCAR CCM2/BATS model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahmann, A.N.; Dickinson, R.E.
Model validation and results are briefly presented for a simulation of deforestation of the Amazon rainforest. This initial study is made using assumptions regarding deforestation similar to those in earlier studies with several versions of the NCAR Community Climate Model (CCM) couples to the Biosphere-Atmosphere Transfer Scheme (BATS). The model used is a revised version of the NCAR CCM Version 2 coupled to BATS Version 1e. This paper discusses the portion of validation dealing with the distribution of precipitation; the simulation displays very good agreement with observed rainfall rates for the austral summer. Preliminary results from an 8-year simulation ofmore » deforestation are similar to that of previous studies. Annual precipitation and evaporation are reduced, while surface air temperatures show a slight increase. A substantial bimodal pattern appears in the results, with the Amazon decrease of precipitation and temperature increase accompanied by changes in the opposite sign to the southeast of the Amazon. Similar patterns have occurred in other studies, but not always in exactly the same locations. Evidently, how much of the region of rainfall increase occurs in the deforested area over the Amazon strongly affects the inferred statistics. It is likely that this pattern depends on the model control climatology and possibly other features. 16 refs., 2 figs., 2 tabs.« less
NASA Astrophysics Data System (ADS)
van Soesbergen, A. J. J.; Mulligan, M.
2013-06-01
This paper explores a multitude of threats to water security in the Peruvian Amazon using the WaterWorld policy support system. WaterWorld is a spatially explicit, physically-based globally-applicable model for baseline and scenario water balance that is particularly well suited to heterogeneous environments with little locally available data (e.g. ungauged basins) and which is delivered through a simple web interface, requiring little local capacity for use. The model is capable of producing a hydrological baseline representing the mean water balance for 1950-2000 and allows for examining impacts of population, climate and land use change as well as land and water management interventions on hydrology. This paper describes the application of WaterWorld to the Peruvian Amazon, an area that is increasingly under pressure from deforestation and water pollution as a result of population growth, rural to urban migration and oil and gas extraction, potentially impacting both water quantity and water quality. By applying single and combined scenarios of: climate change, deforestation around existing and planned roads, population growth and rural-urban migration, mining and oil and gas exploitation, we explore the potential combined impacts of these multiple changes on water resources in the Peruvian Amazon and discuss the likely pathways for adaptation to and mitigation against their worst effects. See Mulligan et al. (2013) for a similar analysis for the entire Amazon Basin.
Vasconcelos, P F; Rosa, A P; Rodrigues, S G; Rosa, E S; Monteiro, H A; Cruz, A C; Barros, V L; Souza, M R; Rosa, J F
2001-01-01
Yellow fever (YF) is frequently associated with high severity and death rates in the Amazon region of Brazil. During the rainy seasons of 1998 and 1999, 23 (eight deaths) and 34 (eight deaths) human cases of YF were reported, respectively, in different geographic areas of Pará State; most cases were on Marajó Island. Patients were 1 to 46 years of age. Epidemiologic and ecological studies were conducted in Afuá and Breves on Marajó Island; captured insects yielded isolates of 4 and 11 YF strains, respectively, from Haemagogus janthinomys pooled mosquitoes. The cases on Marajó Island in 1999 resulted from lack of vaccination near the focus of the disease and intense migration, which brought many nonimmune people to areas where infected vectors were present. We hypothesize that YF virus remains in an area after an outbreak by vertical transmission among Haemagogus mosquitoes.
1979-10-31
construction is to be carried on in the vicinity. 34 - - -- - Figure 13 - Geologic Interpretation of Part of the Upper Amazon Basin ( Peru ) Figure 14 - Radar...and how to proceed still remains under review. Likely some of you are aware of the concept called the National Oceanic Satellite System. It would serve...radar to emphasize the surface evidence of underground geological phenomena has proved itself of great value. Figure 13 shows an area in the upper Amazon
Pfaff, Alexander; Robalino, Juan; Herrera, Diego; Sandoval, Catalina
2015-01-01
Protected areas are the leading forest conservation policy for species and ecoservices goals and they may feature in climate policy if countries with tropical forest rely on familiar tools. For Brazil's Legal Amazon, we estimate the average impact of protection upon deforestation and show how protected areas' forest impacts vary significantly with development pressure. We use matching, i.e., comparisons that are apples-to-apples in observed land characteristics, to address the fact that protected areas (PAs) tend to be located on lands facing less pressure. Correcting for that location bias lowers our estimates of PAs' forest impacts by roughly half. Further, it reveals significant variation in PA impacts along development-related dimensions: for example, the PAs that are closer to roads and the PAs closer to cities have higher impact. Planners have multiple conservation and development goals, and are constrained by cost, yet still conservation planning should reflect what our results imply about future impacts of PAs.
Large seasonal swings in leaf area of Amazon rainforests
Myneni, Ranga B.; Yang, Wenze; Nemani, Ramakrishna R.; Huete, Alfredo R.; Dickinson, Robert E.; Knyazikhin, Yuri; Didan, Kamel; Fu, Rong; Negrón Juárez, Robinson I.; Saatchi, Sasan S.; Hashimoto, Hirofumi; Ichii, Kazuhito; Shabanov, Nikolay V.; Tan, Bin; Ratana, Piyachat; Privette, Jeffrey L.; Morisette, Jeffrey T.; Vermote, Eric F.; Roy, David P.; Wolfe, Robert E.; Friedl, Mark A.; Running, Steven W.; Votava, Petr; El-Saleous, Nazmi; Devadiga, Sadashiva; Su, Yin; Salomonson, Vincent V.
2007-01-01
Despite early speculation to the contrary, all tropical forests studied to date display seasonal variations in the presence of new leaves, flowers, and fruits. Past studies were focused on the timing of phenological events and their cues but not on the accompanying changes in leaf area that regulate vegetation–atmosphere exchanges of energy, momentum, and mass. Here we report, from analysis of 5 years of recent satellite data, seasonal swings in green leaf area of ≈25% in a majority of the Amazon rainforests. This seasonal cycle is timed to the seasonality of solar radiation in a manner that is suggestive of anticipatory and opportunistic patterns of net leaf flushing during the early to mid part of the light-rich dry season and net leaf abscission during the cloudy wet season. These seasonal swings in leaf area may be critical to initiation of the transition from dry to wet season, seasonal carbon balance between photosynthetic gains and respiratory losses, and litterfall nutrient cycling in moist tropical forests. PMID:17360360
Hu, Kexiang; Awange, Joseph L; Khandu; Forootan, Ehsan; Goncalves, Rodrigo Mikosz; Fleming, Kevin
2017-12-01
For Brazil, a country frequented by droughts and whose rural inhabitants largely depend on groundwater, reliance on isotope for its monitoring, though accurate, is expensive and limited in spatial coverage. We exploit total water storage (TWS) derived from Gravity Recovery and Climate Experiment (GRACE) satellites to analyse spatial-temporal groundwater changes in relation to geological characteristics. Large-scale groundwater changes are estimated using GRACE-derived TWS and altimetry observations in addition to GLDAS and WGHM model outputs. Additionally, TRMM precipitation data are used to infer impacts of climate variability on groundwater fluctuations. The results indicate that climate variability mainly controls groundwater change trends while geological properties control change rates, spatial distribution, and storage capacity. Granular rocks in the Amazon and Guarani aquifers are found to influence larger storage capability, higher permeability (>10 -4 m/s) and faster response to rainfall (1 to 3months' lag) compared to fractured rocks (permeability <10 -7 m/s and lags > 3months) found only in Bambui aquifer. Groundwater in the Amazon region is found to rely not only on precipitation but also on inflow from other regions. Areas beyond the northern and southern Amazon basin depict a 'dam-like' pattern, with high inflow and slow outflow rates (recharge slope > 0.75, discharge slope < 0.45). This is due to two impermeable rock layer-like 'walls' (permeability <10 -8 m/s) along the northern and southern Alter do Chão aquifer that help retain groundwater. The largest groundwater storage capacity in Brazil is the Amazon aquifer (with annual amplitudes of > 30cm). Amazon's groundwater declined between 2002 and 2008 due to below normal precipitation (wet seasons lasted for about 36 to 47% of the time). The Guarani aquifer and adjacent coastline areas rank second in terms of storage capacity, while the northeast and southeast coastal regions indicate the smallest storage capacity due to lack of rainfall (annual average is rainfall <10cm). Copyright © 2017 Elsevier B.V. All rights reserved.
Carbon uptake by mature Amazon forests has mitigated Amazon nations' carbon emissions.
Phillips, Oliver L; Brienen, Roel J W
2017-12-01
Several independent lines of evidence suggest that Amazon forests have provided a significant carbon sink service, and also that the Amazon carbon sink in intact, mature forests may now be threatened as a result of different processes. There has however been no work done to quantify non-land-use-change forest carbon fluxes on a national basis within Amazonia, or to place these national fluxes and their possible changes in the context of the major anthropogenic carbon fluxes in the region. Here we present a first attempt to interpret results from ground-based monitoring of mature forest carbon fluxes in a biogeographically, politically, and temporally differentiated way. Specifically, using results from a large long-term network of forest plots, we estimate the Amazon biomass carbon balance over the last three decades for the different regions and nine nations of Amazonia, and evaluate the magnitude and trajectory of these differentiated balances in relation to major national anthropogenic carbon emissions. The sink of carbon into mature forests has been remarkably geographically ubiquitous across Amazonia, being substantial and persistent in each of the five biogeographic regions within Amazonia. Between 1980 and 2010, it has more than mitigated the fossil fuel emissions of every single national economy, except that of Venezuela. For most nations (Bolivia, Colombia, Ecuador, French Guiana, Guyana, Peru, Suriname) the sink has probably additionally mitigated all anthropogenic carbon emissions due to Amazon deforestation and other land use change. While the sink has weakened in some regions since 2000, our analysis suggests that Amazon nations which are able to conserve large areas of natural and semi-natural landscape still contribute globally-significant carbon sequestration. Mature forests across all of Amazonia have contributed significantly to mitigating climate change for decades. Yet Amazon nations have not directly benefited from providing this global scale ecosystem service. We suggest that better monitoring and reporting of the carbon fluxes within mature forests, and understanding the drivers of changes in their balance, must become national, as well as international, priorities.
Soluble iron nutrients in Saharan dust over the central Amazon rainforest
NASA Astrophysics Data System (ADS)
Rizzolo, Joana A.; Barbosa, Cybelli G. G.; Borillo, Guilherme C.; Godoi, Ana F. L.; Souza, Rodrigo A. F.; Andreoli, Rita V.; Manzi, Antônio O.; Sá, Marta O.; Alves, Eliane G.; Pöhlker, Christopher; Angelis, Isabella H.; Ditas, Florian; Saturno, Jorge; Moran-Zuloaga, Daniel; Rizzo, Luciana V.; Rosário, Nilton E.; Pauliquevis, Theotonio; Santos, Rosa M. N.; Yamamoto, Carlos I.; Andreae, Meinrat O.; Artaxo, Paulo; Taylor, Philip E.; Godoi, Ricardo H. M.
2017-02-01
The intercontinental transport of aerosols from the Sahara desert plays a significant role in nutrient cycles in the Amazon rainforest, since it carries many types of minerals to these otherwise low-fertility lands. Iron is one of the micronutrients essential for plant growth, and its long-range transport might be an important source for the iron-limited Amazon rainforest. This study assesses the bioavailability of iron Fe(II) and Fe(III) in the particulate matter over the Amazon forest, which was transported from the Sahara desert (for the sake of our discussion, this term also includes the Sahel region). The sampling campaign was carried out above and below the forest canopy at the ATTO site (Amazon Tall Tower Observatory), a near-pristine area in the central Amazon Basin, from March to April 2015. Measurements reached peak concentrations for soluble Fe(III) (48 ng m-3), Fe(II) (16 ng m-3), Na (470 ng m-3), Ca (194 ng m-3), K (65 ng m-3), and Mg (89 ng m-3) during a time period of dust transport from the Sahara, as confirmed by ground-based and satellite remote sensing data and air mass backward trajectories. Dust sampled above the Amazon canopy included primary biological aerosols and other coarse particles up to 12 µm in diameter. Atmospheric transport of weathered Saharan dust, followed by surface deposition, resulted in substantial iron bioavailability across the rainforest canopy. The seasonal deposition of dust, rich in soluble iron, and other minerals is likely to assist both bacteria and fungi within the topsoil and on canopy surfaces, and especially benefit highly bioabsorbent species. In this scenario, Saharan dust can provide essential macronutrients and micronutrients to plant roots, and also directly to plant leaves. The influence of this input on the ecology of the forest canopy and topsoil is discussed, and we argue that this influence would likely be different from that of nutrients from the weathered Amazon bedrock, which otherwise provides the main source of soluble mineral nutrients.
Gomes, Larissa Rodrigues; Totino, Paulo Renato Rivas; Sanchez, Maria Carmen Arroyo; Daniel, Elsa Paula da Silva Kaingona; de Macedo, Cristiana Santos; Fortes, Filomeno; Coura, José Rodrigues; Santi, Silvia Maria Di; Werneck, Guilherme Loureiro; Suárez-Mutis, Martha Cecilia; Ferreira-da-Cruz, Maria de Fátima; Daniel-Ribeiro, Cláudio Tadeu
2013-01-01
Anti-glycosylphosphatidylinositol (GPI) antibodies (Abs) may reflect and mediate, at least partially, anti-disease immunity in malaria by neutralising the toxic effect of parasitic GPI. Thus, we assessed the anti-GPI Ab response in asymptomatic individuals living in an area of the Brazilian Amazon that has a high level of malaria transmission. For comparative purposes, we also investigated the Ab response to a crude extract prepared from Plasmodium falciparum, the merozoite surface protein (MSP)3 antigen of P. falciparum and the MSP 1 antigen of Plasmodium vivax (PvMSP1-19) in these individuals and in Angolan patients with acute malaria. Our data suggest that the Ab response against P. falciparum GPI is not associated with P. falciparum asymptomatic infection in individuals who have been chronically exposed to malaria in the Brazilian Amazon. However, this Ab response could be related to ongoing parasitaemia (as was previously shown) in the Angolan patients. In addition, our data show that PvMSP1-19may be a good marker antigen to reflect previous exposure to Plasmodium in areas that have a high transmission rate of P. vivax. PMID:24037204
VIROLOGICAL AND SEROLOGICAL DIAGNOSIS OF RABIES IN BATS FROM AN URBAN AREA IN THE BRAZILIAN AMAZON.
Oliveira, Rubens Souza de; Costa, Lanna Jamile Corrêa da; Andrade, Fernanda Atanaena Gonçalves de; Uieda, Wilson; Martorelli, Luzia Fátima Alves; Kataoka, Ana Paula de Arruda Geraldes; Rosa, Elizabeth Salbé Travassos da; Vasconcelos, Pedro Fernando da Costa; Pereira, Armando de Souza; Carmo, Antônio Ismael Barros do; Fernandes, Marcus Emanuel Barroncas
2015-12-01
The outbreaks of rabies in humans transmitted by Desmodus rotundus in 2004 and 2005, in the northeast of the Brazilian State of Para, eastern Amazon basin, made this a priority area for studies on this zoonosis. Given this, the present study provides data on this phenomenon in an urban context, in order to assess the possible circulation of the classic rabies virus (RABV) among bat species in Capanema, a town in the Amazon basin. Bats were collected, in 2011, with mist nets during the wet and dry seasons. Samples of brain tissue and blood were collected for virological and serological survey, respectively. None of the 153 brain tissue samples analyzed tested positive for RABV infection, but 50.34% (95% CI: 45.67-55.01%) of the serum samples analyzed were seropositive. Artibeus planirostris was the most common species, with a high percentage of seropositive individuals (52.46%, 95% CI: 52.31 52.60%). Statistically, equal proportions of seropositive results were obtained in the rainy and dry seasons (c2 = 0.057, d.f. = 1, p = 0.88). Significantly higher proportions of males (55.96%, 95% CI: 48.96-62.96%) and adults (52.37%, 95% CI: 47.35-57.39%) were seropositive. While none of the brain tissue samples tested positive for infection, the high proportion of seropositive specimens indicates that RABV may be widespread in this urban area.
Sensitivity of Regional Climate to Deforestation in the Amazon Basin
NASA Technical Reports Server (NTRS)
Eltahir, Elfatih A. B.; Bras, Rafael L.
1994-01-01
The deforestation results in several adverse effect on the natural environment. The focus of this paper is on the effects of deforestation on land-surface processes and regional climate of the Amazon basin. In general, the effect of deforestation on climate are likely to depend on the scale of the defrosted area. In this study, we are interested in the effects due to deforestation of areas with a scale of about 250 km. Hence, a meso-scale climate model is used in performing numerical experiments on the sensitivity of regional climate to deforestation of areas with that size. It is found that deforestation results in less net surface radiation, less evaporation, less rainfall, and warmer surface temperature. The magnitude of the of the change in temperature is of the order 0.5 C, the magnitudes of the changes in the other variables are of the order of IO%. In order to verify some of he results of the numerical experiments, the model simulations of net surface radiation are compared to recent observations of net radiation over cleared and undisturbed forest in the Amazon. The results of the model and the observations agree in the following conclusion: the difference in net surface radiation between cleared and undisturbed forest is, almost, equally partioned between net solar radiation and net long-wave radiation. This finding contributes to our understanding of the basic physics in the deforestation problem.
Annual Carbon Emissions from Deforestation in the Amazon Basin between 2000 and 2010.
Song, Xiao-Peng; Huang, Chengquan; Saatchi, Sassan S; Hansen, Matthew C; Townshend, John R
2015-01-01
Reducing emissions from deforestation and forest degradation (REDD+) is considered one of the most cost-effective strategies for mitigating climate change. However, historical deforestation and emission rates-critical inputs for setting reference emission levels for REDD+-are poorly understood. Here we use multi-source, time-series satellite data to quantify carbon emissions from deforestation in the Amazon basin on a year-to-year basis between 2000 and 2010. We first derive annual deforestation indicators by using the Moderate Resolution Imaging Spectroradiometer Vegetation Continuous Fields (MODIS VCF) product. MODIS indicators are calibrated by using a large sample of Landsat data to generate accurate deforestation rates, which are subsequently combined with a spatially explicit biomass dataset to calculate committed annual carbon emissions. Across the study area, the average deforestation and associated carbon emissions were estimated to be 1.59 ± 0.25 M ha•yr(-1) and 0.18 ± 0.07 Pg C•yr(-1) respectively, with substantially different trends and inter-annual variability in different regions. Deforestation in the Brazilian Amazon increased between 2001 and 2004 and declined substantially afterwards, whereas deforestation in the Bolivian Amazon, the Colombian Amazon, and the Peruvian Amazon increased over the study period. The average carbon density of lost forests after 2005 was 130 Mg C•ha(-1), ~11% lower than the average carbon density of remaining forests in year 2010 (144 Mg C•ha(-1)). Moreover, the average carbon density of cleared forests increased at a rate of 7 Mg C•ha(-1)•yr(-1) from 2005 to 2010, suggesting that deforestation has been progressively encroaching into high-biomass lands in the Amazon basin. Spatially explicit, annual deforestation and emission estimates like the ones derived in this study are useful for setting baselines for REDD+ and other emission mitigation programs, and for evaluating the performance of such efforts.
Annual Carbon Emissions from Deforestation in the Amazon Basin between 2000 and 2010
Song, Xiao-Peng; Huang, Chengquan; Saatchi, Sassan S.; Hansen, Matthew C.; Townshend, John R.
2015-01-01
Reducing emissions from deforestation and forest degradation (REDD+) is considered one of the most cost-effective strategies for mitigating climate change. However, historical deforestation and emission rates―critical inputs for setting reference emission levels for REDD+―are poorly understood. Here we use multi-source, time-series satellite data to quantify carbon emissions from deforestation in the Amazon basin on a year-to-year basis between 2000 and 2010. We first derive annual deforestation indicators by using the Moderate Resolution Imaging Spectroradiometer Vegetation Continuous Fields (MODIS VCF) product. MODIS indicators are calibrated by using a large sample of Landsat data to generate accurate deforestation rates, which are subsequently combined with a spatially explicit biomass dataset to calculate committed annual carbon emissions. Across the study area, the average deforestation and associated carbon emissions were estimated to be 1.59 ± 0.25 M ha•yr−1 and 0.18 ± 0.07 Pg C•yr−1 respectively, with substantially different trends and inter-annual variability in different regions. Deforestation in the Brazilian Amazon increased between 2001 and 2004 and declined substantially afterwards, whereas deforestation in the Bolivian Amazon, the Colombian Amazon, and the Peruvian Amazon increased over the study period. The average carbon density of lost forests after 2005 was 130 Mg C•ha−1, ~11% lower than the average carbon density of remaining forests in year 2010 (144 Mg C•ha−1). Moreover, the average carbon density of cleared forests increased at a rate of 7 Mg C•ha−1•yr−1 from 2005 to 2010, suggesting that deforestation has been progressively encroaching into high-biomass lands in the Amazon basin. Spatially explicit, annual deforestation and emission estimates like the ones derived in this study are useful for setting baselines for REDD+ and other emission mitigation programs, and for evaluating the performance of such efforts. PMID:25951328
The spatial extent of change in tropical forest ecosystem services in the Amazon delta
NASA Astrophysics Data System (ADS)
de Araujo Barbosa, C. C.; Atkinson, P.; Dearing, J.
2014-12-01
Deltas hold major economic potential due their strategic location, close to seas and inland waterways, thereby supporting intense economic activity. The increasing pace of human development activities in coastal deltas over the past five decades has also strained environmental resources and produced extensive economic and sociocultural impacts. The Amazon delta is located in the Amazon Basin, North Brazil, the largest river basin on Earth and also one of the least understood. A considerable segment of the population living in the Amazon delta is directly dependent on the local extraction of natural resources for their livelihood. Areas sparsely inhabited may be exploited with few negative consequences for the environment. However, increasing pressure on ecosystem services is amplified by large fluxes of immigrants from other parts of the country, especially from the semi-arid zone in Northeast Brazil to the lowland forests of the Amazon delta. Here we present partial results from a bigger research project. Therefore, the focus will be on presenting an overview of the current state, and the extent of changes on forest related ecosystem services in the Amazon delta over the last three decades. We aggregated a multitude of datasets, from a variety of sources, for example, from satellite imagery such as the Advanced Very High Resolution Radiometer (AVHRR), the Global Inventory Modelling and Mapping Studies (GIMMS), the Moderate Resolution Imaging Spectroradiometer (MODIS), and climate datasets at meteorological station level from the Brazilian National Institute of Meteorology (INMET) and social and economic statistics data from the Brazilian Institute of Geography and Statistics (IBGE) and from the Brazilian Institute of Applied Economic Research (IPEA). Through analysis of socioeconomic and satellite earth observation data we were able to produce and present spatially-explicit information with the current state and transition in forest cover and its impacts to forest ecosystem services providing units in the Amazon delta.
Schaefer, C E G R; do Amaral, E F; de Mendonça, B A F; Oliveira, H; Lani, J L; Costa, L M; Fernandes Filho, E I
2008-05-01
The relationships between soils attributes, soil carbon stocks and vegetation carbon stocks are poorly know in Amazonia, even at regional scale. In this paper, we used the large and reliable soil database from Western Amazonia obtained from the RADAMBRASIL project and recent estimates of vegetation biomass to investigate some environmental relationships, quantifying C stocks of intact ecosystem in Western Amazonia. The results allowed separating the western Amazonia into 6 sectors, called pedo-zones: Roraima, Rio Negro Basin, Tertiary Plateaux of the Amazon, Javari-Juruá-Purus lowland, Acre Basin and Rondonia uplands. The highest C stock for the whole soil is observed in the Acre and in the Rio Negro sectors. In the former, this is due to the high nutrient status and high clay activity, whereas in the latter, it is attributed to a downward carbon movement attributed to widespread podzolization and arenization, forming spodic horizons. The youthful nature of shallow soils of the Javari-Juruá-Purus lowlands, associated with high Al, results in a high phytomass C/soil C ratio. A similar trend was observed for the shallow soils from the Roraima and Rondonia highlands. A consistent east-west decline in biomass carbon in the Rio Negro Basin sector is associated with increasing rainfall and higher sand amounts. It is related to lesser C protection and greater C loss of sandy soils, subjected to active chemical leaching and widespread podzolization. Also, these soils possess lower cation exchangeable capacity and lower water retention capacity. Zones where deeply weathered Latosols dominate have a overall pattern of high C sequestration, and greater than the shallower soils from the upper Amazon, west of Madeira and Negro rivers. This was attributed to deeper incorporation of carbon in these clayey and highly pedo-bioturbated soils. The results highlight the urgent need for refining soil data at an appropriate scale for C stocks calculations purposes in Amazonia. There is a risk of misinterpreting C stocks in Amazonia when such great pedological variability is not taken into account.
Marques, Rejane C; Dórea, José G; McManus, Concepta; Leão, Renata S; Brandão, Katiane G; Marques, Rayson C; Vieira, Igor H Ito; Guimarães, Jean-Remy D; Malm, Olaf
2011-04-01
To assess the dependence on fish consumption of families and its impact on nutritional status and neurodevelopment of pre-school children. Cross-sectional study that measured children's hair mercury (HHg) as an indicator of family fish consumption, growth (anthropometric Z-scores, WHO standards) and neurological (Gesell developmental scores (GDS)) development. Traditional living conditions among families residing in the area adjacent to the Samuel Dam (Western Amazon) hydroelectric reservoir. Two hundred and forty-nine pre-school children (1-59 months of age) from families transitioning from the traditional Amazonian lifestyle. Family fish consumption was significantly correlated with children's HHg concentration (Spearman's r=0.246, P<0.0001); however, HHg had no significant association with growth (Z-scores). Overall, the prevalence of severe malnutrition, i.e. stunting (height-for-age Z-score (HAZ)≤-3), underweight (weight-for-age Z-score (WAZ)≤-3) and wasting (weight-for-height Z-score (WHZ)≤-3) was 5.2% (n 13), 0% and 0.8% (n 2), respectively. The prevalence of moderate stunting (HAZ≥-3 to ≤-2), underweight (WAZ≥-3 to ≤-2) and wasting (WHZ≥-3 to ≤-2) was 8.8% (n 22), 2.4% (n 6) and 4.8% (n 12), respectively. Although 76% of the children showed adequate GDS (>85), multiple regression analysis showed that fish consumption (as HHg) had no impact on GDS, but that some variables did interact significantly with specific domains (motor and language development). The study showed that the families' shift in fish consumption had no negative impact on the growth of young children and that ensuing methylmercury exposure has not been a noticeable neurodevelopmental hindrance.
NASA Astrophysics Data System (ADS)
Holm, J. A.; Knox, R. G.; Koven, C.; Riley, W. J.; Bisht, G.; Fisher, R.; Christoffersen, B. O.; Dietze, M.; Chambers, J. Q.
2017-12-01
The inclusion of dynamic vegetation demography in Earth System Models (ESMs) has been identified as a critical step in moving ESMs towards more realistic representations of plant ecology and the processes that govern climatically important fluxes of carbon, energy, and water. Successful application of dynamic vegetation models, and process-based approaches to simulate plant demography, succession, and response to disturbances without climate envelopes at the global scale is a challenging endeavor. We integrated demographic processes using the Functionally-Assembled Terrestrial Ecosystem Simulator (FATES) in the newly developed ACME Land Model (ALM). We then use an ALM-FATES globally gridded simulation for the first time to investigate plant functional type (PFT) distributions and dynamic turnover rates. Initial global simulations successfully include six interacting and competing PFTs (ranging from tropical to boreal, evergreen, deciduous, needleleaf and broadleaf); including more PFTs is planned. Global maps of net primary productivity, leaf area index, and total vegetation biomass by ALM-FATES matched patterns and values when compared to CLM4.5-BGC and MODIS estimates. We also present techniques for PFT parameterization based on the Predictive Ecosystem Analyzer (PEcAn), field based turnover rates, improved PFT groupings based on trait-tradeoffs, and improved representation of multiple canopy positions. Finally, we applied the improved ALM-FATES model at a central Amazon tropical and western U.S. temperate sites and demonstrate improvements in predicted PFT size- and age-structure and regional distribution. Results from the Amazon tropical site investigate the ability and magnitude of a tropical forest to act as a carbon sink by 2100 with a doubling of CO2, while results from the temperate sites investigate the response of forest mortality with increasing droughts.
Identification of Blood Meals from Potential Arbovirus Mosquito Vectors in the Peruvian Amazon Basin
Palermo, Pedro M.; Aguilar, Patricia V.; Sanchez, Juan F.; Zorrilla, Víctor; Flores-Mendoza, Carmen; Huayanay, Anibal; Guevara, Carolina; Lescano, Andrés G.; Halsey, Eric S.
2016-01-01
The transmission dynamics of many arboviruses in the Amazon Basin region have not been fully elucidated, including the vectors and natural reservoir hosts. Identification of blood meal sources in field-caught mosquitoes could yield information for identifying potential arbovirus vertebrate hosts. We identified blood meal sources in 131 mosquitoes collected from areas endemic for arboviruses in the Peruvian Department of Loreto by sequencing polymerase chain reaction amplicons of the cytochrome b gene. Psorophora (Janthinosoma) albigenu, Psorophora (Grabhamia) cingulata, Mansonia humeralis, Anopheles oswaldoi s.l., and Anopheles benarrochi s.l. had mainly anthropophilic feeding preferences; Aedes (Ochlerotatus) serratus, and Aedes (Ochlerotatus) fulvus had feeding preferences for peridomestic animals; and Culex (Melanoconion) spp. fed on a variety of vertebrates, mainly rodents (spiny rats), birds, and amphibians. On the basis of these feeding preferences, many mosquitoes could be considered as potential enzootic and bridge arbovirus vectors in the Amazon Basin of Peru. PMID:27621304
Methane flux from the Amazon River floodplain - Emissions during rising water
NASA Technical Reports Server (NTRS)
Bartlett, Karen B.; Crill, Patrick M.; Bonassi, Jose A.; Richey, Jeffrey E.; Harriss, Robert C.
1990-01-01
Methane flux data obtained during a period of high and falling water level in the course of the dry season of 1985 (the Amazon Boundary Layer Experiment, ABLE 2A) and a period of moderate and rising water during the wet season of 1987 (ABLE 2B) were used to characterize the influence of seasonal variations in the vegetation, water column depth, and chemistry, as well as atmospheric dynamics, on the methane flux from the Amazon River floodplain. It was found that the annual estimate of methane from wetlands is identical to the annual estimate made by Matthews and Fung (1987) (both at 111 Tg). However, it was found that peatlands between 50 and 70 N contribute 39 Tg, with the large areas of forested and nonforested bogs making up 37 Tg of this figure, while the figures of Matthews and Fung were 63 and 62 Tg, respectively.
Sousa, Taís Nóbrega de; Kano, Flora Satiko; Brito, Cristiana Ferreira Alves de; Carvalho, Luzia Helena
2014-05-23
Plasmodium vivax infects human erythrocytes through a major pathway that requires interaction between an apical parasite protein, the Duffy binding protein (PvDBP) and its receptor on reticulocytes, the Duffy antigen/receptor for chemokines (DARC). The importance of the interaction between PvDBP (region II, DBPII) and DARC to P. vivax infection has motivated our malaria research group at Oswaldo Cruz Foundation (state of Minas Gerais, Brazil) to conduct a number of immunoepidemiological studies to characterise the naturally acquired immunity to PvDBP in populations living in the Amazon rainforest. In this review, we provide an update on the immunology and molecular epidemiology of PvDBP in the Brazilian Amazon - an area of markedly unstable malaria transmission - and compare it with data from other parts of Latin America, as well as Asia and Oceania.
de Sousa, Taís Nóbrega; Kano, Flora Satiko; de Brito, Cristiana Ferreira Alves; Carvalho, Luzia Helena
2014-08-01
Plasmodium vivax infects human erythrocytes through a major pathway that requires interaction between an apical parasite protein, the Duffy binding protein (PvDBP) and its receptor on reticulocytes, the Duffy antigen/receptor for chemokines (DARC). The importance of the interaction between PvDBP (region II, DBPII) and DARC to P. vivax infection has motivated our malaria research group at Oswaldo Cruz Foundation (state of Minas Gerais, Brazil) to conduct a number of immunoepidemiological studies to characterise the naturally acquired immunity to PvDBP in populations living in the Amazon rainforest. In this review, we provide an update on the immunology and molecular epidemiology of PvDBP in the Brazilian Amazon - an area of markedly unstable malaria transmission - and compare it with data from other parts of Latin America, as well as Asia and Oceania.
Using remote sensing for validation of a large scale hydrologic and hydrodynamic model in the Amazon
NASA Astrophysics Data System (ADS)
Paiva, R. C.; Bonnet, M.; Buarque, D. C.; Collischonn, W.; Frappart, F.; Mendes, C. B.
2011-12-01
We present the validation of the large-scale, catchment-based hydrological MGB-IPH model in the Amazon River basin. In this model, physically-based equations are used to simulate the hydrological processes, such as the Penman Monteith method to estimate evapotranspiration, or the Moore and Clarke infiltration model. A new feature recently introduced in the model is a 1D hydrodynamic module for river routing. It uses the full Saint-Venant equations and a simple floodplain storage model. River and floodplain geometry parameters are extracted from SRTM DEM using specially developed GIS algorithms that provide catchment discretization, estimation of river cross-sections geometry and water storage volume variations in the floodplains. The model was forced using satellite-derived daily rainfall TRMM 3B42, calibrated against discharge data and first validated using daily discharges and water levels from 111 and 69 stream gauges, respectively. Then, we performed a validation against remote sensing derived hydrological products, including (i) monthly Terrestrial Water Storage (TWS) anomalies derived from GRACE, (ii) river water levels derived from ENVISAT satellite altimetry data (212 virtual stations from Santos da Silva et al., 2010) and (iii) a multi-satellite monthly global inundation extent dataset at ~25 x 25 km spatial resolution (Papa et al., 2010). Validation against river discharges shows good performance of the MGB-IPH model. For 70% of the stream gauges, the Nash and Suttcliffe efficiency index (ENS) is higher than 0.6 and at Óbidos, close to Amazon river outlet, ENS equals 0.9 and the model bias equals,-4.6%. Largest errors are located in drainage areas outside Brazil and we speculate that it is due to the poor quality of rainfall datasets in these areas poorly monitored and/or mountainous. Validation against water levels shows that model is performing well in the major tributaries. For 60% of virtual stations, ENS is higher than 0.6. But, similarly, largest errors are also located in drainage areas outside Brazil, mostly Japurá River, and in the lower Amazon River. In the latter, correlation with observations is high but the model underestimates the amplitude of water levels. We also found a large bias between model and ENVISAT water levels, ranging from -3 to -15 m. The model provided TWS in good accordance with GRACE estimates. ENS values for TWS over the whole Amazon equals 0.93. We also analyzed results in 21 sub-regions of 4 x 4°. ENS is smaller than 0.8 only in 5 areas, and these are found mostly in the northwest part of the Amazon, possibly due to same errors reported in discharge results. Flood extent validation is under development, but a previous analysis in Brazilian part of Solimões River basin suggests a good model performance. The authors are grateful for the financial and operational support from the brazilian agencies FINEP, CNPq and ANA and from the french observatories HYBAM and SOERE RBV.
El Niño Could Drive Intense Season for Amazon Fires
2017-12-08
El Niño conditions in 2015 and early 2016 altered rainfall patterns around the world. In the Amazon, El Niño reduced rainfall during the wet season, leaving the region drier at the start of the 2016 dry season than any year since 2002, according to NASA satellite data. Wildfire risk for the dry season months of July to October this year now exceeds fire risk in 2005 and 2010, drought years when wildfires burned large areas of Amazon rainforest, said Doug Morton, an Earth scientist at NASA’s Goddard Space Flight Center who helped create the fire forecast. "Severe drought conditions at the start of the dry season set the stage for extreme fire risk in 2016 across the southern Amazon," Morton said. The Amazon fire forecast uses the relationship between climate and active fire detections from NASA satellites to predict fire season severity during the region’s dry season. Developed in 2011 by scientists at University of California, Irvine and NASA’s Goddard Space Flight Center, the forecast model is focused particularly on the link between sea surface temperatures and fire activity. Warmer sea surface temperatures in the tropical Pacific (El Niño) and Atlantic oceans shift rainfall away from the Amazon region, increasing the risk of fires during dry season months. Read more: go.nasa.gov/2937ADt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Holocene provenance shift of suspended particulate matter in the Amazon River basin
NASA Astrophysics Data System (ADS)
Höppner, Natalie; Lucassen, Friedrich; Chiessi, Cristiano M.; Sawakuchi, André O.; Kasemann, Simone A.
2018-06-01
The strontium (Sr), neodymium (Nd) and lead (Pb) isotope signatures of suspended particulate matter (SPM) in rivers reflect the radiogenic isotope signatures of the rivers' drainage basin. These signatures are not significantly affected by weathering, transport or depositional cycles, but document the sedimentary contributions of the respective sources. We report new Sr, Nd and Pb isotope ratios and element concentrations of modern SPM from the Brazilian Amazon River basin and document the past evolution of the basin by analyzing radiogenic isotopes of a marine sediment core from the slope off French Guiana archiving the last 40 kyr of Amazon River SPM, and the Holocene section of sediment cores raised between the Amazon River mouth and the slope off French Guiana. The composition of modern SPM confirms two main source areas, the Andes and the cratonic Shield. In the marine sediment core notable changes occurred during the second phase of Heinrich Stadial 1 (i.e. increased proportion of Shield rivers SPM) and during the last deglaciation (i.e. increased proportion of Madeira River SPM) together with elsewhere constant source contributions. Furthermore, we report a prominent offset in Sr and Nd isotopic composition between the average core value (εNd: -11.7 ± 0.9 (2SD), 87Sr/86Sr: 0.7229 ± 0.0016 (2SD)) and the average modern Amazon River SPM signal (εNd: -10.5 ± 0.5 (2SD), 87Sr/86Sr: 0.7213 ± 0.0036 (2SD)). We suggest that a permanent change in the Amazon River basin sediment supply during the late Holocene to a more Andean dominated SPM was responsible for the offset.
ENSO variability of Quelccaya Ice Cap δ18O driven by monsoon control of vapor isotope ratios
NASA Astrophysics Data System (ADS)
Hurley, J. V.; Vuille, M. F.; Hardy, D. R.
2016-12-01
The δ18O from the Quelccaya Ice Cap (QIC), Peru corresponds with and has been used to reconstruct Nino region SSTs but the physical mechanisms that tie ENSO-variable equatorial Pacific SSTs to snow δ18O at 5680 m in the Andes have not been fully described. We use a proxy system forward model to simulate and explore ENSO variable snow δ18O at the QIC, which is observed and accurately simulated with our model to be respectively higher and lower than average during El Nino and La Nina. We then explore the relative roles of ENSO-forcing on components of the forward model: the seasonality of snowfall at the QIC, vapor initial δ18O values, and temperature. The local hydrologic cycle is characterized by earlier onset and reduced duration of peak snowfall during El Nino, and more snow accumulation during La Nina. When we isolate the influence of the local hydrologic cycle in the forward model, El Nino and La Nina snowfall seasonalities yield respectively higher and lower snow δ18O values, compared with the control simulation. The South American summer monsoon (SASM) is characterized by enhanced convection over the Amazon during La Nina and as a consequence, lower vapor δ18O values over the western Amazon Basin. When we isolate the influence of the vapor initial delta-value in the forward model, higher initial delta-values during El Nino yield higher snow δ18O at the QIC. The seasonality of temeratures over the western Amazon Basin and near Quelccaya is amplified during El Nino when there are higher and lower temperatures respectively during austral summer and winter. When we isolate the temperature influence in the forward model, the warmer summer El Nino conditions require a more humid initial vapor and result in lower snow δ18O values. Most (more than two-thirds) of the ENSO variability in QIC δ18O can be accounted for by SASM activity and its influence on the vapor initial delta-value.
Rodrigues, Andreia Oliveira; de Souza, Larissa Costa; da Silva Rocha, Cássia Christina; da Costa, Amilton Cesar Gomes; de Alcântara Mendes, Rosivaldo
2017-07-01
The aim of this study was to evaluate the distribution of DDT and metabolites in surface soils and soil profiles from two areas containing deposits of obsolete pesticides in Belém, Amazon Region, Brazil. DDT and metabolites were extracted by microwave assisted extraction and analyzed by gas chromatography with electron capture detection. Concentrations of total DDT in surface soil samples ranged from 64.22 mg kg -1 in area 1 (A1) to 447.84 mg kg -1 in area 2 (A2). Lower levels were found in soil profiles than at the surface (6.21-21.17 mg kg -1 in A1 and 36.13-113.66 mg kg -1 in A2). pp'-DDT, pp'-DDE and pp'-DDD were detected in sediments at levels of 2.01, 0.96 and 0.35 mg kg -1 , respectively. The ratio (DDE + DDD)/ΣDDT was low indicating the recent introduction of DDT to the environment in the two study areas, through the volatilization and atmospheric deposition of the obsolete pesticides.
River logjams cause frequent large-scale forest die-off events in southwestern Amazonia
NASA Astrophysics Data System (ADS)
Lombardo, Umberto
2017-07-01
This paper investigates the dynamics of logjam-induced floods and alluvial deposition in the Bolivian Amazon and the effects these have on forest disturbance and recovery cycles. It expands on previous work by Gullison et al. (1996) who reported a case of catastrophic floods triggered by logjams in the Chimane Forest in the Bolivian Amazon. No further studies have followed up on this observation and no research has been published on the effects of large wood in tropical lowland rivers. The study is based on the analysis of a time series of Landsat imagery (1984-2016) and field evidence. Results show that logjam-induced floods are a major driver of forest disturbance along the Andean piedmont in the Bolivian Amazon. New logjams form on an almost yearly basis, always further upriver, until an avulsion takes place. Logjam-induced floods are characterized here by the sudden deposition of a thick sand layer and the death of forest in a V-shaped area. The Bolivian Amazon offers a unique opportunity for further research on how large wood affects river behavior in lowland tropical settings and how large and frequent forest disturbance events resulting from river logjams affect forest biodiversity and community successions.
Spatially and seasonally asymmetric responses of Amazon forests to El Niño
NASA Astrophysics Data System (ADS)
Mao, J.; Yan, B.; Dickinson, R. E.; Shi, X.; Ricciuto, D. M.; Norby, R. J.; Dai, Y.; Zhang, X.; McDowell, N.; Wu, J.
2017-12-01
El Niño Southern Oscillation (ENSO) events impose strong inter-annual signals on local climate changes and terrestrial ecosystem dynamics in many regions on the Earth especially tropical forests in the Amazon basin. However, much is still unknown regarding the vulnerability of tropical forests to ENSO effects, especially in a spatially-explicit context. Here, using satellite and ground observations with reanalysis data of climate variables, we analyzed the spatial and temporal patterns of plant growth in response to the warm phase of ENSO (i.e., El Niño), which resulted in precipitation anomaly (or drought) over a large area across the Amazon. We found that the influence of El Niño events on vegetation growth varied spatially and seasonally. During each season (dry or wet), the forests were divided into two sub-regions that were either controlled by precipitation or radiation. The boundaries between the two sub-regions were determined, which were distributed from northwest to southeast in the dry season and from northeast to southwest in the wet season. This result improves our understanding of the water and energy availability co-modulating the vegetation growth in Amazonia and the magnitude and direction of Amazon forests responding to drought.
Giangrande, Scott E.; Toto, Tami; Jensen, Michael P.; ...
2016-11-15
A radar wind profiler data set collected during the 2 year Department of Energy Atmospheric Radiation Measurement Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign is used to estimate convective cloud vertical velocity, area fraction, and mass flux profiles. Vertical velocity observations are presented using cumulative frequency histograms and weighted mean profiles to provide insights in a manner suitable for global climate model scale comparisons (spatial domains from 20 km to 60 km). Convective profile sensitivity to changes in environmental conditions and seasonal regime controls is also considered. Aggregate and ensemble average vertical velocity, convective area fraction, andmore » mass flux profiles, as well as magnitudes and relative profile behaviors, are found consistent with previous studies. Updrafts and downdrafts increase in magnitude with height to midlevels (6 to 10 km), with updraft area also increasing with height. Updraft mass flux profiles similarly increase with height, showing a peak in magnitude near 8 km. Downdrafts are observed to be most frequent below the freezing level, with downdraft area monotonically decreasing with height. Updraft and downdraft profile behaviors are further stratified according to environmental controls. These results indicate stronger vertical velocity profile behaviors under higher convective available potential energy and lower low-level moisture conditions. Sharp contrasts in convective area fraction and mass flux profiles are most pronounced when retrievals are segregated according to Amazonian wet and dry season conditions. During this deployment, wet season regimes favored higher domain mass flux profiles, attributed to more frequent convection that offsets weaker average convective cell vertical velocities.« less
Chemodiversity of dissolved organic matter in the Amazon Basin
NASA Astrophysics Data System (ADS)
Gonsior, Michael; Valle, Juliana; Schmitt-Kopplin, Philippe; Hertkorn, Norbert; Bastviken, David; Luek, Jenna; Harir, Mourad; Bastos, Wanderley; Enrich-Prast, Alex
2016-07-01
Regions in the Amazon Basin have been associated with specific biogeochemical processes, but a detailed chemical classification of the abundant and ubiquitous dissolved organic matter (DOM), beyond specific indicator compounds and bulk measurements, has not yet been established. We sampled water from different locations in the Negro, Madeira/Jamari and Tapajós River areas to characterize the molecular DOM composition and distribution. Ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) combined with excitation emission matrix (EEM) fluorescence spectroscopy and parallel factor analysis (PARAFAC) revealed a large proportion of ubiquitous DOM but also unique area-specific molecular signatures. Unique to the DOM of the Rio Negro area was the large abundance of high molecular weight, diverse hydrogen-deficient and highly oxidized molecular ions deviating from known lignin or tannin compositions, indicating substantial oxidative processing of these ultimately plant-derived polyphenols indicative of these black waters. In contrast, unique signatures in the Madeira/Jamari area were defined by presumably labile sulfur- and nitrogen-containing molecules in this white water river system. Waters from the Tapajós main stem did not show any substantial unique molecular signatures relative to those present in the Rio Madeira and Rio Negro, which implied a lower organic molecular complexity in this clear water tributary, even after mixing with the main stem of the Amazon River. Beside ubiquitous DOM at average H / C and O / C elemental ratios, a distinct and significant unique DOM pool prevailed in the black, white and clear water areas that were also highly correlated with EEM-PARAFAC components and define the frameworks for primary production and other aspects of aquatic life.
NASA Astrophysics Data System (ADS)
Martinez-Alonso, S.; Deeter, M. N.; Worden, H. M.; Gille, J. C.; Clerbaux, C.; George, M.
2014-12-01
Deforestation fires in the Amazon Basin abound during the dry season (July to October) and are mostly associated with "slash and burn" agricultural practices. Understory fires occur when fires escape from deforested areas into neighboring standing forests; they spread slowly below the canopy, affecting areas that may be comparable or even larger than clear-cut areas. The interannual variabilities of understory fires and deforestation rates appear to be uncorrelated. Areas burned in understory fires are particularly extensive during droughts. Because they progress below a canopy of living trees, understory fires and their effects are not as easily identifiable from space as deforestation fires. Here we analyze satellite remote sensing products for CO and fire to investigate differences between deforestation fires and understory fires in the Amazon Basin under varying climatic conditions. The MOPITT (Measurements Of Pollution In The Troposphere) instrument on board NASA's Terra satellite has been measuring tropospheric CO since 2000, providing the longest global CO record to date. IASI (the Infrared Atmospheric Sounding Interferometer) A and B are two instruments on board METOP-A and -B, respectively, measuring, among others, CO since 2006 and 2012. MODIS (the Moderate Resolution Imaging Spectroradiometer) instruments on board NASA's Terra and Aqua satellites provide, among other products, a daily record of fires and their effects since 2000 and 2002, respectively. The temporal extent of all these datasets allows for the detailed analysis of drought versus non-drought years. Initial results indicate that MOPITT CO emissions during the dry season peaked in 2005, 2007, and 2010. Those were draught years and coincide with peaks in area affected by understory fires.
NASA Astrophysics Data System (ADS)
Zamuriano, Marcelo; Brönnimann, Stefan
2017-04-01
It's known that some extremes such as heavy rainfalls, flood events, heatwaves and droughts depend largely on the atmospheric circulation and local features. Bolivia is no exception and while the large scale dynamics over the Amazon has been largely investigated, the local features driven by the Andes Cordillera and the Altiplano is still poorly documented. New insights on the regional atmospheric dynamics preceding heavy precipitation and flood events over the complex topography of the Andes-Amazon interface are added through numerical investigations of several case events: flash flood episodes over La Paz city and the extreme 2014 flood in south-western Amazon basin. Large scale atmospheric water transport is dynamically downscaled in order to take into account the complex topography forcing and local features as modulators of these events. For this purpose, a series of high resolution numerical experiments with the WRF-ARW model is conducted using various global datasets and parameterizations. While several mechanisms have been suggested to explain the dynamics of these episodes, they have not been tested yet through numerical modelling experiments. The simulations captures realistically the local water transport and the terrain influence over atmospheric circulation, even though the precipitation intensity is in general unrealistic. Nevertheless, the results show that Dynamical Downscaling over the tropical Andes' complex terrain provides useful meteorological data for a variety of studies and contributes to a better understanding of physical processes involved in the configuration of these events.
Malaria in Brazil: what happens outside the Amazonian endemic region.
de Pina-Costa, Anielle; Brasil, Patrícia; Di Santi, Sílvia Maria; de Araujo, Mariana Pereira; Suárez-Mutis, Martha Cecilia; Santelli, Ana Carolina Faria e Silva; Oliveira-Ferreira, Joseli; Lourenço-de-Oliveira, Ricardo; Daniel-Ribeiro, Cláudio Tadeu
2014-08-01
Brazil, a country of continental proportions, presents three profiles of malaria transmission. The first and most important numerically, occurs inside the Amazon. The Amazon accounts for approximately 60% of the nation's territory and approximately 13% of the Brazilian population. This region hosts 99.5% of the nation's malaria cases, which are predominantly caused by Plasmodium vivax (i.e., 82% of cases in 2013). The second involves imported malaria, which corresponds to malaria cases acquired outside the region where the individuals live or the diagnosis was made. These cases are imported from endemic regions of Brazil (i.e., the Amazon) or from other countries in South and Central America, Africa and Asia. Imported malaria comprised 89% of the cases found outside the area of active transmission in Brazil in 2013. These cases highlight an important question with respect to both therapeutic and epidemiological issues because patients, especially those with falciparum malaria, arriving in a region where the health professionals may not have experience with the clinical manifestations of malaria and its diagnosis could suffer dramatic consequences associated with a potential delay in treatment. Additionally, because the Anopheles vectors exist in most of the country, even a single case of malaria, if not diagnosed and treated immediately, may result in introduced cases, causing outbreaks and even introducing or reintroducing the disease to a non-endemic, receptive region. Cases introduced outside the Amazon usually occur in areas in which malaria was formerly endemic and are transmitted by competent vectors belonging to the subgenus Nyssorhynchus (i.e., Anopheles darlingi, Anopheles aquasalis and species of the Albitarsis complex). The third type of transmission accounts for only 0.05% of all cases and is caused by autochthonous malaria in the Atlantic Forest, located primarily along the southeastern Atlantic Coast. They are caused by parasites that seem to be (or to be very close to) P. vivax and, in a less extent, by Plasmodium malariae and it is transmitted by the bromeliad mosquito Anopheles (Kerteszia) cruzii. This paper deals mainly with the two profiles of malaria found outside the Amazon: the imported and ensuing introduced cases and the autochthonous cases. We also provide an update regarding the situation in Brazil and the Brazilian endemic Amazon.
Malaria in Brazil: what happens outside the Amazonian endemic region
de Pina-Costa, Anielle; Brasil, Patrícia; Santi, Sílvia Maria Di; de Araujo, Mariana Pereira; Suárez-Mutis, Martha Cecilia; Santelli, Ana Carolina Faria e Silva; Oliveira-Ferreira, Joseli; Lourenço-de-Oliveira, Ricardo; Daniel-Ribeiro, Cláudio Tadeu
2014-01-01
Brazil, a country of continental proportions, presents three profiles of malaria transmission. The first and most important numerically, occurs inside the Amazon. The Amazon accounts for approximately 60% of the nation’s territory and approximately 13% of the Brazilian population. This region hosts 99.5% of the nation’s malaria cases, which are predominantly caused by Plasmodium vivax (i.e., 82% of cases in 2013). The second involves imported malaria, which corresponds to malaria cases acquired outside the region where the individuals live or the diagnosis was made. These cases are imported from endemic regions of Brazil (i.e., the Amazon) or from other countries in South and Central America, Africa and Asia. Imported malaria comprised 89% of the cases found outside the area of active transmission in Brazil in 2013. These cases highlight an important question with respect to both therapeutic and epidemiological issues because patients, especially those with falciparum malaria, arriving in a region where the health professionals may not have experience with the clinical manifestations of malaria and its diagnosis could suffer dramatic consequences associated with a potential delay in treatment. Additionally, because the Anopheles vectors exist in most of the country, even a single case of malaria, if not diagnosed and treated immediately, may result in introduced cases, causing outbreaks and even introducing or reintroducing the disease to a non-endemic, receptive region. Cases introduced outside the Amazon usually occur in areas in which malaria was formerly endemic and are transmitted by competent vectors belonging to the subgenus Nyssorhynchus (i.e., Anopheles darlingi, Anopheles aquasalis and species of the Albitarsis complex). The third type of transmission accounts for only 0.05% of all cases and is caused by autochthonous malaria in the Atlantic Forest, located primarily along the southeastern Atlantic Coast. They are caused by parasites that seem to be (or to be very close to) P. vivax and, in a less extent, by Plasmodium malariae and it is transmitted by the bromeliad mosquito Anopheles (Kerteszia) cruzii. This paper deals mainly with the two profiles of malaria found outside the Amazon: the imported and ensuing introduced cases and the autochthonous cases. We also provide an update regarding the situation in Brazil and the Brazilian endemic Amazon. PMID:25185003
Actor-specific contributions to the deforestation slowdown in the Brazilian Amazon.
Godar, Javier; Gardner, Toby A; Tizado, E Jorge; Pacheco, Pablo
2014-10-28
Annual deforestation rates in the Brazilian Amazon fell by 77% between 2004 and 2011, yet have stabilized since 2009 at 5,000-7,000 km(2). We provide the first submunicipality assessment, to our knowledge, of actor-specific contributions to the deforestation slowdown by linking agricultural census and remote-sensing data on deforestation and forest degradation. Almost half (36,158 km(2)) of the deforestation between 2004 and 2011 occurred in areas dominated by larger properties (>500 ha), whereas only 12% (9,720 km(2)) occurred in areas dominated by smallholder properties (<100 ha). In addition, forests in areas dominated by smallholders tend to be less fragmented and less degraded. However, although annual deforestation rates fell during this period by 68-85% for all actors, the contribution of the largest landholders (>2,500 ha) to annual deforestation decreased over time (63% decrease between 2005 and 2011), whereas that of smallholders went up by a similar amount (69%) during the same period. In addition, the deforestation share attributable to remote areas increased by 88% between 2009 and 2011. These observations are consistent across the Brazilian Amazon, regardless of geographical differences in actor dominance or socioenvironmental context. Our findings suggest that deforestation policies to date, which have been particularly focused on command and control measures on larger properties in deforestation hotspots, may be increasingly limited in their effectiveness and fail to address all actors equally. Further reductions in deforestation are likely to be increasingly costly and require actor-tailored approaches, including better monitoring to detect small-scale deforestation and a shift toward more incentive-based conservation policies.
Tiger-Moths in Savannas in Eastern Amazon: First Assessment of Diversity and Seasonal Aspects.
Valente, D M P; Zenker, M M; Teston, J A
2018-01-06
Biodiversity knowledge on insects is urgently needed due to the ever growing demand for food and the consequent deforestation process and loss of natural habitats in many understudied tropical regions. In this paper, we describe the outcome of a biodiversity research on tiger moths performed for the first time in a poorly studied Amazonian landscape-the savanna. We sampled tiger moths monthly with UV automatic light traps for 12 consecutive months in two sampling points in an area of savanna in eastern Amazon, and we compared our results to previously available data for eastern Amazon. We found a total of 91 species of which 80 were identified to species level. The most species-rich subtribes were Phaegopterina and Euchromiina with 32 species each. Species richness and abundance did not differ among sampling sites, but in general the species richness was higher during the dry season while abundance was higher during the wet season. This seasonal diversity pattern differs from the most common patterns recorded for savannas in other parts of the world. The species composition also changed in wet and dry seasons and correlated significantly with temperature and relative humidity. Our results suggest that the alpha diversity of the Amazonian savannas in our sampling area is lower than that in nearby rain forests and similar to that in agriculturally disturbed areas surrounded by rain forests. However, the species composition differed considerably from natural and disturbed areas. These results highlight the need of basic biodiversity surveys of insects in Amazonian savannas.
Dotrário, Andréa Beltrami; Menon, Lucas José Bazzo; Bollela, Valdes Roberto; Martinez, Roberto; de Almeida E Araújo, Daniel Cardoso; da Fonseca, Benedito Antônio Lopes; Santana, Rodrigo de C
2016-05-26
Malaria is endemic in countries located in tropical and sub-tropical regions. The increasing flow of domestic and international travellers has made malaria a relevant health problem even in non-endemic regions. Malaria has been described as the main diagnosis among travellers presenting febrile diseases after returning from tropical countries. In Brazil, malaria transmission occurs mainly in the Amazon region. Outside this area, malaria transmission is of low magnitude. This cross-sectional study aimed to describe the experience in the diagnosis of malaria in a reference centre located outside the Brazilian Amazon Region, emphasizing the differences in clinical and laboratory markers between cases of malaria and those of other febrile diseases (OFD). Medical charts from adult patients (≥18 years) who underwent a thick smear test (TST) for malaria, between January 2001 and December 2014, were retrospectively reviewed. A total of 458 cases referred to perform the TST were included. Malaria was diagnosed in 193 (42 %) episodes. The remaining 265 episodes (58 %) were grouped as OFD. The majority of malaria episodes were acquired in the Brazilian Amazon Region. The median time between the onset of symptoms and the TST was 7 days. Only 53 (11.5 %) episodes were tested within the first 48 h after symptom onset. Comparing malaria with OFD, jaundice, nausea, vomiting, and reports of fever were more prevalent in the malaria group. Low platelet count and elevated bilirubin levels were also related to the diagnosis of malaria. The results indicate that outside the endemic area travellers presenting febrile disease suspected of being malaria underwent diagnostic test after considerable delay. The reporting of fever combined with a recent visit to an endemic area should promptly evoke the hypothesis of malaria. In these cases, specific diagnostic tests for malaria should be a priority. For cases that jump this step, the presence of elevated bilirubin or thrombocytopaenia should also indicate a diagnosis of malaria.
Synergy between land use and climate change increases future fire risk in Amazon forests
NASA Astrophysics Data System (ADS)
Le Page, Yannick; Morton, Douglas; Hartin, Corinne; Bond-Lamberty, Ben; Cardoso Pereira, José Miguel; Hurtt, George; Asrar, Ghassem
2017-12-01
Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactions between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change - Representative Concentration Pathway (RCP) 8.5 - projected understory fires increase in frequency and duration, burning 4-28 times more forest in 2080-2100 than during 1990-2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9-5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.
Oil pollution in soils and sediments from the Northern Peruvian Amazon.
Rosell-Melé, Antoni; Moraleda-Cibrián, Núria; Cartró-Sabaté, Mar; Colomer-Ventura, Ferran; Mayor, Pedro; Orta-Martínez, Martí
2018-01-01
Oil has been extracted from the Northern Peruvian Amazon for over four decades. However, few scientific studies have assessed the impacts of such activities in the environment and health of indigenous communities in the region. We have investigated the occurrence of petrogenic hydrocarbon pollution in soils and sediments from areas favoured as hunting or fishing grounds by local indigenous inhabitants. The study was conducted in one of the most productive oil blocks in Peru, located in the headwaters of the Amazon river. Soils and river sediments, in the vicinity of oil extraction and processing infrastructure, contained an oil pollution signature as attested by the occurrence of hopanes and steranes. Given the lack of any other significant source of oil pollution in the region, the sources of hydrocarbons are likely to be the activities of the oil industry in the oil block, from voluntary discharges or accidental spills. Spillage of produced water was commonplace until 2009. Moreover, petrogenic compounds were absent in control samples in sites far removed from any oil infrastructure in the oil block. Our findings suggest that wildlife and indigenous populations in this region of the Amazon are exposed to the ingestion of oil polluted soils and sediments. The data obtained supports previous claims that the local spillage of oil and produced waters in the water courses in the Corrientes and Pastaza basins could have eventually reached the main water course of the Amazon. Copyright © 2017 Elsevier B.V. All rights reserved.
Hubbell, Stephen P; He, Fangliang; Condit, Richard; Borda-de-Agua, Luís; Kellner, James; Ter Steege, Hans
2008-08-12
New roads, agricultural projects, logging, and mining are claiming an ever greater area of once-pristine Amazonian forest. The Millennium Ecosystems Assessment (MA) forecasts the extinction of a large fraction of Amazonian tree species based on projected loss of forest cover over the next several decades. How accurate are these estimates of extinction rates? We use neutral theory to estimate the number, relative abundance, and range size of tree species in the Amazon metacommunity and estimate likely tree-species extinctions under published optimistic and nonoptimistic Amazon scenarios. We estimate that the Brazilian portion of the Amazon Basin has (or had) 11,210 tree species that reach sizes >10 cm DBH (stem diameter at breast height). Of these, 3,248 species have population sizes >1 million individuals, and, ignoring possible climate-change effects, almost all of these common species persist under both optimistic and nonoptimistic scenarios. At the rare end of the abundance spectrum, however, neutral theory predicts the existence of approximately 5,308 species with <10,000 individuals each that are expected to suffer nearly a 50% extinction rate under the nonoptimistic deforestation scenario and an approximately 37% loss rate even under the optimistic scenario. Most of these species have small range sizes and are highly vulnerable to local habitat loss. In ensembles of 100 stochastic simulations, we found mean total extinction rates of 20% and 33% of tree species in the Brazilian Amazon under the optimistic and nonoptimistic scenarios, respectively.
NASA Astrophysics Data System (ADS)
Cak, A. D.
2017-12-01
The Amazon Basin has faced innumerable pressures in recent years, including logging, mining and resource extraction, agricultural expansion, road building, and urbanization. These changes have drastically altered the landscape, transforming a predominantly forested environment into a mosaic of different types of land cover. The resulting fragmentation has caused dramatic and negative impacts on its structure and function, including on biodiversity and the transfer of water and energy to and from soil, vegetation, and the atmosphere (e.g., evapotranspiration). Because evapotranspiration from forested areas, which is affected by factors including temperature and water availability, plays a significant role in water dynamics in the Amazon Basin, measuring land surface temperature (LST) across the region can provide a dynamic assessment of hydrological, vegetation, and land use and land cover changes. It can also help to identify widespread urban development, which often has a higher LST signal relative to surrounding vegetation. Here, we discuss results from work to measure and identify drivers of change in LST across the entire Amazon Basin through analysis of past and current thermal and infrared satellite imagery. We leverage cloud computing resources in new ways to allow for more efficient analysis of imagery over the Amazon Basin across multiple years and multiple sensors. We also assess potential drivers of change in LST using spatial and multivariate statistical analyses with additional data sources of land cover, urban development, and demographics.
Combined Hepatocellular-Cholangiocarcinoma in a Yellow-Headed Amazon (Amazona oratrix)
TENNAKOON, Anusha Hemamali; IZAWA, Takeshi; FUJITA, Daisuke; DENDA, Yuki; SETO, Eiko; SASAI, Hiroshi; KUWAMURA, Mitsuru; YAMATE, Jyoji
2013-01-01
ABSTRACT A 9-year-old male Yellow-headed Amazon (Amazona oratrix) with a history of anorexia and vomiting died of a liver tumor. The tumor consisted of neoplastic cells with hepatocellular and cholangiocellular differentiations and their intermingled areas. Neoplastic hepatocytes showed islands or trabecular growth with vacuolated eosinophilic cytoplasm. Cells showing biliary differentiation formed ducts or tubules lined by cytokeratin AE1/AE3-positive epithelia, accompanied by desmoplasia consisting of myofibroblasts reacting to α-smooth muscle actin and desmin. The tumor was diagnosed as a combined hepatocellular-cholangiocarcinoma, which is very rare in the avian. PMID:23800973
Combined hepatocellular-cholangiocarcinoma in a Yellow-headed Amazon (Amazona oratrix).
Tennakoon, Anusha Hemamali; Izawa, Takeshi; Fujita, Daisuke; Denda, Yuki; Seto, Eiko; Sasai, Hiroshi; Kuwamura, Mitsuru; Yamate, Jyoji
2013-11-01
A 9-year-old male Yellow-headed Amazon (Amazona oratrix) with a history of anorexia and vomiting died of a liver tumor. The tumor consisted of neoplastic cells with hepatocellular and cholangiocellular differentiations and their intermingled areas. Neoplastic hepatocytes showed islands or trabecular growth with vacuolated eosinophilic cytoplasm. Cells showing biliary differentiation formed ducts or tubules lined by cytokeratin AE1/AE3-positive epithelia, accompanied by desmoplasia consisting of myofibroblasts reacting to α-smooth muscle actin and desmin. The tumor was diagnosed as a combined hepatocellular-cholangiocarcinoma, which is very rare in the avian.
NASA Astrophysics Data System (ADS)
Couto-Santos, F. R.; Luizao, F. J.
2014-12-01
The forests-savanna advancement/retraction process seems to play an important role in the global carbon cycle and in the climate-vegetation balance maintenance in the Amazon. To contribute with long term carbon dynamics and assess effectiveness of a protected area in reduce carbon emissions in Brazilian Amazon transitional areas, variations in forest-savanna mosaics biomass and carbon stock within Maraca Ecological Station (MES), Roraima/Brazil, and its outskirts non-protected areas were compared. Composite surface soil samples and indirect methods based on regression models were used to estimate aboveground tree biomass accumulation and assess vegetation and soil carbon stock along eleven 0.6 ha transects perpendicular to the forest-savanna limits. Aboveground biomass and carbon accumulation were influenced by vegetation structure, showing higher values within protected area, with great contribution of trees above 40 cm in diameter. In the savanna environments of protected areas, a higher tree density and carbon stock up to 30 m from the border confirmed a forest encroachment. This pointed that MES acts as carbon sink, even under variations in soil fertility gradient, with a potential increase of the total carbon stock from 9 to 150 Mg C ha-1. Under 20 years of fire and disturbance management, the results indicated the effectiveness of this protected area to reduce carbon emissions and mitigate greenhouse and climate change effects in a forest-savanna transitional area in Brazilian Northern Amazon. The contribution of this study in understanding rates and reasons for biomass and carbon variation, under different management strategies, should be considered the first approximation to assist policies of reducing emissions from deforestation and forest degradation (REDD) from underresearched Amazonian ecotone; despite further efforts in this direction are still needed. FINANCIAL SUPPORT: Boticário Group Foundation (Fundação Grupo Boticário); National Council for Scientific and Technological Development (CNPq); Minas Gerais State Research Foundation (FAPEMIG).
Antibody to HTLV‐I in Indigenous Inhabitants of the Andes and Amazon Regions in Colombia
Zamora, Tomas; Zaninovic, Vladimir; Kajiwara, Masaharu; Komoda, Haruko; Hayami, Masanori
1990-01-01
To explore the HTLV‐I‐carrying groups among the indigenous inhabitants in South America, a sero‐epidemiological study on HTLV‐I focusing on hinterland villages isolated from others in the Andes and Amazon regions was conducted. Five (2.9%) out of 171 subjects showed positive for HTLV‐I antibody in the gelatin particle agglutination (PA) test. Two out of 5 positives with high antibody titer (≫× 1024) in the PA test also showed a positive immunofluorescence (IF) test and anti‐HTLV‐I‐specific protein products, p19, p24, p28, gp46, and p53 in sera by the Western blotting (WB) test. One of three negatives in the IF test showed positive antibodies to p19 and p24 by the WB test. Finally, two were confirmed as HTLV‐I carriers and one was suspected of being a carrier. All three are Paez Indians from the central Andes; 53‐ and 34‐year‐old women and a 35‐year‐old man. The results show that HTLV‐1 carriers exist among isolated indigenous people in South America. PMID:1975804
Catalogue of Diptera of Colombia: an introduction.
Wolff, Marta; Nihei, Silvio S; Carvalho, Claudio J B De
2016-06-14
Colombia has an imposing natural wealth due to its topography has many unique characteristics as a consequence of having Caribbean and Pacific shores, as well as sharing part of the Amazon basin and northern Andes mountains. Thus, many natural and biological features are due to the convergence of three biogeographical regions: Pacific, Andes and Amazonia. The Andean uplift created a complex mosaic of mountains and isolated valleys, including eleven biogeographical provinces (Morrone 2006). The Andes dominate the Colombian topography and cross the country south to north. There are three mountain ranges (Western, Central, and Eastern) with a maximum elevation of 5,775 m, and an average elevation of 2,000 m. The Magdalena and Cauca River valleys separate these ranges, that along with the Putumayo and Caquetá Rivers, the Catatumbo watershed, the Darién, Pique Hill, the Orinoquia Region (with its savannas), the Amazon region (with tropical rainforests), and some lower mountain ranges (Macarena and Chiribiquete), have generated the conditions for very high levels of endemism. This variety of conditions has resulted in an extremely diverse plant and animal biota, and in which 48% of the nation remains unexplored.
Oliart-Guzmán, Humberto; Delfino, Breno M.; Martins, Antonio C.; Mantovani, Saulo A. S.; Braña, Athos M.; Pereira, Thasciany M.; Branco, Fernando L. C. C.; Ramalho, Alanderson A.; Campos, Rhanderson G.; Fontoura, Pablo S.; de Araujo, Thiago S.; de Oliveira, Cristieli S. M.; Muniz, Pascoal T.; Rubinsky-Elefant, Guita; Codeço, Cláudia T.; da Silva-Nunes, Mônica
2014-01-01
Toxocara spp. infection and the seroconversion rate in the Amazon have been poorly investigated. This study analyzed individual and household-level risk factors for the presence of IgG antibodies to Toxocara spp. in urban Amazonian children over a period of 7 years and evaluated the seroconversion rates over a 1-year follow-up. In children < 59 months of age, the overall prevalence rate was 28.08% in 2003 and 23.35% in 2010. The 2010–2011 seroconversion rates were 13.90% for children 6–59 months of age and 12.30% for children 84–143 months of age. Multilevel logistic regression analysis identified child age, previous wheezing, and current infection with hookworm as significant associated factors for Toxocara spp. seropositivity in 2003. In 2010, age, previous helminthiasis, and having a dog were associated with seropositivity, whereas having piped water inside the household was a protective factor. Control programs mainly need to target at-risk children, water quality control, and animal deworming strategies. PMID:24515946
NASA Astrophysics Data System (ADS)
de Oliveira Alves, Nilmara; Brito, Joel; Caumo, Sofia; Arana, Andrea; de Souza Hacon, Sandra; Artaxo, Paulo; Hillamo, Risto; Teinilä, Kimmo; Batistuzzo de Medeiros, Silvia Regina; de Castro Vasconcellos, Pérola
2015-11-01
The Brazilian Amazon represents about 40% of the world's remaining tropical rainforest. However, human activities have become important drivers of disturbance in that region. The majority of forest fire hotspots in the Amazon arc due to deforestation are impacting the health of the local population of over 10 million inhabitants. In this study we characterize western Amazonia biomass burning emissions through the quantification of 14 Polycyclic Aromatic Hydrocarbons (PAHs), Organic Carbon, Elemental Carbon and unique tracers of biomass burning such as levoglucosan. From the PAHs dataset a toxic equivalence factor is calculated estimating the carcinogenic and mutagenic potential of biomass burning emissions during the studied period. Peak concentration of PM10 during the dry seasons was observed to reach 60 μg m-3 on the 24 h average. Conversely, PM10 was relatively constant throughout the wet season indicating an overall stable balance between aerosol sources and sinks within the filter sampling resolution. Similar behavior is identified for OC and EC components. Levoglucosan was found in significant concentrations (up to 4 μg m-3) during the dry season. Correspondingly, the estimated lung cancer risk calculated during the dry seasons largely exceeded the WHO health-based guideline. A source apportionment study was carried out through the use of Absolute Principal Factor Analysis (APFA), identifying a three-factor solution. The biomass burning factor is found to be the dominating aerosol source, having 75.4% of PM10 loading. The second factor depicts an important contribution of several PAHs without a single source class and therefore was considered as mixed sources factor, contributing to 6.3% of PM10. The third factor was mainly associated with fossil fuel combustion emissions, contributing to 18.4% of PM10. This work enhances the knowledge of aerosol sources and its impact on climate variability and local population, on a site representative of the deforestation which occupies a significant fraction of the Amazon basin.
Contrasting Patterns of Damage and Recovery in Logged Amazon Forests From Small Footprint LiDAR Data
NASA Technical Reports Server (NTRS)
Morton, D. C.; Keller, M.; Cook, B. D.; Hunter, Maria; Sales, Marcio; Spinelli, L.; Victoria, D.; Andersen, H.-E.; Saleska, S.
2012-01-01
Tropical forests ecosystems respond dynamically to climate variability and disturbances on time scales of minutes to millennia. To date, our knowledge of disturbance and recovery processes in tropical forests is derived almost exclusively from networks of forest inventory plots. These plots typically sample small areas (less than or equal to 1 ha) in conservation units that are protected from logging and fire. Amazon forests with frequent disturbances from human activity remain under-studied. Ongoing negotiations on REDD+ (Reducing Emissions from Deforestation and Forest Degradation plus enhancing forest carbon stocks) have placed additional emphasis on identifying degraded forests and quantifying changing carbon stocks in both degraded and intact tropical forests. We evaluated patterns of forest disturbance and recovery at four -1000 ha sites in the Brazilian Amazon using small footprint LiDAR data and coincident field measurements. Large area coverage with airborne LiDAR data in 2011-2012 included logged and unmanaged areas in Cotriguacu (Mato Grosso), Fiona do Jamari (Rondonia), and Floresta Estadual do Antimary (Acre), and unmanaged forest within Reserva Ducke (Amazonas). Logging infrastructure (skid trails, log decks, and roads) was identified using LiDAR returns from understory vegetation and validated based on field data. At each logged site, canopy gaps from logging activity and LiDAR metrics of canopy heights were used to quantify differences in forest structure between logged and unlogged areas. Contrasting patterns of harvesting operations and canopy damages at the three logged sites reflect different levels of pre-harvest planning (i.e., informal logging compared to state or national logging concessions), harvest intensity, and site conditions. Finally, we used multi-temporal LiDAR data from two sites, Reserva Ducke (2009, 2012) and Antimary (2010, 2011), to evaluate gap phase dynamics in unmanaged forest areas. The rates and patterns of canopy gap formation at these sites illustrate potential issues for separating logging damages from natural forest disturbances over longer time scales. Multi-temporal airborne LiDAR data and coincident field measurements provide complementary perspectives on disturbance and recovery processes in intact and degraded Amazon forests. Compared to forest inventory plots, the large size of each individual site permitted analyses of landscape-scale processes that would require extremely high investments to study using traditional forest inventory methods.
Goicolea, Isabel; San Sebastián, Miguel; Wulff, Marianne
2008-01-01
Despite advances made by Ecuador in developing policies on reproductive and sexual rights, implementation, and oversight remain a challenge, affecting in particular those living in the Amazon basin. This paper reports on an evaluation of sexual and reproductive health and rights (SRHR) in Orellana, Ecuador, the basis of which was the Health Rights of Women Assessment Instrument, which was altered to focus on government obligations, the reality of access and utilization of services, and the inequities and implementation challenges between the two. A community-based cross-sectional survey conducted in 2006 served to document the current status of SRHR Local female field workers interviewed 2025 women on three areas of womens reproductive health: delivery care, family planning, and pregnancy among adolescent girls age 10-19. The results suggest a reality more dismal than that of the official information for the area. Skilled delivery care, modern contraceptive use, and wanted pregnancies were conspicuously lower among indigenous women living in rural areas. Access to reproductive health services varied between rural and urban women. These significant differences in care--amongst others documented--raise concerns over the utility of national-level data for addressing inequities. The gaps evident in the validity of available information for monitoring policies and programs, and between national policy and action reveal that much still needs to be done to realize SRHR for women in the Amazon basin, and that current accountability mechanisms are inadequate.
New tick records in Rondônia, Western Brazilian Amazon.
Labruna, Marcelo Bahia; Barbieri, Fábio Silva; Martins, Thiago Fernandes; Brito, Luciana Gatto; Ribeiro, Francisco Dimas Sales
2010-01-01
In the present study, we provide new tick records from Vilhena Municipality, in the Southeast of the State of Rondônia, Northern Brazil. Ticks collected from a capybara, Hydrochoerus hydrochaeris (Linnaeus), were identified as Amblyomma romitii Tonelli-Rondelli (1 female), and Amblyomma sp. (1 larva). Ticks collected from a harpy eagle, Harpia harpyja (Linnaeus), were identified as Amblyomma cajennense (Fabricius) (16 nymphs) and Haemaphysalis juxtakochi Cooley (1 nymph). Ticks collected from a yellow-footed tortoise, Chelonoidis denticulada (Linnaeus), were identified as Amblyomma rotundatum Koch (10 females, 2 nymphs), and Amblyomma sp. (2 larvae). The present record of A. romitii is the first in the State of Rondônia, and represents the southernmost record for this tick species, indicating that its distribution area is much larger than currently recognized. Although both A. cajennense and H. juxtakochi have been reported parasitizing various bird species, we provide the first tick records on a harpy eagle. A. rotundatum is widespread in the State of Rondônia, and has been previously reported on the yellow-footed tortoise. The present records increase the tick fauna of Rondônia to 26 species.
NASA Astrophysics Data System (ADS)
Tohver, E.; van der Pluijm, B. A.; van der Voo, R.
The Grenville province of eastern Laurentia is commonly considered to be the product of continental collision between ancestral North America and an as yet unidentified continent. New paleogeographic information for the Amazon craton in early Grenvil- lian times was determined from a new paleomagnetic pole based on the hypabyssal gabbros and flat-lying basalts of the Nova Floresta Fm. found in the western Brazil- ian state of Rondonia. Measurement of the anisotropy of magnetic susceptibility of the gabbros reveals a flat-lying fabric, suggesting an undeformed, igneous body. A paleomagnetic pole (n = 16 sites, Plat = 24.6N, Plon. = 164.6E, A95 = 5.5, Q = 5) is calculated from a steep, characteristic remanence (ChRM) that is inferred to be primary. This ChRM is isolated at applied field >30 mT and is probably carried by magnetite present in large, oxyexsolved titanomagnetites or igneous reaction rims. Emplacement of the body and acquisition of magnetization is dated by 40Ar/39Ar analysis of igneous biotite and plagioclase, both phases yielding ages of ca.1.2 Ga. Comparison of the position of Amazonia with that of ancestral North America deter- mined from the Laurentian APWP from 1.3 - 1.15 Ga suggests that Amazonia may have collided with the southernmost portion of Laurentia at ca.1.2 Ga. The timing of this collision is in agreement with geochronological constraints on the timing of de- formation in the Llano segment of Laurentia as well as observed deformation of the western Amazon craton.
Strong coupling of plant and fungal community structure across western Amazonian rainforests
Peay, Kabir G; Baraloto, Christopher; Fine, Paul VA
2013-01-01
The Amazon basin harbors a diverse ecological community that has a critical role in the maintenance of the biosphere. Although plant and animal communities have received much attention, basic information is lacking for fungal or prokaryotic communities. This is despite the fact that recent ecological studies have suggested a prominent role for interactions with soil fungi in structuring the diversity and abundance of tropical rainforest trees. In this study, we characterize soil fungal communities across three major tropical forest types in the western Amazon basin (terra firme, seasonally flooded and white sand) using 454 pyrosequencing. Using these data, we examine the relationship between fungal diversity and tree species richness, and between fungal community composition and tree species composition, soil environment and spatial proximity. We find that the fungal community in these ecosystems is diverse, with high degrees of spatial variability related to forest type. We also find strong correlations between α- and β-diversity of soil fungi and trees. Both fungal and plant community β-diversity were also correlated with differences in environmental conditions. The correlation between plant and fungal richness was stronger in fungal lineages known for biotrophic strategies (for example, pathogens, mycorrhizas) compared with a lineage known primarily for saprotrophy (yeasts), suggesting that this coupling is, at least in part, due to direct plant–fungal interactions. These data provide a much-needed look at an understudied dimension of the biota in an important ecosystem and supports the hypothesis that fungal communities are involved in the regulation of tropical tree diversity. PMID:23598789
Marivaux, Laurent; Adnet, Sylvain; Altamirano-Sierra, Ali J; Pujos, François; Ramdarshan, Anusha; Salas-Gismondi, Rodolfo; Tejada-Lara, Julia V; Antoine, Pierre-Olivier
2016-11-01
Undoubted fossil Cebidae have so far been primarily documented from the late middle Miocene of Colombia, the late Miocene of Brazilian Amazonia, the early Miocene of Peruvian Amazonia, and very recently from the earliest Miocene of Panama. The evolutionary history of cebids is far from being well-documented, with notably a complete blank in the record of callitrichine stem lineages until and after the late middle Miocene (Laventan SALMA). Further documenting their evolutionary history is therefore of primary importance. Recent field efforts in Peruvian Amazonia (Contamana area, Loreto Department) have allowed for the discovery of an early late Miocene (ca. 11 Ma; Mayoan SALMA) fossil primate-bearing locality (CTA-43; Pebas Formation). In this study, we analyze the primate material, which consists of five isolated teeth documenting two distinct Cebidae: Cebus sp., a medium-sized capuchin (Cebinae), and Cebuella sp., a tiny marmoset (Callitrichinae). Although limited, this new fossil material of platyrrhines contributes to documenting the post-Laventan evolutionary history of cebids, and besides testifies to the earliest occurrences of the modern Cebuella and Cebus/Sapajus lineages in the Neotropics. Regarding the evolutionary history of callitrichine marmosets, the discovery of an 11 Ma-old fossil representative of the modern Cebuella pushes back by at least 6 Ma the age of the Mico/Cebuella divergence currently proposed by molecular biologists (i.e., ca. 4.5 Ma). This also extends back to > 11 Ma BP the divergence between Callithrix and the common ancestor (CA) of Mico/Cebuella, as well as the divergence between the CA of marmosets and Callimico (Goeldi's callitrichine). This discovery from Peruvian Amazonia implies a deep evolutionary root of the Cebuella lineage in the northwestern part of South America (the modern western Amazon basin), slightly before the recession of the Pebas mega-wetland system (PMWS), ca. 10.5 Ma, and well-before the subsequent establishment of the Amazon drainage system (ca. 9-7 Ma). During the late middle/early late Miocene interval, the PMWS was seemingly not a limiting factor for dispersals and widespread distribution of terrestrial mammals, but it was also likely a source of diversification via a complex patchwork of submerged/emerged lands varying through time. © 2016 Wiley Periodicals, Inc.
Discovery or Extinction of New Scleroderma Species in Amazonia?
Baseia, Iuri G; Silva, Bianca D B; Ishikawa, Noemia K; Soares, João V C; França, Isadora F; Ushijima, Shuji; Maekawa, Nitaro; Martín, María P
2016-01-01
The Amazon Forest is a hotspot of biodiversity harboring an unknown number of undescribed taxa. Inventory studies are urgent, mainly in the areas most endangered by human activities such as extensive dam construction, where species could be in risk of extinction before being described and named. In 2015, intensive studies performed in a few locations in the Brazilian Amazon rainforest revealed three new species of the genus Scleroderma: S. anomalosporum, S. camassuense and S. duckei. The two first species were located in one of the many areas flooded by construction of hydroelectric dams throughout the Amazon; and the third in the Reserva Florestal Adolpho Ducke, a protected reverse by the INPA. The species were identified through morphology and molecular analyses of barcoding sequences (Internal Transcribed Spacer nrDNA). Scleroderma anomalosporum is characterized mainly by the smooth spores under LM in mature basidiomata (under SEM with small, unevenly distributed granules, a characteristic not observed in other species of the genus), the large size of the basidiomata, up to 120 mm diameter, and the stelliform dehiscence; S. camassuense mainly by the irregular to stellate dehiscence, the subreticulated spores and the bright sulfur-yellow colour, and Scleroderma duckei mainly by the verrucose exoperidium, stelliform dehiscence, and verrucose spores. Description, illustration and affinities with other species of the genus are provided.
Tang, Hao; Dubayah, Ralph
2017-03-07
Light-regime variability is an important limiting factor constraining tree growth in tropical forests. However, there is considerable debate about whether radiation-induced green-up during the dry season is real, or an apparent artifact of the remote-sensing techniques used to infer seasonal changes in canopy leaf area. Direct and widespread observations of vertical canopy structures that drive radiation regimes have been largely absent. Here we analyze seasonal dynamic patterns between the canopy and understory layers in Amazon evergreen forests using observations of vertical canopy structure from a spaceborne lidar. We discovered that net leaf flushing of the canopy layer mainly occurs in early dry season, and is followed by net abscission in late dry season that coincides with increasing leaf area of the understory layer. Our observations of understory development from lidar either weakly respond to or are not correlated to seasonal variations in precipitation or insolation, but are strongly related to the seasonal structural dynamics of the canopy layer. We hypothesize that understory growth is driven by increased light gaps caused by seasonal variations of the canopy. This light-regime variability that exists in both spatial and temporal domains can better reveal the drought-induced green-up phenomenon, which appears less obvious when treating the Amazon forests as a whole.
Eo-1 Hyperion Measures Canopy Drought Stress In Amazonia
NASA Technical Reports Server (NTRS)
Asner, Gregory P.; Nepstad, Daniel; Cardinot, Gina; Moutinho, Paulo; Harris, Thomas; Ray, David
2004-01-01
The central, south and southeast portions of the Amazon Basin experience a period of decreased cloud cover and precipitation from June through November. There are likely important effects of seasonal and interannual rainfall variation on forest leaf area index, canopy water stress, productivity and regional carbon cycling in the Amazon. While both ground and spaceborne studies of precipitation continue to improve, there has been almost no progress made in observing forest canopy responses to rainfall variability in the humid tropics. This shortfall stems from the large stature of the vegetation and great spatial extent of tropical forests, both of which strongly impede field studies of forest responses to water availability. Those few studies employing satellite measures of canopy responses to seasonal and interannual drought (e.g., Bohlman et al. 1998, Asner et al. 2000) have been limited by the spectral resolution and sampling available from Landsat and AVHRR sensors. We report on a study combining the first landscape-level, managed drought experiment in Amazon tropical forest with the first spaceborne imaging spectrometer observations of this experimental area. Using extensive field data on rainfall inputs, soil water content, and both leaf and canopy responses, we test the hypothesis that spectroscopic signatures unique to hyperspectral observations can be used to quantify relative differences in canopy stress resulting from water availability.
Origin of Amazon mudbanks along the northeastern coast of South America
Allison, M.A.; Lee, M.T.; Ogston, A.S.; Aller, R.C.
2000-01-01
Seismic profiles, sediment cores, and water column measurements were collected along the northeastern coast of Brazil to examine the origin of mudbanks in the Amazon coastal mud belt. These 10-60-km-long, shore-attached features previously had been observed to migrate along the 1200 km coast of the Guianas in response to wave forcing. CHIRP (3.5 kHz) seismic profiles of the shoreface and inner shelf located two mudbanks updrift of the previous eastern limit in French Guiana. 210Pb geochronology shows that these two banks are migrating to the northwest over a relict mud surface in 5-20 m water depth. The mudbanks are 3-4 m thick and are translating over a modern shoreface mud wedge deposited by previous mudbank passage in < 5 m water depth. Initial mudbank development is taking place on the intertidal and shallow subtidal mudflats at Cabo Cassipore, associated with an alongshore-accreting clinoform feature. Sediment trapping in this area is controlled by the nearshore presence of strong water column stratification produced by the enormous Amazon freshwater discharge on the shelf and by proximity to the Cassipore River estuary. Seasonal and decadal periods of sediment supply and starvation in this area likely are controlled by variations in northwest trade wind intensity. (C) 2000 Elsevier Science B.V.
Discovery or Extinction of New Scleroderma Species in Amazonia?
Baseia, Iuri G.; Silva, Bianca D. B.; Ishikawa, Noemia K.; Soares, João V. C.; França, Isadora F.; Ushijima, Shuji; Maekawa, Nitaro
2016-01-01
The Amazon Forest is a hotspot of biodiversity harboring an unknown number of undescribed taxa. Inventory studies are urgent, mainly in the areas most endangered by human activities such as extensive dam construction, where species could be in risk of extinction before being described and named. In 2015, intensive studies performed in a few locations in the Brazilian Amazon rainforest revealed three new species of the genus Scleroderma: S. anomalosporum, S. camassuense and S. duckei. The two first species were located in one of the many areas flooded by construction of hydroelectric dams throughout the Amazon; and the third in the Reserva Florestal Adolpho Ducke, a protected reverse by the INPA. The species were identified through morphology and molecular analyses of barcoding sequences (Internal Transcribed Spacer nrDNA). Scleroderma anomalosporum is characterized mainly by the smooth spores under LM in mature basidiomata (under SEM with small, unevenly distributed granules, a characteristic not observed in other species of the genus), the large size of the basidiomata, up to 120 mm diameter, and the stelliform dehiscence; S. camassuense mainly by the irregular to stellate dehiscence, the subreticulated spores and the bright sulfur-yellow colour, and Scleroderma duckei mainly by the verrucose exoperidium, stelliform dehiscence, and verrucose spores. Description, illustration and affinities with other species of the genus are provided. PMID:28002414
Logging concessions enable illegal logging crisis in the Peruvian Amazon.
Finer, Matt; Jenkins, Clinton N; Sky, Melissa A Blue; Pine, Justin
2014-04-17
The Peruvian Amazon is an important arena in global efforts to promote sustainable logging in the tropics. Despite recent efforts to achieve sustainability, such as provisions in the US-Peru Trade Promotion Agreement, illegal logging continues to plague the region. We present evidence that Peru's legal logging concession system is enabling the widespread illegal logging via the regulatory documents designed to ensure sustainable logging. Analyzing official government data, we found that 68.3% of all concessions supervised by authorities were suspected of major violations. Of the 609 total concessions, nearly 30% have been cancelled for violations and we expect this percentage to increase as investigations continue. Moreover, the nature of the violations indicate that the permits associated with legal concessions are used to harvest trees in unauthorized areas, thus threatening all forested areas. Many of the violations pertain to the illegal extraction of CITES-listed timber species outside authorized areas. These findings highlight the need for additional reforms.
Logging Concessions Enable Illegal Logging Crisis in the Peruvian Amazon
Finer, Matt; Jenkins, Clinton N.; Sky, Melissa A. Blue; Pine, Justin
2014-01-01
The Peruvian Amazon is an important arena in global efforts to promote sustainable logging in the tropics. Despite recent efforts to achieve sustainability, such as provisions in the US–Peru Trade Promotion Agreement, illegal logging continues to plague the region. We present evidence that Peru's legal logging concession system is enabling the widespread illegal logging via the regulatory documents designed to ensure sustainable logging. Analyzing official government data, we found that 68.3% of all concessions supervised by authorities were suspected of major violations. Of the 609 total concessions, nearly 30% have been cancelled for violations and we expect this percentage to increase as investigations continue. Moreover, the nature of the violations indicate that the permits associated with legal concessions are used to harvest trees in unauthorized areas, thus threatening all forested areas. Many of the violations pertain to the illegal extraction of CITES-listed timber species outside authorized areas. These findings highlight the need for additional reforms. PMID:24743552
Logging Concessions Enable Illegal Logging Crisis in the Peruvian Amazon
NASA Astrophysics Data System (ADS)
Finer, Matt; Jenkins, Clinton N.; Sky, Melissa A. Blue; Pine, Justin
2014-04-01
The Peruvian Amazon is an important arena in global efforts to promote sustainable logging in the tropics. Despite recent efforts to achieve sustainability, such as provisions in the US-Peru Trade Promotion Agreement, illegal logging continues to plague the region. We present evidence that Peru's legal logging concession system is enabling the widespread illegal logging via the regulatory documents designed to ensure sustainable logging. Analyzing official government data, we found that 68.3% of all concessions supervised by authorities were suspected of major violations. Of the 609 total concessions, nearly 30% have been cancelled for violations and we expect this percentage to increase as investigations continue. Moreover, the nature of the violations indicate that the permits associated with legal concessions are used to harvest trees in unauthorized areas, thus threatening all forested areas. Many of the violations pertain to the illegal extraction of CITES-listed timber species outside authorized areas. These findings highlight the need for additional reforms.
Viana, A P; Lucena Frédou, F
2014-05-01
The objective of the present study was to describe the ecological status of ichthyofauna in an industrial district (Pará river, Amazon estuary), through the use of different environmental descriptors. To evaluate the impacts of the industrial area and cargo terminal, three areas were considered: Zone 1 (maximum impact), Zone 2 (median impact) and Zone 3 (low impact). A total of 77 species were captured. Differences in the composition of the ichthyofauna were recorded between Zones and environments (main channel and tidal channel). The ecological indices revealed clear evidence of the impact of the industrial hub and cargo terminal on the fish communities. In Zone 1, there was a reduction in the number of feeding groups (in the main channel) and larger fish and the Shannon diversity index and Margalef's richness were also significantly lower. The multivariate analysis separated the different Zones clearly into three groups, indicating marked differences in the levels of contamination in the different parts of the study area.
Large-scale projects in the amazon and human exposure to mercury: The case-study of the Tucuruí Dam.
Arrifano, Gabriela P F; Martín-Doimeadios, Rosa C Rodríguez; Jiménez-Moreno, María; Ramírez-Mateos, Vanesa; da Silva, Núbia F S; Souza-Monteiro, José Rogério; Augusto-Oliveira, Marcus; Paraense, Ricardo S O; Macchi, Barbarella M; do Nascimento, José Luiz M; Crespo-Lopez, Maria Elena
2018-01-01
The Tucuruí Dam is one of the largest dams ever built in the Amazon. The area is not highly influenced by gold mining as a source of mercury contamination. Still, we recently noted that one of the most consumed fishes (Cichla sp.) is possibly contaminated with methylmercury. Therefore, this work evaluated the mercury content in the human population living near the Tucuruí Dam. Strict exclusion/inclusion criteria were applied for the selection of participants avoiding those with altered hepatic and/or renal functions. Methylmercury and total mercury contents were analyzed in hair samples. The median level of total mercury in hair was above the safe limit (10µg/g) recommended by the World Health Organization, with values up to 75µg/g (about 90% as methylmercury). A large percentage of the participants (57% and 30%) showed high concentrations of total mercury (≥ 10µg/g and ≥ 20µg/g, respectively), with a median value of 12.0µg/g. These are among the highest concentrations ever detected in populations living near Amazonian dams. Interestingly, the concentrations are relatively higher than those currently shown for human populations highly influenced by gold mining areas. Although additional studies are needed to confirm the possible biomagnification and bioaccumulation of mercury by the dams in the Amazon, our data already support the importance of adequate impact studies and continuous monitoring. More than 400 hydropower dams are operational or under construction in the Amazon, and an additional 334 dams are presently planned/proposed. Continuous monitoring of the populations will assist in the development of prevention strategies and government actions to face the problem of the impacts caused by the dams. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gummadi, V.; He, Y.; Beighley, E. R.
2007-12-01
Modeling fine scale spatial and temporal processes of the hydrologic cycle over continental to global extents is vital for assessing the potential impacts of climate and land use change on global water resources and related systems. Significant advancement in understanding and predicting the magnitude, trend, timing and partitioning of terrestrial water stores and fluxes requires the development of methodologies and knowledge for extracting representative hydraulic geometries from remote sensing data products and field data, suitable for estimating inundation characteristics and water storage changes which are limited for much of the globe. In this research, relationships between channel and floodplain widths and spatial drainage characteristics are developed for the Amazon Basin. Channel and floodplain widths were measured using SRTM data and LandSat TM/ETM imagery at 510 sites. The study sites were selected based on the Pfafstetter decomposition methodology which provides an irregular model grid based on repeatedly subdividing landscape units into nine subunits consisting of basins and interbasins. The selected sites encompass all possible combinations of Pfafstetter modeling units (ex., basins of interbasins, interbasins of basins, etc.). The 510 study sites are within the Amazon Basin with drainage areas ranging 10 to 5.4 million sq km and mean watershed ground slopes ranging from 0.4 and 30 percent. Preliminary results indicate that channel widths can be predicted using drainage area and mean watershed slope (R2 = 0.85). Floodplain widths can be predicted using channel width and the local slope (R2 = 0.70). Using the Purus watershed, a sub-basin to the Amazon (350,000 sq km), effects of channel and floodplain widths on simulated hydrographs are presented.
NASA Astrophysics Data System (ADS)
de Oliveira, Cleber Gonzales; Paradella, Waldir Renato; da Silva, Arnaldo de Queiroz
The Brazilian Amazon is a vast territory with an enormous need for mapping and monitoring of renewable and non-renewable resources. Due to the adverse environmental condition (rain, cloud, dense vegetation) and difficult access, topographic information is still poor, and when available needs to be updated or re-mapped. In this paper, the feasibility of using Digital Surface Models (DSMs) extracted from TerraSAR-X Stripmap stereo-pair images for detailed topographic mapping was investigated for a mountainous area in the Carajás Mineral Province, located on the easternmost border of the Brazilian Amazon. The quality of the radargrammetric DSMs was evaluated regarding field altimetric measurements. Precise topographic field information acquired from a Global Positioning System (GPS) was used as Ground Control Points (GCPs) for the modeling of the stereoscopic DSMs and as Independent Check Points (ICPs) for the calculation of elevation accuracies. The analysis was performed following two ways: (1) the use of Root Mean Square Error (RMSE) and (2) calculations of systematic error (bias) and precision. The test for significant systematic error was based on the Student's-t distribution and the test of precision was based on the Chi-squared distribution. The investigation has shown that the accuracy of the TerraSAR-X Stripmap DSMs met the requirements for 1:50,000 map (Class A) as requested by the Brazilian Standard for Cartographic Accuracy. Thus, the use of TerraSAR-X Stripmap images can be considered a promising alternative for detailed topographic mapping in similar environments of the Amazon region, where available topographic information is rare or presents low quality.
NASA Astrophysics Data System (ADS)
do Nascimento, Daniel R.; Sawakuchi, André O.; Guedes, Carlos C. F.; Giannini, Paulo C. F.; Grohmann, Carlos H.; Ferreira, Manuela P.
2015-03-01
Source-to-sink systems are poorly known in tropical rivers. For the Amazonian rivers, the majority of the provenance studies remain focused on the suspended load, implying a poor understanding of the processes governing production and distribution of sands. In this study, we perform heavy mineral and optically stimulated luminescence (OSL) analysis to cover the entire spectrum (heavy and light minerals fraction) of 29 sand samples of the Lower Madeira river region (Amazon and Madeira rivers), of which the main goal was to find provenance indicators specific to these rivers. Despite the tropical humid climate, the sands of the Amazon and Lower Madeira rivers are rich in unstable heavy minerals as augite, hypersthene, green hornblende and andalusite. The Madeira river is highlighted by its higher content of andalusite, with source attributed to the Amazon Craton (medium-to-high grade metamorphic rocks), while the Amazon river, upstream of the Madeira river mouth, has a signature of augite and hypersthene, that suggests an Andean provenance (volcanic rocks). Sands from the Madeira river can be tracked in the Amazon river by the increasing concentration in andalusite. OSL analysis of the light minerals fraction was used as an index of feldspar concentration and sedimentary history of quartz grains. Lower feldspar concentration and quartz grains with longer sedimentary history (higher OSL sensitivity) also point to a major contribution of cratonic sources for the sands in the Madeira river. While the sands from the Lower Madeira would be mainly supplied by cratonic rocks, previous work recognised that suspended sediments (silt and clay) are derived from Andean rocks. Therefore, we interpret a decoupling between the sources of sand and mud (silt and clay) under transport in the Madeira river. Andean sands (rich in augite and hypersthene) would be trapped in the foreland zones of the Beni and Mamoré tributaries. In the Amazon river sands, the low OSL sensitivity of the quartz, higher content of feldspar and unstable heavy mineral assemblage dominated by augite and hypersthene suggest both a fast transport from Andean sources with fine sediment bypass over foreland areas.
NASA Astrophysics Data System (ADS)
Smith, J. N.; Park, J. H.; Kuang, C.; Bustillos, J. O. V.; Souza, R. A. F. D.; Wiedemann, K. T.; Munger, J. W.; Wofsy, S. C.; Rizzo, L. V.; Artaxo, P.; Martin, S. T.; Seco, R.; Kim, S.; Guenther, A. B.; Batalha, S. S. A.; Alves, E. G.; Tota, J.
2014-12-01
The Amazon rainforest is a unique and important place for studying aerosol formation and its impacts on atmospheric chemistry and climate. In remote areas, the atmosphere is characterized by low particle number concentrations and high humidity; perturbations in the particle number concentrations and climate-relevant physical and chemical properties could therefore have a great impact on cloud formation and thus on regional climate and precipitation. While it was previously believed that new particle formation occurs rarely in the Amazon, observations in the Amazon of a sustained steady-state particle number concentration, along with an abundance of dry and wet surfaces upon which particles may deposit, imply that sources of new particles must exist in this region. We present observations from two studies, GOAmazon2014 and Tapajos Upwind Forest Flux Study (TUFFS), which seek to identify and quantify the sources of aerosol particles in the Amazon. Measurements of the chemical composition of 20 - 100 nm diameter aerosol particles at the T3 measurement site during the wet and dry season campaigns of GOAmazon2014 show the presence of inorganic ions such as potassium ion and sulfate, as well as organic ion such as oxalate, in ambient nanoparticles. These observations, combined with 1.5 - 300 nm diameter particle number size distributions and trace gas measurements of organic compounds and sulfuric acid, are used to determine the relative importance of sulfuric acid, organic compounds, and primary biological particle emissions to nanoparticle formation and growth. Observations of 3 - 100 nm diameter particle number size distributions at the KM67 tower site during TUFFS show frequent new particle formation events during the wet season in April, transitioning to a scenario of less frequent events in July at the onset of the dry season. These observations highlight the regional nature of new particle formation in the Amazon, and suggest that additional observations at a variety of locales are needed to fully understand the roles of new particle formation in this region.
Hydrological Controls on Macrophyte Productivity in the Amazon Floodplain Wetlands
NASA Astrophysics Data System (ADS)
Silva, T. S.; Novo, E. M.; Melack, J. M.
2013-05-01
The Amazon River floodplain is an important source of atmospheric CO2 and CH4, but the relative contribution of allochthonous and autochthonous sources to floodplain emissions is still uncertain. Macrophytes comprise an important carbon source, growing during both low and high water conditions, and averaging 5,000 g.m-2.yr-1 in dry weight. The controls exerted by the annual flooding on macrophyte productivity result from two opposing mechanisms: the "horizontal expansion" of plant stands during low water levels and the stem elongation ("vertical growth") promoted by rising water levels. As studies suggest more frequent and intense droughts for the Amazon, determining how these mechanisms interact to control macrophyte net primary productivity (NPP) can lead to a better understanding of the effects of extreme hydrological conditions on autochthonous carbon fixation in the Amazon floodplain. Our study combines remote sensing estimates of macrophyte cover, in situ measurements of macrophyte biomass, historical water level records, and statistical modeling and simulation to answer 1) how plant horizontal expansion and vertical growth respond to inter-annual flooding variability, 2) how these responses modulate annual NPP, and 3) how climatic changes will affect the contribution of macrophytes to the carbon budget of the Amazon floodplain. Biomass data was collected along a stretch of the Lower Amazon Floodplain, at monthly intervals in 2004, and a time series of Radarsat-1 and EOS-MODIS images was acquired for the same area for the 2003-2005 period. Daily river stage data was acquired from the Brazilian National Water Agency (ANA) for the Óbidos station, covering the 1970 - 2011 period. Macrophyte cover was estimated for each available image in the series, using a multitemporal object-based image analysis algorithm. Empirical regression models were used to model the relationship between flood levels and both plant biomass and cover area, and combined into a semi-empirical growth model. Annual NPP was then predicted from daily biomass increments, spanning the 42-year hydrological data record. Resulting macrophyte cover maps had overall accuracies between 60% and 90%, and macrophyte cover area increased fourfold between high and low water seasons. Simulated NPP had marked variability, ranging from 1.06 (0.68, 1.70) Tg C yr-1 in 1980 to 1.63 (1.03, 2.63) Tg C yr-1 in 2009 for the entire mapped area.Values between parentheses show the 95% prediciton limits. Vertical growth was sensitive to extreme floods, but not to severe droughts, while horizontal expansion was affected by both extremely low and high water levels. The simulation revealed a complex pattern of interaction between the two components, indicating that extreme floods may result in larger increases in carbon fixation than extreme droughts. However, the results also suggested that overall flooding amplitude was positively correlated with simulated NPP values (r = 0.63, p > 0.001). An increasing trend in flood amplitude was observed in the hydrological record, which led to a small increase in annual NPP , of approximately 0.0008 TgC.yr-1 for the entire study region.
NASA Astrophysics Data System (ADS)
Bouchez, Julien; Galy, Valier; Hilton, Robert G.; Gaillardet, Jérôme; Moreira-Turcq, Patricia; Pérez, Marcela Andrea; France-Lanord, Christian; Maurice, Laurence
2014-05-01
In order to reveal particulate organic carbon (POC) source and mode of transport in the largest river basin on Earth, we sampled the main sediment-laden tributaries of the Amazon system (Solimões, Madeira and Amazon) during two sampling campaigns, following vertical depth-profiles. This sampling technique takes advantage of hydrodynamic sorting to access the full range of solid erosion products transported by the river. Using the Al/Si ratio of the river sediments as a proxy for grain size, we find a general increase in POC content with Al/Si, as sediments become finer. However, the sample set shows marked variability in the POC content for a given Al/Si ratio, with the Madeira River having lower POC content across the measured range in Al/Si. The POC content is not strongly related to the specific surface area (SSA) of the suspended load, and bed sediments have a much lower POC/SSA ratio. These data suggest that SSA exerts a significant, yet partial, control on POC transport in Amazon River suspended sediment. We suggest that the role of clay mineralogy, discrete POC particles and rock-derived POC warrant further attention in order to fully understand POC transport in large rivers.
Migration Within the Frontier: The Second Generation Colonization in the Ecuadorian Amazon
Carr, David L.; Bilsborrow, Richard E.
2009-01-01
Since the 1970s, migration to the Amazon has led to a growing human presence and resulting dramatic changes in the physical landscape of the Northern Ecuadorian Amazon frontier, including considerable deforestation. Over time, a second demographic phenomenon has emerged with the children of the original migrants leaving settler farms to set out on their own. The vast majority have remained in the Amazon region, some contributing to further changes in land use via rural-rural migration to establish new farms and others to incipient urbanization. This paper uses longitudinal, multi-scale data on settler colonists between 1990 and 1999 to analyze rural-rural and rural-urban migration among second-generation colonists within the region. Following a description of migrants and settlers in terms of their individual, household and community characteristics, a multinomial discrete-time hazard model is used to estimate the determinants of out-migration of the second generation settlers to both urban and rural areas. We find significant differences in the determinants of migration to the two types of destinations in personal characteristics, human capital endowments, stage of farm and household lifecycles, migration networks, and access to community resources and infrastructure. The paper concludes with a discussion of policy implications of migrants' choice of rural versus urban destinations. PMID:19657471
CCN numerical simulations for the GoAmazon with the OLAM model
NASA Astrophysics Data System (ADS)
Ramos-da-Silva, R.; Haas, R.; Barbosa, H. M.; Machado, L.
2015-12-01
Manaus is a large city in the center of the Amazon rainforest. The GoAmazon field project is exploring the region through various data collection and modeling to investigate in impacts of the urban polluted plume on the surrounding pristine areas. In this study a numerical model was applied to simulate the atmospheric dynamics and the Cloud Condensation Nucleai (CCN) concentrations evolution. Simulations with and without the urban plume was performed to identify its dynamics and local impacts. The results show that the land surface characteristics has important hole on the CCN distribution and rainfall over the region. At the south of Manaus the atmospheric dynamics is dominated by the cloud streets that are aligned with the trade winds and the Amazon River. At the north of Manaus, the Negro River produces the advection of a more stable atmosphere causing a higher CCN concentration on the boundary layer. Assuming a local high CCN concentration at the Manaus boundary layer region, the simulations show that the land-atmosphere interaction sets important dynamics on the plume. The model shows that the CCN plume moves along with the flow towards southwest of Manaus following the cloud streets and the river direction having the highest concentrations over the most stable water surface regions.
Ribas, Jonas; Carreño, Ana Maria
2010-01-01
In Brazil, diseases caused by insect bites are frequent. Therefore, it is extremely important that prophylatic measures are adequately carried out, especially in endemic areas such as the Amazon which receives a great number of visitors, for both business and tourism purposes.. To evaluate the use of insect repellents available in the market by military personnel who often go in missions in the middle of the jungle, in the Amazon region. Fifty - one militaries in the Amazon region were selected and they answered a questionnaire in June/2008. 63,7% of the militaries used products that contained Deet in the maximum concentration of only 15% that has minimum repellent action; 36% reported to combine these products with sun protective products which increased the risk of intoxication; 36,4% used a natural repellent during their missions; two of the militaries participants used vitamin B and considered their repellent action ineffective. The repellents that contain Deet and which were used by the group present concentrations that are lower than the concentrations considered safe for using in the jungle. It was frequent the combination of Deet with sun protective products ,which is a potentially toxic association. Natural repellents that have "andiroba" and" copaíba" as components presented a higher perception of protection from the participants.
Begot, Alberto L.; Ramos, Ofir de S.
2016-01-01
Background The common hematophagous bat, Desmodus rotundus, is one of the main wild reservoirs of rabies virus in several regions in Latin America. New production practices and changed land use have provided environmental features that have been very favorable for D. rotundus bat populations, making this species the main transmitter of rabies in the cycle that involves humans and herbivores. In the Amazon region, these features include a mosaic of environmental, social, and economic components, which together creates areas with different levels of risk for human and bovine infections, as presented in this work in the eastern Brazilian Amazon. Methodology We geo-referenced a total of 175 cases of rabies, of which 88% occurred in bovines and 12% in humans, respectively, and related these cases to a number of different geographical and biological variables. The spatial distribution was analyzed using the Kernel function, while the association with independent variables was assessed using a multi-criterion Analytical Hierarchy Process (AHP) technique. Findings The spatiotemporal analysis of the occurrence of rabies in bovines and humans found reduction in the number of cases in the eastern state of Pará, where no more cases were recorded in humans, whereas high infection rates were recorded in bovines in the northeastern part of the state, and low rates in the southeast. The areas of highest risk for bovine rabies are found in the proximity of rivers and highways. In the case of human rabies, the highest concentration of high-risk areas was found where the highway network coincides with high densities of rural and indigenous populations. Conclusion The high-risk areas for human and bovine rabies are patchily distributed, and related to extensive deforested areas, large herds of cattle, and the presence of highways. These findings provide an important database for the generation of epidemiological models that could support the development of effective prevention measures and controls. PMID:27388498
Reevaluating Suitability Estimates Based on Dynamics of Cropland Expansion in the Brazilian Amazon
NASA Technical Reports Server (NTRS)
Morton, Douglas C.; Noojipady, Praveen; Macedo, Marcia M.; Victoria, Daniel C.; Bolfe, Edson L.
2016-01-01
Agricultural suitability maps are a key input for land use zoning and projections of cropland expansion. Suitability assessments typically consider edaphic conditions, climate, crop characteristics, and sometimes incorporate accessibility to transportation and market infrastructure. However, correct weighting among these disparate factors is challenging, given rapid development of new crop varieties, irrigation, and road networks, as well as changing global demand for agricultural commodities. Here, we compared three independent assessments of cropland suitability to spatial and temporal dynamics of agricultural expansion in the Brazilian state of Mato Grosso during 2001 2012. We found that areas of recent cropland expansion identified using satellite data were generally designated as low to moderate suitability for rainfed crop production. Our analysis highlighted the abrupt nature of suitability boundaries, rather than smooth gradients of agricultural potential, with little additional cropland expansion beyond the extent of the flattest areas (0-2% slope). Satellite-based estimates of the interannual variability in the use of existing crop areas also provided an alternate means to assess suitability. On average, cropland areas in the Cerrado biome had higher utilization (84%) than croplands in the Amazon region of northern Mato Grosso (74%). Areas of more recent expansion had lower utilization than croplands established before 2002, providing empirical evidence for lower suitability or alternative management strategies (e.g., pasture soya rotations) for lands undergoing more recent land use transitions. This unplanted reserve constitutes a large area of potentially available cropland (PAC)without further expansion, within the management limits imposed for pest management and fallow cycles. Using two key constraints on future cropland expansion, slope and restrictions on further deforestation of Amazon or Cerrado vegetation, we found little available flat land for further legal expansion of crop production in Mato Grosso. Dynamics of cropland expansion from more than a decade of satellite observations indicated narrow ranges of suitability criteria, restricting PAC under current policy conditions, and emphasizing the advantages of field-scale information to assess suitability and utilization.
NASA Astrophysics Data System (ADS)
Gensac, Erwan; Martinez, Jean-Michel; Vantrepotte, Vincent; Anthony, Edward J.
2016-04-01
Fine-grained sediments supplied to the Ocean by the Amazon River and their transport under the influence of continental and oceanic forcing drives the geomorphic change along the 1500 km-long coast northward to the Orinoco River delta. The aim of this study is to give an encompassing view of the sediment dynamics in the shallow coastal waters from the Amazon River mouth to the Capes region (northern part of the Amapa region of Brazil and eastern part of French Guiana), where large mud banks are formed. Mud banks are the overarching features in the dynamics of the Amazon-Orinoco coast. They start migrating northward in the Capes region. Suspended Particulate Matter (SPM) concentrations were calculated from satellite products (MODIS Aqua and Terra) acquired over the period 2000-2013. The Census-X11 decomposition method used to discriminate short-term, seasonal and long-term time components of the SPM variability has rendered possible a robust analysis of the impact of continental and oceanic forcing. Continental forcing agents considered are the Amazon River water discharge, SPM concentration and sediment discharge. Oceanic forcing comprises modelled data of wind speed and direction, wave height and direction, and currents. A 150 km-long area of accretion is detected at Cabo Norte that may be linked with a reported increase in the river's sediment discharge concurrent with the satellite data study period. We also assess the rate of mud bank migration north of Cabo Norte, and highlight its variability. Although we confirm a 2 km y-1 migration rate, in agreement with other authors, we show that this velocity may be up to 5 km y-1 along the Cabo Orange region, and we highlight the effect of water discharge by major rivers debouching on this coastal mud belt in modulating such rates. Finally, we propose a refined sediment transport pattern map of the region based on our results and of previous studies in the area such as the AMASSEDS programme, and discuss the relationship between sediment transport and accumulation patterns and the coastal geomorphology of this region.
Affonso, A G; Queiroz, H L; Novo, E M L M
2015-11-01
This paper examines water properties from lakes, (depression lakes, sensu Junk et al., 2012), channels (scroll lakes with high connectivity, sensu Junk et al., 2012) and paleo-channels (scroll lakes with low connectivity-sensu Junk et al., 2012, locally called ressacas) located in Mamirauá Sustainable Development Reserve, in Central Amazon floodplain, Amazonas, Brazil. We analysed surface temperature, conductivity, pH, dissolved oxygen, turbidity, transparency, suspended inorganic and organic matter, chlorophyll-a, pheophytin, total nitrogen, total phosphorus, organic and inorganic carbon in 2009 high water phase, 2009 and 2010 low water phases. Multivariate statistical analyses of 24 aquatic systems (6 ressacas, 12 lakes and 6 channels, 142 samples) were applied to the variables in order to: 1) quantify differences among aquatic system types; 2) assess how those differences are affected in the different phases of the hydrological year. First, we analysed the entire set of variables to test for differences among phases of the hydrological year and types of aquatic systems using a PERMANOVA two-way crossed design. The results showed that the all measured limnological variables are distinct regarding both factors: types of aquatic systems and hydrological phases. In general, the magnitude and amplitude of all variables were higher in the low water phase than in the high water phase, except for water transparency in all aquatic system's types. PERMANOVA showed that the differences between aquatic system's types and hydrological phases of all variables were highly significant for both main factors (type and phase) and for the type x phase interaction. Limnological patterns of Amazon floodplain aquatic systems are highly dynamic, dependent on the surrounding environment, flood pulse, main river input and system type. These patterns show how undisturbed systems respond to natural variability in such a diverse environment, and how distinct are those aquatic systems, especially during the low water phase. Aquatic systems in Mamirauá floodplain represent limnological patterns of almost undisturbed areas and can be used as future reference for comparison with disturbed areas, such as those of the Lower Amazon, and as a baseline for studies on the effects of anthropogenic influences and climate change and on Amazon aquatic ecosystem.
NASA Astrophysics Data System (ADS)
Beck, V.; Gerbig, C.; Koch, T.; Bela, M. M.; Longo, K. M.; Freitas, S. R.; Kaplan, J. O.; Prigent, C.; Bergamaschi, P.; Heimann, M.
2013-08-01
The Amazon region, being a large source of methane (CH4), contributes significantly to the global annual CH4 budget. For the first time, a forward and inverse modelling framework on regional scale for the purpose of assessing the CH4 budget of the Amazon region is implemented. Here, we present forward simulations of CH4 as part of the forward and inverse modelling framework based on a modified version of the Weather Research and Forecasting model with chemistry that allows for passive tracer transport of CH4, carbon monoxide, and carbon dioxide (WRF-GHG), in combination with two different process-based bottom-up models of CH4 emissions from anaerobic microbial production in wetlands and additional datasets prescribing CH4 emissions from other sources such as biomass burning, termites, or other anthropogenic emissions. We compare WRF-GHG simulations on 10 km horizontal resolution to flask and continuous CH4 observations obtained during two airborne measurement campaigns within the Balanço Atmosférico Regional de Carbono na Amazônia (BARCA) project in November 2008 and May 2009. In addition, three different wetland inundation maps, prescribing the fraction of inundated area per grid cell, are evaluated. Our results indicate that the wetland inundation maps based on remote-sensing data represent the observations best except for the northern part of the Amazon basin and the Manaus area. WRF-GHG was able to represent the observed CH4 mixing ratios best at days with less convective activity. After adjusting wetland emissions to match the averaged observed mixing ratios of flights with little convective activity, the monthly CH4 budget for the Amazon basin obtained from four different simulations ranges from 1.5 to 4.8 Tg for November 2008 and from 1.3 to 5.5 Tg for May 2009. This corresponds to an average CH4 flux of 9-31 mg m-2 d-1 for November 2008 and 8-36 mg m-2 d-1 for May 2009.
Ferrari, Stephen F.; Vasconcelos, Huann C. G.; Mendes-Junior, Raimundo N. G.; Araújo, Andrea S.; Costa-Campos, Carlos Eduardo; Nascimento, Walace S.; Isaac, Victoria J.
2016-01-01
Urbanization causes environmental impacts that threaten the health of aquatic communities and alter their recovery patterns. In this study, we evaluated the diversity of intertidal fish in six areas affected by urbanization (areas with native vegetation, deforested areas, and areas in process of restoration of vegetation) along an urban waterfront in the Amazon River. 20 species were identified, representing 17 genera, 14 families, and 8 orders. The different degrees of habitat degradation had a major effect on the composition of the fish fauna; the two least affected sectors were the only ones in that all 20 species were found. Eight species were recorded in the most degraded areas. The analysis revealed two well-defined groups, coinciding with the sectors in better ecological quality and degraded areas, respectively. The native vegetation has been identified as the crucial factor to the recovery and homeostasis of the studied ecosystem, justifying its legal protection and its use in the restoration and conservation of altered and threatened environments. These results reinforce the importance of maintaining the native vegetation as well as its restoration in order to benefit of the fish populations in intertidal zones impacted by alterations resulting from inadequate urbanization. PMID:27699201
Actor-specific contributions to the deforestation slowdown in the Brazilian Amazon
Godar, Javier; Gardner, Toby A.; Tizado, E. Jorge
2014-01-01
Annual deforestation rates in the Brazilian Amazon fell by 77% between 2004 and 2011, yet have stabilized since 2009 at 5,000–7,000 km2. We provide the first submunicipality assessment, to our knowledge, of actor-specific contributions to the deforestation slowdown by linking agricultural census and remote-sensing data on deforestation and forest degradation. Almost half (36,158 km2) of the deforestation between 2004 and 2011 occurred in areas dominated by larger properties (>500 ha), whereas only 12% (9,720 km2) occurred in areas dominated by smallholder properties (<100 ha). In addition, forests in areas dominated by smallholders tend to be less fragmented and less degraded. However, although annual deforestation rates fell during this period by 68–85% for all actors, the contribution of the largest landholders (>2,500 ha) to annual deforestation decreased over time (63% decrease between 2005 and 2011), whereas that of smallholders went up by a similar amount (69%) during the same period. In addition, the deforestation share attributable to remote areas increased by 88% between 2009 and 2011. These observations are consistent across the Brazilian Amazon, regardless of geographical differences in actor dominance or socioenvironmental context. Our findings suggest that deforestation policies to date, which have been particularly focused on command and control measures on larger properties in deforestation hotspots, may be increasingly limited in their effectiveness and fail to address all actors equally. Further reductions in deforestation are likely to be increasingly costly and require actor-tailored approaches, including better monitoring to detect small-scale deforestation and a shift toward more incentive-based conservation policies. PMID:25313087
Araujo, Moacyr; Noriega, Carlos; Hounsou-Gbo, Gbekpo Aubains; Veleda, Doris; Araujo, Julia; Bruto, Leonardo; Feitosa, Fernando; Flores-Montes, Manuel; Lefèvre, Nathalie; Melo, Pedro; Otsuka, Amanda; Travassos, Keyla; Schwamborn, Ralf; Neumann-Leitão, Sigrid
2017-01-01
The Amazon generates the world's largest offshore river plume, which covers extensive areas of the tropical Atlantic. The data and samples in this study were obtained during the oceanographic cruise Camadas Finas III in October 2012 along the Amazon River-Ocean Continuum (AROC). The cruise occurred during boreal autumn, when the river plume reaches its maximum eastward extent. In this study, we examine the links between physics, biogeochemistry and plankton community structure along the AROC. Hydrographic results showed very different conditions, ranging from shallow well-mixed coastal waters to offshore areas, where low salinity Amazonian waters mix with open ocean waters. Nutrients, mainly [Formula: see text] and [Formula: see text], were highly depleted in coastal regions, and the magnitude of primary production was greater than that of respiration (negative apparent oxygen utilization). In terms of phytoplankton groups, diatoms dominated the region from the river mouth to the edge of the area affected by the North Brazil Current (NBC) retroflection (with chlorophyll a concentrations ranging from 0.02 to 0.94 mg m -3 ). The North Equatorial Counter Current (NECC) region, east of retroflection, is fully oligotrophic and the most representative groups are Cyanobacteria and dinoflagellates. Additionally, in this region, blooms of cyanophyte species were associated with diatoms and Mesozooplankton (copepods). A total of 178 zooplankton taxa were observed in this area, with Copepoda being the most diverse and abundant group. Two different zooplankton communities were identified: a low-diversity, high-abundance coastal community and a high-diversity, low-abundance oceanic community offshore. The CO 2 fugacity (fCO 2 sw), calculated from total alkalinity (1,450 < TA < 2,394 μmol kg -1 ) and dissolved inorganic carbon (1,303 < DIC < 2,062 μmol kg -1 ) measurements, confirms that the Amazon River plume is a sink of atmospheric CO 2 in areas with salinities <35 psu, whereas, in regions with salinities >35 and higher-intensity winds, the CO 2 flux is reversed. Lower fCO 2 sw values were observed in the NECC area. The ΔfCO 2 in this region was less than 5 μatm (-0.3 mmol m -2 d -1 ), while the ΔfCO 2 in the coastal region was approximately 50 μatm (+3.7 mmol m -2 d -1 ). During the cruise, heterotrophic and autotrophic processes were observed and are indicative of the influences of terrestrial material and biological activity, respectively.
Araujo, Moacyr; Noriega, Carlos; Hounsou-gbo, Gbekpo Aubains; Veleda, Doris; Araujo, Julia; Bruto, Leonardo; Feitosa, Fernando; Flores-Montes, Manuel; Lefèvre, Nathalie; Melo, Pedro; Otsuka, Amanda; Travassos, Keyla; Schwamborn, Ralf; Neumann-Leitão, Sigrid
2017-01-01
The Amazon generates the world's largest offshore river plume, which covers extensive areas of the tropical Atlantic. The data and samples in this study were obtained during the oceanographic cruise Camadas Finas III in October 2012 along the Amazon River-Ocean Continuum (AROC). The cruise occurred during boreal autumn, when the river plume reaches its maximum eastward extent. In this study, we examine the links between physics, biogeochemistry and plankton community structure along the AROC. Hydrographic results showed very different conditions, ranging from shallow well-mixed coastal waters to offshore areas, where low salinity Amazonian waters mix with open ocean waters. Nutrients, mainly NO3− and SiO2−, were highly depleted in coastal regions, and the magnitude of primary production was greater than that of respiration (negative apparent oxygen utilization). In terms of phytoplankton groups, diatoms dominated the region from the river mouth to the edge of the area affected by the North Brazil Current (NBC) retroflection (with chlorophyll a concentrations ranging from 0.02 to 0.94 mg m−3). The North Equatorial Counter Current (NECC) region, east of retroflection, is fully oligotrophic and the most representative groups are Cyanobacteria and dinoflagellates. Additionally, in this region, blooms of cyanophyte species were associated with diatoms and Mesozooplankton (copepods). A total of 178 zooplankton taxa were observed in this area, with Copepoda being the most diverse and abundant group. Two different zooplankton communities were identified: a low-diversity, high-abundance coastal community and a high-diversity, low-abundance oceanic community offshore. The CO2 fugacity (fCO2sw), calculated from total alkalinity (1,450 < TA < 2,394 μmol kg−1) and dissolved inorganic carbon (1,303 < DIC < 2,062 μmol kg−1) measurements, confirms that the Amazon River plume is a sink of atmospheric CO2 in areas with salinities <35 psu, whereas, in regions with salinities >35 and higher-intensity winds, the CO2 flux is reversed. Lower fCO2sw values were observed in the NECC area. The ΔfCO2 in this region was less than 5 μatm (−0.3 mmol m−2 d−1), while the ΔfCO2 in the coastal region was approximately 50 μatm (+3.7 mmol m−2 d−1). During the cruise, heterotrophic and autotrophic processes were observed and are indicative of the influences of terrestrial material and biological activity, respectively. PMID:28824554
Synergy between land use and climate change increases future fire risk in Amazon forests
Le Page, Yannick; Morton, Douglas; Hartin, Corinne; ...
2017-12-20
Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactionsmore » between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change – Representative Concentration Pathway (RCP) 8.5 – projected understory fires increase in frequency and duration, burning 4–28 times more forest in 2080–2100 than during 1990–2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9–5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.« less
Synergy between land use and climate change increases future fire risk in Amazon forests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Page, Yannick; Morton, Douglas; Hartin, Corinne
Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactionsmore » between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change – Representative Concentration Pathway (RCP) 8.5 – projected understory fires increase in frequency and duration, burning 4–28 times more forest in 2080–2100 than during 1990–2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9–5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.« less
Palermo, Pedro M; Aguilar, Patricia V; Sanchez, Juan F; Zorrilla, Víctor; Flores-Mendoza, Carmen; Huayanay, Anibal; Guevara, Carolina; Lescano, Andrés G; Halsey, Eric S
2016-11-02
The transmission dynamics of many arboviruses in the Amazon Basin region have not been fully elucidated, including the vectors and natural reservoir hosts. Identification of blood meal sources in field-caught mosquitoes could yield information for identifying potential arbovirus vertebrate hosts. We identified blood meal sources in 131 mosquitoes collected from areas endemic for arboviruses in the Peruvian Department of Loreto by sequencing polymerase chain reaction amplicons of the cytochrome b gene. Psorophora (Janthinosoma) albigenu, Psorophora (Grabhamia) cingulata, Mansonia humeralis, Anopheles oswaldoi s.l., and Anopheles benarrochi s.l. had mainly anthropophilic feeding preferences; Aedes (Ochlerotatus) serratus, and Aedes (Ochlerotatus) fulvus had feeding preferences for peridomestic animals; and Culex (Melanoconion) spp. fed on a variety of vertebrates, mainly rodents (spiny rats), birds, and amphibians. On the basis of these feeding preferences, many mosquitoes could be considered as potential enzootic and bridge arbovirus vectors in the Amazon Basin of Peru. © The American Society of Tropical Medicine and Hygiene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Saewung
Manaus, a city of nearly two million people, represents an isolated urban area having a distinct urban pollution plume within the otherwise pristine Amazon Basin. The plume has high concentrations of oxides of nitrogen and sulfur, carbon monoxide, particle concentrations, and soot, among other pollutants. Critically, the distinct plume in the setting of the surrounding tropical rain forest serves as a natural laboratory to allow direct comparisons between periods of pollution influence to those of pristine conditions. The funded activity of this report is related to the Brazil-USA collaborative project during the two Intensive Operating Periods (wet season, 1 Febmore » - 31 Mar 2014; dry season, 15 Aug - 15 Oct 2014) of GoAmazon2014/5. The project addresses key science questions regarding the modification of the natural atmospheric chemistry and particle microphysics of the forest by present and future anthropogenic pollution.« less
Brazilian Amazon Roads and Parks: Temporal & Spatial Deforestation Dynamics
NASA Astrophysics Data System (ADS)
Pfaff, A.; Robalino, J.
2011-12-01
Heterogeneous Forest Impacts of Transport Infrastructure: spatial frontier dynamics & impacts of Brazilian Amazon road changes Prior research on road impacts has almost completely ignored heterogeneity of impacts and as a result both empirically understated potential impact and missed policy potential. We note von Thunen's model suggests not only heterogeneity with distance from market but also specifically road impacts rising then falling with distance ('non-monoThunicity') Endogenous development and partial adjustment dynamics support this for the short run. Causal effects result from studying Brazilian Amazon deforestation (1976-87, 2000-04) using matching for short-run responses to lagged new roads changes (1968-75, 1985-00). We show the critical role of prior development, proxied by 1968 and 1985 road distances, for which exact matching addresses development trends and transforms impact estimates. Splitting the sample on this measure finds confirmation of the nonmonotonic predictions: new road impacts are relatively low if a prior road was close, such that prior transport access and endogenous development dynamics compete with the new road for influence, but also if a prior road was far, since first-decade adjustment in pristine areas is limited; yet in between these bounds, investments immediately raise deforestation significantly. This pattern helps to explain lower estimates within research on a single average impact. It suggests potential for REDD if a country chooses to shift its spatial transport networks. Protected Areas & Brazilian Amazon Deforestation: modeling and testing the impacts of varied PA strategies We model and then estimate the impacts of multiple types of protected areas upon 2000 - 2004 deforestation in the Brazilian Amazon. Our modeling starts with federal versus state objectives and predicts differences in both choice and implementation of each PA strategy that we examine. Our empirical examination brings not only breakdowns sufficient to test the model's implications but also, critically, explicit controls for the influences of the characteristics of protected lands. Controlling for how PAs differ from unprotected lands cuts impact estimates roughly in half, implying that accounting for and planning around site characteristics should be a part of REDD. For instance, we highlight differences among the improved impacts estimates across PA subsets: Federal vs. State vs. Indigenous; 1980s vs. 1990s; and Integral Protection vs. Sustainable Use. Without correcting for the differences in land characteristics, each of the subsets we examine is estimated to cause significant reduction in deforestation. Corrections find Federal and Indigenous prevented more clearing than did State, while Sustainable Use areas blocked more deforestation than Integral Protection. The reason for these unequal shifts in estimates is that the different PA subsets were allocated to different types of locations. That protection's impact is not uniform is important for REDD and those designing institutions should note what local planners may favor.
Healthcare Supported by Data Mule Networks in Remote Communities of the Amazon Region
Coutinho, Mauro Margalho; Efrat, Alon; Richa, Andrea
2014-01-01
This paper investigates the feasibility of using boats as data mule nodes, carrying medical ultrasound videos from remote and isolated communities in the Amazon region in Brazil, to the main city of that area. The videos will be used by physicians to perform remote analysis and follow-up routine of prenatal examinations of pregnant women. Two open source simulators (the ONE and NS-2) were used to evaluate the results obtained utilizing a CoDPON (continuous displacement plan oriented network). The simulations took into account the connection times between the network nodes (boats) and the number of nodes on each boat route. PMID:27433519
Unofficial Road Building in the Brazilian Amazon: Dilemmas and Models for Road Governance
NASA Technical Reports Server (NTRS)
Perz, Stephen G.; Overdevest, Christine; Caldas, Marcellus M.; Walker, Robert T.; Arima, Eugenio Y.
2007-01-01
Unofficial roads form dense networks in landscapes, generating a litany of negative ecological outcomes, but unofficial roads in frontier areas are also instrumental in local livelihoods and community development. This trade-off poses dilemmas for the governance of unofficial roads. Unofficial road building in frontier areas of the Brazilian Amazon illustrates the challenges of 'road governance.' Both state-based and community based governance models exhibit important liabilities for governing unofficial roads. Whereas state-based governance has experienced difficulties in adapting to specific local contexts and interacting effectively with local interest groups, community-based governance has a mixed record owing to social inequalities and conflicts among local interest groups. A state-community hybrid model may offer more effective governance of unofficial road building by combining the oversight capacity of the state with locally grounded community management via participatory decision-making.
Mouth of the Amazon River as seen from STS-58
1993-10-30
STS058-107-083 (18 Oct.-1 Nov. 1993) --- A near-nadir view of the mouth of the Amazon River, that shows all signs of being a relatively healthy system, breathing and exhaling. The well-developed cumulus field over the forested areas on both the north and south sides of the river (the view is slightly to the west) shows that good evapotranspiration is underway. The change in the cloud field from the moisture influx from the Atlantic (the cloud fields over the ocean are parallel to the wind direction) to perpendicular cloud fields over the land surface are normal. This change in direction is caused by the increased surface roughness over the land area. The plume of the river, although turbid, is no more or less turbid than it has been reported since the Portuguese first rounded Brasil's coast at the end of the 15th Century.
Archaeal Community Changes Associated with Cultivation of Amazon Forest Soil with Oil Palm
Tupinambá, Daiva Domenech; Cantão, Maurício Egídio; Costa, Ohana Yonara Assis; Bergmann, Jessica Carvalho; Kruger, Ricardo Henrique; Kyaw, Cynthia Maria; Barreto, Cristine Chaves; Quirino, Betania Ferraz
2016-01-01
This study compared soil archaeal communities of the Amazon forest with that of an adjacent area under oil palm cultivation by 16S ribosomal RNA gene pyrosequencing. Species richness and diversity were greater in native forest soil than in the oil palm-cultivated area, and 130 OTUs (13.7%) were shared between these areas. Among the classified sequences, Thaumarchaeota were predominant in the native forest, whereas Euryarchaeota were predominant in the oil palm-cultivated area. Archaeal species diversity was 1.7 times higher in the native forest soil, according to the Simpson diversity index, and the Chao1 index showed that richness was five times higher in the native forest soil. A phylogenetic tree of unclassified Thaumarchaeota sequences showed that most of the OTUs belong to Miscellaneous Crenarchaeotic Group. Several archaeal genera involved in nutrient cycling (e.g., methanogens and ammonia oxidizers) were identified in both areas, but significant differences were found in the relative abundances of Candidatus Nitrososphaera and unclassified Soil Crenarchaeotic Group (prevalent in the native forest) and Candidatus Nitrosotalea and unclassified Terrestrial Group (prevalent in the oil palm-cultivated area). More studies are needed to culture some of these Archaea in the laboratory so that their metabolism and physiology can be studied. PMID:27006640
Sánchez-Ribas, Jordi; Oliveira-Ferreira, Joseli; Rosa-Freitas, Maria Goreti; Trilla, Lluís; Silva-do-Nascimento, Teresa Fernandes
2015-09-01
Here we present the first in a series of articles about the ecology of immature stages of anophelines in the Brazilian Yanomami area. We propose a new larval habitat classification and a new larval sampling methodology. We also report some preliminary results illustrating the applicability of the methodology based on data collected in the Brazilian Amazon rainforest in a longitudinal study of two remote Yanomami communities, Parafuri and Toototobi. In these areas, we mapped and classified 112 natural breeding habitats located in low-order river systems based on their association with river flood pulses, seasonality and exposure to sun. Our classification rendered seven types of larval habitats: lakes associated with the river, which are subdivided into oxbow lakes and nonoxbow lakes, flooded areas associated with the river, flooded areas not associated with the river, rainfall pools, small forest streams, medium forest streams and rivers. The methodology for larval sampling was based on the accurate quantification of the effective breeding area, taking into account the area of the perimeter and subtypes of microenvironments present per larval habitat type using a laser range finder and a small portable inflatable boat. The new classification and new sampling methodology proposed herein may be useful in vector control programs.
Sánchez-Ribas, Jordi; Oliveira-Ferreira, Joseli; Rosa-Freitas, Maria Goreti; Trilla, Lluís; Silva-do-Nascimento, Teresa Fernandes
2015-01-01
Here we present the first in a series of articles about the ecology of immature stages of anophelines in the Brazilian Yanomami area. We propose a new larval habitat classification and a new larval sampling methodology. We also report some preliminary results illustrating the applicability of the methodology based on data collected in the Brazilian Amazon rainforest in a longitudinal study of two remote Yanomami communities, Parafuri and Toototobi. In these areas, we mapped and classified 112 natural breeding habitats located in low-order river systems based on their association with river flood pulses, seasonality and exposure to sun. Our classification rendered seven types of larval habitats: lakes associated with the river, which are subdivided into oxbow lakes and nonoxbow lakes, flooded areas associated with the river, flooded areas not associated with the river, rainfall pools, small forest streams, medium forest streams and rivers. The methodology for larval sampling was based on the accurate quantification of the effective breeding area, taking into account the area of the perimeter and subtypes of microenvironments present per larval habitat type using a laser range finder and a small portable inflatable boat. The new classification and new sampling methodology proposed herein may be useful in vector control programs. PMID:26517655
Spatial and temporal dimensions of landscape fragmentation across the Brazilian Amazon.
Rosa, Isabel M D; Gabriel, Cristina; Carreiras, Joāo M B
2017-01-01
The Brazilian Amazon in the past decades has been suffering severe landscape alteration, mainly due to anthropogenic activities, such as road building and land clearing for agriculture. Using a high-resolution time series of land cover maps (classified as mature forest, non-forest, secondary forest) spanning from 1984 through 2011, and four uncorrelated fragmentation metrics (edge density, clumpiness index, area-weighted mean patch size and shape index), we examined the temporal and spatial dynamics of forest fragmentation in three study areas across the Brazilian Amazon (Manaus, Santarém and Machadinho d'Oeste), inside and outside conservation units. Moreover, we compared the impacts on the landscape of: (1) different land uses (e.g. cattle ranching, crop production), (2) occupation processes (spontaneous vs. planned settlements) and (3) implementation of conservation units. By 2010/2011, municipalities located along the Arc of Deforestation had more than 55% of the remaining mature forest strictly confined to conservation units. Further, the planned settlement showed a higher rate of forest loss, a more persistent increase in deforested areas and a higher relative incidence of deforestation inside conservation units. Distinct agricultural activities did not lead to significantly different landscape structures; the accessibility of the municipality showed greater influence in the degree of degradation of the landscapes. Even with a high proportion of the landscapes covered by conservation units, which showed a strong inhibitory effect on forest fragmentation, we show that dynamic agriculturally driven economic activities, in municipalities with extensive road development, led to more regularly shaped, heavily fragmented landscapes, with higher densities of forest edge.
Boverhof's App Earns Honorable Mention in Amazon's Web Services
» Boverhof's App Earns Honorable Mention in Amazon's Web Services Competition News & Publications News Publications Facebook Google+ Twitter Boverhof's App Earns Honorable Mention in Amazon's Web Services by Amazon Web Services (AWS). Amazon officially announced the winners of its EC2 Spotathon on Monday
Quantification of uncertainties in global grazing systems assessment
NASA Astrophysics Data System (ADS)
Fetzel, T.; Havlik, P.; Herrero, M.; Kaplan, J. O.; Kastner, T.; Kroisleitner, C.; Rolinski, S.; Searchinger, T.; Van Bodegom, P. M.; Wirsenius, S.; Erb, K.-H.
2017-07-01
Livestock systems play a key role in global sustainability challenges like food security and climate change, yet many unknowns and large uncertainties prevail. We present a systematic, spatially explicit assessment of uncertainties related to grazing intensity (GI), a key metric for assessing ecological impacts of grazing, by combining existing data sets on (a) grazing feed intake, (b) the spatial distribution of livestock, (c) the extent of grazing land, and (d) its net primary productivity (NPP). An analysis of the resulting 96 maps implies that on average 15% of the grazing land NPP is consumed by livestock. GI is low in most of the world's grazing lands, but hotspots of very high GI prevail in 1% of the total grazing area. The agreement between GI maps is good on one fifth of the world's grazing area, while on the remainder, it is low to very low. Largest uncertainties are found in global drylands and where grazing land bears trees (e.g., the Amazon basin or the Taiga belt). In some regions like India or Western Europe, massive uncertainties even result in GI > 100% estimates. Our sensitivity analysis indicates that the input data for NPP, animal distribution, and grazing area contribute about equally to the total variability in GI maps, while grazing feed intake is a less critical variable. We argue that a general improvement in quality of the available global level data sets is a precondition for improving the understanding of the role of livestock systems in the context of global environmental change or food security.
Moutinho, Paulo Rufalco; Gil, Luis Herman Soares; Cruz, Rafael Bastos; Ribolla, Paulo Eduardo Martins
2011-06-24
Anopheles darlingi is the major vector of malaria in South America, and its behavior and distribution has epidemiological importance to biomedical research. In Brazil, An. darlingi is found in the northern area of the Amazon basin, where 99.5% of the disease is reported. The study area, known as Ramal do Granada, is a rural settlement inside the Amazon basin in the state of Acre. Population variations and density have been analysed by species behaviour, and molecular analysis has been measured by ND4 mitochondrial gene sequencing. The results show higher density in collections near a recent settlement, suggesting that a high level of colonization decreases the vector presence. The biting activity showed higher activity at twilight and major numbers of mosquitos in the remaining hours of the night in months of high density. From a sample of 110 individual mosquitoes, 18 different haplotypes were presented with a diversity index of 0.895, which is higher than that found in other Anopheles studies. An. darlingi depends on forested regions for their larval and adult survival. In months with higher population density, the presence of mosquitoes persisted in the second part of the night, increasing the vector capacity of the species. Despite the intra-population variation in the transition to rainy season, the seasonal distribution of haplotypes shows no change in the structure population of An. darlingi.
Terrestrial Water Flux Responses to Global Warming in Tropical Rainforest Area
NASA Astrophysics Data System (ADS)
Lan, C. W.; Lo, M. H.; Kumar, S.
2016-12-01
Precipitation extremes are expected to become more frequent in the changing global climate, which may considerably affect the terrestrial hydrological cycle. In this study, Coupled Model Intercomparison Project Phase 5 (CMIP5) archives have been examined to explore the changes in normalized terrestrial water fluxes (TWFn) (precipitation minus evapotranspiration minus total runoff, divided by the precipitation climatology) in three tropical rainforest areas: Maritime Continent, Congo, and Amazon. Results reveal that a higher frequency of intense precipitation events is predicted for the Maritime Continent in the future climate than in the present climate, but not for the Amazon or Congo rainforests. Nonlinear responses to extreme precipitation lead to a reduced groundwater recharge and a proportionately greater amount of direct runoff, particularly for the Maritime Continent, where both the amount and intensity of precipitation increase under global warming. We suggest that the nonlinear response is related to the existence of a higher near-surface soil moisture over the Maritime Continent than that over the Amazon and Congo rainforests. The wetter soil over the Maritime Continent also leads to an increased subsurface runoff. Thus, increased precipitation extremes and concomitantly reduced terrestrial water fluxes (TWF) lead to an intensified hydrological cycle for the Maritime Continent. This has the potential to result in a strong temporal heterogeneity in soil water distribution affecting the ecosystem of the rainforest region and increasing the risk of flooding and/or landslides.
How Pecten Brazil drilled the Amazon basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bleakley, W.B.
1983-09-01
Pecten Brazil overcame numerous obstacles to drill two exploratory wells in the Amazon Basin last year. These included: The threat of low water in normally navigable rivers. Dense jungle growth at both locations. Lack of suitable roads for heavy hauling. Inconvenient distances from supply points. An unusual basalt formation responsible for unique drilling problems. Hundreds of helicopter lifts to move drilling rigs, supplies, and personnel. Pecten contracted with Petrobras, the Brazilian national oil company, to evaluate three blocks in the Amazon jungle, each about 68 miles (110 km) on a side, through seismic study and ultimate drilling. Planning for themore » drilling phase got started on March 17, 1981 with December 1 targeted as spud date for the first well. Actual spud date was November 25, 5 days ahead of schedule, in spite of all obstacles. Pecten has a mid-Amazonas block now under seismic investigation for possible exploratory drilling. Logistics problems in this one provide new difficulties, as the area is extremely wet. Most work is carried on by boat. The company is also looking offshore Bahia, testing the possible extension of the Renconcavo basin. Two wells have already provided good shows of a high pour point oil, with flow rates from 400 to 1,000 b/d. Another area of interest to Pecten is offshore Rio Grande do Norte.« less
Terrestrial water flux responses to global warming in tropical rainforest areas
NASA Astrophysics Data System (ADS)
Lan, Chia-Wei; Lo, Min-Hui; Chou, Chia; Kumar, Sanjiv
2016-05-01
Precipitation extremes are expected to become more frequent in the changing global climate, which may considerably affect the terrestrial hydrological cycle. In this study, Coupled Model Intercomparison Project Phase 5 archives have been examined to explore the changes in normalized terrestrial water fluxes (precipitation minus evapotranspiration minus total runoff, divided by the precipitation climatology) in three tropical rainforest areas: Maritime Continent, Congo, and Amazon. Results show that a higher frequency of intense precipitation events is predicted for the Maritime Continent in the future climate than in the present climate, but not for the Amazon or Congo rainforests. Nonlinear responses to extreme precipitation lead to a reduced groundwater recharge and a proportionately greater amount of direct runoff, particularly for the Maritime Continent, where both the amount and intensity of precipitation increase under global warming. We suggest that the nonlinear response is related to the existence of a higher near-surface soil moisture over the Maritime Continent than that over the Amazon and Congo rainforests. The wetter soil over the Maritime Continent also leads to an increased subsurface runoff. Thus, increased precipitation extremes and concomitantly reduced terrestrial water fluxes lead to an intensified hydrological cycle for the Maritime Continent. This has the potential to result in a strong temporal heterogeneity in soil water distribution affecting the ecosystem of the rainforest region and increasing the risk of flooding and/or landslides.
Amazon Forests Response to Droughts: A Perspective from the MAIAC Product
NASA Technical Reports Server (NTRS)
Bi, Jian; Myneni, Ranga; Lyapustin, Alexei; Wang, Yujie; Park, Taejin; Chi, Chen; Yan, Kai; Knyazikhin, Yuri
2016-01-01
Amazon forests experienced two severe droughts at the beginning of the 21st century: one in 2005 and the other in 2010. How Amazon forests responded to these droughts is critical for the future of the Earth's climate system. It is only possible to assess Amazon forests' response to the droughts in large areal extent through satellite remote sensing. Here, we used the Multi-Angle Implementation of Atmospheric Correction (MAIAC) Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation index (VI) data to assess Amazon forests' response to droughts, and compared the results with those from the standard (Collection 5 and Collection 6) MODIS VI data. Overall, the MAIAC data reveal more realistic Amazon forests inter-annual greenness dynamics than the standard MODIS data. Our results from the MAIAC data suggest that: (1) the droughts decreased the greenness (i.e., photosynthetic activity) of Amazon forests; (2) the Amazon wet season precipitation reduction induced by El Niño events could also lead to reduced photosynthetic activity of Amazon forests; and (3) in the subsequent year after the water stresses, the greenness of Amazon forests recovered from the preceding decreases. However, as previous research shows droughts cause Amazon forests to reduce investment in tissue maintenance and defense, it is not clear whether the photosynthesis of Amazon forests will continue to recover after future water stresses, because of the accumulated damages caused by the droughts.
Sánchez-Ribas, Jordi; Oliveira-Ferreira, Joseli; Gimnig, John E; Pereira-Ribeiro, Cleomar; Santos-Neves, Maycon Sebastião Alberto; Silva-do-Nascimento, Teresa Fernandes
2017-11-16
Many indigenous villages in the Amazon basin still suffer from a high malaria burden. Despite this health situation, there are few studies on the bionomics of anopheline larvae in such areas. This publication aims to identify the main larval habitats of the most abundant anopheline species and to assess their associations with some environmental factors. We conducted a 19-month longitudinal study from January 2013 to July 2014, sampling anopheline larvae in two indigenous Yanomami communities, comprised of four villages each. All natural larval habitats were surveyed every two months with a 350 ml manual dipper, following a standardized larval sampling methodology. In a third study area, we conducted two field expeditions in 2013 followed by four systematic collections during the long dry season of 2014-2015. We identified 177 larval habitats in the three study areas, from which 9122 larvae belonging to 13 species were collected. Although species abundance differed between villages, An. oswaldoi (s.l.) was overall the most abundant species. Anopheles darlingi, An. oswaldoi (s.l.), An. triannulatus (s.s.) and An. mattogrossensis were primarily found in larval habitats that were partially or mostly sun-exposed. In contrast, An. costai-like and An. guarao-like mosquitoes were found in more shaded aquatic habitats. Anopheles darlingi was significantly associated with proximity to human habitations and larval habitats associated with river flood pulses and clear water. This study of anopheline larvae in the Brazilian Yanomami area detected high heterogeneities at micro-scale levels regarding species occurrence and densities. Sun exposure was a major modulator of anopheline occurrence, particularly for An. darlingi. Lakes associated with the rivers, and particularly oxbow lakes, were the main larval habitats for An. darlingi and other secondary malaria vectors. The results of this study will serve as a basis to plan larval source management activities in remote indigenous communities of the Amazon, particularly for those located within low-order river-floodplain systems.
2014-01-01
Background This paper explores patterns of women’s medicinal plant knowledge and use in an urban area of the Brazilian Amazon. Specifically, this paper examines the relationship between a woman’s age and her use and knowledge of medicinal plants. It also examines whether length of residence in three different areas of the Amazon is correlated with a woman’s use and knowledge of medicinal plants. Two of the areas where respondents may have resided, the jungle/seringal and farms/colonias, are classified as rural. The third area (which all of the respondents resided in) was urban. Methods This paper utilizes survey data collected in Rio Branco, Brazil. Researchers administered the survey to 153 households in the community of Bairro da Luz (a pseudonym). The survey collected data on phytotherapeutic knowledge, general phytotherapeutic practice, recent phytotherapeutic practice and demographic information on age and length of residence in the seringal, on a colonia, and in a city. Bivariate correlation coefficients were calculated to assess the inter-relationships among the key variables. Three dependent variables, two measuring general phytotherapeutic practice and one measuring phytotherapeutic knowledge were regressed on the demographic factors. Results The results demonstrate a relationship between a woman’s age and medicinal plant use, but not between age and plant knowledge. Additionally, length of residence in an urban area and on a colonia/farm are not related to medicinal plant knowledge or use. However, length of residence in the seringal/jungle is positively correlated with both medicinal plant knowledge and use. Conclusions The results reveal a vibrant tradition of medicinal plant use in Bairro da Luz. They also indicate that when it comes to place of residence and phytotherapy the meaningful distinction is not rural versus urban, it is seringal versus other locations. Finally, the results suggest that phytotherapeutic knowledge and use should be measured separately since one may not be an accurate proxy for the other. PMID:24565037
NASA Astrophysics Data System (ADS)
Cavalcanti, I. F.
2011-12-01
The two largest river basins in South America are Amazon Basin (AMB) in the tropical region and La Plata Basin (LPB) in subtropical and extratropical regions. Extreme droughts have occurred during this decade in Amazonia region which have affected the transportation, fishing activities with impacts in the local population, and also affecting the forest. Droughts or floods over LPB have impacts on agriculture, hydroelectricity power and social life. Therefore, monthly wet and dry extremes in these two regions have a profound effect on the economy and society. Observed rainfall over Amazon Basin (AMB) and La Plata Basin (LPB) is analyzed in monthly timescale using the Standardized Precipitation Index (SPI), from 1979 to 1999. This period is taken to compare GPCP data with HADCM3 simulations (Hadley Centre) of the 20th century and to analyze reanalyses data which have the contribution of satellite information after 1979. HADCM3 projections using SRES A2 scenario is analyzed in two periods: 2000 to 2020 and 2079 to 2099 to study the extremes frequency in a near future and in a longer timescale. Extreme, severe and moderate cases are identified in the northern and southern sectors of LPB and in the western and eastern sectors of AMB. The main objective is to analyze changes in the frequency of cases, considering the global warming and the associated mechanisms. In the observations for the 20th century, the number of extreme rainy cases is higher than the number of dry cases in both sectors of LPB and AMB. The model simulates this variability in the two sectors of LPB and in the west sector of AMB. In the near future 2000 to 2020 the frequency of wet and dry extremes does not change much in LPB and in the western sector of AMB, but the wet cases increase in the eastern AMB. However, in the period of 2079 to 2099 the projections indicate increase of wet cases in LPB and increase of dry cases in AMB. The influence of large scale features related to Sea Surface Temperature Anomalies, Walker and Hadley circulations, teleconnections, as well as the regional features related to humidity flux are discussed. The extreme droughts of 2005 and 2010 in Amazonia are show to be related to these features.
Confluence of the Amazon and Topajos Rivers, Brazil, South America
1991-08-11
This view shows the confluence of the Amazon and the Topajos Rivers at Santarem, Brazil (2.0S, 55.0W). The Am,azon flows from lower left to upper right of the photo. Below the river juncture of the Amazon and Tapajos, there is considerable deforestation activity along the Trans-Amazon Highway.
Ribera, Melissa C V; Ribera, Ricardo B; Koifman, Rosalina J; Koifman, Sérgio
2015-01-01
Cardiac abnormalities in sickle cell anaemia are frequent and early, despite being more evident in adulthood. The study on cardiac abnormalities is essential in the current context, as, owing to improved health, children are increasingly able to reach adulthood and suffering the consequences of chronic cardiac injury. The aim of this study was to determine the prevalence of echocardiographic changes in patients under 20, suffering from sickle cell disease in Rio Branco, Brazilian Western Amazon. The descriptive epidemiological study compare two sets of children and adolescents, one including sickle cell anaemia patients (n=45), and other one (n=109) without sickle cell anaemia or heart disease. The echocardiographic measurements were indexed according to body surface using z-scores, and the prevalence of echocardiographic changes in both groups, with their respective 95% confidence intervals, ascertained and compared. Compared with the non-sickle cell anaemia series, the sickle cell anaemia group showed z-scores 13.1-fold higher for the diastolic diameter of the left ventricle, 5.2 times higher for the thickness of the posterior wall, 4.9 higher for the left atrium, 2.5 times higher for the right ventricle and 2.0 times higher for the septum thickness. Also the rate of left ventricular mass, systolic pressure of the right ventricle and the relative wall thickness were significantly higher in sickle cell anaemia set. Cardiac abnormalities were observed in 93.5% of patients. Early detection of cardiac abnormalities and quantifying them using the indexation of echocardiographic measurements according to body surface will allow proper identification and attendance of these children.
Abrupt Increases in Amazonian Tree Mortality Due to Drought-Fire Interactions
NASA Technical Reports Server (NTRS)
Brando, Paulo Monteiro; Balch, Jennifer K.; Nepstad, Daniel C.; Morton, Douglas C.; Putz, Francis E.; Coe, Michael T.; Silverio, Divino; Macedo, Marcia N.; Davidson, Eric A.; Nobrega, Caroline C.;
2014-01-01
Interactions between climate and land-use change may drive widespread degradation of Amazonian forests. High-intensity fires associated with extreme weather events could accelerate this degradation by abruptly increasing tree mortality, but this process remains poorly understood. Here we present, to our knowledge, the first field-based evidence of a tipping point in Amazon forests due to altered fire regimes. Based on results of a large-scale, longterm experiment with annual and triennial burn regimes (B1yr and B3yr, respectively) in the Amazon, we found abrupt increases in fire-induced tree mortality (226 and 462%) during a severe drought event, when fuel loads and air temperatures were substantially higher and relative humidity was lower than long-term averages. This threshold mortality response had a cascading effect, causing sharp declines in canopy cover (23 and 31%) and aboveground live biomass (12 and 30%) and favoring widespread invasion by flammable grasses across the forest edge area (80 and 63%), where fires were most intense (e.g., 220 and 820 kW x m(exp -1)). During the droughts of 2007 and 2010, regional forest fires burned 12 and 5% of southeastern Amazon forests, respectively, compared with less than 1% in nondrought years. These results show that a few extreme drought events, coupled with forest fragmentation and anthropogenic ignition sources, are already causing widespread fire-induced tree mortality and forest degradation across southeastern Amazon forests. Future projections of vegetation responses to climate change across drier portions of the Amazon require more than simulation of global climate forcing alone and must also include interactions of extreme weather events, fire, and land-use change.
Abrupt increases in Amazonian tree mortality due to drought-fire interactions.
Brando, Paulo Monteiro; Balch, Jennifer K; Nepstad, Daniel C; Morton, Douglas C; Putz, Francis E; Coe, Michael T; Silvério, Divino; Macedo, Marcia N; Davidson, Eric A; Nóbrega, Caroline C; Alencar, Ane; Soares-Filho, Britaldo S
2014-04-29
Interactions between climate and land-use change may drive widespread degradation of Amazonian forests. High-intensity fires associated with extreme weather events could accelerate this degradation by abruptly increasing tree mortality, but this process remains poorly understood. Here we present, to our knowledge, the first field-based evidence of a tipping point in Amazon forests due to altered fire regimes. Based on results of a large-scale, long-term experiment with annual and triennial burn regimes (B1yr and B3yr, respectively) in the Amazon, we found abrupt increases in fire-induced tree mortality (226 and 462%) during a severe drought event, when fuel loads and air temperatures were substantially higher and relative humidity was lower than long-term averages. This threshold mortality response had a cascading effect, causing sharp declines in canopy cover (23 and 31%) and aboveground live biomass (12 and 30%) and favoring widespread invasion by flammable grasses across the forest edge area (80 and 63%), where fires were most intense (e.g., 220 and 820 kW ⋅ m(-1)). During the droughts of 2007 and 2010, regional forest fires burned 12 and 5% of southeastern Amazon forests, respectively, compared with <1% in nondrought years. These results show that a few extreme drought events, coupled with forest fragmentation and anthropogenic ignition sources, are already causing widespread fire-induced tree mortality and forest degradation across southeastern Amazon forests. Future projections of vegetation responses to climate change across drier portions of the Amazon require more than simulation of global climate forcing alone and must also include interactions of extreme weather events, fire, and land-use change.
Impact of Anthropogenic Emissions on Isoprene Photochemical Oxidation Pathways in Central Amazonia
NASA Astrophysics Data System (ADS)
Thayer, M. P.; Dorris, M. R.; Keutsch, F. N.; Goldstein, A. H.; Guenther, A. B.; Isaacman-VanWertz, G. A.; Jimenez, J. L.; Kim, S.; Liu, Y.; Martin, S. T.; Palm, B. B.; Park, J. H.; Seco, R.; Sjostedt, S. J.; Springston, S. R.; Wernis, R. A.; Yee, L.
2016-12-01
The atmosphere over the Amazon rainforest is characterized by high concentrations of biogenic volatile organic compounds (BVOCs) - most notably isoprene, which is the most abundant non-methane VOC both locally and globally. These BVOCs are photochemically oxidized, forming oVOCs, especially via reaction with the hydroxyl radical (OH). This photochemical processing can result in formation of secondary pollutants such as ozone (O3) and secondary organic aerosol (SOA). During the Green Ocean Amazon campaign (GoAmazon2014/5), we obtained formaldehyde and glyoxal measurements together with OH, peroxy radicals (RO2+HO2), nitrogen oxides (NOx), CO, CO2, O3, (o)VOCs, and aerosol particle size distribution. Here we present data collected during 2014 at the T3 field site, 60 km to the west of Manaus, Brazil (3°12'47.82"S, 60°35'55.32"W). The T3 GoAmazon site varies between sampling strictly pristine (biogenic) emissions and influence from anthropogenic emissions from Manaus, depending on meteorological conditions. The day-to-day oscillation provides an ideal setting for evaluating the impact of pollution from biomass burning and urban emissions on VOC oxidation and resultant secondary pollutant production. Anthropogenic plumes contain not only additional VOC precursors, but also enhanced NOx, which drastically alters the relative importance of various isoprene oxidation pathways. We utilize a 0-D photochemical box model to examine how these factors impact reactivity and pollutant formation. Due to ongoing expansion of human influence and emissions in previously-pristine areas, understanding the sensitivity of biogenic oxidation to anthropogenic influence has significant impacts for tropospheric air quality, both in the rapidly-developing Amazon Basin and other BVOC-dominated regions.
Abrupt increases in Amazonian tree mortality due to drought–fire interactions
Brando, Paulo Monteiro; Balch, Jennifer K.; Nepstad, Daniel C.; Morton, Douglas C.; Putz, Francis E.; Coe, Michael T.; Silvério, Divino; Macedo, Marcia N.; Davidson, Eric A.; Nóbrega, Caroline C.; Alencar, Ane; Soares-Filho, Britaldo S.
2014-01-01
Interactions between climate and land-use change may drive widespread degradation of Amazonian forests. High-intensity fires associated with extreme weather events could accelerate this degradation by abruptly increasing tree mortality, but this process remains poorly understood. Here we present, to our knowledge, the first field-based evidence of a tipping point in Amazon forests due to altered fire regimes. Based on results of a large-scale, long-term experiment with annual and triennial burn regimes (B1yr and B3yr, respectively) in the Amazon, we found abrupt increases in fire-induced tree mortality (226 and 462%) during a severe drought event, when fuel loads and air temperatures were substantially higher and relative humidity was lower than long-term averages. This threshold mortality response had a cascading effect, causing sharp declines in canopy cover (23 and 31%) and aboveground live biomass (12 and 30%) and favoring widespread invasion by flammable grasses across the forest edge area (80 and 63%), where fires were most intense (e.g., 220 and 820 kW⋅m−1). During the droughts of 2007 and 2010, regional forest fires burned 12 and 5% of southeastern Amazon forests, respectively, compared with <1% in nondrought years. These results show that a few extreme drought events, coupled with forest fragmentation and anthropogenic ignition sources, are already causing widespread fire-induced tree mortality and forest degradation across southeastern Amazon forests. Future projections of vegetation responses to climate change across drier portions of the Amazon require more than simulation of global climate forcing alone and must also include interactions of extreme weather events, fire, and land-use change. PMID:24733937
Space Radar Image of Manaus, Brazil
1999-05-01
These two false-color images of the Manaus region of Brazil in South America were acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar on board the space shuttle Endeavour. The image at left was acquired on April 12, 1994, and the image at right was acquired on October 3, 1994. The area shown is approximately 8 kilometers by 40 kilometers (5 miles by 25 miles). The two large rivers in this image, the Rio Negro (at top) and the Rio Solimoes (at bottom), combine at Manaus (west of the image) to form the Amazon River. The image is centered at about 3 degrees south latitude and 61 degrees west longitude. North is toward the top left of the images. The false colors were created by displaying three L-band polarization channels: red areas correspond to high backscatter, horizontally transmitted and received, while green areas correspond to high backscatter, horizontally transmitted and vertically received. Blue areas show low returns at vertical transmit/receive polarization; hence the bright blue colors of the smooth river surfaces can be seen. Using this color scheme, green areas in the image are heavily forested, while blue areas are either cleared forest or open water. The yellow and red areas are flooded forest or floating meadows. The extent of the flooding is much greater in the April image than in the October image and appears to follow the 10-meter (33-foot) annual rise and fall of the Amazon River. The flooded forest is a vital habitat for fish, and floating meadows are an important source of atmospheric methane. These images demonstrate the capability of SIR-C/X-SAR to study important environmental changes that are impossible to see with optical sensors over regions such as the Amazon, where frequent cloud cover and dense forest canopies block monitoring of flooding. Field studies by boat, on foot and in low-flying aircraft by the University of California at Santa Barbara, in collaboration with Brazil's Instituto Nacional de Pesguisas Estaciais, during the first and second flights of the SIR-C/X-SAR system have validated the interpretation of the radar images. http://photojournal.jpl.nasa.gov/catalog/PIA01735
High risk of respiratory diseases in children in the fire period in Western Amazon.
Silva, Pãmela Rodrigues de Souza; Ignotti, Eliane; Oliveira, Beatriz Fátima Alves de; Junger, Washington Leite; Morais, Fernando; Artaxo, Paulo; Hacon, Sandra
2016-06-10
To analyze the toxicological risk of exposure to ozone (O3) and fine particulate matter (PM2.5) among schoolchildren.. Toxicological risk assessment was used to evaluate the risk of exposure to O3 and PM2.5 from biomass burning among schoolchildren aged six to 14 years, residents of Rio Branco, Acre, Southern Amazon, Brazil. We used Monte Carlo simulation to estimate the potential intake dose of both pollutants. During the slash-and-burn periods, O3 and PM2.5 concentrations reached 119.4 µg/m3 and 51.1 µg/m3, respectively. The schoolchildren incorporated medium potential doses regarding exposure to O3 (2.83 μg/kg.day, 95%CI 2.72-2.94). For exposure to PM2.5, we did not find toxicological risk (0.93 μg/kg.day, 95%CI 0.86-0.99). The toxicological risk for exposure to O3 was greater than 1 for all children (QR = 2.75; 95%CI 2.64-2.86). Schoolchildren were exposed to high doses of O3 during the dry season of the region. This posed a toxicological risk, especially to those who had previous diseases.
Muñoz Sánchez, Alba Idaly; Rubiano Mesa, Yurian Lida
2017-05-01
The purpose herein was to describe the meanings on tuberculosis (TB) in rural indigenous communities from a municipality in the Colombian Amazon. This was an ethnographic study with theoretical reference of dialectical hermeneutics, which created focus groups, one for each rural community of Puerto Nariño, for a total of 15 focus groups. The participants were community leaders and health referents. Seventy-nine subjects participated, mostly midwives, kurakas, traditional physicians, and shamans. The analysis yielded four categories: knowledge of TB, attitudes regarding TB, community practices of TB, and the intervention proposal on TB by the participants. It was found that community leaders recognize TB as a disease that can cause death, but which can be cured if timely care is secured. The study also identified the need to conjugate western medicine with traditional medicine. It is recognized that meanings may impact upon knowledge, attitudes, and practices that affect early detection and treatment of the disease. In addition, this work corroborates the need to strengthen and develop educational programs on tuberculosis supported by the real needs of the communities to enhance their knowledge, attitudes, and practices on the disease. Copyright© by the Universidad de Antioquia.
Ishak, Marluísa de Oliveira Guimarães; Costa, Maurimélia Mesquita; Almeida, Núbia Caroline Costa de; Santiago, Angélica Menezes; Brito, William Botelho de; Vallinoto, Antonio Carlos Rosário; Azevedo, Vânia Nakauth; Ishak, Ricardo
2015-01-01
Chlamydia infection is associated with debilitating human diseases including trachoma, pneumonia, coronary heart disease and urogenital diseases. Serotypes of C. trachomatis show a fair correlation with the group of diseases they cause, and their distribution follows a well-described geographic pattern. Serotype A, a trachoma-associated strain, is known for its limited dissemination in the Middle East and Northern Africa. However, knowledge on the spread of bacteria from the genus Chlamydia as well as the distribution of serotypes in Brazil is quite limited. Blood samples of 1,710 individuals from ten human population groups in the Amazon region of Brazil were examined for antibodies to Chlamydia using indirect immunofluorescence and microimmunofluorescence assays. The prevalence of antibodies to Chlamydia ranged from 23.9% (Wayana-Apalai) to 90.7% (Awa-Guaja) with a mean prevalence of 50.2%. Seroreactivity was detected to C. pneumoniae and to all serotypes of C. trachomatis tested; furthermore, we report clear evidence of the as-yet-undescribed occurrence of serotype A of C. trachomatis. Specific seroreactivity not only accounts for the large extent of dissemination of C. trachomatis in the Amazon region of Brazil but also shows an expanded area of occurrence of serotype A outside the epidemiological settings previously described. Furthermore, these data suggest possible routes of Chlamydia introduction into the Amazon region from the massive human migration that occurred during the 1,700s.
Feedbacks between land cover and climate changes in the Brazilian Amazon and Cerrado biomes
NASA Astrophysics Data System (ADS)
Coe, M. T.; Silverio, D. V.; Bustamante, M.; Macedo, M.; Shimbo, J.; Brando, P. M.
2016-12-01
An estimated 20% of Amazon forests and 45% of Cerrado savannas have been cleared to make way for the expansion of croplands and pasturelands in Brazil. Although deforestation rates have decreased or remained steady over the last decade, the cumulative area deforested continues to grow in both biomes. These land-use transitions are expected to influence regional climate by reducing evapotranspiration (ET), increasing land surface temperatures (LST), and ultimately reducing regional precipitation. Here we present results from spatial analyses to quantify the impact of land-use transitions on the regional climate of the Amazon-Cerrado agricultural frontier. The analyses combine satellite observations and model outputs from the MODIS dataset. Results from the southeastern Amazon indicate that transitions from forest to pasture or cropland decreased mean annual ET (by 24% and 32%, respectively) and increased LST (by 4.2°C and 6.4°C). Preliminary results from the Cerrado indicate that transitions from woody savannas to pasture or cropland also result in substantial reductions in mean annual ET (23% and 20%, respectively) and increases in LST (by 1.6°C in both cases). These results reinforce the need to better understand how land-use change at regional scales may alter climate by changing ecosystem properties (beyond carbon stocks and fluxes). It is important to evaluate these responses across different biomes, particularly in tropical regions under increasing deforestation pressure.
NASA Technical Reports Server (NTRS)
Aldrich, Stephen P.; Walker, Robert T.; Arima, Eugenio Y.; Caldas, Marcellus M.; Browder, John O.; Perz, Stephen
2006-01-01
Tropical deforestation is a significant driver of global environmental change, given its impacts on the carbon cycle and biodiversity. Loss of the Amazon forest, the focus of this article, is of particular concern because of the size and the rapid rate at which the forest is being converted to agricultural use. In this article, we identify what has been the most important driver of deforestation in a specific colonization frontier in the Brazilian Amazon. To this end, we consider (1) the land-use dynamics of smallholder households, (2) the formation of pasture by large-scale ranchers, and (3) structural processes of land aggregation by ranchers. Much has been written about relations between smallholders and ranchers in the Brazilian Amazon, particularly those involving conflict over land, and this article explicates the implications of such social processes for land cover. Toward this end, we draw on panel data (1996-2002) and satellite imagery (1986-1999) to show the deforestation that is attributable to small- and largeholders, and the deforestation that is attributable to aggregations of property arising from a process that we refer to as frontier stratification. Evidently, most of the recent deforestation in the study area has resulted from the household processes of smallholders, not from conversions to pasture pursuant to the appropriations of smallholders' property by well-capitalized ranchers or speculators.
NASA Astrophysics Data System (ADS)
O'Connell, C. S.; Foley, J. A.; Gerber, J. S.; Polasky, S.
2011-12-01
The Amazon is not only an exceptionally biodiverse and carbon-rich tract of tropical forest, it is also a case study in land use change. Over the next forty years it will continue to experience pressure from an urbanizing and increasingly affluent populace: under a business-as-usual scenario, global cropland, pasture and biofuels systems will carry on expanding, while the Amazon's carbon storage potential will likely become another viable revenue source under REDD+. Balancing those competing land use pressures ought also take into account Amazonia's high - but heterogeneous - biodiversity. Knowing where Amazonia has opportunities to make efficient or optimal trade offs between carbon storage, agricultural production and biodiversity can allow policymakers to direct or influence LUC drivers. This analysis uses a spatially-explicit model that takes climate and management into account to quantify the potential agricultural yield of both the Amazon's most important agricultural commodities - sugar, soy and maize - as well as several that are going to come into increasing prominence, including palm oil. In addition, it maps the potential for carbon to be stored in forest biomass and relative species richness across Amazonia. We then compare carbon storage, agricultural yield and species richness and identify areas where efficient trade offs occur between food, carbon, and biodiversity - three critical ecosystem goods and services provided by the world's largest tropical forest.
2011-01-01
Background The Brazilian Amazon has suffered impacts from non-sustainable economic development, especially owing to the expansion of agricultural commodities into forest areas. The Tangará da Serra region, located in the southern of the Legal Amazon, is characterized by non-mechanized sugar cane production. In addition, it lies on the dispersion path of the pollution plume generated by biomass burning. The aim of this study was to assess the genotoxic potential of the atmosphere in the Tangará da Serra region, using Tradescantia pallida as in situ bioindicator. Methods The study was conducted during the dry and rainy seasons, where the plants were exposed to two types of exposure, active and passive. Results The results showed that in all the sampling seasons, irrespective of exposure type, there was an increase in micronucleus frequency, compared to control and that it was statistically significant in the dry season. A strong and significant relationship was also observed between the increase in micronucleus incidence and the rise in fine particulate matter, and hospital morbidity from respiratory diseases in children. Conclusions Based on the results, we demonstrated that pollutants generated by biomass burning in the Brazilian Amazon can induce genetic damage in test plants that was more prominent during dry season, and correlated with the level of particulates and elevated respiratory morbidity. PMID:21575274
Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment
S. C. Stark; V. Leitold; J. L. Wu; M. O. Hunter; C. V. de Castilho; F. R. C. Costa; S. M. McMahon; G. G. Parker; M. Takako Shimabukuro; M. A. Lefsky; M. Keller; L. F. Alves; J. Schietti; Y. E. Shimabukuro; D. O. Brandao; T. K. Woodcock; N. Higuchi; P. B de Camargo; R. C. de Oliveira; S. R. Saleska
2012-01-01
Tropical forest structural variation across heterogeneous landscapes may control above-ground carbon dynamics. We tested the hypothesis that canopy structure (leaf area and light availability) â remotely estimated from LiDAR â control variation in above-ground coarse wood production (biomass growth). Using a statistical model, these factors predicted biomass growth...
2010-06-01
Woods Hole, MA 02543, USA 3 Raytheon Intelligence and Information Systems, Aurora , CO 80011, USA 4 Scripps Institution of Oceanography, La Jolla...Amazon.com, Amazon Web Services for the Amazon Elastic Compute Cloud ( Amazon EC2). http://aws.amazon.com/ec2/. [4] M. Arrott, B. Demchak, V. Ermagan, C
Furtado, Mariana Malzoni; de Ramos Filho, José Domingues; Scheffer, Karin Corrêa; Coelho, Claudio José; Cruz, Paula Sônia; Ikuta, Cassia Yumi; Jácomo, Anah Tereza de Almeida; Porfírio, Grasiela Edith de Oliveira; Silveira, Leandro; Sollmann, Rahel; Tôrres, Natália Mundim; Ferreira Neto, José Soares
2013-07-01
We investigated the exposure of jaguar (Panthera onca) populations and domestic carnivores to selected viral infections in the Cerrado, Amazon, and Pantanal biomes of Brazil. Between February 2000 and January 2010, we collected serum samples from 31 jaguars, 174 dogs (Canis lupus familiaris), and 35 domestic cats (Felis catus). Serologic analyses for antibodies to rabies virus, canine distemper virus (CDV), feline immunodeficiency virus (FIV), and for feline leukemia virus (FeLV) antigen were conducted. The jaguars from Cerrado and Pantantal were exposed to rabies virus, while the jaguars from the Pantanal and the dogs from all three areas were exposed to CDV. Two cats from the Amazonian site were antigen-positive for FeLV, but no jaguars had FeLV antigen or FIV antibody. Canine distemper and rabies viruses should be carefully monitored and considered potential threats to these jaguar populations. Currently FIV and FeLV do not appear to represent a health threat for jaguar populations in this area. Domestic dogs and cats in these areas should be vaccinated, and the movement of domestic animals around protected areas should be restricted.
Fire in the Brazilian Amazon: A Spatially Explicit Model for Policy Impact Analysis
NASA Technical Reports Server (NTRS)
Arima, Eugenio Y.; Simmons, Cynthia S.; Walker, Robert T.; Cochrane, Mark A.
2007-01-01
This article implements a spatially explicit model to estimate the probability of forest and agricultural fires in the Brazilian Amazon. We innovate by using variables that reflect farmgate prices of beef and soy, and also provide a conceptual model of managed and unmanaged fires in order to simulate the impact of road paving, cattle exports, and conservation area designation on the occurrence of fire. Our analysis shows that fire is positively correlated with the price of beef and soy, and that the creation of new conservation units may offset the negative environmental impacts caused by the increasing number of fire events associated with early stages of frontier development.
Poverty Dynamics, Ecological Endowments, and Land Use among Smallholders in the Brazilian Amazon
Guedes, Gilvan R.; VanWey, Leah K.; Hull, James R.; Antigo, Mariangela; Barbieri, Alisson F.
2013-01-01
Rural settlement in previously sparsely occupied areas of the Brazilian Amazon has been associated with high levels of forest loss and unclear long-term social outcomes. We focus here on the micro-level processes in one settlement area to answer the question of how settler and farm endowments affect household poverty. We analyze the extent to which poverty is sensitive to changes in natural capital, land use strategies, and biophysical characteristics of properties (particularly soil quality). Cumulative time spent in poverty is simulated using Markovian processes, which show that accessibility to markets and land use system are especially important for decreasing poverty among households in our sample. Wealthier households are selected into commercial production of perennials before our initial observation, and are therefore in poverty a lower proportion of the time. Land in pasture, in contrast, has an independent effect on reducing the proportion of time spent in poverty. Taken together, these results show that investments in roads and the institutional structures needed to make commercial agriculture or ranching viable in existing and new settlement areas can improve human well-being in frontiers. PMID:24267754
Landslides Are Common In The Amazon Rainforests Of SE Peru
NASA Astrophysics Data System (ADS)
Khanal, S. P.; Muttiah, R. S.; Janovec, J. P.
2005-12-01
The recent landslides in La Conchita, California, Mumbai, India, Ratnapura, Sri Lanka and Sugozu village, Turkey have dramatically illustrated prolonged rainfall on water induced change in soil shear stress. In these examples, the human footprint may have also erased or altered the natural river drainage from small to large scales. By studying patterns of landslides in natural ecosystems, government officials, policy makers, engineers, geologists and others may be better informed about likely success of prevention or amelioration programs in risk prone areas. Our study area in the Los Amigos basin in Amazon rainforests of Southeastern Peru, has recorded several hundred landslides. The area has no large human settlements. The basin is characterized by heavy rainfall, dense vegetation, river meander and uniform soils. Our objectives were: 1). Determine the spatial pattern of landslides using GIS and Remotely sensed data, 2). Model the statistical relationship between environmental variables and, 3). Evaluate influence of drainage on landscape and soil loss. GIS layers consisted of: 50cm aerial imagery, DEMs, digitized streams, soils, geology, rainfall from the TRMM satellite, and vegetation cover from the LANDSAT and MODIS sensors.
Cavalcante, Pedro H O; Silva, Maralina T; Santos, Everton G N; Chagas-Moutinho, Vanessa A; Santos, Claudia P
2017-02-01
The fish fauna in the State of Acre represents 10·7% of all fish species recorded from Brazil, but, despite this, there are few fish parasite studies in this area. The recent expansion of fish farming in Acre prompted a need for helminthological studies of the most commonly consumed fish species in the area, Pimelodus blochii (Pimelodidae). The aim of this study was to analyse the helminth fauna of P. blochii from the Acre and Xapuri Rivers in Northwestern Brazil. Numerous nematodes were collected from the intestine and two species of the family Atractidae were identified: Rondonia rondoni Travassos, 1920 and Orientatractis moraveci n. sp. The new species is distinguished from its congeners mainly by having: 10 pairs of caudal papillae (3 pairs pre-cloacal, 2 pairs ad-cloacal and 5 pairs post-cloacal); unequal spicules of 161-198 and 69-100 µ m long; and a gubernaculum 38-58 µ m long with an antero-lateral process. Morphological and ultrastructural data on O. moraveci n. sp. and R. rondoni are presented, in addition to new genetic data based on partial 18S rDNA and 28S rDNA. The taxonomic status of Labeonema synodontisi (Vassiliadès, 1973) is discussed, suggesting that it should be returned to the genus Raillietnema.
Changing patterns in deforestation avoidance by different protection types in the Brazilian Amazon.
Jusys, Tomas
2018-01-01
This study quantifies how much deforestation was avoided due to legal protection in Legal Amazon in strictly protected areas, sustainable use areas, and indigenous lands. Only regions that are protected de jure (i.e., where deforestation is avoided due to effective laws rather than remoteness) were considered, so that the potential of legal protection could be better assessed. This is a cross-sectional approach, which allows comparisons in terms of avoided deforestation among the different types of protection in the same period. This study covers three different periods. Regions protected de jure were sampled by estimating a threshold distance at which deforestation starts to diminish and retaining all pixels up to that distance, and deforestation that has been avoided due to legal protection was estimated by matching. Indigenous lands avoided the highest percentage of deforestation during the 2001-2004 and 2005-2008 periods, followed by those under strict protection and sustainable use areas, in respective order. Shifting patterns in deforestation avoidance are clearly noticeable for the 2009-2014 period when 1) strictly protected areas outperformed indigenous lands in terms of the percentage of saved forests, 2) some protected regions began to attract deforestation instead of avoiding it, and 3) sustainable use areas, on average, did not avoid deforestation.
Changing patterns in deforestation avoidance by different protection types in the Brazilian Amazon
2018-01-01
This study quantifies how much deforestation was avoided due to legal protection in Legal Amazon in strictly protected areas, sustainable use areas, and indigenous lands. Only regions that are protected de jure (i.e., where deforestation is avoided due to effective laws rather than remoteness) were considered, so that the potential of legal protection could be better assessed. This is a cross-sectional approach, which allows comparisons in terms of avoided deforestation among the different types of protection in the same period. This study covers three different periods. Regions protected de jure were sampled by estimating a threshold distance at which deforestation starts to diminish and retaining all pixels up to that distance, and deforestation that has been avoided due to legal protection was estimated by matching. Indigenous lands avoided the highest percentage of deforestation during the 2001–2004 and 2005–2008 periods, followed by those under strict protection and sustainable use areas, in respective order. Shifting patterns in deforestation avoidance are clearly noticeable for the 2009–2014 period when 1) strictly protected areas outperformed indigenous lands in terms of the percentage of saved forests, 2) some protected regions began to attract deforestation instead of avoiding it, and 3) sustainable use areas, on average, did not avoid deforestation. PMID:29689071
Pfaff, Alexander; Robalino, Juan; Sandoval, Catalina; Herrera, Diego
2015-01-01
The leading policy to conserve forest is protected areas (PAs). Yet, PAs are not a single tool: land users and uses vary by PA type; and public PA strategies vary in the extent of each type and in the determinants of impact for each type, i.e. siting and internal deforestation. Further, across regions and time, strategies respond to pressures (deforestation and political). We estimate deforestation impacts of PA types for a critical frontier, the Brazilian Amazon. We separate regions and time periods that differ in their deforestation and political pressures and document considerable variation in PA strategies across regions, time periods and types. The siting of PAs varies across regions. For example, all else being equal, PAs in the arc of deforestation are relatively far from non-forest, while in other states they are relatively near. Internal deforestation varies across time periods, e.g. it is more similar across the PA types for PAs after 2000. By contrast, after 2000, PA extent is less similar across PA types with little non-indigenous area created inside the arc. PA strategies generate a range of impacts for PA types—always far higher within the arc—but not a consistent ranking of PA types by impact. PMID:26460126
Athayde, Simone; Stepp, John Richard; Ballester, Wemerson C
2016-06-20
This paper contributes to the development of theoretical and methodological approaches that aim to engage indigenous, technical and academic knowledge for environmental management. We present an exploratory analysis of a transdisciplinary project carried out to identify and contrast indigenous and academic perspectives on the relationship between the Africanized honey bee and stingless bee species in the Brazilian Amazon. The project was developed by practitioners and researchers of the Instituto Socioambiental (ISA, a Brazilian NGO), responding to a concern raised by a funding agency, regarding the potential impact of apiculture development by indigenous peoples, on the diversity of stingless bee species in the Xingu Park, southern Brazilian Amazon. Research and educational activities were carried out among four indigenous peoples: Kawaiwete or Kaiabi, Yudja or Juruna, Kīsêdjê or Suyá and Ikpeng or Txicão. A constructivist qualitative approach was developed, which included academic literature review, conduction of semi-structured interviews with elders and leaders, community focus groups, field walks and workshops in schools in four villages. Semi-structured interviews and on-line surveys were carried out among academic experts and practitioners. We found that in both indigenous and scientific perspectives, diversity is a key aspect in keeping exotic and native species in balance and thus avoiding heightened competition and extinction. The Africanized honey bee was compared to the non-indigenous westerners who colonized the Americas, with whom indigenous peoples had to learn to coexist. We identify challenges and opportunities for engagement of indigenous and scientific knowledge for research and management of bee species in the Amazon. A combination of small-scale apiculture and meliponiculture is viewed as an approach that might help to maintain biological and cultural diversity in Amazonian landscapes. The articulation of knowledge from non-indigenous practitioners and researchers with that of indigenous peoples might inform sustainable management practices that are, at the same time, respectful of indigenous perspectives and intellectual property rights. However, there are ontological, epistemological, political and financial barriers and constraints that need to be addressed in transdisciplinary research projects inter-relating academic, technical and indigenous knowledge systems for environmental management.
Groundwater and Terrestrial Water Storage
NASA Technical Reports Server (NTRS)
Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.
2011-01-01
Most people think of groundwater as a resource, but it is also a useful indicator of climate variability and human impacts on the environment. Groundwater storage varies slowly relative to other non-frozen components of the water cycle, encapsulating long period variations and trends in surface meteorology. On seasonal to interannual timescales, groundwater is as dynamic as soil moisture, and it has been shown that groundwater storage changes have contributed to sea level variations. Groundwater monitoring well measurements are too sporadic and poorly assembled outside of the United States and a few other nations to permit direct global assessment of groundwater variability. However, observational estimates of terrestrial water storage (TWS) variations from the GRACE satellites largely represent groundwater storage variations on an interannual basis, save for high latitude/altitude (dominated by snow and ice) and wet tropical (surface water) regions. A figure maps changes in mean annual TWS from 2009 to 2010, based on GRACE, reflecting hydroclimatic conditions in 2010. Severe droughts impacted Russia and the Amazon, and drier than normal weather also affected the Indochinese peninsula, parts of central and southern Africa, and western Australia. Groundwater depletion continued in northern India, while heavy rains in California helped to replenish aquifers that have been depleted by drought and withdrawals for irrigation, though they are still below normal levels. Droughts in northern Argentina and western China similarly abated. Wet weather raised aquifer levels broadly across western Europe. Rains in eastern Australia caused flooding to the north and helped to mitigate a decade long drought in the south. Significant reductions in TWS seen in the coast of Alaska and the Patagonian Andes represent ongoing glacier melt, not groundwater depletion. Figures plot time series of zonal mean and global GRACE derived non-seasonal TWS anomalies (deviation from the mean of each month of the year) excluding Greenland and Antarctica. The two figures show that 2010 was the driest year since 2003. The drought in the Amazon was largely responsible, but an excess of water in 2009 seems to have buffered that drought to some extent. The drying trend in the 25-55 deg S zone is a combination of Patagonian glacier melt and drought in parts of Australia.
NASA Technical Reports Server (NTRS)
Aleixo, Alexandre; Wilkinson, M. Justin
2011-01-01
Since the 19th Century, the unmatched biological diversity of Amazonia has stimulated a diverse set of hypotheses accounting for patterns of species diversity and distribution in mega-diverse tropical environments. Unfortunately, the evidence supporting particular hypotheses to date is at best described as ambiguous, and no generalizations have emerged yet, mostly due to the lack of comprehensive comparative phylogeographic studies with thorough trans-Amazonian sampling of lineages. Here we report on spatial and temporal patterns of diversification estimated from mitochondrial gene trees for 31 lineages of birds associated with upland terra-firme forest, the dominant habitat in modern lowland Amazonia. The results confirm the pervasive role of Amazonian rivers as primary barriers separating sister lineages of birds, and a protracted spatio-temporal pattern of diversification, with a gradual reduction of earlier (1st and 2nd) and older (> 2 mya) splits associated with each lineage in an eastward direction. (The easternmost tributaries of the Amazon, the Xingu and Tocantins Rivers, are not associated with any splits older than > 2 mya). For the suboscine passerines, maximum-likelihood estimates of rates of diversification point to an overall constant rate over the past 5 my (up to a significant downturn at 300,000 y ago). This "younging-eastward" pattern may have an abiotic explanation related to landscape evolution. Triggered by a new pulse of Andean uplift, it has been proposed that modern Amazon basin landscapes may have evolved successively eastward, away from the mountain chain, starting approximately 10 mya. This process was likely based on the deposition of vast fluvial sediment masses, known as megafans, that may have extended progressively and in series eastward from Andean sources. This process plausibly explains the progressive extinction of original Pebas wetland of western-central Amazonia by the present fluvial landsurfaces of a more terra-firme type. The youngest landsurfaces thus lie furthest from the mountains. In this scenario major drainages were also reoriented in wholesale fashion away from a northerly orientation generally towards the east and an Atlantic Ocean outlet. The advance of megafans is best seen by the location of axial rivers such as the Orinoco and Mamore which lie against the cratonic margins furthest from the Andes, at the distal ends of major megafan ramparts. More importantly, other major river courses in western-central Amazonia will have been established at progressively younger dates with distance eastward. If this landscape-sequence scenario is accurate, it parallels the progressive younging of the passerine lineages. The bird DNA data appears to confirm strongly the pervasive role of Amazonian rivers--as primary barriers separating sister lineages of birds, and thus probably as facilitaters of bird speciation. We show for the first time that a general spatio-temporal pattern of diversification for terra-firme lineages in the Amazon is associated with rivers ("younging-eastward"), and furthermore parallels a specific scenario of regional drainage evolution.
Freire, Jean Carlos A; Hauser-Davis, Rachel Ann; da Costa Lobato, Tarcísio; de Morais, Jefferson M; de Oliveira, Terezinha F; F Saraiva, Augusto Cesar
2017-05-01
Dam constructions in the Amazon have increased exponentially in the last decades, causing several environmental impacts and serious anthropogenic impacts in certain hydroelectric power plant reservoirs in the region have been identified. The assessment of the trophic status of these reservoirs is of interest to indicate man-made changes in the environment, but must take into account the hydrological cycle of the area. This can be relevant for environmental management actions, aiding in the identification of the ecological status of water bodies. In this context, physico-chemical parameters and eutrophication indicators were determined in a hydroelectric power plant reservoir in the Brazilian Amazon to assess trophic variations during the regional hydrological regime phases on the reservoir, namely dry, filling, full and emptying stages. The local hydrological regimes were shown to significantly influence TSS and turbidity, as well as NH 4 , NO 3 , PO 4 , with higher values consistently observed during the filling stage of the reservoir. In addition, differences among the sampling stations regarding land use, population and anthropogenic activities were reflected in the PO 4 3- values during the different hydrological phases.
Web quality control for lectures: Supercourse and Amazon.com.
Linkov, Faina; LaPorte, Ronald; Lovalekar, Mita; Dodani, Sunita
2005-12-01
Peer review has been at the corner stone of quality control of the biomedical journals in the past 300 years. With the emergency of the Internet, new models of quality control and peer review are emerging. However, such models are poorly investigated. We would argue that the popular system of quality control used in Amazon.com offers a way to ensure continuous quality improvement in the area of research communications on the Internet. Such system is providing an interesting alternative to the traditional peer review approaches used in the biomedical journals and challenges the traditional paradigms of scientific publishing. This idea is being explored in the context of Supercourse, a library of 2,350 prevention lectures, shared for free by faculty members from over 150 countries. Supercourse is successfully utilizing quality control approaches that are similar to Amazon.com model. Clearly, the existing approaches and emerging alternatives for quality control in scientific communications needs to be assessed scientifically. Rapid explosion of internet technologies could be leveraged to produce better, more cost effective systems for quality control in the biomedical publications and across all sciences.
Ramos, Márcio V; Brito, Daniel; Freitas, Cléverson D T; Gonçalves, José Francisco C; Porfirio, Camila T M N; Lobo, Marina D P; Monteiro-Moreira, Ana Cristina O; Souza, Luiz A C; Fernandes, Andreia V
2018-04-19
Seeds of native species from the rain forest (Amazon) are source of chitinases and their protein extracts exhibited strong and broad antifungal activity. Numerous plant species native to the Amazon have not yet been chemically studied. Studies of seeds are scarcer, since adversities in accessing study areas and seasonality pose constant hurdles to systematic research. In this study, proteins were extracted from seeds belonging to endemic Amazon species and were investigated for the first time. Proteolytic activity, peptidase inhibitors, and chitinases were identified, but chitinolytic activity predominated. Four proteins were purified through chromatography and identified as lectin and chitinases by MS/MS analyses. The proteins were examined for inhibition of a phytopathogen (Fusarium oxysporum). Analyses by fluorescence microscopy suggested binding of propidium iodide to DNA of fungal spores, revealing that spore integrity was lost when accessed by the proteins. Further structural and functional analyses of defensive proteins belonging to species facing highly complex ecosystems such as Amazonia should be conducted, since these could provide new insights into specificity and synergism involving defense proteins of plants submitted to a very complex ecosystem.
Promoting health and happiness in the Brazilian Amazon.
Scannavino, Caetano; Anastácio, Rui
2007-01-01
With the motto "Health, happiness of the body. Happiness, health of the soul", the Health & Happiness Project (PSA) works to promote integrated and sustainable community development in parts of the Brazilian Amazon. PSA grew out of local workers' personal experience in collaborating with communities and the need for sustainable actions for their future development. PSA was established as a not-for-profit organization in 1987 It started off by implementing strategies that would increase the health status of the population, which was identified as the biggest challenge, to then extend to other areas of development. Education, training and community participation were key elements of the project's actions, which included basic sanitation, reproductive health and child health, technical assistance in agricultural practices and youth empowerment through communications, among others. Once the health structure was established, the work moved on to new priorities related to education, economic production, protection of the environment and community management in the medium and long terms. The project's success has helped to institutionalize the practices and today it reaches a total of approximately 5,000 families distributed across 150 rural communities in the mid- and low-Amazon region.
NASA Astrophysics Data System (ADS)
Rosero-Lopez, D.; Flecker, A.; Walter, M. T.
2016-12-01
Water resources in South America have been clearly targeted as key sources for hydropower expansion over the next 30 years. Ecuador, among the most biologically diverse countries in the world, has the highest density of hydropower dams, either operational, under construction, or planned, in the Amazon Basin. Ecuador's ambitious plan to change its energy portfolio is conceived to satisfy the country's demand and to empower the country to be the region's first hydroelectric energy exporter. The Santiago watershed located in the southeast part of the country has 39 facilities either under construction or in operation. The Santiago River and its main tributaries (Zamora and Upano) are expected to be impounded by large dams over the next 10 years. In order to understand the magnitude and potential impacts of regional dam development on hydrological regimes, a 35-year historical data set of stream discharge was analyzed. We examined flow regimes for time series between the construction of each dam, starting with the oldest and largest built in 1982 up until the most recent dam built in 2005. Preliminary results indicate a systematic displacement in flow seasonality following post-dam compared to pre-dam conditions. There are also notable differences in the distributions of peaks and pulses in post-dam flows. The range of changes from these results shows that punctuated and cumulative impacts are related to the size of each new impoundment. These observations and their implications to the livelihoods, biota, and ecosystems services in the Santiago watershed need to be incorporated into a broader cost-benefit analysis of hydropower generation in the western Amazon Basin.
The potential impact of new Andean dams on Amazon fluvial ecosystems
Melack, John M.; Dunne, Thomas; Barthem, Ronaldo B.; Goulding, Michael; Paiva, Rodrigo C. D.; Sorribas, Mino V.; Silva, Urbano L.; Weisser, Sabine
2017-01-01
Increased energy demand has led to plans for building many new dams in the western Amazon, mostly in the Andean region. Historical data and mechanistic scenarios are used to examine potential impacts above and below six of the largest dams planned for the region, including reductions in downstream sediment and nutrient supplies, changes in downstream flood pulse, changes in upstream and downstream fish yields, reservoir siltation, greenhouse gas emissions and mercury contamination. Together, these six dams are predicted to reduce the supply of sediments, phosphorus and nitrogen from the Andean region by 69, 67 and 57% and to the entire Amazon basin by 64, 51 and 23%, respectively. These large reductions in sediment and nutrient supplies will have major impacts on channel geomorphology, floodplain fertility and aquatic productivity. These effects will be greatest near the dams and extend to the lowland floodplains. Attenuation of the downstream flood pulse is expected to alter the survival, phenology and growth of floodplain vegetation and reduce fish yields below the dams. Reservoir filling times due to siltation are predicted to vary from 106–6240 years, affecting the storage performance of some dams. Total CO2 equivalent carbon emission from 4 Andean dams was expected to average 10 Tg y-1 during the first 30 years of operation, resulting in a MegaWatt weighted Carbon Emission Factor of 0.139 tons C MWhr-1. Mercury contamination in fish and local human populations is expected to increase both above and below the dams creating significant health risks. Reservoir fish yields will compensate some downstream losses, but increased mercury contamination could offset these benefits. PMID:28832638
TOLLIP gene variant is associated with Plasmodium vivax malaria in the Brazilian Amazon.
Brasil, Larissa W; Barbosa, Laila R A; de Araujo, Felipe J; da Costa, Allyson G; da Silva, Luan D O; Pinheiro, Suzana K; de Almeida, Anne C G; Kuhn, Andrea; Vitor-Silva, Sheila; de Melo, Gisely C; Monteiro, Wuelton M; de Lacerda, Marcus V G; Ramasawmy, Rajendranath
2017-03-13
Toll-interacting protein is a negative regulator in the TLR signaling cascade, particularly by impeding the TLR2 and, TLR4 pathway. Recently, TOLLIP was shown to regulate human TLR signaling pathways. Two common TOLLIP polymorphisms (rs5743899 and rs3750920) were reported to be influencing IL-6, TNF and IL-10 expression. In this study, TOLLIP variants were investigated to their relation to Plasmodium vivax malaria in the Brazilian Amazon. This cohort study was performed in the municipalities of Careiro and, Manaus, in Western Brazilian Amazon. A total of 319 patients with P. vivax malaria and, 263 healthy controls with no previous history of malaria were included in the study. Genomic DNA was extracted from blood collected on filter paper, using the QIAamp ® DNA Mini Kit, according to the manufacturer's suggested protocol. The rs5743899 and rs3750920 polymorphisms of the TOLLIP gene were typed by PCR-RFLP. Homozygous individuals for the rs3750920 T allele gene had twice the risk of developing malaria when compared to individuals homozygous for the C allele (OR 2.0 [95% CI 1.23-3.07]; p = 0.004). In the dominant model, carriers the C allele indicates protection to malaria, carriers of the C allele were compared to individuals with the T allele, and the difference is highly significant (OR 0.52 [95% CI 0.37-0.76]; p = 0.0006). The linkage disequilibrium between the two polymorphisms was weak (r 2 = 0.037; D' = 0.27). These findings suggest that genes involved in the TLRs-pathway may be involved in malaria susceptibility. The association of the TOLLIP rs3750920 T allele with susceptibility to malaria further provides evidence that genetic variations in immune response genes may predispose individuals to malaria.
Characteristics of smoke emissions from biomass fires of the Amazon region - BASE-A experiment
NASA Technical Reports Server (NTRS)
Ward, Darold E.; Setzer, Alberto W.; Kaufman, Yoram J.; Rasmussen, Rei A.
1991-01-01
The Biomass Burning Airborne and Spaceborne Experiment-Amazonia was designed for study of both aerosol and gaseous emissions from fires using an airborne sampling platform. The emission factors for combustion products from four fires suggest that the proportion of carbon released in the form of CO2 is higher than for fires of logging which has been burned in the western U.S. Combustion efficiency was of the order of 97 percent for the Amazonian test fire and 86-94 percent for deforestation fires. The inorganic content of particles from tropical fires are noted to be different from those of fires in the U.S.
Santos, Guilherme B; Soares, Manoel do C P; de F Brito, Elisabete M; Rodrigues, André L; Siqueira, Nilton G; Gomes-Gouvêa, Michele S; Alves, Max M; Carneiro, Liliane A; Malheiros, Andreza P; Póvoa, Marinete M; Zaha, Arnaldo; Haag, Karen L
2012-12-01
To date, nothing is known about the genetic diversity of the Echinococcus neotropical species, Echinococcus vogeli and Echinococcus oligarthrus. Here we used mitochondrial and nuclear DNA sequence polymorphisms to uncover the genetic structure, transmission and history of E. vogeli in the Brazilian Amazon, based on a sample of 38 isolates obtained from human and wild animal hosts. We confirm that the parasite is partially synanthropic and show that its populations are diverse. Furthermore, significant geographical structuring is found, with western and eastern populations being genetically divergent. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Macedo, M.; Panday, P. K.; Coe, M. T.; Lefebvre, P.; Castello, L.
2015-12-01
The Amazonian floodplains and wetlands cover one fifth of the basin and are highly productive promoting diverse biological communities and sustaining human populations with fisheries. Seasonal inundation of the floodplains fluctuates in response to drought or extreme rainfall as observed in the recent droughts of 2005 and 2010 where river levels dropped to among the lowest recorded. We model and evaluate the historical (1940-2010) and projected future (2010-2100) impacts of droughts and floods on the floodplain hydrology and inundation dynamics in the central Amazon using the Integrated Biosphere Simulator (IBIS) and the Terrestrial Hydrology Model and Biogeochemistry (THMB). Simulated discharge correlates well with observed discharges for tributaries originating in Brazil but underestimates basins draining regions in the non-Brazilian Amazon (Solimões, Japuŕa, Madeira, and Negro) by greater than 30%. A volume bias-correction from the simulated and observed runoff was used to correct the input precipitation across the major tributaries of the Amazon basin that drain the Andes. Simulated hydrological parameters (discharge, inundated area and river height) using corrected precipitation has a strong correlation with field measured discharge at gauging stations, surface water extent data (Global Inundation Extent from Multi-Satellites (GIEMS) and NASA Earth System Data Records (ESDRs) for inundation), and satellite radar altimetry (TOPEX/POSEIDON altimeter data for 1992-1998 and ENVISAT data for 2002-2010). We also used an ensemble of model outputs participating in the IPCC AR5 to drive two sets of simulations with and without carbon dioxide fertilization for the 2006-2100 period, and evaluated the potential scale and variability of future changes in discharge and inundation dynamics due to the influences of climate change and vegetation response to carbon dioxide fertilization. Preliminary modeled results for future scenarios using Representative Concentration Pathways (RCP) 4.5 indicate decreases in projected discharge and extent of inundated area on the mainstem Amazon by the late 21st century owing to influences of future climate change only.
Inundation and Gas Fluxes from Amazon Lakes and Wetlands
NASA Astrophysics Data System (ADS)
Melack, J. M.; MacIntyre, S.; Forsberg, B. R.; Amaral, J. H.; Barbosa, P.
2015-12-01
Inundation areas and wetland habitats for the lowland Amazon basin derived remote sensing with synthetic aperture radar are combined with measurements of greenhouse gas evasion derived from field measurements and new formulations of atmosphere-water. On-going field studies in representative aquatic habitats on the central Amazon floodplain are combining monthly measurements of carbon dioxide and methane concentrations and fluxes to the atmosphere with deployment of meteorological sensors and high-resolution thermistors and optical dissolved oxygen sensors. A real-time cavity ringdown spectrometer is being used to determine the gas concentrations; vertical profiles were obtained by using an equilibrator to extract gases from water, and floating chambers are used to assess fluxes. Gas fluxes varied as a function of season, habitat and water depth. Greatest carbon dioxide fluxes occurred during high and falling water levels. During low water, periods with high chlorophyll, indicative of phytoplankton, the flux of carbon dioxide switched from being emitted from the lake to being taken-up by the lake some of the time. The highest pCO2 concentration (5500 μatm) was about three times higher than the median (1700 μatm). Higher CO2 fluxes were observed in open water than in areas with flooded or floating vegetation. In contrast, methane fluxes were higher in vegetated regions. We measured turbulence as rate of dissipation of turbulent kinetic energy based on microstructure profiling. Comparison of these measurements with those calculated from meteorological and time series measurements validated new equations for turbulent kinetic energy dissipation (TKE) rates during moderate winds and cooling and illustrated that the highest dissipation rates occurred under heating. Measured gas exchange coefficients (k600) were similar to those based on the TKE dissipation rates and are well described using the surface renewal model. These k values are several times higher than previous values applied to regional extrapolations in the Amazon basin and elsewhere.
Verhagen, Lilly M; Incani, Renzo N; Franco, Carolina R; Ugarte, Alejandra; Cadenas, Yeneska; Sierra Ruiz, Carmen I; Hermans, Peter W M; Hoek, Denise; Campos Ponce, Maiza; de Waard, Jacobus H; Pinelli, Elena
2013-01-01
Children in rural areas experience the interrelated problems of poor growth, anemia and parasitic infections. We investigated the prevalence of and associations between intestinal helminth and protozoan infections, malnutrition and anemia in school-age Venezuelan children. This cross-sectional study was conducted in 390 children aged 4-16 years from three rural areas of Venezuela: the Amazon Region, Orinoco Delta and Carabobo State. Stool samples were collected for direct parasitic examinations. Anthropometric indicators of chronic (height-for-age Z score) and acute (weight-for-height and Body Mass Index (BMI)-for-age Z score in respectively children under 5 years of age and children aged 5 years and above) malnutrition were calculated. Multivariate linear and logistic regression models were built to determine factors associated with nutritional status and polyparasitism. Hookworm and Strongyloides stercoralis prevalences were highest in children from the Amazon rainforest (respectively 72% and 18%) while children from the Orinoco Delta and Carabobo State showed higher rates of Ascaris lumbricoides (respectively 28% and 37%) and Trichuris trichiura (40% in both regions). The prevalence of Giardia lamblia infection was not significantly different between regions (average: 18%). Anemia prevalence was highest in the Amazon Region (24%). Hemoglobin levels were significantly decreased in children with a hookworm infection. Malnutrition was present in respectively 84%, 30% and 13% of children from the Amazon Region, Orinoco Delta and Carabobo State. In multivariate analysis including all regions, G. lamblia and helminth infections were significantly and negatively associated with respectively height-for-age and weight-for-height/BMI-for-age Z scores. Furthermore, hemoglobin levels were positively associated with the height-for-age Z score (0.11, 95% CI 0.02 - 0.20). In rural populations in Venezuela helminthiasis and giardiasis were associated with acute and chronic nutritional status respectively. These data highlight the need for an integrated approach to control transmission of parasites and improve the health status of rural Venezuelan children.
Verhagen, Lilly M.; Incani, Renzo N.; Franco, Carolina R.; Ugarte, Alejandra; Cadenas, Yeneska; Sierra Ruiz, Carmen I.; Hermans, Peter W. M.; Hoek, Denise; Campos Ponce, Maiza; de Waard, Jacobus H.; Pinelli, Elena
2013-01-01
Background Children in rural areas experience the interrelated problems of poor growth, anemia and parasitic infections. We investigated the prevalence of and associations between intestinal helminth and protozoan infections, malnutrition and anemia in school-age Venezuelan children. Methods This cross-sectional study was conducted in 390 children aged 4-16 years from three rural areas of Venezuela: the Amazon Region, Orinoco Delta and Carabobo State. Stool samples were collected for direct parasitic examinations. Anthropometric indicators of chronic (height-for-age Z score) and acute (weight-for-height and Body Mass Index (BMI)-for-age Z score in respectively children under 5 years of age and children aged 5 years and above) malnutrition were calculated. Multivariate linear and logistic regression models were built to determine factors associated with nutritional status and polyparasitism. Results Hookworm and Strongyloides stercoralis prevalences were highest in children from the Amazon rainforest (respectively 72% and 18%) while children from the Orinoco Delta and Carabobo State showed higher rates of Ascaris lumbricoides (respectively 28% and 37%) and Trichuris trichiura (40% in both regions). The prevalence of Giardia lamblia infection was not significantly different between regions (average: 18%). Anemia prevalence was highest in the Amazon Region (24%). Hemoglobin levels were significantly decreased in children with a hookworm infection. Malnutrition was present in respectively 84%, 30% and 13% of children from the Amazon Region, Orinoco Delta and Carabobo State. In multivariate analysis including all regions, G. lamblia and helminth infections were significantly and negatively associated with respectively height-for-age and weight-for-height/BMI-for-age Z scores. Furthermore, hemoglobin levels were positively associated with the height-for-age Z score (0.11, 95% CI 0.02 - 0.20). Conclusions In rural populations in Venezuela helminthiasis and giardiasis were associated with acute and chronic nutritional status respectively. These data highlight the need for an integrated approach to control transmission of parasites and improve the health status of rural Venezuelan children. PMID:24143243
NASA Astrophysics Data System (ADS)
Collow, A.; Miller, M. A.
2015-12-01
The Amazon Rainforest of Brazil is a region with potential climate sensitivities, especially with ongoing land surface changes and biomass burning aerosols due to deforestation. Ubiquitous moisture in the area make clouds a common feature over the Amazon Rainforest and along with the influences from deforestation have a significant impact on the radiation budget. This region experiences a seasonal contrast in clouds, precipitation, and aerosols making it an ideal location to study the relationship between these variables and the radiation budget. An internationally sponsored campaign entitled GOAmazon2014/15 included a deployment of an Atmospheric Radiation Measurement (ARM) Mobile Facility, which collected comprehensive measurements using in situ and remote sensors. Observations of clouds, aerosols, and radiative fluxes from the first year of the deployment are analyzed in conjunction with top of the atmosphere (TOA) observations from the Clouds and the Earth's Radiant Energy System (CERES) and analyses from the newly released Modern Era Retrospective Analysis for Research and Applications Version-2 (MERRA-2). The combination of surface and TOA observations allows for the calculation of radiative flux divergence and cloud radiative effect (CRE) within the column, while the comparison to MERRA-2 enables the verification of a new reanalysis product and a view of the spatial variation of the radiation budget. Clouds are very reflective in the area, creating a cooling effect in the shortwave (SW) at the surface, with some seasonality present due to the reduction of optically thick clouds in the dry season. Clouds have little effect on the column itself in the SW due to the balance between the reflective and absorbing properties of the clouds with the majority of the impact on the atmosphere from clouds warming in the longwave. Influences of aerosols are seen in the dry season, and an increase in moisture above the Amazon River and its tributaries enhance the CRE.
A Paleoecological View of the Anthropocene in Tropical South America
NASA Astrophysics Data System (ADS)
Bush, M. B.; McMichael, C. H.; Piperno, D. R.
2015-12-01
Many potential events could define the onset of the Anthropocene in the Neotropics. The first effects caused by humans included the final extinction of megafauna around 10,000 years ago, and changes in fire frequency, particularly after about 8000 years ago. The first agriculture (squash) is evident in northwestern regions at 9000 BP, and in the Amazon Basin maize is cultivated by 6300 BP. But these events have not been widely documented on the continent and if some chronological uniformity is sought as a guide to defining the onset of the Anthropocene, they would fail that test. Coming forward through time, increasing societal complexity is evident beginning about 3000 BP in both the Amazon and the Andes, but again the development was patchy. Some archaeologists are arguing that between c. 2000 BP and 500 BP the Amazon Basin became a manufactured landscape. While major river corridors were very likely influenced by human populations, the level of use in the great interfluvial areas (c. 90% of Amazonia) remains a matter of debate. The empirical data that exist for human presence in these areas point to sparse occupation, both in space and time, and the assertion that most of prehistoric Amazonia was manipulated by humans is unsupported. Following European contact, indigenous populations were reduced probably 90-95% within 200 years, which interrupted the cultural trajectory of the Neotropics. The next possible contender for the local onset of the Anthropocene was the Rubber Boom (1879-1912). The Rubber Boom greatly increased human populations along many of the Amazon's major rivers and tributaries. Hunting and deforestation picked up pace, and the growing presence of steamships allowed exportation of a wide range of Amazonian products beyond rubber, e.g. plumes, timber, and turtle oil. In addition to these local effects, the global effects that came with increased fossil fuel use and industrialization, would also have influenced all of South America. Even so, the influence of the Rubber Boom would have been strongest in the Amazon Basin and far milder in the Andes or along the Pacific coastline. In the 1950s-1970s the green revolutions and fossil-fuel based agriculture caused an increase in global NOx. Increased NOx deposition and the appearance of plastics may be defining markers of the Anthropocene in South America.
Body size and obesity patterns in Caboclo populations from Pará, Amazonia, Brazil.
Silva, Hilton; Padez, Cristina
2010-04-01
In many developing countries overweight, obesity and obesity-related morbidity are becoming a problem of increasing public health importance. The purpose of this study was to investigate differences in body size and body composition with age in adults of the Caboclo populations from the Brazilian Amazon as well as to examine the prevalence of overweight and obesity in adults aged 20-75 years, taking into account recent trends for the whole country. Caboclo are genetically and culturally admixed rural peasant groups that live along the Amazon River and its tributaries in Brazil, and there are few previous studies of their health and lifestyle. A total of 304 subjects (149 males and 155 females) from two socioecologically different areas were studied. Height, weight and skinfolds (tricipital, subscapular and suprailiac) were measured; international intervals (WHO) for overweight and obesity were used. Women showed significantly lower values than men for height, weight, upper arm circumference and fat-free mass and higher values for triceps, subscapular and suprailiac skinfolds and body fat (%). In the overall sample combined overweight and obesity was 47.8% in men and 50.8% in women. When compared to recent values published for the Northern region and for the whole of Brazil, 20.5% of Caboclo women aged 20-75 years were obese, which is higher than all other populations, including other rural samples. Caboclo men showed the highest rates of obesity (9.1%) and overweight (39.1%) of any rural population from the country, including Northern Brazil. The results suggest an effect of increased Western lifestyle influence on the body composition of these Caboclo populations. Considering that these are rural populations with limited access to education and health care, the high prevalence of overweight and obesity associated with low socio-economic status makes them a vulnerable group that deserves a higher level of attention by the country's public health authorities.
NASA Astrophysics Data System (ADS)
McDonald, K. C.; Campbell, K.; Islam, R.; Azarderakhsh, M.; Cracraft, J.
2013-12-01
Amazonia is Earth's most iconic center of biological diversity and endemism and, owing to its contributions to global systems ecology, is arguably Earth's most important terrestrial biome . Amazonia includes a vast landscape of mostly lowland rainforest found in Brazil, Peru, Colombia, Ecuador, Bolivia, and Venezuela. It harbors the world's highest species diversity, the largest fresh-water ecosystem in the world, and contributes substantially to shaping the Earth's atmospheric gasses and oceans and consequently its climate. Despite this global importance, we still have an incomplete understanding of how this biodiversity-rich biome developed over time. Knowing its history is crucially important for understanding how the short and long-term effects of biodiversity loss and climate change will impact the region, and the globe, in the future. Hence, we seek to understand the evolutionary and environmental-ecological history of Amazonia over the past 10 million years through a comparative approach that integrates across the disciplines of systematic biology, population biology, ecosystem structure and function, geology, Earth systems modeling and remote sensing, and paleoenvironmental history. During springtime 2013, the NASA/JPL airborne imaging radar, UAVSAR, conducted airborne studies over many regions of South America including portions of the western Amazon basin. We utilize UAVSAR imagery acquired over the Madre de Dios region of southeastern Peru in an assessment of the underlying geomorphology of the Amazon's planalto, its relationship to the current distribution of vegetation, and its relationship to geologic processes through deep time. In the late Neogene, the Amazonian lowlands comprised either a series of independent basins or a single sedimentary basin. The Amazonian planalto is variously described as either an erosional surface or a surface of deposition. We employ UAVSAR data collections to assess (1) the utility of these high quality imaging radar data for use in identifying associated geomorphologic features, and (2) UAVSAR's utility in aiding interpretation of ALOS PALSAR and SRTM datasets to support a basin-wide characterization. The results of the analysis will have a major impact on interpreting the evolutionary history of the Amazon Basin. We are grateful to Bruce Chapman, Naira Pinto, and the JPL UAVSAR team for supporting the planning and acquisition of the UAVSAR data, and to the NASA Biodiversity Program for providing funding to support the UAVSAR acquisitions. This work was carried out under a grant from the NASA Biodiversity Program and the NSF DIMENSIONS of Biodiversity Program.
da Costa Lobato, Tarcísio; Hauser-Davis, Rachel Ann; de Oliveira, Terezinha Ferreira; Maciel, Marinalva Cardoso; Tavares, Maria Regina Madruga; da Silveira, Antônio Morais; Saraiva, Augusto Cesar Fonseca
2015-02-15
The Amazon area has been increasingly suffering from anthropogenic impacts, especially due to the construction of hydroelectric power plant reservoirs. The analysis and categorization of the trophic status of these reservoirs are of interest to indicate man-made changes in the environment. In this context, the present study aimed to categorize the trophic status of a hydroelectric power plant reservoir located in the Brazilian Amazon by constructing a novel Water Quality Index (WQI) and Trophic State Index (TSI) for the reservoir using major ion concentrations and physico-chemical water parameters determined in the area and taking into account the sampling locations and the local hydrological regimes. After applying statistical analyses (factor analysis and cluster analysis) and establishing a rule base of a fuzzy system to these indicators, the results obtained by the proposed method were then compared to the generally applied Carlson and a modified Lamparelli trophic state index (TSI), specific for trophic regions. The categorization of the trophic status by the proposed fuzzy method was shown to be more reliable, since it takes into account the specificities of the study area, while the Carlson and Lamparelli TSI do not, and, thus, tend to over or underestimate the trophic status of these ecosystems. The statistical techniques proposed and applied in the present study, are, therefore, relevant in cases of environmental management and policy decision-making processes, aiding in the identification of the ecological status of water bodies. With this, it is possible to identify which factors should be further investigated and/or adjusted in order to attempt the recovery of degraded water bodies. Copyright © 2014 Elsevier B.V. All rights reserved.
Pizzitutti, Francesco; Pan, William; Barbieri, Alisson; Miranda, J Jaime; Feingold, Beth; Guedes, Gilvan R; Alarcon-Valenzuela, Javiera; Mena, Carlos F
2015-12-22
The Amazon environment has been exposed in the last decades to radical changes that have been accompanied by a remarkable rise of both Plasmodium falciparum and Plasmodium vivax malaria. The malaria transmission process is highly influenced by factors such as spatial and temporal heterogeneities of the environment and individual-based characteristics of mosquitoes and humans populations. All these determinant factors can be simulated effectively trough agent-based models. This paper presents a validated agent-based model of local-scale malaria transmission. The model reproduces the environment of a typical riverine village in the northern Peruvian Amazon, where the malaria transmission is highly seasonal and apparently associated with flooding of large areas caused by the neighbouring river. Agents representing humans, mosquitoes and the two species of Plasmodium (P. falciparum and P. vivax) are simulated in a spatially explicit representation of the environment around the village. The model environment includes: climate, people houses positions and elevation. A representation of changes in the mosquito breeding areas extension caused by the river flooding is also included in the simulation environment. A calibration process was carried out to reproduce the variations of the malaria monthly incidence over a period of 3 years. The calibrated model is also able to reproduce the spatial heterogeneities of local scale malaria transmission. A "what if" eradication strategy scenario is proposed: if the mosquito breeding sites are eliminated through mosquito larva habitat management in a buffer area extended at least 200 m around the village, the malaria transmission is eradicated from the village. The use of agent-based models can reproduce effectively the spatiotemporal variations of the malaria transmission in a low endemicity environment dominated by river floodings like in the Amazon.
Schroth, Götz; da Mota, Maria do Socorro S
2013-08-01
Tropical forest countries are struggling with the partially conflicting policy objectives of socioeconomic development, forest conservation, and safeguarding the livelihoods of local forest-dependent people. We worked with communities in the lower Tapajós region of the central Brazilian Amazon for over 10 years to understand their traditional and present land use practices, the constraints, and decision making processes imposed by their biophysical, socioeconomic, and political environment, and to facilitate development trajectories to improve the livelihoods of forest communities while conserving the forest on the farms and in the larger landscape. The work focused on riverine communities initially in the Tapajós National Forest and then in the Tapajós-Arapiuns Extractive Reserve. These communities have a century-old tradition of planting rubber agroforests which despite their abandonment during the 1990s still widely characterize the vegetation of the river banks, especially in the two protected areas where they are safe from the recent expansion of mechanized rice and soybean agriculture. The project evolved from the capacity-building of communities in techniques to increase the productivity of the rubber agroforests without breaking their low-input and low-risk logic, to the establishment of a community enterprise that allowed reserve inhabitants to reforest their own land with tree species of their choice and sell reforestation (not carbon) credits to local timber companies while retaining the ownership of the trees. By making land use practices economically more viable and ecologically more appropriate for protected areas, the project shows ways to strengthen the system of extractive and sustainable development reserves that protects millions of hectares of Amazon forest with the consent of the communities that inhabit them.
NASA Astrophysics Data System (ADS)
Schroth, Götz; da Mota, Maria do Socorro S.
2013-08-01
Tropical forest countries are struggling with the partially conflicting policy objectives of socioeconomic development, forest conservation, and safeguarding the livelihoods of local forest-dependent people. We worked with communities in the lower Tapajós region of the central Brazilian Amazon for over 10 years to understand their traditional and present land use practices, the constraints, and decision making processes imposed by their biophysical, socioeconomic, and political environment, and to facilitate development trajectories to improve the livelihoods of forest communities while conserving the forest on the farms and in the larger landscape. The work focused on riverine communities initially in the Tapajós National Forest and then in the Tapajós-Arapiuns Extractive Reserve. These communities have a century-old tradition of planting rubber agroforests which despite their abandonment during the 1990s still widely characterize the vegetation of the river banks, especially in the two protected areas where they are safe from the recent expansion of mechanized rice and soybean agriculture. The project evolved from the capacity-building of communities in techniques to increase the productivity of the rubber agroforests without breaking their low-input and low-risk logic, to the establishment of a community enterprise that allowed reserve inhabitants to reforest their own land with tree species of their choice and sell reforestation (not carbon) credits to local timber companies while retaining the ownership of the trees. By making land use practices economically more viable and ecologically more appropriate for protected areas, the project shows ways to strengthen the system of extractive and sustainable development reserves that protects millions of hectares of Amazon forest with the consent of the communities that inhabit them.
NASA Astrophysics Data System (ADS)
Anthony, Edward J.; Gardel, Antoine; Proisy, Christophe; Fromard, François; Gensac, Erwan; Peron, Christina; Walcker, Romain; Lesourd, Sandric
2013-07-01
The morphology and sediment dynamics of the 1500 km-long coast of South America between the mouths of the Amazon and the Orinoco Rivers are largely dependent on the massive suspended-sediment discharge of the Amazon, part of which is transported alongshore as mud banks. These mud banks have an overwhelming impact on the geology, the geomorphology, the ecology and the economy of this coast. Although numerous field investigations and remote sensing studies have considerably enhanced our understanding of the dynamics of this coast over the last three decades, much still remains to be understood of the unique functional mechanisms and processes driving its evolution. Among the themes that we deem as requiring further attention three come out as fundamental. The first concerns the mechanisms of formation of individual mud banks from mud streaming on the shelf off the mouth of the Amazon. An unknown quantity of the fluid mud generated by offshore estuarine front activity is transported shoreward and progressively forms mud banks on the Amapá coast, Brazil. The volume of each mud bank can contain from the equivalent of the annual mud supply of the Amazon to several times this annual sediment discharge. The mechanisms by which individual banks are generated from the Amazon turbidity maximum are still to be elucidated. Areas of research include regional mesoscale oceanographic conditions and mud supply from the Amazon. The second theme is that of variations in rates of migration of mud banks, which influence patterns of coastal accretion. Research emphasis needs to be placed on the analysis of both regional meteorological-hydrodynamic forcing and distant Atlantic forcing, as well as on the hydrology of the large rivers draining the Guyana Shield. The rivers appear to generate significant offshore deflection of mud banks in transit alongshore, through a hydraulic-groyne effect. This may favour both muddy accretion on the updrift coast and downdrift mud liquefaction with probably lessened muddy deposition. The third theme concerns sand supply by the Guiana Shield rivers. The rare sand deposits are important in providing sites for human settlements and routes and for nesting by marine turtles. The limited presence of sand bodies on this coast may reflect 'mud blanketing', a hypothesis that requires verification through high-resolution seismic analyses of shelf deposits and coring operations. The large Guiana Shield rivers, especially in Surinam and Guyana, have supplied sand for the construction of significant bands of cheniers, probably enhanced by the afore-mentioned downdrift hydraulic-groyne effect on hindered mud deposition. In all the three themes of this future research agenda, two central elements are the sediment input of the rivers of the Amazon basin, starting with the massive mud supply from the Amazon catchment itself, followed by sand inputs by the Guiana Shield rivers and their river-mouth effects on mud banks.
Lemos, Leandro Nascimento; de Souza, Rosineide Cardoso; de Souza Cannavan, Fabiana; Patricio, André; Pylro, Victor Satler; Hanada, Rogério Eiji; Mui, Tsai Siu
2016-12-01
The Anthropogenic Amazon Dark Earth soil is considered one of the world's most fertile soils. These soils differs from conventional Amazon soils because its higher organic content concentration. Here we describe the metagenome sequencing of microbial communities of two sites of Anthropogenic Amazon Dark Earth soils from Amazon Rainforest, Brazil. The raw sequence data are stored under Short Read Accession number: PRJNA344917.
A comprehensive health program in a manganese ore mining community in the Amazon region of Brazil.
Gusmão, H H
1980-05-01
It is clear that organizations which conduct operations in undeveloped areas lacking medical and sanitary facilities must assume responsibilities in broad areas of health service and environmental control. These responsibilities go far beyond those of traditional occupational medicine. In addition, adequate provision must be made to counteract stresses which may be associated with radical cultural and situational change.
Zooplankton From a Reef System Under the Influence of the Amazon River Plume.
Neumann-Leitão, Sigrid; Melo, Pedro A M C; Schwamborn, Ralf; Diaz, Xiomara F G; Figueiredo, Lucas G P; Silva, Andrea P; Campelo, Renata P S; de Melo Júnior, Mauro; Melo, Nuno F A C; Costa, Alejandro E S F; Araújo, Moacyr; Veleda, Dóris R A; Moura, Rodrigo L; Thompson, Fabiano
2018-01-01
At the mouth of the Amazon River, a widespread carbonate ecosystem exists below the river plume, generating a hard-bottom reef (∼9500 km 2 ) that includes mainly large sponges but also rhodolith beds. The mesozooplankton associated with the pelagic realm over the reef formation was characterized, considering the estuarine plume and oceanic influence. Vertical hauls were carried out using a standard plankton net with 200 μm mesh size during September 2014. An indicator index was applied to express species importance as ecological indicators in community. Information on functional traits was gathered for the most abundant copepod species. Overall, 179 zooplankton taxa were recorded. Copepods were the richest (92 species), most diverse and most abundant group, whereas meroplankton were rare and less abundant. Species diversity (>3.0 bits.ind -1 ) and evenness (>0.6) were high, indicating a complex community. Small holoplanktonic species dominated the zooplankton, and the total density varied from 107.98 ind. m -3 over the reef area to 2,609.24 ind. m -3 in the estuarine plume, with a significant difference between coastal and oceanic areas. The most abundant copepods were the coastal species ithona plumifera and Clausocalanus furcatus and early stages copepodites of Paracalanidae. The holoplanktonic Oikopleura , an important producer of mucous houses, was very abundant on the reefs. The indicator species index revealed three groups: (1) indicative of coastal waters under the influence of the estuarine plume [ Euterpina acutifrons, Parvocalanus crassirostris, Oikopleura (Vexillaria) dioica and Hydromedusae]; (2) characterized coastal and oceanic conditions ( Clausocalanus ); (3) characterized the reef system ( O. plumifera ). Two major copepods functional groups were identified and sorted according to their trophic strategy and coastal-oceanic distribution. The species that dominated the coastal area and the area over the rhodolith beds are indicators of the estuarine plume and are mixed with species of the North Brazil Current. These species practically disappear offshore, where occur oceanic species commonly found in other oligotrophic tropical areas. This ecosystem shows a mixture of estuarine, coastal and oceanic communities coexisting in the waters over the Amazon reefs, with no significant differences among these areas. However, the MDS clearly separated the communities along the salinity gradient in the plume.
Aguilera, Orangel; Lundberg, John; Birindelli, Jose; Sabaj Pérez, Mark; Jaramillo, Carlos; Sánchez-Villagra, Marcelo R
2013-01-01
Fossil catfishes from fluvio-lacustrine facies of late Miocene Urumaco, early Pliocene Castilletes and late Pliocene San Gregorio formations provide evidence of a hydrographic connection in what is today desert regions of northern Colombia and Venezuela. New discoveries and reevaluation of existing materials leads to the recognition of two new records of the pimelodid Brachyplatystoma cf. vaillantii, and of three distinct doradid taxa: Doraops sp., Rhinodoras sp., and an unidentified third form. The presence of fossil goliath long-whiskered catfishes and thorny catfishes are indicative of the persistence of a fluvial drainage system inflow into the South Caribbean during the Pliocene/Pleistocene boundary, complementary to the previous western Amazonian hydrographic system described from the Middle Miocene Villavieja Formation in central Colombia and Late Miocene Urumaco Formation in northwestern Venezuela. The Pliocene Castilletes and San Gregorio formations potentially represent the last lithostratigraphic units related with an ancient western Amazonian fish fauna and that drainage system in the Caribbean. Alternatively, it may preserve faunas from a smaller, peripheral river basin that was cut off earlier from the Amazon-Orinoco, today found in the Maracaibo basin and the Magdalena Rivers.
Aguilera, Orangel; Lundberg, John; Birindelli, Jose; Sabaj Pérez, Mark; Jaramillo, Carlos; Sánchez-Villagra, Marcelo R.
2013-01-01
Fossil catfishes from fluvio-lacustrine facies of late Miocene Urumaco, early Pliocene Castilletes and late Pliocene San Gregorio formations provide evidence of a hydrographic connection in what is today desert regions of northern Colombia and Venezuela. New discoveries and reevaluation of existing materials leads to the recognition of two new records of the pimelodid Brachyplatystoma cf. vaillantii, and of three distinct doradid taxa: Doraops sp., Rhinodoras sp., and an unidentified third form. The presence of fossil goliath long-whiskered catfishes and thorny catfishes are indicative of the persistence of a fluvial drainage system inflow into the South Caribbean during the Pliocene/Pleistocene boundary, complementary to the previous western Amazonian hydrographic system described from the Middle Miocene Villavieja Formation in central Colombia and Late Miocene Urumaco Formation in northwestern Venezuela. The Pliocene Castilletes and San Gregorio formations potentially represent the last lithostratigraphic units related with an ancient western Amazonian fish fauna and that drainage system in the Caribbean. Alternatively, it may preserve faunas from a smaller, peripheral river basin that was cut off earlier from the Amazon-Orinoco, today found in the Maracaibo basin and the Magdalena Rivers. PMID:24098778
Retinal diseases in a reference center from a Western Amazon capital city.
Malerbi, Fernando Korn; Matsudo, Nilson Hideo; Carneiro, Adriano Biondi Monteiro; Lottenberg, Claudio Luiz
2015-01-01
To describe retinal diseases found in patients who were waiting for treatment at a tertiary care hospital in Rio Branco, Acre, Brazil. Patients underwent slit lamp biomicroscopy, dilated fundus exam and ocular ultrasound. Patients were classified according to phakic status and retinal disease of the most severely affected eye. A total of 138 patients were examined. The mean age was 51.3 years. Diabetes was present in 35.3% and hypertension in 45.4% of these patients. Cataract was found in 23.2% of patients, in at least one eye. Retinal examination was possible in 129 patients. The main retinal diseases identified were rhegmatogenous retinal detachment (n=23; 17.8%) and diabetic retinopathy (n=32; 24.8%). Out of 40 patients evaluated due to diabetes, 13 (32.5%) had absent or mild forms of diabetic retinopathy and did not need further treatment, only observation. Diabetic retinopathy was the main retinal disease in this population. It is an avoidable cause of blindness and can be remotely evaluated, in its initial stages, by telemedicine strategies. In remote Brazilian areas, telemedicine may be an important tool for retinal diseases diagnosis and follow-up.
Simulating fire regimes in the Amazon in response to climate change and deforestation.
Silvestrini, Rafaella Almeida; Soares-Filho, Britaldo Silveira; Nepstad, Daniel; Coe, Michael; Rodrigues, Hermann; Assunção, Renato
2011-07-01
Fires in tropical forests release globally significant amounts of carbon to the atmosphere and may increase in importance as a result of climate change. Despite the striking impacts of fire on tropical ecosystems, the paucity of robust spatial models of forest fire still hampers our ability to simulate tropical forest fire regimes today and in the future. Here we present a probabilistic model of human-induced fire occurrence for the Amazon that integrates the effects of a series of anthropogenic factors with climatic conditions described by vapor pressure deficit. The model was calibrated using NOAA-12 night satellite hot pixels for 2003 and validated for the years 2002, 2004, and 2005. Assessment of the fire risk map yielded fitness values > 85% for all months from 2002 to 2005. Simulated fires exhibited high overlap with NOAA-12 hot pixels regarding both spatial and temporal distributions, showing a spatial fit of 50% within a radius of 11 km and a maximum yearly frequency deviation of 15%. We applied this model to simulate fire regimes in the Amazon until 2050 using IPCC's A2 scenario climate data from the Hadley Centre model and a business-as-usual (BAU) scenario of deforestation and road expansion from SimAmazonia. Results show that the combination of these scenarios may double forest fire occurrence outside protected areas (PAs) in years of extreme drought, expanding the risk of fire even to the northwestern Amazon by midcentury. In particular, forest fires may increase substantially across southern and southwestern Amazon, especially along the highways slated for paving and in agricultural zones. Committed emissions from Amazon forest fires and deforestation under a scenario of global warming and uncurbed deforestation may amount to 21 +/- 4 Pg of carbon by 2050. BAU deforestation may increase fires occurrence outside PAs by 19% over the next four decades, while climate change alone may account for a 12% increase. In turn, the combination of climate change and deforestation would boost fire occurrence outside PAs by half during this period. Our modeling results, therefore, confirm the synergy between the two Ds of REDD (Reducing Emissions from Deforestation and Forest Degradation in Developing Countries).
NASA Technical Reports Server (NTRS)
Morton, Douglas C.; DeFries, Ruth S.; Nagol, Jyoteshwar; Souza, Carlos M., Jr.; Kasischke, Eric S.; Hurtt, George C.; Dubayah, Ralph
2011-01-01
Understory fires in Amazon forests alter forest structure, species composition, and the likelihood of future disturbance. The annual extent of fire-damaged forest in Amazonia remains uncertain due to difficulties in separating burning from other types of forest damage in satellite data. We developed a new approach, the Burn Damage and Recovery (BDR) algorithm, to identify fire-related canopy damages using spatial and spectral information from multi-year time series of satellite data. The BDR approach identifies understory fires in intact and logged Amazon forests based on the reduction and recovery of live canopy cover in the years following fire damages and the size and shape of individual understory burn scars. The BDR algorithm was applied to time series of Landsat (1997-2004) and MODIS (2000-2005) data covering one Landsat scene (path/row 226/068) in southern Amazonia and the results were compared to field observations, image-derived burn scars, and independent data on selective logging and deforestation. Landsat resolution was essential for detection of burn scars less than 50 ha, yet these small burns contributed only 12% of all burned forest detected during 1997-2002. MODIS data were suitable for mapping medium (50-500 ha) and large (greater than 500 ha) burn scars that accounted for the majority of all fire-damaged forest in this study. Therefore, moderate resolution satellite data may be suitable to provide estimates of the extent of fire-damaged Amazon forest at a regional scale. In the study region, Landsat-based understory fire damages in 1999 (1508 square kilometers) were an order of magnitude higher than during the 1997-1998 El Nino event (124 square kilometers and 39 square kilometers, respectively), suggesting a different link between climate and understory fires than previously reported for other Amazon regions. The results in this study illustrate the potential to address critical questions concerning climate and fire risk in Amazon forests by applying the BDR algorithm over larger areas and longer image time series.
NASA Astrophysics Data System (ADS)
Bogota-Angel, Raul; Chemale Junior, Farid; Davila, Roberto; Soares, Emilson; Pinto, Ricardo; Do Carmo, Dermeval; Hoorn, Carina
2014-05-01
Origen and development of the highly diverse Amazon tropical forest has mostly been inferred from continental sites. However, sediment records in the marine Foz do Amazonas Basin can provide important information to better understand the influence of the Andes uplift and climate change on its plant biomes evolution since the Neogene. Sediment analyses of samples from BP-Petrobras well 1 and 2, drilled in the Amazon Fan, allowed to infer the onset of the transcontinental Amazon river and the fan phase during the middle to late Miocene (c. 10.5 Ma). As part of the CLIMAMAZON research programme we performed pollen analysis on the 10.5 to 0.4 Ma time interval. 76 ditch cutting samples of the upper 4165 m sediments of well 2 permitted us to infer changes in floral composition in the Amazon Basin. The palynological spectra across this interval (nannofossil based age model) include pollen, fern spores, dinocysts and foram lignings. When possible pollen and fern spores were grouped in four vegetation types: estuarine, tropical, mountain forest and high mountain open treeless vegetation. Pollen is generally corroded and reflects the effects of sediment transportation while reworked material is also common. Good pollen producers such as Poaceae, Asteraceae and Cyperaceae are common and reflect indistinctive vegetation types particularly those associated to riverine systems. Rhizophora/Zonocostites spp. indicate "close-distance" mangrove development. Tropical forest biomes are represented by pollen that resemble Moraceae-Urticaceae, Melastomataceae-Combretaceae, Sapotaceae, Alchornea, Euphorbiaceae, Rubiaceae, Bignoniaceae, Mauritia and Arecaceae. Myrica, and particularly sporadic occurrences of fossil fern spores like Lophosoria, and Cyathea suggest the development of a moist Andean forest in areas above 1000 m. First indicators of high altitudes appear in the last part of late Miocene with taxa associated to current Valeriana and particularly Polylepis, a neotropical taxon currently growing along the Andean fluvial system on altitudes between c. 2000 up to c. 4800 m. Alnus is an important Andean forest taxa since Pliocene. In summary, the Neogene palynological record of the Amazon Fan strongly reflects and confirms the influence of the uplift of the Andes and its transcontinental character from late Miocene onwards.
Vittor, Amy Y.; Pan, William; Gilman, Robert H.; Tielsch, James; Glass, Gregory; Shields, Tim; Sánchez-Lozano, Wagner; Pinedo, Viviana V.; Salas-Cobos, Erit; Flores, Silvia; Patz, Jonathan A.
2009-01-01
This study examined the larval breeding habitat of a major South American malaria vector, Anopheles darlingi, in areas with varying degrees of ecologic alteration in the Peruvian Amazon. Water bodies were repeatedly sampled across 112 km of transects along the Iquitos-Nauta road in ecologically varied areas. Field data and satellite imagery were used to determine the landscape composition surrounding each site. Seventeen species of Anopheles larvae were collected. Anopheles darlingi larvae were present in 87 of 844 sites (10.3%). Sites with A. darlingi larvae had an average of 24.1% forest cover, compared with 41.0% for sites without A. darlingi (P < 0.0001). Multivariate analysis identified seasonality, algae, water body size, presence of human populations, and the amount of forest and secondary growth as significant determinants of A. darlingi presence. We conclude that deforestation and associated ecologic alterations are conducive to A. darlingi larval presence, and thereby increase malaria risk. PMID:19556558
Pfaff, Alexander; Robalino, Juan; Herrera, Diego; Sandoval, Catalina
2015-01-01
Protected areas are the leading forest conservation policy for species and ecoservices goals and they may feature in climate policy if countries with tropical forest rely on familiar tools. For Brazil's Legal Amazon, we estimate the average impact of protection upon deforestation and show how protected areas’ forest impacts vary significantly with development pressure. We use matching, i.e., comparisons that are apples-to-apples in observed land characteristics, to address the fact that protected areas (PAs) tend to be located on lands facing less pressure. Correcting for that location bias lowers our estimates of PAs’ forest impacts by roughly half. Further, it reveals significant variation in PA impacts along development-related dimensions: for example, the PAs that are closer to roads and the PAs closer to cities have higher impact. Planners have multiple conservation and development goals, and are constrained by cost, yet still conservation planning should reflect what our results imply about future impacts of PAs. PMID:26225922
NASA Astrophysics Data System (ADS)
Lambs, Luc; Muller, Etienne; Fromard, F.
2007-08-01
SummaryFrench Guiana is notable for the extent of its rain forests, which occupy 97% of the country, and the influence of the Amazon along its shores. In fact, the shores and estuaries support a mangrove forest typical of saline conditions. This paper reports the chemical characteristics, conductivity and salinity and the stable isotopes (oxygen and deuterium) of the rivers and shores between the Cayenne area and the border with Surinam. The results show a quite homogenous freshwater pool over the country. However, the low slope of the coast, a result of the wide mud banks deposited by the Amazonian plume, have turned the mouths of the smaller rivers to the northwest, creating large salty areas where mangroves grow several kilometers inland. Despite the large amount of Amazonian water, the Guianan coast exhibits high salinity. In fact, the freshwater itself remains far from the shore, following the north Brazilian current, while only the mud plume arrives at the coast, creating this paradox.
Late Glacial and Holocene gravity deposits in the Gulf of Lions deep basin, Western Mediterranean
NASA Astrophysics Data System (ADS)
Dennielou, B.; Bonnel, C.; Sultan, N.; Voisset, M.; Berné, S.; Beaudouin, C.; Guichard, F.; Melki, T.; Méar, Y.; Droz, L.
2003-04-01
Recent investigations in the Gulf of Lions have shown that complex gravity processes and deposits occurred in the deep basin since the last Glacial period. Besides the largest western Mediterranean turbiditic system, Petit-Rhône deep-sea fan (PRDSF), whose built-up started at the end of Pliocene, several sedimentary bodies can be distinguished: (1) The turbiditic Pyreneo-Languedocian ridge (PLR), at the outlet of the Sète canyon network, whose activity is strongly connected to the sea level and the connection of the canyons with the rivers. It surface shows long wave-length sediment waves, probably in relation with the turbiditic overspill. (2) An acoustically chaotic unit, filling the topographic low between the PRDSF and the PLR, the Lower Interlobe Unit. Possible source areas are the Sète canyon and/or the Marti Canyon. (3) An acoustically transparent unit, below the neofan, filling the same topographic low, the Western Transparent Unit, interpreted as a debris-flow. Recent sediment cores have shown that this sedimentary is composed of folded, laminated mud, both in its northern and southern fringes. (4) The Petit-Rhône neofan, a channelized turbiditic lobe resulting from the last avulsion of the Petit-Rhône turbiditic channel and composed of two units. The lower, acoustically chaotic facies unit, corresponding to an initial stage of the avulsion, similar to the HARP facies found on the Amazon fan. The upper, transparent, slightly bedded, channel-levee shaped unit, corresponding to the channelized stage of the avulsion. (5) Up to ten, Deglacial to Holocene, thin, fine sand layers, probably originating from shelf-break sand accumulations, through the Sète canyon network. (6) Giant scours, in the southern, distal part of the neofan, possibly linked to turbiditic overflow from the neo-channel, probably corresponding to channel-lobe transition zone features (Wynn et al. 2002). Recent investigations have shown no evidence of bottom current features.
Seasonal and interannual variability of climate and vegetation indices across the Amazon.
Brando, Paulo M; Goetz, Scott J; Baccini, Alessandro; Nepstad, Daniel C; Beck, Pieter S A; Christman, Mary C
2010-08-17
Drought exerts a strong influence on tropical forest metabolism, carbon stocks, and ultimately the flux of carbon to the atmosphere. Satellite-based studies have suggested that Amazon forests green up during droughts because of increased sunlight, whereas field studies have reported increased tree mortality during severe droughts. In an effort to reconcile these apparently conflicting findings, we conducted an analysis of climate data, field measurements, and improved satellite-based measures of forest photosynthetic activity. Wet-season precipitation and plant-available water (PAW) decreased over the Amazon Basin from 1996-2005, and photosynthetically active radiation (PAR) and air dryness (expressed as vapor pressure deficit, VPD) increased from 2002-2005. Using improved enhanced vegetation index (EVI) measurements (2000-2008), we show that gross primary productivity (expressed as EVI) declined with VPD and PAW in regions of sparse canopy cover across a wide range of environments for each year of the study. In densely forested areas, no climatic variable adequately explained the Basin-wide interannual variability of EVI. Based on a site-specific study, we show that monthly EVI was relatively insensitive to leaf area index (LAI) but correlated positively with leaf flushing and PAR measured in the field. These findings suggest that production of new leaves, even when unaccompanied by associated changes in LAI, could play an important role in Basin-wide interannual EVI variability. Because EVI variability was greatest in regions of lower PAW, we hypothesize that drought could increase EVI by synchronizing leaf flushing via its effects on leaf bud development.
2011-01-01
Background Anopheles darlingi is the major vector of malaria in South America, and its behavior and distribution has epidemiological importance to biomedical research. In Brazil, An. darlingi is found in the northern area of the Amazon basin, where 99.5% of the disease is reported. Methods The study area, known as Ramal do Granada, is a rural settlement inside the Amazon basin in the state of Acre. Population variations and density have been analysed by species behaviour, and molecular analysis has been measured by ND4 mitochondrial gene sequencing. Results The results show higher density in collections near a recent settlement, suggesting that a high level of colonization decreases the vector presence. The biting activity showed higher activity at twilight and major numbers of mosquitos in the remaining hours of the night in months of high density. From a sample of 110 individual mosquitoes, 18 different haplotypes were presented with a diversity index of 0.895, which is higher than that found in other Anopheles studies. Conclusions An. darlingi depends on forested regions for their larval and adult survival. In months with higher population density, the presence of mosquitoes persisted in the second part of the night, increasing the vector capacity of the species. Despite the intra-population variation in the transition to rainy season, the seasonal distribution of haplotypes shows no change in the structure population of An. darlingi. PMID:21702964
NASA Astrophysics Data System (ADS)
Souza-Filho, Pedro Walfir M.; Paradella, Waldir R.; Rodrigues, Suzan W. P.; Costa, Francisco R.; Mura, José C.; Gonçalves, Fabrício D.
2011-11-01
This study assessed the use of multi-polarized L-band images for the identification of coastal wetland environments in the Amazon coast region of northern Brazil. Data were acquired with a SAR R99B sensor from the Amazon Surveillance System (SIVAM) on board a Brazilian Air Force jet. Flights took place in the framework of the 2005 MAPSAR simulation campaign, a German-Brazilian feasibility study focusing on a L-band SAR satellite. Information retrieval was based on the recognition of the interaction between a radar signal and shallow-water morphology in intertidal areas, coastal dunes, mangroves, marshes and the coastal plateau. Regarding the performance of polarizations, VV was superior for recognizing intertidal area morphology under low spring tide conditions; HH for mapping coastal environments covered with forest and scrub vegetation such as mangrove and vegetated dunes, and HV was suitable for distinguishing transition zones between mangroves and coastal plateau. The statistical results for the classification maps expressed by kappa index and general accuracy were 83.3% and 0.734 for the multi-polarized color composition (R-HH, G-HV, B-VV), 80.7% and 0.694% for HH, 79.7% and 0.673% for VV, and 77.9% and 0.645% for HV amplitude image. The results indicate that use of multi-polarized L-band SAR is a valuable source of information aiming at the identification and discrimination of distinct geomorphic targets in tropical wetlands.
Predictive modelling of contagious deforestation in the Brazilian Amazon.
Rosa, Isabel M D; Purves, Drew; Souza, Carlos; Ewers, Robert M
2013-01-01
Tropical forests are diminishing in extent due primarily to the rapid expansion of agriculture, but the future magnitude and geographical distribution of future tropical deforestation is uncertain. Here, we introduce a dynamic and spatially-explicit model of deforestation that predicts the potential magnitude and spatial pattern of Amazon deforestation. Our model differs from previous models in three ways: (1) it is probabilistic and quantifies uncertainty around predictions and parameters; (2) the overall deforestation rate emerges "bottom up", as the sum of local-scale deforestation driven by local processes; and (3) deforestation is contagious, such that local deforestation rate increases through time if adjacent locations are deforested. For the scenarios evaluated-pre- and post-PPCDAM ("Plano de Ação para Proteção e Controle do Desmatamento na Amazônia")-the parameter estimates confirmed that forests near roads and already deforested areas are significantly more likely to be deforested in the near future and less likely in protected areas. Validation tests showed that our model correctly predicted the magnitude and spatial pattern of deforestation that accumulates over time, but that there is very high uncertainty surrounding the exact sequence in which pixels are deforested. The model predicts that under pre-PPCDAM (assuming no change in parameter values due to, for example, changes in government policy), annual deforestation rates would halve between 2050 compared to 2002, although this partly reflects reliance on a static map of the road network. Consistent with other models, under the pre-PPCDAM scenario, states in the south and east of the Brazilian Amazon have a high predicted probability of losing nearly all forest outside of protected areas by 2050. This pattern is less strong in the post-PPCDAM scenario. Contagious spread along roads and through areas lacking formal protection could allow deforestation to reach the core, which is currently experiencing low deforestation rates due to its isolation.
Carvalho, Bruno M; Rangel, Elizabeth F; Ready, Paul D; Vale, Mariana M
2015-01-01
Vector borne diseases are susceptible to climate change because distributions and densities of many vectors are climate driven. The Amazon region is endemic for cutaneous leishmaniasis and is predicted to be severely impacted by climate change. Recent records suggest that the distributions of Lutzomyia (Nyssomyia) flaviscutellata and the parasite it transmits, Leishmania (Leishmania) amazonensis, are expanding southward, possibly due to climate change, and sometimes associated with new human infection cases. We define the vector's climatic niche and explore future projections under climate change scenarios. Vector occurrence records were compiled from the literature, museum collections and Brazilian Health Departments. Six bioclimatic variables were used as predictors in six ecological niche model algorithms (BIOCLIM, DOMAIN, MaxEnt, GARP, logistic regression and Random Forest). Projections for 2050 used 17 general circulation models in two greenhouse gas representative concentration pathways: "stabilization" and "high increase". Ensemble models and consensus maps were produced by overlapping binary predictions. Final model outputs showed good performance and significance. The use of species absence data substantially improved model performance. Currently, L. flaviscutellata is widely distributed in the Amazon region, with records in the Atlantic Forest and savannah regions of Central Brazil. Future projections indicate expansion of the climatically suitable area for the vector in both scenarios, towards higher latitudes and elevations. L. flaviscutellata is likely to find increasingly suitable conditions for its expansion into areas where human population size and density are much larger than they are in its current locations. If environmental conditions change as predicted, the range of the vector is likely to expand to southeastern and central-southern Brazil, eastern Paraguay and further into the Amazonian areas of Bolivia, Peru, Ecuador, Colombia and Venezuela. These areas will only become endemic for L. amazonensis, however, if they have competent reservoir hosts and transmission dynamics matching those in the Amazon region.
Carvalho, Bruno M.; Ready, Paul D.
2015-01-01
Vector borne diseases are susceptible to climate change because distributions and densities of many vectors are climate driven. The Amazon region is endemic for cutaneous leishmaniasis and is predicted to be severely impacted by climate change. Recent records suggest that the distributions of Lutzomyia (Nyssomyia) flaviscutellata and the parasite it transmits, Leishmania (Leishmania) amazonensis, are expanding southward, possibly due to climate change, and sometimes associated with new human infection cases. We define the vector’s climatic niche and explore future projections under climate change scenarios. Vector occurrence records were compiled from the literature, museum collections and Brazilian Health Departments. Six bioclimatic variables were used as predictors in six ecological niche model algorithms (BIOCLIM, DOMAIN, MaxEnt, GARP, logistic regression and Random Forest). Projections for 2050 used 17 general circulation models in two greenhouse gas representative concentration pathways: “stabilization” and “high increase”. Ensemble models and consensus maps were produced by overlapping binary predictions. Final model outputs showed good performance and significance. The use of species absence data substantially improved model performance. Currently, L. flaviscutellata is widely distributed in the Amazon region, with records in the Atlantic Forest and savannah regions of Central Brazil. Future projections indicate expansion of the climatically suitable area for the vector in both scenarios, towards higher latitudes and elevations. L. flaviscutellata is likely to find increasingly suitable conditions for its expansion into areas where human population size and density are much larger than they are in its current locations. If environmental conditions change as predicted, the range of the vector is likely to expand to southeastern and central-southern Brazil, eastern Paraguay and further into the Amazonian areas of Bolivia, Peru, Ecuador, Colombia and Venezuela. These areas will only become endemic for L. amazonensis, however, if they have competent reservoir hosts and transmission dynamics matching those in the Amazon region. PMID:26619186
Landscape fragmentation, severe drought, and the new Amazon forest fire regime.
Alencar, Ane A; Brando, Paulo M; Asner, Gregory P; Putz, Francis E
2015-09-01
Changes in weather and land use are transforming the spatial and temporal characteristics of fire regimes in Amazonia, with important effects on the functioning of dense (i.e., closed-canopy), open-canopy, and transitional forests across the Basin. To quantify, document, and describe the characteristics and recent changes in forest fire regimes, we sampled 6 million ha of these three representative forests of the eastern and southern edges of the Amazon using 24 years (1983-2007) of satellite-derived annual forest fire scar maps and 16 years of monthly hot pixel information (1992-2007). Our results reveal that changes in forest fire regime properties differentially affected these three forest types in terms of area burned and fire scar size, frequency, and seasonality. During the study period, forest fires burned 15% (0.3 million ha), 44% (1 million ha), and 46% (0.6 million ha) of dense, open, and transitional forests, respectively. Total forest area burned and fire scar size tended to increase over time (even in years of average rainfall in open canopy and transitional forests). In dense forests, most of the temporal variability in fire regime properties was linked to El Nino Southern Oscillation (ENSO)-related droughts. Compared with dense forests, transitional and open forests experienced fires twice as frequently, with at least 20% of these forests' areas burning two or more times during the 24-year study period. Open and transitional forests also experienced higher deforestation rates than dense forests. During drier years, the end of the dry season was delayed by about a month, which resulted in larger burn scars and increases in overall area burned later in the season. These observations suggest that climate-mediated forest flammability is enhanced by landscape fragmentation caused by deforestation, as observed for open and transitional forests in the Eastern portion of the Amazon Basin.
Predictive Modelling of Contagious Deforestation in the Brazilian Amazon
Rosa, Isabel M. D.; Purves, Drew; Souza, Carlos; Ewers, Robert M.
2013-01-01
Tropical forests are diminishing in extent due primarily to the rapid expansion of agriculture, but the future magnitude and geographical distribution of future tropical deforestation is uncertain. Here, we introduce a dynamic and spatially-explicit model of deforestation that predicts the potential magnitude and spatial pattern of Amazon deforestation. Our model differs from previous models in three ways: (1) it is probabilistic and quantifies uncertainty around predictions and parameters; (2) the overall deforestation rate emerges “bottom up”, as the sum of local-scale deforestation driven by local processes; and (3) deforestation is contagious, such that local deforestation rate increases through time if adjacent locations are deforested. For the scenarios evaluated–pre- and post-PPCDAM (“Plano de Ação para Proteção e Controle do Desmatamento na Amazônia”)–the parameter estimates confirmed that forests near roads and already deforested areas are significantly more likely to be deforested in the near future and less likely in protected areas. Validation tests showed that our model correctly predicted the magnitude and spatial pattern of deforestation that accumulates over time, but that there is very high uncertainty surrounding the exact sequence in which pixels are deforested. The model predicts that under pre-PPCDAM (assuming no change in parameter values due to, for example, changes in government policy), annual deforestation rates would halve between 2050 compared to 2002, although this partly reflects reliance on a static map of the road network. Consistent with other models, under the pre-PPCDAM scenario, states in the south and east of the Brazilian Amazon have a high predicted probability of losing nearly all forest outside of protected areas by 2050. This pattern is less strong in the post-PPCDAM scenario. Contagious spread along roads and through areas lacking formal protection could allow deforestation to reach the core, which is currently experiencing low deforestation rates due to its isolation. PMID:24204776
NASA Astrophysics Data System (ADS)
Fonseca, L.; Miranda, F. P.; Beisl, C. H.; Souza-Fonseca, J.
2002-12-01
PETROBRAS (the Brazilian national oil company) built a pipeline to transport crude oil from the Urucu River region to a terminal in the vicinities of Coari, a city located in the right margin of the Solimoes River. The oil is then shipped by tankers to another terminal in Manaus, capital city of the Amazonas state. At the city of Coari, changes in water level between dry and wet seasons reach up to 14 meters. This strong seasonal character of the Amazonian climate gives rise to four distinct scenarios in the annual hydrological cycle: low water, high water, receding water, and rising water. These scenarios constitute the main reference for the definition of oil spill response planning in the region, since flooded forests and flooded vegetation are the most sensitive fluvial environments to oil spills. This study focuses on improving information about oil spill environmental sensitivity in Western Amazon by using 3D visualization techniques to help the analysis and interpretation of remote sensing and digital topographic data, as follows: (a) 1995 low flood and 1996 high flood JERS-1 SAR mosaics, band LHH, 100m pixel; (b) 2000 low flood and 2001 high flood RADARSAT-1 W1 images, band CHH, 30m pixel; (c) 2002 high flood airborne SAR images from the SIVAM project (System for Surveillance of the Amazon), band LHH, 3m pixel and band XHH, 6m pixel; (d) GTOPO30 digital elevation model, 30' resolution; (e) Digital elevation model derived from topographic information acquired during seismic surveys, 25m resolution; (f) panoramic views obtained from low altitude helicopter flights. The methodology applied includes image processing, cartographic conversion and generation of value-added product using 3D visualization. A semivariogram textural classification was applied to the SAR images in order to identify areas of flooded forest and flooded vegetation. The digital elevation models were color shaded to highlight subtle topographic features. Both datasets were then converted to the same cartographic projection and inserted into the Fledermaus 3D visualization environment. 3D visualization proved to be an important aid in understanding the spatial distribution pattern of the environmentally sensitive vegetation cover. The dynamics of the hydrological cycle was depicted in a basin-wide scale, revealing new geomorphic information relevant to assess the environmental risk of oil spills. Results demonstrate that pipelines constitute an environmentally saver option for oil transportation in the region when compared to fluvial tanker routes.
Andes Altiplano, South America
1991-08-11
STS043-151-159 (2-11 August 1991) --- This photograph looks westward over the high plateau of the southern Peruvian Andes west and north of Lake Titicaca (not in field of view). Lima, Peru lies under the clouds just north of the clear coastal area. Because the high Andes have been uplifted 10,000 to 13,000 feet during the past 20 million years, the rivers which cut down to the Pacific Ocean have gorges almost that deep, such as the Rio Ocona at the bottom of the photograph. The eastern slopes of the Andes are heavily forested, forming the headwaters of the Amazon system. Smoke from burning in the Amazon basin fills river valleys on the right side of the photograph. A Linhof camera was used to take this view.
Multi-model analysis of the Atlantic influence on Southern Amazon rainfall
Yoon, Jin -Ho
2015-12-07
Amazon rainfall is subject to year-to-year fluctuation resulting in drought and flood in various intensities. A major climatic driver of the interannual variation of the Amazon rainfall is El Niño/Southern Oscillation. Also, the Sea Surface Temperature over the Atlantic Ocean is identified as an important climatic driver on the Amazon water cycle. Previously, observational datasets were used to support the Atlantic influence on Amazon rainfall. Furthermore, it is found that multiple global climate models do reproduce the Atlantic-Amazon link robustly. However, there exist differences in rainfall response, which primarily depends on the climatological rainfall amount.
NASA Astrophysics Data System (ADS)
Grecchi, Rosana Cristina; Beuchle, René; Shimabukuro, Yosio Edemir; Aragão, Luiz E. O. C.; Arai, Egidio; Simonetti, Dario; Achard, Frédéric
2017-09-01
Forest cover disturbances due to processes such as logging and forest fires are a widespread issue especially in the tropics, and have heavily affected forest biomass and functioning in the Brazilian Amazon in the past decades. Satellite remote sensing has played a key role for assessing logging activities in this region; however, there are still remaining challenges regarding the quantification and monitoring of these processes affecting forested lands. In this study, we propose a new method for monitoring areas affected by selective logging in one of the hotspots of Mato Grosso state in the Brazilian Amazon, based on a combination of object-based and pixel-based classification approaches applied on remote sensing data. Logging intensity and changes over time are assessed within grid cells of 300 m × 300 m spatial resolution. Our method encompassed three main steps: (1) mapping forest/non-forest areas through an object-based classification approach applied to a temporal series of Landsat images during the period 2000-2015, (2) mapping yearly logging activities from soil fraction images on the same Landsat data series, and (3) integrating information from previous steps within a regular grid-cell of 300 m × 300 m in order to monitor disturbance intensities over this 15-years period. The overall accuracy of the baseline forest/non-forest mask (year 2000) and of the undisturbed vs disturbed forest (for selected years) were 93% and 84% respectively. Our results indicate that annual forest disturbance rates, mainly due to logging activities, were higher than annual deforestation rates during the whole period of study. The deforested areas correspond to circa 25% of the areas affected by forest disturbances. Deforestation rates were highest from 2001 to 2005 and then decreased considerably after 2006. In contrast, the annual forest disturbance rates show high temporal variability with a slow decrease over the 15-year period, resulting in a significant increase of the ratio between disturbed and deforested areas. Although the majority of the areas, which have been affected by selective logging during the period 2000-2014, were not deforested by 2015, more than 70% of the deforested areas in 2015 had been at least once identified as disturbed forest during that period.
Grecchi, Rosana Cristina; Beuchle, René; Shimabukuro, Yosio Edemir; Aragão, Luiz E O C; Arai, Egidio; Simonetti, Dario; Achard, Frédéric
2017-09-01
Forest cover disturbances due to processes such as logging and forest fires are a widespread issue especially in the tropics, and have heavily affected forest biomass and functioning in the Brazilian Amazon in the past decades. Satellite remote sensing has played a key role for assessing logging activities in this region; however, there are still remaining challenges regarding the quantification and monitoring of these processes affecting forested lands. In this study, we propose a new method for monitoring areas affected by selective logging in one of the hotspots of Mato Grosso state in the Brazilian Amazon, based on a combination of object-based and pixel-based classification approaches applied on remote sensing data. Logging intensity and changes over time are assessed within grid cells of 300 m × 300 m spatial resolution. Our method encompassed three main steps: (1) mapping forest/non-forest areas through an object-based classification approach applied to a temporal series of Landsat images during the period 2000-2015, (2) mapping yearly logging activities from soil fraction images on the same Landsat data series, and (3) integrating information from previous steps within a regular grid-cell of 300 m × 300 m in order to monitor disturbance intensities over this 15-years period. The overall accuracy of the baseline forest/non-forest mask (year 2000) and of the undisturbed vs disturbed forest (for selected years) were 93% and 84% respectively. Our results indicate that annual forest disturbance rates, mainly due to logging activities, were higher than annual deforestation rates during the whole period of study. The deforested areas correspond to circa 25% of the areas affected by forest disturbances. Deforestation rates were highest from 2001 to 2005 and then decreased considerably after 2006. In contrast, the annual forest disturbance rates show high temporal variability with a slow decrease over the 15-year period, resulting in a significant increase of the ratio between disturbed and deforested areas. Although the majority of the areas, which have been affected by selective logging during the period 2000-2014, were not deforested by 2015, more than 70% of the deforested areas in 2015 had been at least once identified as disturbed forest during that period.
2009-06-03
the Amazon falls within Brazilian borders, making Brazil home to 40% of the world’s remaining tropical forests.96 The Brazilian Amazon was largely...20 Amazon Conservation......................................................................................................... 20 Domestic Efforts...independence in 1822, Brazil occupies almost half of the continent of South America and boasts immense biodiversity, including the vast Amazon
Public policies and communication affecting forest cover in the Amazon
NASA Astrophysics Data System (ADS)
Kawakami Savaget, E.; Batistella, M.; Aguiar, A. P. D.
2014-12-01
The research program Amazalert was based on information delivered by the IPCC through its 2007 report, which indicates forest degradation processes in the Amazonian region as a consequence of anthropogenic actions. Such processes affecting the structural and functional characteristics of ecosystems would harm environmental services that guarantee, for example, the regulation of climate and the provision of fresh water. A survey was organized, through a multidisciplinary perspective, on the main policies and programs that can affect forest cover in the Amazon. These rules and norms seek to regulate societal actions by defining a developmental model for the region. Although deforestation rates in the Brazilian Amazon have decreased significantly since 2004, some locations maintain high levels of deforestation. In 2013, for example, the municipalities of Monte Alegre, Óbidos, Alenquer, Oriximiná, Curuá and Almeirin, in the northern region of the state of Para, showed the highest rates of deforestation in the Amazon. Managers and stakeholders within these areas are being interviewed to provide insights on how policies are interpreted and applied locally. There is an understanding delay between discourses normalized by federal governmental institutions and claims of local societies. The possible lack of clarity in official discourses added to the absence of a local communicative dynamics cause the phenomenon of incomplete information. Conflicts often occur in local institutional arenas resulting in violence and complex social and historical dissonances, enhanced by other public policies idealized in different temporal and spatial conditions.
de Paiva, Carina Kaory Sasahara; de Faria, Ana Paula Justino; Calvão, Lenize Batista; Juen, Leandro
2017-08-01
The production of oil palm is expected to increase in the Amazon region. However, expansion of oil palm plantation leads to significant changes in the physical structure of aquatic ecosystems, mainly through the reduction of riparian vegetation that is essential for aquatic biodiversity. Here, we evaluated the effects of oil palm on the physical habitat structure of Amazonian stream environments and assemblages of Plecoptera and Trichoptera (PT), both found in these streams. We compared streams sampled in oil palm plantations (n = 13) with natural forest areas ("reference" streams, n = 8), located in the eastern Amazon, Brazil. Our results showed that oil palm streams were more likely to be in close proximity to roads, had higher pH values, and higher amounts of fine substrate deposited in the channel than reference streams. Further, these environmental changes had important effects on the aquatic invertebrate assemblages, reducing the abundance and richness of PT. Nevertheless, the genera composition of the assemblages did not differ between reference and oil palm (PERMANOVA, pseudo-F (1,19) = 1.891; p = 0.111). We conclude that oil palm production has clear negative impacts on aquatic environments and PT assemblages in Amazonian streams. We recommend that oil palm producers invest more in planning of road networks to avoid the construction of roads near to the riparian vegetation. This planning can minimize impacts of oil palm production on aquatic systems in the Amazon.
78 FR 48670 - Boulder Canyon Project
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-09
... DEPARTMENT OF ENERGY Western Area Power Administration Boulder Canyon Project AGENCY: Western Area... Canyon Project (BCP) electric service provided by the Western Area Power Administration (Western). The... States Department of Energy, Western Area Power Administration, Boulder Canyon Project, 133 FERC ] 62,229...
Business as Usual: Amazon.com and the Academic Library
ERIC Educational Resources Information Center
Van Ullen, Mary K.; Germain, Carol Anne
2002-01-01
In 1999, Steve Coffman proposed that libraries form a single interlibrary loan based entity patterned after Amazon.com. This study examined the suitability of Amazon.com's Web interface and record enhancements for academic libraries. Amazon.com could not deliver circulating monographs in the University at Albany Libraries' collection quickly…
A remotely sensed index of deforestation/urbanization for use in climate models
NASA Technical Reports Server (NTRS)
Gillies, Robert R.; Carlson, Toby N.
1995-01-01
The object of this research is to use indirect measurements, notably thermal infrared, to describe urbanization and deforestation with parameters that can be used to assess, as well as predict, the effects of land use changes on local microclimate. More specifically, we use a new approach for the treatment of remotely sensed data; this is referred to as the 'triangle' method. The name triangle is given because the envelope of data points, when plotted as a function of surface radiant temperature versus vegetation index or fractional vegetation cover, exhibits the shape of a triangle. From the information contained on these 'scatter plots', land use changes can be related to two intrinsic surface variables, the surface moisture availability (M(sub 0))(sup 1) and fractional vegetation cover. Recent work by Carlson et al. indicate that the triangle shape on the scatter plots may be scale similar, suggesting that these two parameters are subject to the same interpretation on differing scales. A second objective in this research is to determine if historical data for Advanced Very High Resolution Radiometer (AVHRR) (NOAA satellite; 1.1 km resolution at nadir) can be used to assess changes in regional land use over time. To this end, two target areas were chosen for the investigation of urbanization and two for deforestation. The former comprise tow areas in Pennsylvania, one a small but rapidly growing population center (State College) and the other a medium-sized urban area which continues to undergo development (Chester County). The two deforestation sites consist of rain forest areas in western and central Costa Rica and a region in the Brazilian Amazon.
NASA Astrophysics Data System (ADS)
Cotter, M.; Grenz, J.; Sauerborn, J.
2012-04-01
The Greater Mekong Subregion is a known hotspot of biodiversity, which faces drastic changes due to human impact particularly with regard to infrastructure and economy. Within the framework of the Sino-German research project "Living Landscapes China" (LILAC), we have developed a biodiversity evaluation tool based on the combination of approaches from landscape ecology with detailed empirical data on species diversity and habitat characteristics of tropical plant and arthropod communities in a Geographical Information System. We use field ecological data to assess different spatial and qualitative aspects of the diversity and spatial distribution of species throughout the research area, a watershed in south-western Yunnan province, PR China. In addition, scenarios on the impact of land use change have been analyzed and compared in order to highlight the implications these possible future scenarios would have on species diversity within the research area. The aim of the presented tool is to provide scientists and policy makers who have to evaluate the consequences of scenarios of future land use with information on the current and likely future state of biodiversity in their research area or administrative region. This will enable them to assess the likely impacts of land use changes on structural and ecological diversity and allow for informed land use planning. The methodology developed for this tool can also be applied outside of the Greater Mekong Subregion, as the model structure allows for an easy adaption to other research areas and challenges, be it oil palm production in Southeast Asia or small scale farming in central Africa or the Amazon basin.
Figueiró, M; Ilha, J; Pochmann, D; Porciúncula, L O; Xavier, L L; Achaval, M; Nunes, D S; Elisabetsky, E
2010-10-01
The goal of acetylcholinesterase inhibitors (AChEIs) used to treat Alzheimer's patients is an improvement in cholinergic transmission. While currently available AChEIs have limited success, a huge impediment to the development of newer ones is access to the relevant brain areas. Promnesic, anti-amnesic and AChEI properties were identified in a standardized ethanol extract from Ptychopetalum olacoides (POEE), a medicinal plant favored by the elderly in Amazon communities. The purpose of this study was to provide conclusive evidence that orally given POEE induces AChE inhibition in brain areas relevant to cognition. Histochemistry experiments confirmed that the anticholinesterase compound(s) present in POEE are orally bioavailable, inducing meaningful AChE inhibition in the hippocampus CA1 (∼33%) and CA3 (∼20%), and striatum (∼17%). Ellman's colorimetric analysis revealed that G1 and G4 AChE isoforms activities were markedly inhibited (66 and 72%, respectively) in hippocampus and frontal cortex (50 and 63%, respectively), while G4 appeared to be selectively inhibited (72%) in the striatum. Western blotting showed that POEE did not induce significant changes in the AChE immunocontent suggesting that its synthesis is not extensively modified. This study provides definitive proof of meaningful anticholinesterase activity compatible with the observed promnesic and anti-amnesic effects of POEE in mice, reaffirming the potential of this extract for treating neurodegenerative conditions where a hypofunctioning cholinergic neurotransmission is prominent. Adequate assessment of the safety and efficacy of this extract and/or its isolated active compound(s) are warranted. 2010 Elsevier GmbH. All rights reserved.
Climate change hotspots in the CMIP5 global climate model ensemble.
Diffenbaugh, Noah S; Giorgi, Filippo
2012-01-10
We use a statistical metric of multi-dimensional climate change to quantify the emergence of global climate change hotspots in the CMIP5 climate model ensemble. Our hotspot metric extends previous work through the inclusion of extreme seasonal temperature and precipitation, which exert critical influence on climate change impacts. The results identify areas of the Amazon, the Sahel and tropical West Africa, Indonesia, and the Tibetan Plateau as persistent regional climate change hotspots throughout the 21 st century of the RCP8.5 and RCP4.5 forcing pathways. In addition, areas of southern Africa, the Mediterranean, the Arctic, and Central America/western North America also emerge as prominent regional climate change hotspots in response to intermediate and high levels of forcing. Comparisons of different periods of the two forcing pathways suggest that the pattern of aggregate change is fairly robust to the level of global warming below approximately 2°C of global warming (relative to the late-20 th -century baseline), but not at the higher levels of global warming that occur in the late-21 st -century period of the RCP8.5 pathway, with areas of southern Africa, the Mediterranean, and the Arctic exhibiting particular intensification of relative aggregate climate change in response to high levels of forcing. Although specific impacts will clearly be shaped by the interaction of climate change with human and biological vulnerabilities, our identification of climate change hotspots can help to inform mitigation and adaptation decisions by quantifying the rate, magnitude and causes of the aggregate climate response in different parts of the world.