Sample records for areas including visual

  1. Mapping visual cortex in monkeys and humans using surface-based atlases

    NASA Technical Reports Server (NTRS)

    Van Essen, D. C.; Lewis, J. W.; Drury, H. A.; Hadjikhani, N.; Tootell, R. B.; Bakircioglu, M.; Miller, M. I.

    2001-01-01

    We have used surface-based atlases of the cerebral cortex to analyze the functional organization of visual cortex in humans and macaque monkeys. The macaque atlas contains multiple partitioning schemes for visual cortex, including a probabilistic atlas of visual areas derived from a recent architectonic study, plus summary schemes that reflect a combination of physiological and anatomical evidence. The human atlas includes a probabilistic map of eight topographically organized visual areas recently mapped using functional MRI. To facilitate comparisons between species, we used surface-based warping to bring functional and geographic landmarks on the macaque map into register with corresponding landmarks on the human map. The results suggest that extrastriate visual cortex outside the known topographically organized areas is dramatically expanded in human compared to macaque cortex, particularly in the parietal lobe.

  2. Widespread correlation patterns of fMRI signal across visual cortex reflect eccentricity organization.

    PubMed

    Arcaro, Michael J; Honey, Christopher J; Mruczek, Ryan E B; Kastner, Sabine; Hasson, Uri

    2015-02-19

    The human visual system can be divided into over two-dozen distinct areas, each of which contains a topographic map of the visual field. A fundamental question in vision neuroscience is how the visual system integrates information from the environment across different areas. Using neuroimaging, we investigated the spatial pattern of correlated BOLD signal across eight visual areas on data collected during rest conditions and during naturalistic movie viewing. The correlation pattern between areas reflected the underlying receptive field organization with higher correlations between cortical sites containing overlapping representations of visual space. In addition, the correlation pattern reflected the underlying widespread eccentricity organization of visual cortex, in which the highest correlations were observed for cortical sites with iso-eccentricity representations including regions with non-overlapping representations of visual space. This eccentricity-based correlation pattern appears to be part of an intrinsic functional architecture that supports the integration of information across functionally specialized visual areas.

  3. Deep Learning Predicts Correlation between a Functional Signature of Higher Visual Areas and Sparse Firing of Neurons.

    PubMed

    Zhuang, Chengxu; Wang, Yulong; Yamins, Daniel; Hu, Xiaolin

    2017-01-01

    Visual information in the visual cortex is processed in a hierarchical manner. Recent studies show that higher visual areas, such as V2, V3, and V4, respond more vigorously to images with naturalistic higher-order statistics than to images lacking them. This property is a functional signature of higher areas, as it is much weaker or even absent in the primary visual cortex (V1). However, the mechanism underlying this signature remains elusive. We studied this problem using computational models. In several typical hierarchical visual models including the AlexNet, VggNet, and SHMAX, this signature was found to be prominent in higher layers but much weaker in lower layers. By changing both the model structure and experimental settings, we found that the signature strongly correlated with sparse firing of units in higher layers but not with any other factors, including model structure, training algorithm (supervised or unsupervised), receptive field size, and property of training stimuli. The results suggest an important role of sparse neuronal activity underlying this special feature of higher visual areas.

  4. Deep Learning Predicts Correlation between a Functional Signature of Higher Visual Areas and Sparse Firing of Neurons

    PubMed Central

    Zhuang, Chengxu; Wang, Yulong; Yamins, Daniel; Hu, Xiaolin

    2017-01-01

    Visual information in the visual cortex is processed in a hierarchical manner. Recent studies show that higher visual areas, such as V2, V3, and V4, respond more vigorously to images with naturalistic higher-order statistics than to images lacking them. This property is a functional signature of higher areas, as it is much weaker or even absent in the primary visual cortex (V1). However, the mechanism underlying this signature remains elusive. We studied this problem using computational models. In several typical hierarchical visual models including the AlexNet, VggNet, and SHMAX, this signature was found to be prominent in higher layers but much weaker in lower layers. By changing both the model structure and experimental settings, we found that the signature strongly correlated with sparse firing of units in higher layers but not with any other factors, including model structure, training algorithm (supervised or unsupervised), receptive field size, and property of training stimuli. The results suggest an important role of sparse neuronal activity underlying this special feature of higher visual areas. PMID:29163117

  5. Widespread correlation patterns of fMRI signal across visual cortex reflect eccentricity organization

    PubMed Central

    Arcaro, Michael J; Honey, Christopher J; Mruczek, Ryan EB; Kastner, Sabine; Hasson, Uri

    2015-01-01

    The human visual system can be divided into over two-dozen distinct areas, each of which contains a topographic map of the visual field. A fundamental question in vision neuroscience is how the visual system integrates information from the environment across different areas. Using neuroimaging, we investigated the spatial pattern of correlated BOLD signal across eight visual areas on data collected during rest conditions and during naturalistic movie viewing. The correlation pattern between areas reflected the underlying receptive field organization with higher correlations between cortical sites containing overlapping representations of visual space. In addition, the correlation pattern reflected the underlying widespread eccentricity organization of visual cortex, in which the highest correlations were observed for cortical sites with iso-eccentricity representations including regions with non-overlapping representations of visual space. This eccentricity-based correlation pattern appears to be part of an intrinsic functional architecture that supports the integration of information across functionally specialized visual areas. DOI: http://dx.doi.org/10.7554/eLife.03952.001 PMID:25695154

  6. Connectivity Reveals Sources of Predictive Coding Signals in Early Visual Cortex During Processing of Visual Optic Flow.

    PubMed

    Schindler, Andreas; Bartels, Andreas

    2017-05-01

    Superimposed on the visual feed-forward pathway, feedback connections convey higher level information to cortical areas lower in the hierarchy. A prominent framework for these connections is the theory of predictive coding where high-level areas send stimulus interpretations to lower level areas that compare them with sensory input. Along these lines, a growing body of neuroimaging studies shows that predictable stimuli lead to reduced blood oxygen level-dependent (BOLD) responses compared with matched nonpredictable counterparts, especially in early visual cortex (EVC) including areas V1-V3. The sources of these modulatory feedback signals are largely unknown. Here, we re-examined the robust finding of relative BOLD suppression in EVC evident during processing of coherent compared with random motion. Using functional connectivity analysis, we show an optic flow-dependent increase of functional connectivity between BOLD suppressed EVC and a network of visual motion areas including MST, V3A, V6, the cingulate sulcus visual area (CSv), and precuneus (Pc). Connectivity decreased between EVC and 2 areas known to encode heading direction: entorhinal cortex (EC) and retrosplenial cortex (RSC). Our results provide first evidence that BOLD suppression in EVC for predictable stimuli is indeed mediated by specific high-level areas, in accord with the theory of predictive coding. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas

    PubMed Central

    Michalareas, Georgios; Vezoli, Julien; van Pelt, Stan; Schoffelen, Jan-Mathijs; Kennedy, Henry; Fries, Pascal

    2016-01-01

    Primate visual cortex is hierarchically organized. Bottom-up and top-down influences are exerted through distinct frequency channels, as was recently revealed in macaques by correlating inter-areal influences with laminar anatomical projection patterns. Because this anatomical data cannot be obtained in human subjects, we selected seven homologous macaque and human visual areas, and correlated the macaque laminar projection patterns to human inter-areal directed influences as measured with magnetoencephalography. We show that influences along feedforward projections predominate in the gamma band, whereas influences along feedback projections predominate in the alpha-beta band. Rhythmic inter-areal influences constrain a functional hierarchy of the seven homologous human visual areas that is in close agreement with the respective macaque anatomical hierarchy. Rhythmic influences allow an extension of the hierarchy to 26 human visual areas including uniquely human brain areas. Hierarchical levels of ventral and dorsal stream visual areas are differentially affected by inter-areal influences in the alpha-beta band. PMID:26777277

  8. Neural mechanisms underlying sound-induced visual motion perception: An fMRI study.

    PubMed

    Hidaka, Souta; Higuchi, Satomi; Teramoto, Wataru; Sugita, Yoichi

    2017-07-01

    Studies of crossmodal interactions in motion perception have reported activation in several brain areas, including those related to motion processing and/or sensory association, in response to multimodal (e.g., visual and auditory) stimuli that were both in motion. Recent studies have demonstrated that sounds can trigger illusory visual apparent motion to static visual stimuli (sound-induced visual motion: SIVM): A visual stimulus blinking at a fixed location is perceived to be moving laterally when an alternating left-right sound is also present. Here, we investigated brain activity related to the perception of SIVM using a 7T functional magnetic resonance imaging technique. Specifically, we focused on the patterns of neural activities in SIVM and visually induced visual apparent motion (VIVM). We observed shared activations in the middle occipital area (V5/hMT), which is thought to be involved in visual motion processing, for SIVM and VIVM. Moreover, as compared to VIVM, SIVM resulted in greater activation in the superior temporal area and dominant functional connectivity between the V5/hMT area and the areas related to auditory and crossmodal motion processing. These findings indicate that similar but partially different neural mechanisms could be involved in auditory-induced and visually-induced motion perception, and neural signals in auditory, visual, and, crossmodal motion processing areas closely and directly interact in the perception of SIVM. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Multisensory connections of monkey auditory cerebral cortex

    PubMed Central

    Smiley, John F.; Falchier, Arnaud

    2009-01-01

    Functional studies have demonstrated multisensory responses in auditory cortex, even in the primary and early auditory association areas. The features of somatosensory and visual responses in auditory cortex suggest that they are involved in multiple processes including spatial, temporal and object-related perception. Tract tracing studies in monkeys have demonstrated several potential sources of somatosensory and visual inputs to auditory cortex. These include potential somatosensory inputs from the retroinsular (RI) and granular insula (Ig) cortical areas, and from the thalamic posterior (PO) nucleus. Potential sources of visual responses include peripheral field representations of areas V2 and prostriata, as well as the superior temporal polysensory area (STP) in the superior temporal sulcus, and the magnocellular medial geniculate thalamic nucleus (MGm). Besides these sources, there are several other thalamic, limbic and cortical association structures that have multisensory responses and may contribute cross-modal inputs to auditory cortex. These connections demonstrated by tract tracing provide a list of potential inputs, but in most cases their significance has not been confirmed by functional experiments. It is possible that the somatosensory and visual modulation of auditory cortex are each mediated by multiple extrinsic sources. PMID:19619628

  10. Organization of area hV5/MT+ in subjects with homonymous visual field defects.

    PubMed

    Papanikolaou, Amalia; Keliris, Georgios A; Papageorgiou, T Dorina; Schiefer, Ulrich; Logothetis, Nikos K; Smirnakis, Stelios M

    2018-04-06

    Damage to the primary visual cortex (V1) leads to a visual field loss (scotoma) in the retinotopically corresponding part of the visual field. Nonetheless, a small amount of residual visual sensitivity persists within the blind field. This residual capacity has been linked to activity observed in the middle temporal area complex (V5/MT+). However, it remains unknown whether the organization of hV5/MT+ changes following early visual cortical lesions. We studied the organization of area hV5/MT+ of five patients with dense homonymous defects in a quadrant of the visual field as a result of partial V1+ or optic radiation lesions. To do so, we developed a new method, which models the boundaries of population receptive fields directly from the BOLD signal of each voxel in the visual cortex. We found responses in hV5/MT+ arising inside the scotoma for all patients and identified two possible sources of activation: 1) responses might originate from partially lesioned parts of area V1 corresponding to the scotoma, and 2) responses can also originate independent of area V1 input suggesting the existence of functional V1-bypassing pathways. Apparently, visually driven activity observed in hV5/MT+ is not sufficient to mediate conscious vision. More surprisingly, visually driven activity in corresponding regions of V1 and early extrastriate areas including hV5/MT+ did not guarantee visual perception in the group of patients with post-geniculate lesions that we examined. This suggests that the fine coordination of visual activity patterns across visual areas may be an important determinant of whether visual perception persists following visual cortical lesions. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Distorted images of one's own body activates the prefrontal cortex and limbic/paralimbic system in young women: a functional magnetic resonance imaging study.

    PubMed

    Kurosaki, Mitsuhaya; Shirao, Naoko; Yamashita, Hidehisa; Okamoto, Yasumasa; Yamawaki, Shigeto

    2006-02-15

    Our aim was to study the gender differences in brain activation upon viewing visual stimuli of distorted images of one's own body. We performed functional magnetic resonance imaging on 11 healthy young men and 11 healthy young women using the "body image tasks" which consisted of fat, real, and thin shapes of the subject's own body. Comparison of the brain activation upon performing the fat-image task versus real-image task showed significant activation of the bilateral prefrontal cortex and left parahippocampal area including the amygdala in the women, and significant activation of the right occipital lobe including the primary and secondary visual cortices in the men. Comparison of brain activation upon performing the thin-image task versus real-image task showed significant activation of the left prefrontal cortex, left limbic area including the cingulate gyrus and paralimbic area including the insula in women, and significant activation of the occipital lobe including the left primary and secondary visual cortices in men. These results suggest that women tend to perceive distorted images of their own bodies by complex cognitive processing of emotion, whereas men tend to perceive distorted images of their own bodies by object visual processing and spatial visual processing.

  12. Functional magnetic resonance imaging of neural activity related to orthographic, phonological, and lexico-semantic judgments of visually presented characters and words.

    PubMed

    Fujimaki, N; Miyauchi, S; Pütz, B; Sasaki, Y; Takino, R; Sakai, K; Tamada, T

    1999-01-01

    Functional magnetic resonance imaging was used to investigate neural activity during the judgment of visual stimuli in two groups of experiments using seven and five normal subjects. The subjects were given tasks designed differentially to involve orthographic (more generally, visual form), phonological, and lexico-semantic processes. These tasks included the judgments of whether a line was horizontal, whether a pseudocharacter or pseudocharacter string included a horizontal line, whether a Japanese katakana (phonogram) character or character string included a certain vowel, or whether a character string was meaningful (noun or verb) or meaningless. Neural activity related to the visual form process was commonly observed during judgments of both single real-characters and single pseudocharacters in lateral extrastriate visual cortex, the posterior ventral or medial occipito-temporal area, and the posterior inferior temporal area of both hemispheres. In contrast, left-lateralized activation was observed in the latter two areas during judgments of real- and pseudo-character strings. These results show that there is no katakana "word form center" whose activity is specific to real words. Activation related to the phonological process was observed, in Broca's area, the insula, the supramarginal gyrus, and the posterior superior temporal area, with greater activation in the left hemisphere. These activation foci for visual form and phonological processes of katakana also were reported for the English alphabet in previous studies. The present activation showed no additional areas for contrasts of noun judgment with other conditions and was similar between noun and verb judgment tasks, suggesting two possibilities: no strong semantic activation was produced, or the semantic process shared activation foci with the phonological process.

  13. Visual probes and methods for placing visual probes into subsurface areas

    DOEpatents

    Clark, Don T.; Erickson, Eugene E.; Casper, William L.; Everett, David M.

    2004-11-23

    Visual probes and methods for placing visual probes into subsurface areas in either contaminated or non-contaminated sites are described. In one implementation, the method includes driving at least a portion of a visual probe into the ground using direct push, sonic drilling, or a combination of direct push and sonic drilling. Such is accomplished without providing an open pathway for contaminants or fugitive gases to reach the surface. According to one implementation, the invention includes an entry segment configured for insertion into the ground or through difficult materials (e.g., concrete, steel, asphalt, metals, or items associated with waste), at least one extension segment configured to selectively couple with the entry segment, at least one push rod, and a pressure cap. Additional implementations are contemplated.

  14. Curvature-processing network in macaque visual cortex

    PubMed Central

    Yue, Xiaomin; Pourladian, Irene S.; Tootell, Roger B. H.; Ungerleider, Leslie G.

    2014-01-01

    Our visual environment abounds with curved features. Thus, the goal of understanding visual processing should include the processing of curved features. Using functional magnetic resonance imaging in behaving monkeys, we demonstrated a network of cortical areas selective for the processing of curved features. This network includes three distinct hierarchically organized regions within the ventral visual pathway: a posterior curvature-biased patch (PCP) located in the near-foveal representation of dorsal V4, a middle curvature-biased patch (MCP) located on the ventral lip of the posterior superior temporal sulcus (STS) in area TEO, and an anterior curvature-biased patch (ACP) located just below the STS in anterior area TE. Our results further indicate that the processing of curvature becomes increasingly complex from PCP to ACP. The proximity of the curvature-processing network to the well-known face-processing network suggests a possible functional link between them. PMID:25092328

  15. Mapping arealisation of the visual cortex of non-primate species: lessons for development and evolution

    PubMed Central

    Homman-Ludiye, Jihane; Bourne, James A.

    2014-01-01

    The integration of the visual stimulus takes place at the level of the neocortex, organized in anatomically distinct and functionally unique areas. Primates, including humans, are heavily dependent on vision, with approximately 50% of their neocortical surface dedicated to visual processing and possess many more visual areas than any other mammal, making them the model of choice to study visual cortical arealisation. However, in order to identify the mechanisms responsible for patterning the developing neocortex, specifying area identity as well as elucidate events that have enabled the evolution of the complex primate visual cortex, it is essential to gain access to the cortical maps of alternative species. To this end, species including the mouse have driven the identification of cellular markers, which possess an area-specific expression profile, the development of new tools to label connections and technological advance in imaging techniques enabling monitoring of cortical activity in a behaving animal. In this review we present non-primate species that have contributed to elucidating the evolution and development of the visual cortex. We describe the current understanding of the mechanisms supporting the establishment of areal borders during development, mainly gained in the mouse thanks to the availability of genetically modified lines but also the limitations of the mouse model and the need for alternate species. PMID:25071460

  16. The role of temporo-parietal junction (TPJ) in global Gestalt perception.

    PubMed

    Huberle, Elisabeth; Karnath, Hans-Otto

    2012-07-01

    Grouping processes enable the coherent perception of our environment. A number of brain areas has been suggested to be involved in the integration of elements into objects including early and higher visual areas along the ventral visual pathway as well as motion-processing areas of the dorsal visual pathway. However, integration not only is required for the cortical representation of individual objects, but is also essential for the perception of more complex visual scenes consisting of several different objects and/or shapes. The present fMRI experiments aimed to address such integration processes. We investigated the neural correlates underlying the global Gestalt perception of hierarchically organized stimuli that allowed parametrical degrading of the object at the global level. The comparison of intact versus disturbed perception of the global Gestalt revealed a network of cortical areas including the temporo-parietal junction (TPJ), anterior cingulate cortex and the precuneus. The TPJ location corresponds well with the areas known to be typically lesioned in stroke patients with simultanagnosia following bilateral brain damage. These patients typically show a deficit in identifying the global Gestalt of a visual scene. Further, we found the closest relation between behavioral performance and fMRI activation for the TPJ. Our data thus argue for a significant role of the TPJ in human global Gestalt perception.

  17. Functional mapping of the primate auditory system.

    PubMed

    Poremba, Amy; Saunders, Richard C; Crane, Alison M; Cook, Michelle; Sokoloff, Louis; Mishkin, Mortimer

    2003-01-24

    Cerebral auditory areas were delineated in the awake, passively listening, rhesus monkey by comparing the rates of glucose utilization in an intact hemisphere and in an acoustically isolated contralateral hemisphere of the same animal. The auditory system defined in this way occupied large portions of cerebral tissue, an extent probably second only to that of the visual system. Cortically, the activated areas included the entire superior temporal gyrus and large portions of the parietal, prefrontal, and limbic lobes. Several auditory areas overlapped with previously identified visual areas, suggesting that the auditory system, like the visual system, contains separate pathways for processing stimulus quality, location, and motion.

  18. Sustained multifocal attentional enhancement of stimulus processing in early visual areas predicts tracking performance.

    PubMed

    Störmer, Viola S; Winther, Gesche N; Li, Shu-Chen; Andersen, Søren K

    2013-03-20

    Keeping track of multiple moving objects is an essential ability of visual perception. However, the mechanisms underlying this ability are not well understood. We instructed human observers to track five or seven independent randomly moving target objects amid identical nontargets and recorded steady-state visual evoked potentials (SSVEPs) elicited by these stimuli. Visual processing of moving targets, as assessed by SSVEP amplitudes, was continuously facilitated relative to the processing of identical but irrelevant nontargets. The cortical sources of this enhancement were located to areas including early visual cortex V1-V3 and motion-sensitive area MT, suggesting that the sustained multifocal attentional enhancement during multiple object tracking already operates at hierarchically early stages of visual processing. Consistent with this interpretation, the magnitude of attentional facilitation during tracking in a single trial predicted the speed of target identification at the end of the trial. Together, these findings demonstrate that attention can flexibly and dynamically facilitate the processing of multiple independent object locations in early visual areas and thereby allow for tracking of these objects.

  19. A Forest Landscape Visualization System

    Treesearch

    Tim McDonald; Bryce Stokes

    1998-01-01

    A forest landscape visualization system was developed and used in creating realistic images depicting how an area might appear if harvested. The system uses a ray-tracing renderer to draw model trees on a virtual landscape. The system includes components to create landscape surfaces from digital elevation data, populate/cut trees within (polygonal) areas, and convert...

  20. Emotional modulation of body-selective visual areas.

    PubMed

    Peelen, Marius V; Atkinson, Anthony P; Andersson, Frederic; Vuilleumier, Patrik

    2007-12-01

    Emotionally expressive faces have been shown to modulate activation in visual cortex, including face-selective regions in ventral temporal lobe. Here, we tested whether emotionally expressive bodies similarly modulate activation in body-selective regions. We show that dynamic displays of bodies with various emotional expressions vs neutral bodies, produce significant activation in two distinct body-selective visual areas, the extrastriate body area and the fusiform body area. Multi-voxel pattern analysis showed that the strength of this emotional modulation was related, on a voxel-by-voxel basis, to the degree of body selectivity, while there was no relation with the degree of selectivity for faces. Across subjects, amygdala responses to emotional bodies positively correlated with the modulation of body-selective areas. Together, these results suggest that emotional cues from body movements produce topographically selective influences on category-specific populations of neurons in visual cortex, and these increases may implicate discrete modulatory projections from the amygdala.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholtz, Jean

    A new field of research, visual analytics, has recently been introduced. This has been defined as “the science of analytical reasoning facilitated by visual interfaces." Visual analytic environments, therefore, support analytical reasoning using visual representations and interactions, with data representations and transformation capabilities, to support production, presentation and dissemination. As researchers begin to develop visual analytic environments, it will be advantageous to develop metrics and methodologies to help researchers measure the progress of their work and understand the impact their work will have on the users who will work in such environments. This paper presents five areas or aspects ofmore » visual analytic environments that should be considered as metrics and methodologies for evaluation are developed. Evaluation aspects need to include usability, but it is necessary to go beyond basic usability. The areas of situation awareness, collaboration, interaction, creativity, and utility are proposed as areas for initial consideration. The steps that need to be undertaken to develop systematic evaluation methodologies and metrics for visual analytic environments are outlined.« less

  2. Information processing in the primate visual system - An integrated systems perspective

    NASA Technical Reports Server (NTRS)

    Van Essen, David C.; Anderson, Charles H.; Felleman, Daniel J.

    1992-01-01

    The primate visual system contains dozens of distinct areas in the cerebral cortex and several major subcortical structures. These subdivisions are extensively interconnected in a distributed hierarchical network that contains several intertwined processing streams. A number of strategies are used for efficient information processing within this hierarchy. These include linear and nonlinear filtering, passage through information bottlenecks, and coordinated use of multiple types of information. In addition, dynamic regulation of information flow within and between visual areas may provide the computational flexibility needed for the visual system to perform a broad spectrum of tasks accurately and at high resolution.

  3. Frequency-following and connectivity of different visual areas in response to contrast-reversal stimulation.

    PubMed

    Stephen, Julia M; Ranken, Doug F; Aine, Cheryl J

    2006-01-01

    The sensitivity of visual areas to different temporal frequencies, as well as the functional connections between these areas, was examined using magnetoencephalography (MEG). Alternating circular sinusoids (0, 3.1, 8.7 and 14 Hz) were presented to foveal and peripheral locations in the visual field to target ventral and dorsal stream structures, respectively. It was hypothesized that higher temporal frequencies would preferentially activate dorsal stream structures. To determine the effect of frequency on the cortical response we analyzed the late time interval (220-770 ms) using a multi-dipole spatio-temporal analysis approach to provide source locations and timecourses for each condition. As an exploratory aspect, we performed cross-correlation analysis on the source timecourses to determine which sources responded similarly within conditions. Contrary to predictions, dorsal stream areas were not activated more frequently during high temporal frequency stimulation. However, across cortical sources the frequency-following response showed a difference, with significantly higher power at the second harmonic for the 3.1 and 8.7 Hz stimulation and at the first and second harmonics for the 14 Hz stimulation with this pattern seen robustly in area V1. Cross-correlations of the source timecourses showed that both low- and high-order visual areas, including dorsal and ventral stream areas, were significantly correlated in the late time interval. The results imply that frequency information is transferred to higher-order visual areas without translation. Despite the less complex waveforms seen in the late interval of time, the cross-correlation results show that visual, temporal and parietal cortical areas are intricately involved in late-interval visual processing.

  4. On the visualization of water-related big data: extracting insights from drought proxies' datasets

    NASA Astrophysics Data System (ADS)

    Diaz, Vitali; Corzo, Gerald; van Lanen, Henny A. J.; Solomatine, Dimitri

    2017-04-01

    Big data is a growing area of science where hydroinformatics can benefit largely. There have been a number of important developments in the area of data science aimed at analysis of large datasets. Such datasets related to water include measurements, simulations, reanalysis, scenario analyses and proxies. By convention, information contained in these databases is referred to a specific time and a space (i.e., longitude/latitude). This work is motivated by the need to extract insights from large water-related datasets, i.e., transforming large amounts of data into useful information that helps to better understand of water-related phenomena, particularly about drought. In this context, data visualization, part of data science, involves techniques to create and to communicate data by encoding it as visual graphical objects. They may help to better understand data and detect trends. Base on existing methods of data analysis and visualization, this work aims to develop tools for visualizing water-related large datasets. These tools were developed taking advantage of existing libraries for data visualization into a group of graphs which include both polar area diagrams (PADs) and radar charts (RDs). In both graphs, time steps are represented by the polar angles and the percentages of area in drought by the radios. For illustration, three large datasets of drought proxies are chosen to identify trends, prone areas and spatio-temporal variability of drought in a set of case studies. The datasets are (1) SPI-TS2p1 (1901-2002, 11.7 GB), (2) SPI-PRECL0p5 (1948-2016, 7.91 GB) and (3) SPEI-baseV2.3 (1901-2013, 15.3 GB). All of them are on a monthly basis and with a spatial resolution of 0.5 degrees. First two were retrieved from the repository of the International Research Institute for Climate and Society (IRI). They are included into the Analyses Standardized Precipitation Index (SPI) project (iridl.ldeo.columbia.edu/SOURCES/.IRI/.Analyses/.SPI/). The third dataset was recovered from the Standardized Precipitation Evaporation Index (SPEI) Monitor (digital.csic.es/handle/10261/128892). PADs were found suitable to identify the spatio-temporal variability and prone areas of drought. Drought trends were visually detected by using both PADs and RDs. A similar approach can be followed to include other types of graphs to deal with the analysis of water-related big data. Key words: Big data, data visualization, drought, SPI, SPEI

  5. The effect of early visual deprivation on the neural bases of multisensory processing.

    PubMed

    Guerreiro, Maria J S; Putzar, Lisa; Röder, Brigitte

    2015-06-01

    Developmental vision is deemed to be necessary for the maturation of multisensory cortical circuits. Thus far, this has only been investigated in animal studies, which have shown that congenital visual deprivation markedly reduces the capability of neurons to integrate cross-modal inputs. The present study investigated the effect of transient congenital visual deprivation on the neural mechanisms of multisensory processing in humans. We used functional magnetic resonance imaging to compare responses of visual and auditory cortical areas to visual, auditory and audio-visual stimulation in cataract-reversal patients and normally sighted controls. The results showed that cataract-reversal patients, unlike normally sighted controls, did not exhibit multisensory integration in auditory areas. Furthermore, cataract-reversal patients, but not normally sighted controls, exhibited lower visual cortical processing within visual cortex during audio-visual stimulation than during visual stimulation. These results indicate that congenital visual deprivation affects the capability of cortical areas to integrate cross-modal inputs in humans, possibly because visual processing is suppressed during cross-modal stimulation. Arguably, the lack of vision in the first months after birth may result in a reorganization of visual cortex, including the suppression of noisy visual input from the deprived retina in order to reduce interference during auditory processing. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Visual resource inventory and Imnaha Valley study: Hells Canyon National Recreation Area

    Treesearch

    David H. Blau; Michael C. Bowie; Frank Hunsaker

    1979-01-01

    Hells Canyon National Recreation Area was established by an Act of Congress in December 1975. At that time, the U.S. Forest Service, which administers most of the land included, was given the responsibility of developing a Comprehensive Management Plan for the NRA within five years. In order to minimize future visual degradation, the Forest Service planning team for...

  7. Visualization of the tire-soil interaction area by means of ObjectARX programming interface

    NASA Astrophysics Data System (ADS)

    Mueller, W.; Gruszczyński, M.; Raba, B.; Lewicki, A.; Przybył, K.; Zaborowicz, M.; Koszela, K.; Boniecki, P.

    2014-04-01

    The process of data visualization, important for their analysis, becomes problematic when large data sets generated via computer simulations are available. This problem concerns, among others, the models that describe the geometry of tire-soil interaction. For the purpose of a graphical representation of this area and implementation of various geometric calculations the authors have developed a plug-in application for AutoCAD, based on the latest technologies, including ObjectARX, LINQ and the use of Visual Studio platform. Selected programming tools offer a wide variety of IT structures that enable data visualization and data analysis and are important e.g. in model verification.

  8. The neural representation of objects formed through the spatiotemporal integration of visual transients

    PubMed Central

    Erlikhman, Gennady; Gurariy, Gennadiy; Mruczek, Ryan E.B.; Caplovitz, Gideon P.

    2016-01-01

    Oftentimes, objects are only partially and transiently visible as parts of them become occluded during observer or object motion. The visual system can integrate such object fragments across space and time into perceptual wholes or spatiotemporal objects. This integrative and dynamic process may involve both ventral and dorsal visual processing pathways, along which shape and spatial representations are thought to arise. We measured fMRI BOLD response to spatiotemporal objects and used multi-voxel pattern analysis (MVPA) to decode shape information across 20 topographic regions of visual cortex. Object identity could be decoded throughout visual cortex, including intermediate (V3A, V3B, hV4, LO1-2,) and dorsal (TO1-2, and IPS0-1) visual areas. Shape-specific information, therefore, may not be limited to early and ventral visual areas, particularly when it is dynamic and must be integrated. Contrary to the classic view that the representation of objects is the purview of the ventral stream, intermediate and dorsal areas may play a distinct and critical role in the construction of object representations across space and time. PMID:27033688

  9. Characterizing the effects of feature salience and top-down attention in the early visual system.

    PubMed

    Poltoratski, Sonia; Ling, Sam; McCormack, Devin; Tong, Frank

    2017-07-01

    The visual system employs a sophisticated balance of attentional mechanisms: salient stimuli are prioritized for visual processing, yet observers can also ignore such stimuli when their goals require directing attention elsewhere. A powerful determinant of visual salience is local feature contrast: if a local region differs from its immediate surround along one or more feature dimensions, it will appear more salient. We used high-resolution functional MRI (fMRI) at 7T to characterize the modulatory effects of bottom-up salience and top-down voluntary attention within multiple sites along the early visual pathway, including visual areas V1-V4 and the lateral geniculate nucleus (LGN). Observers viewed arrays of spatially distributed gratings, where one of the gratings immediately to the left or right of fixation differed from all other items in orientation or motion direction, making it salient. To investigate the effects of directed attention, observers were cued to attend to the grating to the left or right of fixation, which was either salient or nonsalient. Results revealed reliable additive effects of top-down attention and stimulus-driven salience throughout visual areas V1-hV4. In comparison, the LGN exhibited significant attentional enhancement but was not reliably modulated by orientation- or motion-defined salience. Our findings indicate that top-down effects of spatial attention can influence visual processing at the earliest possible site along the visual pathway, including the LGN, whereas the processing of orientation- and motion-driven salience primarily involves feature-selective interactions that take place in early cortical visual areas. NEW & NOTEWORTHY While spatial attention allows for specific, goal-driven enhancement of stimuli, salient items outside of the current focus of attention must also be prioritized. We used 7T fMRI to compare salience and spatial attentional enhancement along the early visual hierarchy. We report additive effects of attention and bottom-up salience in early visual areas, suggesting that salience enhancement is not contingent on the observer's attentional state. Copyright © 2017 the American Physiological Society.

  10. Top-down alpha oscillatory network interactions during visuospatial attention orienting.

    PubMed

    Doesburg, Sam M; Bedo, Nicolas; Ward, Lawrence M

    2016-05-15

    Neuroimaging and lesion studies indicate that visual attention is controlled by a distributed network of brain areas. The covert control of visuospatial attention has also been associated with retinotopic modulation of alpha-band oscillations within early visual cortex, which are thought to underlie inhibition of ignored areas of visual space. The relation between distributed networks mediating attention control and more focal oscillatory mechanisms, however, remains unclear. The present study evaluated the hypothesis that alpha-band, directed, network interactions within the attention control network are systematically modulated by the locus of visuospatial attention. We localized brain areas involved in visuospatial attention orienting using magnetoencephalographic (MEG) imaging and investigated alpha-band Granger-causal interactions among activated regions using narrow-band transfer entropy. The deployment of attention to one side of visual space was indexed by lateralization of alpha power changes between about 400ms and 700ms post-cue onset. The changes in alpha power were associated, in the same time period, with lateralization of anterior-to-posterior information flow in the alpha-band from various brain areas involved in attention control, including the anterior cingulate cortex, left middle and inferior frontal gyri, left superior temporal gyrus, and right insula, and inferior parietal lobule, to early visual areas. We interpreted these results to indicate that distributed network interactions mediated by alpha oscillations exert top-down influences on early visual cortex to modulate inhibition of processing for ignored areas of visual space. Copyright © 2016. Published by Elsevier Inc.

  11. Feature-Specific Organization of Feedback Pathways in Mouse Visual Cortex.

    PubMed

    Huh, Carey Y L; Peach, John P; Bennett, Corbett; Vega, Roxana M; Hestrin, Shaul

    2018-01-08

    Higher and lower cortical areas in the visual hierarchy are reciprocally connected [1]. Although much is known about how feedforward pathways shape receptive field properties of visual neurons, relatively little is known about the role of feedback pathways in visual processing. Feedback pathways are thought to carry top-down signals, including information about context (e.g., figure-ground segmentation and surround suppression) [2-5], and feedback has been demonstrated to sharpen orientation tuning of neurons in the primary visual cortex (V1) [6, 7]. However, the response characteristics of feedback neurons themselves and how feedback shapes V1 neurons' tuning for other features, such as spatial frequency (SF), remain largely unknown. Here, using a retrograde virus, targeted electrophysiological recordings, and optogenetic manipulations, we show that putatively feedback neurons in layer 5 (hereafter "L5 feedback") in higher visual areas, AL (anterolateral area) and PM (posteromedial area), display distinct visual properties in awake head-fixed mice. AL L5 feedback neurons prefer significantly lower SF (mean: 0.04 cycles per degree [cpd]) compared to PM L5 feedback neurons (0.15 cpd). Importantly, silencing AL L5 feedback reduced visual responses of V1 neurons preferring low SF (mean change in firing rate: -8.0%), whereas silencing PM L5 feedback suppressed responses of high-SF-preferring V1 neurons (-20.4%). These findings suggest that feedback connections from higher visual areas convey distinctly tuned visual inputs to V1 that serve to boost V1 neurons' responses to SF. Such like-to-like functional organization may represent an important feature of feedback pathways in sensory systems and in the nervous system in general. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Neural Responses to Visual Food Cues According to Weight Status: A Systematic Review of Functional Magnetic Resonance Imaging Studies

    PubMed Central

    Pursey, Kirrilly M.; Stanwell, Peter; Callister, Robert J.; Brain, Katherine; Collins, Clare E.; Burrows, Tracy L.

    2014-01-01

    Emerging evidence from recent neuroimaging studies suggests that specific food-related behaviors contribute to the development of obesity. The aim of this review was to report the neural responses to visual food cues, as assessed by functional magnetic resonance imaging (fMRI), in humans of differing weight status. Published studies to 2014 were retrieved and included if they used visual food cues, studied humans >18 years old, reported weight status, and included fMRI outcomes. Sixty studies were identified that investigated the neural responses of healthy weight participants (n = 26), healthy weight compared to obese participants (n = 17), and weight-loss interventions (n = 12). High-calorie food images were used in the majority of studies (n = 36), however, image selection justification was only provided in 19 studies. Obese individuals had increased activation of reward-related brain areas including the insula and orbitofrontal cortex in response to visual food cues compared to healthy weight individuals, and this was particularly evident in response to energy dense cues. Additionally, obese individuals were more responsive to food images when satiated. Meta-analysis of changes in neural activation post-weight loss revealed small areas of convergence across studies in brain areas related to emotion, memory, and learning, including the cingulate gyrus, lentiform nucleus, and precuneus. Differential activation patterns to visual food cues were observed between obese, healthy weight, and weight-loss populations. Future studies require standardization of nutrition variables and fMRI outcomes to enable more direct comparisons between studies. PMID:25988110

  13. Neural responses to visual food cues according to weight status: a systematic review of functional magnetic resonance imaging studies.

    PubMed

    Pursey, Kirrilly M; Stanwell, Peter; Callister, Robert J; Brain, Katherine; Collins, Clare E; Burrows, Tracy L

    2014-01-01

    Emerging evidence from recent neuroimaging studies suggests that specific food-related behaviors contribute to the development of obesity. The aim of this review was to report the neural responses to visual food cues, as assessed by functional magnetic resonance imaging (fMRI), in humans of differing weight status. Published studies to 2014 were retrieved and included if they used visual food cues, studied humans >18 years old, reported weight status, and included fMRI outcomes. Sixty studies were identified that investigated the neural responses of healthy weight participants (n = 26), healthy weight compared to obese participants (n = 17), and weight-loss interventions (n = 12). High-calorie food images were used in the majority of studies (n = 36), however, image selection justification was only provided in 19 studies. Obese individuals had increased activation of reward-related brain areas including the insula and orbitofrontal cortex in response to visual food cues compared to healthy weight individuals, and this was particularly evident in response to energy dense cues. Additionally, obese individuals were more responsive to food images when satiated. Meta-analysis of changes in neural activation post-weight loss revealed small areas of convergence across studies in brain areas related to emotion, memory, and learning, including the cingulate gyrus, lentiform nucleus, and precuneus. Differential activation patterns to visual food cues were observed between obese, healthy weight, and weight-loss populations. Future studies require standardization of nutrition variables and fMRI outcomes to enable more direct comparisons between studies.

  14. Neural Representation of Motion-In-Depth in Area MT

    PubMed Central

    Sanada, Takahisa M.

    2014-01-01

    Neural processing of 2D visual motion has been studied extensively, but relatively little is known about how visual cortical neurons represent visual motion trajectories that include a component toward or away from the observer (motion in depth). Psychophysical studies have demonstrated that humans perceive motion in depth based on both changes in binocular disparity over time (CD cue) and interocular velocity differences (IOVD cue). However, evidence for neurons that represent motion in depth has been limited, especially in primates, and it is unknown whether such neurons make use of CD or IOVD cues. We show that approximately one-half of neurons in macaque area MT are selective for the direction of motion in depth, and that this selectivity is driven primarily by IOVD cues, with a small contribution from the CD cue. Our results establish that area MT, a central hub of the primate visual motion processing system, contains a 3D representation of visual motion. PMID:25411481

  15. Gravity influences top-down signals in visual processing.

    PubMed

    Cheron, Guy; Leroy, Axelle; Palmero-Soler, Ernesto; De Saedeleer, Caty; Bengoetxea, Ana; Cebolla, Ana-Maria; Vidal, Manuel; Dan, Bernard; Berthoz, Alain; McIntyre, Joseph

    2014-01-01

    Visual perception is not only based on incoming visual signals but also on information about a multimodal reference frame that incorporates vestibulo-proprioceptive input and motor signals. In addition, top-down modulation of visual processing has previously been demonstrated during cognitive operations including selective attention and working memory tasks. In the absence of a stable gravitational reference, the updating of salient stimuli becomes crucial for successful visuo-spatial behavior by humans in weightlessness. Here we found that visually-evoked potentials triggered by the image of a tunnel just prior to an impending 3D movement in a virtual navigation task were altered in weightlessness aboard the International Space Station, while those evoked by a classical 2D-checkerboard were not. Specifically, the analysis of event-related spectral perturbations and inter-trial phase coherency of these EEG signals recorded in the frontal and occipital areas showed that phase-locking of theta-alpha oscillations was suppressed in weightlessness, but only for the 3D tunnel image. Moreover, analysis of the phase of the coherency demonstrated the existence on Earth of a directional flux in the EEG signals from the frontal to the occipital areas mediating a top-down modulation during the presentation of the image of the 3D tunnel. In weightlessness, this fronto-occipital, top-down control was transformed into a diverging flux from the central areas toward the frontal and occipital areas. These results demonstrate that gravity-related sensory inputs modulate primary visual areas depending on the affordances of the visual scene.

  16. Visual cortex activation in kinesthetic guidance of reaching.

    PubMed

    Darling, W G; Seitz, R J; Peltier, S; Tellmann, L; Butler, A J

    2007-06-01

    The purpose of this research was to determine the cortical circuit involved in encoding and controlling kinesthetically guided reaching movements. We used (15)O-butanol positron emission tomography in ten blindfolded able-bodied volunteers in a factorial experiment in which arm (left/right) used to encode target location and to reach back to the remembered location and hemispace of target location (left/right side of midsagittal plane) varied systematically. During encoding of a target the experimenter guided the hand to touch the index fingertip to an external target and then returned the hand to the start location. After a short delay the subject voluntarily moved the same hand back to the remembered target location. SPM99 analysis of the PET data contrasting left versus right hand reaching showed increased (P < 0.05, corrected) neural activity in the sensorimotor cortex, premotor cortex and posterior parietal lobule (PPL) contralateral to the moving hand. Additional neural activation was observed in prefrontal cortex and visual association areas of occipital and parietal lobes contralateral and ipsilateral to the reaching hand. There was no statistically significant effect of target location in left versus right hemispace nor was there an interaction of hand and hemispace effects. Structural equation modeling showed that parietal lobe visual association areas contributed to kinesthetic processing by both hands but occipital lobe visual areas contributed only during dominant hand kinesthetic processing. This visual processing may also involve visualization of kinesthetically guided target location and use of the same network employed to guide reaches to visual targets when reaching to kinesthetic targets. The present work clearly demonstrates a network for kinesthetic processing that includes higher visual processing areas in the PPL for both upper limbs and processing in occipital lobe visual areas for the dominant limb.

  17. Vividness of Visual Imagery Depends on the Neural Overlap with Perception in Visual Areas.

    PubMed

    Dijkstra, Nadine; Bosch, Sander E; van Gerven, Marcel A J

    2017-02-01

    Research into the neural correlates of individual differences in imagery vividness point to an important role of the early visual cortex. However, there is also great fluctuation of vividness within individuals, such that only looking at differences between people necessarily obscures the picture. In this study, we show that variation in moment-to-moment experienced vividness of visual imagery, within human subjects, depends on the activity of a large network of brain areas, including frontal, parietal, and visual areas. Furthermore, using a novel multivariate analysis technique, we show that the neural overlap between imagery and perception in the entire visual system correlates with experienced imagery vividness. This shows that the neural basis of imagery vividness is much more complicated than studies of individual differences seemed to suggest. Visual imagery is the ability to visualize objects that are not in our direct line of sight: something that is important for memory, spatial reasoning, and many other tasks. It is known that the better people are at visual imagery, the better they can perform these tasks. However, the neural correlates of moment-to-moment variation in visual imagery remain unclear. In this study, we show that the more the neural response during imagery is similar to the neural response during perception, the more vivid or perception-like the imagery experience is. Copyright © 2017 the authors 0270-6474/17/371367-07$15.00/0.

  18. Differential Expression Patterns of occ1-Related Genes in Adult Monkey Visual Cortex

    PubMed Central

    Takahata, Toru; Komatsu, Yusuke; Watakabe, Akiya; Hashikawa, Tsutomu; Tochitani, Shiro

    2009-01-01

    We have previously revealed that occ1 is preferentially expressed in the primary visual area (V1) of the monkey neocortex. In our attempt to identify more area-selective genes in the macaque neocortex, we found that testican-1, an occ1-related gene, and its family members also exhibit characteristic expression patterns along the visual pathway. The expression levels of testican-1 and testican-2 mRNAs as well as that of occ1 mRNA start of high in V1, progressively decrease along the ventral visual pathway, and end of low in the temporal areas. Complementary to them, the neuronal expression of SPARC mRNA is abundant in the association areas and scarce in V1. Whereas occ1, testican-1, and testican-2 mRNAs are preferentially distributed in thalamorecipient layers including “blobs,” SPARC mRNA expression avoids these layers. Neither SC1 nor testican-3 mRNA expression is selective to particular areas, but SC1 mRNA is abundantly observed in blobs. The expressions of occ1, testican-1, testican-2, and SC1 mRNA were downregulated after monocular tetrodotoxin injection. These results resonate with previous works on chemical and functional gradients along the primate occipitotemporal visual pathway and raise the possibility that these gradients and functional architecture may be related to the visual activity–dependent expression of these extracellular matrix glycoproteins. PMID:19073625

  19. Simultaneous selection by object-based attention in visual and frontal cortex

    PubMed Central

    Pooresmaeili, Arezoo; Poort, Jasper; Roelfsema, Pieter R.

    2014-01-01

    Models of visual attention hold that top-down signals from frontal cortex influence information processing in visual cortex. It is unknown whether situations exist in which visual cortex actively participates in attentional selection. To investigate this question, we simultaneously recorded neuronal activity in the frontal eye fields (FEF) and primary visual cortex (V1) during a curve-tracing task in which attention shifts are object-based. We found that accurate performance was associated with similar latencies of attentional selection in both areas and that the latency in both areas increased if the task was made more difficult. The amplitude of the attentional signals in V1 saturated early during a trial, whereas these selection signals kept increasing for a longer time in FEF, until the moment of an eye movement, as if FEF integrated attentional signals present in early visual cortex. In erroneous trials, we observed an interareal latency difference because FEF selected the wrong curve before V1 and imposed its erroneous decision onto visual cortex. The neuronal activity in visual and frontal cortices was correlated across trials, and this trial-to-trial coupling was strongest for the attended curve. These results imply that selective attention relies on reciprocal interactions within a large network of areas that includes V1 and FEF. PMID:24711379

  20. Wavefront coherence area for predicting visual acuity of post-PRK and post-PARK refractive surgery patients

    NASA Astrophysics Data System (ADS)

    Garcia, Daniel D.; van de Pol, Corina; Barsky, Brian A.; Klein, Stanley A.

    1999-06-01

    Many current corneal topography instruments (called videokeratographs) provide an `acuity index' based on corneal smoothness to analyze expected visual acuity. However, post-refractive surgery patients often exhibit better acuity than is predicted by such indices. One reason for this is that visual acuity may not necessarily be determined by overall corneal smoothness but rather by having some part of the cornea able to focus light coherently onto the fovea. We present a new method of representing visual acuity by measuring the wavefront aberration, using principles from both ray and wave optics. For each point P on the cornea, we measure the size of the associated coherence area whose optical path length (OPL), from a reference plane to P's focus, is within a certain tolerance of the OPL for P. We measured the topographies and vision of 62 eyes of patients who had undergone the corneal refractive surgery procedures of photorefractive keratectomy (PRK) and photorefractive astigmatic keratectomy (PARK). In addition to high contrast visual acuity, our vision tests included low contrast and low luminance to test the contribution of the PRK transition zone. We found our metric for visual acuity to be better than all other metrics at predicting the acuity of low contrast and low luminance. However, high contrast visual acuity was poorly predicted by all of the indices we studied, including our own. The indices provided by current videokeratographs sometimes fail for corneas whose shape differs from simple ellipsoidal models. This is the case with post-PRK and post-PARK refractive surgery patients. Our alternative representation that displays the coherence area of the wavefront has considerable advantages, and promises to be a better predictor of low contrast and low luminance visual acuity than current shape measures.

  1. Ventral and Dorsal Pathways Relate Differently to Visual Awareness of Body Postures under Continuous Flash Suppression

    PubMed Central

    Goebel, Rainer

    2018-01-01

    Abstract Visual perception includes ventral and dorsal stream processes. However, it is still unclear whether the former is predominantly related to conscious and the latter to nonconscious visual perception as argued in the literature. In this study upright and inverted body postures were rendered either visible or invisible under continuous flash suppression (CFS), while brain activity of human participants was measured with functional MRI (fMRI). Activity in the ventral body-sensitive areas was higher during visible conditions. In comparison, activity in the posterior part of the bilateral intraparietal sulcus (IPS) showed a significant interaction of stimulus orientation and visibility. Our results provide evidence that dorsal stream areas are less associated with visual awareness. PMID:29445766

  2. 33 CFR 137.65 - Visual inspections of the facility, the real property on which the facility is located, and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... rights-of-way, or other vantage point (e.g., aerial photography), including a visual inspection of areas... the facility is located from the nearest accessible vantage point, such as the property line or public...

  3. Mapping the Primate Visual System with [2-14C]Deoxyglucose

    NASA Astrophysics Data System (ADS)

    Macko, Kathleen A.; Jarvis, Charlene D.; Kennedy, Charles; Miyaoka, Mikoto; Shinohara, Mami; Sokoloff, Louis; Mishkin, Mortimer

    1982-10-01

    The [2-14C]deoxyglucose method was used to identify the cerebral areas related to vision in the rhesus monkey (Macaca mulatta). This was achieved by comparing glucose utilization in a visually stimulated with that in a visually deafferented hemisphere. The cortical areas related to vision included the entire expanse of striate, prestriate, and inferior temporal cortex as far forward as the temporal pole, the posterior part of the inferior parietal lobule, and the prearcuate and inferior prefrontal cortex. Subcortically, in addition to the dorsal lateral geniculate nucleus and superficial layers of the superior colliculus, the structures related to vision included large parts of the pulvinar, caudate, putamen, claustrum, and amygdala. These results, which are consonant with a model of visual function that postulates an occipito-temporo-prefrontal pathway for object vision and an occipito-parieto-prefrontal pathway for spatial vision, reveal the full extent of those pathways and identify their points of contact with limbic, striatal, and diencephalic structures.

  4. Scientific Visualization Using the Flow Analysis Software Toolkit (FAST)

    NASA Technical Reports Server (NTRS)

    Bancroft, Gordon V.; Kelaita, Paul G.; Mccabe, R. Kevin; Merritt, Fergus J.; Plessel, Todd C.; Sandstrom, Timothy A.; West, John T.

    1993-01-01

    Over the past few years the Flow Analysis Software Toolkit (FAST) has matured into a useful tool for visualizing and analyzing scientific data on high-performance graphics workstations. Originally designed for visualizing the results of fluid dynamics research, FAST has demonstrated its flexibility by being used in several other areas of scientific research. These research areas include earth and space sciences, acid rain and ozone modelling, and automotive design, just to name a few. This paper describes the current status of FAST, including the basic concepts, architecture, existing functionality and features, and some of the known applications for which FAST is being used. A few of the applications, by both NASA and non-NASA agencies, are outlined in more detail. Described in the Outlines are the goals of each visualization project, the techniques or 'tricks' used lo produce the desired results, and custom modifications to FAST, if any, done to further enhance the analysis. Some of the future directions for FAST are also described.

  5. Accuracy of visual inspection performed by community health workers in cervical cancer screening.

    PubMed

    Driscoll, Susan D; Tappen, Ruth M; Newman, David; Voege-Harvey, Kathi

    2018-05-22

    Cervical cancer remains the leading cause of cancer and mortality in low-resource areas with healthcare personnel shortages. Visual inspection is a low-resource alternative method of cervical cancer screening in areas with limited access to healthcare. To assess accuracy of visual inspection performed by community health workers (CHWs) and licensed providers, and the effect of provider training on visual inspection accuracy. Five databases and four websites were queried for studies published in English up to December 31, 2015. Derivations of "cervical cancer screening" and "visual inspection" were search terms. Visual inspection screening studies with provider definitions, colposcopy reference standards, and accuracy data were included. A priori variables were extracted by two independent reviewers. Bivariate linear mixed-effects models were used to compare visual inspection accuracy. Provider type was a significant predictor of visual inspection sensitivity (P=0.048); sensitivity was 15 percentage points higher among CHWs than physicians (P=0.014). Components of provider training were significant predictors of sensitivity and specificity. Community-based visual inspection programs using adequately trained CHWs could reduce barriers and expand access to screening, thereby decreasing cervical cancer incidence and mortality for women at highest risk and those living in remote areas with limited access to healthcare personnel. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Changes of Visual Pathway and Brain Connectivity in Glaucoma: A Systematic Review

    PubMed Central

    Nuzzi, Raffaele; Dallorto, Laura; Rolle, Teresa

    2018-01-01

    Background: Glaucoma is a leading cause of irreversible blindness worldwide. The increasing interest in the involvement of the cortical visual pathway in glaucomatous patients is due to the implications in recent therapies, such as neuroprotection and neuroregeneration. Objective: In this review, we outline the current understanding of brain structural, functional, and metabolic changes detected with the modern techniques of neuroimaging in glaucomatous subjects. Methods: We screened MEDLINE, EMBASE, CINAHL, CENTRAL, LILACS, Trip Database, and NICE for original contributions published until 31 October 2017. Studies with at least six patients affected by any type of glaucoma were considered. We included studies using the following neuroimaging techniques: functional Magnetic Resonance Imaging (fMRI), resting-state fMRI (rs-fMRI), magnetic resonance spectroscopy (MRS), voxel- based Morphometry (VBM), surface-based Morphometry (SBM), diffusion tensor MRI (DTI). Results: Over a total of 1,901 studies, 56 case series with a total of 2,381 patients were included. Evidence of neurodegenerative process in glaucomatous patients was found both within and beyond the visual system. Structural alterations in visual cortex (mainly reduced cortex thickness and volume) have been demonstrated with SBM and VBM; these changes were not limited to primary visual cortex but also involved association visual areas. Other brain regions, associated with visual function, demonstrated a certain grade of increased or decreased gray matter volume. Functional and metabolic abnormalities resulted within primary visual cortex in all studies with fMRI and MRS. Studies with rs-fMRI found disrupted connectivity between the primary and higher visual cortex and between visual cortex and associative visual areas in the task-free state of glaucomatous patients. Conclusions: This review contributes to the better understanding of brain abnormalities in glaucoma. It may stimulate further speculation about brain plasticity at a later age and therapeutic strategies, such as the prevention of cortical degeneration in patients with glaucoma. Structural, functional, and metabolic neuroimaging methods provided evidence of changes throughout the visual pathway in glaucomatous patients. Other brain areas, not directly involved in the processing of visual information, also showed alterations. PMID:29896087

  7. Local and Global Correlations between Neurons in the Middle Temporal Area of Primate Visual Cortex.

    PubMed

    Solomon, Selina S; Chen, Spencer C; Morley, John W; Solomon, Samuel G

    2015-09-01

    In humans and other primates, the analysis of visual motion includes populations of neurons in the middle-temporal (MT) area of visual cortex. Motion analysis will be constrained by the structure of neural correlations in these populations. Here, we use multi-electrode arrays to measure correlations in anesthetized marmoset, a New World monkey where area MT lies exposed on the cortical surface. We measured correlations in the spike count between pairs of neurons and within populations of neurons, for moving dot fields and moving gratings. Correlations were weaker in area MT than in area V1. The magnitude of correlations in area MT diminished with distance between receptive fields, and difference in preferred direction. Correlations during presentation of moving gratings were stronger than those during presentation of moving dot fields, extended further across cortex, and were less dependent on the functional properties of neurons. Analysis of the timescales of correlation suggests presence of 2 mechanisms. A local mechanism, associated with near-synchronous spiking activity, is strongest in nearby neurons with similar direction preference and is independent of visual stimulus. A global mechanism, operating over larger spatial scales and longer timescales, is independent of direction preference and is modulated by the type of visual stimulus presented. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Visual attention capacity: a review of TVA-based patient studies.

    PubMed

    Habekost, Thomas; Starrfelt, Randi

    2009-02-01

    Psychophysical studies have identified two distinct limitations of visual attention capacity: processing speed and apprehension span. Using a simple test, these cognitive factors can be analyzed by Bundesen's Theory of Visual Attention (TVA). The method has strong specificity and sensitivity, and measurements are highly reliable. As the method is theoretically founded, it also has high validity. TVA-based assessment has recently been used to investigate a broad range of neuropsychological and neurological conditions. We present the method, including the experimental paradigm and practical guidelines to patient testing, and review existing TVA-based patient studies organized by lesion anatomy. Lesions in three anatomical regions affect visual capacity: The parietal lobes, frontal cortex and basal ganglia, and extrastriate cortex. Visual capacity thus depends on large, bilaterally distributed anatomical networks that include several regions outside the visual system. The two visual capacity parameters are functionally separable, but seem to rely on largely overlapping brain areas.

  9. Afferentation of the lateral nidopallium: A tracing study of a brain area involved in sexual imprinting in the zebra finch (Taeniopygia guttata).

    PubMed

    Sadananda, Monika; Bischof, Hans-Joachim

    2006-08-23

    The lateral forebrain of zebra finches that comprises parts of the lateral nidopallium and parts of the lateral mesopallium is supposed to be involved in the storage and processing of visual information acquired by an early learning process called sexual imprinting. This information is later used to select an appropriate sexual partner for courtship behavior. Being involved in such a complicated behavioral task, the lateral nidopallium should be an integrative area receiving input from many other regions of the brain. Our experiments indeed show that the lateral nidopallium receives input from a variety of telencephalic regions including the primary and secondary areas of both visual pathways, the globus pallidus, the caudolateral nidopallium functionally comparable to the prefrontal cortex, the caudomedial nidopallium involved in song perception and storage of song-related memories, and some parts of the arcopallium. There are also a number of thalamic, mesencephalic, and brainstem efferents including the catecholaminergic locus coeruleus and the unspecific activating reticular formation. The spatial distribution of afferents suggests a compartmentalization of the lateral nidopallium into several subdivisions. Based on its connections, the lateral nidopallium should be considered as an area of higher order processing of visual information coming from the tectofugal and the thalamofugal visual pathways. Other sensory modalities and also motivational factors from a variety of brain areas are also integrated here. These findings support the idea of an involvement of the lateral nidopallium in imprinting and the control of courtship behavior.

  10. Visualizing the intercity correlation of PM2.5 time series in the Beijing-Tianjin-Hebei region using ground-based air quality monitoring data.

    PubMed

    Liu, Jianzheng; Li, Weifeng; Wu, Jiansheng; Liu, Yonghong

    2018-01-01

    The Beijing-Tianjin-Hebei area faces a severe fine particulate matter (PM2.5) problem. To date, considerable progress has been made toward understanding the PM2.5 problem, including spatial-temporal characterization, driving factors, and health effects. However, little research has been done on the dynamic interactions and relationships between PM2.5 concentrations in different cities in this area. To address the research gap, this study discovered a phenomenon of time-lagged intercity correlations of PM2.5 time series and proposed a visualization framework based on this phenomenon to visualize the interaction in PM2.5 concentrations between cities. The visualizations produced using the framework show that there are significant time-lagged correlations between the PM2.5 time series in different cities in this area. The visualizations also show that the correlations are more significant in colder months and between cities that are closer, and that there are seasonal changes in the temporal order of the correlated PM2.5 time series. Further analysis suggests that the time-lagged intercity correlations of PM2.5 time series are most likely due to synoptic meteorological variations. We argue that the visualizations demonstrate the interactions of air pollution between cities in the Beijing-Tianjin-Hebei area and the significant effect of synoptic meteorological conditions on PM2.5 pollution. The visualization framework could help determine the pathway of regional transportation of air pollution and may also be useful in delineating the area of interaction of PM2.5 pollution for impact analysis.

  11. Visualizing the intercity correlation of PM2.5 time series in the Beijing-Tianjin-Hebei region using ground-based air quality monitoring data

    PubMed Central

    Li, Weifeng; Wu, Jiansheng; Liu, Yonghong

    2018-01-01

    The Beijing-Tianjin-Hebei area faces a severe fine particulate matter (PM2.5) problem. To date, considerable progress has been made toward understanding the PM2.5 problem, including spatial-temporal characterization, driving factors, and health effects. However, little research has been done on the dynamic interactions and relationships between PM2.5 concentrations in different cities in this area. To address the research gap, this study discovered a phenomenon of time-lagged intercity correlations of PM2.5 time series and proposed a visualization framework based on this phenomenon to visualize the interaction in PM2.5 concentrations between cities. The visualizations produced using the framework show that there are significant time-lagged correlations between the PM2.5 time series in different cities in this area. The visualizations also show that the correlations are more significant in colder months and between cities that are closer, and that there are seasonal changes in the temporal order of the correlated PM2.5 time series. Further analysis suggests that the time-lagged intercity correlations of PM2.5 time series are most likely due to synoptic meteorological variations. We argue that the visualizations demonstrate the interactions of air pollution between cities in the Beijing-Tianjin-Hebei area and the significant effect of synoptic meteorological conditions on PM2.5 pollution. The visualization framework could help determine the pathway of regional transportation of air pollution and may also be useful in delineating the area of interaction of PM2.5 pollution for impact analysis. PMID:29438417

  12. Combining MRI and VEP imaging to isolate the temporal response of visual cortical areas

    NASA Astrophysics Data System (ADS)

    Carney, Thom; Ales, Justin; Klein, Stanley A.

    2008-02-01

    The human brain has well over 30 cortical areas devoted to visual processing. Classical neuro-anatomical as well as fMRI studies have demonstrated that early visual areas have a retinotopic organization whereby adjacent locations in visual space are represented in adjacent areas of cortex within a visual area. At the 2006 Electronic Imaging meeting we presented a method using sprite graphics to obtain high resolution retinotopic visual evoked potential responses using multi-focal m-sequence technology (mfVEP). We have used this method to record mfVEPs from up to 192 non overlapping checkerboard stimulus patches scaled such that each patch activates about 12 mm2 of cortex in area V1 and even less in V2. This dense coverage enables us to incorporate cortical folding constraints, given by anatomical MRI and fMRI results from the same subject, to isolate the V1 and V2 temporal responses. Moreover, the method offers a simple means of validating the accuracy of the extracted V1 and V2 time functions by comparing the results between left and right hemispheres that have unique folding patterns and are processed independently. Previous VEP studies have been contradictory as to which area responds first to visual stimuli. This new method accurately separates the signals from the two areas and demonstrates that both respond with essentially the same latency. A new method is introduced which describes better ways to isolate cortical areas using an empirically determined forward model. The method includes a novel steady state mfVEP and complex SVD techniques. In addition, this evolving technology is put to use examining how stimulus attributes differentially impact the response in different cortical areas, in particular how fast nonlinear contrast processing occurs. This question is examined using both state triggered kernel estimation (STKE) and m-sequence "conditioned kernels". The analysis indicates different contrast gain control processes in areas V1 and V2. Finally we show that our m-sequence multi-focal stimuli have advantages for integrating EEG and MEG for improved dipole localization.

  13. 30 CFR 75.1433 - Examinations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... addition, visual examination for wear and broken wires shall be made at stress points, including the area... SAFETY STANDARDS-UNDERGROUND COAL MINES Hoisting and Mantrips Wire Ropes § 75.1433 Examinations. (a) At least once every fourteen calendar days, each wire rope in service shall be visually examined along its...

  14. 30 CFR 75.1433 - Examinations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... addition, visual examination for wear and broken wires shall be made at stress points, including the area... SAFETY STANDARDS-UNDERGROUND COAL MINES Hoisting and Mantrips Wire Ropes § 75.1433 Examinations. (a) At least once every fourteen calendar days, each wire rope in service shall be visually examined along its...

  15. 30 CFR 75.1433 - Examinations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... addition, visual examination for wear and broken wires shall be made at stress points, including the area... SAFETY STANDARDS-UNDERGROUND COAL MINES Hoisting and Mantrips Wire Ropes § 75.1433 Examinations. (a) At least once every fourteen calendar days, each wire rope in service shall be visually examined along its...

  16. 30 CFR 75.1433 - Examinations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... addition, visual examination for wear and broken wires shall be made at stress points, including the area... SAFETY STANDARDS-UNDERGROUND COAL MINES Hoisting and Mantrips Wire Ropes § 75.1433 Examinations. (a) At least once every fourteen calendar days, each wire rope in service shall be visually examined along its...

  17. Communal visual histories to detect environmental change in northern areas: Examples of emerging North American and Eurasian practices.

    PubMed

    Mustonen, Tero

    2015-12-01

    This article explores the pioneering potential of communal visual-optic histories which are recorded, painted, documented, or otherwise expressed. These materials provide collective meanings of an image or visual material within a specific cultural group. They potentially provide a new method for monitoring and documenting changes to ecosystem health and species distribution, which can effectively inform society and decision makers of Arctic change. These visual histories can be positioned in a continuum that extends from rock art to digital photography. They find their expressions in forms ranging from images to the oral recording of knowledge and operate on a given cultural context. For monitoring efforts in the changing boreal zone and Arctic, a respectful engagement with visual histories can reveal emerging aspects of change. The examples from North America and case studies from Eurasia in this article include Inuit sea ice observations, Yu'pik visual traditions of masks, fish die-offs in a sub-boreal catchment area, permafrost melt in the Siberian tundra and early, first detection of a scarabaeid beetle outbreak, a Southern species in the Skolt Sámi area. The pros and cons of using these histories and their reliability are reviewed.

  18. Neural basis of hierarchical visual form processing of Japanese Kanji characters.

    PubMed

    Higuchi, Hiroki; Moriguchi, Yoshiya; Murakami, Hiroki; Katsunuma, Ruri; Mishima, Kazuo; Uno, Akira

    2015-12-01

    We investigated the neural processing of reading Japanese Kanji characters, which involves unique hierarchical visual processing, including the recognition of visual components specific to Kanji, such as "radicals." We performed functional MRI to measure brain activity in response to hierarchical visual stimuli containing (1) real Kanji characters (complete structure with semantic information), (2) pseudo Kanji characters (subcomponents without complete character structure), (3) artificial characters (character fragments), and (4) checkerboard (simple photic stimuli). As we expected, the peaks of the activation in response to different stimulus types were aligned within the left occipitotemporal visual region along the posterior-anterior axis in order of the structural complexity of the stimuli, from fragments (3) to complete characters (1). Moreover, only the real Kanji characters produced functional connectivity between the left inferotemporal area and the language area (left inferior frontal triangularis), while pseudo Kanji characters induced connectivity between the left inferotemporal area and the bilateral cerebellum and left putamen. Visual processing of Japanese Kanji takes place in the left occipitotemporal cortex, with a clear hierarchy within the region such that the neural activation differentiates the elements in Kanji characters' fragments, subcomponents, and semantics, with different patterns of connectivity to remote regions among the elements.

  19. GROTTO visualization for decision support

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco O.; Kuo, Eddy; Uhlmann, Jeffrey K.

    1998-08-01

    In this paper we describe the GROTTO visualization projects being carried out at the Naval Research Laboratory. GROTTO is a CAVE-like system, that is, a surround-screen, surround- sound, immersive virtual reality device. We have explored the GROTTO visualization in a variety of scientific areas including oceanography, meteorology, chemistry, biochemistry, computational fluid dynamics and space sciences. Research has emphasized the applications of GROTTO visualization for military, land and sea-based command and control. Examples include the visualization of ocean current models for the simulation and stud of mine drifting and, inside our computational steering project, the effects of electro-magnetic radiation on missile defense satellites. We discuss plans to apply this technology to decision support applications involving the deployment of autonomous vehicles into contaminated battlefield environments, fire fighter control and hostage rescue operations.

  20. Visualizing Protein Interactions and Dynamics: Evolving a Visual Language for Molecular Animation

    ERIC Educational Resources Information Center

    Jenkinson, Jodie; McGill, Gael

    2012-01-01

    Undergraduate biology education provides students with a number of learning challenges. Subject areas that are particularly difficult to understand include protein conformational change and stability, diffusion and random molecular motion, and molecular crowding. In this study, we examined the relative effectiveness of three-dimensional…

  1. Analyzing Task-Based User Study Data to Determine Colormap Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashton, Zoe Charon Maria; Wendelberger, Joanne Roth; Ticknor, Lawrence O.

    2015-07-23

    Domain scientists use colormaps to visualize their data. These are useful for identifying areas of interest including Eddy Identification and Characterizing Currents. New colormaps have been designed by visual artist Francesca Samsel. User studies have been implemented to determine whether or not these colormaps are an improvement.

  2. Planning a New School for Visually Handicapped Children in Nigeria.

    ERIC Educational Resources Information Center

    Shown, D. G.

    The paper addresses considerations in planning a new school for visually impaired students in Nigeria. Site considerations touch upon safety, maximum educational achievement, adequate space for practicing mobility and future expansion, catchment area, and financial involvement. Curriculum considerations include use of a braille production machine,…

  3. Feature-Selective Attentional Modulations in Human Frontoparietal Cortex.

    PubMed

    Ester, Edward F; Sutterer, David W; Serences, John T; Awh, Edward

    2016-08-03

    Control over visual selection has long been framed in terms of a dichotomy between "source" and "site," where top-down feedback signals originating in frontoparietal cortical areas modulate or bias sensory processing in posterior visual areas. This distinction is motivated in part by observations that frontoparietal cortical areas encode task-level variables (e.g., what stimulus is currently relevant or what motor outputs are appropriate), while posterior sensory areas encode continuous or analog feature representations. Here, we present evidence that challenges this distinction. We used fMRI, a roving searchlight analysis, and an inverted encoding model to examine representations of an elementary feature property (orientation) across the entire human cortical sheet while participants attended either the orientation or luminance of a peripheral grating. Orientation-selective representations were present in a multitude of visual, parietal, and prefrontal cortical areas, including portions of the medial occipital cortex, the lateral parietal cortex, and the superior precentral sulcus (thought to contain the human homolog of the macaque frontal eye fields). Additionally, representations in many-but not all-of these regions were stronger when participants were instructed to attend orientation relative to luminance. Collectively, these findings challenge models that posit a strict segregation between sources and sites of attentional control on the basis of representational properties by demonstrating that simple feature values are encoded by cortical regions throughout the visual processing hierarchy, and that representations in many of these areas are modulated by attention. Influential models of visual attention posit a distinction between top-down control and bottom-up sensory processing networks. These models are motivated in part by demonstrations showing that frontoparietal cortical areas associated with top-down control represent abstract or categorical stimulus information, while visual areas encode parametric feature information. Here, we show that multivariate activity in human visual, parietal, and frontal cortical areas encode representations of a simple feature property (orientation). Moreover, representations in several (though not all) of these areas were modulated by feature-based attention in a similar fashion. These results provide an important challenge to models that posit dissociable top-down control and sensory processing networks on the basis of representational properties. Copyright © 2016 the authors 0270-6474/16/368188-12$15.00/0.

  4. Comparison of Middle Ear Visualization With Endoscopy and Microscopy.

    PubMed

    Bennett, Marc L; Zhang, Dongqing; Labadie, Robert F; Noble, Jack H

    2016-04-01

    The primary goal of chronic ear surgery is the creation of a safe, clean dry ear. For cholesteatomas, complete removal of disease is dependent on visualization. Conventional microscopy is adequate for most dissection, but various subregions of the middle ear are better visualized with endoscopy. The purpose of the present study was to quantitatively assess the improved visualization that endoscopes afford as compared with operating microscopes. Microscopic and endoscopic views were simulated using a three-dimensional model developed from temporal bone scans. Surface renderings of the ear canal and middle ear subsegments were defined and the percentage of visualization of each middle ear subsegment, both with and without ossicles, was then determined for the microscope as well as for 0-, 30-, and 45-degree endoscopes. Using this information, we analyzed which mode of visualization is best suited for dissection within a particular anatomical region. Using a 0-degree scope provides significantly more visualization of every subregion, except the antrum, compared with a microscope. In addition, angled scopes permit visualizing significantly more surface area of every subregion of the middle ear than straight scopes or microscopes. Endoscopes offer advantages for cholesteatoma dissection in difficult-to-visualize areas including the sinus tympani and epitympanum.

  5. Evaluation of rural areas in terms of landscape quality: Salacik Village (Trabzon/Turkey) example.

    PubMed

    Düzgüneş, Ertan; Demirel, Öner

    2015-06-01

    As a result of the increasing urbanization and fast pace of work life, people started to turn to rural areas so as to regenerate both socially and psychologically. Increasing interest in the rural areas made the importance of landscape quality of these areas more significant. This improvement gave way to the idea of the necessity of preserving the resourceful landscape areas in terms of visual characteristics and bringing them under the spotlight, and it became the driving power in reconciling the planners and administrators. From this point of view, a study was conducted in Salacık Village of Akçaabat district of Trabzon (Turkey) in order to identify the visually resourceful landscape areas and maintain the sustainability of the resource values by preserving them. In this respect, the area was divided into seven individual landscape types, visual landscape evaluation including the opinions of the experts, and a survey that is used in planning of the rural areas was implemented. It is thought that the results attained with the evaluations made taking the principles of Gestalt theory into consideration will constitute an essential fundamental for urban and regional planners, natural resource administrators, and other planning parties in their planning decisions relating the specific area. Apart from that, among the goals of this study are contributing in the preservation of visually resourceful landscapes, maintaining their sustainability, and integration of these areas into the development strategies.

  6. Linking pain and the body: neural correlates of visually induced analgesia.

    PubMed

    Longo, Matthew R; Iannetti, Gian Domenico; Mancini, Flavia; Driver, Jon; Haggard, Patrick

    2012-02-22

    The visual context of seeing the body can reduce the experience of acute pain, producing a multisensory analgesia. Here we investigated the neural correlates of this "visually induced analgesia" using fMRI. We induced acute pain with an infrared laser while human participants looked either at their stimulated right hand or at another object. Behavioral results confirmed the expected analgesic effect of seeing the body, while fMRI results revealed an associated reduction of laser-induced activity in ipsilateral primary somatosensory cortex (SI) and contralateral operculoinsular cortex during the visual context of seeing the body. We further identified two known cortical networks activated by sensory stimulation: (1) a set of brain areas consistently activated by painful stimuli (the so-called "pain matrix"), and (2) an extensive set of posterior brain areas activated by the visual perception of the body ("visual body network"). Connectivity analyses via psychophysiological interactions revealed that the visual context of seeing the body increased effective connectivity (i.e., functional coupling) between posterior parietal nodes of the visual body network and the purported pain matrix. Increased connectivity with these posterior parietal nodes was seen for several pain-related regions, including somatosensory area SII, anterior and posterior insula, and anterior cingulate cortex. These findings suggest that visually induced analgesia does not involve an overall reduction of the cortical response elicited by laser stimulation, but is consequent to the interplay between the brain's pain network and a posterior network for body perception, resulting in modulation of the experience of pain.

  7. A Small Disc Area Is a Risk Factor for Visual Field Loss Progression in Primary Open-Angle Glaucoma: The Glaucoma Stereo Analysis Study.

    PubMed

    Kitaoka, Yasushi; Tanito, Masaki; Yokoyama, Yu; Nitta, Koji; Katai, Maki; Omodaka, Kazuko; Nakazawa, Toru

    2018-01-01

    The Glaucoma Stereo Analysis Study, a cross-sectional multicenter collaborative study, used a stereo fundus camera (nonmyd WX) to assess various morphological parameters of the optic nerve head (ONH) in glaucoma patients. We compared the associations of each parameter between the visual field loss progression group and no-progression group. The study included 187 eyes of 187 patients with primary open-angle glaucoma or normal-tension glaucoma. We divided the mean deviation (MD) slope values of all patients into the progression group (<-0.3 dB/year) and no-progression group (≧-0.3 dB/year). ONH morphological parameters were calculated with prototype analysis software. The correlations between glaucomatous visual field progression and patient characteristics or each ONH parameter were analyzed with Spearman's rank correlation coefficient. The MD slope averages in the progression group and no-progression group were -0.58 ± 0.28 dB/year and 0.05 ± 0.26 dB/year, respectively. Among disc parameters, vertical disc width (diameter), disc area, cup area, and cup volume in the progression group were significantly less than those in the no-progression group. Logistic regression analysis revealed a significant association between the visual field progression and disc area (odds ratio 0.49/mm 2 disc area). A smaller disc area may be associated with more rapid glaucomatous visual field progression.

  8. Coding the presence of visual objects in a recurrent neural network of visual cortex.

    PubMed

    Zwickel, Timm; Wachtler, Thomas; Eckhorn, Reinhard

    2007-01-01

    Before we can recognize a visual object, our visual system has to segregate it from its background. This requires a fast mechanism for establishing the presence and location of objects independently of their identity. Recently, border-ownership neurons were recorded in monkey visual cortex which might be involved in this task [Zhou, H., Friedmann, H., von der Heydt, R., 2000. Coding of border ownership in monkey visual cortex. J. Neurosci. 20 (17), 6594-6611]. In order to explain the basic mechanisms required for fast coding of object presence, we have developed a neural network model of visual cortex consisting of three stages. Feed-forward and lateral connections support coding of Gestalt properties, including similarity, good continuation, and convexity. Neurons of the highest area respond to the presence of an object and encode its position, invariant of its form. Feedback connections to the lowest area facilitate orientation detectors activated by contours belonging to potential objects, and thus generate the experimentally observed border-ownership property. This feedback control acts fast and significantly improves the figure-ground segregation required for the consecutive task of object recognition.

  9. Proceedings of our national landscape: a conference on applied techniques for analysis and management of the visual resource [Incline Village, Nev., April 23-25, 1979

    Treesearch

    Gary H. Elsner; Richard C. Smardon; technical coordinators

    1979-01-01

    These 104 papers were presented at "Our National Landscape: A Conference on Applied Techniques for Analysis and Management of the Visual Resource," Incline Village, Nevada, April 23-25, 1979. Included in this proceedings are state-of-the-art papers on landscape planning. Emphasis is upon planning the visual aspects of the large and wildland areas of the...

  10. Differential Development of Selectivity for Faces and Bodies in the Fusiform Gyrus

    ERIC Educational Resources Information Center

    Peelen, Marius V.; Glaser, Bronwyn; Vuilleumier, Patrik; Eliez, Stephan

    2009-01-01

    Viewing faces or bodies activates category-selective areas of visual cortex, including the fusiform face area (FFA), fusiform body area (FBA), and extrastriate body area (EBA). Here, using fMRI, we investigate the development of these areas, focusing on the right FFA and FBA. Despite the overlap of functionally defined FFA and FBA (54%-75%…

  11. The Dorsal Visual System Predicts Future and Remembers Past Eye Position

    PubMed Central

    Morris, Adam P.; Bremmer, Frank; Krekelberg, Bart

    2016-01-01

    Eye movements are essential to primate vision but introduce potentially disruptive displacements of the retinal image. To maintain stable vision, the brain is thought to rely on neurons that carry both visual signals and information about the current direction of gaze in their firing rates. We have shown previously that these neurons provide an accurate representation of eye position during fixation, but whether they are updated fast enough during saccadic eye movements to support real-time vision remains controversial. Here we show that not only do these neurons carry a fast and accurate eye-position signal, but also that they support in parallel a range of time-lagged variants, including predictive and post dictive signals. We recorded extracellular activity in four areas of the macaque dorsal visual cortex during a saccade task, including the lateral and ventral intraparietal areas (LIP, VIP), and the middle temporal (MT) and medial superior temporal (MST) areas. As reported previously, neurons showed tonic eye-position-related activity during fixation. In addition, they showed a variety of transient changes in activity around the time of saccades, including relative suppression, enhancement, and pre-saccadic bursts for one saccade direction over another. We show that a hypothetical neuron that pools this rich population activity through a weighted sum can produce an output that mimics the true spatiotemporal dynamics of the eye. Further, with different pooling weights, this downstream eye position signal (EPS) could be updated long before (<100 ms) or after (<200 ms) an eye movement. The results suggest a flexible coding scheme in which downstream computations have access to past, current, and future eye positions simultaneously, providing a basis for visual stability and delay-free visually-guided behavior. PMID:26941617

  12. The Dawn of Development: A Guide for Educating Young Children with Visual Impairments. Volume II: Program Manual.

    ERIC Educational Resources Information Center

    Trask, Susan; And Others

    The manual describes instructional materials for visually impaired children at the prereadiness, readiness, and academic levels (prekindergarten through primary grades). Chapter I, which surveys instructional materials, contains a listing of materials by curricular areas (including communication, math, and daily living); a listing of materials in…

  13. Visual management system and timber management application

    Treesearch

    Warren R. Bacon; Asa D. (Bud) Twombly

    1979-01-01

    This paper includes an illustration of a planning process to guide vegetation management throughout a travel route seen area and over the time period of a total management rotation (100-300 years). The process will produce direction on visual characteristics to be created and maintained within the biological potential and coordinated with associated re-source...

  14. An Introduction to Development of Curriculum for Educable Mentally Retarded Visually Handicapped Adolescents.

    ERIC Educational Resources Information Center

    American Foundation for the Blind, New York, NY.

    Suggestions for curriculum development for educable mentally handicapped, visually handicapped students aged 13 to 18 years are presented. A discussion of communication skills includes the areas of listening, oral communication, reading, writing, and spelling and teaching methods for each. The goals of the computation skills sequence, basic…

  15. Visual Literacy and the Digital Native: An Examination of the Millennial Learner

    ERIC Educational Resources Information Center

    Brumberger, Eva

    2011-01-01

    The so-called millennial learners who currently populate college classrooms are purportedly digital natives whose repeated exposure to a host of new technologies has allegedly resulted in enhanced skills in several areas, including those related to technology and visual communication. By extension, the argument has been made that digital natives…

  16. Blast exposure and dual sensory impairment: an evidence review and integrated rehabilitation approach.

    PubMed

    Saunders, Gabrielle H; Echt, Katharina V

    2012-01-01

    Combat exposures to blast can result in both peripheral damage to the ears and eyes and central damage to the auditory and visual processing areas in the brain. The functional effects of the latter include visual, auditory, and cognitive processing difficulties that manifest as deficits in attention, memory, and problem solving--symptoms similar to those seen in individuals with visual and auditory processing disorders. Coexisting damage to the auditory and visual system is referred to as dual sensory impairment (DSI). The number of Operation Iraqi Freedom/Operation Enduring Freedom Veterans with DSI is vast; yet currently no established models or guidelines exist for assessment, rehabilitation, or service-delivery practice. In this article, we review the current state of knowledge regarding blast exposure and DSI and outline the many unknowns in this area. Further, we propose a model for clinical assessment and rehabilitation of blast-related DSI that includes development of a coordinated team-based approach to target activity limitations and participation restrictions in order to enhance reintegration, recovery, and quality of life.

  17. Speed of feedforward and recurrent processing in multilayer networks of integrate-and-fire neurons.

    PubMed

    Panzeri, S; Rolls, E T; Battaglia, F; Lavis, R

    2001-11-01

    The speed of processing in the visual cortical areas can be fast, with for example the latency of neuronal responses increasing by only approximately 10 ms per area in the ventral visual system sequence V1 to V2 to V4 to inferior temporal visual cortex. This has led to the suggestion that rapid visual processing can only be based on the feedforward connections between cortical areas. To test this idea, we investigated the dynamics of information retrieval in multiple layer networks using a four-stage feedforward network modelled with continuous dynamics with integrate-and-fire neurons, and associative synaptic connections between stages with a synaptic time constant of 10 ms. Through the implementation of continuous dynamics, we found latency differences in information retrieval of only 5 ms per layer when local excitation was absent and processing was purely feedforward. However, information latency differences increased significantly when non-associative local excitation was included. We also found that local recurrent excitation through associatively modified synapses can contribute significantly to processing in as little as 15 ms per layer, including the feedforward and local feedback processing. Moreover, and in contrast to purely feed-forward processing, the contribution of local recurrent feedback was useful and approximately this rapid even when retrieval was made difficult by noise. These findings suggest that cortical information processing can benefit from recurrent circuits when the allowed processing time per cortical area is at least 15 ms long.

  18. Functional neuroanatomy of visual masking deficits in schizophrenia.

    PubMed

    Green, Michael F; Lee, Junghee; Cohen, Mark S; Engel, Steven A; Korb, Alexander S; Nuechterlein, Keith H; Wynn, Jonathan K; Glahn, David C

    2009-12-01

    Visual masking procedures assess the earliest stages of visual processing. Patients with schizophrenia reliably show deficits on visual masking, and these procedures have been used to explore vulnerability to schizophrenia, probe underlying neural circuits, and help explain functional outcome. To identify and compare regional brain activity associated with one form of visual masking (ie, backward masking) in schizophrenic patients and healthy controls. Subjects received functional magnetic resonance imaging scans. While in the scanner, subjects performed a backward masking task and were given 3 functional localizer activation scans to identify early visual processing regions of interest (ROIs). University of California, Los Angeles, and the Department of Veterans Affairs Greater Los Angeles Healthcare System. Nineteen patients with schizophrenia and 19 healthy control subjects. Main Outcome Measure The magnitude of the functional magnetic resonance imaging signal during backward masking. Two ROIs (lateral occipital complex [LO] and the human motion selective cortex [hMT+]) showed sensitivity to the effects of masking, meaning that signal in these areas increased as the target became more visible. Patients had lower activation than controls in LO across all levels of visibility but did not differ in other visual processing ROIs. Using whole-brain analyses, we also identified areas outside the ROIs that were sensitive to masking effects (including bilateral inferior parietal lobe and thalamus), but groups did not differ in signal magnitude in these areas. The study results support a key role in LO for visual masking, consistent with previous studies in healthy controls. The current results indicate that patients fail to activate LO to the same extent as controls during visual processing regardless of stimulus visibility, suggesting a neural basis for the visual masking deficit, and possibly other visual integration deficits, in schizophrenia.

  19. A deep (learning) dive into visual search behaviour of breast radiologists

    NASA Astrophysics Data System (ADS)

    Mall, Suneeta; Brennan, Patrick C.; Mello-Thoms, Claudia

    2018-03-01

    Visual search, the process of detecting and identifying objects using the eye movements (saccades) and the foveal vision, has been studied for identification of root causes of errors in the interpretation of mammography. The aim of this study is to model visual search behaviour of radiologists and their interpretation of mammograms using deep machine learning approaches. Our model is based on a deep convolutional neural network, a biologically-inspired multilayer perceptron that simulates the visual cortex, and is reinforced with transfer learning techniques. Eye tracking data obtained from 8 radiologists (of varying experience levels in reading mammograms) reviewing 120 two-view digital mammography cases (59 cancers) have been used to train the model, which was pre-trained with the ImageNet dataset for transfer learning. Areas of the mammogram that received direct (foveally fixated), indirect (peripherally fixated) or no (never fixated) visual attention were extracted from radiologists' visual search maps (obtained by a head mounted eye tracking device). These areas, along with the radiologists' assessment (including confidence of the assessment) of suspected malignancy were used to model: 1) Radiologists' decision; 2) Radiologists' confidence on such decision; and 3) The attentional level (i.e. foveal, peripheral or none) obtained by an area of the mammogram. Our results indicate high accuracy and low misclassification in modelling such behaviours.

  20. [A List of Curriculum Guides, Course Outlines, and Instructional Materials for All Areas of Vocational Education.

    ERIC Educational Resources Information Center

    The bibliography provides listings of currently available curriculum guides, course outlines, instructional and reference materials, and visual aids relevant to all areas of vocational education. The major areas under which listings are grouped include business and office occupations, trade and technical vocations, health education and…

  1. AWE: Aviation Weather Data Visualization

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Lodha, Suresh K.

    2001-01-01

    The two official sources for aviation weather reports both require the pilot to mentally visualize the provided information. In contrast, our system, Aviation Weather Environment (AWE) presents aviation specific weather available to pilots in an easy to visualize form. We start with a computer-generated textual briefing for a specific area. We map this briefing onto a grid specific to the pilot's route that includes only information relevant to his flight route that includes only information relevant to his flight as defined by route, altitude, true airspeed, and proposed departure time. By modifying various parameters, the pilot can use AWE as a planning tool as well as a weather briefing tool.

  2. Structural reorganization of the early visual cortex following Braille training in sighted adults.

    PubMed

    Bola, Łukasz; Siuda-Krzywicka, Katarzyna; Paplińska, Małgorzata; Sumera, Ewa; Zimmermann, Maria; Jednoróg, Katarzyna; Marchewka, Artur; Szwed, Marcin

    2017-12-12

    Training can induce cross-modal plasticity in the human cortex. A well-known example of this phenomenon is the recruitment of visual areas for tactile and auditory processing. It remains unclear to what extent such plasticity is associated with changes in anatomy. Here we enrolled 29 sighted adults into a nine-month tactile Braille-reading training, and used voxel-based morphometry and diffusion tensor imaging to describe the resulting anatomical changes. In addition, we collected resting-state fMRI data to relate these changes to functional connectivity between visual and somatosensory-motor cortices. Following Braille-training, we observed substantial grey and white matter reorganization in the anterior part of early visual cortex (peripheral visual field). Moreover, relative to its posterior, foveal part, the peripheral representation of early visual cortex had stronger functional connections to somatosensory and motor cortices even before the onset of training. Previous studies show that the early visual cortex can be functionally recruited for tactile discrimination, including recognition of Braille characters. Our results demonstrate that reorganization in this region induced by tactile training can also be anatomical. This change most likely reflects a strengthening of existing connectivity between the peripheral visual cortex and somatosensory cortices, which suggests a putative mechanism for cross-modal recruitment of visual areas.

  3. Activity of neurons in area 6 of the cat during fixation and eye movements.

    PubMed

    Weyand, T G; Gafka, A C

    1998-01-01

    We studied the visuomotor properties of 645 neurons in area 6 of five cats trained in oculomotor tasks. The area we recorded from corresponds well with territories believed to contain the feline homologue of the frontal eye fields observed in primates. Despite an expectation that cells with pre-saccadic activity would be common, only a small fraction (approximately 5%) of the cells displayed activity that could be linked to subsequent saccadic eye movements. These pre-motor cells appeared to be distributed over a broad region of cortex mixed in with other cell types. As in primates, saccade-related activity tended to occur only during "purposeful" saccades. At least 30% (208/645) of the neurons were visual, with many of these cells possessing huge receptive fields that appeared to include the entire contralateral visual field. Visual responsiveness was generally attenuated by fixation during the oculomotor tasks. Although attentional mechanisms may play a role in this attenuation, this cortical area also exhibits powerful lateral interactions in which spatially displaced visual stimuli suppress each other. Most cells, visually responsive or not, were affected by fixation. Nearly equal proportions of cells showed increases or decreases in activity during fixation. For many of the cells affected by fixation, the source of this modulation appears to reflect cognitive, rather than sensory or motor processes. This included cells that showed anticipatory activity, and cells that responded to the reward only when it was presented in the context of the task. Based on the paucity of pre-saccadic neurons, it would be difficult to conclude that this region of cortex in the cat is homologous to the frontal eye fields of the monkey. However, when considered in the context of differences in the oculomotor habits of these two animals, we believe the homology fits. In addition to pre-motor neurons, the properties of several other cell types found in this area could contribute to the control of gaze.

  4. A normalization model suggests that attention changes the weighting of inputs between visual areas

    PubMed Central

    Cohen, Marlene R.

    2017-01-01

    Models of divisive normalization can explain the trial-averaged responses of neurons in sensory, association, and motor areas under a wide range of conditions, including how visual attention changes the gains of neurons in visual cortex. Attention, like other modulatory processes, is also associated with changes in the extent to which pairs of neurons share trial-to-trial variability. We showed recently that in addition to decreasing correlations between similarly tuned neurons within the same visual area, attention increases correlations between neurons in primary visual cortex (V1) and the middle temporal area (MT) and that an extension of a classic normalization model can account for this correlation increase. One of the benefits of having a descriptive model that can account for many physiological observations is that it can be used to probe the mechanisms underlying processes such as attention. Here, we use electrical microstimulation in V1 paired with recording in MT to provide causal evidence that the relationship between V1 and MT activity is nonlinear and is well described by divisive normalization. We then use the normalization model and recording and microstimulation experiments to show that the attention dependence of V1–MT correlations is better explained by a mechanism in which attention changes the weights of connections between V1 and MT than by a mechanism that modulates responses in either area. Our study shows that normalization can explain interactions between neurons in different areas and provides a framework for using multiarea recording and stimulation to probe the neural mechanisms underlying neuronal computations. PMID:28461501

  5. A normalization model suggests that attention changes the weighting of inputs between visual areas.

    PubMed

    Ruff, Douglas A; Cohen, Marlene R

    2017-05-16

    Models of divisive normalization can explain the trial-averaged responses of neurons in sensory, association, and motor areas under a wide range of conditions, including how visual attention changes the gains of neurons in visual cortex. Attention, like other modulatory processes, is also associated with changes in the extent to which pairs of neurons share trial-to-trial variability. We showed recently that in addition to decreasing correlations between similarly tuned neurons within the same visual area, attention increases correlations between neurons in primary visual cortex (V1) and the middle temporal area (MT) and that an extension of a classic normalization model can account for this correlation increase. One of the benefits of having a descriptive model that can account for many physiological observations is that it can be used to probe the mechanisms underlying processes such as attention. Here, we use electrical microstimulation in V1 paired with recording in MT to provide causal evidence that the relationship between V1 and MT activity is nonlinear and is well described by divisive normalization. We then use the normalization model and recording and microstimulation experiments to show that the attention dependence of V1-MT correlations is better explained by a mechanism in which attention changes the weights of connections between V1 and MT than by a mechanism that modulates responses in either area. Our study shows that normalization can explain interactions between neurons in different areas and provides a framework for using multiarea recording and stimulation to probe the neural mechanisms underlying neuronal computations.

  6. Experimental induction of reading difficulties in normal readers provides novel insights into the neurofunctional mechanisms of visual word recognition.

    PubMed

    Heim, Stefan; Weidner, Ralph; von Overheidt, Ann-Christin; Tholen, Nicole; Grande, Marion; Amunts, Katrin

    2014-03-01

    Phonological and visual dysfunctions may result in reading deficits like those encountered in developmental dyslexia. Here, we use a novel approach to induce similar reading difficulties in normal readers in an event-related fMRI study, thus systematically investigating which brain regions relate to different pathways relating to orthographic-phonological (e.g. grapheme-to-phoneme conversion, GPC) vs. visual processing. Based upon a previous behavioural study (Tholen et al. 2011), the retrieval of phonemes from graphemes was manipulated by lowering the identifiability of letters in familiar vs. unfamiliar shapes. Visual word and letter processing was impeded by presenting the letters of a word in a moving, non-stationary manner. FMRI revealed that the visual condition activated cytoarchitectonically defined area hOC5 in the magnocellular pathway and area 7A in the right mesial parietal cortex. In contrast, the grapheme manipulation revealed different effects localised predominantly in bilateral inferior frontal gyrus (left cytoarchitectonic area 44; right area 45) and inferior parietal lobule (including areas PF/PFm), regions that have been demonstrated to show abnormal activation in dyslexic as compared to normal readers. This pattern of activation bears close resemblance to recent findings in dyslexic samples both behaviourally and with respect to the neurofunctional activation patterns. The novel paradigm may thus prove useful in future studies to understand reading problems related to distinct pathways, potentially providing a link also to the understanding of real reading impairments in dyslexia.

  7. Phenotypes in defined genotypes including siblings with Usher syndrome.

    PubMed

    Malm, Eva; Ponjavic, Vesna; Möller, Claes; Kimberling, William J; Andréasson, Sten

    2011-06-01

    To characterize visual function in defined genotypes including siblings with Usher syndrome. Thirteen patients with phenotypically different subtypes of Usher syndrome, including 3 families with affected siblings, were selected. Genetic analysis and ophthalmological examinations including visual fields, full-field electroretinography (ERG), multifocal electroretinography (mf ERG), and optical coherence tomography (OCT) were assessed. The patients' degree of visual handicap was evaluated by a questionnaire (ADL). Twelve of thirteen patients were genotyped as Usher 1B, 1D, 1F, 2A, 2C or 3A. In 12 of 13 patients examined with ERG the 30 Hz flickering light response revealed remaining cone function. In 3 of the patients with Usher type 1 mf ERG demonstrated a specific pattern, with a sharp distinction between the area with reduced function and the central area with remaining macular function and normal peak time. OCT demonstrated loss of foveal depression with distortion of the foveal architecture in the macula in all patients. The foveal thickness ranged from 159 to 384 µm and was not correlated to retinal function. Three siblings shared the same mutation for Usher 2C but in contrast to previous reports regarding this genotype, 1 of them diverged in phenotype with substantially normal visual fields, almost normal OCT and mf ERG findings, and only moderately reduced rod and cone function according to ERG. Evaluation of visual function comprising both the severity of the rod cone degeneration and the function in the macular region confirm phenotypical heterogeneity within siblings and between different genotypes of Usher syndrome.

  8. On the Visual Input Driving Human Smooth-Pursuit Eye Movements

    NASA Technical Reports Server (NTRS)

    Stone, Leland S.; Beutter, Brent R.; Lorenceau, Jean

    1996-01-01

    Current computational models of smooth-pursuit eye movements assume that the primary visual input is local retinal-image motion (often referred to as retinal slip). However, we show that humans can pursue object motion with considerable accuracy, even in the presence of conflicting local image motion. This finding indicates that the visual cortical area(s) controlling pursuit must be able to perform a spatio-temporal integration of local image motion into a signal related to object motion. We also provide evidence that the object-motion signal that drives pursuit is related to the signal that supports perception. We conclude that current models of pursuit should be modified to include a visual input that encodes perceived object motion and not merely retinal image motion. Finally, our findings suggest that the measurement of eye movements can be used to monitor visual perception, with particular value in applied settings as this non-intrusive approach would not require interrupting ongoing work or training.

  9. Ventral and dorsal streams processing visual motion perception (FDG-PET study)

    PubMed Central

    2012-01-01

    Background Earlier functional imaging studies on visually induced self-motion perception (vection) disclosed a bilateral network of activations within primary and secondary visual cortex areas which was combined with signal decreases, i.e., deactivations, in multisensory vestibular cortex areas. This finding led to the concept of a reciprocal inhibitory interaction between the visual and vestibular systems. In order to define areas involved in special aspects of self-motion perception such as intensity and duration of the perceived circular vection (CV) or the amount of head tilt, correlation analyses of the regional cerebral glucose metabolism, rCGM (measured by fluorodeoxyglucose positron-emission tomography, FDG-PET) and these perceptual covariates were performed in 14 healthy volunteers. For analyses of the visual-vestibular interaction, the CV data were compared to a random dot motion stimulation condition (not inducing vection) and a control group at rest (no stimulation at all). Results Group subtraction analyses showed that the visual-vestibular interaction was modified during CV, i.e., the activations within the cerebellar vermis and parieto-occipital areas were enhanced. The correlation analysis between the rCGM and the intensity of visually induced vection, experienced as body tilt, showed a relationship for areas of the multisensory vestibular cortical network (inferior parietal lobule bilaterally, anterior cingulate gyrus), the medial parieto-occipital cortex, the frontal eye fields and the cerebellar vermis. The “earlier” multisensory vestibular areas like the parieto-insular vestibular cortex and the superior temporal gyrus did not appear in the latter analysis. The duration of perceived vection after stimulus stop was positively correlated with rCGM in medial temporal lobe areas bilaterally, which included the (para-)hippocampus, known to be involved in various aspects of memory processing. The amount of head tilt was found to be positively correlated with the rCGM of bilateral basal ganglia regions responsible for the control of motor function of the head. Conclusions Our data gave further insights into subfunctions within the complex cortical network involved in the processing of visual-vestibular interaction during CV. Specific areas of this cortical network could be attributed to the ventral stream (“what” pathway) responsible for the duration after stimulus stop and to the dorsal stream (“where/how” pathway) responsible for intensity aspects. PMID:22800430

  10. Learning to Perceive Structure from Motion and Neural Plasticity in Patients with Alzheimer's Disease

    ERIC Educational Resources Information Center

    Kim, Nam-Gyoon; Park, Jong-Hee

    2010-01-01

    Recent research has demonstrated that Alzheimer's disease (AD) affects the visual sensory pathways, producing a variety of visual deficits, including the capacity to perceive structure-from-motion (SFM). Because the sensory areas of the adult brain are known to retain a large degree of plasticity, the present study was conducted to explore whether…

  11. Lightness computation by the human visual system

    NASA Astrophysics Data System (ADS)

    Rudd, Michael E.

    2017-05-01

    A model of achromatic color computation by the human visual system is presented, which is shown to account in an exact quantitative way for a large body of appearance matching data collected with simple visual displays. The model equations are closely related to those of the original Retinex model of Land and McCann. However, the present model differs in important ways from Land and McCann's theory in that it invokes additional biological and perceptual mechanisms, including contrast gain control, different inherent neural gains for incremental, and decremental luminance steps, and two types of top-down influence on the perceptual weights applied to local luminance steps in the display: edge classification and spatial integration attentional windowing. Arguments are presented to support the claim that these various visual processes must be instantiated by a particular underlying neural architecture. By pointing to correspondences between the architecture of the model and findings from visual neurophysiology, this paper suggests that edge classification involves a top-down gating of neural edge responses in early visual cortex (cortical areas V1 and/or V2) while spatial integration windowing occurs in cortical area V4 or beyond.

  12. A Dual-Route Perspective on Brain Activation in Response to Visual Words: Evidence for a Length by Lexicality Interaction in the Visual Word Form Area (VWFA)

    PubMed Central

    Schurz, Matthias; Sturm, Denise; Richlan, Fabio; Kronbichler, Martin; Ladurner, Gunther; Wimmer, Heinz

    2010-01-01

    Based on our previous work, we expected the Visual Word Form Area (VWFA) in the left ventral visual pathway to be engaged by both whole-word recognition and by serial sublexical coding of letter strings. To examine this double function, a phonological lexical decision task (i.e., “Does xxx sound like an existing word?”) presented short and long letter strings of words, pseudohomophones, and pseudowords (e.g., Taxi, Taksi and Tazi). Main findings were that the length effect for words was limited to occipital regions and absent in the VWFA. In contrast, a marked length effect for pseudowords was found throughout the ventral visual pathway including the VWFA, as well as in regions presumably engaged by visual attention and silent-articulatory processes. The length by lexicality interaction on brain activation corresponds to well-established behavioral findings of a length by lexicality interaction on naming latencies and speaks for the engagement of the VWFA by both lexical and sublexical processes. PMID:19896538

  13. A dual-route perspective on brain activation in response to visual words: evidence for a length by lexicality interaction in the visual word form area (VWFA).

    PubMed

    Schurz, Matthias; Sturm, Denise; Richlan, Fabio; Kronbichler, Martin; Ladurner, Gunther; Wimmer, Heinz

    2010-02-01

    Based on our previous work, we expected the Visual Word Form Area (VWFA) in the left ventral visual pathway to be engaged by both whole-word recognition and by serial sublexical coding of letter strings. To examine this double function, a phonological lexical decision task (i.e., "Does xxx sound like an existing word?") presented short and long letter strings of words, pseudohomophones, and pseudowords (e.g., Taxi, Taksi and Tazi). Main findings were that the length effect for words was limited to occipital regions and absent in the VWFA. In contrast, a marked length effect for pseudowords was found throughout the ventral visual pathway including the VWFA, as well as in regions presumably engaged by visual attention and silent-articulatory processes. The length by lexicality interaction on brain activation corresponds to well-established behavioral findings of a length by lexicality interaction on naming latencies and speaks for the engagement of the VWFA by both lexical and sublexical processes. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  14. Visuomotor properties of corticotectal cells in area 17 and posteromedial lateral suprasylvian (PMLS) cortex of the cat.

    PubMed

    Weyand, T G; Gafka, A C

    2001-01-01

    We studied the visuomotor activity of corticotectal (CT) cells in two visual cortical areas [area 17 and the posteromedial lateral suprasylvian cortex (PMLS)] of the cat. The cats were trained in simple oculomotor tasks, and head position was fixed. Most CT cells in both cortical areas gave a vigorous discharge to a small stimulus used to control gaze when it fell within the retinotopically defined visual field. However, the vigor of the visual response did not predict latency to initiate a saccade, saccade velocity, amplitude, or even if a saccade would be made, minimizing any potential role these cells might have in premotor or attentional processes. Most CT cells in both areas were selective for direction of stimulus motion, and cells in PMLS showed a direction preference favoring motion away from points of central gaze. CT cells did not discharge with eye movements in the dark. During eye movements in the light, many CT cells in area 17 increased their activity. In contrast, cells in PMLS, including CT cells, were generally unresponsive during saccades. Paradoxically, cells in PMLS responded vigorously to stimuli moving at saccadic velocities, indicating that the oculomotor system suppresses visual activity elicited by moving the retina across an illuminated scene. Nearly all CT cells showed oscillatory activity in the frequency range of 20-90 Hz, especially in response to visual stimuli. However, this activity was capricious; strong oscillations in one trial could disappear in the next despite identical stimulus conditions. Although the CT cells in both of these regions share many characteristics, the direction anisotropy and the suppression of activity during eye movements which characterize the neurons in PMLS suggests that these two areas have different roles in facilitating perceptual/motor processes at the level of the superior colliculus.

  15. Modality specificity in the cerebro-cerebellar neurocircuitry during working memory.

    PubMed

    Ng, H B Tommy; Kao, K-L Cathy; Chan, Y C; Chew, Effie; Chuang, K H; Chen, S H Annabel

    2016-05-15

    Previous studies have suggested cerebro-cerebellar circuitry in working memory. The present fMRI study aims to distinguish differential cerebro-cerebellar activation patterns in verbal and visual working memory, and employs a quantitative analysis to deterimine lateralization of the activation patterns observed. Consistent with Chen and Desmond (2005a,b) predictions, verbal working memory activated a cerebro-cerebellar circuitry that comprised left-lateralized language-related brain regions including the inferior frontal and posterior parietal areas, and subcortically, right-lateralized superior (lobule VI) and inferior cerebellar (lobule VIIIA/VIIB) areas. In contrast, a distributed network of bilateral inferior frontal and inferior temporal areas, and bilateral superior (lobule VI) and inferior (lobule VIIB) cerebellar areas, was recruited during visual working memory. Results of the study verified that a distinct cross cerebro-cerebellar circuitry underlies verbal working memory. However, a neural circuitry involving specialized brain areas in bilateral neocortical and bilateral cerebellar hemispheres subserving visual working memory is observed. Findings are discussed in the light of current models of working memory and data from related neuroimaging studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Cognitive processing in the primary visual cortex: from perception to memory.

    PubMed

    Supèr, Hans

    2002-01-01

    The primary visual cortex is the first cortical area of the visual system that receives information from the external visual world. Based on the receptive field characteristics of the neurons in this area, it has been assumed that the primary visual cortex is a pure sensory area extracting basic elements of the visual scene. This information is then subsequently further processed upstream in the higher-order visual areas and provides us with perception and storage of the visual environment. However, recent findings show that such neural implementations are observed in the primary visual cortex. These neural correlates are expressed by the modulated activity of the late response of a neuron to a stimulus, and most likely depend on recurrent interactions between several areas of the visual system. This favors the concept of a distributed nature of visual processing in perceptual organization.

  17. Informing Healthcare Waiting Area Design Using Transparency Attributes: A Comparative Preference Study.

    PubMed

    Jiang, Shan; Powers, Matthew; Allison, David; Vincent, Ellen

    2017-07-01

    This study aimed to explore people's visual preference for waiting areas in general hospital environments designed with transparency attributes that fully integrate nature. Waiting can be a tedious and frustrating experience among people seeking healthcare treatments and negatively affect their perception of the quality of care. Positive distractions and supportive designs have gained increasing attraction to improve people's waiting experience. Nature, which has shown therapeutic effects according to a growing amount of evidence, could be a distinguished positive distraction in waiting areas. Additionally, the theory of transparency was operationalized to indicate a spatial continuity between the external nature and the built interiors in general healthcare waiting area design. A survey method was adopted in the study. Twenty-one images of general healthcare waiting areas depicting three design typologies were preselected following a strict procedure, including designs with (a) no window views, (b) limited window views to nature, and (c) transparent spaces with maximum natural views. Ninety-five student participants rated the images based on their visual preference using a Likert-type scale. The results showed that transparent waiting areas were significantly preferred. A significant positive relationship existed between the level of transparency and people's preference scores. The factor analysis indicated additional supportive features that may affect people's preferences, including daylight, perceived warmth, noninstitutional furniture arrangement, visual orientation, and the use of natural materials for interior design. However, these tentative results need to be furthered tested with the real patient population as the next step of this study.

  18. Neural networks for Braille reading by the blind.

    PubMed

    Sadato, N; Pascual-Leone, A; Grafman, J; Deiber, M P; Ibañez, V; Hallett, M

    1998-07-01

    To explore the neural networks used for Braille reading, we measured regional cerebral blood flow with PET during tactile tasks performed both by Braille readers blinded early in life and by sighted subjects. Eight proficient Braille readers were studied during Braille reading with both right and left index fingers. Eight-character, non-contracted Braille-letter strings were used, and subjects were asked to discriminate between words and non-words. To compare the behaviour of the brain of the blind and the sighted directly, non-Braille tactile tasks were performed by six different blind subjects and 10 sighted control subjects using the right index finger. The tasks included a non-discrimination task and three discrimination tasks (angle, width and character). Irrespective of reading finger (right or left), Braille reading by the blind activated the inferior parietal lobule, primary visual cortex, superior occipital gyri, fusiform gyri, ventral premotor area, superior parietal lobule, cerebellum and primary sensorimotor area bilaterally, also the right dorsal premotor cortex, right middle occipital gyrus and right prefrontal area. During non-Braille discrimination tasks, in blind subjects, the ventral occipital regions, including the primary visual cortex and fusiform gyri bilaterally were activated while the secondary somatosensory area was deactivated. The reverse pattern was found in sighted subjects where the secondary somatosensory area was activated while the ventral occipital regions were suppressed. These findings suggest that the tactile processing pathways usually linked in the secondary somatosensory area are rerouted in blind subjects to the ventral occipital cortical regions originally reserved for visual shape discrimination.

  19. A pilot randomized controlled trial comparing effectiveness of prism glasses, visual search training and standard care in hemianopia.

    PubMed

    Rowe, F J; Conroy, E J; Bedson, E; Cwiklinski, E; Drummond, A; García-Fiñana, M; Howard, C; Pollock, A; Shipman, T; Dodridge, C; MacIntosh, C; Johnson, S; Noonan, C; Barton, G; Sackley, C

    2017-10-01

    Pilot trial to compare prism therapy and visual search training, for homonymous hemianopia, to standard care (information only). Prospective, multicentre, parallel, single-blind, three-arm RCT across fifteen UK acute stroke units. Stroke survivors with homonymous hemianopia. Arm a (Fresnel prisms) for minimum 2 hours, 5 days per week over 6 weeks. Arm b (visual search training) for minimum 30 minutes, 5 days per week over 6 weeks. Arm c (standard care-information only). Adult stroke survivors (>18 years), stable hemianopia, visual acuity better than 0.5 logMAR, refractive error within ±5 dioptres, ability to read/understand English and provide consent. Primary outcomes were change in visual field area from baseline to 26 weeks and calculation of sample size for a definitive trial. Secondary measures included Rivermead Mobility Index, Visual Function Questionnaire 25/10, Nottingham Extended Activities of Daily Living, Euro Qual, Short Form-12 questionnaires and Radner reading ability. Measures were post-randomization at baseline and 6, 12 and 26 weeks. Randomization block lists stratified by site and partial/complete hemianopia. Allocations disclosed to patients. Primary outcome assessor blind to treatment allocation. Eighty-seven patients were recruited: 27-Fresnel prisms, 30-visual search training and 30-standard care; 69% male; mean age 69 years (SD 12). At 26 weeks, full results for 24, 24 and 22 patients, respectively, were compared to baseline. Sample size calculation for a definitive trial determined as 269 participants per arm for a 200 degree 2 visual field area change at 90% power. Non-significant relative change in area of visual field was 5%, 8% and 3.5%, respectively, for the three groups. Visual Function Questionnaire responses improved significantly from baseline to 26 weeks with visual search training (60 [SD 19] to 68.4 [SD 20]) compared to Fresnel prisms (68.5 [SD 16.4] to 68.2 [18.4]: 7% difference) and standard care (63.7 [SD 19.4] to 59.8 [SD 22.7]: 10% difference), P=.05. Related adverse events were common with Fresnel prisms (69.2%; typically headaches). No significant change occurred for area of visual field area across arms over follow-up. Visual search training had significant improvement in vision-related quality of life. Prism therapy produced adverse events in 69%. Visual search training results warrant further investigation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. The Attentional Field Revealed by Single-Voxel Modeling of fMRI Time Courses

    PubMed Central

    DeYoe, Edgar A.

    2015-01-01

    The spatial topography of visual attention is a distinguishing and critical feature of many theoretical models of visuospatial attention. Previous fMRI-based measurements of the topography of attention have typically been too crude to adequately test the predictions of different competing models. This study demonstrates a new technique to make detailed measurements of the topography of visuospatial attention from single-voxel, fMRI time courses. Briefly, this technique involves first estimating a voxel's population receptive field (pRF) and then “drifting” attention through the pRF such that the modulation of the voxel's fMRI time course reflects the spatial topography of attention. The topography of the attentional field (AF) is then estimated using a time-course modeling procedure. Notably, we are able to make these measurements in many visual areas including smaller, higher order areas, thus enabling a more comprehensive comparison of attentional mechanisms throughout the full hierarchy of human visual cortex. Using this technique, we show that the AF scales with eccentricity and varies across visual areas. We also show that voxels in multiple visual areas exhibit suppressive attentional effects that are well modeled by an AF having an enhancing Gaussian center with a suppressive surround. These findings provide extensive, quantitative neurophysiological data for use in modeling the psychological effects of visuospatial attention. PMID:25810532

  1. Strabismus and the Oculomotor System: Insights from Macaque Models

    PubMed Central

    Das, Vallabh E.

    2017-01-01

    Disrupting binocular vision in infancy leads to strabismus and oftentimes to a variety of associated visual sensory deficits and oculomotor abnormalities. Investigation of this disorder has been aided by the development of various animal models, each of which has advantages and disadvantages. In comparison to studies of binocular visual responses in cortical structures, investigations of neural oculomotor structures that mediate the misalignment and abnormalities of eye movements have been more recent, and these studies have shown that different brain areas are intimately involved in driving several aspects of the strabismic condition, including horizontal misalignment, dissociated deviations, A and V patterns of strabismus, disconjugate eye movements, nystagmus, and fixation switch. The responses of cells in visual and oculomotor areas that potentially drive the sensory deficits and also eye alignment and eye movement abnormalities follow a general theme of disrupted calibration, lower sensitivity, and poorer specificity compared with the normally developed visual oculomotor system. PMID:28532347

  2. Transient visual pathway critical for normal development of primate grasping behavior.

    PubMed

    Mundinano, Inaki-Carril; Fox, Dylan M; Kwan, William C; Vidaurre, Diego; Teo, Leon; Homman-Ludiye, Jihane; Goodale, Melvyn A; Leopold, David A; Bourne, James A

    2018-02-06

    An evolutionary hallmark of anthropoid primates, including humans, is the use of vision to guide precise manual movements. These behaviors are reliant on a specialized visual input to the posterior parietal cortex. Here, we show that normal primate reaching-and-grasping behavior depends critically on a visual pathway through the thalamic pulvinar, which is thought to relay information to the middle temporal (MT) area during early life and then swiftly withdraws. Small MRI-guided lesions to a subdivision of the inferior pulvinar subnucleus (PIm) in the infant marmoset monkey led to permanent deficits in reaching-and-grasping behavior in the adult. This functional loss coincided with the abnormal anatomical development of multiple cortical areas responsible for the guidance of actions. Our study reveals that the transient retino-pulvinar-MT pathway underpins the development of visually guided manual behaviors in primates that are crucial for interacting with complex features in the environment.

  3. Bedmap2; Mapping, visualizing and communicating the Antarctic sub-glacial environment.

    NASA Astrophysics Data System (ADS)

    Fretwell, Peter; Pritchard, Hamish

    2013-04-01

    Bedmap2; Mapping, visualizing and communicating the Antarctic sub-glacial environment. The Bedmap2 project has been a large cooperative effort to compile, model, map and visualize the ice-rock interface beneath the Antarctic ice sheet. Here we present the final output of that project; the Bedmap2 printed map. The map is an A1, double sided print, showing 2d and 3d visualizations of the dataset. It includes scientific interpretations, cross sections and comparisons with other areas. Paper copies of the colour double sided map will be freely distributed at this session.

  4. Brain network involved in visual processing of movement stimuli used in upper limb robotic training: an fMRI study.

    PubMed

    Nocchi, Federico; Gazzellini, Simone; Grisolia, Carmela; Petrarca, Maurizio; Cannatà, Vittorio; Cappa, Paolo; D'Alessio, Tommaso; Castelli, Enrico

    2012-07-24

    The potential of robot-mediated therapy and virtual reality in neurorehabilitation is becoming of increasing importance. However, there is limited information, using neuroimaging, on the neural networks involved in training with these technologies. This study was intended to detect the brain network involved in the visual processing of movement during robotic training. The main aim was to investigate the existence of a common cerebral network able to assimilate biological (human upper limb) and non-biological (abstract object) movements, hence testing the suitability of the visual non-biological feedback provided by the InMotion2 Robot. A visual functional Magnetic Resonance Imaging (fMRI) task was administered to 22 healthy subjects. The task required observation and retrieval of motor gestures and of the visual feedback used in robotic training. Functional activations of both biological and non-biological movements were examined to identify areas activated in both conditions, along with differential activity in upper limb vs. abstract object trials. Control of response was also tested by administering trials with congruent and incongruent reaching movements. The observation of upper limb and abstract object movements elicited similar patterns of activations according to a caudo-rostral pathway for the visual processing of movements (including specific areas of the occipital, temporal, parietal, and frontal lobes). Similarly, overlapping activations were found for the subsequent retrieval of the observed movement. Furthermore, activations of frontal cortical areas were associated with congruent trials more than with the incongruent ones. This study identified the neural pathway associated with visual processing of movement stimuli used in upper limb robot-mediated training and investigated the brain's ability to assimilate abstract object movements with human motor gestures. In both conditions, activations were elicited in cerebral areas involved in visual perception, sensory integration, recognition of movement, re-mapping on the somatosensory and motor cortex, storage in memory, and response control. Results from the congruent vs. incongruent trials revealed greater activity for the former condition than the latter in a network including cingulate cortex, right inferior and middle frontal gyrus that are involved in the go-signal and in decision control. Results on healthy subjects would suggest the appropriateness of an abstract visual feedback provided during motor training. The task contributes to highlight the potential of fMRI in improving the understanding of visual motor processes and may also be useful in detecting brain reorganisation during training.

  5. Potential future impacts on visual air quality for Class I areas

    Treesearch

    Gurule Nochumson; Mona J. Wecksung

    1979-01-01

    Visual air quality is most sensitive to degradation by air pollution in areas with good visibility. The protection of visual air quality in mandatory Class I Federal areas has been declared a national goal by Congress. Impacts on visual air quality are calculated for 154 Class I areas where visual air quality is considered an important value. These impacts are...

  6. Representation of the visual field in the striate cortex: comparison of MR findings with visual field deficits in organic mercury poisoning (Minamata disease).

    PubMed

    Korogi, Y; Takahashi, M; Hirai, T; Ikushima, I; Kitajima, M; Sugahara, T; Shigematsu, Y; Okajima, T; Mukuno, K

    1997-01-01

    To compare MR imaging findings of the striate cortex with visual field deficits in patients with Minamata disease and to reestimate the classical Holmes retinotopic map by using the data obtained from comparing visual field abnormalities with degree of visual cortex atrophy. MR imaging was performed in eight patients with Minamata disease who had been given a full neuroophthalmic examination, including Goldmann dynamic perimetry. The atrophic portions of the calcarine area were measured in the sagittal plane next to the midsagittal image and represented as a percentage of atrophy of the total length of the calcarine fissure. MR findings were compared with results of a visual field test. The visual field test revealed moderate to severe concentric constriction of the visual fields, with central vision ranging from 7 degrees to 42 degrees (mean, 19 degrees). The ventral portion of the calcarine sulcus was significantly dilated on MR images in all patients. A logarithmic correlation was found between the visual field defect and the extent of dilatation of the calcarine fissure. The central 10 degrees and 30 degrees of vision seemed to fill about 20% and 50% of the total surface area of the calcarine cortex, respectively. Visual field deficits in patients with Minamata disease correlated well with MR findings of the striate cortex. Our data were consistent with the classical Holmes retinotopic map.

  7. Illustrative visualization of 3D city models

    NASA Astrophysics Data System (ADS)

    Doellner, Juergen; Buchholz, Henrik; Nienhaus, Marc; Kirsch, Florian

    2005-03-01

    This paper presents an illustrative visualization technique that provides expressive representations of large-scale 3D city models, inspired by the tradition of artistic and cartographic visualizations typically found in bird"s-eye view and panoramic maps. We define a collection of city model components and a real-time multi-pass rendering algorithm that achieves comprehensible, abstract 3D city model depictions based on edge enhancement, color-based and shadow-based depth cues, and procedural facade texturing. Illustrative visualization provides an effective visual interface to urban spatial information and associated thematic information complementing visual interfaces based on the Virtual Reality paradigm, offering a huge potential for graphics design. Primary application areas include city and landscape planning, cartoon worlds in computer games, and tourist information systems.

  8. Activation of color-selective areas of the visual cortex in a blind synesthete.

    PubMed

    Steven, Megan S; Hansen, Peter C; Blakemore, Colin

    2006-02-01

    Many areas of the visual cortex are activated when blind people are stimulated naturally through other sensory modalities (e.g., haptically; Sadato et al., 1996). While this extraneous activation of visual areas via other senses in normal blind people might have functional value (Kauffman et al., 2002; Lessard et al., 1998), it does not lead to conscious visual experiences. On the other hand, electrical stimulation of the primary visual cortex in the blind does produce illusory visual phosphenes (Brindley and Lewin, 1968). Here we provide the first evidence that high-level visual areas not only retain their specificity for particular visual characteristics in people who have been blind for long periods, but that activation of these areas can lead to visual sensations. We used fMRI to demonstrate activity in visual cortical areas specifically related to illusory colored and spatially located visual percepts in a synesthetic man who has been completely blind for 10 years. No such differential activations were seen in late-blind or sighted non-synesthetic controls; neither were these areas activated during color-imagery in the late-blind synesthete, implying that this subject's synesthesia is truly a perceptual experience.

  9. Visual imagery and functional connectivity in blindness: a single-case study

    PubMed Central

    Boucard, Christine C.; Rauschecker, Josef P.; Neufang, Susanne; Berthele, Achim; Doll, Anselm; Manoliu, Andrej; Riedl, Valentin; Sorg, Christian; Wohlschläger, Afra; Mühlau, Mark

    2016-01-01

    We present a case report on visual brain plasticity after total blindness acquired in adulthood. SH lost her sight when she was 27. Despite having been totally blind for 43 years, she reported to strongly rely on her vivid visual imagery. Three-Tesla magnetic resonance imaging (MRI) of SH and age-matched controls was performed. The MRI sequence included anatomical MRI, resting-state functional MRI, and task-related functional MRI where SH was instructed to imagine colours, faces, and motion. Compared to controls, voxel-based analysis revealed white matter loss along SH's visual pathway as well as grey matter atrophy in the calcarine sulci. Yet we demonstrated activation in visual areas, including V1, using functional MRI. Of the four identified visual resting-state networks, none showed alterations in spatial extent; hence, SH's preserved visual imagery seems to be mediated by intrinsic brain networks of normal extent. Time courses of two of these networks showed increased correlation with that of the inferior posterior default mode network, which may reflect adaptive changes supporting SH's strong internal visual representations. Overall, our findings demonstrate that conscious visual experience is possible even after years of absence of extrinsic input. PMID:25690326

  10. Visual imagery and functional connectivity in blindness: a single-case study.

    PubMed

    Boucard, Christine C; Rauschecker, Josef P; Neufang, Susanne; Berthele, Achim; Doll, Anselm; Manoliu, Andrej; Riedl, Valentin; Sorg, Christian; Wohlschläger, Afra; Mühlau, Mark

    2016-05-01

    We present a case report on visual brain plasticity after total blindness acquired in adulthood. SH lost her sight when she was 27. Despite having been totally blind for 43 years, she reported to strongly rely on her vivid visual imagery. Three-Tesla magnetic resonance imaging (MRI) of SH and age-matched controls was performed. The MRI sequence included anatomical MRI, resting-state functional MRI, and task-related functional MRI where SH was instructed to imagine colours, faces, and motion. Compared to controls, voxel-based analysis revealed white matter loss along SH's visual pathway as well as grey matter atrophy in the calcarine sulci. Yet we demonstrated activation in visual areas, including V1, using functional MRI. Of the four identified visual resting-state networks, none showed alterations in spatial extent; hence, SH's preserved visual imagery seems to be mediated by intrinsic brain networks of normal extent. Time courses of two of these networks showed increased correlation with that of the inferior posterior default mode network, which may reflect adaptive changes supporting SH's strong internal visual representations. Overall, our findings demonstrate that conscious visual experience is possible even after years of absence of extrinsic input.

  11. Brain maps, great and small: lessons from comparative studies of primate visual cortical organization

    PubMed Central

    Rosa, Marcello G.P; Tweedale, Rowan

    2005-01-01

    In this paper, we review evidence from comparative studies of primate cortical organization, highlighting recent findings and hypotheses that may help us to understand the rules governing evolutionary changes of the cortical map and the process of formation of areas during development. We argue that clear unequivocal views of cortical areas and their homologies are more likely to emerge for ‘core’ fields, including the primary sensory areas, which are specified early in development by precise molecular identification steps. In primates, the middle temporal area is probably one of these primordial cortical fields. Areas that form at progressively later stages of development correspond to progressively more recent evolutionary events, their development being less firmly anchored in molecular specification. The certainty with which areal boundaries can be delimited, and likely homologies can be assigned, becomes increasingly blurred in parallel with this evolutionary/developmental sequence. For example, while current concepts for the definition of cortical areas have been vindicated in allowing a clarification of the organization of the New World monkey ‘third tier’ visual cortex (the third and dorsomedial areas, V3 and DM), our analyses suggest that more flexible mapping criteria may be needed to unravel the organization of higher-order visual association and polysensory areas. PMID:15937007

  12. Visual and proprioceptive interaction in patients with bilateral vestibular loss☆

    PubMed Central

    Cutfield, Nicholas J.; Scott, Gregory; Waldman, Adam D.; Sharp, David J.; Bronstein, Adolfo M.

    2014-01-01

    Following bilateral vestibular loss (BVL) patients gradually adapt to the loss of vestibular input and rely more on other sensory inputs. Here we examine changes in the way proprioceptive and visual inputs interact. We used functional magnetic resonance imaging (fMRI) to investigate visual responses in the context of varying levels of proprioceptive input in 12 BVL subjects and 15 normal controls. A novel metal-free vibrator was developed to allow vibrotactile neck proprioceptive input to be delivered in the MRI system. A high level (100 Hz) and low level (30 Hz) control stimulus was applied over the left splenius capitis; only the high frequency stimulus generates a significant proprioceptive stimulus. The neck stimulus was applied in combination with static and moving (optokinetic) visual stimuli, in a factorial fMRI experimental design. We found that high level neck proprioceptive input had more cortical effect on brain activity in the BVL patients. This included a reduction in visual motion responses during high levels of proprioceptive input and differential activation in the midline cerebellum. In early visual cortical areas, the effect of high proprioceptive input was present for both visual conditions but in lateral visual areas, including V5/MT, the effect was only seen in the context of visual motion stimulation. The finding of a cortical visuo-proprioceptive interaction in BVL patients is consistent with behavioural data indicating that, in BVL patients, neck afferents partly replace vestibular input during the CNS-mediated compensatory process. An fMRI cervico-visual interaction may thus substitute the known visuo-vestibular interaction reported in normal subject fMRI studies. The results provide evidence for a cortical mechanism of adaptation to vestibular failure, in the form of an enhanced proprioceptive influence on visual processing. The results may provide the basis for a cortical mechanism involved in proprioceptive substitution of vestibular function in BVL patients. PMID:25061564

  13. Visual and proprioceptive interaction in patients with bilateral vestibular loss.

    PubMed

    Cutfield, Nicholas J; Scott, Gregory; Waldman, Adam D; Sharp, David J; Bronstein, Adolfo M

    2014-01-01

    Following bilateral vestibular loss (BVL) patients gradually adapt to the loss of vestibular input and rely more on other sensory inputs. Here we examine changes in the way proprioceptive and visual inputs interact. We used functional magnetic resonance imaging (fMRI) to investigate visual responses in the context of varying levels of proprioceptive input in 12 BVL subjects and 15 normal controls. A novel metal-free vibrator was developed to allow vibrotactile neck proprioceptive input to be delivered in the MRI system. A high level (100 Hz) and low level (30 Hz) control stimulus was applied over the left splenius capitis; only the high frequency stimulus generates a significant proprioceptive stimulus. The neck stimulus was applied in combination with static and moving (optokinetic) visual stimuli, in a factorial fMRI experimental design. We found that high level neck proprioceptive input had more cortical effect on brain activity in the BVL patients. This included a reduction in visual motion responses during high levels of proprioceptive input and differential activation in the midline cerebellum. In early visual cortical areas, the effect of high proprioceptive input was present for both visual conditions but in lateral visual areas, including V5/MT, the effect was only seen in the context of visual motion stimulation. The finding of a cortical visuo-proprioceptive interaction in BVL patients is consistent with behavioural data indicating that, in BVL patients, neck afferents partly replace vestibular input during the CNS-mediated compensatory process. An fMRI cervico-visual interaction may thus substitute the known visuo-vestibular interaction reported in normal subject fMRI studies. The results provide evidence for a cortical mechanism of adaptation to vestibular failure, in the form of an enhanced proprioceptive influence on visual processing. The results may provide the basis for a cortical mechanism involved in proprioceptive substitution of vestibular function in BVL patients.

  14. Visual cortex in dementia with Lewy bodies: magnetic resonance imaging study

    PubMed Central

    Taylor, John-Paul; Firbank, Michael J.; He, Jiabao; Barnett, Nicola; Pearce, Sarah; Livingstone, Anthea; Vuong, Quoc; McKeith, Ian G.; O’Brien, John T.

    2012-01-01

    Background Visual hallucinations and visuoperceptual deficits are common in dementia with Lewy bodies, suggesting that cortical visual function may be abnormal. Aims To investigate: (1) cortical visual function using functional magnetic resonance imaging (fMRI); and (2) the nature and severity of perfusion deficits in visual areas using arterial spin labelling (ASL)-MRI. Method In total, 17 participants with dementia with Lewy bodies (DLB group) and 19 similarly aged controls were presented with simple visual stimuli (checkerboard, moving dots, and objects) during fMRI and subsequently underwent ASL-MRI (DLB group n = 15, control group n = 19). Results Functional activations were evident in visual areas in both the DLB and control groups in response to checkerboard and objects stimuli but reduced visual area V5/MT (middle temporal) activation occurred in the DLB group in response to motion stimuli. Posterior cortical perfusion deficits occurred in the DLB group, particularly in higher visual areas. Conclusions Higher visual areas, particularly occipito-parietal, appear abnormal in dementia with Lewy bodies, while there is a preservation of function in lower visual areas (V1 and V2/3). PMID:22500014

  15. Gravity Cues Embedded in the Kinematics of Human Motion Are Detected in Form-from-Motion Areas of the Visual System and in Motor-Related Areas

    PubMed Central

    Cignetti, Fabien; Chabeauti, Pierre-Yves; Menant, Jasmine; Anton, Jean-Luc J. J.; Schmitz, Christina; Vaugoyeau, Marianne; Assaiante, Christine

    2017-01-01

    The present study investigated the cortical areas engaged in the perception of graviceptive information embedded in biological motion (BM). To this end, functional magnetic resonance imaging was used to assess the cortical areas active during the observation of human movements performed under normogravity and microgravity (parabolic flight). Movements were defined by motion cues alone using point-light displays. We found that gravity modulated the activation of a restricted set of regions of the network subtending BM perception, including form-from-motion areas of the visual system (kinetic occipital region, lingual gyrus, cuneus) and motor-related areas (primary motor and somatosensory cortices). These findings suggest that compliance of observed movements with normal gravity was carried out by mapping them onto the observer’s motor system and by extracting their overall form from local motion of the moving light points. We propose that judgment on graviceptive information embedded in BM can be established based on motor resonance and visual familiarity mechanisms and not necessarily by accessing the internal model of gravitational motion stored in the vestibular cortex. PMID:28861024

  16. Functional Connectivity Between Superior Parietal Lobule and Primary Visual Cortex "at Rest" Predicts Visual Search Efficiency.

    PubMed

    Bueichekú, Elisenda; Ventura-Campos, Noelia; Palomar-García, María-Ángeles; Miró-Padilla, Anna; Parcet, María-Antonia; Ávila, César

    2015-10-01

    Spatiotemporal activity that emerges spontaneously "at rest" has been proposed to reflect individual a priori biases in cognitive processing. This research focused on testing neurocognitive models of visual attention by studying the functional connectivity (FC) of the superior parietal lobule (SPL), given its central role in establishing priority maps during visual search tasks. Twenty-three human participants completed a functional magnetic resonance imaging session that featured a resting-state scan, followed by a visual search task based on the alphanumeric category effect. As expected, the behavioral results showed longer reaction times and more errors for the within-category (i.e., searching a target letter among letters) than the between-category search (i.e., searching a target letter among numbers). The within-category condition was related to greater activation of the superior and inferior parietal lobules, occipital cortex, inferior frontal cortex, dorsal anterior cingulate cortex, and the superior colliculus than the between-category search. The resting-state FC analysis of the SPL revealed a broad network that included connections with the inferotemporal cortex, dorsolateral prefrontal cortex, and dorsal frontal areas like the supplementary motor area and frontal eye field. Noteworthy, the regression analysis revealed that the more efficient participants in the visual search showed stronger FC between the SPL and areas of primary visual cortex (V1) related to the search task. We shed some light on how the SPL establishes a priority map of the environment during visual attention tasks and how FC is a valuable tool for assessing individual differences while performing cognitive tasks.

  17. Shifting Attention within Memory Representations Involves Early Visual Areas

    PubMed Central

    Munneke, Jaap; Belopolsky, Artem V.; Theeuwes, Jan

    2012-01-01

    Prior studies have shown that spatial attention modulates early visual cortex retinotopically, resulting in enhanced processing of external perceptual representations. However, it is not clear whether the same visual areas are modulated when attention is focused on, and shifted within a working memory representation. In the current fMRI study participants were asked to memorize an array containing four stimuli. After a delay, participants were presented with a verbal cue instructing them to actively maintain the location of one of the stimuli in working memory. Additionally, on a number of trials a second verbal cue instructed participants to switch attention to the location of another stimulus within the memorized representation. Results of the study showed that changes in the BOLD pattern closely followed the locus of attention within the working memory representation. A decrease in BOLD-activity (V1–V3) was observed at ROIs coding a memory location when participants switched away from this location, whereas an increase was observed when participants switched towards this location. Continuous increased activity was obtained at the memorized location when participants did not switch. This study shows that shifting attention within memory representations activates the earliest parts of visual cortex (including V1) in a retinotopic fashion. We conclude that even in the absence of visual stimulation, early visual areas support shifting of attention within memorized representations, similar to when attention is shifted in the outside world. The relationship between visual working memory and visual mental imagery is discussed in light of the current findings. PMID:22558165

  18. Visiting Scholars Program Application | FNLCR Staging

    Cancer.gov

    Below are scientific areas and programs that the Frederick National Labisactively seeking scholars to participate: Data Science and Information Technology (including Bioinformatics, Visualization, etc) Advanced Preclinical Researc

  19. Three Approaches to Teaching Art Methods Courses: Child Art, Visual Culture, and Issues-Based Art Education

    ERIC Educational Resources Information Center

    Chang, EunJung; Lim, Maria; Kim, Minam

    2012-01-01

    In this article, three art educators reflect on their ideas and experiences in developing and implementing innovative projects for their courses focusing on art for elementary education majors. They explore three different approaches. The three areas that are discussed in depth include: (1) understanding child art; (2) visual culture; and (3)…

  20. Feedforward and recurrent processing in scene segmentation: electroencephalography and functional magnetic resonance imaging.

    PubMed

    Scholte, H Steven; Jolij, Jacob; Fahrenfort, Johannes J; Lamme, Victor A F

    2008-11-01

    In texture segregation, an example of scene segmentation, we can discern two different processes: texture boundary detection and subsequent surface segregation [Lamme, V. A. F., Rodriguez-Rodriguez, V., & Spekreijse, H. Separate processing dynamics for texture elements, boundaries and surfaces in primary visual cortex of the macaque monkey. Cerebral Cortex, 9, 406-413, 1999]. Neural correlates of texture boundary detection have been found in monkey V1 [Sillito, A. M., Grieve, K. L., Jones, H. E., Cudeiro, J., & Davis, J. Visual cortical mechanisms detecting focal orientation discontinuities. Nature, 378, 492-496, 1995; Grosof, D. H., Shapley, R. M., & Hawken, M. J. Macaque-V1 neurons can signal illusory contours. Nature, 365, 550-552, 1993], but whether surface segregation occurs in monkey V1 [Rossi, A. F., Desimone, R., & Ungerleider, L. G. Contextual modulation in primary visual cortex of macaques. Journal of Neuroscience, 21, 1698-1709, 2001; Lamme, V. A. F. The neurophysiology of figure ground segregation in primary visual-cortex. Journal of Neuroscience, 15, 1605-1615, 1995], and whether boundary detection or surface segregation signals can also be measured in human V1, is more controversial [Kastner, S., De Weerd, P., & Ungerleider, L. G. Texture segregation in the human visual cortex: A functional MRI study. Journal of Neurophysiology, 83, 2453-2457, 2000]. Here we present electroencephalography (EEG) and functional magnetic resonance imaging data that have been recorded with a paradigm that makes it possible to differentiate between boundary detection and scene segmentation in humans. In this way, we were able to show with EEG that neural correlates of texture boundary detection are first present in the early visual cortex around 92 msec and then spread toward the parietal and temporal lobes. Correlates of surface segregation first appear in temporal areas (around 112 msec) and from there appear to spread to parietal, and back to occipital areas. After 208 msec, correlates of surface segregation and boundary detection also appear in more frontal areas. Blood oxygenation level-dependent magnetic resonance imaging results show correlates of boundary detection and surface segregation in all early visual areas including V1. We conclude that texture boundaries are detected in a feedforward fashion and are represented at increasing latencies in higher visual areas. Surface segregation, on the other hand, is represented in "reverse hierarchical" fashion and seems to arise from feedback signals toward early visual areas such as V1.

  1. Multi-Voxel Decoding and the Topography of Maintained Information During Visual Working Memory

    PubMed Central

    Lee, Sue-Hyun; Baker, Chris I.

    2016-01-01

    The ability to maintain representations in the absence of external sensory stimulation, such as in working memory, is critical for guiding human behavior. Human functional brain imaging studies suggest that visual working memory can recruit a network of brain regions from visual to parietal to prefrontal cortex. In this review, we focus on the maintenance of representations during visual working memory and discuss factors determining the topography of those representations. In particular, we review recent studies employing multi-voxel pattern analysis (MVPA) that demonstrate decoding of the maintained content in visual cortex, providing support for a “sensory recruitment” model of visual working memory. However, there is some evidence that maintained content can also be decoded in areas outside of visual cortex, including parietal and frontal cortex. We suggest that the ability to maintain representations during working memory is a general property of cortex, not restricted to specific areas, and argue that it is important to consider the nature of the information that must be maintained. Such information-content is critically determined by the task and the recruitment of specific regions during visual working memory will be both task- and stimulus-dependent. Thus, the common finding of maintained information in visual, but not parietal or prefrontal, cortex may be more of a reflection of the need to maintain specific types of visual information and not of a privileged role of visual cortex in maintenance. PMID:26912997

  2. Wide-area, real-time monitoring and visualization system

    DOEpatents

    Budhraja, Vikram S.; Dyer, James D.; Martinez Morales, Carlos A.

    2013-03-19

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  3. Wide-area, real-time monitoring and visualization system

    DOEpatents

    Budhraja, Vikram S [Los Angeles, CA; Dyer, James D [La Mirada, CA; Martinez Morales, Carlos A [Upland, CA

    2011-11-15

    A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.

  4. From genes to brain oscillations: is the visual pathway the epigenetic clue to schizophrenia?

    PubMed

    González-Hernández, J A; Pita-Alcorta, C; Cedeño, I R

    2006-01-01

    Molecular data and gene expression data and recently mitochondrial genes and possible epigenetic regulation by non-coding genes is revolutionizing our views on schizophrenia. Genes and epigenetic mechanisms are triggered by cell-cell interaction and by external stimuli. A number of recent clinical and molecular observations indicate that epigenetic factors may be operational in the origin of the illness. Based on the molecular insights, gene expression profiles and epigenetic regulation of gene, we went back to the neurophysiology (brain oscillations) and found a putative role of the visual experiences (i.e. visual stimuli) as epigenetic factor. The functional evidences provided here, establish a direct link between the striate and extrastriate unimodal visual cortex and the neurobiology of the schizophrenia. This result support the hypothesis that 'visual experience' has a potential role as epigenetic factor and contribute to trigger and/or to maintain the progression of the schizophrenia. In this case, candidate genes sensible for the visual 'insult' may be located within the visual cortex including associative areas, while the integrity of the visual pathway before reaching the primary visual cortex is preserved. The same effect can be perceived if target genes are localised within the visual pathway, which actually, is more sensitive for 'insult' during the early life than the cortex per se. If this process affects gene expression at these sites a stably sensory specific 'insult', i.e. distorted visual information, is entering the visual system and expanded to fronto-temporo-parietal multimodal areas even from early maturation periods. The difference in the timing of postnatal neuroanatomical events between such areas and the primary visual cortex in humans (with the formers reaching the same development landmarks later in life than the latter) is 'optimal' to establish an abnormal 'cell- communication' mediated by the visual system that may further interfere with the local physiology. In this context the strategy to search target genes need to be rearrangement and redirected to visual-related genes. Otherwise, psychophysics studies combining functional neuroimage, and electrophysiology are strongly recommended, for the search of epigenetic clues that will allow to carrier gene association studies in schizophrenia.

  5. New Technologies for Acquisition and 3-D Visualization of Geophysical and Other Data Types Combined for Enhanced Understandings and Efficiencies of Oil and Gas Operations, Deepwater Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Thomson, J. A.; Gee, L. J.; George, T.

    2002-12-01

    This presentation shows results of a visualization method used to display and analyze multiple data types in a geospatially referenced three-dimensional (3-D) space. The integrated data types include sonar and seismic geophysical data, pipeline and geotechnical engineering data, and 3-D facilities models. Visualization of these data collectively in proper 3-D orientation yields insights and synergistic understandings not previously obtainable. Key technological components of the method are: 1) high-resolution geophysical data obtained using a newly developed autonomous underwater vehicle (AUV), 2) 3-D visualization software that delivers correctly positioned display of multiple data types and full 3-D flight navigation within the data space and 3) a highly immersive visualization environment (HIVE) where multidisciplinary teams can work collaboratively to develop enhanced understandings of geospatially complex data relationships. The initial study focused on an active deepwater development area in the Green Canyon protraction area, Gulf of Mexico. Here several planned production facilities required detailed, integrated data analysis for design and installation purposes. To meet the challenges of tight budgets and short timelines, an innovative new method was developed based on the combination of newly developed technologies. Key benefits of the method include enhanced understanding of geologically complex seabed topography and marine soils yielding safer and more efficient pipeline and facilities siting. Environmental benefits include rapid and precise identification of potential locations of protected deepwater biological communities for avoidance and protection during exploration and production operations. In addition, the method allows data presentation and transfer of learnings to an audience outside the scientific and engineering team. This includes regulatory personnel, marine archaeologists, industry partners and others.

  6. Position Information Encoded by Population Activity in Hierarchical Visual Areas

    PubMed Central

    Majima, Kei; Horikawa, Tomoyasu

    2017-01-01

    Abstract Neurons in high-level visual areas respond to more complex visual features with broader receptive fields (RFs) compared to those in low-level visual areas. Thus, high-level visual areas are generally considered to carry less information regarding the position of seen objects in the visual field. However, larger RFs may not imply loss of position information at the population level. Here, we evaluated how accurately the position of a seen object could be predicted (decoded) from activity patterns in each of six representative visual areas with different RF sizes [V1–V4, lateral occipital complex (LOC), and fusiform face area (FFA)]. We collected functional magnetic resonance imaging (fMRI) responses while human subjects viewed a ball randomly moving in a two-dimensional field. To estimate population RF sizes of individual fMRI voxels, RF models were fitted for individual voxels in each brain area. The voxels in higher visual areas showed larger estimated RFs than those in lower visual areas. Then, the ball’s position in a separate session was predicted by maximum likelihood estimation using the RF models of individual voxels. We also tested a model-free multivoxel regression (support vector regression, SVR) to predict the position. We found that regardless of the difference in RF size, all visual areas showed similar prediction accuracies, especially on the horizontal dimension. Higher areas showed slightly lower accuracies on the vertical dimension, which appears to be attributed to the narrower spatial distributions of the RF centers. The results suggest that much position information is preserved in population activity through the hierarchical visual pathway regardless of RF sizes and is potentially available in later processing for recognition and behavior. PMID:28451634

  7. Central Processing Dysfunctions in Children: A Review of Research.

    ERIC Educational Resources Information Center

    Chalfant, James C.; Scheffelin, Margaret A.

    Research on central processing dysfunctions in children is reviewed in three major areas. The first, dysfunctions in the analysis of sensory information, includes auditory, visual, and haptic processing. The second, dysfunction in the synthesis of sensory information, covers multiple stimulus integration and short-term memory. The third area of…

  8. Perceptual learning increases the strength of the earliest signals in visual cortex.

    PubMed

    Bao, Min; Yang, Lin; Rios, Cristina; He, Bin; Engel, Stephen A

    2010-11-10

    Training improves performance on most visual tasks. Such perceptual learning can modify how information is read out from, and represented in, later visual areas, but effects on early visual cortex are controversial. In particular, it remains unknown whether learning can reshape neural response properties in early visual areas independent from feedback arising in later cortical areas. Here, we tested whether learning can modify feedforward signals in early visual cortex as measured by the human electroencephalogram. Fourteen subjects were trained for >24 d to detect a diagonal grating pattern in one quadrant of the visual field. Training improved performance, reducing the contrast needed for reliable detection, and also reliably increased the amplitude of the earliest component of the visual evoked potential, the C1. Control orientations and locations showed smaller effects of training. Because the C1 arises rapidly and has a source in early visual cortex, our results suggest that learning can increase early visual area response through local receptive field changes without feedback from later areas.

  9. Immediate early gene expression following exposure to acoustic and visual components of courtship in zebra finches.

    PubMed

    Avey, Marc T; Phillmore, Leslie S; MacDougall-Shackleton, Scott A

    2005-12-07

    Sensory driven immediate early gene expression (IEG) has been a key tool to explore auditory perceptual areas in the avian brain. Most work on IEG expression in songbirds such as zebra finches has focused on playback of acoustic stimuli and its effect on auditory processing areas such as caudal medial mesopallium (CMM) caudal medial nidopallium (NCM). However, in a natural setting, the courtship displays of songbirds (including zebra finches) include visual as well as acoustic components. To determine whether the visual stimulus of a courting male modifies song-induced expression of the IEG ZENK in the auditory forebrain we exposed male and female zebra finches to acoustic (song) and visual (dancing) components of courtship. Birds were played digital movies with either combined audio and video, audio only, video only, or neither audio nor video (control). We found significantly increased levels of Zenk response in the auditory region CMM in the two treatment groups exposed to acoustic stimuli compared to the control group. The video only group had an intermediate response, suggesting potential effect of visual input on activity in these auditory brain regions. Finally, we unexpectedly found a lateralization of Zenk response that was independent of sex, brain region, or treatment condition, such that Zenk immunoreactivity was consistently higher in the left hemisphere than in the right and the majority of individual birds were left-hemisphere dominant.

  10. The relationship of global form and motion detection to reading fluency.

    PubMed

    Englund, Julia A; Palomares, Melanie

    2012-08-15

    Visual motion processing in typical and atypical readers has suggested aspects of reading and motion processing share a common cortical network rooted in dorsal visual areas. Few studies have examined the relationship between reading performance and visual form processing, which is mediated by ventral cortical areas. We investigated whether reading fluency correlates with coherent motion detection thresholds in typically developing children using random dot kinematograms. As a comparison, we also evaluated the correlation between reading fluency and static form detection thresholds. Results show that both dorsal and ventral visual functions correlated with components of reading fluency, but that they have different developmental characteristics. Motion coherence thresholds correlated with reading rate and accuracy, which both improved with chronological age. Interestingly, when controlling for non-verbal abilities and age, reading accuracy significantly correlated with thresholds for coherent form detection but not coherent motion detection in typically developing children. Dorsal visual functions that mediate motion coherence seem to be related maturation of broad cognitive functions including non-verbal abilities and reading fluency. However, ventral visual functions that mediate form coherence seem to be specifically related to accurate reading in typically developing children. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Primary and multisensory cortical activity is correlated with audiovisual percepts.

    PubMed

    Benoit, Margo McKenna; Raij, Tommi; Lin, Fa-Hsuan; Jääskeläinen, Iiro P; Stufflebeam, Steven

    2010-04-01

    Incongruent auditory and visual stimuli can elicit audiovisual illusions such as the McGurk effect where visual /ka/ and auditory /pa/ fuse into another percept such as/ta/. In the present study, human brain activity was measured with adaptation functional magnetic resonance imaging to investigate which brain areas support such audiovisual illusions. Subjects viewed trains of four movies beginning with three congruent /pa/ stimuli to induce adaptation. The fourth stimulus could be (i) another congruent /pa/, (ii) a congruent /ka/, (iii) an incongruent stimulus that evokes the McGurk effect in susceptible individuals (lips /ka/ voice /pa/), or (iv) the converse combination that does not cause the McGurk effect (lips /pa/ voice/ ka/). This paradigm was predicted to show increased release from adaptation (i.e. stronger brain activation) when the fourth movie and the related percept was increasingly different from the three previous movies. A stimulus change in either the auditory or the visual stimulus from /pa/ to /ka/ (iii, iv) produced within-modality and cross-modal responses in primary auditory and visual areas. A greater release from adaptation was observed for incongruent non-McGurk (iv) compared to incongruent McGurk (iii) trials. A network including the primary auditory and visual cortices, nonprimary auditory cortex, and several multisensory areas (superior temporal sulcus, intraparietal sulcus, insula, and pre-central cortex) showed a correlation between perceiving the McGurk effect and the fMRI signal, suggesting that these areas support the audiovisual illusion. Copyright 2009 Wiley-Liss, Inc.

  12. Primary and Multisensory Cortical Activity is Correlated with Audiovisual Percepts

    PubMed Central

    Benoit, Margo McKenna; Raij, Tommi; Lin, Fa-Hsuan; Jääskeläinen, Iiro P.; Stufflebeam, Steven

    2012-01-01

    Incongruent auditory and visual stimuli can elicit audiovisual illusions such as the McGurk effect where visual /ka/ and auditory /pa/ fuse into another percept such as/ta/. In the present study, human brain activity was measured with adaptation functional magnetic resonance imaging to investigate which brain areas support such audiovisual illusions. Subjects viewed trains of four movies beginning with three congruent /pa/ stimuli to induce adaptation. The fourth stimulus could be (i) another congruent /pa/, (ii) a congruent /ka/, (iii) an incongruent stimulus that evokes the McGurk effect in susceptible individuals (lips /ka/ voice /pa/), or (iv) the converse combination that does not cause the McGurk effect (lips /pa/ voice/ ka/). This paradigm was predicted to show increased release from adaptation (i.e. stronger brain activation) when the fourth movie and the related percept was increasingly different from the three previous movies. A stimulus change in either the auditory or the visual stimulus from /pa/ to /ka/ (iii, iv) produced within-modality and cross-modal responses in primary auditory and visual areas. A greater release from adaptation was observed for incongruent non-McGurk (iv) compared to incongruent McGurk (iii) trials. A network including the primary auditory and visual cortices, nonprimary auditory cortex, and several multisensory areas (superior temporal sulcus, intraparietal sulcus, insula, and pre-central cortex) showed a correlation between perceiving the McGurk effect and the fMRI signal, suggesting that these areas support the audiovisual illusion. PMID:19780040

  13. Use of an augmented-vision device for visual search by patients with tunnel vision.

    PubMed

    Luo, Gang; Peli, Eli

    2006-09-01

    To study the effect of an augmented-vision device that superimposes minified contour images over natural vision on visual search performance of patients with tunnel vision. Twelve subjects with tunnel vision searched for targets presented outside their visual fields (VFs) on a blank background under three cue conditions (with contour cues provided by the device, with auditory cues, and without cues). Three subjects (VF, 8 degrees -11 degrees wide) carried out the search over a 90 degrees x 74 degrees area, and nine subjects (VF, 7 degrees -16 degrees wide) carried out the search over a 66 degrees x 52 degrees area. Eye and head movements were recorded for performance analyses that included directness of search path, search time, and gaze speed. Directness of the search path was greatly and significantly improved when the contour or auditory cues were provided in the larger and the smaller area searches. When using the device, a significant reduction in search time (28% approximately 74%) was demonstrated by all three subjects in the larger area search and by subjects with VFs wider than 10 degrees in the smaller area search (average, 22%). Directness and gaze speed accounted for 90% of the variability of search time. Although performance improvement with the device for the larger search area was obvious, whether it was helpful for the smaller search area depended on VF and gaze speed. Because improvement in directness was demonstrated, increased gaze speed, which could result from further training and adaptation to the device, might enable patients with small VFs to benefit from the device for visual search tasks.

  14. Surface-Streamline Flow Visualization

    NASA Technical Reports Server (NTRS)

    Langston, L.; Boyle, M.

    1985-01-01

    Matrix of ink dots covers matte surface of polyester drafting film. Film placed against wind-tunnel wall. Layer of methyl salicylate (oil of wintergreen) sprayed over dotted area. Ink dot streaklines show several characteristics of flow, including primary saddle point of separations, primary horseshoe vortex and smaller vortex at cylinder/ endwall junction. Surface streamline flow visualization technique suitable for use in low-speed windtunnels or other low-speed gas flows.

  15. Cross-cultural differences for three visual memory tasks in Brazilian children.

    PubMed

    Santos, F H; Mello, C B; Bueno, O F A; Dellatolas, G

    2005-10-01

    Norms for three visual memory tasks, including Corsi's block tapping test and the BEM 144 complex figures and visual recognition, were developed for neuropsychological assessment in Brazilian children. The tasks were measured in 127 children ages 7 to 10 years from rural and urban areas of the States of São Paulo and Minas Gerais. Analysis indicated age-related but not sex-related differences. A cross-cultural effect was observed in relation to copying and recall of Complex pictures. Different performances between rural and urban children were noted.

  16. Flexible Coding of Visual Working Memory Representations during Distraction.

    PubMed

    Lorenc, Elizabeth S; Sreenivasan, Kartik K; Nee, Derek E; Vandenbroucke, Annelinde R E; D'Esposito, Mark

    2018-06-06

    Visual working memory (VWM) recruits a broad network of brain regions, including prefrontal, parietal, and visual cortices. Recent evidence supports a "sensory recruitment" model of VWM, whereby precise visual details are maintained in the same stimulus-selective regions responsible for perception. A key question in evaluating the sensory recruitment model is how VWM representations persist through distracting visual input, given that the early visual areas that putatively represent VWM content are susceptible to interference from visual stimulation.To address this question, we used a functional magnetic resonance imaging inverted encoding model approach to quantitatively assess the effect of distractors on VWM representations in early visual cortex and the intraparietal sulcus (IPS), another region previously implicated in the storage of VWM information. This approach allowed us to reconstruct VWM representations for orientation, both before and after visual interference, and to examine whether oriented distractors systematically biased these representations. In our human participants (both male and female), we found that orientation information was maintained simultaneously in early visual areas and IPS in anticipation of possible distraction, and these representations persisted in the absence of distraction. Importantly, early visual representations were susceptible to interference; VWM orientations reconstructed from visual cortex were significantly biased toward distractors, corresponding to a small attractive bias in behavior. In contrast, IPS representations did not show such a bias. These results provide quantitative insight into the effect of interference on VWM representations, and they suggest a dynamic tradeoff between visual and parietal regions that allows flexible adaptation to task demands in service of VWM. SIGNIFICANCE STATEMENT Despite considerable evidence that stimulus-selective visual regions maintain precise visual information in working memory, it remains unclear how these representations persist through subsequent input. Here, we used quantitative model-based fMRI analyses to reconstruct the contents of working memory and examine the effects of distracting input. Although representations in the early visual areas were systematically biased by distractors, those in the intraparietal sulcus appeared distractor-resistant. In contrast, early visual representations were most reliable in the absence of distraction. These results demonstrate the dynamic, adaptive nature of visual working memory processes, and provide quantitative insight into the ways in which representations can be affected by interference. Further, they suggest that current models of working memory should be revised to incorporate this flexibility. Copyright © 2018 the authors 0270-6474/18/385267-10$15.00/0.

  17. Neuroimaging investigations of dorsal stream processing and effects of stimulus synchrony in schizophrenia.

    PubMed

    Sanfratello, Lori; Aine, Cheryl; Stephen, Julia

    2018-05-25

    Impairments in auditory and visual processing are common in schizophrenia (SP). In the unisensory realm visual deficits are primarily noted for the dorsal visual stream. In addition, insensitivity to timing offsets between stimuli are widely reported for SP. The aim of the present study was to test at the physiological level differences in dorsal/ventral stream visual processing and timing sensitivity between SP and healthy controls (HC) using MEG and a simple auditory/visual task utilizing a variety of multisensory conditions. The paradigm included all combinations of synchronous/asynchronous and central/peripheral stimuli, yielding 4 task conditions. Both HC and SP groups showed activation in parietal areas (dorsal visual stream) during all multisensory conditions, with parietal areas showing decreased activation for SP relative to HC, and a significantly delayed peak of activation for SP in intraparietal sulcus (IPS). We also observed a differential effect of stimulus synchrony on HC and SP parietal response. Furthermore, a (negative) correlation was found between SP positive symptoms and activity in IPS. Taken together, our results provide evidence of impairment of the dorsal visual stream in SP during a multisensory task, along with an altered response to timing offsets between presented multisensory stimuli. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Saccade generation by the frontal eye fields in rhesus monkeys is separable from visual detection and bottom-up attention shift.

    PubMed

    Lee, Kyoung-Min; Ahn, Kyung-Ha; Keller, Edward L

    2012-01-01

    The frontal eye fields (FEF), originally identified as an oculomotor cortex, have also been implicated in perceptual functions, such as constructing a visual saliency map and shifting visual attention. Further dissecting the area's role in the transformation from visual input to oculomotor command has been difficult because of spatial confounding between stimuli and responses and consequently between intermediate cognitive processes, such as attention shift and saccade preparation. Here we developed two tasks in which the visual stimulus and the saccade response were dissociated in space (the extended memory-guided saccade task), and bottom-up attention shift and saccade target selection were independent (the four-alternative delayed saccade task). Reversible inactivation of the FEF in rhesus monkeys disrupted, as expected, contralateral memory-guided saccades, but visual detection was demonstrated to be intact at the same field. Moreover, saccade behavior was impaired when a bottom-up shift of attention was not a prerequisite for saccade target selection, indicating that the inactivation effect was independent of the previously reported dysfunctions in bottom-up attention control. These findings underscore the motor aspect of the area's functions, especially in situations where saccades are generated by internal cognitive processes, including visual short-term memory and long-term associative memory.

  19. Hemispheric Asymmetry of Visual Scene Processing in the Human Brain: Evidence from Repetition Priming and Intrinsic Activity

    PubMed Central

    Kahn, Itamar; Wig, Gagan S.; Schacter, Daniel L.

    2012-01-01

    Asymmetrical specialization of cognitive processes across the cerebral hemispheres is a hallmark of healthy brain development and an important evolutionary trait underlying higher cognition in humans. While previous research, including studies of priming, divided visual field presentation, and split-brain patients, demonstrates a general pattern of right/left asymmetry of form-specific versus form-abstract visual processing, little is known about brain organization underlying this dissociation. Here, using repetition priming of complex visual scenes and high-resolution functional magnetic resonance imaging (MRI), we demonstrate asymmetrical form specificity of visual processing between the right and left hemispheres within a region known to be critical for processing of visual spatial scenes (parahippocampal place area [PPA]). Next, we use resting-state functional connectivity MRI analyses to demonstrate that this functional asymmetry is associated with differential intrinsic activity correlations of the right versus left PPA with regions critically involved in perceptual versus conceptual processing, respectively. Our results demonstrate that the PPA comprises lateralized subregions across the cerebral hemispheres that are engaged in functionally dissociable yet complementary components of visual scene analysis. Furthermore, this functional asymmetry is associated with differential intrinsic functional connectivity of the PPA with distinct brain areas known to mediate dissociable cognitive processes. PMID:21968568

  20. Hemispheric asymmetry of visual scene processing in the human brain: evidence from repetition priming and intrinsic activity.

    PubMed

    Stevens, W Dale; Kahn, Itamar; Wig, Gagan S; Schacter, Daniel L

    2012-08-01

    Asymmetrical specialization of cognitive processes across the cerebral hemispheres is a hallmark of healthy brain development and an important evolutionary trait underlying higher cognition in humans. While previous research, including studies of priming, divided visual field presentation, and split-brain patients, demonstrates a general pattern of right/left asymmetry of form-specific versus form-abstract visual processing, little is known about brain organization underlying this dissociation. Here, using repetition priming of complex visual scenes and high-resolution functional magnetic resonance imaging (MRI), we demonstrate asymmetrical form specificity of visual processing between the right and left hemispheres within a region known to be critical for processing of visual spatial scenes (parahippocampal place area [PPA]). Next, we use resting-state functional connectivity MRI analyses to demonstrate that this functional asymmetry is associated with differential intrinsic activity correlations of the right versus left PPA with regions critically involved in perceptual versus conceptual processing, respectively. Our results demonstrate that the PPA comprises lateralized subregions across the cerebral hemispheres that are engaged in functionally dissociable yet complementary components of visual scene analysis. Furthermore, this functional asymmetry is associated with differential intrinsic functional connectivity of the PPA with distinct brain areas known to mediate dissociable cognitive processes.

  1. Research on integration of visual and motion cues for flight simulation and ride quality investigation

    NASA Technical Reports Server (NTRS)

    Young, L. R.; Oman, C. M.; Curry, R. E.

    1977-01-01

    Vestibular perception and integration of several sensory inputs in simulation were studied. The relationship between tilt sensation induced by moving fields and those produced by actual body tilt is discussed. Linearvection studies were included and the application of the vestibular model for perception of orientation based on motion cues is presented. Other areas of examination includes visual cues in approach to landing, and a comparison of linear and nonlinear wash out filters using a model of the human vestibular system is given.

  2. Visiting Scholars Program Application | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Below are scientific areas and programs that the Frederick National Labisactively seeking scholars to participate: Data Science and Information Technology (including Bioinformatics, Visualization, etc) Advanced Preclinical Researc

  3. Recruitment of Foveal Retinotopic Cortex During Haptic Exploration of Shapes and Actions in the Dark.

    PubMed

    Monaco, Simona; Gallivan, Jason P; Figley, Teresa D; Singhal, Anthony; Culham, Jody C

    2017-11-29

    The role of the early visual cortex and higher-order occipitotemporal cortex has been studied extensively for visual recognition and to a lesser degree for haptic recognition and visually guided actions. Using a slow event-related fMRI experiment, we investigated whether tactile and visual exploration of objects recruit the same "visual" areas (and in the case of visual cortex, the same retinotopic zones) and if these areas show reactivation during delayed actions in the dark toward haptically explored objects (and if so, whether this reactivation might be due to imagery). We examined activation during visual or haptic exploration of objects and action execution (grasping or reaching) separated by an 18 s delay. Twenty-nine human volunteers (13 females) participated in this study. Participants had their eyes open and fixated on a point in the dark. The objects were placed below the fixation point and accordingly visual exploration activated the cuneus, which processes retinotopic locations in the lower visual field. Strikingly, the occipital pole (OP), representing foveal locations, showed higher activation for tactile than visual exploration, although the stimulus was unseen and location in the visual field was peripheral. Moreover, the lateral occipital tactile-visual area (LOtv) showed comparable activation for tactile and visual exploration. Psychophysiological interaction analysis indicated that the OP showed stronger functional connectivity with anterior intraparietal sulcus and LOtv during the haptic than visual exploration of shapes in the dark. After the delay, the cuneus, OP, and LOtv showed reactivation that was independent of the sensory modality used to explore the object. These results show that haptic actions not only activate "visual" areas during object touch, but also that this information appears to be used in guiding grasping actions toward targets after a delay. SIGNIFICANCE STATEMENT Visual presentation of an object activates shape-processing areas and retinotopic locations in early visual areas. Moreover, if the object is grasped in the dark after a delay, these areas show "reactivation." Here, we show that these areas are also activated and reactivated for haptic object exploration and haptically guided grasping. Touch-related activity occurs not only in the retinotopic location of the visual stimulus, but also at the occipital pole (OP), corresponding to the foveal representation, even though the stimulus was unseen and located peripherally. That is, the same "visual" regions are implicated in both visual and haptic exploration; however, touch also recruits high-acuity central representation within early visual areas during both haptic exploration of objects and subsequent actions toward them. Functional connectivity analysis shows that the OP is more strongly connected with ventral and dorsal stream areas when participants explore an object in the dark than when they view it. Copyright © 2017 the authors 0270-6474/17/3711572-20$15.00/0.

  4. An experimental facility for the visual study of turbulent flows.

    NASA Technical Reports Server (NTRS)

    Brodkey, R. S.; Hershey, H. C.; Corino, E. R.

    1971-01-01

    An experimental technique which allows visual observations of the wall area in turbulent pipe flow is described in detail. It requires neither the introduction of any injection or measuring device into the flow nor the presence of a two-phase flow or of a non-Newtonian fluid. The technique involves suspending solid MgO particles of colloidal size in trichloroethylene and photographing their motions near the wall with a high speed movie camera moving with the flow. Trichloroethylene was chosen in order to eliminate the index of refraction problem in a curved wall. Evaluation of the technique including a discussion of limitations is included. Also the technique is compared with previous methods of visual observations of turbulent flow.

  5. A review of visual cues associated with food on food acceptance and consumption.

    PubMed

    Wadhera, Devina; Capaldi-Phillips, Elizabeth D

    2014-01-01

    Several sensory cues affect food intake including appearance, taste, odor, texture, temperature, and flavor. Although taste is an important factor regulating food intake, in most cases, the first sensory contact with food is through the eyes. Few studies have examined the effects of the appearance of a food portion on food acceptance and consumption. The purpose of this review is to identify the various visual factors associated with food such as proximity, visibility, color, variety, portion size, height, shape, number, volume, and the surface area and their effects on food acceptance and consumption. We suggest some ways that visual cues can be used to increase fruit and vegetable intake in children and decrease excessive food intake in adults. In addition, we discuss the need for future studies that can further establish the relationship between several unexplored visual dimensions of food (specifically shape, number, size, and surface area) and food intake. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  6. A studyforrest extension, retinotopic mapping and localization of higher visual areas

    PubMed Central

    Sengupta, Ayan; Kaule, Falko R.; Guntupalli, J. Swaroop; Hoffmann, Michael B.; Häusler, Christian; Stadler, Jörg; Hanke, Michael

    2016-01-01

    The studyforrest (http://studyforrest.org) dataset is likely the largest neuroimaging dataset on natural language and story processing publicly available today. In this article, along with a companion publication, we present an update of this dataset that extends its scope to vision and multi-sensory research. 15 participants of the original cohort volunteered for a series of additional studies: a clinical examination of visual function, a standard retinotopic mapping procedure, and a localization of higher visual areas—such as the fusiform face area. The combination of this update, the previous data releases for the dataset, and the companion publication, which includes neuroimaging and eye tracking data from natural stimulation with a motion picture, form an extremely versatile and comprehensive resource for brain imaging research—with almost six hours of functional neuroimaging data across five different stimulation paradigms for each participant. Furthermore, we describe employed paradigms and present results that document the quality of the data for the purpose of characterising major properties of participants’ visual processing stream. PMID:27779618

  7. Brain activation by visual erotic stimuli in healthy middle aged males.

    PubMed

    Kim, S W; Sohn, D W; Cho, Y-H; Yang, W S; Lee, K-U; Juh, R; Ahn, K-J; Chung, Y-A; Han, S-I; Lee, K H; Lee, C U; Chae, J-H

    2006-01-01

    The objective of the present study was to identify brain centers, whose activity changes are related to erotic visual stimuli in healthy, heterosexual, middle aged males. Ten heterosexual, right-handed males with normal sexual function were entered into the present study (mean age 52 years, range 46-55). All potential subjects were screened over 1 h interview, and were encouraged to fill out questionnaires including the Brief Male Sexual Function Inventory. All subjects with a history of sexual arousal disorder or erectile dysfunction were excluded. We performed functional brain magnetic resonance imaging (fMRI) in male volunteers when an alternatively combined erotic and nonerotic film was played for 14 min and 9 s. The major areas of activation associated with sexual arousal to visual stimuli were occipitotemporal area, anterior cingulate gyrus, insula, orbitofrontal cortex, caudate nucleus. However, hypothalamus and thalamus were not activated. We suggest that the nonactivation of hypothalamus and thalamus in middle aged males may be responsible for the lesser physiological arousal in response to the erotic visual stimuli.

  8. Retinotopic Maps, Spatial Tuning, and Locations of Human Visual Areas in Surface Coordinates Characterized with Multifocal and Blocked fMRI Designs

    PubMed Central

    Henriksson, Linda; Karvonen, Juha; Salminen-Vaparanta, Niina; Railo, Henry; Vanni, Simo

    2012-01-01

    The localization of visual areas in the human cortex is typically based on mapping the retinotopic organization with functional magnetic resonance imaging (fMRI). The most common approach is to encode the response phase for a slowly moving visual stimulus and to present the result on an individual's reconstructed cortical surface. The main aims of this study were to develop complementary general linear model (GLM)-based retinotopic mapping methods and to characterize the inter-individual variability of the visual area positions on the cortical surface. We studied 15 subjects with two methods: a 24-region multifocal checkerboard stimulus and a blocked presentation of object stimuli at different visual field locations. The retinotopic maps were based on weighted averaging of the GLM parameter estimates for the stimulus regions. In addition to localizing visual areas, both methods could be used to localize multiple retinotopic regions-of-interest. The two methods yielded consistent retinotopic maps in the visual areas V1, V2, V3, hV4, and V3AB. In the higher-level areas IPS0, VO1, LO1, LO2, TO1, and TO2, retinotopy could only be mapped with the blocked stimulus presentation. The gradual widening of spatial tuning and an increase in the responses to stimuli in the ipsilateral visual field along the hierarchy of visual areas likely reflected the increase in the average receptive field size. Finally, after registration to Freesurfer's surface-based atlas of the human cerebral cortex, we calculated the mean and variability of the visual area positions in the spherical surface-based coordinate system and generated probability maps of the visual areas on the average cortical surface. The inter-individual variability in the area locations decreased when the midpoints were calculated along the spherical cortical surface compared with volumetric coordinates. These results can facilitate both analysis of individual functional anatomy and comparisons of visual cortex topology across studies. PMID:22590626

  9. Functional connectivity of visual cortex in the blind follows retinotopic organization principles

    PubMed Central

    Ovadia-Caro, Smadar; Caramazza, Alfonso; Margulies, Daniel S.; Villringer, Arno

    2015-01-01

    Is visual input during critical periods of development crucial for the emergence of the fundamental topographical mapping of the visual cortex? And would this structure be retained throughout life-long blindness or would it fade as a result of plastic, use-based reorganization? We used functional connectivity magnetic resonance imaging based on intrinsic blood oxygen level-dependent fluctuations to investigate whether significant traces of topographical mapping of the visual scene in the form of retinotopic organization, could be found in congenitally blind adults. A group of 11 fully and congenitally blind subjects and 18 sighted controls were studied. The blind demonstrated an intact functional connectivity network structural organization of the three main retinotopic mapping axes: eccentricity (centre-periphery), laterality (left-right), and elevation (upper-lower) throughout the retinotopic cortex extending to high-level ventral and dorsal streams, including characteristic eccentricity biases in face- and house-selective areas. Functional connectivity-based topographic organization in the visual cortex was indistinguishable from the normally sighted retinotopic functional connectivity structure as indicated by clustering analysis, and was found even in participants who did not have a typical retinal development in utero (microphthalmics). While the internal structural organization of the visual cortex was strikingly similar, the blind exhibited profound differences in functional connectivity to other (non-visual) brain regions as compared to the sighted, which were specific to portions of V1. Central V1 was more connected to language areas but peripheral V1 to spatial attention and control networks. These findings suggest that current accounts of critical periods and experience-dependent development should be revisited even for primary sensory areas, in that the connectivity basis for visual cortex large-scale topographical organization can develop without any visual experience and be retained through life-long experience-dependent plasticity. Furthermore, retinotopic divisions of labour, such as that between the visual cortex regions normally representing the fovea and periphery, also form the basis for topographically-unique plastic changes in the blind. PMID:25869851

  10. Objective visual assessment of antiangiogenic treatment for wet age-related macular degeneration.

    PubMed

    Baseler, Heidi A; Gouws, André; Crossland, Michael D; Leung, Carmen; Tufail, Adnan; Rubin, Gary S; Morland, Antony B

    2011-10-01

    To assess cortical responses in patients undergoing antiangiogenic treatment for wet age-related macular degeneration (AMD) using functional magnetic resonance imaging (fMRI) as an objective, fixation-independent measure of topographic visual function. A patient with bilateral neovascular AMD was scanned using fMRI before and at regular intervals while undergoing treatment with intravitreal antiangiogenic injections (ranibizumab). Blood oxygenation level-dependent signals were measured in the brain while the patient viewed a stimulus consisting of a full-field flickering (6 Hz) white light alternating with a uniform gray background (18 s on and 18 s off). Topographic distribution and magnitude of activation in visual cortex were compared longitudinally throughout the treatment period (<1 year) and with control patients not currently undergoing treatment. Clinical behavioral tests were also administered, including visual acuity, microperimetry, and reading skills. The area of visual cortex activated increased significantly after the first treatment to include more posterior cortex that normally receives inputs from lesioned parts of the retina. Subsequent treatments yielded no significant further increase in activation area. Behavioral measures all generally showed an improvement with treatment but did not always parallel one another. The untreated control patient showed a consistent lack of significant response in the cortex representing retinal lesions. Retinal treatments may not only improve vision but also result in a concomitant improvement in fixation stability. Current clinical behavioral measures (e.g., acuity and perimetry) are largely dependent on fixation stability and therefore cannot separate improvements of visual function from fixation improvements. fMRI, which provides an objective and sensitive measure of visual function independent of fixation, reveals a significant increase in visual cortical responses in patients with wet AMD after treatment with antiangiogenic injections. Despite recent evidence that visual cortex degenerates subsequent to retinal lesions, our results indicate that it can remain responsive as its inputs are restored.

  11. A novel role for visual perspective cues in the neural computation of depth.

    PubMed

    Kim, HyungGoo R; Angelaki, Dora E; DeAngelis, Gregory C

    2015-01-01

    As we explore a scene, our eye movements add global patterns of motion to the retinal image, complicating visual motion produced by self-motion or moving objects. Conventionally, it has been assumed that extraretinal signals, such as efference copy of smooth pursuit commands, are required to compensate for the visual consequences of eye rotations. We consider an alternative possibility: namely, that the visual system can infer eye rotations from global patterns of image motion. We visually simulated combinations of eye translation and rotation, including perspective distortions that change dynamically over time. We found that incorporating these 'dynamic perspective' cues allowed the visual system to generate selectivity for depth sign from motion parallax in macaque cortical area MT, a computation that was previously thought to require extraretinal signals regarding eye velocity. Our findings suggest neural mechanisms that analyze global patterns of visual motion to perform computations that require knowledge of eye rotations.

  12. Organization of the Drosophila larval visual circuit

    PubMed Central

    Gendre, Nanae; Neagu-Maier, G Larisa; Fetter, Richard D; Schneider-Mizell, Casey M; Truman, James W; Zlatic, Marta; Cardona, Albert

    2017-01-01

    Visual systems transduce, process and transmit light-dependent environmental cues. Computation of visual features depends on photoreceptor neuron types (PR) present, organization of the eye and wiring of the underlying neural circuit. Here, we describe the circuit architecture of the visual system of Drosophila larvae by mapping the synaptic wiring diagram and neurotransmitters. By contacting different targets, the two larval PR-subtypes create two converging pathways potentially underlying the computation of ambient light intensity and temporal light changes already within this first visual processing center. Locally processed visual information then signals via dedicated projection interneurons to higher brain areas including the lateral horn and mushroom body. The stratified structure of the larval optic neuropil (LON) suggests common organizational principles with the adult fly and vertebrate visual systems. The complete synaptic wiring diagram of the LON paves the way to understanding how circuits with reduced numerical complexity control wide ranges of behaviors.

  13. Sociodemographic status of severely disabled and visually impaired elderly people in Turkey.

    PubMed

    Kıvanç, Sertaç Argun; Akova-Budak, Berna; Olcaysü, Osman Okan; Çevik, Sadık Görkem

    2016-02-01

    To identify the prevalence of ophthalmologic diseases in elderly patients who had been classified as severely disabled and to identify the ophthalmologic conditions leading to visual impairment and blindness. The medical records of 2806 patients who had applied to the Health Board of the Erzurum Region Training and Research Hospital between January 2011 and December 2012 were reviewed. One hundred ninety-nine patients aged >64 years who were classified as severely disabled with disability rates of over 50%, and who were unable to care for themselves or to move and/or communicate without help were included in the study. The most frequently seen disabilities were neurological (47.2%) and those resulting from eye diseases (17.1%). The most common ophthalmologic diseases were cataract, glaucoma, and age-related macular degeneration. The mean right and left eye visual acuities were 1.17 ± 1.10 logMAR and 1.13 ± 1.0 logMAR, respectively. Of the 60 patients with ophthalmologic diseases or conditions, 33 were blind (visual acuity worse than 20/400) and 10 were visually impaired (visual acuity worse than 20/70 but better than 20/400). Cataracts were the main cause of blindness. The mean age of the patients who were still being followed up at the time of application to the disability board was significantly lower than that of the others (p =0.015). Seventy-nine percent of the blind patients were from rural areas, and 88% of these had no regular follow-up. Among the blind and visually impaired, significantly more patients from urban areas had social security insurance (SSI) than those from rural areas (p =0.043). Nearly 64% of the blind patients were women. The follow-up rate was significantly lower in women (p =0.025). According to multinomial logistic regression analysis, the visually impaired and blind patients were more likely to have lower follow-up rates than the other types of severely disabled patients (OR: 0.231, 95% Cl: 0.077-0.688, p=0.009). Blindness gives rise to severe disability, and the most common ophthalmologic diseases that cause severe disabilities in elderly patients are cataract, glaucoma, and age-related macular degeneration. Sociodemographic factors that may affect the accessibility of visually impaired and blind people to health services include their place of residence and gender.

  14. Low-cost solar array project and Proceedings of the 14th Project Integration Meeting

    NASA Technical Reports Server (NTRS)

    Mcdonald, R. R.

    1980-01-01

    Activities are reported on the following areas: project analysis and integration; technology development in silicon material, large area sheet silicon, and encapsulation; production process and equipment development; and engineering and operations, and the steps taken to integrate these efforts. Visual materials presented at the project Integration Meeting are included.

  15. How scientists develop competence in visual communication

    NASA Astrophysics Data System (ADS)

    Ostergren, Marilyn

    Visuals (maps, charts, diagrams and illustrations) are an important tool for communication in most scientific disciplines, which means that scientists benefit from having strong visual communication skills. This dissertation examines the nature of competence in visual communication and the means by which scientists acquire this competence. This examination takes the form of an extensive multi-disciplinary integrative literature review and a series of interviews with graduate-level science students. The results are presented as a conceptual framework that lays out the components of competence in visual communication, including the communicative goals of science visuals, the characteristics of effective visuals, the skills and knowledge needed to create effective visuals and the learning experiences that promote the acquisition of these forms of skill and knowledge. This conceptual framework can be used to inform pedagogy and thus help graduate students achieve a higher level of competency in this area; it can also be used to identify aspects of acquiring competence in visual communication that need further study.

  16. Retinotopically specific reorganization of visual cortex for tactile pattern recognition

    PubMed Central

    Cheung, Sing-Hang; Fang, Fang; He, Sheng; Legge, Gordon E.

    2009-01-01

    Although previous studies have shown that Braille reading and other tactile-discrimination tasks activate the visual cortex of blind and sighted people [1–5], it is not known whether this kind of cross-modal reorganization is influenced by retinotopic organization. We have addressed this question by studying S, a visually impaired adult with the rare ability to read print visually and Braille by touch. S had normal visual development until age six years, and thereafter severe acuity reduction due to corneal opacification, but no evidence of visual-field loss. Functional magnetic resonance imaging (fMRI) revealed that, in S’s early visual areas, tactile information processing activated what would be the foveal representation for normally-sighted individuals, and visual information processing activated what would be the peripheral representation. Control experiments showed that this activation pattern was not due to visual imagery. S’s high-level visual areas which correspond to shape- and object-selective areas in normally-sighted individuals were activated by both visual and tactile stimuli. The retinotopically specific reorganization in early visual areas suggests an efficient redistribution of neural resources in the visual cortex. PMID:19361999

  17. An extended retinotopic map of mouse cortex

    PubMed Central

    Zhuang, Jun; Ng, Lydia; Williams, Derric; Valley, Matthew; Li, Yang; Garrett, Marina; Waters, Jack

    2017-01-01

    Visual perception and behavior are mediated by cortical areas that have been distinguished using architectonic and retinotopic criteria. We employed fluorescence imaging and GCaMP6 reporter mice to generate retinotopic maps, revealing additional regions of retinotopic organization that extend into barrel and retrosplenial cortices. Aligning retinotopic maps to architectonic borders, we found a mismatch in border location, indicating that architectonic borders are not aligned with the retinotopic transition at the vertical meridian. We also assessed the representation of visual space within each region, finding that four visual areas bordering V1 (LM, P, PM and RL) display complementary representations, with overlap primarily at the central hemifield. Our results extend our understanding of the organization of mouse cortex to include up to 16 distinct retinotopically organized regions. DOI: http://dx.doi.org/10.7554/eLife.18372.001 PMID:28059700

  18. Altered prefrontal function with aging: insights into age-associated performance decline.

    PubMed

    Solbakk, Anne-Kristin; Fuhrmann Alpert, Galit; Furst, Ansgar J; Hale, Laura A; Oga, Tatsuhide; Chetty, Sundari; Pickard, Natasha; Knight, Robert T

    2008-09-26

    We examined the effects of aging on visuo-spatial attention. Participants performed a bi-field visual selective attention task consisting of infrequent target and task-irrelevant novel stimuli randomly embedded among repeated standards in either attended or unattended visual fields. Blood oxygenation level dependent (BOLD) responses to the different classes of stimuli were measured using functional magnetic resonance imaging. The older group had slower reaction times to targets, and committed more false alarms but had comparable detection accuracy to young controls. Attended target and novel stimuli activated comparable widely distributed attention networks, including anterior and posterior association cortex, in both groups. The older group had reduced spatial extent of activation in several regions, including prefrontal, basal ganglia, and visual processing areas. In particular, the anterior cingulate and superior frontal gyrus showed more restricted activation in older compared with young adults across all attentional conditions and stimulus categories. The spatial extent of activations correlated with task performance in both age groups, but the regional pattern of association between hemodynamic responses and behavior differed between the groups. Whereas the young subjects relied on posterior regions, the older subjects engaged frontal areas. The results indicate that aging alters the functioning of neural networks subserving visual attention, and that these changes are related to cognitive performance.

  19. Alfred Walter Campbell and the visual functions of the occipital cortex.

    PubMed

    Macmillan, Malcolm

    2014-07-01

    In his pioneering cytoarchitectonic studies of the human brain, Alfred Walter Campbell identified two structurally different areas in the occipital lobes and assigned two different kinds of visual functions to them. The first area, the visuosensory, was essentially on the mesial surface of the calcarine fissure. It was the terminus of nervous impulses generated in the retina and was where simple visual sensations arose. The second area, the visuopsychic, which surrounded or invested the first, was where sensations were interpreted and elaborated into visual perceptions. I argue that Campbell's distinction between the two areas was the starting point for the eventual differentiation of areas V1-V5. After a brief outline of Campbell's early life and education in Australia and of his Scottish medical education and early work as a pathologist at the Lancashire County Lunatic Asylum at Rainhill near Liverpool, I summarise his work on the human brain. In describing the structures he identified in the occipital lobes, I analyse the similarities and differences between them and the related structures identified by Joseph Shaw Bolton. I conclude by proposing some reasons for how that work came to be overshadowed by the later studies of Brodmann and for the more general lack of recognition given Campbell and his work. Those reasons include the effect of the controversies precipitated by Campbell's alliance with Charles Sherrington over the functions of the sensory and motor cortices. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Target dependence of orientation and direction selectivity of corticocortical projection neurons in the mouse V1

    PubMed Central

    Matsui, Teppei; Ohki, Kenichi

    2013-01-01

    Higher order visual areas that receive input from the primary visual cortex (V1) are specialized for the processing of distinct features of visual information. However, it is still incompletely understood how this functional specialization is acquired. Here we used in vivo two photon calcium imaging in the mouse visual cortex to investigate whether this functional distinction exists at as early as the level of projections from V1 to two higher order visual areas, AL and LM. Specifically, we examined whether sharpness of orientation and direction selectivity and optimal spatial and temporal frequency of projection neurons from V1 to higher order visual areas match with that of target areas. We found that the V1 input to higher order visual areas were indeed functionally distinct: AL preferentially received inputs from V1 that were more orientation and direction selective and tuned for lower spatial frequency compared to projection of V1 to LM, consistent with functional differences between AL and LM. The present findings suggest that selective projections from V1 to higher order visual areas initiates parallel processing of sensory information in the visual cortical network. PMID:24068987

  1. Interactive Technologies and the Social Studies. Emerging Issues and Applications.

    ERIC Educational Resources Information Center

    Martorella, Peter H., Ed.

    This book includes contributions from seven authors with diverse backgrounds, whose specializations include the area of social studies education, software development, computer science, and visual design. The chapters are: (1) "Online Learning Communities: Implications for the Social Studies" (Lynn A. Fontana); (2) "Bringing Preservice Teachers…

  2. Near death experiences: a multidisciplinary hypothesis

    PubMed Central

    Bókkon, István; Mallick, Birendra N.; Tuszynski, Jack A.

    2013-01-01

    Recently, we proposed a novel biophysical concept regarding on the appearance of brilliant lights during near death experiences (NDEs) (Bókkon and Salari, 2012). Specifically, perceiving brilliant light in NDEs has been proposed to arise due to the reperfusion that produces unregulated overproduction of free radicals and energetically excited molecules that can generate a transient enhancement of bioluminescent biophotons in different areas of the brain, including retinotopic visual areas. If this excess of bioluminescent photon emission exceeds a threshold in retinotopic visual areas, this can appear as (phosphene) lights because the brain interprets these intrinsic retinotopic bioluminescent photons as if they originated from the external physical world. Here, we review relevant literature that reported experimental studies (Imaizumi et al., 1984; Suzuki et al., 1985) that essentially support our previously published conception, i.e., that seeing lights in NDEs may be due to the transient enhancement of bioluminescent biophotons. Next, we briefly describe our biophysical visual representation model that may explain brilliant lights experienced during NDEs (by phosphenes as biophotons) and REM sleep associated dream-like intrinsic visual imageries through biophotons in NDEs. Finally, we link our biophysical visual representation notion to self-consciousness that may involve extremely low-energy quantum entanglements. This article is intended to introduce novel concepts for discussion and does not pretend to give the ultimate explanation for the currently unanswerable questions about matter, life and soul; their creation and their interrelationship. PMID:24062655

  3. Near death experiences: a multidisciplinary hypothesis.

    PubMed

    Bókkon, István; Mallick, Birendra N; Tuszynski, Jack A

    2013-01-01

    Recently, we proposed a novel biophysical concept regarding on the appearance of brilliant lights during near death experiences (NDEs) (Bókkon and Salari, 2012). Specifically, perceiving brilliant light in NDEs has been proposed to arise due to the reperfusion that produces unregulated overproduction of free radicals and energetically excited molecules that can generate a transient enhancement of bioluminescent biophotons in different areas of the brain, including retinotopic visual areas. If this excess of bioluminescent photon emission exceeds a threshold in retinotopic visual areas, this can appear as (phosphene) lights because the brain interprets these intrinsic retinotopic bioluminescent photons as if they originated from the external physical world. Here, we review relevant literature that reported experimental studies (Imaizumi et al., 1984; Suzuki et al., 1985) that essentially support our previously published conception, i.e., that seeing lights in NDEs may be due to the transient enhancement of bioluminescent biophotons. Next, we briefly describe our biophysical visual representation model that may explain brilliant lights experienced during NDEs (by phosphenes as biophotons) and REM sleep associated dream-like intrinsic visual imageries through biophotons in NDEs. Finally, we link our biophysical visual representation notion to self-consciousness that may involve extremely low-energy quantum entanglements. This article is intended to introduce novel concepts for discussion and does not pretend to give the ultimate explanation for the currently unanswerable questions about matter, life and soul; their creation and their interrelationship.

  4. Selecting islands and shoals for conservation based on biological and aesthetic criteria

    USGS Publications Warehouse

    Knutson, M.G.; Leopold, D.J.; Smardon, R.C.

    1993-01-01

    Consideration of biological quality has long been an important component of rating areas for conservation. Often these same areas are highly valued by people for aesthetic reasons, creating demands for housing and recreation that may conflict with protection plans for these habitats. Most methods of selecting land for conservation purposes use biological factors alone. For some land areas, analysis of aesthetic qualities is also important in describing the scenic value of undisturbed land. A method for prioritizing small islands and shoals based on both biological and visual quality factors is presented here. The study included 169 undeveloped islands and shoals a??0.8 ha in the Thousand Islands Region of the St. Lawrence River, New York. Criteria such as critical habitat for uncommon plant and animal species were considered together with visual quality and incorporated into a rating system that ranked the islands and shoals according to their priority for conservation management and protection from development. Biological factors were determined based on previous research and a field survey. Visual quality was determined by visual diagnostic criteria developed from public responses to photographs of a sample of islands. Variables such as elevation, soil depth, and type of plant community can be used to classify islands into different categories of visual quality but are unsuccessful in classifying islands into categories of overall biological quality.

  5. Visual Resource Analysis for Solar Energy Zones in the San Luis Valley

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Robert; Abplanalp, Jennifer M.; Zvolanek, Emily

    This report summarizes the results of a study conducted by Argonne National Laboratory’s (Argonne’s) Environmental Science Division for the U.S. Department of the Interior Bureau of Land Management (BLM). The study analyzed the regional effects of potential visual impacts of solar energy development on three BLM-designated solar energy zones (SEZs) in the San Luis Valley (SLV) in Colorado, and, based on the analysis, made recommendations for or against regional compensatory mitigation to compensate residents and other stakeholders for the potential visual impacts to the SEZs. The analysis was conducted as part of the solar regional mitigation strategy (SRMS) task conductedmore » by BLM Colorado with assistance from Argonne. Two separate analyses were performed. The first analysis, referred to as the VSA Analysis, analyzed the potential visual impacts of solar energy development in the SEZs on nearby visually sensitive areas (VSAs), and, based on the impact analyses, made recommendations for or against regional compensatory mitigation. VSAs are locations for which some type of visual sensitivity has been identified, either because the location is an area of high scenic value or because it is a location from which people view the surrounding landscape and attach some level of importance or sensitivity to what is seen from the location. The VSA analysis included both BLM-administered lands in Colorado and in the Taos FO in New Mexico. The second analysis, referred to as the SEZ Analysis, used BLM visual resource inventory (VRI) and other data on visual resources in the former Saguache and La Jara Field Offices (FOs), now contained within the San Luis Valley FO (SLFO), to determine whether the changes in scenic values that would result from the development of utility-scale solar energy facilities in the SEZs would affect the quality and quantity of valued scenic resources in the SLV region as a whole. If the regional effects were judged to be significant, regional compensatory mitigation was recommended. VRI data was not available for the Taos FO and it was not included in the SEZ analysis; the SEZ analysis includes BLM-administered lands in Colorado only.« less

  6. Perception and performance in flight simulators: The contribution of vestibular, visual, and auditory information

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The pilot's perception and performance in flight simulators is examined. The areas investigated include: vestibular stimulation, flight management and man cockpit information interfacing, and visual perception in flight simulation. The effects of higher levels of rotary acceleration on response time to constant acceleration, tracking performance, and thresholds for angular acceleration are examined. Areas of flight management examined are cockpit display of traffic information, work load, synthetic speech call outs during the landing phase of flight, perceptual factors in the use of a microwave landing system, automatic speech recognition, automation of aircraft operation, and total simulation of flight training.

  7. Visual Cortical Representation of Whole Words and Hemifield-split Word Parts.

    PubMed

    Strother, Lars; Coros, Alexandra M; Vilis, Tutis

    2016-02-01

    Reading requires the neural integration of visual word form information that is split between our retinal hemifields. We examined multiple visual cortical areas involved in this process by measuring fMRI responses while observers viewed words that changed or repeated in one or both hemifields. We were specifically interested in identifying brain areas that exhibit decreased fMRI responses as a result of repeated versus changing visual word form information in each visual hemifield. Our method yielded highly significant effects of word repetition in a previously reported visual word form area (VWFA) in occipitotemporal cortex, which represents hemifield-split words as whole units. We also identified a more posterior occipital word form area (OWFA), which represents word form information in the right and left hemifields independently and is thus both functionally and anatomically distinct from the VWFA. Both the VWFA and the OWFA were left-lateralized in our study and strikingly symmetric in anatomical location relative to known face-selective visual cortical areas in the right hemisphere. Our findings are consistent with the observation that category-selective visual areas come in pairs and support the view that neural mechanisms in left visual cortex--especially those that evolved to support the visual processing of faces--are developmentally malleable and become incorporated into a left-lateralized visual word form network that supports rapid word recognition and reading.

  8. Timing the impact of literacy on visual processing

    PubMed Central

    Pegado, Felipe; Comerlato, Enio; Ventura, Fabricio; Jobert, Antoinette; Nakamura, Kimihiro; Buiatti, Marco; Ventura, Paulo; Dehaene-Lambertz, Ghislaine; Kolinsky, Régine; Morais, José; Braga, Lucia W.; Cohen, Laurent; Dehaene, Stanislas

    2014-01-01

    Learning to read requires the acquisition of an efficient visual procedure for quickly recognizing fine print. Thus, reading practice could induce a perceptual learning effect in early vision. Using functional magnetic resonance imaging (fMRI) in literate and illiterate adults, we previously demonstrated an impact of reading acquisition on both high- and low-level occipitotemporal visual areas, but could not resolve the time course of these effects. To clarify whether literacy affects early vs. late stages of visual processing, we measured event-related potentials to various categories of visual stimuli in healthy adults with variable levels of literacy, including completely illiterate subjects, early-schooled literate subjects, and subjects who learned to read in adulthood (ex-illiterates). The stimuli included written letter strings forming pseudowords, on which literacy is expected to have a major impact, as well as faces, houses, tools, checkerboards, and false fonts. To evaluate the precision with which these stimuli were encoded, we studied repetition effects by presenting the stimuli in pairs composed of repeated, mirrored, or unrelated pictures from the same category. The results indicate that reading ability is correlated with a broad enhancement of early visual processing, including increased repetition suppression, suggesting better exemplar discrimination, and increased mirror discrimination, as early as ∼100–150 ms in the left occipitotemporal region. These effects were found with letter strings and false fonts, but also were partially generalized to other visual categories. Thus, learning to read affects the magnitude, precision, and invariance of early visual processing. PMID:25422460

  9. Timing the impact of literacy on visual processing.

    PubMed

    Pegado, Felipe; Comerlato, Enio; Ventura, Fabricio; Jobert, Antoinette; Nakamura, Kimihiro; Buiatti, Marco; Ventura, Paulo; Dehaene-Lambertz, Ghislaine; Kolinsky, Régine; Morais, José; Braga, Lucia W; Cohen, Laurent; Dehaene, Stanislas

    2014-12-09

    Learning to read requires the acquisition of an efficient visual procedure for quickly recognizing fine print. Thus, reading practice could induce a perceptual learning effect in early vision. Using functional magnetic resonance imaging (fMRI) in literate and illiterate adults, we previously demonstrated an impact of reading acquisition on both high- and low-level occipitotemporal visual areas, but could not resolve the time course of these effects. To clarify whether literacy affects early vs. late stages of visual processing, we measured event-related potentials to various categories of visual stimuli in healthy adults with variable levels of literacy, including completely illiterate subjects, early-schooled literate subjects, and subjects who learned to read in adulthood (ex-illiterates). The stimuli included written letter strings forming pseudowords, on which literacy is expected to have a major impact, as well as faces, houses, tools, checkerboards, and false fonts. To evaluate the precision with which these stimuli were encoded, we studied repetition effects by presenting the stimuli in pairs composed of repeated, mirrored, or unrelated pictures from the same category. The results indicate that reading ability is correlated with a broad enhancement of early visual processing, including increased repetition suppression, suggesting better exemplar discrimination, and increased mirror discrimination, as early as ∼ 100-150 ms in the left occipitotemporal region. These effects were found with letter strings and false fonts, but also were partially generalized to other visual categories. Thus, learning to read affects the magnitude, precision, and invariance of early visual processing.

  10. Functional neural substrates of posterior cortical atrophy patients.

    PubMed

    Shames, H; Raz, N; Levin, Netta

    2015-07-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome in which the most pronounced pathologic involvement is in the occipito-parietal visual regions. Herein, we aimed to better define the cortical reflection of this unique syndrome using a thorough battery of behavioral and functional MRI (fMRI) tests. Eight PCA patients underwent extensive testing to map their visual deficits. Assessments included visual functions associated with lower and higher components of the cortical hierarchy, as well as dorsal- and ventral-related cortical functions. fMRI was performed on five patients to examine the neuronal substrate of their visual functions. The PCA patient cohort exhibited stereopsis, saccadic eye movements and higher dorsal stream-related functional impairments, including simultant perception, image orientation, figure-from-ground segregation, closure and spatial orientation. In accordance with the behavioral findings, fMRI revealed intact activation in the ventral visual regions of face and object perception while more dorsal aspects of perception, including motion and gestalt perception, revealed impaired patterns of activity. In most of the patients, there was a lack of activity in the word form area, which is known to be linked to reading disorders. Finally, there was evidence of reduced cortical representation of the peripheral visual field, corresponding to the behaviorally assessed peripheral visual deficit. The findings are discussed in the context of networks extending from parietal regions, which mediate navigationally related processing, visually guided actions, eye movement control and working memory, suggesting that damage to these networks might explain the wide range of deficits in PCA patients.

  11. Spatio-Temporal Brain Mapping of Motion-Onset VEPs Combined with fMRI and Retinotopic Maps

    PubMed Central

    Pitzalis, Sabrina; Strappini, Francesca; De Gasperis, Marco; Bultrini, Alessandro; Di Russo, Francesco

    2012-01-01

    Neuroimaging studies have identified several motion-sensitive visual areas in the human brain, but the time course of their activation cannot be measured with these techniques. In the present study, we combined electrophysiological and neuroimaging methods (including retinotopic brain mapping) to determine the spatio-temporal profile of motion-onset visual evoked potentials for slow and fast motion stimuli and to localize its neural generators. We found that cortical activity initiates in the primary visual area (V1) for slow stimuli, peaking 100 ms after the onset of motion. Subsequently, activity in the mid-temporal motion-sensitive areas, MT+, peaked at 120 ms, followed by peaks in activity in the more dorsal area, V3A, at 160 ms and the lateral occipital complex at 180 ms. Approximately 250 ms after stimulus onset, activity fast motion stimuli was predominant in area V6 along the parieto-occipital sulcus. Finally, at 350 ms (100 ms after the motion offset) brain activity was visible again in area V1. For fast motion stimuli, the spatio-temporal brain pattern was similar, except that the first activity was detected at 70 ms in area MT+. Comparing functional magnetic resonance data for slow vs. fast motion, we found signs of slow-fast motion stimulus topography along the posterior brain in at least three cortical regions (MT+, V3A and LOR). PMID:22558222

  12. Organization of the Macaque Extrastriate Visual Cortex Re-Examined Using the Principle of Spatial Continuity of Function

    PubMed Central

    Aflalo, T. N.

    2011-01-01

    How is the macaque monkey extrastriate cortex organized? Is vision divisible into separate tasks, such as object recognition and spatial processing, each emphasized in a different anatomical stream? If so, how many streams exist? What are the hierarchical relationships among areas? The present study approached the organization of the extrastriate cortex in a novel manner. A principled relationship exists between cortical function and cortical topography. Similar functions tend to be located near each other, within the constraints of mapping a highly dimensional space of functions onto the two-dimensional space of the cortex. We used this principle to re-examine the functional organization of the extrastriate cortex given current knowledge about its topographic organization. The goal of the study was to obtain a model of the functional relationships among the visual areas, including the number of functional streams into which they are grouped, the pattern of informational overlap among the streams, and the hierarchical relationships among areas. To test each functional description, we mapped it to a model cortex according to the principle of optimal continuity and assessed whether it accurately reconstructed a version of the extrastriate topography. Of the models tested, the one that best reconstructed the topography included four functional streams rather than two, six levels of hierarchy per stream, and a specific pattern of informational overlap among streams and areas. A specific mixture of functions was predicted for each visual area. This description matched findings in the physiological literature, and provided predictions of functional relationships that have yet to be tested physiologically. PMID:21068269

  13. Use of an augmented-vision device for visual search by patients with tunnel vision

    PubMed Central

    Luo, Gang; Peli, Eli

    2006-01-01

    Purpose To study the effect of an augmented-vision device that superimposes minified contour images over natural vision on visual search performance of patients with tunnel vision. Methods Twelve subjects with tunnel vision searched for targets presented outside their visual fields (VF) on a blank background under three cue conditions (with contour cues provided by the device, with auditory cues, and without cues). Three subjects (VF: 8º to 11º wide) carried out the search over a 90º×74º area, and nine subjects (VF: 7º to 16º wide) over a 66º×52º area. Eye and head movements were recorded for performance analyses that included directness of search path, search time, and gaze speed. Results Directness of the search path was greatly and significantly improved when the contour or auditory cues were provided in both the larger and smaller area search. When using the device, a significant reduction in search time (28%~74%) was demonstrated by all 3 subjects in the larger area search and by subjects with VF wider than 10º in the smaller area search (average 22%). Directness and the gaze speed accounted for 90% of the variability of search time. Conclusions While performance improvement with the device for the larger search area was obvious, whether it was helpful for the smaller search area depended on VF and gaze speed. As improvement in directness was demonstrated, increased gaze speed, which could result from further training and adaptation to the device, might enable patients with small VFs to benefit from the device for visual search tasks. PMID:16936136

  14. Brain representations for acquiring and recalling visual-motor adaptations

    PubMed Central

    Bédard, Patrick; Sanes, Jerome N.

    2014-01-01

    Humans readily learn and remember new motor skills, a process that likely underlies adaptation to changing environments. During adaptation, the brain develops new sensory-motor relationships, and if consolidation occurs, a memory of the adaptation can be retained for extended periods. Considerable evidence exists that multiple brain circuits participate in acquiring new sensory-motor memories, though the networks engaged in recalling these and whether the same brain circuits participate in their formation and recall has less clarity. To address these issues, we assessed brain activation with functional MRI while young healthy adults learned and recalled new sensory-motor skills by adapting to world-view rotations of visual feedback that guided hand movements. We found cerebellar activation related to adaptation rate, likely reflecting changes related to overall adjustments to the visual rotation. A set of parietal and frontal regions, including inferior and superior parietal lobules, premotor area, supplementary motor area and primary somatosensory cortex, exhibited non-linear learning-related activation that peaked in the middle of the adaptation phase. Activation in some of these areas, including the inferior parietal lobule, intra-parietal sulcus and somatosensory cortex, likely reflected actual learning, since the activation correlated with learning after-effects. Lastly, we identified several structures having recall-related activation, including the anterior cingulate and the posterior putamen, since the activation correlated with recall efficacy. These findings demonstrate dynamic aspects of brain activation patterns related to formation and recall of a sensory-motor skill, such that non-overlapping brain regions participate in distinctive behavioral events. PMID:25019676

  15. Visual brain plasticity induced by central and peripheral visual field loss.

    PubMed

    Sanda, Nicolae; Cerliani, Leonardo; Authié, Colas N; Sabbah, Norman; Sahel, José-Alain; Habas, Christophe; Safran, Avinoam B; Thiebaut de Schotten, Michel

    2018-06-23

    Disorders that specifically affect central and peripheral vision constitute invaluable models to study how the human brain adapts to visual deafferentation. We explored cortical changes after the loss of central or peripheral vision. Cortical thickness (CoTks) and resting-state cortical entropy (rs-CoEn), as a surrogate for neural and synaptic complexity, were extracted in 12 Stargardt macular dystrophy, 12 retinitis pigmentosa (tunnel vision stage), and 14 normally sighted subjects. When compared to controls, both groups with visual loss exhibited decreased CoTks in dorsal area V3d. Peripheral visual field loss also showed a specific CoTks decrease in early visual cortex and ventral area V4, while central visual field loss in dorsal area V3A. Only central visual field loss exhibited increased CoEn in LO-2 area and FG1. Current results revealed biomarkers of brain plasticity within the dorsal and the ventral visual streams following central and peripheral visual field defects.

  16. [11C]Flumazenil PET in patients with epilepsy with dual pathology.

    PubMed

    Juhász, C; Nagy, F; Muzik, O; Watson, C; Shah, J; Chugani, H T

    1999-05-01

    Coexistence of hippocampal sclerosis and a potentially epileptogenic cortical lesion is referred to as dual pathology and can be responsible for poor surgical outcome in patients with medically intractable partial epilepsy. [11C]Flumazenil (FMZ) positron emission tomography (PET) is a sensitive method for visualizing epileptogenic foci. In this study of 12 patients with dual pathology, we addressed the sensitivity of FMZ PET to detect hippocampal abnormalities and compared magnetic resonance imaging (MRI) with visual as well as quantitative FMZ PET findings. All patients underwent volumetric MRI, prolonged video-EEG monitoring, and glucose metabolism PET before the FMZ PET. MRI-coregistered partial volume-corrected PET images were used to measure FMZ-binding asymmetries by using asymmetry indices (AIs) in the whole hippocampus and in three (anterior, middle, and posterior) hippocampal subregions. Cortical sites of decreased FMZ binding also were evaluated by using AIs for regions with MRI-verified cortical lesions as well as for non-lesional areas with visually detected asymmetry. Abnormally decreased FMZ binding could be detected by quantitative analysis in the atrophic hippocampus of all 12 patients, including three patients with discordant or inconclusive EEG findings. Decreased FMZ binding was restricted to only one subregion of the hippocampus in three patients. Areas of decreased cortical FMZ binding were obvious visually in all patients. Decreased FMZ binding was detected visually in nonlesional cortical areas in four patients. The AIs for these nonlesional regions with visual asymmetry were significantly lower than those for regions showing MRI lesions (paired t test, p = 0.0075). Visual as well as quantitative analyses of FMZ-binding asymmetry are sensitive methods to detect decreased benzodiazepine-receptor binding in the hippocampus and neocortex of patients with dual pathology. MRI-defined hippocampal atrophy is always associated with decreased FMZ binding, although the latter may be localized to only one sub-region within the hippocampus. FMZ PET abnormalities can occur in areas with normal appearance on MRI, but FMZ-binding asymmetry of these regions is lower when compared with that of lesional areas. FMZ PET can be especially helpful when MRI and EEG findings of patients with intractable epilepsy are discordant.

  17. Eye movement-invariant representations in the human visual system.

    PubMed

    Nishimoto, Shinji; Huth, Alexander G; Bilenko, Natalia Y; Gallant, Jack L

    2017-01-01

    During natural vision, humans make frequent eye movements but perceive a stable visual world. It is therefore likely that the human visual system contains representations of the visual world that are invariant to eye movements. Here we present an experiment designed to identify visual areas that might contain eye-movement-invariant representations. We used functional MRI to record brain activity from four human subjects who watched natural movies. In one condition subjects were required to fixate steadily, and in the other they were allowed to freely make voluntary eye movements. The movies used in each condition were identical. We reasoned that the brain activity recorded in a visual area that is invariant to eye movement should be similar under fixation and free viewing conditions. In contrast, activity in a visual area that is sensitive to eye movement should differ between fixation and free viewing. We therefore measured the similarity of brain activity across repeated presentations of the same movie within the fixation condition, and separately between the fixation and free viewing conditions. The ratio of these measures was used to determine which brain areas are most likely to contain eye movement-invariant representations. We found that voxels located in early visual areas are strongly affected by eye movements, while voxels in ventral temporal areas are only weakly affected by eye movements. These results suggest that the ventral temporal visual areas contain a stable representation of the visual world that is invariant to eye movements made during natural vision.

  18. The climate visualizer: Sense-making through scientific visualization

    NASA Astrophysics Data System (ADS)

    Gordin, Douglas N.; Polman, Joseph L.; Pea, Roy D.

    1994-12-01

    This paper describes the design of a learning environment, called the Climate Visualizer, intended to facilitate scientific sense-making in high school classrooms by providing students the ability to craft, inspect, and annotate scientific visualizations. The theoretical back-ground for our design presents a view of learning as acquiring and critiquing cultural practices and stresses the need for students to appropriate the social and material aspects of practice when learning an area. This is followed by a description of the design of the Climate Visualizer, including detailed accounts of its provision of spatial and temporal context and the quantitative and visual representations it employs. A broader context is then explored by describing its integration into the high school science classroom. This discussion explores how visualizations can promote the creation of scientific theories, especially in conjunction with the Collaboratory Notebook, an embedded environment for creating and critiquing scientific theories and visualizations. Finally, we discuss the design trade-offs we have made in light of our theoretical orientation, and our hopes for further progress.

  19. Avian binocular vision: It's not just about what birds can see, it's also about what they can't.

    PubMed

    Tyrrell, Luke P; Fernández-Juricic, Esteban

    2017-01-01

    With the exception of primates, most vertebrates have laterally placed eyes. Binocular vision in vertebrates has been implicated in several functions, including depth perception, contrast discrimination, etc. However, the blind area in front of the head that is proximal to the binocular visual field is often neglected. This anterior blind area is important when discussing the evolution of binocular vision because its relative length is inversely correlated with the width of the binocular field. Therefore, species with wider binocular fields also have shorter anterior blind areas and objects along the mid-sagittal plane can be imaged at closer distances. Additionally, the anterior blind area is of functional significance for birds because the beak falls within this blind area. We tested for the first time some specific predictions about the functional role of the anterior blind area in birds controlling for phylogenetic effects. We used published data on visual field configuration in 40 species of birds and measured beak and skull parameters from museum specimens. We found that birds with proportionally longer beaks have longer anterior blind areas and thus narrower binocular fields. This result suggests that the anterior blind area and beak visibility do play a role in shaping binocular fields, and that binocular field width is not solely determined by the need for stereoscopic vision. In visually guided foragers, the ability to see the beak-and how much of the beak can be seen-varies predictably with foraging habits. For example, fish- and insect-eating specialists can see more of their own beak than birds eating immobile food can. But in non-visually guided foragers, there is no consistent relationship between the beak and anterior blind area. We discuss different strategies-wide binocular fields, large eye movements, and long beaks-that minimize the potential negative effects of the anterior blind area. Overall, we argue that there is more to avian binocularity than meets the eye.

  20. Graphic Design Career Guide 2. Revised Edition.

    ERIC Educational Resources Information Center

    Craig, James

    The graphic design field is diverse and includes many areas of specialization. This guide introduces students to career opportunities in graphic design. The guide is organized in four parts. "Part One: Careers in Graphic Design" identifies and discusses the various segments of the graphic design industry, including: Advertising, Audio-Visual, Book…

  1. There's Waldo! A Normalization Model of Visual Search Predicts Single-Trial Human Fixations in an Object Search Task

    PubMed Central

    Miconi, Thomas; Groomes, Laura; Kreiman, Gabriel

    2016-01-01

    When searching for an object in a scene, how does the brain decide where to look next? Visual search theories suggest the existence of a global “priority map” that integrates bottom-up visual information with top-down, target-specific signals. We propose a mechanistic model of visual search that is consistent with recent neurophysiological evidence, can localize targets in cluttered images, and predicts single-trial behavior in a search task. This model posits that a high-level retinotopic area selective for shape features receives global, target-specific modulation and implements local normalization through divisive inhibition. The normalization step is critical to prevent highly salient bottom-up features from monopolizing attention. The resulting activity pattern constitues a priority map that tracks the correlation between local input and target features. The maximum of this priority map is selected as the locus of attention. The visual input is then spatially enhanced around the selected location, allowing object-selective visual areas to determine whether the target is present at this location. This model can localize objects both in array images and when objects are pasted in natural scenes. The model can also predict single-trial human fixations, including those in error and target-absent trials, in a search task involving complex objects. PMID:26092221

  2. Lighting design for globally illuminated volume rendering.

    PubMed

    Zhang, Yubo; Ma, Kwan-Liu

    2013-12-01

    With the evolution of graphics hardware, high quality global illumination becomes available for real-time volume rendering. Compared to local illumination, global illumination can produce realistic shading effects which are closer to real world scenes, and has proven useful for enhancing volume data visualization to enable better depth and shape perception. However, setting up optimal lighting could be a nontrivial task for average users. There were lighting design works for volume visualization but they did not consider global light transportation. In this paper, we present a lighting design method for volume visualization employing global illumination. The resulting system takes into account view and transfer-function dependent content of the volume data to automatically generate an optimized three-point lighting environment. Our method fully exploits the back light which is not used by previous volume visualization systems. By also including global shadow and multiple scattering, our lighting system can effectively enhance the depth and shape perception of volumetric features of interest. In addition, we propose an automatic tone mapping operator which recovers visual details from overexposed areas while maintaining sufficient contrast in the dark areas. We show that our method is effective for visualizing volume datasets with complex structures. The structural information is more clearly and correctly presented under the automatically generated light sources.

  3. Effects of auditory stimuli in the horizontal plane on audiovisual integration: an event-related potential study.

    PubMed

    Yang, Weiping; Li, Qi; Ochi, Tatsuya; Yang, Jingjing; Gao, Yulin; Tang, Xiaoyu; Takahashi, Satoshi; Wu, Jinglong

    2013-01-01

    This article aims to investigate whether auditory stimuli in the horizontal plane, particularly originating from behind the participant, affect audiovisual integration by using behavioral and event-related potential (ERP) measurements. In this study, visual stimuli were presented directly in front of the participants, auditory stimuli were presented at one location in an equidistant horizontal plane at the front (0°, the fixation point), right (90°), back (180°), or left (270°) of the participants, and audiovisual stimuli that include both visual stimuli and auditory stimuli originating from one of the four locations were simultaneously presented. These stimuli were presented randomly with equal probability; during this time, participants were asked to attend to the visual stimulus and respond promptly only to visual target stimuli (a unimodal visual target stimulus and the visual target of the audiovisual stimulus). A significant facilitation of reaction times and hit rates was obtained following audiovisual stimulation, irrespective of whether the auditory stimuli were presented in the front or back of the participant. However, no significant interactions were found between visual stimuli and auditory stimuli from the right or left. Two main ERP components related to audiovisual integration were found: first, auditory stimuli from the front location produced an ERP reaction over the right temporal area and right occipital area at approximately 160-200 milliseconds; second, auditory stimuli from the back produced a reaction over the parietal and occipital areas at approximately 360-400 milliseconds. Our results confirmed that audiovisual integration was also elicited, even though auditory stimuli were presented behind the participant, but no integration occurred when auditory stimuli were presented in the right or left spaces, suggesting that the human brain might be particularly sensitive to information received from behind than both sides.

  4. Effects of Auditory Stimuli in the Horizontal Plane on Audiovisual Integration: An Event-Related Potential Study

    PubMed Central

    Yang, Weiping; Li, Qi; Ochi, Tatsuya; Yang, Jingjing; Gao, Yulin; Tang, Xiaoyu; Takahashi, Satoshi; Wu, Jinglong

    2013-01-01

    This article aims to investigate whether auditory stimuli in the horizontal plane, particularly originating from behind the participant, affect audiovisual integration by using behavioral and event-related potential (ERP) measurements. In this study, visual stimuli were presented directly in front of the participants, auditory stimuli were presented at one location in an equidistant horizontal plane at the front (0°, the fixation point), right (90°), back (180°), or left (270°) of the participants, and audiovisual stimuli that include both visual stimuli and auditory stimuli originating from one of the four locations were simultaneously presented. These stimuli were presented randomly with equal probability; during this time, participants were asked to attend to the visual stimulus and respond promptly only to visual target stimuli (a unimodal visual target stimulus and the visual target of the audiovisual stimulus). A significant facilitation of reaction times and hit rates was obtained following audiovisual stimulation, irrespective of whether the auditory stimuli were presented in the front or back of the participant. However, no significant interactions were found between visual stimuli and auditory stimuli from the right or left. Two main ERP components related to audiovisual integration were found: first, auditory stimuli from the front location produced an ERP reaction over the right temporal area and right occipital area at approximately 160–200 milliseconds; second, auditory stimuli from the back produced a reaction over the parietal and occipital areas at approximately 360–400 milliseconds. Our results confirmed that audiovisual integration was also elicited, even though auditory stimuli were presented behind the participant, but no integration occurred when auditory stimuli were presented in the right or left spaces, suggesting that the human brain might be particularly sensitive to information received from behind than both sides. PMID:23799097

  5. Anatomical Substrates of Visual and Auditory Miniature Second-language Learning

    PubMed Central

    Newman-Norlund, Roger D.; Frey, Scott H.; Petitto, Laura-Ann; Grafton, Scott T.

    2007-01-01

    Longitudinal changes in brain activity during second language (L2) acquisition of a miniature finite-state grammar, named Wernickese, were identified with functional magnetic resonance imaging (fMRI). Participants learned either a visual sign language form or an auditory-verbal form to equivalent proficiency levels. Brain activity during sentence comprehension while hearing/viewing stimuli was assessed at low, medium, and high levels of proficiency in three separate fMRI sessions. Activation in the left inferior frontal gyrus (Broca’s area) correlated positively with improving L2 proficiency, whereas activity in the right-hemisphere (RH) homologue was negatively correlated for both auditory and visual forms of the language. Activity in sequence learning areas including the premotor cortex and putamen also correlated with L2 proficiency. Modality-specific differences in the blood oxygenation level-dependent signal accompanying L2 acquisition were localized to the planum temporale (PT). Participants learning the auditory form exhibited decreasing reliance on bilateral PT sites across sessions. In the visual form, bilateral PT sites increased in activity between Session 1 and Session 2, then decreased in left PT activity from Session 2 to Session 3. Comparison of L2 laterality (as compared to L1 laterality) in auditory and visual groups failed to demonstrate greater RH lateralization for the visual versus auditory L2. These data establish a common role for Broca’s area in language acquisition irrespective of the perceptual form of the language and suggest that L2s are processed similar to first languages even when learned after the ‘‘critical period.’’ The right frontal cortex was not preferentially recruited by visual language after accounting for phonetic/structural complexity and performance. PMID:17129186

  6. Which visual functions depend on intermediate visual regions? Insights from a case of developmental visual form agnosia.

    PubMed

    Gilaie-Dotan, Sharon

    2016-03-01

    A key question in visual neuroscience is the causal link between specific brain areas and perceptual functions; which regions are necessary for which visual functions? While the contribution of primary visual cortex and high-level visual regions to visual perception has been extensively investigated, the contribution of intermediate visual areas (e.g. V2/V3) to visual processes remains unclear. Here I review more than 20 visual functions (early, mid, and high-level) of LG, a developmental visual agnosic and prosopagnosic young adult, whose intermediate visual regions function in a significantly abnormal fashion as revealed through extensive fMRI and ERP investigations. While expectedly, some of LG's visual functions are significantly impaired, some of his visual functions are surprisingly normal (e.g. stereopsis, color, reading, biological motion). During the period of eight-year testing described here, LG trained on a perceptual learning paradigm that was successful in improving some but not all of his visual functions. Following LG's visual performance and taking into account additional findings in the field, I propose a framework for how different visual areas contribute to different visual functions, with an emphasis on intermediate visual regions. Thus, although rewiring and plasticity in the brain can occur during development to overcome and compensate for hindering developmental factors, LG's case seems to indicate that some visual functions are much less dependent on strict hierarchical flow than others, and can develop normally in spite of abnormal mid-level visual areas, thereby probably less dependent on intermediate visual regions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Interdisciplinary applications and interpretations of ERTS data within the Susquehanna River Basin; resources inventory, land use and pollution

    NASA Technical Reports Server (NTRS)

    Mcmurtry, G. J. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Identification and mapping of three major kinds of coal refuse targets based on spectral signatures in channels four through seven of the ERTS-1 MSS were conducted. Correlation of the placement of the coal refuse targets with an existing map of their location was accomplished. Digital processing of ERTS-1 data permitted identification of stripped areas including ones that are not discernible by visual analysis of ERTS imagery. Combined visual and digital techniques of analyzing ERTS-1 data for geologic formations have been tried on selected areas of Pennsylvania. Mapping of two major agriculture counties to show land forms, drainage patterns, water, and urban areas were made using positive transparencies of MSS data. Two frames of the same central Pennsylvania area were brought into registration by translation and then merged even though the frames were obtained 71 days apart.

  8. Application of ERTS-1 imagery and underflight photography in the detection and monitoring of forest insect infections in the Sierra Nevada Mountains of California

    NASA Technical Reports Server (NTRS)

    Hall, R. C. (Principal Investigator); Wert, S. L.; Koerber, T. W.

    1974-01-01

    The author has identified the following significant results. Analysis of ERTS-1 imagery with underflight aerial photo support including U-2, in the Sierra Nevada Mountains of California, indicates promising possibilities of detecting and monitoring forest insect outbreaks visually with some mechanical support utilizing the VP-8 image analyzer. Visually, it is possible at a scale of 1:1,000,000 to discriminate between large areas of damaged and undamaged forests; timbered and non-timbered areas; pasture land and cultivated fields; desert and riparian vegetation. At a scale of 1:80,000 it is possible to distinguish among three classes of tree mortality; defoliated and undefoliated areas; non-host mixed conifers; and mountain meadows, rock domes, lakes and glaciers. Machine tests showed significant differences in image densities among various bands and mortality areas.

  9. Why is quality estimation judgment fast? Comparison of gaze control strategies in quality and difference estimation tasks

    NASA Astrophysics Data System (ADS)

    Radun, Jenni; Leisti, Tuomas; Virtanen, Toni; Nyman, Göte; Häkkinen, Jukka

    2014-11-01

    To understand the viewing strategies employed in a quality estimation task, we compared two visual tasks-quality estimation and difference estimation. The estimation was done for a pair of natural images having small global changes in quality. Two groups of observers estimated the same set of images, but with different instructions. One group estimated the difference in quality and the other the difference between image pairs. The results demonstrated the use of different visual strategies in the tasks. The quality estimation was found to include more visual planning during the first fixation than the difference estimation, but afterward needed only a few long fixations on the semantically important areas of the image. The difference estimation used many short fixations. Salient image areas were mainly attended to when these areas were also semantically important. The results support the hypothesis that these tasks' general characteristics (evaluation time, number of fixations, area fixated on) show differences in processing, but also suggest that examining only single fixations when comparing tasks is too narrow a view. When planning a subjective experiment, one must remember that a small change in the instructions might lead to a noticeable change in viewing strategy.

  10. Audio–visual interactions for motion perception in depth modulate activity in visual area V3A

    PubMed Central

    Ogawa, Akitoshi; Macaluso, Emiliano

    2013-01-01

    Multisensory signals can enhance the spatial perception of objects and events in the environment. Changes of visual size and auditory intensity provide us with the main cues about motion direction in depth. However, frequency changes in audition and binocular disparity in vision also contribute to the perception of motion in depth. Here, we presented subjects with several combinations of auditory and visual depth-cues to investigate multisensory interactions during processing of motion in depth. The task was to discriminate the direction of auditory motion in depth according to increasing or decreasing intensity. Rising or falling auditory frequency provided an additional within-audition cue that matched or did not match the intensity change (i.e. intensity-frequency (IF) “matched vs. unmatched” conditions). In two-thirds of the trials, a task-irrelevant visual stimulus moved either in the same or opposite direction of the auditory target, leading to audio–visual “congruent vs. incongruent” between-modalities depth-cues. Furthermore, these conditions were presented either with or without binocular disparity. Behavioral data showed that the best performance was observed in the audio–visual congruent condition with IF matched. Brain imaging results revealed maximal response in visual area V3A when all cues provided congruent and reliable depth information (i.e. audio–visual congruent, IF-matched condition including disparity cues). Analyses of effective connectivity revealed increased coupling from auditory cortex to V3A specifically in audio–visual congruent trials. We conclude that within- and between-modalities cues jointly contribute to the processing of motion direction in depth, and that they do so via dynamic changes of connectivity between visual and auditory cortices. PMID:23333414

  11. Attention Increases Spike Count Correlations between Visual Cortical Areas.

    PubMed

    Ruff, Douglas A; Cohen, Marlene R

    2016-07-13

    Visual attention, which improves perception of attended locations or objects, has long been known to affect many aspects of the responses of neuronal populations in visual cortex. There are two nonmutually exclusive hypotheses concerning the neuronal mechanisms that underlie these perceptual improvements. The first hypothesis, that attention improves the information encoded by a population of neurons in a particular cortical area, has considerable physiological support. The second hypothesis is that attention improves perception by selectively communicating relevant visual information. This idea has been tested primarily by measuring interactions between neurons on very short timescales, which are mathematically nearly independent of neuronal interactions on longer timescales. We tested the hypothesis that attention changes the way visual information is communicated between cortical areas on longer timescales by recording simultaneously from neurons in primary visual cortex (V1) and the middle temporal area (MT) in rhesus monkeys. We used two independent and complementary approaches. Our correlative experiment showed that attention increases the trial-to-trial response variability that is shared between the two areas. In our causal experiment, we electrically microstimulated V1 and found that attention increased the effect of stimulation on MT responses. Together, our results suggest that attention affects both the way visual stimuli are encoded within a cortical area and the extent to which visual information is communicated between areas on behaviorally relevant timescales. Visual attention dramatically improves the perception of attended stimuli. Attention has long been thought to act by selecting relevant visual information for further processing. It has been hypothesized that this selection is accomplished by increasing communication between neurons that encode attended information in different cortical areas. We recorded simultaneously from neurons in primary visual cortex and the middle temporal area while rhesus monkeys performed an attention task. We found that attention increased shared variability between neurons in the two areas and that attention increased the effect of microstimulation in V1 on the firing rates of MT neurons. Our results provide support for the hypothesis that attention increases communication between neurons in different brain areas on behaviorally relevant timescales. Copyright © 2016 the authors 0270-6474/16/367523-12$15.00/0.

  12. Attention Increases Spike Count Correlations between Visual Cortical Areas

    PubMed Central

    Cohen, Marlene R.

    2016-01-01

    Visual attention, which improves perception of attended locations or objects, has long been known to affect many aspects of the responses of neuronal populations in visual cortex. There are two nonmutually exclusive hypotheses concerning the neuronal mechanisms that underlie these perceptual improvements. The first hypothesis, that attention improves the information encoded by a population of neurons in a particular cortical area, has considerable physiological support. The second hypothesis is that attention improves perception by selectively communicating relevant visual information. This idea has been tested primarily by measuring interactions between neurons on very short timescales, which are mathematically nearly independent of neuronal interactions on longer timescales. We tested the hypothesis that attention changes the way visual information is communicated between cortical areas on longer timescales by recording simultaneously from neurons in primary visual cortex (V1) and the middle temporal area (MT) in rhesus monkeys. We used two independent and complementary approaches. Our correlative experiment showed that attention increases the trial-to-trial response variability that is shared between the two areas. In our causal experiment, we electrically microstimulated V1 and found that attention increased the effect of stimulation on MT responses. Together, our results suggest that attention affects both the way visual stimuli are encoded within a cortical area and the extent to which visual information is communicated between areas on behaviorally relevant timescales. SIGNIFICANCE STATEMENT Visual attention dramatically improves the perception of attended stimuli. Attention has long been thought to act by selecting relevant visual information for further processing. It has been hypothesized that this selection is accomplished by increasing communication between neurons that encode attended information in different cortical areas. We recorded simultaneously from neurons in primary visual cortex and the middle temporal area while rhesus monkeys performed an attention task. We found that attention increased shared variability between neurons in the two areas and that attention increased the effect of microstimulation in V1 on the firing rates of MT neurons. Our results provide support for the hypothesis that attention increases communication between neurons in different brain areas on behaviorally relevant timescales. PMID:27413161

  13. Thalamic projections to visual and visuomotor areas (V6 and V6A) in the Rostral Bank of the parieto-occipital sulcus of the Macaque.

    PubMed

    Gamberini, Michela; Bakola, Sophia; Passarelli, Lauretta; Burman, Kathleen J; Rosa, Marcello G P; Fattori, Patrizia; Galletti, Claudio

    2016-04-01

    The medial posterior parietal cortex of the primate brain includes different functional areas, which have been defined based on the functional properties, cyto- and myeloarchitectural criteria, and cortico-cortical connections. Here, we describe the thalamic projections to two of these areas (V6 and V6A), based on 14 retrograde neuronal tracer injections in 11 hemispheres of 9 Macaca fascicularis. The injections were placed either by direct visualisation or using electrophysiological guidance, and the location of injection sites was determined post mortem based on cyto- and myeloarchitectural criteria. We found that the majority of the thalamic afferents to the visual area V6 originate in subdivisions of the lateral and inferior pulvinar nuclei, with weaker inputs originating from the central densocellular, paracentral, lateral posterior, lateral geniculate, ventral anterior and mediodorsal nuclei. In contrast, injections in both the dorsal and ventral parts of the visuomotor area V6A revealed strong inputs from the lateral posterior and medial pulvinar nuclei, as well as smaller inputs from the ventrolateral complex and from the central densocellular, paracentral, and mediodorsal nuclei. These projection patterns are in line with the functional properties of injected areas: "dorsal stream" extrastriate area V6 receives information from visuotopically organised subdivisions of the thalamus; whereas visuomotor area V6A, which is involved in the sensory guidance of arm movement, receives its primary afferents from thalamic nuclei that provide high-order somatic and visual input.

  14. Stimulus Dependence of Correlated Variability across Cortical Areas

    PubMed Central

    Cohen, Marlene R.

    2016-01-01

    The way that correlated trial-to-trial variability between pairs of neurons in the same brain area (termed spike count or noise correlation, rSC) depends on stimulus or task conditions can constrain models of cortical circuits and of the computations performed by networks of neurons (Cohen and Kohn, 2011). In visual cortex, rSC tends not to depend on stimulus properties (Kohn and Smith, 2005; Huang and Lisberger, 2009) but does depend on cognitive factors like visual attention (Cohen and Maunsell, 2009; Mitchell et al., 2009). However, neurons across visual areas respond to any visual stimulus or contribute to any perceptual decision, and the way that information from multiple areas is combined to guide perception is unknown. To gain insight into these issues, we recorded simultaneously from neurons in two areas of visual cortex (primary visual cortex, V1, and the middle temporal area, MT) while rhesus monkeys viewed different visual stimuli in different attention conditions. We found that correlations between neurons in different areas depend on stimulus and attention conditions in very different ways than do correlations within an area. Correlations across, but not within, areas depend on stimulus direction and the presence of a second stimulus, and attention has opposite effects on correlations within and across areas. This observed pattern of cross-area correlations is predicted by a normalization model where MT units sum V1 inputs that are passed through a divisive nonlinearity. Together, our results provide insight into how neurons in different areas interact and constrain models of the neural computations performed across cortical areas. SIGNIFICANCE STATEMENT Correlations in the responses of pairs of neurons within the same cortical area have been a subject of growing interest in systems neuroscience. However, correlated variability between different cortical areas is likely just as important. We recorded simultaneously from neurons in primary visual cortex and the middle temporal area while rhesus monkeys viewed different visual stimuli in different attention conditions. We found that correlations between neurons in different areas depend on stimulus and attention conditions in very different ways than do correlations within an area. The observed pattern of cross-area correlations was predicted by a simple normalization model. Our results provide insight into how neurons in different areas interact and constrain models of the neural computations performed across cortical areas. PMID:27413163

  15. A hierarchy of timescales explains distinct effects of local inhibition of primary visual cortex and frontal eye fields

    PubMed Central

    Cocchi, Luca; Sale, Martin V; L Gollo, Leonardo; Bell, Peter T; Nguyen, Vinh T; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B

    2016-01-01

    Within the primate visual system, areas at lower levels of the cortical hierarchy process basic visual features, whereas those at higher levels, such as the frontal eye fields (FEF), are thought to modulate sensory processes via feedback connections. Despite these functional exchanges during perception, there is little shared activity between early and late visual regions at rest. How interactions emerge between regions encompassing distinct levels of the visual hierarchy remains unknown. Here we combined neuroimaging, non-invasive cortical stimulation and computational modelling to characterize changes in functional interactions across widespread neural networks before and after local inhibition of primary visual cortex or FEF. We found that stimulation of early visual cortex selectively increased feedforward interactions with FEF and extrastriate visual areas, whereas identical stimulation of the FEF decreased feedback interactions with early visual areas. Computational modelling suggests that these opposing effects reflect a fast-slow timescale hierarchy from sensory to association areas. DOI: http://dx.doi.org/10.7554/eLife.15252.001 PMID:27596931

  16. A hierarchy of timescales explains distinct effects of local inhibition of primary visual cortex and frontal eye fields.

    PubMed

    Cocchi, Luca; Sale, Martin V; L Gollo, Leonardo; Bell, Peter T; Nguyen, Vinh T; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B

    2016-09-06

    Within the primate visual system, areas at lower levels of the cortical hierarchy process basic visual features, whereas those at higher levels, such as the frontal eye fields (FEF), are thought to modulate sensory processes via feedback connections. Despite these functional exchanges during perception, there is little shared activity between early and late visual regions at rest. How interactions emerge between regions encompassing distinct levels of the visual hierarchy remains unknown. Here we combined neuroimaging, non-invasive cortical stimulation and computational modelling to characterize changes in functional interactions across widespread neural networks before and after local inhibition of primary visual cortex or FEF. We found that stimulation of early visual cortex selectively increased feedforward interactions with FEF and extrastriate visual areas, whereas identical stimulation of the FEF decreased feedback interactions with early visual areas. Computational modelling suggests that these opposing effects reflect a fast-slow timescale hierarchy from sensory to association areas.

  17. Object localization, discrimination, and grasping with the optic nerve visual prosthesis.

    PubMed

    Duret, Florence; Brelén, Måten E; Lambert, Valerie; Gérard, Benoît; Delbeke, Jean; Veraart, Claude

    2006-01-01

    This study involved a volunteer completely blind from retinis pigmentosa who had previously been implanted with an optic nerve visual prosthesis. The aim of this two-year study was to train the volunteer to localize a given object in nine different positions, to discriminate the object within a choice of six, and then to grasp it. In a closed-loop protocol including a head worn video camera, the nerve was stimulated whenever a part of the processed image of the object being scrutinized matched the center of an elicitable phosphene. The accessible visual field included 109 phosphenes in a 14 degrees x 41 degrees area. Results showed that training was required to succeed in the localization and discrimination tasks, but practically no training was required for grasping the object. The volunteer was able to successfully complete all tasks after training. The volunteer systematically performed several left-right and bottom-up scanning movements during the discrimination task. Discrimination strategies included stimulation phases and no-stimulation phases of roughly similar duration. This study provides a step towards the practical use of the optic nerve visual prosthesis in current daily life.

  18. Reading in the dark: neural correlates and cross-modal plasticity for learning to read entire words without visual experience.

    PubMed

    Sigalov, Nadine; Maidenbaum, Shachar; Amedi, Amir

    2016-03-01

    Cognitive neuroscience has long attempted to determine the ways in which cortical selectivity develops, and the impact of nature vs. nurture on it. Congenital blindness (CB) offers a unique opportunity to test this question as the brains of blind individuals develop without visual experience. Here we approach this question through the reading network. Several areas in the visual cortex have been implicated as part of the reading network, and one of the main ones among them is the VWFA, which is selective to the form of letters and words. But what happens in the CB brain? On the one hand, it has been shown that cross-modal plasticity leads to the recruitment of occipital areas, including the VWFA, for linguistic tasks. On the other hand, we have recently demonstrated VWFA activity for letters in contrast to other visual categories when the information is provided via other senses such as touch or audition. Which of these tasks is more dominant? By which mechanism does the CB brain process reading? Using fMRI and visual-to-auditory sensory substitution which transfers the topographical features of the letters we compare reading with semantic and scrambled conditions in a group of CB. We found activation in early auditory and visual cortices during the early processing phase (letter), while the later phase (word) showed VWFA and bilateral dorsal-intraparietal activations for words. This further supports the notion that many visual regions in general, even early visual areas, also maintain a predilection for task processing even when the modality is variable and in spite of putative lifelong linguistic cross-modal plasticity. Furthermore, we find that the VWFA is recruited preferentially for letter and word form, while it was not recruited, and even exhibited deactivation, for an immediately subsequent semantic task suggesting that despite only short sensory substitution experience orthographic task processing can dominate semantic processing in the VWFA. On a wider scope, this implies that at least in some cases cross-modal plasticity which enables the recruitment of areas for new tasks may be dominated by sensory independent task specific activation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The Contribution of Increased Gamma Band Connectivity to Visual Non-Verbal Reasoning in Autistic Children: A MEG Study

    PubMed Central

    Takesaki, Natsumi; Kikuchi, Mitsuru; Yoshimura, Yuko; Hiraishi, Hirotoshi; Hasegawa, Chiaki; Kaneda, Reizo; Nakatani, Hideo; Takahashi, Tetsuya; Mottron, Laurent; Minabe, Yoshio

    2016-01-01

    Some individuals with autism spectrum (AS) perform better on visual reasoning tasks than would be predicted by their general cognitive performance. In individuals with AS, mechanisms in the brain’s visual area that underlie visual processing play a more prominent role in visual reasoning tasks than they do in normal individuals. In addition, increased connectivity with the visual area is thought to be one of the neural bases of autistic visual cognitive abilities. However, the contribution of such brain connectivity to visual cognitive abilities is not well understood, particularly in children. In this study, we investigated how functional connectivity between the visual areas and higher-order regions, which is reflected by alpha, beta and gamma band oscillations, contributes to the performance of visual reasoning tasks in typically developing (TD) (n = 18) children and AS children (n = 18). Brain activity was measured using a custom child-sized magneto-encephalograph. Imaginary coherence analysis was used as a proxy to estimate the functional connectivity between the occipital and other areas of the brain. Stronger connectivity from the occipital area, as evidenced by higher imaginary coherence in the gamma band, was associated with higher performance in the AS children only. We observed no significant correlation between the alpha or beta bands imaginary coherence and performance in the both groups. Alpha and beta bands reflect top-down pathways, while gamma band oscillations reflect a bottom-up influence. Therefore, our results suggest that visual reasoning in AS children is at least partially based on an enhanced reliance on visual perception and increased bottom-up connectivity from the visual areas. PMID:27631982

  20. Development of a computer program data base of a navigation aid environment for simulated IFR flight and landing studies

    NASA Technical Reports Server (NTRS)

    Bergeron, H. P.; Haynie, A. T.; Mcdede, J. B.

    1980-01-01

    A general aviation single pilot instrument flight rule simulation capability was developed. Problems experienced by single pilots flying in IFR conditions were investigated. The simulation required a three dimensional spatial navaid environment of a flight navigational area. A computer simulation of all the navigational aids plus 12 selected airports located in the Washington/Norfolk area was developed. All programmed locations in the list were referenced to a Cartesian coordinate system with the origin located at a specified airport's reference point. All navigational aids with their associated frequencies, call letters, locations, and orientations plus runways and true headings are included in the data base. The simulation included a TV displayed out-the-window visual scene of country and suburban terrain and a scaled model runway complex. Any of the programmed runways, with all its associated navaids, can be referenced to a runway on the airport in this visual scene. This allows a simulation of a full mission scenario including breakout and landing.

  1. Spatiotemporal Visualization of Tsunami Waves Using Kml on Google Earth

    NASA Astrophysics Data System (ADS)

    Mohammadi, H.; Delavar, M. R.; Sharifi, M. A.; Pirooz, M. D.

    2017-09-01

    Disaster risk is a function of hazard and vulnerability. Risk is defined as the expected losses, including lives, personal injuries, property damages, and economic disruptions, due to a particular hazard for a given area and time period. Risk assessment is one of the key elements of a natural disaster management strategy as it allows for better disaster mitigation and preparation. It provides input for informed decision making, and increases risk awareness among decision makers and other stakeholders. Virtual globes such as Google Earth can be used as a visualization tool. Proper spatiotemporal graphical representations of the concerned risk significantly reduces the amount of effort to visualize the impact of the risk and improves the efficiency of the decision-making process to mitigate the impact of the risk. The spatiotemporal visualization of tsunami waves for disaster management process is an attractive topic in geosciences to assist investigation of areas at tsunami risk. In this paper, a method for coupling virtual globes with tsunami wave arrival time models is presented. In this process we have shown 2D+Time of tsunami waves for propagation and inundation of tsunami waves, both coastal line deformation, and the flooded areas. In addition, the worst case scenario of tsunami on Chabahar port derived from tsunami modelling is also presented using KML on google earth.

  2. A survey on sensor coverage and visual data capturing/processing/transmission in wireless visual sensor networks.

    PubMed

    Yap, Florence G H; Yen, Hong-Hsu

    2014-02-20

    Wireless Visual Sensor Networks (WVSNs) where camera-equipped sensor nodes can capture, process and transmit image/video information have become an important new research area. As compared to the traditional wireless sensor networks (WSNs) that can only transmit scalar information (e.g., temperature), the visual data in WVSNs enable much wider applications, such as visual security surveillance and visual wildlife monitoring. However, as compared to the scalar data in WSNs, visual data is much bigger and more complicated so intelligent schemes are required to capture/process/ transmit visual data in limited resources (hardware capability and bandwidth) WVSNs. WVSNs introduce new multi-disciplinary research opportunities of topics that include visual sensor hardware, image and multimedia capture and processing, wireless communication and networking. In this paper, we survey existing research efforts on the visual sensor hardware, visual sensor coverage/deployment, and visual data capture/ processing/transmission issues in WVSNs. We conclude that WVSN research is still in an early age and there are still many open issues that have not been fully addressed. More new novel multi-disciplinary, cross-layered, distributed and collaborative solutions should be devised to tackle these challenging issues in WVSNs.

  3. A Survey on Sensor Coverage and Visual Data Capturing/Processing/Transmission in Wireless Visual Sensor Networks

    PubMed Central

    Yap, Florence G. H.; Yen, Hong-Hsu

    2014-01-01

    Wireless Visual Sensor Networks (WVSNs) where camera-equipped sensor nodes can capture, process and transmit image/video information have become an important new research area. As compared to the traditional wireless sensor networks (WSNs) that can only transmit scalar information (e.g., temperature), the visual data in WVSNs enable much wider applications, such as visual security surveillance and visual wildlife monitoring. However, as compared to the scalar data in WSNs, visual data is much bigger and more complicated so intelligent schemes are required to capture/process/transmit visual data in limited resources (hardware capability and bandwidth) WVSNs. WVSNs introduce new multi-disciplinary research opportunities of topics that include visual sensor hardware, image and multimedia capture and processing, wireless communication and networking. In this paper, we survey existing research efforts on the visual sensor hardware, visual sensor coverage/deployment, and visual data capture/processing/transmission issues in WVSNs. We conclude that WVSN research is still in an early age and there are still many open issues that have not been fully addressed. More new novel multi-disciplinary, cross-layered, distributed and collaborative solutions should be devised to tackle these challenging issues in WVSNs. PMID:24561401

  4. Sketchy Rendering for Information Visualization.

    PubMed

    Wood, J; Isenberg, P; Isenberg, T; Dykes, J; Boukhelifa, N; Slingsby, A

    2012-12-01

    We present and evaluate a framework for constructing sketchy style information visualizations that mimic data graphics drawn by hand. We provide an alternative renderer for the Processing graphics environment that redefines core drawing primitives including line, polygon and ellipse rendering. These primitives allow higher-level graphical features such as bar charts, line charts, treemaps and node-link diagrams to be drawn in a sketchy style with a specified degree of sketchiness. The framework is designed to be easily integrated into existing visualization implementations with minimal programming modification or design effort. We show examples of use for statistical graphics, conveying spatial imprecision and for enhancing aesthetic and narrative qualities of visualization. We evaluate user perception of sketchiness of areal features through a series of stimulus-response tests in order to assess users' ability to place sketchiness on a ratio scale, and to estimate area. Results suggest relative area judgment is compromised by sketchy rendering and that its influence is dependent on the shape being rendered. They show that degree of sketchiness may be judged on an ordinal scale but that its judgement varies strongly between individuals. We evaluate higher-level impacts of sketchiness through user testing of scenarios that encourage user engagement with data visualization and willingness to critique visualization design. Results suggest that where a visualization is clearly sketchy, engagement may be increased and that attitudes to participating in visualization annotation are more positive. The results of our work have implications for effective information visualization design that go beyond the traditional role of sketching as a tool for prototyping or its use for an indication of general uncertainty.

  5. Aging and feature search: the effect of search area.

    PubMed

    Burton-Danner, K; Owsley, C; Jackson, G R

    2001-01-01

    The preattentive system involves the rapid parallel processing of visual information in the visual scene so that attention can be directed to meaningful objects and locations in the environment. This study used the feature search methodology to examine whether there are aging-related deficits in parallel-processing capabilities when older adults are required to visually search a large area of the visual field. Like young subjects, older subjects displayed flat, near-zero slopes for the Reaction Time x Set Size function when searching over a broad area (30 degrees radius) of the visual field, implying parallel processing of the visual display. These same older subjects exhibited impairment in another task, also dependent on parallel processing, performed over the same broad field area; this task, called the useful field of view test, has more complex task demands. Results imply that aging-related breakdowns of parallel processing over a large visual field area are not likely to emerge when required responses are simple, there is only one task to perform, and there is no limitation on visual inspection time.

  6. Perceptual learning and adult cortical plasticity.

    PubMed

    Gilbert, Charles D; Li, Wu; Piech, Valentin

    2009-06-15

    The visual cortex retains the capacity for experience-dependent changes, or plasticity, of cortical function and cortical circuitry, throughout life. These changes constitute the mechanism of perceptual learning in normal visual experience and in recovery of function after CNS damage. Such plasticity can be seen at multiple stages in the visual pathway, including primary visual cortex. The manifestation of the functional changes associated with perceptual learning involve both long term modification of cortical circuits during the course of learning, and short term dynamics in the functional properties of cortical neurons. These dynamics are subject to top-down influences of attention, expectation and perceptual task. As a consequence, each cortical area is an adaptive processor, altering its function in accordance to immediate perceptual demands.

  7. Selectivity to Translational Egomotion in Human Brain Motion Areas

    PubMed Central

    Pitzalis, Sabrina; Sdoia, Stefano; Bultrini, Alessandro; Committeri, Giorgia; Di Russo, Francesco; Fattori, Patrizia; Galletti, Claudio; Galati, Gaspare

    2013-01-01

    The optic flow generated when a person moves through the environment can be locally decomposed into several basic components, including radial, circular, translational and spiral motion. Since their analysis plays an important part in the visual perception and control of locomotion and posture it is likely that some brain regions in the primate dorsal visual pathway are specialized to distinguish among them. The aim of this study is to explore the sensitivity to different types of egomotion-compatible visual stimulations in the human motion-sensitive regions of the brain. Event-related fMRI experiments, 3D motion and wide-field stimulation, functional localizers and brain mapping methods were used to study the sensitivity of six distinct motion areas (V6, MT, MST+, V3A, CSv and an Intra-Parietal Sulcus motion [IPSmot] region) to different types of optic flow stimuli. Results show that only areas V6, MST+ and IPSmot are specialized in distinguishing among the various types of flow patterns, with a high response for the translational flow which was maximum in V6 and IPSmot and less marked in MST+. Given that during egomotion the translational optic flow conveys differential information about the near and far external objects, areas V6 and IPSmot likely process visual egomotion signals to extract information about the relative distance of objects with respect to the observer. Since area V6 is also involved in distinguishing object-motion from self-motion, it could provide information about location in space of moving and static objects during self-motion, particularly in a dynamically unstable environment. PMID:23577096

  8. Visual Functions of the Thalamus

    PubMed Central

    Usrey, W. Martin; Alitto, Henry J.

    2017-01-01

    The thalamus is the heavily interconnected partner of the neocortex. All areas of the neocortex receive afferent input from and send efferent projections to specific thalamic nuclei. Through these connections, the thalamus serves to provide the cortex with sensory input, and to facilitate interareal cortical communication and motor and cognitive functions. In the visual system, the lateral geniculate nucleus (LGN) of the dorsal thalamus is the gateway through which visual information reaches the cerebral cortex. Visual processing in the LGN includes spatial and temporal influences on visual signals that serve to adjust response gain, transform the temporal structure of retinal activity patterns, and increase the signal-to-noise ratio of the retinal signal while preserving its basic content. This review examines recent advances in our understanding of LGN function and circuit organization and places these findings in a historical context. PMID:28217740

  9. Shared neural processes support semantic control and action understanding

    PubMed Central

    Davey, James; Rueschemeyer, Shirley-Ann; Costigan, Alison; Murphy, Nik; Krieger-Redwood, Katya; Hallam, Glyn; Jefferies, Elizabeth

    2015-01-01

    Executive–semantic control and action understanding appear to recruit overlapping brain regions but existing evidence from neuroimaging meta-analyses and neuropsychology lacks spatial precision; we therefore manipulated difficulty and feature type (visual vs. action) in a single fMRI study. Harder judgements recruited an executive–semantic network encompassing medial and inferior frontal regions (including LIFG) and posterior temporal cortex (including pMTG). These regions partially overlapped with brain areas involved in action but not visual judgements. In LIFG, the peak responses to action and difficulty were spatially identical across participants, while these responses were overlapping yet spatially distinct in posterior temporal cortex. We propose that the co-activation of LIFG and pMTG allows the flexible retrieval of semantic information, appropriate to the current context; this might be necessary both for semantic control and understanding actions. Feature selection in difficult trials also recruited ventral occipital–temporal areas, not implicated in action understanding. PMID:25658631

  10. Multimission image processing and science data visualization

    NASA Technical Reports Server (NTRS)

    Green, William B.

    1993-01-01

    The Operational Science Analysis (OSA) Functional area supports science instrument data display, analysis, visualization and photo processing in support of flight operations of planetary spacecraft managed by the Jet Propulsion Laboratory (JPL). This paper describes the data products generated by the OSA functional area, and the current computer system used to generate these data products. The objectives on a system upgrade now in process are described. The design approach to development of the new system are reviewed, including use of the Unix operating system and X-Window display standards to provide platform independence, portability, and modularity within the new system, is reviewed. The new system should provide a modular and scaleable capability supporting a variety of future missions at JPL.

  11. On the role of visual experience in mathematical development: Evidence from blind mathematicians.

    PubMed

    Amalric, Marie; Denghien, Isabelle; Dehaene, Stanislas

    2018-04-01

    Advanced mathematical reasoning, regardless of domain or difficulty, activates a reproducible set of bilateral brain areas including intraparietal, inferior temporal and dorsal prefrontal cortex. The respective roles of genetics, experience and education in the development of this math-responsive network, however, remain unresolved. Here, we investigate the role of visual experience by studying the exceptional case of three professional mathematicians who were blind from birth (n=1) or became blind during childhood (n=2). Subjects were scanned with fMRI while they judged the truth value of spoken mathematical and nonmathematical statements. Blind mathematicians activated the classical network of math-related areas during mathematical reflection, similar to that found in a group of sighted professional mathematicians. Thus, brain networks for advanced mathematical reasoning can develop in the absence of visual experience. Additional activations were found in occipital cortex, even in individuals who became blind during childhood, suggesting that either mental imagery or a more radical repurposing of visual cortex may occur in blind mathematicians. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy.

    PubMed

    Wessel, Matthew M; Aaker, Grant D; Parlitsis, George; Cho, Minhee; D'Amico, Donald J; Kiss, Szilárd

    2012-04-01

    To evaluate patients with diabetic retinopathy using ultra-wide-field fluorescein angiography and to compare the visualized retinal pathology with that seen on an overly of conventional 7 standard field (7SF) imaging. Two hundred and eighteen eyes of 118 diabetic patients who underwent diagnostic fluorescein angiography using the Optos Optomap Panoramic 200A imaging system were included. The visualized area of the retina, retinal nonperfusion, retinal neovascularization, and panretinal photocoagulation were quantified by two independent masked graders. The respective areas identified on the ultra-wide-field fluorescein angiography image were compared with an overly of a modified 7SF image as outlined in the Early Treatment Diabetic Retinopathy Study. Ultra-wide-field fluorescein angiograms imaging, on average, demonstrated 3.2 times more total retinal surface area than 7SF. When compared with 7SF, ultra-wide-field fluorescein angiography showed 3.9 times more nonperfusion (P < 0.001), 1.9 times more neovascularization (P = 0.036), and 3.8 times more panretinal photocoagulation (P < 0.001). In 22 eyes (10%), ultra-wide-field fluorescein angiography demonstrated retinal pathology (including nonperfusion and neovascularization) not evident in an 7SF overly. Compared with conventional 7SF imaging, ultra-wide-field fluorescein angiography reveals significantly more retinal vascular pathology in patients with diabetic retinopathy. Improved retinal visualization may alter the classification of diabetic retinopathy and may therefore influence follow-up and treatment of these patients.

  13. Representation of the visual field in the primary visual area of the marmoset monkey: magnification factors, point-image size, and proportionality to retinal ganglion cell density.

    PubMed

    Chaplin, Tristan A; Yu, Hsin-Hao; Rosa, Marcello G P

    2013-04-01

    The primary visual area (V1) forms a systematic map of the visual field, in which adjacent cell clusters represent adjacent points of visual space. A precise quantification of this map is key to understanding the anatomical relationships between neurons located in different stations of the visual pathway, as well as the neural bases of visual performance in different regions of the visual field. We used computational methods to quantify the visual topography of V1 in the marmoset (Callithrix jacchus), a small diurnal monkey. The receptive fields of neurons throughout V1 were mapped in two anesthetized animals using electrophysiological recordings. Following histological reconstruction, precise 3D reconstructions of the V1 surface and recording sites were generated. We found that the areal magnification factor (M(A) ) decreases with eccentricity following a function that has the same slope as that observed in larger diurnal primates, including macaque, squirrel, and capuchin monkeys, and humans. However, there was no systematic relationship between M(A) and polar angle. Despite individual variation in the shape of V1, the relationship between M(A) and eccentricity was preserved across cases. Comparison between V1 and the retinal ganglion cell density demonstrated preferential magnification of central space in the cortex. The size of the cortical compartment activated by a punctiform stimulus decreased from the foveal representation towards the peripheral representation. Nonetheless, the relationship between the receptive field sizes of V1 cells and the density of ganglion cells suggested that each V1 cell receives information from a similar number of retinal neurons, throughout the visual field. Copyright © 2012 Wiley Periodicals, Inc.

  14. A novel role for visual perspective cues in the neural computation of depth

    PubMed Central

    Kim, HyungGoo R.; Angelaki, Dora E.; DeAngelis, Gregory C.

    2014-01-01

    As we explore a scene, our eye movements add global patterns of motion to the retinal image, complicating visual motion produced by self-motion or moving objects. Conventionally, it has been assumed that extra-retinal signals, such as efference copy of smooth pursuit commands, are required to compensate for the visual consequences of eye rotations. We consider an alternative possibility: namely, that the visual system can infer eye rotations from global patterns of image motion. We visually simulated combinations of eye translation and rotation, including perspective distortions that change dynamically over time. We demonstrate that incorporating these “dynamic perspective” cues allows the visual system to generate selectivity for depth sign from motion parallax in macaque area MT, a computation that was previously thought to require extra-retinal signals regarding eye velocity. Our findings suggest novel neural mechanisms that analyze global patterns of visual motion to perform computations that require knowledge of eye rotations. PMID:25436667

  15. Visual Receptive Field Heterogeneity and Functional Connectivity of Adjacent Neurons in Primate Frontoparietal Association Cortices.

    PubMed

    Viswanathan, Pooja; Nieder, Andreas

    2017-09-13

    The basic organization principles of the primary visual cortex (V1) are commonly assumed to also hold in the association cortex such that neurons within a cortical column share functional connectivity patterns and represent the same region of the visual field. We mapped the visual receptive fields (RFs) of neurons recorded at the same electrode in the ventral intraparietal area (VIP) and the lateral prefrontal cortex (PFC) of rhesus monkeys. We report that the spatial characteristics of visual RFs between adjacent neurons differed considerably, with increasing heterogeneity from VIP to PFC. In addition to RF incongruences, we found differential functional connectivity between putative inhibitory interneurons and pyramidal cells in PFC and VIP. These findings suggest that local RF topography vanishes with hierarchical distance from visual cortical input and argue for increasingly modified functional microcircuits in noncanonical association cortices that contrast V1. SIGNIFICANCE STATEMENT Our visual field is thought to be represented faithfully by the early visual brain areas; all the information from a certain region of the visual field is conveyed to neurons situated close together within a functionally defined cortical column. We examined this principle in the association areas, PFC, and ventral intraparietal area of rhesus monkeys and found that adjacent neurons represent markedly different areas of the visual field. This is the first demonstration of such noncanonical organization of these brain areas. Copyright © 2017 the authors 0270-6474/17/378919-10$15.00/0.

  16. The origins of metamodality in visual object area LO: Bodily topographical biases and increased functional connectivity to S1

    PubMed Central

    Tal, Zohar; Geva, Ran; Amedi, Amir

    2016-01-01

    Recent evidence from blind participants suggests that visual areas are task-oriented and sensory modality input independent rather than sensory-specific to vision. Specifically, visual areas are thought to retain their functional selectivity when using non-visual inputs (touch or sound) even without having any visual experience. However, this theory is still controversial since it is not clear whether this also characterizes the sighted brain, and whether the reported results in the sighted reflect basic fundamental a-modal processes or are an epiphenomenon to a large extent. In the current study, we addressed these questions using a series of fMRI experiments aimed to explore visual cortex responses to passive touch on various body parts and the coupling between the parietal and visual cortices as manifested by functional connectivity. We show that passive touch robustly activated the object selective parts of the lateral–occipital (LO) cortex while deactivating almost all other occipital–retinotopic-areas. Furthermore, passive touch responses in the visual cortex were specific to hand and upper trunk stimulations. Psychophysiological interaction (PPI) analysis suggests that LO is functionally connected to the hand area in the primary somatosensory homunculus (S1), during hand and shoulder stimulations but not to any of the other body parts. We suggest that LO is a fundamental hub that serves as a node between visual-object selective areas and S1 hand representation, probably due to the critical evolutionary role of touch in object recognition and manipulation. These results might also point to a more general principle suggesting that recruitment or deactivation of the visual cortex by other sensory input depends on the ecological relevance of the information conveyed by this input to the task/computations carried out by each area or network. This is likely to rely on the unique and differential pattern of connectivity for each visual area with the rest of the brain. PMID:26673114

  17. The Top 10 Challenges in Extreme-Scale Visual Analytics

    PubMed Central

    Wong, Pak Chung; Shen, Han-Wei; Johnson, Christopher R.; Chen, Chaomei; Ross, Robert B.

    2013-01-01

    In this issue of CG&A, researchers share their R&D findings and results on applying visual analytics (VA) to extreme-scale data. Having surveyed these articles and other R&D in this field, we’ve identified what we consider the top challenges of extreme-scale VA. To cater to the magazine’s diverse readership, our discussion evaluates challenges in all areas of the field, including algorithms, hardware, software, engineering, and social issues. PMID:24489426

  18. The urban FIA inventory: plot design, data collection, data flow and processing

    Treesearch

    Tonya Lister; Mark Majewsky; Mark A. Hatfield; Angie Rowe; Bill Dunning; Chris Edgar; Tom Brandeis

    2015-01-01

    More than 80 percent of the U.S. population lives in urban areas and tree cover in these areas offers a wide range of environmental benefits including the provision of wildlife habitat, aesthetic appeal and visual barriers, microclimate control, water quality improvement, and air and noise pollution control. Recognizing the importance of urban forests, and with...

  19. Implementing Visually Cued Imitation Training with Children with Autism Spectrum Disorders and Developmental Delays

    ERIC Educational Resources Information Center

    Ganz, Jennifer B.; Bourgeois, Bethany C.; Flores, Margaret M.; Campos, B. Adriana

    2008-01-01

    Clearly, imitation is linked to a variety of skill areas. As a result, children with autism and developmental delays are less likely than their typical peers to perform well in many areas of development, including play and speech. The purpose of this study was to determine if a simple, teacher-friendly strategy could be implemented that would…

  20. Cortical cell and neuron density estimates in one chimpanzee hemisphere.

    PubMed

    Collins, Christine E; Turner, Emily C; Sawyer, Eva Kille; Reed, Jamie L; Young, Nicole A; Flaherty, David K; Kaas, Jon H

    2016-01-19

    The density of cells and neurons in the neocortex of many mammals varies across cortical areas and regions. This variability is, perhaps, most pronounced in primates. Nonuniformity in the composition of cortex suggests regions of the cortex have different specializations. Specifically, regions with densely packed neurons contain smaller neurons that are activated by relatively few inputs, thereby preserving information, whereas regions that are less densely packed have larger neurons that have more integrative functions. Here we present the numbers of cells and neurons for 742 discrete locations across the neocortex in a chimpanzee. Using isotropic fractionation and flow fractionation methods for cell and neuron counts, we estimate that neocortex of one hemisphere contains 9.5 billion cells and 3.7 billion neurons. Primary visual cortex occupies 35 cm(2) of surface, 10% of the total, and contains 737 million densely packed neurons, 20% of the total neurons contained within the hemisphere. Other areas of high neuron packing include secondary visual areas, somatosensory cortex, and prefrontal granular cortex. Areas of low levels of neuron packing density include motor and premotor cortex. These values reflect those obtained from more limited samples of cortex in humans and other primates.

  1. Facial Recognition in a Discus Fish (Cichlidae): Experimental Approach Using Digital Models

    PubMed Central

    Satoh, Shun; Tanaka, Hirokazu; Kohda, Masanori

    2016-01-01

    A number of mammals and birds are known to be capable of visually discriminating between familiar and unfamiliar individuals, depending on facial patterns in some species. Many fish also visually recognize other conspecifics individually, and previous studies report that facial color patterns can be an initial signal for individual recognition. For example, a cichlid fish and a damselfish will use individual-specific color patterns that develop only in the facial area. However, it remains to be determined whether the facial area is an especially favorable site for visual signals in fish, and if so why? The monogamous discus fish, Symphysopdon aequifasciatus (Cichlidae), is capable of visually distinguishing its pair-partner from other conspecifics. Discus fish have individual-specific coloration patterns on entire body including the facial area, frontal head, trunk and vertical fins. If the facial area is an inherently important site for the visual cues, this species will use facial patterns for individual recognition, but otherwise they will use patterns on other body parts as well. We used modified digital models to examine whether discus fish use only facial coloration for individual recognition. Digital models of four different combinations of familiar and unfamiliar fish faces and bodies were displayed in frontal and lateral views. Focal fish frequently performed partner-specific displays towards partner-face models, and did aggressive displays towards models of non-partner’s faces. We conclude that to identify individuals this fish does not depend on frontal color patterns but does on lateral facial color patterns, although they have unique color patterns on the other parts of body. We discuss the significance of facial coloration for individual recognition in fish compared with birds and mammals. PMID:27191162

  2. Facial Recognition in a Discus Fish (Cichlidae): Experimental Approach Using Digital Models.

    PubMed

    Satoh, Shun; Tanaka, Hirokazu; Kohda, Masanori

    2016-01-01

    A number of mammals and birds are known to be capable of visually discriminating between familiar and unfamiliar individuals, depending on facial patterns in some species. Many fish also visually recognize other conspecifics individually, and previous studies report that facial color patterns can be an initial signal for individual recognition. For example, a cichlid fish and a damselfish will use individual-specific color patterns that develop only in the facial area. However, it remains to be determined whether the facial area is an especially favorable site for visual signals in fish, and if so why? The monogamous discus fish, Symphysopdon aequifasciatus (Cichlidae), is capable of visually distinguishing its pair-partner from other conspecifics. Discus fish have individual-specific coloration patterns on entire body including the facial area, frontal head, trunk and vertical fins. If the facial area is an inherently important site for the visual cues, this species will use facial patterns for individual recognition, but otherwise they will use patterns on other body parts as well. We used modified digital models to examine whether discus fish use only facial coloration for individual recognition. Digital models of four different combinations of familiar and unfamiliar fish faces and bodies were displayed in frontal and lateral views. Focal fish frequently performed partner-specific displays towards partner-face models, and did aggressive displays towards models of non-partner's faces. We conclude that to identify individuals this fish does not depend on frontal color patterns but does on lateral facial color patterns, although they have unique color patterns on the other parts of body. We discuss the significance of facial coloration for individual recognition in fish compared with birds and mammals.

  3. Correlation between language function and the left arcuate fasciculus detected by diffusion tensor imaging tractography after brain tumor surgery.

    PubMed

    Hayashi, Yutaka; Kinoshita, Masashi; Nakada, Mitsutoshi; Hamada, Jun-ichiro

    2012-11-01

    Disturbance of the arcuate fasciculus in the dominant hemisphere is thought to be associated with language-processing disorders, including conduction aphasia. Although the arcuate fasciculus can be visualized in vivo with diffusion tensor imaging (DTI) tractography, its involvement in functional processes associated with language has not been shown dynamically using DTI tractography. In the present study, to clarify the participation of the arcuate fasciculus in language functions, postoperative changes in the arcuate fasciculus detected by DTI tractography were evaluated chronologically in relation to postoperative changes in language function after brain tumor surgery. Preoperative and postoperative arcuate fasciculus area and language function were examined in 7 right-handed patients with a brain tumor in the left hemisphere located in proximity to part of the arcuate fasciculus. The arcuate fasciculus was depicted, and its area was calculated using DTI tractography. Language functions were measured using the Western Aphasia Battery (WAB). After tumor resection, visualization of the arcuate fasciculus was increased in 5 of the 7 patients, and the total WAB score improved in 6 of the 7 patients. The relative ratio of postoperative visualized area of the arcuate fasciculus to preoperative visualized area of the arcuate fasciculus was increased in association with an improvement in postoperative language function (p = 0.0039). The role of the left arcuate fasciculus in language functions can be evaluated chronologically in vivo by DTI tractography after brain tumor surgery. Because increased postoperative visualization of the fasciculus was significantly associated with postoperative improvement in language functions, the arcuate fasciculus may play an important role in language function, as previously thought. In addition, postoperative changes in the arcuate fasciculus detected by DTI tractography could represent a predicting factor for postoperative language-dependent functional outcomes in patients with brain tumor.

  4. Functional connectivity of visual cortex in the blind follows retinotopic organization principles.

    PubMed

    Striem-Amit, Ella; Ovadia-Caro, Smadar; Caramazza, Alfonso; Margulies, Daniel S; Villringer, Arno; Amedi, Amir

    2015-06-01

    Is visual input during critical periods of development crucial for the emergence of the fundamental topographical mapping of the visual cortex? And would this structure be retained throughout life-long blindness or would it fade as a result of plastic, use-based reorganization? We used functional connectivity magnetic resonance imaging based on intrinsic blood oxygen level-dependent fluctuations to investigate whether significant traces of topographical mapping of the visual scene in the form of retinotopic organization, could be found in congenitally blind adults. A group of 11 fully and congenitally blind subjects and 18 sighted controls were studied. The blind demonstrated an intact functional connectivity network structural organization of the three main retinotopic mapping axes: eccentricity (centre-periphery), laterality (left-right), and elevation (upper-lower) throughout the retinotopic cortex extending to high-level ventral and dorsal streams, including characteristic eccentricity biases in face- and house-selective areas. Functional connectivity-based topographic organization in the visual cortex was indistinguishable from the normally sighted retinotopic functional connectivity structure as indicated by clustering analysis, and was found even in participants who did not have a typical retinal development in utero (microphthalmics). While the internal structural organization of the visual cortex was strikingly similar, the blind exhibited profound differences in functional connectivity to other (non-visual) brain regions as compared to the sighted, which were specific to portions of V1. Central V1 was more connected to language areas but peripheral V1 to spatial attention and control networks. These findings suggest that current accounts of critical periods and experience-dependent development should be revisited even for primary sensory areas, in that the connectivity basis for visual cortex large-scale topographical organization can develop without any visual experience and be retained through life-long experience-dependent plasticity. Furthermore, retinotopic divisions of labour, such as that between the visual cortex regions normally representing the fovea and periphery, also form the basis for topographically-unique plastic changes in the blind. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  5. Neural representation of form-contingent color filling-in in the early visual cortex.

    PubMed

    Hong, Sang Wook; Tong, Frank

    2017-11-01

    Perceptual filling-in exemplifies the constructive nature of visual processing. Color, a prominent surface property of visual objects, can appear to spread to neighboring areas that lack any color. We investigated cortical responses to a color filling-in illusion that effectively dissociates perceived color from the retinal input (van Lier, Vergeer, & Anstis, 2009). Observers adapted to a star-shaped stimulus with alternating red- and cyan-colored points to elicit a complementary afterimage. By presenting an achromatic outline that enclosed one of the two afterimage colors, perceptual filling-in of that color was induced in the unadapted central region. Visual cortical activity was monitored with fMRI, and analyzed using multivariate pattern analysis. Activity patterns in early visual areas (V1-V4) reliably distinguished between the two color-induced filled-in conditions, but only higher extrastriate visual areas showed the predicted correspondence with color perception. Activity patterns allowed for reliable generalization between filled-in colors and physical presentations of perceptually matched colors in areas V3 and V4, but not in earlier visual areas. These findings suggest that the perception of filled-in surface color likely requires more extensive processing by extrastriate visual areas, in order for the neural representation of surface color to become aligned with perceptually matched real colors.

  6. Right Brodmann area 18 predicts tremor arrest after Vim radiosurgery: a voxel-based morphometry study.

    PubMed

    Tuleasca, Constantin; Witjas, Tatiana; Van de Ville, Dimitri; Najdenovska, Elena; Verger, Antoine; Girard, Nadine; Champoudry, Jerome; Thiran, Jean-Philippe; Cuadra, Meritxell Bach; Levivier, Marc; Guedj, Eric; Régis, Jean

    2018-03-01

    Drug-resistant essential tremor (ET) can benefit from open standard stereotactic procedures, such as deep-brain stimulation or radiofrequency thalamotomy. Non-surgical candidates can be offered either high-focused ultrasound (HIFU) or radiosurgery (RS). All procedures aim to target the same thalamic site, the ventro-intermediate nucleus (e.g., Vim). The mechanisms by which tremor stops after Vim RS or HIFU remain unknown. We used voxel-based morphometry (VBM) on pretherapeutic neuroimaging data and assessed which anatomical site would best correlate with tremor arrest 1 year after Vim RS. Fifty-two patients (30 male, 22 female; mean age 71.6 years, range 49-82) with right-sided ET benefited from left unilateral Vim RS in Marseille, France. Targeting was performed in a uniform manner, using 130 Gy and a single 4-mm collimator. Neurological (pretherapeutic and 1 year after) and neuroimaging (baseline) assessments were completed. Tremor score on the treated hand (TSTH) at 1 year after Vim RS was included in a statistical parametric mapping analysis of variance (ANOVA) model as a continuous variable with pretherapeutic neuroimaging data. Pretherapeutic gray matter density (GMD) was further correlated with TSTH improvement. No a priori hypothesis was used in the statistical model. The only statistically significant region was right Brodmann area (BA) 18 (visual association area V2, p = 0.05, cluster size K c  = 71). Higher baseline GMD correlated with better TSTH improvement at 1 year after Vim RS (Spearman's rank correlation coefficient = 0.002). Routine baseline structural neuroimaging predicts TSTH improvement 1 year after Vim RS. The relevant anatomical area is the right visual association cortex (BA 18, V2). The question whether visual areas should be included in the targeting remains open.

  7. A circuit for saccadic suppression in the primate brain

    PubMed Central

    Cavanaugh, James; McAlonan, Kerry; Wurtz, Robert H.

    2017-01-01

    Saccades should cause us to see a blur as the eyes sweep across a visual scene. Specific brain mechanisms prevent this by producing suppression during saccades. Neuronal correlates of such suppression were first established in the visual superficial layers of the superior colliculus (SC) and subsequently have been observed in cortical visual areas, including the middle temporal visual area (MT). In this study, we investigated suppression in a recently identified circuit linking visual SC (SCs) to MT through the inferior pulvinar (PI). We examined responses to visual stimuli presented just before saccades to reveal a neuronal correlate of suppression driven by a copy of the saccade command, referred to as a corollary discharge. We found that visual responses were similarly suppressed in SCs, PI, and MT. Within each region, suppression of visual responses occurred with saccades into both visual hemifields, but only in the contralateral hemifield did this suppression consistently begin before the saccade (~100 ms). The consistency of the signal along the circuit led us to hypothesize that the suppression in MT was influenced by input from the SC. We tested this hypothesis in one monkey by inactivating neurons within the SC and found evidence that suppression in MT depends on corollary discharge signals from motor SC (SCi). Combining these results with recent findings in rodents, we propose a complete circuit originating with corollary discharge signals in SCi that produces suppression in visual SCs, PI, and ultimately, MT cortex. NEW & NOTEWORTHY A fundamental puzzle in visual neuroscience is that we frequently make rapid eye movements (saccades) but seldom perceive the visual blur accompanying each movement. We investigated neuronal correlates of this saccadic suppression by recording from and perturbing a recently identified circuit from brainstem to cortex. We found suppression at each stage, with evidence that it was driven by an internally generated signal. We conclude that this circuit contributes to neuronal suppression of visual signals during eye movements. PMID:28003409

  8. Audiovisual integration in hemianopia: A neurocomputational account based on cortico-collicular interaction.

    PubMed

    Magosso, Elisa; Bertini, Caterina; Cuppini, Cristiano; Ursino, Mauro

    2016-10-01

    Hemianopic patients retain some abilities to integrate audiovisual stimuli in the blind hemifield, showing both modulation of visual perception by auditory stimuli and modulation of auditory perception by visual stimuli. Indeed, conscious detection of a visual target in the blind hemifield can be improved by a spatially coincident auditory stimulus (auditory enhancement of visual detection), while a visual stimulus in the blind hemifield can improve localization of a spatially coincident auditory stimulus (visual enhancement of auditory localization). To gain more insight into the neural mechanisms underlying these two perceptual phenomena, we propose a neural network model including areas of neurons representing the retina, primary visual cortex (V1), extrastriate visual cortex, auditory cortex and the Superior Colliculus (SC). The visual and auditory modalities in the network interact via both direct cortical-cortical connections and subcortical-cortical connections involving the SC; the latter, in particular, integrates visual and auditory information and projects back to the cortices. Hemianopic patients were simulated by unilaterally lesioning V1, and preserving spared islands of V1 tissue within the lesion, to analyze the role of residual V1 neurons in mediating audiovisual integration. The network is able to reproduce the audiovisual phenomena in hemianopic patients, linking perceptions to neural activations, and disentangles the individual contribution of specific neural circuits and areas via sensitivity analyses. The study suggests i) a common key role of SC-cortical connections in mediating the two audiovisual phenomena; ii) a different role of visual cortices in the two phenomena: auditory enhancement of conscious visual detection being conditional on surviving V1 islands, while visual enhancement of auditory localization persisting even after complete V1 damage. The present study may contribute to advance understanding of the audiovisual dialogue between cortical and subcortical structures in healthy and unisensory deficit conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Audiovisual Modulation in Mouse Primary Visual Cortex Depends on Cross-Modal Stimulus Configuration and Congruency.

    PubMed

    Meijer, Guido T; Montijn, Jorrit S; Pennartz, Cyriel M A; Lansink, Carien S

    2017-09-06

    The sensory neocortex is a highly connected associative network that integrates information from multiple senses, even at the level of the primary sensory areas. Although a growing body of empirical evidence supports this view, the neural mechanisms of cross-modal integration in primary sensory areas, such as the primary visual cortex (V1), are still largely unknown. Using two-photon calcium imaging in awake mice, we show that the encoding of audiovisual stimuli in V1 neuronal populations is highly dependent on the features of the stimulus constituents. When the visual and auditory stimulus features were modulated at the same rate (i.e., temporally congruent), neurons responded with either an enhancement or suppression compared with unisensory visual stimuli, and their prevalence was balanced. Temporally incongruent tones or white-noise bursts included in audiovisual stimulus pairs resulted in predominant response suppression across the neuronal population. Visual contrast did not influence multisensory processing when the audiovisual stimulus pairs were congruent; however, when white-noise bursts were used, neurons generally showed response suppression when the visual stimulus contrast was high whereas this effect was absent when the visual contrast was low. Furthermore, a small fraction of V1 neurons, predominantly those located near the lateral border of V1, responded to sound alone. These results show that V1 is involved in the encoding of cross-modal interactions in a more versatile way than previously thought. SIGNIFICANCE STATEMENT The neural substrate of cross-modal integration is not limited to specialized cortical association areas but extends to primary sensory areas. Using two-photon imaging of large groups of neurons, we show that multisensory modulation of V1 populations is strongly determined by the individual and shared features of cross-modal stimulus constituents, such as contrast, frequency, congruency, and temporal structure. Congruent audiovisual stimulation resulted in a balanced pattern of response enhancement and suppression compared with unisensory visual stimuli, whereas incongruent or dissimilar stimuli at full contrast gave rise to a population dominated by response-suppressing neurons. Our results indicate that V1 dynamically integrates nonvisual sources of information while still attributing most of its resources to coding visual information. Copyright © 2017 the authors 0270-6474/17/378783-14$15.00/0.

  10. Ten Commandments for Microcomputer Facility Planners.

    ERIC Educational Resources Information Center

    Espinosa, Leonard J.

    1991-01-01

    Presents factors involved in designing a microcomputer facility, including how computers will be used in the instructional program; educational specifications; planning committees; user input; quality of purchases; visual supervision considerations; location; workstation design; turnkey systems; electrical requirements; local area networks;…

  11. Partial Correlation-Based Retinotopically Organized Resting-State Functional Connectivity Within and Between Areas of the Visual Cortex Reflects More Than Cortical Distance

    PubMed Central

    Dawson, Debra Ann; Lam, Jack; Lewis, Lindsay B.; Carbonell, Felix; Mendola, Janine D.

    2016-01-01

    Abstract Numerous studies have demonstrated functional magnetic resonance imaging (fMRI)-based resting-state functional connectivity (RSFC) between cortical areas. Recent evidence suggests that synchronous fluctuations in blood oxygenation level-dependent fMRI reflect functional organization at a scale finer than that of visual areas. In this study, we investigated whether RSFCs within and between lower visual areas are retinotopically organized and whether retinotopically organized RSFC merely reflects cortical distance. Subjects underwent retinotopic mapping and separately resting-state fMRI. Visual areas V1, V2, and V3, were subdivided into regions of interest (ROIs) according to quadrants and visual field eccentricity. Functional connectivity (FC) was computed based on Pearson's linear correlation (correlation), and Pearson's linear partial correlation (correlation between two time courses after the time courses from all other regions in the network are regressed out). Within a quadrant, within visual areas, all correlation and nearly all partial correlation FC measures showed statistical significance. Consistently in V1, V2, and to a lesser extent in V3, correlation decreased with increasing eccentricity separation. Consistent with previously reported monkey anatomical connectivity, correlation/partial correlation values between regions from adjacent areas (V1-V2 and V2-V3) were higher than those between nonadjacent areas (V1-V3). Within a quadrant, partial correlation showed consistent significance between regions from two different areas with the same or adjacent eccentricities. Pairs of ROIs with similar eccentricity showed higher correlation/partial correlation than pairs distant in eccentricity. Between dorsal and ventral quadrants, partial correlation between common and adjacent eccentricity regions within a visual area showed statistical significance; this extended to more distant eccentricity regions in V1. Within and between quadrants, correlation decreased approximately linearly with increasing distances separating the tested ROIs. Partial correlation showed a more complex dependence on cortical distance: it decreased exponentially with increasing distance within a quadrant, but was best fit by a quadratic function between quadrants. We conclude that RSFCs within and between lower visual areas are retinotopically organized. Correlation-based FC is nonselectively high across lower visual areas, even between regions that do not share direct anatomical connections. The mechanisms likely involve network effects caused by the dense anatomical connectivity within this network and projections from higher visual areas. FC based on partial correlation, which minimizes network effects, follows expectations based on direct anatomical connections in the monkey visual cortex better than correlation. Last, partial correlation-based retinotopically organized RSFC reflects more than cortical distance effects. PMID:26415043

  12. Partial Correlation-Based Retinotopically Organized Resting-State Functional Connectivity Within and Between Areas of the Visual Cortex Reflects More Than Cortical Distance.

    PubMed

    Dawson, Debra Ann; Lam, Jack; Lewis, Lindsay B; Carbonell, Felix; Mendola, Janine D; Shmuel, Amir

    2016-02-01

    Numerous studies have demonstrated functional magnetic resonance imaging (fMRI)-based resting-state functional connectivity (RSFC) between cortical areas. Recent evidence suggests that synchronous fluctuations in blood oxygenation level-dependent fMRI reflect functional organization at a scale finer than that of visual areas. In this study, we investigated whether RSFCs within and between lower visual areas are retinotopically organized and whether retinotopically organized RSFC merely reflects cortical distance. Subjects underwent retinotopic mapping and separately resting-state fMRI. Visual areas V1, V2, and V3, were subdivided into regions of interest (ROIs) according to quadrants and visual field eccentricity. Functional connectivity (FC) was computed based on Pearson's linear correlation (correlation), and Pearson's linear partial correlation (correlation between two time courses after the time courses from all other regions in the network are regressed out). Within a quadrant, within visual areas, all correlation and nearly all partial correlation FC measures showed statistical significance. Consistently in V1, V2, and to a lesser extent in V3, correlation decreased with increasing eccentricity separation. Consistent with previously reported monkey anatomical connectivity, correlation/partial correlation values between regions from adjacent areas (V1-V2 and V2-V3) were higher than those between nonadjacent areas (V1-V3). Within a quadrant, partial correlation showed consistent significance between regions from two different areas with the same or adjacent eccentricities. Pairs of ROIs with similar eccentricity showed higher correlation/partial correlation than pairs distant in eccentricity. Between dorsal and ventral quadrants, partial correlation between common and adjacent eccentricity regions within a visual area showed statistical significance; this extended to more distant eccentricity regions in V1. Within and between quadrants, correlation decreased approximately linearly with increasing distances separating the tested ROIs. Partial correlation showed a more complex dependence on cortical distance: it decreased exponentially with increasing distance within a quadrant, but was best fit by a quadratic function between quadrants. We conclude that RSFCs within and between lower visual areas are retinotopically organized. Correlation-based FC is nonselectively high across lower visual areas, even between regions that do not share direct anatomical connections. The mechanisms likely involve network effects caused by the dense anatomical connectivity within this network and projections from higher visual areas. FC based on partial correlation, which minimizes network effects, follows expectations based on direct anatomical connections in the monkey visual cortex better than correlation. Last, partial correlation-based retinotopically organized RSFC reflects more than cortical distance effects.

  13. Short-term retention of visual information: Evidence in support of feature-based attention as an underlying mechanism.

    PubMed

    Sneve, Markus H; Sreenivasan, Kartik K; Alnæs, Dag; Endestad, Tor; Magnussen, Svein

    2015-01-01

    Retention of features in visual short-term memory (VSTM) involves maintenance of sensory traces in early visual cortex. However, the mechanism through which this is accomplished is not known. Here, we formulate specific hypotheses derived from studies on feature-based attention to test the prediction that visual cortex is recruited by attentional mechanisms during VSTM of low-level features. Functional magnetic resonance imaging (fMRI) of human visual areas revealed that neural populations coding for task-irrelevant feature information are suppressed during maintenance of detailed spatial frequency memory representations. The narrow spectral extent of this suppression agrees well with known effects of feature-based attention. Additionally, analyses of effective connectivity during maintenance between retinotopic areas in visual cortex show that the observed highlighting of task-relevant parts of the feature spectrum originates in V4, a visual area strongly connected with higher-level control regions and known to convey top-down influence to earlier visual areas during attentional tasks. In line with this property of V4 during attentional operations, we demonstrate that modulations of earlier visual areas during memory maintenance have behavioral consequences, and that these modulations are a result of influences from V4. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Numerosity processing in early visual cortex.

    PubMed

    Fornaciai, Michele; Brannon, Elizabeth M; Woldorff, Marty G; Park, Joonkoo

    2017-08-15

    While parietal cortex is thought to be critical for representing numerical magnitudes, we recently reported an event-related potential (ERP) study demonstrating selective neural sensitivity to numerosity over midline occipital sites very early in the time course, suggesting the involvement of early visual cortex in numerosity processing. However, which specific brain area underlies such early activation is not known. Here, we tested whether numerosity-sensitive neural signatures arise specifically from the initial stages of visual cortex, aiming to localize the generator of these signals by taking advantage of the distinctive folding pattern of early occipital cortices around the calcarine sulcus, which predicts an inversion of polarity of ERPs arising from these areas when stimuli are presented in the upper versus lower visual field. Dot arrays, including 8-32dots constructed systematically across various numerical and non-numerical visual attributes, were presented randomly in either the upper or lower visual hemifields. Our results show that neural responses at about 90ms post-stimulus were robustly sensitive to numerosity. Moreover, the peculiar pattern of polarity inversion of numerosity-sensitive activity at this stage suggested its generation primarily in V2 and V3. In contrast, numerosity-sensitive ERP activity at occipito-parietal channels later in the time course (210-230ms) did not show polarity inversion, indicating a subsequent processing stage in the dorsal stream. Overall, these results demonstrate that numerosity processing begins in one of the earliest stages of the cortical visual stream. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Effect of anterior capsule contraction on visual function after cataract surgery.

    PubMed

    Hayashi, Ken; Hayashi, Hideyuki

    2007-11-01

    To examine the effect of contraction of the anterior capsule opening after cataract surgery on visual acuity and contrast sensitivity. Hayashi Eye Hospital, Fukuoka, Japan. Thirty-two eyes of 32 consecutive patients who showed marked contraction of the anterior capsule opening after implantation of an intraocular lens were recruited. The area of the anterior capsule opening was measured by Scheimpflug videophotography before and after neodymium:YAG (Nd:YAG) laser anterior capsulotomy and was correlated with visual acuity and contrast sensitivity. After Nd:YAG laser anterior capsulotomy, the mean area of the anterior capsule opening increased significantly from 8.2 mm(2) to 18.0 mm(2) (P<.0001). Contrast sensitivity at most visual angles also improved significantly after Nd:YAG anterior capsulotomy, although visual acuity did not. The area of the anterior capsule opening before anterior capsulotomy was correlated significantly with contrast sensitivity but not with visual acuity, whereas there was no correlation between the opening area after anterior capsulotomy and visual acuity or contrast sensitivity. Contraction of the anterior capsule opening after cataract surgery significantly diminished contrast sensitivity in proportion to the opening area but did not markedly worsen visual acuity. Neodymium:YAG laser anterior capsulotomy improved contrast sensitivity.

  16. Functional Characterization and Differential Coactivation Patterns of Two Cytoarchitectonic Visual Areas on the Human Posterior Fusiform Gyrus

    PubMed Central

    Caspers, Julian; Zilles, Karl; Amunts, Katrin; Laird, Angela R.; Fox, Peter T.; Eickhoff, Simon B.

    2016-01-01

    The ventral stream of the human extrastriate visual cortex shows a considerable functional heterogeneity from early visual processing (posterior) to higher, domain-specific processing (anterior). The fusiform gyrus hosts several of those “high-level” functional areas. We recently found a subdivision of the posterior fusiform gyrus on the microstructural level, that is, two distinct cytoarchitectonic areas, FG1 and FG2 (Caspers et al., Brain Structure & Function, 2013). To gain a first insight in the function of these two areas, here we studied their behavioral involvement and coactivation patterns by means of meta-analytic connectivity modeling based on the BrainMap database (www.brainmap.org), using probabilistic maps of these areas as seed regions. The coactivation patterns of the areas support the concept of a common involvement in a core network subserving different cognitive tasks, that is, object recognition, visual language perception, or visual attention. In addition, the analysis supports the previous cytoarchitectonic parcellation, indicating that FG1 appears as a transitional area between early and higher visual cortex and FG2 as a higher-order one. The latter area is furthermore lateralized, as it shows strong relations to the visual language processing system in the left hemisphere, while its right side is stronger associated with face selective regions. These findings indicate that functional lateralization of area FG2 relies on a different pattern of connectivity rather than side-specific cytoarchitectonic features. PMID:24038902

  17. Negative BOLD in sensory cortices during verbal memory: a component in generating internal representations?

    PubMed

    Azulay, Haim; Striem, Ella; Amedi, Amir

    2009-05-01

    People tend to close their eyes when trying to retrieve an event or a visual image from memory. However the brain mechanisms behind this phenomenon remain poorly understood. Recently, we showed that during visual mental imagery, auditory areas show a much more robust deactivation than during visual perception. Here we ask whether this is a special case of a more general phenomenon involving retrieval of intrinsic, internally stored information, which would result in crossmodal deactivations in other sensory cortices which are irrelevant to the task at hand. To test this hypothesis, a group of 9 sighted individuals were scanned while performing a memory retrieval task for highly abstract words (i.e., with low imaginability scores). We also scanned a group of 10 congenitally blind, which by definition do not have any visual imagery per se. In sighted subjects, both auditory and visual areas were robustly deactivated during memory retrieval, whereas in the blind the auditory cortex was deactivated while visual areas, shown previously to be relevant for this task, presented a positive BOLD signal. These results suggest that deactivation may be most prominent in task-irrelevant sensory cortices whenever there is a need for retrieval or manipulation of internally stored representations. Thus, there is a task-dependent balance of activation and deactivation that might allow maximization of resources and filtering out of non relevant information to enable allocation of attention to the required task. Furthermore, these results suggest that the balance between positive and negative BOLD might be crucial to our understanding of a large variety of intrinsic and extrinsic tasks including high-level cognitive functions, sensory processing and multisensory integration.

  18. Visual circuits of the avian telencephalon: evolutionary implications

    NASA Technical Reports Server (NTRS)

    Shimizu, T.; Bowers, A. N.

    1999-01-01

    Birds and primates are vertebrates that possess the most advanced, efficient visual systems. Although lineages leading to these two classes were separated about 300 million years ago, there are striking similarities in their underlying neural mechanisms for visual processing. This paper discusses such similarities with special emphasis on the visual circuits in the avian telencephalon. These similarities include: (1) the existence of two parallel visual pathways and their distinct telencephalic targets, (2) anatomical and functional segregation within the visual pathways, (3) laminar organization of the telencephalic targets of the pathways (e.g. striate cortex in primates), and (4) possible interactions between multiple visual areas. Additional extensive analyses are necessary to determine whether these similarities are due to inheritance from a common ancestral stock or the consequences of convergent evolution based on adaptive response to similar selective pressures. Nevertheless, such a comparison is important to identify the general and specific principles of visual processing in amniotes (reptiles, birds, and mammals). Furthermore, these principles in turn will provide a critical foundation for understanding the evolution of the brain in amniotes.

  19. Differential Responses to a Visual Self-Motion Signal in Human Medial Cortical Regions Revealed by Wide-View Stimulation

    PubMed Central

    Wada, Atsushi; Sakano, Yuichi; Ando, Hiroshi

    2016-01-01

    Vision is important for estimating self-motion, which is thought to involve optic-flow processing. Here, we investigated the fMRI response profiles in visual area V6, the precuneus motion area (PcM), and the cingulate sulcus visual area (CSv)—three medial brain regions recently shown to be sensitive to optic-flow. We used wide-view stereoscopic stimulation to induce robust self-motion processing. Stimuli included static, randomly moving, and coherently moving dots (simulating forward self-motion). We varied the stimulus size and the presence of stereoscopic information. A combination of univariate and multi-voxel pattern analyses (MVPA) revealed that fMRI responses in the three regions differed from each other. The univariate analysis identified optic-flow selectivity and an effect of stimulus size in V6, PcM, and CSv, among which only CSv showed a significantly lower response to random motion stimuli compared with static conditions. Furthermore, MVPA revealed an optic-flow specific multi-voxel pattern in the PcM and CSv, where the discrimination of coherent motion from both random motion and static conditions showed above-chance prediction accuracy, but that of random motion from static conditions did not. Additionally, while area V6 successfully classified different stimulus sizes regardless of motion pattern, this classification was only partial in PcM and was absent in CSv. This may reflect the known retinotopic representation in V6 and the absence of such clear visuospatial representation in CSv. We also found significant correlations between the strength of subjective self-motion and univariate activation in all examined regions except for primary visual cortex (V1). This neuro-perceptual correlation was significantly higher for V6, PcM, and CSv when compared with V1, and higher for CSv when compared with the visual motion area hMT+. Our convergent results suggest the significant involvement of CSv in self-motion processing, which may give rise to its percept. PMID:26973588

  20. Learning to associate orientation with color in early visual areas by associative decoded fMRI neurofeedback

    PubMed Central

    Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo

    2016-01-01

    Summary Associative learning is an essential brain process where the contingency of different items increases after training. Associative learning has been found to occur in many brain regions [1-4]. However, there is no clear evidence that associative learning of visual features occurs in early visual areas, although a number of studies have indicated that learning of a single visual feature (perceptual learning) involves early visual areas [5-8]. Here, via decoded functional magnetic resonance imaging (fMRI) neurofeedback, termed “DecNef” [9], we tested whether associative learning of color and orientation can be created in early visual areas. During three days' training, DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was physically presented to participants. As a result, participants came to perceive “red” significantly more frequently than “green” in an achromatic vertical grating. This effect was also observed 3 to 5 months after the training. These results suggest that long-term associative learning of the two different visual features such as color and orientation was created most likely in early visual areas. This newly extended technique that induces associative learning is called “A(ssociative)-DecNef” and may be used as an important tool for understanding and modifying brain functions, since associations are fundamental and ubiquitous functions in the brain. PMID:27374335

  1. Learning to Associate Orientation with Color in Early Visual Areas by Associative Decoded fMRI Neurofeedback.

    PubMed

    Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo

    2016-07-25

    Associative learning is an essential brain process where the contingency of different items increases after training. Associative learning has been found to occur in many brain regions [1-4]. However, there is no clear evidence that associative learning of visual features occurs in early visual areas, although a number of studies have indicated that learning of a single visual feature (perceptual learning) involves early visual areas [5-8]. Here, via decoded fMRI neurofeedback termed "DecNef" [9], we tested whether associative learning of orientation and color can be created in early visual areas. During 3 days of training, DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was physically presented to participants. As a result, participants came to perceive "red" significantly more frequently than "green" in an achromatic vertical grating. This effect was also observed 3-5 months after the training. These results suggest that long-term associative learning of two different visual features such as orientation and color was created, most likely in early visual areas. This newly extended technique that induces associative learning is called "A-DecNef," and it may be used as an important tool for understanding and modifying brain functions because associations are fundamental and ubiquitous functions in the brain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Holistic Face Categorization in Higher Order Visual Areas of the Normal and Prosopagnosic Brain: Toward a Non-Hierarchical View of Face Perception

    PubMed Central

    Rossion, Bruno; Dricot, Laurence; Goebel, Rainer; Busigny, Thomas

    2011-01-01

    How a visual stimulus is initially categorized as a face in a network of human brain areas remains largely unclear. Hierarchical neuro-computational models of face perception assume that the visual stimulus is first decomposed in local parts in lower order visual areas. These parts would then be combined into a global representation in higher order face-sensitive areas of the occipito-temporal cortex. Here we tested this view in fMRI with visual stimuli that are categorized as faces based on their global configuration rather than their local parts (two-tones Mooney figures and Arcimboldo's facelike paintings). Compared to the same inverted visual stimuli that are not categorized as faces, these stimuli activated the right middle fusiform gyrus (“Fusiform face area”) and superior temporal sulcus (pSTS), with no significant activation in the posteriorly located inferior occipital gyrus (i.e., no “occipital face area”). This observation is strengthened by behavioral and neural evidence for normal face categorization of these stimuli in a brain-damaged prosopagnosic patient whose intact right middle fusiform gyrus and superior temporal sulcus are devoid of any potential face-sensitive inputs from the lesioned right inferior occipital cortex. Together, these observations indicate that face-preferential activation may emerge in higher order visual areas of the right hemisphere without any face-preferential inputs from lower order visual areas, supporting a non-hierarchical view of face perception in the visual cortex. PMID:21267432

  3. Spatio-temporal distribution of brain activity associated with audio-visually congruent and incongruent speech and the McGurk Effect.

    PubMed

    Pratt, Hillel; Bleich, Naomi; Mittelman, Nomi

    2015-11-01

    Spatio-temporal distributions of cortical activity to audio-visual presentations of meaningless vowel-consonant-vowels and the effects of audio-visual congruence/incongruence, with emphasis on the McGurk effect, were studied. The McGurk effect occurs when a clearly audible syllable with one consonant, is presented simultaneously with a visual presentation of a face articulating a syllable with a different consonant and the resulting percept is a syllable with a consonant other than the auditorily presented one. Twenty subjects listened to pairs of audio-visually congruent or incongruent utterances and indicated whether pair members were the same or not. Source current densities of event-related potentials to the first utterance in the pair were estimated and effects of stimulus-response combinations, brain area, hemisphere, and clarity of visual articulation were assessed. Auditory cortex, superior parietal cortex, and middle temporal cortex were the most consistently involved areas across experimental conditions. Early (<200 msec) processing of the consonant was overall prominent in the left hemisphere, except right hemisphere prominence in superior parietal cortex and secondary visual cortex. Clarity of visual articulation impacted activity in secondary visual cortex and Wernicke's area. McGurk perception was associated with decreased activity in primary and secondary auditory cortices and Wernicke's area before 100 msec, increased activity around 100 msec which decreased again around 180 msec. Activity in Broca's area was unaffected by McGurk perception and was only increased to congruent audio-visual stimuli 30-70 msec following consonant onset. The results suggest left hemisphere prominence in the effects of stimulus and response conditions on eight brain areas involved in dynamically distributed parallel processing of audio-visual integration. Initially (30-70 msec) subcortical contributions to auditory cortex, superior parietal cortex, and middle temporal cortex occur. During 100-140 msec, peristriate visual influences and Wernicke's area join in the processing. Resolution of incongruent audio-visual inputs is then attempted, and if successful, McGurk perception occurs and cortical activity in left hemisphere further increases between 170 and 260 msec.

  4. Rethinking Visual Analytics for Streaming Data Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crouser, R. Jordan; Franklin, Lyndsey; Cook, Kris

    In the age of data science, the use of interactive information visualization techniques has become increasingly ubiquitous. From online scientific journals to the New York Times graphics desk, the utility of interactive visualization for both storytelling and analysis has become ever more apparent. As these techniques have become more readily accessible, the appeal of combining interactive visualization with computational analysis continues to grow. Arising out of a need for scalable, human-driven analysis, primary objective of visual analytics systems is to capitalize on the complementary strengths of human and machine analysis, using interactive visualization as a medium for communication between themore » two. These systems leverage developments from the fields of information visualization, computer graphics, machine learning, and human-computer interaction to support insight generation in areas where purely computational analyses fall short. Over the past decade, visual analytics systems have generated remarkable advances in many historically challenging analytical contexts. These include areas such as modeling political systems [Crouser et al. 2012], detecting financial fraud [Chang et al. 2008], and cybersecurity [Harrison et al. 2012]. In each of these contexts, domain expertise and human intuition is a necessary component of the analysis. This intuition is essential to building trust in the analytical products, as well as supporting the translation of evidence into actionable insight. In addition, each of these examples also highlights the need for scalable analysis. In each case, it is infeasible for a human analyst to manually assess the raw information unaided, and the communication overhead to divide the task between a large number of analysts makes simple parallelism intractable. Regardless of the domain, visual analytics tools strive to optimize the allocation of human analytical resources, and to streamline the sensemaking process on data that is massive, complex, incomplete, and uncertain in scenarios requiring human judgment.« less

  5. Receptive fields for smooth pursuit eye movements and motion perception.

    PubMed

    Debono, Kurt; Schütz, Alexander C; Spering, Miriam; Gegenfurtner, Karl R

    2010-12-01

    Humans use smooth pursuit eye movements to track moving objects of interest. In order to track an object accurately, motion signals from the target have to be integrated and segmented from motion signals in the visual context. Most studies on pursuit eye movements used small visual targets against a featureless background, disregarding the requirements of our natural visual environment. Here, we tested the ability of the pursuit and the perceptual system to integrate motion signals across larger areas of the visual field. Stimuli were random-dot kinematograms containing a horizontal motion signal, which was perturbed by a spatially localized, peripheral motion signal. Perturbations appeared in a gaze-contingent coordinate system and had a different direction than the main motion including a vertical component. We measured pursuit and perceptual direction discrimination decisions and found that both steady-state pursuit and perception were influenced most by perturbation angles close to that of the main motion signal and only in regions close to the center of gaze. The narrow direction bandwidth (26 angular degrees full width at half height) and small spatial extent (8 degrees of visual angle standard deviation) correspond closely to tuning parameters of neurons in the middle temporal area (MT). Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Photographic Assessment of Baseline Fundus Morphology in the Comparison of Age-related Macular Degeneration Treatments Trials

    PubMed Central

    Grunwald, Juan E.; Daniel, Ebenezer; Ying, Gui-shuang; Pistilli, Maxwell; Maguire, Maureen G.; Alexander, Judith; Whittock-Martin, Revell; Parker, Candace R.; Sepielli, Krista; Blodi, Barbara A.; Martin, Daniel F.

    2012-01-01

    Objective To describe the methods used for assessment of baseline fundus characteristics from color photography and fluorescein angiography (FA) in the Comparison of the Age-Related Macular Degeneration Treatments Trials (CATT), and the relationship between these characteristics and visual acuity. Design Randomized, masked, multicenter trial. Participants This investigation included 1185 participants of the CATT study. Methods Baseline stereoscopic color fundus photographs and FAs of participants in the CATT study were assessed at a central fundus photograph reading center by masked readers. Replicate assessments of random samples of photographs were performed to assess intra- and inter-grader agreements. The association of the lesion characteristics with baseline visual acuity was assessed using analyses of variance and correlation coefficients. Main Outcome Measures Intra- and inter-grader reproducibility, visual acuity and lesion characteristics. Results Intra- and inter-grader reproducibility showed agreements ranging from 75% to 100% and weighted kappas ranging from 0.48 to 1.0 for qualitative determinations. The intra-class correlation coefficients were 0.96-0.97 for quantitative measurements of choroidal neovascularization (CNV) area and total area of CNV lesion. The mean visual acuity (SE) varied by the type of pathology in the foveal center: 64.5 (0.7) letters for fluid only, 59.0 (0.5) for CNV, and 58.7 (1.3) for hemorrhage (p<0.001). Fibrotic or atrophic scar present in the lesion, but not under the center of the fovea, was also associated with a markedly reduced visual acuity 48.4 (2.2), p<0.0001. Although total area of CNV lesion was weakly correlated with visual acuity when all participants were assessed (Spearman correlation coefficient ρ= −0.16, p<0.001), the correlation was stronger within patients with predominantly classic lesions (ρ=−0.42, p<0.001). Conclusions Our results show that the methodology used for grading CATT fundus images has good reproducibility. As expected, larger total CNV lesion area, and pathologic findings such as hemorrhage, fibrosis and atrophy at baseline are associated with decreased visual acuity. Financial Disclosures The authors have no proprietary or commercial interests in any materials discussed in this article. PMID:22512984

  7. Experiences in using DISCUS for visualizing human communication

    NASA Astrophysics Data System (ADS)

    Groehn, Matti; Nieminen, Marko; Haho, Paeivi; Smeds, Riitta

    2000-02-01

    In this paper, we present further improvement to the DISCUS software that can be used to record and analyze the flow and constants of business process simulation session discussion. The tool was initially introduced in 'visual data exploration and analysis IV' conference. The initial features of the tool enabled the visualization of discussion flow in business process simulation sessions and the creation of SOM analyses. The improvements of the tool consists of additional visualization possibilities that enable quick on-line analyses and improved graphical statistics. We have also created the very first interface to audio data and implemented two ways to visualize it. We also outline additional possibilities to use the tool in other application areas: these include usability testing and the possibility to use the tool for capturing design rationale in a product development process. The data gathered with DISCUS may be used in other applications, and further work may be done with data ming techniques.

  8. Massive cortical reorganization in sighted Braille readers.

    PubMed

    Siuda-Krzywicka, Katarzyna; Bola, Łukasz; Paplińska, Małgorzata; Sumera, Ewa; Jednoróg, Katarzyna; Marchewka, Artur; Śliwińska, Magdalena W; Amedi, Amir; Szwed, Marcin

    2016-03-15

    The brain is capable of large-scale reorganization in blindness or after massive injury. Such reorganization crosses the division into separate sensory cortices (visual, somatosensory...). As its result, the visual cortex of the blind becomes active during tactile Braille reading. Although the possibility of such reorganization in the normal, adult brain has been raised, definitive evidence has been lacking. Here, we demonstrate such extensive reorganization in normal, sighted adults who learned Braille while their brain activity was investigated with fMRI and transcranial magnetic stimulation (TMS). Subjects showed enhanced activity for tactile reading in the visual cortex, including the visual word form area (VWFA) that was modulated by their Braille reading speed and strengthened resting-state connectivity between visual and somatosensory cortices. Moreover, TMS disruption of VWFA activity decreased their tactile reading accuracy. Our results indicate that large-scale reorganization is a viable mechanism recruited when learning complex skills.

  9. Better-Than-Visual Technologies for Next Generation Air Transportation System Terminal Maneuvering Area Operations

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Bailey, Randall E.; Shelton, Kevin J.; Jones, Denise R.; Kramer, Lynda J.; Arthur, Jarvis J., III; Williams, Steve P.; Barmore, Bryan E.; Ellis, Kyle E.; Rehfeld, Sherri A.

    2011-01-01

    A consortium of industry, academia and government agencies are devising new concepts for future U.S. aviation operations under the Next Generation Air Transportation System (NextGen). Many key capabilities are being identified to enable NextGen, including the concept of Equivalent Visual Operations (EVO) replicating the capacity and safety of today's visual flight rules (VFR) in all-weather conditions. NASA is striving to develop the technologies and knowledge to enable EVO and to extend EVO towards a Better-Than-Visual (BTV) operational concept. The BTV operational concept uses an electronic means to provide sufficient visual references of the external world and other required flight references on flight deck displays that enable VFR-like operational tempos and maintain and improve the safety of VFR while using VFR-like procedures in all-weather conditions. NASA Langley Research Center (LaRC) research on technologies to enable the concept of BTV is described.

  10. Deep neural networks for modeling visual perceptual learning.

    PubMed

    Wenliang, Li; Seitz, Aaron R

    2018-05-23

    Understanding visual perceptual learning (VPL) has become increasingly more challenging as new phenomena are discovered with novel stimuli and training paradigms. While existing models aid our knowledge of critical aspects of VPL, the connections shown by these models between behavioral learning and plasticity across different brain areas are typically superficial. Most models explain VPL as readout from simple perceptual representations to decision areas and are not easily adaptable to explain new findings. Here, we show that a well-known instance of deep neural network (DNN), while not designed specifically for VPL, provides a computational model of VPL with enough complexity to be studied at many levels of analyses. After learning a Gabor orientation discrimination task, the DNN model reproduced key behavioral results, including increasing specificity with higher task precision, and also suggested that learning precise discriminations could asymmetrically transfer to coarse discriminations when the stimulus conditions varied. In line with the behavioral findings, the distribution of plasticity moved towards lower layers when task precision increased, and this distribution was also modulated by tasks with different stimulus types. Furthermore, learning in the network units demonstrated close resemblance to extant electrophysiological recordings in monkey visual areas. Altogether, the DNN fulfilled predictions of existing theories regarding specificity and plasticity, and reproduced findings of tuning changes in neurons of the primate visual areas. Although the comparisons were mostly qualitative, the DNN provides a new method of studying VPL and can serve as a testbed for theories and assist in generating predictions for physiological investigations. SIGNIFICANCE STATEMENT Visual perceptual learning (VPL) has been found to cause changes at multiple stages of the visual hierarchy. We found that training a deep neural network (DNN) on an orientation discrimination task produced similar behavioral and physiological patterns found in human and monkey experiments. Unlike existing VPL models, the DNN was pre-trained on natural images to reach high performance in object recognition but was not designed specifically for VPL, and yet it fulfilled predictions of existing theories regarding specificity and plasticity, and reproduced findings of tuning changes in neurons of the primate visual areas. When used with care, this unbiased and deep-hierarchical model can provide new ways of studying VPL from behavior to physiology. Copyright © 2018 the authors.

  11. Distribution of neurons in functional areas of the mouse cerebral cortex reveals quantitatively different cortical zones

    PubMed Central

    Herculano-Houzel, Suzana; Watson, Charles; Paxinos, George

    2013-01-01

    How are neurons distributed along the cortical surface and across functional areas? Here we use the isotropic fractionator (Herculano-Houzel and Lent, 2005) to analyze the distribution of neurons across the entire isocortex of the mouse, divided into 18 functional areas defined anatomically. We find that the number of neurons underneath a surface area (the N/A ratio) varies 4.5-fold across functional areas and neuronal density varies 3.2-fold. The face area of S1 contains the most neurons, followed by motor cortex and the primary visual cortex. Remarkably, while the distribution of neurons across functional areas does not accompany the distribution of surface area, it mirrors closely the distribution of cortical volumes—with the exception of the visual areas, which hold more neurons than expected for their volume. Across the non-visual cortex, the volume of individual functional areas is a shared linear function of their number of neurons, while in the visual areas, neuronal densities are much higher than in all other areas. In contrast, the 18 functional areas cluster into three different zones according to the relationship between the N/A ratio and cortical thickness and neuronal density: these three clusters can be called visual, sensory, and, possibly, associative. These findings are remarkably similar to those in the human cerebral cortex (Ribeiro et al., 2013) and suggest that, like the human cerebral cortex, the mouse cerebral cortex comprises two zones that differ in how neurons form the cortical volume, and three zones that differ in how neurons are distributed underneath the cortical surface, possibly in relation to local differences in connectivity through the white matter. Our results suggest that beyond the developmental divide into visual and non-visual cortex, functional areas initially share a common distribution of neurons along the parenchyma that become delimited into functional areas according to the pattern of connectivity established later. PMID:24155697

  12. Artistic Learning in Relation to Young Children's Chorotopos: An In-Depth Approach to Early Childhood Visual Culture Education

    ERIC Educational Resources Information Center

    Trimis, Eli; Savva, Andri

    2009-01-01

    The paper reports on a study of young children and the nature of their art learning based on the in-depth approach and in the context of "chorotopos" (space-place, area, landscape, region, village or town). The sample includes 50 children drawn from three classrooms in three early childhood settings in the area of Thessaloniki and…

  13. Zinc histochemistry reveals circuit refinement and distinguishes visual areas in the developing ferret cerebral cortex.

    PubMed

    Khalil, Reem; Levitt, Jonathan B

    2013-09-01

    A critical question in brain development is whether different brain circuits mature concurrently or with different timescales. To characterize the anatomical and functional development of different visual cortical areas, one must be able to distinguish these areas. Here, we show that zinc histochemistry, which reveals a subset of glutamatergic processes, can be used to reliably distinguish visual areas in juvenile and adult ferret cerebral cortex, and that the postnatal decline in levels of synaptic zinc follows a broadly similar developmental trajectory in multiple areas of ferret visual cortex. Zinc staining in all areas examined (17, 18, 19, 21, and Suprasylvian) is greater in the 5-week-old than in the adult. Furthermore, there is less laminar variation in zinc staining in the 5-week-old visual cortex than in the adult. Despite differences in staining intensity, areal boundaries can be discerned in the juvenile as in the adult. By 6 weeks of age, we observe a significant decline in visual cortical synaptic zinc; this decline was most pronounced in layer IV of areas 17 and 18, with much less change in higher-order extrastriate areas during the important period in visual cortical development following eye opening. By 10 weeks of age, the laminar pattern of zinc staining in all visual areas is essentially adultlike. The decline in synaptic zinc in the supra- and infragranular layers in all areas proceeds at the same rate, though the decline in layer IV does not. These results suggest that the timecourse of synaptic zinc decline is lamina specific, and further confirm and extend the notion that at least some aspects of cortical maturation follow a similar developmental timecourse in multiple areas. The postnatal decline in synaptic zinc we observe during the second postnatal month begins after eye opening, consistent with evidence that synaptic zinc is regulated by sensory experience.

  14. 75 FR 49513 - Final Environmental Impact Statement for the Ione Band of Miwok Indians 228.04-Acre Fee-to-Trust...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... facility would include a casino floor, food and beverage areas (consisting of a buffet, specialty..., visual resources, cumulative effects, indirect effects, and mitigation measures. The BIA has afforded...

  15. Case Studies in CAL!

    ERIC Educational Resources Information Center

    Rogers, David F., Ed.; Smith, P. R., Ed.

    1984-01-01

    Ten papers focus on applications in specific curriculum areas, modelling and simulation, and computer managed learning. Projects described include voice support for the visually handicapped, distance education, and industrial training, as well as teaching applied mathematics, several facets of engineering, zoology, and, with videodisc, observation…

  16. Acute optic neuritis

    PubMed Central

    Galetta, Steven L.; Villoslada, Pablo; Levin, Netta; Shindler, Kenneth; Ishikawa, Hiroshi; Parr, Edward; Cadavid, Diego

    2015-01-01

    Idiopathic demyelinating optic neuritis (ON) most commonly presents as acute unilateral vision loss and eye pain and is frequently associated with multiple sclerosis. Although emphasis is often placed on the good recovery of high-contrast visual acuity, persistent deficits are frequently observed in other aspects of vision, including contrast sensitivity, visual field testing, color vision, motion perception, and vision-related quality of life. Persistent and profound structural and functional changes are often revealed by imaging and electrophysiologic techniques, including optical coherence tomography, visual-evoked potentials, and nonconventional MRI. These abnormalities can impair patients' abilities to perform daily activities (e.g., driving, working) so they have important implications for patients' quality of life. In this article, we review the sequelae from ON, including clinical, structural, and functional changes and their interrelationships. The unmet needs in each of these areas are considered and the progress made toward meeting those needs is examined. Finally, we provide an overview of past and present investigational approaches for disease modification in ON. PMID:26236761

  17. Mapping multisensory parietal face and body areas in humans.

    PubMed

    Huang, Ruey-Song; Chen, Ching-fu; Tran, Alyssa T; Holstein, Katie L; Sereno, Martin I

    2012-10-30

    Detection and avoidance of impending obstacles is crucial to preventing head and body injuries in daily life. To safely avoid obstacles, locations of objects approaching the body surface are usually detected via the visual system and then used by the motor system to guide defensive movements. Mediating between visual input and motor output, the posterior parietal cortex plays an important role in integrating multisensory information in peripersonal space. We used functional MRI to map parietal areas that see and feel multisensory stimuli near or on the face and body. Tactile experiments using full-body air-puff stimulation suits revealed somatotopic areas of the face and multiple body parts forming a higher-level homunculus in the superior posterior parietal cortex. Visual experiments using wide-field looming stimuli revealed retinotopic maps that overlap with the parietal face and body areas in the postcentral sulcus at the most anterior border of the dorsal visual pathway. Starting at the parietal face area and moving medially and posteriorly into the lower-body areas, the median of visual polar-angle representations in these somatotopic areas gradually shifts from near the horizontal meridian into the lower visual field. These results suggest the parietal face and body areas fuse multisensory information in peripersonal space to guard an individual from head to toe.

  18. Lateral flow devices

    DOEpatents

    Mazumdar, Debapriya; Liu, Juewen; Lu, Yi

    2010-09-21

    An analytical test for an analyte comprises (a) a base, having a reaction area and a visualization area, (b) a capture species, on the base in the visualization area, comprising nucleic acid, and (c) analysis chemistry reagents, on the base in the reaction area. The analysis chemistry reagents comprise (i) a substrate comprising nucleic acid and a first label, and (ii) a reactor comprising nucleic acid. The analysis chemistry reagents can react with a sample comprising the analyte and water, to produce a visualization species comprising nucleic acid and the first label, and the capture species can bind the visualization species.

  19. A hierarchical, retinotopic proto-organization of the primate visual system at birth

    PubMed Central

    Arcaro, Michael J; Livingstone, Margaret S

    2017-01-01

    The adult primate visual system comprises a series of hierarchically organized areas. Each cortical area contains a topographic map of visual space, with different areas extracting different kinds of information from the retinal input. Here we asked to what extent the newborn visual system resembles the adult organization. We find that hierarchical, topographic organization is present at birth and therefore constitutes a proto-organization for the entire primate visual system. Even within inferior temporal cortex, this proto-organization was already present, prior to the emergence of category selectivity (e.g., faces or scenes). We propose that this topographic organization provides the scaffolding for the subsequent development of visual cortex that commences at the onset of visual experience DOI: http://dx.doi.org/10.7554/eLife.26196.001 PMID:28671063

  20. The prevalence of uncorrected refractive errors in underserved rural areas.

    PubMed

    Hashemi, Hassan; Abbastabar, Hedayat; Yekta, Abbasali; Heydarian, Samira; Khabazkhoob, Mehdi

    2017-12-01

    To determine the prevalence of uncorrected refractive errors, need for spectacles, and the determinants of unmet need in underserved rural areas of Iran. In a cross-sectional study, multistage cluster sampling was done in 2 underserved rural areas of Iran. Then, all subjects underwent vision testing and ophthalmic examinations including the measurement of uncorrected visual acuity (UCVA), best corrected visual acuity, visual acuity with current spectacles, auto-refraction, retinoscopy, and subjective refraction. Need for spectacles was defined as UCVA worse than 20/40 in the better eye that could be corrected to better than 20/40 with suitable spectacles. Of the 3851 selected individuals, 3314 participated in the study. Among participants, 18.94% [95% confidence intervals (CI): 13.48-24.39] needed spectacles and 11.23% (95% CI: 7.57-14.89) had an unmet need. The prevalence of need for spectacles was 46.8% and 23.8% in myopic and hyperopic participants, respectively. The prevalence of unmet need was 27% in myopic, 15.8% in hyperopic, and 25.46% in astigmatic participants. Multiple logistic regression showed that education and type of refractive errors were associated with uncorrected refractive errors; the odds of uncorrected refractive errors were highest in illiterate participants, and the odds of unmet need were 12.13, 5.1, and 4.92 times higher in myopic, hyperopic and astigmatic participants as compared with emmetropic individuals. The prevalence of uncorrected refractive errors was rather high in our study. Since rural areas have less access to health care facilities, special attention to the correction of refractive errors in these areas, especially with inexpensive methods like spectacles, can prevent a major proportion of visual impairment.

  1. Fourier power, subjective distance, and object categories all provide plausible models of BOLD responses in scene-selective visual areas

    PubMed Central

    Lescroart, Mark D.; Stansbury, Dustin E.; Gallant, Jack L.

    2015-01-01

    Perception of natural visual scenes activates several functional areas in the human brain, including the Parahippocampal Place Area (PPA), Retrosplenial Complex (RSC), and the Occipital Place Area (OPA). It is currently unclear what specific scene-related features are represented in these areas. Previous studies have suggested that PPA, RSC, and/or OPA might represent at least three qualitatively different classes of features: (1) 2D features related to Fourier power; (2) 3D spatial features such as the distance to objects in a scene; or (3) abstract features such as the categories of objects in a scene. To determine which of these hypotheses best describes the visual representation in scene-selective areas, we applied voxel-wise modeling (VM) to BOLD fMRI responses elicited by a set of 1386 images of natural scenes. VM provides an efficient method for testing competing hypotheses by comparing predictions of brain activity based on encoding models that instantiate each hypothesis. Here we evaluated three different encoding models that instantiate each of the three hypotheses listed above. We used linear regression to fit each encoding model to the fMRI data recorded from each voxel, and we evaluated each fit model by estimating the amount of variance it predicted in a withheld portion of the data set. We found that voxel-wise models based on Fourier power or the subjective distance to objects in each scene predicted much of the variance predicted by a model based on object categories. Furthermore, the response variance explained by these three models is largely shared, and the individual models explain little unique variance in responses. Based on an evaluation of previous studies and the data we present here, we conclude that there is currently no good basis to favor any one of the three alternative hypotheses about visual representation in scene-selective areas. We offer suggestions for further studies that may help resolve this issue. PMID:26594164

  2. How task demands shape brain responses to visual food cues.

    PubMed

    Pohl, Tanja Maria; Tempelmann, Claus; Noesselt, Toemme

    2017-06-01

    Several previous imaging studies have aimed at identifying the neural basis of visual food cue processing in humans. However, there is little consistency of the functional magnetic resonance imaging (fMRI) results across studies. Here, we tested the hypothesis that this variability across studies might - at least in part - be caused by the different tasks employed. In particular, we assessed directly the influence of task set on brain responses to food stimuli with fMRI using two tasks (colour vs. edibility judgement, between-subjects design). When participants judged colour, the left insula, the left inferior parietal lobule, occipital areas, the left orbitofrontal cortex and other frontal areas expressed enhanced fMRI responses to food relative to non-food pictures. However, when judging edibility, enhanced fMRI responses to food pictures were observed in the superior and middle frontal gyrus and in medial frontal areas including the pregenual anterior cingulate cortex and ventromedial prefrontal cortex. This pattern of results indicates that task sets can significantly alter the neural underpinnings of food cue processing. We propose that judging low-level visual stimulus characteristics - such as colour - triggers stimulus-related representations in the visual and even in gustatory cortex (insula), whereas discriminating abstract stimulus categories activates higher order representations in both the anterior cingulate and prefrontal cortex. Hum Brain Mapp 38:2897-2912, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Ex vivo method to visualize and quantify vascular networks in native and tissue engineered skin.

    PubMed

    Egaña, José Tomás; Condurache, Alexandru; Lohmeyer, Jörn Andreas; Kremer, Mathias; Stöckelhuber, Beate M; Lavandero, Sergio; Machens, Hans-Günther

    2009-03-01

    Neovascularization plays a pivotal role in tissue engineering and tissue regeneration. However, reliable technologies to visualize and quantify blood vessel networks in target tissue areas are still pending. In this work, we introduce a new method which allows comparing vascularization levels in normal and tissue-engineered skin. Normal skin was isolated, and vascular dermal regeneration was analyzed based on tissue transillumination and computerized digital segmentation. For tissue-engineered skin, a bilateral full skin defect was created in a nude mouse model and then covered with a commercially available scaffold for dermal regeneration. After 3 weeks, the whole skin (including scaffold for dermal regeneration) was harvested, and vascularization levels were analyzed. The blood vessel network in the skin was better visualized by transillumination than by radio-angiographic studies, the gold standard for angiographies. After visualization, the whole vascular network was digitally segmented showing an excellent overlapping with the original pictures. Quantification over the digitally segmented picture was performed, and an index of vascularization area (VAI) and length (VLI) of the vessel network was obtained in target tissues. VAI/VLI ratio was calculated to obtain the vessel size index. We present a new technique which has several advantages compared to others, as animals do not require intravascular perfusions, total areas of interest can be quantitatively analyzed at once, and the same target tissue can be processed for further experimental analysis.

  4. Visual areas become less engaged in associative recall following memory stabilization.

    PubMed

    Nieuwenhuis, Ingrid L C; Takashima, Atsuko; Oostenveld, Robert; Fernández, Guillén; Jensen, Ole

    2008-04-15

    Numerous studies have focused on changes in the activity in the hippocampus and higher association areas with consolidation and memory stabilization. Even though perceptual areas are engaged in memory recall, little is known about how memory stabilization is reflected in those areas. Using magnetoencephalography (MEG) we investigated changes in visual areas with memory stabilization. Subjects were trained on associating a face to one of eight locations. The first set of associations ('stabilized') was learned in three sessions distributed over a week. The second set ('labile') was learned in one session just prior to the MEG measurement. In the recall session only the face was presented and subjects had to indicate the correct location using a joystick. The MEG data revealed robust gamma activity during recall, which started in early visual cortex and propagated to higher visual and parietal brain areas. The occipital gamma power was higher for the labile than the stabilized condition (time=0.65-0.9 s). Also the event-related field strength was higher during recall of labile than stabilized associations (time=0.59-1.5 s). We propose that recall of the spatial associations prior to memory stabilization involves a top-down process relying on reconstructing learned representations in visual areas. This process is reflected in gamma band activity consistent with the notion that neuronal synchronization in the gamma band is required for visual representations. More direct synaptic connections are formed with memory stabilization, thus decreasing the dependence on visual areas.

  5. Radiation Blocking Lenses

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Biomedical Optical Company of America's Eagle 475 lens absorbs 100 percent of all photowavelengths considered hazardous to eye tissue, including ultraviolet and blue light, which are considered contributors to cataract and age-related macular degeneration. The lens absorbs hazardous wavelengths, but allows a higher percentage of visually useful areas of the spectrum to pass through. Polarization blocks out irritating glint and glare and heightens visual acuity. The Eagle 475 sunglasses are the latest in a series of spinoffs that originated at the Jet Propulsion Laboratory where two scientists developed a protective, welding curtain that filtered out harmful irradiance. The result was a commercial curtain that absorbs filters and scatters light, providing protection for personnel in welding areas. Further research focused on protective industrial glasses and later on consumer products.

  6. Asymmetrical brain activity induced by voluntary spatial attention depends on the visual hemifield: a functional near-infrared spectroscopy study.

    PubMed

    Harasawa, Masamitsu; Shioiri, Satoshi

    2011-04-01

    The effect of the visual hemifield to which spatial attention was oriented on the activities of the posterior parietal and occipital visual cortices was examined using functional near-infrared spectroscopy in order to investigate the neural substrates of voluntary visuospatial attention. Our brain imaging data support the theory put forth in a previous psychophysical study, namely, the attentional resources for the left and right visual hemifields are distinct. Increasing the attentional load asymmetrically increased the brain activity. Increase in attentional load produced a greater increase in brain activity in the case of the left visual hemifield than in the case of the right visual hemifield. This asymmetry was observed in all the examined brain areas, including the right and left occipital and parietal cortices. These results suggest the existence of asymmetrical inhibitory interactions between the hemispheres and the presence of an extensive inhibitory network. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Microstimulation of area V4 has little effect on spatial attention and on perception of phosphenes evoked in area V1

    PubMed Central

    Dagnino, Bruno; Gariel-Mathis, Marie-Alice

    2014-01-01

    Previous transcranial magnetic stimulation (TMS) studies suggested that feedback from higher to lower areas of the visual cortex is important for the access of visual information to awareness. However, the influence of cortico-cortical feedback on awareness and the nature of the feedback effects are not yet completely understood. In the present study, we used electrical microstimulation in the visual cortex of monkeys to test the hypothesis that cortico-cortical feedback plays a role in visual awareness. We investigated the interactions between the primary visual cortex (V1) and area V4 by applying microstimulation in both cortical areas at various delays. We report that the monkeys detected the phosphenes produced by V1 microstimulation but subthreshold V4 microstimulation did not influence V1 phosphene detection thresholds. A second experiment examined the influence of V4 microstimulation on the monkeys' ability to detect the dimming of one of three peripheral visual stimuli. Again, microstimulation of a group of V4 neurons failed to modulate the monkeys' perception of a stimulus in their receptive field. We conclude that conditions exist where microstimulation of area V4 has only a limited influence on visual perception. PMID:25392172

  8. Microstimulation of area V4 has little effect on spatial attention and on perception of phosphenes evoked in area V1.

    PubMed

    Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Roelfsema, Pieter R

    2015-02-01

    Previous transcranial magnetic stimulation (TMS) studies suggested that feedback from higher to lower areas of the visual cortex is important for the access of visual information to awareness. However, the influence of cortico-cortical feedback on awareness and the nature of the feedback effects are not yet completely understood. In the present study, we used electrical microstimulation in the visual cortex of monkeys to test the hypothesis that cortico-cortical feedback plays a role in visual awareness. We investigated the interactions between the primary visual cortex (V1) and area V4 by applying microstimulation in both cortical areas at various delays. We report that the monkeys detected the phosphenes produced by V1 microstimulation but subthreshold V4 microstimulation did not influence V1 phosphene detection thresholds. A second experiment examined the influence of V4 microstimulation on the monkeys' ability to detect the dimming of one of three peripheral visual stimuli. Again, microstimulation of a group of V4 neurons failed to modulate the monkeys' perception of a stimulus in their receptive field. We conclude that conditions exist where microstimulation of area V4 has only a limited influence on visual perception. Copyright © 2015 the American Physiological Society.

  9. Visual short-term memory: activity supporting encoding and maintenance in retinotopic visual cortex.

    PubMed

    Sneve, Markus H; Alnæs, Dag; Endestad, Tor; Greenlee, Mark W; Magnussen, Svein

    2012-10-15

    Recent studies have demonstrated that retinotopic cortex maintains information about visual stimuli during retention intervals. However, the process by which transient stimulus-evoked sensory responses are transformed into enduring memory representations is unknown. Here, using fMRI and short-term visual memory tasks optimized for univariate and multivariate analysis approaches, we report differential involvement of human retinotopic areas during memory encoding of the low-level visual feature orientation. All visual areas show weaker responses when memory encoding processes are interrupted, possibly due to effects in orientation-sensitive primary visual cortex (V1) propagating across extrastriate areas. Furthermore, intermediate areas in both dorsal (V3a/b) and ventral (LO1/2) streams are significantly more active during memory encoding compared with non-memory (active and passive) processing of the same stimulus material. These effects in intermediate visual cortex are also observed during memory encoding of a different stimulus feature (spatial frequency), suggesting that these areas are involved in encoding processes on a higher level of representation. Using pattern-classification techniques to probe the representational content in visual cortex during delay periods, we further demonstrate that simply initiating memory encoding is not sufficient to produce long-lasting memory traces. Rather, active maintenance appears to underlie the observed memory-specific patterns of information in retinotopic cortex. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. A unified software framework for deriving, visualizing, and exploring abstraction networks for ontologies

    PubMed Central

    Ochs, Christopher; Geller, James; Perl, Yehoshua; Musen, Mark A.

    2016-01-01

    Software tools play a critical role in the development and maintenance of biomedical ontologies. One important task that is difficult without software tools is ontology quality assurance. In previous work, we have introduced different kinds of abstraction networks to provide a theoretical foundation for ontology quality assurance tools. Abstraction networks summarize the structure and content of ontologies. One kind of abstraction network that we have used repeatedly to support ontology quality assurance is the partial-area taxonomy. It summarizes structurally and semantically similar concepts within an ontology. However, the use of partial-area taxonomies was ad hoc and not generalizable. In this paper, we describe the Ontology Abstraction Framework (OAF), a unified framework and software system for deriving, visualizing, and exploring partial-area taxonomy abstraction networks. The OAF includes support for various ontology representations (e.g., OWL and SNOMED CT's relational format). A Protégé plugin for deriving “live partial-area taxonomies” is demonstrated. PMID:27345947

  11. A unified software framework for deriving, visualizing, and exploring abstraction networks for ontologies.

    PubMed

    Ochs, Christopher; Geller, James; Perl, Yehoshua; Musen, Mark A

    2016-08-01

    Software tools play a critical role in the development and maintenance of biomedical ontologies. One important task that is difficult without software tools is ontology quality assurance. In previous work, we have introduced different kinds of abstraction networks to provide a theoretical foundation for ontology quality assurance tools. Abstraction networks summarize the structure and content of ontologies. One kind of abstraction network that we have used repeatedly to support ontology quality assurance is the partial-area taxonomy. It summarizes structurally and semantically similar concepts within an ontology. However, the use of partial-area taxonomies was ad hoc and not generalizable. In this paper, we describe the Ontology Abstraction Framework (OAF), a unified framework and software system for deriving, visualizing, and exploring partial-area taxonomy abstraction networks. The OAF includes support for various ontology representations (e.g., OWL and SNOMED CT's relational format). A Protégé plugin for deriving "live partial-area taxonomies" is demonstrated. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Visual cortex activation in late-onset, Braille naive blind individuals: an fMRI study during semantic and phonological tasks with heard words.

    PubMed

    Burton, Harold; McLaren, Donald G

    2006-01-09

    Visual cortex activity in the blind has been shown in Braille literate people, which raise the question of whether Braille literacy influences cross-modal reorganization. We used fMRI to examine visual cortex activation during semantic and phonological tasks with auditory presentation of words in two late-onset blind individuals who lacked Braille literacy. Multiple visual cortical regions were activated in the Braille naive individuals. Positive BOLD responses were noted in lower tier visuotopic (e.g., V1, V2, VP, and V3) and several higher tier visual areas (e.g., V4v, V8, and BA 37). Activity was more extensive and cross-correlation magnitudes were greater during the semantic compared to the phonological task. These results with Braille naive individuals plausibly suggest that visual deprivation alone induces visual cortex reorganization. Cross-modal reorganization of lower tier visual areas may be recruited by developing skills in attending to selected non-visual inputs (e.g., Braille literacy, enhanced auditory skills). Such learning might strengthen remote connections with multisensory cortical areas. Of necessity, the Braille naive participants must attend to auditory stimulation for language. We hypothesize that learning to attend to non-visual inputs probably strengthens the remaining active synapses following visual deprivation, and thereby, increases cross-modal activation of lower tier visual areas when performing highly demanding non-visual tasks of which reading Braille is just one example.

  13. Visual cortex activation in late-onset, Braille naive blind individuals: An fMRI study during semantic and phonological tasks with heard words

    PubMed Central

    Burton, Harold; McLaren, Donald G.

    2013-01-01

    Visual cortex activity in the blind has been shown in Braille literate people, which raise the question of whether Braille literacy influences cross-modal reorganization. We used fMRI to examine visual cortex activation during semantic and phonological tasks with auditory presentation of words in two late-onset blind individuals who lacked Braille literacy. Multiple visual cortical regions were activated in the Braille naive individuals. Positive BOLD responses were noted in lower tier visuotopic (e.g., V1, V2, VP, and V3) and several higher tier visual areas (e.g., V4v, V8, and BA 37). Activity was more extensive and cross-correlation magnitudes were greater during the semantic compared to the phonological task. These results with Braille naive individuals plausibly suggest that visual deprivation alone induces visual cortex reorganization. Cross-modal reorganization of lower tier visual areas may be recruited by developing skills in attending to selected non-visual inputs (e.g., Braille literacy, enhanced auditory skills). Such learning might strengthen remote connections with multisensory cortical areas. Of necessity, the Braille naive participants must attend to auditory stimulation for language. We hypothesize that learning to attend to non-visual inputs probably strengthens the remaining active synapses following visual deprivation, and thereby, increases cross-modal activation of lower tier visual areas when performing highly demanding non-visual tasks of which reading Braille is just one example. PMID:16198053

  14. The prevalence of visual impairment and blindness in underserved rural areas: a crucial issue for future.

    PubMed

    Hashemi, H; Yekta, A; Jafarzadehpur, E; Doostdar, A; Ostadimoghaddam, H; Khabazkhoob, M

    2017-08-01

    PurposeTo determine the prevalence of visual impairment and blindness in underserved Iranian villages and to identify the most common cause of visual impairment and blindness.Patients and methodsMultistage cluster sampling was used to select the participants who were then invited to undergo complete examinations. Optometric examinations including visual acuity, and refraction were performed for all individuals. Ophthalmic examinations included slit-lamp biomicroscopy and ophthalmoscopy. Visual impairment was determined according to the definitions of the WHO and presenting vision.ResultsOf 3851 selected individuals, 3314 (86.5%) participated in the study. After using the exclusion criteria, the present report was prepared based on the data of 3095 participants. The mean age of the participants was 37.6±20.7 years (3-93 years). The prevalence of visual impairment and blindness was 6.43% (95% confidence interval (CI): 3.71-9.14) and 1.18% (95% CI: 0.56-1.79), respectively. The prevalence of visual impairment varied from 0.75% in participants aged less than 5 years to 38.36% in individuals above the age of 70 years. Uncorrected refractive errors and cataract were the first and second leading causes of visual impairment; moreover, cataract and refractive errors were responsible for 35.90 and 20.51% of the cases of blindness, respectively.ConclusionThe prevalence of visual impairment was markedly high in this study. Lack of access to health services was the main reason for the high prevalence of visual impairment in this study. Cataract and refractive errors are responsible for 80% of visual impairments which can be due to poverty in underserved villages.

  15. The compensatory dynamic of inter-hemispheric interactions in visuospatial attention revealed using rTMS and fMRI.

    PubMed

    Plow, Ela B; Cattaneo, Zaira; Carlson, Thomas A; Alvarez, George A; Pascual-Leone, Alvaro; Battelli, Lorella

    2014-01-01

    A balance of mutual tonic inhibition between bi-hemispheric posterior parietal cortices is believed to play an important role in bilateral visual attention. However, experimental support for this notion has been mainly drawn from clinical models of unilateral damage. We have previously shown that low-frequency repetitive TMS (rTMS) over the intraparietal sulcus (IPS) generates a contralateral attentional deficit in bilateral visual tracking. Here, we used functional magnetic resonance imaging (fMRI) to study whether rTMS temporarily disrupts the inter-hemispheric balance between bilateral IPS in visual attention. Following application of 1 Hz rTMS over the left IPS, subjects performed a bilateral visual tracking task while their brain activity was recorded using fMRI. Behaviorally, tracking accuracy was reduced immediately following rTMS. Areas ventro-lateral to left IPS, including inferior parietal lobule (IPL), lateral IPS (LIPS), and middle occipital gyrus (MoG), showed decreased activity following rTMS, while dorsomedial areas, such as Superior Parietal Lobule (SPL), Superior occipital gyrus (SoG), and lingual gyrus, as well as middle temporal areas (MT+), showed higher activity. The brain activity of the homologues of these regions in the un-stimulated, right hemisphere was reversed. Interestingly, the evolution of network-wide activation related to attentional behavior following rTMS showed that activation of most occipital synergists adaptively compensated for contralateral and ipsilateral decrement after rTMS, while activation of parietal synergists, and SoG remained competing. This pattern of ipsilateral and contralateral activations empirically supports the hypothesized loss of inter-hemispheric balance that underlies clinical manifestation of visual attentional extinction.

  16. Retinal nerve fiber layer thickness measured with optical coherence tomography is related to visual function in glaucomatous eyes.

    PubMed

    El Beltagi, Tarek A; Bowd, Christopher; Boden, Catherine; Amini, Payam; Sample, Pamela A; Zangwill, Linda M; Weinreb, Robert N

    2003-11-01

    To determine the relationship between areas of glaucomatous retinal nerve fiber layer thinning identified by optical coherence tomography and areas of decreased visual field sensitivity identified by standard automated perimetry in glaucomatous eyes. Retrospective observational case series. Forty-three patients with glaucomatous optic neuropathy identified by optic disc stereo photographs and standard automated perimetry mean deviations >-8 dB were included. Participants were imaged with optical coherence tomography within 6 months of reliable standard automated perimetry testing. The location and number of optical coherence tomography clock hour retinal nerve fiber layer thickness measures outside normal limits were compared with the location and number of standard automated perimetry visual field zones outside normal limits. Further, the relationship between the deviation from normal optical coherence tomography-measured retinal nerve fiber layer thickness at each clock hour and the average pattern deviation in each visual field zone was examined by using linear regression (R(2)). The retinal nerve fiber layer areas most frequently outside normal limits were the inferior and inferior temporal regions. The least sensitive visual field zones were in the superior hemifield. Linear regression results (R(2)) showed that deviation from the normal retinal nerve fiber layer thickness at optical coherence tomography clock hour positions 6 o'clock, 7 o'clock, and 8 o'clock (inferior and inferior temporal) was best correlated with standard automated perimetry pattern deviation in visual field zones corresponding to the superior arcuate and nasal step regions (R(2) range, 0.34-0.57). These associations were much stronger than those between clock hour position 6 o'clock and the visual field zone corresponding to the inferior nasal step region (R(2) = 0.01). Localized retinal nerve fiber layer thinning, measured by optical coherence tomography, is topographically related to decreased localized standard automated perimetry sensitivity in glaucoma patients.

  17. Patterns of peripheral retinal and central macula ischemia in diabetic retinopathy as evaluated by ultra-widefield fluorescein angiography.

    PubMed

    Sim, Dawn A; Keane, Pearse A; Rajendram, Ranjan; Karampelas, Michael; Selvam, Senthil; Powner, Michael B; Fruttiger, Marcus; Tufail, Adnan; Egan, Catherine A

    2014-07-01

    To investigate the association between peripheral and central ischemia in diabetic retinopathy. Retrospective, cross-sectional. Consecutive ultra-widefield fluorescein angiography images were collected from patients with diabetes over a 12-month period. Parameters quantified include the foveal avascular zone (FAZ) area, peripheral ischemic index, peripheral leakage index, and central retinal thickness measurements, as well as visual acuity. The peripheral ischemia or leakage index was calculated as the area of capillary nonperfusion or leakage, expressed as a percentage of the total retinal area. Forty-seven eyes of 47 patients were included. A moderate correlation was observed between the peripheral ischemia index and FAZ area (r = 0.49, P = .0001). A moderate correlation was also observed between the peripheral leakage index and FAZ area, but only in eyes that were laser naïve (r = 0.44, P = .02). A thinner retina was observed in eyes with macular ischemia (217 ± 81.8 μm vs 272 ± 36.0 μm) (P = .02), but not peripheral ischemia (258 ± 76.3 μm vs 276 ± 68.0 μm) (P = .24). The relationships between different patterns of peripheral and central macular pathology and visual acuity were evaluated in a step-wise multivariable regression model, and the variables that remained independently associated were age (r = 0.33, P = .03), FAZ area (r = 0.45, P = .02), and central retinal thickness (r = 0.38, P = .01), (R(2)-adjusted = 0.36). Ultra-widefield fluorescein angiography provides an insight into the relationships between diabetic vascular complications in the retinal periphery and central macula. Although we observed relationships between ischemia and vascular leakage in the macula and periphery, it was only macular ischemia and retinal thinning that was independently associated with a reduced visual function. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Visual impairment and spectacle coverage rate in Baoshan district, China: population-based study

    PubMed Central

    2013-01-01

    Background To investigate the prevalence and risk factors of visual impairment associated with refractive error and the unmet need for spectacles in a special suburban senior population in Baoshan District of Shanghai, one of several rural areas undergoing a transition from rural to urban area, where data of visual impairment are limited. Methods The study was a population based survey of 4545 Chinese aged (age: >60 years or older ) at Baoshan, Shanghai, in 2009. One copy of questionnaire was completed for each subject. Examinations included a standardized refraction and measurement of presenting and best corrected visual acuity (BCVA) as well as tonometry, slit lamp biomicroscopy, and fundus photography. Results The prevalence of mild (6/12 to 6/18), moderate (6/18 to 6/60) and severe visual impairment was 12.59%, 8.38% and 0.44%, respectively, and 5.26%, 3.06% and 0.09% with refractive correction. Visual impairment was associated with age, gender, education and career, but not insurance . The prevalence of correctable visual impairment was 5.81% (using 6/18 cutoff) and 13.18% (using 6/12 cutoff). Senior people and women were significantly at a higher risk of correctable visual impairment, while the well-educated on the contrary. The prevalence of undercorrected refractive error (improves by 2 or more lines with refraction) was 24.84%, and the proportion with undercorrected refractive error for mild, moderate , severe and no visual impairment was 61.54%, 67.98%, 60.00% and 14.10%, respectively. The spectacle coverage rate was 44.12%. Greater unmet need for spectacles was observed among elderly people, females, non-peasant, and subjects with less education and astigmatism only. Conclusions High prevalence of visual impairment, visual impairment alleviated by refractive correction, and low spectacle coverage existed among the senior population in Baoshan District of Shanghai. Education for the public of the importance of regular examination and appropriate and accessible refraction service might be helpful to solve the problem. PMID:23566106

  19. Learning receptive fields using predictive feedback.

    PubMed

    Jehee, Janneke F M; Rothkopf, Constantin; Beck, Jeffrey M; Ballard, Dana H

    2006-01-01

    Previously, it was suggested that feedback connections from higher- to lower-level areas carry predictions of lower-level neural activities, whereas feedforward connections carry the residual error between the predictions and the actual lower-level activities [Rao, R.P.N., Ballard, D.H., 1999. Nature Neuroscience 2, 79-87.]. A computational model implementing the hypothesis learned simple cell receptive fields when exposed to natural images. Here, we use predictive feedback to explain tuning properties in medial superior temporal area (MST). We implement the hypothesis using a new, biologically plausible, algorithm based on matching pursuit, which retains all the features of the previous implementation, including its ability to efficiently encode input. When presented with natural images, the model developed receptive field properties as found in primary visual cortex. In addition, when exposed to visual motion input resulting from movements through space, the model learned receptive field properties resembling those in MST. These results corroborate the idea that predictive feedback is a general principle used by the visual system to efficiently encode natural input.

  20. Gender similarities and differences in brain activation strategies: Voxel-based meta-analysis on fMRI studies.

    PubMed

    AlRyalat, Saif Aldeen

    2017-01-01

    Gender similarities and differences have long been a matter of debate in almost all human research, especially upon reaching the discussion about brain functions. This large scale meta-analysis was performed on functional MRI studies. It included more than 700 active brain foci from more than 70 different experiments to study gender related similarities and differences in brain activation strategies for three of the main brain functions: Visual-spatial cognition, memory, and emotion. Areas that are significantly activated by both genders (i.e. core areas) for the tested brain function are mentioned, whereas those areas significantly activated exclusively in one gender are the gender specific areas. During visual-spatial cognition task, and in addition to the core areas, males significantly activated their left superior frontal gyrus, compared with left superior parietal lobule in females. For memory tasks, several different brain areas activated by each gender, but females significantly activated two areas from the limbic system during memory retrieval tasks. For emotional task, males tend to recruit their bilateral prefrontal regions, whereas females tend to recruit their bilateral amygdalae. This meta-analysis provides an overview based on functional MRI studies on how males and females use their brain.

  1. Stream-related preferences of inputs to the superior colliculus from areas of dorsal and ventral streams of mouse visual cortex.

    PubMed

    Wang, Quanxin; Burkhalter, Andreas

    2013-01-23

    Previous studies of intracortical connections in mouse visual cortex have revealed two subnetworks that resemble the dorsal and ventral streams in primates. Although calcium imaging studies have shown that many areas of the ventral stream have high spatial acuity whereas areas of the dorsal stream are highly sensitive for transient visual stimuli, there are some functional inconsistencies that challenge a simple grouping into "what/perception" and "where/action" streams known in primates. The superior colliculus (SC) is a major center for processing of multimodal sensory information and the motor control of orienting the eyes, head, and body. Visual processing is performed in superficial layers, whereas premotor activity is generated in deep layers of the SC. Because the SC is known to receive input from visual cortex, we asked whether the projections from 10 visual areas of the dorsal and ventral streams terminate in differential depth profiles within the SC. We found that inputs from primary visual cortex are by far the strongest. Projections from the ventral stream were substantially weaker, whereas the sparsest input originated from areas of the dorsal stream. Importantly, we found that ventral stream inputs terminated in superficial layers, whereas dorsal stream inputs tended to be patchy and either projected equally to superficial and deep layers or strongly preferred deep layers. The results suggest that the anatomically defined ventral and dorsal streams contain areas that belong to distinct functional systems, specialized for the processing of visual information and visually guided action, respectively.

  2. WATESOL Journal, 1989-1994.

    ERIC Educational Resources Information Center

    WATESOL Journal, 1994

    1994-01-01

    "WATESOL" is an acronym for "Washington Area Teachers of English To Speakers of Other Languages." This document consists of the only three issues of the "WATESOL Journal" published from 1989 through 1994. Fall 1989 includes: (1) "The Visual Voices of Nonverbal Films" (Salvatore J. Parlato); (2)…

  3. ERGONOMICS ABSTRACTS 48347-48982.

    ERIC Educational Resources Information Center

    Ministry of Technology, London (England). Warren Spring Lab.

    IN THIS COLLECTION OF ERGONOMICS ABSTRACTS AND ANNOTATIONS THE FOLLOWING AREAS OF CONCERN ARE REPRESENTED--GENERAL REFERENCES, METHODS, FACILITIES, AND EQUIPMENT RELATING TO ERGONOMICS, SYSTEMS OF MAN AND MACHINES, VISUAL, AUDITORY, AND OTHER SENSORY INPUTS AND PROCESSES (INCLUDING SPEECH AND INTELLIGIBILITY), INPUT CHANNELS, BODY MEASUREMENTS,…

  4. Improving School Lighting for Video Display Units.

    ERIC Educational Resources Information Center

    Parker-Jenkins, Marie; Parker-Jenkins, William

    1985-01-01

    Provides information to identify and implement the key characteristics which contribute to an efficient and comfortable visual display unit (VDU) lighting installation. Areas addressed include VDU lighting requirements, glare, lighting controls, VDU environment, lighting retrofit, optical filters, and lighting recommendations. A checklist to…

  5. Visual Analytics for the Food-Water-Energy Nexus in the Phoenix Active Management Area

    NASA Astrophysics Data System (ADS)

    Maciejewski, R.; Mascaro, G.; White, D. D.; Ruddell, B. L.; Aggarwal, R.; Sarjoughian, H.

    2016-12-01

    The Phoenix Active Management Area (AMA) is an administrative region of 14,500 km2 identified by the Arizona Department of Water Resources with the aim of reaching and maintaining the safe yield (i.e. balance between annual amount of groundwater withdrawn and recharged) by 2025. The AMA includes the Phoenix metropolitan area, which has experienced a dramatic population growth over the last decades with a progressive conversion of agricultural land into residential land. As a result of these changes, the water and energy demand as well as the food production in the region have significantly evolved over the last 30 years. Given the arid climate, a crucial role to support this growth has been the creation of a complex water supply system based on renewable and non-renewable resources, including the energy-intensive Central Arizona Project. In this talk, we present a preliminary characterization of the evolution in time of the feedbacks between food, water, and energy in the Phoenix AMA by analyzing secondary data (available from water and energy providers, irrigation districts, and municipalities), as well as satellite imagery and primary data collected by the authors. A preliminary visual analytics framework is also discussed describing current design practices and ideas for exploring networked components and cascading impacts within the FEW Nexus. This analysis and framework represent the first steps towards the development of an integrated modeling, visualization, and decision support infrastructure for comprehensive FEW systems decision making at decision-relevant temporal and spatial scales.

  6. [Associative Learning between Orientation and Color in Early Visual Areas].

    PubMed

    Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo

    2017-08-01

    Associative learning is an essential neural phenomenon where the contingency of different items increases after training. Although associative learning has been found to occur in many brain regions, there is no clear evidence that associative learning of visual features occurs in early visual areas. Here, we developed an associative decoded functional magnetic resonance imaging (fMRI) neurofeedback (A-DecNef) to determine whether associative learning of color and orientation can be induced in early visual areas. During the three days' training, A-DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was simultaneously, physically presented to participants. Consequently, participants' perception of "red" was significantly more frequently than that of "green" in an achromatic vertical grating. This effect was also observed 3 to 5 months after training. These results suggest that long-term associative learning of two different visual features such as color and orientation, was induced most likely in early visual areas. This newly extended technique that induces associative learning may be used as an important tool for understanding and modifying brain function, since associations are fundamental and ubiquitous with respect to brain function.

  7. Vision problems are a leading source of modifiable health expenditures.

    PubMed

    Rein, David B

    2013-12-13

    According to recent studies, visual problems represent one of the top contributors to economic health burden in the United States. This burden is divided nearly equally between direct expenditures for the care and treatment of visual problems, and the indirect costs of outcomes caused by low vision, including productivity losses, the cost of care, and incremental nursing home placements. A large amount of academic research is devoted to visual science, the biology of the visual system, and the medical treatment of visual disorders. Compared to the burden, a disproportionate share of this research is devoted to the study of retinal disorders and glaucoma. This is understandable, as research into the retina and optic nerve has the potential to unlock fundamental insights into the nature of sight and visual cognition. However, population visual health and the functionality that depends upon it also may benefit greatly from additional research into areas of prevention, rehabilitation, and adaptation. In addition, comparative research into the benefits of resource allocation across prevention, treatment, and rehabilitative resources could lead to improvements in population health.

  8. Selective Audiovisual Semantic Integration Enabled by Feature-Selective Attention.

    PubMed

    Li, Yuanqing; Long, Jinyi; Huang, Biao; Yu, Tianyou; Wu, Wei; Li, Peijun; Fang, Fang; Sun, Pei

    2016-01-13

    An audiovisual object may contain multiple semantic features, such as the gender and emotional features of the speaker. Feature-selective attention and audiovisual semantic integration are two brain functions involved in the recognition of audiovisual objects. Humans often selectively attend to one or several features while ignoring the other features of an audiovisual object. Meanwhile, the human brain integrates semantic information from the visual and auditory modalities. However, how these two brain functions correlate with each other remains to be elucidated. In this functional magnetic resonance imaging (fMRI) study, we explored the neural mechanism by which feature-selective attention modulates audiovisual semantic integration. During the fMRI experiment, the subjects were presented with visual-only, auditory-only, or audiovisual dynamical facial stimuli and performed several feature-selective attention tasks. Our results revealed that a distribution of areas, including heteromodal areas and brain areas encoding attended features, may be involved in audiovisual semantic integration. Through feature-selective attention, the human brain may selectively integrate audiovisual semantic information from attended features by enhancing functional connectivity and thus regulating information flows from heteromodal areas to brain areas encoding the attended features.

  9. Toward a Unified Theory of Visual Area V4

    PubMed Central

    Roe, Anna W.; Chelazzi, Leonardo; Connor, Charles E.; Conway, Bevil R.; Fujita, Ichiro; Gallant, Jack L.; Lu, Haidong; Vanduffel, Wim

    2016-01-01

    Visual area V4 is a midtier cortical area in the ventral visual pathway. It is crucial for visual object recognition and has been a focus of many studies on visual attention. However, there is no unifying view of V4’s role in visual processing. Neither is there an understanding of how its role in feature processing interfaces with its role in visual attention. This review captures our current knowledge of V4, largely derived from electrophysiological and imaging studies in the macaque monkey. Based on recent discovery of functionally specific domains in V4, we propose that the unifying function of V4 circuitry is to enable selective extraction of specific functional domain-based networks, whether it be by bottom-up specification of object features or by top-down attentionally driven selection. PMID:22500626

  10. An intelligent surveillance platform for large metropolitan areas with dense sensor deployment.

    PubMed

    Fernández, Jorge; Calavia, Lorena; Baladrón, Carlos; Aguiar, Javier M; Carro, Belén; Sánchez-Esguevillas, Antonio; Alonso-López, Jesus A; Smilansky, Zeev

    2013-06-07

    This paper presents an intelligent surveillance platform based on the usage of large numbers of inexpensive sensors designed and developed inside the European Eureka Celtic project HuSIMS. With the aim of maximizing the number of deployable units while keeping monetary and resource/bandwidth costs at a minimum, the surveillance platform is based on the usage of inexpensive visual sensors which apply efficient motion detection and tracking algorithms to transform the video signal in a set of motion parameters. In order to automate the analysis of the myriad of data streams generated by the visual sensors, the platform's control center includes an alarm detection engine which comprises three components applying three different Artificial Intelligence strategies in parallel. These strategies are generic, domain-independent approaches which are able to operate in several domains (traffic surveillance, vandalism prevention, perimeter security, etc.). The architecture is completed with a versatile communication network which facilitates data collection from the visual sensors and alarm and video stream distribution towards the emergency teams. The resulting surveillance system is extremely suitable for its deployment in metropolitan areas, smart cities, and large facilities, mainly because cheap visual sensors and autonomous alarm detection facilitate dense sensor network deployments for wide and detailed coverage.

  11. Brain Activation in Response to Visually Evoked Sexual Arousal in Male-to-Female Transsexuals: 3.0 Tesla Functional Magnetic Resonance Imaging

    PubMed Central

    Oh, Seok-Kyun; Kim, Gwang-Won; Yang, Jong-Chul; Kim, Seok-Kwun; Kang, Heoung-Keun

    2012-01-01

    Objective This study used functional magnetic resonance imaging (fMRI) to contrast the differential brain activation patterns in response to visual stimulation with both male and female erotic nude pictures in male-to-female (MTF) transsexuals who underwent a sex reassignment surgery. Materials and Methods A total of nine healthy MTF transsexuals after a sex reassignment surgery underwent fMRI on a 3.0 Tesla MR Scanner. The brain activation patterns were induced by visual stimulation with both male and female erotic nude pictures. Results The sex hormone levels of the postoperative MTF transsexuals were in the normal range of healthy heterosexual females. The brain areas, which were activated by viewing male nude pictures when compared with viewing female nude pictures, included predominantly the cerebellum, hippocampus, putamen, anterior cingulate gyrus, head of caudate nucleus, amygdala, midbrain, thalamus, insula, and body of caudate nucleus. On the other hand, brain activation induced by viewing female nude pictures was predominantly observed in the hypothalamus and the septal area. Conclusion Our findings suggest that distinct brain activation patterns associated with visual sexual arousal in postoperative MTF transsexuals reflect their sexual orientation to males. PMID:22563262

  12. Flexibility and Stability in Sensory Processing Revealed Using Visual-to-Auditory Sensory Substitution

    PubMed Central

    Hertz, Uri; Amedi, Amir

    2015-01-01

    The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. PMID:24518756

  13. Flexibility and Stability in Sensory Processing Revealed Using Visual-to-Auditory Sensory Substitution.

    PubMed

    Hertz, Uri; Amedi, Amir

    2015-08-01

    The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. © The Author 2014. Published by Oxford University Press.

  14. NASA GES DISC Aerosol analysis and visualization services

    NASA Astrophysics Data System (ADS)

    Wei, J. C.; Ichoku, C. M.; Petrenko, M.; Yang, W.; Albayrak, A.; Zhao, P.; Johnson, J. E.; Kempler, S.

    2015-12-01

    Among the known atmospheric constituents, aerosols represent the greatest uncertainty in climate research. Satellite data products are important for a wide variety of applications that can bring far-reaching benefits to the science community and the broader society. These benefits can best be achieved if the satellite data are well utilized and interpreted. Unfortunately, this is not always the case, despite the abundance and relative maturity of numerous satellite-borne sensors routinely measure aerosols. There is often disagreement between similar aerosol parameters retrieved from different sensors, leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. Such misunderstanding may be avoided by providing satellite data with accurate pixel-level (Level 2) information, including pixel coverage area delineation and science team recommended quality screening for individual geophysical parameters. NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) have developed multiple MAPSS applications as a part of Giovanni (Geospatial Interactive Online Visualization and Analysis Interface) data visualization and analysis tool - Giovanni-MAPSS and Giovanni-MAPSS_Explorer since 2007. The MAPSS database provides spatio-temporal statistics for multiple spatial spaceborne Level 2 aerosol products (MODIS Terra, MODIS Aqua, MISR, POLDER, OMI, CALIOP, SeaWiFS Deep Blue, and VIIRS) sampled over AERONET ground stations. In this presentation, I will demonstrate the improved features from Giovanni-MAPSS and introduce a new visualization service (Giovanni VizMAP) supporting various visualization and data accessing capabilities from satellite Level 2 data (non-aggregated and un-gridded) at high spatial resolution. Functionality will include selecting data sources (e.g., multiple parameters under the same measurement), defining area-of-interest and temporal extents, zooming, panning, overlaying, sliding, and data subsetting and reformatting.

  15. Abnormal late visual responses and alpha oscillations in neurofibromatosis type 1: a link to visual and attention deficits

    PubMed Central

    2014-01-01

    Background Neurofibromatosis type 1 (NF1) affects several areas of cognitive function including visual processing and attention. We investigated the neural mechanisms underlying the visual deficits of children and adolescents with NF1 by studying visual evoked potentials (VEPs) and brain oscillations during visual stimulation and rest periods. Methods Electroencephalogram/event-related potential (EEG/ERP) responses were measured during visual processing (NF1 n = 17; controls n = 19) and idle periods with eyes closed and eyes open (NF1 n = 12; controls n = 14). Visual stimulation was chosen to bias activation of the three detection mechanisms: achromatic, red-green and blue-yellow. Results We found significant differences between the groups for late chromatic VEPs and a specific enhancement in the amplitude of the parieto-occipital alpha amplitude both during visual stimulation and idle periods. Alpha modulation and the negative influence of alpha oscillations in visual performance were found in both groups. Conclusions Our findings suggest abnormal later stages of visual processing and enhanced amplitude of alpha oscillations supporting the existence of deficits in basic sensory processing in NF1. Given the link between alpha oscillations, visual perception and attention, these results indicate a neural mechanism that might underlie the visual sensitivity deficits and increased lapses of attention observed in individuals with NF1. PMID:24559228

  16. Visual perception and imagery: a new molecular hypothesis.

    PubMed

    Bókkon, I

    2009-05-01

    Here, we put forward a redox molecular hypothesis about the natural biophysical substrate of visual perception and visual imagery. This hypothesis is based on the redox and bioluminescent processes of neuronal cells in retinotopically organized cytochrome oxidase-rich visual areas. Our hypothesis is in line with the functional roles of reactive oxygen and nitrogen species in living cells that are not part of haphazard process, but rather a very strict mechanism used in signaling pathways. We point out that there is a direct relationship between neuronal activity and the biophoton emission process in the brain. Electrical and biochemical processes in the brain represent sensory information from the external world. During encoding or retrieval of information, electrical signals of neurons can be converted into synchronized biophoton signals by bioluminescent radical and non-radical processes. Therefore, information in the brain appears not only as an electrical (chemical) signal but also as a regulated biophoton (weak optical) signal inside neurons. During visual perception, the topological distribution of photon stimuli on the retina is represented by electrical neuronal activity in retinotopically organized visual areas. These retinotopic electrical signals in visual neurons can be converted into synchronized biophoton signals by radical and non-radical processes in retinotopically organized mitochondria-rich areas. As a result, regulated bioluminescent biophotons can create intrinsic pictures (depictive representation) in retinotopically organized cytochrome oxidase-rich visual areas during visual imagery and visual perception. The long-term visual memory is interpreted as epigenetic information regulated by free radicals and redox processes. This hypothesis does not claim to solve the secret of consciousness, but proposes that the evolution of higher levels of complexity made the intrinsic picture representation of the external visual world possible by regulated redox and bioluminescent reactions in the visual system during visual perception and visual imagery.

  17. Visual assessment of brain magnetic resonance imaging detects injury to cognitive regulatory sites in patients with heart failure.

    PubMed

    Pan, Alan; Kumar, Rajesh; Macey, Paul M; Fonarow, Gregg C; Harper, Ronald M; Woo, Mary A

    2013-02-01

    Heart failure (HF) patients exhibit depression and executive function impairments that contribute to HF mortality. Using specialized magnetic resonance imaging (MRI) analysis procedures, brain changes appear in areas regulating these functions (mammillary bodies, hippocampi, and frontal cortex). However, specialized MRI procedures are not part of standard clinical assessment for HF (which is usually a visual evaluation), and it is unclear whether visual MRI examination can detect changes in these structures. Using brain MRI, we visually examined the mammillary bodies and frontal cortex for global and hippocampi for global and regional tissue changes in 17 HF and 50 control subjects. Significantly global changes emerged in the right mammillary body (HF 1.18 ± 1.13 vs control 0.52 ± 0.74; P = .024), right hippocampus (HF 1.53 ± 0.94 vs control 0.80 ± 0.86; P = .005), and left frontal cortex (HF 1.76 ± 1.03 vs control 1.24 ± 0.77; P = .034). Comparison of the visual method with specialized MRI techniques corroborates right hippocampal and left frontal cortical, but not mammillary body, tissue changes. Visual examination of brain MRI can detect damage in HF in areas regulating depression and executive function, including the right hippocampus and left frontal cortex. Visual MRI assessment in HF may facilitate evaluation of injury to these structures and the assessment of the impact of potential treatments for this damage. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Man-machine interface requirements - advanced technology

    NASA Technical Reports Server (NTRS)

    Remington, R. W.; Wiener, E. L.

    1984-01-01

    Research issues and areas are identified where increased understanding of the human operator and the interaction between the operator and the avionics could lead to improvements in the performance of current and proposed helicopters. Both current and advanced helicopter systems and avionics are considered. Areas critical to man-machine interface requirements include: (1) artificial intelligence; (2) visual displays; (3) voice technology; (4) cockpit integration; and (5) pilot work loads and performance.

  19. Basic abnormalities in visual processing affect face processing at an early age in autism spectrum disorder.

    PubMed

    Vlamings, Petra Hendrika Johanna Maria; Jonkman, Lisa Marthe; van Daalen, Emma; van der Gaag, Rutger Jan; Kemner, Chantal

    2010-12-15

    A detailed visual processing style has been noted in autism spectrum disorder (ASD); this contributes to problems in face processing and has been directly related to abnormal processing of spatial frequencies (SFs). Little is known about the early development of face processing in ASD and the relation with abnormal SF processing. We investigated whether young ASD children show abnormalities in low spatial frequency (LSF, global) and high spatial frequency (HSF, detailed) processing and explored whether these are crucially involved in the early development of face processing. Three- to 4-year-old children with ASD (n = 22) were compared with developmentally delayed children without ASD (n = 17). Spatial frequency processing was studied by recording visual evoked potentials from visual brain areas while children passively viewed gratings (HSF/LSF). In addition, children watched face stimuli with different expressions, filtered to include only HSF or LSF. Enhanced activity in visual brain areas was found in response to HSF versus LSF information in children with ASD, in contrast to control subjects. Furthermore, facial-expression processing was also primarily driven by detail in ASD. Enhanced visual processing of detailed (HSF) information is present early in ASD and occurs for neutral (gratings), as well as for socially relevant stimuli (facial expressions). These data indicate that there is a general abnormality in visual SF processing in early ASD and are in agreement with suggestions that a fast LSF subcortical face processing route might be affected in ASD. This could suggest that abnormal visual processing is causative in the development of social problems in ASD. Copyright © 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. A Qualitative Investigation to Underpin the Development of an Electronic Tool to Assess Nutrition Literacy in Australians Adults.

    PubMed

    Cassar, Alyssa M; Denyer, Gareth S; O'Connor, Helen T; Gifford, Janelle A

    2018-02-23

    Nutrition literacy is linked to health via its influence on dietary intake. There is a need for a tool to assess nutrition literacy in research and dietetic practice. We sought guidance from nutrition professionals on topic areas and features of an electronic nutrition literacy assessment tool for Australian adults. 28 experienced nutrition professionals engaged in a range of nutrition and dietetic work areas participated in six focus groups using a semi-structured interview schedule. Data were analysed using an inductive approach using NVivo 10 (QSR International, Pty Ltd., Doncaster, Australia, 2012). Key areas identified to assess nutrition literacy included specific nutrients versus foods, labels and packaging, construction of the diet, knowledge of the Australian Dietary Guidelines and Australian Guide to Healthy Eating, understanding of serve and portion sizes, ability to select healthier foods, and demographics such as belief systems and culture. Exploitation of electronic features to enhance visual and auditory displays, including interactive animations such as "drag and drop" and virtual reality situations, were discussed. This study provided insight into the most relevant topic areas and presentation format to assess the nutrition literacy of adult Australians. The visual, auditory, and interactive capacity of the available technology could enhance the assessment of nutrition literacy.

  1. Structure-Function Correlation Using Confocal Laser Ophthalmoscope in Primary Open-Angle Glaucoma and Pseudoexfoliative Glaucoma.

    PubMed

    Pappas, Theofanis; Founti, Panayiota; Yin, Xiang Jun; Koskosas, Archimidis; Anastasopoulos, Eleftherios; Salonikiou, Angeliki; Kilintzis, Vasilios; Antoniadis, Antonios; Ziakas, Nikolaos; Topouzis, Fotis

    2016-04-01

    To compare Heidelberg Retina Tomograph (HRT) optic disc parameters and structure-function correlation between primary open-angle glaucoma (POAG) and pseudoexfoliative glaucoma (PEXG). Prospective, observation case series. A total of 54 POAG and 33 PEXG cases, consecutively recruited from a University Glaucoma Service, underwent a comprehensive ophthalmic examination, including HRT optic disc imaging. Glaucoma definition required the presence of both structural and functional damage. One eye per subject was included in the analysis. T test, Mann-Whitney U test, and analysis of covariance were used to compare HRT parameters between POAG and PEXG, adjusting for age, mean deviation (MD) in the visual field, intraocular pressure, and disc area. The correlation between HRT and MD was assessed in each group. Cup area (P=0.048), height variation contour (P=0.016), and cup/disc area ratio (P=0.023) were higher in POAG, whereas the mean retinal nerve fiber layer thickness (P=0.048), retinal nerve fiber layer cross-section area (P=0.044), and rim area (P=0.048) were lower in POAG, compared with PEXG. The correlation of HRT parameters with MD was significant only in the POAG group. At a similar level of functional damage, POAG subjects presented with more pronounced structural damage than PEXG subjects. The correlation between HRT and visual field parameters was more evident in POAG, compared with PEXG.

  2. Zif268 mRNA Expression Patterns Reveal a Distinct Impact of Early Pattern Vision Deprivation on the Development of Primary Visual Cortical Areas in the Cat.

    PubMed

    Laskowska-Macios, Karolina; Zapasnik, Monika; Hu, Tjing-Tjing; Kossut, Malgorzata; Arckens, Lutgarde; Burnat, Kalina

    2015-10-01

    Pattern vision deprivation (BD) can induce permanent deficits in global motion perception. The impact of timing and duration of BD on the maturation of the central and peripheral visual field representations in cat primary visual areas 17 and 18 remains unknown. We compared early BD, from eye opening for 2, 4, or 6 months, with late onset BD, after 2 months of normal vision, using the expression pattern of the visually driven activity reporter gene zif268 as readout. Decreasing zif268 mRNA levels between months 2 and 4 characterized the normal maturation of the (supra)granular layers of the central and peripheral visual field representations in areas 17 and 18. In general, all BD conditions had higher than normal zif268 levels. In area 17, early BD induced a delayed decrease, beginning later in peripheral than in central area 17. In contrast, the decrease occurred between months 2 and 4 throughout area 18. Lack of pattern vision stimulation during the first 4 months of life therefore has a different impact on the development of areas 17 and 18. A high zif268 expression level at a time when normal vision is restored seems to predict the capacity of a visual area to compensate for BD. © The Author 2014. Published by Oxford University Press.

  3. Radiological Scoping Survey of the Scotia Depot Scotia, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. N. Bailey

    2005-02-05

    At the request of the Defense Logistics Agency, the Oak Ridge Institute for Science and Education conducted radiological scoping surveys of the Scotia Depot during the period of September 24 through 27, 2007. The scoping survey included visual inspections and limited radiological surveys performed in accordance with area classification that included surface scans, total and removable activity measurements, and soil sampling.

  4. The role of prestimulus activity in visual extinction☆

    PubMed Central

    Urner, Maren; Sarri, Margarita; Grahn, Jessica; Manly, Tom; Rees, Geraint; Friston, Karl

    2013-01-01

    Patients with visual extinction following right-hemisphere damage sometimes see and sometimes miss stimuli in the left visual field, particularly when stimuli are presented simultaneously to both visual fields. Awareness of left visual field stimuli is associated with increased activity in bilateral parietal and frontal cortex. However, it is unknown why patients see or miss these stimuli. Previous neuroimaging studies in healthy adults show that prestimulus activity biases perceptual decisions, and biases in visual perception can be attributed to fluctuations in prestimulus activity in task relevant brain regions. Here, we used functional MRI to investigate whether prestimulus activity affected perception in the context of visual extinction following stroke. We measured prestimulus activity in stimulus-responsive cortical areas during an extinction paradigm in a patient with unilateral right parietal damage and visual extinction. This allowed us to compare prestimulus activity on physically identical bilateral trials that either did or did not lead to visual extinction. We found significantly increased activity prior to stimulus presentation in two areas that were also activated by visual stimulation: the left calcarine sulcus and right occipital inferior cortex. Using dynamic causal modelling (DCM) we found that both these differences in prestimulus activity and stimulus evoked responses could be explained by enhanced effective connectivity within and between visual areas, prior to stimulus presentation. Thus, we provide evidence for the idea that differences in ongoing neural activity in visually responsive areas prior to stimulus onset affect awareness in visual extinction, and that these differences are mediated by fluctuations in extrinsic and intrinsic connectivity. PMID:23680398

  5. The role of prestimulus activity in visual extinction.

    PubMed

    Urner, Maren; Sarri, Margarita; Grahn, Jessica; Manly, Tom; Rees, Geraint; Friston, Karl

    2013-07-01

    Patients with visual extinction following right-hemisphere damage sometimes see and sometimes miss stimuli in the left visual field, particularly when stimuli are presented simultaneously to both visual fields. Awareness of left visual field stimuli is associated with increased activity in bilateral parietal and frontal cortex. However, it is unknown why patients see or miss these stimuli. Previous neuroimaging studies in healthy adults show that prestimulus activity biases perceptual decisions, and biases in visual perception can be attributed to fluctuations in prestimulus activity in task relevant brain regions. Here, we used functional MRI to investigate whether prestimulus activity affected perception in the context of visual extinction following stroke. We measured prestimulus activity in stimulus-responsive cortical areas during an extinction paradigm in a patient with unilateral right parietal damage and visual extinction. This allowed us to compare prestimulus activity on physically identical bilateral trials that either did or did not lead to visual extinction. We found significantly increased activity prior to stimulus presentation in two areas that were also activated by visual stimulation: the left calcarine sulcus and right occipital inferior cortex. Using dynamic causal modelling (DCM) we found that both these differences in prestimulus activity and stimulus evoked responses could be explained by enhanced effective connectivity within and between visual areas, prior to stimulus presentation. Thus, we provide evidence for the idea that differences in ongoing neural activity in visually responsive areas prior to stimulus onset affect awareness in visual extinction, and that these differences are mediated by fluctuations in extrinsic and intrinsic connectivity. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Neural correlates of visualizations of concrete and abstract words in preschool children: a developmental embodied approach

    PubMed Central

    D’Angiulli, Amedeo; Griffiths, Gordon; Marmolejo-Ramos, Fernando

    2015-01-01

    The neural correlates of visualization underlying word comprehension were examined in preschool children. On each trial, a concrete or abstract word was delivered binaurally (part 1: post-auditory visualization), followed by a four-picture array (a target plus three distractors; part 2: matching visualization). Children were to select the picture matching the word they heard in part 1. Event-related potentials (ERPs) locked to each stimulus presentation and task interval were averaged over sets of trials of increasing word abstractness. ERP time-course during both parts of the task showed that early activity (i.e., <300 ms) was predominant in response to concrete words, while activity in response to abstract words became evident only at intermediate (i.e., 300–699 ms) and late (i.e., 700–1000 ms) ERP intervals. Specifically, ERP topography showed that while early activity during post-auditory visualization was linked to left temporo-parietal areas for concrete words, early activity during matching visualization occurred mostly in occipito-parietal areas for concrete words, but more anteriorly in centro-parietal areas for abstract words. In intermediate ERPs, post-auditory visualization coincided with parieto-occipital and parieto-frontal activity in response to both concrete and abstract words, while in matching visualization a parieto-central activity was common to both types of words. In the late ERPs for both types of words, the post-auditory visualization involved right-hemispheric activity following a “post-anterior” pathway sequence: occipital, parietal, and temporal areas; conversely, matching visualization involved left-hemispheric activity following an “ant-posterior” pathway sequence: frontal, temporal, parietal, and occipital areas. These results suggest that, similarly, for concrete and abstract words, meaning in young children depends on variably complex visualization processes integrating visuo-auditory experiences and supramodal embodying representations. PMID:26175697

  7. Neural mechanisms of limb position estimation in the primate brain.

    PubMed

    Shi, Ying; Buneo, Christopher A

    2011-01-01

    Understanding the neural mechanisms of limb position estimation is important both for comprehending the neural control of goal directed arm movements and for developing neuroprosthetic systems designed to replace lost limb function. Here we examined the role of area 5 of the posterior parietal cortex in estimating limb position based on visual and somatic (proprioceptive, efference copy) signals. Single unit recordings were obtained as monkeys reached to visual targets presented in a semi-immersive virtual reality environment. On half of the trials animals were required to maintain their limb position at these targets while receiving both visual and non-visual feedback of their arm position, while on the other trials visual feedback was withheld. When examined individually, many area 5 neurons were tuned to the position of the limb in the workspace but very few neurons modulated their firing rates based on the presence/absence of visual feedback. At the population level however decoding of limb position was somewhat more accurate when visual feedback was provided. These findings support a role for area 5 in limb position estimation but also suggest that visual signals regarding limb position are only weakly represented in this area, and only at the population level.

  8. Picture Books Peek behind Cultural Curtains.

    ERIC Educational Resources Information Center

    Marantz, Sylvia; Marantz, Kenneth

    2000-01-01

    Discusses culture in picture books in three general categories: legends and histories; current life in particular areas; and the immigrant experience. Considers the translation of visual images, discusses authentic interpretations, and presents an annotated bibliography of picture books showing cultural diversity including African, Asian, Mexican,…

  9. Career Education K-6.

    ERIC Educational Resources Information Center

    Lawrence Unified School District 497, KS.

    The elementary level career education instructional materials are arranged by grade level. Separate sections are devoted to each level and include an overview of the curriculum with objectives, activities, and resources (speakers, on-site visits, audio visuals, books, and kits) for each subject area covered. Emphasizing career awareness, each…

  10. A new integrated dual time-point amyloid PET/MRI data analysis method.

    PubMed

    Cecchin, Diego; Barthel, Henryk; Poggiali, Davide; Cagnin, Annachiara; Tiepolt, Solveig; Zucchetta, Pietro; Turco, Paolo; Gallo, Paolo; Frigo, Anna Chiara; Sabri, Osama; Bui, Franco

    2017-11-01

    In the initial evaluation of patients with suspected dementia and Alzheimer's disease, there is no consensus on how to perform semiquantification of amyloid in such a way that it: (1) facilitates visual qualitative interpretation, (2) takes the kinetic behaviour of the tracer into consideration particularly with regard to at least partially correcting for blood flow dependence, (3) analyses the amyloid load based on accurate parcellation of cortical and subcortical areas, (4) includes partial volume effect correction (PVEC), (5) includes MRI-derived topographical indexes, (6) enables application to PET/MRI images and PET/CT images with separately acquired MR images, and (7) allows automation. A method with all of these characteristics was retrospectively tested in 86 subjects who underwent amyloid ( 18 F-florbetaben) PET/MRI in a clinical setting (using images acquired 90-110 min after injection, 53 were classified visually as amyloid-negative and 33 as amyloid-positive). Early images after tracer administration were acquired between 0 and 10 min after injection, and later images were acquired between 90 and 110 min after injection. PVEC of the PET data was carried out using the geometric transfer matrix method. Parametric images and some regional output parameters, including two innovative "dual time-point" indexes, were obtained. Subjects classified visually as amyloid-positive showed a sparse tracer uptake in the primary sensory, motor and visual areas in accordance with the isocortical stage of the topographic distribution of the amyloid plaque (Braak stages V/VI). In patients classified visually as amyloid-negative, the method revealed detectable levels of tracer uptake in the basal portions of the frontal and temporal lobes, areas that are known to be sites of early deposition of amyloid plaques that probably represented early accumulation (Braak stage A) that is typical of normal ageing. There was a strong correlation between age and the indexes of the new dual time-point amyloid imaging method in amyloid-negative patients. The method can be considered a valuable tool in both routine clinical practice and in the research setting as it will standardize data regarding amyloid deposition. It could potentially also be used to identify early amyloid plaque deposition in younger subjects in whom treatment could theoretically be more effective.

  11. Effective Connectivity from Early Visual Cortex to Posterior Occipitotemporal Face Areas Supports Face Selectivity and Predicts Developmental Prosopagnosia

    PubMed Central

    Garrido, Lucia; Driver, Jon; Dolan, Raymond J.; Duchaine, Bradley C.; Furl, Nicholas

    2016-01-01

    Face processing is mediated by interactions between functional areas in the occipital and temporal lobe, and the fusiform face area (FFA) and anterior temporal lobe play key roles in the recognition of facial identity. Individuals with developmental prosopagnosia (DP), a lifelong face recognition impairment, have been shown to have structural and functional neuronal alterations in these areas. The present study investigated how face selectivity is generated in participants with normal face processing, and how functional abnormalities associated with DP, arise as a function of network connectivity. Using functional magnetic resonance imaging and dynamic causal modeling, we examined effective connectivity in normal participants by assessing network models that include early visual cortex (EVC) and face-selective areas and then investigated the integrity of this connectivity in participants with DP. Results showed that a feedforward architecture from EVC to the occipital face area, EVC to FFA, and EVC to posterior superior temporal sulcus (pSTS) best explained how face selectivity arises in both controls and participants with DP. In this architecture, the DP group showed reduced connection strengths on feedforward connections carrying face information from EVC to FFA and EVC to pSTS. These altered network dynamics in DP contribute to the diminished face selectivity in the posterior occipitotemporal areas affected in DP. These findings suggest a novel view on the relevance of feedforward projection from EVC to posterior occipitotemporal face areas in generating cortical face selectivity and differences in face recognition ability. SIGNIFICANCE STATEMENT Areas of the human brain showing enhanced activation to faces compared to other objects or places have been extensively studied. However, the factors leading to this face selectively have remained mostly unknown. We show that effective connectivity from early visual cortex to posterior occipitotemporal face areas gives rise to face selectivity. Furthermore, people with developmental prosopagnosia, a lifelong face recognition impairment, have reduced face selectivity in the posterior occipitotemporal face areas and left anterior temporal lobe. We show that this reduced face selectivity can be predicted by effective connectivity from early visual cortex to posterior occipitotemporal face areas. This study presents the first network-based account of how face selectivity arises in the human brain. PMID:27030766

  12. Altered Functional Connectivity of the Primary Visual Cortex in Subjects with Amblyopia

    PubMed Central

    Ding, Kun; Liu, Yong; Yan, Xiaohe; Lin, Xiaoming; Jiang, Tianzi

    2013-01-01

    Amblyopia, which usually occurs during early childhood and results in poor or blurred vision, is a disorder of the visual system that is characterized by a deficiency in an otherwise physically normal eye or by a deficiency that is out of proportion with the structural or functional abnormalities of the eye. Our previous study demonstrated alterations in the spontaneous activity patterns of some brain regions in individuals with anisometropic amblyopia compared to subjects with normal vision. To date, it remains unknown whether patients with amblyopia show characteristic alterations in the functional connectivity patterns in the visual areas of the brain, particularly the primary visual area. In the present study, we investigated the differences in the functional connectivity of the primary visual area between individuals with amblyopia and normal-sighted subjects using resting functional magnetic resonance imaging. Our findings demonstrated that the cerebellum and the inferior parietal lobule showed altered functional connectivity with the primary visual area in individuals with amblyopia, and this finding provides further evidence for the disruption of the dorsal visual pathway in amblyopic subjects. PMID:23844297

  13. Visual spatial attention enhances the amplitude of positive and negative fMRI responses to visual stimulation in an eccentricity-dependent manner

    PubMed Central

    Bressler, David W.; Fortenbaugh, Francesca C.; Robertson, Lynn C.; Silver, Michael A.

    2013-01-01

    Endogenous visual spatial attention improves perception and enhances neural responses to visual stimuli at attended locations. Although many aspects of visual processing differ significantly between central and peripheral vision, little is known regarding the neural substrates of the eccentricity dependence of spatial attention effects. We measured amplitudes of positive and negative fMRI responses to visual stimuli as a function of eccentricity in a large number of topographically-organized cortical areas. Responses to each stimulus were obtained when the stimulus was attended and when spatial attention was directed to a stimulus in the opposite visual hemifield. Attending to the stimulus increased both positive and negative response amplitudes in all cortical areas we studied: V1, V2, V3, hV4, VO1, LO1, LO2, V3A/B, IPS0, TO1, and TO2. However, the eccentricity dependence of these effects differed considerably across cortical areas. In early visual, ventral, and lateral occipital cortex, attentional enhancement of positive responses was greater for central compared to peripheral eccentricities. The opposite pattern was observed in dorsal stream areas IPS0 and putative MT homolog TO1, where attentional enhancement of positive responses was greater in the periphery. Both the magnitude and the eccentricity dependence of attentional modulation of negative fMRI responses closely mirrored that of positive responses across cortical areas. PMID:23562388

  14. Association of common genetic variants in GPCPD1 with scaling of visual cortical surface area in humans.

    PubMed

    Bakken, Trygve E; Roddey, J Cooper; Djurovic, Srdjan; Akshoomoff, Natacha; Amaral, David G; Bloss, Cinnamon S; Casey, B J; Chang, Linda; Ernst, Thomas M; Gruen, Jeffrey R; Jernigan, Terry L; Kaufmann, Walter E; Kenet, Tal; Kennedy, David N; Kuperman, Joshua M; Murray, Sarah S; Sowell, Elizabeth R; Rimol, Lars M; Mattingsdal, Morten; Melle, Ingrid; Agartz, Ingrid; Andreassen, Ole A; Schork, Nicholas J; Dale, Anders M; Weiner, Michael; Aisen, Paul; Petersen, Ronald; Jack, Clifford R; Jagust, William; Trojanowki, John Q; Toga, Arthur W; Beckett, Laurel; Green, Robert C; Saykin, Andrew J; Morris, John; Liu, Enchi; Montine, Tom; Gamst, Anthony; Thomas, Ronald G; Donohue, Michael; Walter, Sarah; Gessert, Devon; Sather, Tamie; Harvey, Danielle; Kornak, John; Dale, Anders; Bernstein, Matthew; Felmlee, Joel; Fox, Nick; Thompson, Paul; Schuff, Norbert; Alexander, Gene; DeCarli, Charles; Bandy, Dan; Koeppe, Robert A; Foster, Norm; Reiman, Eric M; Chen, Kewei; Mathis, Chet; Cairns, Nigel J; Taylor-Reinwald, Lisa; Trojanowki, J Q; Shaw, Les; Lee, Virginia M Y; Korecka, Magdalena; Crawford, Karen; Neu, Scott; Foroud, Tatiana M; Potkin, Steven; Shen, Li; Kachaturian, Zaven; Frank, Richard; Snyder, Peter J; Molchan, Susan; Kaye, Jeffrey; Quinn, Joseph; Lind, Betty; Dolen, Sara; Schneider, Lon S; Pawluczyk, Sonia; Spann, Bryan M; Brewer, James; Vanderswag, Helen; Heidebrink, Judith L; Lord, Joanne L; Johnson, Kris; Doody, Rachelle S; Villanueva-Meyer, Javier; Chowdhury, Munir; Stern, Yaakov; Honig, Lawrence S; Bell, Karen L; Morris, John C; Ances, Beau; Carroll, Maria; Leon, Sue; Mintun, Mark A; Schneider, Stacy; Marson, Daniel; Griffith, Randall; Clark, David; Grossman, Hillel; Mitsis, Effie; Romirowsky, Aliza; deToledo-Morrell, Leyla; Shah, Raj C; Duara, Ranjan; Varon, Daniel; Roberts, Peggy; Albert, Marilyn; Onyike, Chiadi; Kielb, Stephanie; Rusinek, Henry; de Leon, Mony J; Glodzik, Lidia; De Santi, Susan; Doraiswamy, P Murali; Petrella, Jeffrey R; Coleman, R Edward; Arnold, Steven E; Karlawish, Jason H; Wolk, David; Smith, Charles D; Jicha, Greg; Hardy, Peter; Lopez, Oscar L; Oakley, MaryAnn; Simpson, Donna M; Porsteinsson, Anton P; Goldstein, Bonnie S; Martin, Kim; Makino, Kelly M; Ismail, M Saleem; Brand, Connie; Mulnard, Ruth A; Thai, Gaby; Mc-Adams-Ortiz, Catherine; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Diaz-Arrastia, Ramon; King, Richard; Weiner, Myron; Martin-Cook, Kristen; DeVous, Michael; Levey, Allan I; Lah, James J; Cellar, Janet S; Burns, Jeffrey M; Anderson, Heather S; Swerdlow, Russell H; Apostolova, Liana; Lu, Po H; Bartzokis, George; Silverman, Daniel H S; Graff-Radford, Neill R; Parfitt, Francine; Johnson, Heather; Farlow, Martin R; Hake, Ann Marie; Matthews, Brandy R; Herring, Scott; van Dyck, Christopher H; Carson, Richard E; MacAvoy, Martha G; Chertkow, Howard; Bergman, Howard; Hosein, Chris; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Ging-Yuek; Hsiung, Robin; Feldman, Howard; Mudge, Benita; Assaly, Michele; Kertesz, Andrew; Rogers, John; Trost, Dick; Bernick, Charles; Munic, Donna; Kerwin, Diana; Mesulam, Marek-Marsel; Lipowski, Kristina; Wu, Chuang-Kuo; Johnson, Nancy; Sadowsky, Carl; Martinez, Walter; Villena, Teresa; Turner, Raymond Scott; Johnson, Kathleen; Reynolds, Brigid; Sperling, Reisa A; Johnson, Keith A; Marshall, Gad; Frey, Meghan; Yesavage, Jerome; Taylor, Joy L; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Sabbagh, Marwan; Belden, Christine; Jacobson, Sandra; Kowall, Neil; Killiany, Ronald; Budson, Andrew E; Norbash, Alexander; Johnson, Patricia Lynn; Obisesan, Thomas O; Wolday, Saba; Bwayo, Salome K; Lerner, Alan; Hudson, Leon; Ogrocki, Paula; Fletcher, Evan; Carmichael, Owen; Olichney, John; Kittur, Smita; Borrie, Michael; Lee, T-Y; Bartha, Rob; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M; Potkin, Steven G; Preda, Adrian; Nguyen, Dana; Tariot, Pierre; Fleisher, Adam; Reeder, Stephanie; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Scharre, Douglas W; Kataki, Maria; Zimmerman, Earl A; Celmins, Dzintra; Brown, Alice D; Pearlson, Godfrey D; Blank, Karen; Anderson, Karen; Santulli, Robert B; Schwartz, Eben S; Sink, Kaycee M; Williamson, Jeff D; Garg, Pradeep; Watkins, Franklin; Ott, Brian R; Querfurth, Henry; Tremont, Geoffrey; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Rosen, Howard J; Miller, Bruce L; Mintzer, Jacobo; Longmire, Crystal Flynn; Spicer, Kenneth; Finger, Elizabether; Rachinsky, Irina; Drost, Dick; Jernigan, Terry; McCabe, Connor; Grant, Ellen; Ernst, Thomas; Kuperman, Josh; Chung, Yoon; Murray, Sarah; Bloss, Cinnamon; Darst, Burcu; Pritchett, Lexi; Saito, Ashley; Amaral, David; DiNino, Mishaela; Eyngorina, Bella; Sowell, Elizabeth; Houston, Suzanne; Soderberg, Lindsay; Kaufmann, Walter; van Zijl, Peter; Rizzo-Busack, Hilda; Javid, Mohsin; Mehta, Natasha; Ruberry, Erika; Powers, Alisa; Rosen, Bruce; Gebhard, Nitzah; Manigan, Holly; Frazier, Jean; Kennedy, David; Yakutis, Lauren; Hill, Michael; Gruen, Jeffrey; Bosson-Heenan, Joan; Carlson, Heatherly

    2012-03-06

    Visual cortical surface area varies two- to threefold between human individuals, is highly heritable, and has been correlated with visual acuity and visual perception. However, it is still largely unknown what specific genetic and environmental factors contribute to normal variation in the area of visual cortex. To identify SNPs associated with the proportional surface area of visual cortex, we performed a genome-wide association study followed by replication in two independent cohorts. We identified one SNP (rs6116869) that replicated in both cohorts and had genome-wide significant association (P(combined) = 3.2 × 10(-8)). Furthermore, a metaanalysis of imputed SNPs in this genomic region identified a more significantly associated SNP (rs238295; P = 6.5 × 10(-9)) that was in strong linkage disequilibrium with rs6116869. These SNPs are located within 4 kb of the 5' UTR of GPCPD1, glycerophosphocholine phosphodiesterase GDE1 homolog (Saccharomyces cerevisiae), which in humans, is more highly expressed in occipital cortex compared with the remainder of cortex than 99.9% of genes genome-wide. Based on these findings, we conclude that this common genetic variation contributes to the proportional area of human visual cortex. We suggest that identifying genes that contribute to normal cortical architecture provides a first step to understanding genetic mechanisms that underlie visual perception.

  15. Data Visualization Saliency Model: A Tool for Evaluating Abstract Data Visualizations

    DOE PAGES

    Matzen, Laura E.; Haass, Michael J.; Divis, Kristin M.; ...

    2017-08-29

    Evaluating the effectiveness of data visualizations is a challenging undertaking and often relies on one-off studies that test a visualization in the context of one specific task. Researchers across the fields of data science, visualization, and human-computer interaction are calling for foundational tools and principles that could be applied to assessing the effectiveness of data visualizations in a more rapid and generalizable manner. One possibility for such a tool is a model of visual saliency for data visualizations. Visual saliency models are typically based on the properties of the human visual cortex and predict which areas of a scene havemore » visual features (e.g. color, luminance, edges) that are likely to draw a viewer's attention. While these models can accurately predict where viewers will look in a natural scene, they typically do not perform well for abstract data visualizations. In this paper, we discuss the reasons for the poor performance of existing saliency models when applied to data visualizations. We introduce the Data Visualization Saliency (DVS) model, a saliency model tailored to address some of these weaknesses, and we test the performance of the DVS model and existing saliency models by comparing the saliency maps produced by the models to eye tracking data obtained from human viewers. In conclusion, we describe how modified saliency models could be used as general tools for assessing the effectiveness of visualizations, including the strengths and weaknesses of this approach.« less

  16. Data Visualization Saliency Model: A Tool for Evaluating Abstract Data Visualizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzen, Laura E.; Haass, Michael J.; Divis, Kristin M.

    Evaluating the effectiveness of data visualizations is a challenging undertaking and often relies on one-off studies that test a visualization in the context of one specific task. Researchers across the fields of data science, visualization, and human-computer interaction are calling for foundational tools and principles that could be applied to assessing the effectiveness of data visualizations in a more rapid and generalizable manner. One possibility for such a tool is a model of visual saliency for data visualizations. Visual saliency models are typically based on the properties of the human visual cortex and predict which areas of a scene havemore » visual features (e.g. color, luminance, edges) that are likely to draw a viewer's attention. While these models can accurately predict where viewers will look in a natural scene, they typically do not perform well for abstract data visualizations. In this paper, we discuss the reasons for the poor performance of existing saliency models when applied to data visualizations. We introduce the Data Visualization Saliency (DVS) model, a saliency model tailored to address some of these weaknesses, and we test the performance of the DVS model and existing saliency models by comparing the saliency maps produced by the models to eye tracking data obtained from human viewers. In conclusion, we describe how modified saliency models could be used as general tools for assessing the effectiveness of visualizations, including the strengths and weaknesses of this approach.« less

  17. Implications on visual apperception: energy, duration, structure and synchronization.

    PubMed

    Bókkon, I; Vimal, Ram Lakhan Pandey

    2010-07-01

    Although primary visual cortex (V1 or striate) activity per se is not sufficient for visual apperception (normal conscious visual experiences and conscious functions such as detection, discrimination, and recognition), the same is also true for extrastriate visual areas (such as V2, V3, V4/V8/VO, V5/M5/MST, IT, and GF). In the lack of V1 area, visual signals can still reach several extrastriate parts but appear incapable of generating normal conscious visual experiences. It is scarcely emphasized in the scientific literature that conscious perceptions and representations must have also essential energetic conditions. These energetic conditions are achieved by spatiotemporal networks of dynamic mitochondrial distributions inside neurons. However, the highest density of neurons in neocortex (number of neurons per degree of visual angle) devoted to representing the visual field is found in retinotopic V1. It means that the highest mitochondrial (energetic) activity can be achieved in mitochondrial cytochrome oxidase-rich V1 areas. Thus, V1 bear the highest energy allocation for visual representation. In addition, the conscious perceptions also demand structural conditions, presence of adequate duration of information representation, and synchronized neural processes and/or 'interactive hierarchical structuralism.' For visual apperception, various visual areas are involved depending on context such as stimulus characteristics such as color, form/shape, motion, and other features. Here, we focus primarily on V1 where specific mitochondrial-rich retinotopic structures are found; we will concisely discuss V2 where smaller riches of these structures are found. We also point out that residual brain states are not fully reflected in active neural patterns after visual perception. Namely, after visual perception, subliminal residual states are not being reflected in passive neural recording techniques, but require active stimulation to be revealed.

  18. Retinal lesions induce fast intrinsic cortical plasticity in adult mouse visual system.

    PubMed

    Smolders, Katrien; Vreysen, Samme; Laramée, Marie-Eve; Cuyvers, Annemie; Hu, Tjing-Tjing; Van Brussel, Leen; Eysel, Ulf T; Nys, Julie; Arckens, Lutgarde

    2016-09-01

    Neuronal activity plays an important role in the development and structural-functional maintenance of the brain as well as in its life-long plastic response to changes in sensory stimulation. We characterized the impact of unilateral 15° laser lesions in the temporal lower visual field of the retina, on visually driven neuronal activity in the afferent visual pathway of adult mice using in situ hybridization for the activity reporter gene zif268. In the first days post-lesion, we detected a discrete zone of reduced zif268 expression in the contralateral hemisphere, spanning the border between the monocular segment of the primary visual cortex (V1) with extrastriate visual area V2M. We could not detect a clear lesion projection zone (LPZ) in areas lateral to V1 whereas medial to V2M, agranular and granular retrosplenial cortex showed decreased zif268 levels over their full extent. All affected areas displayed a return to normal zif268 levels, and this was faster in higher order visual areas than in V1. The lesion did, however, induce a permanent LPZ in the retinorecipient layers of the superior colliculus. We identified a retinotopy-based intrinsic capacity of adult mouse visual cortex to recover from restricted vision loss, with recovery speed reflecting the areal cortical magnification factor. Our observations predict incomplete visual field representations for areas lateral to V1 vs. lack of retinotopic organization for areas medial to V2M. The validation of this mouse model paves the way for future interrogations of cortical region- and cell-type-specific contributions to functional recovery, up to microcircuit level. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. Mapping longitudinal scientific progress, collaboration and impact of the Alzheimer's disease neuroimaging initiative.

    PubMed

    Yao, Xiaohui; Yan, Jingwen; Ginda, Michael; Börner, Katy; Saykin, Andrew J; Shen, Li

    2017-01-01

    Alzheimer's disease neuroimaging initiative (ADNI) is a landmark imaging and omics study in AD. ADNI research literature has increased substantially over the past decade, which poses challenges for effectively communicating information about the results and impact of ADNI-related studies. In this work, we employed advanced information visualization techniques to perform a comprehensive and systematic mapping of the ADNI scientific growth and impact over a period of 12 years. Citation information of ADNI-related publications from 01/01/2003 to 05/12/2015 were downloaded from the Scopus database. Five fields, including authors, years, affiliations, sources (journals), and keywords, were extracted and preprocessed. Statistical analyses were performed on basic publication data as well as journal and citations information. Science mapping workflows were conducted using the Science of Science (Sci2) Tool to generate geospatial, topical, and collaboration visualizations at the micro (individual) to macro (global) levels such as geospatial layouts of institutional collaboration networks, keyword co-occurrence networks, and author collaboration networks evolving over time. During the studied period, 996 ADNI manuscripts were published across 233 journals and conference proceedings. The number of publications grew linearly from 2008 to 2015, so did the number of involved institutions. ADNI publications received much more citations than typical papers from the same set of journals. Collaborations were visualized at multiple levels, including authors, institutions, and research areas. The evolution of key ADNI research topics was also plotted over the studied period. Both statistical and visualization results demonstrate the increasing attention of ADNI research, strong citation impact of ADNI publications, the expanding collaboration networks among researchers, institutions and ADNI core areas, and the dynamic evolution of ADNI research topics. The visualizations presented here can help improve daily decision making based on a deep understanding of existing patterns and trends using proven and replicable data analysis and visualization methods. They have great potential to provide new insights and actionable knowledge for helping translational research in AD.

  20. Mapping longitudinal scientific progress, collaboration and impact of the Alzheimer’s disease neuroimaging initiative

    PubMed Central

    Yao, Xiaohui; Yan, Jingwen; Ginda, Michael; Börner, Katy; Saykin, Andrew J.

    2017-01-01

    Background Alzheimer’s disease neuroimaging initiative (ADNI) is a landmark imaging and omics study in AD. ADNI research literature has increased substantially over the past decade, which poses challenges for effectively communicating information about the results and impact of ADNI-related studies. In this work, we employed advanced information visualization techniques to perform a comprehensive and systematic mapping of the ADNI scientific growth and impact over a period of 12 years. Methods Citation information of ADNI-related publications from 01/01/2003 to 05/12/2015 were downloaded from the Scopus database. Five fields, including authors, years, affiliations, sources (journals), and keywords, were extracted and preprocessed. Statistical analyses were performed on basic publication data as well as journal and citations information. Science mapping workflows were conducted using the Science of Science (Sci2) Tool to generate geospatial, topical, and collaboration visualizations at the micro (individual) to macro (global) levels such as geospatial layouts of institutional collaboration networks, keyword co-occurrence networks, and author collaboration networks evolving over time. Results During the studied period, 996 ADNI manuscripts were published across 233 journals and conference proceedings. The number of publications grew linearly from 2008 to 2015, so did the number of involved institutions. ADNI publications received much more citations than typical papers from the same set of journals. Collaborations were visualized at multiple levels, including authors, institutions, and research areas. The evolution of key ADNI research topics was also plotted over the studied period. Conclusions Both statistical and visualization results demonstrate the increasing attention of ADNI research, strong citation impact of ADNI publications, the expanding collaboration networks among researchers, institutions and ADNI core areas, and the dynamic evolution of ADNI research topics. The visualizations presented here can help improve daily decision making based on a deep understanding of existing patterns and trends using proven and replicable data analysis and visualization methods. They have great potential to provide new insights and actionable knowledge for helping translational research in AD. PMID:29095836

  1. Visual disability rates in a ten-year cohort of patients with anterior visual pathway meningiomas.

    PubMed

    Bor-Shavit, Elite; Hammel, Naama; Nahum, Yoav; Rappaport, Zvi Harry; Stiebel-Kalish, Hadas

    2015-01-01

    To examine the visual outcome of anterior visual pathway meningioma (AVPM) patients followed for at least one year. Data were collected on demographics, clinical course and management. Visual disability was classified at the first and last examination as follows: I--no visual disability; II--mild visual defect in one eye; III--mild visual defect in both eyes; IV--loss of driver's license; V--legally blind. Eight-one AVPM patients had their tumor originate in the clinoid process in 23 (28%), sphenoid-wing area in 18 (22%), cavernous sinus in 15 (19%), tuberculum sellae in 8 (10%), and mixed in 17 (21%). On last examination, 46 patients (57%) had good visual acuity in one or both eyes (Class I or II) and 17 (21%) were mildly affected in both eyes. The rate of Class IV disability was 16%, and Class V disability was 6%. Attention needs to be addressed to the considerable proportion of patients with AVPM (22% in this study) who may lose their driver's license or become legally blind. Occupational therapists should play an important role in the multidisciplinary management of those patients to help them adapt to their new physical and social situation. Anterior visual pathway meningiomas (AVPMs) are commonly not life-threatening but they can lead to profound visual disability, especially when the tumor originates in the tuberculum sellae and cavernous sinus. Particular attention should be paid to visual acuity and visual field deficits, as these can profoundly affect the patient's quality of life including ability to drive and activities of daily living. The interdisciplinary management of patients with AVPM should include the neurosurgeon, neuro-ophthalmologist and occupational therapist. Also, early intervention by the occupational therapist can help patients adapt to their current physical and social situation and return to everyday tasks more rapidly.

  2. Large-scale visualization projects for teaching software engineering.

    PubMed

    Müller, Christoph; Reina, Guido; Burch, Michael; Weiskopf, Daniel

    2012-01-01

    The University of Stuttgart's software engineering major complements the traditional computer science major with more practice-oriented education. Two-semester software projects in various application areas offered by the university's different computer science institutes are a successful building block in the curriculum. With this realistic, complex project setting, students experience the practice of software engineering, including software development processes, technologies, and soft skills. In particular, visualization-based projects are popular with students. Such projects offer them the opportunity to gain profound knowledge that would hardly be possible with only regular lectures and homework assignments.

  3. Resting-State Retinotopic Organization in the Absence of Retinal Input and Visual Experience

    PubMed Central

    Binda, Paola; Benson, Noah C.; Bridge, Holly; Watkins, Kate E.

    2015-01-01

    Early visual areas have neuronal receptive fields that form a sampling mosaic of visual space, resulting in a series of retinotopic maps in which the same region of space is represented in multiple visual areas. It is not clear to what extent the development and maintenance of this retinotopic organization in humans depend on retinal waves and/or visual experience. We examined the corticocortical receptive field organization of resting-state BOLD data in normally sighted, early blind, and anophthalmic (in which both eyes fail to develop) individuals and found that resting-state correlations between V1 and V2/V3 were retinotopically organized for all subject groups. These results show that the gross retinotopic pattern of resting-state connectivity across V1-V3 requires neither retinal waves nor visual experience to develop and persist into adulthood. SIGNIFICANCE STATEMENT Evidence from resting-state BOLD data suggests that the connections between early visual areas develop and are maintained even in the absence of retinal waves and visual experience. PMID:26354906

  4. Compression and reflection of visually evoked cortical waves

    PubMed Central

    Xu, Weifeng; Huang, Xiaoying; Takagaki, Kentaroh; Wu, Jian-young

    2007-01-01

    Summary Neuronal interactions between primary and secondary visual cortical areas are important for visual processing, but the spatiotemporal patterns of the interaction are not well understood. We used voltage-sensitive dye imaging to visualize neuronal activity in rat visual cortex and found novel visually evoked waves propagating from V1 to other visual areas. A primary wave originated in the monocular area of V1 and was “compressed” when propagating to V2. A reflected wave initiated after compression and propagated backward into V1. The compression occurred at the V1/V2 border, and local GABAA inhibition is important for the compression. The compression/reflection pattern provides a two-phase modulation: V1 is first depolarized by the primary wave and then V1 and V2 are simultaneously depolarized by the reflected and primary waves, respectively. The compression/reflection pattern only occurred for evoked but not for spontaneous waves, suggesting that it is organized by an internal mechanism associated with visual processing. PMID:17610821

  5. Utilizing Structure-from-Motion Photogrammetry with Airborne Visual and Thermal Images to Monitor Thermal Areas in Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Carr, B. B.; Vaughan, R. G.

    2017-12-01

    The thermal areas in Yellowstone National Park (Wyoming, USA) are constantly changing. Persistent monitoring of these areas is necessary to better understand the behavior and potential hazards of both the thermal features and the deeper hydrothermal system driving the observed surface activity. As part of the Park's monitoring program, thousands of visual and thermal infrared (TIR) images have been acquired from a variety of airborne platforms over the past decade. We have used structure-from-motion (SfM) photogrammetry techniques to generate a variety of data products from these images, including orthomosaics, temperature maps, and digital elevation models (DEMs). Temperature maps were generated for Upper Geyser Basin and Norris Geyser Basin for the years 2009-2015, by applying SfM to nighttime TIR images collected from an aircraft-mounted forward-looking infrared (FLIR) camera. Temperature data were preserved through the SfM processing by applying a uniform linear stretch over the entire image set to convert between temperature and a 16-bit digital number. Mosaicked temperature maps were compared to the original FLIR image frames and to ground-based temperature data to constrain the accuracy of the method. Due to pixel averaging and resampling, among other issues, the derived temperature values are typically within 5-10 ° of the values of the un-resampled image frame. We also created sub-meter resolution DEMs from airborne daytime visual images of individual thermal areas. These DEMs can be used for resource and hazard management, and in cases where multiple DEMs exist from different times, for measuring topographic change, including change due to thermal activity. For example, we examined the sensitivity of the DEMs to topographic change by comparing DEMs of the travertine terraces at Mammoth Hot Springs, which can grow at > 1 m per year. These methods are generally applicable to images from airborne platforms, including planes, helicopters, and unmanned aerial systems, and can be used to monitor thermal areas on a variety of spatial and temporal scales.

  6. fMRI response during visual motion stimulation in patients with late whiplash syndrome.

    PubMed

    Freitag, P; Greenlee, M W; Wachter, K; Ettlin, T M; Radue, E W

    2001-01-01

    After whiplash trauma, up to one fourth of patients develop chronic symptoms including head and neck pain and cognitive disturbances. Resting perfusion single-photon-emission computed tomography (SPECT) found decreased temporoparietooccipital tracer uptake among these long-term symptomatic patients with late whiplash syndrome. As MT/MST (V5/V5a) are located in that area, this study addressed the question whether these patients show impairments in visual motion perception. We examined five symptomatic patients with late whiplash syndrome, five asymptomatic patients after whiplash trauma, and a control group of seven volunteers without the history of trauma. Tests for visual motion perception and functional magnetic resonance imaging (fMRI) measurements during visual motion stimulation were performed. Symptomatic patients showed a significant reduction in their ability to perceive coherent visual motion compared with controls, whereas the asymptomatic patients did not show this effect. fMRI activation was similar during random dot motion in all three groups, but was significantly decreased during coherent dot motion in the symptomatic patients compared with the other two groups. Reduced psychophysical motion performance and reduced fMRI responses in symptomatic patients with late whiplash syndrome both point to a functional impairment in cortical areas sensitive to coherent motion. Larger studies are needed to confirm these clinical and functional imaging results to provide a possible additional diagnostic criterion for the evaluation of patients with late whiplash syndrome.

  7. Recovery from retinal lesions: molecular plasticity mechanisms in visual cortex far beyond the deprived zone.

    PubMed

    Hu, Tjing-Tjing; Van den Bergh, Gert; Thorrez, Lieven; Heylen, Kevin; Eysel, Ulf T; Arckens, Lutgarde

    2011-12-01

    In cats with central retinal lesions, deprivation of the lesion projection zone (LPZ) in primary visual cortex (area 17) induces remapping of the cortical topography. Recovery of visually driven cortical activity in the LPZ involves distinct changes in protein expression. Recent observations, about molecular activity changes throughout area 17, challenge the view that its remote nondeprived parts would not be involved in this recovery process. We here investigated the dynamics of the protein expression pattern of remote nondeprived area 17 triggered by central retinal lesions to explore to what extent far peripheral area 17 would contribute to the topographic map reorganization inside the visual cortex. Using functional proteomics, we identified 40 proteins specifically differentially expressed between far peripheral area 17 of control and experimental animals 14 days to 8 months postlesion. Our results demonstrate that far peripheral area 17 is implicated in the functional adaptation to the visual deprivation, involving a meshwork of interacting proteins, operating in diverse pathways. In particular, endocytosis/exocytosis processes appeared to be essential via their intimate correlation with long-term potentiation and neurite outgrowth mechanisms.

  8. Visual-area coding technique (VACT): optical parallel implementation of fuzzy logic and its visualization with the digital-halftoning process

    NASA Astrophysics Data System (ADS)

    Konishi, Tsuyoshi; Tanida, Jun; Ichioka, Yoshiki

    1995-06-01

    A novel technique, the visual-area coding technique (VACT), for the optical implementation of fuzzy logic with the capability of visualization of the results is presented. This technique is based on the microfont method and is considered to be an instance of digitized analog optical computing. Huge amounts of data can be processed in fuzzy logic with the VACT. In addition, real-time visualization of the processed result can be accomplished.

  9. CANDELS Visual Classifications: Scheme, Data Release, and First Results

    NASA Technical Reports Server (NTRS)

    Kartaltepe, Jeyhan S.; Mozena, Mark; Kocevski, Dale; McIntosh, Daniel H.; Lotz, Jennifer; Bell, Eric F.; Faber, Sandy; Ferguson, Henry; Koo, David; Bassett, Robert; hide

    2014-01-01

    We have undertaken an ambitious program to visually classify all galaxies in the five CANDELS fields down to H <24.5 involving the dedicated efforts of 65 individual classifiers. Once completed, we expect to have detailed morphological classifications for over 50,000 galaxies spanning 0 < z < 4 over all the fields. Here, we present our detailed visual classification scheme, which was designed to cover a wide range of CANDELS science goals. This scheme includes the basic Hubble sequence types, but also includes a detailed look at mergers and interactions, the clumpiness of galaxies, k-corrections, and a variety of other structural properties. In this paper, we focus on the first field to be completed - GOODS-S, which has been classified at various depths. The wide area coverage spanning the full field (wide+deep+ERS) includes 7634 galaxies that have been classified by at least three different people. In the deep area of the field, 2534 galaxies have been classified by at least five different people at three different depths. With this paper, we release to the public all of the visual classifications in GOODS-S along with the Perl/Tk GUI that we developed to classify galaxies. We present our initial results here, including an analysis of our internal consistency and comparisons among multiple classifiers as well as a comparison to the Sersic index. We find that the level of agreement among classifiers is quite good and depends on both the galaxy magnitude and the galaxy type, with disks showing the highest level of agreement and irregulars the lowest. A comparison of our classifications with the Sersic index and restframe colors shows a clear separation between disk and spheroid populations. Finally, we explore morphological k-corrections between the V-band and H-band observations and find that a small fraction (84 galaxies in total) are classified as being very different between these two bands. These galaxies typically have very clumpy and extended morphology or are very faint in the V-band.

  10. Comprehensive Small Engine Repair.

    ERIC Educational Resources Information Center

    Hires, Bill; And Others

    This curriculum guide contains the basic information needed to repair all two- and four-stroke cycle engines. The curriculum covers four areas, each consisting of one or more units of instruction that include performance objectives, suggested activities for teacher and students, information sheets, assignment sheets, job sheets, visual aids,…

  11. Perspectives on Imaging: Advanced Applications. Introduction and Overview.

    ERIC Educational Resources Information Center

    Lynch, Clifford A.; Lunin, Lois F.

    1991-01-01

    Provides an overview of six articles that address relationships between electronic imaging technology and information science. Articles discuss the areas of technology; applications in the fields of visual arts, medicine, and textile history; conceptual foundations; and future visions, including work in virtual reality and cyberspace. (LRW)

  12. Foreign Language Day--A Living Language Experience.

    ERIC Educational Resources Information Center

    Wood, Paul W.

    St. Bonaventure University holds a Language Day each spring, hosting some 3,900 area junior high and high school students. The buildings and facilities of the university campus are used, and activities include language competitions (exhibits, interpretative readings, language productions, audio-visual presentations and essays); a fiesta; foreign…

  13. A Mathematical Mystery Tour: Higher-Thinking Math Tasks.

    ERIC Educational Resources Information Center

    Wahl, Mark

    This book contains mathematics activities based upon the concepts of Fibonacci numbers and the Golden Ratio. The activities include higher order thinking skills, calculation practice, integration with different subject areas, mathematics history, extensions and home tasks, teaching notes, and questions for thought and comprehension. A visual map…

  14. Functional Specificity of the Visual Word Form Area: General Activation for Words and Symbols but Specific Network Activation for Words

    ERIC Educational Resources Information Center

    Reinke, Karen; Fernandes, Myra; Schwindt, Graeme; O'Craven, Kathleen; Grady, Cheryl L.

    2008-01-01

    The functional specificity of the brain region known as the Visual Word Form Area (VWFA) was examined using fMRI. We explored whether this area serves a general role in processing symbolic stimuli, rather than being selective for the processing of words. Brain activity was measured during a visual 1-back task to English words, meaningful symbols…

  15. [Are Visual Field Defects Reversible? - Visual Rehabilitation with Brains].

    PubMed

    Sabel, B A

    2017-02-01

    Visual field defects are considered irreversible because the retina and optic nerve do not regenerate. Nevertheless, there is some potential for recovery of the visual fields. This can be accomplished by the brain, which analyses and interprets visual information and is able to amplify residual signals through neuroplasticity. Neuroplasticity refers to the ability of the brain to change its own functional architecture by modulating synaptic efficacy. This is actually the neurobiological basis of normal learning. Plasticity is maintained throughout life and can be induced by repetitively stimulating (training) brain circuits. The question now arises as to how plasticity can be utilised to activate residual vision for the treatment of visual field loss. Just as in neurorehabilitation, visual field defects can be modulated by post-lesion plasticity to improve vision in glaucoma, diabetic retinopathy or optic neuropathy. Because almost all patients have some residual vision, the goal is to strengthen residual capacities by enhancing synaptic efficacy. New treatment paradigms have been tested in clinical studies, including vision restoration training and non-invasive alternating current stimulation. While vision training is a behavioural task to selectively stimulate "relative defects" with daily vision exercises for the duration of 6 months, treatment with alternating current stimulation (30 min. daily for 10 days) activates and synchronises the entire retina and brain. Though full restoration of vision is not possible, such treatments improve vision, both subjectively and objectively. This includes visual field enlargements, improved acuity and reaction time, improved orientation and vision related quality of life. About 70 % of the patients respond to the therapies and there are no serious adverse events. Physiological studies of the effect of alternating current stimulation using EEG and fMRI reveal massive local and global changes in the brain. These include local activation of the visual cortex and global reorganisation of neuronal brain networks. Because modulation of neuroplasticity can strengthen residual vision, the brain deserves a better reputation in ophthalmology for its role in visual rehabilitation. For patients, there is now more light at the end of the tunnel, because vision loss in some areas of the visual field defect is indeed reversible. Georg Thieme Verlag KG Stuttgart · New York.

  16. Visually evoked responses in extrastriate area MT after lesions of striate cortex in early life.

    PubMed

    Yu, Hsin-Hao; Chaplin, Tristan A; Egan, Gregory W; Reser, David H; Worthy, Katrina H; Rosa, Marcello G P

    2013-07-24

    Lesions of striate cortex [primary visual cortex (V1)] in adult primates result in blindness. In contrast, V1 lesions in neonates typically allow much greater preservation of vision, including, in many human patients, conscious perception. It is presently unknown how this marked functional difference is related to physiological changes in cortical areas that are spared by the lesions. Here we report a study of the middle temporal area (MT) of adult marmoset monkeys that received unilateral V1 lesions within 6 weeks of birth. In contrast with observations after similar lesions in adult monkeys, we found that virtually all neurons in the region of MT that was deprived of V1 inputs showed robust responses to visual stimulation. These responses were very similar to those recorded in neurons with receptive fields outside the lesion projection zones in terms of firing rate, signal-to-noise ratio, and latency. In addition, the normal retinotopic organization of MT was maintained. Nonetheless, we found evidence of a very specific functional deficit: direction selectivity, a key physiological characteristic of MT that is known to be preserved in many cells after adult V1 lesions, was absent. These results demonstrate that lesion-induced reorganization of afferent pathways is sufficient to develop robust visual function in primate extrastriate cortex, highlighting a likely mechanism for the sparing of vision after neonatal V1 lesions. However, they also suggest that interactions with V1 in early postnatal life are critical for establishing stimulus selectivity in MT.

  17. The compensatory dynamic of inter-hemispheric interactions in visuospatial attention revealed using rTMS and fMRI

    PubMed Central

    Plow, Ela B.; Cattaneo, Zaira; Carlson, Thomas A.; Alvarez, George A.; Pascual-Leone, Alvaro; Battelli, Lorella

    2014-01-01

    A balance of mutual tonic inhibition between bi-hemispheric posterior parietal cortices is believed to play an important role in bilateral visual attention. However, experimental support for this notion has been mainly drawn from clinical models of unilateral damage. We have previously shown that low-frequency repetitive TMS (rTMS) over the intraparietal sulcus (IPS) generates a contralateral attentional deficit in bilateral visual tracking. Here, we used functional magnetic resonance imaging (fMRI) to study whether rTMS temporarily disrupts the inter-hemispheric balance between bilateral IPS in visual attention. Following application of 1 Hz rTMS over the left IPS, subjects performed a bilateral visual tracking task while their brain activity was recorded using fMRI. Behaviorally, tracking accuracy was reduced immediately following rTMS. Areas ventro-lateral to left IPS, including inferior parietal lobule (IPL), lateral IPS (LIPS), and middle occipital gyrus (MoG), showed decreased activity following rTMS, while dorsomedial areas, such as Superior Parietal Lobule (SPL), Superior occipital gyrus (SoG), and lingual gyrus, as well as middle temporal areas (MT+), showed higher activity. The brain activity of the homologues of these regions in the un-stimulated, right hemisphere was reversed. Interestingly, the evolution of network-wide activation related to attentional behavior following rTMS showed that activation of most occipital synergists adaptively compensated for contralateral and ipsilateral decrement after rTMS, while activation of parietal synergists, and SoG remained competing. This pattern of ipsilateral and contralateral activations empirically supports the hypothesized loss of inter-hemispheric balance that underlies clinical manifestation of visual attentional extinction. PMID:24860462

  18. A randomized controlled trial comparing 2 interventions for visual field loss with standard occupational therapy during inpatient stroke rehabilitation.

    PubMed

    Mödden, Claudia; Behrens, Marion; Damke, Iris; Eilers, Norbert; Kastrup, Andreas; Hildebrandt, Helmut

    2012-06-01

    Compensatory and restorative treatments have been developed to improve visual field defects after stroke. However, no controlled trials have compared these interventions with standard occupational therapy (OT). A total of 45 stroke participants with visual field defect admitted for inpatient rehabilitation were randomized to restorative computerized training (RT) using computer-based stimulation of border areas of their visual field defects or to a computer-based compensatory therapy (CT) teaching a visual search strategy. OT, in which different compensation strategies were used to train for activities of daily living, served as standard treatment for the active control group. Each treatment group received 15 single sessions of 30 minutes distributed over 3 weeks. The primary outcome measures were visual field expansion for RT, visual search performance for CT, and reading performance for both treatments. Visual conjunction search, alertness, and the Barthel Index were secondary outcomes. Compared with OT, CT resulted in a better visual search performance, and RT did not result in a larger expansion of the visual field. Intragroup pre-post comparisons demonstrated that CT improved all defined outcome parameters and RT several, whereas OT only improved one. CT improved functional deficits after visual field loss compared with standard OT and may be the intervention of choice during inpatient rehabilitation. A larger trial that includes lesion location in the analysis is recommended.

  19. Recreational use management and wildfires in Southern California: Using GIS and visual landscape simulation models for economic assessment

    Treesearch

    Daniel Moya; Armando González-Cabán; José J. Sánchez; José de la Heras

    2013-01-01

    Recent advances in fire behavior are conforming strategies for forest management in nonindustrial private and public forests in the western United States. The strategy developed should include identifying the most cost-effective ways for allocating fire management budgets. In recreational areas, visitors’ opinion should be included in forest planning decisions and...

  20. A Feedback Model of Attention Explains the Diverse Effects of Attention on Neural Firing Rates and Receptive Field Structure.

    PubMed

    Miconi, Thomas; VanRullen, Rufin

    2016-02-01

    Visual attention has many effects on neural responses, producing complex changes in firing rates, as well as modifying the structure and size of receptive fields, both in topological and feature space. Several existing models of attention suggest that these effects arise from selective modulation of neural inputs. However, anatomical and physiological observations suggest that attentional modulation targets higher levels of the visual system (such as V4 or MT) rather than input areas (such as V1). Here we propose a simple mechanism that explains how a top-down attentional modulation, falling on higher visual areas, can produce the observed effects of attention on neural responses. Our model requires only the existence of modulatory feedback connections between areas, and short-range lateral inhibition within each area. Feedback connections redistribute the top-down modulation to lower areas, which in turn alters the inputs of other higher-area cells, including those that did not receive the initial modulation. This produces firing rate modulations and receptive field shifts. Simultaneously, short-range lateral inhibition between neighboring cells produce competitive effects that are automatically scaled to receptive field size in any given area. Our model reproduces the observed attentional effects on response rates (response gain, input gain, biased competition automatically scaled to receptive field size) and receptive field structure (shifts and resizing of receptive fields both spatially and in complex feature space), without modifying model parameters. Our model also makes the novel prediction that attentional effects on response curves should shift from response gain to contrast gain as the spatial focus of attention drifts away from the studied cell.

  1. Development of a Bayesian Estimator for Audio-Visual Integration: A Neurocomputational Study

    PubMed Central

    Ursino, Mauro; Crisafulli, Andrea; di Pellegrino, Giuseppe; Magosso, Elisa; Cuppini, Cristiano

    2017-01-01

    The brain integrates information from different sensory modalities to generate a coherent and accurate percept of external events. Several experimental studies suggest that this integration follows the principle of Bayesian estimate. However, the neural mechanisms responsible for this behavior, and its development in a multisensory environment, are still insufficiently understood. We recently presented a neural network model of audio-visual integration (Neural Computation, 2017) to investigate how a Bayesian estimator can spontaneously develop from the statistics of external stimuli. Model assumes the presence of two unimodal areas (auditory and visual) topologically organized. Neurons in each area receive an input from the external environment, computed as the inner product of the sensory-specific stimulus and the receptive field synapses, and a cross-modal input from neurons of the other modality. Based on sensory experience, synapses were trained via Hebbian potentiation and a decay term. Aim of this work is to improve the previous model, including a more realistic distribution of visual stimuli: visual stimuli have a higher spatial accuracy at the central azimuthal coordinate and a lower accuracy at the periphery. Moreover, their prior probability is higher at the center, and decreases toward the periphery. Simulations show that, after training, the receptive fields of visual and auditory neurons shrink to reproduce the accuracy of the input (both at the center and at the periphery in the visual case), thus realizing the likelihood estimate of unimodal spatial position. Moreover, the preferred positions of visual neurons contract toward the center, thus encoding the prior probability of the visual input. Finally, a prior probability of the co-occurrence of audio-visual stimuli is encoded in the cross-modal synapses. The model is able to simulate the main properties of a Bayesian estimator and to reproduce behavioral data in all conditions examined. In particular, in unisensory conditions the visual estimates exhibit a bias toward the fovea, which increases with the level of noise. In cross modal conditions, the SD of the estimates decreases when using congruent audio-visual stimuli, and a ventriloquism effect becomes evident in case of spatially disparate stimuli. Moreover, the ventriloquism decreases with the eccentricity. PMID:29046631

  2. Massive cortical reorganization in sighted Braille readers

    PubMed Central

    Siuda-Krzywicka, Katarzyna; Bola, Łukasz; Paplińska, Małgorzata; Sumera, Ewa; Jednoróg, Katarzyna; Marchewka, Artur; Śliwińska, Magdalena W; Amedi, Amir; Szwed, Marcin

    2016-01-01

    The brain is capable of large-scale reorganization in blindness or after massive injury. Such reorganization crosses the division into separate sensory cortices (visual, somatosensory...). As its result, the visual cortex of the blind becomes active during tactile Braille reading. Although the possibility of such reorganization in the normal, adult brain has been raised, definitive evidence has been lacking. Here, we demonstrate such extensive reorganization in normal, sighted adults who learned Braille while their brain activity was investigated with fMRI and transcranial magnetic stimulation (TMS). Subjects showed enhanced activity for tactile reading in the visual cortex, including the visual word form area (VWFA) that was modulated by their Braille reading speed and strengthened resting-state connectivity between visual and somatosensory cortices. Moreover, TMS disruption of VWFA activity decreased their tactile reading accuracy. Our results indicate that large-scale reorganization is a viable mechanism recruited when learning complex skills. DOI: http://dx.doi.org/10.7554/eLife.10762.001 PMID:26976813

  3. Differential processing of binocular and monocular gloss cues in human visual cortex

    PubMed Central

    Di Luca, Massimiliano; Ban, Hiroshi; Muryy, Alexander; Fleming, Roland W.

    2016-01-01

    The visual impression of an object's surface reflectance (“gloss”) relies on a range of visual cues, both monocular and binocular. Whereas previous imaging work has identified processing within ventral visual areas as important for monocular cues, little is known about cortical areas involved in processing binocular cues. Here, we used human functional MRI (fMRI) to test for brain areas selectively involved in the processing of binocular cues. We manipulated stereoscopic information to create four conditions that differed in their disparity structure and in the impression of surface gloss that they evoked. We performed multivoxel pattern analysis to find areas whose fMRI responses allow classes of stimuli to be distinguished based on their depth structure vs. material appearance. We show that higher dorsal areas play a role in processing binocular gloss information, in addition to known ventral areas involved in material processing, with ventral area lateral occipital responding to both object shape and surface material properties. Moreover, we tested for similarities between the representation of gloss from binocular cues and monocular cues. Specifically, we tested for transfer in the decoding performance of an algorithm trained on glossy vs. matte objects defined by either binocular or by monocular cues. We found transfer effects from monocular to binocular cues in dorsal visual area V3B/kinetic occipital (KO), suggesting a shared representation of the two cues in this area. These results indicate the involvement of mid- to high-level visual circuitry in the estimation of surface material properties, with V3B/KO potentially playing a role in integrating monocular and binocular cues. PMID:26912596

  4. Application of GIS and Visualization Technology in the Regional-Scale Ground-Water Modeling of the Twentynine Palms and San Jose Areas, California

    NASA Astrophysics Data System (ADS)

    Li, Z.

    2003-12-01

    Application of GIS and visualization technology significantly contributes to the efficiency and success of developing ground-water models in the Twentynine Palms and San Jose areas, California. Visualizations from GIS and other tools can help to formulate the conceptual model by quickly revealing the basinwide geohydrologic characteristics and changes of a ground-water flow system, and by identifying the most influential components of system dynamics. In addition, 3-D visualizations and animations can help validate the conceptual formulation and the numerical calibration of the model by checking for model-input data errors, revealing cause and effect relationships, and identifying hidden design flaws in model layering and other critical flow components. Two case studies will be presented: The first is a desert basin (near the town of Twentynine Palms) characterized by a fault-controlled ground-water flow system. The second is a coastal basin (Santa Clara Valley including the city of San Jose) characterized by complex, temporally variable flow components ­¦ including artificial recharge through a large system of ponds and stream channels, dynamically changing inter-layer flow from hundreds of multi-aquifer wells, pumping-driven subsidence and recovery, and climatically variable natural recharge. For the Twentynine Palms area, more than 10,000 historical ground-water level and water-quality measurements were retrieved from the USGS databases. The combined use of GIS and visualization tools allowed these data to be swiftly organized and interpreted, and depicted by water-level and water-quality maps with a variety of themes for different uses. Overlaying and cross-correlating these maps with other hydrological, geological, geophysical, and geochemical data not only helped to quickly identify the major geohydrologic characteristics controlling the natural variation of hydraulic head in space, such as faults, basin-bottom altitude, and aquifer stratigraphies, but also helped to identify the temporal changes induced by human activities, such as pumping. For the San Jose area, a regional-scale ground-water/surface-water flow model was developed with 6 model layers, 360 monthly stress periods, and complex flow components. The model was visualized by creating animations for both hydraulic head and land subsidence. Cell-by-cell flow of individual flow components was also animated. These included simulated infiltration from climatically variable natural recharge, interlayer flow through multi-aquifer well bores, flow gains and losses along stream channels, and storage change in response to system recharge and discharge. These animations were used to examine consistency with other independent observations, such as measured water-level distribution, mapped gaining and losing stream reaches, and INSAR-interpreted subsidence and uplift. In addition, they revealed enormous detail on the spatial and temporal variation of both individual flow components as well as the entire flow system, and thus significantly increased understanding of system dynamics and improved the accuracy of model simulations.

  5. Utility of Lava Tubes on Other Worlds

    NASA Technical Reports Server (NTRS)

    Walden, Bryce E.; Billings, T. L.; York, Cheryl Lynn; Gillett, S. L.; Herbert, M. V.

    1998-01-01

    On Mars, as on Earth, lava tubes are found in the extensive lava fields associated with shield volcanism. Lunar lava-tube traces are located near mare-highland boundaries, giving access to a variety of minerals and other resources, including steep slopes, prominent heights for local area communications and observation, large-surface areas in shade, and abundant basalt plains suitable for landing sites, mass-drivers, surface transportation, regolith harvesting, and other uses. Methods for detecting lava tubes include visual observations of collapse trenches and skylights, ground-penetrating radar, gravimetry, magnetometry, seismography, atmospheric effects, laser, lidar, infrared, and human or robotic exploration.

  6. Two different streams form the dorsal visual system: anatomy and functions.

    PubMed

    Rizzolatti, Giacomo; Matelli, Massimo

    2003-11-01

    There are two radically different views on the functional role of the dorsal visual stream. One considers it as a system involved in space perception. The other is of a system that codes visual information for action organization. On the basis of new anatomical data and a reconsideration of previous functional and clinical data, we propose that the dorsal stream and its recipient parietal areas form two distinct functional systems: the dorso-dorsal stream (d-d stream) and the ventro-dorsal stream (v-d stream). The d-d stream is formed by area V6 (main d-d extrastriate visual node) and areas V6A and MIP of the superior parietal lobule. Its major functional role is the control of actions "on line". Its damage leads to optic ataxia. The v-d stream is formed by area MT (main v-d extrastriate visual node) and by the visual areas of the inferior parietal lobule. As the d-d stream, v-d stream is responsible for action organization. It, however, also plays a crucial role in space perception and action understanding. The putative mechanisms linking action and perception in the v-d stream is discussed.

  7. Combining visual rehabilitative training and noninvasive brain stimulation to enhance visual function in patients with hemianopia: a comparative case study.

    PubMed

    Plow, Ela B; Obretenova, Souzana N; Halko, Mark A; Kenkel, Sigrid; Jackson, Mary Lou; Pascual-Leone, Alvaro; Merabet, Lotfi B

    2011-09-01

    To standardize a protocol for promoting visual rehabilitative outcomes in post-stroke hemianopia by combining occipital cortical transcranial direct current stimulation (tDCS) with Vision Restoration Therapy (VRT). A comparative case study assessing feasibility and safety. A controlled laboratory setting. Two patients, both with right hemianopia after occipital stroke damage. METHODS AND OUTCOME MEASUREMENTS: Both patients underwent an identical VRT protocol that lasted 3 months (30 minutes, twice a day, 3 days per week). In patient 1, anodal tDCS was delivered to the occipital cortex during VRT training, whereas in patient 2 sham tDCS with VRT was performed. The primary outcome, visual field border, was defined objectively by using high-resolution perimetry. Secondary outcomes included subjective characterization of visual deficit and functional surveys that assessed performance on activities of daily living. For patient 1, the neural correlates of visual recovery were also investigated, by using functional magnetic resonance imaging. Delivery of combined tDCS with VRT was feasible and safe. High-resolution perimetry revealed a greater shift in visual field border for patient 1 versus patient 2. Patient 1 also showed greater recovery of function in activities of daily living. Contrary to the expectation, patient 2 perceived greater subjective improvement in visual field despite objective high-resolution perimetry results that indicated otherwise. In patient 1, visual function recovery was associated with functional magnetic resonance imaging activity in surviving peri-lesional and bilateral higher-order visual areas. Results of preliminary case comparisons suggest that occipital cortical tDCS may enhance recovery of visual function associated with concurrent VRT through visual cortical reorganization. Future studies may benefit from incorporating protocol refinements such as those described here, which include global capture of function, control for potential confounds, and investigation of underlying neural substrates of recovery. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  8. Visual motion perception predicts driving hazard perception ability.

    PubMed

    Lacherez, Philippe; Au, Sandra; Wood, Joanne M

    2014-02-01

    To examine the basis of previous findings of an association between indices of driving safety and visual motion sensitivity and to examine whether this association could be explained by low-level changes in visual function. A total of 36 visually normal participants (aged 19-80 years) completed a battery of standard vision tests including visual acuity, contrast sensitivity and automated visual fields and two tests of motion perception including sensitivity for movement of a drifting Gabor stimulus and sensitivity for displacement in a random dot kinematogram (Dmin ). Participants also completed a hazard perception test (HPT), which measured participants' response times to hazards embedded in video recordings of real-world driving, which has been shown to be linked to crash risk. Dmin for the random dot stimulus ranged from -0.88 to -0.12 log minutes of arc, and the minimum drift rate for the Gabor stimulus ranged from 0.01 to 0.35 cycles per second. Both measures of motion sensitivity significantly predicted response times on the HPT. In addition, while the relationship involving the HPT and motion sensitivity for the random dot kinematogram was partially explained by the other visual function measures, the relationship with sensitivity for detection of the drifting Gabor stimulus remained significant even after controlling for these variables. These findings suggest that motion perception plays an important role in the visual perception of driving-relevant hazards independent of other areas of visual function and should be further explored as a predictive test of driving safety. Future research should explore the causes of reduced motion perception to develop better interventions to improve road safety. © 2012 The Authors. Acta Ophthalmologica © 2012 Acta Ophthalmologica Scandinavica Foundation.

  9. Perceptual learning improves contrast sensitivity, visual acuity, and foveal crowding in amblyopia.

    PubMed

    Barollo, Michele; Contemori, Giulio; Battaglini, Luca; Pavan, Andrea; Casco, Clara

    2017-01-01

    Amblyopic observers present abnormal spatial interactions between a low-contrast sinusoidal target and high-contrast collinear flankers. It has been demonstrated that perceptual learning (PL) can modulate these low-level lateral interactions, resulting in improved visual acuity and contrast sensitivity. We measured the extent and duration of generalization effects to various spatial tasks (i.e., visual acuity, Vernier acuity, and foveal crowding) through PL on the target's contrast detection. Amblyopic observers were trained on a contrast-detection task for a central target (i.e., a Gabor patch) flanked above and below by two high-contrast Gabor patches. The pre- and post-learning tasks included lateral interactions at different target-to-flankers separations (i.e., 2, 3, 4, 8λ) and included a range of spatial frequencies and stimulus durations as well as visual acuity, Vernier acuity, contrast-sensitivity function, and foveal crowding. The results showed that perceptual training reduced the target's contrast-detection thresholds more for the longest target-to-flanker separation (i.e., 8λ). We also found generalization of PL to different stimuli and tasks: contrast sensitivity for both trained and untrained spatial frequencies, visual acuity for Sloan letters, and foveal crowding, and partially for Vernier acuity. Follow-ups after 5-7 months showed not only complete maintenance of PL effects on visual acuity and contrast sensitivity function but also further improvement in these tasks. These results suggest that PL improves facilitatory lateral interactions in amblyopic observers, which usually extend over larger separations than in typical foveal vision. The improvement in these basic visual spatial operations leads to a more efficient capability of performing spatial tasks involving high levels of visual processing, possibly due to the refinement of bottom-up and top-down networks of visual areas.

  10. Structural and functional changes across the visual cortex of a patient with visual form agnosia.

    PubMed

    Bridge, Holly; Thomas, Owen M; Minini, Loredana; Cavina-Pratesi, Cristiana; Milner, A David; Parker, Andrew J

    2013-07-31

    Loss of shape recognition in visual-form agnosia occurs without equivalent losses in the use of vision to guide actions, providing support for the hypothesis of two visual systems (for "perception" and "action"). The human individual DF received a toxic exposure to carbon monoxide some years ago, which resulted in a persisting visual-form agnosia that has been extensively characterized at the behavioral level. We conducted a detailed high-resolution MRI study of DF's cortex, combining structural and functional measurements. We present the first accurate quantification of the changes in thickness across DF's occipital cortex, finding the most substantial loss in the lateral occipital cortex (LOC). There are reduced white matter connections between LOC and other areas. Functional measures show pockets of activity that survive within structurally damaged areas. The topographic mapping of visual areas showed that ordered retinotopic maps were evident for DF in the ventral portions of visual cortical areas V1, V2, V3, and hV4. Although V1 shows evidence of topographic order in its dorsal portion, such maps could not be found in the dorsal parts of V2 and V3. We conclude that it is not possible to understand fully the deficits in object perception in visual-form agnosia without the exploitation of both structural and functional measurements. Our results also highlight for DF the cortical routes through which visual information is able to pass to support her well-documented abilities to use visual information to guide actions.

  11. Perceptual deficits of object identification: apperceptive agnosia.

    PubMed

    Milner, A David; Cavina-Pratesi, Cristiana

    2018-01-01

    It is argued here that apperceptive object agnosia (generally now known as visual form agnosia) is in reality not a kind of agnosia, but rather a form of "imperception" (to use the term coined by Hughlings Jackson). We further argue that its proximate cause is a bilateral loss (or functional loss) of the visual form processing systems embodied in the human lateral occipital cortex (area LO). According to the dual-system model of cortical visual processing elaborated by Milner and Goodale (2006), area LO constitutes a crucial component of the ventral stream, and indeed is essential for providing the figural qualities inherent in our normal visual perception of the world. According to this account, the functional loss of area LO would leave only spared visual areas within the occipito-parietal dorsal stream - dedicated to the control of visually-guided actions - potentially able to provide some aspects of visual shape processing in patients with apperceptive agnosia. We review the relevant evidence from such individuals, concentrating particularly on the well-researched patient D.F. We conclude that studies of this kind can provide useful pointers to an understanding of the processing characteristics of parietal-lobe visual mechanisms and their interactions with occipitotemporal perceptual systems in the guidance of action. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Visual spatial attention enhances the amplitude of positive and negative fMRI responses to visual stimulation in an eccentricity-dependent manner.

    PubMed

    Bressler, David W; Fortenbaugh, Francesca C; Robertson, Lynn C; Silver, Michael A

    2013-06-07

    Endogenous visual spatial attention improves perception and enhances neural responses to visual stimuli at attended locations. Although many aspects of visual processing differ significantly between central and peripheral vision, little is known regarding the neural substrates of the eccentricity dependence of spatial attention effects. We measured amplitudes of positive and negative fMRI responses to visual stimuli as a function of eccentricity in a large number of topographically-organized cortical areas. Responses to each stimulus were obtained when the stimulus was attended and when spatial attention was directed to a stimulus in the opposite visual hemifield. Attending to the stimulus increased both positive and negative response amplitudes in all cortical areas we studied: V1, V2, V3, hV4, VO1, LO1, LO2, V3A/B, IPS0, TO1, and TO2. However, the eccentricity dependence of these effects differed considerably across cortical areas. In early visual, ventral, and lateral occipital cortex, attentional enhancement of positive responses was greater for central compared to peripheral eccentricities. The opposite pattern was observed in dorsal stream areas IPS0 and putative MT homolog TO1, where attentional enhancement of positive responses was greater in the periphery. Both the magnitude and the eccentricity dependence of attentional modulation of negative fMRI responses closely mirrored that of positive responses across cortical areas. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Objective assessment of the contribution of dental esthetics and facial attractiveness in men via eye tracking.

    PubMed

    Baker, Robin S; Fields, Henry W; Beck, F Michael; Firestone, Allen R; Rosenstiel, Stephen F

    2018-04-01

    Recently, greater emphasis has been placed on smile esthetics in dentistry. Eye tracking has been used to objectively evaluate attention to the dentition (mouth) in female models with different levels of dental esthetics quantified by the aesthetic component of the Index of Orthodontic Treatment Need (IOTN). This has not been accomplished in men. Our objective was to determine the visual attention to the mouth in men with different levels of dental esthetics (IOTN levels) and background facial attractiveness, for both male and female raters, using eye tracking. Facial images of men rated as unattractive, average, and attractive were digitally manipulated and paired with validated oral images, IOTN levels 1 (no treatment need), 7 (borderline treatment need), and 10 (definite treatment need). Sixty-four raters meeting the inclusion criteria were included in the data analysis. Each rater was calibrated in the eye tracker and randomly viewed the composite images for 3 seconds, twice for reliability. Reliability was good or excellent (intraclass correlation coefficients, 0.6-0.9). Significant interactions were observed with factorial repeated-measures analysis of variance and the Tukey-Kramer method for density and duration of fixations in the interactions of model facial attractiveness by area of the face (P <0.0001, P <0.0001, respectively), dental esthetics (IOTN) by area of the face (P <0.0001, P <0.0001, respectively), and rater sex by area of the face (P = 0.0166, P = 0.0290, respectively). For area by facial attractiveness, the hierarchy of visual attention in unattractive and attractive models was eye, mouth, and nose, but for men of average attractiveness, it was mouth, eye, and nose. For dental esthetics by area, at IOTN 7, the mouth had significantly more visual attention than it did at IOTN 1 and significantly more than the nose. At IOTN 10, the mouth received significantly more attention than at IOTN 7 and surpassed the nose and eye. These findings were irrespective of facial attractiveness levels. For rater sex by area in visual density, women showed significantly more attention to the eyes than did men, and only men showed significantly more attention to the mouth over the nose. Visual attention to the mouth was the greatest in men of average facial attractiveness, irrespective of dental esthetics. In borderline dental esthetics (IOTN 7), the eye and mouth were statistically indistinguishable, but in the most unesthetic dental attractiveness level (IOTN 10), the mouth exceeded the eye. The most unesthetic malocclusion significantly attracted visual attention in men. Male and female raters showed differences in their visual attention to male faces. Laypersons gave significant visual attention to poor dental esthetics in men, irrespective of background attractiveness; this was counter to what was seen in women. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  14. Prevalence and Causes of Visual Impairment and Blindness in Shanxi Province, China.

    PubMed

    Li, Tong; Du, Liping; Du, Lingzhen

    2015-01-01

    To estimate the prevalence and causes of visual impairment and blindness in Shanxi Province, China. Data were obtained from the Second National Sampling Survey of Disability conducted in 2006. Blindness and visual impairment were defined as best corrected visual acuity <3/60 and <6/18, respectively, in the better-seeing eye. Standardized ophthalmologic examinations were administered to participants aged 0-80 years in 2006. Visual acuity (VA) was measured using a Standard Logarithmic Visual Acuity E chart (Snellen) for subjects aged 7 years and older. Participants younger than 7 years were examined using special experiments or the Childhood Graphical Visual Chart. The prevalence of visual impairment and blindness in Shanxi was estimated to be 0.6% (466/75,016) among persons up to 80 years old. The prevalence in rural areas (0.7%; 351/48,137) was significantly higher than that in urban areas (0.4%; 115/26,879) and was higher in females (0.8%; 298/36,933) than in males (0.4%; 168/38,083). The most common cause of visual impairment and blindness was cataract (44.9%), followed by retinopathy and choroidopathy (12.5%), hereditary and developmental disorders (10.3%), corneal disease (5.2%), and refractive error (4.9%). Prevalences of visual impairment and blindness in women and in rural areas were higher than in men and urban areas, and increased with age. Cataract was the most prevalent cause of visual impairment and blindness. Based on the findings from this study, we suggest that provision of support and welfare services should be organized.

  15. The contribution of visual areas to speech comprehension: a PET study in cochlear implants patients and normal-hearing subjects.

    PubMed

    Giraud, Anne Lise; Truy, Eric

    2002-01-01

    Early visual cortex can be recruited by meaningful sounds in the absence of visual information. This occurs in particular in cochlear implant (CI) patients whose dependency on visual cues in speech comprehension is increased. Such cross-modal interaction mirrors the response of early auditory cortex to mouth movements (speech reading) and may reflect the natural expectancy of the visual counterpart of sounds, lip movements. Here we pursue the hypothesis that visual activations occur specifically in response to meaningful sounds. We performed PET in both CI patients and controls, while subjects listened either to their native language or to a completely unknown language. A recruitment of early visual cortex, the left posterior inferior temporal gyrus (ITG) and the left superior parietal cortex was observed in both groups. While no further activation occurred in the group of normal-hearing subjects, CI patients additionally recruited the right perirhinal/fusiform and mid-fusiform, the right temporo-occipito-parietal (TOP) junction and the left inferior prefrontal cortex (LIPF, Broca's area). This study confirms a participation of visual cortical areas in semantic processing of speech sounds. Observation of early visual activation in normal-hearing subjects shows that auditory-to-visual cross-modal effects can also be recruited under natural hearing conditions. In cochlear implant patients, speech activates the mid-fusiform gyrus in the vicinity of the so-called face area. This suggests that specific cross-modal interaction involving advanced stages in the visual processing hierarchy develops after cochlear implantation and may be the correlate of increased usage of lip-reading.

  16. Generic decoding of seen and imagined objects using hierarchical visual features.

    PubMed

    Horikawa, Tomoyasu; Kamitani, Yukiyasu

    2017-05-22

    Object recognition is a key function in both human and machine vision. While brain decoding of seen and imagined objects has been achieved, the prediction is limited to training examples. We present a decoding approach for arbitrary objects using the machine vision principle that an object category is represented by a set of features rendered invariant through hierarchical processing. We show that visual features, including those derived from a deep convolutional neural network, can be predicted from fMRI patterns, and that greater accuracy is achieved for low-/high-level features with lower-/higher-level visual areas, respectively. Predicted features are used to identify seen/imagined object categories (extending beyond decoder training) from a set of computed features for numerous object images. Furthermore, decoding of imagined objects reveals progressive recruitment of higher-to-lower visual representations. Our results demonstrate a homology between human and machine vision and its utility for brain-based information retrieval.

  17. Visual Agnosia and Posterior Cerebral Artery Infarcts: An Anatomical-Clinical Study

    PubMed Central

    Martinaud, Olivier; Pouliquen, Dorothée; Gérardin, Emmanuel; Loubeyre, Maud; Hirsbein, David; Hannequin, Didier; Cohen, Laurent

    2012-01-01

    Background To evaluate systematically the cognitive deficits following posterior cerebral artery (PCA) strokes, especially agnosic visual disorders, and to study anatomical-clinical correlations. Methods and Findings We investigated 31 patients at the chronic stage (mean duration of 29.1 months post infarct) with standardized cognitive tests. New experimental tests were used to assess visual impairments for words, faces, houses, and objects. Forty-one healthy subjects participated as controls. Brain lesions were normalized, combined, and related to occipitotemporal areas responsive to specific visual categories, including words (VWFA), faces (FFA and OFA), houses (PPA) and common objects (LOC). Lesions were located in the left hemisphere in 15 patients, in the right in 13, and bilaterally in 3. Visual field defects were found in 23 patients. Twenty patients had a visual disorder in at least one of the experimental tests (9 with faces, 10 with houses, 7 with phones, 3 with words). Six patients had a deficit just for a single category of stimulus. The regions of maximum overlap of brain lesions associated with a deficit for a given category of stimuli were contiguous to the peaks of the corresponding functional areas as identified in normal subjects. However, the strength of anatomical-clinical correlations was greater for words than for faces or houses, probably due to the stronger lateralization of the VWFA, as compared to the FFA or the PPA. Conclusions Agnosic visual disorders following PCA infarcts are more frequent than previously reported. Dedicated batteries of tests, such as those developed here, are required to identify such deficits, which may escape clinical notice. The spatial relationships of lesions and of regions activated in normal subjects predict the nature of the deficits, although individual variability and bilaterally represented systems may blur those correlations. PMID:22276198

  18. Visual agnosia and posterior cerebral artery infarcts: an anatomical-clinical study.

    PubMed

    Martinaud, Olivier; Pouliquen, Dorothée; Gérardin, Emmanuel; Loubeyre, Maud; Hirsbein, David; Hannequin, Didier; Cohen, Laurent

    2012-01-01

    To evaluate systematically the cognitive deficits following posterior cerebral artery (PCA) strokes, especially agnosic visual disorders, and to study anatomical-clinical correlations. We investigated 31 patients at the chronic stage (mean duration of 29.1 months post infarct) with standardized cognitive tests. New experimental tests were used to assess visual impairments for words, faces, houses, and objects. Forty-one healthy subjects participated as controls. Brain lesions were normalized, combined, and related to occipitotemporal areas responsive to specific visual categories, including words (VWFA), faces (FFA and OFA), houses (PPA) and common objects (LOC). Lesions were located in the left hemisphere in 15 patients, in the right in 13, and bilaterally in 3. Visual field defects were found in 23 patients. Twenty patients had a visual disorder in at least one of the experimental tests (9 with faces, 10 with houses, 7 with phones, 3 with words). Six patients had a deficit just for a single category of stimulus. The regions of maximum overlap of brain lesions associated with a deficit for a given category of stimuli were contiguous to the peaks of the corresponding functional areas as identified in normal subjects. However, the strength of anatomical-clinical correlations was greater for words than for faces or houses, probably due to the stronger lateralization of the VWFA, as compared to the FFA or the PPA. Agnosic visual disorders following PCA infarcts are more frequent than previously reported. Dedicated batteries of tests, such as those developed here, are required to identify such deficits, which may escape clinical notice. The spatial relationships of lesions and of regions activated in normal subjects predict the nature of the deficits, although individual variability and bilaterally represented systems may blur those correlations.

  19. [Features associated with retinal thickness extension in diabetic macular oedema].

    PubMed

    Razo Blanco-Hernández, Dulce Milagros; Lima-Gómez, Virgilio; García-Rubio, Yatzul Zuhaila

    2015-01-01

    Clinically significant macular edema has features that are associated with a major risk of visual loss, with thickening that involves the centre of the macula, field 7 or visual deficiency, although it is unknown if these features are related to retinal thickness extension. An observational, analytical, prospective, cross-sectional and open study was conducted. The sample was divided into initial visual acuity ≥0.5, central field thickness, center point thickness, field 7 and macular volume more than the reported 2 standard deviation mean value in eyes without retinopathy. The extension was determined by the number of the central field area equivalent thickening and these features were compared with by Student's t test for independent samples. A total of 199 eyes were included. In eyes with visual acuity of ≥0.5, the mean extension was 2.88±1.68 and 3.2±1.63 in area equivalent in eyes with visual acuity <0.5 (p=0.12). The mean extension in eyes with less than 2 standard deviation of central field thickness, center point thickness, field 7 and macular volume was significantly lower than in eyes with more than 2 standard deviations (1.9±0.93 vs. 4.07±1.49, 2.44±1.47 vs. 3.94±1.52, 1.79±1.07 vs. 3.61±1.57 and 1.6±0.9 vs. 3.9±1.4, respectively, p<0.001). The extension of retinal thickness is related with the anatomical features reported with a greater risk of visual loss, but is not related to initial visual deficiency. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  20. Instrument Display Visual Angles for Conventional Aircraft and the MQ-9 Ground Control Station

    NASA Technical Reports Server (NTRS)

    Bendrick, Gregg A.; Kamine, Tovy Haber

    2008-01-01

    Aircraft instrument panels should be designed such that primary displays are in optimal viewing location to minimize pilot perception and response time. Human Factors engineers define three zones (i.e. "cones") of visual location: 1) "Easy Eye Movement" (foveal vision); 2) "Maximum Eye Movement" (peripheral vision with saccades), and 3) "Head Movement" (head movement required). Instrument display visual angles were measured to determine how well conventional aircraft (T-34, T-38, F- 15B, F-16XL, F/A-18A, U-2D, ER-2, King Air, G-III, B-52H, DC-10, B747-SCA) and the MQ-9 ground control station (GCS) complied with these standards, and how they compared with each other. Methods: Selected instrument parameters included: attitude, pitch, bank, power, airspeed, altitude, vertical speed, heading, turn rate, slip/skid, AOA, flight path, latitude, longitude, course, bearing, range and time. Vertical and horizontal visual angles for each component were measured from the pilot s eye position in each system. Results: The vertical visual angles of displays in conventional aircraft lay within the cone of "Easy Eye Movement" for all but three of the parameters measured, and almost all of the horizontal visual angles fell within this range. All conventional vertical and horizontal visual angles lay within the cone of "Maximum Eye Movement". However, most instrument vertical visual angles of the MQ-9 GCS lay outside the cone of "Easy Eye Movement", though all were within the cone of "Maximum Eye Movement". All the horizontal visual angles for the MQ-9 GCS were within the cone of "Easy Eye Movement". Discussion: Most instrument displays in conventional aircraft lay within the cone of "Easy Eye Movement", though mission-critical instruments sometimes displaced less important instruments outside this area. Many of the MQ-9 GCS systems lay outside this area. Specific training for MQ-9 pilots may be needed to avoid increased response time and potential error during flight.

  1. Screen Layout Design: Research into the Overall Appearance of the Screen.

    ERIC Educational Resources Information Center

    Grabinger, R. Scott

    1989-01-01

    Examines the current state of research into the visual effects of screen designs used in computer-assisted instruction and suggests areas for future efforts. Topics discussed include technical elements and comprehensibility elements in layout design; single element and multiple element research methodologies; dependent variables; and learning…

  2. Exceptional Children Research Review.

    ERIC Educational Resources Information Center

    Johnson, G. Orville, Ed.; Blank, Harriett D., Ed.

    Research reviews are presented for eight areas of exceptionality and for administration. Included are the following reports: 16 on the gifted compiled by Edward C. Frierson; 46 on the mentally retarded reviewed by Howard H. Spicker and Nettie R. Bartel; 20 on the visually impaired presented by William J. Tisdall; 44 on the hearing impaired…

  3. Nutrition and the Arts. Arizona Nutrition Education & Training Program.

    ERIC Educational Resources Information Center

    Arizona State Dept. of Education, Phoenix.

    This packet contains 12 lesson plans, listing learning activities, for teaching elementary school students about nutrition. The learning activities described involve art and art appreciation, encompassing such areas as drama, music, movement/dance, and visual arts. Recipes and cooking instruction are also included, along with references and notes…

  4. Rights Handbook for Handicapped Children and Adults.

    ERIC Educational Resources Information Center

    Des Jardins, Charlotte; Hull, Rita

    The handbook is intended as a reference to rights of handicapped children and adults as defined by federal and state legislation. A section on education makes up a major portion of the document and includes information on the following areas: definition of handicapped children, early childhood, visual impairment, hearing impairment, physical or…

  5. Preservice Teachers Connecting Mathematics and Drumming

    ERIC Educational Resources Information Center

    Marshall, Anne Marie

    2014-01-01

    Increasingly, elementary classroom teachers are being called to teach a myriad of subjects, including visual art, dance, and music. Preservice teachers must be prepared to teach and integrate multiple subjects. To that end, preservice teachers will need experiences in their preparation that help them to see connections across content areas and…

  6. A Study of the Integration of Military Personnel into the Fort Gordon Occupational Health Program.

    DTIC Science & Technology

    1980-05-01

    manpower data should be readily available to determine resource requirements. The other limiting factors which could bear on the problem include both...physical examinations and appropriate eyeglasses are provided based on both visual and safety requirements. Hazard inven- tories in areas jointly worked by

  7. Facultative Lagoons. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Andersen, Lorri

    The textual material for a unit on facultative lagoons is presented in this student manual. Topic areas discussed include: (1) loading; (2) microbial theory; (3) structure and design; (4) process control; (5) lagoon start-up; (6) data handling and analysis; (7) lagoon maintenance (considering visual observations, pond structure, safety, odor,…

  8. Using endemic road features to create self-explaining roads and reduce vehicle speeds.

    PubMed

    Charlton, Samuel G; Mackie, Hamish W; Baas, Peter H; Hay, Karen; Menezes, Miguel; Dixon, Claire

    2010-11-01

    This paper describes a project undertaken to establish a self-explaining roads (SER) design programme on existing streets in an urban area. The methodology focussed on developing a process to identify functional road categories and designs based on endemic road characteristics taken from functional exemplars in the study area. The study area was divided into two sections, one to receive SER treatments designed to maximise visual differences between road categories, and a matched control area to remain untreated for purposes of comparison. The SER design for local roads included increased landscaping and community islands to limit forward visibility, and removal of road markings to create a visually distinct road environment. In comparison, roads categorised as collectors received increased delineation, addition of cycle lanes, and improved amenity for pedestrians. Speed data collected 3 months after implementation showed a significant reduction in vehicle speeds on local roads and increased homogeneity of speeds on both local and collector roads. The objective speed data, combined with residents' speed choice ratings, indicated that the project was successful in creating two discriminably different road categories. 2010 Elsevier Ltd. All rights reserved.

  9. The selectivity of responses to red-green colour and achromatic contrast in the human visual cortex: an fMRI adaptation study.

    PubMed

    Mullen, Kathy T; Chang, Dorita H F; Hess, Robert F

    2015-12-01

    There is controversy as to how responses to colour in the human brain are organized within the visual pathways. A key issue is whether there are modular pathways that respond selectively to colour or whether there are common neural substrates for both colour and achromatic (Ach) contrast. We used functional magnetic resonance imaging (fMRI) adaptation to investigate the responses of early and extrastriate visual areas to colour and Ach contrast. High-contrast red-green (RG) and Ach sinewave rings (0.5 cycles/degree, 2 Hz) were used as both adapting stimuli and test stimuli in a block design. We found robust adaptation to RG or Ach contrast in all visual areas. Cross-adaptation between RG and Ach contrast occurred in all areas indicating the presence of integrated, colour and Ach responses. Notably, we revealed contrasting trends for the two test stimuli. For the RG test, unselective processing (robust adaptation to both RG and Ach contrast) was most evident in the early visual areas (V1 and V2), but selective responses, revealed as greater adaptation between the same stimuli than cross-adaptation between different stimuli, emerged in the ventral cortex, in V4 and VO in particular. For the Ach test, unselective responses were again most evident in early visual areas but Ach selectivity emerged in the dorsal cortex (V3a and hMT+). Our findings support a strong presence of integrated mechanisms for colour and Ach contrast across the visual hierarchy, with a progression towards selective processing in extrastriate visual areas. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. Neural codes of seeing architectural styles

    PubMed Central

    Choo, Heeyoung; Nasar, Jack L.; Nikrahei, Bardia; Walther, Dirk B.

    2017-01-01

    Images of iconic buildings, such as the CN Tower, instantly transport us to specific places, such as Toronto. Despite the substantial impact of architectural design on people’s visual experience of built environments, we know little about its neural representation in the human brain. In the present study, we have found patterns of neural activity associated with specific architectural styles in several high-level visual brain regions, but not in primary visual cortex (V1). This finding suggests that the neural correlates of the visual perception of architectural styles stem from style-specific complex visual structure beyond the simple features computed in V1. Surprisingly, the network of brain regions representing architectural styles included the fusiform face area (FFA) in addition to several scene-selective regions. Hierarchical clustering of error patterns further revealed that the FFA participated to a much larger extent in the neural encoding of architectural styles than entry-level scene categories. We conclude that the FFA is involved in fine-grained neural encoding of scenes at a subordinate-level, in our case, architectural styles of buildings. This study for the first time shows how the human visual system encodes visual aspects of architecture, one of the predominant and longest-lasting artefacts of human culture. PMID:28071765

  11. Neural codes of seeing architectural styles.

    PubMed

    Choo, Heeyoung; Nasar, Jack L; Nikrahei, Bardia; Walther, Dirk B

    2017-01-10

    Images of iconic buildings, such as the CN Tower, instantly transport us to specific places, such as Toronto. Despite the substantial impact of architectural design on people's visual experience of built environments, we know little about its neural representation in the human brain. In the present study, we have found patterns of neural activity associated with specific architectural styles in several high-level visual brain regions, but not in primary visual cortex (V1). This finding suggests that the neural correlates of the visual perception of architectural styles stem from style-specific complex visual structure beyond the simple features computed in V1. Surprisingly, the network of brain regions representing architectural styles included the fusiform face area (FFA) in addition to several scene-selective regions. Hierarchical clustering of error patterns further revealed that the FFA participated to a much larger extent in the neural encoding of architectural styles than entry-level scene categories. We conclude that the FFA is involved in fine-grained neural encoding of scenes at a subordinate-level, in our case, architectural styles of buildings. This study for the first time shows how the human visual system encodes visual aspects of architecture, one of the predominant and longest-lasting artefacts of human culture.

  12. Increased phase synchronization during continuous face integration measured simultaneously with EEG and fMRI.

    PubMed

    Kottlow, Mara; Jann, Kay; Dierks, Thomas; Koenig, Thomas

    2012-08-01

    Gamma zero-lag phase synchronization has been measured in the animal brain during visual binding. Human scalp EEG studies used a phase locking factor (trial-to-trial phase-shift consistency) or gamma amplitude to measure binding but did not analyze common-phase signals so far. This study introduces a method to identify networks oscillating with near zero-lag phase synchronization in human subjects. We presented unpredictably moving face parts (NOFACE) which - during some periods - produced a complete schematic face (FACE). The amount of zero-lag phase synchronization was measured using global field synchronization (GFS). GFS provides global information on the amount of instantaneous coincidences in specific frequencies throughout the brain. Gamma GFS was increased during the FACE condition. To localize the underlying areas, we correlated gamma GFS with simultaneously recorded BOLD responses. Positive correlates comprised the bilateral middle fusiform gyrus and the left precuneus. These areas may form a network of areas transiently synchronized during face integration, including face-specific as well as binding-specific regions and regions for visual processing in general. Thus, the amount of zero-lag phase synchronization between remote regions of the human visual system can be measured with simultaneously acquired EEG/fMRI. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Local statistics of retinal optic flow for self-motion through natural sceneries.

    PubMed

    Calow, Dirk; Lappe, Markus

    2007-12-01

    Image analysis in the visual system is well adapted to the statistics of natural scenes. Investigations of natural image statistics have so far mainly focused on static features. The present study is dedicated to the measurement and the analysis of the statistics of optic flow generated on the retina during locomotion through natural environments. Natural locomotion includes bouncing and swaying of the head and eye movement reflexes that stabilize gaze onto interesting objects in the scene while walking. We investigate the dependencies of the local statistics of optic flow on the depth structure of the natural environment and on the ego-motion parameters. To measure these dependencies we estimate the mutual information between correlated data sets. We analyze the results with respect to the variation of the dependencies over the visual field, since the visual motions in the optic flow vary depending on visual field position. We find that retinal flow direction and retinal speed show only minor statistical interdependencies. Retinal speed is statistically tightly connected to the depth structure of the scene. Retinal flow direction is statistically mostly driven by the relation between the direction of gaze and the direction of ego-motion. These dependencies differ at different visual field positions such that certain areas of the visual field provide more information about ego-motion and other areas provide more information about depth. The statistical properties of natural optic flow may be used to tune the performance of artificial vision systems based on human imitating behavior, and may be useful for analyzing properties of natural vision systems.

  14. Resolving the organization of the third tier visual cortex in primates: a hypothesis-based approach.

    PubMed

    Angelucci, Alessandra; Rosa, Marcello G P

    2015-01-01

    As highlighted by several contributions to this special issue, there is still ongoing debate about the number, exact location, and boundaries of the visual areas located in cortex immediately rostral to the second visual area (V2), i.e., the "third tier" visual cortex, in primates. In this review, we provide a historical overview of the main ideas that have led to four models of third tier cortex organization, which are at the center of today's debate. We formulate specific predictions of these models, and compare these predictions with experimental evidence obtained primarily in New World primates. From this analysis, we conclude that only one of these models (the "multiple-areas" model) can accommodate the breadth of available experimental evidence. According to this model, most of the third tier cortex in New World primates is occupied by two distinct areas, both representing the full contralateral visual quadrant: the dorsomedial area (DM), restricted to the dorsal half of the third visual complex, and the ventrolateral posterior area (VLP), occupying its ventral half and a substantial fraction of its dorsal half. DM belongs to the dorsal stream of visual processing, and overlaps with macaque parietooccipital (PO) area (or V6), whereas VLP belongs to the ventral stream and overlaps considerably with area V3 proposed by others. In contrast, there is substantial evidence that is inconsistent with the concept of a single elongated area V3 lining much of V2. We also review the experimental evidence from macaque monkey and humans, and propose that, once the data are interpreted within an evolutionary-developmental context, these species share a homologous (but not necessarily identical) organization of the third tier cortex as that observed in New World monkeys. Finally, we identify outstanding issues, and propose experiments to resolve them, highlighting in particular the need for more extensive, hypothesis-driven investigations in macaque and humans.

  15. Visual Field Map Clusters in Macaque Extrastriate Visual Cortex

    PubMed Central

    Kolster, Hauke; Mandeville, Joseph B.; Arsenault, John T.; Ekstrom, Leeland B.; Wald, Lawrence L.; Vanduffel, Wim

    2009-01-01

    The macaque visual cortex contains more than 30 different functional visual areas, yet surprisingly little is known about the underlying organizational principles that structure its components into a complete ‘visual’ unit. A recent model of visual cortical organization in humans suggests that visual field maps are organized as clusters. Clusters minimize axonal connections between individual field maps that represent common visual percepts, with different clusters thought to carry out different functions. Experimental support for this hypothesis, however, is lacking in macaques, leaving open the question of whether it is unique to humans or a more general model for primate vision. Here we show, using high-resolution BOLD fMRI data in the awake monkey at 7 Tesla, that area MT/V5 and its neighbors are organized as a cluster with a common foveal representation and a circular eccentricity map. This novel view on the functional topography of area MT/V5 and satellites indicates that field map clusters are evolutionarily preserved and may be a fundamental organizational principle of the old world primate visual cortex. PMID:19474330

  16. An Intelligent Surveillance Platform for Large Metropolitan Areas with Dense Sensor Deployment

    PubMed Central

    Fernández, Jorge; Calavia, Lorena; Baladrón, Carlos; Aguiar, Javier M.; Carro, Belén; Sánchez-Esguevillas, Antonio; Alonso-López, Jesus A.; Smilansky, Zeev

    2013-01-01

    This paper presents an intelligent surveillance platform based on the usage of large numbers of inexpensive sensors designed and developed inside the European Eureka Celtic project HuSIMS. With the aim of maximizing the number of deployable units while keeping monetary and resource/bandwidth costs at a minimum, the surveillance platform is based on the usage of inexpensive visual sensors which apply efficient motion detection and tracking algorithms to transform the video signal in a set of motion parameters. In order to automate the analysis of the myriad of data streams generated by the visual sensors, the platform's control center includes an alarm detection engine which comprises three components applying three different Artificial Intelligence strategies in parallel. These strategies are generic, domain-independent approaches which are able to operate in several domains (traffic surveillance, vandalism prevention, perimeter security, etc.). The architecture is completed with a versatile communication network which facilitates data collection from the visual sensors and alarm and video stream distribution towards the emergency teams. The resulting surveillance system is extremely suitable for its deployment in metropolitan areas, smart cities, and large facilities, mainly because cheap visual sensors and autonomous alarm detection facilitate dense sensor network deployments for wide and detailed coverage. PMID:23748169

  17. Neonatal Hypoglycaemia and Visual Development: A Review.

    PubMed

    Paudel, Nabin; Chakraborty, Arijit; Anstice, Nicola; Jacobs, Robert J; Hegarty, Jo E; Harding, Jane E; Thompson, Benjamin

    2017-01-01

    Many newborn babies experience low blood glucose concentrations, a condition referred to as neonatal hypoglycaemia (NH). The effect of NH on visual development in infancy and childhood is of interest because the occipital lobes, which include the primary visual cortex and a number of extrastriate visual areas, may be particularly susceptible to NH-induced injury. In addition, a number of case series have suggested that NH can affect eye and optic nerve development. To review the existing literature concerning the effect of NH on the visual system. A PubMed, Embase, Medline, and Google Scholar literature search was conducted using prespecified MeSH terms. The literature reviewed revealed no clear evidence for an effect of NH on the development of the eye and optic nerve. Furthermore, occipital and occipital-parietal lobe injuries following NH often occurred in conjunction with comorbid conditions and were not clearly linked to subsequent visual dysfunction, possibly due to difficulties in measuring vision in young children and a lack of studies at older ages. A recent, large-scale, prospective study of NH outcomes at 2 years of age found no effect of mild-to-moderate NH on visual development. The effect of NH on visual development is unclear. It is currently unknown whether NH affects visual function in mid-to-late childhood when many visual functions reach adult levels. © 2017 S. Karger AG, Basel.

  18. Neonatal hypoglycaemia and visual development: a review

    PubMed Central

    Paudel, Nabin; Chakraborty, Arijit; Anstice, Nicola; Jacobs, Robert J; Hegarty, Jo E; Harding, Jane E; Thompson, Benjamin

    2017-01-01

    Background Many newborn babies experience low blood glucose concentrations, a condition referred to as neonatal hypoglycaemia (NH). The effect of NH on visual development in infancy and childhood is of interest because the occipital lobes, which include the primary visual cortex and a number of extra-striate visual areas, may be particularly susceptible to NH induced injury. In addition, a number of case series have suggested that NH can affect eye and optic nerve development. Objective To review the existing literature concerning the effect of NH on the visual system. Methods A PubMed, Embase, Medline and Google Scholar literature search was conducted using pre-specified MeSH terms. Results The literature reviewed revealed no clear evidence for an effect of NH on the development of the eye and optic nerve. Furthermore, occipital and occipital-parietal lobe injuries following NH often occurred in conjunction with co-morbid conditions and were not clearly linked to subsequent visual dysfunction, possibly due to difficulties in measuring vision in young children and a lack of studies at older ages. A recent, large scale, prospective study of NH outcomes at 2 years of age found no effect of mild to moderate NH on visual development. Conclusion The effect of NH on visual development is unclear. It is currently unknown whether NH affects visual function in mid to late childhood when many visual functions reach adult levels. PMID:28253512

  19. Application of data mining approaches to drug delivery.

    PubMed

    Ekins, Sean; Shimada, Jun; Chang, Cheng

    2006-11-30

    Computational approaches play a key role in all areas of the pharmaceutical industry from data mining, experimental and clinical data capture to pharmacoeconomics and adverse events monitoring. They will likely continue to be indispensable assets along with a growing library of software applications. This is primarily due to the increasingly massive amount of biology, chemistry and clinical data, which is now entering the public domain mainly as a result of NIH and commercially funded projects. We are therefore in need of new methods for mining this mountain of data in order to enable new hypothesis generation. The computational approaches include, but are not limited to, database compilation, quantitative structure activity relationships (QSAR), pharmacophores, network visualization models, decision trees, machine learning algorithms and multidimensional data visualization software that could be used to improve drug delivery after mining public and/or proprietary data. We will discuss some areas of unmet needs in the area of data mining for drug delivery that can be addressed with new software tools or databases of relevance to future pharmaceutical projects.

  20. Preserved local but disrupted contextual figure-ground influences in an individual with abnormal function of intermediate visual areas

    PubMed Central

    Brooks, Joseph L.; Gilaie-Dotan, Sharon; Rees, Geraint; Bentin, Shlomo; Driver, Jon

    2012-01-01

    Visual perception depends not only on local stimulus features but also on their relationship to the surrounding stimulus context, as evident in both local and contextual influences on figure-ground segmentation. Intermediate visual areas may play a role in such contextual influences, as we tested here by examining LG, a rare case of developmental visual agnosia. LG has no evident abnormality of brain structure and functional neuroimaging showed relatively normal V1 function, but his intermediate visual areas (V2/V3) function abnormally. We found that contextual influences on figure-ground organization were selectively disrupted in LG, while local sources of figure-ground influences were preserved. Effects of object knowledge and familiarity on figure-ground organization were also significantly diminished. Our results suggest that the mechanisms mediating contextual and familiarity influences on figure-ground organization are dissociable from those mediating local influences on figure-ground assignment. The disruption of contextual processing in intermediate visual areas may play a role in the substantial object recognition difficulties experienced by LG. PMID:22947116

  1. Developmental remodeling of corticocortical feedback circuits in ferret visual cortex

    PubMed Central

    Khalil, Reem; Levitt, Jonathan B.

    2014-01-01

    Visual cortical areas in the mammalian brain are linked through a system of interareal feedforward and feedback connections, which presumably underlie different visual functions. We characterized the refinement of feedback projections to primary visual cortex (V1) from multiple sources in juvenile ferrets ranging in age from four to ten weeks postnatal. We studied whether the refinement of different aspects of feedback circuitry from multiple visual cortical areas proceeds at a similar rate in all areas. We injected the neuronal tracer cholera toxin B (CTb) into V1, and mapped the areal and laminar distribution of retrogradely labeled cells in extrastriate cortex. Around the time of eye opening at four weeks postnatal, the retinotopic arrangement of feedback appears essentially adultlike; however, Suprasylvian cortex supplies the greatest proportion of feedback, whereas area 18 supplies the greatest proportion in the adult. The density of feedback cells and the ratio of supragranular/infragranular feedback contribution declined in this period at a similar rate in all cortical areas. We also find significant feedback to V1 from layer IV of all extrastriate areas. The regularity of cell spacing, the proportion of feedback arising from layer IV, and the tangential extent of feedback in each area all remained essentially unchanged during this period, except for the infragranular feedback source in area 18 which expanded. Thus, while much of the basic pattern of cortical feedback to V1 is present before eye opening, there is major synchronous reorganization after eye opening, suggesting a crucial role for visual experience in this remodeling process. PMID:24665018

  2. Developmental remodeling of corticocortical feedback circuits in ferret visual cortex.

    PubMed

    Khalil, Reem; Levitt, Jonathan B

    2014-10-01

    Visual cortical areas in the mammalian brain are linked through a system of interareal feedforward and feedback connections, which presumably underlie different visual functions. We characterized the refinement of feedback projections to primary visual cortex (V1) from multiple sources in juvenile ferrets ranging in age from 4-10 weeks postnatal. We studied whether the refinement of different aspects of feedback circuitry from multiple visual cortical areas proceeds at a similar rate in all areas. We injected the neuronal tracer cholera toxin B (CTb) into V1 and mapped the areal and laminar distribution of retrogradely labeled cells in extrastriate cortex. Around the time of eye opening at 4 weeks postnatal, the retinotopic arrangement of feedback appears essentially adult-like; however, suprasylvian cortex supplies the greatest proportion of feedback, whereas area 18 supplies the greatest proportion in the adult. The density of feedback cells and the ratio of supragranular/infragranular feedback contribution declined in this period at a similar rate in all cortical areas. We also found significant feedback to V1 from layer IV of all extrastriate areas. The regularity of cell spacing, the proportion of feedback arising from layer IV, and the tangential extent of feedback in each area all remained essentially unchanged during this period, except for the infragranular feedback source in area 18, which expanded. Thus, while much of the basic pattern of cortical feedback to V1 is present before eye opening, there is major synchronous reorganization after eye opening, suggesting a crucial role for visual experience in this remodeling process. © 2014 Wiley Periodicals, Inc.

  3. The TINS Lecture. The parietal association cortex in depth perception and visual control of hand action.

    PubMed

    Sakata, H; Taira, M; Kusunoki, M; Murata, A; Tanaka, Y

    1997-08-01

    Recent neurophysiological studies in alert monkeys have revealed that the parietal association cortex plays a crucial role in depth perception and visually guided hand movement. The following five classes of parietal neurons covering various aspects of these functions have been identified: (1) depth-selective visual-fixation (VF) neurons of the inferior parietal lobule (IPL), representing egocentric distance; (2) depth-movement sensitive (DMS) neurons of V5A and the ventral intraparietal (VIP) area representing direction of linear movement in 3-D space; (3) depth-rotation-sensitive (RS) neurons of V5A and the posterior parietal (PP) area representing direction of rotary movement in space; (4) visually responsive manipulation-related neurons (visual-dominant or visual-and-motor type) of the anterior intraparietal (AIP) area, representing 3-D shape or orientation (or both) of objects for manipulation; and (5) axis-orientation-selective (AOS) and surface-orientation-selective (SOS) neurons in the caudal intraparietal sulcus (cIPS) sensitive to binocular disparity and representing the 3-D orientation of the longitudinal axes and flat surfaces, respectively. Some AOS and SOS neurons are selective in both orientation and shape. Thus the dorsal visual pathway is divided into at least two subsystems, V5A, PP and VIP areas for motion vision and V6, LIP and cIPS areas for coding position and 3-D features. The cIPS sends the signals of 3-D features of objects to the AIP area, which is reciprocally connected to the ventral premotor (F5) area and plays an essential role in matching hand orientation and shaping with 3-D objects for manipulation.

  4. The neural organization of perception in chess experts.

    PubMed

    Krawczyk, Daniel C; Boggan, Amy L; McClelland, M Michelle; Bartlett, James C

    2011-07-20

    The human visual system responds to expertise, and it has been suggested that regions that process faces also process other objects of expertise including chess boards by experts. We tested whether chess and face processing overlap in brain activity using fMRI. Chess experts and novices exhibited face selective areas, but these regions showed no selectivity to chess configurations relative to other stimuli. We next compared neural responses to chess and to scrambled chess displays to isolate areas relevant to expertise. Areas within the posterior cingulate, orbitofrontal cortex, and right temporal cortex were active in this comparison in experts over novices. We also compared chess and face responses within the posterior cingulate and found this area responsive to chess only in experts. These findings indicate that the configurations in chess are not strongly processed by face-selective regions that are selective for faces in individuals who have expertise in both domains. Further, the area most consistently involved in chess did not show overlap with faces. Overall, these results suggest that expert visual processing may be similar at the level of recognition, but need not show the same neural correlates. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Selective Audiovisual Semantic Integration Enabled by Feature-Selective Attention

    PubMed Central

    Li, Yuanqing; Long, Jinyi; Huang, Biao; Yu, Tianyou; Wu, Wei; Li, Peijun; Fang, Fang; Sun, Pei

    2016-01-01

    An audiovisual object may contain multiple semantic features, such as the gender and emotional features of the speaker. Feature-selective attention and audiovisual semantic integration are two brain functions involved in the recognition of audiovisual objects. Humans often selectively attend to one or several features while ignoring the other features of an audiovisual object. Meanwhile, the human brain integrates semantic information from the visual and auditory modalities. However, how these two brain functions correlate with each other remains to be elucidated. In this functional magnetic resonance imaging (fMRI) study, we explored the neural mechanism by which feature-selective attention modulates audiovisual semantic integration. During the fMRI experiment, the subjects were presented with visual-only, auditory-only, or audiovisual dynamical facial stimuli and performed several feature-selective attention tasks. Our results revealed that a distribution of areas, including heteromodal areas and brain areas encoding attended features, may be involved in audiovisual semantic integration. Through feature-selective attention, the human brain may selectively integrate audiovisual semantic information from attended features by enhancing functional connectivity and thus regulating information flows from heteromodal areas to brain areas encoding the attended features. PMID:26759193

  6. Detailed spatiotemporal brain mapping of chromatic vision combining high-resolution VEP with fMRI and retinotopy.

    PubMed

    Pitzalis, Sabrina; Strappini, Francesca; Bultrini, Alessandro; Di Russo, Francesco

    2018-03-13

    Neuroimaging studies have identified so far, several color-sensitive visual areas in the human brain, and the temporal dynamics of these activities have been separately investigated using the visual-evoked potentials (VEPs). In the present study, we combined electrophysiological and neuroimaging methods to determine a detailed spatiotemporal profile of chromatic VEP and to localize its neural generators. The accuracy of the present co-registration study was obtained by combining standard fMRI data with retinotopic and motion mapping data at the individual level. We found a sequence of occipito activities more complex than that typically reported for chromatic VEPs, including feed-forward and reentrant feedback. Results showed that chromatic human perception arises by the combined activity of at the least five parieto-occipital areas including V1, LOC, V8/VO, and the motion-sensitive dorsal region MT+. However, the contribution of V1 and V8/VO seems dominant because the re-entrant activity in these areas was present more than once (twice in V8/VO and thrice in V1). This feedforward and feedback chromatic processing appears delayed compared with the luminance processing. Associating VEPs and neuroimaging measures, we showed for the first time a complex spatiotemporal pattern of activity, confirming that chromatic stimuli produce intricate interactions of many different brain dorsal and ventral areas. © 2018 Wiley Periodicals, Inc.

  7. Decoding Reveals Plasticity in V3A as a Result of Motion Perceptual Learning

    PubMed Central

    Shibata, Kazuhisa; Chang, Li-Hung; Kim, Dongho; Náñez, José E.; Kamitani, Yukiyasu; Watanabe, Takeo; Sasaki, Yuka

    2012-01-01

    Visual perceptual learning (VPL) is defined as visual performance improvement after visual experiences. VPL is often highly specific for a visual feature presented during training. Such specificity is observed in behavioral tuning function changes with the highest improvement centered on the trained feature and was originally thought to be evidence for changes in the early visual system associated with VPL. However, results of neurophysiological studies have been highly controversial concerning whether the plasticity underlying VPL occurs within the visual cortex. The controversy may be partially due to the lack of observation of neural tuning function changes in multiple visual areas in association with VPL. Here using human subjects we systematically compared behavioral tuning function changes after global motion detection training with decoded tuning function changes for 8 visual areas using pattern classification analysis on functional magnetic resonance imaging (fMRI) signals. We found that the behavioral tuning function changes were extremely highly correlated to decoded tuning function changes only in V3A, which is known to be highly responsive to global motion with human subjects. We conclude that VPL of a global motion detection task involves plasticity in a specific visual cortical area. PMID:22952849

  8. [Retinotopic mapping of the human visual cortex with functional magnetic resonance imaging - basic principles, current developments and ophthalmological perspectives].

    PubMed

    Hoffmann, M B; Kaule, F; Grzeschik, R; Behrens-Baumann, W; Wolynski, B

    2011-07-01

    Since its initial introduction in the mid-1990 s, retinotopic mapping of the human visual cortex, based on functional magnetic resonance imaging (fMRI), has contributed greatly to our understanding of the human visual system. Multiple cortical visual field representations have been demonstrated and thus numerous visual areas identified. The organisation of specific areas has been detailed and the impact of pathophysiologies of the visual system on the cortical organisation uncovered. These results are based on investigations at a magnetic field strength of 3 Tesla or less. In a field-strength comparison between 3 and 7 Tesla, it was demonstrated that retinotopic mapping benefits from a magnetic field strength of 7 Tesla. Specifically, the visual areas can be mapped with high spatial resolution for a detailed analysis of the visual field maps. Applications of fMRI-based retinotopic mapping in ophthalmological research hold promise to further our understanding of plasticity in the human visual cortex. This is highlighted by pioneering studies in patients with macular dysfunction or misrouted optic nerves. © Georg Thieme Verlag KG Stuttgart · New York.

  9. [Comparison of visual impairment caused by trachoma in China between 1978 and 2006].

    PubMed

    Hu, Ailian; Cai, Xiaogu; Qiao, Liya; Zhang, Ye; Zhang, Xu; Sun, Baochen; Wang, Ningli

    2015-10-01

    To understand the distribution of visual impairment caused by trachoma in China and provide evidences for evaluation of eliminating blinding trachoma in China in the mission of Vision 2020. Sampling study. The results from the first year 1987 and second (year 2006) national sampling surveys of disabled persons were analyzed. Chi-square test was performed using SAS 9.30 to analyze the rates of visual impairment caused by trachoma in different groups. Unifactor and multifactor analyses were applied to analyze the relevance between visual impairment caused by trachoma and risk factors, including gender and age. The rate of visual impairment caused by trachoma was 102.01 persons/100 000 in 1987 and 17.62 persons/100 000 in 2006. The percentage of trachoma in all kinds of visual impairment was 14.25% in 1987 and 1.87% in 2006, and the difference was significant (F = 1 382.6, P < 0.01). Spatial aggregation was obvious in visual impairment caused by trachoma. H-aggregation areas included Hubei, Sichuan, Anhui, Shannxi, Guizhou, Hunan provinces and Chongqing Municipality. Survival time without trachoma between 1987 and 2006 was significantly different (F = 2 745.9, P < 0.01). The rate and risk of visual impairment caused by trachoma increased with age. Except the group of > 85 years, the rate of visual impairment caused by trachoma in all age groups in 1987 was significantly higher than that in 2006. The risk of visual impairment caused by trachoma in 1987 was 5.8 times that in 2006. If the other risk factors were not involved, the risk in 1987 was 8.75 times that in 2006. The risk in females was twice that in males. Both, the rate and risk of visual impairment caused by trachoma were significantly reduced in China. Impressive progresses were achieved in trachoma prevention and control.

  10. Social Determinants and Their Impact on Visual Impairment in Southern Mexico.

    PubMed

    Jimenez-Corona, Aida; Jimenez-Corona, Maria E; Ponce-de-Leon, Samuel; Chavez-Rodriguez, Mariela; Graue-Hernandez, Enrique O

    2015-01-01

    Visual impairment in disadvantaged populations in Mexico has been scarcely reported. We compared the prevalence of visual impairment and its associated risk factors in populations in rural compared to urban areas of the Mexican southern state of Chiapas. In a population-based study, the prevalence of visual impairment in rural and urban areas of Comitan, Chiapas, was estimated. All eligible individuals aged ≥20 years living in rural areas were invited to participate; persons from urban areas were chosen randomly. Individuals were considered of indigenous (IND) origin either by self-report or if they spoke an IND language. Visual acuity (VA) and pinhole VA were measured using a tumbling E chart. VA was defined as normal (better than or equal to 20/60), moderate impairment (worse than 20/60 but better than or equal to 20/200), severe impairment (worse than 20/200 but better than or equal to 20/400), or blindness (worse than 20/400). Data on VA were obtained from 969 persons (610 rural, 359 urban) whose mean age was 43.3 years (standard deviation 15.6 years). Prevalence of moderate visual impairment was higher in rural (10.2%, 95% confidence interval, CI, 7.2-14.2%) than urban (3.9%, 95% CI 1.9-7.9%) areas (p < 0.001). Persons with moderate visual impairment were older and less educated (both p < 0.001). Rural individuals aged 50 years and older had 4.4 times (95% CI 1.8-11.3, p = 0.002) the likelihood of having moderate visual impairment compared with urban persons. Unfavorable socioeconomic conditions were associated with higher prevalence of moderate visual impairment in rural compared with urban populations in Mexico.

  11. Differential processing of binocular and monocular gloss cues in human visual cortex.

    PubMed

    Sun, Hua-Chun; Di Luca, Massimiliano; Ban, Hiroshi; Muryy, Alexander; Fleming, Roland W; Welchman, Andrew E

    2016-06-01

    The visual impression of an object's surface reflectance ("gloss") relies on a range of visual cues, both monocular and binocular. Whereas previous imaging work has identified processing within ventral visual areas as important for monocular cues, little is known about cortical areas involved in processing binocular cues. Here, we used human functional MRI (fMRI) to test for brain areas selectively involved in the processing of binocular cues. We manipulated stereoscopic information to create four conditions that differed in their disparity structure and in the impression of surface gloss that they evoked. We performed multivoxel pattern analysis to find areas whose fMRI responses allow classes of stimuli to be distinguished based on their depth structure vs. material appearance. We show that higher dorsal areas play a role in processing binocular gloss information, in addition to known ventral areas involved in material processing, with ventral area lateral occipital responding to both object shape and surface material properties. Moreover, we tested for similarities between the representation of gloss from binocular cues and monocular cues. Specifically, we tested for transfer in the decoding performance of an algorithm trained on glossy vs. matte objects defined by either binocular or by monocular cues. We found transfer effects from monocular to binocular cues in dorsal visual area V3B/kinetic occipital (KO), suggesting a shared representation of the two cues in this area. These results indicate the involvement of mid- to high-level visual circuitry in the estimation of surface material properties, with V3B/KO potentially playing a role in integrating monocular and binocular cues. Copyright © 2016 the American Physiological Society.

  12. Hawk Eyes I: Diurnal Raptors Differ in Visual Fields and Degree of Eye Movement

    PubMed Central

    O'Rourke, Colleen T.; Hall, Margaret I.; Pitlik, Todd; Fernández-Juricic, Esteban

    2010-01-01

    Background Different strategies to search and detect prey may place specific demands on sensory modalities. We studied visual field configuration, degree of eye movement, and orbit orientation in three diurnal raptors belonging to the Accipitridae and Falconidae families. Methodology/Principal Findings We used an ophthalmoscopic reflex technique and an integrated 3D digitizer system. We found inter-specific variation in visual field configuration and degree of eye movement, but not in orbit orientation. Red-tailed Hawks have relatively small binocular areas (∼33°) and wide blind areas (∼82°), but intermediate degree of eye movement (∼5°), which underscores the importance of lateral vision rather than binocular vision to scan for distant prey in open areas. Cooper's Hawks' have relatively wide binocular fields (∼36°), small blind areas (∼60°), and high degree of eye movement (∼8°), which may increase visual coverage and enhance prey detection in closed habitats. Additionally, we found that Cooper's Hawks can visually inspect the items held in the tip of the bill, which may facilitate food handling. American Kestrels have intermediate-sized binocular and lateral areas that may be used in prey detection at different distances through stereopsis and motion parallax; whereas the low degree eye movement (∼1°) may help stabilize the image when hovering above prey before an attack. Conclusions We conclude that: (a) there are between-species differences in visual field configuration in these diurnal raptors; (b) these differences are consistent with prey searching strategies and degree of visual obstruction in the environment (e.g., open and closed habitats); (c) variations in the degree of eye movement between species appear associated with foraging strategies; and (d) the size of the binocular and blind areas in hawks can vary substantially due to eye movements. Inter-specific variation in visual fields and eye movements can influence behavioral strategies to visually search for and track prey while perching. PMID:20877645

  13. Hawk eyes I: diurnal raptors differ in visual fields and degree of eye movement.

    PubMed

    O'Rourke, Colleen T; Hall, Margaret I; Pitlik, Todd; Fernández-Juricic, Esteban

    2010-09-22

    Different strategies to search and detect prey may place specific demands on sensory modalities. We studied visual field configuration, degree of eye movement, and orbit orientation in three diurnal raptors belonging to the Accipitridae and Falconidae families. We used an ophthalmoscopic reflex technique and an integrated 3D digitizer system. We found inter-specific variation in visual field configuration and degree of eye movement, but not in orbit orientation. Red-tailed Hawks have relatively small binocular areas (∼33°) and wide blind areas (∼82°), but intermediate degree of eye movement (∼5°), which underscores the importance of lateral vision rather than binocular vision to scan for distant prey in open areas. Cooper's Hawks' have relatively wide binocular fields (∼36°), small blind areas (∼60°), and high degree of eye movement (∼8°), which may increase visual coverage and enhance prey detection in closed habitats. Additionally, we found that Cooper's Hawks can visually inspect the items held in the tip of the bill, which may facilitate food handling. American Kestrels have intermediate-sized binocular and lateral areas that may be used in prey detection at different distances through stereopsis and motion parallax; whereas the low degree eye movement (∼1°) may help stabilize the image when hovering above prey before an attack. We conclude that: (a) there are between-species differences in visual field configuration in these diurnal raptors; (b) these differences are consistent with prey searching strategies and degree of visual obstruction in the environment (e.g., open and closed habitats); (c) variations in the degree of eye movement between species appear associated with foraging strategies; and (d) the size of the binocular and blind areas in hawks can vary substantially due to eye movements. Inter-specific variation in visual fields and eye movements can influence behavioral strategies to visually search for and track prey while perching.

  14. A workflow for the 3D visualization of meteorological data

    NASA Astrophysics Data System (ADS)

    Helbig, Carolin; Rink, Karsten

    2014-05-01

    In the future, climate change will strongly influence our environment and living conditions. To predict possible changes, climate models that include basic and process conditions have been developed and big data sets are produced as a result of simulations. The combination of various variables of climate models with spatial data from different sources helps to identify correlations and to study key processes. For our case study we use results of the weather research and forecasting (WRF) model of two regions at different scales that include various landscapes in Northern Central Europe and Baden-Württemberg. We visualize these simulation results in combination with observation data and geographic data, such as river networks, to evaluate processes and analyze if the model represents the atmospheric system sufficiently. For this purpose, a continuous workflow that leads from the integration of heterogeneous raw data to visualization using open source software (e.g. OpenGeoSys Data Explorer, ParaView) is developed. These visualizations can be displayed on a desktop computer or in an interactive virtual reality environment. We established a concept that includes recommended 3D representations and a color scheme for the variables of the data based on existing guidelines and established traditions in the specific domain. To examine changes over time in observation and simulation data, we added the temporal dimension to the visualization. In a first step of the analysis, the visualizations are used to get an overview of the data and detect areas of interest such as regions of convection or wind turbulences. Then, subsets of data sets are extracted and the included variables can be examined in detail. An evaluation by experts from the domains of visualization and atmospheric sciences establish if they are self-explanatory and clearly arranged. These easy-to-understand visualizations of complex data sets are the basis for scientific communication. In addition, they have become an essential medium for the evaluation and verification of models. Particularly in interdisciplinary research projects, they support the scientists in discussions and help to set a general level of knowledge.

  15. C-fos induction in forebrain areas of two different visual pathways during consolidation of sexual imprinting in the zebra finch (Taeniopygia guttata).

    PubMed

    Sadananda, Monika; Bischof, Hans-Joachim

    2006-10-16

    Two forebrain areas in the hyperpallium apicale and in the lateral nidopallium of isolated male zebra finches are highly active (2-deoxyglucose technique) on exposure to females for the first time, that is first courtship. These areas also demonstrate enhanced neuronal plasticity when screened with c-fos immunocytochemistry. Both are areas involved in the processing of visual information conveyed by the two major visual pathways in birds, strengthening our hypothesis that courtship in the zebra finch is a visually guided behaviour. First courtship and chased birds show enhanced c-fos induction in the hyperpallial area, which could represent neuronal activity reflecting changes in the immediate environment. The enhanced expression of fos in first courtship birds in lateral nidopallial neurons indicates imminent long-lasting changes at the synaptic level that form the substrate for imprinting, a stable form of learning in birds.

  16. Dynamic Integration of Task-Relevant Visual Features in Posterior Parietal Cortex

    PubMed Central

    Freedman, David J.

    2014-01-01

    Summary The primate visual system consists of multiple hierarchically organized cortical areas, each specialized for processing distinct aspects of the visual scene. For example, color and form are encoded in ventral pathway areas such as V4 and inferior temporal cortex, while motion is preferentially processed in dorsal pathway areas such as the middle temporal area. Such representations often need to be integrated perceptually to solve tasks which depend on multiple features. We tested the hypothesis that the lateral intraparietal area (LIP) integrates disparate task-relevant visual features by recording from LIP neurons in monkeys trained to identify target stimuli composed of conjunctions of color and motion features. We show that LIP neurons exhibit integrative representations of both color and motion features when they are task relevant, and task-dependent shifts of both direction and color tuning. This suggests that LIP plays a role in flexibly integrating task-relevant sensory signals. PMID:25199703

  17. Sleepiness induced by sleep-debt enhanced amygdala activity for subliminal signals of fear.

    PubMed

    Motomura, Yuki; Kitamura, Shingo; Oba, Kentaro; Terasawa, Yuri; Enomoto, Minori; Katayose, Yasuko; Hida, Akiko; Moriguchi, Yoshiya; Higuchi, Shigekazu; Mishima, Kazuo

    2014-08-19

    Emotional information is frequently processed below the level of consciousness, where subcortical regions of the brain are thought to play an important role. In the absence of conscious visual experience, patients with visual cortex damage discriminate the valence of emotional expression. Even in healthy individuals, a subliminal mechanism can be utilized to compensate for a functional decline in visual cognition of various causes such as strong sleepiness. In this study, sleep deprivation was simulated in healthy individuals to investigate functional alterations in the subliminal processing of emotional information caused by reduced conscious visual cognition and attention due to an increase in subjective sleepiness. Fourteen healthy adult men participated in a within-subject crossover study consisting of a 5-day session of sleep debt (SD, 4-h sleep) and a 5-day session of sleep control (SC, 8-h sleep). On the last day of each session, participants performed an emotional face-viewing task that included backward masking of nonconscious presentations during magnetic resonance scanning. Finally, data from eleven participants who were unaware of nonconscious face presentations were analyzed. In fear contrasts, subjective sleepiness was significantly positively correlated with activity in the amygdala, ventromedial prefrontal cortex, hippocampus, and insular cortex, and was significantly negatively correlated with the secondary and tertiary visual areas and the fusiform face area. In fear-neutral contrasts, subjective sleepiness was significantly positively correlated with activity of the bilateral amygdala. Further, changes in subjective sleepiness (the difference between the SC and SD sessions) were correlated with both changes in amygdala activity and functional connectivity between the amygdala and superior colliculus in response to subliminal fearful faces. Sleepiness induced functional decline in the brain areas involved in conscious visual cognition of facial expressions, but also enhanced subliminal emotional processing via superior colliculus as represented by activity in the amygdala. These findings suggest that an evolutionally old and auxiliary subliminal hazard perception system is activated as a compensatory mechanism when conscious visual cognition is impaired. In addition, enhancement of subliminal emotional processing might cause involuntary emotional instability during sleep debt through changes in emotional response to or emotional evaluation of external stimuli.

  18. Event-related potentials for gender discrimination: an examination between differences in gender discrimination between males and females.

    PubMed

    Suyama, Natsuka; Hoshiyama, Minoru; Shimizu, Hideki; Saito, Hirofumi

    2008-09-01

    The event-related potentials (ERP) following presentation of male and female faces were investigated to study differences in the gender discrimination process. Visual stimuli from four categories including male and female faces were presented. For the male subjects, the P220 amplitude of the T5 area following viewing of a female face was significantly larger than that following viewing of a male face. On the other hand for female subjects, the P170 amplitude of the Cz area following observation of a male face was larger than that for a female face. The results indicate that the neural processes, including responsive brain areas used for gender discrimination by observing faces, are different between males and females.

  19. Using functional magnetic resonance imaging to explore the flashed face distortion effect.

    PubMed

    Wen, Tanya; Kung, Chun-Chia

    2014-10-27

    The flashed face distortion (FFD) effect was coined by Tangen, Murphy, and Thompson (2011) in their second-place winner of the 2012 Best Illusion of the Year Contest. The FFD arises when people view various eye-aligned faces that are sequentially flashed in the visual periphery, and gradually the faces appear to be deformed and grotesque. In this functional magnetic resonance imaging (fMRI) study, participants were presented with four conditions: (a) one face pair changing only its illumination; (b) two and (c) three alternating face pairs; and (d) nonrepeated face pairs. Participants rated the magnitude of each illusion immediately after each block. Results showed that the receptive region of the early visual cortex (V1-V4), and category-selective areas such as the fusiform face area (FFA) and occipital face area (OFA), responded proportionally to the participants' rated FFD strength. A random-effects voxelwise analysis further revealed positively correlated areas (including the medial and superolateral frontal areas) and negatively correlated areas (including the precuneus, postcentral gyrus, right insula, and bilateral middle frontal gyri) with respect to participants' ratings. Time series correlations among these nine ROIs (four positive and five negative) indicated that most participants showed a clustering of the two separate ROI types. Exploratory factor analysis (EFA) also demonstrated the segregation of the positive and negative ROIs; additionally, two subsystems were identified within the negative ROIs. These results suggest that the FFD is mediated by at least two networks: one that is likely responsible for perception and another that is likely responsible for subjective feelings and engagement. © 2014 ARVO.

  20. The 17th Project Integration Meeting

    NASA Technical Reports Server (NTRS)

    Mcdonald, R. R.

    1981-01-01

    Progress made by the Low-Cost Solar Array Project during the period September 1980 to February 1981 is described. Included are reports on project analysis and integration; technology development in silicon material, large-area silicon sheet and encapsulation; production process and equipment development; engineering, and operations. A report on and copies of visual presentations made at the Project Integration Meeting held at Pasadena, California on February 4 and 5, 1981 are also included.

  1. Causes of visual disability among Central Africans with diabetes mellitus.

    PubMed

    Mvitu Muaka, M; Longo-Mbenza, B

    2012-06-01

    Diabetic Retinopathy (DR) remains a common and one of the major causes of blindness in the developed and western societies. The same situation is shown in emerging economic areas (5,6). In sub-Saharan Africa (SSA) however, the issues of visual disability due to diabetes mellitus (DM) are overshadowed by the presence of the prevalent and common nutritional deficiency diseases and eye infections This clinic-based study was conducted to determine whether diabetic retinopathy is independently related to visual disability in black patients with diabetes mellitus (DM) from Kinshasa, Congo. A total of 299 urban patients with DM and low income including 108 cases of visual disability and matched for time admission and DM type to 191 controls, were assessed. Demographic, clinical, and ophthalmic data were assessed using univariate and multivariate analyses. Age ≥60 years, female sex, presence of diabetic retinopathy (DR), proliferative DR, shorter DM duration, glaucoma, macular oedema, diabetic nephropathy were the univariate risk factors of visual disability. Using logistic regression model, visual disability was significantly associated with female sex and diabetic retinopathy. The risk of visual disability is 4 times higher in patients with diabetic retinopathy and 2 times higher in females with DM. Therefore, to prevent further increase of visual disability, the Congolese Ministry of Health should prioritize the eye care in patients with DM.

  2. Artificial limb representation in amputees

    PubMed Central

    van den Heiligenberg, Fiona M Z; Orlov, Tanya; Macdonald, Scott N; Duff, Eugene P; Henderson Slater, David; Beckmann, Christian F; Johansen-Berg, Heidi; Culham, Jody C; Makin, Tamar R

    2018-01-01

    Abstract The human brain contains multiple hand-selective areas, in both the sensorimotor and visual systems. Could our brain repurpose neural resources, originally developed for supporting hand function, to represent and control artificial limbs? We studied individuals with congenital or acquired hand-loss (hereafter one-handers) using functional MRI. We show that the more one-handers use an artificial limb (prosthesis) in their everyday life, the stronger visual hand-selective areas in the lateral occipitotemporal cortex respond to prosthesis images. This was found even when one-handers were presented with images of active prostheses that share the functionality of the hand but not necessarily its visual features (e.g. a ‘hook’ prosthesis). Further, we show that daily prosthesis usage determines large-scale inter-network communication across hand-selective areas. This was demonstrated by increased resting state functional connectivity between visual and sensorimotor hand-selective areas, proportional to the intensiveness of everyday prosthesis usage. Further analysis revealed a 3-fold coupling between prosthesis activity, visuomotor connectivity and usage, suggesting a possible role for the motor system in shaping use-dependent representation in visual hand-selective areas, and/or vice versa. Moreover, able-bodied control participants who routinely observe prosthesis usage (albeit less intensively than the prosthesis users) showed significantly weaker associations between degree of prosthesis observation and visual cortex activity or connectivity. Together, our findings suggest that altered daily motor behaviour facilitates prosthesis-related visual processing and shapes communication across hand-selective areas. This neurophysiological substrate for prosthesis embodiment may inspire rehabilitation approaches to improve usage of existing substitutionary devices and aid implementation of future assistive and augmentative technologies. PMID:29534154

  3. Artificial limb representation in amputees.

    PubMed

    van den Heiligenberg, Fiona M Z; Orlov, Tanya; Macdonald, Scott N; Duff, Eugene P; Henderson Slater, David; Beckmann, Christian F; Johansen-Berg, Heidi; Culham, Jody C; Makin, Tamar R

    2018-05-01

    The human brain contains multiple hand-selective areas, in both the sensorimotor and visual systems. Could our brain repurpose neural resources, originally developed for supporting hand function, to represent and control artificial limbs? We studied individuals with congenital or acquired hand-loss (hereafter one-handers) using functional MRI. We show that the more one-handers use an artificial limb (prosthesis) in their everyday life, the stronger visual hand-selective areas in the lateral occipitotemporal cortex respond to prosthesis images. This was found even when one-handers were presented with images of active prostheses that share the functionality of the hand but not necessarily its visual features (e.g. a 'hook' prosthesis). Further, we show that daily prosthesis usage determines large-scale inter-network communication across hand-selective areas. This was demonstrated by increased resting state functional connectivity between visual and sensorimotor hand-selective areas, proportional to the intensiveness of everyday prosthesis usage. Further analysis revealed a 3-fold coupling between prosthesis activity, visuomotor connectivity and usage, suggesting a possible role for the motor system in shaping use-dependent representation in visual hand-selective areas, and/or vice versa. Moreover, able-bodied control participants who routinely observe prosthesis usage (albeit less intensively than the prosthesis users) showed significantly weaker associations between degree of prosthesis observation and visual cortex activity or connectivity. Together, our findings suggest that altered daily motor behaviour facilitates prosthesis-related visual processing and shapes communication across hand-selective areas. This neurophysiological substrate for prosthesis embodiment may inspire rehabilitation approaches to improve usage of existing substitutionary devices and aid implementation of future assistive and augmentative technologies.

  4. Functional size of human visual area V1: a neural correlate of top-down attention.

    PubMed

    Verghese, Ashika; Kolbe, Scott C; Anderson, Andrew J; Egan, Gary F; Vidyasagar, Trichur R

    2014-06-01

    Heavy demands are placed on the brain's attentional capacity when selecting a target item in a cluttered visual scene, or when reading. It is widely accepted that such attentional selection is mediated by top-down signals from higher cortical areas to early visual areas such as the primary visual cortex (V1). Further, it has also been reported that there is considerable variation in the surface area of V1. This variation may impact on either the number or specificity of attentional feedback signals and, thereby, the efficiency of attentional mechanisms. In this study, we investigated whether individual differences between humans performing attention-demanding tasks can be related to the functional area of V1. We found that those with a larger representation in V1 of the central 12° of the visual field as measured using BOLD signals from fMRI were able to perform a serial search task at a faster rate. In line with recent suggestions of the vital role of visuo-spatial attention in reading, the speed of reading showed a strong positive correlation with the speed of visual search, although it showed little correlation with the size of V1. The results support the idea that the functional size of the primary visual cortex is an important determinant of the efficiency of selective spatial attention for simple tasks, and that the attentional processing required for complex tasks like reading are to a large extent determined by other brain areas and inter-areal connections. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Comparison of automatic and visual methods used for image segmentation in Endodontics: a microCT study.

    PubMed

    Queiroz, Polyane Mazucatto; Rovaris, Karla; Santaella, Gustavo Machado; Haiter-Neto, Francisco; Freitas, Deborah Queiroz

    2017-01-01

    To calculate root canal volume and surface area in microCT images, an image segmentation by selecting threshold values is required, which can be determined by visual or automatic methods. Visual determination is influenced by the operator's visual acuity, while the automatic method is done entirely by computer algorithms. To compare between visual and automatic segmentation, and to determine the influence of the operator's visual acuity on the reproducibility of root canal volume and area measurements. Images from 31 extracted human anterior teeth were scanned with a μCT scanner. Three experienced examiners performed visual image segmentation, and threshold values were recorded. Automatic segmentation was done using the "Automatic Threshold Tool" available in the dedicated software provided by the scanner's manufacturer. Volume and area measurements were performed using the threshold values determined both visually and automatically. The paired Student's t-test showed no significant difference between visual and automatic segmentation methods regarding root canal volume measurements (p=0.93) and root canal surface (p=0.79). Although visual and automatic segmentation methods can be used to determine the threshold and calculate root canal volume and surface, the automatic method may be the most suitable for ensuring the reproducibility of threshold determination.

  6. Persistent T2*-hypointensity of the liver parenchyma after irradiation to the SPIO-accumulated liver: An imaging marker for responses to radiotherapy in hepatic malignancies.

    PubMed

    Furuta, Toshihiro; Yamaguchi, Masayuki; Minami, Manabu; Ohtomo, Kuni; Fujii, Hirofumi

    2017-01-01

    To determine whether T2*-weighted MRI has the ability to visualize the irradiated liver parenchyma and liver tumor after irradiation to the previously superparamagnetic iron oxide (SPIO)-accumulated liver. We examined 24 liver tumor-bearing rats. Nine rats (Group 1) received 20 µmol Fe/kg SPIO and subsequent 70-Gy irradiation to the tumor-bearing liver lobe. Four rats (Group 2) received SPIO and sham irradiation. Six rats (Group 3) received saline and irradiation. Finally, five rats (Group 4) received saline and sham irradiation. We acquired sequential 3 Tesla T2*-weighted images of the liver on day 7, and assessed MR image findings including signal intensity of the tumors and tumor-bearing liver lobes. In six rats in Group 1, tumors shrunk by 39-100% (303-0 mm 3 ), and severely, well-defined hypointense irradiated areas were observed. In the other two rats, tumors enlarged by 25 and 172% (595 and 1148 mm 3 ), and hypointense rings surrounded the tumors. The normalized relative signal intensity of the irradiated areas was significantly lower than that of the tumor (0.53 ± 0.06 versus 0.94 ± 0.06; P < 0.05). The severely, well-defined hypointense areas were not observed in the other groups. Histologically, necrotic regions dominated and minimal nonnecrotic tumor cells remained in irradiated areas. The number of CD68-positive cells was higher in irradiated areas than in nonirradiated areas. T2*-weighted MR imaging visualized the irradiated liver parenchyma as markedly, well-defined hypointense areas and liver cancer lesions as hyperintense areas only when SPIO was administered before irradiation. The visualization of the hypointense area was associated with tumor regression after irradiation. 2 J. Magn. Reson. Imaging 2017;45:303-312. © 2016 International Society for Magnetic Resonance in Medicine.

  7. Sunglasses with thick temples and frame constrict temporal visual field.

    PubMed

    Denion, Eric; Dugué, Audrey Emmanuelle; Augy, Sylvain; Coffin-Pichonnet, Sophie; Mouriaux, Frédéric

    2013-12-01

    Our aim was to compare the impact of two types of sunglasses on visual field and glare: one ("thick sunglasses") with a thick plastic frame and wide temples and one ("thin sunglasses") with a thin metal frame and thin temples. Using the Goldmann perimeter, visual field surface areas (cm²) were calculated as projections on a 30-cm virtual cupola. A V4 test object was used, from seen to unseen, in 15 healthy volunteers in the primary position of gaze ("base visual field"), then allowing eye motion ("eye motion visual field") without glasses, then with "thin sunglasses," followed by "thick sunglasses." Visual field surface area differences greater than the 14% reproducibility error of the method and having a p < 0.05 were considered significant. A glare test was done using a surgical lighting system pointed at the eye(s) at different incidence angles. No significant "base visual field" or "eye motion visual field" surface area variations were noted when comparing tests done without glasses and with the "thin sunglasses." In contrast, a 22% "eye motion visual field" surface area decrease (p < 0.001) was noted when comparing tests done without glasses and with "thick sunglasses." This decrease was most severe in the temporal quadrant (-33%; p < 0.001). All subjects reported less lateral glare with the "thick sunglasses" than with the "thin sunglasses" (p < 0.001). The better protection from lateral glare offered by "thick sunglasses" is offset by the much poorer ability to use lateral space exploration; this results in a loss of most, if not all, of the additional visual field gained through eye motion.

  8. Differential modulation of visual object processing in dorsal and ventral stream by stimulus visibility.

    PubMed

    Ludwig, Karin; Sterzer, Philipp; Kathmann, Norbert; Hesselmann, Guido

    2016-10-01

    As a functional organization principle in cortical visual information processing, the influential 'two visual systems' hypothesis proposes a division of labor between a dorsal "vision-for-action" and a ventral "vision-for-perception" stream. A core assumption of this model is that the two visual streams are differentially involved in visual awareness: ventral stream processing is closely linked to awareness while dorsal stream processing is not. In this functional magnetic resonance imaging (fMRI) study with human observers, we directly probed the stimulus-related information encoded in fMRI response patterns in both visual streams as a function of stimulus visibility. We parametrically modulated the visibility of face and tool stimuli by varying the contrasts of the masks in a continuous flash suppression (CFS) paradigm. We found that visibility - operationalized by objective and subjective measures - decreased proportionally with increasing log CFS mask contrast. Neuronally, this relationship was closely matched by ventral visual areas, showing a linear decrease of stimulus-related information with increasing mask contrast. Stimulus-related information in dorsal areas also showed a dependency on mask contrast, but the decrease rather followed a step function instead of a linear function. Together, our results suggest that both the ventral and the dorsal visual stream are linked to visual awareness, but neural activity in ventral areas more closely reflects graded differences in awareness compared to dorsal areas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Congenital Anophthalmia and Binocular Neonatal Enucleation Differently Affect the Proteome of Primary and Secondary Visual Cortices in Mice.

    PubMed

    Laramée, Marie-Eve; Smolders, Katrien; Hu, Tjing-Tjing; Bronchti, Gilles; Boire, Denis; Arckens, Lutgarde

    2016-01-01

    In blind individuals, visually deprived occipital areas are activated by non-visual stimuli. The extent of this cross-modal activation depends on the age at onset of blindness. Cross-modal inputs have access to several anatomical pathways to reactivate deprived visual areas. Ectopic cross-modal subcortical connections have been shown in anophthalmic animals but not in animals deprived of sight at a later age. Direct and indirect cross-modal cortical connections toward visual areas could also be involved, yet the number of neurons implicated is similar between blind mice and sighted controls. Changes at the axon terminal, dendritic spine or synaptic level are therefore expected upon loss of visual inputs. Here, the proteome of V1, V2M and V2L from P0-enucleated, anophthalmic and sighted mice, sharing a common genetic background (C57BL/6J x ZRDCT/An), was investigated by 2-D DIGE and Western analyses to identify molecular adaptations to enucleation and/or anophthalmia. Few proteins were differentially expressed in enucleated or anophthalmic mice in comparison to sighted mice. The loss of sight affected three pathways: metabolism, synaptic transmission and morphogenesis. Most changes were detected in V1, followed by V2M. Overall, cross-modal adaptations could be promoted in both models of early blindness but not through the exact same molecular strategy. A lower metabolic activity observed in visual areas of blind mice suggests that even if cross-modal inputs reactivate visual areas, they could remain suboptimally processed.

  10. Congenital Anophthalmia and Binocular Neonatal Enucleation Differently Affect the Proteome of Primary and Secondary Visual Cortices in Mice

    PubMed Central

    Smolders, Katrien; Hu, Tjing-Tjing; Bronchti, Gilles; Boire, Denis; Arckens, Lutgarde

    2016-01-01

    In blind individuals, visually deprived occipital areas are activated by non-visual stimuli. The extent of this cross-modal activation depends on the age at onset of blindness. Cross-modal inputs have access to several anatomical pathways to reactivate deprived visual areas. Ectopic cross-modal subcortical connections have been shown in anophthalmic animals but not in animals deprived of sight at a later age. Direct and indirect cross-modal cortical connections toward visual areas could also be involved, yet the number of neurons implicated is similar between blind mice and sighted controls. Changes at the axon terminal, dendritic spine or synaptic level are therefore expected upon loss of visual inputs. Here, the proteome of V1, V2M and V2L from P0-enucleated, anophthalmic and sighted mice, sharing a common genetic background (C57BL/6J x ZRDCT/An), was investigated by 2-D DIGE and Western analyses to identify molecular adaptations to enucleation and/or anophthalmia. Few proteins were differentially expressed in enucleated or anophthalmic mice in comparison to sighted mice. The loss of sight affected three pathways: metabolism, synaptic transmission and morphogenesis. Most changes were detected in V1, followed by V2M. Overall, cross-modal adaptations could be promoted in both models of early blindness but not through the exact same molecular strategy. A lower metabolic activity observed in visual areas of blind mice suggests that even if cross-modal inputs reactivate visual areas, they could remain suboptimally processed. PMID:27410964

  11. Cerebral Asymmetry of fMRI-BOLD Responses to Visual Stimulation

    PubMed Central

    Hougaard, Anders; Jensen, Bettina Hagström; Amin, Faisal Mohammad; Rostrup, Egill; Hoffmann, Michael B.; Ashina, Messoud

    2015-01-01

    Hemispheric asymmetry of a wide range of functions is a hallmark of the human brain. The visual system has traditionally been thought of as symmetrically distributed in the brain, but a growing body of evidence has challenged this view. Some highly specific visual tasks have been shown to depend on hemispheric specialization. However, the possible lateralization of cerebral responses to a simple checkerboard visual stimulation has not been a focus of previous studies. To investigate this, we performed two sessions of blood-oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) in 54 healthy subjects during stimulation with a black and white checkerboard visual stimulus. While carefully excluding possible non-physiological causes of left-to-right bias, we compared the activation of the left and the right cerebral hemispheres and related this to grey matter volume, handedness, age, gender, ocular dominance, interocular difference in visual acuity, as well as line-bisection performance. We found a general lateralization of cerebral activation towards the right hemisphere of early visual cortical areas and areas of higher-level visual processing, involved in visuospatial attention, especially in top-down (i.e., goal-oriented) attentional processing. This right hemisphere lateralization was partly, but not completely, explained by an increased grey matter volume in the right hemisphere of the early visual areas. Difference in activation of the superior parietal lobule was correlated with subject age, suggesting a shift towards the left hemisphere with increasing age. Our findings suggest a right-hemispheric dominance of these areas, which could lend support to the generally observed leftward visual attentional bias and to the left hemifield advantage for some visual perception tasks. PMID:25985078

  12. Three-dimensional (3D) GIS-based coastline change analysis and display using LIDAR series data

    NASA Astrophysics Data System (ADS)

    Zhou, G.

    This paper presents a method to visualize and analyze topography and topographic changes on coastline area. The study area, Assantage Island Nation Seashore (AINS), is located along a 37-mile stretch of Assateague Island National Seashore in Eastern Shore, VA. The DEMS data sets from 1996 through 2000 for various time intervals, e.g., year-to-year, season-to-season, date-to-date, and a four year (1996-2000) are created. The spatial patterns and volumetric amounts of erosion and deposition of each part on a cell-by-cell basis were calculated. A 3D dynamic display system using ArcView Avenue for visualizing dynamic coastal landforms has been developed. The system was developed into five functional modules: Dynamic Display, Analysis, Chart analysis, Output, and Help. The Display module includes five types of displays: Shoreline display, Shore Topographic Profile, Shore Erosion Display, Surface TIN Display, and 3D Scene Display. Visualized data include rectified and co-registered multispectral Landsat digital image and NOAA/NASA ATM LIDAR data. The system is demonstrated using multitemporal digital satellite and LIDAR data for displaying changes on the Assateague Island National Seashore, Virginia. The analyzed results demonstrated that a further understanding to the study and comparison of the complex morphological changes that occur naturally or human-induced on barrier islands is required.

  13. Cue-induced brain activity in pathological gamblers.

    PubMed

    Crockford, David N; Goodyear, Bradley; Edwards, Jodi; Quickfall, Jeremy; el-Guebaly, Nady

    2005-11-15

    Previous studies using functional magnetic resonance imaging (fMRI) have identified differential brain activity in healthy subjects performing gambling tasks and in pathological gambling (PG) subjects when exposed to motivational and emotional predecessors for gambling as well as during gambling or response inhibition tasks. The goal of the present study was to determine if PG subjects exhibit differential brain activity when exposed to visual gambling cues. Ten male DSM-IV-TR PG subjects and 10 matched healthy control subjects underwent fMRI during visual presentations of gambling-related video alternating with video of nature scenes. Pathological gambling subjects and control subjects exhibited overlap in areas of brain activity in response to the visual gambling cues; however, compared with control subjects, PG subjects exhibited significantly greater activity in the right dorsolateral prefrontal cortex (DLPFC), including the inferior and medial frontal gyri, the right parahippocampal gyrus, and left occipital cortex, including the fusiform gyrus. Pathological gambling subjects also reported a significant increase in mean craving for gambling after the study. Post hoc analyses revealed a dissociation in visual processing stream (dorsal vs. ventral) activation by subject group and cue type. These findings may represent a component of cue-induced craving for gambling or conditioned behavior that could underlie pathological gambling.

  14. A New Framework for Software Visualization: A Multi-Layer Approach

    DTIC Science & Technology

    2006-09-01

    primary target is an exploration of the current state of the area so that we can discover the challenges and propose solutions for them. The study ...Small define both areas of study to collectively be a part of Software Visualization. 22 Visual Programming as ’Visual Programming’ (VP) refers to...founded taxonomy, with the proper characteristics, can further investigation in any field of study . A common language or terminology and the existence of

  15. A Novel Interhemispheric Interaction: Modulation of Neuronal Cooperativity in the Visual Areas

    PubMed Central

    Carmeli, Cristian; Lopez-Aguado, Laura; Schmidt, Kerstin E.; De Feo, Oscar; Innocenti, Giorgio M.

    2007-01-01

    Background The cortical representation of the visual field is split along the vertical midline, with the left and the right hemi-fields projecting to separate hemispheres. Connections between the visual areas of the two hemispheres are abundant near the representation of the visual midline. It was suggested that they re-establish the functional continuity of the visual field by controlling the dynamics of the responses in the two hemispheres. Methods/Principal Findings To understand if and how the interactions between the two hemispheres participate in processing visual stimuli, the synchronization of responses to identical or different moving gratings in the two hemi-fields were studied in anesthetized ferrets. The responses were recorded by multiple electrodes in the primary visual areas and the synchronization of local field potentials across the electrodes were analyzed with a recent method derived from dynamical system theory. Inactivating the visual areas of one hemisphere modulated the synchronization of the stimulus-driven activity in the other hemisphere. The modulation was stimulus-specific and was consistent with the fine morphology of callosal axons in particular with the spatio-temporal pattern of activity that axonal geometry can generate. Conclusions/Significance These findings describe a new kind of interaction between the cerebral hemispheres and highlight the role of axonal geometry in modulating aspects of cortical dynamics responsible for stimulus detection and/or categorization. PMID:18074012

  16. Selecting and perceiving multiple visual objects

    PubMed Central

    Xu, Yaoda; Chun, Marvin M.

    2010-01-01

    To explain how multiple visual objects are attended and perceived, we propose that our visual system first selects a fixed number of about four objects from a crowded scene based on their spatial information (object individuation) and then encode their details (object identification). We describe the involvement of the inferior intra-parietal sulcus (IPS) in object individuation and the superior IPS and higher visual areas in object identification. Our neural object-file theory synthesizes and extends existing ideas in visual cognition and is supported by behavioral and neuroimaging results. It provides a better understanding of the role of the different parietal areas in encoding visual objects and can explain various forms of capacity-limited processing in visual cognition such as working memory. PMID:19269882

  17. Forecasting and visualization of wildfires in a 3D geographical information system

    NASA Astrophysics Data System (ADS)

    Castrillón, M.; Jorge, P. A.; López, I. J.; Macías, A.; Martín, D.; Nebot, R. J.; Sabbagh, I.; Quintana, F. M.; Sánchez, J.; Sánchez, A. J.; Suárez, J. P.; Trujillo, A.

    2011-03-01

    This paper describes a wildfire forecasting application based on a 3D virtual environment and a fire simulation engine. A novel open-source framework is presented for the development of 3D graphics applications over large geographic areas, offering high performance 3D visualization and powerful interaction tools for the Geographic Information Systems (GIS) community. The application includes a remote module that allows simultaneous connections of several users for monitoring a real wildfire event. The system is able to make a realistic composition of what is really happening in the area of the wildfire with dynamic 3D objects and location of human and material resources in real time, providing a new perspective to analyze the wildfire information. The user is enabled to simulate and visualize the propagation of a fire on the terrain integrating at the same time spatial information on topography and vegetation types with weather and wind data. The application communicates with a remote web service that is in charge of the simulation task. The user may specify several parameters through a friendly interface before the application sends the information to the remote server responsible of carrying out the wildfire forecasting using the FARSITE simulation model. During the process, the server connects to different external resources to obtain up-to-date meteorological data. The client application implements a realistic 3D visualization of the fire evolution on the landscape. A Level Of Detail (LOD) strategy contributes to improve the performance of the visualization system.

  18. Topographic organization, number, and laminar distribution of callosal cells connecting visual cortical areas 17 and 18 of normally pigmented and Siamese cats.

    PubMed

    Berman, N E; Grant, S

    1992-07-01

    The callosal connections between visual cortical areas 17 and 18 in adult normally pigmented and "Boston" Siamese cats were studied using degeneration methods, and by transport of WGA-HRP combined with electrophysiological mapping. In normal cats, over 90% of callosal neurons were located in the supragranular layers. The supragranular callosal cell zone spanned the area 17/18 border and extended, on average, some 2-3 mm into both areas to occupy a territory which was roughly co-extensive with the distribution of callosal terminations in these areas. The region of the visual field adjoining the vertical meridian that was represented by neurons in the supragranular callosal cell zone was shown to increase systematically with decreasing visual elevation. Thus, close to the area centralis, receptive-field centers recorded from within this zone extended only up to 5 deg into the contralateral hemifield but at elevations of -10 deg and -40 deg they extended as far as 8 deg and 14 deg, respectively, into this hemifield. This suggests an element of visual non-correspondence in the callosal pathway between these cortical areas, which may be an essential substrate for "coarse" stereopsis at the visual midline. In the Siamese cats, the callosal cell and termination zones in areas 17 and 18 were expanded in width compared to the normal animals, but the major components were less robust. The area 17/18 border was often devoid of callosal axons and, in particular, the number of supragranular layer neurons participating in the pathway were drastically reduced, to only about 25% of those found in the normally pigmented adults. The callosal zones contained representations of the contralateral and ipsilateral hemifields that were roughly mirror-symmetric about the vertical meridian, and both hemifield representations increased with decreasing visual elevation. The extent and severity of the anomalies observed were similar across individual cats, regardless of whether a strabismus was also present. The callosal pathway between these visual cortical areas in the Siamese cat has been considered "silent," since nearly all neurons within its territory are activated only by the contralateral eye. The paucity of supragranular pyramidal neurons involved in the pathway may explain this silence.

  19. Epicenters of dynamic connectivity in the adaptation of the ventral visual system.

    PubMed

    Prčkovska, Vesna; Huijbers, Willem; Schultz, Aaron; Ortiz-Teran, Laura; Peña-Gomez, Cleofe; Villoslada, Pablo; Johnson, Keith; Sperling, Reisa; Sepulcre, Jorge

    2017-04-01

    Neuronal responses adapt to familiar and repeated sensory stimuli. Enhanced synchrony across wide brain systems has been postulated as a potential mechanism for this adaptation phenomenon. Here, we used recently developed graph theory methods to investigate hidden connectivity features of dynamic synchrony changes during a visual repetition paradigm. Particularly, we focused on strength connectivity changes occurring at local and distant brain neighborhoods. We found that connectivity reorganization in visual modal cortex-such as local suppressed connectivity in primary visual areas and distant suppressed connectivity in fusiform areas-is accompanied by enhanced local and distant connectivity in higher cognitive processing areas in multimodal and association cortex. Moreover, we found a shift of the dynamic functional connections from primary-visual-fusiform to primary-multimodal/association cortex. These findings suggest that repetition-suppression is made possible by reorganization of functional connectivity that enables communication between low- and high-order areas. Hum Brain Mapp 38:1965-1976, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Origins of thalamic and cortical projections to the posterior auditory field in congenitally deaf cats.

    PubMed

    Butler, Blake E; Chabot, Nicole; Kral, Andrej; Lomber, Stephen G

    2017-01-01

    Crossmodal plasticity takes place following sensory loss, such that areas that normally process the missing modality are reorganized to provide compensatory function in the remaining sensory systems. For example, congenitally deaf cats outperform normal hearing animals on localization of visual stimuli presented in the periphery, and this advantage has been shown to be mediated by the posterior auditory field (PAF). In order to determine the nature of the anatomical differences that underlie this phenomenon, we injected a retrograde tracer into PAF of congenitally deaf animals and quantified the thalamic and cortical projections to this field. The pattern of projections from areas throughout the brain was determined to be qualitatively similar to that previously demonstrated in normal hearing animals, but with twice as many projections arising from non-auditory cortical areas. In addition, small ectopic projections were observed from a number of fields in visual cortex, including areas 19, 20a, 20b, and 21b, and area 7 of parietal cortex. These areas did not show projections to PAF in cats deafened ototoxically near the onset of hearing, and provide a possible mechanism for crossmodal reorganization of PAF. These, along with the possible contributions of other mechanisms, are considered. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Representational dynamics of object recognition: Feedforward and feedback information flows.

    PubMed

    Goddard, Erin; Carlson, Thomas A; Dermody, Nadene; Woolgar, Alexandra

    2016-03-01

    Object perception involves a range of visual and cognitive processes, and is known to include both a feedfoward flow of information from early visual cortical areas to higher cortical areas, along with feedback from areas such as prefrontal cortex. Previous studies have found that low and high spatial frequency information regarding object identity may be processed over different timescales. Here we used the high temporal resolution of magnetoencephalography (MEG) combined with multivariate pattern analysis to measure information specifically related to object identity in peri-frontal and peri-occipital areas. Using stimuli closely matched in their low-level visual content, we found that activity in peri-occipital cortex could be used to decode object identity from ~80ms post stimulus onset, and activity in peri-frontal cortex could also be used to decode object identity from a later time (~265ms post stimulus onset). Low spatial frequency information related to object identity was present in the MEG signal at an earlier time than high spatial frequency information for peri-occipital cortex, but not for peri-frontal cortex. We additionally used Granger causality analysis to compare feedforward and feedback influences on representational content, and found evidence of both an early feedfoward flow and later feedback flow of information related to object identity. We discuss our findings in relation to existing theories of object processing and propose how the methods we use here could be used to address further questions of the neural substrates underlying object perception. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Visual field asymmetries in visual evoked responses

    PubMed Central

    Hagler, Donald J.

    2014-01-01

    Behavioral responses to visual stimuli exhibit visual field asymmetries, but cortical folding and the close proximity of visual cortical areas make electrophysiological comparisons between different stimulus locations problematic. Retinotopy-constrained source estimation (RCSE) uses distributed dipole models simultaneously constrained by multiple stimulus locations to provide separation between individual visual areas that is not possible with conventional source estimation methods. Magnetoencephalography and RCSE were used to estimate time courses of activity in V1, V2, V3, and V3A. Responses to left and right hemifield stimuli were not significantly different. Peak latencies for peripheral stimuli were significantly shorter than those for perifoveal stimuli in V1, V2, and V3A, likely related to the greater proportion of magnocellular input to V1 in the periphery. Consistent with previous results, sensor magnitudes for lower field stimuli were about twice as large as for upper field, which is only partially explained by the proximity to sensors for lower field cortical sources in V1, V2, and V3. V3A exhibited both latency and amplitude differences for upper and lower field responses. There were no differences for V3, consistent with previous suggestions that dorsal and ventral V3 are two halves of a single visual area, rather than distinct areas V3 and VP. PMID:25527151

  3. Virtual reality on the web: the potentials of different methodologies and visualization techniques for scientific research and medical education.

    PubMed

    Kling-Petersen, T; Pascher, R; Rydmark, M

    1999-01-01

    Academic and medical imaging are increasingly using computer based 3D reconstruction and/or visualization. Three-dimensional interactive models play a major role in areas such as preclinical medical education, clinical visualization and medical research. While 3D is comparably easy to do on a high end workstations, distribution and use of interactive 3D graphics necessitate the use of personal computers and the web. Several new techniques have been demonstrated providing interactive 3D via a web browser thereby allowing a limited version of VR to be experienced by a larger majority of students, medical practitioners and researchers. These techniques include QuickTimeVR2 (QTVR), VRML2, QuickDraw3D, OpenGL and Java3D. In order to test the usability of the different techniques, Mednet have initiated a number of projects designed to evaluate the potentials of 3D techniques for scientific reporting, clinical visualization and medical education. These include datasets created by manual tracing followed by triangulation, smoothing and 3D visualization, MRI or high-resolution laserscanning. Preliminary results indicate that both VRML and QTVR fulfills most of the requirements of web based, interactive 3D visualization, whereas QuickDraw3D is too limited. Presently, the JAVA 3D has not yet reached a level where in depth testing is possible. The use of high-resolution laserscanning is an important addition to 3D digitization.

  4. Figure-ground discrimination in the avian brain: the nucleus rotundus and its inhibitory complex.

    PubMed

    Acerbo, Martin J; Lazareva, Olga F; McInnerney, John; Leiker, Emily; Wasserman, Edward A; Poremba, Amy

    2012-10-01

    In primates, neurons sensitive to figure-ground status are located in striate cortex (area V1) and extrastriate cortex (area V2). Although much is known about the anatomical structure and connectivity of the avian visual pathway, the functional organization of the avian brain remains largely unexplored. To pinpoint the areas associated with figure-ground segregation in the avian brain, we used a radioactively labeled glucose analog to compare differences in glucose uptake after figure-ground, color, and shape discriminations. We also included a control group that received food on a variable-interval schedule, but was not required to learn a visual discrimination. Although the discrimination task depended on group assignment, the stimulus displays were identical for all three experimental groups, ensuring that all animals were exposed to the same visual input. Our analysis concentrated on the primary thalamic nucleus associated with visual processing, the nucleus rotundus (Rt), and two nuclei providing regulatory feedback, the pretectum (PT) and the nucleus subpretectalis/interstitio-pretecto-subpretectalis complex (SP/IPS). We found that figure-ground discrimination was associated with strong and nonlateralized activity of Rt and SP/IPS, whereas color discrimination produced strong and lateralized activation in Rt alone. Shape discrimination was associated with lower activity of Rt than in the control group. Taken together, our results suggest that figure-ground discrimination is associated with Rt and that SP/IPS may be a main source of inhibitory control. Thus, figure-ground segregation in the avian brain may occur earlier than in the primate brain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Figure-ground discrimination in the avian brain: The nucleus rotundus and its inhibitory complex

    PubMed Central

    Acerbo, Martin J.; Lazareva, Olga F.; McInnerney, John; Leiker, Emily; Wasserman, Edward A.; Poremba, Amy

    2012-01-01

    In primates, neurons sensitive to figure-ground status are located in striate cortex (area V1) and extrastriate cortex (area V2). Although much is known about the anatomical structure and connectivity of the avian visual pathway, the functional organization of the avian brain remains largely unexplored. To pinpoint the areas associated with figure-ground segregation in the avian brain, we used a radioactively labeled glucose analog to compare differences in glucose uptake after figure-ground, color, and shape discriminations. We also included a control group that received food on a variable-interval schedule, but was not required to learn a visual discrimination. Although the discrimination task depended on group assignment, the stimulus displays were identical for all three experimental groups, ensuring that all animals were exposed to the same visual input. Our analysis concentrated on the primary thalamic nucleus associated with visual processing, the nucleus rotundus (Rt), and two nuclei providing regulatory feedback, the pretectum (PT) and the nucleus subpretectalis/interstitio-pretecto-subpretectalis complex (SP/IPS). We found that figure-ground discrimination was associated with strong and nonlateralized activity of Rt and SP/IPS, whereas color discrimination produced strong and lateralized activation in Rt alone. Shape discrimination was associated with lower activity of Rt than in the control group. Taken together, our results suggest that figure-ground discrimination is associated with Rt and that SP/IPS may be a main source of inhibitory control. Thus, figure-ground segregation in the avian brain may occur earlier than in the primate brain. PMID:22917681

  6. Shape Similarity, Better than Semantic Membership, Accounts for the Structure of Visual Object Representations in a Population of Monkey Inferotemporal Neurons

    PubMed Central

    DiCarlo, James J.; Zecchina, Riccardo; Zoccolan, Davide

    2013-01-01

    The anterior inferotemporal cortex (IT) is the highest stage along the hierarchy of visual areas that, in primates, processes visual objects. Although several lines of evidence suggest that IT primarily represents visual shape information, some recent studies have argued that neuronal ensembles in IT code the semantic membership of visual objects (i.e., represent conceptual classes such as animate and inanimate objects). In this study, we investigated to what extent semantic, rather than purely visual information, is represented in IT by performing a multivariate analysis of IT responses to a set of visual objects. By relying on a variety of machine-learning approaches (including a cutting-edge clustering algorithm that has been recently developed in the domain of statistical physics), we found that, in most instances, IT representation of visual objects is accounted for by their similarity at the level of shape or, more surprisingly, low-level visual properties. Only in a few cases we observed IT representations of semantic classes that were not explainable by the visual similarity of their members. Overall, these findings reassert the primary function of IT as a conveyor of explicit visual shape information, and reveal that low-level visual properties are represented in IT to a greater extent than previously appreciated. In addition, our work demonstrates how combining a variety of state-of-the-art multivariate approaches, and carefully estimating the contribution of shape similarity to the representation of object categories, can substantially advance our understanding of neuronal coding of visual objects in cortex. PMID:23950700

  7. Learning to Read and Write the Drafting Way. Field Test Copy.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Div. of Vocational Education.

    This volume comprises instructional techniques that are designed for use with drafting students who demonstrate a need for additional instruction in the areas of reading, writing, math, and verbal and visual communication. Included in the guide are the following teacher-developed instructional techniques: a drafting crossword puzzle, tool bingo, a…

  8. 77 FR 55224 - Notice of Availability of the Proposed Imperial Sand Dunes Recreation Area Management Plan and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-07

    ...: Regular Mail: BLM Director (210), Attention: Brenda Hudgens- Williams, P.O. Box 71383, Washington, DC 20024-1383. Overnight Mail: BLM Director (210), Attention: Brenda Hudgens- Williams, 20 M Street SE...; and visual resources. The Proposed Imperial Sand Dunes RAMP and CDCA Plan Amendment/Final EIS includes...

  9. Imagery, Concept Formation and Creativity--From Past to Future.

    ERIC Educational Resources Information Center

    Silverstein, Ora. N. Asael

    At the center of the conceptual framework there is visual imagery. Man's emotional and mental behavior is built on archetypal symbols that are the source of creative ideas. Native American pictography, in particular, illustrates this in the correlation between gesture speech and verbal speech. The author's research in this area has included a…

  10. Red, White and Black (and Brown and Yellow): Minorities in America. A Bibliography.

    ERIC Educational Resources Information Center

    Combined Book Exhibit, Inc., Briarcliff Manor, NY.

    This selection of nearly 600 paperback books, art reproductions, films, filmstrips, and records is intended for classroom, reference, and general reading purposes. The audio-visual materials complement the books. The materials included cover the following areas: art and music; African history, government, and culture; Afro-American history and…

  11. Creative Experiences: An Arts Curriculum for Young Children Including Those with Special Needs.

    ERIC Educational Resources Information Center

    Broughton, Belinda

    For use in any classroom or group setting for young children, this arts curriculum guide provides a total of 112 learning activities equally distributed across the areas of creative movement, drama, music, and visual arts. The activities are correlated with the Learning Accomplishment Profile (LAP), a developmental assessment instrument. Because…

  12. Relationships between academic performance, SES school type and perceptual-motor skills in first grade South African learners: NW-CHILD study.

    PubMed

    Pienaar, A E; Barhorst, R; Twisk, J W R

    2014-05-01

    Perceptual-motor skills contribute to a variety of basic learning skills associated with normal academic success. This study aimed to determine the relationship between academic performance and perceptual-motor skills in first grade South African learners and whether low SES (socio-economic status) school type plays a role in such a relationship. This cross-sectional study of the baseline measurements of the NW-CHILD longitudinal study included a stratified random sample of first grade learners (n = 812; 418 boys and 394 boys), with a mean age of 6.78 years ± 0.49 living in the North West Province (NW) of South Africa. The Beery-Buktenica Developmental Test of Visual-Motor Integration-4 (VMI) was used to assess visual-motor integration, visual perception and hand control while the Bruininks Oseretsky Test of Motor Proficiency, short form (BOT2-SF) assessed overall motor proficiency. Academic performance in math, reading and writing was assessed with the Mastery of Basic Learning Areas Questionnaire. Linear mixed models analysis was performed with spss to determine possible differences between the different VMI and BOT2-SF standard scores in different math, reading and writing mastery categories ranging from no mastery to outstanding mastery. A multinomial multilevel logistic regression analysis was performed to assess the relationship between a clustered score of academic performance and the different determinants. A strong relationship was established between academic performance and VMI, visual perception, hand control and motor proficiency with a significant relationship between a clustered academic performance score, visual-motor integration and visual perception. A negative association was established between low SES school types on academic performance, with a common perceptual motor foundation shared by all basic learning areas. Visual-motor integration, visual perception, hand control and motor proficiency are closely related to basic academic skills required in the first formal school year, especially among learners in low SES type schools. © 2013 John Wiley & Sons Ltd.

  13. Ownership illusions in patients with body delusions: Different neural profiles of visual capture and disownership.

    PubMed

    Martinaud, Olivier; Besharati, Sahba; Jenkinson, Paul M; Fotopoulou, Aikaterini

    2017-02-01

    The various neurocognitive processes contributing to the sense of body ownership have been investigated extensively in healthy participants, but studies in neurological patients can shed unique light into such phenomena. Here, we aimed to investigate whether visual capture by a fake hand (without any synchronous or asynchronous tactile stimulation) affects body ownership in a group of hemiplegic patients with or without disturbed sensation of limb ownership (DSO) following damage to the right hemisphere. We recruited 31 consecutive patients, including seven patients with DSO. The majority of our patients (64.5% overall and up to 86% of the patients with DSO) experienced strong feelings of ownership over a rubber hand within 15 sec following mere visual exposure, which correlated with the degree of proprioceptive deficits across groups and in the DSO group. Using voxel-based lesion-symptom mapping analysis, we were able to identify lesions associated with this pathological visual capture effect in a selective fronto-parietal network, including significant voxels (p < .05) in the frontal operculum and the inferior frontal gyrus. By contrast, lesions associated with DSO involved more posterior lesions, including the right temporoparietal junction and a large area of the supramarginal gyrus, and to a lesser degree the middle frontal gyrus. Thus, this study suggests that our sense of ownership includes dissociable mechanisms of multisensory integration. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. A survey of visualization systems for network security.

    PubMed

    Shiravi, Hadi; Shiravi, Ali; Ghorbani, Ali A

    2012-08-01

    Security Visualization is a very young term. It expresses the idea that common visualization techniques have been designed for use cases that are not supportive of security-related data, demanding novel techniques fine tuned for the purpose of thorough analysis. Significant amount of work has been published in this area, but little work has been done to study this emerging visualization discipline. We offer a comprehensive review of network security visualization and provide a taxonomy in the form of five use-case classes encompassing nearly all recent works in this area. We outline the incorporated visualization techniques and data sources and provide an informative table to display our findings. From the analysis of these systems, we examine issues and concerns regarding network security visualization and provide guidelines and directions for future researchers and visual system developers.

  15. MARS as viewed by Mariner 9

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Photographs of the surface of the planet Mars which were obtained by the Mariner 9 space probe are presented. Areas of investigation during the Mariner 9 flight involved television coverage, ultraviolet spectroscopy, infrared spectroscopy, infrared radiometry, S-band occultation, and celestial mechanics. Descriptions of the photographs are provided to further identify the surface features and the coordinates of the area photographed are included. Emphasis is placed on the visual evidence of the effects of wind in shaping the Martian surface. Photographs of cloud formations and dust storms are analyzed.

  16. Instrument Display Visual Angles for Conventional Aircraft and the MQ-9 Ground Control Station

    NASA Technical Reports Server (NTRS)

    Kamine, Tovy Haber; Bendrick, Gregg A.

    2008-01-01

    Aircraft instrument panels should be designed such that primary displays are in optimal viewing location to minimize pilot perception and response time. Human Factors engineers define three zones (i.e. cones ) of visual location: 1) "Easy Eye Movement" (foveal vision); 2) "Maximum Eye Movement" (peripheral vision with saccades), and 3) "Head Movement (head movement required). Instrument display visual angles were measured to determine how well conventional aircraft (T-34, T-38, F- 15B, F-16XL, F/A-18A, U-2D, ER-2, King Air, G-III, B-52H, DC-10, B747-SCA) and the MQ-9 ground control station (GCS) complied with these standards, and how they compared with each other. Selected instrument parameters included: attitude, pitch, bank, power, airspeed, altitude, vertical speed, heading, turn rate, slip/skid, AOA, flight path, latitude, longitude, course, bearing, range and time. Vertical and horizontal visual angles for each component were measured from the pilot s eye position in each system. The vertical visual angles of displays in conventional aircraft lay within the cone of "Easy Eye Movement" for all but three of the parameters measured, and almost all of the horizontal visual angles fell within this range. All conventional vertical and horizontal visual angles lay within the cone of Maximum Eye Movement. However, most instrument vertical visual angles of the MQ-9 GCS lay outside the cone of Easy Eye Movement, though all were within the cone of Maximum Eye Movement. All the horizontal visual angles for the MQ-9 GCS were within the cone of "Easy Eye Movement". Most instrument displays in conventional aircraft lay within the cone of Easy Eye Movement, though mission-critical instruments sometimes displaced less important instruments outside this area. Many of the MQ-9 GCS systems lay outside this area. Specific training for MQ-9 pilots may be needed to avoid increased response time and potential error during flight. The learning objectives include: 1) Know three physiologic cones of eye/head movement; 2) Understand how instrument displays comply with these design principles in conventional aircraft and an uninhabited aerial vehicle system. Which of the following is NOT a recognized physiologic principle of instrument display design? Cone of Easy Eye Movement 2) Cone of Binocular Eye Movement 3) Cone of Maximum Eye Movement 4) Cone of Head Movement 5) None of the above. Answer: # 2) Cone of Binocular Eye Movement

  17. Evidence for a basal temporal visual language center: cortical stimulation producing pure alexia.

    PubMed

    Mani, J; Diehl, B; Piao, Z; Schuele, S S; Lapresto, E; Liu, P; Nair, D R; Dinner, D S; Lüders, H O

    2008-11-11

    Dejerine and Benson and Geschwind postulated disconnection of the dominant angular gyrus from both visual association cortices as the basis for pure alexia, emphasizing disruption of white matter tracts in the dominant temporooccipital region. Recently functional imaging studies provide evidence for direct participation of basal temporal and occipital cortices in the cognitive process of reading. The exact location and function of these areas remain a matter of debate. To confirm the participation of the basal temporal region in reading. Extraoperative electrical stimulation of the dominant hemisphere was performed in three subjects using subdural electrodes, as part of presurgical evaluation for refractory epilepsy. Pure alexia was reproduced during cortical stimulation of the dominant posterior fusiform and inferior temporal gyri in all three patients. Stimulation resulted in selective reading difficulty with intact auditory comprehension and writing. Reading difficulty involved sentences and words with intact letter by letter reading. Picture naming difficulties were also noted at some electrodes. This region is located posterior to and contiguous with the basal temporal language area (BTLA) where stimulation resulted in global language dysfunction in visual and auditory realms. The location corresponded with the visual word form area described on functional MRI. These observations support the existence of a visual language area in the dominant fusiform and occipitotemporal gyri, contiguous with basal temporal language area. A portion of visual language area was exclusively involved in lexical processing while the other part of this region processed both lexical and nonlexical symbols.

  18. Using Eye Tracking to Explore Consumers' Visual Behavior According to Their Shopping Motivation in Mobile Environments.

    PubMed

    Hwang, Yoon Min; Lee, Kun Chang

    2017-07-01

    Despite a strong shift to mobile shopping trends, many in-depth questions about mobile shoppers' visual behaviors in mobile shopping environments remain unaddressed. This study aims to answer two challenging research questions (RQs): (a) how much does shopping motivation like goal orientation and recreation influence mobile shoppers' visual behavior toward displays of shopping information on a mobile shopping screen and (b) how much of mobile shoppers' visual behavior influences their purchase intention for the products displayed on a mobile shopping screen? An eye-tracking approach is adopted to answer the RQs empirically. The experimental results showed that goal-oriented shoppers paid closer attention to products' information areas to meet their shopping goals. Their purchase intention was positively influenced by their visual attention to the two areas of interest such as product information and consumer opinions. In contrast, recreational shoppers tended to visually fixate on the promotion area, which positively influences their purchase intention. The results contribute to understanding mobile shoppers' visual behaviors and shopping intentions from the perspective of mindset theory.

  19. A visual resource management study of alternative dams, reservoirs and highway and transmission line corridors near Copper Creek, Washington

    Treesearch

    John Ady; Brian A. Gray; Grant R. Jones

    1979-01-01

    Three alternative dams have been considered by Seattle City Light for the Skagit River Narrows in the North Cascades National Recreation Area, Washington. The authors assessed the area's existing visual resources, identified three alternative highway and transmission line realignments, evaluated changes in visual character and quality for 13 different combinations...

  20. Scenic Vistas and the Changing Policy Landscape: Visualizing and Testing the Role of Visual Resources in Ecosystem Management

    Treesearch

    Robert G. Ribe; Edward T. Armstrong; Paul H. Gobster

    2002-01-01

    The Northwest Forest Plan applies a shift in policy to national forests in the Pacific Northwest, with implications for other public landscapes. This shift offers potentially strong scenic implications for areas that have historically emphasized clearcutting with little visual impact mitigation. These areas will now emphasize biocentric concerns and harvests formed...

  1. The Importance of the Eye Area in Face Identification Abilities and Visual Search Strategies in Persons with Asperger Syndrome

    ERIC Educational Resources Information Center

    Falkmer, Marita; Larsson, Matilda; Bjallmark, Anna; Falkmer, Torbjorn

    2010-01-01

    Partly claimed to explain social difficulties observed in people with Asperger syndrome, face identification and visual search strategies become important. Previous research findings are, however, disparate. In order to explore face identification abilities and visual search strategies, with special focus on the importance of the eye area, 24…

  2. Top-Down Control of Visual Attention by the Prefrontal Cortex. Functional Specialization and Long-Range Interactions

    PubMed Central

    Paneri, Sofia; Gregoriou, Georgia G.

    2017-01-01

    The ability to select information that is relevant to current behavioral goals is the hallmark of voluntary attention and an essential part of our cognition. Attention tasks are a prime example to study at the neuronal level, how task related information can be selectively processed in the brain while irrelevant information is filtered out. Whereas, numerous studies have focused on elucidating the mechanisms of visual attention at the single neuron and population level in the visual cortices, considerably less work has been devoted to deciphering the distinct contribution of higher-order brain areas, which are known to be critical for the employment of attention. Among these areas, the prefrontal cortex (PFC) has long been considered a source of top-down signals that bias selection in early visual areas in favor of the attended features. Here, we review recent experimental data that support the role of PFC in attention. We examine the existing evidence for functional specialization within PFC and we discuss how long-range interactions between PFC subregions and posterior visual areas may be implemented in the brain and contribute to the attentional modulation of different measures of neural activity in visual cortices. PMID:29033784

  3. Top-Down Control of Visual Attention by the Prefrontal Cortex. Functional Specialization and Long-Range Interactions.

    PubMed

    Paneri, Sofia; Gregoriou, Georgia G

    2017-01-01

    The ability to select information that is relevant to current behavioral goals is the hallmark of voluntary attention and an essential part of our cognition. Attention tasks are a prime example to study at the neuronal level, how task related information can be selectively processed in the brain while irrelevant information is filtered out. Whereas, numerous studies have focused on elucidating the mechanisms of visual attention at the single neuron and population level in the visual cortices, considerably less work has been devoted to deciphering the distinct contribution of higher-order brain areas, which are known to be critical for the employment of attention. Among these areas, the prefrontal cortex (PFC) has long been considered a source of top-down signals that bias selection in early visual areas in favor of the attended features. Here, we review recent experimental data that support the role of PFC in attention. We examine the existing evidence for functional specialization within PFC and we discuss how long-range interactions between PFC subregions and posterior visual areas may be implemented in the brain and contribute to the attentional modulation of different measures of neural activity in visual cortices.

  4. Selective binocular vision loss in two subterranean caviomorph rodents: Spalacopus cyanus and Ctenomys talarum

    PubMed Central

    Vega-Zuniga, T.; Medina, F. S.; Marín, G.; Letelier, J. C.; Palacios, A. G.; Němec, P.; Schleich, C. E.; Mpodozis, J.

    2017-01-01

    To what extent can the mammalian visual system be shaped by visual behavior? Here we analyze the shape of the visual fields, the densities and distribution of cells in the retinal ganglion-cell layer and the organization of the visual projections in two species of facultative non-strictly subterranean rodents, Spalacopus cyanus and Ctenomys talarum, aiming to compare these traits with those of phylogenetically closely related species possessing contrasting diurnal/nocturnal visual habits. S. cyanus shows a definite zone of frontal binocular overlap and a corresponding area centralis, but a highly reduced amount of ipsilateral retinal projections. The situation in C. talarum is more extreme as it lacks of a fronto-ventral area of binocular superposition, has no recognizable area centralis and shows no ipsilateral retinal projections except to the suprachiasmatic nucleus. In both species, the extension of the monocular visual field and of the dorsal region of binocular overlap as well as the whole set of contralateral visual projections, appear well-developed. We conclude that these subterranean rodents exhibit, paradoxically, diurnal instead of nocturnal visual specializations, but at the same time suffer a specific regression of the anatomical substrate for stereopsis. We discuss these findings in light of the visual ecology of subterranean lifestyles. PMID:28150809

  5. Spatial Attention Reduces Burstiness in Macaque Visual Cortical Area MST.

    PubMed

    Xue, Cheng; Kaping, Daniel; Ray, Sonia Baloni; Krishna, B Suresh; Treue, Stefan

    2017-01-01

    Visual attention modulates the firing rate of neurons in many primate cortical areas. In V4, a cortical area in the ventral visual pathway, spatial attention has also been shown to reduce the tendency of neurons to fire closely separated spikes (burstiness). A recent model proposes that a single mechanism accounts for both the firing rate enhancement and the burstiness reduction in V4, but this has not been empirically tested. It is also unclear if the burstiness reduction by spatial attention is found in other visual areas and for other attentional types. We therefore recorded from single neurons in the medial superior temporal area (MST), a key motion-processing area along the dorsal visual pathway, of two rhesus monkeys while they performed a task engaging both spatial and feature-based attention. We show that in MST, spatial attention is associated with a clear reduction in burstiness that is independent of the concurrent enhancement of firing rate. In contrast, feature-based attention enhances firing rate but is not associated with a significant reduction in burstiness. These results establish burstiness reduction as a widespread effect of spatial attention. They also suggest that in contrast to the recently proposed model, the effects of spatial attention on burstiness and firing rate emerge from different mechanisms. © The Author 2016. Published by Oxford University Press.

  6. Spatial Attention Reduces Burstiness in Macaque Visual Cortical Area MST

    PubMed Central

    Xue, Cheng; Kaping, Daniel; Ray, Sonia Baloni; Krishna, B. Suresh; Treue, Stefan

    2017-01-01

    Abstract Visual attention modulates the firing rate of neurons in many primate cortical areas. In V4, a cortical area in the ventral visual pathway, spatial attention has also been shown to reduce the tendency of neurons to fire closely separated spikes (burstiness). A recent model proposes that a single mechanism accounts for both the firing rate enhancement and the burstiness reduction in V4, but this has not been empirically tested. It is also unclear if the burstiness reduction by spatial attention is found in other visual areas and for other attentional types. We therefore recorded from single neurons in the medial superior temporal area (MST), a key motion-processing area along the dorsal visual pathway, of two rhesus monkeys while they performed a task engaging both spatial and feature-based attention. We show that in MST, spatial attention is associated with a clear reduction in burstiness that is independent of the concurrent enhancement of firing rate. In contrast, feature-based attention enhances firing rate but is not associated with a significant reduction in burstiness. These results establish burstiness reduction as a widespread effect of spatial attention. They also suggest that in contrast to the recently proposed model, the effects of spatial attention on burstiness and firing rate emerge from different mechanisms. PMID:28365773

  7. Distinct spatio-temporal profiles of beta-oscillations within visual and sensorimotor areas during action recognition as revealed by MEG.

    PubMed

    Pavlidou, Anastasia; Schnitzler, Alfons; Lange, Joachim

    2014-05-01

    The neural correlates of action recognition have been widely studied in visual and sensorimotor areas of the human brain. However, the role of neuronal oscillations involved during the process of action recognition remains unclear. Here, we were interested in how the plausibility of an action modulates neuronal oscillations in visual and sensorimotor areas. Subjects viewed point-light displays (PLDs) of biomechanically plausible and implausible versions of the same actions. Using magnetoencephalography (MEG), we examined dynamic changes of oscillatory activity during these action recognition processes. While both actions elicited oscillatory activity in visual and sensorimotor areas in several frequency bands, a significant difference was confined to the beta-band (∼20 Hz). An increase of power for plausible actions was observed in left temporal, parieto-occipital and sensorimotor areas of the brain, in the beta-band in successive order between 1650 and 2650 msec. These distinct spatio-temporal beta-band profiles suggest that the action recognition process is modulated by the degree of biomechanical plausibility of the action, and that spectral power in the beta-band may provide a functional interaction between visual and sensorimotor areas in humans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Different cortical projections from three subdivisions of the rat lateral posterior thalamic nucleus: a single-neuron tracing study with viral vectors.

    PubMed

    Nakamura, Hisashi; Hioki, Hiroyuki; Furuta, Takahiro; Kaneko, Takeshi

    2015-05-01

    The lateral posterior thalamic nucleus (LP) is one of the components of the extrageniculate pathway in the rat visual system, and is cytoarchitecturally divided into three subdivisions--lateral (LPl), rostromedial (LPrm), and caudomedial (LPcm) portions. To clarify the differences in the dendritic fields and axonal arborisations among the three subdivisions, we applied a single-neuron labeling technique with viral vectors to LP neurons. The proximal dendrites of LPl neurons were more numerous than those of LPrm and LPcm neurons, and LPrm neurons tended to have wider dendritic fields than LPl neurons. We then analysed the axonal arborisations of LP neurons by reconstructing the axon fibers in the cortex. The LPl, LPrm and LPcm were different from one another in terms of the projection targets--the main target cortical regions of LPl and LPrm neurons were the secondary and primary visual areas, whereas those of LPcm neurons were the postrhinal and temporal association areas. Furthermore, the principal target cortical layers of LPl neurons in the visual areas were middle layers, but that of LPrm neurons was layer 1. This indicates that LPl and LPrm neurons can be categorised into the core and matrix types of thalamic neurons, respectively, in the visual areas. In addition, LPl neurons formed multiple axonal clusters within the visual areas, whereas the fibers of LPrm neurons were widely and diffusely distributed. It is therefore presumed that these two types of neurons play different roles in visual information processing by dual thalamocortical innervation of the visual areas. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Decoding information about dynamically occluded objects in visual cortex

    PubMed Central

    Erlikhman, Gennady; Caplovitz, Gideon P.

    2016-01-01

    During dynamic occlusion, an object passes behind an occluding surface and then later reappears. Even when completely occluded from view, such objects are experienced as continuing to exist or persist behind the occluder, even though they are no longer visible. The contents and neural basis of this persistent representation remain poorly understood. Questions remain as to whether there is information maintained about the object itself (i.e. its shape or identity) or, non-object-specific information such as its position or velocity as it is tracked behind an occluder as well as which areas of visual cortex represent such information. Recent studies have found that early visual cortex is activated by “invisible” objects during visual imagery and by unstimulated regions along the path of apparent motion, suggesting that some properties of dynamically occluded objects may also be neurally represented in early visual cortex. We applied functional magnetic resonance imaging in human subjects to examine the representation of information within visual cortex during dynamic occlusion. For gradually occluded, but not for instantly disappearing objects, there was an increase in activity in early visual cortex (V1, V2, and V3). This activity was spatially-specific, corresponding to the occluded location in the visual field. However, the activity did not encode enough information about object identity to discriminate between different kinds of occluded objects (circles vs. stars) using MVPA. In contrast, object identity could be decoded in spatially-specific subregions of higher-order, topographically organized areas such as ventral, lateral, and temporal occipital areas (VO, LO, and TO) as well as the functionally defined LOC and hMT+. These results suggest that early visual cortex may represent the dynamically occluded object’s position or motion path, while later visual areas represent object-specific information. PMID:27663987

  10. People can understand descriptions of motion without activating visual motion brain regions

    PubMed Central

    Dravida, Swethasri; Saxe, Rebecca; Bedny, Marina

    2013-01-01

    What is the relationship between our perceptual and linguistic neural representations of the same event? We approached this question by asking whether visual perception of motion and understanding linguistic depictions of motion rely on the same neural architecture. The same group of participants took part in two language tasks and one visual task. In task 1, participants made semantic similarity judgments with high motion (e.g., “to bounce”) and low motion (e.g., “to look”) words. In task 2, participants made plausibility judgments for passages describing movement (“A centaur hurled a spear … ”) or cognitive events (“A gentleman loved cheese …”). Task 3 was a visual motion localizer in which participants viewed animations of point-light walkers, randomly moving dots, and stationary dots changing in luminance. Based on the visual motion localizer we identified classic visual motion areas of the temporal (MT/MST and STS) and parietal cortex (inferior and superior parietal lobules). We find that these visual cortical areas are largely distinct from neural responses to linguistic depictions of motion. Motion words did not activate any part of the visual motion system. Motion passages produced a small response in the right superior parietal lobule, but none of the temporal motion regions. These results suggest that (1) as compared to words, rich language stimuli such as passages are more likely to evoke mental imagery and more likely to affect perceptual circuits and (2) effects of language on the visual system are more likely in secondary perceptual areas as compared to early sensory areas. We conclude that language and visual perception constitute distinct but interacting systems. PMID:24009592

  11. Abacus in the brain: a longitudinal functional MRI study of a skilled abacus user with a right hemispheric lesion.

    PubMed

    Tanaka, Satoshi; Seki, Keiko; Hanakawa, Takashi; Harada, Madoka; Sugawara, Sho K; Sadato, Norihiro; Watanabe, Katsumi; Honda, Manabu

    2012-01-01

    The abacus, a traditional physical calculation device, is still widely used in Asian countries. Previous behavioral work has shown that skilled abacus users perform rapid and precise mental arithmetic by manipulating a mental representation of an abacus, which is based on visual imagery. However, its neurophysiological basis remains unclear. Here, we report the case of a patient who was a good abacus user, but transiently lost her "mental abacus" and superior arithmetic performance after a stroke owing to a right hemispheric lesion including the dorsal premotor cortex (PMd) and inferior parietal lobule (IPL). Functional magnetic resonance imaging experiments were conducted 6 and 13 months after her stroke. In the mental calculation task, her brain activity was shifted from the language-related areas, including Broca's area and the left dorsolateral prefrontal and IPLs, to the visuospatial-related brain areas including the left superior parietal lobule (SPL), according to the recovery of her arithmetic abilities. In the digit memory task, activities in the bilateral SPL, and right visual association cortex were also observed after recovery. The shift of brain activities was consistent with her subjective report that she was able to shift the calculation strategy from linguistic to visuospatial as her mental abacus became stable again. In a behavioral experiment using an interference paradigm, a visual presentation of an abacus picture, but not a human face picture, interfered with the performance of her digit memory, confirming her use of the mental abacus after recovery. This is the first case report on the impairment of the mental abacus by a brain lesion and on recovery-related brain activity. We named this rare case "abacus-based acalculia." Together with previous neuroimaging studies, the present result suggests an important role for the PMd and parietal cortex in the superior arithmetic ability of abacus users.

  12. Prevalence of Diabetic Retinopathy and its Associated Factors in a Rural Area of Villupuram District of Tamil Nadu, India

    PubMed Central

    Nadarajan, Balasubramanian; Krishna, Ramesh Babu; Lakshminarayanan, Subitha

    2017-01-01

    Introduction There is limited information on prevalence of Diabetic Retinopathy (DR) among diabetic subjects and its associated factors in a rural setting in developing countries including India. The information will be useful for initiating early screening strategies for this group in the community. Aim To assess the prevalence and certain associated factors of DR among diabetic subjects in a rural area of Tamil Nadu, India. Materials and Methods This cross-sectional study was conducted among 105 Type 2 diabetic subjects in Pakkam and Mandagapattu sub-center area of Kondur Primary Health Center in Villupuram district of Tamil Nadu, India. Data on associated factors which include sociodemographic factors, duration of disease, family history, and frequency of blood test, treatment regularity, hypertension, visual acuity and cataract were collected. Detailed eye examination including visual acuity, direct ophthalmoscope and Non Mydriatic Fundus Camera was done. Data was analysed by univariate analysis and described in proportion or percentages. Results The mean age of the study population was 56.69 years. About 47 (44.8%) of the subjects were more than 60 years of age followed by 44 subjects (41.9%) in age group 45-59 years. Fundus examination in at least one eye was seen in 83 people (79.0%). Prevalence of DR in any eye and both the eye was 32.53% (27/83) and 31.58% (24/76) respectively. Severity of DR was moderate (51.9%) followed by mild (44.4%) and severe (3.7%). DR prevalence was more among >60 years age group (p=0.032) and lesser education level (p=0.057). There was no association of DR with duration of disease, family history of diabetes, treatment regularity, presence of hypertension, visual acuity and cataract (p>0.05) Conclusion The prevalence of DR was inferred to be high and further larger follow up studies will explore the role of associated factors and its quantification in the causation of DR. PMID:28892938

  13. Prevalence of Diabetic Retinopathy and its Associated Factors in a Rural Area of Villupuram District of Tamil Nadu, India.

    PubMed

    Nadarajan, Balasubramanian; Saya, Ganesh Kumar; Krishna, Ramesh Babu; Lakshminarayanan, Subitha

    2017-07-01

    There is limited information on prevalence of Diabetic Retinopathy (DR) among diabetic subjects and its associated factors in a rural setting in developing countries including India. The information will be useful for initiating early screening strategies for this group in the community. To assess the prevalence and certain associated factors of DR among diabetic subjects in a rural area of Tamil Nadu, India. This cross-sectional study was conducted among 105 Type 2 diabetic subjects in Pakkam and Mandagapattu sub-center area of Kondur Primary Health Center in Villupuram district of Tamil Nadu, India. Data on associated factors which include sociodemographic factors, duration of disease, family history, and frequency of blood test, treatment regularity, hypertension, visual acuity and cataract were collected. Detailed eye examination including visual acuity, direct ophthalmoscope and Non Mydriatic Fundus Camera was done. Data was analysed by univariate analysis and described in proportion or percentages. The mean age of the study population was 56.69 years. About 47 (44.8%) of the subjects were more than 60 years of age followed by 44 subjects (41.9%) in age group 45-59 years. Fundus examination in at least one eye was seen in 83 people (79.0%). Prevalence of DR in any eye and both the eye was 32.53% (27/83) and 31.58% (24/76) respectively. Severity of DR was moderate (51.9%) followed by mild (44.4%) and severe (3.7%). DR prevalence was more among >60 years age group (p=0.032) and lesser education level (p=0.057). There was no association of DR with duration of disease, family history of diabetes, treatment regularity, presence of hypertension, visual acuity and cataract (p>0.05). The prevalence of DR was inferred to be high and further larger follow up studies will explore the role of associated factors and its quantification in the causation of DR.

  14. Atypical form of Alzheimer's disease with prominent posterior cortical atrophy: a review of lesion distribution and circuit disconnection in cortical visual pathways

    NASA Technical Reports Server (NTRS)

    Hof, P. R.; Vogt, B. A.; Bouras, C.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1997-01-01

    In recent years, the existence of visual variants of Alzheimer's disease characterized by atypical clinical presentation at onset has been increasingly recognized. In many of these cases post-mortem neuropathological assessment revealed that correlations could be established between clinical symptoms and the distribution of neurodegenerative lesions. We have analyzed a series of Alzheimer's disease patients presenting with prominent visual symptomatology as a cardinal sign of the disease. In these cases, a shift in the distribution of pathological lesions was observed such that the primary visual areas and certain visual association areas within the occipito-parieto-temporal junction and posterior cingulate cortex had very high densities of lesions, whereas the prefrontal cortex had fewer lesions than usually observed in Alzheimer's disease. Previous quantitative analyses have demonstrated that in Alzheimer's disease, primary sensory and motor cortical areas are less damaged than the multimodal association areas of the frontal and temporal lobes, as indicated by the laminar and regional distribution patterns of neurofibrillary tangles and senile plaques. The distribution of pathological lesions in the cerebral cortex of Alzheimer's disease cases with visual symptomatology revealed that specific visual association pathways were disrupted, whereas these particular connections are likely to be affected to a less severe degree in the more common form of Alzheimer's disease. These data suggest that in some cases with visual variants of Alzheimer's disease, the neurological symptomatology may be related to the loss of certain components of the cortical visual pathways, as reflected by the particular distribution of the neuropathological markers of the disease.

  15. Spatial and object-based attention modulates broadband high-frequency responses across the human visual cortical hierarchy.

    PubMed

    Davidesco, Ido; Harel, Michal; Ramot, Michal; Kramer, Uri; Kipervasser, Svetlana; Andelman, Fani; Neufeld, Miri Y; Goelman, Gadi; Fried, Itzhak; Malach, Rafael

    2013-01-16

    One of the puzzling aspects in the visual attention literature is the discrepancy between electrophysiological and fMRI findings: whereas fMRI studies reveal strong attentional modulation in the earliest visual areas, single-unit and local field potential studies yielded mixed results. In addition, it is not clear to what extent spatial attention effects extend from early to high-order visual areas. Here we addressed these issues using electrocorticography recordings in epileptic patients. The patients performed a task that allowed simultaneous manipulation of both spatial and object-based attention. They were presented with composite stimuli, consisting of a small object (face or house) superimposed on a large one, and in separate blocks, were instructed to attend one of the objects. We found a consistent increase in broadband high-frequency (30-90 Hz) power, but not in visual evoked potentials, associated with spatial attention starting with V1/V2 and continuing throughout the visual hierarchy. The magnitude of the attentional modulation was correlated with the spatial selectivity of each electrode and its distance from the occipital pole. Interestingly, the latency of the attentional modulation showed a significant decrease along the visual hierarchy. In addition, electrodes placed over high-order visual areas (e.g., fusiform gyrus) showed both effects of spatial and object-based attention. Overall, our results help to reconcile previous observations of discrepancy between fMRI and electrophysiology. They also imply that spatial attention effects can be found both in early and high-order visual cortical areas, in parallel with their stimulus tuning properties.

  16. Task-specific reorganization of the auditory cortex in deaf humans

    PubMed Central

    Bola, Łukasz; Zimmermann, Maria; Mostowski, Piotr; Jednoróg, Katarzyna; Marchewka, Artur; Rutkowski, Paweł; Szwed, Marcin

    2017-01-01

    The principles that guide large-scale cortical reorganization remain unclear. In the blind, several visual regions preserve their task specificity; ventral visual areas, for example, become engaged in auditory and tactile object-recognition tasks. It remains open whether task-specific reorganization is unique to the visual cortex or, alternatively, whether this kind of plasticity is a general principle applying to other cortical areas. Auditory areas can become recruited for visual and tactile input in the deaf. Although nonhuman data suggest that this reorganization might be task specific, human evidence has been lacking. Here we enrolled 15 deaf and 15 hearing adults into an functional MRI experiment during which they discriminated between temporally complex sequences of stimuli (rhythms). Both deaf and hearing subjects performed the task visually, in the central visual field. In addition, hearing subjects performed the same task in the auditory modality. We found that the visual task robustly activated the auditory cortex in deaf subjects, peaking in the posterior–lateral part of high-level auditory areas. This activation pattern was strikingly similar to the pattern found in hearing subjects performing the auditory version of the task. Although performing the visual task in deaf subjects induced an increase in functional connectivity between the auditory cortex and the dorsal visual cortex, no such effect was found in hearing subjects. We conclude that in deaf humans the high-level auditory cortex switches its input modality from sound to vision but preserves its task-specific activation pattern independent of input modality. Task-specific reorganization thus might be a general principle that guides cortical plasticity in the brain. PMID:28069964

  17. Task-specific reorganization of the auditory cortex in deaf humans.

    PubMed

    Bola, Łukasz; Zimmermann, Maria; Mostowski, Piotr; Jednoróg, Katarzyna; Marchewka, Artur; Rutkowski, Paweł; Szwed, Marcin

    2017-01-24

    The principles that guide large-scale cortical reorganization remain unclear. In the blind, several visual regions preserve their task specificity; ventral visual areas, for example, become engaged in auditory and tactile object-recognition tasks. It remains open whether task-specific reorganization is unique to the visual cortex or, alternatively, whether this kind of plasticity is a general principle applying to other cortical areas. Auditory areas can become recruited for visual and tactile input in the deaf. Although nonhuman data suggest that this reorganization might be task specific, human evidence has been lacking. Here we enrolled 15 deaf and 15 hearing adults into an functional MRI experiment during which they discriminated between temporally complex sequences of stimuli (rhythms). Both deaf and hearing subjects performed the task visually, in the central visual field. In addition, hearing subjects performed the same task in the auditory modality. We found that the visual task robustly activated the auditory cortex in deaf subjects, peaking in the posterior-lateral part of high-level auditory areas. This activation pattern was strikingly similar to the pattern found in hearing subjects performing the auditory version of the task. Although performing the visual task in deaf subjects induced an increase in functional connectivity between the auditory cortex and the dorsal visual cortex, no such effect was found in hearing subjects. We conclude that in deaf humans the high-level auditory cortex switches its input modality from sound to vision but preserves its task-specific activation pattern independent of input modality. Task-specific reorganization thus might be a general principle that guides cortical plasticity in the brain.

  18. Music and words in the visual cortex: The impact of musical expertise.

    PubMed

    Mongelli, Valeria; Dehaene, Stanislas; Vinckier, Fabien; Peretz, Isabelle; Bartolomeo, Paolo; Cohen, Laurent

    2017-01-01

    How does the human visual system accommodate expertise for two simultaneously acquired symbolic systems? We used fMRI to compare activations induced in the visual cortex by musical notation, written words and other classes of objects, in professional musicians and in musically naïve controls. First, irrespective of expertise, selective activations for music were posterior and lateral to activations for words in the left occipitotemporal cortex. This indicates that symbols characterized by different visual features engage distinct cortical areas. Second, musical expertise increased the volume of activations for music and led to an anterolateral displacement of word-related activations. In musicians, there was also a dramatic increase of the brain-scale networks connected to the music-selective visual areas. Those findings reveal that acquiring a double visual expertise involves an expansion of category-selective areas, the development of novel long-distance functional connectivity, and possibly some competition between categories for the colonization of cortical space. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Correlation between aqueous flare and residual visual field area in retinitis pigmentosa.

    PubMed

    Nishiguchi, Koji M; Yokoyama, Yu; Kunikata, Hiroshi; Abe, Toshiaki; Nakazawa, Toru

    2018-06-01

    To investigate the relationship between aqueous flare, visual function and macular structures in retinitis pigmentosa (RP). Clinical data from 123 patients with RP (227 eyes), 35 patients with macular dystrophy (68 eyes) and 148 controls (148 eyes) were analysed. The differences in aqueous flare between clinical entities and the correlation between aqueous flare (measured with a laser flare cell meter) versus visual acuity, visual field area (Goldmann perimetry) and macular thickness (optical coherence tomography) in patients with RP were determined. Influence of selected clinical data on flare was assessed using linear mixed-effects model. Aqueous flare was higher in patients with RP than patients with macular dystrophy or controls (p=7.49×E-13). Aqueous flare was correlated with visual field area (R=-0.379, p=3.72×E-9), but not with visual acuity (R=0.083, p=0.215). Macular thickness (R=0.234, p=3.74×E-4), but not foveal thickness (R=0.122, p=0.067), was positively correlated with flare. Flare was not affected by the presence of macular complications. All these associations were maintained when the right and the left eyes were assessed separately. Analysis by linear mixed-effects model revealed that age (p=8.58×E-5), visual field area (p=8.01×E-7) and average macular thickness (p=0.037) were correlated with flare. Aqueous flare and visual field area were correlated in patients with RP. Aqueous flare may reflect the degree of overall retinal degeneration more closely than the local foveal impairment. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. Spatial attention improves reliability of fMRI retinotopic mapping signals in occipital and parietal cortex

    PubMed Central

    Bressler, David W.; Silver, Michael A.

    2010-01-01

    Spatial attention improves visual perception and increases the amplitude of neural responses in visual cortex. In addition, spatial attention tasks and fMRI have been used to discover topographic visual field representations in regions outside visual cortex. We therefore hypothesized that requiring subjects to attend to a retinotopic mapping stimulus would facilitate the characterization of visual field representations in a number of cortical areas. In our study, subjects attended either a central fixation point or a wedge-shaped stimulus that rotated about the fixation point. Response reliability was assessed by computing coherence between the fMRI time series and a sinusoid with the same frequency as the rotating wedge stimulus. When subjects attended to the rotating wedge instead of ignoring it, the reliability of retinotopic mapping signals increased by approximately 50% in early visual cortical areas (V1, V2, V3, V3A/B, V4) and ventral occipital cortex (VO1) and by approximately 75% in lateral occipital (LO1, LO2) and posterior parietal (IPS0, IPS1 and IPS2) cortical areas. Additionally, one 5-minute run of retinotopic mapping in the attention-to-wedge condition produced responses as reliable as the average of three to five (early visual cortex) or more than five (lateral occipital, ventral occipital, and posterior parietal cortex) attention-to-fixation runs. These results demonstrate that allocating attention to the retinotopic mapping stimulus substantially reduces the amount of scanning time needed to determine the visual field representations in occipital and parietal topographic cortical areas. Attention significantly increased response reliability in every cortical area we examined and may therefore be a general mechanism for improving the fidelity of neural representations of sensory stimuli at multiple levels of the cortical processing hierarchy. PMID:20600961

  1. Beyond Visual Communication Technology.

    ERIC Educational Resources Information Center

    Bell, Thomas P.

    1993-01-01

    Discusses various aspects of visual communication--light, semiotics, codes, photography, typography, and visual literacy--within the context of the communications technology area of technology education. (SK)

  2. 3D Visualization for Phoenix Mars Lander Science Operations

    NASA Technical Reports Server (NTRS)

    Edwards, Laurence; Keely, Leslie; Lees, David; Stoker, Carol

    2012-01-01

    Planetary surface exploration missions present considerable operational challenges in the form of substantial communication delays, limited communication windows, and limited communication bandwidth. A 3D visualization software was developed and delivered to the 2008 Phoenix Mars Lander (PML) mission. The components of the system include an interactive 3D visualization environment called Mercator, terrain reconstruction software called the Ames Stereo Pipeline, and a server providing distributed access to terrain models. The software was successfully utilized during the mission for science analysis, site understanding, and science operations activity planning. A terrain server was implemented that provided distribution of terrain models from a central repository to clients running the Mercator software. The Ames Stereo Pipeline generates accurate, high-resolution, texture-mapped, 3D terrain models from stereo image pairs. These terrain models can then be visualized within the Mercator environment. The central cross-cutting goal for these tools is to provide an easy-to-use, high-quality, full-featured visualization environment that enhances the mission science team s ability to develop low-risk productive science activity plans. In addition, for the Mercator and Viz visualization environments, extensibility and adaptability to different missions and application areas are key design goals.

  3. Visual abilities in two raptors with different ecology.

    PubMed

    Potier, Simon; Bonadonna, Francesco; Kelber, Almut; Martin, Graham R; Isard, Pierre-François; Dulaurent, Thomas; Duriez, Olivier

    2016-09-01

    Differences in visual capabilities are known to reflect differences in foraging behaviour even among closely related species. Among birds, the foraging of diurnal raptors is assumed to be guided mainly by vision but their foraging tactics include both scavenging upon immobile prey and the aerial pursuit of highly mobile prey. We studied how visual capabilities differ between two diurnal raptor species of similar size: Harris's hawks, Parabuteo unicinctus, which take mobile prey, and black kites, Milvus migrans, which are primarily carrion eaters. We measured visual acuity, foveal characteristics and visual fields in both species. Visual acuity was determined using a behavioural training technique; foveal characteristics were determined using ultra-high resolution spectral-domain optical coherence tomography (OCT); and visual field parameters were determined using an ophthalmoscopic reflex technique. We found that these two raptors differ in their visual capacities. Harris's hawks have a visual acuity slightly higher than that of black kites. Among the five Harris's hawks tested, individuals with higher estimated visual acuity made more horizontal head movements before making a decision. This may reflect an increase in the use of monocular vision. Harris's hawks have two foveas (one central and one temporal), while black kites have only one central fovea and a temporal area. Black kites have a wider visual field than Harris's hawks. This may facilitate the detection of conspecifics when they are scavenging. These differences in the visual capabilities of these two raptors may reflect differences in the perceptual demands of their foraging behaviours. © 2016. Published by The Company of Biologists Ltd.

  4. The implementation of thermal image visualization by HDL based on pseudo-color

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Zhang, JiangLing

    2004-11-01

    The pseudo-color method which maps the sampled data to intuitive perception colors is a kind of powerful visualization way. And the all-around system of pseudo-color visualization, which includes the primary principle, model and HDL (Hardware Description Language) implementation for the thermal images, is expatiated on in the paper. The thermal images whose signal is modulated as video reflect the temperature distribution of measured object, so they have the speciality of mass and real-time. The solution to the intractable problem is as follows: First, the reasonable system, i.e. the combining of global pseudo-color visualization and local special area accurate measure, muse be adopted. Then, the HDL pseudo-color algorithms in SoC (System on Chip) carry out the system to ensure the real-time. Finally, the key HDL algorithms for direct gray levels connection coding, proportional gray levels map coding and enhanced gray levels map coding are presented, and its simulation results are showed. The pseudo-color visualization of thermal images implemented by HDL in the paper has effective application in the aspect of electric power equipment test and medical health diagnosis.

  5. Brain networks for visual creativity: a functional connectivity study of planning a visual artwork.

    PubMed

    De Pisapia, Nicola; Bacci, Francesca; Parrott, Danielle; Melcher, David

    2016-12-19

    Throughout recorded history, and across cultures, humans have made visual art. In recent years, the neural bases of creativity, including artistic creativity, have become a topic of interest. In this study we investigated the neural bases of the visual creative process with both professional artists and a group of control participants. We tested the idea that creativity (planning an artwork) would influence the functional connectivity between regions involved in the default mode network (DMN), implicated in divergent thinking and generating novel ideas, and the executive control network (EN), implicated in evaluating and selecting ideas. We measured functional connectivity with functional Magnetic Resonance Imaging (fMRI) during three different conditions: rest, visual imagery of the alphabet and planning an artwork to be executed immediately after the scanning session. Consistent with our hypothesis, we found stronger connectivity between areas of the DMN and EN during the creative task, and this difference was enhanced in professional artists. These findings suggest that creativity involves an expert balance of two brain networks typically viewed as being in opposition.

  6. Brain networks for visual creativity: a functional connectivity study of planning a visual artwork

    PubMed Central

    De Pisapia, Nicola; Bacci, Francesca; Parrott, Danielle; Melcher, David

    2016-01-01

    Throughout recorded history, and across cultures, humans have made visual art. In recent years, the neural bases of creativity, including artistic creativity, have become a topic of interest. In this study we investigated the neural bases of the visual creative process with both professional artists and a group of control participants. We tested the idea that creativity (planning an artwork) would influence the functional connectivity between regions involved in the default mode network (DMN), implicated in divergent thinking and generating novel ideas, and the executive control network (EN), implicated in evaluating and selecting ideas. We measured functional connectivity with functional Magnetic Resonance Imaging (fMRI) during three different conditions: rest, visual imagery of the alphabet and planning an artwork to be executed immediately after the scanning session. Consistent with our hypothesis, we found stronger connectivity between areas of the DMN and EN during the creative task, and this difference was enhanced in professional artists. These findings suggest that creativity involves an expert balance of two brain networks typically viewed as being in opposition. PMID:27991592

  7. Spectral Signatures of Feedforward and Recurrent Circuitry in Monkey Area MT.

    PubMed

    Solomon, Selina S; Morley, John W; Solomon, Samuel G

    2017-05-01

    Recordings of local field potential (LFP) in the visual cortex can show rhythmic activity at gamma frequencies (30-100 Hz). While the gamma rhythms in the primary visual cortex have been well studied, the structural and functional characteristics of gamma rhythms in extrastriate visual cortex are less clear. Here, we studied the spatial distribution and functional specificity of gamma rhythms in extrastriate middle temporal (MT) area of visual cortex in marmoset monkeys. We found that moving gratings induced narrowband gamma rhythms across cortical layers that were coherent across much of area MT. Moving dot fields instead induced a broadband increase in LFP in middle and upper layers, with weaker narrowband gamma rhythms in deeper layers. The stimulus dependence of LFP response in middle and upper layers of area MT appears to reflect the presence (gratings) or absence (dot fields and other textures) of strongly oriented contours. Our results suggest that gamma rhythms in these layers are propagated from earlier visual cortex, while those in the deeper layers may emerge in area MT. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Driving with Binocular Visual Field Loss? A Study on a Supervised On-Road Parcours with Simultaneous Eye and Head Tracking

    PubMed Central

    Aehling, Kathrin; Heister, Martin; Rosenstiel, Wolfgang; Schiefer, Ulrich; Papageorgiou, Elena

    2014-01-01

    Post-chiasmal visual pathway lesions and glaucomatous optic neuropathy cause binocular visual field defects (VFDs) that may critically interfere with quality of life and driving licensure. The aims of this study were (i) to assess the on-road driving performance of patients suffering from binocular visual field loss using a dual-brake vehicle, and (ii) to investigate the related compensatory mechanisms. A driving instructor, blinded to the participants' diagnosis, rated the driving performance (passed/failed) of ten patients with homonymous visual field defects (HP), including four patients with right (HR) and six patients with left homonymous visual field defects (HL), ten glaucoma patients (GP), and twenty age and gender-related ophthalmologically healthy control subjects (C) during a 40-minute driving task on a pre-specified public on-road parcours. In order to investigate the subjects' visual exploration ability, eye movements were recorded by means of a mobile eye tracker. Two additional cameras were used to monitor the driving scene and record head and shoulder movements. Thus this study is novel as a quantitative assessment of eye movements and an additional evaluation of head and shoulder was performed. Six out of ten HP and four out of ten GP were rated as fit to drive by the driving instructor, despite their binocular visual field loss. Three out of 20 control subjects failed the on-road assessment. The extent of the visual field defect was of minor importance with regard to the driving performance. The site of the homonymous visual field defect (HVFD) critically interfered with the driving ability: all failed HP subjects suffered from left homonymous visual field loss (HL) due to right hemispheric lesions. Patients who failed the driving assessment had mainly difficulties with lane keeping and gap judgment ability. Patients who passed the test displayed different exploration patterns than those who failed. Patients who passed focused longer on the central area of the visual field than patients who failed the test. In addition, patients who passed the test performed more glances towards the area of their visual field defect. In conclusion, our findings support the hypothesis that the extent of visual field per se cannot predict driving fitness, because some patients with HVFDs and advanced glaucoma can compensate for their deficit by effective visual scanning. Head movements appeared to be superior to eye and shoulder movements in predicting the outcome of the driving test under the present study scenario. PMID:24523869

  9. Figure-ground organization and the emergence of proto-objects in the visual cortex.

    PubMed

    von der Heydt, Rüdiger

    2015-01-01

    A long history of studies of perception has shown that the visual system organizes the incoming information early on, interpreting the 2D image in terms of a 3D world and producing a structure that provides perceptual continuity and enables object-based attention. Recordings from monkey visual cortex show that many neurons, especially in area V2, are selective for border ownership. These neurons are edge selective and have ordinary classical receptive fields (CRF), but in addition their responses are modulated (enhanced or suppressed) depending on the location of a 'figure' relative to the edge in their receptive field. Each neuron has a fixed preference for location on one side or the other. This selectivity is derived from the image context far beyond the CRF. This paper reviews evidence indicating that border ownership selectivity reflects the formation of early object representations ('proto-objects'). The evidence includes experiments showing (1) reversal of border ownership signals with change of perceived object structure, (2) border ownership specific enhancement of responses in object-based selective attention, (3) persistence of border ownership signals in accordance with continuity of object perception, and (4) remapping of border ownership signals across saccades and object movements. Findings 1 and 2 can be explained by hypothetical grouping circuits that sum contour feature signals in search of objectness, and, via recurrent projections, enhance the corresponding low-level feature signals. Findings 3 and 4 might be explained by assuming that the activity of grouping circuits persists and can be remapped. Grouping, persistence, and remapping are fundamental operations of vision. Finding these operations manifest in low-level visual areas challenges traditional views of visual processing. New computational models need to be developed for a comprehensive understanding of the function of the visual cortex.

  10. Figure–ground organization and the emergence of proto-objects in the visual cortex

    PubMed Central

    von der Heydt, Rüdiger

    2015-01-01

    A long history of studies of perception has shown that the visual system organizes the incoming information early on, interpreting the 2D image in terms of a 3D world and producing a structure that provides perceptual continuity and enables object-based attention. Recordings from monkey visual cortex show that many neurons, especially in area V2, are selective for border ownership. These neurons are edge selective and have ordinary classical receptive fields (CRF), but in addition their responses are modulated (enhanced or suppressed) depending on the location of a ‘figure’ relative to the edge in their receptive field. Each neuron has a fixed preference for location on one side or the other. This selectivity is derived from the image context far beyond the CRF. This paper reviews evidence indicating that border ownership selectivity reflects the formation of early object representations (‘proto-objects’). The evidence includes experiments showing (1) reversal of border ownership signals with change of perceived object structure, (2) border ownership specific enhancement of responses in object-based selective attention, (3) persistence of border ownership signals in accordance with continuity of object perception, and (4) remapping of border ownership signals across saccades and object movements. Findings 1 and 2 can be explained by hypothetical grouping circuits that sum contour feature signals in search of objectness, and, via recurrent projections, enhance the corresponding low-level feature signals. Findings 3 and 4 might be explained by assuming that the activity of grouping circuits persists and can be remapped. Grouping, persistence, and remapping are fundamental operations of vision. Finding these operations manifest in low-level visual areas challenges traditional views of visual processing. New computational models need to be developed for a comprehensive understanding of the function of the visual cortex. PMID:26579062

  11. Low-level laser therapy improves visual acuity in adolescent and adult patients with amblyopia.

    PubMed

    Ivandic, Boris T; Ivandic, Tomislav

    2012-03-01

    The purpose of this study was to examine the effects of low-level laser therapy (LLLT) on visual acuity in adolescent and adult patients with amblyopia. Currently, amblyopia can be treated successfully only in children. In this single-blinded, placebo-controlled study, 178 patients (mean age 46.8 years) with amblyopia caused by ametropia (110 eyes) or strabismus (121 eyes) were included. For LLLT, the area of the macula was irradiated through the conjunctiva from 1 cm distance for 30 sec with laser light (780 nm, 292 Hz, 1:1 duty cycle; average power 7.5 mW; spot area 3 mm(2)). The treatment was repeated on average 3.5 times, resulting in a mean total dose of 0.77 J/cm(2). No occlusion was applied, and no additional medication was administered. Best corrected distant visual acuity was determined using Snellen projection optotypes. In 12 patients (12 eyes), the multifocal visual evoked potential (M-VEP) was recorded. A control group of 20 patients (20 eyes) received mock treatment. Visual acuity improved in ∼90% of the eyes treated with LLLT (p<0.001), increasing by three or more lines in 56.2% and 53.6% of the eyes with amblyopia caused by ametropia and strabismus, respectively. The treatment effect was maintained for at least 6 months. The mean M-VEP amplitude increased by 1207 nV (p<0.001) and mean latency was reduced by 7 msec (p=0.14). No changes were noted in the control group. LLLT led to a significant improvement in visual acuity in adolescent and adult patients with amblyopia caused by ametropia or strabismus.

  12. Influence of pneumoperitoneum pressure on surgical field during robotic and laparoscopic surgery: a comparative study.

    PubMed

    Angioli, Roberto; Terranova, Corrado; Plotti, Francesco; Cafà, Ester Valentina; Gennari, Paolo; Ricciardi, Roberto; Aloisi, Alessia; Miranda, Andrea; Montera, Roberto; De Cicco Nardone, Carlo

    2015-04-01

    Studies on the influence of CO₂ pneumoperitoneum on the abdominal cavity during robotic procedures are lacking. This is the first study to evaluate surgical field modifications related to CO₂ pressure, during laparoscopic and robotic surgery. Consecutive patients scheduled for laparoscopic or robotic hysterectomy were enrolled in the study. To evaluate the level of operative field visualization, a dedicated form has been designed based on the evaluation of four different areas: Douglas space, vesico-uterine fold and, bilaterally, the broad ligament. During the initial inspection, an assistant randomly set the CO₂ pressure at 15, 10 and 5 mmHg, and the surgeon, not aware of the CO₂ values, was asked to give an evaluation of the four areas for each set pressure. In laparoscopic group, CO₂ pressure significantly influenced the surgical field visualization in all four areas analyzed. The surgeon had a good visualization only at 15 mmHg CO₂ pressure; visualization decreased with a statistically significant difference from 15 to 5, 15-10 and 10-5 mmHg. In robotic group, influence of CO₂ pressure on surgical areas visualization was not straightforward; operative field visualization remained stable at any pressure value with no significant difference. Pneumoperitoneum pressure significantly affects the visualization of the abdomino-pelvic cavity in laparoscopic procedures. Otherwise, CO₂ pressure does not affect the visualization of surgical field during robotic surgery. These findings are particularly significant especially at low CO₂ pressure with potential implications on peritoneal environment and the subsequent post-operative patient recovery.

  13. Distinct fMRI Responses to Self-Induced versus Stimulus Motion during Free Viewing in the Macaque

    PubMed Central

    Kaneko, Takaaki; Saleem, Kadharbatcha S.; Berman, Rebecca A.; Leopold, David A.

    2016-01-01

    Visual motion responses in the brain are shaped by two distinct sources: the physical movement of objects in the environment and motion resulting from one's own actions. The latter source, termed visual reafference, stems from movements of the head and body, and in primates from the frequent saccadic eye movements that mark natural vision. To study the relative contribution of reafferent and stimulus motion during natural vision, we measured fMRI activity in the brains of two macaques as they freely viewed >50 hours of naturalistic video footage depicting dynamic social interactions. We used eye movements obtained during scanning to estimate the level of reafferent retinal motion at each moment in time. We also estimated the net stimulus motion by analyzing the video content during the same time periods. Mapping the responses to these distinct sources of retinal motion, we found a striking dissociation in the distribution of visual responses throughout the brain. Reafferent motion drove fMRI activity in the early retinotopic areas V1, V2, V3, and V4, particularly in their central visual field representations, as well as lateral aspects of the caudal inferotemporal cortex (area TEO). However, stimulus motion dominated fMRI responses in the superior temporal sulcus, including areas MT, MST, and FST as well as more rostral areas. We discuss this pronounced separation of motion processing in the context of natural vision, saccadic suppression, and the brain's utilization of corollary discharge signals. SIGNIFICANCE STATEMENT Visual motion arises not only from events in the external world, but also from the movements of the observer. For example, even if objects are stationary in the world, the act of walking through a room or shifting one's eyes causes motion on the retina. This “reafferent” motion propagates into the brain as signals that must be interpreted in the context of real object motion. The delineation of whole-brain responses to stimulus versus self-generated retinal motion signals is critical for understanding visual perception and is of pragmatic importance given the increasing use of naturalistic viewing paradigms. The present study uses fMRI to demonstrate that the brain exhibits a fundamentally different pattern of responses to these two sources of retinal motion. PMID:27629710

  14. Distinct fMRI Responses to Self-Induced versus Stimulus Motion during Free Viewing in the Macaque.

    PubMed

    Russ, Brian E; Kaneko, Takaaki; Saleem, Kadharbatcha S; Berman, Rebecca A; Leopold, David A

    2016-09-14

    Visual motion responses in the brain are shaped by two distinct sources: the physical movement of objects in the environment and motion resulting from one's own actions. The latter source, termed visual reafference, stems from movements of the head and body, and in primates from the frequent saccadic eye movements that mark natural vision. To study the relative contribution of reafferent and stimulus motion during natural vision, we measured fMRI activity in the brains of two macaques as they freely viewed >50 hours of naturalistic video footage depicting dynamic social interactions. We used eye movements obtained during scanning to estimate the level of reafferent retinal motion at each moment in time. We also estimated the net stimulus motion by analyzing the video content during the same time periods. Mapping the responses to these distinct sources of retinal motion, we found a striking dissociation in the distribution of visual responses throughout the brain. Reafferent motion drove fMRI activity in the early retinotopic areas V1, V2, V3, and V4, particularly in their central visual field representations, as well as lateral aspects of the caudal inferotemporal cortex (area TEO). However, stimulus motion dominated fMRI responses in the superior temporal sulcus, including areas MT, MST, and FST as well as more rostral areas. We discuss this pronounced separation of motion processing in the context of natural vision, saccadic suppression, and the brain's utilization of corollary discharge signals. Visual motion arises not only from events in the external world, but also from the movements of the observer. For example, even if objects are stationary in the world, the act of walking through a room or shifting one's eyes causes motion on the retina. This "reafferent" motion propagates into the brain as signals that must be interpreted in the context of real object motion. The delineation of whole-brain responses to stimulus versus self-generated retinal motion signals is critical for understanding visual perception and is of pragmatic importance given the increasing use of naturalistic viewing paradigms. The present study uses fMRI to demonstrate that the brain exhibits a fundamentally different pattern of responses to these two sources of retinal motion. Copyright © 2016 the authors 0270-6474/16/369580-10$15.00/0.

  15. Frontal and parietal theta burst TMS impairs working memory for visual-spatial conjunctions

    PubMed Central

    Morgan, Helen M.; Jackson, Margaret C.; van Koningsbruggen, Martijn G.; Shapiro, Kimron L.; Linden, David E.J.

    2013-01-01

    In tasks that selectively probe visual or spatial working memory (WM) frontal and posterior cortical areas show a segregation, with dorsal areas preferentially involved in spatial (e.g. location) WM and ventral areas in visual (e.g. object identity) WM. In a previous fMRI study [1], we showed that right parietal cortex (PC) was more active during WM for orientation, whereas left inferior frontal gyrus (IFG) was more active during colour WM. During WM for colour-orientation conjunctions, activity in these areas was intermediate to the level of activity for the single task preferred and non-preferred information. To examine whether these specialised areas play a critical role in coordinating visual and spatial WM to perform a conjunction task, we used theta burst transcranial magnetic stimulation (TMS) to induce a functional deficit. Compared to sham stimulation, TMS to right PC or left IFG selectively impaired WM for conjunctions but not single features. This is consistent with findings from visual search paradigms, in which frontal and parietal TMS selectively affects search for conjunctions compared to single features, and with combined TMS and functional imaging work suggesting that parietal and frontal regions are functionally coupled in tasks requiring integration of visual and spatial information. Our results thus elucidate mechanisms by which the brain coordinates spatially segregated processing streams and have implications beyond the field of working memory. PMID:22483548

  16. Frontal and parietal theta burst TMS impairs working memory for visual-spatial conjunctions.

    PubMed

    Morgan, Helen M; Jackson, Margaret C; van Koningsbruggen, Martijn G; Shapiro, Kimron L; Linden, David E J

    2013-03-01

    In tasks that selectively probe visual or spatial working memory (WM) frontal and posterior cortical areas show a segregation, with dorsal areas preferentially involved in spatial (e.g. location) WM and ventral areas in visual (e.g. object identity) WM. In a previous fMRI study [1], we showed that right parietal cortex (PC) was more active during WM for orientation, whereas left inferior frontal gyrus (IFG) was more active during colour WM. During WM for colour-orientation conjunctions, activity in these areas was intermediate to the level of activity for the single task preferred and non-preferred information. To examine whether these specialised areas play a critical role in coordinating visual and spatial WM to perform a conjunction task, we used theta burst transcranial magnetic stimulation (TMS) to induce a functional deficit. Compared to sham stimulation, TMS to right PC or left IFG selectively impaired WM for conjunctions but not single features. This is consistent with findings from visual search paradigms, in which frontal and parietal TMS selectively affects search for conjunctions compared to single features, and with combined TMS and functional imaging work suggesting that parietal and frontal regions are functionally coupled in tasks requiring integration of visual and spatial information. Our results thus elucidate mechanisms by which the brain coordinates spatially segregated processing streams and have implications beyond the field of working memory. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Spatiotemporal Dynamics of Bilingual Word Processing

    PubMed Central

    Leonard, Matthew K.; Brown, Timothy T.; Travis, Katherine E.; Gharapetian, Lusineh; Hagler, Donald J.; Dale, Anders M.; Elman, Jeffrey L.; Halgren, Eric

    2009-01-01

    Studies with monolingual adults have identified successive stages occurring in different brain regions for processing single written words. We combined magnetoencephalography and magnetic resonance imaging to compare these stages between the first (L1) and second (L2) languages in bilingual adults. L1 words in a size judgment task evoked a typical left-lateralized sequence of activity first in ventral occipitotemporal cortex (VOT: previously associated with visual word-form encoding), and then ventral frontotemporal regions (associated with lexico-semantic processing). Compared to L1, words in L2 activated right VOT more strongly from ~135 ms; this activation was attenuated when words became highly familiar with repetition. At ~400ms, L2 responses were generally later than L1, more bilateral, and included the same lateral occipitotemporal areas as were activated by pictures. We propose that acquiring a language involves the recruitment of right hemisphere and posterior visual areas that are not necessary once fluency is achieved. PMID:20004256

  18. Aerodynamic effects by cooling flows within engine room of a car model

    NASA Astrophysics Data System (ADS)

    Sawaguchi, T.; Takakura, Y.

    2017-10-01

    The purpose of this research is to clarify the change of characteristics of aerodynamic drag and lift of a car by the engine loading system (engine arrangement) and the air inlet system (opening area and position) with and without a radiator in wind-tunnel experiments. A simplified car model with 1/5 scale is generated with reproduction of the engine room covered with the transparent acryl externals for visualization. In the wind-tunnel experiments, the moving-belt ground board is adopted to include ground effects with force measurements by use of load cells. The flows are visualized by the smoke method. As results, with enlargement of the opening area, the drag increased overall although depending largely on the engine loading system and the inlet opening position, the front lift increased and the rear left decreased; the effect of the radiator was to relieve the change of the drag and lift.

  19. Finding and recognizing objects in natural scenes: complementary computations in the dorsal and ventral visual systems

    PubMed Central

    Rolls, Edmund T.; Webb, Tristan J.

    2014-01-01

    Searching for and recognizing objects in complex natural scenes is implemented by multiple saccades until the eyes reach within the reduced receptive field sizes of inferior temporal cortex (IT) neurons. We analyze and model how the dorsal and ventral visual streams both contribute to this. Saliency detection in the dorsal visual system including area LIP is modeled by graph-based visual saliency, and allows the eyes to fixate potential objects within several degrees. Visual information at the fixated location subtending approximately 9° corresponding to the receptive fields of IT neurons is then passed through a four layer hierarchical model of the ventral cortical visual system, VisNet. We show that VisNet can be trained using a synaptic modification rule with a short-term memory trace of recent neuronal activity to capture both the required view and translation invariances to allow in the model approximately 90% correct object recognition for 4 objects shown in any view across a range of 135° anywhere in a scene. The model was able to generalize correctly within the four trained views and the 25 trained translations. This approach analyses the principles by which complementary computations in the dorsal and ventral visual cortical streams enable objects to be located and recognized in complex natural scenes. PMID:25161619

  20. Eye shape and retinal topography in owls (Aves: Strigiformes).

    PubMed

    Lisney, Thomas J; Iwaniuk, Andrew N; Bandet, Mischa V; Wylie, Douglas R

    2012-01-01

    The eyes of vertebrates show adaptations to the visual environments in which they evolve. For example, eye shape is associated with activity pattern, while retinal topography is related to the symmetry or 'openness' of the habitat of a species. Although these relationships are well documented in many vertebrates including birds, the extent to which they hold true for species within the same avian order is not well understood. Owls (Strigiformes) represent an ideal group for the study of interspecific variation in the avian visual system because they are one of very few avian orders to contain species that vary in both activity pattern and habitat preference. Here, we examined interspecific variation in eye shape and retinal topography in nine species of owl. Eye shape (the ratio of corneal diameter to eye axial length) differed among species, with nocturnal species having relatively larger corneal diameters than diurnal species. All the owl species have an area of high retinal ganglion cell (RGC) density in the temporal retina and a visual streak of increased cell density extending across the central retina from temporal to nasal. However, the organization and degree of elongation of the visual streak varied considerably among species and this variation was quantified using H:V ratios. Species that live in open habitats and/or that are more diurnally active have well-defined, elongated visual streaks and high H:V ratios (3.88-2.33). In contrast, most nocturnal and/or forest-dwelling owls have a poorly defined visual streak, a more radially symmetrical arrangement of RGCs and lower H:V ratios (1.77-1.27). The results of a hierarchical cluster analysis indicate that the apparent interspecific variation is associated with activity pattern and habitat as opposed to the phylogenetic relationships among species. In seven species, the presence of a fovea was confirmed and it is suggested that all strigid owls may possess a fovea, whereas the tytonid barn owl (Tyto alba) does not. A size-frequency analysis of cell soma area indicates that a number of different RGC classes are represented in owls, including a population of large RGCs (cell soma area >150 µm(2)) that resemble the giant RGCs reported in other vertebrates. In conclusion, eye shape and retinal topography in owls vary among species and this variation is associated with different activity patterns and habitat preferences, thereby supporting similar observations in other vertebrates. Copyright © 2012 S. Karger AG, Basel.

  1. Functional visual fields: relationship of visual field areas to self-reported function.

    PubMed

    Subhi, Hikmat; Latham, Keziah; Myint, Joy; Crossland, Michael D

    2017-07-01

    The aim of this study is to relate areas of the visual field to functional difficulties to inform the development of a binocular visual field assessment that can reflect the functional consequences of visual field loss. Fifty-two participants with peripheral visual field loss undertook binocular assessment of visual fields using the 30-2 and 60-4 SITA Fast programs on the Humphrey Field Analyser, and mean thresholds were derived. Binocular visual acuity, contrast sensitivity and near reading performance were also determined. Self-reported overall and mobility function were assessed using the Dutch ICF Activity Inventory. Greater visual field loss (0-60°) was associated with worse self-reported function both overall (R 2 = 0.50; p < 0.0001), and for mobility (R 2 = 0.64; p < 0.0001). Central (0-30°) and peripheral (30-60°) visual field areas were similarly related to mobility function (R 2 = 0.61, p < 0.0001 and R 2 = 0.63, p < 0.0001 respectively), although the peripheral (30-60°) visual field was the best predictor of mobility self-reported function in multiple regression analyses. Superior and inferior visual field areas related similarly to mobility function (R 2 = 0.56, p < 0.0001 and R 2 = 0.67, p < 0.0001 respectively). The inferior field was found to be the best predictor of mobility function in multiple regression analysis. Mean threshold of the binocular visual field to 60° eccentricity is a good predictor of self-reported function overall, and particularly of mobility function. Both the central (0-30°) and peripheral (30-60°) mean threshold are good predictors of self-reported function, but the peripheral (30-0°) field is a slightly better predictor of mobility function, and should not be ignored when considering functional consequences of field loss. The inferior visual field is a slightly stronger predictor of perceived overall and mobility function than the superior field. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.

  2. Dissociation of sensitivity to spatial frequency in word and face preferential areas of the fusiform gyrus.

    PubMed

    Woodhead, Zoe Victoria Joan; Wise, Richard James Surtees; Sereno, Marty; Leech, Robert

    2011-10-01

    Different cortical regions within the ventral occipitotemporal junction have been reported to show preferential responses to particular objects. Thus, it is argued that there is evidence for a left-lateralized visual word form area and a right-lateralized fusiform face area, but the unique specialization of these areas remains controversial. Words are characterized by greater power in the high spatial frequency (SF) range, whereas faces comprise a broader range of high and low frequencies. We investigated how these high-order visual association areas respond to simple sine-wave gratings that varied in SF. Using functional magnetic resonance imaging, we demonstrated lateralization of activity that was concordant with the low-level visual property of words and faces; left occipitotemporal cortex is more strongly activated by high than by low SF gratings, whereas the right occipitotemporal cortex responded more to low than high spatial frequencies. Therefore, the SF of a visual stimulus may bias the lateralization of processing irrespective of its higher order properties.

  3. Are neural correlates of visual consciousness retinotopic?

    PubMed

    ffytche, Dominic H; Pins, Delphine

    2003-11-14

    Some visual neurons code what we see, their defining characteristic being a response profile which mirrors conscious percepts rather than veridical sensory attributes. One issue yet to be resolved is whether, within a given cortical area, conscious visual perception relates to diffuse activity across the entire population of such cells or focal activity within the sub-population mapping the location of the perceived stimulus. Here we investigate the issue in the human brain with fMRI, using a threshold stimulation technique to dissociate perceptual from non-perceptual activity. Our results point to a retinotopic organisation of perceptual activity in early visual areas, with independent perceptual activations for different regions of visual space.

  4. Area 18 of the cat: the first step in processing visual movement information.

    PubMed

    Orban, G A

    1977-01-01

    In cats, responses of area 18 neurons to different moving patterns were measured. The influence of three movement parameters--direction, angular velocity, and amplitude of movement--were tested. The results indicate that in area 18 no ideal movement detector exists, but that simple and complex cells each perform complementary operations of primary visual areas, i.e. analysis and detection of movement.

  5. Structure-function relationships using spectral-domain optical coherence tomography: comparison with scanning laser polarimetry.

    PubMed

    Aptel, Florent; Sayous, Romain; Fortoul, Vincent; Beccat, Sylvain; Denis, Philippe

    2010-12-01

    To evaluate and compare the regional relationships between visual field sensitivity and retinal nerve fiber layer (RNFL) thickness as measured by spectral-domain optical coherence tomography (OCT) and scanning laser polarimetry. Prospective cross-sectional study. One hundred and twenty eyes of 120 patients (40 with healthy eyes, 40 with suspected glaucoma, and 40 with glaucoma) were tested on Cirrus-OCT, GDx VCC, and standard automated perimetry. Raw data on RNFL thickness were extracted for 256 peripapillary sectors of 1.40625 degrees each for the OCT measurement ellipse and 64 peripapillary sectors of 5.625 degrees each for the GDx VCC measurement ellipse. Correlations between peripapillary RNFL thickness in 6 sectors and visual field sensitivity in the 6 corresponding areas were evaluated using linear and logarithmic regression analysis. Receiver operating curve areas were calculated for each instrument. With spectral-domain OCT, the correlations (r(2)) between RNFL thickness and visual field sensitivity ranged from 0.082 (nasal RNFL and corresponding visual field area, linear regression) to 0.726 (supratemporal RNFL and corresponding visual field area, logarithmic regression). By comparison, with GDx-VCC, the correlations ranged from 0.062 (temporal RNFL and corresponding visual field area, linear regression) to 0.362 (supratemporal RNFL and corresponding visual field area, logarithmic regression). In pairwise comparisons, these structure-function correlations were generally stronger with spectral-domain OCT than with GDx VCC and with logarithmic regression than with linear regression. The largest areas under the receiver operating curve were seen for OCT superior thickness (0.963 ± 0.022; P < .001) in eyes with glaucoma and for OCT average thickness (0.888 ± 0.072; P < .001) in eyes with suspected glaucoma. The structure-function relationship was significantly stronger with spectral-domain OCT than with scanning laser polarimetry, and was better expressed logarithmically than linearly. Measurements with these 2 instruments should not be considered to be interchangeable. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Time-course analysis of the neuroanatomical correlates of sexual arousal evoked by erotic video stimuli in healthy males.

    PubMed

    Sundaram, Thirunavukkarasu; Jeong, Gwang-Woo; Kim, Tae-Hoon; Kim, Gwang-Won; Baek, Han-Su; Kang, Heoung-Keun

    2010-01-01

    To assess the dynamic activations of the key brain areas associated with the time-course of the sexual arousal evoked by visual sexual stimuli in healthy male subjects. Fourteen right-handed heterosexual male volunteers participated in this study. Alternatively combined rest period and erotic video visual stimulation were used according to the standard block design. In order to illustrate and quantify the spatiotemporal activation patterns of the key brain regions, the activation period was divided into three different stages as the EARLY, MID and LATE stages. For the group result (p < 0.05), when comparing the MID stage with the EARLY stage, a significant increase of the brain activation was observed in the areas that included the inferior frontal gyrus, the supplementary motor area, the hippocampus, the head of the caudate nucleus, the midbrain, the superior occipital gyrus and the fusiform gyrus. At the same time, when comparing the EARLY stage with the MID stage, the putamen, the globus pallidus, the pons, the thalamus, the hypothalamus, the lingual gyrus and the cuneus yielded significantly increased activations. When comparing the LATE stage with the MID stage, all the above mentioned brain regions showed elevated activations except the hippocampus. Our results illustrate the spatiotemporal activation patterns of the key brain regions across the three stages of visual sexual arousal.

  7. Time-Course Analysis of the Neuroanatomical Correlates of Sexual Arousal Evoked by Erotic Video Stimuli in Healthy Males

    PubMed Central

    Sundaram, Thirunavukkarasu; Kim, Tae-Hoon; Kim, Gwang-Won; Baek, Han-Su; Kang, Heoung-Keun

    2010-01-01

    Objective To assess the dynamic activations of the key brain areas associated with the time-course of the sexual arousal evoked by visual sexual stimuli in healthy male subjects. Materials and Methods Fourteen right-handed heterosexual male volunteers participated in this study. Alternatively combined rest period and erotic video visual stimulation were used according to the standard block design. In order to illustrate and quantify the spatiotemporal activation patterns of the key brain regions, the activation period was divided into three different stages as the EARLY, MID and LATE stages. Results For the group result (p < 0.05), when comparing the MID stage with the EARLY stage, a significant increase of the brain activation was observed in the areas that included the inferior frontal gyrus, the supplementary motor area, the hippocampus, the head of the caudate nucleus, the midbrain, the superior occipital gyrus and the fusiform gyrus. At the same time, when comparing the EARLY stage with the MID stage, the putamen, the globus pallidus, the pons, the thalamus, the hypothalamus, the lingual gyrus and the cuneus yielded significantly increased activations. When comparing the LATE stage with the MID stage, all the above mentioned brain regions showed elevated activations except the hippocampus. Conclusion Our results illustrate the spatiotemporal activation patterns of the key brain regions across the three stages of visual sexual arousal. PMID:20461181

  8. Menopause-related brain activation patterns during visual sexual arousal in menopausal women: An fMRI pilot study using time-course analysis.

    PubMed

    Kim, Gwang-Won; Jeong, Gwang-Woo

    2017-02-20

    The aging process and menopausal transition are important factors in sexual dysfunction of menopausal women. No neuroimaging study has assessed the age- and menopause-related changes on brain activation areas associated with sexual arousal in menopausal women. The purpose of this study was to evaluate the time course of regional brain activity associated with sexual arousal evoked by visual stimulation in premenopausal and menopausal women, and further to assess the effect of menopause on the brain areas associated with sexual arousal in menopausal women using functional magnetic resonance imaging (fMRI). Thirty volunteers consisting of 15 premenopausal and 15 menopausal women underwent the fMRI. For the activation condition, volunteers viewed sexually arousing visual stimulation. The brain areas with significantly higher activation in premenopausal women compared with menopausal women included the thalamus, amygdala, and anterior cingulate cortex (ACC) using analysis of covariance adjusting for age (p<0.005). Blood-oxygen-level-dependent signal changes in the amygdala while viewing erotic video were positively correlated with estrogen levels in the two groups. Our findings suggest that reduced brain activity of the thalamus, amygdala, and ACC in menopausal women may be associated with menopause-related decrease in sexual arousal. These findings might help elucidate the neural mechanisms associated with sexual dysfunction in menopausal women. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance.

    PubMed

    Liebe, Stefanie; Hoerzer, Gregor M; Logothetis, Nikos K; Rainer, Gregor

    2012-01-29

    Short-term memory requires communication between multiple brain regions that collectively mediate the encoding and maintenance of sensory information. It has been suggested that oscillatory synchronization underlies intercortical communication. Yet, whether and how distant cortical areas cooperate during visual memory remains elusive. We examined neural interactions between visual area V4 and the lateral prefrontal cortex using simultaneous local field potential (LFP) recordings and single-unit activity (SUA) in monkeys performing a visual short-term memory task. During the memory period, we observed enhanced between-area phase synchronization in theta frequencies (3-9 Hz) of LFPs together with elevated phase locking of SUA to theta oscillations across regions. In addition, we found that the strength of intercortical locking was predictive of the animals' behavioral performance. This suggests that theta-band synchronization coordinates action potential communication between V4 and prefrontal cortex that may contribute to the maintenance of visual short-term memories.

  10. "Visual" Cortex of Congenitally Blind Adults Responds to Syntactic Movement.

    PubMed

    Lane, Connor; Kanjlia, Shipra; Omaki, Akira; Bedny, Marina

    2015-09-16

    Human cortex is comprised of specialized networks that support functions, such as visual motion perception and language processing. How do genes and experience contribute to this specialization? Studies of plasticity offer unique insights into this question. In congenitally blind individuals, "visual" cortex responds to auditory and tactile stimuli. Remarkably, recent evidence suggests that occipital areas participate in language processing. We asked whether in blindness, occipital cortices: (1) develop domain-specific responses to language and (2) respond to a highly specialized aspect of language-syntactic movement. Nineteen congenitally blind and 18 sighted participants took part in two fMRI experiments. We report that in congenitally blind individuals, but not in sighted controls, "visual" cortex is more active during sentence comprehension than during a sequence memory task with nonwords, or a symbolic math task. This suggests that areas of occipital cortex become selective for language, relative to other similar higher-cognitive tasks. Crucially, we find that these occipital areas respond more to sentences with syntactic movement but do not respond to the difficulty of math equations. We conclude that regions within the visual cortex of blind adults are involved in syntactic processing. Our findings suggest that the cognitive function of human cortical areas is largely determined by input during development. Human cortex is made up of specialized regions that perform different functions, such as visual motion perception and language processing. How do genes and experience contribute to this specialization? Studies of plasticity show that cortical areas can change function from one sensory modality to another. Here we demonstrate that input during development can alter cortical function even more dramatically. In blindness a subset of "visual" areas becomes specialized for language processing. Crucially, we find that the same "visual" areas respond to a highly specialized and uniquely human aspect of language-syntactic movement. These data suggest that human cortex has broad functional capacity during development, and input plays a major role in determining functional specialization. Copyright © 2015 the authors 0270-6474/15/3512859-10$15.00/0.

  11. Regional brain activity during early visual perception in unaffected siblings of schizophrenia patients.

    PubMed

    Lee, Junghee; Cohen, Mark S; Engel, Stephen A; Glahn, David; Nuechterlein, Keith H; Wynn, Jonathan K; Green, Michael F

    2010-07-01

    Visual masking paradigms assess the early part of visual information processing, which may reflect vulnerability measures for schizophrenia. We examined the neural substrates of visual backward performance in unaffected sibling of schizophrenia patients using functional magnetic resonance imaging (fMRI). Twenty-one unaffected siblings of schizophrenia patients and 19 healthy controls performed a backward masking task and three functional localizer tasks to identify three visual processing regions of interest (ROI): lateral occipital complex (LO), the motion-sensitive area, and retinotopic areas. In the masking task, we systematically manipulated stimulus onset asynchronies (SOAs). We analyzed fMRI data in two complementary ways: 1) an ROI approach for three visual areas, and 2) a whole-brain analysis. The groups did not differ in behavioral performance. For ROI analysis, both groups increased activation as SOAs increased in LO. Groups did not differ in activation levels of the three ROIs. For whole-brain analysis, controls increased activation as a function of SOAs, compared with siblings in several regions (i.e., anterior cingulate cortex, posterior cingulate cortex, inferior prefrontal cortex, inferior parietal lobule). The study found: 1) area LO showed sensitivity to the masking effect in both groups; 2) siblings did not differ from controls in activation of LO; and 3) groups differed significantly in several brain regions outside visual processing areas that have been related to attentional or re-entrant processes. These findings suggest that LO dysfunction may be a disease indicator rather than a risk indicator for schizophrenia. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. Automatic cell identification and visualization using digital holographic microscopy with head mounted augmented reality devices.

    PubMed

    O'Connor, Timothy; Rawat, Siddharth; Markman, Adam; Javidi, Bahram

    2018-03-01

    We propose a compact imaging system that integrates an augmented reality head mounted device with digital holographic microscopy for automated cell identification and visualization. A shearing interferometer is used to produce holograms of biological cells, which are recorded using customized smart glasses containing an external camera. After image acquisition, segmentation is performed to isolate regions of interest containing biological cells in the field-of-view, followed by digital reconstruction of the cells, which is used to generate a three-dimensional (3D) pseudocolor optical path length profile. Morphological features are extracted from the cell's optical path length map, including mean optical path length, coefficient of variation, optical volume, projected area, projected area to optical volume ratio, cell skewness, and cell kurtosis. Classification is performed using the random forest classifier, support vector machines, and K-nearest neighbor, and the results are compared. Finally, the augmented reality device displays the cell's pseudocolor 3D rendering of its optical path length profile, extracted features, and the identified cell's type or class. The proposed system could allow a healthcare worker to quickly visualize cells using augmented reality smart glasses and extract the relevant information for rapid diagnosis. To the best of our knowledge, this is the first report on the integration of digital holographic microscopy with augmented reality devices for automated cell identification and visualization.

  13. Visual acuity and visual field impairment in Usher syndrome.

    PubMed

    Edwards, A; Fishman, G A; Anderson, R J; Grover, S; Derlacki, D J

    1998-02-01

    To determine the extent of visual acuity and visual field impairment in patients with types 1 and 2 Usher syndrome. The records of 53 patients with type 1 and 120 patients with type 2 Usher syndrome were reviewed for visual acuity and visual field area at their most recent visit. Visual field areas were determined by planimetry of the II4e and V4e isopters obtained with a Goldmann perimeter. Both ordinary and logistic regression models were used to evaluate differences in visual acuity and visual field impairment between patients with type 1 and type 2 Usher syndrome. The difference in visual acuity of the better eye between patients with type 1 and type 2 varied by patient age (P=.01, based on a multiple regression model). The maximum difference in visual acuity between the 2 groups occurred during the third and fourth decades of life (with the type 1 patients being more impaired), while more similar acuities were seen in both younger and older patients. Fifty-one percent (n=27) of the type 1 patients had a visual acuity of 20/40 or better in at least 1 eye compared with 72% (n=87) of the type 2 patients (age-adjusted odds ratio, 3.9). Visual field area to both the II4e (P=.001) and V4e (P<.001) targets was more impaired in the better eye of type 1 patients than type 2 patients. A concentric central visual field greater than 20 degrees in at least 1 eye was present in 20 (59%) of the available 34 visual fields of type 1 patients compared with 70 (67%) of the available 104 visual fields of type 2 patients (age-adjusted odds ratio, 2.9) with the V4e target and in 6 (21%) of the available 29 visual fields of type 1 patients compared with 36 (38%) of the available 94 visual fields of type 2 patients (age-adjusted odds ratio, 4.9) with the II4e target. The fraction of patients who had a visual acuity of 20/40 or better and a concentric central visual field greater than 20 degrees to the II4e target in at least 1 eye was 17% (n=5) in the type 1 patients and 35% (n=33) in the type 2 patients (age-adjusted odds ratio, 3.9). Visual acuity and visual field area were more impaired in patients with type 1 than type 2 Usher syndrome. Of note, 27 of 53 type 1 (51%) and 87 of 120 type 2 (72%) patients had a visual acuity of 20/40 or better in at least 1 eye. These data are useful for overall counseling of patients with Usher syndrome.

  14. Visualization and Analysis of Light Pollution: a Case Study in Hong Kong

    NASA Astrophysics Data System (ADS)

    Wu, B.; Wong, H.

    2012-07-01

    The effects of light pollution problems in metropolitan areas are investigated in this study. Areas of Hong Kong are used as the source of three typical study cases. One case represents the regional scale, a second represents the district scale, and a third represents the street scale. Two light pollution parameters, Night Sky Brightness (NSB) and Street Light Level (SLL), are the focus of the analyses. Light pollution visualization approaches in relation to the different scales include various light pollution maps. They provide straightforward presentations of the light pollution situations in the study areas. The relationship between light pollution and several social-economic factors such as land use, household income, and types of outdoor lighting in the scale areas given, are examined. Results show that: (1) Land use may be one factor affecting light pollution in the regional scale; (2) A relatively strong correlation exists between light pollution and household income in the district scale; (3) The heaviest light pollution in the street scale is created by spotlights and also the different types of lighting from shops. The impact of the latter is in relation to the shop profile and size.

  15. CANDELS Visual Classifications: Scheme, Data Release, and First Results

    NASA Astrophysics Data System (ADS)

    Kartaltepe, Jeyhan S.; Mozena, Mark; Kocevski, Dale; McIntosh, Daniel H.; Lotz, Jennifer; Bell, Eric F.; Faber, Sandy; Ferguson, Harry; Koo, David; Bassett, Robert; Bernyk, Maksym; Blancato, Kirsten; Bournaud, Frederic; Cassata, Paolo; Castellano, Marco; Cheung, Edmond; Conselice, Christopher J.; Croton, Darren; Dahlen, Tomas; de Mello, Duilia F.; DeGroot, Laura; Donley, Jennifer; Guedes, Javiera; Grogin, Norman; Hathi, Nimish; Hilton, Matt; Hollon, Brett; Koekemoer, Anton; Liu, Nick; Lucas, Ray A.; Martig, Marie; McGrath, Elizabeth; McPartland, Conor; Mobasher, Bahram; Morlock, Alice; O'Leary, Erin; Peth, Mike; Pforr, Janine; Pillepich, Annalisa; Rosario, David; Soto, Emmaris; Straughn, Amber; Telford, Olivia; Sunnquist, Ben; Trump, Jonathan; Weiner, Benjamin; Wuyts, Stijn; Inami, Hanae; Kassin, Susan; Lani, Caterina; Poole, Gregory B.; Rizer, Zachary

    2015-11-01

    We have undertaken an ambitious program to visually classify all galaxies in the five CANDELS fields down to H < 24.5 involving the dedicated efforts of over 65 individual classifiers. Once completed, we expect to have detailed morphological classifications for over 50,000 galaxies spanning 0 < z < 4 over all the fields, with classifications from 3 to 5 independent classifiers for each galaxy. Here, we present our detailed visual classification scheme, which was designed to cover a wide range of CANDELS science goals. This scheme includes the basic Hubble sequence types, but also includes a detailed look at mergers and interactions, the clumpiness of galaxies, k-corrections, and a variety of other structural properties. In this paper, we focus on the first field to be completed—GOODS-S, which has been classified at various depths. The wide area coverage spanning the full field (wide+deep+ERS) includes 7634 galaxies that have been classified by at least three different people. In the deep area of the field, 2534 galaxies have been classified by at least five different people at three different depths. With this paper, we release to the public all of the visual classifications in GOODS-S along with the Perl/Tk GUI that we developed to classify galaxies. We present our initial results here, including an analysis of our internal consistency and comparisons among multiple classifiers as well as a comparison to the Sérsic index. We find that the level of agreement among classifiers is quite good (>70% across the full magnitude range) and depends on both the galaxy magnitude and the galaxy type, with disks showing the highest level of agreement (>50%) and irregulars the lowest (<10%). A comparison of our classifications with the Sérsic index and rest-frame colors shows a clear separation between disk and spheroid populations. Finally, we explore morphological k-corrections between the V-band and H-band observations and find that a small fraction (84 galaxies in total) are classified as being very different between these two bands. These galaxies typically have very clumpy and extended morphology or are very faint in the V-band.

  16. Visual Imagery without Visual Perception?

    ERIC Educational Resources Information Center

    Bertolo, Helder

    2005-01-01

    The question regarding visual imagery and visual perception remain an open issue. Many studies have tried to understand if the two processes share the same mechanisms or if they are independent, using different neural substrates. Most research has been directed towards the need of activation of primary visual areas during imagery. Here we review…

  17. The visual assessment of broth cultures for tissue bank samples.

    PubMed

    Varettas, Kerry

    2017-09-01

    The bioburden screening process of allograft musculoskeletal tissue samples received at the South Eastern Area Laboratory Services includes the routine use of solid agar and cooked meat (CM) broth media. CM has been routinely sub-cultured onto solid agar plates after aerobic incubation at 35 °C. This study will evaluate whether a visual assessment of CM can replace sub-culture by an in vitro inoculation and a prospective study. Eight challenge organisms were serially diluted and inoculated into CM. The average inoculum of 0.5-5.5 CFU produced visible turbidity of CM after 24-h incubation for 7 of the challenge organisms with one organism producing turbidity after 48-h incubation. The prospective study evaluated 222 CM of which 213 were visually clear and no-growth on sub-culture and 9 turbid CM which were culture positive. Broth cultures are an integral part of the bioburden screening process of allograft musculoskeletal tissue and swab samples and visual assessment of CM can replace sub-culture.

  18. Implied motion because of instability in Hokusai Manga activates the human motion-sensitive extrastriate visual cortex: an fMRI study of the impact of visual art.

    PubMed

    Osaka, Naoyuki; Matsuyoshi, Daisuke; Ikeda, Takashi; Osaka, Mariko

    2010-03-10

    The recent development of cognitive neuroscience has invited inference about the neurosensory events underlying the experience of visual arts involving implied motion. We report functional magnetic resonance imaging study demonstrating activation of the human extrastriate motion-sensitive cortex by static images showing implied motion because of instability. We used static line-drawing cartoons of humans by Hokusai Katsushika (called 'Hokusai Manga'), an outstanding Japanese cartoonist as well as famous Ukiyoe artist. We found 'Hokusai Manga' with implied motion by depicting human bodies that are engaged in challenging tonic posture significantly activated the motion-sensitive visual cortex including MT+ in the human extrastriate cortex, while an illustration that does not imply motion, for either humans or objects, did not activate these areas under the same tasks. We conclude that motion-sensitive extrastriate cortex would be a critical region for perception of implied motion in instability.

  19. Asymmetric temporal integration of layer 4 and layer 2/3 inputs in visual cortex.

    PubMed

    Hang, Giao B; Dan, Yang

    2011-01-01

    Neocortical neurons in vivo receive concurrent synaptic inputs from multiple sources, including feedforward, horizontal, and feedback pathways. Layer 2/3 of the visual cortex receives feedforward input from layer 4 and horizontal input from layer 2/3. Firing of the pyramidal neurons, which carries the output to higher cortical areas, depends critically on the interaction of these pathways. Here we examined synaptic integration of inputs from layer 4 and layer 2/3 in rat visual cortical slices. We found that the integration is sublinear and temporally asymmetric, with larger responses if layer 2/3 input preceded layer 4 input. The sublinearity depended on inhibition, and the asymmetry was largely attributable to the difference between the two inhibitory inputs. Interestingly, the asymmetric integration was specific to pyramidal neurons, and it strongly affected their spiking output. Thus via cortical inhibition, the temporal order of activation of layer 2/3 and layer 4 pathways can exert powerful control of cortical output during visual processing.

  20. Modular Representation of Luminance Polarity In the Superficial Layers Of Primary Visual Cortex

    PubMed Central

    Smith, Gordon B.; Whitney, David E.; Fitzpatrick, David

    2016-01-01

    Summary The spatial arrangement of luminance increments (ON) and decrements (OFF) falling on the retina provides a wealth of information used by central visual pathways to construct coherent representations of visual scenes. But how the polarity of luminance change is represented in the activity of cortical circuits remains unclear. Using wide-field epifluorescence and two-photon imaging we demonstrate a robust modular representation of luminance polarity (ON or OFF) in the superficial layers of ferret primary visual cortex. Polarity-specific domains are found with both uniform changes in luminance and single light/dark edges, and include neurons selective for orientation and direction of motion. The integration of orientation and polarity preference is evident in the selectivity and discrimination capabilities of most layer 2/3 neurons. We conclude that polarity selectivity is an integral feature of layer 2/3 neurons, ensuring that the distinction between light and dark stimuli is available for further processing in downstream extrastriate areas. PMID:26590348

Top