Zhu, Hongyu; Kumar, Sunil; Neven, Lisa G
2017-07-01
Codling moth (Cydia pomonella L.) is an internal feeding pest of apples and can cause substantial economic losses to fruit growers due to larval feeding which in turn degrades fruit quality and can result in complete crop loss if left uncontrolled. Although this pest originally developed in central Asia, it was not known to occur in China until 1953. For the first three decades the spread of codling moth within China was slow. Within the last three decades, addition of new commercial apple orchards and improved transportation, this pest has spread to over 131 counties in seven provinces in China. We developed regional (China) and global ecological niche models using MaxEnt to identify areas at highest potential risk of codling moth establishment and spread. Our objectives were to 1) predict the potential distribution of codling moth in China, 2) identify the important environmental factors associated with codling moth distribution in China, and 3) identify the different stages of invasion of codling moth in China. Human footprint, annual temperature range, precipitation of wettest quarter, and degree days ≥10 °C were the most important predictors associated with codling moth distribution. Our analysis identified areas where codling moth has the potential to establish, and mapped the different stages of invasion (i.e., potential for population stabilization, colonization, adaptation, and sink) of codling moth in China. Our results can be used in effective monitoring and management to stem the spread of codling moth in China. Published by Oxford University Press on behalf of the Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.
Adams, C. G.; Schenker, J. H.; McGhee, P. S.; Gut, L. J.; Brunner, J. F.
2017-01-01
Abstract Novel methods of data analysis were used to interpret codling moth (Cydia pomonella) catch data from central-trap, multiple-release experiments using a standard codlemone-baited monitoring trap in commercial apple orchards not under mating disruption. The main objectives were to determine consistency and reliability for measures of: 1) the trapping radius, composed of the trap’s behaviorally effective plume reach and the maximum dispersive distance of a responder population; and 2) the proportion of the population present in the trapping area that is caught. Two moth release designs were used: 1) moth releases at regular intervals in the four cardinal directions, and 2) evenly distributed moth releases across entire approximately 18-ha orchard blocks using both high and low codling moth populations. For both release designs, at high populations, the mean proportion catch was 0.01, and for the even release of low populations, that value was approximately 0.02. Mean maximum dispersive distance for released codling moth males was approximately 260 m. Behaviorally effective plume reach for the standard codling moth trap was < 5 m, and total trapping area for a single trap was approximately 21 ha. These estimates were consistent across three growing seasons and are supported by extraordinarily high replication for this type of field experiment. Knowing the trapping area and mean proportion caught, catch number per single monitoring trap can be translated into absolute pest density using the equation: males per trapping area = catch per trapping area/proportion caught. Thus, catches of 1, 3, 10, and 30 codling moth males per trap translate to approximately 5, 14, 48, and 143 males/ha, respectively, and reflect equal densities of females, because the codling moth sex ratio is 1:1. Combined with life-table data on codling moth fecundity and mortality, along with data on crop yield per trapping area, this fundamental knowledge of how to interpret catch numbers will enable pest managers to make considerably more precise projections of damage and therefore more precise and reliable decisions on whether insecticide applications are justified. The principles and methods established here for estimating absolute codling moth density may be broadly applicable to pests generally and thereby could set a new standard for integrated pest management decisions based on trapping. PMID:28131989
Pear Ester – from discovery to delivery, new tools to manage Codling Moth
USDA-ARS?s Scientific Manuscript database
The chemical ecology of codling moth, Cydia pomonella (L.), has been the subject of a world-wide research effort resulting in hundreds of publications in peer-reviewed journals. The initial focus of this work was characterization of the sexual behavior of the moth and identification of its sex phero...
Blomefield, T; Carpenter, J E; Vreysen, M J B
2011-06-01
The sterile insect technique (SIT) is a proven effective control tactic against lepidopteran pests when applied in an areawide integrated pest management program. The construction of insect mass-rearing facilities requires considerable investment and moth control strategies that include the use of sterile insects could be made more cost-effective through the importation of sterile moths produced in other production centers. For codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), this is an attractive option because mating studies have confirmed the absence of mating barriers between codling moth populations from geographically different areas. To assess the feasibility of long-distance transportation of codling moths, pupae and adult moths were transported in 2004 from Canada to South Africa in four shipments by using normal commercial transport routes. The total transport time remained below 67 h in three of the consignments, but it was 89 h in the fourth consignment. Temperature in the shipping boxes was fairly constant and remained between -0.61 and 0.16 degrees C for 76.8-85.7% of the time. The data presented indicate that transporting codling moths as adults and pupae from Canada to South Africa had little effect on moth emergence, longevity, and ability to mate, as assessed in the laboratory. These results provide support to the suggestion that the STT for codling moth in pome fruit production areas might be evaluated and implemented by the importation of irradiated moths from rearing facilities in a different country or hemisphere.
The Importance of Pear Ester in Codling Moth Monitoring and Management
USDA-ARS?s Scientific Manuscript database
Following the discovery of the attractiveness of pear ester for adult and larvae of codling moth research has developed this ripe pear volatile to improve the monitoring and management of this key pest of apple, pear, and walnut. A lure loaded with pear ester and codlemone has become the most widely...
USDA-ARS?s Scientific Manuscript database
The sterile insect technique is a proven effective control tactic against lepidopteran pests when applied in an area-wide integrated pest management programme. The construction of insect mass-rearing facilities requires considerable investment and moth control strategies that include the use of ster...
Bangels, E; Beliën, T
2012-01-01
Codling moth (Cydia pomonella) is one of the most important pests in apple and pear. In 2010 mating disruption became a key pest management tactic in Flemish pip fruit orchards, largely due to a government subsidy and demonstrating projects aiming to widen the area treated by pheromones as large as possible. As a consequence, the mating disruption strategy was applied at approximately 7.500 ha, or half of the pip fruit area, in 2010 and 2011. The sudden large-scale implementation of this technique changed the codling moth management landscape. Here we present a case study of a commercially managed orchard that suffered from high codling moth pressures for many years, as did the surrounding area. The RAK3 mating disruption system was introduced at this location in 2010, and was continued in 2011. Systematic detailed codling moth flight data for this location are available for many years. In addition, comprehensive data on damage levels of chemically untreated windows spread all over the test orchard in a randomized block design were obtained in successive years, enabling us to thoroughly evaluate the effect of the changed codling moth management strategy. Data from 2011 included damage levels in chemically treated windows when the entire orchard was applied once at the flight peak of Cydia pomonella. In 2009, before introduction of mating disruption, a mean of 8.25 +/- 5.54% of the fruits were infested at harvest when assessed in completely untreated windows. After two years of mating disruption, supported with a full chemical support in 2010, except for the untreated assessment windows, and only one application on the flight peak of 2011, damage was reduced to less than 0.03% at harvest. This is a valuable case study to demonstrate the benefits of the mating disruption approach.
Fuentes-Contreras, Eduardo; Basoalto, Esteban; Franck, Pierre; Lavandero, Blas; Knight, Alan L; Ramírez, Claudio C
2014-04-01
The genetic structure of adult codling moth, Cydia pomonella (L.), populations was characterized both inside a managed apple, Malus domestica Borkdhausen, orchard and in surrounding unmanaged hosts and nonhost trees in central Chile during 2006-2007. Adult males were collected using an array of sex pheromone-baited traps. Five microsatellite genetic markers were used to study the population genetic structure across both spatial (1-100 ha) and temporal (generations within a season) gradients. Analysis of molecular variance (AMOVA) found a significant, but weak, association in both the spatial and temporal genetic structures. Discriminant analysis also found significant differentiation between the first and second generation for traps located either inside or outside the managed orchard. The Bayesian assignment test detected three genetic clusters during each of the two generations, which corresponded to different areas within the unmanaged and managed apple orchard interface. The lack of a strong spatial structure at a local scale was hypothesized to be because of active adult movement between the managed and unmanaged hosts and the asymmetry in the insecticide selection pressure inside and outside the managed habitats. These data highlight the importance of developing area-wide management programs that incorporate management tactics effective at the landscape level for successful codling moth control.
Judd, Gary J R
2016-11-25
Studies were conducted in commercial apple orchards in British Columbia, Canada, to determine whether lures combining ethyl-( E , Z )-2,4-decadienoate, pear ester (PE), with either acetic acid (AA) or sex pheromone, ( E , E )-8,10-dodecadien-1-ol (codlemone), might improve monitoring of codling moth, Cydia pomonella (L.), in an area-wide programme integrating sterile insect technology (SIT) and mating disruption (MD). Catches of sterile and wild codling moths were compared in apple orchards receiving weekly delivery of sterile moths (1:1 sex ratio) using white delta traps baited with either AA or PE alone, and in combination. Sterile and wild codling moths responded similarly to these kairomone lures. For each moth sex and type (sterile and wild), AA-PE lures were significantly more attractive than AA or PE alone. Bisexual catches with AA-PE lures were compared with those of commercial bisexual lures containing 3 mg of codlemone plus 3 mg of PE (Pherocon CM-DA Combo lure, Trécé Inc., Adair, OK, USA), and to catches of males with standard codlemone-loaded septa used in SIT (1 mg) and MD (10 mg) programmes, respectively. CM-DA lures caught the greatest number of sterile and wild male moths in orchards managed with SIT alone, or combined with MD, whereas AA-PE lures caught 2-3× more females than CM-DA lures under both management systems. Sterile to wild (S:W) ratios for male versus female moths in catches with AA-PE lures were equivalent, whereas in the same orchards, male S:W ratios were significantly greater than female S:W ratios when measured with CM-DA lures. Male S:W ratios measured with CM-DA lures were similar to those with codlemone lures. CM-DA and codlemone lures appear to overestimate S:W ratios as measured by AA-PE lures, probably by attracting relatively more sterile males from long range. Using AA-PE lures to monitor codling moths in an SIT programme removes fewer functional sterile males and reduces the need for trap maintenance compared with using codlemone lures. AA-PE lures allow detection of wild female moths that may measure damage potential more accurately than detection of wild males. The short-range activity of AA-PE lures compared with that of codlemone-based lures appears to improve the ability to measure S:W ratios and the impact of SIT on population control near the site where wild moths are trapped.
USDA-ARS?s Scientific Manuscript database
Studies evaluated the lethal effectiveness of combining yeasts isolated from larvae of codling moth, Cydia pomonella (L.) with the codling moth granulosis virus (CpGV). Apples were treated with CpGV and three yeast species, including Metschnikowia pulcherrima Pitt and Miller, Cryptococcus tephrensis...
USDA-ARS?s Scientific Manuscript database
The Sterile Insect Technique (SIT) as an integral component to the area-wide integrated management of the false codling moth, Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae), was successfully implemented in the Western Cape region of South Africa and subsequently expanded to citrus are...
“This is not an apple”–yeast mutualism in codling moth
USDA-ARS?s Scientific Manuscript database
1. The larva of codling moth Cydia pomonella (Tortricidae, Lepidoptera) is known as the worm in the apple, mining the fruit for food. We show that codling moth larvae are closely associated with yeasts of the genus Metschnikowia. Yeast is an essential part of the larval diet and further promotes lar...
USDA-ARS?s Scientific Manuscript database
The codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), is a major pest of pome fruit worldwide. The inclusion of semiochemicals, including the main sex pheromone (codlemone), in codling moth IPM programs has drastically reduced the amount of chemical insecticides needed to control this ...
Gut content analysis of arthropod predators of codling moth in Washington apple orchards
USDA-ARS?s Scientific Manuscript database
More than 70% of pome fruits in the USA are produced in central Washington State. The codling moth, Cydia pomonella (L.) is consistently the most damaging pest. We used polymerase chain reaction (PCR) to amplify codling moth DNA in 2591 field-collected arthropod predators to estimate predation in s...
USDA-ARS?s Scientific Manuscript database
Experiments were conducted in North and South America during 2012-2013 to evaluate the use of lure combinations of sex pheromones (PH), host plant volatiles (HPV), and food baits in traps to capture the oriental fruit moth, Grapholita molesta (Busck) and codling moth, Cydia pomonella (L.) in pome an...
Amarasekare, Kaushalya G.; Shearer, Peter W.
2017-01-01
This study focused on conservation biological control of pear psylla, Cacopsylla pyricola, in the Pacific Northwest, USA. We hypothesized that insecticides applied against the primary insect pest, codling moth Cydia pomonella, negatively impact natural enemies of pear psylla, thus causing outbreaks of this secondary pest. Hence, the objective of this study was to understand how codling moth management influences the abundance of pear psylla and its natural enemy complex in pear orchards managed under long-term codling moth mating disruption programs. We conducted this study within a pear orchard that had previously been under seasonal mating disruption for codling moth for eight years. We replicated two treatments, “natural enemy disrupt” (application of two combination sprays of spinetoram plus chlorantraniliprole timed against first-generation codling moth) and “natural enemy non-disrupt” four times in the orchard. Field sampling of psylla and natural enemies (i.e., lacewings, coccinellids, spiders, Campylomma verbasci, syrphid flies, earwigs) revealed that pear psylla populations remained well below treatment thresholds all season despite the reduced abundance of key pear psylla natural enemies in the natural enemy disrupt plots compared with the non-disrupt treatment. We speculate that pear psylla are difficult to disrupt when pear orchards are under long-term codling moth disruption. PMID:28974000
Baughman, William B; Nelson, Peter N; Grieshop, Matthew J
2015-06-01
We assessed the efficacy of cultivation as a potential management strategy for codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae), and plum curculio, Conotrachelus nenuphar Herbst (Coleoptera: Curculionidae) in apple orchards. Cocooned codling moth pupae and thinning apples infested with plum curculio larvae were cultivated over in the field. Emergence, percent burial, damage to buried fruit, and depth of burial was recorded. In the laboratory, both insects were buried at variable depths in sand and potting soil and emergence was measured. A greater proportion of plum curculio larvae buried in infested fruit under laboratory conditions survived to adulthood compared with unburied infested fruit, down to 15 cm. No codling moth adults emerged from under 1 cm or more of sand. Buried codling moth larvae experienced drastically reduced survival to adulthood compared with unburied larvae. These results indicate that strip cultivation may negatively impact codling moth diapausing larvae and pupae on the ground, but not likely to negatively impact plum curculio in infested dropped apples. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America.
Monitoring and Managing Codling Moth Clearly and Precisely
USDA-ARS?s Scientific Manuscript database
Studies were conducted in two ‘Comice’ pear orchards treated with sex pheromone in southern Oregon to implement the use of site-specific management practices for codling moth. The density of monitoring traps was increased and insecticide sprays were applied based on moth catch thresholds. Only porti...
Adams, C G; McGhee, P S; Schenker, J H; Gut, L J; Miller, J R
2017-08-01
This field study of codling moth, Cydia pomonella (L.), response to single versus multiple monitoring traps baited with codlemone demonstrates that precision of a given capture number is alarmingly poor when the population is held constant by releasing moths. Captures as low as zero and as high as 12 males per single trap are to be expected where the catch mode is three. Here, we demonstrate that the frequency of false negatives and overestimated positives for codling moth trapping can be substantially reduced by employing the tactic of line-trapping, where five traps were deployed 4 m apart along a row of apple trees. Codling moth traps spaced closely competed only slightly. Therefore, deploying five traps closely in a line is a sampling technique nearly as good as deploying five traps spaced widely. But line trapping offers a substantial savings in time and therefore cost when servicing aggregated versus distributed traps. As the science of pest management matures by mastering the ability to translate capture numbers into estimates of absolute pest density, it will be important to employ a tactic like line-trapping so as to shrink the troublesome variability associated with capture numbers in single traps that thwarts accurate decisions about if and when to spray. Line-trapping might similarly increase the reliability and utility of density estimates derived from capture numbers in monitoring traps for various pest and beneficial insects. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.
Effects of gamma irradiation as a quarantine treatment on development of codling moth larvae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burditt, A.K. Jr.; Moffitt, H.R.; Hungate, F.P.
1985-03-01
Codling moth, Cydia pomonella (L.), larvae were exposed to gamma radiation at doses upto 160 Gy. Following irradiation the larvae were permited further development, pupation and adult emergence. The number of adults emerging, mature larvae and pupae present were determined. Data from these studies will be used to predict doses of gamma irradiation required as a quarantine treatment to prevent emergence of codling moth adults from fruit infested by larvae. 5 refs., 1 tab.
USDA-ARS?s Scientific Manuscript database
Polyvinyl chloride polymer (pvc) dispensers loaded with ethyl (E,Z)-2,4-decadienoate (pear ester) plus the sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone) of codling moth, Cydia pomonella (L.), were compared with similar dispensers and a commercial dispenser (Isomate®-C Plus) loaded with codle...
Fuentes-Contreras, Eduardo; Espinoza, Juan L; Lavandero, Blas; Ramírez, Claudio C
2008-02-01
Codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), is the main pest of pome fruits worldwide. Despite its economic importance, little is known about the genetic structure and patterns of dispersal at the local and regional scale, which are important aspects for establishing a control strategy for this pest. An analysis of genetic variability using microsatellites was performed for 11 codling moth populations in the two major apple (Malus domestica Borkh) cropping regions in central Chile. Despite the geographical distances between some populations (approximately 185 km), there was low genetic differentiation among populations (F(ST) = 0.002176), with only slight isolation by distance. Only approximately 0.2% of the genetic variability was found among the populations. Geographically structured genetic variation was independent of apple orchard management (production or abandoned). These results suggest a high genetic exchange of codling moth between orchards, possibly mediated by human activities related to fruit production.
Impact of Kairomones on Moth Pest Management: Pear Ester and the Codling Moth
USDA-ARS?s Scientific Manuscript database
Codling moth (CM) is the major pest of apples, pears, and walnuts worldwide. Our focus is to develop novel, species-specific monitoring and control systems based on host-plant odors, kairomones. In 1998 ‘pear ester’ (PE), ethyl (2E, 4Z)-2,4-decadienoate, was identified as a powerful kairomonal attra...
USDA-ARS?s Scientific Manuscript database
Lures for monitoring codling moth, Cydia pomonella (L.), were tested in apple and walnut blocks treated with Cidetrak CM-DA Combo dispensers loaded with pear ester, ethyl (E, Z)-2,4-decadienoate (PE), and sex pheromone (E,E)-8,10-dodecadien-1-ol (codlemone). Total and female moth catches with combin...
USDA-ARS?s Scientific Manuscript database
The success of applying low rates (50 ha-1) of dispensers to achieve disruption of adult communication of codling moth, Cydia pomonella (L)., in walnuts, Juglans regia (L.),was evaluated with several methods. These included cumulative catches of male moths in traps baited with either sex pheromone (...
Mapping of single-copy genes by TSA-FISH in the codling moth, Cydia pomonella.
Carabajal Paladino, Leonela Z; Nguyen, Petr; Síchová, Jindra; Marec, František
2014-01-01
We work on the development of transgenic sexing strains in the codling moth, Cydia pomonella (Tortricidae), which would enable to produce male-only progeny for the population control of this pest using sterile insect technique (SIT). To facilitate this research, we have developed a number of cytogenetic and molecular tools, including a physical map of the codling moth Z chromosome using BAC-FISH (fluorescence in situ hybridization with bacterial artificial chromosome probes). However, chromosomal localization of unique, single-copy sequences such as a transgene cassette by conventional FISH remains challenging. In this study, we adapted a FISH protocol with tyramide signal amplification (TSA-FISH) for detection of single-copy genes in Lepidoptera. We tested the protocol with probes prepared from partial sequences of Z-linked genes in the codling moth. Using a modified TSA-FISH protocol we successfully mapped a partial sequence of the Acetylcholinesterase 1 (Ace-1) gene to the Z chromosome and confirmed thus its Z-linkage. A subsequent combination of BAC-FISH with BAC probes containing anticipated neighbouring Z-linked genes and TSA-FISH with the Ace-1 probe allowed the integration of Ace-1 in the physical map of the codling moth Z chromosome. We also developed a two-colour TSA-FISH protocol which enabled us simultaneous localization of two Z-linked genes, Ace-1 and Notch, to the expected regions of the Z chromosome. We showed that TSA-FISH represents a reliable technique for physical mapping of genes on chromosomes of moths and butterflies. Our results suggest that this technique can be combined with BAC-FISH and in the future used for physical localization of transgene cassettes on chromosomes of transgenic lines in the codling moth or other lepidopteran species. Furthermore, the developed protocol for two-colour TSA-FISH might become a powerful tool for synteny mapping in non-model organisms.
Mapping of single-copy genes by TSA-FISH in the codling moth, Cydia pomonella
2014-01-01
Background We work on the development of transgenic sexing strains in the codling moth, Cydia pomonella (Tortricidae), which would enable to produce male-only progeny for the population control of this pest using sterile insect technique (SIT). To facilitate this research, we have developed a number of cytogenetic and molecular tools, including a physical map of the codling moth Z chromosome using BAC-FISH (fluorescence in situ hybridization with bacterial artificial chromosome probes). However, chromosomal localization of unique, single-copy sequences such as a transgene cassette by conventional FISH remains challenging. In this study, we adapted a FISH protocol with tyramide signal amplification (TSA-FISH) for detection of single-copy genes in Lepidoptera. We tested the protocol with probes prepared from partial sequences of Z-linked genes in the codling moth. Results Using a modified TSA-FISH protocol we successfully mapped a partial sequence of the Acetylcholinesterase 1 (Ace-1) gene to the Z chromosome and confirmed thus its Z-linkage. A subsequent combination of BAC-FISH with BAC probes containing anticipated neighbouring Z-linked genes and TSA-FISH with the Ace-1 probe allowed the integration of Ace-1 in the physical map of the codling moth Z chromosome. We also developed a two-colour TSA-FISH protocol which enabled us simultaneous localization of two Z-linked genes, Ace-1 and Notch, to the expected regions of the Z chromosome. Conclusions We showed that TSA-FISH represents a reliable technique for physical mapping of genes on chromosomes of moths and butterflies. Our results suggest that this technique can be combined with BAC-FISH and in the future used for physical localization of transgene cassettes on chromosomes of transgenic lines in the codling moth or other lepidopteran species. Furthermore, the developed protocol for two-colour TSA-FISH might become a powerful tool for synteny mapping in non-model organisms. PMID:25471491
Managing Codling Moth Clearly and Precisely with Semiochemicals
USDA-ARS?s Scientific Manuscript database
Site-specific management practices for codling moth were implemented in ‘Comice’ pear orchards treated with aerosol puffers releasing sex pheromone in southern Oregon during 2008 and 2009. The density of monitoring traps baited with sex pheromone and pear ester was increased and insecticide sprays w...
Effects of temperature and modified atmospheres on diapausing 5th instar codling moth metabolism
USDA-ARS?s Scientific Manuscript database
Diapausing 5th instars of codling moth, Cydia pomonella, are serious quarantine pests of in-shell walnuts. Previous research indicates that heat treatments in combination with high concentrations of carbon dioxide and low concentrations of oxygen may be effective for controlling this pest in walnuts...
Efficacy and safety of nitric oxide fumigation for controlling codling moth in apples
USDA-ARS?s Scientific Manuscript database
Nitric oxide (NO) fumigation under ultralow oxygen (ULO) conditions was studied for its efficacy in controlling codling moth and effects on postharvest quality of apples. NO fumigation was effective against eggs and larvae of different sizes on artificial diet in 48 h treatments. Small larvae were...
Combining Pear Ester with Codlemone Improves Management of Codling Moth
USDA-ARS?s Scientific Manuscript database
Several management approaches utilizing pear ester combined with codlemone have been developed in the first 10 years after the discovery of this ripe pear fruit volatile’s kairomonal activity for larvae and both sexes of codling moth. These include a lure that consistently outperforms other high loa...
Apple volatiles synergize the response of codling moth to pear ester
USDA-ARS?s Scientific Manuscript database
This work was undertaken to identify host volatiles from apples and investigate whether these can be used to enhance the efficacy of pear ester, ethyl (2E,4Z)-2,4-decadienoate, for monitoring female and male codling moth, Cydia pomonella L. Volatiles from immature apple trees were collected in the f...
Combined Sprays of Sex Pheromone and Insecticides to Attract and Kill Codling Moth
USDA-ARS?s Scientific Manuscript database
Field trials were conducted to evaluate the potential of an "attract-and-kill" approach for control of codling moth by adding half-rates of microencapsulated (MEC) lambda-cyhalothrin or acetamiprid to a sex pheromone formulation in Turkey and the USA in 2006. Two apple orchards were divided into six...
Codling moth establishment in China: stages of invasion and potential future distribution
USDA-ARS?s Scientific Manuscript database
Codling moth (Cydia pomonella L.) is an internal feeding pest of apples and can cause substantial economic losses to fruit growers due to larval feeding which in turn degrades fruit quality and can result in complete crop loss if left uncontrolled. Although this pest originally developed in central ...
USDA-ARS?s Scientific Manuscript database
Nicotinic acetylcholine receptors (nAChRs) are the targets of neonicotinoids and spinosads, two insecticides used in orchards to effectively control codling moth, Cydia pomonella (L.)(Lepidoptera: Tortricidae). The nAChRs mediate the fast actions of the neurotransmitter acetylcholine in synaptic tr...
USDA-ARS?s Scientific Manuscript database
Studies were conducted with hand-applied combo dispensers loaded with the sex pheromone (E,E)-8,10-dodecadien-1-ol (codlemone), and the pear volatile, (E,Z)-2,4-decadienoate (pear ester) for control of codling moth, Cydia pomonella (L.) in apple, Malus domestica Bordkhausen during 2012. Two types of...
USDA-ARS?s Scientific Manuscript database
Codling moth (CM), Cydia pomonella, larvae cause severe damage apples, pears and walnuts worldwide by internal feeding and the introduction of molds and spoilage micro-organisms. CM neonate larvae are attracted to and arrested by a pear-derived kairomone, ethyl (2E,4Z)-2,4-decadienoate, the “pear es...
USDA-ARS?s Scientific Manuscript database
Studies utilized the attractive properties of pear ester, ethyl (E,Z)-2,4-decadienoate, and codlemone, (E,E)-8,10-dodecadien-1-ol, the sex pheromone of codling moth, Cydia pomonella (L)., for behavioural disruption. Standard dispensers loaded with codlemone alone or in combination with pear ester (c...
USDA-ARS?s Scientific Manuscript database
Male and female codling moths, Cydia pomonella, were shown to be attracted to three chemical kairoonomal lure comprised of pear ester, acetic acid, and n-butyl sulfide. A novel controlled-release device based on sachets was developed in the laboratory and field tested to optimize the attractivness ...
Odendaal, D; Addison, M F; Malan, A P
2016-09-01
Three commercially available entomopathogenic nematode (EPN) strains (Steinernema feltiae and Heterorhabditis bacteriophora Hb1 and Hb2) and two local species (S. jeffreyense and S. yirgalemense) were evaluated for the control of the codling moth (Cydia pomonella). In field spray trials, the use of S. jeffreyense resulted in the most effective control (67%), followed by H. bacteriophora (Hb1) (42%) and S. yirgalemense (41%). Laboratory bioassays using spray application in simulated field conditions indicate S. feltiae to be the most virulent (67%), followed by S. yirgalemense (58%). A laboratory comparison of the infection and penetration rate of the different strains showed that, at 14°C, all EPN strains resulted in slower codling moth mortality than they did at 25°C. After 48 h, 98% mortality was recorded for all species involved. However, the washed codling moth larvae, cool-treated (at 14°C) with S. feltiae or S. yirgalemense, resulted in 100% mortality 24 h later at room temperature, whereas codling moth larvae treated with the two H. bacteriophora strains resulted in 68% and 54% control, respectively. At 14°C, S. feltiae had the highest average penetration rate of 20 IJs/larva, followed by S. yirgalemense, with 14 IJs/larva. At 25°C, S. yirgalemense had the highest penetration rate, with 39 IJs/larva, followed by S. feltiae, with 9 IJs/larva. This study highlights the biocontrol potential of S. jeffreyense, as well as confirming that S. feltiae is a cold-active nematode, whereas the other three EPN isolates tested prefer warmer temperatures.
USDA-ARS?s Scientific Manuscript database
Studies evaluated the effectiveness of adding Saccharomyces cerevisiae with brown cane sugar (sugar) to the codling moth granulosis virus, CpGV, to improve larval control of Cydia pomonella (L.), on apple. Neither the use of the yeast or sugar alone caused larval mortality greater than the water con...
USDA-ARS?s Scientific Manuscript database
The codling moth, Cydia pomonella, is one of the most important pests of pome fruits in the world, yet the molecular genetics and physiology of this insect remains poorly understood. A combined assembly of 8340 expressed sequence tags (ESTs) was generated from Roche 454 GS-FLX sequencing of 8 tissu...
7 CFR 51.1280 - Serious damage.
Code of Federal Regulations, 2012 CFR
2012-01-01
.... (5) Insects: (i) Worm holes. More than three healed codling moth stings, of which not more than two... appearance to an equal extent. 2 (ii) Blister mite or canker worm injury which affects an aggregate area of...
Huang, Juan; Gut, Larry J; Miller, James R
2013-10-01
The behavior of codling moth, Cydia pomonella (L.), responding to three attract-and-kill devices was compared in flight tunnel experiments measuring attraction and duration of target contact. Placing a 7.6 by 12.6 cm card immediately upwind of a rubber septum releasing pheromone, dramatically increased the duration on the target to > 60 s. In this setting, nearly all the males flew upwind, landed on the card first, and spent the majority of time searching the card. In contrast, male codling moths spent < 15 s at the source if given the lure only. In a forced contact bioassay, knockdown rate or mortality of male codling moths increased in direct proportion to duration of contact on a lambda-cyhalothrin-loaded filter paper. When this insecticide-treated paper was placed immediately upwind of the lure in the flight tunnel, > 90% of males contacting the paper were knocked down 2 h after voluntary exposure. These findings suggest that past attempts to combine insecticide directly with sex pheromones into a small paste, gel, or other forms of dollops are ill-advised because moths are likely over-exposed to pheromone and vacate the target before obtaining a lethal dose of insecticide. It is better to minimize direct contact with the concentrated pheromone while enticing males to extensively search insecticide-treated surface nearby the lure.
USDA-ARS?s Scientific Manuscript database
The codling moth (CM), Cydia pomonella, is the key pest of apples, pears and walnuts worldwide, causing internal feeding damage by larvae and introduction of molds and spoilage micro-organisms. Hatched CM larvae are highly responsive to a pear-derived kairomone, ethyl (2E,4Z)-2,4-decadienoate, the ...
USDA-ARS?s Scientific Manuscript database
Codling moth (CM), Cydia pomonella L. is the most serious pest of apple and other pome fruit worldwide. In temperate climate, diapausing cocooned larvae make up 100% of the population. Control of this stage would reduce or eliminate damage by first generation CM in late spring and early summer. Ento...
USDA-ARS?s Scientific Manuscript database
Novel low-density per ha “meso” dispensers loaded with both pear ester, ethyl (E,Z)-2,4-decadienoate, kairomone and codlemone, (E,E)-8,10-dodecadien-1-ol, the sex pheromone of codling moth, Cydia pomonella (L)., were evaluated versus meso dispensers loaded with pheromone-alone for their mating disru...
Efficacy of Nitric Oxide Fumigation for Controlling Codling Moth in Apples.
Liu, Yong-Biao; Yang, Xiangbing; Simmons, Gregory
2016-12-02
Nitric oxide (NO) fumigation under ultralow oxygen (ULO) conditions was studied for its efficacy in controlling codling moth and effects on postharvest quality of apples. NO fumigation was effective against eggs and larvae of different sizes on artificial diet in 48 h treatments. Small larvae were more susceptible to nitric oxide than other stages at 0.5% NO concentration. There were no significant differences among life stages at 1.0% to 2.0% NO concentrations. In 24 h treatments of eggs, 3.0% NO fumigation at 2 °C achieved 100% egg mortality. Two 24 h fumigation treatments of infested apples containing medium and large larvae with 3.0% and 5.0% NO resulted in 98% and 100% mortalities respectively. Sound apples were also fumigated with 5.0% NO for 24 h at 2 °C to determine effects on apple quality. The fumigation treatment was terminated by flushing with nitrogen and had no negative impact on postharvest quality of apples as measured by firmness and color at 2 and 4 weeks after fumigation. This study demonstrated that NO fumigation was effective against codling moth and safe to apple quality, and therefore has potential to become a practical alternative to methyl bromide fumigation for control of codling moth in apples.
Intraspecific Variation in Female Sex Pheromone of the Codling Moth Cydia pomonella
Duménil, Claire; Judd, Gary J. R.; Bosch, Dolors; Baldessari, Mario; Gemeno, César; Groot, Astrid T.
2014-01-01
The codling moth, Cydia pomonella L. (Lepidoptera, Tortricidae), is a major pest of apple, pear and walnut orchards worldwide. This pest is often controlled using the biologically friendly control method known as pheromone-based mating disruption. Mating disruption likely exerts selection on the sexual communication system of codling moth, as male and female moths will persist in their attempt to meet and mate. Surprisingly little is known on the intraspecific variation of sexual communication in this species. We started an investigation to determine the level of individual variation in the female sex pheromone composition of this moth and whether variation among different populations might be correlated with use of mating disruption against those populations. By extracting pheromone glands of individual females from a laboratory population in Canada and from populations from apple orchards in Spain and Italy, we found significant between- and within-population variation. Comparing females that had been exposed to mating disruption, or not, revealed a significant difference in sex pheromone composition for two of the minor components. Overall, the intraspecific variation observed shows the potential for a shift in female sexual signal when selection pressure is high, as is the case with continuous use of mating disruption. PMID:26462935
Intraspecific Variation in Female Sex Pheromone of the Codling Moth Cydia pomonella.
Duménil, Claire; Judd, Gary J R; Bosch, Dolors; Baldessari, Mario; Gemeno, César; Groot, Astrid T
2014-09-26
The codling moth, Cydia pomonella L. (Lepidoptera, Tortricidae), is a major pest of apple, pear and walnut orchards worldwide. This pest is often controlled using the biologically friendly control method known as pheromone-based mating disruption. Mating disruption likely exerts selection on the sexual communication system of codling moth, as male and female moths will persist in their attempt to meet and mate. Surprisingly little is known on the intraspecific variation of sexual communication in this species. We started an investigation to determine the level of individual variation in the female sex pheromone composition of this moth and whether variation among different populations might be correlated with use of mating disruption against those populations. By extracting pheromone glands of individual females from a laboratory population in Canada and from populations from apple orchards in Spain and Italy, we found significant between- and within-population variation. Comparing females that had been exposed to mating disruption, or not, revealed a significant difference in sex pheromone composition for two of the minor components. Overall, the intraspecific variation observed shows the potential for a shift in female sexual signal when selection pressure is high, as is the case with continuous use of mating disruption.
USDA-ARS?s Scientific Manuscript database
Traps baited with ethyl (E,Z)-2,4-decadienoate (pear ester) or (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) in two- or three-way combinations with the sex pheromone (E,E)-8,10-dodecadien-1-ol (codlemone) and acetic acid (AA) were evaluated for codling moth, Cydia pomonella (L.). All studies were conduct...
7 CFR 51.1280 - Serious damage.
Code of Federal Regulations, 2010 CFR
2010-01-01
... brown or black discoloration caused by limbrubs which exceeds an aggregate area of three-fourths inch in.... (5) Insects: (i) Worm holes. More than three healed codling moth stings, of which not more than two...) Disease: (i) Scab spots which are black and which cover an aggregate area of more than one-half inch in...
7 CFR 51.1280 - Serious damage.
Code of Federal Regulations, 2011 CFR
2011-01-01
... brown or black discoloration caused by limbrubs which exceeds an aggregate area of three-fourths inch in.... (5) Insects: (i) Worm holes. More than three healed codling moth stings, of which not more than two...) Disease: (i) Scab spots which are black and which cover an aggregate area of more than one-half inch in...
Gnepe, J R; Tyagi, R D; Brar, S K; Valero, J R
2011-01-01
A rheological study of diets using the agro-industrial wastes (brewery wastewater and pomace waste) was carried out in order to obtain a diet most adapted to supply nutrients for growth of codling moth (CM) larvae. Nutritive capacity (g/L) of brewery wastewater (BWW) (25.5 ± 5.5 carbohydrates; 16.9 ± 2.1 proteins; 6 ± 1.6 lipids) and pomace waste (POM) (22.0 ± 0.03 carbohydrates; 11.3 ± 1.3 proteins; 2 ± 0.2 lipids) were essential and important as replacement or in association with other ingredients [soya flour (SF), wheat germ (WG), yeast extract (YE)] of the standard diet for the breeding of codling moth larvae. These diet additives also contributed to the preservation of texture and nutritive content of larvae diet. The eggs and CM larvae were grown on alternate diets under industrial conditions (16:8 h photoperiod; 25 ± 1 °C and 50 ± 0.5 % of humidity). The higher assimilation of nutrients of the diets in BWW and control diet was observed by calculating the rate of hatching of eggs (0.48 to 0.71); larvae growth (0.23 to 0.4) and fertility (1.33 to 3 for control diet). The excellent growth and fertility rates of codling moth larvae were attributed to variations in viscosity (varying from 50 to 266 mPa.s⁻¹), particle size (varying 24.3 μm in 88.05 μm with regard to 110 μm the control diet) and total solids (145.88 g/L POM + YE; 162.08 g/L BWW + YE; 162.2 g/L POM + WG; 173 g/L control; 174.3 g/L BWW + WG) diets. Lower viscosity favored improved diet due to ease of assimilation of nutrients. Thus, rheology is an important parameter during preparation of diets for growth of codling moth larvae as it will dictate the nutrient assimilation which is an important parameter of larvae growth.
Ioriatti, Claudio; Anfora, Gianfranco; Angeli, Gino; Civolani, Stefano; Schmidt, Silvia; Pasqualini, Edison
2009-03-01
Emamectin benzoate is a novel macrocyclic lactone insecticide derived from naturally occurring avermectin molecules isolated by fermentation from the soil microorganism Streptomyces avermitilis Kim & Goodfellow. The present study aims to evaluate the toxicity of emamectin benzoate to codling moth, Cydia pomonella (L.), and oriental fruit moth, C. molesta (Busck), under laboratory and semi-field conditions. Dose response bioassays showed that emamectin benzoate had a high level of intrinsic toxicity to early-stage larvae of both species, and that contact activity might contribute significantly to mortality. In the semi-field trials, residual toxicity lasted for more than 1 week. Ovicidal activity was recorded only for C. pomonella (approximately 30%), irrespective of the concentrations tested. Field trials confirmed the efficacy of emamectin benzoate on codling moth when applied at 7 day intervals. Fruit damage, both from the first and second generations, was comparable with that on treatment with chlorpyrifos-ethyl, used as a chemical reference. Emamectin benzoate may be considered a valuable tool for the control of codling moth as a component of an IPM programme. Its collective advantages are: high efficacy, lack of cross-resistance with currently used products, control of secondary pests such as oriental fruit moth and selective toxicity that spares beneficials. 2008 Society of Chemical Industry
NASA Astrophysics Data System (ADS)
Felber, Raphael; Stöckli, Sibylle; Calanca, Pierluigi
2017-04-01
Temperature is a main climatic driver of plant phenology and the dominant abiotic factor directly affecting insect pests. Global warming is therefore expected to accelerate the development of plants and insects. Moreover, in the case of multivoltine pest species higher temperatures are expected to lead to the appearance of additional generations toward the end of the warm season. These changes could entail higher pest pressure and hence require an adaptation of pest management, but ultimately this would depend on whether plant and pest phenology remain synchronized or not. In this contribution we present an analysis of potential impacts of climate change on the phenology of the apple tree (Malus pumila L.), a fruit crop of economic relevance worldwide, and the codling moth (Cydia pomonella L.), one of its main pests. Key developmental stages of the apple and the codling moth were simulated by means of two heat summation models. The models were calibrated with lab and field data from Switzerland and subsequently run with observed weather data and various climate change scenarios. The time period between flowering termination and the harvest of the apples was compared to the appearance of the second and third generation of codling moth larvae to study the interlinkage between host and pest. To illustrate the potential for practical applications of the phenology models, we used spatial temperature data of Switzerland to produce risk maps that can serve as a basis for further studies and decision support.
Response of postharvest tree nut lepidopteran pests to vacuum treatments.
Johnson, J A; Zettler, J L
2009-10-01
Industry concerns over insect resistance, regulatory action, and the needs of organic processors have renewed interest in nonchemical alternative postharvest treatments to fumigants used for California tree nuts. The development of inexpensive polyvinyl chloride containers capable of holding low pressures has increased the practicality of vacuum treatments for durable commodities such as tree nuts. To develop vacuum treatment protocols, we determined the relative tolerance to vacuum (50 mmHg) at 25 and 30 degrees C of different life stages of three postharvest pests of tree nuts: codling moth, Cydia pomonella (L.), navel orangeworm, Amyelois transitella (Walker), and Indianmeal moth, Plodia interpunctella (Hübner). At both temperatures, nondiapausing codling moth larvae were the least tolerant stage tested. LT95 values for diapausing Indianmeal moth larvae were similar to Indianmeal moth eggs at both temperatures. Indianmeal moth diapausing larvae and eggs were the most tolerant at 25 degrees C, whereas navel orangeworm eggs were most tolerant at 30 degrees C. Field tests using GrainPro Cocoons (GrainPro, Inc., Concord, MA) to treat shelled almonds, Prunus dulcis (Mill.) D. A. Webb, in bins at vacuum levels of 18-43 mmHg at average winter temperatures (6-10 degrees C) showed that diapausing codling moth larvae were the most tolerant under these conditions and that exposures of 7-13 d provided incomplete control. Summer field tests treating in-shell almonds in bags at average temperatures of 25-30 degrees C provided complete control with 48 h exposure to average vacuum levels of 50 mmHg, and navel orangeworm eggs were the most tolerant stage.
7 CFR 51.1323 - Serious damage.
Code of Federal Regulations, 2010 CFR
2010-01-01
... limbrubs or dark brown or black discoloration caused by limbrubs which exceeds an aggregate area of three... under the definition of russeting. (7) Insects: (i) Worm holes. More than three healed codling moth... or disfigures the fruit. 2 (8) Disease: (i) Scab spots which are black, and which cover an aggregate...
7 CFR 51.1323 - Serious damage.
Code of Federal Regulations, 2011 CFR
2011-01-01
... limbrubs or dark brown or black discoloration caused by limbrubs which exceeds an aggregate area of three... under the definition of russeting. (7) Insects: (i) Worm holes. More than three healed codling moth... or disfigures the fruit. 2 (8) Disease: (i) Scab spots which are black, and which cover an aggregate...
Yokoyama, V Y; Miller, G T; Hartsell, P L; Leesch, J G
2000-06-01
In total, 30,491 codling moth, Cydia pomonella (L.), 1-d-old eggs on May Grand nectarines in two large-scale tests, and 17,410 eggs on Royal Giant nectarines in four on-site confirmatory tests were controlled with 100% mortality after fumigation with a methyl bromide quarantine treatment (48 g3 for 2 h at > or = 21 degrees C and 50% volume chamber load) on fruit in shipping containers for export to Japan. Ranges (mean +/- SEM) were for percentage sorption 34.7 +/- 6.2 to 46.5 +/- 2.5, and for concentration multiplied by time products 54.3 +/- 0.9 to 74.5 +/- 0.6 g.h/m3 in all tests. In large-scale tests with May Grand nectarines, inorganic bromide residues 48 h after fumigation ranged from 6.8 +/- 0.7 to 6.9 +/- 0.5 ppm, which were below the U.S. Environmental Protection Agency tolerance of 20 ppm; and, organic bromide residues were < 0.01 ppm after 1 d and < 0.001 ppm after 3 d in storage at 0-1 degree C. After completion of larger-scale and on-site confirmatory test requirements, fumigation of 10 nectarine cultivars in shipping containers for export to Japan was approved in 1995. Comparison of LD50s developed for methyl bromide on 1-d-old codling moth eggs on May Grand and Summer Grand nectarines in 1997 versus those developed for nine cultivars in the previous 11 yr showed no significant differences in codling moth response among the cultivars.
7 CFR 51.1323 - Serious damage.
Code of Federal Regulations, 2013 CFR
2013-01-01
... sprayburn of a russet character shall be considered under the definition of russeting. (7) Insects: (i) Worm holes. More than three healed codling moth stings, of which not more than two may be over three thirty...) Blister mite or canker worm injury which affects an aggregate area of more than three-fourths inch in...
7 CFR 51.1323 - Serious damage.
Code of Federal Regulations, 2014 CFR
2014-01-01
... sprayburn of a russet character shall be considered under the definition of russeting. (7) Insects: (i) Worm holes. More than three healed codling moth stings, of which not more than two may be over three thirty...) Blister mite or canker worm injury which affects an aggregate area of more than three-fourths inch in...
Candidate pheromone receptors of codling moth Cydia pomonella respond to pheromones and kairomones
Cattaneo, Alberto Maria; Gonzalez, Francisco; Bengtsson, Jonas M.; Corey, Elizabeth A.; Jacquin-Joly, Emmanuelle; Montagné, Nicolas; Salvagnin, Umberto; Walker, William B.; Witzgall, Peter; Anfora, Gianfranco; Bobkov, Yuriy V.
2017-01-01
Olfaction plays a dominant role in the mate-finding and host selection behaviours of the codling moth (Cydia pomonella), an important pest of apple, pear and walnut orchards worldwide. Antennal transcriptome analysis revealed a number of abundantly expressed genes related to the moth olfactory system, including those encoding the olfactory receptors (ORs) CpomOR1, CpomOR3 and CpomOR6a, which belong to the pheromone receptor (PR) lineage, and the co-receptor (CpomOrco). Using heterologous expression, in both Drosophila olfactory sensory neurones and in human embryonic kidney cells, together with electrophysiological recordings and calcium imaging, we characterize the basic physiological and pharmacological properties of these receptors and demonstrate that they form functional ionotropic receptor channels. Both the homomeric CpomOrco and heteromeric CpomOrco + OR complexes can be activated by the common Orco agonists VUAA1 and VUAA3, as well as inhibited by the common Orco antagonists amiloride derivatives. CpomOR3 responds to the plant volatile compound pear ester ethyl-(E,Z)-2,4-decadienoate, while CpomOR6a responds to the strong pheromone antagonist codlemone acetate (E,E)-8,10-dodecadien-1-yl acetate. These findings represent important breakthroughs in the deorphanization of codling moth pheromone receptors, as well as more broadly into insect ecology and evolution and, consequently, for the development of sustainable pest control strategies based on manipulating chemosensory communication. PMID:28117454
Investigation of insecticide-resistance status of Cydia pomonella in Chinese populations.
Yang, X-Q; Zhang, Y-L
2015-06-01
The codling moth Cydia pomonella (L.) is an economically important fruit pest and it has been directly targeted by insecticides worldwide. Serious resistance to insecticides has been reported in many countries. As one of the most serious invasive pest, the codling moth has populated several areas in China. However, resistance to insecticides has not been reported in China. We investigated the insecticide-resistance status of four field populations from Northwestern China by applying bioassays, enzyme activities, and mutation detections. Diagnostic concentrations of lambda-cyhalothrin, chlorpyrifos-ethyl, carbaryl, and imidacloprid were determined and used in bioassays. Field populations were less susceptible to chlorpyrifos-ethyl and carbaryl than laboratory strain. Insensitive populations displayed an elevated glutathione S-transferases (GSTs) activity. Reduced carboxylesterase (CarE) activity was observed in some insecticide insensitive populations and reduced acetylcholinesterase activity was observed only in the Wuw population. The cytochrome P450 polysubstrate monooxygenases activities in four field populations were not found to be different from susceptible strains. Neither the known-resistance mutation F399V in the acetylcholinesterase (AChE) gene, ace1, nor mutations in CarE gene CpCE-1 were found in adult individuals from our field populations. Native-PAGE revealed that various CarE isozymes and AChE insensitivity were occurring among Chinese populations. Our results indicate that codling moth populations from Northwestern China were insensitivity to chlorpyrifos-ethyl and carbaryl. Increased GST activity was responsible for insecticides insensitivity. Decreased CarE activity, as well as the presence of CarE and AChE polymorphisms might also be involved in insecticides insensitivity. New management strategies for managing this pest are discussed.
Joshi, Neelendra K; Rajotte, Edwin G; Naithani, Kusum J; Krawczyk, Greg; Hull, Larry A
2016-01-01
Apple orchard management practices may affect development and phenology of arthropod pests, such as the codling moth (CM), Cydia pomonella (L.) (Lepidoptera: Tortricidae), which is a serious internal fruit-feeding pest of apples worldwide. Estimating population dynamics and accurately predicting the timing of CM development and phenology events (for instance, adult flight, and egg-hatch) allows growers to understand and control local populations of CM. Studies were conducted to compare the CM flight phenology in commercial and abandoned apple orchard ecosystems using a logistic function model based on degree-days accumulation. The flight models for these orchards were derived from the cumulative percent moth capture using two types of commercially available CM lure baited traps. Models from both types of orchards were also compared to another model known as PETE (prediction extension timing estimator) that was developed in 1970s to predict life cycle events for many fruit pests including CM across different fruit growing regions of the United States. We found that the flight phenology of CM was significantly different in commercial and abandoned orchards. CM male flight patterns for first and second generations as predicted by the constrained and unconstrained PCM (Pennsylvania Codling Moth) models in commercial and abandoned orchards were different than the flight patterns predicted by the currently used CM model (i.e., PETE model). In commercial orchards, during the first and second generations, the PCM unconstrained model predicted delays in moth emergence compared to current model. In addition, the flight patterns of females were different between commercial and abandoned orchards. Such differences in CM flight phenology between commercial and abandoned orchard ecosystems suggest potential impact of orchard environment and crop management practices on CM biology.
Joshi, Neelendra K.; Rajotte, Edwin G.; Naithani, Kusum J.; Krawczyk, Greg; Hull, Larry A.
2016-01-01
Apple orchard management practices may affect development and phenology of arthropod pests, such as the codling moth (CM), Cydia pomonella (L.) (Lepidoptera: Tortricidae), which is a serious internal fruit-feeding pest of apples worldwide. Estimating population dynamics and accurately predicting the timing of CM development and phenology events (for instance, adult flight, and egg-hatch) allows growers to understand and control local populations of CM. Studies were conducted to compare the CM flight phenology in commercial and abandoned apple orchard ecosystems using a logistic function model based on degree-days accumulation. The flight models for these orchards were derived from the cumulative percent moth capture using two types of commercially available CM lure baited traps. Models from both types of orchards were also compared to another model known as PETE (prediction extension timing estimator) that was developed in 1970s to predict life cycle events for many fruit pests including CM across different fruit growing regions of the United States. We found that the flight phenology of CM was significantly different in commercial and abandoned orchards. CM male flight patterns for first and second generations as predicted by the constrained and unconstrained PCM (Pennsylvania Codling Moth) models in commercial and abandoned orchards were different than the flight patterns predicted by the currently used CM model (i.e., PETE model). In commercial orchards, during the first and second generations, the PCM unconstrained model predicted delays in moth emergence compared to current model. In addition, the flight patterns of females were different between commercial and abandoned orchards. Such differences in CM flight phenology between commercial and abandoned orchard ecosystems suggest potential impact of orchard environment and crop management practices on CM biology. PMID:27713702
Fernández, D.E.; Cichón, L.; Garrido, S.; Ribes-Dasi, M.; Avilla, J.
2010-01-01
Studies were conducted in apple, Malus domestica Borkhausen and pear, Pyrus communis L. (Rosales: Rosaceae), orchards to evaluate the attractiveness of grey halobutyl septa loaded with 1 (L2) and 10 (Mega) mg of codlemone, 8E, 10E-dodecadien-1-ol, 3 mg of pear ester, ethyl (E,Z)-2,4-decadienoate (DA2313), and 3 mg of pear ester plus 3 mg of codlemone (Combo) to adult codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). All studies were conducted in orchards treated with pheromone mating disruption. All four lures were tested on diamond-shaped sticky traps placed in 60 plots of apple and 40 plots of pears in 2003/04, and in 62 plots of apples and 30 of pears in 2004–05. Combo lures attracted significantly more moths (males + females) than all the others in both years. Comparisons among flights showed significant differences mainly for flight 1 and 2, but not always for flight 3. Mega lures provided no significant improvement compared with L2 lures during both seasons regarding the total number of moths. Combo and DA2313 lures attracted fewer females than males during the whole season. For most sample dates, more virgin than mated females were attracted to Combo lures, except during the third flight, and the overall ratio was 60:40, although the difference was not statistically significant. We conclude that the Combo lures are better indicators of codling moth activity in pheromone treated orchards, regardless of pest population level, when compared with similar lures containing codlemone or pear ester alone. PMID:20883133
Stelinski, L L; McGhee, P; Haas, M; Il'ichev, A L; Gut, L J
2007-08-01
Several application parameters of microencapsulated (MEC) sex pheromone formulations were manipulated to determine their impact on efficacy of disruption for codling moth, Cydia pomonella (L.); oriental fruit moth, Grapholita molesta (Busck); obliquebanded leafroller, Choristoneura rosaceana (Harris); and redbanded leafroller, Argyrotaenia velutinana (Walker). Depending on the experiment, the formulations evaluated were those formerly manufactured by 3M Canada (London, ON, Canada) or those that are currently available from Suterra LLC (Bend, OR). The efficacy of MEC formulations applied by air-blast sprayer evenly throughout the entire canopy of 2-3-m-tall apple (Malus spp.) trees was equivalent to treatments in which targeted applications of MECs were made to the lower or upper 1.5 m of the canopy (at equivalent overall rates) for oriental fruit moth and both leafroller species. The realized distribution of deposited microcapsules within the tree canopy corresponded well with the intended heights of application within the canopy. The additional coapplication of the pine resin sticker Nu-Film 17 increased efficacy but not longevity of MEC formulations for oriental fruit moth; this adjuvant had no added effects for codling moth or leafroller formulations. Increasing the rate of active ingredient (AI) per hectare by 20-30-fold (range 2.5-75.0 g/ha) did not improve the disruption efficacy of MECs for codling moth or either leafroller species when both low and high rates were applied at equivalent frequencies per season. A low-rate, high-frequency (nine applications per season) application protocol was compared with a standard protocol in which two to three applications were made per season, once before each moth generation for each species. The low-rate, high-frequency protocol resulted in equivalent or better disruption efficacy for each moth species, despite using two-fold less total AI per hectare per season with the former treatment. The low-rate, frequent-application protocol should make the use of MEC formulations of synthetic pheromone more economical and perhaps more effective.
Gamma irradiation as a phytosanitary treatment for fresh pome fruits produced in Patagonia
NASA Astrophysics Data System (ADS)
Pérez, J.; Lires, C.; Horak, C.; Pawlak, E.; Docters, A.; Kairiyama, E.
2009-07-01
Argentina produces 1.8 million tons/year of apples ( Malus domestica L.) and pears ( Pyrus communis L.) in the Patagonia region. Cydia pomonella, codling moth, and Grapholita molesta, Oriental fruit moth, ( Lepidoptera: Tortricidae) are quarantine pests in pome fruits. Irradiation is a promising phytosanitary treatment because a dose of 200 Gy completely prevents pest adult emergence. A pilot irradiation process of commercially packaged 'Red Delicious' apples and 'Packham's Triumph' pears was performed in an irradiation facility with a Cobalt 60 source. Quality analyses were carried out at 0, 2, 4, 6 and 8 months of storage (1 °C, RH 99%) to evaluate fruit tolerance at 200, 400 and 800 Gy. Irradiation at 200 and 400 Gy had no undesirable effects on fruit quality (pulp firmness, external colour, soluble solids content (SSC), titratable acidity (TA) and sensory evaluations). Irradiation of 'Red Delicious' apples and 'Packham's Triumph' pears can be applied as a commercial quarantine treatment with a minimum absorbed dose of 200 Gy (to control codling moth and Oriental fruit moth) and <800 Gy (according to quality results).
Bosch, Dolors; Rodríguez, Marcela A; Avilla, Jesús
2018-04-01
Widespread resistance of Cydia pomonella to organophosphates was demonstrated in populations from the Spanish Ebro Valley area which showed high levels of enzymatic detoxification. To determine the efficacy of new insecticides, neonate larval bioassays were carried out on 20 field codling moth populations collected from three different Spanish apple production areas. Synergist bioassays were performed to determine the enzymatic mechanisms involved. The least active ingredients were methoxyfenozide, with 100% of the populations showing significantly lower mortality than the susceptible strain, and lambda-cyhalothrin, with very high resistance ratios (872.0 for the most resistant field population). Approximately 50% of the populations were resistant or tolerant to thiacloprid. By contrast, tebufenozide was very effective in all the field populations, as was chlorpyrifos-ethyl despite its widespread use during the last few years. Indoxacarb, spinosad and chlorantraniliprole also provided high efficacy, as did emamectin and spinetoram, which are not yet registered in Spain. The resistant Spanish codling moth populations can be controlled using new reduced-risk insecticides. The use of synergists showed the importance of the concentration applied and the difficulty of interpreting results in field populations that show multiple resistance to different active ingredients. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Pszczolkowski, Maciej A; Durden, Kevin; Sellars, Samantha; Cowell, Brian; Brown, John J
2011-10-26
Codling moth, Cydia pomonella (L.), is a cosmopolitan pest of apple, potentially causing severe damage to the fruit. Currently used methods of combating this insect do not warrant full success or are harmful to the environment. The use of plant-derived semiochemicals for manipulation with fruit-infesting behavior is one of the new avenues for controlling this pest. Here, we explore the potential of Ginkgo biloba and its synthetic metabolites for preventing apple feeding and infestation by neonate larvae of C. pomonella. Experiments with crude extracts indicated that deterrent constituents of ginkgo are present among alkylphenols, terpene trilactones, and flavonol glycosides. Further experiments with ginkgo synthetic metabolites of medical importance, ginkgolic acids, kaempferol, quercetin, isorhamnetin, ginkgolides, and bilobalide, indicated that three out of these chemicals have feeding deterrent properties. Ginkgolic acid 15:0 prevented fruit infestation at concentrations as low as 1 mg/mL, bilobalide had deterrent effects at 0.1 mg/mL and higher concentrations, and ginkgolide B at 10 mg/mL. On the other hand, kaempferol and quercetin promoted fruit infestation by codling moth neonates. Ginkgolic acids 13:0, 15:1, and 17:1, isorhamnetin, and ginkgolides A and C had no effects on fruit infestation-related behavior. Our research is the first report showing that ginkgo constituents influence fruit infestation behavior and have potential applications in fruit protection.
Calkins, Carrol O; Faust, Robert J
2003-01-01
An areawide suppression program for codling moth (Cydia pomonella L) populations was initiated in 1995 in Washington, Oregon and California under the direction of the US Department of Agriculture, Agricultural Research Service in cooperation with Washington State University, Oregon State University and University of California, Berkeley. Mating disruption was used to reduce the pest population while reducing and eliminating the use of organophosphate insecticides. During the 5-year program, the original 1064 hectares were expanded to 8400 hectares and from 66 grower participants to more than 400 participants. The acreage under mating disruption in the three states increased from 6000 hectares in 1994 to 54000 hectares in the year 2000.
7 CFR 51.1323 - Serious damage.
Code of Federal Regulations, 2012 CFR
2012-01-01
... under the definition of russeting. (7) Insects: (i) Worm holes. More than three healed codling moth... insect stings affecting the appearance to an equal extent. 2 (ii) Blister mite or canker worm injury...
Low pressure treatments for codling moth on fresh fruits
USDA-ARS?s Scientific Manuscript database
The primary phytosanitary treatment used for fresh fruits exported to markets requiring quarantine protocols is fumigation with methyl bromide. Quarantine and pre-shipment (QPS) treatments are currently allowable under the Montreal Protocol, but there is growing concern that the QPS exemption will e...
Hummel, H E; Czyrt, T; Schmid, S; Leithold, G; Vilcinskas, A
2012-01-01
Cydia pomonella (Lep.: Tortricidae), the codling moth, is an apple, pear, quince and walnut pest with considerable impact on horticultural production systems in many parts of the world. In commercial apple production, it is responsible for a yearly damage level of 40 billion dollars. In response to the need of tight codling moth control there are several options for intervention by pest managers in commercially operated orchards. Spray and count methods have been used for decades with success, but at considerable external costs for the integrity of ecological cycles. Also, problems with pesticide residues and with resistant strains are an issue of concern. For environmental reasons, toxicological means are discounted here. Instead, flight curves based on sex pheromone trapping and monitoring are preferred means towards determining the optimal timing of interventions by biotechnical and biological control methods. Finally, ecological reasons are discussed for vastly different population levels of C. pomonella developing in closely neighboring field sections which operated under different environmental management.
NASA Astrophysics Data System (ADS)
Light, Douglas M.; Knight, Alan L.; Henrick, Clive A.; Rajapaska, Dayananda; Lingren, Bill; Dickens, Joseph C.; Reynolds, Katherine M.; Buttery, Ronald G.; Merrill, Gloria; Roitman, James; Campbell, Bruce C.
2001-08-01
Ethyl (2 E, 4 Z)-2,4-decadienoate, a pear-derived volatile, is a species-specific, durable, and highly potent attractant to the codling moth (CM), Cydia pomonella (L.), a serious pest of walnuts, apples, and pears worldwide. This kairomone attracts both CM males and virgin and mated females. It is highly attractive to CM in both walnut and apple orchard contexts, but has shown limited effectiveness in a pear orchard context. Rubber septa lures loaded with ethyl (2 E, 4 Z)-2,4-decadienoate remained attractive for several months under field conditions. At the same low microgram load rates on septa, the combined gender capture of CM in kairomone-baited traps was similar to the capture rate of males in traps baited with codlemone, the major sex pheromone component. The particular attribute of attracting CM females renders this kairomone a novel tool for monitoring population flight and mating-ovipositional status, and potentially a major new weapon for directly controlling CM populations.
Low pressure/low temperature treatments: insect efficacy and apple quality
USDA-ARS?s Scientific Manuscript database
Because U.S. apples, pears and cherries may be infested with codling moth, they require fumigation with methyl bromide before export to certain markets. Although quarantine and pre-shipment treatments are currently allowable under the Montreal Protocol, there is growing concern that this exemption w...
Battling Wormy apples in the Home Orchard Using a SOFT Approach
USDA-ARS?s Scientific Manuscript database
A program was developed for use by homeowners to control codling moth in backyard apple and pear trees. Coined SOFT (Selective Organic Fruit Tree), this management program uses a combination of granulosis virus, parasitic nematodes, and a trap and lure for females. This multi-tactic approach reduced...
USDA-ARS?s Scientific Manuscript database
Accurate assessment of insect pest establishment risk is needed by national plant protection organizations to negotiate international trade of horticultural commodities that can potentially carry the pests and result in inadvertent introductions in the importing countries. We used mechanistic and co...
Arsenic Recovery by Stinging Nettle From Lead-Arsenate Contaminated Orchard Soils
USDA-ARS?s Scientific Manuscript database
Soil contamination with arsenic (As) is common in orchards with a history of lead-arsenate pesticide application. This problem is prevalent in the U.S. Northeast where lead-arsenate foliar sprays were used to control codling moth (Cydia pomonella) in apple orchards. Arsenic is not easily biodegrad...
Pesticides used against Cydia pomonella disrupt biological control of secondary pests of apple
USDA-ARS?s Scientific Manuscript database
The effects of codling moth management programs on secondary pests of apple were examined from 2008 to 2011 in five replicated large-plot trials. The orchards were chosen for a history of Eriosoma lanigerum and tetranychid mite outbreaks. Programs covered the first, second, or both generations of C....
Nontarget effects of orchard pesticides on natural enemies: lessons from the field and laboratory
USDA-ARS?s Scientific Manuscript database
The nontarget effects of insecticide programs used to control codling moth, Cydia pomonella were studied in large-plot field trials in apples, pears, and walnuts in the western United States. We sampled the abundance of natural enemies and outbreaks of secondary pests. The insecticides used in the f...
Optimizing Aerosol Dispensers for Mating Disruption of Codling Moth, Cydia pomonella L.
McGhee, Peter S; Miller, James R; Thomson, Donald R; Gut, Larry J
2016-07-01
Experiments were conducted in commercial apple orchards to determine if improved efficiencies in pheromone delivery may be realized by using aerosol pheromone dispensers for codling moth (CM), Cydia pomonella L., mating disruption. Specifically, we tested how reducing: pheromone concentration, period of dispenser operation, and frequency of pheromone emission from aerosol dispensers affected orientational disruption of male CM to pheromone-baited monitoring traps. Isomate® CM MIST formulated with 50 % less codlemone (3.5 mg/ emission) provided orientation disruption equal to the standard commercial formulation (7 mg / emission). Decreased periods of dispenser operation (3 and 6 h) and frequency of pheromone emission (30 and 60 min) provided a level of orientational disruption similar to the current standard protocol of releasing pheromone over a 12 h period on a 15 min cycle, respectively. These three modifications provide a means of substantially reducing the amount of pheromone necessary for CM disruption. The savings accompanying pheromone conservation could lead to increased adoption of CM mating disruption and, moreover, provide an opportunity for achieving higher levels of disruption by increasing dispenser densities.
Cost-benefit trade-offs of bird activity in apple orchards.
Peisley, Rebecca K; Saunders, Manu E; Luck, Gary W
2016-01-01
Birds active in apple orchards in south-eastern Australia can contribute positively (e.g., control crop pests) or negatively (e.g., crop damage) to crop yields. Our study is the first to identify net outcomes of these activities, using six apple orchards, varying in management intensity, in south-eastern Australia as a study system. We also conducted a predation experiment using real and artificial codling moth (Cydia pomonella) larvae (a major pest in apple crops). We found that: (1) excluding birds from branches of apple trees resulted in an average of 12.8% more apples damaged by insects; (2) bird damage to apples was low (1.9% of apples); and (3) when trading off the potential benefits (biological control) with costs (bird damage to apples), birds provided an overall net benefit to orchard growers. We found that predation of real codling moth larvae was higher than for plasticine larvae, suggesting that plasticine prey models are not useful for inferring actual predation levels. Our study shows how complex ecological interactions between birds and invertebrates affect crop yield in apples, and provides practical strategies for improving the sustainability of orchard systems.
Attractants from Bartlett pear for codling moth, Cydia pomonella (L.), larvae
NASA Astrophysics Data System (ADS)
Knight, Alan L.; Light, Douglas M.
2001-08-01
The alkyl ethyl and methyl esters of (2 E,4 Z)-2,4-decadienoic acid found in head-space samples of ripe Bartlett pear ( Pyrus communis L.) stimulated a response from neonate larvae of the codling moth (CM), Cydia pomonella (L.), in both static-air Petri-plate and in upwind Y-tube and straight-tube olfactometer bioassays. In comparison with the known CM neonate attractant, ( E,E)-α-farnesene, ethyl (2 E,4 Z)-2,4-decadienoate was attractive at 10-fold and 1,000-fold lower threshold dosages in the Petri-plate and in the Y-tube bioassays, respectively. Methyl (2 E,4 Z)-2,4-decadienoate was attractive to CM neonates in these bioassays at much higher doses than ethyl (2 E,4 Z)-2,4-decadienoate. Other principal head-space volatiles from ripe pear fruit and pear leaves, including butyl acetate, hexyl acetate, ( Z)-3-hexenyl acetate, and ( E)-β-ocimene, were not attractive to CM neonates. The potential uses of these pear kairomones for monitoring and control of CM in walnuts and apple are discussed.
Knight, Alan L; Basoalto, Esteban; Witzgall, Peter
2015-04-01
Studies were conducted with the codling moth granulosis virus (CpGV) to evaluate whether adding the yeast Saccharomyces cerevisiae Meyen ex E. C. Hansen with brown cane sugar could improve larval control of Cydia pomonella (L.). Larval mortalities in dipped-apple bioassays with S. cerevisiae or sugar alone were not significantly different from the water control. The addition of S. cerevisiae but not sugar with CpGV significantly increased larval mortality compared with CpGV alone. The combination of S. cerevisiae and sugar with CpGV significantly increased larval mortality compared with CpGV plus either additive alone. The addition of S. cerevisiae improved the efficacy of CpGV similarly to the use of the yeast Metschnikowia pulcherrima (isolated from field-collected larvae). The proportion of uninjured fruit in field trials was significantly increased with the addition of S. cerevisiae and sugar to CpGV compared with CpGV alone only in year 1, and from the controls in both years. In comparison, larval mortality was significantly increased in both years with the addition of S. cerevisiae and sugar with CpGV compared with CpGV alone or from the controls. The numbers of overwintering larvae on trees was significantly reduced from the control following a seasonal program of CpGV plus S. cerevisiae and sugar. The addition of a microencapsulated formulation of pear ester did not improve the performance of CpGV or CpGV plus S. cerevisiae and sugar. These data suggest that yeasts can enhance the effectiveness of the biological control agent CpGV, in managing and maintaining codling moth at low densities. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.
Downscaling climate change scenarios for apple pest and disease modeling in Switzerland
NASA Astrophysics Data System (ADS)
Hirschi, M.; Stoeckli, S.; Dubrovsky, M.; Spirig, C.; Calanca, P.; Rotach, M. W.; Fischer, A. M.; Duffy, B.; Samietz, J.
2012-02-01
As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously non-affected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests and diseases have been developed, which model their phenology, depending on actual weather conditions, and suggest management decisions on that basis. Assessing the future risk of pest-related damages requires future weather data at high temporal and spatial resolution. Here, we use a combined stochastic weather generator and re-sampling procedure for producing site-specific hourly weather series representing present and future (1980-2009 and 2045-2074 time periods) climate conditions in Switzerland. The climate change scenarios originate from the ENSEMBLES multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly weather series are produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather series are then used for modeling the impact of climate change on important life phases of the codling moth and on the number of predicted infection days of fire blight. Codling moth (Cydia pomonella) and fire blight (Erwinia amylovora) are two major pest and disease threats to apple, one of the most important commercial and rural crops across Europe. Results for the codling moth indicate a shift in the occurrence and duration of life phases relevant for pest control. In southern Switzerland, a 3rd generation per season occurs only very rarely under today's climate conditions but is projected to become normal in the 2045-2074 time period. While the potential risk for a 3rd generation is also significantly increasing in northern Switzerland (for most stations from roughly 1% on average today to over 60% in the future for the median climate change signal of the multi-model projections), the actual risk will critically depend on the pace of the adaptation of the codling moth with respect to the critical photoperiod. To control this additional generation, an intensification and prolongation of control measures (e.g. insecticides) will be required, implying an increasing risk of pesticide resistances. For fire blight, the projected changes in infection days are less certain due to uncertainties in the leaf wetness approximation and the simulation of the blooming period. Two compensating effects are projected, warmer temperatures favoring infections are balanced by a temperature-induced advancement of the blooming period, leading to no significant change in the number of infection days under future climate conditions for most stations.
Downscaling climate change scenarios for apple pest and disease modeling in Switzerland
NASA Astrophysics Data System (ADS)
Hirschi, M.; Stoeckli, S.; Dubrovsky, M.; Spirig, C.; Calanca, P.; Rotach, M. W.; Fischer, A. M.; Duffy, B.; Samietz, J.
2011-08-01
As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously not affected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests and diseases have been developed, which model their phenology depending on actual weather conditions and suggest management decisions on that basis. Assessing the future risk of pest-related damages requires future weather data at high temporal and spatial resolution. Here, we use a combined stochastic weather generator and re-sampling procedure for producing site-specific hourly weather series representing present and future (1980-2009 and 2045-2074 time periods) climate conditions in Switzerland. The climate change scenarios originate from the ENSEMBLES multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly weather series are produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather series are then used for modeling the impact of climate change on important life phases of the codling moth and on the number of predicted infection days of fire blight. Codling moth (Cydia pomonella) and fire blight (Erwinia amylovora) are two major pest and disease threats to apple, one of the most important commercial and rural crops across Europe. Results for the codling moth indicate a shift in the occurrence and duration of life phases relevant for pest control. In southern Switzerland, a 3rd generation per season occurs only very rarely under today's climate conditions but is projected to become normal in the 2045-2074 time period. While the potential risk for a 3rd generation is also significantly increasing in northern Switzerland (for most stations from roughly 1 % on average today to over 60 % in the future for the median climate change signal of the multi-model projections), the actual risk will critically depend on the pace of the adaptation of the codling moth with respect to the critical photoperiod. To control this additional generation, an intensification and prolongation of control measures (e.g., insecticides) will be required, implying an increasing risk of pesticide resistances. For fire blight, the projected changes in infection days are less certain due to uncertainties in the leaf wetness approximation and the simulation of the blooming period. Two compensating effects are projected, warmer temperatures favoring infections are balanced by a temperature-induced advancement of the blooming period, leading to no significant change in the number of infection days under future climate conditions for most stations.
Accumulation of lead and arsenic by lettuce grown on lead-arsenate contaminated orchard soils
USDA-ARS?s Scientific Manuscript database
Lead-arsenate was one of the preferred insecticides used as foliar spray to control codling moth (Cydia pomonella) in apple (Malus sylvestris Mill) orchards from the 1900's to the 1960’s. Lead and arsenic are generally immobile and remain in the surface soil. Some of these contaminated lands are now...
USDA-ARS?s Scientific Manuscript database
Pesticides are commonly used for management of codling moth and diseases in apple, pear and walnut orchards in the western U.S. and these pesticides may disrupt the biological control of secondary pests in these crops. A comparative analysis was made of results obtained from a series of studies of ...
Malan, Antoinette P; Knoetze, Rinus; Moore, Sean D
2011-10-01
A survey was conducted to determine the diversity and frequency of endemic entomopathogenic nematodes (EPN) in citrus orchards in the Western Cape, Eastern Cape and Mpumalanga provinces of South Africa. The main aim of the survey was to obtain nematodes as biological control agents against false codling moth (FCM), Thaumatotibia leucotreta, a key pest of citrus in South Africa. From a total of 202 samples, 35 (17%) tested positive for the presence of EPN. Of these, four isolates (11%) were found to be steinernematids, while 31 (89%) were heterorhabditids. Sequencing and characterisation of the internal transcribed spacer (ITS) region was used to identify all nematode isolates to species level. Morphometrics, morphology and biology of the infective juvenile (IJ) and the first-generation male were used to support molecular identification and characterisation. The Steinernema spp. identified were Steinernema khoisanae, Steinernema yirgalemense and Steinernema citrae. This is the first report of S. yirgalemense in South Africa, while for S. citrae it is the second new steinernematid to be identified from South Africa. Heterorhabditis species identified include Heterorhabditis bacteriophora, Heterorhabditis zealandica and an unknown species of Heterorhabditis. Laboratory bioassays, using 24-well bioassay disks, have shown isolates of all six species found during the survey, to be highly virulent against the last instar of FCM larvae. S. yirgalemense, at a concentration of 50IJs/FCM larva caused 100% mortality and 74% at a concentration of 200IJs/pupa. Using a sand bioassay, S. yirgalemense gave 93% control of cocooned pupae and emerging moths at a concentration of 20IJs/cm(2). This is the first report on the potential use of EPN to control the soil-borne life stages of FCM, which includes larvae, pupae and emerging moths. It was shown that emerging moths were infected with nematodes, which may aid in control and dispersal. Copyright © 2011 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
We evaluated whether the efficacy of various insecticides for codling moth, Cydia pomonella (L.), could be improved with the addition of a microencapsulated formulation of pear ester, ethyl (2E, 4Z)-2,4-decadienoate (PE-MEC, 5% AI), in field trials from 2005 to 2009. The addition of PE-MEC (< 3.0 g ...
Cherry Irradiation Studies. 1984 annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eakin, D.E.; Hungate, F.P.; Tingey, G.L.
1985-04-01
Fresh cherries, cherry fruit fly larvae, and codling moth larvae were irradiated using the PNL cobalt-60 facility to determine the efficacy of irradiation treatment for insect disinfestation and potential shelf life extension. Irradiation is an effective disinfestation treatment with no significant degradation of fruit at doses well above those required for quarantine treatment. Sufficient codling moth control was achieved at projected doses of less than 25 krad; cherry fruit fly control, at projected doses of less than 15 krad. Dose levels up to 60 krad did not adversely affect cherry quality factors tested. Irradiation above 60 krad reduced the firmnessmore » of cherries but had no significant impact on other quality factors tested. Irradiation of cherries below 80 krad did not result in any significant differences in sensory evaluations (appearance, flavor, and firmness) in tests conducted at OSU. Irradiation up to 200 krad at a temperature of about 25/sup 0/C (77/sup 0/F) did not measurably extend shelf life. Irradiation at 500 krad at 25/sup 0/C (77/sup 0/F) increased mold and rotting of cherries tested. There is no apparent advantage of irradiation over low-temperature fumigation.« less
Cost-benefit trade-offs of bird activity in apple orchards
Saunders, Manu E.; Luck, Gary W.
2016-01-01
Birds active in apple orchards in south–eastern Australia can contribute positively (e.g., control crop pests) or negatively (e.g., crop damage) to crop yields. Our study is the first to identify net outcomes of these activities, using six apple orchards, varying in management intensity, in south–eastern Australia as a study system. We also conducted a predation experiment using real and artificial codling moth (Cydia pomonella) larvae (a major pest in apple crops). We found that: (1) excluding birds from branches of apple trees resulted in an average of 12.8% more apples damaged by insects; (2) bird damage to apples was low (1.9% of apples); and (3) when trading off the potential benefits (biological control) with costs (bird damage to apples), birds provided an overall net benefit to orchard growers. We found that predation of real codling moth larvae was higher than for plasticine larvae, suggesting that plasticine prey models are not useful for inferring actual predation levels. Our study shows how complex ecological interactions between birds and invertebrates affect crop yield in apples, and provides practical strategies for improving the sustainability of orchard systems. PMID:27413639
Short-chain alkanes synergise responses of moth pests to their sex pheromones.
Gurba, Alexandre; Guerin, Patrick M
2016-05-01
The use of sex pheromones for mating disruption of moth pests of crops is increasing worldwide. Efforts are under way to augment the efficiency and reliability of this control method by adding molecules derived from host plants to the sex attractants in dispensers. We show how attraction of the European grapevine moth, Lobesia botrana Den. & Schiff., and the codling moth, Cydia pomonella L., males to underdosed levels of their sex pheromones is increased by adding heptane or octane over a range of release rates. Pheromone-alkane mixtures enhance male recruitment by up to 30%, reaching levels induced by calling females, and shorten the flight time to the sex attractant by a factor of 2. The findings show the promise of using short-chain alkanes as pheromone synergists for mating disruption of insect pests of food crops. Alkane-pheromone combinations are expected to increase the competitiveness of dispensers with females, and to reduce the amount of pheromone needed for the control of these pests. © 2015 Society of Chemical Industry.
Effect of temperature on long-term storage of codling moth granulovirus formulations.
Lacey, Lawrence A; Headrick, Heather L; Arthurs, Steven P
2008-04-01
Codling moth, Cydia pomonella (L.), is the major pest of apple (Malus spp.) in the western United States and many other regions of the world. The codling moth granulovirus (CpGV) provides a selective and safe means of its control. We assessed the long-term stability and storage potential of two commercial formulations of CpGV, Cyd-X, and Virosoft. All assays were performed with individual C. pomonella neonate larvae in 2-ml vials on 1 ml of artificial larval diet that was surface inoculated with 10 microl of the test virus suspension. Baseline quantitative assays for the two formulations revealed that the LC50 and LC95 values (occlusion bodies per vial) did not differ significantly between the formulations. For year-long studies on Cyd-X stability, the product was stored at -20, 2, 25, and 35 degrees C, and quantitative bioassays were conducted after 0, 3, 6, and 12 mo of storage. Cyd-X retained good larvicidal activity from -20 to 25 degrees C, and it was the least negatively affected at the lowest temperature. Storage of Cyd-X at 35 degrees C was detrimental to its larvicidal activity within 3 mo of storage. For longer term storage studies, Cyd-X and Virosoft formulations were stored at 2, 25, and 35 degrees C, and assayed for larvicidal activity over a 3-yr period. For recently produced product, a 10-microl sample of a 10(-5) dilution of both formulations resulted in 95-100% mortality in neonate larvae. Larvicidal activity for the Cyd-X formulation remained essentially unaffected for 156 wk when stored at 2 and 25 degrees C, but it began to decline significantly after 20 wk of storage at 35 degrees C. The Virosoft formulation stored at 2 degrees C also remained active throughout the 3-yr study, but it began to decline in larvicidal activity after 144 wk at 25 degrees C and 40 wk at 35 degrees C. The information reported in this study should be useful to growers and commercial suppliers for avoiding decreases in CpGV potency due to improper storage conditions.
Evaluation of pheromone release from commercial mating disruption dispensers.
Tomaszewska, Elizabeth; Hebert, Vincent R; Brunner, Jay F; Jones, Vincent P; Doerr, Mike; Hilton, Richard
2005-04-06
Pome fruit growers and crop consultants have expressed concerns about the seasonal release performance of commercial codling moth mating disruption dispenser products. Because of these concerns, we developed a laboratory flow-through volatile collection system (VCS) for measuring the volatile release of the codling moth sex pheromone, codlemone, from commercially available hand-applied dispensers. Under controlled air-flow and temperature conditions, the released vapor was trapped onto a polyurethane foam adsorbent followed by solvent extraction, solvent reduction, and GC/MS determination. Method recovery and breakthrough validations were performed to demonstrate system reliability before determining codlemone release from commercial dispensers field-aged over 140 days. The volatile collection was carried out in a consistent manner among five dispenser types most commonly used by growers, so that direct comparison of performance could be made. The comparison showed differences in the amount of pheromone released and in the patterns of release throughout the season between dispenser types. The variation in release performance demonstrates the need for routine evaluation of commercially marketed mating disruption dispensers. We believe that the simple and cost-effective volatile collection system can assist pheromone dispenser manufacturers in determining seasonal dispenser performance before new products are introduced into the commercial market and in rapidly verifying dispenser release when field-aged dispenser efficacy is in question.
Monthly forecasting of agricultural pests in Switzerland
NASA Astrophysics Data System (ADS)
Hirschi, M.; Dubrovsky, M.; Spirig, C.; Samietz, J.; Calanca, P.; Weigel, A. P.; Fischer, A. M.; Rotach, M. W.
2012-04-01
Given the repercussions of pests and diseases on agricultural production, detailed forecasting tools have been developed to simulate the degree of infestation depending on actual weather conditions. The life cycle of pests is most successfully predicted if the micro-climate of the immediate environment (habitat) of the causative organisms can be simulated. Sub-seasonal pest forecasts therefore require weather information for the relevant habitats and the appropriate time scale. The pest forecasting system SOPRA (www.sopra.info) currently in operation in Switzerland relies on such detailed weather information, using hourly weather observations up to the day the forecast is issued, but only a climatology for the forecasting period. Here, we aim at improving the skill of SOPRA forecasts by transforming the weekly information provided by ECMWF monthly forecasts (MOFCs) into hourly weather series as required for the prediction of upcoming life phases of the codling moth, the major insect pest in apple orchards worldwide. Due to the probabilistic nature of operational monthly forecasts and the limited spatial and temporal resolution, their information needs to be post-processed for use in a pest model. In this study, we developed a statistical downscaling approach for MOFCs that includes the following steps: (i) application of a stochastic weather generator to generate a large pool of daily weather series consistent with the climate at a specific location, (ii) a subsequent re-sampling of weather series from this pool to optimally represent the evolution of the weekly MOFC anomalies, and (iii) a final extension to hourly weather series suitable for the pest forecasting model. Results show a clear improvement in the forecast skill of occurrences of upcoming codling moth life phases when incorporating MOFCs as compared to the operational pest forecasting system. This is true both in terms of root mean squared errors and of the continuous rank probability scores of the probabilistic forecasts vs. the mean absolute errors of the deterministic system. Also, the application of the climate conserving recalibration (CCR, Weigel et al. 2009) technique allows for successful correction of the under-confidence in the forecasted occurrences of codling moth life phases. Reference: Weigel, A. P.; Liniger, M. A. & Appenzeller, C. (2009). Seasonal Ensemble Forecasts: Are Recalibrated Single Models Better than Multimodels? Mon. Wea. Rev., 137, 1460-1479.
Wearing, Christopher H.
2016-01-01
Literature is reviewed on the spatial distribution of the eggs and neonate larvae of codling moth on apple trees in relation to research conducted in Nelson, New Zealand. At Nelson, oviposition increased with height and was greater in the north and east of the trees and in those with greater fruit load in some seasons, which matches published reports. All publications and the research recorded high percentages of eggs laid singly within 10–15 cm of the fruit, with most eggs on leaves even within fruit clusters; oviposition on fruit clusters of different sizes was nonrandom because more eggs were laid on those with more fruit, but the aggregation of both per cluster and within clusters was even greater than that caused by the fruit number alone. Oviposition at random with respect to the fruit occurred only at very low population density. The choice of oviposition site between fruit and the adaxial leaf surface and abaxial leaf surface (AbLS) was variable and cultivar related. Cultivars on which eggs predominated on the AbLS were less frequent and characterized by low trichome density. In the literature, neonate larvae from eggs on the AbLS suffered greater mortality, as did those in Nelson that hatched more distant from the fruit. This review discusses the interaction between these distribution characteristics and species-specific host–plant volatiles, egg adhesion to plant surfaces, oviposition deterrents, predation, and their relevance to pest management. PMID:27429560
[Affecting factors on capture efficacy of sex pheromone traps for Cydia pomonella L].
Zhai, Xiao-Wei; Liu, Wan-Xue; Zhang, Gui-Fen; Wan, Fang-Hao; Xu, Hong-Fu; Pu, Chong-Jian
2010-03-01
Codling moth Cydia pomonella L. (Lepidoptera, Olethreutidae) is the most serious pest of orchards, and one of the most important quarantine pests in China. This paper studied the effects of the color, shape, placement location, lure color, and lure number of sex pheromone traps on the capture efficacy for C. pomonella L. male moth. It was found that the capture efficacy of white and green traps was two times higher than that of blue trap (P < 0.05), and water bottle and triangle traps had no significant difference in their trapping effect. The traps hung in the middle of crown gave two times higher catches than those hung in the upper portion of crown (P < 0.05). Lure color and number had no significant effect on the capture efficacy. The present results could be used in better monitoring C. pomonella by using its sex pheromones.
Neo-sex chromosomes and adaptive potential in tortricid pests
Nguyen, Petr; Sýkorová, Miroslava; Šíchová, Jindra; Kůta, Václav; Dalíková, Martina; Čapková Frydrychová, Radmila; Neven, Lisa G.; Sahara, Ken; Marec, František
2013-01-01
Changes in genome architecture often have a significant effect on ecological specialization and speciation. This effect may be further enhanced by involvement of sex chromosomes playing a disproportionate role in reproductive isolation. We have physically mapped the Z chromosome of the major pome fruit pest, the codling moth, Cydia pomonella (Tortricidae), and show that it arose by fusion between an ancestral Z chromosome and an autosome corresponding to chromosome 15 in the Bombyx mori reference genome. We further show that the fusion originated in a common ancestor of the main tortricid subfamilies, Olethreutinae and Tortricinae, comprising almost 700 pest species worldwide. The Z–autosome fusion brought two major genes conferring insecticide resistance and clusters of genes involved in detoxification of plant secondary metabolites under sex-linked inheritance. We suggest that this fusion significantly increased the adaptive potential of tortricid moths and thus contributed to their radiation and subsequent speciation. PMID:23569222
Piskorski, Rafal; Ineichen, Simon; Dorn, Silvia
2011-10-01
Many plant species produce toxic secondary metabolites that limit attacks by herbivorous insects, and may thereby constrain insect expansion to new hosts. Walnut is a host for the codling moth Cydia pomonella, which efficiently detoxifies the main walnut defensive compound juglone (5-hydroxy-1,4-naphthoquinone). The oriental fruit moth Grapholita molesta, which also belongs to the tribe Grapholitini, does not feed on walnut. We tested the performance of G. molesta, a highly invasive species, on artificial diets containing juglone at levels mimicking those found in walnut over the growing season. Juglone-fed G. molesta survived relatively well to adulthood, but larval and adult body weights were reduced, and larval developmental time was prolonged in a dose-dependent fashion. Chemical analysis of frass from larvae that had been fed a juglone-containing diet suggests that G. molesta reduces juglone to non-toxic 1,4,5-trihydroxynaphthalene in its gut. This unexpected tolerance of G. molesta to high levels of juglone may facilitate expansion of the host range beyond the current rosacean fruit trees used by this invasive pest.
Brunner, J. F.; Beers, E. H.; Dunley, J. E.; Doerr, M.; Granger, K.
2005-01-01
Three neonicotinyl insecticides, acetamiprid, thiacloprid and clothianidin, were evaluated for their impact on four species of lepidopteran pests of apple in Washington, the codling moth, Cydia pomonella (L.), the Pandemis leafroller, Pandemis pyrusana Kearfott, and the obliquebanded leafroller, Choristoneura rosaceana (Harris), and Lacanobia subjuncta (Grote & Robinson). None of the neonicotinyl insecticides demonstrated sufficient activity against P. pyrusana, C. rosaceana, or L. subjuncta to warrant field trials. Conversely, all had some activity against one or more stages of C. pomonella. Acetamiprid was highly toxic to larvae in laboratory bioassays, and had relatively long activity of field-aged residues (21 days). It also showed some toxicity to C. pomonella eggs (via topical exposure) and adults. Acetamiprid provided the highest level of fruit protection from C. pomonella attack in field trials conducted over five years in experimental orchards with extremely high codling moth pressure. Thiacloprid performed similarly in bioassays, but fruit protection in field trials was slightly lower than acetamiprid. Clothianidin showed moderate to high toxicity in bioassays, depending on the C. pomonella stage tested, but poor fruit protection from attack in field trials. None of the neonicotinyl insecticides were as toxic to larvae or effective in protecting fruit as the current standard organophosphate insecticide used for C. pomonella control, azinphosmethyl. However, both acetamiprid and thiacloprid should provide acceptable levels of C. pomonella control in commercial orchards where densities are much lower than in the experimental orchards used for our trials. The advantages and disadvantages of the neonicotinyl insecticides as replacements for the organophosphate insecticides and their role in a pest management system for Washington apple orchards are discussed. Abbreviation: MFR Maximum field rate PMID:16341246
Szpyrka, Ewa; Matyaszek, Aneta; Słowik-Borowiec, Magdalena
2017-05-01
Dissipations of three insecticides: chlorantraniliprole, chlorpyrifos-methyl and indoxacarb in apples were studied following their foliar application on apples intended for production of baby food. The apples were sprayed with formulations for control of codling moth (Cydia Pomonella L.) and leafrollers (Tortricidae). Six experiments were conducted; each insecticide was applied individually on dessert apples. A validated gas chromatography-based method with simultaneous electron capture and nitrogen-phosphorus detection (GC-ECD/NPD) was used for the residue analysis. The analytical performance of the method was satisfactory, with expanded uncertainties ≤36% (a coverage factor, k = 2, and a confidence level of 95%). The dissipations of insecticides were studied in pseudo-first-order kinetic models (for which the coefficient of determination, R 2 , ranged between 0.9188 and 0.9897). Residues of studied insecticides were below their maximum residue limits of 0.5 mg/kg at an early stage of growth of the fruit. The half-lives of chlorantraniliprole, chlorpyrifos-methyl and indoxacarb were 16-17, 4-6 and 20-24 days, respectively. The initial residue levels declined gradually and reached the level of 0.01 mg/kg in 1 month for chlorpyrifos-methyl, 2 months for chlorantraniliprole and 2.5 months for indoxacarb. To obtain the insecticide residue levels below 0.01 mg/kg, which is the default MRL for food intended for infants and young children, the application of the studied insecticides should be carried out at recommended doses not later then: 1 month before harvest for chlorpyrifos-methyl, 2 months for chlorantraniliprole and 2.5 months for indoxacarb.
NASA Astrophysics Data System (ADS)
Dubrovsky, M.; Hirschi, M.; Spirig, C.
2014-12-01
To quantify impact of the climate change on a specific pest (or any weather-dependent process) in a specific site, we may use a site-calibrated pest (or other) model and compare its outputs obtained with site-specific weather data representing present vs. perturbed climates. The input weather data may be produced by the stochastic weather generator. Apart from the quality of the pest model, the reliability of the results obtained in such experiment depend on an ability of the generator to represent the statistical structure of the real world weather series, and on the sensitivity of the pest model to possible imperfections of the generator. This contribution deals with the multivariate HOWGH weather generator, which is based on a combination of parametric and non-parametric statistical methods. Here, HOWGH is used to generate synthetic hourly series of three weather variables (solar radiation, temperature and precipitation) required by a dynamic pest model SOPRA to simulate the development of codling moth. The contribution presents results of the direct and indirect validation of HOWGH. In the direct validation, the synthetic series generated by HOWGH (various settings of its underlying model are assumed) are validated in terms of multiple climatic characteristics, focusing on the subdaily wet/dry and hot/cold spells. In the indirect validation, we assess the generator in terms of characteristics derived from the outputs of SOPRA model fed by the observed vs. synthetic series. The weather generator may be used to produce weather series representing present and future climates. In the latter case, the parameters of the generator may be modified by the climate change scenarios based on Global or Regional Climate Models. To demonstrate this feature, the results of codling moth simulations for future climate will be shown. Acknowledgements: The weather generator is developed and validated within the frame of projects WG4VALUE (project LD12029 sponsored by the Ministry of Education, Youth and Sports of CR), and VALUE (COST ES 1102 action).
Chambers, Ute; Jones, Vincent P
2015-12-01
Orchard design and management practices can alter microclimate and, thus, potentially affect insect development. If sufficiently large, these deviations in microclimate can compromise the accuracy of phenology model predictions used in integrated pest management (IPM) programs. Sunburn causes considerable damage in the Pacific Northwest, United States, apple-producing region. Common prevention strategies include the use of fruit surface protectants, evaporative cooling (EC), or both. This study focused on the effect of EC on ambient temperatures and model predictions for four insects (codling moth, Cydia pomonella L.; Lacanobia fruitworm, Lacanobia subjuncta Grote and Robinson; oblique-banded leafroller, Choristoneura rosaceana Harris; and Pandemis leafroller, Pandemis pyrusana Kearfott). Over-tree EC was applied in July and August when daily maximum temperatures were predicted to be ≥30°C between 1200-1700 hours (15/15 min on/off interval) in 2011 and between 1200-1800 hours (15/10 min on/off interval, or continuous on) in 2012. Control plots were sprayed once with kaolin clay in early July. During interval and continuous cooling, over-tree cooling reduced average afternoon temperatures compared with the kaolin treatment by 2.1-3.2°C. Compared with kaolin-treated controls, codling moth and Lacanobia fruitworm egg hatch in EC plots was predicted to occur up to 2 d and 1 d late, respectively. The presence of fourth-instar oblique-banded leafroller and Pandemis leafroller was predicted to occur up to 2 d and 1 d earlier in EC plots, respectively. These differences in model predictions were negligible, suggesting that no adjustments in pest management timing are needed when using EC in high-density apple orchards. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Area-Wide Analysis of Hardwood Defoliator Effects on Tree Conditions in the Allegheny Plateau
Randall S. Morin; Andrew M. Liebhold; Kurt W. Gottschalk
2004-01-01
The effects of defoliation caused by three foliage feeding insects, the gypsy moth (Lymantria dispar), the cherry scallopshell moth (Hydria prunivorata), and the elm spanworm (Ennomos subsignarius), on tree mortality and crown conditions were evaluated using data collected from 1984 to 1999 in the Allegheny National Forest located in northwestern Pennsylvania. While...
Walters, James R.; Knipple, Douglas C.
2017-01-01
Where previously described, patterns of sex chromosome dosage compensation in the Lepidoptera (moths and butterflies) have several unusual characteristics. Other female-heterogametic (ZW/ZZ) species exhibit female Z-linked expression that is reduced compared with autosomal expression and male Z expression. In the Lepidoptera, however, Z expression typically appears balanced between sexes but overall reduced relative to autosomal expression, that is Z ≈ ZZ < AA. This pattern is not easily reconciled with theoretical expectations for the evolution of sex chromosome dosage compensation. Moreover, conflicting results linger due to discrepancies in data analyses and tissues sampled among lepidopterans. To address these issues, we performed RNA-seq to analyze sex chromosome dosage compensation in the codling moth, Cydia pomonella, which is a species from the earliest diverging lepidopteran lineage yet examined for dosage compensation and has a neo-Z chromosome resulting from an ancient Z:autosome fusion. While supported by intraspecific analyses, the Z ≈ ZZ < AA pattern was further evidenced by comparative study using autosomal orthologs of C. pomonella neo-Z genes in outgroup species. In contrast, dosage compensation appears to be absent in reproductive tissues. We thus argue that inclusion of reproductive tissues may explain the incongruence from a prior study on another moth species and that patterns of dosage compensation are likely conserved in the Lepidoptera. Notably, this pattern appears convergent with patterns in eutherian mammals (X ≈ XX < AA). Overall, our results contribute to the notion that the Lepidoptera present challenges both to classical theories regarding the evolution of sex chromosome dosage compensation and the emerging view of the association of dosage compensation with sexual heterogamety. PMID:28338816
NASA Astrophysics Data System (ADS)
Sauphanor, Benoît; Franck, Pierre; Lasnier, Thérèse; Toubon, Jean-François; Beslay, Dominique; Boivin, Thomas; Bouvier, Jean-Charles; Renou, Michel
2007-06-01
The behavioral and electroantennographic responses of Cydia pomonella (L.) to the ripe pear volatile ethyl (2 E,4 Z)-2,4-decadienoate (Et- E, Z-DD), were compared in insecticide-susceptible and -resistant populations originating from southern France. A dose-response relationship to this kairomonal attractant was established for antennal activity and did not reveal differences between susceptible and resistant strains. Conversely, males of the laboratory strains expressing metabolic [cytochrome P450-dependent mixed-function oxidases (mfo)] or physiological (kdr-type mutation of the sodium-channel gene) resistance mechanisms exhibited a significantly higher response to Et- E, Z-DD than those of the susceptible strain in a wind tunnel experiment. No response of the females to this kairomone could be obtained in our wind-tunnel conditions. In apple orchards, mfo-resistant male moths were captured at significantly higher rates in kairomone-baited traps than in traps baited with the sex pheromone of C. pomonella. Such a differential phenomenon was not verified for the kdr-resistant insects, which exhibited a similar response to both the sex pheromone and the kairomonal attractant in apple orchards. Considering the widespread distribution of metabolic resistance in European populations of C. pomonella and the enhanced behavioral response to Et- E, Z-DD in resistant moths, the development of control measures based on this kairomonal compound would be of great interest for the management of insecticide resistance in this species.
Radio frequency heating: a potential method for post-harvest pest control in nuts and dry products
Wang, Shao-jin; Tang, Ju-ming
2004-01-01
The multi-billion dollar US tree nut industries rely heavily on methyl bromide fumigation for postharvest insect control and are facing a major challenge with the mandated cessation by 2005 of its use for most applications. There is an urgent need to develop effective and economically viable alternative treatments to replace current phytosanitary and quarantine practices in order to maintain the competitiveness of US agriculture in domestic and international markets. With the reliable heating block system, the thermal death kinetics for fifth-instar codling moth, Indianmeal moth, and navel orangeworm were determined at a heating rate of 18 °C/min. A practical process protocol was developed to control the most heat resistant insect pest, fifth-instar navel orangeworm, in in-shell walnuts using a 27 MHz pilot scale radio frequency (RF) system. RF heating to 55 °C and holding in hot air for at least 5 min resulted in 100% mortality of the fifth-instar navel orangeworm. Rancidity, sensory qualities and shell characteristics were not affected by the treatments. If this method can be economically integrated into the handling process, it should have excellent potential as a disinfestation method for in-shell walnuts. PMID:15362185
Leslie, Charles A; Walawage, Sriema L; Uratsu, Sandra L; McGranahan, Gale; Dandekar, Abhaya M
2015-01-01
Walnut species are important nut and timber producers in temperate regions of Europe, Asia, South America, and North America. Trees can be impacted by Phytophthora, crown gall, nematodes, Armillaria, and cherry leaf roll virus; nuts can be severely damaged by codling moth, husk fly, and Xanthomonas blight. The long generation time of walnuts and an absence of identified natural resistance for most of these problems suggest biotechnological approaches to crop improvement. Described here is a somatic embryo-based transformation protocol that has been used to successfully insert horticulturally useful traits into walnut. Selection is based on the combined use of the selectable neomycin phosphotransferase (nptII) gene and the scorable uidA gene. Transformed embryos can be germinated or micropropagated and rooted for plant production. The method described has been used to establish field trials of mature trees.
Yun, Yeo-Myeong; Shin, Hang-Sik; Lee, Chang-Kyu; Oh, You-Kwan; Kim, Hyun-Woo
2016-04-01
Converting lipid-extracted microalgal wastes to methane (CH4) via anaerobic digestion (AD) has the potential to make microalgae-based biodiesel platform more sustainable. However, it is apparent that remaining n-hexane (C6H14) from lipid extraction could inhibit metabolic pathway of methanogens. To test an inhibitory influence of residual n-hexane, this study conducted a series of batch AD by mixing lipid-extracted Chlorella vulgaris with a wide range of n-hexane concentration (∼10 g chemical oxygen demand (COD)/L). Experimental results show that the inhibition of n-hexane on CH4 yield was negligible up to 2 g COD/L and inhibition to methanogenesis became significant when it was higher than 4 g COD/L based on quantitative mass balance. Inhibition threshold was about 4 g COD/L of n-hexane. Analytical result of microbial community profile revealed that dominance of alkane-degrading sulfate-reducing bacteria (SRB) and syntrophic bacteria increased, while that of methanogens sharply dropped as n-hexane concentration increased. These findings offer a useful guideline of threshold n-hexane concentration and microbial community shift for the AD of lipid-extracted microalgal wastes.
Knipling, E F
1976-01-01
Insects produce pheromones as a chemical communication system to facilitate reproduction. These highly active chemical attractants have been synthesized for some of the most important insect pests, including the boll weevil, gypsy moth, codling moth, tobacco budworm, European corn borer, and several bark beetles. While none of the synthetic sex attractants have yet been developed for use in insect control, they offer opportunities for the future both as control agents and to greatly improved insect detection. Investigations are underway on insect trapping systems employing the phermones and on air permeation techniques to disrupt insect reproduction. The pheromones are generally highly species-specific and are not likely to pose hazards to nontarget organisms in the environment. Toxicological studies indicate that they are low in toxicity to mammals, birds, and fish, but adequate toxicological data are necessary before they can be registered for use in insect control. Another new class of compounds called kaironomes has been discovered. These chemicals are involved in the detection of hosts or prey by insect parasites and predators. Kairomones may prove useful in manipulating natural or released biological agents for more effective biological control of insect pests. No information is yet available on the toxicology of these chemicals. PMID:789061
Sun, Jingyao; Wang, Xiaobing; Wu, Jinghua; Jiang, Chong; Shen, Jingjing; Cooper, Merideth A; Zheng, Xiuting; Liu, Ying; Yang, Zhaogang; Wu, Daming
2018-04-03
Sub-wavelength antireflection moth-eye structures were fabricated with Nickel mold using Roll-to-Plate (R2P) ultraviolet nanoimprint lithography (UV-NIL) on transparent polycarbonate (PC) substrates. Samples with well replicated patterns established an average reflection of 1.21% in the visible light range, 380 to 760 nm, at normal incidence. An excellent antireflection property of a wide range of incidence angles was shown with the average reflection below 4% at 50°. Compared with the unpatterned ultraviolet-curable resin coating, the resulting sub-wavelength moth-eye structure also exhibited increased hydrophobicity in addition to antireflection. This R2P method is especially suitable for large-area product preparation and the biomimetic moth-eye structure with multiple performances can be applied to optical devices such as display screens, solar cells, or light emitting diodes.
Mating Disruption as a Suppression Tactic in Programs Targeting Regulated Lepidopteran Pests in US.
Lance, David R; Leonard, Donna S; Mastro, Victor C; Walters, Michelle L
2016-07-01
Mating disruption, the broadcast application of sex-attractant pheromone to reduce the ability of insects to locate mates, has proven to be an effective method for suppressing populations of numerous moth pests. Since the conception of mating disruption, the species-specificity and low toxicity of pheromone applications has led to their consideration for use in area-wide programs to manage invasive moths. Case histories are presented for four such programs where the tactic was used in the United States: Pectinophora gossypiella (pink bollworm), Lymantria dispar (gypsy moth), Epiphyas postvittana (light brown apple moth), and Lobesia botrana (European grapevine moth). Use of mating disruption against P. gossypiella and L. botrana was restricted primarily to agricultural areas and relied in part (P. gossypiella) or wholly (L. botrana) on hand-applied dispensers. In those programs, mating disruption was integrated with other suppression tactics and considered an important component of overall efforts that are leading toward eradication of the invasive pests from North America. By contrast, L. dispar and E. postvittana are polyphagous pests, where pheromone formulations have been applied aerially as stand-alone treatments across broad areas, including residential neighborhoods. For L. dispar, mating disruption has been a key component in the program to slow the spread of the infestation of this pest, and the applications generally have been well tolerated by the public. For E. postvittana, public outcry halted the use of aerially applied mating disruption after an initial series of treatments, effectively thwarting an attempt to eradicate this pest from California. Reasons for the discrepancies between these two programs are not entirely clear.
Modeling seasonal migration of fall armyworm moths
NASA Astrophysics Data System (ADS)
Westbrook, J. K.; Nagoshi, R. N.; Meagher, R. L.; Fleischer, S. J.; Jairam, S.
2016-02-01
Fall armyworm, Spodoptera frugiperda (J.E. Smith), is a highly mobile insect pest of a wide range of host crops. However, this pest of tropical origin cannot survive extended periods of freezing temperature but must migrate northward each spring if it is to re-infest cropping areas in temperate regions. The northward limit of the winter-breeding region for North America extends to southern regions of Texas and Florida, but infestations are regularly reported as far north as Québec and Ontario provinces in Canada by the end of summer. Recent genetic analyses have characterized migratory pathways from these winter-breeding regions, but knowledge is lacking on the atmosphere's role in influencing the timing, distance, and direction of migratory flights. The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to simulate migratory flight of fall armyworm moths from distinct winter-breeding source areas. Model simulations identified regions of dominant immigration from the Florida and Texas source areas and overlapping immigrant populations in the Alabama-Georgia and Pennsylvania-Mid-Atlantic regions. This simulated migratory pattern corroborates a previous migratory map based on the distribution of fall armyworm haplotype profiles. We found a significant regression between the simulated first week of moth immigration and first week of moth capture (for locations which captured ≥10 moths), which on average indicated that the model simulated first immigration 2 weeks before first captures in pheromone traps. The results contribute to knowledge of fall armyworm population ecology on a continental scale and will aid in the prediction and interpretation of inter-annual variability of insect migration patterns including those in response to climatic change and adoption rates of transgenic cultivars.
78 FR 63369 - Gypsy Moth Generally Infested Areas; Additions in Wisconsin
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-24
.... APHIS-2012-0075] Gypsy Moth Generally Infested Areas; Additions in Wisconsin AGENCY: Animal and Plant... Wisconsin to the list of generally infested areas based on the detection of infestations of gypsy moth in...- 0075), we amended Sec. 301.45-3(a) by adding portions of Wisconsin to the list of generally infested...
Reduced flight-to-light behaviour of moth populations exposed to long-term urban light pollution
Ebert, Dieter
2016-01-01
The globally increasing light pollution is a well-recognized threat to ecosystems, with negative effects on human, animal and plant wellbeing. The most well-known and widely documented consequence of light pollution is the generally fatal attraction of nocturnal insects to artificial light sources. However, the evolutionary consequences are unknown. Here we report that moth populations from urban areas with high, globally relevant levels of light pollution over several decades show a significantly reduced flight-to-light behaviour compared with populations of the same species from pristine dark-sky habitats. Using a common garden setting, we reared moths from 10 different populations from early-instar larvae and experimentally compared their flight-to-light behaviour under standardized conditions. Moths from urban populations had a significant reduction in the flight-to-light behaviour compared with pristine populations. The reduced attraction to light sources of ‘city moths' may directly increase these individuals' survival and reproduction. We anticipate that it comes with a reduced mobility, which negatively affects foraging as well as colonization ability. As nocturnal insects are of eminent significance as pollinators and the primary food source of many vertebrates, an evolutionary change of the flight-to-light behaviour thereby potentially cascades across species interaction networks. PMID:27072407
Reduced flight-to-light behaviour of moth populations exposed to long-term urban light pollution.
Altermatt, Florian; Ebert, Dieter
2016-04-01
The globally increasing light pollution is a well-recognized threat to ecosystems, with negative effects on human, animal and plant wellbeing. The most well-known and widely documented consequence of light pollution is the generally fatal attraction of nocturnal insects to artificial light sources. However, the evolutionary consequences are unknown. Here we report that moth populations from urban areas with high, globally relevant levels of light pollution over several decades show a significantly reduced flight-to-light behaviour compared with populations of the same species from pristine dark-sky habitats. Using a common garden setting, we reared moths from 10 different populations from early-instar larvae and experimentally compared their flight-to-light behaviour under standardized conditions. Moths from urban populations had a significant reduction in the flight-to-light behaviour compared with pristine populations. The reduced attraction to light sources of 'city moths' may directly increase these individuals' survival and reproduction. We anticipate that it comes with a reduced mobility, which negatively affects foraging as well as colonization ability. As nocturnal insects are of eminent significance as pollinators and the primary food source of many vertebrates, an evolutionary change of the flight-to-light behaviour thereby potentially cascades across species interaction networks. © 2016 The Author(s).
Grizzly bear use of army cutworm moths in the Yellowstone Ecosystem
French, Steven P.; French, Marilynn G.; Knight, Richard R.
1994-01-01
The ecology of alpine aggregations of army cutworm moths (Euxoa auxiliaris) and the feeding behavior of grizzly bears (Ursus arctos horribilis) at these areas were studied in the Yellowstone ecosystem from 1988 to 1991. Army cutworm moths migrate to mountain regions each summer to feed at night on the nectar of alpine and subalpine flowers, and during the day they seek shelter under various rock formations. Grizzly bears were observed feeding almost exclusively on moths up to 3 months each summer at the 10 moth-aggregation areas we identified. Fifty-one different grizzly bears were observed feeding at 4 of these areas during a single day in August 1991. Army cutworm moths are a preferred source of nutrition for many grizzly bears in the Yellowstone ecosystem and represent a high quality food that is available during hyperphagia.
Code of Federal Regulations, 2011 CFR
2011-01-01
... area if the results of two successive annual Federal or State delimiting trapping surveys of the area conducted in accordance with Section II, “Survey Procedures—Gypsy Moth,” of the Gypsy Moth Treatment Manual show that the average number of gypsy moths caught per trap in the second delimiting survey (when...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, D.W.; Liebhold, A.M.
1995-10-01
Outbreaks of the gypsy moth, Lymantria dispar (L.), were partially synchronous across New England states (Massachusetts, Maine, New Hampshire, and Vermont) from 1938 to 1992. To explain this synchrony, we investigated the Moran effect, a hypothesis that local population oscillations, which result form similar density-dependent mechanisms operating at time lags, may be synchronized over wide areas by exposure to common weather patterns. We also investigated the theory of climatic release, which ostulates that outbreaks are triggered by climatic factors favorable for population growth. Time series analysis revealed defoliation series in 2 states as 1st-order autoregressive processes and the other 2more » as periodic 2nd-order autoregressive processes. Defoliation residuals series computed using the autoregressive models for each state were cross correlated with series of weather variables recorded in the respective states. The weather variables significantly correlated with defoliation residuals in all 4 states were minimum temperature and precipitation in mid-December in the same gypsy moth generation and minimum temperature in mid- to late July of the previous generation. These weather variables also were correlated strongly among the 4 states. The analyses supported the predictions of the Moran effect and suggest the common weather may synchronize local populations so as to produce pest outbreaks over wide areas. We did not find convincing evidence to support the theory of climatic release. 41 refs., 7 figs., 4 tabs.« less
Leading edge gypsy moth population dynamics
M. R. Carter; F. W. Ravlin; M. L. McManus
1991-01-01
Leading edge gypsy moth populations have been the focus of several intervention programs (MDIPM, AIPM). Knowledge of gypsy moth population dynamics in leading edge area is crucial for effective management. Populations in these areas tend to reach outbreak levels (noticeable defoliation) within three to four years after egg masses are first detected. Pheromone traps...
Analysis of spatial density dependence in gypsy moth mortality
Andrew Liebhold; Joseph S. Elkinton
1991-01-01
The gypsy moth is perhaps the most widely studied forest insect in the world and much of this research has focused on various aspects of population dynamics. But despite this voluminous amount of research we still lack a good understanding of which, if any, natural enemy species regulate gypsy moth populations. The classical approach to analyzing insect population...
George H. Moeller; Raymond Marler; Roger E. McCay; William B. White
1977-01-01
The economic impacts of a gypsy moth infestation on homeowners and on managers of recreation areas (commercial, public, and quasi-public) were determined from data collected via interviews with 540 homeowners and 170 managers of recreation areas in New York and Pennsylvania. The approach to measuring the impact of gypsy moth was to determine the interaction of a...
Spread of Gypsy Moth (Lepidoptera: Lymantriidae) and Its Relationship to Defoliation
Patrick C. Tobin; Stefanie L. Whitmire
2005-01-01
Gypsy moth management is divided into three components: eradication, suppression, and transition zone management. All three components require knowledge of the boundaries that delimit these areas. Additional interest is also placed on the relationship between population spread and defoliation to prepare for the gypsy moth advance in new areas and minimize its impact....
Forecasting outbreaks of the Douglas-fir tussock moth from lower crown cocoon samples.
Richard R. Mason; Donald W. Scott; H. Gene Paul
1993-01-01
A predictive technique using a simple linear regression was developed to forecast the midcrown density of small tussock moth larvae from estimates of cocoon density in the previous generation. The regression estimator was derived from field samples of cocoons and larvae taken from a wide range of nonoutbreak tussock moth populations. The accuracy of the predictions was...
Fine structure of selected mouthpart sensory organs of gypsy moth larvae
Vonnie D.C. Shields
2011-01-01
Gypsy moth larvae, Lymantria dispar (L.), are major pest defoliators in most of the United States and destroy millions of acres of trees annually. They are highly polyphagous and display a wide host plant preference, feeding on the foliage of hundreds of plants, such as oak, maple, and sweet gum. Lepidopteran larvae, such as the gypsy moth, depend...
Bt: One Option for Gypsy Moth Management
Deborah C. Mccullough; Leah S. Bauer
2000-01-01
Though the gypsy moth will never go away, you have a variety of options to help manage this pest during outbreaks. One option involves the use of Bt to protect tree foliage and reduce the annoyance caused by gypsy moth caterpillars during an outbreak. Bt or Btk refers to a microorganism called Bacillus Thuringeniesis var. kurstaki. Bt has been widely adopted for...
Relative potencies of gypsy moth nucleopolyhedrovirus genotypes isolated from Gypchek
J.D. Podgwaite; R.T. Zerillo; J.M. Slavicek; N. Hayes-Plazolles
2011-01-01
Gypchek is a gypsy moth (Lymantria dispar L.) - specific biopesticide whose primary use is for treating areas where environmental concerns outweigh the use of broad-spectrum pesticides for gypsy moth management. Gypchek is a lyophilized powder produced from larvae that have been infected with the gypsy moth nucleopolyhedrovirus (LdMNPV). The product...
A comparison of tree crown condition in areas with and without gypsy moth activity
KaDonna C. Randolph
2005-01-01
This study compared the crown condition of trees within and outside areas of gypsy moth defoliation in Virginia via hypothesis tests of mean differences for five U.S. Department of Agriculture (USDA) Forest Service Forest Inventory and Analysis phase 3 crown condition indicators. Significant differences were found between the trees located within and outside gypsy moth...
A comparison of tree crown condition in areas with and without gypsy moth activity
KaDonna C. Randolph
2007-01-01
This study compared the crown condition of trees within and outside areas of gypsy moth defoliation in Virginia via hypothesis tests of mean differences for five U.S. Department of Agriculture (USDA) Forest Service Forest Inventory and Analysis phase 3 crown condition indicators. Significant differences were found between the trees located within and outside gypsy moth...
Boyd E. Wickman; Richard R. Mason; Galen C. Trostle
1981-01-01
The Douglas-fir tussock moth (Orgyia pseudotsugata McDunnough) is an important defoliator of true firs and Douglas-fir in Western North America. Severe tussock moth outbreaks have occurred in British Columbia, Idaho, Washington, Oregon, Nevada, California, Arizona, and New Mexico, but the area subject to attack is more extensive
Code of Federal Regulations, 2013 CFR
2013-01-01
... woven cloth) adequate to prevent access by South American cactus moths while moving through the... woven cloth) adequate to prevent access by South American cactus moths while within the quarantined area...
Code of Federal Regulations, 2012 CFR
2012-01-01
... woven cloth) adequate to prevent access by South American cactus moths while moving through the... woven cloth) adequate to prevent access by South American cactus moths while within the quarantined area...
Code of Federal Regulations, 2011 CFR
2011-01-01
... woven cloth) adequate to prevent access by South American cactus moths while moving through the... woven cloth) adequate to prevent access by South American cactus moths while within the quarantined area...
Code of Federal Regulations, 2014 CFR
2014-01-01
... woven cloth) adequate to prevent access by South American cactus moths while moving through the... woven cloth) adequate to prevent access by South American cactus moths while within the quarantined area...
Defoliation potential of gypsy moth
David A. Gansner; David A. Drake; Stanford L. Arner; Rachel R. Hershey; Susan L. King; Susan L. King
1993-01-01
A model that uses forest stand characteristics to estimate the likelihood of gypsy moth (Lymantria dispar L.) defoliation has been developed. It was applied to recent forest inventory plot data to produce susceptibility ratings and maps showing current defoliation potential in a seven-state area where gypsy moth is an immediate threat.
Effects of chlorpyrifos on enzymatic systems of Cydia pomonella (Lepidoptera: Tortricidae) adults.
Parra Morales, Laura Beatriz; Alzogaray, Raúl Adolfo; Cichón, Liliana; Garrido, Silvina; Soleño, Jimena; Montagna, Cristina Mónica
2017-06-01
The control program of codling moth (Cydia pomonella L.) in the Río Negro and Neuquén Valley is intended to neonate larvae. However, adults may be subjected to sublethal pesticide concentrations generating stress which might enhance both mutation rates and activity of the detoxification system. This study assessed the exposure effects of chlorpyrifos on target enzyme and, both detoxifying and antioxidant systems of surviving adults from both a laboratory susceptible strain (LSS) and a field population (FP). The results showed that the FP was as susceptible to chlorpyrifos as the LSS and, both exhibited a similar chlorpyrifos-inhibitory concentration 50 (IC 50 ) of acetylcholinesterase (AChE). The FP displayed higher carboxylesterase (CarE) and 7-ethoxycoumarine O-deethylase (ECOD) activities than LSS. Both LSS and FP showed an increase on CarE activity after the exposure to low-chlorpyrifos concentrations, followed by enzyme inhibition at higher concentrations. There were no significant differences neither in the activities of glutathione S-transferases (GST), catalase (CAT) and superoxide dismutase (SOD) nor in the reduced glutathione (GSH) content between LSS and FP. Moreover, these enzymes were unaffected by chlorpyrifos. In conclusion, control adults from the FP exhibited higher CarE and ECOD activities than control adults from the LSS. AChE and CarE activities were the most affected by chlorpyrifos. Control strategies used for C. pomonella, such as rotations of insecticides with different modes of action, will probably delay the evolution of insecticide resistance in FPs from the study area. © 2015 Institute of Zoology, Chinese Academy of Sciences.
Spatial analysis of harmonic oscillation of gypsy moth outbreak intensity
Kyle J. Haynes; Andrew M. Liebhold; Derek M. Johnson
2009-01-01
Outbreaks of many forest-defoliating insects are synchronous over broad geographic areas and occur with a period of approximately 10 years. Within the range of the gypsy moth in North America, however, there is considerable geographic heterogeneity in strength of periodicity and the frequency of outbreaks. Furthermore, gypsy moth outbreaks exhibit two significant...
USDA Forest Service; Maine Forest Service; National Park Service
2002-01-01
The browntail moth, Euproctis chrysorrhoea, a native of Europe, was first found in North America in Somerville, Massachusetts, in the spring of 1897. The lack of natural control agents contributed to its rapid spread throughout the Northeast. By 1915, the moth's range included most of the area east of the Connecticut River and as far north as Nova Scotia....
Bates, Adam J.; Sadler, Jon P.; Grundy, Dave; Lowe, Norman; Davis, George; Baker, David; Bridge, Malcolm; Freestone, Roger; Gardner, David; Gibson, Chris; Hemming, Robin; Howarth, Stephen; Orridge, Steve; Shaw, Mark; Tams, Tom; Young, Heather
2014-01-01
Moths are abundant and ubiquitous in vegetated terrestrial environments and are pollinators, important herbivores of wild plants, and food for birds, bats and rodents. In recent years, many once abundant and widespread species have shown sharp declines that have been cited by some as indicative of a widespread insect biodiversity crisis. Likely causes of these declines include agricultural intensification, light pollution, climate change, and urbanization; however, the real underlying cause(s) is still open to conjecture. We used data collected from the citizen science Garden Moth Scheme (GMS) to explore the spatial association between the abundance of 195 widespread British species of moth, and garden habitat and landscape features, to see if spatial habitat and landscape associations varied for species of differing conservation status. We found that associations with habitat and landscape composition were species-specific, but that there were consistent trends in species richness and total moth abundance. Gardens with more diverse and extensive microhabitats were associated with higher species richness and moth abundance; gardens near to the coast were associated with higher richness and moth abundance; and gardens in more urbanized locations were associated with lower species richness and moth abundance. The same trends were also found for species classified as increasing, declining and vulnerable under IUCN (World Conservation Union) criteria. However, vulnerable species were more strongly negatively affected by urbanization than increasing species. Two hypotheses are proposed to explain this observation: (1) that the underlying factors causing declines in vulnerable species (e.g., possibilities include fragmentation, habitat deterioration, agrochemical pollution) across Britain are the same in urban areas, but that these deleterious effects are more intense in urban areas; and/or (2) that urban areas can act as ecological traps for some vulnerable species of moth, the light drawing them in from the surrounding landscape into sub-optimal urban habitats. PMID:24475197
Liu, Jiyuan; Yang, Xueqing; Zhang, Yalin
2014-11-01
In insects, glutathione S-transferases (GSTs) are enzymes involved in detoxification of insecticides. However, few data are available for the codling moth, Cydia pomonella (L.). In this study, we cloned a delta class GST gene CpGSTd1 from C. pomonella. Real-time quantitative PCR shows that CpGSTd1 was up-regulated with aging, and the mRNA level of CpGSTd1 was higher in the fat body and silk glands than in other tissues. The expression level of CpGSTd1 exposure to insecticide suggests that CpGSTd1 is up-regulated after chlorpyrifos-methyl and lambda-cyhalothrin treatments. Both lambda-cyhalothrin and chlorpyrifos-methyl altered GST activity in vivo. The purified CpGSTd1 protein exhibits a high catalytic efficiency with CDNB and was inhibited by lambda-cyhalothrin and chlorpyrifos-methyl in vitro. Metabolism assays indicate that lambda-cyhalothrin was significantly metabolized while chlorpyrifos-methyl was not metabolized by CpGSTd1. Binding free energy analysis suggests that CpGSTd1 binding is tighter with lambda-cyhalothrin than with chlorpyrifos-methyl. Our study suggests that CpGSTd1 plays a key role in the metabolism of insecticides in C. pomonella.
NASA Astrophysics Data System (ADS)
Tian, Zhen; Liu, Jiyuan; Zhang, Yalin
2016-03-01
Given the advantages of behavioral disruption application in pest control and the damage of Cydia pomonella, due progresses have not been made in searching active semiochemicals for codling moth. In this research, 31 candidate semiochemicals were ranked for their binding potential to Cydia pomonella pheromone binding protein 2 (CpomPBP2) by simulated docking, and this sorted result was confirmed by competitive binding assay. This high predicting accuracy of virtual screening led to the construction of a rapid and viable method for semiochemicals searching. By reference to binding mode analyses, hydrogen bond and hydrophobic interaction were suggested to be two key factors in determining ligand affinity, so is the length of molecule chain. So it is concluded that semiochemicals of appropriate chain length with hydroxyl group or carbonyl group at one head tended to be favored by CpomPBP2. Residues involved in binding with each ligand were pointed out as well, which were verified by computational alanine scanning mutagenesis. Progress made in the present study helps establish an efficient method for predicting potentially active compounds and prepares for the application of high-throughput virtual screening in searching semiochemicals by taking insights into binding mode analyses.
Tian, Zhen; Liu, Jiyuan; Zhang, Yalin
2016-01-01
Given the advantages of behavioral disruption application in pest control and the damage of Cydia pomonella, due progresses have not been made in searching active semiochemicals for codling moth. In this research, 31 candidate semiochemicals were ranked for their binding potential to Cydia pomonella pheromone binding protein 2 (CpomPBP2) by simulated docking, and this sorted result was confirmed by competitive binding assay. This high predicting accuracy of virtual screening led to the construction of a rapid and viable method for semiochemicals searching. By reference to binding mode analyses, hydrogen bond and hydrophobic interaction were suggested to be two key factors in determining ligand affinity, so is the length of molecule chain. So it is concluded that semiochemicals of appropriate chain length with hydroxyl group or carbonyl group at one head tended to be favored by CpomPBP2. Residues involved in binding with each ligand were pointed out as well, which were verified by computational alanine scanning mutagenesis. Progress made in the present study helps establish an efficient method for predicting potentially active compounds and prepares for the application of high-throughput virtual screening in searching semiochemicals by taking insights into binding mode analyses. PMID:26928635
NASA Technical Reports Server (NTRS)
Mcmanus, M. L.
1979-01-01
Dispersal flights of selected species of forest insects which are associated with periodic outbreaks of pests that occur over large contiguous forested areas are discussed. Gypsy moths, spruce budworms, and forest tent caterpillars were studied for their massive migrations in forested areas. Results indicate that large dispersals into forested areas are due to the females, except in the case of the gypsy moth.
J.D. Podgwaite; V.V. Martemyanov; J.M. Slavicek; S.A. Bakhavalov; S.V. Pavlushin; N. Hayes-Plazolles; R.T. Zerillo
2013-01-01
Gypchek is a gypsy nucleopolyhedrovirus (LdMNPV) product used for management of European gypsy moth (Lymantria dispar dispar L.) in the Unlted States, primarily in areas where the use of broad-spectrum pesticides is not appropriate. Similar LdMNPV products are used in Russia for control of a flighted-female strain of Asian gypsy moth (...
Khrimian, Ashot; Lance, David R; Mastro, Victor C; Elkinton, Joseph S
2010-02-10
The winter moth, Operophtera brumata (Lepidoptera: Geometridae), is an early-season defoliator that attacks a wide variety of hardwoods and, in some cases, conifers. The insect is native to Europe but has become established in at least three areas of North America including southeastern New England. The female-produced sex attractant pheromone of the winter moth was identified as (3Z,6Z,9Z)-1,3,6,9-nonadecatetraene (1), which also attracts a native congener, the Bruce spanworm, Operophtera bruceata . Dissection, or (for certainty) DNA molecular testing, is required to differentiate between males of the two species. Thus, a trapping method that is selective for winter moth would be desirable. A geometric isomer of the pheromone, (3E,6Z,9Z)-1,3,6,9-nonadecatetraene (2), can reportedly inhibit attraction of Bruce spanworm to traps without affecting winter moth catch, but use of the pheromone and inhibitor together has not been optimized, nor has the synthesis of the inhibitor. This paper presents two new syntheses of the inhibitor (3E,6Z,9Z)-1,3,6,9-nonadecatetraene based on the intermediate (3Z,6Z)-3,6-hexadecadien-1-ol (4), which has also been utilized in the synthesis of the pheromone. The syntheses combine traditional acetylenic chemistry and Wittig olefination reactions. In one approach, 2 was synthesized in 80% purity (20% being pheromone 1), and in the second, tetraene 2 of 96% purity (and free of 1) was produced in 25% overall yield from dienol 4. The last method benefitted from a refined TEMPO-mediated PhI(OAc)(2) oxidation of 4 and a two-carbon homologation of the corresponding aldehyde 7.
Vermont management in focal areas
Judy Rosovsky; Bruce L. Parker; Luke Curtis
1991-01-01
Following the 1979 outbreak of gypsy moths Lymantria dispar L. in Vermont, state personnel began monitoring a number of focal areas for signs of increase in gypsy moth populations. In 1986 data from this early warning system indicated an incipient outbreak. We took advantage of this increase to test an experimental management technique. Would...
Catherine Papp Herms; Deborah G. McCullough; Leah S. Bauer; Robert A. Haack; Norman R. Dubois
1997-01-01
We investigated the phenological and physiological susceptibility of the endangered Karner blue butterfly (Lycaeides melissa samuelis) to Bacillus thuringiensis var. kurstaki (Bt), a product widely used for gypsy moth (Lymantria dispar) suppression in Michigan and other infested states. We...
Identification to Lepidoptera Superfamily-under the microscope (Insecta)
USDA-ARS?s Scientific Manuscript database
There are 160,000 species of described Lepidoptera, or moths and butterflies, on Earth, although it is estimated that the number is closer to 500,000 species. Many moths from all over the world are intercepted at U.S. ports on a wide variety of economically important commodities. The purpose of t...
The effects of gypsy moth defoliation on soil water chemistry
Thomas R., Jr. Eagle; Ray R., Jr. Hicks
1993-01-01
Twenty-eight plots were established in oak stands along the leading edge of gypsy moth migration into north-central West Virginia. Plots were arranged in a 3-chain square grid pattern in areas of varying aspect, percent slope, elevation, site index and species composition. Soft water, gypsy moth frass and leaf fragments generated by larval feeding were collected weekly...
J. J. Colbert; Phil Perry; Bradley Onken
1997-01-01
As the advancing front of the gypsy moth continues its spread throughout Ohio, silviculturists on the Wayne National Forest are preparing themselves for potential gypsy moth outbreaks in the coming decade. Through a cooperative effort between the Northeastern Forest Experiment Station and Northeastern Area, Forest Health Protection, the Wayne National Forest, Ohio, is...
Slow the Spread: a national program to manage the gypsy moth
Patrick C. Tobin; Laura M. Blackburn
2007-01-01
The gypsy moth is a destructive, nonindigenous pest of forest, shade, and fruit trees that was introduced into the United States in 1869, and is currently established throughout the Northeast and upper Midwest. The Slow the Spread Program is a regional integrated pest management strategy that aims to minimize the rate of gypsy moth spread into uninfested areas. The...
Selection of active strains of the gypsy moth nuclearpolyhedrosis virus
M. Shapiro; E. Dougherty
1985-01-01
The gypsy moth Lymantria dispar (Linnaeus) has grown in economic importance as an insect pest over the past 75 years. From a localized infestation of a small geographical area of New England, the gypsy moth has spread to such an extent that is now found over much of the United States. Control measures are varied, but effective biological control is...
Valeria Fike: College of DuPage Library, Glen Ellyn, IL
ERIC Educational Resources Information Center
Berry, John N., III
2006-01-01
In this article, the author profiles Valeria Fike, supervisor of reference support and College and Career Information Center services at the College of DuPage Library (CODL), Glen Ellyn, Illinois. Valeria Fike, who supervises some 21 paraprofessionals at CODL, modestly attributes her successful career there to her being "simply in the right…
NASA Astrophysics Data System (ADS)
Jeram, Sarik; Ge, Jian; Jiang, Peng; Phillips, Blayne
2016-01-01
Silicon moth-eye antireflective structures have emerged to be an excellent approachfor reducing the amount of light that is lost upon incidence on a given surface of optics made of silicon. This property has been exploited for a wide variety of products ranging from eyeglasses and flat-panel displays to solar panels. These materials typically come in the form of coatings that are applied to an optical substrate such as glass. Moth-eye coatings, made of a periodic array of subwavelength pillars on silicon substrates or other substrates, can produce the desired antireflection (AR) performance for a broad wavelength range and over a wide range of incident angles. In the field of astronomy, every photon striking a detector is significant - and thus, losses from reflectivity at the various optical interfaces before a detector can have significant implications to the science at hand. Moth-eye AR coatings on these optical interfaces may minimize their reflection losses while maximizing light throughput for a multitude of different astronomical instruments. In addition, moth-eye AR coatings, which are patterned directly on silicon surfaces, can significantly enhance the coating durability. At the University of Florida, we tested two moth-eye filters designed for use in the near-infrared regime at 1-8 microns by examining their optical properties, such as transmission, the scattered light, and wavefront quality, and testing the coatings at cryogenic temperatures to characterize their viability for use in both ground- and space-based infrared instruments. This presentation will report our lab evaluation results.
Artificial night lighting inhibits feeding in moths
van Grunsven, Roy H. A.; Veenendaal, Elmar M.
2017-01-01
One major, yet poorly studied, change in the environment is nocturnal light pollution, which strongly alters habitats of nocturnally active species. Artificial night lighting is often considered as driving force behind rapid moth population declines in severely illuminated countries. To understand these declines, the question remains whether artificial light causes only increased mortality or also sublethal effects. We show that moths subjected to artificial night lighting spend less time feeding than moths in darkness, with the shortest time under light conditions rich in short wavelength radiation. These findings provide evidence for sublethal effects contributing to moth population declines. Because effects are strong under various types of light compared with dark conditions, the potential of spectral alterations as a conservation tool may be overestimated. Therefore, restoration and maintenance of darkness in illuminated areas is essential for reversing declines of moth populations. PMID:28250209
A monitoring system for gypsy moth management
F. William Ravlin; S. J. Fleischer; M. R. Carter; E. A. Roberts; M. L. McManus
1991-01-01
Within the last ten years considerable research has been directed toward the development of a gypsy moth monitoring system for project planning at a regional level and for making control decisions at a local level. Pheromones and pheromone-baited traps have been developed and widely used and several egg mass sampling techniques have also been developed. Recently these...
Cost analysis and biological ramifications for implementing the gypsy moth Slow the Spread Program
Patrick C. Tobin
2008-01-01
The gypsy moth Slow the Spread Program aims to reduce the rate of gypsy moth, Lymantria dispar (L.), spread into new areas in the United States. The annual budget for this program has ranged from $10-13 million. Changes in funding levels can have important ramifications to the implementation of this program, and consequently affect the rate of gypsy...
Rapid identification of the Asian gypsy moth and its related species based on mitochondrial DNA.
Wu, Ying; Du, Qiuyang; Qin, Haiwen; Shi, Juan; Wu, Zhiyi; Shao, Weidong
2018-02-01
The gypsy moth- Lymantria dispar (Linnaeus)-is a worldwide forest defoliator and is of two types: the European gypsy moth and the Asian gypsy moth. Because of multiple invasions of the Asian gypsy moth, the North American Plant Protection Organization officially approved Regional Standards for Phytosanitary Measures No. 33. Accordingly, special quarantine measures have been implemented for 30 special focused ports in the epidemic areas of the Asian gypsy moth, including China, which has imposed great inconvenience on export trade. The Asian gypsy moth and its related species (i.e., Lymantria monocha and Lymantria xylina ) intercepted at ports are usually at different life stages, making their identification difficult. Furthermore, Port quarantine requires speedy clearance. As such, it is difficult to identify the Asian gypsy moth and its related species only by their morphological characteristics in a speedy measure. Therefore, this study aimed to use molecular biology technology to rapidly identify the Asian gypsy moth and its related species based on the consistency of mitochondrial DNA in different life stages. We designed 10 pairs of specific primers from different fragments of the Asian gypsy moth and its related species, and their detection sensitivity met the need for rapid identification. In addition, we determined the optimal polymerase chain reaction amplification temperature of the 10 pairs of specific primers, including three pairs of specific primers for the Asian gypsy moth ( L. dispar asiatic ), four pairs of specific primers for the nun moth ( L. monocha ), and three pairs of specific primers for the casuarina moth ( L. xylina ). In conclusion, using our designed primers, direct rapid identification of the Asian gypsy moth and its related species is possible, and this advancement can help improve export trade in China.
Predictability of gypsy moth defoliation in central hardwoods: a validation study
David E. Fosbroke; Ray R., Jr. Hicks
1993-01-01
A model for predicting gypsy moth defoliation in central hardwood forests based on stand characteristics was evaluated following a 5-year outbreak in Pennsylvania and Maryland. Study area stand characteristics were similar to those of the areas used to develop the model. Comparisons are made between model predictive capability in two physiographic provinces. The tested...
Max W. McFadden; Michael E. McManus
1991-01-01
The gypsy moth, Lymantria dispar L., was introduced from Europe into North America near Boston, Massachusetts, in 1869, and is now well established as a serious defoliator of forest, shade, and fruit trees over much of the eastern United States. Despite substantial efforts to eradicate, contain, or control this pest, the gypsy moth has persisted...
78 FR 24665 - Gypsy Moth Generally Infested Areas; Additions in Wisconsin
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-26
... forest, shade, and commercial trees such as nursery stock and Christmas trees. The gypsy moth regulations... tree growers, and 2 nurseries. We expect that most if not all of these businesses are small according...
Coherent array of branched filamentary scales along the wing margin of a small moth
NASA Astrophysics Data System (ADS)
Yoshida, Akihiro; Tejima, Shin; Sakuma, Masayuki; Sakamaki, Yositaka; Kodama, Ryuji
2017-04-01
In butterflies and moths, the wing margins are fringed with specialized scales that are typically longer than common scales. In the hindwings of some small moths, the posterior margins are fringed with particularly long filamentary scales. Despite the small size of these moth wings, these scales are much longer than those of large moths and butterflies. In the current study, photography of the tethered flight of a small moth, Phthorimaea operculella, revealed a wide array composed of a large number of long filamentary scales. This array did not become disheveled in flight, maintaining a coherent sheet-like structure during wingbeat. Examination of the morphology of individual scales revealed that each filamentary scale consists of a proximal stalk and distal branches. Moreover, not only long scales but also shorter scales of various lengths were found to coexist in each small section of the wing margin. Scale branches were ubiquitously and densely distributed within the scale array to form a mesh-like architecture similar to a nonwoven fabric. We propose that possible mechanical interactions among branched filamentary scales, mediated by these branches, may contribute to maintaining a coherent sheet-like structure of the scale array during wingbeat.
Potential defoliation of trees by outbreak populations of gypsy moth in the Chicago area
David W. Onstad; David J. Nowak; Michael R. Jeffords
1997-01-01
The gypsy moth, Lymantria dispar, will soon become established in much of the Midwest. If an outbreak with extremely high population levels of this serious defoliator is allowed to occur in the Chicago area, what kind of damage can be expected? A model for defoliation, refoliation and mortality was developed based on the number of trees and...
Estimating the Effect of Gypsy Moth Defloiation Using MODIS
NASA Technical Reports Server (NTRS)
deBeurs, K. M.; Townsend, P. A.
2008-01-01
The area of North American forests affected by gypsy moth defoliation continues to expand despite efforts to slow the spread. With the increased area of infestation, ecological, environmental and economic concerns about gypsy moth disturbance remain significant, necessitating coordinated, repeatable and comprehensive monitoring of the areas affected. In this study, our primary objective was to estimate the magnitude of defoliation using Moderate Resolution Imaging Spectroradiometer (MODIS) imagery for a gypsy moth outbreak that occurred in the US central Appalachian Mountains in 2000 and 2001. We focused on determining the appropriate spectral MODIS indices and temporal compositing method to best monitor the effects of gypsy moth defoliation. We tested MODIS-based Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Normalized Difference Water Index (NDWI), and two versions of the Normalized Difference Infrared index (NDIIb6 and NDIIb7, using the channels centered on 1640 nm and 2130 nm respectively) for their capacity to map defoliation as estimated by ground observations. In addition, we evaluated three temporal resolutions: daily, 8-day and 16-day data. We validated the results through quantitative comparison to Landsat based defoliation estimates and traditional sketch maps. Our MODIS based defoliation estimates based on NDIIb6 and NDIIb7 closely matched Landsat defoliation estimates derived from field data as well as sketch maps. We conclude that daily MODIS data can be used with confidence to monitor insect defoliation on an annual time scale, at least for larger patches (greater than 0.63 km2). Eight-day and 16-day MODIS composites may be of lesser use due to the ephemeral character of disturbance by the gypsy moth.
P. J. Martinat; J. D. Solomon; Theodor D. Leininger
1996-01-01
Hemileuca maia maia (Drury), the buck moth, is abundant in urban areas of the Gulf Coast region where it defoliates oaks. However, the extent to which the buck moth can survive on other tree species common in the southern urban forest has not been reported. In the laboratory, the authors studied the suitability and acceptability to larvae of 14 common tree species in...
Suckling, D M; Dymock, J J; Park, K C; Wakelin, R H; Jamieson, L E
2013-09-01
The guava moth, Coscinoptycha improbana, an Australian species that infests fruit crops in commercial and home orchards, was first detected in New Zealand in 1997. A four-component pheromone blend was identified but is not yet commercially available. Using single sensillum recordings from male antennae, we established that the same olfactory receptor neurons responded to two guava moth sex pheromone components, (Z)-11-octadecen-8-one and (Z)-12-nonadecen-9-one, and to a chain length analog, (Z)-13-eicosen-10-one, the sex pheromone of the related peach fruit moth, Carposina sasakii. We then field tested whether this non-specificity of the olfactory neurons might enable disruption of sexual communication by the commercially available analog, using male catch to synthetic lures in traps in single-tree, nine-tree and 2-ha plots. A disruptive pheromone analog, based on chain length, is reported for the first time. Trap catches for guava moth were disrupted by three polyethylene tubing dispensers releasing the analog in single-tree plots (86% disruption of control catches) and in a plots of nine trees (99% disruption). Where peach fruit moth pheromone dispensers were deployed at a density of 1000/ha in two 2-ha areas, pheromone traps for guava moth were completely disrupted for an extended period (up to 470 days in peri-urban gardens in Mangonui and 422 days in macadamia nut orchards in Kerikeri). In contrast, traps in untreated areas over 100 m away caught 302.8 ± 128.1 moths/trap in Mangonui and 327.5 ± 78.5 moths/ trap in Kerikeri. The longer chain length in the pheromone analog has greater longevity than the natural pheromone due to its lower volatility. Chain length analogs may warrant further investigation for mating disruption in Lepidoptera, and screening using single-sensillum recording is recommended.
Biology, spread, and biological control of winter moth in the eastern United States
Joseph Elkinton; George Boettner; Andrew Liebhold; Rodger Gwiazdowski
2015-01-01
The winter moth (Operophtera brumata L.; Lepidoptera: Geometridae) is an inchworm caterpillar that hatches coincident with bud-break on its hosts and feeds on a wide range of deciduous trees. It is one of a group of geometrid species that feed in early spring and then pupate in the top layer of the soil or litter beginning in mid-May. As postulated...
Brockerhoff, Eckehard G.; Suckling, David M.; Kimberley, Mark; Richardson, Brian; Coker, Graham; Gous, Stefan; Kerr, Jessica L.; Cowan, David M.; Lance, David R.; Strand, Tara; Zhang, Aijun
2012-01-01
Biological invasions can cause major ecological and economic impacts. During the early stages of invasions, eradication is desirable but tactics are lacking that are both effective and have minimal non-target effects. Mating disruption, which may meet these criteria, was initially chosen to respond to the incursion of light brown apple moth, Epiphyas postvittana (LBAM; Lepidoptera: Tortricidae), in California. The large size and limited accessibility of the infested area favored aerial application. Moth sex pheromone formulations for potential use in California or elsewhere were tested in a pine forest in New Zealand where LBAM is abundant. Formulations were applied by helicopter at a target rate of 40 g pheromone per ha. Trap catch before and after application was used to assess the efficacy and longevity of formulations, in comparison with plots treated with ground-applied pheromone dispensers and untreated control plots. Traps placed at different heights showed LBAM was abundant in the upper canopy of tall trees, which complicates control attempts. A wax formulation and polyethylene dispensers were most effective and provided trap shut-down near ground level for 10 weeks. Only the wax formulation was effective in the upper canopy. As the pheromone blend contained a behavioral antagonist for LBAM, ‘false trail following’ could be ruled out as a mechanism explaining trap shutdown. Therefore, ‘sensory impairment’ and ‘masking of females’ are the main modes of operation. Mating disruption enhances Allee effects which contribute to negative growth of small populations and, therefore, it is highly suitable for area-wide control and eradication of biological invaders. PMID:22937092
Microbial endogenous response to acute inhibitory impact of antibiotics.
Pala-Ozkok, I; Kor-Bicakci, G; Çokgör, E U; Jonas, D; Orhon, D
2017-06-13
Enhanced endogenous respiration was observed as the significant/main response of the aerobic microbial culture under pulse exposure to antibiotics: sulfamethoxazole, tetracycline and erythromycin. Peptone mixture and acetate were selected as organic substrates to compare the effect of complex and simple substrates. Experiments were conducted with microbial cultures acclimated to different sludge ages of 10 and 2 days, to visualize the effect of culture history. Evaluation relied on modeling of oxygen uptake rate profiles, reflecting the effect of all biochemical reactions associated with substrate utilization. Model calibration exhibited significant increase in values of endogenous respiration rate coefficient with all antibiotic doses. Enhancement of endogenous respiration was different with antibiotic type and initial dose. Results showed that both peptone mixture and acetate cultures harbored resistance genes against the tested antibiotics, which suggests that biomass spends cellular maintenance energy for activating the required antibiotic resistance mechanisms to survive, supporting higher endogenous decay rates. [Formula: see text]: maximum growth rate for X H (day -1 ); K S : half saturation constant for growth of X H (mg COD/L); b H : endogenous decay rate for X H (day -1 ); k h : maximum hydrolysis rate for S H1 (day -1 ); K X : hydrolysis half saturation constant for S H1 (mg COD/L); k hx : maximum hydrolysis rate for X S1 (day -1 ); K XX : hydrolysis half saturation constant for X S1 (mg COD/L); k STO : maximum storage rate of PHA by X H (day -1 ); [Formula: see text]: maximum growth rate on PHA for X H (day -1 ); K STO : half saturation constant for storage of PHA by X H (mg COD/L); X H1 : initial active biomass (mg COD/L).
Interactions between microbial agents and gypsy moth parasites
Ronald M. Weseloh
1985-01-01
The parasite Cotesia melanoscelus attacks small gypsy moth larvae more successfully than large ones, and Bacillus thuringiensis retards the growth of caterpillars it does not kill. Together, both factors lead to higher parasitism by C. melanoscelus in areas sprayed with B. thuringiensis than...
NASA Astrophysics Data System (ADS)
Zhang, Chengpeng; Zhu, Yuwen; Yi, Peiyun; Peng, Linfa; Lai, Xinmin
2017-07-01
Transparent conductive electrodes (TCEs) are widely used in optoelectronic devices, such as touch screens, liquid-crystal displays and light-emitting diodes. To date, the material of the most commonly used TCEs was indium-tin oxide (ITO), which had several intrinsic drawbacks that limited its applications in the long term, including relatively high material cost and brittleness. Silver nanowire (AgNW), as one of the alternative materials for ITO TCEs, has already gained much attention all over the world. In this paper, we reported a facile method to greatly enhance the transmittance of the AgNW TCEs without reducing the electrical conductivity based on moth-eye nanostructures, and the moth-eye nanostructures were fabricated by using a roll-to-roll ultraviolet nanoimprint lithography process. Besides, the effects of mechanical pressure and bending on the moth-eye nanostructure layer were also investigated. In the research, the optical transmittance of the flexible AgNW TCEs was enhanced from 81.3% to 86.0% by attaching moth-eye nanostructures onto the other side of the flexible polyethylene terephthalate substrate while the electrical conductivity of the AgNW TCEs was not sacrificed. This research can provide a direction for the cost-effective fabrication of moth-eye nanostructures and the transmittance improvement of the flexible transparent electrodes.
Activity of Plodia interpunctella (Lepidoptera: Pyralidae) in and around flour mills.
Doud, C W; Phillips, T W
2000-12-01
Studies were conducted at two flour mills where male Indian meal moths, Plodia interpunctella (Hübner), were captured using pheromone-baited traps. Objectives were to determine the distribution of male P. interpunctella at different locations in and around the mills throughout the season, and to monitor moth activity before and after one of the mills was fumigated with methyl bromide to assess efficacy of treatment. Commercially available sticky traps baited with the P. interpunctella sex pheromone were placed at various locations outside and within the larger of the two mills (mill 1). Moths were captured inside mill 1 after methyl bromide fumigations. The highest numbers of P. interpunctella were caught outside the facility and at ground floor locations near outside openings. Additional traps placed in the rooms above the concrete stored-wheat silos at mill 1 during the second year captured more moths than did traps within the mill's production and warehouse areas. In another study, moths were trapped at various distances from a smaller flour mill (mill 2) to determine the distribution of moths outdoors relative to the mill. There was a negative correlation between moth capture and distance from the facility, which suggested that moth activity was concentrated at or near the flour mill. The effectiveness of the methyl bromide fumigations in suppressing moth populations could not be assessed with certainty because moths captured after fumigation may have immigrated from outside through opened loading bay warehouse doors. This study documents high levels of P. interpunctella outdoors relative to those recorded inside a food processing facility. Potential for immigration of P. interpunctella into flour mills and other stored product facilities from other sources may be greater than previously recognized. Moth entry into a food processing facility after fumigation is a problem that should be addressed by pest managers.
Identification of a nucleopolyhedrovirus in winter moth populations from Massachusetts
John P. Burand; Anna Welch; Woojin Kim; Vince D' Amico; Joseph S. Elkinton
2011-01-01
The winter moth, Operophtera brumata, originally from Europe, has recently invaded eastern Massachusetts. This insect has caused widespread defoliation of many deciduous tree species and severely damaged a variety of crop plants in the infested area including apple, strawberry, and especially blueberry.
Processionary Moths and Associated Urtication Risk: Global Change-Driven Effects.
Battisti, Andrea; Larsson, Stig; Roques, Alain
2017-01-31
Processionary moths carry urticating setae, which cause health problems in humans and other warm-blooded animals. The pine processionary moth Thaumetopoea pityocampa has responded to global change (climate warming and increased global trade) by extending its distribution range. The subfamily Thaumetopoeinae consists of approximately 100 species. An important question is whether other processionary moth species will similarly respond to these specific dimensions of global change and thus introduce health hazards into new areas. We describe, for the first time, how setae are distributed on different life stages (adult, larva) of major groups within the subfamily. Using the available data, we conclude that there is little evidence that processionary moths as a group will behave like T. pityocampa and expand their distributional range. The health problems caused by setae strongly relate to population density, which may, or may not, be connected to global change.
Packed- and fluidized-bed biofilm reactor performance for anaerobic wastewater treatment.
Denac, M; Dunn, I J
1988-07-05
Anaerobic degradation performance of a laboratory-scale packed-bed reactor (PBR) was compared with two fluidized-bed biofilm reactors (FBRs) on molasses and whey feeds. The reactors were operated under constant pH (7) and temperature (35 degrees C) conditions and were well mixed with high recirculation rates. The measured variables were chemical oxygen demand (COD), individual organic acids, gas composition, and gas rates. As carrier, sand of 0.3-0.5 mm diameter was used in the FBR, and porous clay spheres of 6 mm diameter were used in the PBR. Startup of the PBR was achieved with 1-5 day residence times. Start-up of the FBR was only successful if liquid residence times were held low at 2-3 h. COD degradations of 86% with molasses (90% was biodegradable) were reached in both the FBR and PBR at 6 h residence time and loadings of 10 g COD/L day. At higher loadings the FBR gave the best performance; even at 40-45 g COD/L day, with 6 h residence times, 70% COD was degraded. The PBR could not be operated above 20 g COD/L day without clogging. A comparison of the reaction rates show that the PBR and FBR per formed similarly at low concentrations in the reactors up to 1 g COD/L, while above 3 g COD/L the rates were 17.4 g COD/L day for the PBR and 38.4 g COD/L day for the FBR. This difference is probably due to diffusion limitations and a less active biomass content of the PBR compared with the fluidized bed.The results of dynamic step change experiments, in which residence times and feed concentrations were changed hanged at constant loading, demonstrated the rapid response of the reactors. Thus, the response times for an increase in gas rate or an increase in organic acids due to an increase in feed concentration were less than 1 day and could be explained by substrate limitation. Other slower responses were observed in which the reactor culture adapted over periods of 5-10 days; these were apparently growth related. An increase in loading of over 100% always resulted in large increases inorganic acids, especially acetic and propionic, as well as large increases in the CO(2) gas content. In general, the CO(2) content of the gas was very low, due to the large amount of dissolved CO(2) that exited with the liquid phase at low residence times. The performance of the FBR with whey was comparable to its performance with molasses, and switching of molasses to whey feed resulted in immediate good performance without adaptation.
Zhu, Liuhong; Li, Zhenyu; Zhang, Shufa; Xu, Baoyun; Zhang, Youjun; Zalucki, Myron P; Wu, Qingjun; Yin, Xianhui
2018-02-08
The diamondback moth, Plutella xylostella (L.), is the most widely distributed pest of Brassica vegetables. Control of P. xylostella has relied on insecticides and it has developed resistance to most insecticides. Although research has clarified the resistance status of P. xylostella and the mechanisms of its resistance in northern China, little work has been conducted on long-term population dynamics in the key vegetable-growing areas of the region. We reviewed and summarized the history of P. xylostella field management practices in northern China (Haidian, Changping, Xuanhua and Zhangbei). Moths were caught in pheromone traps throughout the cropping season and P. xylostella phenology and the general trends in abundance were analysed using DYMEX modelling software. The initial input in the spring determined population size in all years. The seasonal phenology and variation in abundance in most years and sites were simulated, suggesting that the suitable climate creates the conditions for population outbreaks, and growers' actual management level (spraying and crop hygiene) influenced population abundance. Based on climate and using the timing of the initial peak in pheromone trap captures as a biofix, the timing of emergence of the next generation can be forecast, and more effective scouting and regional management strategies against this pest can be developed. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Decline of a Rare Moth at Its Last Known English Site: Causes and Lessons for Conservation.
Baker, David; Barrett, Sinead; Beale, Colin M; Crawford, Terry J; Ellis, Sam; Gullett, Tallulah; Mayhew, Peter J; Parsons, Mark S; Relf, Penny; Robertson, Paul; Small, Julian; Wainwright, Dave
2016-01-01
The conditions required by rare species are often only approximately known. Monitoring such species over time can help refine management of their protected areas. We report population trends of a rare moth, the Dark Bordered Beauty Epione vespertaria (Linnaeus, 1767) (Lepidoptera: Geometridae) at its last known English site on a protected lowland heath, and those of its host-plant, Salix repens (L.) (Malpighiales: Salicaceae). Between 2007 and 2014, adult moth density reduced by an average of 30-35% annually over the monitored area, and its range over the monitored area contracted in concert. By comparing data from before this decline (2005) with data taken in 2013, we show that the density of host-plants over the monitored area reduced three-fold overall, and ten-fold in the areas of highest host-plant density. In addition, plants were significantly smaller in 2013. In 2005, moth larvae tended to be found on plants that were significantly larger than average at the time. By 2013, far fewer plants were of an equivalent size. This suggests that the rapid decline of the moth population coincides with, and is likely driven by, changes in the host-plant population. Why the host-plant population has changed remains less certain, but fire, frost damage and grazing damage have probably contributed. It is likely that a reduction in grazing pressure in parts of the site would aid host-plant recovery, although grazing remains an important site management activity. Our work confirms the value of constant monitoring of rare or priority insect species, of the risks posed to species with few populations even when their populations are large, of the potential conflict between bespoke management for species and generic management of habitats, and hence the value of refining our knowledge of rare species' requirements so that their needs can be incorporated into the management of protected areas.
Bardin, Marc; Ajouz, Sakhr; Comby, Morgane; Lopez-Ferber, Miguel; Graillot, Benoît; Siegwart, Myriam; Nicot, Philippe C.
2015-01-01
The durability of a control method for plant protection is defined as the persistence of its efficacy in space and time. It depends on (i) the selection pressure exerted by it on populations of plant pathogens and (ii) on the capacity of these pathogens to adapt to the control method. Erosion of effectiveness of conventional plant protection methods has been widely studied in the past. For example, apparition of resistance to chemical pesticides in plant pathogens or pests has been extensively documented. The durability of biological control has often been assumed to be higher than that of chemical control. Results concerning pest management in agricultural systems have shown that this assumption may not always be justified. Resistance of various pests to one or several toxins of Bacillus thuringiensis and apparition of resistance of the codling moth Cydia pomonella to the C. pomonella granulovirus have, for example, been described. In contrast with the situation for pests, the durability of biological control of plant diseases has hardly been studied and no scientific reports proving the loss of efficiency of biological control agents against plant pathogens in practice has been published so far. Knowledge concerning the possible erosion of effectiveness of biological control is essential to ensure a durable efficacy of biological control agents on target plant pathogens. This knowledge will result in identifying risk factors that can foster the selection of strains of plant pathogens resistant to biological control agents. It will also result in identifying types of biological control agents with lower risk of efficacy loss, i.e., modes of action of biological control agents that does not favor the selection of resistant isolates in natural populations of plant pathogens. An analysis of the scientific literature was then conducted to assess the potential for plant pathogens to become resistant to biological control agents. PMID:26284088
USDA-ARS?s Scientific Manuscript database
Three species of goat moths are recorded at the Hanford Nuclear Site and Hanford National Monument in south central Washington State. They are: Comadia bertholdi (Grote), 1880, Givira cornelia (Neumoegen & Dyar), 1893, and Prionoxystus robiniae (Peck), 1818. The general habitat of the Hanford area...
Kayombo, S; Mbwette, T S A; Katima, J H Y; Jorgensen, S E
2003-07-01
This paper presents the effect of substrate concentration on the growth of a mixed culture of algae and heterotrophic bacteria in secondary facultative ponds (SFPs) utilizing settled domestic sewage as a sole source of organic carbon. The growth of the mixed culture was studied at the concentrations ranging between 200 and 800 mg COD/l in a series of batch chemostat reactors. From the laboratory data, the specific growth rate (micro) was determined using the modified Gompertz model. The maximum specific growth rate ( micro(max)) and half saturation coefficients (K(s)) were calculated using the Monod kinetic equation. The maximum observed growth rate ( micro(max)) for heterotrophic bacteria was 3.8 day(-1) with K(s) of 200 mg COD/l. The micro(max) for algal biomass based on suspended volatile solids was 2.7 day(-1) with K(s) of 110 mg COD/l. The micro(max) of algae based on the chlorophyll-a was 3.5 day(-1) at K(s) of 50mg COD/l. The observed specific substrate removal by heterotrophic bacteria varied between the concentrations of substrate used and the average value was 0.82 (mg COD/mg biomass). The specific substrate utilization rate in the bioreactors was direct proportional to the specific growth rate. Hence, the determined Monod kinetic parameters are useful for the definition of the operation of SFPs.
The De Havilland "Tiger Moth"a low wing monoplane
NASA Technical Reports Server (NTRS)
1927-01-01
With a speed of 186.5 M.P.H. and an operational altitude of 20,000 feet the De Havilland Tiger Moth has caused comment as it was introduced just before the King's Cup race of 1927. It is a single seater with unusual control configuration due to the cramped cockpit area.
USDA-ARS?s Scientific Manuscript database
BACKGROUND: The banana moth, Opogona sacchari Bojer, is a ployphagous agricultural pest in many tropical areas of the world. The identification of an attractant for male O. sacchari could offer new methods for detection, study and control. RESULTS: A male electroantennographically active compound w...
76 FR 38599 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-01
.... Animal and Plant Health Inspection Service Title: Gypsy Moth Identification Worksheet. OMB Control Number... gypsy moth is one of the most destructive pests of fruit and ornamental trees as well as hardwood... considered to pose an even greater threat to trees and forested areas. In order to determine the presence and...
Amy C. Morey; Robert C. Venette; William D. Hutchison
2013-01-01
We artificially selected for increased freeze tolerance in the invasive light brown apple moth. Our results suggest that, by not accounting for adaptation to cold, current models of potential geographic distributions could underestimate the areas at risk of exposure to this species.
Regulation of the seasonal population patterns of Helicoverpa armigera moths by Bt cotton planting.
Gao, Yu-Lin; Feng, Hong-Qiang; Wu, Kong-Ming
2010-08-01
Transgenic cotton expressing the Bacillus thuringiensis (Bt) Cry1Ac toxin has been commercially cultivated in China since 1997, and by 2000 Bt cotton had almost completely replaced non-transgenic cotton cultivars. To evaluate the impact of Bt cotton planting on the seasonal population patterns of cotton bollworm, Helicoverpa armigera, the dynamics of H. armigera moths were monitored with light traps from four locations (Xiajin, Linqing and Dingtao of Shandong Province; Guantao of Hebei Province) in high Bt density region and five locations (Anci and Xinji of Hebei Province; Dancheng and Fengqiu of Henan Province; Gaomi of Shandong Province) in low Bt density region from 1996 to 2008. A negative correlation was found between moth densities of H. armigera and the planting years of Bt cotton in both high and low Bt density areas. These data indicate that the moth population density of H. armigera was reduced with the introduction of Bt cotton in northern China. Three generations of moths occurred between early June and late September in the cotton regions. Interestingly, second-generation moths decreased and seemed to vanish in recent years in high Bt density region, but this tendency was not found in low Bt density region. The data suggest that the planting of Bt cotton in high Bt density region was effective in controlling the population density of second-generation moths. Furthermore, the seasonal change of moth patterns associated with Bt cotton planting may regulate the regional occurrence and population development of this migratory insect.
The Cryptophlebia Leucotreta Granulovirus—10 Years of Commercial Field Use
Moore, Sean D.; Kirkman, Wayne; Richards, Garth I.; Stephen, Peter R.
2015-01-01
In the last 15 years, extensive work on the Cryptophlebia leucotreta granulovirus (CrleGV) has been conducted in South Africa, initially in the laboratory, but subsequently also in the field. This culminated in the registration of the first CrleGV-based biopesticide in 2004 (hence, the 10 years of commercial use in the field) and the second one three years later. Since 2000, more than 50 field trials have been conducted with CrleGV against the false codling moth, Thaumatotibia leucotreta, on citrus in South Africa. In a representative sample of 13 field trials reported over this period, efficacy (measured by reduction in larval infestation of fruit) ranged between 30% and 92%. Efficacy was shown to persist at a level of 70% for up to 17 weeks after application of CrleGV. This only occurred where the virus was applied in blocks rather than to single trees. The addition of molasses substantially and sometimes significantly enhanced efficacy. It was also established that CrleGV should not be applied at less than ~2 × 1013 OBs per ha in order to avoid compromised efficacy. As CrleGV-based products were shown to be at least as effective as chemical alternatives, persistent and compatible with natural enemies, their use is recommended within an integrated program for control of T. leucotreta on citrus and other crops. PMID:25809025
Reilly, James R; Hajek, Ann E; Liebhold, Andrew M; Plymale, Ruth
2014-06-01
The fungal pathogen Entomophaga maimaiga Humber, Shimazu, and Soper is prevalent in gypsy moth [Lymantria dispar (L.)] populations throughout North America. To understand how weather-related variables influence gypsy moth-E. maimaiga interactions in the field, we measured fungal infection rates at 12 sites in central Pennsylvania over 3 yr, concurrently measuring rainfall, soil moisture, humidity, and temperature. Fungal mortality was assessed using both field-collected larvae and laboratory-reared larvae caged on the forest floor. We found significant positive effects of moisture-related variables (rainfall, soil moisture, and relative humidity) on mortality due to fungal infection in both data sets, and significant negative effects of temperature on the mortality of field-collected larvae. Lack of a clear temperature relationship with the mortality of caged larvae may be attributable to differential initiation of infection by resting spores and conidia or to microclimate effects. These relationships may be helpful in understanding how gypsy moth dynamics vary across space and time, and in forecasting how the gypsy moth and fungus will interact as they move into warmer or drier areas, or new weather conditions occur due to climate change.
Interpretation of gypsy moth frontal advance using meteorology in a conditional algorithm
K.L. Frank; P.C. Tobin; Jr. Thistle; Laurence S. Kalkstein
2013-01-01
The gypsy moth, Lymantria dispar, is a nonnative species that continues to invade areas in North America. It spreads generally through stratified dispersal where local growth and diffusive spread are coupled with long-distance jumps ahead of the leading edge. Long distance jumps due to anthropogenic movement of life stages is a well-documented...
Early warning system for Douglas-fir tussock moth outbreaks in the Western United States.
Gary E. Daterman; John M. Wenz; Katharine A. Sheehan
2004-01-01
The Early Warning System is a pheromone-based trapping system used to detect outbreaks of Douglas-fir tussock moth (DFTM, Orgyia pseudotsugata) in the western United States. Millions of acres are susceptible to DFTM defoliation, but Early Warning System monitoring focuses attention only on the relatively limited areas where outbreaks may be...
Pine beauty moth (Panolis flammea Schiff.) outbreak management: suppression versus natural enemies
Paulius Zolubas
2003-01-01
Pine beauty moth (Panolis flammea Schiff.) is one of the most serious defoliators that periodically threatens Scotch pine forests on poor sandy soils in Lithuania. Population increase of this pest began in 1999. Because a maximum of only 15% defoliation was predicted in particular areas, no additional funding was required for suppressing the...
William E. Miller; Arthur R. Hastings; John F. Wootten
1961-01-01
In the United States, the European pine shoot moth has caused much damage in young, plantations of red pine. It has been responsible for reduced planting of red pine in many areas. Although attacked trees rarely if ever die, their growth is inhibited and many are, deformed. Scotch pine and Austrian pine (Pinus nigra Arnold) are usually not so badly damaged. Swiss...
The cost of gypsy moth sex in the city
Kevin M. Bigsby; Mark J. Ambrose; Patrick C. Tobin; Erin O. Sills
2014-01-01
Since its introduction in the 1860s, gypsy moth, Lymantria dispar (L.), has periodically defoliated large swaths of forest in the eastern United States. Prior research has suggested that the greatest costs and losses from these outbreaks accrue in residential areas, but these impacts have not been well quantified. We addressed this lacuna with a case...
Roger W. Fuester
1991-01-01
Cotesia melanoscelus (Ratzeburg) is a bivoltine, solitary, endoparasite of larvae of the gypsy moth, Lymantria dispar (L.). Imported from Europe after the turn of the century, it readily became established and now occurs throughout the generally infested area. Rates of parasitization are highly variable, particularly during the...
Rating forest stands for gypsy moth defoliation
Owen W. Herrick; David A. Gansner; David A. Gansner
1986-01-01
The severity of future defoliation can be estimated from the percentages of basal area in oaks (Quercus), black oak (Q. velutina) and chestnut oak (a prinus), and in trees with good crowns, along with the average diameter of the stand. With information on these variables, the defoliation potential of any hardwood forest stand in an approaching gypsy moth (Lymantria...
Predicting the female flight capability of gypsy moths by using DNA markers
Melody A. Keena; Marie-José Côté; Phyllis S. Grinberg; William E. Wallner
2011-01-01
Gypsy moths (Lymantria dispar L.) from different geographic origins have different biological and behavioral traits that can affect the risk of establishment and spread in new areas. One behavioral trait of major concern is the capacity of females from some geographic origins to fly, thus increasing the potential rate of spread and making detection...
Gypsy Moth Defoliation Potential in the Ouachita/Ozark Highlands Region
Andrew M. Liebhold; Kurt W. Gottschalk; James M. Guldin; Rose-Marie Muzika
2004-01-01
Abstract - The gypsy moth is expanding its range in North America and is likely to invade the Ouachita/ Ozark Highlands region sometime during this century. A previous analysis indicated that forests in this area are among the most susceptible in North America to defoliation by this insect. We used USDA Forest Service, Forest Inventory and Analysis...
Biology and behavior of a larch bud moth, Zeiraphera sp., in Alaska.
Richard A. Werner
1980-01-01
A possibly new species or subspecies of larch bud moth of the genus Zeiraphera, closely related to Z. improbana (Walker), was found associated with tamarack, Larix laricina (Du Roi) K. Koch, stands in interior Alaska. An outbreak occurred during 1975 and 1976 over an area of 240 000 ha (590,000 acres)....
USDA-ARS?s Scientific Manuscript database
Plutella xylostella (L.), diamondback moth (DBM) is a destructive pest of the Brassicaceae including Arabidopsis thaliana (L.) Heynhold. Ecotypes of Arabidopsis vary in the amounts of leaf area consumed when fed on by DBM, which has been used as a measure of resistance to DBM. Recombinant inbred lin...
Eradicating European pine shoot moth in commercial nurseries with methyl bromide.
V.M. Carolin; W.K. Coulter
1963-01-01
This is the third in a series of reports on experimental fumigation of the European pine shoot moth in residential areas and nurseries. Methods and techniques derived in previous studies on single ornamentals were adapted to fumigation of a commercial nursery. An elongate cubical chamber was built for treatment of trees in rows. Fumigation of an...
Burghoorn, Marieke; Roosen-Melsen, Dorrit; de Riet, Joris; Sabik, Sami; Vroon, Zeger; Yakimets, Iryna; Buskens, Pascal
2013-01-01
Anti-reflective coatings (ARCs) are used to lower the reflection of light on the surface of a substrate. Here, we demonstrate that the two main drawbacks of moth eye-structured ARCs—i.e., the lack of suitable coating materials and a process for large area, high volume applications—can be largely eliminated, paving the way for cost-efficient and large-scale production of durable moth eye-structured ARCs on polymer substrates. We prepared moth eye coatings on polymethylmethacrylate (PMMA) and polycarbonate using wafer-by-wafer step-and-flash nano-imprint lithography (NIL). The reduction in reflection in the visible field achieved with these coatings was 3.5% and 4.0%, respectively. The adhesion of the coating to both substrates was good. The moth eye coating on PMMA demonstrated good performance in three prototypical accelerated ageing tests. The pencil hardness of the moth eye coatings on both substrates was <4B, which is less than required for most applications and needs further optimization. Additionally, we developed a roll-to-roll UV NIL pilot scale process and produced moth eye coatings on polyethylene terephthalate (PET) at line speeds up to two meters per minute. The resulting coatings showed a good replication of the moth eye structures and, consequently, a lowering in reflection of the coated PET of 3.0%. PMID:28788301
Phytosanitary irradiation of peach fruit moth (Lepidoptera: Carposinidae) in apple fruits
NASA Astrophysics Data System (ADS)
Zhan, Guoping; Li, Baishu; Gao, Meixu; Liu, Bo; Wang, Yuejin; Liu, Tao; Ren, Lili
2014-10-01
Peach fruit moth, Carposina sasakii Matsumura, is a serious pest of many pome and stone fruits and presents a quarantine problem in some export markets. It is widely distributed in pome fruit production areas in China, Japan, Korea, North Korea and the Far Eastern Federal District of Russia. In this investigation, gamma radiation dose-response tests were conducted with late eggs (5-d-old) and various larval stages, followed by large-scale confirmatory tests on the most tolerant stage in fruit, the fifth instar. The dose-response tests, with the target radiation dose of 20 (late eggs), 40, 60, 80, 100, 120, 140, and 160 Gy (late fifth instars in vitro) respectively applied to all stages, showed that the tolerance to radiation increased with increasing age and developmental stage. The fifth instar (most advanced instar in fruits) was determined to be the most tolerant stage requiring an estimated minimum absorbed dose of 208.6 Gy (95% CI: 195.0, 226.5 Gy) to prevent adult emergence at 99.9968% efficacy (95% confidence level). In the confirmatory tests, irradiation was applied to 30,850 late fifth instars in apple fruits with a target dose of 200 Gy (171.6-227.8 Gy measured), but only 4 deformed adults emerged that died 2 d afterwards without laying eggs. A dose of 228 Gy may be recommended as a phytosanitary irradiation treatment under ambient atmosphere for the control of peach fruit moth on all commodities with an efficacy of 99.9902% at 95% confidence level.
Ashton, L A; Nakamura, A; Burwell, C J; Tang, Y; Cao, M; Whitaker, T; Sun, Z; Huang, H; Kitching, R L
2016-05-23
South-western China is widely acknowledged as a biodiversity 'hotspot': there are high levels of diversity and endemism, and many environments are under significant anthropogenic threats not least climate warming. Here, we explore diversity and compare response patterns of moth assemblages among three elevational gradients established within different climatic bioregions - tropical rain forest, sub-tropical evergreen broad-leaved forest and sub-alpine coniferous forest in Yunnan Province, China. We hypothesised that tropical assemblages would be more elevationally stratified than temperate assemblages, and tropical species would be more elevationally restricted than those in the temperate zone. Contrary to our hypothesis, the moth fauna was more sensitive to elevational differences within the temperate transect, followed by sub-tropical and tropical transects. Moths in the cooler and more seasonal temperate sub-alpine gradient showed stronger elevation-decay beta diversity patterns, and more species were restricted to particular elevational ranges. Our study suggests that moth assemblages are under threat from future climate change and sub-alpine rather than tropical faunas may be the most sensitive to climate change. These results improve our understanding of China's biodiversity and can be used to monitor future changes to herbivore assemblages in a 'hotspot' of biodiversity.
Ashton, L. A.; Nakamura, A.; Burwell, C. J.; Tang, Y.; Cao, M.; Whitaker, T.; Sun, Z.; Huang, H.; Kitching, R. L.
2016-01-01
South-western China is widely acknowledged as a biodiversity ‘hotspot’: there are high levels of diversity and endemism, and many environments are under significant anthropogenic threats not least climate warming. Here, we explore diversity and compare response patterns of moth assemblages among three elevational gradients established within different climatic bioregions - tropical rain forest, sub-tropical evergreen broad-leaved forest and sub-alpine coniferous forest in Yunnan Province, China. We hypothesised that tropical assemblages would be more elevationally stratified than temperate assemblages, and tropical species would be more elevationally restricted than those in the temperate zone. Contrary to our hypothesis, the moth fauna was more sensitive to elevational differences within the temperate transect, followed by sub-tropical and tropical transects. Moths in the cooler and more seasonal temperate sub-alpine gradient showed stronger elevation-decay beta diversity patterns, and more species were restricted to particular elevational ranges. Our study suggests that moth assemblages are under threat from future climate change and sub-alpine rather than tropical faunas may be the most sensitive to climate change. These results improve our understanding of China’s biodiversity and can be used to monitor future changes to herbivore assemblages in a ‘hotspot’ of biodiversity. PMID:27211989
NASA Astrophysics Data System (ADS)
Ashton, L. A.; Nakamura, A.; Burwell, C. J.; Tang, Y.; Cao, M.; Whitaker, T.; Sun, Z.; Huang, H.; Kitching, R. L.
2016-05-01
South-western China is widely acknowledged as a biodiversity ‘hotspot’: there are high levels of diversity and endemism, and many environments are under significant anthropogenic threats not least climate warming. Here, we explore diversity and compare response patterns of moth assemblages among three elevational gradients established within different climatic bioregions - tropical rain forest, sub-tropical evergreen broad-leaved forest and sub-alpine coniferous forest in Yunnan Province, China. We hypothesised that tropical assemblages would be more elevationally stratified than temperate assemblages, and tropical species would be more elevationally restricted than those in the temperate zone. Contrary to our hypothesis, the moth fauna was more sensitive to elevational differences within the temperate transect, followed by sub-tropical and tropical transects. Moths in the cooler and more seasonal temperate sub-alpine gradient showed stronger elevation-decay beta diversity patterns, and more species were restricted to particular elevational ranges. Our study suggests that moth assemblages are under threat from future climate change and sub-alpine rather than tropical faunas may be the most sensitive to climate change. These results improve our understanding of China’s biodiversity and can be used to monitor future changes to herbivore assemblages in a ‘hotspot’ of biodiversity.
Why do Manduca sexta feed from white flowers? Innate and learnt colour preferences in a hawkmoth
NASA Astrophysics Data System (ADS)
Goyret, Joaquín; Pfaff, Michael; Raguso, Robert A.; Kelber, Almut
2008-06-01
Flower colour is an important signal used by flowering plants to attract pollinators. Many anthophilous insects have an innate colour preference that is displayed during their first foraging bouts and which could help them locate their first nectar reward. Nevertheless, learning capabilities allow insects to switch their colour preferences with experience and thus, to track variation in floral nectar availability. Manduca sexta, a crepuscular hawkmoth widely studied as a model system for sensory physiology and behaviour, visits mostly white, night-blooming flowers lacking UV reflectance throughout its range in the Americas. Nevertheless, the spectral sensitivity of the feeding behaviour of naïve moths shows a narrow peak around 450 nm wavelengths, suggesting an innate preference for the colour blue. Under more natural conditions (i.e. broader wavelength reflectance) than in previous studies, we used dual choice experiments with blue- and white-coloured feeders to investigate the innate preference of naïve moths and trained different groups to each colour to evaluate their learning capabilities. We confirmed the innate preference of M. sexta for blue and found that these moths were able to switch colour preferences after training experience. These results unequivocally demonstrate that M. sexta moths innately prefer blue when presented against white flower models and offer novel experimental evidence supporting the hypothesis that learning capabilities could be involved in their foraging preferences, including their widely observed attraction to white flowers in nature.
Why do Manduca sexta feed from white flowers? Innate and learnt colour preferences in a hawkmoth.
Goyret, Joaquín; Pfaff, Michael; Raguso, Robert A; Kelber, Almut
2008-06-01
Flower colour is an important signal used by flowering plants to attract pollinators. Many anthophilous insects have an innate colour preference that is displayed during their first foraging bouts and which could help them locate their first nectar reward. Nevertheless, learning capabilities allow insects to switch their colour preferences with experience and thus, to track variation in floral nectar availability. Manduca sexta, a crepuscular hawkmoth widely studied as a model system for sensory physiology and behaviour, visits mostly white, night-blooming flowers lacking UV reflectance throughout its range in the Americas. Nevertheless, the spectral sensitivity of the feeding behaviour of naïve moths shows a narrow peak around 450 nm wavelengths, suggesting an innate preference for the colour blue. Under more natural conditions (i.e. broader wavelength reflectance) than in previous studies, we used dual choice experiments with blue- and white-coloured feeders to investigate the innate preference of naïve moths and trained different groups to each colour to evaluate their learning capabilities. We confirmed the innate preference of M. sexta for blue and found that these moths were able to switch colour preferences after training experience. These results unequivocally demonstrate that M. sexta moths innately prefer blue when presented against white flower models and offer novel experimental evidence supporting the hypothesis that learning capabilities could be involved in their foraging preferences, including their widely observed attraction to white flowers in nature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, D.W.; Liebhold, A.M.
1995-02-01
Changes in geographical ranges and spatial extent of outbreaks of pest species are likely consequences of climatic change. We investigated potential changes in spatial distribution of outbreaks of western spruce budworm, Choristoneura occidentalis Freeman, and gypsy moth, Lymantria dispar (L.), in Oregon and Pennsylvania, respectively using maps of historial defoliation, climate, and forest type in a geographic information system. Maps of defoliation frequency at a resolution of 2 x 2 km were assembled from historical aerial survey data. Weather maps for mean monthly temperature maxima and minima and precipitation over 30 yr were developed by interpolation. Relationships between defoliation statusmore » and environmental variables were estimated using linear discriminant analysis. Five climatic change scenarios were investigated: an increase of 2{degrees}C, a 2{degrees}C increase with a small increase and a small decrease in precipitation, and projections of two general circulation models (GCMs) after 100 yr at doubled carbon dioxide. With an increase in temperature alone, the projected defoliated area decreased relative to ambient conditions for budworm and increased slightly for gypsy moth. With an increase in temperature and precipitation, defoliated area increased for both species. Conversely, defoliated area decreased for both when temperature increased and precipitation decreased. Results for the GCM scenarios contrasted sharply. For one GCM, defoliation by budworm was projected to cover Oregon completely, whereas no defoliation was projected by gypsy moth in Pennsylvania. For the other, defoliation disappeared completely for budworm and slightly exceeded that under ambient conditions for gypsy moth. The results are discussed in terms of current forest composition and its potential changes. 36 refs., 5 figs., 4 tabs.« less
Optical diffraction by the microstructure of the wing of a moth
NASA Astrophysics Data System (ADS)
Brink, D. J.; Smit, J. E.; Lee, M. E.; Möller, A.
1995-09-01
On the wing of the moth Trichoplusia orichalcea a prominent, apparently highly reflective, golden spot can be seen. Scales from this area of the wing exhibit a regular microstructure resembling a submicrometer herringbone pattern. We show that a diffraction process from this structure is responsible for the observed optical properties, such as directionality, brightness variations, polarization, and color.
Recurrent outbreak of the Douglas-fir tussock moth in the Malheur National Forest: a case history.
R.R. Mason; D.W. Scott; M.D. Loewen; H.G. Paul
1998-01-01
Characteristics of an outbreak of the Douglas-fir tussock moth (Orgyia pseudotsugata (McDunnough)) in 1991-95 on the Burns Ranger District of the Malheur National Forest (eastern Oregon) are given and compared with an earlier infestation in the same area in 1963-65. Results of monitoring with pheromone traps, evaluating populations by sampling...
The gypsy moth in the central hardwoods: research and management needs
Robert Lawrence; Susan Burks; Dennis Haugen; Marc Linit
1997-01-01
The gypsy moth, Lymantria dispar (L.), is the most serious insect defoliator of trees in the Eastern United States. It is currently established in the area northeast of a line from Michigan to Virginia, and occupies most of the Adirondack and Laurentian Mixed Forest Provinces dominated by northern hardwood, spruce and fir forests. The range of the...
Decay in white fir top-killed by Douglas-fir tussock moth.
Boyd E. Wickman; Robert F. Scharpf
1972-01-01
Stands heavily defoliated in 1936-37 by the Douglas-fir tussock moth, Hemerocampa pseudotsugata McD., at Mammoth Lakes, California, were studied to determine the incidence and extent of decay in top-damaged trees. This was done by dissecting the tops of trees felled during logging. Comparisons were made with white fir in a nearby logged area that was...
A user's guide to the combined stand prognosis and Douglas-fir tussock moth outbreak model
Robert A. Monserud; Nicholas L. Crookston
1982-01-01
Documentation is given for using a simulation model combining the Stand Prognosis Model and the Douglas-fir Tussock Moth Outbreak Model. Four major areas are addressed: (1) an overview and discussion of the combined model; (2) description of input options; (3) discussion of model output, and (4) numerous examples illustrating model behavior and sensitivity.
Stöckl, Anna; Heinze, Stanley; Charalabidis, Alice; el Jundi, Basil; Warrant, Eric; Kelber, Almut
2016-01-01
Nervous tissue is one of the most metabolically expensive animal tissues, thus evolutionary investments that result in enlarged brain regions should also result in improved behavioural performance. Indeed, large-scale comparative studies in vertebrates and invertebrates have successfully linked differences in brain anatomy to differences in ecology and behaviour, but their precision can be limited by the detail of the anatomical measurements, or by only measuring behaviour indirectly. Therefore, detailed case studies are valuable complements to these investigations, and have provided important evidence linking brain structure to function in a range of higher-order behavioural traits, such as foraging experience or aggressive behaviour. Here, we show that differences in the size of both lower and higher-order sensory brain areas reflect differences in the relative importance of these senses in the foraging choices of hawk moths, as suggested by previous anatomical work in Lepidopterans. To this end we combined anatomical and behavioural quantifications of the relative importance of vision and olfaction in two closely related hawk moth species. We conclude that differences in sensory brain volume in these hawk moths can indeed be interpreted as differences in the importance of these senses for the animal’s behaviour. PMID:27185464
Assessing MODIS-based Products and Techniques for Detecting Gypsy Moth Defoliation
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.; Hargrove, William; Smoot, James C.; Prados, Don; McKellip, Rodney; Sader, Steven A.; Gasser, Jerry; May, George
2008-01-01
The project showed potential of MODIS and VIIRS time series data for contributing defoliation detection products to the USFS forest threat early warning system. This study yielded the first satellite-based wall-to-wall 2001 gypsy moth defoliation map for the study area. Initial results led to follow-on work to map 2007 gypsy moth defoliation over the eastern United States (in progress). MODIS-based defoliation maps offer promise for aiding aerial sketch maps either in planning surveys and/or adjusting acreage estimates of annual defoliation. More work still needs to be done to assess potential of technology for "now casts"of defoliation.
Wang, Feng-Ying; Yang, Fan; Lu, Ming-Hong; Luo, Shan-Yu; Zhai, Bao-Ping; Lim, Ka-Sing; McInerney, Caitríona E.; Hu, Gao
2017-01-01
Many moths finish their long distance migration after consecutive nights, but little is known about migration duration and distance. This information is key to predicting migration pathways and understanding their evolution. Tethered flight experiments have shown that ovarian development of rice leaf folder (Cnaphalocrocis medinalis [Guenée]) moths was accelerated and synchronized by flight in the first three nights, whereby most females were then matured for mating and reproduction. Thus, it was supposed that this moth might fly three nights to complete its migration. To test this hypothesis, 9 year’s field data for C. medinalis was collected from Nanning, Guangxi Autonomous Region in China. Forward trajectories indicated that most moths arrived at suitable breeding areas after three nights’ flight. Thus, for C. medinalis this migration duration and distance was a reasonable adaptation to the geographic distribution of suitable habitat. The development of female moth ovaries after three consecutive night flights appears to be a well-balanced survival strategy for this species to strike between migration and reproduction benefits. Hence, an optimum solution of migration-reproduction trade-offs in energy allocation evolved in response to the natural selection on migration route and physiological traits. PMID:28051132
Jenner, W H; Kuhlmann, U; Mason, P G; Cappuccino, N
2010-02-01
Leek moth, Acrolepiopsis assectella (Zeller) (Lepidoptera: Acrolepiidae), is an invasive alien species in eastern Canada, the larvae of which mine the green tissues of Allium spp. This study was designed to construct and analyse life tables for leek moth within its native range. Stage-specific mortality rates were estimated for the third leek moth generation at three sites in Switzerland from 2004 to 2006 to identify some of the principle factors that inhibit leek moth population growth in areas of low pest density. The contribution of natural enemies to leek moth mortality was measured by comparing mortality on caged and uncaged leeks. Total pre-imaginal mortality on uncaged plants was 99.6%, 99.1% and 96.4% in 2004, 2005 and 2006, respectively. Variation in mortality was greater among years than among sites. Total larval mortality was greater than that in the eggs and pupae. This was due largely to the high mortality (up to 83.3%) of neonates during the brief period between egg hatch and establishment of the feeding mine. Leek moth pupal mortality was significantly greater on uncaged than on caged leeks, indicating an impact by natural enemies, and this pattern was consistent over all three years of study. In contrast, the other life stages did not show consistently higher mortality rates on uncaged plants. This observation suggests that the pupal stage may be particularly vulnerable to natural enemies and, therefore, may be the best target for classical biological control in Canada.
Derks, Martijn F L; Smit, Sandra; Salis, Lucia; Schijlen, Elio; Bossers, Alex; Mateman, Christa; Pijl, Agata S; de Ridder, Dick; Groenen, Martien A M; Visser, Marcel E; Megens, Hendrik-Jan
2015-07-29
The winter moth (Operophtera brumata) belongs to one of the most species-rich families in Lepidoptera, the Geometridae (approximately 23,000 species). This family is of great economic importance as most species are herbivorous and capable of defoliating trees. Genome assembly of the winter moth allows the study of genes and gene families, such as the cytochrome P450 gene family, which is known to be vital in plant secondary metabolite detoxification and host-plant selection. It also enables exploration of the genomic basis for female brachyptery (wing reduction), a feature of sexual dimorphism in winter moth, and for seasonal timing, a trait extensively studied in this species. Here we present a reference genome for the winter moth, the first geometrid and largest sequenced Lepidopteran genome to date (638 Mb) including a set of 16,912 predicted protein-coding genes. This allowed us to assess the dynamics of evolution on a genome-wide scale using the P450 gene family. We also identified an expanded gene family potentially linked to female brachyptery, and annotated the genes involved in the circadian clock mechanism as main candidates for involvement in seasonal timing. The genome will contribute to Lepidopteran genomic resources and comparative genomics. In addition, the genome enhances our ability to understand the genetic and molecular basis of insect seasonal timing and thereby provides a reference for future evolutionary and population studies on the winter moth. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Numerical and functional responses of forest bats to a major insect pest in pine plantations.
Charbonnier, Yohan; Barbaro, Luc; Theillout, Amandine; Jactel, Hervé
2014-01-01
Global change is expected to modify the frequency and magnitude of defoliating insect outbreaks in forest ecosystems. Bats are increasingly acknowledged as effective biocontrol agents for pest insect populations. However, a better understanding is required of whether and how bat communities contribute to the resilience of forests to man- and climate-driven biotic disturbances.We studied the responses of forest insectivorous bats to a major pine defoliator, the pine processionary moth Thaumetopoea pityocampa, which is currently expanding its range in response to global warming [corrected]. We used pheromone traps and ultrasound bat recorders to estimate the abundance and activity of moths and predatory bats along the edge of infested pine stands. We used synthetic pheromone to evaluate the effects of experimentally increased moth availability on bat foraging activity. We also evaluated the top-down regulation of moth population by estimating T. pityocampa larval colonies abundance on the same edges the following winter. We observed a close spatio-temporal matching between emergent moths and foraging bats, with bat activity significantly increasing with moth abundance. The foraging activity of some bat species was significantly higher near pheromone lures, i.e. in areas of expected increased prey availability. Furthermore moth reproductive success significantly decreased with increasing bat activity during the flight period of adult moths. These findings suggest that bats, at least in condition of low prey density, exhibit numerical and functional responses to a specific and abundant prey, which may ultimately result in an effective top-down regulation of the population of the prey. These observations are consistent with bats being useful agents for the biocontrol of insect pest populations in plantation forests.
Skirmantas Vaivada
2003-01-01
Numbers of pine shoot beetles Blastophagus piniperda and B. minor trapped in pheromone traps within a pine beauty moth (Panolis flammea) outbreak area were significantly greater in zones with total 100% defoliation (26.8±10.4 and 5.8±2.0 beetle/trap, both species respectively) as compared to...
Procedures and equipment for fumigating European pine shoot moth on ornamental pines.
W.H. Klein; R.M. Thompson
1962-01-01
This is the second in a series of three reports on experimental fumigation for complete kill of the European pine shoot moth on pines in residential areas and nurseries. It describes the procedures and equipment that were developed and used for the actual fumigation tests described in the other two reports. Tests were made concerning the physical control of gas...
John D. Kegg
1985-01-01
Operational programs to suppress gypsy moth populations in residential and recreational areas first began in New Jersey in May of 1980. Bacillus thuringiensis was used on approximately 17,000 acres applied at the dosage rate of 8 B.I.U.'s in one gallon of water per acre. Two treatments approximately one week apart were applied.
Field test with helicopter applications of Gardona against gypsy moth in Pennsylvania
Jack H. Barger; Kenneth Helrich
1975-01-01
In 1972, Gardona® WP was field tested against the gypsy moth, Porthetria dispar (L.), in Pennsylvania. Treatments of 1 gal/acre were applied by helicopter on six 100-acre plots, three at 1 pound AI/gal and three at 1.5 pound Al/gal. Check subplots of 0.1-acre were established throughout the area. Before and after spraying, evaluations were...
Interpretation of gypsy moth frontal advance using meteorology in a conditional algorithm.
Frank, K L; Tobin, P C; Thistle, H W; Kalkstein, Laurence S
2013-05-01
The gypsy moth, Lymantria dispar, is a non-native species that continues to invade areas in North America. It spreads generally through stratified dispersal where local growth and diffusive spread are coupled with long-distance jumps ahead of the leading edge. Long-distance jumps due to anthropogenic movement of life stages is a well-documented spread mechanism. Another mechanism is the atmospheric transport of early instars and adult males, believed to occur over short distances. However, empirical gypsy moth population data continue to support the possibility of alternative methods of long-range dispersal. Such dispersal events seemed to have occurred in the mid- to late-1990s with spread across Lake Michigan to Wisconsin. Such dispersal would be against the prevailing wind flow for the area and would have crossed a significant physical barrier (Lake Michigan). The climatology of the region shows that vigorous cyclones can result in strong easterly winds in the area at the time when early instars are present. It is hypothesized that these storms would enable individuals to be blown across the Lake and explain the appearance of new population centers observed at several locations on the western shore of Lake Michigan nearly simultaneously. A synoptic climatology model coupled with population dynamics data from the area was parameterized to show an association between transport events and population spread from 1996 to 2007. This work highlights the importance of atmospheric transport events relative to the invasion dynamics of the gypsy moth, and serves as a model for understanding this mechanism of spread in other related biological invasions.
Cao, Shuang-Shuang; Du, Yu-Zhou
2014-09-15
The mitogenome of Chilo auricilius (Lepidoptera: Pyraloidea: Crambidae) was a circular molecule made up of 15,367 bp. Sesamia inferens, Chilo suppressalis, Tryporyza incertulas, and C. auricilius, are closely related, well known rice stem borers that are widely distributed in the main rice-growing regions of China. The gene order and orientation of all four stem borers were similar to that of other insect mitogenomes. Among the four stem borers, all AT contents were below 83%, while all AT contents of tRNA genes were above 80%. The genomes were compact, with only 121-257 bp of non-coding intergenic spacer. There are 56 or 62-bp overlapping nucleotides in Crambidae moths, but were only 25-bp overlapping nucleotides in the noctuid moth S. inferens. There was a conserved motif 'ATACTAAA' between trnS2 (UCN) and nad1 in Crambidae moths, but this same region was 'ATCATA' in the noctuid S. inferens. And there was a 6-bp motif 'ATGATAA' of overlapping nucleotides, which was conserved in Lepidoptera, and a 14-bp motif 'TAAGCTATTTAAAT' conserved in the three Crambidae moths (C. suppressalis, C. auricilius and T. incertulas), but not in the noctuid. Finally, there were no stem-and-loop structures in the two Chilo moths. Copyright © 2014 Elsevier B.V. All rights reserved.
Kamika, Ilunga; Coetzee, Martie; Mamba, Bhekie Brilliance; Msagati, Titus; Momba, Maggy N B
2014-03-10
The impact of polyphosphate-accumulating organism (PAO) and glycogen-accumulating organism (GAO) populations as well as of the chemical profile on the performance of Unit-3 (open elutriation tanks) and Unit-5 (covered elutriation tank) of the City of Johannesburg Northern Wastewater Treatment Works was determined. Physicochemical parameters of wastewater samples were measured using standard methods. Bacterial diversity was determined using 16S rRNA gene amplicon pyrosequencing of the variable region V1-3. Results showed soluble COD concentrations from settled sewage for Unit-3 at 192.8 mg COD/L and for Unit-5 at 214.6 mg COD/L, which increased to 301.8 mg COD/L and 411.6 mg COD/L in the overflow from elutriation tanks and decreased to 170.9 mg COD/L and 256.3 mg COD/L at the division boxes, respectively. Both long-chain volatile fatty acids (heptanoic acid, isobutyric acid, 3-methylbutanoic acid, pentanoic acid, 4-methylpentanoic acid, methylheptanoic acid) and short-chain volatile fatty acids (acetic acid, propionic acid, isobutyric acid) were present within concentration ranges of 17.19 mg/L to 54.98 mg/L and 13.64 mg/L to 87.6 mg/L for Unit 3 and 38.61 mg/L to58.85 mg/L and 21.63 mg/L to 92.39 mg/L for Unit 5, respectively. In the secondary settling tanks, the phosphate-removal efficiency in Unit-5 appeared to be slightly higher (0.08 mg P/L) compared to that of Unit-3 (0.11 mg P/L). The average DO concentrations (2.1 mg/L and 2.2 mg/L) as well as the pH values (pH 7 to pH 7.5) were found to be slightly higher in Unit-5 in the aerobic zones. The high presence of PAOs in the bioreactors (Unit-5: Dechloromonas (14.96%), Acinetobacter (6.3%), Zoogloea (4.72%) in the anaerobic zone and Dechloromonas (22.37 %) in the aerobic zone; Unit-3: Dechloromonas (37.25%) in the anaerobic zone and Dechloromonas (23.97%) in the aerobic zone) confirmed the phosphate-removal efficiencies of both units. Negligible GAOs were found in the aerobic zones (Defluviicoccus spp.: 0.33% for Unit-5 and 0.68% for Unit-3) and in the anaerobic zones (Defluviicoccus: 9.8% for Unit-3). The high microbial diversity and a negligible percentage of GAOs in Unit-5 could contribute to its high phosphate-removal efficiency, although results did not indicate statistically significant differences between the unit with a covered elutriation tank (Unit-5) and that with open elutriation tanks (Unit-3).
Kamika, Ilunga; Coetzee, Martie; Mamba, Bhekie Brilliance; Msagati, Titus; Momba, Maggy N. B.
2014-01-01
The impact of polyphosphate-accumulating organism (PAO) and glycogen-accumulating organism (GAO) populations as well as of the chemical profile on the performance of Unit-3 (open elutriation tanks) and Unit-5 (covered elutriation tank) of the City of Johannesburg Northern Wastewater Treatment Works was determined. Physicochemical parameters of wastewater samples were measured using standard methods. Bacterial diversity was determined using 16S rRNA gene amplicon pyrosequencing of the variable region V1-3. Results showed soluble COD concentrations from settled sewage for Unit-3 at 192.8 mg COD/L and for Unit-5 at 214.6 mg COD/L, which increased to 301.8 mg COD/L and 411.6 mg COD/L in the overflow from elutriation tanks and decreased to 170.9 mg COD/L and 256.3 mg COD/L at the division boxes, respectively. Both long-chain volatile fatty acids (heptanoic acid, isobutyric acid, 3-methylbutanoic acid, pentanoic acid, 4-methylpentanoic acid, methylheptanoic acid) and short-chain volatile fatty acids (acetic acid, propionic acid, isobutyric acid) were present within concentration ranges of 17.19 mg/L to 54.98 mg/L and 13.64 mg/L to 87.6 mg/L for Unit 3 and 38.61 mg/L to58.85 mg/L and 21.63 mg/L to 92.39 mg/L for Unit 5, respectively. In the secondary settling tanks, the phosphate-removal efficiency in Unit-5 appeared to be slightly higher (0.08 mg P/L) compared to that of Unit-3 (0.11 mg P/L). The average DO concentrations (2.1 mg/L and 2.2 mg/L) as well as the pH values (pH 7 to pH 7.5) were found to be slightly higher in Unit-5 in the aerobic zones. The high presence of PAOs in the bioreactors (Unit-5: Dechloromonas (14.96%), Acinetobacter (6.3%), Zoogloea (4.72%) in the anaerobic zone and Dechloromonas (22.37 %) in the aerobic zone; Unit-3: Dechloromonas (37.25%) in the anaerobic zone and Dechloromonas (23.97%) in the aerobic zone) confirmed the phosphate-removal efficiencies of both units. Negligible GAOs were found in the aerobic zones (Defluviicoccus spp.: 0.33% for Unit-5 and 0.68% for Unit-3) and in the anaerobic zones (Defluviicoccus: 9.8% for Unit-3). The high microbial diversity and a negligible percentage of GAOs in Unit-5 could contribute to its high phosphate-removal efficiency, although results did not indicate statistically significant differences between the unit with a covered elutriation tank (Unit-5) and that with open elutriation tanks (Unit-3). PMID:24619121
Historical Gypsy Moth Defoliation Frequency
Gypsy moth populations may exist for many years at low densities such that it may be difficult to find any life stages. Then, for reasons that are not completely understood, populations may rise to very high densities and substantial defoliation of the canopy may occur. These data shows the historical frequency (1972-2002) pattern of gypsy moth defoliation as it spreads south and west from the New England states. forested areas with repeated annual defoliation become more stressed and are at increased risk of permanent damage. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.
Economic analysis of the gypsy moth problem in the northeast: II. applied to residential property
Brian R. Payne; William B. White; Roger E. McCay; Robert R. McNichols
1973-01-01
Guidelines are presented for determining dollar losses in residential property values from tree mortality caused by the gypsy moth. The method is based on an earlier study in Amherst, Massachusetts, of the contribution of trees to property values. For each target area, the method requires data on property value, lot size, and number of trees 6 inches dbh and larger for...
2008-04-01
spray alternatives, one ground-based spray alternative and one non- insecticide alternative were considered but eliminated from detailed study because...One application would not be effective in reducing gypsy moth populations and protecting host tree foliage. The ground-based insecticide ...present in the affected area, are not susceptible to these EPA-approved insecticides , as long as there applied according to the label. Dimilin
The role of phenotype structure in the population dynamics of gypsy moth in the Lower Dnieper region
Nikolaj M. Derevyanko
1991-01-01
One of the characteristic features of the gypsy moth population in the Lower Dnieper area is its variable larval coloring. Phenotype frequency has been recorded over the years in separate micropopulations at different density levels. The data show the population to consist mainly of gray larvae in all life stages, and their abundance varying from 85 to 99.6 percent....
P.H. Cochran
1998-01-01
Defoliation by pandora moth in a ponderosa pine spacing study in 1992 and 1994 generally increased as spacings increased from 2 to 5.7 meters and then decreased as spacings increased to 8 meters. Defoliation did not increase mortality during the 1990-94 period, but volume growth was reduced. Basal area increments of sample trees were reduced 25 percent the first...
Dong, Xiaolin; Zhai, Yifan; Hu, Meiying; Zhong, Guohua; Huang, Wanjun; Zheng, Zhihua; Han, Pengfei
2013-01-01
Background Rhodojaponin III, as a botanical insecticide, affects a wide variety of biological processes in insects, including reduction of feeding, suspension of development, and oviposition deterring of adults in a dose-dependent manner. However, the mode of these actions remains obscure. Principal Findings In this study, a comparative proteomic approach was adopted to examine the effect of rhodojaponin III on the Plutella xyllostella (L.). Following treating 48 hours, newly emergence moths were collected and protein samples were prepared. The proteins were separated by 2-DE, and total 31 proteins were significantly affected by rhodojaponin III compared to the control identified by MALDI-TOF/TOF-MS/MS. These differentially expressed proteins act in the nervous transduction, odorant degradation and metabolic change pathways. Further, gene expression patterns in treated and untreated moths were confirmed by qRT-PCR and western blot analysis. RNAi of the chemosensory protein (PxCSP) gene resulted in oviposition significantly increased on cabbage plants treated with rhodojaponin III. Conclusions These rhodojaponin III-induced proteins and gene properties analysis would be essential for a better understanding of the potential molecular mechanism of the response to rhodojaponin III from moths of P. xylostella. PMID:23861792
Yang, Xue-Qing
2016-05-01
Carboxylesterases (CarEs) are responsible for metabolism of xenobiotics including insecticides in insects. Understanding the expression patterns of a such detoxifying gene and effect of insecticides on its enzyme activity are important to clarify the function of this gene relevant to insecticides-detoxifying process, but little information is available in the codling moth Cydia pomonella (L.). In this study, we investigated the expression profiles of CarE gene CpCE-1 at different developmental stages and in different tissues of C. pomonella, as well as the larvae exposed to chlorpyrifos-ethyl and lambda-cyhalothrin by using absolute real-time quantitative PCR (absolute RT-qPCR). Results indicated that CpCE-1 expression was significantly altered during C. pomonella development stages, and this expression differed between sexes, with a higher transcript in females than males. Meanwhile, CpCE-1 is overexpressed in cuticle, midgut and head than silk gland, fat body and Malpighian tubules. Exposure of third instar larvae to a non-lethal dosage of chlorpyrifos-ethyl and lambda-cyhalothrin resulted in induction of CpCE-1 transcript. The total carboxylesterase enzyme activity was inhibited by chlorpyrifos-ethyl in vivo; in contrast, the activity of Escherichia coli produced recombinant CpCE-1 was significantly inhibited by both lambda-cyhalothrin and chlorpyrifos-ethyl in vitro. These results suggested that CpCE-1 in C. pomonella is potentially involved in the development and in detoxification of chlorpyrifos-ethyl and lambda-cyhalothrin.
Bird use of organic apple orchards: Frugivory, pest control and implications for production
Pejchar, Liba; Werner, Scott J.
2017-01-01
As the largest terrestrial biomes, crop and pasturelands can have very large positive or negative impacts on biodiversity and human well-being. Understanding how animals use and impact agroecosystems is important for making informed decisions that achieve conservation and production outcomes. Yet, few studies examine the tradeoffs associated with wildlife in agricultural systems. We examined bird use of organic apple orchards as well as how birds influence fruit production positively through control of an economically important insect pest (codling moth (Cydia pomonella)) and negatively through fruit damage. We conducted transect surveys, observed bird frugivory and assessed bird and insect damage with an exclosure experiment in small organic farms in western Colorado. We found that organic apple orchards in this region provide habitat for a large number of both human-adapted and human-sensitive species and that the species in orchards were relatively similar to adjacent hedgerow habitats. Habitat use did not vary as a function of orchard characteristics, and apple damage by both birds and C. pomonella was consistent within and across apple blocks that varied in size. A small subset of bird species was observed foraging on apples yet the effect of birds as agents of fruit damage appeared rather minor and birds did not reduce C. pomonella damage. Our results demonstrate that organic apple orchards have the potential to provide habitat for diverse bird communities, including species typically sensitive to human activities, with little apparent effect on production. PMID:28910290
White, Peter J. T.; Glover, Katharine; Stewart, Joel; Rice, Amanda
2016-01-01
The universal mercury vapor black light trap is an effective device used for collecting moth specimens in a wide variety of habitats; yet, they can present challenges for researchers. The mercury vapor trap is often powered by a heavy automotive battery making it difficult to conduct extensive surveys in remote regions. The mercury vapor trap also carries a considerable financial cost per trap unit, making trapping challenging with low research budgets. Here, we describe the development and trapping properties of a lighter, simply constructed, and less expensive trap. The LED funnel trap consists of a funnel, soda bottles with plastic vanes, and is powered by rechargeable 9-V batteries. Two strips of low-wavelength LEDs are used as attractants. We tested the trapping parameters of this trap design compared to a standard mercury vapor trap over 10 trap nights in a suburban woodlot in the summer of 2015. The mercury vapor trap caught significantly more moth individuals than the LED trap (average of 78 vs 40 moths per trap night; P < 0.05), and significantly more species than the LED trap (23 vs 15 per trap night; P < 0.05); the mercury vapor trap caught a total of 104 macromoth species over the duration of the study, compared to a total of 87 by the LED trap. Despite the lower yields, the low cost of the LED trap (<$30 ea.) makes it superior to the mercury vapor trap in cost-acquisition per moth species and per moth individual trapped. The LED trap may be a viable alternative to the standard mercury vapor trap, facilitating insect trapping in more diverse settings. PMID:26936923
Classical lepidopteran wing scale colouration in the giant butterfly-moth Paysandisia archon.
Stavenga, Doekele G; Leertouwer, Hein L; Meglič, Andrej; Drašlar, Kazimir; Wehling, Martin F; Pirih, Primož; Belušič, Gregor
2018-01-01
The palm borer moth Paysandisia archon (Castniidae; giant butterfly-moths) has brown dorsal forewings and strikingly orange-coloured dorsal hindwings with white spots surrounded by black margins. Here, we have studied the structure and pigments of the wing scales in the various coloured wing areas, applying light and electron microscopy and (micro)spectrophotometry, and we analysed the spatial reflection properties with imaging scatterometry. The scales in the white spots are unpigmented, those in the black and brown wing areas contain various amounts of melanin, and the orange wing scales contain a blue-absorbing ommochrome pigment. In all scale types, the upper lamina acts as a diffuser and the lower lamina as a thin film interference reflector, with thickness of about 200 nm. Scale stacking plays an important role in creating the strong visual signals: the colour of the white eyespots is created by stacks of unpigmented blue scales, while the orange wing colour is strongly intensified by stacking the orange scales.
The effect of mixing on fermentation of primary solids, glycerol, and biodiesel waste.
Ghasemi, Marzieh; Randall, Andrew A
2018-03-01
In this study, the effect of mixing on volatile fatty acid (VFA) production and composition was investigated through running five identical bench-scale reactors that were filled with primary solid and dosed with either pure glycerol or biodiesel waste. Experimental results revealed that there was an inverse correlation between the mixing intensity and the VFA production. The total VFA production in the un-mixed reactor was 9,787 ± 3,601 mg COD/L, whereas in the reactor mixed at 100 rpm this dropped to 3,927 ± 1,175 mg COD/L, while both types of reactor were dosed with pure glycerol at the beginning of each cycle to reach the initial concentration of 1,000 mg/L (1,217 mg COD/L). Propionic acid was the dominant VFA in all the reactors except the reactor mixed at 30 rpm. It is hypothesized that low mixing facilitated hydrogen transfer between obligate hydrogen producing acetogens (OHPA) and hydrogen consuming acidogens in these non-methanogenic reactors. Also, in a narrower range of mixing (0 or 7 rpm), the total VFA production in biodiesel waste-fed reactors was considerably higher than that of pure glycerol-fed reactors.
[Comparison of ciliate diversity in biodisc reactors which purify industrial wastewater].
Luna-Pabello, V M; Durán De Bazúa, C; Aladro-Lubel, M A
1995-01-01
The comparative study of the ciliate populations present in rotating biological reactors (biodiscs reactors) of 20 l working volume, treating three different wastewaters is the aim of this project. Wastewaters chosen were those of a maize mill, of a sugarcane/ethyl alcohol plant, and of a recycled paper mill. Its dissolved organic contents, measured as soluble chemical oxygen demand (COD) and five-day biochemical oxygen demand (BOD5), were 2040 mg COD/l and 585 mg BOD5/l for maize mill effluents (nejayote), 2000 mg COD/l and 640 mg BOD5/l for sugarcane/ethanol effluents (vinasses), and 960 mg COD/l and 120 mg BOD5/l for whitewaters of the paper industry. Results obtained indicate that ciliate proliferate in all chambers of reactors treating these wastewaters. The ciliates were more abundant in vinasses, followed by nejayote, and then whitewaters. Among protozoa, ciliates were present as follows: 19 species in total. Three of them were common for the three systems. Free swimming ciliates were in higher proportion than pedunculated ones. Its diversity was higher for the whitewaters system, next for nejayote, and the lesser, for vinasses, corroborating the fact that less polluted waters have higher organisms' diversity.
Sõukand, Renata; Kalle, Raivo; Svanberg, Ingvar
2010-01-01
Extensive folklore records from pre-modern Estonia give us an excellent opportunity to study a variety of local plant knowledge and plant use among the peasantry in various parts of the country. One important biocultural domain where plant knowledge has been crucial was in the various methods of combating different ectoparasites that cohabited and coexisted with humans and their domestic animals. Some of these methods were widely known (world-wide, Eurasia, Europe, Baltic Rim), while others were more local. Here we discuss ways of reducing clothes moths Tineola bisselliella (Hummel) (Lepidoptera: Tineidae), human fleas Pulex irritons L. (Siphonaptera: Pulicidae) and bedbugs Cimex lectularius L. (Hemiptera: Cimicidae) with the help of plants. Various taxa used as traditional repellents have been identified. The use of plants as repellents and their toxic principles are also discussed from a comparative perspective. PMID:21070174
Sõukand, Renata; Kalle, Raivo; Svanberg, Ingvar
2010-01-01
Extensive folklore records from pre-modern Estonia give us an excellent opportunity to study a variety of local plant knowledge and plant use among the peasantry in various parts of the country. One important biocultural domain where plant knowledge has been crucial was in the various methods of combating different ectoparasites that cohabited and coexisted with humans and their domestic animals. Some of these methods were widely known (world-wide, Eurasia, Europe, Baltic Rim), while others were more local. Here we discuss ways of reducing clothes moths Tineola bisselliella (Hummel) (Lepidoptera: Tineidae), human fleas Pulex irritons L. (Siphonaptera: Pulicidae) and bedbugs Cimex lectularius L. (Hemiptera: Cimicidae) with the help of plants. Various taxa used as traditional repellents have been identified. The use of plants as repellents and their toxic principles are also discussed from a comparative perspective.
Gonzalez, Federico Lora; Gordon, Michael J
2014-06-02
Quasi-ordered moth-eye arrays were fabricated in Si using a colloidal lithography method to achieve highly efficient, omni-directional transmission of mid and far infrared (IR) radiation. The effect of structure height and aspect ratio on transmittance and scattering was explored experimentally and modeled quantitatively using effective medium theory. The highest aspect ratio structures (AR = 9.4) achieved peak transmittance of 98%, with >85% transmission for λ = 7-30 μm. A detailed photon balance was constructed by measuring transmission, forward scattering, specular reflection and diffuse reflection to quantify optical losses due to near-field effects. In addition, angle-dependent transmission measurements showed that moth-eye structures provide superior anti-reflective properties compared to unstructured interfaces over a wide angular range (0-60° incidence). The colloidal lithography method presented here is scalable and substrate-independent, providing a general approach to realize moth-eye structures and anti-reflection in many IR-compatible material systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... prevent the spread of the gypsy moth, Lymantria dispar (Linnaeus), a dangerous insect injurious to forests and shade trees and not theretofore widely prevalent or distributed within or throughout the United...
Code of Federal Regulations, 2012 CFR
2012-01-01
... prevent the spread of the gypsy moth, Lymantria dispar (Linnaeus), a dangerous insect injurious to forests and shade trees and not theretofore widely prevalent or distributed within or throughout the United...
Code of Federal Regulations, 2011 CFR
2011-01-01
... prevent the spread of the gypsy moth, Lymantria dispar (Linnaeus), a dangerous insect injurious to forests and shade trees and not theretofore widely prevalent or distributed within or throughout the United...
Code of Federal Regulations, 2014 CFR
2014-01-01
... prevent the spread of the gypsy moth, Lymantria dispar (Linnaeus), a dangerous insect injurious to forests and shade trees and not theretofore widely prevalent or distributed within or throughout the United...
Code of Federal Regulations, 2013 CFR
2013-01-01
... prevent the spread of the gypsy moth, Lymantria dispar (Linnaeus), a dangerous insect injurious to forests and shade trees and not theretofore widely prevalent or distributed within or throughout the United...
2017-01-01
Increasing attention to pollinators and their role in providing ecosystem services has revealed a paucity of studies on long-term population trends of most insect pollinators in many parts of the world. Because targeted monitoring programs are resource intensive and unlikely to be performed on most insect pollinators, we took advantage of existing collection records to examine long-term trends in northeastern United States populations of 26 species of hawk moths (family Sphingidae) that are presumed to be pollinators. We compiled over 6,600 records from nine museum and 14 private collections that spanned a 112-year period, and used logistic generalized linear mixed models (GLMMs) to examine long-term population trends. We controlled for uneven sampling effort by adding a covariate for list length, the number of species recorded during each sampling event. We found that of the 22 species for which there was sufficient data to assess population trends, eight species declined and four species increased in detection probability (the probability of a species being recorded during each year while accounting for effort, climate, and spatial effects in the GLMMs). Of the four species with too few records to statistically assess, two have disappeared from parts of their ranges. None of the four species with diurnal adults showed a trend in detection probability. Two species that are pests of solanaceous crops declined, consistent with a seven-fold drop in the area planted in tobacco and tomato crops. We found some evidence linking susceptibility to parasitoidism by the introduced fly Compsilura concinnata (Tachinidae) to declines. Moths with larvae that feed on vines and trees, where available evidence indicates that the fly is most likely to attack, had a greater propensity to decline than species that use herbs and shrubs as larval host plants. Species that develop in the spring, before Compsilura populations have increased, did not decline. However, restricting the analysis to hawk moth records from areas outside of a “refuge” area where Compsilura does not occur did not significantly increase the intensity of the declines as would be predicted if Compsilura was the primary cause of declines. Forests have recovered over the study period across most of the northeastern U.S., but this does not appear to have been a major factor because host plants of several of the declining species have increased in abundance with forest expansion and maturation. Climate variables used in the GLMMs were not consistently related to moth detection probability. Hawk moth declines may have ecological effects on both the plants pollinated by these species and vertebrate predators of the moths. PMID:28982152
Selenium-tolerant diamondback moth disarms hyperaccumulator plantdefense
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, J.L.; Quinn, C.F.; Marcus, M.A.
2006-11-20
Background Some plants hyperaccumulate the toxic element selenium (Se) to extreme levels, up to 1% of dry weight. The function of this intriguing phenomenon is obscure. Results Here, we show that the Se in the hyperaccumulator prince's plume (Stanleya pinnata) protects it from caterpillar herbivory because of deterrence and toxicity. In its natural habitat, however, a newly discovered variety of the invasive diamondback moth (Plutella xylostella) has disarmed this elemental defense. It thrives on plants containing highly toxic Se levels and shows no oviposition or feeding deterrence, in contrast to related varieties. Interestingly, a Se-tolerant wasp (Diadegma insulare) was foundmore » to parasitize the tolerant moth. The insect's Se tolerance mechanism was revealed by X-ray absorption spectroscopy and liquid chromatography--mass spectroscopy, which showed that the Se-tolerant moth and its parasite both accumulate methylselenocysteine, the same form found in the hyperaccumulator plant, whereas related sensitive moths accumulate selenocysteine. The latter is toxic because of its nonspecific incorporation into proteins. Indeed, the Se-tolerant diamondback moth incorporated less Se into protein. Additionally, the tolerant variety sequestered Se in distinct abdominal areas, potentially involved in detoxification and larval defense to predators. Conclusions Although Se hyperaccumulation protects plants from herbivory by some invertebrates, it can give rise to the evolution of unique Se-tolerant herbivores and thus provide a portal for Se into the local ecosystem. In a broader context, this study provides insight into the possible ecological implications of using Se-enriched crops as a source of anti-carcinogenic selenocompounds and for the remediation of Se-polluted environments.« less
The effect of landfill age on municipal leachate composition.
Kulikowska, Dorota; Klimiuk, Ewa
2008-09-01
The influence of municipal landfill age on temporal changes in municipal leachate quality on the basis of elaboration of 4 years monitoring of leachate from landfill in Wysieka near Bartoszyce (Poland) is presented in this study. In leachate, concentrations of organic compounds (COD, BOD(5)), nutrients (nitrogen, phosphorus), mineral compounds, heavy metals and BTEX were investigated. It was shown that the principal pollutants in leachate were organics and ammonia - as landfill age increased, organics concentration (COD) in leachate decreased from 1,800 mg COD/l in the second year of landfill exploitation to 610 mg COD/l in the sixth year of exploitation and increase of ammonia nitrogen concentration from 98 mg N(NH)/l to 364 mg N(NH4) /l was observed. Fluctuation of other indexes (phosphorus, chlorides, calcium, magnesium, sulfate, dissolved solids, heavy metals, BTEX) depended rather on season of the year (seasonal variations) than landfill age. Moreover, the obtained data indicate that despite of short landfill's lifetime some parameters e.g. high pH (on average 7.84), low COD concentration (<2,000 mg COD/l), low BOD(5)/COD ratio (<0.4) and low heavy metal concentration, indicated that the landfill was characterized by methanogenic conditions already at the beginning of the monitoring period.
Duan, Xu; Wang, Xiao; Xie, Jing; Feng, Leiyu; Yan, Yuanyuan; Zhou, Qi
2016-11-15
Most of the reported studies on anaerobic fermentation of sludge focused on the influences of operating conditions, pretreatment methods, and its characteristics, and little attention was paid to those of persistent organic pollutants (POPs) which widespreadly appeared in sludge. In this study, the effect of nonylphenol, a typical POPs in waste activated sludge (WAS), on anaerobic fermentation for volatile fatty acids (VFAs) accumulation was investigated. The concentration of VFAs during WAS anaerobic fermentation was found to be affected positively from 2856 mg COD/L in the control (without NP) to 5620 mg COD/L with NP of 200 mg/kg dry sludge. Mechanism exploration exhibited that the main reason for the enhanced VFAs accumulation in the presence of NP was that more acetic acid was generated during the acidification of WAS, which was increased by almost three times (3790 versus 1310 mg COD/L). In WAS fermentation systems, the abundance of anaerobic functional microorganisms was advantageous to the accumulation of acetic acid. Further investigation by the pure acetogen revealed that both the viability and activity of Proteiniphilum acetatigenes were improved by NP during anaerobic fermentation, resulting in more production of acetic acid and showing good agreement with that in the real WAS fermentation systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Treatment of sanitary landfill leachates in a lab-scale gradual concentric chamber (GCC) reactor.
Mendoza, Lourdes; Verstraete, Willy; Carballa, Marta
2010-03-01
Sanitary landfill leachates are a major environmental problem in South American countries where sanitary landfills are still constructed and appropriate designs for the treatment of these leachates remain problematic. The performance of a lab-scale Gradual Concentric Chamber (GCC) reactor for leachates treatment is presented in this study. Two types of sanitary landfill residuals were evaluated, one directly collected from the garbage trucks (JGL), with high organic strength (84 g COD/l) and the second one, a 6-month-generated leachate (YL) collected from the lagoon of the sanitary landfill in Quito, Ecuador, with an organic strength of 66 g COD/l. Different operational parameters, such as organic loading rate (OLR), temperature, recycling and aeration, were tested. The GCC reactor was found to be a robust technology to treat these high-strength streams with organic matter removal efficiencies higher than 65%. The best performance of the reactors (COD removal efficiencies of 75-80%) was obtained at a Hydraulic Retention Time (HRT) of around 20 h and at 35 degrees C, with an applied OLR up to 70 and 100 g COD/l per day. Overall, the GCC reactor concept appears worth to be further developed for the treatment of leachates in low-income countries.
Chang, Hong; Guo, Jianglong; Fu, Xiaowei; Liu, Yongqiang; Wyckhuys, Kris A. G.; Hou, Youming
2018-01-01
Pollen grains are regularly used as markers to determine an insect’s movement patterns or host (plant) feeding behavior, yet conventional morphology-based pollen grain analysis (or palynology) encounters a number of important limitations. In the present study, we combine conventional analytical approaches with DNA meta-barcoding to identify pollen grains attached to migrating adults of the turnip moth, Agrotis segetum (Lepidoptera: Noctuidae) in Northeast China. More specifically, pollen grains were dislodged from 2566 A. segetum long-distance migrants captured on Beihuang Island (Bohai Sea) and identified to many (plant) species level. Pollen belonged to 26 families of plants, including Fagaceae, Oleaceae, Leguminosae, Asteraceae, Pinaceae and Rosaceae, including common species such as Citrus sinensis, Olea europaea, Ligustrum lucidum, Robinia pseudoacacia, Castanopsis echinocarpa, Melia azedarach and Castanea henryi. As the above plants are indigenous to southern climes, we deduce that A. segetum forage on plants in those locales prior to engaging in northward spring migration. Our work validates the use of DNA-assisted approaches in lepidopteran pollination ecology research and provides unique and valuable information on the adult feeding range and geographical origin of A. segetum. Our findings also enable targeted (area-wide) pest management interventions or guide the future isolation of volatile attractants. PMID:29438348
Bąkowski, Marek; Piekarska-Boniecka, Hanna; Dolańska-Niedbała, Ewa
2013-01-01
This study was conducted in 2008–2010 in three apple orchards in western Poland and involved a massive catch of the red-belted clearwing moth, Synanthedon myopaeformis (Borkhausen) (Lepidoptera: Sesiidae), and its parasitoid Liotryphon crassiseta (Thomson) (Hymenoptera: Ichneumonidae) in yellow Moericke traps. The flight time for both species was correlated and fell in the first half of July. However, the correlation between the occurrences of both species was statistically significant only in 2008, when most specimens were caught. A total of 7960 S. myopaeformis were caught, with a 2:1 male:female sex ratio, and 415 adult L. crassiseta. No correlation between the numbers of S. myopaeformis and L. crassiseta in relation to age, variety of trees, or orchard surface area was noted. Significant differences between the catches of S. myopaeformis and L. crassiseta were reported in particular years. Furthermore, clear differences in the yields of S. myopaeformis and L. crassiseta between traps situated in the orchard and those on its edges were recorded, particularly in the orchard surrounded by cultivated fields. Yellow pan-traps could be used more widely in order to monitor and control the abundance of S. myopaeformis, especially by catching its females. PMID:23879220
Yang, Xueqing; Li, Xianchun; Zhang, Yalin
2013-12-13
Cytochrome P450 monooxygenases (CYPs or P450s) play paramount roles in detoxification of insecticides in a number of insect pests. However, little is known about the roles of P450s and their responses to insecticide exposure in the codling moth Cydia pomonella (L.), an economically important fruit pest. Here we report the characterization and expression analysis of the first P450 gene, designated as CYP9A61, from this pest. The full-length cDNA sequence of CYP9A61 is 2071 bp long and its open reading frame (ORF) encodes 538 amino acids. Sequence analysis shows that CYP9A61 shares 51%-60% identity with other known CYP9s and contains the highly conserved substrate recognition site SRS1, SRS4 and SRS5. Quantitative real-time PCR showed that CYP9A61 were 67-fold higher in the fifth instar larvae than in the first instar, and more abundant in the silk gland and fat body than other tissues. Exposure of the 3rd instar larvae to 12.5 mg L(-1) of chlorpyrifos-ethyl for 60 h and 0.19 mg L(-1) of lambda-cyhalothrin for 36 h resulted in 2.20- and 3.47-fold induction of CYP9A61, respectively. Exposure of the 3rd instar larvae to these two insecticides also significantly enhanced the total P450 activity. The results suggested that CYP9A61 is an insecticide-detoxifying P450.
Yang, Xueqing; Li, Xianchun; Zhang, Yalin
2013-01-01
Cytochrome P450 monooxygenases (CYPs or P450s) play paramount roles in detoxification of insecticides in a number of insect pests. However, little is known about the roles of P450s and their responses to insecticide exposure in the codling moth Cydia pomonella (L.), an economically important fruit pest. Here we report the characterization and expression analysis of the first P450 gene, designated as CYP9A61, from this pest. The full-length cDNA sequence of CYP9A61 is 2071 bp long and its open reading frame (ORF) encodes 538 amino acids. Sequence analysis shows that CYP9A61 shares 51%–60% identity with other known CYP9s and contains the highly conserved substrate recognition site SRS1, SRS4 and SRS5. Quantitative real-time PCR showed that CYP9A61 were 67-fold higher in the fifth instar larvae than in the first instar, and more abundant in the silk gland and fat body than other tissues. Exposure of the 3rd instar larvae to 12.5 mg L−1 of chlorpyrifos-ethyl for 60 h and 0.19 mg L−1 of lambda-cyhalothrin for 36 h resulted in 2.20-and 3.47-fold induction of CYP9A61, respectively. Exposure of the 3rd instar larvae to these two insecticides also significantly enhanced the total P450 activity. The results suggested that CYP9A61 is an insecticide-detoxifying P450. PMID:24351812
Kuussaari, Mikko; Saarinen, Matias; Korpela, Eeva-Liisa; Pöyry, Juha; Hyvönen, Terho
2014-01-01
Mobility is a key factor determining lepidopteran species responses to environmental change. However, direct multispecies comparisons of mobility are rare and empirical comparisons between butterflies and moths have not been previously conducted. Here, we compared mobility between butterflies and diurnal moths and studied species traits affecting butterfly mobility. We experimentally marked and released 2011 butterfly and 2367 moth individuals belonging to 32 and 28 species, respectively, in a 25 m × 25 m release area within an 11-ha, 8-year-old set-aside field. Distance moved and emigration rate from the release habitat were recorded by species. The release experiment produced directly comparable mobility data in 18 butterfly and 9 moth species with almost 500 individuals recaptured. Butterflies were found more mobile than geometroid moths in terms of both distance moved (mean 315 m vs. 63 m, respectively) and emigration rate (mean 54% vs. 17%, respectively). Release habitat suitability had a strong effect on emigration rate and distance moved, because butterflies tended to leave the set-aside, if it was not suitable for breeding. In addition, emigration rate and distance moved increased significantly with increasing body size. When phylogenetic relatedness among species was included in the analyses, the significant effect of body size disappeared, but habitat suitability remained significant for distance moved. The higher mobility of butterflies than geometroid moths can largely be explained by morphological differences, as butterflies are more robust fliers. The important role of release habitat suitability in butterfly mobility was expected, but seems not to have been empirically documented before. The observed positive correlation between butterfly size and mobility is in agreement with our previous findings on butterfly colonization speed in a long-term set-aside experiment and recent meta-analyses on butterfly mobility. PMID:25614794
Sedlacek, J D; Komaravalli, S R; Hanley, A M; Price, B D; Davis, P M
2001-04-01
The Indian meal moth, Plodia interpunctella (Hübner), and Angoumois grain moth, Sitotroga cerealella (Olivier), are two globally distributed stored-grain pests. Laboratory experiments were conducted to examine the impact that corn (Zea mays L.) kernels (i.e., grain) of some Bacillus thuringiensis Berliner (Bt) corn hybrids containing CrylAb Bt delta-endotoxin have on life history attributes of Indian meal moth and Angoumois grain moth. Stored grain is at risk to damage from Indian meal moth and Angoumois grain moth; therefore, Bt corn may provide a means of protecting this commodity from damage. Thus, the objective of this research was to quantify the effects of transgenic corn seed containing CrylAb delta-endotoxin on Indian meal moth and Angoumois grain moth survival, fecundity, and duration of development. Experiments with Bt grain, non-Bt isolines, and non-Bt grain were conducted in environmental chambers at 27 +/- 1 degrees C and > or = 60% RH in continuous dark. Fifty eggs were placed in ventilated pint jars containing 170 g of cracked or whole corn for the Indian meal moth and Angoumois grain moth, respectively. Emergence and fecundity were observed for 5 wk. Emergence and fecundity of Indian meal moth and emergence of Angoumois grain moth were significantly lower for individuals reared on P33V08 and N6800Bt, MON 810 and Bt-11 transformed hybrids, respectively, than on their non-Bt transformed isolines. Longer developmental times were observed for Indian meal moth reared on P33V08 and N6800Bt than their non-Bt-transformed isolines. These results indicate that MON 810 and Bt-11 CrylAb delta-endotoxin-containing kernels reduce laboratory populations of Indian meal moth and Angoumois grain moth. Thus, storing Bt-transformed grain is a management tactic that warrants bin scale testing and may effectively reduce Indian meal moth and Angoumois grain moth populations in grain without application of synthetic chemicals or pesticides.
NASA Astrophysics Data System (ADS)
Zeng, Yu; Chen, XiFang; Yi, Zao; Yi, Yougen; Xu, Xibin
2018-05-01
The pyramidal silicon substrate is formed by wet etching, then ZnO nanorods are grown on the surface of the pyramidal microstructure by a hydrothermal method to form a moth-eye composite heterostructure. The composite heterostructure of this material determines its excellent anti-reflection properties and ability to absorb light from all angles. In addition, due to the effective heterojunction binding area, the composite micro/nano structure has excellent photoelectric conversion performance. Its surface structure and the large specific surface area gives the material super hydrophilicity, excellent gas sensing characteristic, and photocatalytic properties. Based on the above characteristics, the micro/nano heterostructure can be used in solar cells, sensors, light-emitting devices, and photocatalytic fields.
The role of vision in odor-plume tracking by walking and flying insects.
Willis, Mark A; Avondet, Jennifer L; Zheng, Elizabeth
2011-12-15
The walking paths of male cockroaches, Periplaneta americana, tracking point-source plumes of female pheromone often appear similar in structure to those observed from flying male moths. Flying moths use visual-flow-field feedback of their movements to control steering and speed over the ground and to detect the wind speed and direction while tracking plumes of odors. Walking insects are also known to use flow field cues to steer their trajectories. Can the upwind steering we observe in plume-tracking walking male cockroaches be explained by visual-flow-field feedback, as in flying moths? To answer this question, we experimentally occluded the compound eyes and ocelli of virgin P. americana males, separately and in combination, and challenged them with different wind and odor environments in our laboratory wind tunnel. They were observed responding to: (1) still air and no odor, (2) wind and no odor, (3) a wind-borne point-source pheromone plume and (4) a wide pheromone plume in wind. If walking cockroaches require visual cues to control their steering with respect to their environment, we would expect their tracks to be less directed and more variable if they cannot see. Instead, we found few statistically significant differences among behaviors exhibited by intact control cockroaches or those with their eyes occluded, under any of our environmental conditions. Working towards our goal of a comprehensive understanding of chemo-orientation in insects, we then challenged flying and walking male moths to track pheromone plumes with and without visual feedback. Neither walking nor flying moths performed as well as walking cockroaches when there was no visual information available.
The role of vision in odor-plume tracking by walking and flying insects
Willis, Mark A.; Avondet, Jennifer L.; Zheng, Elizabeth
2011-01-01
SUMMARY The walking paths of male cockroaches, Periplaneta americana, tracking point-source plumes of female pheromone often appear similar in structure to those observed from flying male moths. Flying moths use visual-flow-field feedback of their movements to control steering and speed over the ground and to detect the wind speed and direction while tracking plumes of odors. Walking insects are also known to use flow field cues to steer their trajectories. Can the upwind steering we observe in plume-tracking walking male cockroaches be explained by visual-flow-field feedback, as in flying moths? To answer this question, we experimentally occluded the compound eyes and ocelli of virgin P. americana males, separately and in combination, and challenged them with different wind and odor environments in our laboratory wind tunnel. They were observed responding to: (1) still air and no odor, (2) wind and no odor, (3) a wind-borne point-source pheromone plume and (4) a wide pheromone plume in wind. If walking cockroaches require visual cues to control their steering with respect to their environment, we would expect their tracks to be less directed and more variable if they cannot see. Instead, we found few statistically significant differences among behaviors exhibited by intact control cockroaches or those with their eyes occluded, under any of our environmental conditions. Working towards our goal of a comprehensive understanding of chemo-orientation in insects, we then challenged flying and walking male moths to track pheromone plumes with and without visual feedback. Neither walking nor flying moths performed as well as walking cockroaches when there was no visual information available. PMID:22116754
ERIC Educational Resources Information Center
Albrecht, Kay; Walsh, Katherine
1996-01-01
Describes an early childhood classroom project involving moths that teaches children about moths' development from egg to adult stage. Includes information about the moth's enemies, care, and feeding. Outlines reading, art, music and movement, science, and math activities centering around moths. (BGC)
He, Peng; Zhang, Yun-Fei; Hong, Duan-Yang; Wang, Jun; Wang, Xing-Liang; Zuo, Ling-Hua; Tang, Xian-Fu; Xu, Wei-Ming; He, Ming
2017-03-01
Female moths synthesize species-specific sex pheromone components and release them to attract male moths, which depend on precise sex pheromone chemosensory system to locate females. Two types of genes involved in the sex pheromone biosynthesis and degradation pathways play essential roles in this important moth behavior. To understand the function of genes in the sex pheromone pathway, this study investigated the genome-wide and digital gene expression of sex pheromone biosynthesis and degradation genes in various adult tissues in the diamondback moth (DBM), Plutella xylostella, which is a notorious vegetable pest worldwide. A massive transcriptome data (at least 39.04 Gb) was generated by sequencing 6 adult tissues including male antennae, female antennae, heads, legs, abdomen and female pheromone glands from DBM by using Illumina 4000 next-generation sequencing and mapping to a published DBM genome. Bioinformatics analysis yielded a total of 89,332 unigenes among which 87 transcripts were putatively related to seven gene families in the sex pheromone biosynthesis pathway. Among these, seven [two desaturases (DES), three fatty acyl-CoA reductases (FAR) one acetyltransferase (ACT) and one alcohol dehydrogenase (AD)] were mainly expressed in the pheromone glands with likely function in the three essential sex pheromone biosynthesis steps: desaturation, reduction, and esterification. We also identified 210 odorant-degradation related genes (including sex pheromone-degradation related genes) from seven major enzyme groups. Among these genes, 100 genes are new identified and two aldehyde oxidases (AOXs), one aldehyde dehydrogenase (ALDH), five carboxyl/cholinesterases (CCEs), five UDP-glycosyltransferases (UGTs), eight cytochrome P450 (CYP) and three glutathione S-transferases (GSTs) displayed more robust expression in the antennae, and thus are proposed to participate in the degradation of sex pheromone components and plant volatiles. To date, this is the most comprehensive gene data set of sex pheromone biosynthesis and degradation enzyme related genes in DBM created by genome- and transcriptome-wide identification, characterization and expression profiling. Our findings provide a basis to better understand the function of genes with tissue enriched expression. The results also provide information on the genes involved in sex pheromone biosynthesis and degradation, and may be useful to identify potential gene targets for pest control strategies by disrupting the insect-insect communication using pheromone-based behavioral antagonists.
Orhon, Derin; Cokgor, Emine Ubay; Insel, Guclu; Karahan, Ozlem; Katipoglu, Tugce
2009-12-01
The study presented an evaluation of the effect of culture history (sludge age) on the growth kinetics of a mixed culture grown under aerobic conditions. It involved an experimental setup where a lab-scale sequencing batch reactor was operated at steady-state at two different sludge ages (theta(X)) of 2 and 10 days. The system sustained a mixed culture fed with a synthetic substrate mainly consisting of peptone. The initial concentration of substrate COD was selected around 500 mg COD/L. Polyhydroxyalkanoate (PHA) storage occurred to a limited extent, around 30 mg COD/L for theta(X)=10 days and 15 mg COD/L for theta(X)=2 days. Evaluation of the experimental data based on calibration of two different models provided consistent and reliable evidence for a variable Monod kinetics where the maximum specific growth rate, was assessed as 6.1/day for theta(X)=2 days and 4.1/day for theta(X)=10 days. A similar variability was also applicable for the hydrolysis and storage kinetics. The rate of storage was significantly lower than the levels reported in the literature, exhibiting the ability of the microorganisms to regulate their metabolic mechanisms for adjusting the rate of microbial growth and storage competing for the same substrate. This adjustment evidently resulted in case-specific, variable kinetics both for microbial growth and substrate storage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coyle, David, R.; Nowak, John, T.; Fettig, Christopher, J.
2003-10-01
The widespread application of intensive forest management practices throughout the southeastern U.S. has increased loblolly pine, Pinus taeda L., yields and shortened conventional rotation lengths. Fluctuations in Nantucket pine tip moth, Rhyacionia frustrana (Comstock), population density and subsequent damage levels have been linked to variations in management intensity. We examined the effects of two practices, irrigation and fertilization, on R. frustrana damage levels and pupal weights in an intensively-managed P. taeda plantation in South Carolina. Trees received intensive weed control and one of the following treatments; irrigation only. fertilization only, irrigation + fertilization, or control. Mean whole-tree tip moth damagemore » levels ranged from <1 to 48% during this study. Damage levels differed significantly among treatments in two tip moth generations in 2001, but not 2000. Pupal weight was significantly heavier in fertilization compared to the irrigation treatment in 2000, but no significant differences were observed in 2001. Tree diameter. height. and aboveground volume were significantly greater in the irrigation + fertilization than in the irrigation treatment after two growing seasons. Our data suggest that intensive management practices that include irrigation and fertilization do not consistently increase R. frustrana damage levels and pupal weights as is commonly believed. However, tip moth suppression efforts in areas adjacent to our study may have partially reduced the potential impacts of R. frustrana on this experiment.« less
Monitoring populations of saddled prominent (Lepidoptera: Notodontidae) with pheromone-baited traps.
Spear-O'Mara, Jennifer; Allen, Douglas C
2007-04-01
Field trials with three types of pheromone traps were performed in eight northern hardwood stands in northern New York state to develop a population-monitoring tool for the saddled prominent, Heterocampa guttivitta (Walker) (Lepidoptera: Notodontidae). Lure specificity and the relationship between pheromone trap catch and subsequent egg density were examined. A study of moth emergence in relation to temperature was designed to determine whether moth activity throughout the flight season can be predicted using a growing degree-day (DD) model. Pherocon 1C wing traps were significantly more effective than the green Unitrap bucket style. Catch was not affected by position when traps were > or =20 m from an opening (road), and lures were specific to saddled prominent. Lure specificity was examined using green Multipher bucket traps, which effectively attracted and held moths. In the first year of the study, number of viable eggs per 10 leaf clusters was significantly correlated (r2 = 0.59) with average moth catch/trap in pheromone-baited Pherocon traps. When differences in stand density (basal area) and relative abundance of sugar maple (percentage of total stems per hectare), the principle host, were accounted for, the multiple regression model also was significant and r2 = 0. 83. Neither model, however, was significant the second year. Using a base temperature of 5.5 degrees C and on-site temperature data, the peak of moth flight occurred at 316 +/- 8 DD and end of flight occurred at 533 +/- 9 DD.
Hearing diversity in moths confronting a neotropical bat assemblage.
Cobo-Cuan, Ariadna; Kössl, Manfred; Mora, Emanuel C
2017-09-01
The tympanal ear is an evolutionary acquisition which helps moths survive predation from bats. The greater diversity of bats and echolocation strategies in the Neotropics compared with temperate zones would be expected to impose different sensory requirements on the neotropical moths. However, even given some variability among moth assemblages, the frequencies of best hearing of moths from different climate zones studied to date have been roughly the same: between 20 and 60 kHz. We have analyzed the auditory characteristics of tympanate moths from Cuba, a neotropical island with high levels of bat diversity and a high incidence of echolocation frequencies above those commonly at the upper limit of moths' hearing sensitivity. Moths of the superfamilies Noctuoidea, Geometroidea and Pyraloidea were examined. Audiograms were determined by non-invasively measuring distortion-product otoacoustic emissions. We also quantified the frequency spectrum of the echolocation sounds to which this moth community is exposed. The hearing ranges of moths in our study showed best frequencies between 36 and 94 kHz. High sensitivity to frequencies above 50 kHz suggests that the auditory sensitivity of moths is suited to the sounds used by sympatric echolocating bat fauna. Biodiversity characterizes predators and prey in the Neotropics, but the bat-moth acoustic interaction keeps spectrally matched.
Neurophysiological and behavioral responses of gypsy moth larvae to insect repellents
USDA-ARS?s Scientific Manuscript database
The interactions between insect repellents and the olfactory system have been widely studied, however relatively little is known about the effects of repellents on the gustatory system of insects. In this study, we show that the gustatory receptor neuron (GRN) located in the medial styloconic sensi...
Modeling seasonal migration of fall armyworm moths
USDA-ARS?s Scientific Manuscript database
Fall armyworm, Spodoptera frugiperda (J. E. Smith), is a highly mobile insect pest of a wide range of host crops. However, this pest of tropical origin cannot survive extended periods of freezing temperature, but must repeat a series of northward migratory flights each spring if it is to re-infest ...
Fang Chen; Youqing Luo; Melody A. Keena; Ying Wu; Peng Wu; Juan Shi
2015-01-01
The gypsy moth from Asia (two subspecies) is considered a greater threat to North America than European gypsy moth, because of a broader host range and females being capable of flight. Variation within and among gypsy moths from China (nine locations), one of the native countries of Asian gypsy moth, were compared using DNA barcode sequences (658 bp of mtDNA cytochrome...
Bittner, Tonya D; Hajek, Ann E; Liebhold, Andrew M; Thistle, Harold
2017-09-01
The goal of this study was to develop effective and practical field sampling methods for quantification of aerial deposition of airborne conidia of Entomophaga maimaiga over space and time. This important fungal pathogen is a major cause of larval death in invasive gypsy moth ( Lymantria dispar ) populations in the United States. Airborne conidia of this pathogen are relatively large (similar in size to pollen), with unusual characteristics, and require specialized methods for collection and quantification. Initially, dry sampling (settling of spores from the air onto a dry surface) was used to confirm the detectability of E. maimaiga at field sites with L. dispar deaths caused by E. maimaiga , using quantitative PCR (qPCR) methods. We then measured the signal degradation of conidial DNA on dry surfaces under field conditions, ultimately rejecting dry sampling as a reliable method due to rapid DNA degradation. We modified a chamber-style trap commonly used in palynology to capture settling spores in buffer. We tested this wet-trapping method in a large-scale (137-km) spore-trapping survey across gypsy moth outbreak regions in Pennsylvania undergoing epizootics, in the summer of 2016. Using 4-day collection periods during the period of late instar and pupal development, we detected variable amounts of target DNA settling from the air. The amounts declined over the season and with distance from the nearest defoliated area, indicating airborne spore dispersal from outbreak areas. IMPORTANCE We report on a method for trapping and quantifying airborne spores of Entomophaga maimaiga , an important fungal pathogen affecting gypsy moth ( Lymantria dispar ) populations. This method can be used to track dispersal of E. maimaiga from epizootic areas and ultimately to provide critical understanding of the spatial dynamics of gypsy moth-pathogen interactions. Copyright © 2017 American Society for Microbiology.
Scandinavian Treelines are Impacted by Herbivory
NASA Astrophysics Data System (ADS)
Cairns, D. M.; Granberg, T. C.; Lafon, C. W.; Young, A. B.; Moen, J.
2011-12-01
Forest tundra boundaries occur world wide in both Arctic and alpine locations and respond to changes in climate over both short and long time spans. The treeline environments of Fennoscandia are particularly sensitive indicators of climate change. Trees at these treelines are subject to herbivory by a variety of large and small animals, and recent studies have shown that herbivores may be limiting the ability of treeline to migrate upslope in response to climate change. However, the data are typically for small areas. In this paper, we present the results of a dendroecological study of mountain birch (Betula pubescens ssp. czerepanovii) that encompasses a large portion of the Swedish Scandes in northern Sweden. Results are based on data from more than 4700 stems gathered at 65 sites in Norrbotten and Vasterbotten counties. Stems from small trees reveal the historical establishment of new individuals at the treeline, and data from large trees are used to detect outbreaks of the autumnal moth. These data indicate that historic autumnal moth outbreaks can be identified and that the effects of reindeer herbivory are equivocal. Data from mountain birch seedlings and saplings indicate that pulses in mountain birch establishment are influenced by both climate and herbivory. These results indicate that the response of both the pattern and location of the treeline should be interpreted as a complex interaction of both climate and herbivory.
Kang, Chang-Ku; Moon, Jong-Yeol; Lee, Sang-Im; Jablonski, Piotr G
2013-01-01
Many moths have wing patterns that resemble bark of trees on which they rest. The wing patterns help moths to become camouflaged and to avoid predation because the moths are able to assume specific body orientations that produce a very good match between the pattern on the bark and the pattern on the wings. Furthermore, after landing on a bark moths are able to perceive stimuli that correlate with their crypticity and are able to re-position their bodies to new more cryptic locations and body orientations. However, the proximate mechanisms, i.e. how a moth finds an appropriate resting position and orientation, are poorly studied. Here, we used a geometrid moth Jankowskia fuscaria to examine i) whether a choice of resting orientation by moths depends on the properties of natural background, and ii) what sensory cues moths use. We studied moths' behavior on natural (a tree log) and artificial backgrounds, each of which was designed to mimic one of the hypothetical cues that moths may perceive on a tree trunk (visual pattern, directional furrow structure, and curvature). We found that moths mainly used structural cues from the background when choosing their resting position and orientation. Our findings highlight the possibility that moths use information from one type of sensory modality (structure of furrows is probably detected through tactile channel) to achieve crypticity in another sensory modality (visual). This study extends our knowledge of how behavior, sensory systems and morphology of animals interact to produce crypsis.
Tiger-Moths in Savannas in Eastern Amazon: First Assessment of Diversity and Seasonal Aspects.
Valente, D M P; Zenker, M M; Teston, J A
2018-01-06
Biodiversity knowledge on insects is urgently needed due to the ever growing demand for food and the consequent deforestation process and loss of natural habitats in many understudied tropical regions. In this paper, we describe the outcome of a biodiversity research on tiger moths performed for the first time in a poorly studied Amazonian landscape-the savanna. We sampled tiger moths monthly with UV automatic light traps for 12 consecutive months in two sampling points in an area of savanna in eastern Amazon, and we compared our results to previously available data for eastern Amazon. We found a total of 91 species of which 80 were identified to species level. The most species-rich subtribes were Phaegopterina and Euchromiina with 32 species each. Species richness and abundance did not differ among sampling sites, but in general the species richness was higher during the dry season while abundance was higher during the wet season. This seasonal diversity pattern differs from the most common patterns recorded for savannas in other parts of the world. The species composition also changed in wet and dry seasons and correlated significantly with temperature and relative humidity. Our results suggest that the alpha diversity of the Amazonian savannas in our sampling area is lower than that in nearby rain forests and similar to that in agriculturally disturbed areas surrounded by rain forests. However, the species composition differed considerably from natural and disturbed areas. These results highlight the need of basic biodiversity surveys of insects in Amazonian savannas.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-29
... Virginia, and Wisconsin AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Affirmation of... amended the regulations to add areas in Indiana, Maine, Ohio, Virginia, West Virginia, and Wisconsin to..., West Virginia, and Wisconsin to the list of generally infested areas. \\1\\ To view the interim rule and...
Management of shoot boring moths from genera Rhyacionia and Eucosma with attract and kill technology
R. Hoffman; D. Czokajlo; G. Daterman; J. McLaughlin; J. Webster; < i> et. al.< /i>
2003-01-01
LastCall (LC), an attract and kill bait matrix, was deployed for the management of shoot boring moths in pine plantations and seed orchards. The targeted moths were the Western pine shoot borer, Eucosma sonomana (WPSB), European pine shoot moth, Rhyacionia buoliana (EPSM), Ponderosa pine tip moth, Rhyacionia...
Kenneth W. McCravy; C. Wayne Berisford
2000-01-01
Parasitism of the Nantucket pine tip moth, Rhyacionia frustrana (Comstock), was studied for four consecutive generations in the Georgia coastal plain by collecting tip moth-infested shoots and rearing adult moths and parasitoids. Nineteen species of parasitoids were collected. Based on numbers of emerging adults, the overall tip moth parasitism rate...
Sex Pheromone of the Almond Moth and the Indian Meal Moth: cis-9, trans-12-Tetradecadienyl Acetate.
Kuwahara, Y; Kitamura, C; Takashi, S; Hara, H; Ishii, S; Fukami, H
1971-02-26
Female moths of different species but belonging to the same subfamily produce an identical compound as their sex pheromone. The sex pheromone of the almond moth, Cadra cautella (Walker), and the Indian meal moth, Plodia interpunctella (Hübner), has been isolated and identified as cis-9, trans-12-tetradecadienyl acetate.
Automated moth flight analysis in the vicinity of artificial light.
Gaydecki, P
2018-05-10
Instrumentation and software for the automated analysis of insect flight trajectories is described, intended for quantifying the behavioural dynamics of moths in the vicinity of artificial light. For its time, this moth imaging system was relatively advanced and revealed hitherto undocumented insights into moth flight behaviour. The illumination source comprised a 125 W mercury vapour light, operating in the visible and near ultraviolet wavelengths, mounted on top of a mobile telescopic mast at heights of 5 and 7.1 m, depending upon the experiment. Moths were imaged in early September, at night and in field conditions, using a ground level video camera with associated optics including a heated steering mirror, wide angle lens and an electronic image intensifier. Moth flight coordinates were recorded at a rate of 50 images per second (fields) and transferred to a computer using a light pen (the only non-automated operation in the processing sequence). Software extracted ground speed vectors and, by instantaneous subtraction of wind speed data supplied by fast-response anemometers, the airspeed vectors. Accumulated density profiles of the track data revealed that moths spend most of their time at a radius of between 40 and 50 cm from the source, and rarely fly directly above it, from close range. Furthermore, the proportion of insects caught by the trap as a proportion of the number influenced by the light (and within the field of view of the camera) was very low; of 1600 individual tracks recorded over five nights, a total of only 12 were caught. Although trap efficiency is strongly dependent on trap height, time of night, season, moonlight and weather, the data analysis confirmed that moths do not exhibit straightforward positive phototaxis. In general, trajectory patterns become more complex with reduced distance from the illumination, with higher recorded values of speeds and angular velocities. However, these characteristics are further qualified by the direction of travel of the insect; the highest accelerations tended to occur when the insect was at close range, but moving away from the source. Rather than manifesting a simple positive phototaxis, the trajectories were suggestive of disorientation. Based on the data and the complex behavioural response, mathematical models were developed that described ideal density distribution in calm air and light wind speed conditions. The models did not offer a physiological hypothesis regarding the behavioural changes, but rather were tools for quantification and prediction. Since the time that the system was developed, instrumentation, computers and software have advanced considerably, allowing much more to be achieved at a small fraction of the original cost. Nevertheless, the analytical tools remain useful for automated trajectory analysis of airborne insects.
75 FR 78587 - Gypsy Moth Generally Infested Areas; Illinois, Indiana, Maine, Ohio, and Virginia
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-16
..., Lang, Madrid, Mount Abraham, New Sharon, New Vineyard, Perkins, Phillips, Rangeley, Rangeley Plantation..., Kenduskeag, Kingman, Lagrange, Lakeville, Lee, Levant, Lincoln, Long A, Lowell, Mattamiscontis, Mattawamkeag...
Insect Infestations Linked to Shifts in Microclimate: Important Climate Change Implications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Classen, Aimee T; Hart, Stephen C; Whitham, Thomas G
Changes in vegetation due to drought-influenced herbivory may influence microclimate in ecosystems. In combination with studies of insect resistant and susceptible trees, we used long-term herbivore removal experiments with two herbivores of pinon (Pinus edulis Endelm.) to test the general hypothesis that herbivore alteration of plant architecture affects soil microclimate, a major driver of ecosystem-level processes. The pinon needle scale (Matsucoccus acalyptus, Herbert) attacks needles of juvenile trees causing them to develop an open crown. In contrast, the stem-boring moth (Dioryctria albovittella Hulst.) kills the terminal shoots of mature trees, causing the crown to develop a dense form. Our studiesmore » focused on how the microclimate effects of these architectural changes are likely to accumulate over time. Three patterns emerged: (1) scale herbivory reduced leaf area index (LAI) of susceptible trees by 39%, whereas moths had no effect on LAI; (2) scale herbivory increased soil moisture and temperature beneath susceptible trees by 35 and 26%, respectively, whereas moths had no effect; and (3) scale and moth herbivory decreased crown interception of precipitation by 51 and 29%, respectively. From these results, we conclude: (1) the magnitude of scale effects on soil moisture and temperature is large, similar to global change scenarios, and sufficient to drive changes in ecosystem processes. (2) The larger sizes of moth-susceptible trees apparently buffered them from most microclimate effects of herbivory, despite marked changes in crown architecture. (3) The phenotypic expression of susceptibility or resistance to scale insects extends beyond plant-herbivore interactions to the physical environment.« less
Monitoring components of GypsES
Lukas P. Schaub; F. William Ravlin; Jesse A. Logan; Shelby J. Fleischer
1991-01-01
The manager needs tools for assistance in planning and interpreting monitoring systems. We are building a system that designs sampling programs by interpreting data about Gypsy Moth, stand condition and management objectives. The system prioritizes areas within the management unit within budgetary constraints and defines the areas to be monitored. The system proposes...
Soopaya, Rajendra; Woods, Bill; Lacey, Ian; Virdi, Amandip; Mafra-Neto, Agenor; Suckling, David Maxwell
2015-08-01
Eradication technologies are needed for urban and suburban situations, but may require different technologies from pest management in agriculture. We investigated mating disruption of a model moth species recently targeted for eradication in Californian cities, by applying dollops of SPLAT releasing a two-component sex pheromone of the light brown apple moth in 2-ha plots in low-density residential Perth, Australia. The pheromone technology was applied manually at ∼1.5 m height to street and garden trees, scrubs, and walls at 500 dollops per hectare of 0.8 g containing ∼80 mg active two-component pheromone. Catches of male moths were similar among all plots before treatment, but in treated areas (six replicates) pheromone trap catches were substantially reduced for up to 29 wk posttreatment, compared with untreated control plot catches (three replicates). The treatment with pheromone reduced catch to virgin females by 86% (P < 0.001) and reduced the occurrence of mating by 93%, compared with three equivalent untreated control plot catches (P < 0.001). Eradication programs are following an upward trend with globalization and the spread of invasive arthropods, which are often first detected in urban areas. Eradication requires a major increase in the communication distance between individuals, but this can be achieved using sex pheromone-based mating disruption technology, which is very benign and suitable for sensitive environments. The need for new socially acceptable tools for eradication in urban environments is likely to increase because of increasing need for eradications. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Gypsy Moth Event Monitor for FVS: a tool for forest and pest managers
Kurt W. Gottschalk; Anthony W. Courter
2007-01-01
The Gypsy Moth Event Monitor is a program that simulates the effects of gypsy moth, Lymantria dispar (L.), within the confines of the Forest Vegetation Simulator (FVS). Individual stands are evaluated with a susceptibility index system to determine the vulnerability of the stand to the effects of gypsy moth. A gypsy moth outbreak is scheduled in the...
Bałazy, Stanisław; Wrzosek, Marta; Sosnowska, Danuta; Tkaczuk, Cezary; Muszewska, Anna
2008-02-01
Laboratory assays have been carried out to artificially infect insect larvae of the birch bark-beetle (Scolytus ratzeburgi Jans.-Coleoptera, Scolytidae) and codling moth Cydia pomonella L. -Lepidoptera, Tortricidae) as well as the potato cyst nematode-Globodera rostochiensis Wollenweber, sugar beet nematode-Heterodera schachtii Schmidt and root-knot nematode-Meloidogyne hapla Chif (Nematoda, Heteroderidae), by the phialoconidia of some fungal species of the genus Hirsutella. From among four species tested on insects only H. nodulosa Petch infected about 20% of S. ratzeburgi larvae, whereas H. kirchneri (Rostrup) Minter, Brady et Hall, H. minnesotensis Chen, Liu et Chen, and H. rostrata Bałazy et Wiśniewski did not affect insect larvae. Only single eggs of the root-knot nematode were infected by H. minnesotensis in the laboratory trials, whereas its larvae remained unaffected. No infection cases of the potato cyst nematode (G. rostochiensis) and sugar beet nematode eggs were obtained. Comparisons of DNA-ITS-region sequences of the investigated strains with GenBank data showed no differences between H. minnesotensis isolates from the nematodes Heterodera glycines Ichinohe and from tarsonemid mites (authors' isolate). A fragment of ITS 2 with the sequence characteristic only for H. minnesotensis was selected. Two cluster analyses indicated close similarity of this species to H. thompsonii as sister clades, but the latter appeared more heterogenous. Insect and mite pathogenic species H. nodulosa localizes close to specialized aphid pathogen H. aphidis, whereas the phytophagous mite pathogens H. kirchneri and H. gregis form a separate sister clade. Hirsutella rostrata does not show remarkable relations to the establishment of aforementioned groups. Interrelated considerations on the morphology, biology and DNA sequencing of investigated Hirsutella species state their identification more precisely and facilitate the establishment of systematic positions.
Ian, Elena; Zhao, Xin C.; Lande, Andreas; Berg, Bente G.
2016-01-01
To explore fundamental principles characterizing chemosensory information processing, we have identified antennal-lobe projection neurons in the heliothine moth, including several neuron types not previously described. Generally, odor information is conveyed from the primary olfactory center of the moth brain, the antennal lobe, to higher brain centers via projection neuron axons passing along several parallel pathways, of which the medial, mediolateral, and lateral antennal-lobe tract are considered the classical ones. Recent data have revealed the projections of the individual tracts more in detail demonstrating three main target regions in the protocerebrum; the calyces are innervated mainly by the medial tract, the superior intermediate protocerebrum by the lateral tract exclusively, and the lateral horn by all tracts. In the present study, we have identified, via iontophoretic intracellular staining combined with confocal microscopy, individual projection neurons confined to the tracts mentioned above, plus two additional ones. Further, using the visualization software AMIRA, we reconstructed the stained neurons and registered the models into a standard brain atlas, which allowed us to compare the termination areas of individual projection neurons both across and within distinct tracts. The data demonstrate a morphological diversity of the projection neurons within distinct tracts. Comparison of the output areas of the neurons confined to the three main tracts in the lateral horn showed overlapping terminal regions for the medial and mediolateral tracts; the lateral tract neurons, on the contrary, targeted mostly other output areas in the protocerebrum. PMID:27822181
Response of Adult Lymantriid Moths to Illumination Devices in the Russian Far East
William E. Wallner; Lee M. Humble; Robert E. Levin; Yuri N. Baranchikov; Ring T. Carde; Ring T. Carde
1995-01-01
In field studies in the Russian Far East, five types of illuminating devices were evaluated for attracting adult gypsy moth, Lymantria dispar (L.), pink gypsy moth, L. mathura Moore, and nun moth, L. monacha (L.). Our objective was to determine if light from commercial lamps suited to out-of-doors floodlighting could be modified to reduce their attractiveness to moths...
T.M. Withers; M.A. Keena
2001-01-01
The lymantriid forest defoliators, Lymantria monacha L. (nun moth) and Lymantria dispar L. (gypsy moth) are particularly severe pests in other countries in the world, but the ability of these moths to utilise and complete development on Pinus radiata D. Don had never been established. In laboratory trials, colonies of central European L. monacha and Russian far east (...
Kang, Chang-ku; Moon, Jong-yeol; Lee, Sang-im; Jablonski, Piotr G.
2013-01-01
Many moths have wing patterns that resemble bark of trees on which they rest. The wing patterns help moths to become camouflaged and to avoid predation because the moths are able to assume specific body orientations that produce a very good match between the pattern on the bark and the pattern on the wings. Furthermore, after landing on a bark moths are able to perceive stimuli that correlate with their crypticity and are able to re-position their bodies to new more cryptic locations and body orientations. However, the proximate mechanisms, i.e. how a moth finds an appropriate resting position and orientation, are poorly studied. Here, we used a geometrid moth Jankowskia fuscaria to examine i) whether a choice of resting orientation by moths depends on the properties of natural background, and ii) what sensory cues moths use. We studied moths’ behavior on natural (a tree log) and artificial backgrounds, each of which was designed to mimic one of the hypothetical cues that moths may perceive on a tree trunk (visual pattern, directional furrow structure, and curvature). We found that moths mainly used structural cues from the background when choosing their resting position and orientation. Our findings highlight the possibility that moths use information from one type of sensory modality (structure of furrows is probably detected through tactile channel) to achieve crypticity in another sensory modality (visual). This study extends our knowledge of how behavior, sensory systems and morphology of animals interact to produce crypsis. PMID:24205118
The simple ears of noctuoid moths are tuned to the calls of their sympatric bat community.
ter Hofstede, Hannah M; Goerlitz, Holger R; Ratcliffe, John M; Holderied, Marc W; Surlykke, Annemarie
2013-11-01
Insects with bat-detecting ears are ideal animals for investigating sensory system adaptations to predator cues. Noctuid moths have two auditory receptors (A1 and A2) sensitive to the ultrasonic echolocation calls of insectivorous bats. Larger moths are detected at greater distances by bats than smaller moths. Larger moths also have lower A1 best thresholds, allowing them to detect bats at greater distances and possibly compensating for their increased conspicuousness. Interestingly, the sound frequency at the lowest threshold is lower in larger than in smaller moths, suggesting that the relationship between threshold and size might vary across frequencies used by different bat species. Here, we demonstrate that the relationships between threshold and size in moths were only significant at some frequencies, and these frequencies differed between three locations (UK, Canada and Denmark). The relationships were more likely to be significant at call frequencies used by proportionately more bat species in the moths' specific bat community, suggesting an association between the tuning of moth ears and the cues provided by sympatric predators. Additionally, we found that the best threshold and best frequency of the less sensitive A2 receptor are also related to size, and that these relationships hold when controlling for evolutionary relationships. The slopes of best threshold versus size differ, however, such that the difference in threshold between A1 and A2 is greater for larger than for smaller moths. The shorter time from A1 to A2 excitation in smaller than in larger moths could potentially compensate for shorter absolute detection distances in smaller moths.
Mullen, M A.; Dowdy, A K.
2001-07-01
A pheromone-baited trap was developed to monitor the Indian meal moth in grocery stores and similar areas where visible traps are not desirable. The trap can be used under shelves and against walls. As a shelf mount, the trap is in close proximity to the food packages and may capture emerging insects before they mate. The trap can also be used as a hanging trap similar to the Pherocon II. When used as a shelf or wall mount, it was as effective as the Pherocon II, but when used as a hanging trap significantly fewer insects were captured.
Evaluation of pheromone-baited traps for winter moth and Bruce spanworm (Lepidoptera: Geometridae).
Elkinton, Joseph S; Lance, David; Boettner, George; Khrimian, Ashot; Leva, Natalie
2011-04-01
We tested different pheromone-baited traps for surveying winter moth, Operophtera brumata (L.) (Lepidoptera: Geometridae), populations in eastern North America. We compared male catch at Pherocon 1C sticky traps with various large capacity traps and showed that Universal Moth traps with white bottoms caught more winter moths than any other trap type. We ran the experiment on Cape Cod, MA, where we caught only winter moth, and in western Massachusetts, where we caught only Bruce spanworm, Operophtera bruceata (Hulst) (Lepidoptera: Geometridae), a congener of winter moth native to North America that uses the same pheromone compound [(Z,Z,Z)-1,3,6,9-nonadecatetraene] and is difficult to distinguish from adult male winter moths. With Bruce spanworm, the Pherocon 1C sticky traps caught by far the most moths. We tested an isomer of the pheromone [(E,Z,Z)-1,3,6,9-nonadecatetraene] that previous work had suggested would inhibit captures of Bruce spanworm but not winter moths. We found that the different doses and placements of the isomer suppressed captures of both species to a similar degree. We are thus doubtful that we can use the isomer to trap winter moths without also catching Bruce spanworm. Pheromone-baited survey traps will catch both species.
75 FR 41073 - South American Cactus Moth Regulations; Quarantined Areas
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-15
...) that is indigenous to Argentina, southern Brazil, Paraguay, and Uruguay. It is a serious quarantine... notice to the owner, person in possession, or person responsible for the management of the land to be...
Pheromone production, male abundance, body size, and the evolution of elaborate antennae in moths
Symonds, Matthew RE; Johnson, Tamara L; Elgar, Mark A
2012-01-01
The males of some species of moths possess elaborate feathery antennae. It is widely assumed that these striking morphological features have evolved through selection for males with greater sensitivity to the female sex pheromone, which is typically released in minute quantities. Accordingly, females of species in which males have elaborate (i.e., pectinate, bipectinate, or quadripectinate) antennae should produce the smallest quantities of pheromone. Alternatively, antennal morphology may be associated with the chemical properties of the pheromone components, with elaborate antennae being associated with pheromones that diffuse more quickly (i.e., have lower molecular weights). Finally, antennal morphology may reflect population structure, with low population abundance selecting for higher sensitivity and hence more elaborate antennae. We conducted a phylogenetic comparative analysis to test these explanations using pheromone chemical data and trapping data for 152 moth species. Elaborate antennae are associated with larger body size (longer forewing length), which suggests a biological cost that smaller moth species cannot bear. Body size is also positively correlated with pheromone titre and negatively correlated with population abundance (estimated by male abundance). Removing the effects of body size revealed no association between the shape of antennae and either pheromone titre, male abundance, or mean molecular weight of the pheromone components. However, among species with elaborate antennae, longer antennae were typically associated with lower male abundances and pheromone compounds with lower molecular weight, suggesting that male distribution and a more rapidly diffusing female sex pheromone may influence the size but not the general shape of male antennae. PMID:22408739
Juric, I; Salzburger, W; Balmer, O
2017-04-01
The diamondback moth (DBM) (Plutella xylostella) is one of the main pests of brassicaceous crops worldwide and shows resistance against a wide range of synthetic insecticides incurring millions of dollars in control costs every year. The DBM is a prime example of the introduction of an exotic species as a consequence of globalization. In this study we analyzed the genetic population structure of the DBM and two of its parasitic wasps, Diadegma semiclausum and Diadegma fenestrale, based on mitochondrial DNA sequences. We analyzed DBM samples from 13 regions worldwide (n = 278), and samples of the two wasp species from six European and African countries (n = 131), in an attempt to reconstruct the geographic origin and phylogeography of the DBM and its two parasitic wasps. We found high variability in COI sequences in the diamondback moth. Haplotype analysis showed three distinct genetic clusters, one of which could represent a cryptic species. Mismatch analysis confirmed the hypothesized recent spread of diamondback moths in North America, Australia and New Zealand. The highest genetic variability was found in African DBM samples. Our data corroborate prior claims of Africa as the most probable origin of the species but cannot preclude Asia as an alternative. No genetic variability was found in the two Diadegma species. The lack of variability in both wasp species suggests a very recent spread of bottlenecked populations, possibly facilitated by their use as biocontrol agents. Our data thus also contain no signals of host-parasitoid co-evolution.
Shedding light on moths: shorter wavelengths attract noctuids more than geometrids
Somers-Yeates, Robin; Hodgson, David; McGregor, Peter K.; Spalding, Adrian; ffrench-Constant, Richard H.
2013-01-01
With moth declines reported across Europe, and parallel changes in the amount and spectra of street lighting, it is important to understand exactly how artificial lights affect moth populations. We therefore compared the relative attractiveness of shorter wavelength (SW) and longer wavelength (LW) lighting to macromoths. SW light attracted significantly more individuals and species of moth, either when used alone or in competition with LW lighting. We also found striking differences in the relative attractiveness of different wavelengths to different moth groups. SW lighting attracted significantly more Noctuidae than LW, whereas both wavelengths were equally attractive to Geometridae. Understanding the extent to which different groups of moth are attracted to different wavelengths of light will be useful in determining the impact of artificial light on moth populations. PMID:23720524
Population Explosions of Tiger Moth Lead to Lepidopterism Mimicking Infectious Fever Outbreaks
Wills, Pallara Janardhanan; Anjana, Mohan; Nitin, Mohan; Varun, Raghuveeran; Sachidanandan, Parayil; Jacob, Tharaniyil Mani; Lilly, Madhavan; Thampan, Raghava Varman; Karthikeya Varma, Koyikkal
2016-01-01
Lepidopterism is a disease caused by the urticating scales and toxic fluids of adult moths, butterflies or its caterpillars. The resulting cutaneous eruptions and systemic problems progress to clinical complications sometimes leading to death. High incidence of fever epidemics were associated with massive outbreaks of tiger moth Asota caricae adult populations during monsoon in Kerala, India. A significant number of monsoon related fever characteristic to lepidopterism was erroneously treated as infectious fevers due to lookalike symptoms. To diagnose tiger moth lepidopterism, we conducted immunoblots for tiger moth specific IgE in fever patients’ sera. We selected a cohort of patients (n = 155) with hallmark symptoms of infectious fevers but were tested negative to infectious fevers. In these cases, the total IgE was elevated and was detected positive (78.6%) for tiger moth specific IgE allergens. Chemical characterization of caterpillar and adult moth fluids was performed by HPLC and GC-MS analysis and structural identification of moth scales was performed by SEM analysis. The body fluids and chitinous scales were found to be highly toxic and inflammatory in nature. To replicate the disease in experimental model, wistar rats were exposed to live tiger moths in a dose dependant manner and observed similar clinico-pathological complications reported during the fever epidemics. Further, to link larval abundance and fever epidemics we conducted cointegration test for the period 2009 to 2012 and physical presence of the tiger moths were found to be cointegrated with fever epidemics. In conclusion, our experiments demonstrate that inhalation of aerosols containing tiger moth fluids, scales and hairs cause systemic reactions that can be fatal to human. All these evidences points to the possible involvement of tiger moth disease as a major cause to the massive and fatal fever epidemics observed in Kerala. PMID:27073878
Boyd E. Wickman
1988-01-01
Twenty-year postoutbreak growth was compared in thinned and unthinned, severely defoliated stands. Basal area of unthinned white fir has declined 37 percent and pine basal area has increased 32 percent since 1964. The stand thinned in 1960 has the lowest basal area in the study area, but the greatest tree growth before and after the outbreak. All defoliated fir are...
Innate preference and learning of colour in the male cotton bollworm moth, Helicoverpa armigera.
Satoh, Aya; Kinoshita, Michiyo; Arikawa, Kentaro
2016-12-15
We investigated colour discrimination and learning in adult males of the nocturnal cotton bollworm moth, Helicoverpa armigera, under a dim light condition. The naive moths preferred blue and discriminated the innately preferred blue from several shades of grey, indicating that the moths have colour vision. After being trained for 2 days to take nectar at a yellow disc, an innately non-preferred colour, moths learned to select yellow over blue. The choice distribution between yellow and blue changed significantly from that of naive moths. However, the dual-choice distribution of the trained moths was not significantly biased to yellow: the preference for blue is robust. We also tried to train moths to grey, which was not successful. The limited ability to learn colours suggests that H armigera may not strongly rely on colours when searching for flowers in the field, although they have the basic property of colour vision. © 2016. Published by The Company of Biologists Ltd.
Microbial monitoring by molecular tools of an upflow anaerobic filter treating abattoir wastewaters.
Gannoun, Hana; Khelifi, Eltaief; Omri, Ilhem; Jabari, Linda; Fardeau, Marie-Laure; Bouallagui, Hassib; Godon, Jean-Jacques; Hamdi, Moktar
2013-08-01
The performance of anaerobic digestion of abattoir wastewaters (AW) in an upflow anaerobic filter (UAF) was investigated under mesophilic (37°C) and thermophilic (55°C) conditions. The effects of increasing temperature on the performance of the UAF and on the dynamics of the microbial community of the anaerobic sludge were studied. The results showed that chemical oxygen demand (COD) removal efficiency of 90% was achieved for organic loading rates (OLRs) up to 4.5g CODL(-1)d(-1) in mesophilic conditions, while in thermophilic conditions, the highest OLRs of 9 g CODL(-1)d(-1) led to the efficiency of 72%. The use of molecular and microbiological methods to recover microbial populations involved in this process showed that fermentative bacteria were the prominent members of the sludge microbial community. Three novel strains were identified as Macellibacteroides fermentans, Desulfotomaculum peckii and Defluviitalea saccharophila. Copyright © 2013 Elsevier Ltd. All rights reserved.
Goyret, Joaquín; Kelber, Almut
2012-01-01
Most visual systems are more sensitive to luminance than to colour signals. Animals resolve finer spatial detail and temporal changes through achromatic signals than through chromatic ones. Probably, this explains that detection of small, distant, or moving objects is typically mediated through achromatic signals. Macroglossum stellatarum are fast flying nectarivorous hawkmoths that inspect flowers with their long proboscis while hovering. They can visually control this behaviour using floral markings known as nectar guides. Here, we investigate whether this is mediated by chromatic or achromatic cues. We evaluated proboscis placement, foraging efficiency, and inspection learning of naïve moths foraging on flower models with coloured markings that offered either chromatic, achromatic or both contrasts. Hummingbird hawkmoths could use either achromatic or chromatic signals to inspect models while hovering. We identified three, apparently independent, components controlling proboscis placement: After initial contact, 1) moths directed their probing towards the yellow colour irrespectively of luminance signals, suggesting a dominant role of chromatic signals; and 2) moths tended to probe mainly on the brighter areas of models that offered only achromatic signals. 3) During the establishment of the first contact, naïve moths showed a tendency to direct their proboscis towards the small floral marks independent of their colour or luminance. Moths learned to find nectar faster, but their foraging efficiency depended on the flower model they foraged on. Our results imply that M. stellatarum can perceive small patterns through colour vision. We discuss how the different informational contents of chromatic and luminance signals can be significant for the control of flower inspection, and visually guided behaviours in general.
An aerial-hawking bat uses stealth echolocation to counter moth hearing.
Goerlitz, Holger R; ter Hofstede, Hannah M; Zeale, Matt R K; Jones, Gareth; Holderied, Marc W
2010-09-14
Ears evolved in many nocturnal insects, including some moths, to detect bat echolocation calls and evade capture [1, 2]. Although there is evidence that some bats emit echolocation calls that are inconspicuous to eared moths, it is difficult to determine whether this was an adaptation to moth hearing or originally evolved for a different purpose [2, 3]. Aerial-hawking bats generally emit high-amplitude echolocation calls to maximize detection range [4, 5]. Here we present the first example of an echolocation counterstrategy to overcome prey hearing at the cost of reduced detection distance. We combined comparative bat flight-path tracking and moth neurophysiology with fecal DNA analysis to show that the barbastelle, Barbastella barbastellus, emits calls that are 10 to 100 times lower in amplitude than those of other aerial-hawking bats, remains undetected by moths until close, and captures mainly eared moths. Model calculations demonstrate that only bats emitting such low-amplitude calls hear moth echoes before their calls are conspicuous to moths. This stealth echolocation allows the barbastelle to exploit food resources that are difficult to catch for other aerial-hawking bats emitting calls of greater amplitude. Copyright © 2010 Elsevier Ltd. All rights reserved.
Moth tails divert bat attack: evolution of acoustic deflection.
Barber, Jesse R; Leavell, Brian C; Keener, Adam L; Breinholt, Jesse W; Chadwell, Brad A; McClure, Christopher J W; Hill, Geena M; Kawahara, Akito Y
2015-03-03
Adaptations to divert the attacks of visually guided predators have evolved repeatedly in animals. Using high-speed infrared videography, we show that luna moths (Actias luna) generate an acoustic diversion with spinning hindwing tails to deflect echolocating bat attacks away from their body and toward these nonessential appendages. We pit luna moths against big brown bats (Eptesicus fuscus) and demonstrate a survival advantage of ∼ 47% for moths with tails versus those that had their tails removed. The benefit of hindwing tails is equivalent to the advantage conferred to moths by bat-detecting ears. Moth tails lured bat attacks to these wing regions during 55% of interactions between bats and intact luna moths. We analyzed flight kinematics of moths with and without hindwing tails and suggest that tails have a minimal role in flight performance. Using a robust phylogeny, we find that long spatulate tails have independently evolved four times in saturniid moths, further supporting the selective advantage of this anti-bat strategy. Diversionary tactics are perhaps more common than appreciated in predator-prey interactions. Our finding suggests that focusing on the sensory ecologies of key predators will reveal such countermeasures in prey.
A Gene for an Extended Phenotype
K. Hoover; M. Grove; M. Gardner; D. P. Hughes; J. McNeil; J. Slavicek
2011-01-01
Manipulation of host behavior by parasites and pathogens has been widely observed, but the basis for these behaviors has remained elusive. Gypsy moths infected by a baculovirus climb to the top of trees to die, liquefy, and "rain" virus on the foliage below to infect new hosts. The viral gene that manipulates climbing behavior of the host was identified,...
What causes male-biased sex ratios in the gypsy moth parasitoid Glyptapanteles flavicoxis?
R. W. Fuester; K. S. Swan; G. Ramaseshiah
2007-01-01
Glyptapanteles flavicoxis (Marsh) is an oligophagous, gregarious larval parasitoid of the Indian gypsy moth, Lymantria obfuscata (Walker), that readily attacks the European gypsy moth, Lymantria dispar (L.). This species is believed to have potential for inundative releases against gypsy moth populations, because...
Kaasch, Michael; Kaasch, Joachim
Two of the most important life scientists in the GDR were the botanist, plant biochemist and pharmacist Kurt MOTHES (1900-1983) and the geneticist and plant breeder Hans STUBBE (1902-1989). Both started their successful careers during the period of NS dictatorship. MOTHES was a full professor of botany at the University of K6nigsberg from 1935 to 1945. After working at the Kaiser Wilhelm Institute for Plant Breeding Research in Mincheberg and at the Kaiser Wilhelm Institute for Biology in Berlin-Dahlem, STUBBE oversaw the establishment of a Kaiser Wilhelm Institute for Crop Plant Research near Vienna in 1943, which was moved to Stecklenberg in the Harz Mountains in 1945 and later to Gatersleben. While MOTHEs was being held as a Soviet prisoner of war from 1945 to 1949, STUBBE was able to set up his institute in Gatersleben in the eastern part of Germany and held influential positions at Martin Luther University in Halle (Saale) as a professor for genetics and as the founding dean of the Faculty of Agriculture. After his release from war captivity, MOTHES, with STUBBE'S support, was able to continue his research at STUBBE'S institute in Gatersleben as the head of the Department for Chemical Physiology. There MOTHES was offered espe- cially favourable conditions by East German standards which led him to turn down other job offers, like the position of professor of botany at the University of Leipzig which was vacant at the time. In addition, MOTHES was also of- fered teaching opportunities in the Faculty of Natural Sciences at the University of Halle, again thanks to STUBBE'S support. In 1951 STUBBE became a founding member and president of the German Academy of Agricultural Sciences at Berlin, and in 1954 MOTHEs became president of the German Academy of Sciences Leopoldina. Both were also influential members of the German Academy of Sciences at Berlin (later the GDR's Academy of Sciences). This article investigates how their collaboration developed into an ever-increasing competitiveness which came to a head as an embroiled dispute resulting from differences in scientific and scientific policy views. In the process a battle was fought over research resources so that, what was at first an apparently personal quarrel, affected the course of research promotion at an institutional level in the area of life sciences in the GDR. Despite several attempts at mediation, old age finally forced the adversaries to put aside their differences.
Species conservation profile of moths (Insecta, Lepidoptera) from Azores, Portugal
Pérez Santa-Rita, Jose V.; Nunes, Rui; Danielczak, Anja; Hochkirch, Axel; Amorim, Isabel R.; Lamelas-Lopez, Lucas; Karsholt, Ole; Vieira, Virgílio
2018-01-01
Abstract Background The few remnants of Azorean native forests harbour a unique set of endemic moths (Insecta, Lepidoptera), some of them under severe long term threats due to small sized habitats or climatic changes. In this contribution, we present the IUCN Red List profiles of 34 endemic moths to the Azorean archipelago, including species belonging to two diverse families: Noctuidae (11 species) and Crambidae (eight species). The objective of this paper is to assess all endemic Azorean moth species and advise on possible future research and conservation actions critical for the long-trem survival of the most endangered species. New information Most species have a large distribution (i.e. 58% occur in at least four islands), very large extent of occurrence (EOO) and a relatively large area of occupancy (AOO). Only nine species are single-island endemics, three of them from Flores, three from São Miguel and one from Pico, São Jorge and Faial. Most of the species also experience continuing decline in habitat quality, number of locations and subpopulations caused by the ongoing threat from pasture intensification, forestry, invasive plant species and future climatic changes. The lack of new records may indicate that one of the species previously named is extinct (Eupithecia ogilviata). Therefore, we suggest as future conservation actions: (1) a long-term species monitoring plan and (2) control of invasive species. PMID:29706789
Species conservation profile of moths (Insecta, Lepidoptera) from Azores, Portugal.
Borges, Paulo A V; Pérez Santa-Rita, Jose V; Nunes, Rui; Danielczak, Anja; Hochkirch, Axel; Amorim, Isabel R; Lamelas-Lopez, Lucas; Karsholt, Ole; Vieira, Virgílio
2018-01-01
The few remnants of Azorean native forests harbour a unique set of endemic moths (Insecta, Lepidoptera), some of them under severe long term threats due to small sized habitats or climatic changes. In this contribution, we present the IUCN Red List profiles of 34 endemic moths to the Azorean archipelago, including species belonging to two diverse families: Noctuidae (11 species) and Crambidae (eight species). The objective of this paper is to assess all endemic Azorean moth species and advise on possible future research and conservation actions critical for the long-trem survival of the most endangered species. Most species have a large distribution (i.e. 58% occur in at least four islands), very large extent of occurrence (EOO) and a relatively large area of occupancy (AOO). Only nine species are single-island endemics, three of them from Flores, three from São Miguel and one from Pico, São Jorge and Faial. Most of the species also experience continuing decline in habitat quality, number of locations and subpopulations caused by the ongoing threat from pasture intensification, forestry, invasive plant species and future climatic changes. The lack of new records may indicate that one of the species previously named is extinct ( Eupithecia ogilviata ). Therefore, we suggest as future conservation actions: (1) a long-term species monitoring plan and (2) control of invasive species.
A diversity of moths (Lepidoptera) trapped with two feeding attractants
USDA-ARS?s Scientific Manuscript database
Feeding attractants for moths are useful as survey tools to assess moth species diversity, and for monitoring of the relative abundance of certain pest species. We assessed the relative breadth of attractiveness of two such lures to moths, at sites with varied habitats during 2006. Eighty-six of the...
Darwell, C T; Fox, K A; Althoff, D M
2014-12-01
There is ample evidence that host shifts in plant-feeding insects have been instrumental in generating the enormous diversity of insects. Changes in host use can cause host-associated differentiation (HAD) among populations that may lead to reproductive isolation and eventual speciation. The importance of geography in facilitating this process remains controversial. We examined the geographic context of HAD in the wide-ranging generalist yucca moth Prodoxus decipiens. Previous work demonstrated HAD among sympatric moth populations feeding on two different Yucca species occurring on the barrier islands of North Carolina, USA. We assessed the genetic structure of P. decipiens across its entire geographic and host range to determine whether HAD is widespread in this generalist herbivore. Population genetic analyses of microsatellite and mtDNA sequence data across the entire range showed genetic structuring with respect to host use and geography. In particular, genetic differentiation was relatively strong between mainland populations and those on the barrier islands of North Carolina. Finer scale analyses, however, among sympatric populations using different host plant species only showed significant clustering based on host use for populations on the barrier islands. Mainland populations did not form population clusters based on host plant use. Reduced genetic diversity in the barrier island populations, especially on the derived host, suggests that founder effects may have been instrumental in facilitating HAD. In general, results suggest that the interplay of local adaptation, geography and demography can determine the tempo of HAD. We argue that future studies should include comprehensive surveys across a wide range of environmental and geographic conditions to elucidate the contribution of various processes to HAD. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Caripito itch: dermatitis from contact with Hylesia moths.
Dinehart, S M; Archer, M E; Wolf, J E; McGavran, M H; Reitz, C; Smith, E B
1985-11-01
Caripito itch, a pruritic dermatosis rarely seen in the United States, is caused by contact with moths of the genus Hylesia--specifically, with urticating abdominal hairs of the adult female moth. The purpose of this study was to investigate an outbreak of Caripito itch that occurred in thirty-four of thirty-five crew members of a British oil tanker who were exposed to Hylesia moths at the port of Caripito, Venezuela. Methods of investigation included general history and physical examination of all crew members, complete inspection of the ship, transparent-tape slide preparations from involved skin, cutaneous histopathologic studies, and entomologic examination of the moths. The patients had a typical papulourticarial eruption, primarily on exposed surfaces. Although Hylesia moths do not occur in the United States, primary care physicians and dermatologists, especially those located in port cities, should be aware of cutaneous lepidopterism caused by Hylesia moths.
7 CFR 301.45-10 - Movement of live gypsy moths.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 5 2010-01-01 2010-01-01 false Movement of live gypsy moths. 301.45-10 Section 301.45... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Gypsy Moth § 301.45-10 Movement of live gypsy moths. Regulations requiring a permit for, and otherwise governing the movement of, live...
Ratcliffe, John M; Fullard, James H; Arthur, Benjamin J; Hoy, Ronald R
2009-06-23
Echolocating bats and eared moths are a model system of predator-prey interaction within an almost exclusively auditory world. Through selective pressures from aerial-hawking bats, noctuoid moths have evolved simple ears that contain one to two auditory neurons and function to detect bat echolocation calls and initiate defensive flight behaviours. Among these moths, some chemically defended and mimetic tiger moths also produce ultrasonic clicks in response to bat echolocation calls; these defensive signals are effective warning signals and may interfere with bats' ability to process echoic information. Here, we demonstrate that the activity of a single auditory neuron (the A1 cell) provides sufficient information for the toxic dogbane tiger moth, Cycnia tenera, to decide when to initiate defensive sound production in the face of bats. Thus, despite previous suggestions to the contrary, these moths' only other auditory neuron, the less sensitive A2 cell, is not necessary for initiating sound production. However, we found a positive linear relationship between combined A1 and A2 activity and the number of clicks the dogbane tiger moth produces.
Light brown apple moth in California: a diversity of host plants and indigenous parasitoids.
Wang, Xin-Geng; Levy, Karmit; Mills, Nicholas J; Daane, Kent M
2012-02-01
The light brown apple moth, Epiphyas postvittana (Walker), an Australia native tortricid, was found in California in 2006. A field survey of host plants used by E. postvittana was conducted in an urban region of the San Francisco Bay Area. An inspection of 152 plant species (66 families), within a 23-ha residential community, found E. postvittana on 75 species (36 families). Most (69 species) host plants were not Australian natives, but had a wide geographic origin; 34 species were new host records for E. postvittana. Heavily infested species were the ornamental shrubs Myrtus communis L., Pittosporum tobira (Thunb.) W.T. Aiton, Euonymus japonicus Thunb., and Sollya heterophylla Lindl. To survey for parasitoids, four urban locations were sampled, with E. postvittana collected from five commonly infested plants [M. communis, P. tobira, E. japonicus, Rosmarinus officinalis L., and Genista monspessulana (L.) L.A.S. Johnson]. Twelve primary parasitoid species and two hyperparasitoids were reared; the most common were the egg parasitoid Trichogramma fasciatum (Perkins), the larval parasitoids Meteorus ictericus Nees, and Enytus eureka (Ashmead), and the pupal parasitoid Pediobius ni Peck. Meteorus ictericus accounted for >80% of the larval parasitoids, and was recovered from larvae collected on 39 plant species. Across all samples, mean parasitism was 84.4% for eggs, 43.6% for larvae, and 57.5% for pupae. The results are discussed with respect to the potential for resident parasitoid species to suppress E. postvittana populations.
The Australian Bogong Moth Agrotis infusa: A Long-Distance Nocturnal Navigator
Warrant, Eric; Frost, Barrie; Green, Ken; Mouritsen, Henrik; Dreyer, David; Adden, Andrea; Brauburger, Kristina; Heinze, Stanley
2016-01-01
The nocturnal Bogong moth (Agrotis infusa) is an iconic and well-known Australian insect that is also a remarkable nocturnal navigator. Like the Monarch butterflies of North America, Bogong moths make a yearly migration over enormous distances, from southern Queensland, western and northwestern New South Wales (NSW) and western Victoria, to the alpine regions of NSW and Victoria. After emerging from their pupae in early spring, adult Bogong moths embark on a long nocturnal journey towards the Australian Alps, a journey that can take many days or even weeks and cover over 1000 km. Once in the Alps (from the end of September), Bogong moths seek out the shelter of selected and isolated high ridge-top caves and rock crevices (typically at elevations above 1800 m). In hundreds of thousands, moths line the interior walls of these cool alpine caves where they “hibernate” over the summer months (referred to as “estivation”). Towards the end of the summer (February and March), the same individuals that arrived months earlier leave the caves and begin their long return trip to their breeding grounds. Once there, moths mate, lay eggs and die. The moths that hatch in the following spring then repeat the migratory cycle afresh. Despite having had no previous experience of the migratory route, these moths find their way to the Alps and locate their estivation caves that are dotted along the high alpine ridges of southeastern Australia. How naïve moths manage this remarkable migratory feat still remains a mystery, although there are many potential sensory cues along the migratory route that moths might rely on during their journey, including visual, olfactory, mechanical and magnetic cues. Here we review our current knowledge of the Bogong moth, including its natural history, its ecology, its cultural importance to the Australian Aborigines and what we understand about the sensory basis of its long-distance nocturnal migration. From this analysis it becomes clear that the Bogong moth represents a new and very promising model organism for understanding the sensory basis of nocturnal migration in insects. PMID:27147998
Krasnoshchekov, Iu N; Beskorovaĭnaia, I N
2008-01-01
The results of experimental studies on the contribution of zoogenic debris to transformation of soil properties in the southern taiga subzone of Central Siberia are analyzed. They show that water-soluble carbon outflow from the forest litter increases by 21-26% upon a Siberian moth invasion, with this value decreasing to 14% one year later. The burning of forest in an area completely defoliated by the pest leads to changes in the stock, fractional composition, actual acidity, and ash element contents of the litter. The litter-dwelling invertebrate assemblage is almost completely destroyed by fire and begins to recover only after two years.
40 CFR 180.1218 - Indian Meal Moth Granulosis Virus; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Indian Meal Moth Granulosis Virus... RESIDUES IN FOOD Exemptions From Tolerances § 180.1218 Indian Meal Moth Granulosis Virus; exemption from... residues of the microbial pesticide Indian Meal Moth Granulosis Virus when used in or on all food...
40 CFR 180.1218 - Indian Meal Moth Granulosis Virus; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Indian Meal Moth Granulosis Virus... RESIDUES IN FOOD Exemptions From Tolerances § 180.1218 Indian Meal Moth Granulosis Virus; exemption from... residues of the microbial pesticide Indian Meal Moth Granulosis Virus when used in or on all food...
40 CFR 180.1218 - Indian Meal Moth Granulosis Virus; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Indian Meal Moth Granulosis Virus... RESIDUES IN FOOD Exemptions From Tolerances § 180.1218 Indian Meal Moth Granulosis Virus; exemption from... residues of the microbial pesticide Indian Meal Moth Granulosis Virus when used in or on all food...
40 CFR 180.1218 - Indian Meal Moth Granulosis Virus; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Indian Meal Moth Granulosis Virus... RESIDUES IN FOOD Exemptions From Tolerances § 180.1218 Indian Meal Moth Granulosis Virus; exemption from... residues of the microbial pesticide Indian Meal Moth Granulosis Virus when used in or on all food...
40 CFR 180.1218 - Indian Meal Moth Granulosis Virus; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Indian Meal Moth Granulosis Virus... RESIDUES IN FOOD Exemptions From Tolerances § 180.1218 Indian Meal Moth Granulosis Virus; exemption from... residues of the microbial pesticide Indian Meal Moth Granulosis Virus when used in or on all food...
Multi-year evaluation of mating disruption treatments against gypsy moth
Patrick C. Tobin; Kevin W. Thorpe; Laura M. Blackburn
2007-01-01
Mating disruption is the use of synthetic pheromone flakes that are aerially applied to foliage with the goal of interfering with male gypsy moths? ability to locate females and mate. Mating disruption is the primary tactic against gypsy moth used in the Gypsy Moth Slow-the-Spread Project (STS) [Tobin et al. 2004. Amer. Entomol. 50:200].
Huang, Daihong; Zhang, Zhenguo; Chen, Guoping; Li, Houhun; Shi, Fuchen
2015-03-01
The floral scent plays the important key role in maintaining the obligate pollination mutualism between Glochidion plants and Epicephala moths. In the study, the dynamic headspace adsorption technique was employed to collect the floral scent emitted by Glochidion puberum, gas chromatography coupled with mass spectrometry (GC-MS) was used for the detection and identification of volatile chemical components in headspace samples of flowers from G. puberum. The peak area normalization was used to determine the relative contents of each odour component. The results showed that 45 compounds mainly consisting of monoterpenes and sesquiterpenes were isolated from the floral scent produced by G. puberum. Especially, both linalool (38.06%) and β-elemene (23.84%) were considered as the major scent components of G. puberum. It was speculated that linalool and β-elemene may be the two potential compounds attracting female Epicephala moths. The study provided the basic data for further electroantennographic detection and bioassays to identify the compounds having the actual physiological activity to female Epicephala moths.
The Vanishing Shakespeare: A Report by the American Council of Trustees and Alumni
ERIC Educational Resources Information Center
Neal, Anne D.; Mitchell, Charles
2007-01-01
As this report goes to press, the nation's capital is in the midst of a six-moth, city-wide celebration of William Shakespeare. With this celebration as a backdrop, the American Council of Trustees and Alumni (ACTA) researched how Shakespeare fits into English curricula at 70 of the nation's leading colleges and universities. ACTA surveyed English…
Hawkmoth flight stability in turbulent vortex streets.
Ortega-Jimenez, Victor Manuel; Greeter, Jeremy S M; Mittal, Rajat; Hedrick, Tyson L
2013-12-15
Shedding of vortices is a common phenomenon in the atmosphere over a wide range of spatial and temporal scales. However, it is unclear how these vortices of varying scales affect the flight performance of flying animals. In order to examine these interactions, we trained seven hawkmoths (Manduca sexta) (wingspan ~9 cm) to fly and feed in a wind tunnel under steady flow (controls) and in the von Kármán vortex street of vertically oriented cylinders (two different cylinders with diameters of 10 and 5 cm) at speeds of 0.5, 1 and 2 m s(-1). Cylinders were placed at distances of 5, 25 and 100 cm upstream of the moths. Moths exhibited large amplitude yaw oscillations coupled with modest oscillations in roll and pitch, and slight increases in wingbeat frequency when flying in both the near (recirculating) and middle (vortex dominated) wake regions. Wingbeat amplitude did not vary among treatments, except at 1 m s(-1) for the large cylinder. Yaw and roll oscillations were synchronized with the vortex shedding frequencies in moths flying in the wake of the large cylinder at all speeds. In contrast, yaw and pitch were synchronized with the shedding frequency of small vortices at speeds ≤1 m s(-1). Oscillations in body orientation were also substantially smaller in the small cylinder treatment when compared with the large cylinder, regardless of temporal or non-dimensional spatial scale. Moths flying in steady conditions reached a higher air speed than those flying into cylinder wakes. In general, flight effects produced by the cylinder wakes were qualitatively similar among the recirculating and vortex-dominated wake regions; the magnitude of those effects, however, declined gradually with downstream distance.
Correlation between fibroin amino acid sequence and physical silk properties.
Fedic, Robert; Zurovec, Michal; Sehnal, Frantisek
2003-09-12
The fiber properties of lepidopteran silk depend on the amino acid repeats that interact during H-fibroin polymerization. The aim of our research was to relate repeat composition to insect biology and fiber strength. Representative regions of the H-fibroin genes were sequenced and analyzed in three pyralid species: wax moth (Galleria mellonella), European flour moth (Ephestia kuehniella), and Indian meal moth (Plodia interpunctella). The amino acid repeats are species-specific, evidently a diversification of an ancestral region of 43 residues, and include three types of regularly dispersed motifs: modifications of GSSAASAA sequence, stretches of tripeptides GXZ where X and Z represent bulky residues, and sequences similar to PVIVIEE. No concatenations of GX dipeptide or alanine, which are typical for Bombyx silkworms and Antheraea silk moths, respectively, were found. Despite different repeat structure, the silks of G. mellonella and E. kuehniella exhibit similar tensile strength as the Bombyx and Antheraea silks. We suggest that in these latter two species, variations in the repeat length obstruct repeat alignment, but sufficiently long stretches of iterated residues get superposed to interact. In the pyralid H-fibroins, interactions of the widely separated and diverse motifs depend on the precision of repeat matching; silk is strong in G. mellonella and E. kuehniella, with 2-3 types of long homogeneous repeats, and nearly 10 times weaker in P. interpunctella, with seven types of shorter erratic repeats. The high proportion of large amino acids in the H-fibroin of pyralids has probably evolved in connection with the spinning habit of caterpillars that live in protective silk tubes and spin continuously, enlarging the tubes on one end and partly devouring the other one. The silk serves as a depot of energetically rich and essential amino acids that may be scarce in the diet.
A kairomone based attract-and-kill system effective against alfalfa looper (Lepidoptera: Noctuidae).
Camelo, Leonardo de A; Landolt, Peter J; Zack, Richard S
2007-04-01
A chemical lure derived from flowers that are visited by moths attracts male and female alfalfa loopers, Autographa californica (Speyer) (Lepidoptera: Noctuidae). This feeding attractant is dispensed from polypropylene bottles that provide controlled release for several weeks. A killing station was tested in the laboratory, in a screenhouse, and in the field in combination with this lure as an "attract-and-kill" system. Starved alfalfa looper adults (moths) were strongly attracted to the attract-and-kill station in a flight tunnel, and 90.9% of female moths and 87.6% of male moths that contacted the station died. In commercial fields of alfalfa hay, female moths captured in monitoring traps were reduced by 80-93% in plots receiving 125 attract-and-kill stations per hectare. In screenhouse trials using two attract-and-kill stations per screenhouse, oviposition on potted lettuce plants by starved female alfalfa looper moths was reduced by 98.5%. Moths were less likely to be attracted to lures when provided sugar before flight tunnel assays, and oviposition by fed moths was much less affected by attract-and-kill stations in screenhouse trials, compared with starved moths. This method has potential as a means to manage alfalfa looper populations in vegetable and other agricultural crops. However, consideration must be given to competing food and odor sources in the field.
The potential for trichogramma releases to suppress tip moth populations in pine plantations
David B. Orr; Charles P.-C Suh; Michael Philip; Kenneth W. McCravy; Gary L. DeBarr
1999-01-01
Because the Nantucket pine tip moth is a native pest, augmentation (mass-release) of native natural enemies may be the most promising method of tip moth biocontrol. The tip moth has several important egg, larval, and pupal parasitoids. Egg parasitoids are most effective as biocontrol agents because they eliminate the host before it reaches a damaging stage....
K.J. Garner; J.M. Slavicek
1996-01-01
The recent introduction of the Asian gypsy moth (Lymantria dispar L.) into North America has necessitated the development of genetic markers to distinguish Asian moths from the established North American population, which originated in Europe. We used RAPD-PCR to identify a DNA length polymorphism that is diagnostic for the two moth strains. The...
Effect of nucleopolyhedrosis virus on two avian predators of the gypsy moth
J. D. Podgwaite; P. R. Galipeau
1978-01-01
The nucleopolyhedrosis virus (NPV) of the gypsy moth was fed to black-capped chickadees and house sparrows in the form of NPV-infected gypsy moth larvae. Body weight and results of histological examination of organs of treated and control birds indicated that NPV had no apparent short term effect on these two important predators of the gypsy moth.
DNA analysis of the origins of winter moth in New England
Joseph Elkinton; Rodger Gwiazdowski; Marinko Sremac; Roy Hunkins; George. Boettner
2011-01-01
Elkinton et al recently completed a survey of northeastern North America for the newly invasive winter moth, Operophtera brumata L. The survey used traps baited with the winter moth pheromone, which, as far as it is known, consists of a single compound that is also used by Bruce spanworm, the North American congener of winter moth, O....
Patrick C. Tobin; Laura M. Blackburn
2008-01-01
Gypsy moth (Lymantria dispar L.) spread is dominated by stratified dispersal, and, although spread rates are variable in space and time, the gypsy moth has invaded Wisconsin at a consistently higher rate than in other regions. Allee effects, which act on low-density populations ahead of the moving population that contribute to gypsy moth spread, have...
Gypsy moth role in forest ecosystems: the good, the bad, and the indifferent
Rose-Marie Muzika; Kurt W. Gottschalk
1995-01-01
Despite a century of attempts to control populations of the gypsy moth, it remains one of the most destructive forest pests introduced to North America. Research has yielded valuable, albeit sometimes conflicting information about the effects of gypsy moth on forests. Anecdotal accounts and scientific data indicate that impacts of gypsy moth defoliation can range from...
Marinko Sremac; Joseph Elkinton; Adam Porter
2011-01-01
Elkinton et. al. recently completed a survey of northeastern North America for the newly invasive winter moth, Operophtera brumata L. The survey used traps baited with the winter moth pheromone, which consists of a single compound also used by Bruce spanworm, O. bruceata (Hulst), the North American congener of winter moth. Our...
Cherry Scallop Shell Moth Pest Alert
John Omer; Debra Allen-Reid
1996-01-01
The cherry scallop shell moth, Hydria prunivorata (Ferguson) is a defoliator of black cherry, and occasional other native cherries throughout its range in eastern North America. The moth?s name is derived from the pattern of alternating dark and light scalloped lines on the wings. The adults which emerge from late May to early August, have a wingspread of about 37mm....
USDA-ARS?s Scientific Manuscript database
Grape berry moth pheromone lures from four manufacturers, Alpha Scents, Inc. (West Linn, OR), ISCA Technologies (Riverside, CA), Suterra (Bend, OR), and Trécé, Inc. (Adair, OK), were evaluated for purity and efficacy of attracting grape berry moth and a non-target torticid moth in vineyards. The pe...
Pollination by nocturnal Lepidoptera, and the effects of light pollution: a review.
MacGregor, Callum J; Pocock, Michael J O; Fox, Richard; Evans, Darren M
2015-06-01
1. Moths (Lepidoptera) are the major nocturnal pollinators of flowers. However, their importance and contribution to the provision of pollination ecosystem services may have been under-appreciated. Evidence was identified that moths are important pollinators of a diverse range of plant species in diverse ecosystems across the world. 2. Moth populations are known to be undergoing significant declines in several European countries. Among the potential drivers of this decline is increasing light pollution. The known and possible effects of artificial night lighting upon moths were reviewed, and suggest how artificial night lighting might in turn affect the provision of pollination by moths. The need for studies of the effects of artificial night lighting upon whole communities of moths was highlighted. 3. An ecological network approach is one valuable method to consider the effects of artificial night lighting upon the provision of pollination by moths, as it provides useful insights into ecosystem functioning and stability, and may help elucidate the indirect effects of artificial light upon communities of moths and the plants they pollinate. 4. It was concluded that nocturnal pollination is an ecosystem process that may potentially be disrupted by increasing light pollution, although the nature of this disruption remains to be tested.
Effects of Invasive Winter Moth Defoliation on Tree Radial Growth in Eastern Massachusetts, USA
Simmons, Michael J.; Lee, Thomas D.; Ducey, Mark J.; Elkinton, Joseph S.; Boettner, George H.; Dodds, Kevin J.
2014-01-01
Winter moth, Operophtera brumata L. (Lepidoptera: Geometridae), has been defoliating hardwood trees in eastern Massachusetts since the 1990s. Native to Europe, winter moth has also been detected in Rhode Island, Connecticut, eastern Long Island (NY), New Hampshire, and Maine. Individual tree impacts of winter moth defoliation in New England are currently unknown. Using dendroecological techniques, this study related annual radial growth of individual host (Quercus spp. and Acer spp.) trees to detailed defoliation estimates. Winter moth defoliation was associated with up to a 47% reduction in annual radial growth of Quercus trees. Latewood production of Quercus was reduced by up to 67% in the same year as defoliation, while earlywood production was reduced by up to 24% in the year following defoliation. Winter moth defoliation was not a strong predictor of radial growth in Acer species. This study is the first to document impacts of novel invasions of winter moth into New England. PMID:26462685
Haghighat-Khah, Roya Elaine; Scaife, Sarah; Martins, Sara; St John, Oliver; Matzen, Kelly Jean; Morrison, Neil; Alphey, Luke
2015-01-01
Genetically engineered insects are being evaluated as potential tools to decrease the economic and public health burden of mosquitoes and agricultural pest insects. Here we describe a new tool for the reliable and targeted genome manipulation of pest insects for research and field release using recombinase mediated cassette exchange (RMCE) mechanisms. We successfully demonstrated the established ΦC31-RMCE method in the yellow fever mosquito, Aedes aegypti, which is the first report of RMCE in mosquitoes. A new variant of this RMCE system, called iRMCE, combines the ΦC31-att integration system and Cre or FLP-mediated excision to remove extraneous sequences introduced as part of the site-specific integration process. Complete iRMCE was achieved in two important insect pests, Aedes aegypti and the diamondback moth, Plutella xylostella, demonstrating the transferability of the system across a wide phylogenetic range of insect pests. PMID:25830287
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.; Ryan, Robert E.; Smoot, James; Kuper, Phillip; Prados, Donald; Russell, Jeffrey; Ross, Kenton; Gasser, Gerald; Sader, Steven; McKellip, Rodney
2007-01-01
This report details one of three experiments performed during FY 2007 for the NASA RPC (Rapid Prototyping Capability) at Stennis Space Center. This RPC experiment assesses the potential of VIIRS (Visible/Infrared Imager/Radiometer Suite) and MODIS (Moderate Resolution Imaging Spectroradiometer) data for detecting and monitoring forest defoliation from the non-native Eurasian gypsy moth (Lymantria dispar). The intent of the RPC experiment was to assess the degree to which VIIRS data can provide forest disturbance monitoring information as an input to a forest threat EWS (Early Warning System) as compared to the level of information that can be obtained from MODIS data. The USDA Forest Service (USFS) plans to use MODIS products for generating broad-scaled, regional monitoring products as input to an EWS for forest health threat assessment. NASA SSC is helping the USFS to evaluate and integrate currently available satellite remote sensing technologies and data products for the EWS, including the use of MODIS products for regional monitoring of forest disturbance. Gypsy moth defoliation of the mid-Appalachian highland region was selected as a case study. Gypsy moth is one of eight major forest insect threats listed in the Healthy Forest Restoration Act (HFRA) of 2003; the gypsy moth threatens eastern U.S. hardwood forests, which are also a concern highlighted in the HFRA of 2003. This region was selected for the project because extensive gypsy moth defoliation occurred there over multiple years during the MODIS operational period. This RPC experiment is relevant to several nationally important mapping applications, including agricultural efficiency, coastal management, ecological forecasting, disaster management, and carbon management. In this experiment, MODIS data and VIIRS data simulated from MODIS were assessed for their ability to contribute broad, regional geospatial information on gypsy moth defoliation. Landsat and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) data were used to assess the quality of gypsy moth defoliation mapping products derived from MODIS data and from simulated VIIRS data. The project focused on use of data from MODIS Terra as opposed to MODIS Aqua mainly because only MODIS Terra data was collected during 2000 and 2001-years with comparatively high amounts of gypsy moth defoliation within the study area. The project assessed the quality of VIIRS data simulation products. Hyperion data was employed to assess the quality of MODIS-based VIIRS simulation datasets using image correlation analysis techniques. The ART (Application Research Toolbox) software was used for data simulation. Correlation analysis between MODIS-simulated VIIRS data and Hyperion-simulated VIIRS data for red, NIR (near-infrared), and NDVI (Normalized Difference Vegetation Index) image data products collectively indicate that useful, effective VIIRS simulations can be produced using Hyperion and MODIS data sources. The r(exp 2) for red, NIR, and NDVI products were 0.56, 0.63, and 0.62, respectively, indicating a moderately high correlation between the 2 data sources. Temporal decorrelation from different data acquisition times and image misregistration may have lowered correlation results. The RPC experiment also generated MODIS-based time series data products using the TSPT (Time Series Product Tool) software. Time series of simulated VIIRS NDVI products were produced at approximately 400-meter resolution GSD (Ground Sampling Distance) at nadir for comparison to MODIS NDVI products at either 250- or 500-meter GSD. The project also computed MODIS (MOD02) NDMI (Normalized Difference Moisture Index) products at 500-meter GSD for comparison to NDVI-based products. For each year during 2000-2006, MODIS and VIIRS (simulated from MOD02) time series were computed during the peak gypsy moth defoliation time frame in the study area (approximately June 10 through July 27). Gypsy moth defoliation mapping products from simated VIIRS and MOD02 time series were produced using multiple methods, including image classification and change detection via image differencing. The latter enabled an automated defoliation detection product computed using percent change in maximum NDVI for a peak defoliation period during 2001 compared to maximum NDVI across the entire 2000-2006 time frame. Final gypsy moth defoliation mapping products were assessed for accuracy using randomly sampled locations found on available geospatial reference data (Landsat and ASTER data in conjunction with defoliation map data from the USFS). Extensive gypsy moth defoliation patches were evident on screen displays of multitemporal color composites derived from MODIS data and from simulated VIIRS vegetation index data. Such defoliation was particularly evident for 2001, although widespread denuded forests were also seen for 2000 and 2003. These visualizations were validated using aforementioned reference data. Defoliation patches were visible on displays of MODIS-based NDVI and NDMI data. The viewing of apparent defoliation patches on all of these products necessitated adoption of a specialized temporal data processing method (e.g., maximum NDVI during the peak defoliation time frame). The frequency of cloud cover necessitated this approach. Multitemporal simulated VIIRS and MODIS Terra data both produced effective general classifications of defoliated forest versus other land cover. For 2001, the MOD02-simulated VIIRS 400-meter NDVI classification produced a similar yet slightly lower overall accuracy (87.28 percent with 0.72 Kappa) than the MOD02 250-meter NDVI classification (88.44 percent with 0.75 Kappa). The MOD13 250-meter NDVI classification had a lower overall accuracy (79.13 percent) and a much lower Kappa (0.46). The report discusses accuracy assessment results in much more detail, comparing overall classification and individual class accuracy statistics for simulated VIIRS 400-meter NDVI, MOD02 250-meter NDVI, MOD02-500 meter NDVI, MOD13 250-meter NDVI, and MOD02 500-meter NDMI classifications. Automated defoliation detection products from simulated VIIRS and MOD02 data for 2001 also yielded similar, relatively high overall classification accuracy (85.55 percent for the VIIRS 400-meter NDVI versus 87.28 percent for the MOD02 250-meter NDVI). In contrast, the USFS aerial sketch map of gypsy moth defoliation showed a lower overall classification accuracy at 73.64 percent. The overall classification Kappa values were also similar for the VIIRS (approximately 0.67 Kappa) versus the MOD02 (approximately 0.72 Kappa) automated defoliation detection product, which were much higher than the values exhibited by the USFS sketch map product (overall Kappa of approximately 0.47). The report provides additional details on the accuracy of automated gypsy moth defoliation detection products compared with USFS sketch maps. The results suggest that VIIRS data can be effectively simulated from MODIS data and that VIIRS data will produce gypsy moth defoliation mapping products that are similar to MODIS-based products. The results of the RPC experiment indicate that VIIRS and MODIS data products have good potential for integration into the forest threat EWS. The accuracy assessment was performed only for 2001 because of time constraints and a relative scarcity of cloud-free Landsat and ASTER data for the peak defoliation period of the other years in the 2000-2006 time series. Additional work should be performed to assess the accuracy of gypsy moth defoliation detection products for additional years.The study area (mid-Appalachian highlands) and application (gypsy moth forest defoliation) are not necessarily representative of all forested regions and of all forest threat disturbance agents. Additional work should be performed on other inland and coastal regions as well as for other major forest threats.
Dwight Scarbrough; Jennifer Juzwik
2004-01-01
Various native and exotic insects and diseases affect the forest ecosystems of the Hoosier-Shawnee Ecological Assessment Area. Defoliating insects have had the greatest effects in forests where oak species predominate. Increases in oak decline are expected with the imminent establishment of the European gypsy moth. Insects and pathogens of the pine forests are...
USDA-ARS?s Scientific Manuscript database
New geographic records are reported for the noctuid moth Hecatera dysodea (Denis & Schiffermuller). It is a Paleartic species, but is now found in a broadly contiguous area of Oregon and Washington in the United States. This area is comprised of 7 counties across much of the north of Oregon and into...
Joseph Elkinton; Natalie Leva; George Boettner; Roy Hunkins; Marinko. Sremac
2011-01-01
Elkinton et al. recently completed a survey of northeastern North America for the newly invasive winter moth, Operophtera brumata L. The survey used traps baited with the winter moth pheromone, which, as far as it is known, consists of a single compound that is also used by Bruce spanworm, the North American congener of winter moth, O....
Kinetics and methane gas yields of selected C1 to C5 organic acids in anaerobic digestion.
Yang, Yu; Chen, Qian; Guo, Jialiang; Hu, Zhiqiang
2015-12-15
Volatile fatty acids (VFAs) and other short-chain organic acids such as lactic and pyruvic acids are intermediates in anaerobic organic degradation. In this study, anaerobic degradation of seven organic acids in salt form was investigated, including formate (C1), acetate (C2), propionate (C3), pyruvate (C3), lactate (C3), butyrate (C4), and valerate (C5). Microbial growth kinetics on these organic acids were determined individually at 37 °C through batch anaerobic digestion tests by varying substrate concentrations from 250 to 4000 mg COD/L. The cumulative methane generation volume was determined real-time by respirometry coupled with gas chromatographic analysis while methane yield and related kinetics were calculated. The methane gas yields (fe, mg CH4 COD/mg substrate COD) from anaerobic degradation of formate, acetate, propionate, pyruvate, lactate, butyrate, and valerate were 0.44 ± 0.27, 0.58 ± 0.05, 0.53 ± 0.18, 0.24 ± 0.05, 0.17 ± 0.05, 0.43 ± 0.15, 0.49 ± 0.11, respectively. Anaerobic degradation of formate showed self-substrate inhibition at the concentrations above 3250 mg COD/L. Acetate, propionate, pyruvate, butyrate, lactate, and valerate did not inhibit methane production at the highest concentrations tested (i.e., 4000 mg COD/L). Microbes growing on acetate had the highest overall specific growth rate (0.30 d(-1)) in methane production. For comparison, the specific microbial growth rates on formate, propionate, pyruvate, butyrate, lactate, and valerate for methane production were 0.10, 0.06, 0.08, 0.07, 0.05, 0.15 d(-1), respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kim, Hyun-Woo; Shin, Hang-Sik; Han, Sun-Kee; Oh, Sae-Eun
2007-03-01
This study investigated the effects of food waste constituents on thermophilic (55 degrees C) anaerobic codigestion of sewage sludge and food waste by using statistical techniques based on biochemical methane potential tests. Various combinations of grain, vegetable, and meat as cosubstrate were tested, and then the data of methane potential (MP), methane production rate (MPR), and first-order kinetic constant of hydrolysis (kH) were collected for further analyses. Response surface methodology by the Box-Behnken design can verify the effects and their interactions of three variables on responses efficiently. MP was mainly affected by grain, whereas MPR and kH were affected by both vegetable and meat. Estimated polynomial regression models can properly explain the variability of experimental data with a high-adjusted R2 of 0.727, 0.836, and 0.915, respectively. By applying a series of optimization techniques, it was possible to find the proper criteria of cosubstrate. The optimal cosubstrate region was suggested based on overlay contours of overall mean responses. With the desirability contour plots, it was found that optimal conditions of cosubstrate for the maximum MPR (56.6 mL of CH4/g of chemical oxygen demand [COD]/day) were 0.71 g of COD/L of grain, 0.18 g of COD/L of vegetable, and 0.38 g of COD/L of meat by the simultaneous consideration of MP, MPR, and kH. Within the range of each factor examined, the corresponding optimal ratio of sewage sludge to cosubstrate was 71:29 as the COD basis. Elaborate discussions could yield practical operational strategies for the enhanced thermophilic anaerobic codigestion of sewage sludge and food waste.
Sarto i Monteys, Víctor; Acín, Patricia; Rosell, Glòria; Quero, Carmen; Jiménez, Miquel A; Guerrero, Angel
2012-01-01
In the course of evolution butterflies and moths developed two different reproductive behaviors. Whereas butterflies rely on visual stimuli for mate location, moths use the 'female calling plus male seduction' system, in which females release long-range sex pheromones to attract conspecific males. There are few exceptions from this pattern but in all cases known female moths possess sex pheromone glands which apparently have been lost in female butterflies. In the day-flying moth family Castniidae ("butterfly-moths"), which includes some important crop pests, no pheromones have been found so far. Using a multidisciplinary approach we described the steps involved in the courtship of P. archon, showing that visual cues are the only ones used for mate location; showed that the morphology and fine structure of the antennae of this moth are strikingly similar to those of butterflies, with male sensilla apparently not suited to detect female-released long range pheromones; showed that its females lack pheromone-producing glands, and identified three compounds as putative male sex pheromone (MSP) components of P. archon, released from the proximal halves of male forewings and hindwings. This study provides evidence for the first time in Lepidoptera that females of a moth do not produce any pheromone to attract males, and that mate location is achieved only visually by patrolling males, which may release a pheromone at short distance, putatively a mixture of Z,E-farnesal, E,E-farnesal, and (E,Z)-2,13-octadecadienol. The outlined behavior, long thought to be unique to butterflies, is likely to be widespread in Castniidae implying a novel, unparalleled butterfly-like reproductive behavior in moths. This will also have practical implications in applied entomology since it signifies that the monitoring/control of castniid pests should not be based on the use of female-produced pheromones, as it is usually done in many moths.
Empirical tests of the role of disruptive coloration in reducing detectability
Fraser, Stewart; Callahan, Alison; Klassen, Dana; Sherratt, Thomas N
2007-01-01
Disruptive patterning is a potentially universal camouflage technique that is thought to enhance concealment by rendering the detection of body shapes more difficult. In a recent series of field experiments, artificial moths with markings that extended to the edges of their ‘wings’ survived at higher rates than moths with the same edge patterns inwardly displaced. While this result seemingly indicates a benefit to obscuring edges, it is possible that the higher density markings of the inwardly displaced patterns concomitantly reduced their extent of background matching. Likewise, it has been suggested that the mealworm baits placed on the artificial moths could have created differential contrasts with different moth patterns. To address these concerns, we conducted controlled trials in which human subjects searched for computer-generated moth images presented against images of oak trees. Moths with edge-extended disruptive markings survived at higher rates, and took longer to find, than all other moth types, whether presented sequentially or simultaneously. However, moths with no edge markings and reduced interior pattern density survived better than their high-density counterparts, indicating that background matching may have played a so-far unrecognized role in the earlier experiments. Our disruptively patterned non-background-matching moths also had the lowest overall survivorship, indicating that disruptive coloration alone may not provide significant protection from predators. Collectively, our results provide independent support for the survival value of disruptive markings and demonstrate that there are common features in human and avian perception of camouflage. PMID:17360282
RNA Interference in Moths: Mechanisms, Applications, and Progress
Xu, Jin; Wang, Xia-Fei; Chen, Peng; Liu, Fang-Tao; Zheng, Shuai-Chao; Ye, Hui; Mo, Ming-He
2016-01-01
The vast majority of lepidopterans, about 90%, are moths. Some moths, particularly their caterpillars, are major agricultural and forestry pests in many parts of the world. However, some other members of moths, such as the silkworm Bombyx mori, are famous for their economic value. Fire et al. in 1998 initially found that exogenous double-stranded RNA (dsRNA) can silence the homolog endogenous mRNA in organisms, which is called RNA interference (RNAi). Soon after, the RNAi technique proved to be very promising not only in gene function determination but also in pest control. However, later studies demonstrate that performing RNAi in moths is not as straightforward as shown in other insect taxa. Nevertheless, since 2007, especially after 2010, an increasing number of reports have been published that describe successful RNAi experiments in different moth species either on gene function analysis or on pest management exploration. So far, more than 100 peer-reviewed papers have reported successful RNAi experiments in moths, covering 10 families and 25 species. By using classic and novel dsRNA delivery methods, these studies effectively silence the expression of various target genes and determine their function in larval development, reproduction, immunology, resistance against chemicals, and other biological processes. In addition, a number of laboratory and field trials have demonstrated that RNAi is also a potential strategy for moth pest management. In this review, therefore, we summarize and discuss the mechanisms and applications of the RNAi technique in moths by focusing on recent progresses. PMID:27775569
Sex stimulant and attractant in the Indian meal moth and in the almond moth.
Brady, U E; Tumlinson, J H; Brownlee, R G; Silverstein, R M
1971-02-26
cis-9, trans-12-Tetradecadien-1-yl acetate was isolated from the female Indian meal moth, Plodia interpunctella (Hübner), and the female almond moth, Cadra cautella (Walker). It is the major if not the sole component of the sex stimulatory and attractant pheromone of female Plodia. It is present in the pheromone of the female Cadra along with at least one synergist.
Flight duration and flight muscle ultrastructure of unfed hawk moths.
Wone, Bernard W M; Pathak, Jaika; Davidowitz, Goggy
2018-06-13
Flight muscle breakdown has been reported for many orders of insects, but the basis of this breakdown in insects with lifelong dependence on flight is less clear. Lepidopterans show such muscle changes across their lifespans, yet how this change affects the ability of these insects to complete their life cycles is not well documented. We investigated the changes in muscle function and ultrastructure of unfed aging adult hawk moths (Manduca sexta). Flight duration was examined in young, middle-aged, and advanced-aged unfed moths. After measurement of flight duration, the main flight muscle (dorsolongitudinal muscle) was collected and histologically prepared for transmission electron microscopy to compare several measurements of muscle ultrastructure among moths of different ages. Muscle function assays revealed significant positive correlations between muscle ultrastructure and flight distance that were greatest in middle-aged moths and least in young moths. In addition, changes in flight muscle ultrastructure were detected across treatment groups. The number of mitochondria in muscle cells peaked in middle-aged moths. Many wild M. sexta do not feed as adults; thus, understanding the changes in flight capacity and muscle ultrastructure in unfed moths provides a more complete understanding of the ecophysiology and resource allocation strategies of this species. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tympanal mechanics and neural responses in the ears of a noctuid moth
NASA Astrophysics Data System (ADS)
Ter Hofstede, Hannah M.; Goerlitz, Holger R.; Montealegre-Z, Fernando; Robert, Daniel; Holderied, Marc W.
2011-12-01
Ears evolved in many groups of moths to detect the echolocation calls of predatory bats. Although the neurophysiology of bat detection has been intensively studied in moths for decades, the relationship between sound-induced movement of the noctuid tympanic membrane and action potentials in the auditory sensory cells (A1 and A2) has received little attention. Using laser Doppler vibrometry, we measured the velocity and displacement of the tympanum in response to pure tone pulses for moths that were intact or prepared for neural recording. When recording from the auditory nerve, the displacement of the tympanum at the neural threshold remained constant across frequencies, whereas velocity varied with frequency. This suggests that the key biophysical parameter for triggering action potentials in the sensory cells of noctuid moths is tympanum displacement, not velocity. The validity of studies on the neurophysiology of moth hearing rests on the assumption that the dissection and recording procedures do not affect the biomechanics of the ear. There were no consistent differences in tympanal velocity or displacement when moths were intact or prepared for neural recordings for sound levels close to neural threshold, indicating that this and other neurophysiological studies provide good estimates of what intact moths hear at threshold.
Pollination by nocturnal Lepidoptera, and the effects of light pollution: a review
MacGregor, Callum J; Pocock, Michael J O; Fox, Richard; Evans, Darren M
2015-01-01
1. Moths (Lepidoptera) are the major nocturnal pollinators of flowers. However, their importance and contribution to the provision of pollination ecosystem services may have been under-appreciated. Evidence was identified that moths are important pollinators of a diverse range of plant species in diverse ecosystems across the world. 2. Moth populations are known to be undergoing significant declines in several European countries. Among the potential drivers of this decline is increasing light pollution. The known and possible effects of artificial night lighting upon moths were reviewed, and suggest how artificial night lighting might in turn affect the provision of pollination by moths. The need for studies of the effects of artificial night lighting upon whole communities of moths was highlighted. 3. An ecological network approach is one valuable method to consider the effects of artificial night lighting upon the provision of pollination by moths, as it provides useful insights into ecosystem functioning and stability, and may help elucidate the indirect effects of artificial light upon communities of moths and the plants they pollinate. 4. It was concluded that nocturnal pollination is an ecosystem process that may potentially be disrupted by increasing light pollution, although the nature of this disruption remains to be tested. PMID:25914438
50 CFR 660.60 - Specifications and management measures.
Code of Federal Regulations, 2011 CFR
2011-10-01
... land more fish than allowed under the new trip limit. This means that, unless otherwise announced in...; Pacific whiting; lingcod; Pacific cod; spiny dogfish; cabezon in Oregon and California and “other fish” as..., California scorpionfish, leopard shark, soupfin shark, finescale codling, Pacific rattail (grenadier...
USDA-ARS?s Scientific Manuscript database
BACKGROUND: Insect cytochrome P450 monooxygenases (CYPs or P450s) play an important role in detoxifying insecticides leading to resistance in insect populations. A polyphagous pest, Spodoptera litura (Lepidoptera, Noctuidae) has been shown to be resistant to a wide range of insecticides. In this stu...
Janke, Leandro; Leite, Athaydes F; Batista, Karla; Silva, Witan; Nikolausz, Marcell; Nelles, Michael; Stinner, Walter
2016-10-01
In this study, the effects of nitrogen, phosphate and trace elements supplementation were investigated in a semi-continuously operated upflow anaerobic sludge blanket system to enhance process stability and biogas production from sugarcane vinasse. Phosphate in form of KH2PO4 induced volatile fatty acids accumulation possibly due to potassium inhibition of the methanogenesis. Although nitrogen in form of urea increased the reactor's alkalinity, the process was overloaded with an organic loading rate of 6.1gCODL(-1)d(-1) and a hydraulic retention time of 3.6days. However, by supplementing urea and trace elements a stable operation even at an organic loading rate of 9.6gCODL(-1)d(-1) and a hydraulic retention time of 2.5days was possible, resulting in 79% higher methane production rate with a stable specific methane production of 239mLgCOD(-1). Copyright © 2016 Elsevier Ltd. All rights reserved.
Batch anaerobic digestion of synthetic military base food waste and cardboard mixtures.
Asato, Caitlin M; Gonzalez-Estrella, Jorge; Jerke, Amber C; Bang, Sookie S; Stone, James J; Gilcrease, Patrick C
2016-09-01
Austere US military bases typically dispose of solid wastes, including large fractions of food waste (FW) and corrugated cardboard (CCB), by open dumping, landfilling, or burning. Anaerobic digestion (AD) offers an opportunity to reduce pollution and recover useful energy. This study aimed to evaluate the rates and yields of AD for FW-CCB mixtures. Batch AD was analyzed at substrate concentrations of 1-50g total chemical oxygen demand (COD)L(-1) using response surface methodology. At low concentrations, higher proportions of FW were correlated with faster specific methanogenic activities and greater final methane yields; however, concentrations of FW ⩾18.75gCODL(-1) caused inhibition. Digestion of mixtures with ⩾75% CCB occurred slowly but achieved methane yields >70%. Greater shifts in microbial communities were observed at higher substrate concentrations. Statistical models of methane yield and specific methanogenic activity indicated that FW and CCB exhibited no considerable interactions as substrates for AD. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chan, Yi Jing; Chong, Mei Fong; Law, Chung Lim
2012-12-01
Thermophilic treatment of palm oil mill effluent (POME) was studied in a novel integrated anaerobic-aerobic bioreactor (IAAB). The IAAB was subjected to a program of steady-state operation over a range of organic loading rate (OLR)s, up to 30 g COD/L day in order to evaluate its treatment capacity. The thermophilic IAAB achieved high chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) removal efficiencies of more than 99% for OLR up to 18.5 g COD/L day. High methane yield of 0.32 LCH(4) (STP)/g COD(removed) with compliance of the final treated effluent to the discharge limit were achieved. This is higher than that of the mesophilic system due to the higher maximum specific growth rate (μ(max)) of the thermophilic microorganisms. Besides, coupling the model of Grau second order model (anaerobic system) with the model of Monod (aerobic system) will completely define the IAAB system. Copyright © 2012 Elsevier Ltd. All rights reserved.
Proceedings, U. S. Department of Agriculture interagency gypsy moth research review 1990
Kurt W. Gottschalk; Mark J. Twery; Shirley I. Smith; [Editors
1991-01-01
Eight invited papers and 68 abstracts of volunteer presentations on gypsy moth biology, ecology, impacts, and management presented at the U. S. Department of Agriculture Interagency Gypsy Moth Research Review.
Photographic guide to crown condition of oaks: use for gypsy moth silviculture
Kurt W. Gottschalk; Russ W. MacFarlane
1993-01-01
Color photographs as guides to assessing crown condition of oaks are provided. Use of crown condition for gypsy moth vulnerability rating and silvicultural treatments to minimize gypsy moth impacts are presented.
Wessman, F G; Yan Yuegen, E; Zheng, Q; He, G; Welander, T; Rusten, B
2004-01-01
The Kaldnes biomedia K1, which is used in the patented Kaldnes Moving Bed biofilm process, has been tested along with other types of biofilm carriers for biological pretreatment of a complex chemical industry wastewater. The main objective of the test was to find a biofilm carrier that could replace the existing suspended carrier media and at the same time increase the capacity of the existing roughing filter-activated sludge plant by 20% or more. At volumetric organic loads of 7.1 kg COD/m3/d the Kaldnes Moving Bed process achieved much higher removal rates and much lower effluent concentrations than roughing filters using other carriers. The Kaldnes roughing stage achieved more than 85% removal of organic carbon and more than 90% removal of BOD5 at the tested organic load, which was equivalent to a specific biofilm surface area load of 24 g COD/m2/d. Even for the combined roughing filter-activated sludge process, the Kaldnes carriers outperformed the other carriers, with 98% removal of organic carbon and 99.6% removal of BOD5. The Kaldnes train final effluent concentrations were only 22 mg FOC/L and 7 mg BOD5/L. Based on the successful pilot testing, the full-scale plant was upgraded with Kaldnes Moving Bed roughing filters. During normal operation the upgraded plant has easily met the discharge limits of 100 mg COD/L and 50 mg SS/L. For the month of September 2002, with organic loads between 100 and 115% of the design load for the second half of the month, average effluent concentrations were as low as 9 mg FOC/L, 51 mg COD/L and 12 mg SS/L.
C. Wayne Berisford; Donald M. Grosman; [Editors
2002-01-01
The Nantucket pine tip moth, Rhyacionia frustrana (Comstock) has become a more prevalent pest in the South as pine plantation management has intensified. The Pine Tip Moth Research Consortium was formed in 1995 to increase basic knowledge about the moth and to explore ways to reduce damage. A conference was held in 1999 at the Entomological Society...
Caterpillars and moths: Part I. Dermatologic manifestations of encounters with Lepidoptera.
Hossler, Eric W
2010-01-01
Caterpillars are the larval forms of moths and butterflies and belong to the order Lepidoptera. Caterpillars, and occasionally moths, have evolved defense mechanisms, including irritating hairs, spines, venoms, and toxins that may cause human disease. The pathologic mechanisms underlying reactions to Lepidoptera are poorly understood. Lepidoptera are uncommonly recognized causes of localized stings, eczematous or papular dermatitis, and urticaria. Part I of this two-part series on caterpillars and moths reviews Lepidopteran life cycles, terminology, and the epidemiology of caterpillar and moth envenomation. It also reviews the known pathomechanisms of disease caused by Lepidopteran exposures and how they relate to diagnosis and management. Part II discusses the specific clinical patterns caused by Lepidopteran exposures, with particular emphasis on groups of caterpillars and moths that cause a similar pattern of disease. It also discusses current therapeutic options regarding each pattern of disease.
A plant factory for moth pheromone production
Ding, Bao-Jian; Hofvander, Per; Wang, Hong-Lei; Durrett, Timothy P.; Stymne, Sten; Löfstedt, Christer
2014-01-01
Moths depend on pheromone communication for mate finding and synthetic pheromones are used for monitoring or disruption of pheromone communication in pest insects. Here we produce moth sex pheromone, using Nicotiana benthamiana as a plant factory, by transient expression of up to four genes coding for consecutive biosynthetic steps. We specifically produce multicomponent sex pheromones for two species. The fatty alcohol fractions from the genetically modified plants are acetylated to mimic the respective sex pheromones of the small ermine moths Yponomeuta evonymella and Y. padella. These mixtures are very efficient and specific for trapping of male moths, matching the activity of conventionally produced pheromones. Our long-term vision is to design tailor-made production of any moth pheromone component in genetically modified plants. Such semisynthetic preparation of sex pheromones is a novel and cost-effective way of producing moderate to large quantities of pheromones with high purity and a minimum of hazardous waste. PMID:24569486
Patrick C. Tobin; Ksenia S. Onufrieva; Kevin W. Thorpe
2012-01-01
The successful establishment of non-native species in new areas can be affected by many factors including the initial size of the founder population. Populations comprised of fewer individuals tend to be subject to stochastic forces and Allee effects (positive-density dependence), which can challenge the ability of small founder populations to establish in a new area....
Furukawa, Saori; Kawakita, Atsushi
2017-08-01
Mutualisms are interactions from which both partners benefit but may collapse if mutualists' costs and benefits are not aligned. Host sanctions are one mechanism whereby hosts selectively allocate resources to the more cooperative partners and thereby reduce the fitness of overexploiters; however, many mutualisms lack apparent means of host sanctions. In mutualisms between plants and pollinating seed parasites, such as those between leafflowers and leafflower moths, pollinators consume subsets of the seeds as larval food in return for their pollination service. Plants may select against overexploiters by selectively aborting flowers with a heavy egg load, but in many leafflower species, seeds are fully eaten in some fruits, suggesting that such a mechanism is not present in all species. Instead, the fruits of Breynia vitis-idaea have stalk-like structures (gynophore) through which early-instar moth larvae must bore to reach seeds. Examination of moth mortality in fruits with different gynophore lengths suggested that fruits with longer gynophore had higher moth mortality and, therefore, less seed damage. Most moth mortality occurred at the egg stage or as early larval instar before moths reached the seeds, consistent with the view that gynophore functions to prevent moth access to seeds. Gynophore length was unaffected by plant size, extent of moth oviposition, or geography; thus, it is most likely genetically controlled. Because gynophores do not elongate in related species whose pollinators oviposit directly into the ovary, the gynophore in B. vitis-idaea may have evolved as a defense to limit the cost of the mutualism.
Staudacher, Heike; Kaltenpoth, Martin; Breeuwer, Johannes A. J.; Menken, Steph B. J.; Heckel, David G.; Groot, Astrid T.
2016-01-01
Microbes associated with insects can confer a wide range of ecologically relevant benefits to their hosts. Since insect-associated bacteria often increase the nutritive value of their hosts' diets, the study of bacterial communities is especially interesting in species that are important agricultural pests. We investigated the composition of bacterial communities in the noctuid moth Heliothis virescens and its variability in relation to developmental stage, diet and population (field and laboratory), using bacterial tag-encoded FLX pyrosequencing of 16S rRNA amplicons. In larvae, bacterial communities differed depending on the food plant on which they had been reared, although the within-group variation between biological replicates was high as well. Moreover, larvae originating from a field or laboratory population did not share any OTUs. Interestingly, Enterococcus sp. was found to be the dominant taxon in laboratory-reared larvae, but was completely absent from field larvae, indicating dramatic shifts in microbial community profiles upon cultivation of the moths in the laboratory. Furthermore, microbiota composition varied strongly across developmental stages in individuals of the field population, and we found no evidence for vertical transmission of bacteria from mothers to offspring. Since sample sizes in our study were small due to pooling of samples for sequencing, we cautiously conclude that the high variability in bacterial communities suggests a loose and temporary association of the identified bacteria with H. virescens. PMID:27139886
Kitson, James J N; Hahn, Christoph; Sands, Richard J; Straw, Nigel A; Evans, Darren M; Lunt, David H
2018-02-27
Determining the host-parasitoid interactions and parasitism rates for invasive species entering novel environments is an important first step in assessing potential routes for biocontrol and integrated pest management. Conventional insect rearing techniques followed by taxonomic identification are widely used to obtain such data, but this can be time-consuming and prone to biases. Here, we present a next-generation sequencing approach for use in ecological studies which allows for individual-level metadata tracking of large numbers of invertebrate samples through the use of hierarchically organised molecular identification tags. We demonstrate its utility using a sample data set examining both species identity and levels of parasitism in late larval stages of the oak processionary moth (Thaumetopoea processionea-Linn. 1758), an invasive species recently established in the United Kingdom. Overall, we find that there are two main species exploiting the late larval stages of oak processionary moth in the United Kingdom with the main parasitoid (Carcelia iliaca-Ratzeburg, 1840) parasitising 45.7% of caterpillars, while a rare secondary parasitoid (Compsilura concinnata-Meigen, 1824) was also detected in 0.4% of caterpillars. Using this approach on all life stages of the oak processionary moth may demonstrate additional parasitoid diversity. We discuss the wider potential of nested tagging DNA metabarcoding for constructing large, highly resolved species interaction networks. © 2018 John Wiley & Sons Ltd.
Oliveira, Catarina S S; Silva, Carlos E; Carvalho, Gilda; Reis, Maria A
2017-07-25
Production of polyhydroxyalkanoates (PHAs) by open mixed microbial cultures (MMCs) has been attracting increasing interest as an alternative technology to PHA production by pure cultures, due to the potential for lower costs associated with the use of open systems (eliminating the requirement for sterile conditions) and the utilisation of cheap feedstock (industrial and agricultural wastes). Such technology relies on the efficient selection of an MMC enriched in PHA-accumulating organisms. Fermented cheese whey, a protein-rich complex feedstock, has been used previously to produce PHA using the feast and famine regime for selection of PHA accumulating cultures. While this selection strategy was found efficient when operated at relatively low organic loading rate (OLR, 2g-CODL -1 d -1 ), great instability and low selection efficiency of PHA accumulating organisms were observed when higher OLR (ca. 6g-CODL -1 d -1 ) was applied. High organic loading is desirable as a means to enhance PHA productivity. In the present study, a new selection strategy was tested with the aim of improving selection for high OLR. It was based on uncoupling carbon and nitrogen supply and was implemented and compared with the conventional feast and famine strategy. For this, two selection reactors were fed with fermented cheese whey applying an OLR of ca. 8.5g-CODL -1 (with 3.8g-CODL -1 resulting from organic acids and ethanol), and operated in parallel under similar conditions, except for the timing of nitrogen supplementation. Whereas in the conventional strategy nitrogen and carbon substrates were added simultaneously at the beginning of the cycle, in the uncoupled substrates strategy, nitrogen addition was delayed to the end of the feast phase (i.e. after exogenous carbon was exhausted). The two different strategies selected different PHA-storing microbial communities, dominated by Corynebacterium and a Xantomonadaceae, respectively with the conventional and the new approaches. The new strategy originated a more efficient PHA-production process than the conventional one (global PHA productivity of 6.09g-PHAL -1 d -1 and storage yield of 0.96 versus 2.55g-PHAL -1 d -1 and 0.86, respectively). Dissociation between the feast to famine length ratio (F/F) and storage efficiency was shown to be possible with the new strategy, allowing selection of an efficient PHA-storing culture with complex feedstock under high organic loading rates. Copyright © 2016 Elsevier B.V. All rights reserved.
Extremely high frequency sensitivity in a 'simple' ear.
Moir, Hannah M; Jackson, Joseph C; Windmill, James F C
2013-08-23
An evolutionary war is being played out between the bat, which uses ultrasonic calls to locate insect prey, and the moth, which uses microscale ears to listen for the approaching bat. While the highest known frequency of bat echolocation calls is 212 kHz, the upper limit of moth hearing is considered much lower. Here, we show that the greater wax moth, Galleria mellonella, is capable of hearing ultrasonic frequencies approaching 300 kHz; the highest frequency sensitivity of any animal. With auditory frequency sensitivity that is unprecedented in the animal kingdom, the greater wax moth is ready and armed for any echolocation call adaptations made by the bat in the on-going bat-moth evolutionary war.
Mitchell, Everett R
2002-05-01
Experiments were conducted in plantings of cabbage in spring 1999 and 2000 to evaluate a novel, new matrix system for delivering sex pheromone to suppress sexual communication by diamondback moth, Plutella xylostella (L.). The liquid, viscous, slow-release formulation contained a combination of diamondback moth pheromone, a blend of Z-11-hexadecenyl acetate, 27%:Z-11-hexadecen-1-ol, 1%:Z-11-tetradecen-1-ol, 9%:Z-11-hexadecenal, 63%, and the insecticide permethrin (0.16% and 6% w/w of total formulated material, respectively). Field trapping experiments showed that the lure-toxicant combination was highly attractive to male moths for at least four weeks using as little as a 0.05 g droplet of formulated material per trap; and the permethrin insecticide had no apparent influence on response of moths to lure baited traps. Small field plots of cabbage were treated with the lure-toxicant-matrix combination using droplets of 0.44 and 0.05 g each applied to cabbage in a grid pattern at densities ranging from 990 to 4396 droplets/ha to evaluate the potential for disrupting sexual communication of diamondback moth. There was no significant difference in the level of suppression of sexual communication of diamondback moth, as measured by captures of males in pheromone-baited traps located in the treated plots, versus moths captured in untreated control plots, among the treatments regardless of droplet size (0.05 or 0.44 g) or number of droplets applied per ha. Plots treated with the smallest droplet size (0.05 g) and with the fewest number of droplets per ha (990) suppressed captures of male diamondback moths > 90% for up to 3 weeks post treatment. Although laboratory assays showed that the lure-toxicant combination was 100% effective at killing the diamondback moth, the mode of action in the field trials was not determined. The results indicate that the liquid, viscous, slow release formulation containing diamondback moth pheromone could be used to effectively suppress sexual communication of this pest in cabbage and other crucifers, although as many as three applications probably would be required for suppression over an entire growing season.
75 FR 81087 - South American Cactus Moth Quarantine; Addition of the State of Louisiana
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-27
.... After an incubation period following mating, the female South American cactus moth deposits an egg stick... plant. Within a short period of time, the South American cactus moth can destroy whole stands of cactus...
Continuous Influx of Genetic Material from Host to Virus Populations
Gilbert, Clément; Peccoud, Jean; Chateigner, Aurélien; Moumen, Bouziane
2016-01-01
Many genes of large double-stranded DNA viruses have a cellular origin, suggesting that host-to-virus horizontal transfer (HT) of DNA is recurrent. Yet, the frequency of these transfers has never been assessed in viral populations. Here we used ultra-deep DNA sequencing of 21 baculovirus populations extracted from two moth species to show that a large diversity of moth DNA sequences (n = 86) can integrate into viral genomes during the course of a viral infection. The majority of the 86 different moth DNA sequences are transposable elements (TEs, n = 69) belonging to 10 superfamilies of DNA transposons and three superfamilies of retrotransposons. The remaining 17 sequences are moth sequences of unknown nature. In addition to bona fide DNA transposition, we uncover microhomology-mediated recombination as a mechanism explaining integration of moth sequences into viral genomes. Many sequences integrated multiple times at multiple positions along the viral genome. We detected a total of 27,504 insertions of moth sequences in the 21 viral populations and we calculate that on average, 4.8% of viruses harbor at least one moth sequence in these populations. Despite this substantial proportion, no insertion of moth DNA was maintained in any viral population after 10 successive infection cycles. Hence, there is a constant turnover of host DNA inserted into viral genomes each time the virus infects a moth. Finally, we found that at least 21 of the moth TEs integrated into viral genomes underwent repeated horizontal transfers between various insect species, including some lepidopterans susceptible to baculoviruses. Our results identify host DNA influx as a potent source of genetic diversity in viral populations. They also support a role for baculoviruses as vectors of DNA HT between insects, and call for an evaluation of possible gene or TE spread when using viruses as biopesticides or gene delivery vectors. PMID:26829124
Continuous Influx of Genetic Material from Host to Virus Populations.
Gilbert, Clément; Peccoud, Jean; Chateigner, Aurélien; Moumen, Bouziane; Cordaux, Richard; Herniou, Elisabeth A
2016-02-01
Many genes of large double-stranded DNA viruses have a cellular origin, suggesting that host-to-virus horizontal transfer (HT) of DNA is recurrent. Yet, the frequency of these transfers has never been assessed in viral populations. Here we used ultra-deep DNA sequencing of 21 baculovirus populations extracted from two moth species to show that a large diversity of moth DNA sequences (n = 86) can integrate into viral genomes during the course of a viral infection. The majority of the 86 different moth DNA sequences are transposable elements (TEs, n = 69) belonging to 10 superfamilies of DNA transposons and three superfamilies of retrotransposons. The remaining 17 sequences are moth sequences of unknown nature. In addition to bona fide DNA transposition, we uncover microhomology-mediated recombination as a mechanism explaining integration of moth sequences into viral genomes. Many sequences integrated multiple times at multiple positions along the viral genome. We detected a total of 27,504 insertions of moth sequences in the 21 viral populations and we calculate that on average, 4.8% of viruses harbor at least one moth sequence in these populations. Despite this substantial proportion, no insertion of moth DNA was maintained in any viral population after 10 successive infection cycles. Hence, there is a constant turnover of host DNA inserted into viral genomes each time the virus infects a moth. Finally, we found that at least 21 of the moth TEs integrated into viral genomes underwent repeated horizontal transfers between various insect species, including some lepidopterans susceptible to baculoviruses. Our results identify host DNA influx as a potent source of genetic diversity in viral populations. They also support a role for baculoviruses as vectors of DNA HT between insects, and call for an evaluation of possible gene or TE spread when using viruses as biopesticides or gene delivery vectors.
Hunter, Mark D; Kozlov, Mikhail V; Itämies, Juhani; Pulliainen, Erkki; Bäck, Jaana; Kyrö, Ella-Maria; Niemelä, Pekka
2014-06-01
Changes in climate are influencing the distribution and abundance of the world's biota, with significant consequences for biological diversity and ecosystem processes. Recent work has raised concern that populations of moths and butterflies (Lepidoptera) may be particularly susceptible to population declines under environmental change. Moreover, effects of climate change may be especially pronounced in high latitude ecosystems. Here, we examine population dynamics in an assemblage of subarctic forest moths in Finnish Lapland to assess current trajectories of population change. Moth counts were made continuously over a period of 32 years using light traps. From 456 species recorded, 80 were sufficiently abundant for detailed analyses of their population dynamics. Climate records indicated rapid increases in temperature and winter precipitation at our study site during the sampling period. However, 90% of moth populations were stable (57%) or increasing (33%) over the same period of study. Nonetheless, current population trends do not appear to reflect positive responses to climate change. Rather, time-series models illustrated that the per capita rates of change of moth species were more frequently associated negatively than positively with climate change variables, even as their populations were increasing. For example, the per capita rates of change of 35% of microlepidoptera were associated negatively with climate change variables. Moth life-history traits were not generally strong predictors of current population change or associations with climate change variables. However, 60% of moth species that fed as larvae on resources other than living vascular plants (e.g. litter, lichen, mosses) were associated negatively with climate change variables in time-series models, suggesting that such species may be particularly vulnerable to climate change. Overall, populations of subarctic forest moths in Finland are performing better than expected, and their populations appear buffered at present from potential deleterious effects of climate change by other ecological forces. © 2014 John Wiley & Sons Ltd.
Jenner, W H; Mason, P G; Cappuccino, N; Kuhlmann, U
2010-08-01
Diadromus pulchellus Wesmael (Hymenoptera: Ichneumonidae) is a pupal parasitoid under consideration for introduction into Canada for the control of the invasive leek moth, Acrolepiopsis assectella (Zeller) (Lepidoptera: Acrolepiidae). Since study of the parasitoid outside of quarantine was not permitted in Canada at the time of this project, we assessed its efficacy via field trials in its native range in central Europe. This was done by simulating introductory releases that would eventually take place in Canada when a permit for release is obtained. In 2007 and 2008, experimental leek plots were artificially infested with pest larvae to mimic the higher pest densities common in Canada. Based on a preliminary experiment showing that leek moth pupae were suitable for parasitism up to 5-6 days after pupation, D. pulchellus adults were mass-released into the field plots when the first host cocoons were observed. The laboratory-reared agents reproduced successfully in all trials and radically reduced leek moth survival. Taking into account background parasitism caused by naturally occurring D. pulchellus, the released agents parasitized at least 15.8%, 43.9%, 48.1% and 58.8% of the available hosts in the four release trials. When this significant contribution to leek moth mortality is added to previously published life tables, in which pupal parasitism was absent, the total pupal mortality increases from 60.1% to 76.7%. This study demonstrates how field trials involving environmental manipulation in an agent's native range can yield predictions of the agent's field efficacy once introduced into a novel area.
The ORSER LANDSAT Data Base of Pennsylvania
NASA Technical Reports Server (NTRS)
Turner, B. J.; Williams, D. L.
1982-01-01
A mosaicked LANDSAT data base for Pennsylvania, installed at the computation center of the Pennsylvania State University is described. Initially constructed by Penn State's Office for Remote Sensing of Earth Resources (ORSER) for the purpose of assisting in state-wide mapping of gypsy moth defoliation, the data base will be available to a variety of potential users. It will provide geometrically correct LANDSAT data accessible by political, jurisdictional, or arbitrary boundaries.
Using silviculture to minimize gypsy moth impacts
Kurt W. Gottschalk
1989-01-01
Silvicultural treatments can be used to minimize gypsy moth impacts on hardwood stands. There are two major strategies of these treatments: (1) to decrease susceptibility to defoliation by gypsy moth and (2) to strengthen the stand against mortality and encourage growth after defoliation.
One gene in diamondback moth confers resistance to four Bacillus thuringiensis toxins
Tabashnik, Bruce E.; Liu, Yong-Biao; Finson, Naomi; Masson, Luke; Heckel, David G.
1997-01-01
Environmentally benign insecticides derived from the soil bacterium Bacillus thuringiensis (Bt) are the most widely used biopesticides, but their success will be short-lived if pests quickly adapt to them. The risk of evolution of resistance by pests has increased, because transgenic crops producing insecticidal proteins from Bt are being grown commercially. Efforts to delay resistance with two or more Bt toxins assume that independent mutations are required to counter each toxin. Moreover, it generally is assumed that resistance alleles are rare in susceptible populations. We tested these assumptions by conducting single-pair crosses with diamondback moth (Plutella xylostella), the first insect known to have evolved resistance to Bt in open field populations. An autosomal recessive gene conferred extremely high resistance to four Bt toxins (Cry1Aa, Cry1Ab, Cry1Ac, and Cry1F). The finding that 21% of the individuals from a susceptible strain were heterozygous for the multiple-toxin resistance gene implies that the resistance allele frequency was 10 times higher than the most widely cited estimate of the upper limit for the initial frequency of resistance alleles in susceptible populations. These findings suggest that pests may evolve resistance to some groups of toxins much faster than previously expected. PMID:9050831
Extremely high frequency sensitivity in a ‘simple’ ear
Moir, Hannah M.; Jackson, Joseph C.; Windmill, James F. C.
2013-01-01
An evolutionary war is being played out between the bat, which uses ultrasonic calls to locate insect prey, and the moth, which uses microscale ears to listen for the approaching bat. While the highest known frequency of bat echolocation calls is 212 kHz, the upper limit of moth hearing is considered much lower. Here, we show that the greater wax moth, Galleria mellonella, is capable of hearing ultrasonic frequencies approaching 300 kHz; the highest frequency sensitivity of any animal. With auditory frequency sensitivity that is unprecedented in the animal kingdom, the greater wax moth is ready and armed for any echolocation call adaptations made by the bat in the on-going bat–moth evolutionary war. PMID:23658005
The moth Hylesia metabus and French Guiana lepidopterism: centenary of a public health concern
Jourdain, F.; Girod, R.; Vassal, J.M.; Chandre, F.; Lagneau, C.; Fouque, F.; Guiral, D.; Raude, J.; Robert, V.
2012-01-01
The females of the moths Hylesia metabus have their abdomens covered by urticating hairs looking like micro-arrows and causing a puriginous dermatitis to humans known as “papillonite” in French Guiana and also called yellowtail moth dermatitis or Caripito itch. The densities of the moths show great seasonal and annual variations depending on mechanisms mostly unknown. When H. metabus infestations occur, numerous cases of dermatologic manifestations are reported from people living near the mangrove swamps where the moths are developing. One hundred years after the first “papillonite” epidemic reported from French Guiana in 1912, the data presented herein summarize the actual state of knowledge on H. metabus biology and ecology and on the lepidopterism. Some recommendations are proposed for the surveillance and warning systems of H. metabus infestations and to avoid contact with the moths. Research priorities are suggested to improve the control against this problem emerging between nuisance and public health. PMID:22550622
Hill, Jane K; Gray, Michael A; Khen, Chey Vun; Benedick, Suzan; Tawatao, Noel; Hamer, Keith C
2011-11-27
Large areas of tropical forest now exist as remnants scattered across agricultural landscapes, and so understanding the impacts of forest fragmentation is important for biodiversity conservation. We examined species richness and nestedness among tropical forest remnants in birds (meta-analysis of published studies) and insects (field data for fruit-feeding Lepidoptera (butterflies and moths) and ants). Species-area relationships were evident in all four taxa, and avian and insect assemblages in remnants typically were nested subsets of those in larger areas. Avian carnivores and nectarivores and predatory ants were more nested than other guilds, implying that the sequential loss of species was more predictable in these groups, and that fragmentation alters the trophic organization of communities. For butterflies, the ordering of fragments to achieve maximum nestedness was by fragment area, suggesting that differences among fragments were driven mainly by extinction. In contrast for moths, maximum nestedness was achieved by ordering species by wing length; species with longer wings (implying better dispersal) were more likely to occur at all sites, including low diversity sites, suggesting that differences among fragments were driven more strongly by colonization. Although all four taxa exhibited high levels of nestedness, patterns of species turnover were also idiosyncratic, and thus even species-poor sites contributed to landscape-scale biodiversity, particularly for insects.
Hill, Jane K.; Gray, Michael A.; Khen, Chey Vun; Benedick, Suzan; Tawatao, Noel; Hamer, Keith C.
2011-01-01
Large areas of tropical forest now exist as remnants scattered across agricultural landscapes, and so understanding the impacts of forest fragmentation is important for biodiversity conservation. We examined species richness and nestedness among tropical forest remnants in birds (meta-analysis of published studies) and insects (field data for fruit-feeding Lepidoptera (butterflies and moths) and ants). Species–area relationships were evident in all four taxa, and avian and insect assemblages in remnants typically were nested subsets of those in larger areas. Avian carnivores and nectarivores and predatory ants were more nested than other guilds, implying that the sequential loss of species was more predictable in these groups, and that fragmentation alters the trophic organization of communities. For butterflies, the ordering of fragments to achieve maximum nestedness was by fragment area, suggesting that differences among fragments were driven mainly by extinction. In contrast for moths, maximum nestedness was achieved by ordering species by wing length; species with longer wings (implying better dispersal) were more likely to occur at all sites, including low diversity sites, suggesting that differences among fragments were driven more strongly by colonization. Although all four taxa exhibited high levels of nestedness, patterns of species turnover were also idiosyncratic, and thus even species-poor sites contributed to landscape-scale biodiversity, particularly for insects. PMID:22006967
U.S. EPA, Pesticide Product Label, TAT AREA FOGGER II, 06/22/1993
2011-04-14
... ARBA POGGBR II Kill. Pli •• , Cockroach •• , Pl~a., Sav-'footh.4 Grain B •• tl •• , 'fick., Confu •• 4 Plour B •• tl •• , Ric. • •• vil., S .. ll Plying Moth., Pil1bug. ...
7 CFR 319.77-3 - Gypsy moth infested areas in Canada.
Code of Federal Regulations, 2010 CFR
2010-01-01
... that includes the following parishes: Campobello Island, Dumbarton, Dufferin, Grand Manan Island, St... south and east of the Scotch Lake Road beginning in the west at Bear Island on the St. John River and..., Bright Additional, Cobden, Denis, Garden River First Nation, Indian Reserve #7, Johnson, Korah, Laird...
7 CFR 319.77-3 - Gypsy moth infested areas in Canada.
Code of Federal Regulations, 2011 CFR
2011-01-01
... that includes the following parishes: Campobello Island, Dumbarton, Dufferin, Grand Manan Island, St... south and east of the Scotch Lake Road beginning in the west at Bear Island on the St. John River and..., Bright Additional, Cobden, Denis, Garden River First Nation, Indian Reserve #7, Johnson, Korah, Laird...
7 CFR 319.77-3 - Gypsy moth infested areas in Canada.
Code of Federal Regulations, 2012 CFR
2012-01-01
... that includes the following parishes: Campobello Island, Dumbarton, Dufferin, Grand Manan Island, St... south and east of the Scotch Lake Road beginning in the west at Bear Island on the St. John River and..., Bright Additional, Cobden, Denis, Garden River First Nation, Indian Reserve #7, Johnson, Korah, Laird...
7 CFR 319.77-3 - Gypsy moth infested areas in Canada.
Code of Federal Regulations, 2014 CFR
2014-01-01
... that includes the following parishes: Campobello Island, Dumbarton, Dufferin, Grand Manan Island, St... south and east of the Scotch Lake Road beginning in the west at Bear Island on the St. John River and..., Bright Additional, Cobden, Denis, Garden River First Nation, Indian Reserve #7, Johnson, Korah, Laird...
7 CFR 319.77-3 - Gypsy moth infested areas in Canada.
Code of Federal Regulations, 2013 CFR
2013-01-01
... that includes the following parishes: Campobello Island, Dumbarton, Dufferin, Grand Manan Island, St... south and east of the Scotch Lake Road beginning in the west at Bear Island on the St. John River and..., Bright Additional, Cobden, Denis, Garden River First Nation, Indian Reserve #7, Johnson, Korah, Laird...
Jones, Hayley B C; Lim, Ka S; Bell, James R; Hill, Jane K; Chapman, Jason W
2016-01-01
Dispersal plays a crucial role in many aspects of species' life histories, yet is often difficult to measure directly. This is particularly true for many insects, especially nocturnal species (e.g. moths) that cannot be easily observed under natural field conditions. Consequently, over the past five decades, laboratory tethered flight techniques have been developed as a means of measuring insect flight duration and speed. However, these previous designs have tended to focus on single species (typically migrant pests), and here we describe an improved apparatus that allows the study of flight ability in a wide range of insect body sizes and types. Obtaining dispersal information from a range of species is crucial for understanding insect population dynamics and range shifts. Our new laboratory tethered flight apparatus automatically records flight duration, speed, and distance of individual insects. The rotational tethered flight mill has very low friction and the arm to which flying insects are attached is extremely lightweight while remaining rigid and strong, permitting both small and large insects to be studied. The apparatus is compact and thus allows many individuals to be studied simultaneously under controlled laboratory conditions. We demonstrate the performance of the apparatus by using the mills to assess the flight capability of 24 species of British noctuid moths, ranging in size from 12-27 mm forewing length (~40-660 mg body mass). We validate the new technique by comparing our tethered flight data with existing information on dispersal ability of noctuids from the published literature and expert opinion. Values for tethered flight variables were in agreement with existing knowledge of dispersal ability in these species, supporting the use of this method to quantify dispersal in insects. Importantly, this new technology opens up the potential to investigate genetic and environmental factors affecting insect dispersal among a wide range of species.
Camouflage through an active choice of a resting spot and body orientation in moths.
Kang, C-K; Moon, J-Y; Lee, S-I; Jablonski, P G
2012-09-01
Cryptic colour patterns in prey are classical examples of adaptations to avoid predation, but we still know little about behaviours that reinforce the match between animal body and the background. For example, moths avoid predators by matching their colour patterns with the background. Active choice of a species-specific body orientation has been suggested as an important function of body positioning behaviour performed by moths after landing on the bark. However, the contribution of this behaviour to moths' crypticity has not been directly measured. From observations of geometrid moths, Hypomecis roboraria and Jankowskia fuscaria, we determined that the positioning behaviour, which consists of walking and turning the body while repeatedly lifting and lowering the wings, resulted in new resting spots and body orientations in J. fuscaria and in new resting spots in H. roboraria. The body positioning behaviour of the two species significantly decreased the probability of visual detection by humans, who viewed photographs of the moths taken before and after the positioning behaviour. This implies that body positioning significantly increases the camouflage effect provided by moth's cryptic colour pattern regardless of whether the behaviour involves a new body orientation or not. Our study demonstrates that the evolution of morphological adaptations, such as colour pattern of moths, cannot be fully understood without taking into account a behavioural phenotype that coevolved with the morphology for increasing the adaptive value of the morphological trait. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.
NASA Astrophysics Data System (ADS)
Lora Gonzalez, Federico
Controlling the reflection of visible and infrared (IR) light at interfaces is extremely important to increase the power efficiency and performance of optics, electro-optical and (thermo)photovoltaic systems. The eye of the moth has evolved subwavelength protuberances that increase light transmission into the eye tissue and prevent reflection. The subwavelength protuberances effectively grade the refractive index from that of air (n=1) to that of the tissue (n=1.4), making the interface gradual, suppressing reflection. In theory, the moth-eye (ME) structures can be implemented with any material platform to achieve an antireflectance effect by scaling the pitch and size of protuberances for the wavelength range of interest. In this work, a bio-inspired, scalable and substrate-independent surface modification protocol was developed to realize broadband antireflective structures based on the moth-eye principle. Quasi-ordered ME arrays were fabricated in IR relevant materials using a colloidal lithography method to achieve highly efficient, omni-directional transmission of mid and far infrared (IR) radiation. The effect of structure height and aspect ratio on transmittance and scattering is explored, with discussion on experimental techniques and effective medium theory (EMT). The highest aspect ratio structures (AR = 9.4) achieved peak single-side transmittance of 98%, with >85% transmission for lambda = 7--30 microns. A detailed photon balance constructed by transmission, forward scattering, specular reflection and diffuse reflection measurements to quantify optical losses due to near-field effects will be discussed. In addition, angle-dependent transmission measurements showed that moth-eye structures provide superior antireflective properties compared to unstructured interfaces over a wide angular range (0--60° incidence). Finally, subwavelength ME structures are incorporated on a Si substrate to enhance the absorption of near infrared (NIR) light in PtSi films to increase Schottky-barrier detector efficiency. Absorbance enhancement of 70--200% in the lambda =1--2.5 micron range is demonstrated in crystalline PtSi films grown via electron beam evaporation of Pt and subsequent vacuum annealing. Low total reflectance (<10%) was measured in ME films, demonstrating the efficacy of the moth eye effect. Effective medium theory and transfer matrix calculations show that the large absorption enhancement at short wavelengths is partly due to light trapping, which increases the effective optical path length in PtSi. The demonstrated structures are promising candidates for efficient PtSi/p-Si Schottky barrier diode detectors in the NIR. Results further suggest a general method for relatively low-cost absorption enhancement of backside-illuminated detectors based on a wide variety of infrared absorptive materials. The methods presented here to fabricate quasi-ordered ME structures provide a general platform for creating antireflective structures in many different materials, devices, and bandwidths. Furthermore, understanding the relationship between protuberance shape, height, aspect ratio, etc. and performance (antireflection, scattering loss, etc.) can guide the design of antireflective surfaces for different applications (for example, in certain applications, large amounts of forward scattering is desired, e.g. photovoltaics).
Interaction between gypsy moth (Lymantria dispar L.) and some competitive defoliators
Milka M. Glavendeki& #263;
2007-01-01
Insect defoliators liable to frequent or occasional outbreaks can endanger forestry production and disturb the stability of forest ecosystems. There were studied life cycles, parasitoids, predators and population dynamics of leaf rollers, the winter moths, noctuids and gypsy moth, which occur in oak forests.
Does thinning affect gypsy moth dynamics?
Andrew M. Liebhold; Rose-Marie Muzika; Kurt W. Gottschalk
1998-01-01
In northeastern U.S. forests there is considerable variation in susceptibility (defoliation potential) and vulnerability (tree mortality) to gypsy moth (Lymantria dispar [L.]). Thinning has been suggested as a way to reduce susceptibility and/or vulnerability. We evaluated how thinning affected the dynamics of gypsy moth populations by experimentally...
U.S. EPA, Pesticide Product Label, DECORATOR MOTHINE KILLS MOTHS, 04/18/1967
2011-04-14
... d --o-~~,. t'- I CA.\\.'-JI KILLS MOTHS (" 'f 'J 1\\ \\'i!!,\\.r!"'''f'··(I' • \\.,1 'il'lJI1t"\\I'I,.i;' 'j ... i , KILLS MOTHS eggs • larvae carpet beetles spiders • silverfish ...
Fourth-instar gypsy moth (Lymantria dispar; Lepidoptera: Lymantriidae) larvae, infected with the gypsy moth baculovirus (LdNPV), show an elevated and prolonged extension of the hemolymph ecdysteroid titer peak associated with molting. The ecdysteroid immunoreactivity associated w...
Daniel T. Jennings; Robert E. Stevens
1982-01-01
The southwestern pine tip moth, Rhyacionia neomexicana (Dyar), injures young ponderosa pines (Pinus ponderosa Dougl. ex Laws) in the Southwest, central Rockies, and midwestern plains. Larvae feed on and destroy new, expanding shoots, often seriously reducing terminal growth of both naturally regenerated and planted pines. The tip moth is especially damaging to trees on...
Parasitoid complex of the bird cherry ermine moth, Yponomeuta evonymellus, in Korea
USDA-ARS?s Scientific Manuscript database
The parasitoid complex of Yponomeuta evonymellus L. (Lepidoptera: Yponomeutidae), the bird cherry ermine moth, was sought in the Republic of Korea (South Korea) with the goal of identifying potential biological controls of the moth. 13 primary and two secondary parasitoids were found. Diadegma armil...
Kurt W. Gottschalk; Mark J. Twery; [Editors
1992-01-01
Contains abstracts and papers of oral and poster presentations on gypsy moth and other invasive species biology, molecular biology, ecology, impacts, and management presented at the annual U.S. Department of Agriculture interagency research forum on gypsy moth.
Biology and population dynamics of the cactus moth, Cactoblastis cactorum
USDA-ARS?s Scientific Manuscript database
The cactus moth, Cactoblastis cactorum, was a successful biological control agent against prickly pear cacti in Australia in the 1920’s. Since then, it was introduced to other countries including the Carribean islands. In 1989, the cactus moth was reported in Florida and has continued to spread nort...
Unique synteny and alternate splicing of the chitin synthases in closely related heliothine moths
USDA-ARS?s Scientific Manuscript database
Two chitin synthase genes were characterized in the genomes of two heliothine moths: the corn earworm/cotton bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) and the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). In both moths, the coding sequences for the two ge...
Sex pheromones of the southern armyworm moth: isolation, identification, and synthesis.
Jacobson, M; Redfern, R E; Jones, W A; Aldridge, M H
1970-10-30
Two sex pheromones have been isolated from the female southern armyworm moth, Prodenia eridania (Cramer), and identified as cis-9-tetradecen-1-ol acetate, identical with the sex pheromone of the fall armyworm moth, Spodoptera frugiperda (J. E. Smith), and cis-9,trans-12-tetradecadien-1-ol acetate.
Guidelines for the use of GYPCHEK to control the gypsy moth
Franklin B. Lewis; Michael L. McManus; Noel F. Schneeberger
1979-01-01
This paper presents positive and negative attributes of GYPCHEK for evaluation by land managers contemplating gypsy moth control. Special precautions and procedures are outlined. Environmental and ecological considerations are discussed and results to be expected from the use of GYPCHEK in gypsy moth control are presented.
Overview: Pyraloidea adults (Insecta: Lepidoptera)
USDA-ARS?s Scientific Manuscript database
There are over 16,000 species of pyraloid or snout moths worldwide and many are pests of crops and stored products. The purpose of this video is twofold: to provide an overview of the current, modern classification of snout moths and to provide tools using morphology to identify adult snout moths t...
Alternate hosts of Blepharipa pratensis (Meigen)
Paul A. Godwin; Thomas M. Odell
1977-01-01
A current tactic for biological control of the gypsy moth, Lymantria dispar Linnaeus, is to release its parasites in forests susceptible to gypsy moth damage before the gypsy moth arrives. The basic assumption in these anticipatory releases is that the parasites can find and utilize native insects as hosts in the interim. Blepharipa...
Akite, Perpetra; Telford, Richard J; Waring, Paul; Akol, Anne M; Vandvik, Vigdis
2015-01-01
Forest-dependent biodiversity is threatened throughout the tropics by habitat loss and land-use intensification of the matrix habitats. We resampled historic data on two moth families, known to play central roles in many ecosystem processes, to evaluate temporal changes in species richness and community structure in three protected forests in central Uganda in a rapidly changing matrix. Our results show some significant declines in the moth species richness and the relative abundance and richness of forest-dependent species over the last 20–40 years. The observed changes in species richness and composition among different forests, ecological types, and moth groups highlight the need to repeatedly monitor biodiversity even within protected and relatively intact forests. PMID:25937916
Joyce, Andrea L.; White, William H.; Nuessly, Gregg S.; Solis, M. Alma; Scheffer, Sonja J.; Lewis, Matthew L.; Medina, Raul F.
2014-01-01
The sugarcane borer moth, Diatraea saccharalis, is widespread throughout the Western Hemisphere, and is considered an introduced species in the southern United States. Although this moth has a wide distribution and is a pest of many crop plants including sugarcane, corn, sorghum and rice, it is considered one species. The objective was to investigate whether more than one introduction of D. saccharalis had occurred in the southern United States and whether any cryptic species were present. We field collected D. saccharalis in Texas, Louisiana and Florida in the southern United States. Two molecular markers, AFLPs and mitochondrial COI, were used to examine genetic variation among these regional populations and to compare the sequences with those available in GenBank and BOLD. We found geographic population structure in the southern United States which suggests two introductions and the presence of a previously unknown cryptic species. Management of D. saccharalis would likely benefit from further investigation of population genetics throughout the range of this species. PMID:25337705
Zaspel, Jennifer M.; Kononenko, Vladimir S.; Ignell, Rickard; Hill, Sharon R.
2016-01-01
The host preference of the economically important fruit piercing moth, Calyptra lata (Butler 1881), was studied when exposed to different fruits and the odors of those fruits in enclosed feeding assays and in a two-choice olfactometer. The fruits consisted of three ripe and locally available types: raspberries, cherries and plums. Moths were released in cages with the ripened fruit and observed for any feeding events, which were then documented. Moths fed on both raspberries and cherries, but not on plums. To test the role of olfactory cues in fruit preference, male moths were released singly in the two choice olfactometer, with one type of fruit odor released in one arm and background control air in the other. The behavior of the moths was recorded on video. Parameters scored were 1) time to take off, 2) flight duration and 3) total time to source contact. The moths showed a significant preference for raspberry odor, exhibited a neutral response to cherry odor and significantly avoided the odor of plums. These results indicate that Calyptra lata demonstrates selective polyphagic feeding behavior and uses olfactory cues from both preferred and non-preferred fruits to detect and locate potential food sources. The possible implications for pest control are discussed. PMID:27324579
Sigsgaard, Lene; Herz, Annette; Korsgaard, Maren; Wührer, Bernd
2017-01-01
Cydia pomonella is a major pest in apples in Denmark. Trichogramma spp. are known biocontrol agents of C. pomonella eggs and two naturally occurring species in Denmark, which are also both commercially available, were chosen for mass-release trials. Trichogramma evanescens, T. cacoeciae or a mix of the two species were evaluated for mass-release to control C. pomonella in two commercial organic apple orchards, one in 2012 and one in 2013, using a complete randomized block design. Pheromone disruption was used in both orchards, making the study one of the first to evaluate Trichogramma release under a mating disruption regime. Trichogramma activity was assessed using bait cards with Sitotroga cerealella eggs. The percent C. pomonella damaged fruit was recorded and the fruit yield was estimated. In 2012 cool and wet weather conditions resulted in low Trichogramma activity (<16% bait cards parasitized) and only T. evanescens was recovered from bait cards. The conditions in 2013 were warmer but T. evanescens was still >10 times more frequently found in bait cards than T. cacoeciae. There was a significant effect of the treatment and year (p = 0.009) and of the sampling period (p = 0.0008) on Trichogramma activity (proportion bait cards parasitized), with no significant difference between treatments in 2012. In 2013 the highest activity was found in T. evanescens and mixed treatments, in July reaching 69% and 47% bait cards parasitized, respectively. Fruit damage was highest in the control plots (7.1%) compared with Trichogramma treatments (T. evanescens 2.8%, T. cacoeciae 3.8%, mixed 3.3%) (p = 0.028). Yield did not differ significantly between treatments. In conclusion, Trichogramma mass release is a promising biocontrol method for use in the Danish climate, but further studies are needed regarding the performance of the two Trichogramma species (and potential other Trichogramma species) towards C. pomonella eggs in the field to identify the best biocontrol candidate. PMID:28375171
Vallat, Armelle; Gu, Hainan; Dorn, Silvia
2005-07-01
Headspace volatiles from apple-bearing twigs were collected in the field with a Radiello sampler during three different diurnal periods over the complete fruit growing season. Analyses by thermal desorption-GC-MS identified a total of 62 compounds in changing quantities, including the terpenoids alpha-pinene, camphene, beta-pinene, limonene, beta-caryophyllene and (E,E)-alpha-farnesene, the aldehydes (E)-2-hexenal, benzaldehyde and nonanal, and the alcohol (Z)-3-hexen-1-ol. The variations in emission of these plant odours were statistically related to temperature, humidity and rainfall in the field. Remarkably, rainfall had a significant positive influence on changes in volatile release during all three diurnal periods, and further factors of significance were temperature and relative humidity around noon, relative humidity in the late afternoon, and temperature and relative humidity during the night. Rainfall was associated consistently with an increase in the late afternoon in terpene and aldehyde volatiles with a known repellent effect on the codling moth, one of the key pests of apple fruit. During the summer of 2003, a season characterized by below-average rainfall, some postulated effects of drought on trees were tested by establishing correlations with rainfall. Emissions of the wood terpenes alpha-pinene, beta-pinene and limonene were negatively correlated with rainfall. Another monoterpene, camphene, was only detected in this summer but not in the previous years, and its emissions were negatively correlated with rainfall, further supporting the theory that drought can result in higher formation of secondary metabolites. Finally, the two green leaf volatiles (E)-2-hexenal and (Z)-3-hexen-1-ol were negatively correlated with rainfall, coinciding well with the expectation that water deficit stress increases activity of lipoxygenase. To our knowledge, this work represents the first empirical study concerning the influence of abiotic factors on volatile emissions from apple trees in situ.
Sigsgaard, Lene; Herz, Annette; Korsgaard, Maren; Wührer, Bernd
2017-04-04
Cydia pomonella is a major pest in apples in Denmark. Trichogramma spp. are known biocontrol agents of C. pomonella eggs and two naturally occurring species in Denmark, which are also both commercially available, were chosen for mass-release trials. Trichogramma evanescens , T. cacoeciae or a mix of the two species were evaluated for mass-release to control C. pomonella in two commercial organic apple orchards, one in 2012 and one in 2013, using a complete randomized block design. Pheromone disruption was used in both orchards, making the study one of the first to evaluate Trichogramma release under a mating disruption regime. Trichogramma activity was assessed using bait cards with Sitotroga cerealella eggs. The percent C. pomonella damaged fruit was recorded and the fruit yield was estimated. In 2012 cool and wet weather conditions resulted in low Trichogramma activity (<16% bait cards parasitized) and only T. evanescens was recovered from bait cards. The conditions in 2013 were warmer but T. evanescens was still >10 times more frequently found in bait cards than T. cacoeciae . There was a significant effect of the treatment and year ( p = 0.009) and of the sampling period ( p = 0.0008) on Trichogramma activity (proportion bait cards parasitized), with no significant difference between treatments in 2012. In 2013 the highest activity was found in T. evanescens and mixed treatments, in July reaching 69% and 47% bait cards parasitized, respectively. Fruit damage was highest in the control plots (7.1%) compared with Trichogramma treatments ( T. evanescens 2.8%, T. cacoeciae 3.8%, mixed 3.3%) ( p = 0.028). Yield did not differ significantly between treatments. In conclusion, Trichogramma mass release is a promising biocontrol method for use in the Danish climate, but further studies are needed regarding the performance of the two Trichogramma species (and potential other Trichogramma species) towards C. pomonella eggs in the field to identify the best biocontrol candidate.
Integrated assessment of climate change impact on surface runoff contamination by pesticides.
Gagnon, Patrick; Sheedy, Claudia; Rousseau, Alain N; Bourgeois, Gaétan; Chouinard, Gérald
2016-07-01
Pesticide transport by surface runoff depends on climate, agricultural practices, topography, soil characteristics, crop type, and pest phenology. To accurately assess the impact of climate change, these factors must be accounted for in a single framework by integrating their interaction and uncertainty. This article presents the development and application of a framework to assess the impact of climate change on pesticide transport by surface runoff in southern Québec (Canada) for the 1981-2040 period. The crop enemies investigated were: weeds for corn (Zea mays); and for apple orchard (Malus pumila), 3 insect pests (codling moth [Cydia pomonella], plum curculio [Conotrachelus nenuphar], and apple maggot [Rhagoletis pomonella]), 2 diseases (apple scab [Venturia inaequalis], and fire blight [Erwinia amylovora]). A total of 23 climate simulations, 19 sites, and 11 active ingredients were considered. The relationship between climate and phenology was accounted for by bioclimatic models of the Computer Centre for Agricultural Pest Forecasting (CIPRA) software. Exported loads of pesticides were evaluated at the edge-of-field scale using the Pesticide Root Zone Model (PRZM), simulating both hydrology and chemical transport. A stochastic model was developed to account for PRZM parameter uncertainty. Results of this study indicate that for the 2011-2040 period, application dates would be advanced from 3 to 7 days on average with respect to the 1981-2010 period. However, the impact of climate change on maximum daily rainfall during the application window is not statistically significant, mainly due to the high variability of extreme rainfall events. Hence, for the studied sites and crop enemies considered, climate change impact on pesticide transported in surface runoff is not statistically significant throughout the 2011-2040 period. Integr Environ Assess Managem 2016;12:559-571. © Her Majesty the Queen in Right of Canada 2015; Published 2015 SETAC. © Her Majesty the Queen in Right of Canada 2015; Published 2015 SETAC.
Beccacece, Hernán Mario; Zeballos, Sebastián Rodolfo; Zapata, Adriana Inés
Paraná, Yungas and Chaco Serrano ecoregions are among the most species-rich terrestrial habitats at higher latitude. However, the information for tiger moths, one of the most speciose groups of moths, is unknown in these ecoregions. In this study, we assess their species richness and composition in all three of these ecoregions. Also we investigated whether the species composition of tiger moths is influenced by climatic factors and altitude. Tiger moth species were obtained with samples from 71 sites using standardized protocols (21 sites were in Yungas, 19 in Paraná and 31 in Chaco Serrano). Rarefaction-extrapolation curves, non-parametric estimators for incidence and sample coverage indices were performed to assess species richness in the ecoregions studied. Non metric multidimensional scaling and adonis tests were performed to compare the species composition of tiger moths among ecoregions. Permutest analysis and Pearson correlation were used to evaluate the relationship among species composition and annual mean temperature, annual temperature range, annual precipitation, precipitation seasonality and altitude. Among ecoregions Paraná was the richest with 125 species, followed by Yungas with 63 species and Chaco Serrano with 24 species. Species composition differed among these ecoregions, although Yungas and Chaco Serrano were more similar than Paraná. Species composition was significantly influenced by climatic factors and altitude. This study showed that species richness and species composition of tiger moths differed among the three ecoregions assessed. Furthermore, not only climatic factors and altitude influence the species composition of tiger moths among ecoregions, but also climatic seasonality at higher latitude in Neotropical South America becomes an important factor.
Exploring the Meaning of Reading among Highly Motivated Children
ERIC Educational Resources Information Center
Carney, Kelli Ann
2015-01-01
The purpose of this interpretive case study was to explore the reading perceptions and attitudes of children who exhibit high levels of motivation to read. In order to determine children who were highly motivated to read, the Motivation to Read Profile, from Gambrell, Palmer, Codling and Mazzoni (1996) was administered to 19 initial participants…
Characters and Episodes that Provide Models for Middle School Writers
ERIC Educational Resources Information Center
Pelttari, Carole
2012-01-01
While conducting a content analysis of award-winning, middle school fiction, I indentified a number of episodes and characters that might be used as models for students' writing. Research suggests that teachers can motivate students (Bruning & Horn, 2000; Codling, Gambrell, Kennedy, Palmer, & Graham, 1996) to respond to character-writers (Van…
Anaerobic co-digestion of aircraft deicing fluid and municipal wastewater sludge.
Zitomer, D; Ferguson, N; McGrady, K; Schilling, J
2001-01-01
At many airports, aircraft deicing fluid and precipitation mix, becoming aircraft deicing runoff having a 5-day biochemical oxygen demand (BOD5) of 10(2) to 10(6) mg/L. Publicly owned treatment works can be used for aerobic biological treatment; however, it may be more economical to use anaerobic digesters to codigest a mixture of aircraft deicing fluid and sludge. The objectives of this investigation were to determine benefits and appropriate propylene glycol aircraft deicing fluid loadings to anaerobic codigesters. Results demonstrate aircraft deicing fluid can be successfully codigested to produce methane; supernatant BOD5 and Kjeldahl nitrogen concentration were not higher in codigesters compared to a conventional digester. Aircraft deicing fluid loadings as high as 1.6 g chemical oxygen demand (COD)/L x d were sustainable in codigesters, whereas system fed only aircraft deicing fluid with nutrients and alkalinity achieved a loading of 0.65 g COD/L x d. The sludge used increased digester alkalinity and provided nitrogen, iron, nickel, cobalt, and biomass required for methanogenesis. The deicer provides organics for increased methane production.
Rico, Carlos; Montes, Jesús A; Rico, José Luis
2017-08-01
Three different types of anaerobic sludge (granular, thickened digestate and anaerobic sewage) were evaluated as seed inoculum sources for the high rate anaerobic digestion of pig slurry in UASB reactors. Granular sludge performance was optimal, allowing a high efficiency process yielding a volumetric methane production rate of 4.1LCH 4 L -1 d -1 at 1.5days HRT (0.248LCH 4 g -1 COD) at an organic loading rate of 16.4gCODL -1 d -1 . The thickened digestate sludge experimented flotation problems, thus resulting inappropriate for the UASB process. The anaerobic sewage sludge reactor experimented biomass wash-out, but allowed high process efficiency operation at 3days HRT, yielding a volumetric methane production rate of 1.7LCH 4 L -1 d -1 (0.236LCH 4 g -1 COD) at an organic loading rate of 7.2gCODL -1 d -1 . To guarantee the success of the UASB process, the settleable solids of the slurry must be previously removed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chaggu, Esnati J; Sanders, Wendy; Lettinga, Gatze
2007-11-01
The anaerobic digestion of "human waste" was studied at Mlalakuwa residential settlement in Dar-es-Salaam, Tanzania at ambient tropical temperatures (24-31 degrees C). This settlement experiences a high water table with flooding during the rainy season, resulting in a very costly emptying of the latrines once per month. To improve the situation, two plastic tanks (while one is in use, the other one is on stand-by) of 3000 l capacity each, named as Improved Pit-Latrines Without Urine Separation (IMPLWUS), were used as latrine pits. They received faeces+urine+wash water; basically, an accumulation system. Septic tank seed sludge was used. The dissolved chemical oxygen demand (COD(dis)) remaining when the reactor was closed after 380 days was about 8 g COD/l, volatile fatty acids were 100 mg COD/l and total ammonium nitrogen was about 2.8 g N/l, implying the possibility of methanogenesis inhibition. Stability results indicated a need for more degradation time after reactor closure. Estimated biogas production from wastewater generated by 10 people was 544 g COD-CH(4)/day, not enough for cooking purposes.
Sözen, S; Çokgör, E U; Başaran, S Teksoy; Aysel, M; Akarsubaşı, A; Ergal, I; Kurt, H; Pala-Ozkok, I; Orhon, D
2014-05-01
The study investigated the effect of high substrate loading on substrate utilization kinetics, and changes inflicted on the composition of the microbial community in a superfast submerged membrane bioreactor. Submerged MBR was sequentially fed with a substrate mixture and acetate; its performance was monitored at steady-state, at extremely low sludge age values of 2.0, 1.0 and 0.5d, all adjusted to a single hydraulic retention time of 8.0 h. Each MBR run was repeated when substrate feeding was increased from 200 mg COD/L to 1000 mg COD/L. Substrate utilization kinetics was altered to significantly lower levels when the MBR was adjusted to higher substrate loadings. Molecular analysis of the biomass revealed that variable process kinetics could be correlated with parallel changes in the composition of the microbial community, mainly by a replacement mechanism, where newer species, better adapted to the new growth conditions, substituted others that are washed out from the system. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mortality Risks for Forest Trees Threatened with Gypsy Moth Infestation
Owen W. Herrick; David A. Gansner; David A. Gansner
1987-01-01
Presents guidelines for estimating potential tree mortality associated with gypsy moth defoliation. A tree's crown condition, crown position, and species group can be used to assign probabilities of death. Forest-land managers need such information to develop marking guides and implement silvicultural treatments for forest trees threatened with gypsy moth...
Sampling low-density gypsy moth populations
William E. Wallner; Clive G. Jones; Joseph S. Elkinton; Bruce L. Parker
1991-01-01
The techniques and methodology for sampling gypsy moth, Lymantria dispar L., at low densities, less than 100 egg masses/ha (EM/ha), are compared. Forest managers have constraints of time and cost, and need a useful, simple predictable means to assist them in sampling gypsy moth populations. A comparison of various techniques coupled with results of...
Forecasting gypsy moth egg-mass density
Robert W. Campbell; Robert W. Campbell
1973-01-01
Several multiple regression models for gypsy moth egg-mass density were developed from data accumulated in eastern New England between 1911 and 1931. Analysis of these models indicates that: (1) The gypsy moth population system was relatively stable in either the OUTBREAK phase or the INNOCUOUS one; (2) Several naturally occurring processes that could terminate the...
Using silviculture to minimize gypsy moth impacts
Kurt W. Gottschalk
1991-01-01
Several studies are underway to test and evaluate the use of silvicultural treatments to minimize gypsy moth impacts. Treatment objectives are to change stand susceptibility to gypsy moth defoliation or stand vulnerability to damage after defoliation. Decision charts have been developed to help forest and land managers to select the appropriate treatment for their...
Sandra L. C. Fosbroke; Kurt W. Gottschalk; [Editors
2003-01-01
Contains 75 abstracts and papers of oral and poster presentations on gypsy moth and other invasive species biology, molecular biology, ecology, impacts, and management presented at the annual U.S. Department of Agriculture Interagency Research Forum on Gypsy Moth and Other Invasive Species.
Kurt W., ed. Gottschalk
2008-01-01
Contains 60 abstracts and papers of oral and poster presentations on gypsy moth and other invasive species biology, molecular biology, ecology, impacts, and management presented at the annual U.S. Department of Agriculture interagency research forum on gypsy moth and other invasive species.
Kurt W., ed. Gottschalk
2004-01-01
Contains 56 abstracts and papers of oral and poster presentations on gypsy moth and other invasive species biology, molecular biology, ecology, impacts, and management presented at the annual U.S. Department of Agriculture Interagency Research Forum on Gypsy Moth and Other Invasive Species.
Sandra L.C. Fosbroke; Kurt W., Gottschalk
2001-01-01
Contains 68 abstracts and papers of oral and poster presentations on gypsy moth and other invasive species biology, molecular biology, ecology, impacts, and management presented at the annual U.S. Department of Agriculture interagency research forum of gypsy moth and other invasive species.
Kurt W. Gottschalk
2005-01-01
Contains 61 abstracts and papers of oral and poster presentations on gypsy moth and other invasive species biology, molecular biology, ecology, impacts, and management presented at the annual U. S. Department of Agriculture Interagency Research Forum on Gypsy Moth and Other Invasive Species.
The North Kaibab pandora moth outbreak, 1978-1984
J. M. Schmid; D. D. Bennett
1988-01-01
A pandora moth outbreak in Arizona was studied from 1979 to 1985 to determine the moth's life cycle, densities, and distribution of life stages, larval and adult behavior, effects of the defoliation, sampling procedures, importance of biotic mortality factors, and the effectiveness of insecticides. This report summarizes the available published and unpublished...
Hazard rating forest stands for gypsy moth
Ray R., Jr. Hicks
1991-01-01
A gypsy moth hazard exists when forest conditions prevail that are conducive to extensive damage from gypsy moth. Combining forest hazard rating with information on insect population trends provides the basis for predicting the probability (risk) of an event occurring. The likelihood of defoliation is termed susceptibility and the probability of damage (mortality,...
Effects of gypsy moth outbreaks on North American woodpeckers
Walter D. Koenig; Eric L. Walters; Andrew M. Liebhold
2011-01-01
We examined the effects of the introduced gypsy moth (Lymantria dispar) on seven species of North American woodpeckers by matching spatially explicit data on gypsy moth outbreaks with data on breeding and wintering populations. In general, we detected modest effects during outbreaks: during the breeding season one species, the Red-headed Woodpecker...
Forest stand conditions after 13 years of gypsy moth infestation
David L. Feicht; Sandra L. C. Fosbroke; Mark J. Twery
1993-01-01
Of 603 central Pennsylvania plots that were established in 1978 to measure the short-term impact of repeated gypsy moth (Lymantria dispar) defoliation, 228 were selected for continued study in 1985. Individual observations of defoliation and tree vigor were continued through 1992. Although two gypsy moth outbreaks occurred across central Pennsylvania...
Samita Limbu; Melody Keena; Fang Chen; Gericke Cook; Hannah Nadel; Kelli Hoover
2017-01-01
Periodic introductions of the Asian subspecies of gypsy moth, Lymantria dispar asiatica Vnukovskij and Lymantria dispar japonica Motschulsky, in North America are threatening forests and interrupting foreign trade. Although Asian gypsy moth has similar morphology to that of European and North American gypsy moth, it has several...
USDA-ARS?s Scientific Manuscript database
Field studies evaluated the relative performance of a clear versus several colored delta traps baited with sex pheromone or a food bait for two key moth pests of stone fruits: oriental fruit moth, Graphollita molesta (Busck); and peach twig borer, Anarsia lineatella Zeller. Preliminary studies found...
Enzyme immunoassays for detection of gypsy moth nuclear polyhedrosis virus
Michael Ma
1985-01-01
Enzyme-linked immunosorbent assays (ELISA) were developed for detecting gypsy moth (Lymantria dispar L.) nuclear polyhedrosis virus (NPV). They were used to detect the presence of NPV in hemoplymph samples collected from infected larvae. The incorporation of hybridoma antibodies with these procedures would make them even more specific for gypsy moth...
Douglas-fir tussock moth: an annotated bibliography.
Robert W. Campbell; Lorna C. Youngs
1978-01-01
This annotated bibliography includes references to 338 papers. Each deals in some way with either the Douglas-fir tussock moth, Orgyia pseudotsugata (McDunnough), or a related species. Specifically, 210 publications and 82 unpublished documents make some reference, at least, to the Douglas-fir tussock moth; 55 are concerned with other species in...
Interactions between nuclear polyhedrosis virus and Nosema sp. infecting gypsy moth
L. S. Bauer; M. McManus; J. Maddox
1991-01-01
Nuclear polyhedrosis virus (NPV) is the only entomopathogen that plays an important role in the natural regulation of North American gypsy moth populations. Recent European studies suggest that populations of gypsy moth in Eurasia are regulated primarily by the interactions between NPV and several species of microsporidia. Researchers have proposed that the...
R. E. Webb; M. Shapiro; J. D. Podgwaite; D. D. Cohen; R. L. Ridgway
1991-01-01
The "Abington" isolate of the nuclear polyhedrosis virus (NPV) of the gypsy moth (Lymantria dispar L.) was compared with a formulation of Gypchek against a natural gypsy moth population in the Swallow Falls State Forest in Garrett County, MD.
Field Comparison of Spruce Budworm Pheromone Lures
David G. Grimble
1987-01-01
Four types of spruce budworm pheromone lures were tested to compare field longevity and efficiency. Biolures with three different pheromone release rates and Silk-PVC lures all caught male budworm moths throughout the moth flight period in proportion to the different release rates. Fumigant strips in traps to kill trapped moths were necessary.
Tip moth parasitoids and pesticides: Are they compatible?
Kenneth W. McCravy; Mark J. Dalusky; C. Wayne Berisford
1999-01-01
Effects of herbicide and insecticide applications on parasitism of the Nantucket pine tip moth, Rhyacionia frustrana (Comstock) were examined in 2-yr-old loblolly pine (Pinus taeda L.) plantations in Georgia. Total parasitism rates varied significantly among tip moth generations, but there were no differences in parasitism rates between herbicide-treated and untreated...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Jia; Zhang, Ziang; Weng, Zhankun
This paper presents a new method for the generation of cross-scale laser interference patterns and the fabrication of moth-eye structures on silicon. In the method, moth-eye structures were produced on a surface of silicon wafer using direct six-beam laser interference lithography to improve the antireflection performance of the material surface. The periodic dot arrays of the moth-eye structures were formed due to the ablation of the irradiance distribution of interference patterns on the wafer surface. The shape, size, and distribution of the moth-eye structures can be adjusted by controlling the wavelength, incidence angles, and exposure doses in a direct six-beammore » laser interference lithography setup. The theoretical and experimental results have shown that direct six-beam laser interference lithography can provide a way to fabricate cross-scale moth-eye structures for antireflection applications.« less
Insect cyborgs: a new frontier in flight control systems
NASA Astrophysics Data System (ADS)
Reissman, Timothy; Crawford, Jackie H.; Garcia, Ephrahim
2007-04-01
The development of a micro-UAV via a cybernetic organism, primarily the Manduca sexta moth, is presented. An observer to gather output data of the system response of the moth is given by means of an image following system. The visual tracking was implemented to gather the required information about the time history of the moth's six degrees of freedom. This was performed with three cameras tracking a white line as a marker on the moth's thorax to maximize contrast between the moth and the marker. Evaluation of the implemented six degree of freedom visual tracking system finds precision greater than 0.1 mm within three standard deviations and accuracy on the order of 1 mm. Acoustic and visual response systems are presented to lay the groundwork for creating a stochastic response catalog of the organisms to varied stimuli.
Trends in afforestation in southern Missouri
W. Keith Moser; Mark D. Nelson; Mark H. Hansen; Sean Healey; Warren Cohen
2009-01-01
Past studies of forest disturbance traditionally have focused on biomass loss, e.g., blowdown in the Boundary Waters Canoe Area Wilderness, gypsy moth infestation, the impacts of Hurricanes Hugo and Katrina. Using FIA data and satellite imagery, this study examined a region of the country that is simultaneously experiencing biomass loss due to oak decline and biomass...
Indiana's forest resource in 2000
Thomas L. Schmidt; Manfred E. Mielke; Phillip T. Marshall
2002-01-01
Results of the 2000 annual inventory of Indiana show that the previous trend of increasing area of forest land and growing-stock volumes has leveled off. Deciduous species continue to dominate Indiana''s forests, accounting for 96 percent of the total growing-stock volume. Known pests in Indiana''s forests include gypsy moth, eastern tent...
Butterfly response and successional change following ecosystem restoration
Amy E. M. Waltz; W. Wallace Covington
2001-01-01
The Lepidoptera (butterflies and moths) can be useful indicators of ecosystem change as a result of a disturbance event. We monitored changes in butterfly abundance in two restoration treatment units paired with adjacent untreated forest at the Mt. Trumbull Resource Conservation Area in northern Arizona. Restoration treatments included thinning trees to density levels...
USDA-ARS?s Scientific Manuscript database
The oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae), is a primary pest of stone fruits in many countries, including the United States. The distribution of this pest is concentrated in areas receiving higher than lower rainfall. It prefers sites where stone fruits and apple...
Wakefield, Andrew; Stone, Emma L.; Jones, Gareth; Harris, Stephen
2015-01-01
The light-emitting diode (LED) street light market is expanding globally, and it is important to understand how LED lights affect wildlife populations. We compared evasive flight responses of moths to bat echolocation calls experimentally under LED-lit and -unlit conditions. Significantly, fewer moths performed ‘powerdive’ flight manoeuvres in response to bat calls (feeding buzz sequences from Nyctalus spp.) under an LED street light than in the dark. LED street lights reduce the anti-predator behaviour of moths, shifting the balance in favour of their predators, aerial hawking bats. PMID:26361558
[Gypsy moth Lymantria dispar L. in the South Urals: Patterns in population dynamics and modelling].
Soukhovolsky, V G; Ponomarev, V I; Sokolov, G I; Tarasova, O V; Krasnoperova, P A
2015-01-01
The analysis is conducted on population dynamics of gypsy moth from different habitats of the South Urals. The pattern of cyclic changes in population density is examined, the assessment of temporal conjugation in time series of gypsy moth population dynamics from separate habitats of the South Urals is carried out, the relationships between population density and weather conditions are studied. Based on the results obtained, a statistical model of gypsy moth population dynamics in the South Urals is designed, and estimations are given of regulatory and modifying factors effects on the population dynamics.
Two fatty acyl reductases involved in moth pheromone biosynthesis
Antony, Binu; Ding, Bao-Jian; Moto, Ken’Ichi; Aldosari, Saleh A.; Aldawood, Abdulrahman S.
2016-01-01
Fatty acyl reductases (FARs) constitute an evolutionarily conserved gene family found in all kingdoms of life. Members of the FAR gene family play diverse roles, including seed oil synthesis, insect pheromone biosynthesis, and mammalian wax biosynthesis. In insects, FAR genes dedicated to sex pheromone biosynthesis (pheromone-gland-specific fatty acyl reductase, pgFAR) form a unique clade that exhibits substantial modifications in gene structure and possesses unique specificity and selectivity for fatty acyl substrates. Highly selective and semi-selective ‘single pgFARs’ produce single and multicomponent pheromone signals in bombycid, pyralid, yponomeutid and noctuid moths. An intriguing question is how a ‘single reductase’ can direct the synthesis of several fatty alcohols of various chain lengths and isomeric forms. Here, we report two active pgFARs in the pheromone gland of Spodoptera, namely a semi-selective, C14:acyl-specific pgFAR and a highly selective, C16:acyl-specific pgFAR, and demonstrate that these pgFARs play a pivotal role in the formation of species-specific signals, a finding that is strongly supported by functional gene expression data. The study envisages a new area of research for disclosing evolutionary changes associated with C14- and C16-specific FARs in moth pheromone biosynthesis. PMID:27427355
Chen, Da-Song; Dai, Jian-Qing; Han, Shi-Chou
2017-11-24
The diamondback moth was estimated to increase costs to the global agricultural economy as the global area increase of Brassica vegetable crops and oilseed rape. Sex pheromones traps are outstanding tools available in Integrated Pest Management for many years and provides an effective approach for DBM population monitoring and control. The ratio of two major sex pheromone compounds shows geographical variations. However, the limitation of our information in the DBM pheromone biosynthesis dampens our understanding of the ratio diversity of pheromone compounds. Here, we constructed a transcriptomic library from the DBM pheromone gland and identified genes putatively involved in the fatty acid biosynthesis, pheromones functional group transfer, and β-oxidation enzymes. In addition, odorant binding protein, chemosensory protein and pheromone binding protein genes encoded in the pheromone gland transcriptome, suggest that female DBM moths may receive odors or pheromone compounds via their pheromone gland and ovipositor system. Tissue expression profiles further revealed that two ALR, three DES and one FAR5 genes were pheromone gland tissue biased, while some chemoreception genes expressed extensively in PG, pupa, antenna and legs tissues. Finally, the candidate genes from large-scale transcriptome information may be useful for characterizing a presumed biosynthetic pathway of the DBM sex pheromone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wynn, S.R.; Swanson, M.C.; Reed, C.E.
1988-07-01
With an immunochemical method, we analyzed outdoor air samples during a 3-year period for concentrations of the predominant local species of moth, Pseudaletia unipuncta (Haworth). Airborne particulates were collected on fiberglass filter sheets with an Accu-Vol sampler located 1.5 m above ground on the southeastern Minnesota prairie. Filter eluates analyzed by RIA inhibition contained concentrations of moth protein peaking in June and August to September of each year, with levels comparable to reported immunochemically measured levels of pollen and mold allergens. These peaks also corresponded with total numbers of moths captured in light traps. Moth-allergen activity was distributed in particlemore » sizes ranging from 0.8 to greater than 4.1 micron when sized samples were obtained by use of an Andersen cascade impaction head. By RIA inhibition, there was cross-reactivity between P. unipuncta and insects of different genera, families, and orders, but not with pollens or molds. Forty-five percent of 257 patients with immediate positive skin tests to common aeroallergens had positive skin tests to one or more commercially available whole body insect extracts. Of 120 patients with allergic rhinitis believed to be primarily caused by ragweed sensitivity, 5% also had elevated specific IgE to moths. We conclude that airborne concentrations of Lepidoptera can be measured immunochemically and that moths may be a seasonal allergen in the United States.« less
Documentation of the Douglas-fir tussock moth outbreak-population model.
J.J. Colbert; W. Scott Overton; Curtis. White
1979-01-01
Documentation of three model versions: the Douglas-fir tussock moth population-branch model on (1) daily temporal resolution, (2) instart temporal resolution, and (3) the Douglas-fir tussock moth stand-outbreak model; the hierarchical framework and the conceptual paradigm used are described. The coupling of the model with a normal-stand model is discussed. The modeling...
Determining the economic feasibility of salvaging gypsy moth-killed hardwoods
Chris B. LeDoux
1990-01-01
Oak sawlog and pulpwood losses in stands defoliated by gypsy moths have become a critical problem for some forest landowners. The salvage of gypsy moth-killed hardwoods can become an important source of pulpwood and sawlogs. This study documents a methodology and provides guidelines to determine defoliated oak stands that are economically salvageable. Stand data from...
Gypsy moth effects on mast production
Kurt W. Gottschalk
1990-01-01
Gypsy moth outbreaks can have drastic effects on many forest resources and uses. Because the gypsy moth prefers oak foliage, oak stands are the most susceptible to defoliation and resultant damage. The value of oak mast for many wildlife species is high. The high carbohydrate content of acorns provides the energy necessary for winter survival. Loss of mast crops due to...
USDA-ARS?s Scientific Manuscript database
Phenylacetaldehyde is a flower volatile and attractant for many nectar-seeking moths. Acetic acid is a microbial fermentation product that is present in insect sweet baits. It is weakly attractive to some moths and other insects, but can be additive or synergistic with other compounds to make more p...
Silvicultural treatments and logging costs for minimizing gypsy moth impacts
Michael D. Erickson; Curt C. Hassler; Chris B. LeDoux
1991-01-01
Gypsy moth defoliation is a serious threat to eastern hardwood forests. Felling and skidding costs for harvesting timber in silvicultural thinnings designed to reduce the impacts of the moth were evaluated. Cost of felling the nonmerchantable component of the thinnings to achieve treatment objectives are reported, along with a discussion of the economic feasibility of...
What causes the patterns of gypsy moth defoliation?
Clive G. Jones
1991-01-01
Gypsy moth defoliation is typically observed to occur on xeric ridge tops before more mesic, lowland forest, in oak-dominated habitats in the Northeast. In subsequent years defoliation may also occur in mesic forests. What causes this pattern of defoliation? Differences in the degree of defoliation may be due to differences in the density of gypsy moth populations in...
James B. McGraw; Kurt W. Gottschalk
1991-01-01
The potential for defoliation of oak seedlings by gypsy moth is quite high. We were interested in examining the interactions between various natural stresses and resulting gypsy moth feeding preferences and the results of defoliation stress on the growth and photosynthetic responses of the oak seedlings.
Christopher J. Fettig; Mark J. Dalusky; C. Wayne Berisford
2000-01-01
The Nantucket pine tip moth, Rhyacionia frustrana (Comstock) (Lepidoptera: Tortricidae), is a common pest of Christmas tree and pine plantations throughout much of the Eastern United States. The moth completes two to five generations annually, and insecticide spray timing models are currently available for controlling populations where three or...
Forest susceptibility to the gypsy moth
Andrew M. Liebhold; Kurt W. Gottschalk; Douglas A. Mason; Renate R. Bush
1997-01-01
Since 1868 or 1869, when it was introduced near Boston, the gypsy moth has been slowly expanding its range to include the entire northeastern United States and portions of Virginia, West Virginia, North Carolina, Ohio, and Michigan (Liebhold et al. 1992, 1996). It is inevitable that the gypsy moth will continue to spread south and west over the next century.
Silvicultural guidelines for forest stands threatened by the gypsy moth
Kurt W. Gottschalk
1993-01-01
Ecological and silvicultural information on the interaction of gypsy moth and its host forest types is incorporated into silvicultural guidelines for minimizing the impacts of gypsy moth on forest stands threatened by the insect. Decision charts are used to match stand and insect conditions to the proper prescription that includes instructions for implementing it....
Gypsy moth in the southeastern U.S.: Biology, ecology, and forest management strategies
Bruce W. Kauffman; Wayne K. Clatterbuck; Andrew M. Liebhold; David R. Coyle
2017-01-01
The European gypsy moth (Lymantria dispar L.) is a non-native insect that was accidentally introduced to North America in 1869 when it escaped cultivation by a French amateur entomologist living near Boston, MA. Despite early efforts to eradicate the species, it became established throughout eastern Massachusetts. Since then, the gypsy moth has...
D. R. Smitley; L. S. Bauer; A. E. Hajek; F. J. Sapio; R. A. Humber
1995-01-01
In 1991, late instars of gypsy moth, Lymantria dispar (L.), were sampled and diagnosed for infections of the pathogenic fungus Entomophaga maimaiga Humber, Shimazu & Soper and for gypsy moth nuclear polyhedrosis virus (NPV) at 50 sites in Michigan. Approximately 1,500 larvae were collected and reared from these sites, and no...
Mark H. Eisenbies; Christopher Davidson; James Johnson; Ralph Amateis; Kurt Gottschalk
2007-01-01
Defoliation by the European gypsy moth (Lymantria dispar L.) and subsequent tree mortality have been well documented in the northeastern United States. In this study we evaluate tree mortality after initial defoliation in mixed pine?hardwood stands in the southeastern United States as the range of European gypsy moth expands.
Joseph P. Spruce; Steven Sader; Robert E. Ryan; James Smoot; Philip Kuper; al. et.
2011-01-01
This paper discusses an assessment of Moderate Resolution Imaging Spectroradiometer (MODIS) time-series data products for detecting forest defoliation from European gypsy moth (Lymantria dispar). This paper describes an effort to aid the United States Department of Agriculture (USDA) Forest Service in developing and assessing MODIS-based gypsy moth defoliation...
James R. Reilly; Ann E. Hajek; Andrew M. Liebhold; Ruth Plymale
2014-01-01
The fungal pathogen Entomophaga maimaiga Humber, Shimazu, and Soper is prevalent in gypsy moth [Lymantria dispar (L.)] populations throughout North America. To understand how weather-related variables influence gypsy mothâE. maimaiga interactions in the field, we measured fungal infection rates at 12 sites...
An experimental burn to restore a moth-killed boreal conifer forest, Krasnoyarsk Region, Russia
E.N. Valendik; J.C. Brissette; Ye. K. Kisilyakhov; R.J. Lasko; S.V. Verkhovets; S.T. Eubanks; I.V. Kosov; A. Yu. Lantukh
2006-01-01
Mechanical treatment and prescribed fire were used to restore a mixed conifer stand (Picea-Abies-Pinus) following mortality from an outbreak of Siberian moth (Dendrolimus superans sibiricus). Moth-killed stands often become dominated by Calamagrostis, a sod-forming grass. The large amount of woody debris and the sod hinder coniferous seedling establishment and...
Beccacece, Hernán Mario; Zeballos, Sebastián Rodolfo; Zapata, Adriana Inés
2016-01-01
Paraná, Yungas and Chaco Serrano ecoregions are among the most species-rich terrestrial habitats at higher latitude. However, the information for tiger moths, one of the most speciose groups of moths, is unknown in these ecoregions. In this study, we assess their species richness and composition in all three of these ecoregions. Also we investigated whether the species composition of tiger moths is influenced by climatic factors and altitude. Tiger moth species were obtained with samples from 71 sites using standardized protocols (21 sites were in Yungas, 19 in Paraná and 31 in Chaco Serrano). Rarefaction-extrapolation curves, non-parametric estimators for incidence and sample coverage indices were performed to assess species richness in the ecoregions studied. Non metric multidimensional scaling and adonis tests were performed to compare the species composition of tiger moths among ecoregions. Permutest analysis and Pearson correlation were used to evaluate the relationship among species composition and annual mean temperature, annual temperature range, annual precipitation, precipitation seasonality and altitude. Among ecoregions Paraná was the richest with 125 species, followed by Yungas with 63 species and Chaco Serrano with 24 species. Species composition differed among these ecoregions, although Yungas and Chaco Serrano were more similar than Paraná. Species composition was significantly influenced by climatic factors and altitude. This study showed that species richness and species composition of tiger moths differed among the three ecoregions assessed. Furthermore, not only climatic factors and altitude influence the species composition of tiger moths among ecoregions, but also climatic seasonality at higher latitude in Neotropical South America becomes an important factor. PMID:27681478
Antibacterial effects of the artificial surface of nanoimprinted moth-eye film.
Minoura, Kiyoshi; Yamada, Miho; Mizoguchi, Takashi; Kaneko, Toshihiro; Nishiyama, Kyoko; Ozminskyj, Mari; Koshizuka, Tetsuo; Wada, Ikuo; Suzutani, Tatsuo
2017-01-01
The antibacterial effect of a nanostructured film, known as "moth-eye film," was investigated. The moth-eye film has artificially formed nano-pillars, consisting of hydrophilic resin with urethane acrylate and polyethylene glycol (PEG) derivatives, all over its surface that replicates a moth's eye. Experiments were performed to compare the moth-eye film with a flat-surfaced film produced from the same materials. The JIS Z2801 film-covering method revealed that the two films produced a decrease in Staphylococcus aureus and Esherichia coli titers of over 5 and 3 logs, respectively. There was no marked difference in the antibacterial effects of the two surfaces. However, the antibacterial effects were reduced by immersion of the films in water. These results indicated that a soluble component(s) of the resin possessed the antibacterial activity, and this component was identified as PEG derivatives by time-of-flight secondary ion mass spectrometry (TOF-SIMS) and Fourier transform infrared spectroscopy (FT-IR). When a small volume of bacterial suspension was dropped on the films as an airborne droplet model, both films showed antibacterial effects, but that of the moth-eye film was more potent. It was considered that the moth-eye structure allowed the bacteria-loaded droplet to spread and allow greater contact between the bacteria and the film surface, resulting in strong adherence of the bacteria to the film and synergistically enhanced bactericidal activity with chemical components. The antibacterial effect of the moth-eye film has been thus confirmed under a bacterial droplet model, and it appears attractive due to its antibacterial ability, which is considered to result not only from its chemical make-up but also from physical adherence.
Green, M; Heumann, M; Sokolow, R; Foster, L R; Bryant, R; Skeels, M
1990-01-01
Bacillus thuringiensis var. kurstaki (B.t.-k) is a microbial pesticide which has been widely used for over 30 years. Its safety for a human population living in sprayed areas has never been tested. Surveillance for human infections caused by B.t.-k among Lane County, Oregon residents was conducted during two seasons of aerial B.t.-k spraying for gypsy moth control. Bacillus isolates from cultures obtained for routine clinical purposes were tested for presence of Bacillus thuringiensis (B.t.). Detailed clinical information was obtained for all B.t.-positive patients. About 80,000 people lived in the first year's spray area, and 40,000 in the second year's area. A total of 55 B.t.-positive cultures were identified. The cultures had been taken from 18 different body sites or fluids. Fifty-two (95 percent) of the B.t. isolates were assessed to be probable contaminants and not the cause of clinical illness. For three patients, B.t. could neither be ruled in nor out as a pathogen. Each of these three B.t.-positive patients had preexisting medical problems. The level of risk for B.t.-k and other existing or future microbial pesticides in immunocompromised hosts deserves further study. PMID:2356910
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-14
...We, the U.S. Fish and Wildlife Service (Service), announce a 12-month finding on a petition to list the rattlesnake-master borer moth (Papaipema eryngii) as an endangered or a threatened species under the Endangered Species Act of 1973, as amended (Act). After review of the best available scientific and commercial information, we find that listing the rattlesnake-master borer moth is warranted. Currently, however, listing the rattlesnake-master borer moth is precluded by higher priority actions to amend the Lists of Endangered and Threatened Wildlife and Plants. Upon publication of this 12-month petition finding, we will add the rattlesnake-master borer moth to our candidate species list. We will develop a proposed rule to list the rattlesnake- master borer moth as our priorities allow. In any interim period, we will address the status of the candidate taxon through our annual Candidate Notice of Review (CNOR).
Evolution of deceptive and true courtship songs in moths
Nakano, Ryo; Takanashi, Takuma; Surlykke, Annemarie; Skals, Niels; Ishikawa, Yukio
2013-01-01
Ultrasonic mating signals in moths are argued to have evolved via exploitation of the receivers' sensory bias towards bat echolocation calls. We have demonstrated that female moths of the Asian corn borer are unable to distinguish between the male courtship song and bat calls. Females react to both the male song and bat calls by “freezing”, which males take advantage of in mating (deceptive courtship song). In contrast, females of the Japanese lichen moth are able to distinguish between the male song and bat calls by the structure of the sounds; females emit warning clicks against bats, but accept males (true courtship song). Here, we propose a hypothesis that deceptive and true signals evolved independently from slightly different precursory sounds; deceptive/true courtship songs in moths evolved from the sounds males incidentally emitted in a sexual context, which females could not/could distinguish, respectively, from bat calls. PMID:23788180
Computational Fluid Dynamics at ICMA (Institute for Computational Mathematics and Applications)
1988-10-18
PERSONAL. AUTHOR(S) Charles A. Hall and Thomas A. Porsching 13a. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (YearMOth, De ) 1. PAGE COUNT...of ten ICtA (Institute for Computational Mathe- matics and Applications) personnel, relating to the general area of computational fluid mechanics...questions raised in the previous subsection. Our previous work in this area concentrated on a study of the differential geometric aspects of the prob- lem
Huetteroth, Wolf; el Jundi, Basil; el Jundi, Sirri; Schachtner, Joachim
2009-01-01
During metamorphosis, the transition from the larva to the adult, the insect brain undergoes considerable remodeling: new neurons are integrated while larval neurons are remodeled or eliminated. One well acknowledged model to study metamorphic brain development is the sphinx moth Manduca sexta. To further understand mechanisms involved in the metamorphic transition of the brain we generated a 3D standard brain based on selected brain areas of adult females and 3D reconstructed the same areas during defined stages of pupal development. Selected brain areas include for example mushroom bodies, central complex, antennal- and optic lobes. With this approach we eventually want to quantify developmental changes in neuropilar architecture, but also quantify changes in the neuronal complement and monitor the development of selected neuronal populations. Furthermore, we used a modeling software (Cinema 4D) to create a virtual 4D brain, morphing through its developmental stages. Thus the didactical advantages of 3D visualization are expanded to better comprehend complex processes of neuropil formation and remodeling during development. To obtain datasets of the M. sexta brain areas, we stained whole brains with an antiserum against the synaptic vesicle protein synapsin. Such labeled brains were then scanned with a confocal laser scanning microscope and selected neuropils were reconstructed with the 3D software AMIRA 4.1. PMID:20339481
Huetteroth, Wolf; El Jundi, Basil; El Jundi, Sirri; Schachtner, Joachim
2010-01-01
DURING METAMORPHOSIS, THE TRANSITION FROM THE LARVA TO THE ADULT, THE INSECT BRAIN UNDERGOES CONSIDERABLE REMODELING: new neurons are integrated while larval neurons are remodeled or eliminated. One well acknowledged model to study metamorphic brain development is the sphinx moth Manduca sexta. To further understand mechanisms involved in the metamorphic transition of the brain we generated a 3D standard brain based on selected brain areas of adult females and 3D reconstructed the same areas during defined stages of pupal development. Selected brain areas include for example mushroom bodies, central complex, antennal- and optic lobes. With this approach we eventually want to quantify developmental changes in neuropilar architecture, but also quantify changes in the neuronal complement and monitor the development of selected neuronal populations. Furthermore, we used a modeling software (Cinema 4D) to create a virtual 4D brain, morphing through its developmental stages. Thus the didactical advantages of 3D visualization are expanded to better comprehend complex processes of neuropil formation and remodeling during development. To obtain datasets of the M. sexta brain areas, we stained whole brains with an antiserum against the synaptic vesicle protein synapsin. Such labeled brains were then scanned with a confocal laser scanning microscope and selected neuropils were reconstructed with the 3D software AMIRA 4.1.
Characteristics of Stands Susceptible and Resistant to Gypsy Moth Defoliation
David R. Houston
1983-01-01
Site conditions strongly influence where gypsy moth defohation will occur. In New England, where gypsy moths and foresta have interacted for over a century, some foreats have had a history of repeated defoliation while others have been defo1iated only rarely. The often defohated or susceptible forests characteristically grow on dry sitea such as rocky ridges or deep...
USDA-ARS?s Scientific Manuscript database
The gypsy moth, Lymantria dispar L., is one of the most destructive forest pests in the world. While the subspecies established in North America is the European gypsy moth (L. dispar dispar), whose females are flightless, the two Asian subspecies, L. dispar asiatica and L. dispar japonica, have flig...
Preliminary results on predation of gypsy moth egg masses in Slovakia
Marek Turcani; Andrew Liebhold; Michael McManus; Julius Novotny
2003-01-01
Predation of gypsy moth egg masses was studied in Slovakia from 1999-2002. Predation on naturally laid egg masses was recorded and linear regression was used to test the hypothesis that predation follows a type II vs. type III functional response. We also investigated the role of egg mass predation in gypsy moth population dynamics. The relative contribution of...
Relationships between overstory composition and gypsy moth egg-mass density
Robert W. Campbell
1974-01-01
Most of the silvicultural recommendations for reducing the hazard of gypsy moth outbreaks have been based in part on the premise that gypsy moth density levels are related closely to the proportion of favored food trees in the overstory. This premise did not prove to be true for a series of plots observed in eastern New England between 1911 and 1931.
Christopher Asaro; C. Wayne Berisford
2001-01-01
There is considerable interest in using pheromone trap catches of the Nantucket pine tip moth, Rhyacionia frustrana (Conistock), to estimate or predict population density and damage. At six sites in the Georgia Piedmont, adult tip moths were monitored through one or more years using pheromone traps while population density and damage for each tip...
Felling and skidding cost estimates for thinnings to reduce gypsy moth impacts
Michael D. Erickson; Curt C. Hassler; Chris B. LeDoux
1991-01-01
The gypsy moth is a serious threat to the hardwood forests of the eastern United States. Although chemical treatments currently exist which can be used to help control the impacts of the moth, silvicultural control measures are just now being proposed and tested. Felling and skidding cost estimates for harvesting merchantable timber under two such proposed...
HOW to Identify and Minimize Red Pine Shoot Moth Damage
Steven Katovich; David J. Hall
1992-01-01
The red pine shoot moth, Dioryctria resinosella, feeds on newly expanding shoots and cones of red pine, Pinus resinosa. Damage has been reported from Maine, Michigan, Minnesota, Wisconsin, and southern Ontario. The red pine shoot moth is now considered a pest due to the large increase in the number and overall acreage of red pine plantations greater than 20 years of...
Kurt W., ed. Gottschalk
2007-01-01
Contains three abstracts and papers from the 2005 Forum and 70 abstracts and papers of oral and poster presentations on gypsy moth and other invasive species biology, molecular biology, ecology, impacts, and management presented at the annual U.S. Department of Agriculture Interagency Research Forum on Gypsy Moth and Other Invasive Species.
The Homeowner and the Gypsy Moth: Guidelines for Control
Michael L. McManus; David R. Houston; William E. Wallner
1979-01-01
The gypsy moth is the most important defoliating insect of hardwood trees in the Eastern United States (fig. 1). Since the turn of the century, millions of dollars have been spent in efforts to control or eliminate gypsy moth populations and to retard natural and artificial spread. In the early decades of this century, outbreaks occurred only in New England; today...
Gypsy moth impacts on oak acorn production
Kurt W. Gottschalk
1991-01-01
Gypsy moth outbreaks can have drastic effects on many f a s t resources and uses. Because gypsy moth prefers oak foliage, oak stands are the most susceptible to defoliation and resultant damage. The value of oak mast for many wildlife species is high. The high carbohydrate content of acorns provides the energy necessary for winter survival. Loss of mast crops due to...
Effects of gypsy moth-oriented silvicultural treatments on vertebrate predator communities
Richard D. Greer; Robert C. Whitmore
1991-01-01
The impact of forest thinning, as an alternative gypsy moth management technique, on insectivorous birds and small mammals is being investigated in the West Virginia University Forest. The effects of thinning on predation of gypsy moth larvae and pupae by vertebrates are also being examined. Pre-thinning studies were conducted during the spring, summer, and fall of...
Landscape ecology of gypsy moth in the Northeastern United States
Andrew Liebhold; Joel Halverson; Gregory Elmes; Jay Hutchinson
1991-01-01
The gypsy moth was accidentally introduced to North America near Boston by E. Leopold Trouvelot in 1869. Since that time, the range of the gypsy moth has slowly spread and the generally infested region presently extends as far as Ohio, West Virginia, Virginia and North Carolina. A separate isolated but expanding population exists in Michigan. The goal of this study was...
Impact of pine tip moth attack on loblolly pine
Roy Hedden
1999-01-01
Data on the impact of Nantucket pine tip moth, Rhyacionia frustrana, attack on the height of loblolly pine, Pinus taeda, in the first three growing seasons after planting from three locations in eastern North Carolina (U.S.A.) was used to develop multiple linear regression models relating tree height to tip moth infestation level in each growing season. These models...
Gypsy Moth Host Interactions: A Concept of Room and Board
William E. Wallner
1983-01-01
The influence of host type and condition on the bioecology of gypsy moth are discussed from the viewpoint of room and board. Larval establishment was higher on preferred hosts; less than 5% migrated off them. Nonpreferred hosts lost 10-25% of larvae. Susceptibility of gypsy moth larvae to nucleopolyhedrosis virus increased following 1 or 2 years of defoliation....
Use of pheromone traps to predict infestation levels of the nantucket pine tip moth: Can it be done?
Christopher Asaro; C. Wayne Berisford
1999-01-01
Pheromone traps baited with synthetic baits are used in southeastern pine plantations to monitor the phenology of the Nantucket pine tip moth (Rhyacionia frustrana (Comstock)) for timing of insecticide applications. Trap catches of tip moths have been difficult to interpret because they decrease considerably relative to population density from the...
Comparison of methods for estimating the spread of a non-indigenous species
Patrick C. Tobin; Andrew M. Liebhold; E. Anderson Roberts
2007-01-01
Aim: To compare different quantitative approaches for estimating rates of spread in the exotic species gypsy moth, Lymantria dispar L., using county-level presence/absence data and spatially extensive trapping grids. Location: USA. Methods: We used county-level presence/absence records of the gypsy moth?s distribution in the USA, which are available beginning in 1900,...
Susceptibility of regeneration in clearcuts to defoliation by gypsy moth
Ray R., Jr. Hicks; Robert M. Fultineer; Barbara S. Ware; Kurt W. Gottschalk
1993-01-01
In 1991 and 1992, we observed gypsy moth defoliation of oak regeneration in clearcuts of varying sizes and ages. We established plots in the surrounding mature forests to document ambient gypsy moth population levels and placed subplots within the clearcuts designed to examine the effect of location relative to the clearcut edge. We found that the levels of defoliation...
Harry O. III Yates; Nell A. Overgaard; Thomas W. Koerber
1981-01-01
The Nantucket pine tip moth, Rhyacionia frustrana (Comstock),4 is a major forest insect pest in the United States. Its range extends from Massachusetts to Florida and west to Texas. It was found in San Diego County, California, in 1971 and traced to infested pine seedlings shipped from Georgia in 1967. The moth has since spread north and east in California and is now...
Tracking changes in the susceptibility of forest land infested with gypsy moth
David A. Gansner; John W. Quimby; Susan L. King; Stanford L. Arner; David A. Drake
1994-01-01
Does forest land subject to intensive outbreaks of gypsy moth (Lymantria dispar L.) become less susceptible to defoliation? A model for estimating the likelihood of gypsy moth defoliation has been developed and validated. It was applied to forest-inventory plot data to quantify trends in the susceptibility of forest land in south-central Pennsylvania during a period of...
Persistent effects of aerial applications of disparlure on gypsy moth: trap catch and mating success
Kevin W. Thorpe; Ksenia S. Tcheslavskaia; Patrick C. Tobin; Laura M. Blackburn; Donna S. Leonard; E. Anderson Roberts
2007-01-01
In forest plots treated aerially with a plastic laminated flake formulation (Disrupt® II) of the gypsy moth sex pheromone disparlure to disrupt gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae), mating was monitored the year of treatment and 1-2 years after treatment to determine the effects of the treatment on suppression of...
R.A. Lautenschlager; J.D. Podgwaite
1977-01-01
The white-footed mouse, Peromyscus leucopus Rafinesque, and the short-tailed shrew, Blarina brevicauda Say, 2 small mammal predators of the gypsy moth, have demonstrated the ability to pass significant amounts of infectious nuclear polyhedrosis virus (NPV) through their alimentary tracts. Ninety-five percent of the gypsy moth...
Kurt W. Gottschalk; James M. Guldin; Jimmie J. Colbert
2004-01-01
A simulation was conducted to determine how growth of forests in the Interior Highlands would change under attack by the gypsy moth (Lymantria dispar L.). Simulations were conducted for three different outbreak intensities using the Gypsy Moth Stand-Damage Model. Forest Inventory and Analysis (FIA) inventory data were used as input for the simulation...
Allee effects and pulsed invasion by the gypsy moth
Derk M. Johnson; Andrew M. Liebhold; Patrick C. Tobin; Ottar N. Bjornstad
2006-01-01
Biological invasions pose considerable threats to the world's ecosystems and cause substantial economic losses. A prime example is the invasion of the gypsy moth in the United States, for which more than $194 million was spent on management and monitoring between 1985 and 2004 alone. The spread of the gypsy moth across eastern North America is, perhaps, the most...
Outcrossing colonies of the Otis New Jersey gypsy moth strain and its effect on progeny development
John Allen Tanner; Charles P. Schwalbe
1991-01-01
The Otis New Jersey gypsy moth (Lymantria dispar L.) strain is considered the "white rat" of gypsy moth research. This strain has been laboratory reared for 34 generations. It currently consists of 35 subcolonies or cohorts that have been genetically isolated from one another for several generations. Usually, larvae that hatch at the same...