Science.gov

Sample records for arf immersion lithography

  1. Defectivity reduction studies for ArF immersion lithography

    NASA Astrophysics Data System (ADS)

    Matsunaga, Kentaro; Kondoh, Takehiro; Kato, Hirokazu; Kobayashi, Yuuji; Hayasaki, Kei; Ito, Shinichi; Yoshida, Akira; Shimura, Satoru; Kawasaki, Tetsu; Kyoda, Hideharu

    2007-03-01

    Immersion lithography is widely expected to meet the manufacturing requirements of future device nodes. A critical development in immersion lithography has been the construction of a defect-free process. Two years ago, the authors evaluated the impact of water droplets made experimentally on exposed resist films and /or topcoat. (1) The results showed that the marks of drying water droplet called watermarks became pattern defects with T-top profile. In the case that water droplets were removed by drying them, formation of the defects was prevented. Post-exposure rinse process to remove water droplets also prevented formation of the defects. In the present work, the authors evaluated the effect of pre- and post-exposure rinse processes on hp 55nm line and space pattern with Spin Rinse Process Station (SRS) and Post Immersion Rinse Process Station (PIR) modules on an inline lithography cluster with the Tokyo Electron Ltd. CLEAN TRACK TM LITHIUS TM i+ and ASML TWINSCAN XT:1700Fi , 193nm immersion scanner. It was found that total defectivity is decreased by pre- and post-exposure rinse. In particular, bridge defects and large bridge defects were decreased by pre- and post-exposure rinse. Pre- and post-exposure rinse processes are very effective to reduce the bridge and large bridge defects of immersion lithography.

  2. Highly hydrophobic materials for ArF immersion lithography

    NASA Astrophysics Data System (ADS)

    Takebe, Yoko; Shirota, Naoko; Sasaki, Takashi; Murata, Koichi; Yokokoji, Osamu

    2008-03-01

    In immersion lithography, the impact of water on resist performance and the possibility of damage to the lens by the components eluted from the resist material are seriously concern. And much work has shown that controlling the water-resist interface is critical to enabling high scan rates. Many topcoat materials have been developed to control the aforementioned interfacial properties. Developable topcoats have been particularly investigated as suitable candidates for its applicability to the resist developing process. Achieving the balance between the low surface energy required for higher receding contact angle and the base solubility for topcoat removal is challenging. We have already reported FUGU polymer which have partially fluorinated monocyclic structure and hexafluoroalcohol(HFA) group and showed that its developer solubility was excellent but hydrophobicity was insufficient for high scan rate. We have also reported that co-polymers of FUGU and highly fluorinated monomers which have perfluorinated cyclic structure had sufficient hydrophobicity but lower developer solubility. We have found that it was difficult to use these copolymers in themselves as topcoat. But by blending of moderate amount of these copolymers into FUGU polymer, we have finally obtained highly hydrophobic developer-soluble topcoat. Hydrophobicity can be controlled by blending ratio. Furthermore we have newly successfully synthesized a series of fluoropolymers, FIT polymer partially fluorinated monocyclic structure and having carboxylic acid group as developer-soluble unit. When FIT polymer as well as FUGU polymer, was blended to highly hydrophobic copolymer, the blended polymer also showed higher hydrophobicity keeping sufficient developer solubility.

  3. High-refractive-index fluids for the next-generation ArF immersion lithography

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Miyamatsu, Takashi; Furukawa, Taiichi; Yamada, Kinji; Tominaga, Tetsuo; Makita, Yutaka; Nakagawa, Hiroki; Nakamura, Atsushi; Shima, Motoyuki; Kusumoto, Shiro; Shimokawa, Tsutomu; Hieda, Katsuhiko

    2006-03-01

    ArF immersion lithography using a high-refractive-index fluid (HIF) is considered to be a promising candidate for the 32nm node or below. At SPIE 2005 we introduced a new immersion fluid, JSR HIL-1, which has a refractive index and transmittance of 1.64 and >98%/mm (193.4nm, 23 °C), respectively. With HIL-1 immersion and a two beam interferometric exposure tool, hp32nm L/S imaging has been demonstrated. In this paper, we will report another novel immersion fluid, HIL-2, which has a transmittance of >99%/mm, which is almost as high as that of water, and a refractive index of 1.65 (193.4nm, 23 °C). Furthermore, an ArF laser irradiation study has shown that the degree of photodecomposition for both HIL-1 and HIL-2 is small enough for immersion lithography application. A "fluid puddle" defect study confirmed that HILs have less tendency to form immersion-specific photoresist defects and the refractive indices of HILs were found constant under laser irradiation. Batch-to-batch variation in refractive index during manufacture of HILs was not observed. By refining prism designs, hp30nm L/S patterns have also been successfully imaged with two interferometric exposure tools and HIL immersion.

  4. High-refractive index material design for ArF immersion lithography

    NASA Astrophysics Data System (ADS)

    Furukawa, Taiichi; Kishida, Takanori; Miyamatsu, Takashi; Kawaguchi, Kazuo; Yamada, Kinji; Tominaga, Tetsuo; Slezak, Mark; Hieda, Katsuhiko

    2007-03-01

    High-refractive-index fluids (HIFs) are being considered to replace water as the immersion fluid in next generation 193nm immersion scanner. At SPIE 2006, we have demonstrated the attractive optical properties and good imaging performance for our HIF candidates, HIL-001 and HIL-002. In this paper, we will describe our latest results on the remaining issues for the practical application of HIF candidates, as well as introduce 3 rd generation fluids for the further extension of ArF immersion lithography. In order to improve the fluid transparency, we have tried two approaches. One is the improvement of transparency for HIL-001 based on a refining technology and the other is to develop a novel HIF candidate by using computational chemistry, which is named HIL-203. By passing through a suitable refining unit, HIL-001 can reach a transmittance of >99%/mm, which is as high as water. This new purification method can be applied to an on-site reuse system. It was also found that the refining unit was very effective to eliminate the impurities coming from the photo-degradation of HIL, chemical substances contamination under the air exposure, and leaching of resist components such as photo-acid generator or quencher. We have developed a new fluid for 3 rd generation immersion fluids. It had a higher refractive index than that of HIL-001 or HIL-203; however, it still falls short of our target value. Additionally, by using a novel design concept, we have developed a top-coat with high refractive index for HIL immersion lithography, which gave an appropriate contact angle for scanning exposure.

  5. Development of high-transmittance phase-shifting mask for ArF immersion lithography

    NASA Astrophysics Data System (ADS)

    Ahn, Won-suk; Seo, Hwan-Seok; Bang, Ju-Mi; Kim, Ji-Young; Song, Jae-Min; Seung, Byoung-Hoon; Kim, Hee-Bom; Jeon, Chan-Uk

    2015-07-01

    A new PSM using high transmittance is developed to overcome patterning process limits in ArF immersion lithography. We optimized mask structure, materials, and film thicknesses for patterning process. A new material for phase-shifter is applied to the HT-PSM to exhibit higher transmittance in ArF wavelengths and the thickness of the new material is thinner than that of the conventional 6% phase-shifter (MoSiON). A new blank structure using a MoSi shading layer with double Cr hardmasks (HM) is developed and suggested for the HTPSM process. Double HM blank stacks enable the HT-PSM to adopt thin PR process for resolution enhancement in mask process. The first Cr on the MoSi is utilized as a HM to etch MoSi shading layer, an adhesion layer for PR process, and also a capping layer to protect blind area during MoSi and phase-shifter etching. In contrast, the role of the second Cr between MoSi and phase-shifter is an etch stopper for MoSi and a HM to etch phase-shifter at the same time. However, Double HM process has some problems, such as first Cr removal during second Cr etching and complex process steps. To solve the Cr removal issues, we evaluated various Cr layers which have different etchrates and compositions. According to the evaluations, we optimized thicknesses and compositions of the two Cr layers and corresponding etching conditions. Lithography simulations demonstrate that the new HT-PSM has advantages in NILS in aerial images. As a result, initial wafer exposure experiments using the HT-PSM show 13-32% improvements in LCDU compared to that of the conventional 6% PSM due to its higher NILS.

  6. RET masks for patterning 45nm node contact hole using ArF immersion lithography

    NASA Astrophysics Data System (ADS)

    Hsu, Michael; Chen, J. Fung; Van Den Broeke, Doug; En Tszng, Shih; Shieh, Jason; Hsu, Stephen; Shi, Xuelong

    2006-05-01

    Immersion exposure system with the numerical aperture (NA) greater than unity effectively extends the printing resolution limit without the need of shrinking the exposure wavelength. From the perspective of imaging contact hole mask, we are convinced that a mature ArF immersion exposure system will be able to meet 45nm node manufacturing requirement. However, from a full-chip mask data processing point of view, a more challenging question could be: how to ensure the intended RET mask to best achieve a production worthy solution? At 45nm, we are using one-fourth of the exposure wavelength for the patterning; there is very little room for error. For full-chip, especially for contact hole mask, we need a robust RET mask strategy to ensure sufficient CD control. A production-worthy RET mask technology should have good imaging performance with advanced exposure system; and, it should base on currently available mask blank material and be compatible with the existing mask making process. In this work, we propose a new type of contact hole RET masks that is capable of 45nm node full-chip manufacturing. Three types of potential RET masks are studied. The 1st type is the conventional 6% attenuated PSM (attPSM) with 0-phase Scattering Bars (SB). The 2nd type is to use CPL mask with both 0- and π-phase SB, and their relative placements are based on interference mapping lithography (IML) under optimized illumination. The 3rd type, here named as 6% CPL, can be thought of as a CPL mask type with 6% transmission on the background but with π-phase SB only. Of those three RET masks, 6% CPL mask has the best performance for printing 45nm contact and via masks. To implement 6% CPL for contact and via mask design, we study several critical process steps starting from the illumination optimization, model-based SB OPC, 3D mask effect, quartz etch depth optimization, side-lobe printability verification, and then to the mask making flow. Additionally, we investigate printability for

  7. Novel topcoat materials with improved receding angles and dissolution properties for ArF immersion lithography

    NASA Astrophysics Data System (ADS)

    Yun, Sang Geun; Lee, Jin Young; Yang, Young Soo; Shin, Seung Wook; Lee, Sung Jae; Kwon, Hyo Young; Cho, Youn Jin; Choi, Seung Jib; Choi, Sang Jun; Kim, Jong Seob; Chang, Tuwon

    2010-04-01

    A topcoat material plays a significant role in achieving technology nodes below 45 nm via ArF immersion lithography. Switching the exposure medium between the lens and the photoresist (PR) film from gas (air, n=1) to liquid (H2O, n=1.44) may lead to leaching of the polymer, the photoacid generator (PAG), or the solvent. These substances can contaminate the lens or cause bubbles, which can lead to defects during the patterning. Previously reported topcoat materials mainly use hydrophobic fluoro-compounds and carboxylic acids to provide high dissolution rates (DR) to basic developers as well as high receding contact angles (RCA). Recently, the demand for a new top-coat material has risen since current materials cause water-mark defects and decreases in scan speeds, due to insufficient RCA's. However, RCA and DR are in a trade-off relationship as an increase in RCA generally results in a lower DR. To overcome this, a novel polymer with high-fluorine content was synthesized to produce a topcoat material with improved DR (120 nm/s in 2.38 wt% TMAH) and RCA (>70°). In addition, a strategy to control the pattern profile according to needs of customers was found.

  8. A reliable higher power ArF laser with advanced functionality for immersion lithography

    NASA Astrophysics Data System (ADS)

    Kurosu, Akihiko; Nakano, Masaki; Yashiro, Masanori; Yoshino, Masaya; Tsushima, Hiroaki; Masuda, Hiroyuki; Kumazaki, Takahito; Matsumoto, Shinichi; Kakizaki, Kouji; Matsunaga, Takashi; Okazaki, Shinji; Fujimoto, Junichi; Mizoguchi, Hakaru

    2012-03-01

    193nm ArF eximer lasers are expected to continue to be the main solution in photolithography, since advanced lithography tecnologies such as Multiple patterning and Self-aligned double patterning (SADP) are being developed. In order to appliy these tecnologies to high-volume semiconductor manufactureing, the key is to contain chip manufactureing costs. Therefore, improvement on Reliability, Availability and Maintainability of ArF excimer lasers is important.[1] We works on improving productivity and reducing downtime of ArF exmer lasers, which leads to Reliability, Availability and Maintainability improvemnet. First in this paper, our focus drilling tecnique, which increases depth of focus (DoF) by spectral bandwidth tuning is introdueced. This focus drilling enables to increase DoF for isolated contact holes. and it not degrades the wafer stage speed.[2] Second, a technique which eables to reduce gas refill time to zero is introduced. This technique reduces downtime so Availavility is expected to improve. In this paper, we report these tecniques by using simulation resutls and partially experimental resutls provided by a semiconductor manufacturer.

  9. The ArF laser for the next-generation multiple-patterning immersion lithography supporting green operations

    NASA Astrophysics Data System (ADS)

    Ishida, Keisuke; Ohta, Takeshi; Miyamoto, Hirotaka; Kumazaki, Takahito; Tsushima, Hiroaki; Kurosu, Akihiko; Matsunaga, Takashi; Mizoguchi, Hakaru

    2016-03-01

    Multiple patterning ArF immersion lithography has been expected as the promising technology to satisfy tighter leading edge device requirements. One of the most important features of the next generation lasers will be the ability to support green operations while further improving cost of ownership and performance. Especially, the dependence on rare gases, such as Neon and Helium, is becoming a critical issue for high volume manufacturing process. The new ArF excimer laser, GT64A has been developed to cope with the reduction of operational costs, the prevention against rare resource shortage and the improvement of device yield in multiple-patterning lithography. GT64A has advantages in efficiency and stability based on the field-proven injection-lock twin-chamber platform (GigaTwin platform). By the combination of GigaTwin platform and the advanced gas control algorithm, the consumption of rare gases such as Neon is reduced to a half. And newly designed Line Narrowing Module can realize completely Helium free operation. For the device yield improvement, spectral bandwidth stability is important to increase image contrast and contribute to the further reduction of CD variation. The new spectral bandwidth control algorithm and high response actuator has been developed to compensate the offset due to thermal change during the interval such as the period of wafer exchange operation. And REDeeM Cloud™, new monitoring system for managing light source performance and operations, is on-board and provides detailed light source information such as wavelength, energy, E95, etc.

  10. High refractive index materials design for the next generation ArF immersion lithography

    NASA Astrophysics Data System (ADS)

    Furukawa, Taiichi; Kishida, Takanori; Yasuda, Kyouyuu; Shimokawa, Tsutomu; Liu, Zhi; Slezak, Mark; Hieda, Katsuhiko

    2008-03-01

    High-refractive-index fluids (HIFs) are being considered to replace water as the immersion fluid in next generation 193nm immersion scanner. We have demonstrated the attractive optical properties for our HIF candidates, HIL-001, HIL-203 and HIL-204. Especially, HIL-203 and HIL-204 have higher transmittance compared to water. In this paper, we describe our latest results on the comparative evaluations including photo-degradation behavior and lens contamination phenomenon in a flow system. For laser induced fluid degradation behavior, it was shown the higher initial transmittance resulted in the higher laser durability. However, the complicated phenomenon was observed for the lens contamination test. That is, HIL-204 with higher initial transmittance showed higher lens contamination rate than HIL-203. From several analyses, the complicated behaviors among HILs were speculated to be caused by the different nature of photo-degraded impurities. In order to control the fluid transmittance change and suppress the lens contamination during exposure, the refining process was definitely necessary for HIL reuse system. Based on the refining mechanism and the refining material design, we have developed an appropriate refinement unit named Refine B. This approach provided us with the result that Refine B could control the change of fluid transmittance and suppress the lens contamination rate.

  11. Immersion defectivity study with volume production immersion lithography tool

    NASA Astrophysics Data System (ADS)

    Nakano, Katsushi; Kato, Hiroshi; Fujiwara, Tomoharu; Shiraishi, K.; Iriuchijima, Yasuhiro; Owa, Soichi; Malik, Irfan; Woodman, Steve; Terala, Prasad; Pelissier, Christine; Zhang, Haiping

    2007-03-01

    ArF immersion lithography has become accepted as the critical layer patterning solution for lithography going forward. Volume production of 55 nm devices using immersion lithography has begun. One of the key issues for the success of volume production immersion lithography is the control of immersion defectivity. Because the defectivity is influenced by the exposure tool, track, materials, and the wafer environment, a broad range of analysis and optimization is needed to minimize defect levels. Defect tests were performed using a dedicated immersion cluster consisting of a volume production immersion exposure tool, Nikon NSR-S609B, having NA of 1.07, and a resist coater-developer, TEL LITHIUS i+. Miniaturization of feature size by immersion lithography requires higher sensitivity defect inspection. In this paper, first we demonstrate the high sensitivity defect measurement using a next generation wafer inspection system, KLA-Tencor 2800 and Surfscan SP2, on both patterned and non-patterned wafers. Long-term defect stability is very important from the viewpoint of device mass production. Secondly, we present long-term defectivity data using a topcoat-less process. For tool and process qualification, a simple monitor method is required. Simple, non-pattern immersion scanned wafer measurement has been proposed elsewhere, but the correlation between such a non-pattern defect and pattern defect must be confirmed. In this paper, using a topcoat process, the correlation between topcoat defects and pattern defects is analyzed using the defect source analysis (DSA) method. In case of accidental tool contamination, a cleaning process should be established. Liquid cleaning is suitable because it can be easily introduced through the immersion nozzle. An in-situ tool cleaning method is introduced. A broad range of optimization of tools, materials, and processes provide convincing evidence that immersion lithography is ready for volume production chip manufacturing.

  12. Immersion lithography bevel solutions

    NASA Astrophysics Data System (ADS)

    Tedeschi, Len; Tamada, Osamu; Sanada, Masakazu; Yasuda, Shuichi; Asai, Masaya

    2008-03-01

    The introduction of Immersion lithography, combined with the desire to maximize the number of potential yielding devices per wafer, has brought wafer edge engineering to the forefront for advanced semiconductor manufactures. Bevel cleanliness, the position accuracy of the lithography films, and quality of the EBR cut has become more critical. In this paper, the effectiveness of wafer track based solutions to enable state-of-art bevel schemes is explored. This includes an integrated bevel cleaner and new bevel rinse nozzles. The bevel rinse nozzles are used in the coating process to ensure a precise, clean film edge on or near the bevel. The bevel cleaner is used immediately before the wafer is loaded into the scanner after the coating process. The bevel cleaner shows promise in driving down defectivity levels, specifically printing particles, while not damaging films on the bevel.

  13. Solvent Immersion Imprint Lithography

    SciTech Connect

    Vasdekis, Andreas E.; Wilkins, Michael J.; Grate, Jay W.; Kelly, Ryan T.; Konopka, Allan; Xantheas, Sotiris S.; Chang, M. T.

    2014-06-21

    The mechanism of polymer disolution was explored for polymer microsystem prototyping, including microfluidics and optofluidics. Polymer films are immersed in a solvent, imprinted and finally brought into contact with a non-modified surface to permanently bond. The underlying polymer-solvent interactions were experimentally and theoretically investigated, and enabled rapid polymer microsystem prototyping. During imprinting, small molecule integration in the molded surfaces was feasible, a principle applied to oxygen sensing. Polystyrene (PS) was employed for microbiological studies at extreme environmental conditions. The thermophile anaerobe Clostridium Thermocellum was grown in PS pore-scale micromodels, revealing a double mean generation lifetime than under ideal culture conditions. Microsystem prototyping through directed polymer dissolution is simple and accessible, while simultaneous patterning, bonding, and surface/volume functionalization are possible in less than one minute.

  14. High-n immersion lithography

    NASA Astrophysics Data System (ADS)

    Sewell, Harry; Mulkens, Jan; Graeupner, Paul; McCafferty, Diane; Markoya, Louis; Donders, Sjoerd; Cortie, Rogier; Meijers, Ralph; Evangelista, Fabrizio; Samarakone, Nandarisi

    2008-03-01

    A two-year study on the feasibility of High-n Immersion Lithography shows very promising results. This paper reports the findings of the study. The evaluation shows the tremendous progress made in the development of second-generation immersion fluid technology. Candidate fluids from several suppliers have been evaluated. All the commercial fluids evaluated are viable, so there are a number of options. Life tests have been conducted on bench top fluid-handling systems and the results referenced to full-scale systems. Parameters such as Dose per Laser Pulse, Pulse Rate, Fluid Flow Rate, and Fluid Absorbency at 193nm, and Oxygen/Air Contamination Levels were explored. A detailed evaluation of phenomena such as Last Lens Element (LLE) contamination has been conducted. Lens cleaning has been evaluated. A comparison of High-n fluid-based technology and water-based immersion technology shows interesting advantages of High-n fluid in the areas of Defect and Resist Interaction. Droplet Drying tests, Resist Staining evaluations, and Resist Contrast impact studies have all been run. Defect-generating mechanisms have been identified and are being eliminated. The lower evaporation rate of the High-n fluids compared with water shows the advantages of High-n Immersion. The core issue for the technology, the availability of High-n optical material for use as the final lens element, is updated. Samples of LuAG material have been received from development partners and have been evaluated. The latest status of optical materials and the technology timelines are reported. The potential impact of the availability of the technology is discussed. Synergy with technologies such as Double Patterning is discussed. The prospects for <22nm (hp) are evaluated.

  15. A temperature control algorithm of immersion liquid for immersion lithography

    NASA Astrophysics Data System (ADS)

    He, Junwei; Li, Xiaoping; Lei, Min; Chen, Bing; Wang, Jinchun

    2014-03-01

    Immersion lithography is one of the main technologies used to manufacture integrated circuits with the shortest feature size. In immersion lithography, temperature of immersion liquid is strictly constrained and its allowable range is less than +/-0.01°C at 22°C. To meet this requirement, a temperature control algorithm adopted by the test rig which controls the temperature of the immersion liquid with process cooling water (PCW) via heat exchangers is proposed. By adjusting the flow rate of PCW through the heat exchangers, the control system varies the amount of heat exchanged, and the temperature of the immersion liquid can be properly controlled. The temperature control rig is a multi-disturbed, timevariant, non-linear and time-delayed system and its transfer function varies with the inlet temperature and flow rates of the streams through the heat exchangers. Considering the characteristics of the system, a cascade-connected fuzzy PID feedback algorithm is designed.

  16. Self-segregating materials for immersion lithography

    NASA Astrophysics Data System (ADS)

    Sanders, Daniel P.; Sundberg, Linda K.; Brock, Phillip J.; Ito, Hiroshi; Truong, Hoa D.; Allen, Robert D.; McIntyre, Gregory R.; Goldfarb, Dario L.

    2008-03-01

    In this paper, we employ the self-segregating materials approach used in topcoat-free resists for water immersion lithography to extend the performance of topcoat materials for water immersion and to increase the contact angles of organic fluids on topcoat-free resists for high index immersion lithography. By tailoring polymers that segregate to the air and resist interfaces of the topcoat, high contact angle topcoats with relatively low fluorine content are achieved. While graded topcoats may extend the performance and/or reduce the cost of topcoat materials, the large amount of unprotected acidic groups necessary for TMAH development prevent them from achieving the high contact angles and low hysteresis exhibited by topcoat-free resists. Another application of this self-segregating approach is tailoring resist surfaces for high index immersion. Due to the low surface tension and higher viscosities of organic fluids relative to water and their lower contact angles on most surfaces, film pulling cannot be prevented without dramatically reducing wafer scan rates; however, tuning the surface energy of the resist may be important to control stain morphology and facilitate fluid removal from the wafer. By tailoring fluoropolymer additives for high contact angles with second generation organic high index immersion fluids, we show herein that topcoat-free resists can be developed specifically for high index immersion lithography with good contact angles and lithographic imaging performance.

  17. Material design for immersion lithography with high refractive index fluid (HIF)

    NASA Astrophysics Data System (ADS)

    Miyamatsu, Takashi; Wang, Yong; Shima, Motoyuki; Kusumoto, Shiro; Chiba, Takashi; Nakagawa, Hiroki; Hieda, Katsuhiko; Shimokawa, Tsutomu

    2005-05-01

    ArF immersion lithography is considered as the most promising next generation technology which enables to a 45 nm node device manufacturing and below. Not only depth of focus enlargement, immersion lithography enables to use hyper numerical aperture (NA) larger than 1.0 and achieve higher resolution capability. For 193nm lithography, water is an ideal immersion fluid, providing suitable refractive index and transmission properties. Furthermore the higher refractive index fluid is expected to provide a potential extension of optical lithography to the 32 nm node. This paper describes the material design for immersion lithography with high refractive index fluid. We have developed promising high refractive index fluids which satisfy the requirement for immersion fluid by screening wide variety of organic compounds. The physical and chemical properties of this high refractive index fluid are discussed in detail. Also the topcoat material which has good matching with high refractive index fluid is developed. While this topcoat material is soluble into aqueous TMAH developer, it does not dissolve into water or high refractive index fluid and gives suitable contact angle for immersion scan exposure. Immersion exposure experiments using high refractive index fluid with and w/o topcoat material was carried out and its lithographic performance is presented in this paper.

  18. Comparison study for sub-0.13-μm lithography between ArF and KrF lithography

    NASA Astrophysics Data System (ADS)

    Kim, Seok-Kyun; Kim, YoungSik; Kim, Jin-Soo; Bok, Cheol-Kyu; Ham, Young-Mog; Baik, Ki-Ho

    2000-07-01

    In this paper we investigated the feasibility of printing sub-0.13 micrometers device patterns with ArF and KrF lithography by using experiment and simulation. To do this we evaluated various cell structures with different sizes from 0.26 micrometers to 0.20 micrometers pitch. In experiment 0.60NA ArF and 0.70NA KrF exposure tools, commercial and in house resists and bottom anti-reflective coating (BARC) materials are used. To predict and compare with experimental data we also used our developed simulation tool HOST base don diffused aerial iamge model. We found that ArF lithography performance is a little bit better than KrF and therefore 0.70NA KrF lithography can be used up to 0.12 micrometers design rule device and 0.60NA ArF lithography can be used up to 0.11 micrometers . But to get more than 10 percent expose latitude, 0.13 micrometers with KrF and 0.12 micrometers with ArF are the minimum design rule size. However to obtain process margin we had to use extreme off-axis illumination (OAI) which results in large isolated- dense bias and poor linearity including isolated pattern. Using higher NA can reduce ID bias and mask error factor. For contact hole it is more effective to use KrF lithography because resist thermal flow process can be used to shrink C/H size. Our developed ArF resist and BARC shows good performance and we can reduce k1 value up to 0.34. Through this study we verified again that ArF lithography can be applied for sub-0.13 micrometers device through sub-0.10 micrometers with high contrast resist and 0.75NA exposure tool.

  19. Film stacking architecture for immersion lithography process

    NASA Astrophysics Data System (ADS)

    Goto, Tomohiro; Sanada, Masakazu; Miyagi, Tadashi; Shigemori, Kazuhito; Kanaoka, Masashi; Yasuda, Shuichi; Tamada, Osamu; Asai, Masaya

    2008-03-01

    In immersion lithography process, film stacking architecture will be necessary due to film peeling. However, the architecture will restrict lithographic area within a wafer due to top side EBR accuracy In this paper, we report an effective film stacking architecture that also allows maximum lithographic area. This study used a new bevel rinse system on RF3 for all materials to make suitable film stacking on the top side bevel. This evaluation showed that the new bevel rinse system allows the maximum lithographic area and a clean wafer edge. Patterning defects were improved with suitable film stacking.

  20. Immersion and 32nm lithography: now and future

    NASA Astrophysics Data System (ADS)

    Kameyama, Masaomi; McCallum, Martin

    2007-12-01

    The amazing growth of the semiconductor industry over the past decades has been supported, and in many cases driven, by miniaturization of devices. Behind this has been one strong backbone - lithography. In the 1970's, devices had geometries of several micrometers, but now we are about to enter 45nm device pre-production and shortly after move it into volume-production. Immersion lithography, although having a short development time, is already in production and will become the primary technology driver. What we need to do now is identify the solutions for 32nm lithography. There are several candidates for 32nm lithography, such as EUVL, High Index Immersion and Double Patterning / Double Exposure. Other more esoteric technologies such as nanoimprint and maskless lithography have also been mentioned. In this paper, the present status of Immersion lithography will be reviewed and each of the 32nm candidates are reviewed.

  1. Evaluation of ArF lithography for 45-nm node implant layers

    NASA Astrophysics Data System (ADS)

    Bailey, T. C.; Maynollo, J.; Perez, J. J.; Popova, I.; Zhang, B.

    2007-03-01

    Scaling of designs to the 45nm or future nodes presents challenges for KrF lithography. The purpose of this work was to explore several aspects of ArF lithography for implant layers. A comparison of dark loss seen in a KrF resist and TARC system to that seen in an ArF system showed significant differences. While the KrF resist yielded dark loss that varied with CD and pitch, the ArF resist showed very little dark loss and no significant variation through the design space. ArF resist were observed to have marginal adhesion to various substrates. Improvements in adhesion performance were shown by pre-treating the substrate with various processes, of which an ozone clean provided the best results. Optimization of the HMDS priming conditions also improved adhesion, and it was observed that the HMDS reaction proceeds at different rates on different subsatrates, which is particularly important for implant layers where the resist must adhere to both Si and SiO II. The effect of ArF resist profile with varying reflectivity swing position is shown, and some investigation into reflectivity optimization techniques was performed. Low-index ArF TARC was shown to reduce the CD variation over polysilicon topography, and wet developable BARC was demonstrated to provide consistent profiles on both Si and SiO II substrates. Finally, a comparison of ArF and KrF resists after As implant indicates that the ArF resist showed similar shrinkage performance to the KrF resist.

  2. 0.33-k1 ArF lithography for 100-nm DRAM

    NASA Astrophysics Data System (ADS)

    Bok, Cheol-Kyu; Kim, Seok-Kyun; Kim, Hee-Bom; Oh, Jin-Sung; Ahn, Chang-Nam; Shin, Ki-Soo

    2002-07-01

    We have evaluated 0.33k1 ArF lithography using 0.63NA scanner to develop 100 nm DRAM. ArF resist problems were resist pattern shrinkage during CD SEM measurement, resist pattern collapse during wet development and poor etch resistance. Off-Site Measurement (OSM) method has been developed for decreasing pattern shrinkage. With OSM method, 8nm of CD shrinkage was down to 2nm for 100nm L/S patterns. We have found a proper BARC material that prevents resist patterns falling down. Lack of etch resistance was compensated by hard mask. With W/SiN hard mask, acrylate- type resist patterns were transferred well into W/poly-Si gate patterns. We have simulated process window of critical DRAM cell patterns (isolation, gate, bit line contact, storage node) in the simple off-axis illumination (OAI) and optical proximity correction (OPC) conditions based on single exposure. Simulation results were verified by lithography tests and it turned out that 0.33k1 process was possible with exposure latitude of above 10% and focus latitude of more than 0.4 micrometers . 0.33k1 ArF lithography was successfully implemented into 100 nm DRAM with CD uniformity of 10nm (3 (sigma) ) and overlay accuracy of 30 nm (mean +3 (sigma) ). We have also evaluated double exposure technique using dipole illumination targeting 90 nm in order to see the possibility of 0.29k1 process. 0.29k1 process was also likely to be possible, although some specific improvements were recommended for the wider process window. From the simulation and resist patterning results, we believe that 0.85 NA lens will be able to extend ArF lithography into 75 nm by single exposure technology using crosspole illumination (0.33k1 process) and 65 nm by double exposure technology using dipole and crosspole illumination (0.29k1 process).

  3. Receding contact lines: From sliding drops to immersion lithography

    NASA Astrophysics Data System (ADS)

    Winkels, K. G.; Peters, I. R.; Evangelista, F.; Riepen, M.; Daerr, A.; Limat, L.; Snoeijer, J. H.

    2011-02-01

    Instabilities of receding contact lines often occur through the formation of a corner with a very sharp tip. These dewetting structures also appear in the technology of Immersion Lithography, where water is put between the lens and the silicon wafer to increase the optical resolution. In this paper we aim to compare corners appearing in Immersion Lithography to those at the tail of gravity driven-drops sliding down an incline. We use high speed recordings to measure the dynamic contact angle and the sharpness of the corner, for varying contact line velocity. It is found that these quantities behave very similarly for Immersion Lithography and drops on an incline. In addition, the results agree well with predictions by a lubrication model for cornered contact lines, hinting at a generic structure of dewetting corners.

  4. Design of chirped fly's eye uniformizer for ArF lithography illumination system

    NASA Astrophysics Data System (ADS)

    Xiao, Lei; Li, Yanqiu; Wei, Lidong

    2014-11-01

    Fly's eye uniformizer is the key part of ArF lithography illumination system, whose main function is to illuminate the reticle uniformly. Due to the periodic structure of regular fly's eye uniformizer and the high coherence of the ArF laser, the output intensity distribution is modulated with equidistant sharp intensity peaks (interference speckle pattern) which disturbed the uniformity on the reticle. In this paper, we design a chirped fly's eye uniformizer which consists of chirped fly's eye and a condenser for illumination system in ArF lithography system. The chirped fly's eye consists of individually shaped micro-lenses defined by a parametric description which can be derived completely from analytical functions. The micro-lenses with different thicknesses in the chirped fly's eye have a function of delaying the optical path which reducing the laser coherence and speckle pattern on the reticle. Detailed design process of the chirped fly's eye uniformizer for numerical aperture (NA) 0.75 lithography illumination system is presented. Light intensity distribution on reticle produced by regular and chirped fly's eye uniformizer are analyzed and compared by the method of wave optics, and the results show that chirped can restrain sharp intensity peaks efficiently. Furthermore, the chirped fly's eye uniformizer has been traced in LightTools software under conventional and annual illumination modes, and the non-uniformity of the non-scan and scan direction on the reticle reached 0.75% and 1.24% respectively. The simulation results show that the chirped fly's eye uniformizer can provide high illumination uniformity and reduce the speckle pattern efficiently without additional elements.

  5. Integration considerations for 130-nm device patterning using ArF lithography

    NASA Astrophysics Data System (ADS)

    Okoroanyanwu, Uzodinma; Levinson, Harry J.; Yang, Chih-Yuh; Pangrle, Suzette K.; Schefske, Jeff A.; Kent, Eric

    2000-07-01

    With the delivery of ful field ArF steppers and scanners to the leading edge IC manufacturers in 1999 for process development work, the industry is poised to implement ArF lithography in volume production in a few years from now. The introduction of ArF lithography in large volume deice manufacturing will be at the 130-nm technology node, with a k1-factor of roughly 0.4. This will represent the first time in the history of the semiconductor industry when the critical feature size of first generation devices for a given technology node is significantly smaller than the lithographic wavelength used in the patterning. Accordingly, there are a number of integration issues that must be resolved to ensure the successful implement of this technology. Such issues include antireflection coatings issues like reflectivity control and thickness, and the tradeoffs between using organic and inorganic ARCs; resist material issues like optical absorption, feature profile, CD uniformity and line edge roughness; and etch issues like resist loss, line edge roughening, endcap pullback, etc. For instance, one of the major problems with most currently available 193-nm resists is their high optical absorption at the exposure wavelength. This necessitates the use of significantly thinner 193-nm resist films than have been the case in earlier lithographic regimes, but etch considerations preclude this option as these materials do not have bey good etch stability. A balance between absorption and etch requirements must therefore be struck to ensure the successful implementation of this lithography. The above outlined integration issues involved in striking this balance are the subject of this paper, and they will be presented from a patterning perspective. Our exposures are made with ASML/900 full field scanner.

  6. Directed self-assembly graphoepitaxy template generation with immersion lithography

    NASA Astrophysics Data System (ADS)

    Ma, Yuansheng; Lei, Junjiang; Andres Torres, J.; Hong, Le; Word, James; Fenger, Germain; Tritchkov, Alexander; Lippincott, George; Gupta, Rachit; Lafferty, Neal; He, Yuan; Bekaert, Joost; Vanderberghe, Geert

    2015-07-01

    We present an optimization methodology for the template designs of subresolution contacts using directed self-assembly (DSA) with graphoepitaxy and immersion lithography. We demonstrate the flow using a 60-nm-pitch contact design in doublet with Monte Carlo simulations for DSA. We introduce the notion of template error enhancement factor (TEEF) to gauge the sensitivity of DSA printing infidelity to template printing infidelity and evaluate optimized template designs with TEEF metrics. Our data show that source mask optimization and inverse lithography technology are critical to achieve sub-80 nm non-L0 pitches for DSA patterns using 193i.

  7. Modular Polymer Biosensors by Solvent Immersion Imprint Lithography

    SciTech Connect

    Moore, Jayven S.; Xantheas, Sotiris S.; Grate, Jay W.; Wietsma, Thomas W.; Gratton, Enrico; Vasdekis, Andreas

    2016-01-01

    We recently demonstrated Solvent Immersion Imprint Lithography (SIIL), a rapid benchtop microsystem prototyping technique, including polymer functionalization, imprinting and bonding. Here, we focus on the realization of planar polymer sensors using SIIL through simple solvent immersion without imprinting. We describe SIIL’s impregnation characteristics, including an inherent mechanism that not only achieves practical doping concentrations, but their unexpected 4-fold enhancement compared to the immersion solution. Subsequently, we developed and characterized optical sensors for detecting molecular O2. To this end, a high dynamic range is reported, including its control through the immersion duration, a manifestation of SIIL’s modularity. Overall, SIIL exhibits the potential of improving the operating characteristics of polymer sensors, while significantly accelerating their prototyping, as it requires a few seconds of processing and no need for substrates or dedicated instrumentation. These are critical for O2 sensing as probed by way of example here, as well as any polymer permeable reactant.

  8. 32 nm logic patterning options with immersion lithography

    NASA Astrophysics Data System (ADS)

    Lai, K.; Burns, S.; Halle, S.; Zhuang, L.; Colburn, M.; Allen, S.; Babcock, C.; Baum, Z.; Burkhardt, M.; Dai, V.; Dunn, D.; Geiss, E.; Haffner, H.; Han, G.; Lawson, P.; Mansfield, S.; Meiring, J.; Morgenfeld, B.; Tabery, C.; Zou, Y.; Sarma, C.; Tsou, L.; Yan, W.; Zhuang, H.; Gil, D.; Medeiros, D.

    2008-03-01

    The semiconductor industry faces a lithographic scaling limit as the industry completes the transition to 1.35 NA immersion lithography. Both high-index immersion lithography and EUV lithography are facing technical challenges and commercial timing issues. Consequently, the industry has focused on enabling double patterning technology (DPT) as a means to circumvent the limitations of Rayleigh scaling. Here, the IBM development alliance demonstrate a series of double patterning solutions that enable scaling of logic constructs by decoupling the pattern spatially through mask design or temporally through innovative processes. These techniques have been successfully employed for early 32nm node development using 45nm generation tooling. Four different double patterning techniques were implemented. The first process illustrates local RET optimization through the use of a split reticle design. In this approach, a layout is decomposed into a series of regions with similar imaging properties and the illumination conditions for each are independently optimized. These regions are then printed separately into the same resist film in a multiple exposure process. The result is a singly developed pattern that could not be printed with a single illumination-mask combination. The second approach addresses 2D imaging with particular focus on both line-end dimension and linewidth control [1]. A double exposure-double etch (DE2) approach is used in conjunction with a pitch-filling sacrificial feature strategy. The third double exposure process, optimized for via patterns also utilizes DE2. In this method, a design is split between two separate masks such that the minimum pitch between any two vias is larger than the minimum metal pitch. This allows for final structures with vias at pitches beyond the capability of a single exposure. In the fourth method,, dark field double dipole lithography (DDL) has been successfully applied to BEOL metal structures and has been shown to be

  9. Extending immersion lithography down to 1x nm production nodes

    NASA Astrophysics Data System (ADS)

    de Boeij, Wim P.; Pieternella, Remi; Bouchoms, Igor; Leenders, Martijn; Hoofman, Marjan; de Graaf, Roelof; Kok, Haico; Broman, Par; Smits, Joost; Kuit, Jan-Jaap; McLaren, Matthew

    2013-04-01

    In this paper we report on the performance enhancements on the NXT immersion scanner platform to support the immersion lithography roadmap. We particular discuss scanner modules that enable future overlay and focus requirements. Among others we describe the improvements in grid calibrations and grid matching; thermal control of reticle heating with dynamic systems adjustments; aberration tuning and FlexWave-lens heating control as well as aberration- and overlay-metrology on wafer-2-wafer timescales. Finally we address reduction of leveling process dependencies, stage servo dynamics and wafer table flatness to enhance on-product focus and leveling performance. We present and discuss module- and system-data of the above mentioned scanner improvements.

  10. Study on immersion lithography defectivity improvement in memory device manufacturing

    NASA Astrophysics Data System (ADS)

    He, Weiming; Hu, Huayong; Wu, Qiang

    2015-03-01

    As integrated circuit (IC) industry steps into immersion lithography's era, defectivity in photolithography becomes more complex which requires more efforts in the analysis and solution finding when compared to traditional dry lithographic process. In this paper, we focus on one type of immersion defect from memory or flash memory devices with typical mask layouts. Since the use of self-aligned double patterning (SADP) or other double patterning techniques, the original single pattern layer has to be split into 2 mask layers: logic area vs cell area. One characteristic of such split process is that the total mask transmission rate (TR) is above 70%, with extended open area and a pattern area with a transmission rate close to 50%. This indicates that it may have special defect mechanism and type compared to logic devices. We have found one type of residue defect with center ring-like map. We have studied this defect with different development recipes and analyzed their underlying mechanisms. We have also studied the effect of different immersion photoresists including types with top-coating and without top-coating, as well as the effect of bottom anti-reflection coating (BARC) substrate (organic-BARC/Si-BARC). The results of our study will be presented and discussed.

  11. Solvent immersion nanoimprint lithography of fluorescent conjugated polymers

    SciTech Connect

    Whitworth, G. L.; Zhang, S.; Stevenson, J. R. Y.; Ebenhoch, B.; Samuel, I. D. W.; Turnbull, G. A.

    2015-10-19

    Solvent immersion imprint lithography (SIIL) was used to directly nanostructure conjugated polymer films. The technique was used to create light-emitting diffractive optical elements and organic semiconductor lasers. Gratings with lateral features as small as 70 nm and depths of ∼25 nm were achieved in poly(9,9-dioctylfluorenyl-2,7-diyl). The angular emission from the patterned films was studied, comparing measurement to theoretical predictions. Organic distributed feedback lasers fabricated with SIIL exhibited thresholds for lasing of ∼40 kW/cm{sup 2}, similar to those made with established nanoimprint processes. The results show that SIIL is a quick, convenient and practical technique for nanopatterning of polymer photonic devices.

  12. Immersion defectivity study with volume production immersion lithography tool for 45 nm node and below

    NASA Astrophysics Data System (ADS)

    Nakano, Katsushi; Nagaoka, Shiro; Yoshida, Masato; Iriuchijima, Yasuhiro; Fujiwara, Tomoharu; Shiraishi, Kenichi; Owa, Soichi

    2008-03-01

    Volume production of 45nm node devices utilizing Nikon's S610C immersion lithography tool has started. Important to the success in achieving high-yields in volume production with immersion lithography has been defectivity reduction. In this study we evaluate several methods of defectivity reduction. The tools used in our defectivity analysis included a dedicated immersion cluster tools consisting of a Nikon S610C, a volume production immersion exposure tool with NA of 1.3, and a resist coater-developer LITHIUS i+ from TEL. In our initial procedure we evaluated defectivity behavior by comparing on a topcoat-less resist process to a conventional topcoat process. Because of its simplicity the topcoatless resist shows lower defect levels than the topcoat process. In a second study we evaluated the defect reduction by introducing the TEL bevel rinse and pre-immersion bevel cleaning techniques. This technique was shown to successfully reduce the defect levels by reducing the particles at the wafer bevel region. For the third defect reduction method, two types of tool cleaning processes are shown. Finally, we discuss the overall defectivity behavior at the 45nm node. To facilitate an understanding of the root cause of the defects, defect source analysis (DSA) was applied to separate the defects into three classes according to the source of defects. DSA analysis revealed that more than 99% of defects relate to material and process, and less than 1% of the defects relate to the exposure tool. Material and process optimization by collaborative work between exposure tool vendors, track vendors and material vendors is a key for success of 45nm node device manufacturing.

  13. High performance Si immersion gratings patterned with electron beam lithography

    NASA Astrophysics Data System (ADS)

    Gully-Santiago, Michael A.; Jaffe, Daniel T.; Brooks, Cynthia B.; Wilson, Daniel W.; Muller, Richard E.

    2014-07-01

    Infrared spectrographs employing silicon immersion gratings can be significantly more compact than spectro- graphs using front-surface gratings. The Si gratings can also offer continuous wavelength coverage at high spectral resolution. The grooves in Si gratings are made with semiconductor lithography techniques, to date almost entirely using contact mask photolithography. Planned near-infrared astronomical spectrographs require either finer groove pitches or higher positional accuracy than standard UV contact mask photolithography can reach. A collaboration between the University of Texas at Austin Silicon Diffractive Optics Group and the Jet Propulsion Laboratory Microdevices Laboratory has experimented with direct writing silicon immersion grating grooves with electron beam lithography. The patterning process involves depositing positive e-beam resist on 1 to 30 mm thick, 100 mm diameter monolithic crystalline silicon substrates. We then use the facility JEOL 9300FS e-beam writer at JPL to produce the linear pattern that defines the gratings. There are three key challenges to produce high-performance e-beam written silicon immersion gratings. (1) E- beam field and subfield stitching boundaries cause periodic cross-hatch structures along the grating grooves. The structures manifest themselves as spectral and spatial dimension ghosts in the diffraction limited point spread function (PSF) of the diffraction grating. In this paper, we show that the effects of e-beam field boundaries must be mitigated. We have significantly reduced ghost power with only minor increases in write time by using four or more field sizes of less than 500 μm. (2) The finite e-beam stage drift and run-out error cause large-scale structure in the wavefront error. We deal with this problem by applying a mark detection loop to check for and correct out minuscule stage drifts. We measure the level and direction of stage drift and show that mark detection reduces peak-to-valley wavefront error

  14. ArF processing of 90-nm design rule lithography achieved through enhanced thermal processing

    NASA Astrophysics Data System (ADS)

    Kagerer, Markus; Miller, Daniel; Chang, Wayne; Williams, Daniel J.

    2006-03-01

    As the lithography community has moved to ArF processing on 300 mm wafers for 90 nm design rules the process characterization of the components of variance continues to highlight the thermal requirements for the post exposure bake (PEB) processing step. In particular as the thermal systems have become increasingly uniform, the transient behavior of the thermal processing system has received the focus of attention. This paper demonstrates how a newly designed and patented thermal processing system was optimized for delivering improved thermal uniformity during a typical 90 second PEB processing cycle, rather than being optimized for steady state performance. This was accomplished with the aid of a wireless temperature measurement wafer system for obtaining real time temperature data and by using a response surface model (RSM) experimental design for optimizing parameters of the temperature controller of the thermal processing system. The new units were field retrofitted seamlessly in <2 days at customer sites without disruption to process recipes or flows. After evaluating certain resist parameters such as PEB temperature sensitivity and post exposure delay (PED) - stability of the baseline process, the new units were benchmarked against the previous PEB plates by processing a split lot experiment. Additional hardware characterization included environmental factors such as air velocity in the vicinity of the PEB plates and transient time between PEB and chill plate. At the completion of the optimization process, the within wafer CD uniformity displayed a significant improvement when compared to the previous hardware. The demonstrated within wafer CD uniformity improved by 27% compared to the initial hardware and baseline process. ITRS requirements for the 90 nm node were exceeded.

  15. ArF negative resist system using androsterone structure with δ-hydroxy acid for 100-nm phase shifting lithography

    NASA Astrophysics Data System (ADS)

    Yokoyama, Yoshiyuki; Hattori, Takashi; Kimura, Kaori; Tanaka, Toshihiko P.; Shiraishi, Hiroshi

    2001-08-01

    A negative resist system utilizing acid-catalyzed intramolecular esterification of (delta) -hydroxy acid has been developed for ArF phase-shifting lithography. The system is made up of an acrylate polymer with pendant structure of androsterone derivative with (delta) -hydroxy acid and a photo-acid generator. We investigated the effect of the comonomer and found that it changes the affinity of the resist polymer to the aqueous base developer. The change of the polarity of the comonomer was found to drastically affect the dissolution properties and the resolution capability. Optimization of the (delta) -hydroxy acid content and the developer concentration prevented pattern deformation such as winding lines and scum between the lines. The improved resist formulation combined with an ArF excimer-laser stepper with a phase-shifting mask produced a clearly resolved 100-nm line-and-space patterns.

  16. Low leaching and low LWR photoresist development for 193 nm immersion lithography

    NASA Astrophysics Data System (ADS)

    Ando, Nobuo; Lee, Youngjoon; Miyagawa, Takayuki; Edamatsu, Kunishige; Takemoto, Ichiki; Yamamoto, Satoshi; Tsuchida, Yoshinobu; Yamamoto, Keiko; Konishi, Shinji; Nakano, Katsushi; Tomoharu, Fujiwara

    2006-03-01

    With no apparent showstopper in sight, the adoption of ArF immersion technology into device mass production is not a matter of 'if' but a matter of 'when'. As the technology matures at an unprecedented speed, many of initial technical difficulties have been cleared away and the use of a protective layer known as top coat, initially regarded as a must, now becomes optional, for example. Our focus of interest has also sifted to more practical and production related issues such as defect reducing and performance enhancement. Two major types of immersion specific defects, bubbles and a large number of microbridges, were observed and reported elsewhere. The bubble defects seem to decrease by improvement of exposure tool. But the other type defect - probably from residual water spots - is still a problem. We suspect that the acid leaching from resist film causes microbridges. When small water spots were remained on resist surface after exposure, acid catalyst in resist film is leaching into the water spots even though at room temperature. After water from the spot is dried up, acid molecules are condensed at resist film surface. As a result, in the bulk of resist film, acid depletion region is generated underneath the water spot. Acid catalyzed deprotection reaction is not completed at this acid shortage region later in the PEB process resulting in microbridge type defect formation. Similar mechanism was suggested by Kanna et al, they suggested the water evaporation on PEB plate. This hypothesis led us to focus on reducing acid leaching to decrease residual water spot-related defect. This paper reports our leaching measurement results and low leaching photoresist materials satisfying the current leaching requirements outlined by tool makers without topcoat layer. On the other hand, Nakano et al reported that the higher receding contact angle reduced defectivity. The higher receding contact angle is also a key item to increase scan speed. The effort to increase the

  17. Extending immersion lithography with high-index materials: results of a feasibility study

    NASA Astrophysics Data System (ADS)

    Sewell, Harry; Mulkens, Jan; Graeupner, Paul; McCafferty, Diane; Markoya, Louis; Donders, Sjoerd; Samarakone, Nandasiri; Duesing, Rudiger

    2007-03-01

    In this paper we report the status of our feasibility work on high index immersion. The development of high index fluids (n>1.64) and high index glass materials (n>1.9) is reported. Questions answered are related to the design of a high NA optics immersion system for fluid containment and fluid handling, and to the compatibility of the fluid with ArF resist processes. Optical design and manufacturing challenges are related to the use of high index glass materials such as crystalline LuAG or ceramic Spinel. Progress on the material development will be reviewed. Progress on immersion fluids development has been sustained. Second-generation fluids are available from many suppliers. For the practical use of second-generation fluids in immersion scanners, we have evaluated and tested fluid recycling concepts in combination with ArF radiation of the fluids. Results on the stability of the fluid and the fluid glass interface will be reported. Fluid containment with immersion hood structures under the lens has been evaluated and tested for several scan speeds and various fluids. Experimental results on scan speed limitations will be presented. The application part of the feasibility study includes the imaging of 29nm L/S structures on a 2-beam interference printer, fluid/resist interaction testing with pre- and post-soak testing. Immersion defect testing using a fluid misting setup was also carried out. Results of these application-related experiments will be presented and discussed.

  18. A year in the life of an immersion lithography alpha tool at Albany NanoTech

    NASA Astrophysics Data System (ADS)

    Tittnich, Michael; Hartley, John; Denbeaux, Greg; Okoroanyanwu, Uzo; Levinson, Harry; Petrillo, Karen; Robinson, Chris; Gil, Dario; Corliss, Dan; Back, David; Brandl, Stefan; Schwarz, Christian; Goodwin, Frank; Wei, Yayi; Martinick, Brian; Housley, Richard; Benson, Peter; Cummings, Kevin

    2006-03-01

    Immersion Lithography continues to get more and more attention as a possible solution for the 45nm technology node puzzle. In 2005, there has, indeed, been a lot of progress made. It has gone from a laboratory curiosity to being one of the industry's prime contenders for the lithography technology of choice for the 45nm node. Yet a lot of work remains to be done before it's fully implemented into production. Today, there are over a dozen full field immersion scanners in R&D and pilot lines all around the world. The first full field, pre-production "Alpha" version of the ASML Twinscan AT 1150i was delivered to Albany NanoTech in August, 2004. A consortium made up of AMD, IBM, Infineon, and Micron Technology began early evaluation of immersion technology and in December of 2004, the production of the world's first Power PC microprocessor using immersion lithography, processed on this tool, was announced by IBM. This paper will present a summary of some of the work that was done on this system over the past year. It will also provide an overview of Albany NanoTech, the facility, its capabilities, and the programs in place. Its operating model, which is heavily focused on cooperative joint ventures, is described. The immersion data presented is a review of the work done by AMD, IBM, Infineon Technologies, and Micron Technology, all members of the INVENT Lithography Consortium in place at Albany NanoTech. All the data was published and presented by the authors in much more detail at the 2005 International Symposium on Immersion Lithography, in Bruges, Belgium.

  19. Study of High Etch Rate Bottom Antireflective Coating and Gap Fill Materials Using Dextrin Derivatives in ArF Lithography

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Shinjo, Tetsuya; Sakaida, Yasushi

    2007-11-01

    In the present paper, we describe a novel class of bottom antireflective coating (BARC) and gap fill materials using dextrin with a-glycoside bonds in a polysaccharide. ArF resist underlayer materials containing a dextrin ester polymer for lithography were studied. Dextrin is a high molecular weight compound with several hydroxyl groups and a low solubility in resist and BARC solvents. Therefore, it is difficult to use dextrin polymers in resist underlayer materials such as BARC and gap fill materials. The main polymer needs to be soluble in propylene glycol monomethylether, propylene glycol monomethylether acetate, and ethyl lactate as common solvents to avoid the issue of defects in the coater cup due to incompatability. The dextrin ester polymer in this study was obtained by the esterification of the hydroxyl groups of dextrin resulting in improved solubility of these organic solvents. The etch rate of the new BARC and gap fill materials of the dextrin ester polymers was more than twofold faster than the etch rate of the ArF resists evaluated under a CF4 gas condition using reactive ion etching. The improved etch performance was also verified by comparison with poly(4-hydroxystyrene) and poly(2-hydroxypropyl methacrylate) as references. In addition to the superior etch performance, these materials showed good resist profiles and via filling performance without voids in via holes. On the basis of our findings, this technology of using the novel dextrin derivatives as sacrificial materials under a resist can be applied in devices of 45 nm node and higher.

  20. Synthesis of novel α-fluoroacrylates and related polymers for immersion lithography

    NASA Astrophysics Data System (ADS)

    Yamashita, Tsuneo; Ishikawa, Takuji; Morita, Masamichi; Kanemura, Takashi; Aoyama, Hirokazu

    2008-03-01

    Immersion lithography is being actively developed toward mass production for 55nm node devices and beyond. Advances are being made toward large depths of focus and higher resolution, but the underlying problem of machine and material cost increases remains. Our work over the past few years has shown that the main-chain fluorinated base resins realized by the co-polymerization of tetrafluoroethylene (TFE) and norbornene derivatives offer high dissolution rates and moderate surface properties. However, it is difficult to synthesis these materials and their high cost is disadvantageous. Recently, we switched our attention to α-fluoroacrylate and have synthesized various monomers and polymers for immersion lithography. α-fluoroacrylate has a polymerization rate faster than acrylate and methacrylate, and its polymers are superior to theirs. In this paper, we will report these synthesis methods and immersion specific properties such as the dissolution rate in standard alkaline solution and water contact angle. Furthermore, we consider with relationship between dissolution rate and polymer structure by infrared method.

  1. Directed self-assembly (DSA) grapho-epitaxy template generation with immersion lithography

    NASA Astrophysics Data System (ADS)

    Ma, Yuansheng; Lei, Junjiang; Torres, J. A.; Hong, Le; Word, James; Fenger, Germain; Tritchkov, Alexander; Lippincott, George; Gupta, Rachit; Lafferty, Neal; He, Yuan; Bekaert, Joost; Vanderberghe, Geert

    2015-03-01

    In this paper, we present an optimization methodology for the template designs of sub-resolution contacts using directed self-assembly (DSA) with grapho-epitaxy and immersion lithography. We demonstrate the flow using a 60nm-pitch contact design in doublet with Monte Carlo simulations for DSA. We introduce the notion of Template Error Enhancement Factor (TEEF) to gauge the sensitivity of DSA printing infidelity to template printing infidelity, and evaluate optimized template designs with TEEF metrics. Our data shows that SMO is critical to achieve sub-80nm non- L0 pitches for DSA patterns using 193i.

  2. 193nm immersion lithography for high-performance silicon photonic circuits

    NASA Astrophysics Data System (ADS)

    Selvaraja, Shankar K.; Winroth, Gustaf; Locorotondo, Sabrina; Murdoch, Gayle; Milenin, Alexey; Delvaux, Christie; Ong, Patrick; Pathak, Shibnath; Xie, Weiqiang; Sterckx, Gunther; Lepage, Guy; Van Thourhout, Dries; Bogaerts, Wim; Van Campenhout, Joris; Absil, Philippe

    2014-04-01

    Large-scale photonics integration has been proposed for many years to support the ever increasing requirements for long and short distance communications as well as package-to-package interconnects. Amongst the various technology options, silicon photonics has imposed itself as a promising candidate, relying on CMOS fabrication processes. While silicon photonics can share the technology platform developed for advanced CMOS devices it has specific dimension control requirements. Though the device dimensions are in the order of the wavelength of light used, the tolerance allowed can be less than 1% for certain devices. Achieving this is a challenging task which requires advanced patterning techniques along with process control. Another challenge is identifying an overlapping process window for diverse pattern densities and orientations on a single layer. In this paper, we present key technology challenges faced when using optical lithography for silicon photonics and advantages of using the 193nm immersion lithography system. We report successful demonstration of a modified 28nm- STI-like patterning platform for silicon photonics in 300mm Silicon-On-Insulator wafer technology. By careful process design, within-wafer CD variation (1sigma) of <1% is achieved for both isolated (waveguides) and dense (grating) patterns in silicon. In addition to dimensional control, low sidewall roughness is a crucial to achieve low scattering loss in the waveguides. With this platform, optical propagation loss as low as ~0.7 dB/cm is achieved for high-confinement single mode waveguides (450x220nm). This is an improvement of >20 % from the best propagation loss reported for this cross-section fabricated using e-beam lithography. By using a single-mode low-confinement waveguide geometry the loss is further reduced to ~0.12 dB/cm. Secondly, we present improvement in within-device phase error in wavelength selective devices, a critical parameter which is a direct measure of line

  3. Point-of-use filtration strategy for negative tone developer in extended immersion and extreme-ultraviolet (EUV) lithography

    NASA Astrophysics Data System (ADS)

    D'Urzo, L.; Foubert, P.; Stokes, H.; Thouroude, Y.; Xia, A.; Wu, Aiwen

    2015-03-01

    Negative tone development (NTD) has dramatically gained popularity in 193 nm dry and immersion lithography, due to their superior imaging performance [1, 2 and 3]. Popular negative tone developers are organic solvents such as n- butyl acetate (n-BA), aliphatic ketones, or high-density alcohols such as Methyl Isobutyl Carbinol (MIBC). In this work, a comparative study between ultra-high molecular weight polyethylene (UPE) and polytetrafluoroethylene (PTFE) POU filtration for n-BA based NTD has been carried out. Results correlate with the occurrence or the mitigation of micro bridges in a 45 nm dense line pattern created through immersion lithography as a function of POU membrane.

  4. Evaluation for EAPSM life time by ArF pellicle characteristic

    NASA Astrophysics Data System (ADS)

    Seo, Kang Joon; Ryu, Ji Sun; Jeong, Goo Min; Kang, Shin Cheol; Kim, Yong Dae; Kim, Sang Chul; Kim, Chang Yeol

    2009-04-01

    As the nano-lithography technology continues to develop towards advanced generation of ArF immersion lithography, the quality of ArF EAPSM becomes the most valuable factor for worldwide Maskshop. Therefore outturn of ArF EAPMS increase continuously, and people who work in the fields of semiconductor engineering give consequence to good quality of ArF EAPSM until the EUV lithography generation. Because 300mm wafer litho-facility use higher exposure energy, wider shot field and more shots per a wafer for achieving more memory(DRAM or Flash) chips than 200mm exposure facility, photo engineer wants unchanged initial condition of mask quality(CD MTT, CD Uniformity, repeating defect, phase shift and transmittance). In other words, mask manufacturer must focus on the concept of ArF EAPSM 'life time'. We have investigated the influence grade inducing the lithographic variation between the growth of exposure energy based Haze phenomena, thin organic pellicle membrane characteristics, and we have verified that the ArF pellicle durability is one of the most important evidence for improvement of life time of ArF EAPSM. In this study, related with ArF EAPSM life time, we tried to evaluate the influence of ArF pellicle characteristic consisting of pellicle membrane transmittance strength (durability against ArF laser source) and non acid mask condition for the period of non Haze contamination without added re-pellicle --> re-cleaning cycle. Metrological inspection and evaluation was conducted with several equipment and analysis including mask inspection, Scatterometer, IC, ArF laser accelerator.

  5. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications.

    PubMed

    Koshelev, Alexander; Calafiore, Giuseppe; Piña-Hernandez, Carlos; Allen, Frances I; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-08-01

    In this Letter, we present a Fresnel lens fabricated on the end of an optical fiber. The lens is fabricated using nanoimprint lithography of a functional high refractive index material, which is suitable for mass production. The main advantage of the presented Fresnel lens compared to a conventional fiber lens is its high refractive index (n=1.68), which enables efficient light focusing even inside other media, such as water or an adhesive. Measurement of the lens performance in an immersion liquid (n=1.51) shows a near diffraction limited focal spot of 810 nm in diameter at the 1/e2 intensity level for a wavelength of 660 nm. Applications of such fiber lenses include integrated optics, optical trapping, and fiber probes.

  6. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications

    NASA Astrophysics Data System (ADS)

    Koshelev, Alexander; Calafiore, Giuseppe; Piña-Hernandez, Carlos; Allen, Frances I.; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-08-01

    In this Letter we present a Fresnel lens fabricated on the end of an optical fiber. The lens is fabricated using nanoimprint lithography of a functional high refractive index material, which is suitable for mass production. The main advantage of the presented Fresnel lens compared to a conventional fiber lens is its high refractive index (n=1.69), which enables efficient light focusing even inside other media such as water or adhesive. Measurement of the lens performance in an immersion liquid (n=1.51) shows a near diffraction limited focal spot of 810 nm in diameter at the 1/e2 intensity level for a wavelength of 660 nm. Applications of such fiber lenses include integrated optics, optical trapping and fiber probes.

  7. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications.

    PubMed

    Koshelev, Alexander; Calafiore, Giuseppe; Piña-Hernandez, Carlos; Allen, Frances I; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-08-01

    In this Letter, we present a Fresnel lens fabricated on the end of an optical fiber. The lens is fabricated using nanoimprint lithography of a functional high refractive index material, which is suitable for mass production. The main advantage of the presented Fresnel lens compared to a conventional fiber lens is its high refractive index (n=1.68), which enables efficient light focusing even inside other media, such as water or an adhesive. Measurement of the lens performance in an immersion liquid (n=1.51) shows a near diffraction limited focal spot of 810 nm in diameter at the 1/e2 intensity level for a wavelength of 660 nm. Applications of such fiber lenses include integrated optics, optical trapping, and fiber probes. PMID:27472584

  8. Double-exposure strategy using OPC and simulation and the performance on wafer with sub-0.10-μm design rule in ArF lithography

    NASA Astrophysics Data System (ADS)

    Oh, Se-Young; Kim, Wan-Ho; Yune, Hyoung-Soon; Kim, Hee-Bom; Kim, Seo-Min; Ahn, Chang-Nam; Shin, Ki-Soo

    2002-07-01

    As the pattern size becomes smaller, double or multi exposure is required unless the epochal solutions for overcoming the limits of present lithography system do appear or are discovered. ArF DET (double exposure technology) strategy based on manual OPC with in-house simulation tool, HOST (Hynix OPC simulation tool), is suggested as a possible exposure method to extend the limitation of current lithography. HOST requires no additional procedures and separate layout optimizations of each region in terms of OPC are enough. Furthermore, it is possible to change illumination condition of each region and the overlap between two regions with ease. The results from the simulation are pattern size and profile of each condition according to the defous and misregistration. 0.63 NA ArF Scanner and Clariant resist is used for wafer process. The resist was coated on Clariant organic BARC using 0.24 um thickness. Dipole illumination for cell region and annular illumination for peripheral region are used. Cell region contains 0.20 um pitch duty pattern and peripheral region 0.24 um pitch duty pattern. The boundary of two regions is investigated in view of validity of stitching itself. The layout of reticles used as the cell and peripheral region are optimized by OPC, respectively and then, additional OPC was treated to the boundary, i.e., stitching area to compensate the cross term of the boundary caused by separate and independent optimization with OPC in the cell and the peripheral regime. The final patterns were acquired by defining the cell at first and the peripheral region secondly with different defocus and registration in respect to the cell. The actual data on wafer are presented according to defocus and one region's overlay offset relatively to the other region. And the outstanding matching between simulation results and in-line data are shown. Lithography process window for stable patterning is thoroughly investigated in view of depth of focus, energy latitude

  9. Microswelling-free negative resists for ArF excimer laser lithography utilizing acid-catalyzed intramolecular esterification

    NASA Astrophysics Data System (ADS)

    Hattori, Takashi; Tsuchiya, Yuko; Yokoyama, Yoshiyuki; Oizumi, Hiroaki; Morisawa, Taku; Yamaguchi, Atsuko; Shiraishi, Hiroshi

    1999-06-01

    We have examined alicyclic polymers with a (gamma) -hydroxy acid structure in order to investigate the properties of (gamma) -hydroxy acid and (gamma) -lactone as function groups of ArF negative resist materials. From the viewpoint of transparency and dry-etching resistance, (gamma) -hydroxy acid and (gamma) -lactone structure were found to be suitable for ArF negative resists materials. Surprisingly, the reactivity of the acid-catalyzed reaction of (gamma) -hydroxy acid is affected by the polymer structure. Using ArF excimer laser stepper, 0.20-micrometers line-and-space patterns without micro-swelling distortion were obtained from a negative resist consisting of alicyclic polymer with the (gamma) - hydroxy acid structure and a photoacid generator. Distortion was avoided because the number of carboxyl groups decreased drastically in the exposed area by the acid-catalyzed intramolecular esterification of (gamma) -hydroxy acid to (gamma) -lactone. As a result, (gamma) -hydroxy acid and (gamma) -lactone structure were found to be suitable function groups for ArF negative resist materials.

  10. Lithography imaging control by enhanced monitoring of light source performance

    NASA Astrophysics Data System (ADS)

    Alagna, Paolo; Zurita, Omar; Lalovic, Ivan; Seong, Nakgeuon; Rechsteiner, Gregory; Thornes, Joshua; D'havé, Koen; Van Look, Lieve; Bekaert, Joost

    2013-04-01

    Reducing lithography pattern variability has become a critical enabler of ArF immersion scaling and is required to ensure consistent lithography process yield for sub-30nm device technologies. As DUV multi-patterning requirements continue to shrink, it is imperative that all sources of lithography variability are controlled throughout the product life-cycle, from technology development to high volume manufacturing. Recent developments of new ArF light-source metrology and monitoring capabilities have been introduced in order to improve lithography patterning control.[1] These technologies enable performance monitoring of new light-source properties, relating to illumination stability, and enable new reporting and analysis of in-line performance.

  11. Study of barrier coats for application in immersion 193-nm lithography

    NASA Astrophysics Data System (ADS)

    Houlihan, Francis; Kim, Wookyu; Sakamuri, Raj; Hamilton, Keino; Dimerli, Alla; Abdallah, David; Romano, Andrew; Dammel, Ralph R.; Pawlowski, Georg; Raub, Alex; Brueck, Steve

    2005-05-01

    We will describe our barrier coat approach for use in immersion 193 nm lithography. These barrier coats may act as either simple barriers providing protection against loss of resist components into water or in the case of one type of these formulations which have a refractive index at 193 nm which is the geometric mean between that of the resist and water provide, also top antireflective properties. Either type of barrier coat can be applied with a simple spinning process compatible with PGMEA based resin employing standard solvents such as alcohols and be removed during the usual resist development process with aqueous 0.26 N TMAH. We will discuss both imaging results with these materials on acrylate type 193 nm resists and also show some fundamental studies we have done to understand the function of the barrier coat and the role of differing spinning solvents and resins. We will show LS (55 nm) and Contact Hole (80 nm) resolved with a 193 nm resist exposed with the interferometric tool at the University of New Mexico (213 nm) with and without the use of a barrier coat.

  12. Self-aligned double patterning process for 32/32nm contact/space and beyond using 193 immersion lithography

    NASA Astrophysics Data System (ADS)

    Mebarki, Bencherki; Miao, Liyan; Chen, Yongmei; Yu, James; Blanco, Pokhui; Makeeff, James; Shu, Jen; Bencher, Christopher; Naik, Mehul; Ngai, Christopher Sui Wing

    2010-04-01

    State of the art production single print lithography for contact is limited to ~43-44nm half-pitch given the parameters in the classic photolithography resolution formula for contacts in 193 immersion tool (k1 >= 0.3, NA = 1.35, and λ = 193nm). Single print lithography limitations can be overcome by (1) Process / Integration based techniques such as double-printing (DP), and spacer based self-aligned double patterning (SADP), (2) Non-standard printing techniques such as electron-beam (eBeam), extreme ultraviolet lithography (EUVL), nano-imprint Lithography (NIL). EUV tools are under development, while nanoimprint is a developmental tool only. Spacer based SADP for equal line/space is well documented as successful patterning technique for 3xnm and beyond. In this paper, we present an adaptation of selfaligned double patterning process to 2-D regular 32/32nm contact/space array. Using SADP process, we successfully achieved an equal contact/space of 32/32nm using 193 immersion lithography that is only capable of 43-44nm resolvable half-pitch contact printing. The key and unique innovation of this work is the use of a 2-D (x and y axis) pillar structure to achieve equal contact/space. Final result is a dense contact array of 32nm half-pitch in 2-D structure (x and y axis). This is achieved on simplified stack of Substrate / APF / Nitride. Further transfer of this new contact pattern from nitride to the substrate (e.g., Oxide, APF, Poly, Si...) is possible. The technique is potentially extendible to 22/22nm contact/space and beyond.

  13. Charting CEBL's role in mainstream semiconductor lithography

    NASA Astrophysics Data System (ADS)

    Lam, David K.

    2013-09-01

    historically kept it out of mainstream fabs. Thanks to continuing EBDW advances combined with the industry's move to unidirectional (1D) gridded layout style, EBDW promises to cost-efficiently complement 193nm ArF immersion (193i) optical lithography in high volume manufacturing (HVM). Patterning conventional 2D design layouts with 193i is a major roadblock in device scaling: the resolution limitations of optical lithography equipment have led to higher mask cost and increased lithography complexity. To overcome the challenge, IC designers have used 1D layouts with "lines and cuts" in critical layers.1 Leading logic and memory chipmakers have been producing advanced designs with lines-and-cuts in HVM for several technology nodes in recent years. However, cut masks in multiple optical patterning are getting extremely costly. Borodovsky proposes Complementary Lithography in which another lithography technology is used to pattern line-cuts in critical layers to complement optical lithography.2 Complementary E-Beam Lithography (CEBL) is a candidate to pattern the Cuts of optically printed Lines. The concept of CEBL is gaining acceptance. However, challenges in throughput, scaling, and data preparation rate are threatening to deny CEBL's role in solving industry's lithography problem. This paper will examine the following issues: The challenges of massively parallel pixel writing The solutions of multiple mini-column design/architecture in: Boosting CEBL throughput Resolving issues of CD control, CDU, LER, data rate, higher resolution, and 450mm wafers The role of CEBL in next-generation solution of semiconductor lithography

  14. A comparative study for mask defect tolerance on phase and transmission for dry and immersion 193-nm lithography

    NASA Astrophysics Data System (ADS)

    Ling, Moh Lung; Chua, Gek Soon; Tay, Cho Jui; Quan, Chenggen; Lin, Qunying

    2007-03-01

    193nm immersion lithography has successfully enabled numerical aperture (NA) greater than 1.0 which allows rooms for improvement in resolution as well as depth of focus. In this study, critical dimension (CD) and depth of focus (DOF) performance for the 45nm technology node for dry and immersion lithography is compared using commercial available simulation tool. The study is based on one dimensional line and space pattern with pitch vary from 150 to 500nm. The effects of mask transmission and phase angle change on CD through pitch performance and DOF are also presented in this paper. Increase in mask transmission will result in increase of CD through pitch and reduction of DOF. When phase angle for the phase shift mask is less than 180 degree, CD through pitch and DOF drop. Finally, mask defects caused by haze on several locations which include MoSi lines, line edges, and space between line ends are simulated. The influence of these defects on CD and the potential line end bridging problem is presented.

  15. Simultaneous fluorescence and breakdown spectroscopy of fresh and aging transformer oil immersed in paper using ArF excimer laser

    NASA Astrophysics Data System (ADS)

    Parvin, P.; Shoursheini, S. Z.; Khalilinejad, F.; Bavali, A.; Moshgel Gosha, M.; Mansouri, B.

    2012-11-01

    HV transformers are taken into account as the heart of the power distribution system. The on-line monitoring based on the oil analysis offers a rapid diagnostic technique to detect the probable faults. In fact, the transformer malfunctions can be detected using UV laser spectroscopic methods. Here, a novel technique is presented based on simultaneous laser induced fluorescence (LIF) and laser induced breakdown (LIB) spectroscopy for hyper sensitive identification of the oil degradation. Oil is mainly degraded due to the internal transformer faults such as overheating and partial discharge. The spectroscopic characteristics of oil in paper substrate were obtained due to ArF laser irradiation. It was shown that the amplitude of fluorescence signal increases when the oil suffers aging and degradation. A couple of additional characteristic carbon and Hα emissions appear in the corresponding breakdown spectra too.

  16. Determination of complex index of immersion liquids at 193 nm

    NASA Astrophysics Data System (ADS)

    Stehle, Jean-Louis; Piel, Jean-Philippe; Campillo-Carreto, Jose

    2006-03-01

    The next nodes in immersion lithography will require the scanners to use the 193 nm ArF* laser line with a very large numerical aperture and a liquid between the optics and the resist. (1) Immersion lithography at 193 nm requests very specific parameters for the fluid. The first generation is using the deionized Water (DIW) very pure and not recycled, but when a new optical material for the last lens will be available with a refractive index (RI) larger than 1.85, a higher refractive index fluid could be used, enabling second and maybe third generation of immersion lithography at 193 nm. So the 45 and maybe the 32 nm nodes could be covered with this high Index fluids (HIF).

  17. Experimental demonstration of line-width modulation in plasmonic lithography using a solid immersion lens-based active nano-gap control

    SciTech Connect

    Lee, Won-Sup; Kim, Taeseob; Choi, Guk-Jong; Lim, Geon; Joe, Hang-Eun; Gang, Myeong-Gu; Min, Byung-Kwon; Park, No-Cheol; Moon, Hyungbae; Kim, Do-Hyung; Park, Young-Pil

    2015-02-02

    Plasmonic lithography has been used in nanofabrication because of its utility beyond the diffraction limit. The resolution of plasmonic lithography depends on the nano-gap between the nanoaperture and the photoresist surface—changing the gap distance can modulate the line-width of the pattern. In this letter, we demonstrate solid-immersion lens based active non-contact plasmonic lithography, applying a range of gap conditions to modulate the line-width of the pattern. Using a solid-immersion lens-based near-field control system, the nano-gap between the exit surface of the nanoaperture and the media can be actively modulated and maintained to within a few nanometers. The line-widths of the recorded patterns using 15- and 5-nm gaps were 47 and 19.5 nm, respectively, which matched closely the calculated full-width at half-maximum. From these results, we conclude that changing the nano-gap within a solid-immersion lens-based plasmonic head results in varying line-width patterns.

  18. Advanced mask technique to improve bit line CD uniformity of 90 nm node flash memory in low-k1 lithography

    NASA Astrophysics Data System (ADS)

    Kim, Jong-doo; Choi, Jae-young; Kim, Jea-hee; Han, Jae-won

    2008-10-01

    As devices size move toward 90nm technology node or below, defining uniform bit line CD of flash devices is one of the most challenging features to print in KrF lithography. There are two principal difficulties in defining bit line on wafer. One is insufficient process margin besides poor resolution compared with ArF lithography. The other is that asymmetric bit line should be made for OPC(Optical Proximity Correction) modeling. Therefore advanced ArF lithography scanner should be used for define bit line with RETs (Resolution Enhancement Techniques) such as immersion lithography, OPC, PSM(Phase Shift Mask), high NA(Numerical Aperture), OAI(Off-Axis Illumination), SRAF(Sub-resolution Assistant Feature), and mask biasing.. Like this, ArF lithography propose the method of enhancing resolution, however, we must spend an enormous amount of CoC(cost of ownership) to utilize ArF photolithography process than KrF. In this paper, we suggest method to improve of bit line CD uniformity, patterned by KrF lithographic process in 90nm sFlash(stand alone Flash) devices. We applied new scheme of mask manufacturing, which is able to realize 2 different types of mask, binary and phase-shift, into one plate. Finally, we could get the more uniform bit lines and we expect to get more stable properties then before applying this technique.

  19. Tumor suppressor ARF

    PubMed Central

    Través, Paqui G.; Luque, Alfonso; Hortelano, Sonsoles

    2012-01-01

    ARF (alternative reading frame) is one of the most important tumor regulator playing critical roles in controlling tumor initiation and progression. Recently, we have demonstrated a novel and unexpected role for ARF as modulator of inflammatory responses. PMID:23162766

  20. Low-loss, flat-topped and spectrally uniform silicon-nanowire-based 5th-order CROW fabricated by ArF-immersion lithography process on a 300-mm SOI wafer.

    PubMed

    Jeong, Seok-Hwan; Shimura, Daisuke; Simoyama, Takasi; Seki, Miyoshi; Yokoyama, Nobuyuki; Ohtsuka, Minoru; Koshino, Keiji; Horikawa, Tsuyoshi; Tanaka, Yu; Morito, Ken

    2013-12-16

    We report superior spectral characteristics of silicon-nanowire-based 5th-order coupled resonator optical waveguides (CROW) fabricated by 193-nm ArF-immersion lithography process on a 300-mm silicon-on-insulator wafer. We theoretically analyze spectral characteristics, considering random phase errors caused by micro fabrication process. It will be experimentally demonstrated that the fabricated devices exhibit a low excess loss of 0.4 ± 0.2 dB, a high out-of-band rejection ratio of >40dB, and a wide flatband width of ~2 nm. Furthermore, we evaluate manufacturing tolerances for intra-dies and inter-dies, comparing with the cases for 248-nm KrF-dry lithography process. It will be shown that the 193-nm ArF-immersion lithography process can provide much less excess phase errors of Si-nanowire waveguides, thus enabling to give better filter spectral characteristics. Finally, spectral superiorities will be reconfirmed by measuring 25 Gbps modulated signals launched into the fabricated device. Clear eye diagrams are observed when the wavelengths of modulated signals are stayed within almost passband of the 5th-order CROW.

  1. Low-loss and flatband silicon-nanowire-based 5th-order coupled resonator optical waveguides (CROW) fabricated by ArF-immersion lithography process on a 300-mm SOI wafer

    NASA Astrophysics Data System (ADS)

    Jeong, Seok-Hwan; Shimura, Daisuke; Simoyama, Takasi; Seki, Miyoshi; Yokoyama, Nobuyuki; Ohtsuka, Minoru; Koshino, Keiji; Horikawa, Tsuyoshi; Tanaka, Yu; Morito, Ken

    2014-03-01

    We present flatband, low-loss and low-crosstalk characteristics of Si-nanowire-based 5th-order coupled resonator optical waveguides (CROW) fabricated by ArF-immersion lithography process on a 300-mm silicon-on-insulator (SOI) wafer. We theoretically specified why phase controllability over Si-nanowire waveguides is prerequisite to attain desired spectral response, discussing spectral degradation by random phase errors during fabrication process. It was experimentally demonstrated that advanced patterning technology based on ArF-immersion lithography process showed extremely low phase errors even for Si-nanowire channel waveguides. As a result, the device exhibited extremely low loss of <0.2dB and low crosstalk of <-40dB without any external phase compensation. Furthermore, fairly good spectral uniformity for all fabricated devices was found both in intra-dies and inter-dies. The center wavelengths for box-like drop channel responses were distributed within 0.4 nm in the same die. This tendency was kept nearly constant for other dies on the 300-mm SOI wafer. In the case of the inter-die distribution where each die is spaced by ~3cm, the deviation of the center wavelengths was as low as +/-1.8 nm between the dies separated by up to ~15 cm. The spectral superiority was reconfirmed by measuring 25 Gbps modulation signals launched into the device. Clear eye openings were observed as long as the optical signal wavelengths are stayed within the flat-topped passband of the 5th-order CROW. We believe these high-precision fabrication technologies based on 300-mm SOI wafer scale ArF-immersion lithography would be promising for several kinds of WDM multiplexers/demultiplexers having much complicated configurations and requiring much finer phase controllability.

  2. Arfs at a glance.

    PubMed

    Jackson, Catherine L; Bouvet, Samuel

    2014-10-01

    The Arf small G proteins regulate protein and lipid trafficking in eukaryotic cells through a regulated cycle of GTP binding and hydrolysis. In their GTP-bound form, Arf proteins recruit a specific set of protein effectors to the membrane surface. These effectors function in vesicle formation and tethering, non-vesicular lipid transport and cytoskeletal regulation. Beyond fundamental membrane trafficking roles, Arf proteins also regulate mitosis, plasma membrane signaling, cilary trafficking and lipid droplet function. Tight spatial and temporal regulation of the relatively small number of Arf proteins is achieved by their guanine nucleotide-exchange factors (GEFs) and GTPase-activating proteins (GAPs), which catalyze GTP binding and hydrolysis, respectively. A unifying function of Arf proteins, performed in conjunction with their regulators and effectors, is sensing, modulating and transporting the lipids that make up cellular membranes. In this Cell Science at a Glance article and the accompanying poster, we discuss the unique features of Arf small G proteins, their functions in vesicular and lipid trafficking in cells, and how these functions are modulated by their regulators, the GEFs and GAPs. We also discuss how these Arf functions are subverted by human pathogens and disease states.

  3. Class I Arfs (Arf1 and Arf3) and Arf6 are localized to the Flemming body and play important roles in cytokinesis.

    PubMed

    Hanai, Ayako; Ohgi, Minako; Yagi, Chikako; Ueda, Tomoko; Shin, Hye-Won; Nakayama, Kazuhisa

    2016-02-01

    Small GTPases play important roles in various aspects of cell division as well as membrane trafficking. We and others previously showed that ADP-ribosylation factor 6 (Arf6) is locally activated around the ingressing cleavage furrow and recruited to the Flemming body in late cytokinesis phases, and involved in faithful completion of cytokinesis. However, knockout of the Arf6 gene or Arf6 depletion by siRNAs did not drastically influence cytokinesis. We here show that, in addition to Arf6, Class I Arfs (Arf1 and Arf3) are localized to the Flemming body, and that double knockdown of Arf1 and Arf3 moderately increases the proportion of multinucleate cells and simultaneous knockdown of Arf1, Arf3 and Arf6 leads to severe cytokinesis defects. These observations indicate that Arf1 and Arf3 as well as Arf6 play important roles in cytokinesis. We further show that EFA6 (exchange factor for Arf6) activates not only Arf6 but also Arf1 in the cell. Taken together with our previous data, these Arf GTPases are likely to be locally activated by EFA6 and in turn targeted to the Flemming body to complete cytokinesis. PMID:26330566

  4. An ice lithography instrument

    NASA Astrophysics Data System (ADS)

    Han, Anpan; Chervinsky, John; Branton, Daniel; Golovchenko, J. A.

    2011-06-01

    We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines.

  5. Lithography optics: its present and future

    NASA Astrophysics Data System (ADS)

    Matsumoto, Koichi; Mori, Takashi

    1998-09-01

    Firstly, various technical aspects of ArF optics are surveyed. At present, the ArF excimer laser is regarded as one of the most promising candidates as a next-generation light source for optical lithography. Discussions are ranging over some critical issues of ArF optics. The lifetime of ArF optics supposedly limited by the radiation compaction of silica glass is estimated in comparison with KrF optics. Availability of calcium fluoride (CaF2) is also discussed. As a designing issue, a comparative study is made about the optical configuration, dioptric or catadioptric. In the end, our resist-based performance is shown. Secondly, estimated are the future trend regarding minimum geometry and the optical parameters, such as numerical aperture and wavelength. For the estimation, simulations based on aerial images are performed, where in the resolution limit is defined as a minimum feature size which retains practical depth of focus. Pattern geometry is classified into two categories, which are dense lines and isolated lines. Available wavelengths are assumed to be KrF excimer laser ((λ =248 nm), ArF excimer laser (λ =193 nm) and F2 excimer laser (λ =157 nm). Based upon the simulation results, the resolution limit is estimated for each geometry and each wavelength.

  6. The TRIP from ULF to ARF.

    PubMed

    Collado, Manuel; Serrano, Manuel

    2010-04-13

    ARF is a key activator of p53, and together they form a critical duo for protection against cancer. Previous evidence had recognized the regulatory potential of ubiquitin-mediated degradation of ARF. The recent identification of TRIP12/ULF as a ubiquitin ligase of ARF adds an important missing piece to the ARF/p53 pathway.

  7. Optimizing the lithography model calibration algorithms for NTD process

    NASA Astrophysics Data System (ADS)

    Hu, C. M.; Lo, Fred; Yang, Elvis; Yang, T. H.; Chen, K. C.

    2016-03-01

    As patterns shrink to the resolution limits of up-to-date ArF immersion lithography technology, negative tone development (NTD) process has been an increasingly adopted technique to get superior imaging quality through employing bright-field (BF) masks to print the critical dark-field (DF) metal and contact layers. However, from the fundamental materials and process interaction perspectives, several key differences inherently exist between NTD process and the traditional positive tone development (PTD) system, especially the horizontal/vertical resist shrinkage and developer depletion effects, hence the traditional resist parameters developed for the typical PTD process have no longer fit well in NTD process modeling. In order to cope with the inherent differences between PTD and NTD processes accordingly get improvement on NTD modeling accuracy, several NTD models with different combinations of complementary terms were built to account for the NTD-specific resist shrinkage, developer depletion and diffusion, and wafer CD jump induced by sub threshold assistance feature (SRAF) effects. Each new complementary NTD term has its definite aim to deal with the NTD-specific phenomena. In this study, the modeling accuracy is compared among different models for the specific patterning characteristics on various feature types. Multiple complementary NTD terms were finally proposed to address all the NTD-specific behaviors simultaneously and further optimize the NTD modeling accuracy. The new algorithm of multiple complementary NTD term tested on our critical dark-field layers demonstrates consistent model accuracy improvement for both calibration and verification.

  8. New spin-on metal hardmask materials for lithography processes

    NASA Astrophysics Data System (ADS)

    Yao, Huirong; Mullen, Salem; Wolfer, Elizabeth; Rahman, Dalil; Anyadiegwu, Clement; Mckenzie, Douglas; Dioses, Alberto; Cho, Joonyeon; Padmanaban, Munirathna

    2013-03-01

    Since the critical dimensions in integrated circuit (IC) device fabrication continue to shrink below 32 nm, multilayer stacks with alternating etch selectivities are required for successful pattern transfer from the exposed photoresist to the substrate. Inorganic resist underlayer materials are used as hard masks in reactive ion etching (RIE) with oxidative gases. The conventional silicon hardmask has demonstrated good reflectivity control and reasonable etch selectivity. However, some issues such as the rework of trilayer stacks and cleaning of oxide residue by wet chemistry are challenging problems for manufacturability. The present work reveals novel spin-on underlayer materials containing significant amounts of metal oxides in the film after baking at normal processing conditions. Such an inorganic metal hardmask (MHM) has excellent etch selectivity in plasma etch processes of the trilayer stack. The composition has good long term shelf life and pot life stability based on solution LPC analysis and wafer defect studies, respectively. The material absorbs DUV wavelengths and can be used as a spin-on inorganic or hybrid antireflective coating to control substrate reflectivity under DUV exposure of photoresist. Some of these metal-containing materials can be used as an underlayer in EUV lithography to significantly enhance photospeed. Specific metal hard masks are also developed for via or trench filling applications in IRT processes. The materials have shown good coating and lithography performance with a film thicknesses as low as 10 nm under ArF dry or immersion conditions. In addition, the metal oxide films or residues can be partially or completely removed by using various wet-etching solutions at ambient temperature.

  9. Photomask lifetime issues in ArF lithography

    NASA Astrophysics Data System (ADS)

    Eschbach, Florence; Coon, Peter; Greenebaum, Barbara; Mittal, Anurag; Sanchez, Peter; Tanzil, Daniel; Ng, Grace; Yun, Henry; Sengupta, Archita

    2005-06-01

    Photomask lifetime has become a challenge since the introduction of high volume manufacturing 193nm photolithograph. Photomask lifetime is being impacted by a broad range of environmental and process factors resulting in inorganics crystals and organic contaminants formation as well as pellicle lifetime issues. Extensive work has been published on strategies for reduction of inorganic crystals photoinduced defects formation mainly focusing on photomask clean process improvements. This paper will focus on identifying root causes for photoinduced contaminants forming within the pellicle space area as well as identify environmental factors which have the potential of impacting pellicle membrane longevity. Outgasing experiments coupled with 193nm laser exposure tests were conducted to decouple and rank reticle/pellicle storage materials as well as pellicle outgasing contributors to photoinduced defects and identify factors impacting pellicle membrance longevity. Analytical test were conducted to compare the relative levels of reticle storage materials and pellicle outgasing contaminants. Experiments aimed at quantifying the fab environment contribution to photoinduced defects formation and impact on pellicle membrane lifetime will be discussed. Environmental conditions minimizing external contributing factors impacting photomask front side photoinduced defects formation and pellicle membrance longevity will be suggested.

  10. Arf6 arbitrates fibrinogen endocytosis.

    PubMed

    Rondina, Matthew T; Weyrich, Andrew S

    2016-03-17

    In this issue of Blood, in a departure from studies of classic platelet function, Huang et al turn their attention to endocytosis and show that adenosine 5′-diphosphate-ribosylation factor 6 (Arf6) plays a key role in fibrinogen engulfment. Although platelets are known to bind, absorb, and load their granules with plasma proteins, this report is one of the first to explore mechanisms that control endocytosis in this anucleate cell. Huang et al demonstrate that Arf6-dependent endocytosis is restricted to fibrinogen, implying that Arf6 also modulates trafficking of αIIbβ3 integrins in platelets. Consistent with this notion, deletion of Arf6 in platelets enhances spreading on fibrinogen and accelerates clot retraction (see figure). However, activation of surface αIIbβ3 is unaffected, and Arf6 deficiency does not alter thrombosis in vivo. These incongruous results point toward the complexity of anucleate platelets and the need for more detailed studies to understand intracellular trafficking, recycling, and endocytosis in platelets and their precurs

  11. Coaxial Lithography

    NASA Astrophysics Data System (ADS)

    Ozel, Tuncay

    The optical and electrical properties of heterogeneous nanowires are profoundly related to their composition and nanoscale architecture. However, the intrinsic constraints of conventional synthetic and lithographic techniques have limited the types of multi-compositional nanowires that can be realized and studied in the laboratory. This thesis focuses on bridging templated electrochemical synthesis and lithography for expanding current synthetic capabilities with respect to materials generality and the ability to tailor two-dimensional growth in the formation of core-shell structures for the rational design and preparation of nanowires with very complex architectures that cannot be made by any other techniques. Chapter 1 introduces plasmonics, templated electrochemical synthesis, and on-wire lithography concepts and their significances within chemistry and materials science. Chapter 2 details a powerful technique for the deposition of metals and semiconductors with nanometer resolution in segment and gap lengths using on-wire lithography, which serves as a new platform to explore plasmon-exciton interactions in the form of long-range optical nanoscale rulers. Chapter 3 highlights an approach for the electrochemical synthesis of solution dispersible core-shell polymeric and inorganic semiconductor nanowires with metallic leads. A photodetector based on a single core-shell semiconductor nanowire is presented to demonstrate the functionality of the nanowires produced using this approach. Chapter 4 describes a new materials general technique, termed coaxial lithography (COAL), bridging templated electrochemical synthesis and lithography for generating coaxial nanowires in a parallel fashion with sub-10 nanometer resolution in both axial and radial dimensions. Combinations of coaxial nanowires composed of metals, metal oxides, metal chalcogenides, conjugated polymers, and a core/shell semiconductor nanowire with an embedded plasmonic nanoring are presented to

  12. Novel ArF photoresist polymer to suppress the roughness formation in plasma etching processes

    NASA Astrophysics Data System (ADS)

    Kato, Keisuke; Yasuda, Atsushi; Maeda, Shin-ichi; Uesugi, Takuji; Okada, Takeru; Wada, Akira; Samukawa, Seiji

    2013-03-01

    The serious problem associated with 193-nm lithography using an ArF photoresist is roughness formation of photoresist polymer during plasma processes. We have previously investigated the mechanism of roughness formation caused by plasma. The main deciding factor for roughness formation is a chemical reaction between photoresist polymer and reactive species from plasma. The lactone group in photoresist polymer is highly chemically reactive, and shrinking the lactone structure enhances the roughness formation. In this paper, on the basis of the mechanism of roughness formation, we propose a novel ArF photoresist polymer. The roughness formation was much more suppressed in the novel photoresist polymer during plasma etching process than in the previous type. In the novel photoresist polymer, chemical reactions were spread evenly on the photoresist film surface by adding the polar structure. As a result, decreases in the lactone group were inhibited, leading to suppressing ArF photoresist roughness.

  13. Mechanism for low-etching resistance and surface roughness of ArF photoresist during plasma irradiation

    SciTech Connect

    Jinnai, Butsurin; Koyama, Koji; Kato, Keisuke; Yasuda, Atsushi; Momose, Hikaru; Samukawa, Seiji

    2009-03-01

    ArF excimer laser lithography was introduced to fabricate nanometer-scale devices and uses chemically amplified photoresist polymers including photoacid generators (PAGs). Because plasma-etching processes cause serious problems related to the use of ArF photoresists, such as line-edge roughness and low etching selectivity, we have to understand the interaction between plasma and ArF photoresist polymers. Investigating the effects of surface temperature and the irradiation species from plasma, we have found that ion irradiation by itself did not drastically increase the roughness or etching rate of ArF photoresist films unless it was combined with ultraviolet/vacuum ultraviolet (UV/VUV) photon irradiation. The structures of ArF photoresist polymers were largely unchanged by ion irradiation alone but were destroyed by combinations of ion and UV/VUV-photon irradiation. Our results suggested that PAG-mediated deprotection induced by UV/VUV-photon irradiation was amplified at surface temperatures above 100 deg. C. The etching rate and surface roughness of plasma-etched ArF photoresists are affected by the irradiation species and surface temperature during plasma etching. UV/VUV-photon irradiation plays a particularly important role in the interaction between plasma and ArF photoresist polymers.

  14. Source mask optimization study based on latest Nikon immersion scanner

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Wei, Fang; Chen, Lijun; Zhang, Chenming; Zhang, Wei; Nishinaga, Hisashi; El-Sewefy, Omar; Gao, Gen-Sheng; Lafferty, Neal; Meiring, Jason; Zhang, Recoo; Zhu, Cynthia

    2016-03-01

    The 2x nm logic foundry node has many challenges since critical levels are pushed close to the limits of low k1 ArF water immersion lithography. For these levels, improvements in lithographic performance can translate to decreased rework and increased yield. Source Mask Optimization (SMO) is one such route to realize these image fidelity improvements. During SMO, critical layout constructs are intensively optimized in both the mask and source domain, resulting in a solution for maximum lithographic entitlement. From the hardware side, advances in source technology have enabled free-form illumination. The approach allows highly customized illumination, enabling the practical application of SMO sources. The customized illumination sources can be adjusted for maximum versatility. In this paper, we present a study on a critical layer of an advanced foundry logic node using the latest ILT based SMO software, paired with state-of-the-art scanner hardware and intelligent illuminator. Performance of the layer's existing POR source is compared with the ideal SMO result and the installed source as realized on the intelligent illuminator of an NSR-S630D scanner. Both simulation and on-silicon measurements are used to confirm that the performance of the studied layer meets established specifications.

  15. The Drosophila Arf1 homologue Arf79F is essential for lamellipodium formation.

    PubMed

    Humphreys, Daniel; Liu, Tao; Davidson, Anthony C; Hume, Peter J; Koronakis, Vassilis

    2012-12-01

    The WAVE regulatory complex (WRC) drives the polymerisation of actin filaments located beneath the plasma membrane to generate lamellipodia that are pivotal to cell architecture and movement. By reconstituting WRC-dependent actin assembly at the membrane, we recently discovered that several classes of Arf family GTPases directly recruit and activate WRC in cell extracts, and that Arf cooperates with Rac1 to trigger actin polymerisation. Here, we demonstrate that the Class 1 Arf1 homologue Arf79F colocalises with the WRC at dynamic lamellipodia. We report that Arf79F is required for lamellipodium formation in Drosophila S2R+ cells, which only express one Arf isoform for each class. Impeding Arf function either by dominant-negative Arf expression or by Arf double-stranded RNA interference (dsRNAi)-mediated knockdown uncovered that Arf-dependent lamellipodium formation was specific to Arf79F, establishing that Class 1 Arfs, but not Class 2 or Class 3 Arfs, are crucial for lamellipodia. Lamellipodium formation in Arf79F-silenced cells was restored by expressing mammalian Arf1, but not by constitutively active Rac1, showing that Arf79F does not act via Rac1. Abolition of lamellipodium formation in Arf79F-silenced cells was not due to Golgi disruption. Blocking Arf79F activation with guanine nucleotide exchange factor inhibitors impaired WRC localisation to the plasma membrane and concomitant generation of lamellipodia. Our data indicate that the Class I Arf GTPase is a central component in WRC-driven lamellipodium formation. PMID:22992458

  16. Expected innovations of optical lithography in the next 10 years

    NASA Astrophysics Data System (ADS)

    Owa, Soichi; Hirayanagi, Noriyuki

    2016-03-01

    In the past 10 years, immersion lithography has been the most effective high volume manufacturing method for the critical layers of semiconductor devices. Thinking of the next 10 years, we can expect continuous improvement on existing 300 mm wafer scanners with better accuracy and throughput to enhance the total output value per input cost. This value productivity, however, can be upgraded also by larger innovations which might happen in optical lithography. In this paper, we will discuss the possibilities and the impossibilities of potential innovation ideas of optical lithography, which are 450 mm wafer, optical maskless, multicolor lithography, and metamaterial.

  17. Implementation of assist features in EUV lithography

    NASA Astrophysics Data System (ADS)

    Jiang, Fan; Burkhardt, Martin; Raghunathan, Ananthan; Torres, Andres; Gupta, Rachit; Word, James

    2015-03-01

    The introduction of EUV lithography will happen at a critical feature pitch which corresponds to a k1 factor of roughly 0.45. While this number seems not very aggressive compared to recent ArF lithography nodes, the number is sufficiently low that the introduction of assist features has to be considered. While the small NA makes the k1 factor larger, the depth of focus still needs to be scaled down with wavelength. However the exposure tool's focus control is not greatly improved over the ArF tools, so other solutions to improve the depth of focus, e.g. SRAFs, are needed. On the other hand, sub-resolution assist features (SRAFs) require very small mask dimensions, which make masks more costly to write and inspect. Another disadvantage of SRAFs is the fact that they may cause pattern-dependent best focus shift due to thick mask effects. Those effects can be predicted, but the shift of best focus and the associated tilt of Bossung curves make the process more difficult to control. We investigate the impact of SRAFs on printing in EUV lithography and evaluate advantages and disadvantages. By using image quality parameters such as best focus (BF), and depth of focus (DOF), respectively with and without SRAFs, we will answer the question if we can gain a net benefit for 1D and 2D patterns by adding SRAFs. SRAFs will only be introduced if any net improvement in process variation (PV) outweighs the additional expense of assist patterning on the mask. In this paper, we investigate the difference in printing behavior of symmetric and asymmetric SRAF placement and whether through slit effect needs to be considered in SRAF placement for EUV lithography.

  18. VUV lithography

    DOEpatents

    George, E.V.; Oster, Y.; Mundinger, D.C.

    1990-12-25

    Deep UV projection lithography can be performed using an e-beam pumped solid excimer UV source, a mask, and a UV reduction camera. The UV source produces deep UV radiation in the range 1,700--1,300A using xenon, krypton or argon; shorter wavelengths of 850--650A can be obtained using neon or helium. A thin solid layer of the gas is formed on a cryogenically cooled plate and bombarded with an e-beam to cause fluorescence. The UV reduction camera utilizes multilayer mirrors having high reflectivity at the UV wavelength and images the mask onto a resist coated substrate at a preselected demagnification. The mask can be formed integrally with the source as an emitting mask. 6 figs.

  19. VUV lithography

    DOEpatents

    George, Edward V.; Oster, Yale; Mundinger, David C.

    1990-01-01

    Deep UV projection lithography can be performed using an e-beam pumped solid excimer UV source, a mask, and a UV reduction camera. The UV source produces deep UV radiation in the range 1700-1300A using xenon, krypton or argon; shorter wavelengths of 850-650A can be obtained using neon or helium. A thin solid layer of the gas is formed on a cryogenically cooled plate and bombarded with an e-beam to cause fluorescence. The UV reduction camera utilizes multilayer mirrors having high reflectivity at the UV wavelength and images the mask onto a resist coated substrate at a preselected demagnification. The mask can be formed integrally with the source as an emitting mask.

  20. Maskless lithography

    DOEpatents

    Sweatt, W.C.; Stulen, R.H.

    1999-02-09

    The present invention provides a method for maskless lithography. A plurality of individually addressable and rotatable micromirrors together comprise a two-dimensional array of micromirrors. Each micromirror in the two-dimensional array can be envisioned as an individually addressable element in the picture that comprises the circuit pattern desired. As each micromirror is addressed it rotates so as to reflect light from a light source onto a portion of the photoresist coated wafer thereby forming a pixel within the circuit pattern. By electronically addressing a two-dimensional array of these micromirrors in the proper sequence a circuit pattern that is comprised of these individual pixels can be constructed on a microchip. The reflecting surface of the micromirror is configured in such a way as to overcome coherence and diffraction effects in order to produce circuit elements having straight sides. 12 figs.

  1. Maskless lithography

    DOEpatents

    Sweatt, William C.; Stulen, Richard H.

    1999-01-01

    The present invention provides a method for maskless lithography. A plurality of individually addressable and rotatable micromirrors together comprise a two-dimensional array of micromirrors. Each micromirror in the two-dimensional array can be envisioned as an individually addressable element in the picture that comprises the circuit pattern desired. As each micromirror is addressed it rotates so as to reflect light from a light source onto a portion of the photoresist coated wafer thereby forming a pixel within the circuit pattern. By electronically addressing a two-dimensional array of these micromirrors in the proper sequence a circuit pattern that is comprised of these individual pixels can be constructed on a microchip. The reflecting surface of the micromirror is configured in such a way as to overcome coherence and diffraction effects in order to produce circuit elements having straight sides.

  2. Photomask cleaning process improvement to minimize ArF haze

    NASA Astrophysics Data System (ADS)

    Graham, Michael; McDonald, Andrew

    2008-04-01

    Growth of "haze" defects on photomasks exposed in ArF lithography is recognized as a serious problem. Haze defects that have grown to detectable sizes can be analysed in situ by techniques such as EDX or Raman, but to analyze at the photomask manufacturing stage requires extraction of residues by solution in DI water. The effect of extraction conditions, including surface area and material, water volume, time, and temperature, has been studied. A standard method to compare residual ion levels is proposed. Various methods for reducing residual ion levels from the photomask cleaning process have been published. These include SPM reduction, oxygen plasma, SC1 dilution, Megasonic agitation, hot rinse, UV exposure, thermal bake, ozone water, ozone gas, and hydrogenated water. Critical parameters for the cleaning process, besides residual ion levels and contamination removal efficiency, include CD shift, AR/chrome damage, scatter bar damage, and on phase shift masks, the change in phase and transmission. An optimized process combining conventional and novel techniques is described. Data is presented to show the importance of controlling all resist strip and clean processes, not just the final clean. It has achieved sulphate levels of 0.2ng/cm2 (well below the critical level for haze growth), as well as improved results for the other critical parameters. This process has been demonstrated to allow ArF exposure of large numbers of wafers without the appearance of haze defects.

  3. ARF tumor suppression in the nucleolus.

    PubMed

    Maggi, Leonard B; Winkeler, Crystal L; Miceli, Alexander P; Apicelli, Anthony J; Brady, Suzanne N; Kuchenreuther, Michael J; Weber, Jason D

    2014-06-01

    Since its discovery close to twenty years ago, the ARF tumor suppressor has played a pivotal role in the field of cancer biology. Elucidating ARF's basal physiological function in the cell has been the focal interest of numerous laboratories throughout the world for many years. Our current understanding of ARF is constantly evolving to include novel frameworks for conceptualizing the regulation of this critical tumor suppressor. As a result of this complexity, there is great need to broaden our understanding of the intricacies governing the biology of the ARF tumor suppressor. The ARF tumor suppressor is a key sensor of signals that instruct a cell to grow and proliferate and is appropriately localized in nucleoli to limit these processes. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.

  4. 7nm logic optical lithography with OPC-Lite

    NASA Astrophysics Data System (ADS)

    Smayling, Michael C.; Tsujita, Koichiro; Yaegashi, Hidetami; Axelrad, Valery; Nakayama, Ryo; Oyama, Kenichi; Yamauchi, Shohei; Ishii, Hiroyuki; Mikami, Koji

    2015-03-01

    The CMOS logic 22nm node was the last one done with single patterning. It used a highly regular layout style with Gridded Design Rules (GDR). Smaller nodes have required the same regular layout style but with multiple patterning for critical layers. A "line/cut" approach is being used to achieve good pattern fidelity and process margin.[1] As shown in Fig. 1, even with "line" patterns, pitch division will eventually be necessary. For the "cut" pattern, Design-Source-Mask Optimization (DSMO) has been demonstrated to be effective at the 20nm node and below.[2,3,4] Single patterning was found to be suitable down to 16nm, while double patterning extended optical lithography for cuts to the 10-12nm nodes. Design optimization avoided the need for triple patterning. Lines can be patterned with 193nm immersion with no complex OPC. The final line dimensions can be achieved by applying pitch division by two or four.[5] In this study, we extend the scaling using simplified OPC to the 7nm node for critical FEOL and BEOL layers. The test block is a reasonably complex logic function with ~100k gates of combinatorial logic and flip-flops, scaled from previous experiments. Simulation results show that for cuts at 7nm logic dimensions, the gate layer can be done with single patterning whose minimum pitch is 53nm, possibly some of the 1x metal layers can be done with double patterning whose minimum pitch is 53nm, and the contact layer will require triple patterning whose minimum pitch is 68nm. These pitches are less than the resolution limit of ArF NA=1.35 (72nm). However these patterns can be separated by a combination of innovative SMO for less than optical resolution limit and a process trick of hole-repair technique. An example of triple patterning coloring is shown in Fig 3. Fin and local interconnect are created by lines and trims. The number of trim patterns are 3 times (min. pitch=90nm) and twice (min. pitch=120nm), respectively. The small number of masks, large pitches, and

  5. Arf tumor suppressor promoter monitors latent oncogenic signals in vivo

    NASA Astrophysics Data System (ADS)

    Zindy, Frederique; Williams, Richard T.; Baudino, Troy A.; Rehg, Jerold E.; Skapek, Stephen X.; Cleveland, John L.; Roussel, Martine F.; Sherr, Charles J.

    2003-12-01

    Induction of the Arf tumor suppressor gene by elevated thresholds of mitogenic signals activates a p53-dependent transcriptional response that triggers either growth arrest or apoptosis, thereby countering abnormal cell proliferation. Conversely, Arf inactivation is associated with tumor development. Expression of Arf in tissues of adult mice is difficult to detect, possibly because its induction leads to the arrest or elimination of incipient tumor cells. We replaced coding sequences of exon 1 of the mouse cellular Arf gene with a cDNA encoding GFP, thereby producing Arf-null animals in which GFP expression is driven by the intact Arf promoter. The Arf promoter was induced in several biologic settings previously shown to elicit mouse p19Arf expression. Inactivation of Arf in this manner led to the outgrowth of tumor cells expressing GFP, thereby providing direct evidence that the Arf promoter monitors latent oncogenic signals in vivo.

  6. Neon reduction program on Cymer ArF light sources

    NASA Astrophysics Data System (ADS)

    Kanawade, Dinesh; Roman, Yzzer; Cacouris, Ted; Thornes, Josh; O'Brien, Kevin

    2016-03-01

    In response to significant neon supply constraints, Cymer has responded with a multi-part plan to support its customers. Cymer's primary objective is to ensure that reliable system performance is maintained while minimizing gas consumption. Gas algorithms were optimized to ensure stable performance across all operating conditions. The Cymer neon support plan contains four elements: 1. Gas reduction program to reduce neon by >50% while maintaining existing performance levels and availability; 2. short-term containment solutions for immediate relief. 3. qualification of additional gas suppliers; and 4. long-term recycling/reclaim opportunity. The Cymer neon reduction program has shown excellent results as demonstrated through the comparison on standard gas use versus the new >50% reduced neon performance for ArF immersion light sources. Testing included stressful conditions such as repetition rate, duty cycle and energy target changes. No performance degradation has been observed over typical gas lives.

  7. Resist materials for 157-nm lithography

    NASA Astrophysics Data System (ADS)

    Toriumi, Minoru; Ishikawa, Seiichi; Miyoshi, Seiro; Naito, Takuya; Yamazaki, Tamio; Watanabe, Manabu; Itani, Toshiro

    2001-08-01

    Fluoropolymers are key materials for single layer resists of 157nm lithography. We have been studying fluoropolymers to identify their potential for base resins of 157nm photoresist. Many fluoropolymers showed high optical transparencies, with absorption coefficients of 0.01micrometers -1 to 2micrometers -1 at 157nm, and dry- etching resistance comparable to an ArF resist, and non- swelling solubility in the standard developer. Positive- tone resists were formulated using fluoropolymers that fulfill practical resist requirements. They showed good sensitivities, from 1 mJ/cm(superscript 2 to 10 mJ/cm2, and contrast in the sensitivity curves. They were able to be patterned using a F2 laser microstepper.

  8. Implementation of double dipole lithography for 45-nm node poly and diffusion layer manufacturing with 0.93NA

    NASA Astrophysics Data System (ADS)

    Wu, Meng-Hsiu; Hsu, Michael; Hsu, Stephen; Lu, Bo-Jou; Cheng, Yung-Feng; Chou, Yueh-Lin; Yang, Chuen-Huei

    2007-05-01

    The double dipole lithography (DDL) has been proven to be one of the resolution enhancement technologies for 45 nm node. In this paper, we have implemented a full-chip DDL process for 45nm node using ArF immersion lithography. Immersion exposure system can effectively enlarge the process DoF (depth of focus). Combining with dipole illumination can help us to reach smaller k1 value (~0.31) and meet the process requirements of poly and diffusion layers on 45nm node by using only 0.93 NA exposure tool. However, from a full-chip processing point of view, the more challenging question should be: how to calibrate a good model from two exposure and decompose original design to separate mask sets? Does the image performance achieve a production worthy standard? At 45nm node, we are using one-fourth of the exposure wavelength for the patterning; there is very little room for error. For DDL full-chip processing, we need a robust application strategy to ensure a very tight CD control. We implemented an integrated RET solution that combines DDL along with polarization, immersion system, and model based OPC to meet full-chip manufacturing requirement. This is to be a dual-exposure mask solution for 45nm node - X-dipole exposure for vertical mask and horizontal for Y-dipole. We show a process design flow starting from the design rule analysis, layout decomposition, model-based OPC, manufacturing reliability check, and then to the mask data preparation. All of the work has been implemented using MaskWeaver TM geometry engine. Additionally, we investigated printability for through-pitch line features, ASIC logic, and SRAM cell design patterns. Different circuit layout needs dedicated special OPC treatment. To characterize the related process performance, we use mask enhancement error factor (MEEF), process window (PW), and critical dimension uniformity (CDU) to analyze the simulation data. Since we used the tri-tone Att-PSM, the mask making flow and spec was also taking into

  9. EFA6 controls Arf1 and Arf6 activation through a negative feedback loop.

    PubMed

    Padovani, Dominique; Folly-Klan, Marcia; Labarde, Audrey; Boulakirba, Sonia; Campanacci, Valérie; Franco, Michel; Zeghouf, Mahel; Cherfils, Jacqueline

    2014-08-26

    Guanine nucleotide exchange factors (GEFs) of the exchange factor for Arf6 (EFA6), brefeldin A-resistant Arf guanine nucleotide exchange factor (BRAG), and cytohesin subfamilies activate small GTPases of the Arf family in endocytic events. These ArfGEFs carry a pleckstrin homology (PH) domain in tandem with their catalytic Sec7 domain, which is autoinhibitory and supports a positive feedback loop in cytohesins but not in BRAGs, and has an as-yet unknown role in EFA6 regulation. In this study, we analyzed how EFA6A is regulated by its PH and C terminus (Ct) domains by reconstituting its GDP/GTP exchange activity on membranes. We found that EFA6 has a previously unappreciated high efficiency toward Arf1 on membranes and that, similar to BRAGs, its PH domain is not autoinhibitory and strongly potentiates nucleotide exchange on anionic liposomes. However, in striking contrast to both cytohesins and BRAGs, EFA6 is regulated by a negative feedback loop, which is mediated by an allosteric interaction of Arf6-GTP with the PH-Ct domain of EFA6 and monitors the activation of Arf1 and Arf6 differentially. These observations reveal that EFA6, BRAG, and cytohesins have unanticipated commonalities associated with divergent regulatory regimes. An important implication is that EFA6 and cytohesins may combine in a mixed negative-positive feedback loop. By allowing EFA6 to sustain a pool of dormant Arf6-GTP, such a circuit would fulfill the absolute requirement of cytohesins for activation by Arf-GTP before amplification of their GEF activity by their positive feedback loop.

  10. Immersive video

    NASA Astrophysics Data System (ADS)

    Moezzi, Saied; Katkere, Arun L.; Jain, Ramesh C.

    1996-03-01

    Interactive video and television viewers should have the power to control their viewing position. To make this a reality, we introduce the concept of Immersive Video, which employs computer vision and computer graphics technologies to provide remote users a sense of complete immersion when viewing an event. Immersive Video uses multiple videos of an event, captured from different perspectives, to generate a full 3D digital video of that event. That is accomplished by assimilating important information from each video stream into a comprehensive, dynamic, 3D model of the environment. Using this 3D digital video, interactive viewers can then move around the remote environment and observe the events taking place from any desired perspective. Our Immersive Video System currently provides interactive viewing and `walkthrus' of staged karate demonstrations, basketball games, dance performances, and typical campus scenes. In its full realization, Immersive Video will be a paradigm shift in visual communication which will revolutionize television and video media, and become an integral part of future telepresence and virtual reality systems.

  11. Immersive CAD

    SciTech Connect

    Ames, A.L.

    1999-02-01

    This paper documents development of a capability for performing shape-changing editing operations on solid model representations in an immersive environment. The capability includes part- and assembly-level operations, with part modeling supporting topology-invariant and topology-changing modifications. A discussion of various design considerations in developing an immersive capability is included, along with discussion of a prototype implementation we have developed and explored. The project investigated approaches to providing both topology-invariant and topology-changing editing. A prototype environment was developed to test the approaches and determine the usefulness of immersive editing. The prototype showed exciting potential in redefining the CAD interface. It is fun to use. Editing is much faster and friendlier than traditional feature-based CAD software. The prototype algorithms did not reliably provide a sufficient frame rate for complex geometries, but has provided the necessary roadmap for development of a production capability.

  12. New measuring technique of complex index of immersion liquids

    NASA Astrophysics Data System (ADS)

    Stehlé, Jean-Louis; Piel, Jean-Philippe; Campillo-Carreto, Jose

    2006-03-01

    The next nodes in immersion lithography will require to use the 193 nm laser line with very large numerical aperture and a liquid between the optics and the resist1. Immersion lithography at 193 nm requests very specific parameters for the fluid. The first generation will use the De-Ionized Water (DIW) very pure and not recycled, but when a new optical material for last lens will be available with a refractive index (RI) larger than 1.85, a higher refractive index fluid can be used, enabling second and maybe third generation of immersion lithography at 193 nm. So the 45 and maybe the 32 nm nodes could be covered with this High Index Fluids (HIF).

  13. Auxin-dependent compositional change in Mediator in ARF7- and ARF19-mediated transcription.

    PubMed

    Ito, Jun; Fukaki, Hidehiro; Onoda, Makoto; Li, Lin; Li, Chuanyou; Tasaka, Masao; Furutani, Masahiko

    2016-06-01

    Mediator is a multiprotein complex that integrates the signals from transcription factors binding to the promoter and transmits them to achieve gene transcription. The subunits of Mediator complex reside in four modules: the head, middle, tail, and dissociable CDK8 kinase module (CKM). The head, middle, and tail modules form the core Mediator complex, and the association of CKM can modify the function of Mediator in transcription. Here, we show genetic and biochemical evidence that CKM-associated Mediator transmits auxin-dependent transcriptional repression in lateral root (LR) formation. The AUXIN/INDOLE 3-ACETIC ACID 14 (Aux/IAA14) transcriptional repressor inhibits the transcriptional activity of its binding partners AUXIN RESPONSE FACTOR 7 (ARF7) and ARF19 by making a complex with the CKM-associated Mediator. In addition, TOPLESS (TPL), a transcriptional corepressor, forms a bridge between IAA14 and the CKM component MED13 through the physical interaction. ChIP assays show that auxin induces the dissociation of MED13 but not the tail module component MED25 from the ARF7 binding region upstream of its target gene. These findings indicate that auxin-induced degradation of IAA14 changes the module composition of Mediator interacting with ARF7 and ARF19 in the upstream region of their target genes involved in LR formation. We suggest that this regulation leads to a quick switch of signal transmission from ARFs to target gene expression in response to auxin. PMID:27217573

  14. Auxin-dependent compositional change in Mediator in ARF7- and ARF19-mediated transcription

    PubMed Central

    Ito, Jun; Fukaki, Hidehiro; Onoda, Makoto; Li, Lin; Li, Chuanyou; Tasaka, Masao; Furutani, Masahiko

    2016-01-01

    Mediator is a multiprotein complex that integrates the signals from transcription factors binding to the promoter and transmits them to achieve gene transcription. The subunits of Mediator complex reside in four modules: the head, middle, tail, and dissociable CDK8 kinase module (CKM). The head, middle, and tail modules form the core Mediator complex, and the association of CKM can modify the function of Mediator in transcription. Here, we show genetic and biochemical evidence that CKM-associated Mediator transmits auxin-dependent transcriptional repression in lateral root (LR) formation. The AUXIN/INDOLE 3-ACETIC ACID 14 (Aux/IAA14) transcriptional repressor inhibits the transcriptional activity of its binding partners AUXIN RESPONSE FACTOR 7 (ARF7) and ARF19 by making a complex with the CKM-associated Mediator. In addition, TOPLESS (TPL), a transcriptional corepressor, forms a bridge between IAA14 and the CKM component MED13 through the physical interaction. ChIP assays show that auxin induces the dissociation of MED13 but not the tail module component MED25 from the ARF7 binding region upstream of its target gene. These findings indicate that auxin-induced degradation of IAA14 changes the module composition of Mediator interacting with ARF7 and ARF19 in the upstream region of their target genes involved in LR formation. We suggest that this regulation leads to a quick switch of signal transmission from ARFs to target gene expression in response to auxin. PMID:27217573

  15. Diversification, phylogeny and evolution of auxin response factor (ARF) family: insights gained from analyzing maize ARF genes.

    PubMed

    Wang, Yijun; Deng, Dexiang; Shi, Yating; Miao, Nan; Bian, Yunlong; Yin, Zhitong

    2012-03-01

    Auxin response factors (ARFs), member of the plant-specific B3 DNA binding superfamily, target specifically to auxin response elements (AuxREs) in promoters of primary auxin-responsive genes and heterodimerize with Aux/IAA proteins in auxin signaling transduction cascade. In previous research, we have isolated and characterized maize Aux/IAA genes in whole-genome scale. Here, we report the comprehensive analysis of ARF genes in maize. A total of 36 ARF genes were identified and validated from the B73 maize genome through an iterative strategy. Thirty-six maize ARF genes are distributed in all maize chromosomes except chromosome 7. Maize ARF genes expansion is mainly due to recent segmental duplications. Maize ARF proteins share one B3 DNA binding domain which consists of seven-stranded β sheets and two short α helixes. Twelve maize ARFs with glutamine-rich middle regions could be as activators in modulating expression of auxin-responsive genes. Eleven maize ARF proteins are lack of homo- and heterodimerization domains. Putative cis-elements involved in phytohormones and light signaling responses, biotic and abiotic stress adaption locate in promoters of maize ARF genes. Expression patterns vary greatly between clades and sister pairs of maize ARF genes. The B3 DNA binding and auxin response factor domains of maize ARF proteins are primarily subjected to negative selection during selective sweep. The mixed selective forces drive the diversification and evolution of genomic regions outside of B3 and ARF domains. Additionally, the dicot-specific proliferation of ARF genes was detected. Comparative genomics analysis indicated that maize, sorghum and rice duplicate chromosomal blocks containing ARF homologs are highly syntenic. This study provides insights into the distribution, phylogeny and evolution of ARF gene family.

  16. Advanced Mask Aligner Lithography (AMALITH)

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard; Vogler, Uwe; Bramati, Arianna

    2015-03-01

    Mask aligner lithography is very attractive for less-critical lithography layers and is widely used for LED, display, CMOS image sensor, micro-fluidics and MEMS manufacturing. Mask aligner lithography is also a preferred choice the semiconductor back-end for 3D-IC, TSV interconnects, advanced packaging (AdP) and wafer-level-packaging (WLP). Mask aligner lithography is a mature technique based on shadow printing and has not much changed since the 1980s. In shadow printing lithography a geometric pattern is transferred by free-space propagation from a photomask to a photosensitive layer on a wafer. The inherent simplicity of the pattern transfer offers ease of operation, low maintenance, moderate capital expenditure, high wafers-per-hour (WPH) throughput, and attractive cost-of-ownership (COO). Advanced mask aligner lithography (AMALITH) comprises different measures to improve shadow printing lithography beyond current limits. The key enabling technology for AMALITH is a novel light integrator systems, referred to as MO Exposure Optics® (MOEO). MOEO allows to fully control and shape the properties of the illumination light in a mask aligner. Full control is the base for accurate simulation and optimization of the shadow printing process (computational lithography). Now photolithography enhancement techniques like customized illumination, optical proximity correction (OPC), phase masks (AAPSM), half-tone lithography and Talbot lithography could be used in mask aligner lithography. We summarize the recent progress in advanced mask aligner lithography (AMALITH) and discuss possible measures to further improve shadow printing lithography.

  17. Defect transfer from immersion exposure process to post processing and defect reduction using novel immersion track system

    NASA Astrophysics Data System (ADS)

    Miyahara, Osamu; Shimoaoki, Takeshi; Wakamizu, Shinya; Kitano, Junichi; Ono, Yoshiharu; Maejima, Shinroku; Hanawa, Tetsuro; Suko, Kazuyuki

    2007-03-01

    As a promising way to scale down semiconductor devices, 193-nm immersion exposure lithography is being developed at a rapid pace and is nearing application to mass production. This technology allows the design of projection lens with higher numerical aperture (NA) by filling the space between the projection lens and the silicon wafer with a liquid (de-ionized water). However, direct contact between the resist film and water during exposure creates a number of process risks. There are still many unresolved issues and many problems to be solved concerning defects that arise in 193-nm immersion lithography. The use of de-ionized water during the exposure process in 193-nm immersion lithography can lead to a variety of problems. For example, the trapping of microscopic air bubbles can degrade resolution, and residual water droplets left on the wafer surface after immersion exposure can affect resolution in the regions under those droplets. It has also been reported that the immersion of resist film in de-ionized water during exposure can cause moisture to penetrate the resist film and dissolve resist components, and that immersion can affect critical dimensions as well as generate defects. The use of a top coat is viewed as one possible way to prevent adverse effects from the immersion of resist in water, but it has been reported that the same problems may occur even with a top coat and that additional problems may be generated, such as the creation of development residues due to the mixing of top coat and resist. To make 193-nm immersion lithography technology practical for mass production, it is essential that the above defect problems be solved. Importance must be attached to understanding the conditions that give rise to residual defects and their transference in the steps between lithography and the etching/cleaning processes. In this paper, we use 193-nm immersion lithography equipment to examine the transference (traceability) of defects that appear in actual

  18. Role of the tumor suppressor ARF in macrophage polarization: Enhancement of the M2 phenotype in ARF-deficient mice.

    PubMed

    Herranz, Sandra; Través, Paqui G; Luque, Alfonso; Hortelano, Sonsoles

    2012-11-01

    The ARF locus is frequently inactivated in human cancer. The oncosuppressor ARF has indeed been described as a general sensor for different situation of cellular stress. We have previously demonstrated that ARF deficiency severely impairs inflammatory responses in vitro and in vivo, establishing a role for ARF in the regulation of innate immunity. The aim of the present work was to get further insights into the immune functions of ARF and to evaluate its possible contribution to the polarization of macrophages toward the M1 or M2 phenotype. Our results demonstrate that resting Arf(-/-) macrophages express high levels of Ym1 and Fizz-1, two typical markers of alternatively-activated macrophages (M2). Additionally, Arf(-/-) peritoneal macrophages showed an impaired response to lipopolysaccharide (a classical inducer of M1 polaryzation) and a reduced production of pro-inflammatory cytokines/chemokines. Moreover, upon stimulation with interleukin-4 (IL-4), an inducer of the M2 phenotype, well established M2 markers such as Fizz-1, Ym1 and arginase-1 were upregulated in Arf(-/-) as compared with wild type macrophages. Accordingly, the cytokine and chemokine profile associated with the M2 phenotype was significantly overexpressed in Arf(-/-) macrophages responding to IL-4. In addition, multiple pro-angiogenic factors such as VEGF and MMP-9 were also increased. In summary, these results indicate that ARF contributes to the polarization and functional plasticity of macrophages.

  19. Ion beam lithography system

    DOEpatents

    Leung, Ka-Ngo

    2005-08-02

    A maskless plasma-formed ion beam lithography tool provides for patterning of sub-50 nm features on large area flat or curved substrate surfaces. The system is very compact and does not require an accelerator column and electrostatic beam scanning components. The patterns are formed by switching beamlets on or off from a two electrode blanking system with the substrate being scanned mechanically in one dimension. This arrangement can provide a maskless nano-beam lithography tool for economic and high throughput processing.

  20. Analysis of Arf GTP-binding Protein Function in Cells

    PubMed Central

    Cohen, Lee Ann; Donaldson, Julie G.

    2010-01-01

    This unit describes techniques and approaches that can be used to study the functions of the ADP-ribosylation factor (Arf) GTP-binding proteins in cells. There are 6 mammalian Arfs and many more Arf-like proteins (Arls) and these proteins are conserved in eukaryotes from yeast to man. Like all GTPases, Arfs cycle between GDP-bound, inactive and GTP-bound active conformations, facilitated by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) that catalyze GTP binding and hydrolysis respectively. Here we describe approaches that can be taken to examine the localization and function of Arf and Arl proteins in cells (Protocol 1). We also provide a simple protocol for measuring activation (GTP-binding) of specific Arf proteins in cells using a pull-down assay (Protocol 2). We then discuss approaches that can be taken to assess function of GEFs and GAPs in cells (Protocol 3). PMID:20853342

  1. Extremely long life and low-cost 193nm excimer laser chamber technology for 450mm wafer multipatterning lithography

    NASA Astrophysics Data System (ADS)

    Tsushima, Hiroaki; Katsuumi, Hisakazu; Ikeda, Hiroyuki; Asayama, Takeshi; Kumazaki, Takahito; Kurosu, Akihiko; Ohta, Takeshi; Kakizaki, Kouji; Matsunaga, Takashi; Mizoguchi, Hakaru

    2014-04-01

    193nm ArF excimer lasers are widely used as light sources for the lithography process of semiconductor production. 193nm ArF exicmer lasers are expected to continue to be the main solution in photolithography, since advanced lithography technologies such as multiple patterning and Self-Aligned Double Patterning (SADP) are being developed. In order to apply these technologies to high-volume semiconductor manufacturing, the key is to reduce the total operating cost. To reduce the total operating cost, life extension of consumable part and reduction of power consumption are an important factor. The chamber life time and power consumption are a main factor to decide the total operating cost. Therefore, we have developed the new technology for extension of the chamber life time and low electricity consumption. In this paper, we will report the new technology to extend the life time of the laser chamber and to reduce the electricity consumption.

  2. A Review of Auxin Response Factors (ARFs) in Plants

    PubMed Central

    Li, Si-Bei; Xie, Zong-Zhou; Hu, Chun-Gen; Zhang, Jin-Zhi

    2016-01-01

    Auxin is a key regulator of virtually every aspect of plant growth and development from embryogenesis to senescence. Previous studies have indicated that auxin regulates these processes by controlling gene expression via a family of functionally distinct DNA-binding auxin response factors (ARFs). ARFs are likely components that confer specificity to auxin response through selection of target genes as transcription factors. They bind to auxin response DNA elements (AuxRE) in the promoters of auxin-regulated genes and either activate or repress transcription of these genes depending on a specific domain in the middle of the protein. Genetic studies have implicated various ARFs in distinct developmental processes through loss-of-function mutant analysis. Recent advances have provided information on the regulation of ARF gene expression, the role of ARFs in growth and developmental processes, protein–protein interactions of ARFs and target genes regulated by ARFs in plants. In particular, protein interaction and structural studies of ARF proteins have yielded novel insights into the molecular basis of auxin-regulated transcription. These results provide the foundation for predicting the contributions of ARF genes to the biology of other plants. PMID:26870066

  3. Thirty years of lithography simulation

    NASA Astrophysics Data System (ADS)

    Mack, Chris A.

    2005-05-01

    Thirty years ago Rick Dill and his team at IBM published the first account of lithography simulation - the accurate description of semiconductor optical lithography by mathematical equations. Since then, lithography simulation has grown dramatically in importance in four important areas: as a research tool, as a development tool, as a manufacturing tool, and as a learning tool. In this paper, the history of lithography simulations is traced from its roots to today"s indispensable tools for lithographic technology development. Along the way, an attempt will be made to define the true value of lithography simulation to the semiconductor industry.

  4. Carbon dioxide gas purification and analytical measurement for leading edge 193nm lithography

    NASA Astrophysics Data System (ADS)

    Riddle Vogt, Sarah; Landoni, Cristian; Applegarth, Chuck; Browning, Matt; Succi, Marco; Pirola, Simona; Macchi, Giorgio

    2015-03-01

    The use of purified carbon dioxide (CO2) has become a reality for leading edge 193 nm immersion lithography scanners. Traditionally, both dry and immersion 193 nm lithographic processes have constantly purged the optics stack with ultrahigh purity compressed dry air (UHPCDA). CO2 has been utilized for a similar purpose as UHPCDA. Airborne molecular contamniation (AMC) purification technologies and analytical measurement methods have been extensively developed to support the Lithography Tool Manufacturers purity requirements. This paper covers the analytical tests and characterizations carried out to assess impurity removal from 3.0 N CO2 (beverage grade) for its final utilization in 193 nm and EUV scanners.

  5. Beam pen lithography

    NASA Astrophysics Data System (ADS)

    Huo, Fengwei; Zheng, Gengfeng; Liao, Xing; Giam, Louise R.; Chai, Jinan; Chen, Xiaodong; Shim, Wooyoung; Mirkin, Chad A.

    2010-09-01

    Lithography techniques are currently being developed to fabricate nanoscale components for integrated circuits, medical diagnostics and optoelectronics. In conventional far-field optical lithography, lateral feature resolution is diffraction-limited. Approaches that overcome the diffraction limit have been developed, but these are difficult to implement or they preclude arbitrary pattern formation. Techniques based on near-field scanning optical microscopy can overcome the diffraction limit, but they suffer from inherently low throughput and restricted scan areas. Highly parallel two-dimensional, silicon-based, near-field scanning optical microscopy aperture arrays have been fabricated, but aligning a non-deformable aperture array to a large-area substrate with near-field proximity remains challenging. However, recent advances in lithographies based on scanning probe microscopy have made use of transparent two-dimensional arrays of pyramid-shaped elastomeric tips (or `pens') for large-area, high-throughput patterning of ink molecules. Here, we report a massively parallel scanning probe microscopy-based approach that can generate arbitrary patterns by passing 400-nm light through nanoscopic apertures at each tip in the array. The technique, termed beam pen lithography, can toggle between near- and far-field distances, allowing both sub-diffraction limit (100 nm) and larger features to be generated.

  6. Defect printability of ArF alternative phase-shift mask: a critical comparison of simulation and experiment

    NASA Astrophysics Data System (ADS)

    Ozawa, Ken; Komizo, Tooru; Ohnuma, Hidetoshi

    2002-07-01

    An alternative phase shift mask (alt-PSM) is a promising device for extending optical lithography to finer design rules. There have been few reports, however, on the mask's ability to identify phase defects. We report here an alt-PSM of a single-trench type with undercut for ArF exposure, with programmed phase defects used to evaluate defect printability by measuring aerial images with a Zeiss MSM193 measuring system. The experimental results are simulated using the TEMPEST program. First, a critical comparison of the simulation and the experiment is conducted. The actual measured topographies of quartz defects are used in the simulation. Moreover, a general simulation study on defect printability using an alt-PSM for ArF exposure is conducted. The defect dimensions, which produce critical CD errors, are determined by simulation that takes into account the full 3-dimensional structure of phase defects as well as a simplified structure. The critical dimensions of an isolated bump defect identified by the alt-PSM of a single-trench type with undercut for ArF exposure are 300 nm in bottom dimension and 74 degrees in height (phase) for the real shape, where the depth of wet-etching is 100 nm and the CD error limit is +/- 5 percent.

  7. Metal-Mesh Lithography

    PubMed Central

    Tang, Zhao; Wei, Qingshan; Wei, Alexander

    2011-01-01

    Metal-mesh lithography (MML) is a practical hybrid of microcontact printing and capillary force lithography that can be applied over millimeter-sized areas with a high level of uniformity. MML can be achieved by blotting various inks onto substrates through thin copper grids, relying on preferential wetting and capillary interactions between template and substrate for pattern replication. The resulting mesh patterns, which are inverted relative to those produced by stenciling or serigraphy, can be reproduced with low micrometer resolution. MML can be combined with other surface chemistry and lift-off methods to create functional microarrays for diverse applications, such as periodic islands of gold nanorods and patterned corrals for fibroblast cell cultures. PMID:22103322

  8. Metal-mesh lithography.

    PubMed

    Tang, Zhao; Wei, Qingshan; Wei, Alexander

    2011-12-01

    Metal-mesh lithography (MML) is a practical hybrid of microcontact printing and capillary force lithography that can be applied over millimeter-sized areas with a high level of uniformity. MML can be achieved by blotting various inks onto substrates through thin copper grids, relying on preferential wetting and capillary interactions between template and substrate for pattern replication. The resulting mesh patterns, which are inverted relative to those produced by stenciling or serigraphy, can be reproduced with low micrometer resolution. MML can be combined with other surface chemistry and lift-off methods to create functional microarrays for diverse applications, such as periodic islands of gold nanorods and patterned corrals for fibroblast cell cultures.

  9. Distortion free projection lithography

    SciTech Connect

    Hawryluk, A.M.; Ceglio, N.M.; Phillion, D.W.; Gaines, D.P.

    1991-07-09

    Soft x-ray projection lithography (SXPL) may be used to fabricate high resolution structures for future devices, but will require an all-reflecting optical system with {approximately} 100 nm resolution and < 10 nm image distortion over large fields-of-view. In present designs, the lithographic tool for SXPL is envisioned as a ring-field'' scanning system with multiple (3--5), possibly aspheric, imaging optics fabricated to {approximately} < 1 nm figure precision. In its present form, several technologies must be developed before this tool can become practical. A simple, non-scanning optical system with less expensive optics, reduced mirror reflection losses and lower source power requirements would be very attractive. We have developed a technique, called Encoded Mask Lithography (EML), which allows for distortion free, high resolution reticle replication over a large field-of-view while using an imaging system with substantial inherent distortion. When applied to SXPL, EML allows us to use a simple, two spherical mirror imaging system. The simplified optical system used in EML eases optic fabrication requirements, obviates the need for mask-to-wafer scanning, and decreases multilayer mirror reflection losses and source power requirements. Although developed for SXPL, this concept is applicable to all forms of projection lithography where distortion over large fields may be a problem. 10 refs., 4 figs.

  10. Native Language Immersion.

    ERIC Educational Resources Information Center

    Reyhner, Jon

    This paper describes the benefits of indigenous mother tongue immersion programs, examining the Total Physical Response approach to immersion for beginning learners and focusing on the development of Maori and Hawaiian mother tongue language immersion programs. The paper discusses the importance of immersing students in a language-risk…

  11. Extreme ultraviolet Talbot interference lithography.

    PubMed

    Li, Wei; Marconi, Mario C

    2015-10-01

    Periodic nanopatterns can be generated using lithography based on the Talbot effect or optical interference. However, these techniques have restrictions that limit their performance. High resolution Talbot lithography is limited by the very small depth of focus and the demanding requirements in the fabrication of the master mask. Interference lithography, with large DOF and high resolution, is limited to simple periodic patterns. This paper describes a hybrid extreme ultraviolet lithography approach that combines Talbot lithography and interference lithography to render an interference pattern with a lattice determined by a Talbot image. As a result, the method enables filling the arbitrary shaped cells produced by the Talbot image with interference patterns. Detailed modeling, system design and experimental results using a tabletop EUV laser are presented. PMID:26480070

  12. Electron Beam Lithography

    NASA Astrophysics Data System (ADS)

    Harriott, Lloyd R.

    1997-04-01

    Electron beams have played a significant role in semiconductor technology for more than twenty years. Early electron beam machines used a raster scanned beam spot to write patterns in electron-sensitive polymer resist materials. The main application of electron beam lithography has been in mask making. Despite the inherently high spatial resolution and wide process margins of electron beam lithography, the writing rate for semiconductor wafers has been too slow to be economically viable on a large scale. In the late 1970's, variable shape electron beam writing was developed, projecting a rectangular beam whose size can be varied for each "shot" exposure of a particular pattern, allowing some integrated circuits to be made economically where a variety of "customized" patterns are desired. In the cell or block projection electron beam exposure technique, a unit cell of a repetitive pattern is projected repeatedly to increase the level of parallelism. This can work well for highly repetitive patterns such as memory chips but is not well suited to complex varying patterns such as microprocessors. The rapid progress in the performance of integrated circuits has been largely driven by progress in optical lithography, through improvements in lens design and fabrication as well as the use of shorter wavelengths for the exposure radiation. Due to limitations from the opacity of lens and mask materials, it is unlikely that conventional optical printing methods can be used at wavelengths below 193 nm or feature sizes much below 180 nm. One candidate technology for a post-optical era is the Scattering with Angular Limitation Projection Electron-beam Lithography (SCALPEL) approach, which combines the high resolution and wide process latitude inherent in electron beam lithography with the throughput of a parallel projection system. A mask consisting of a low atomic number membrane and a high atomic number pattern layer is uniformly illuminated with high energy (100 ke

  13. Polymer and Material Design for Lithography From 50 nm Node to the sub-16 nm Node

    NASA Astrophysics Data System (ADS)

    Trefonas, Peter

    2012-02-01

    Microlithography is one of the technologies which enabled the Information Age. Developing at the intersection of optical physics, polymer science and photochemistry, the need for ever smaller high fidelity patterns to build integrated circuits is currently pushing the technology evolution from 193 nm immersion lithography to extreme ultraviolet lithography (13.5 nm) to alternate patterning technologies such as directed self assembly (DSA) of block copolymers. Essential to the success of this progression is a rapid application of new concepts and materials in polymer science. We will discuss the requirements for 193 immersion lithography and how advanced acrylic random polymers are being designed with chemical amplification functionality to meet these needs. The special requirements of a water immersion lithography led to the invention and rapid commercial application of surface assembled embedded barrier layer polymers. Design of polymers for EUV lithography is having to respond to much different challenges, prominent being the dearth of photons in the exposure step, and the other being how to maximize the efficiency of photoacid production. In parallel, alternative lithographic approaches are being developed using directed self assembly of block copolymers which realize pattern frequency multiplication. We will update with our progress in the applications of polymers designed for DSA.

  14. Vapor deposited release layers for nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Zhang, Tong; Kobrin, Boris; Wanebo, Mike; Nowak, Romek; Yi, Richard; Chinn, Jeff; Bender, Markus; Fuchs, Andreas; Otto, Martin

    2006-03-01

    This paper presents the advantages of using a vapor deposited self-assembled monolayer (SAM) as a mold release layer for nano-imprint lithography. The release SAM was formed from a perfluorinated organo-silane precursor at room temperature in the gaseous state by a technique called Molecular Vapor Deposition (MVD TM). In contrast to a conventional coating from a liquid immersion sequence, the vapor deposition process forms a particulate free film resulting in a substantial reduction of surface defects. Another advantage of the vapor process is its excellent conformity onto the nanoscale topography of the mold. The self-assembling and self-limiting characteristics of the MVD process enables excellent CD control of the mold pattern. Pattern replication as small as 38nm features was achieved. Various other quantitative metrics of the MVD release layer are presented in this paper.

  15. Microfluidic Applications of Soft Lithography

    SciTech Connect

    Rose, K A; Krulevitch, P; Hamilton, J

    2001-04-10

    The soft lithography fabrication technique was applied to three microfluidic devices. The method was used to create an original micropump design and retrofit to existing designs for a DNA manipulation device and a counter biological warfare sample preparation device. Each device presented unique and original challenges to the soft lithography application. AI1 design constraints of the retrofit devices were satisfied using PDMS devices created through variation of soft lithography methods. The micropump utilized the versatility of PDMS, creating design options not available with other materials. In all cases, the rapid processing of soft lithography reduced the fabrication time, creating faster turnaround for design modifications.

  16. ArfGAP1 function in COPI mediated membrane traffic: currently debated models and comparison to other coat-binding ArfGAPs.

    PubMed

    Shiba, Yoko; Randazzo, Paul A

    2012-09-01

    The ArfGAPs are a family of proteins containing an ArfGAP catalytic domain that induces the hydrolysis of GTP bound to the small guanine nucleotide binding-protein ADP-ribosylation factor (Arf). Functional models for Arfs, which are regulators of membrane traffic, are based on the idea that guanine nucleotide-binding proteins function as switches: Arf with GTP bound is active and binds to effector proteins; the conversion of GTP to GDP inactivates Arf. The cellular activities of ArfGAPs have been examined primarily as regulatory proteins that inactivate Arf; however, Arf function in membrane traffic does not strictly adhere to the concept of a simple switch, adding complexity to models explaining the role of ArfGAPs. Here, we review the literature addressing the function Arf and ArfGAP1 in COPI mediated transport, focusing on two critical and integrated functions of membrane traffic, cargo sorting and vesicle coat polymerization. We briefly discuss other ArfGAPs that may have similar function in Arf-dependent membrane traffic outside the ER-Golgi.

  17. Optimal design of wide-view-angle waveplate used for polarimetric diagnosis of lithography system

    NASA Astrophysics Data System (ADS)

    Gu, Honggang; Jiang, Hao; Zhang, Chuanwei; Chen, Xiuguo; Liu, Shiyuan

    2016-03-01

    The diagnosis and control of the polarization aberrations is one of the main concerns in a hyper numerical aperture (NA) lithography system. Waveplates are basic and indispensable optical components in the polarimetric diagnosis tools for the immersion lithography system. The retardance of a birefringent waveplate is highly sensitive to the incident angle of the light, which makes the conventional waveplate not suitable to be applied in the polarimetric diagnosis for the immersion lithography system with a hyper NA. In this paper, we propose a method for the optimal design of a wideview- angle waveplate by combining two positive waveplates made from magnesium fluoride (MgF2) and two negative waveplates made from sapphire using the simulated annealing algorithm. Theoretical derivations and numerical simulations are performed and the results demonstrate that the maximum variation in the retardance of the optimally designed wide-view-angle waveplate is less than +/- 0.35° for a wide-view-angle range of +/- 20°.

  18. Arf6 mediates Schwann cell differentiation and myelination.

    PubMed

    Torii, Tomohiro; Miyamoto, Yuki; Yamamoto, Masahiro; Ohbuchi, Katsuya; Tsumura, Hideki; Kawahara, Kazuko; Tanoue, Akito; Sakagami, Hiroyuki; Yamauchi, Junji

    2015-09-25

    During development of the peripheral nervous system (PNS), Schwann cells wrap neuronal axons, becoming the myelin sheaths that help axonal functions. While the intercellular signals controlling the myelination process between Schwann cells and peripheral neurons are well studied, the transduction of these signals in Schwann cells still remains elusive. Here, we show that Arf6, an Arf protein of the small GTPase family, is involved in promoting the myelination process. Knockdown of Arf6 with the small-interfering (si)RNA in primary Schwann cells markedly decreases dibutyl-cyclic AMP-induced myelin marker protein expression, indicating that Arf6 plays a role in differentiation-like phenotypic changes. To obtain in vivo evidence, we generated small-hairpin (sh)RNA transgenic mice targeting Arf6 for Schwann cells. Transgenic mice exhibited reduced myelin thickness compared to littermate controls, consistent with the defective myelin formation observed in the transgenic mouse-derived Schwann cell and neuronal culture system. Transgenic mice also exhibited decreased phosphorylation of myelination-related signaling molecules such as Akt kinase cascade proteins as well as downregulation of myelin marker proteins. These results suggest that signaling through Arf6 is required for Schwann cell myelination, adding Arf6 to the list of intracellular signaling molecules involved in the myelination process.

  19. Mechanism of activation of cholera toxin by ADP-ribosylation factor (ARF): both low- and high-affinity interactions of ARF with guanine nucleotides promote toxin activation.

    PubMed

    Bobak, D A; Bliziotes, M M; Noda, M; Tsai, S C; Adamik, R; Moss, J

    1990-01-30

    Activation of adenylyl cyclase by cholera toxin A subunit (CT-A) results from the ADP-ribosylation of the stimulatory guanine nucleotide binding protein (GS alpha). This process requires GTP and an endogenous guanine nucleotide binding protein known as ADP-ribosylation factor (ARF). One membrane (mARF) and two soluble forms (sARF I and sARF II) of ARF have been purified from bovine brain. Because the conditions reported to enhance the binding of guanine nucleotides by ARF differ from those observed to promote optimal activity, we sought to characterize the determinants influencing the functional interaction of guanine nucleotides with ARF. High-affinity GTP binding by sARF II (apparent KD of approximately 70 nM) required Mg2+, DMPC, and sodium cholate. sARF II, in DMPC/cholate, also enhanced CT-A ADP-ribosyltransferase activity (apparent EC50 for GTP of approximately 50 nM), although there was a delay before achievement of a maximal rate of sARF II stimulated toxin activity. The delay was abolished by incubation of sARF II with GTP at 30 degrees C before initiation of the assay. In contrast, a maximal rate of activation of toxin by sARF II, in 0.003% SDS, occurred without delay (apparent EC50 for GTP of approximately 5 microM). High-affinity GTP binding by sARF II was not detectable in SDS. Enhancement of CT-A ADP-ribosyltransferase activity by sARF II, therefore, can occur under conditions in which sARF II exhibits either a relatively low affinity or a relatively high affinity for GTP. The interaction of GTP with ARF under these conditions may reflect ways in which intracellular membrane and cytosolic environments modulate GTP-mediated activation of ARF.

  20. The Adaptor Proteins p66Shc and Grb2 Regulate the Activation of the GTPases ARF1 and ARF6 in Invasive Breast Cancer Cells*

    PubMed Central

    Haines, Eric; Saucier, Caroline; Claing, Audrey

    2014-01-01

    Signals downstream of growth factor receptors play an important role in mammary carcinogenesis. Recently, we demonstrated that the small GTPases ARF1 and ARF6 were shown to be activated downstream of the epidermal growth factor receptor (EGFR) and act as a key regulator of growth, migration, and invasion of breast cancer cells. However, the mechanism via which the EGFR recruits and activates ARF1 and ARF6 to transmit signals has yet to be fully elucidated. Here, we identify adaptor proteins Grb2 and p66Shc as important regulators mediating ARF activation. We demonstrate that ARF1 can be found in complex with Grb2 and p66Shc upon EGF stimulation of the basal-like breast cancer MDA-MB-231 cell line. However, we report that these two adaptors regulate ARF1 activation differently, with Grb2 promoting ARF1 activation and p66Shc blocking this response. Furthermore, we show that Grb2 is essential for the recruitment of ARF1 to the EGFR, whereas p66Shc hindered ARF1 receptor recruitment. We demonstrate that the negative regulatory role of p66Shc stemmed from its ability to block the recruitment of Grb2/ARF1 to the EGFR. Conversely, p66Shc potentiates ARF6 activation as well as the recruitment of this ARF isoform to the EGFR. Interestingly, we demonstrate that Grb2 is also required for the activation and receptor recruitment of ARF6. Additionally, we show an important role for p66Shc in modulating ARF activation, cell growth, and migration in HER2-positive breast cancer cells. Together, our results highlight a central role for adaptor proteins p66Shc and Grb2 in the regulation of ARF1 and ARF6 activation in invasive breast cancer cells. PMID:24407288

  1. Fundamental study of optical threshold layer approach towards double exposure lithography

    NASA Astrophysics Data System (ADS)

    Gu, Xinyu; Berro, Adam J.; Cho, Younjin; Jen, Kane; Lee, Saul; Ngai, Tomoki; Ogata, Toshiyuki; Durand, William J.; Sundaresan, Arunkumar; Lancaster, Jeffrey R.; Jockusch, Steffen; Zimmerman, Paul; Turro, Nicholas J.; Willson, C. G.

    2009-03-01

    193 immersion lithography has reached its maximal achievable resolution. There are mainly two lithographic strategies that will enable continued increase in resolution. Those are being pursued in parallel. The first is extreme ultraviolet (EUV) lithography and the second is double patterning (exposure) lithography. EUV lithography is counted on to be available in 2013 time frame for 22 nm node. Unfortunately, this technology has suffered several delays due to fundamental problems with source power, mask infrastructure, metrology and overall reliability. The implementation of EUV lithography in the next five years is unlikely due to economic factors. Double patterning lithography (DPL) is a technology that has been implemented by the industry and has already shown the proof of concept for the 22nm node. This technique while expensive is the only current path forward for scaling with no fundamental showstoppers for the 32nm and 22nm nodes. Double exposure lithography (DEL) is being proposed as a cost mitigating approach to advanced lithography. Compared to DPL, DEL offers advantages in overlay and process time, thus reducing the cost-of-ownership (CoO). However, DEL requires new materials that have a non-linear photoresponse. So far, several approaches were proposed for double exposure lithography, from which Optical Threshold Layer (OTL) was found to give the best lithography performance according to the results of the simulation. This paper details the principle of the OTL approach. A photochromic polymer was designed and synthesized. The feasibility of the material for application of DEL was explored by a series of evaluations.

  2. Patterning strategy for low-K1 lithography

    NASA Astrophysics Data System (ADS)

    Hwang, David H.; Cheng, Wen-Hao

    2004-08-01

    Moore's law has been guiding the semiconductor industry for four decades. Lithography is the key enabler to keep the industry on the technology treadmill. Lithographers have been facing unprecedented challenges during last five years to keep the technology on the technology treadmill by developing various kinds of resolution enhancement techniques (RETs). In low K1 regime, co-optimization of design, layout mask, OPC, lithography and etching is the primary strategy to deliver a production-worthy patterning solution. Optical shrink is not a trivial task anymore. Intel always pursues parallel patterning techniques based on the dual exposure wavelength patterning strategy. While EUVL is the preferred patterning solution for 32nm node, 193nm immersion lithography with super high NA illumination is one of the parallel patterning strategies. The effects of polarization at super high NA illumination on mask technology, such as lens reduction ratio, blank absorber thickness and image imbalance correction, and restriction on design layout are addressed in this paper. Contact patterning is extremely challenging at low K1. Contact shape factor (circularity) which impacts the design rule will be discussed in this paper. Explosion of data file size and mask write time, stringent mask CD control and mask defect disposition are direct consequences of low-K1/high-MEEF (Mask Error Enhancement Factor) lithography. Mask makers alone cannot resolve the challenges in a cost effective manner. A seamless integration solution is a must.

  3. Bubble-Pen Lithography.

    PubMed

    Lin, Linhan; Peng, Xiaolei; Mao, Zhangming; Li, Wei; Yogeesh, Maruthi N; Rajeeva, Bharath Bangalore; Perillo, Evan P; Dunn, Andrew K; Akinwande, Deji; Zheng, Yuebing

    2016-01-13

    Current lithography techniques, which employ photon, electron, or ion beams to induce chemical or physical reactions for micro/nano-fabrication, have remained challenging in patterning chemically synthesized colloidal particles, which are emerging as building blocks for functional devices. Herein, we develop a new technique - bubble-pen lithography (BPL) - to pattern colloidal particles on substrates using optically controlled microbubbles. Briefly, a single laser beam generates a microbubble at the interface of colloidal suspension and a plasmonic substrate via plasmon-enhanced photothermal effects. The microbubble captures and immobilizes the colloidal particles on the substrate through coordinated actions of Marangoni convection, surface tension, gas pressure, and substrate adhesion. Through directing the laser beam to move the microbubble, we create arbitrary single-particle patterns and particle assemblies with different resolutions and architectures. Furthermore, we have applied BPL to pattern CdSe/ZnS quantum dots on plasmonic substrates and polystyrene (PS) microparticles on two-dimensional (2D) atomic-layer materials. With the low-power operation, arbitrary patterning and applicability to general colloidal particles, BPL will find a wide range of applications in microelectronics, nanophotonics, and nanomedicine.

  4. Nucleophosmin (B23) Targets ARF to Nucleoli and Inhibits Its Function

    PubMed Central

    Korgaonkar, Chandrashekhar; Hagen, Jussara; Tompkins, Van; Frazier, April A.; Allamargot, Chantal; Quelle, Frederick W.; Quelle, Dawn E.

    2005-01-01

    The ARF tumor suppressor is a nucleolar protein that activates p53-dependent checkpoints by binding Mdm2, a p53 antagonist. Despite persuasive evidence that ARF can bind and inactivate Mdm2 in the nucleoplasm, the prevailing view is that ARF exerts its growth-inhibitory activities from within the nucleolus. We suggest ARF primarily functions outside the nucleolus and provide evidence that it is sequestered and held inactive in that compartment by a nucleolar phosphoprotein, nucleophosmin (NPM). Most cellular ARF is bound to NPM regardless of whether cells are proliferating or growth arrested, indicating that ARF-NPM association does not correlate with growth suppression. Notably, ARF binds NPM through the same domains that mediate nucleolar localization and Mdm2 binding, suggesting that NPM could control ARF localization and compete with Mdm2 for ARF association. Indeed, NPM knockdown markedly enhanced ARF-Mdm2 association and diminished ARF nucleolar localization. Those events correlated with greater ARF-mediated growth suppression and p53 activation. Conversely, NPM overexpression antagonized ARF function while increasing its nucleolar localization. These data suggest that NPM inhibits ARF's p53-dependent activity by targeting it to nucleoli and impairing ARF-Mdm2 association. PMID:15684379

  5. Mask topography effect in chromeless phase lithography

    NASA Astrophysics Data System (ADS)

    Philipsen, Vicky; Bekaert, Joost; Vandenberghe, Geert; Jonckheere, Rik; Van Den Broeke, Douglas; Socha, Robert

    2004-12-01

    Different types of phase-shift masks (PSM) in combination with the proper illumination condition are widely used to allow 193nm lithography to print ever-decreasing pitches with a sufficient process window. A viable option for the 65nm node is Chromeless Phase Lithography (CPL), which combines a chromeless phase shift mask and 193nm off-axis illumination. It has been demonstrated that CPL has a high flexibility for through pitch imaging. Also concerning mask making CPL masks showed advantages over alternating and attenuated PSM [1]. This paper discusses how the mask quality and its topography influence the imaging performance of CPL. It is shown that mask topography is an important factor for CPL, as the imaging relies also on the quartz depth differences in the mask. The wafer image is sensitive to phase variations induced by the quartz etch depth and the sidewall profile. Their impact is separately studied using rigorous 3D mask electro-magnetic field simulations (Sigma-C Solid-CM). Correlation of experimental results to simulation explains that the observed pitch-dependent tilt in the Bossung curves is mainly related to the 3D character of the mask. In search for a global compensation valid through pitch, the simulation study also evaluates the effect of other contributors such as lens aberrations in the optical system, assist features and half-toning Cr zebra lines in the design. However, as the tilt is inherent to the CPL mask fabrication, a compensation of the Bossung tilt effect can only be obtained for specific combinations of all sources, as will be shown. We concentrate on the imaging of 70nm lines and 100nm contact holes in pitches ranging from dense up to isolated. The wafers are exposed on an ASML PAS5500/1100 ArF scanner working with a 0.75NA projection lens and various types of off-axis illumination. The wafers are evaluated on a top-down CD SEM (KLA-Tencor 8250XR).

  6. Mutual Regulation of FOXM1, NPM and ARF Proteins.

    PubMed

    Pandit, Bulbul; Gartel, Andrei L

    2015-01-01

    ARF, NPM and FOXM1 proteins interact with each other in mammalian cells. We showed previously that proteasome inhibitors suppress not only FOXM1 expression, but also the expression of ARF and NPM proteins. Using RNA interference we found that the depletion of each of these proteins by RNAi in human cancer HeLa cells leads to down-regulation of the two other partners, suggesting that these proteins stabilize each other in human cancer cells. Since the suppression of FOXM1 is one of hallmarks of proteasome inhibition, suppression of ARF and NPM by proteasome inhibitors may be explained in part as a secondary effect of downregulation of FOXM1 that modulate stability of ARF and NPM1 proteins.

  7. Mutual Regulation of FOXM1, NPM and ARF Proteins

    PubMed Central

    Pandit, Bulbul; Gartel, Andrei L.

    2015-01-01

    ARF, NPM and FOXM1 proteins interact with each other in mammalian cells. We showed previously that proteasome inhibitors suppress not only FOXM1 expression, but also the expression of ARF and NPM proteins. Using RNA interference we found that the depletion of each of these proteins by RNAi in human cancer HeLa cells leads to down-regulation of the two other partners, suggesting that these proteins stabilize each other in human cancer cells. Since the suppression of FOXM1 is one of hallmarks of proteasome inhibition, suppression of ARF and NPM by proteasome inhibitors may be explained in part as a secondary effect of downregulation of FOXM1 that modulate stability of ARF and NPM1 proteins. PMID:26000045

  8. Extension of 193 nm dry lithography to 45-nm half-pitch node: double exposure and double processing technique

    NASA Astrophysics Data System (ADS)

    Biswas, Abani M.; Li, Jianliang; Hiserote, Jay A.; Melvin, Lawrence S., III

    2006-10-01

    Immersion lithography and multiple exposure techniques are the most promising methods to extend lithography manufacturing to the 45nm node. Although immersion lithography has attracted much attention recently as a promising optical lithography extension, it will not solve all the problems at the 45-nm node. The 'dry' option, (i.e. double exposure/etch) which can be realized with standard processing practice, will extend 193-nm lithography to the end of the current industry roadmap. Double exposure/etch lithography is expensive in terms of cost, throughput time, and overlay registration accuracy. However, it is less challenging compared to other possible alternatives and has the ability to break through the κ I barrier (0.25). This process, in combination with attenuated PSM (att-PSM) mask, is a good imaging solution that can reach, and most likely go beyond, the 45-nm node. Mask making requirements in a double exposure scheme will be reduced significantly. This can be appreciated by the fact that the separation of tightly-pitched mask into two less demanding pitch patterns will reduce the stringent specifications for each mask. In this study, modeling of double exposure lithography (DEL) with att-PSM masks to target 45-nm node is described. In addition, mask separation and implementation issues of optical proximity corrections (OPC) to improve process window are studied. To understand the impact of OPC on the process window, Fourier analysis of the masks has been carried out as well.

  9. A fluorescence resonance energy transfer activation sensor for Arf6.

    PubMed

    Hall, Brian; McLean, Mark A; Davis, Kathryn; Casanova, James E; Sligar, Steven G; Schwartz, Martin A

    2008-03-15

    The involvement of the small GTPase Arf6 in Rac activation, cell migration, and cancer invasiveness suggests that it is activated in a spatially and temporally regulated manner. Small GTPase activation has been imaged in cells using probes in which the GTPase and a fragment of a downstream effector protein are fused to fluorescent reporter proteins that constitute a fluorescence resonance energy transfer (FRET) donor/acceptor pair. Unlike other Ras family GTPases, the N terminus of Arf6 is critical for membrane targeting and, thus, cannot be modified by fusion to a fluorescent protein. We found that the previously described C-terminal green fluorescent protein (GFP) derivative also shows diminished membrane targeting. Therefore, we inserted a fluorescent protein into an inert loop within the Arf6 sequence. This fusion showed normal membrane targeting, nucleotide-dependent interaction with the downstream effector GGA3, and normal regulation by a GTPase-activating protein (GAP) and a guanine nucleotide exchange factor (GEF). Using the recently developed CyPET/YPET fluorescent proteins as a FRET pair, we found that Arf6-CyPET underwent efficient energy transfer when bound to YPET-GGA3 effector domain in intact cells. The addition of platelet-derived growth factor (PDGF) to fibroblasts triggered a rapid and transient increase in FRET, indicative of Arf6 activation. These reagents should be useful for investigations of Arf6 activation and function.

  10. Role of the tumor suppressor ARF in macrophage polarization

    PubMed Central

    Herranz, Sandra; Través, Paqui G.; Luque, Alfonso; Hortelano, Sonsoles

    2012-01-01

    The ARF locus is frequently inactivated in human cancer. The oncosuppressor ARF has indeed been described as a general sensor for different situation of cellular stress. We have previously demonstrated that ARF deficiency severely impairs inflammatory responses in vitro and in vivo, establishing a role for ARF in the regulation of innate immunity. The aim of the present work was to get further insights into the immune functions of ARF and to evaluate its possible contribution to the polarization of macrophages toward the M1 or M2 phenotype. Our results demonstrate that resting Arf−/− macrophages express high levels of Ym1 and Fizz-1, two typical markers of alternatively-activated macrophages (M2). Additionally, Arf−/− peritoneal macrophages showed an impaired response to lipopolysaccharide (a classical inducer of M1 polaryzation) and a reduced production of pro-inflammatory cytokines/chemokines. Moreover, upon stimulation with interleukin-4 (IL-4), an inducer of the M2 phenotype, well established M2 markers such as Fizz-1, Ym1 and arginase-1 were upregulated in Arf−/− as compared with wild type macrophages. Accordingly, the cytokine and chemokine profile associated with the M2 phenotype was significantly overexpressed in Arf−/− macrophages responding to IL-4. In addition, multiple pro-angiogenic factors such as VEGF and MMP-9 were also increased. In summary, these results indicate that ARF contributes to the polarization and functional plasticity of macrophages. PMID:23243586

  11. Recruitment of Arf1-GDP to Golgi by Glo3p-Type ArfGAPs Is Crucial for Golgi Maintenance and Plant Growth1[W][OA

    PubMed Central

    Min, Myung Ki; Jang, Mihue; Lee, Myounghui; Lee, Junho; Song, Kyungyoung; Lee, Yongjik; Choi, Kwan Yong; Robinson, David G.; Hwang, Inhwan

    2013-01-01

    ADP-ribosylation factor1 (Arf1), a member of the small GTP-binding proteins, plays a pivotal role in protein trafficking to multiple organelles. In its GDP-bound form, Arf1 is recruited from the cytosol to organelle membranes, where it functions in vesicle-mediated protein trafficking. However, the mechanism of Arf1-GDP recruitment remains unknown. Here, we provide evidence that two Glo3p-type Arf GTPase-activating proteins (ArfGAPs), ArfGAP domain8 (AGD8) and AGD9, are involved in the recruitment of Arf1-GDP to the Golgi apparatus in Arabidopsis (Arabidopsis thaliana). RNA interference plants expressing low levels of AGD8 and AGD9 exhibited abnormal Golgi morphology, inhibition of protein trafficking, and arrest of plant growth and development. In RNA interference plants, Arf1 was poorly recruited to the Golgi apparatus. Conversely, high levels of AGD8 and AGD9 induced Arf1 accumulation at the Golgi and suppressed Golgi disruption and inhibition of vacuolar trafficking that was caused by overexpression of AGD7. Based on these results, we propose that the Glo3p-type ArfGAPs AGD8 and AGD9 recruit Arf1-GDP from the cytosol to the Golgi for Arf1-mediated protein trafficking, which is essential for plant development and growth. PMID:23266962

  12. SynArfGEF is a guanine nucleotide exchange factor for Arf6 and localizes preferentially at post-synaptic specializations of inhibitory synapses.

    PubMed

    Fukaya, Masahiro; Kamata, Akifumi; Hara, Yoshinobu; Tamaki, Hideaki; Katsumata, Osamu; Ito, Naoki; Takeda, Shin'ichi; Hata, Yutaka; Suzuki, Tatsuo; Watanabe, Masahiko; Harvey, Robert J; Sakagami, Hiroyuki

    2011-03-01

    SynArfGEF, also known as BRAG3 or IQSEC3, is a member of the brefeldin A-resistant Arf-GEF/IQSEC family and was originally identified by screening for mRNA species associated with the post-synaptic density fraction. In this study, we demonstrate that synArfGEF activates Arf6, using Arf pull down and transferrin incorporation assays. Immunohistochemical analysis reveals that synArfGEF is present in somata and dendrites as puncta in close association with inhibitory synapses, whereas immunoelectron microscopic analysis reveals that synArfGEF localizes preferentially at post-synaptic specializations of symmetric synapses. Using yeast two-hybrid and pull down assays, we show that synArfGEF is able to bind utrophin/dystrophin and S-SCAM/MAGI-2 scaffolding proteins that localize at inhibitory synapses. Double immunostaining reveals that synArfGEF co-localizes with dystrophin and S-SCAM in cultured hippocampal neurons and cerebellar cortex, respectively. Both β-dystroglycan and S-SCAM were immunoprecipitated from brain lysates using anti-synArfGEF IgG. Taken together, these findings suggest that synArfGEF functions as a novel regulator of Arf6 at inhibitory synapses and associates with the dystrophin-associated glycoprotein complex and S-SCAM.

  13. Programmable imprint lithography template

    DOEpatents

    Cardinale, Gregory F.; Talin, Albert A.

    2006-10-31

    A template for imprint lithography (IL) that reduces significantly template production costs by allowing the same template to be re-used for several technology generations. The template is composed of an array of spaced-apart moveable and individually addressable rods or plungers. Thus, the template can be configured to provide a desired pattern by programming the array of plungers such that certain of the plungers are in an "up" or actuated configuration. This arrangement of "up" and "down" plungers forms a pattern composed of protruding and recessed features which can then be impressed onto a polymer film coated substrate by applying a pressure to the template impressing the programmed configuration into the polymer film. The pattern impressed into the polymer film will be reproduced on the substrate by subsequent processing.

  14. Method for maskless lithography

    DOEpatents

    Sweatt, William C.; Stulen, Richard H.

    2000-01-01

    The present invention provides a method for maskless lithography. A plurality of individually addressable and rotatable micromirrors together comprise a two-dimensional array of micromirrors. Each micromirror in the two-dimensional array can be envisioned as an individually addressable element in the picture that comprises the circuit pattern desired. As each micromirror is addressed it rotates so as to reflect light from a light source onto a portion of the photoresist coated wafer thereby forming a pixel within the circuit pattern. By electronically addressing a two-dimensional array of these micromirrors in the proper sequence a circuit pattern that is comprised of these individual pixels can be constructed on a microchip. The reflecting surface of the micromirror is configured in such a way as to overcome coherence and diffraction effects in order to produce circuit elements having straight sides.

  15. Vous avez dit "immersion?" (You Said "Immersion?").

    ERIC Educational Resources Information Center

    Gajo, Laurent, Ed.

    1998-01-01

    Articles on immersion and bilingual education include these: "Terminological Considerations Regarding Content and Language Integrated Learning" (Tarja Nikula, David Marsh); "Educazione bilingue e multiculturale, istruzione bilingue, immersione totale: quattro nozioni da definire" ("Bilingual and Multicultural Education, Bilingual Instruction,…

  16. Nanoimprint lithography for nanodevice fabrication

    NASA Astrophysics Data System (ADS)

    Barcelo, Steven; Li, Zhiyong

    2016-09-01

    Nanoimprint lithography (NIL) is a compelling technique for low cost nanoscale device fabrication. The precise and repeatable replication of nanoscale patterns from a single high resolution patterning step makes the NIL technique much more versatile than other expensive techniques such as e-beam or even helium ion beam lithography. Furthermore, the use of mechanical deformation during the NIL process enables grayscale lithography with only a single patterning step, not achievable with any other conventional lithography techniques. These strengths enable the fabrication of unique nanoscale devices by NIL for a variety of applications including optics, plasmonics and even biotechnology. Recent advances in throughput and yield in NIL processes demonstrate the potential of being adopted for mainstream semiconductor device fabrication as well.

  17. Contamination and particle control system in immersion exposure tool

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masamichi; Nakano, Hitoshi; Arakawa, Mikio; Tanabe, Masayuki; Toyoda, Koji; Chibana, Takahito; Matsuoka, Yoichi; Kawasaki, Youji

    2007-03-01

    Water-based immersion technology has overcome various obstacles and is approaching the mass production phase. Canon is in the process of developing an ArF immersion exposure tool, FPA-7000AS7 (NA>1.3), to meet both mass production of the 65nm HP and development of the 45nm HP, which starts in 2007. In the Canon immersion nozzle, there is little influence of vibration on the lens and the stage, and particle generation from the nozzle during treatment of the nozzle in the manufacturing process has successfully been prevented. We evaluated contamination due to leaching and cleaning technology with a test bench. Contamination due to PAG (Photo-acid Generator) leaching from resist to water could be completely eliminated by dipping it into a cleaning fluid. With periodic cleaning, it is possible to keep the projection lens clean and to prevent particle generation from the immersion nozzle. The defect was evaluated with FPA-6000AS4i (NA0.85) that had the same type of immersion nozzle as that of FPA-7000AS7. The level of defect density was stable in a continuous exposure process of 25 wafers with a developer-soluble topcoat. The defect density was 0.030/cm2 with a topcoat-less resist.

  18. The Role of ARF6 in Biliary Atresia

    PubMed Central

    Glessner, Joseph; Ashokkumar, Chethan; Ranganathan, Sarangarajan; Min, Jun; Higgs, Brandon W.; Sun, Qing; Haberman, Kimberly; Schmitt, Lori; Vilarinho, Silvia; Mistry, Pramod K.; Vockley, Gerard; Dhawan, Anil; Gittes, George K.; Hakonarson, Hakon; Jaffe, Ronald; Subramaniam, Shankar; Shin, Donghun; Sindhi, Rakesh

    2015-01-01

    Background & Aims Altered extrahepatic bile ducts, gut, and cardiovascular anomalies constitute the variable phenotype of biliary atresia (BA). Methods To identify potential susceptibility loci, Caucasian children, normal (controls) and with BA (cases) at two US centers were compared at >550000 SNP loci. Systems biology analysis was carried out on the data. In order to validate a key gene identified in the analysis, biliary morphogenesis was evaluated in 2-5-day post-fertilization zebrafish embryos after morpholino-antisense oligonucleotide knockdown of the candidate gene ADP ribosylation factor-6 (ARF6, Mo-arf6). Results Among 39 and 24 cases at centers 1 and 2, respectively, and 1907 controls, which clustered together on principal component analysis, the SNPs rs3126184 and rs10140366 in a 3’ flanking enhancer region for ARF6 demonstrated higher minor allele frequencies (MAF) in each cohort, and 63 combined cases, compared with controls (0.286 vs. 0.131, P = 5.94x10-7, OR 2.66; 0.286 vs. 0.13, P = 5.57x10-7, OR 2.66). Significance was enhanced in 77 total cases, which included 14 additional BA genotyped at rs3126184 only (p = 1.58x10-2, OR = 2.66). Pathway analysis of the 1000 top-ranked SNPs in CHP cases revealed enrichment of genes for EGF regulators (p<1 x10-7), ERK/MAPK and CREB canonical pathways (p<1 x10-34), and functional networks for cellular development and proliferation (p<1 x10-45), further supporting the role of EGFR-ARF6 signaling in BA. In zebrafish embryos, Mo-arf6 injection resulted in a sparse intrahepatic biliary network, several biliary epithelial cell defects, and poor bile excretion to the gall bladder compared with uninjected embryos. Biliary defects were reproduced with the EGFR-blocker AG1478 alone or with Mo-arf6 at lower doses of each agent and rescued with arf6 mRNA. Conclusions The BA-associated SNPs identify a chromosome 14q21.3 susceptibility locus encompassing the ARF6 gene. arf6 knockdown in zebrafish implicates early biliary

  19. Reactivating the ARF-p53 axis in AML cells by targeting ULF

    PubMed Central

    Chen, Delin; Yoon, Jong-Bok

    2010-01-01

    The tumor suppressor ARF plays an essential role in the cellular response to oncogenic stress mainly through activation of p53. Nucleophosmin (NPM), a multifunctional protein, forms a stable protein complex with ARF in the nucleolus and protects ARF from the proteasome-mediated degradation. Notably, NPM is mutated in about one third of acute myeloid leukaemia (AML) patients and these mutations lead to aberrant cytoplasmic dislocation of nucleophosmin (NPM-c). Cytoplasmic NPM mutants lose their abilities to retain ARF in the nucleolus and fail to stabilize ARF. Thus, activation of the ARF-p53 axis is significantly compromised in these AML cells. We have recently identified the ubiquitin ligase of ARF (ULF) as a key factor that controls ARF turnover in human cells. Here, we found that the steady levels of both ARF and p53 are very low in human acute myeloid leukaemia OCI-AML3 cells expressing cytoplamsic dislocated nucleophosmin (NPM-c). As expected, ARF is very unstable and rapidly degraded by proteasome. Nevertheless, ULF knockdown stabilizes ARF and reactivates p53 responses in these AML cells. These results further demonstrate that ULF is a bona fide E3 ligase for ARF and also suggest that ULF is an important target for activating the ARF-p53 axis in human AML cells. PMID:20699639

  20. Cryogenic immersion microscope

    DOEpatents

    Le Gros, Mark; Larabell, Carolyn A.

    2010-12-14

    A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

  1. Extreme ultraviolet lithography machine

    SciTech Connect

    Tichenor, D.A.; Kubiak, G.D.; Haney, S.J.; Sweeney, D.W.

    2000-02-29

    An extreme ultraviolet lithography (EUVL) machine or system is disclosed for producing integrated circuit (IC) components, such as transistors, formed on a substrate. The EUVL machine utilizes a laser plasma point source directed via an optical arrangement onto a mask or reticle which is reflected by a multiple mirror system onto the substrate or target. The EUVL machine operates in the 10--14 nm wavelength soft x-ray photon. Basically the EUV machine includes an evacuated source chamber, an evacuated main or project chamber interconnected by a transport tube arrangement, wherein a laser beam is directed into a plasma generator which produces an illumination beam which is directed by optics from the source chamber through the connecting tube, into the projection chamber, and onto the reticle or mask, from which a patterned beam is reflected by optics in a projection optics (PO) box mounted in the main or projection chamber onto the substrate. In one embodiment of a EUVL machine, nine optical components are utilized, with four of the optical components located in the PO box. The main or projection chamber includes vibration isolators for the PO box and a vibration isolator mounting for the substrate, with the main or projection chamber being mounted on a support structure and being isolated.

  2. Extreme ultraviolet lithography machine

    DOEpatents

    Tichenor, Daniel A.; Kubiak, Glenn D.; Haney, Steven J.; Sweeney, Donald W.

    2000-01-01

    An extreme ultraviolet lithography (EUVL) machine or system for producing integrated circuit (IC) components, such as transistors, formed on a substrate. The EUVL machine utilizes a laser plasma point source directed via an optical arrangement onto a mask or reticle which is reflected by a multiple mirror system onto the substrate or target. The EUVL machine operates in the 10-14 nm wavelength soft x-ray photon. Basically the EUV machine includes an evacuated source chamber, an evacuated main or project chamber interconnected by a transport tube arrangement, wherein a laser beam is directed into a plasma generator which produces an illumination beam which is directed by optics from the source chamber through the connecting tube, into the projection chamber, and onto the reticle or mask, from which a patterned beam is reflected by optics in a projection optics (PO) box mounted in the main or projection chamber onto the substrate. In one embodiment of a EUVL machine, nine optical components are utilized, with four of the optical components located in the PO box. The main or projection chamber includes vibration isolators for the PO box and a vibration isolator mounting for the substrate, with the main or projection chamber being mounted on a support structure and being isolated.

  3. LENS (lithography enhancement toward nano scale): a European project to support double exposure and double patterning technology development

    NASA Astrophysics Data System (ADS)

    Cantu, Pietro; Baldi, Livio; Piacentini, Paolo; Sytsma, Joost; Le Gratiet, Bertrand; Gaugiran, Stéphanie; Wong, Patrick; Miyashita, Hiroyuki; Atzei, Luisa R.; Buch, Xavier; Verkleij, Dick; Toublan, Olivier; Perez-Murano, Francesco; Mecerreyes, David

    2010-04-01

    In 2009 a new European initiative on Double Patterning and Double Exposure lithography process development was started in the framework of the ENIAC Joint Undertaking. The project, named LENS (Lithography Enhancement Towards Nano Scale), involves twelve companies from five different European Countries (Italy, Netherlands, France, Belgium Spain; includes: IC makers (Numonyx and STMicroelectronics), a group of equipment and materials companies (ASML, Lam Research srl, JSR, FEI), a mask maker (Dai Nippon Photomask Europe), an EDA company (Mentor Graphics) and four research and development institutes (CEA-Leti, IMEC, Centro Nacional de Microelectrónica, CIDETEC). The LENS project aims to develop and integrate the overall infrastructure required to reach patterning resolutions required by 32nm and 22nm technology nodes through the double patterning and pitch doubling technologies on existing conventional immersion exposure tools, with the purpose to allow the timely development of 32nm and 22nm technology nodes for memories and logic devices, providing a safe alternative to EUV, Higher Refraction Index Fluids Immersion Lithography and maskless lithography, which appear to be still far from maturity. The project will cover the whole lithography supply chain including design, masks, materials, exposure tools, process integration, metrology and its final objective is the demonstration of 22nm node patterning on available 1.35 NA immersion tools on high complexity mask set.

  4. Localization and characterization of the human ADP-ribosylation factor 5 (ARF5) gene

    SciTech Connect

    McGuire, R.E. |; Daiger, S.P.; Green, E.D.

    1997-05-01

    ADP-ribosylation factor 5 (ARF5) is a member of the ARF gene family. The ARF proteins stimulate the in vitro ADP-ribosyltransferase activity of cholera toxin and appear to play a role in vesicular trafficking in vivo. We have mapped ARF5, one of the six known mammalian ARF genes, to a well-defined yeast artificial chromosome contig on human chromosome 7q31.3. In addition, we have isolated and sequenced an {approximately}3.2-kb genomic segment that contains the entire ARF5 coding region, revealing the complete intron-exon structure of the gene. With six coding exons and five introns, the genomic structure of ARF5 is unique among the mammalian ARF genes and provides insight about the evolutionary history of this ancient gene family. 20 refs., 2 figs., 1 tab.

  5. Feasibility study of optical/e-beam complementary lithography

    NASA Astrophysics Data System (ADS)

    Hohle, Christoph; Choi, Kang-Hoon; Freitag, Martin; Gutsch, Manuela; Jaschinsky, Philipp; Kahlenberg, Frank; Klein, Christof; Klikovits, Jan; Paul, Jan; Rudolph, Matthias; Thrun, Xaver

    2012-03-01

    Using electron beam direct write (EBDW) as a complementary approach together with standard optical lithography at 193nm or EUV wavelength has been proposed only lately and might be a reasonable solution for low volume CMOS manufacturing and special applications as well as design rule restrictions. Here, the high throughput of the optical litho can be combined with the high resolution and the high flexibility of the e-beam by using a mix & match approach (Litho- Etch-Litho-Etch, LELE). Complementary Lithography is mainly driven by special design requirements for unidirectional (1-D gridded) Manhattan type design layouts that enable scaling of advanced logic chips. This requires significant data prep efforts such as layout splitting. In this paper we will show recent results of Complementary Lithography using 193nm immersion generated 50nm lines/space pattern addressing the 32nm logic technology node that were cut with electron beam direct write. Regular lines and space arrays were patterned at GLOBALFOUNDRIES Dresden and have been cut in predefined areas using a VISTEC SB3050DW e-beam direct writer (50KV Variable Shaped Beam) at Fraunhofer Center Nanoelectronic Technologies (CNT), Dresden, as well as on the PML2 tool at IMS Nanofabrication, Vienna. Two types of e-beam resists were used for the cut exposure. Integration issues as well as overlay requirements and performance improvements necessary for this mix & match approach will be discussed.

  6. Human ARF4 expression rescues sec7 mutant yeast cells.

    PubMed Central

    Deitz, S B; Wu, C; Silve, S; Howell, K E; Melançon, P; Kahn, R A; Franzusoff, A

    1996-01-01

    Vesicle-mediated traffic between compartments of the yeast secretory pathway involves recruitment of multiple cytosolic proteins for budding, targeting, and membrane fusion events. The SEC7 gene product (Sec7p) is a constituent of coat structures on transport vesicles en route to the Golgi complex in the yeast Saccharomyces cerevisiae. To identify mammalian homologs of Sec7p and its interacting proteins, we used a genetic selection strategy in which a human HepG2 cDNA library was transformed into conditional-lethal yeast sec7 mutants. We isolated several clones capable of rescuing sec7 mutant growth at the restrictive temperature. The cDNA encoding the most effective suppressor was identified as human ADP ribosylation factor 4 (hARF4), a member of the GTPase family proposed to regulate recruitment of vesicle coat proteins in mammalian cells. Having identified a Sec7p-interacting protein rather than the mammalian Sec7p homolog, we provide evidence that hARF4 suppressed the sec7 mutation by restoring secretory pathway function. Shifting sec7 strains to the restrictive temperature results in the disappearance of the mutant Sec7p cytosolic pool without apparent changes in the membrane-associated fraction. The introduction of hARF4 to the cells maintained the balance between cytosolic and membrane-associated Sec7p pools. These results suggest a requirement for Sec7p cycling on and off of the membranes for cell growth and vesicular traffic. In addition, overexpression of the yeast GTPase-encoding genes ARF1 and ARF2, but not that of YPT1, suppressed the sec7 mutant growth phenotype in an allele-specific manner. This allele specificity indicates that individual ARFs are recruited to perform two different Sec7p-related functions in vesicle coat dynamics. PMID:8668142

  7. SmARF8, a transcription factor involved in parthenocarpy in eggplant.

    PubMed

    Du, Liming; Bao, Chonglai; Hu, Tianhua; Zhu, Qinmei; Hu, Haijiao; He, Qunyan; Mao, Weihai

    2016-02-01

    Parthenocarpic fruit is a very attractive trait for consumers and especially in eggplants where seeds can lead to browning of the flesh and bitterness. However, the molecular mechanisms underlying parthenocarpy in eggplant still remain unknown. Some auxin response factors have been previously shown in model species, such as Arabidopsis and tomato, to play an important role in such a process. Here, we have identified a natural parthenocarpic mutant and showed that ARF8 from eggplant (SmARF8), is down-regulated in buds compared to wild-type plants. Further characterization of SmARF8 showed that it is a nuclear protein and an active transcriptional regulator. We determined that amino acids 629-773 of SmARF8 act as the transcriptional activation domain, the C terminus of SmARF8 is the protein-binding domain, and that SmARF8 might form homodimers. Expression analysis in eggplant showed that SmARF8 is expressed ubiquitously in all tissues and organs and is responsive to auxin. Eggplant transgenic lines harboring RNA interference of SmARF8 exhibited parthenocarpy in unfertilized flowers, suggesting that SmARF8 negatively regulates fruit initiation. Interestingly, SmARF8-overexpressing Arabidopsis lines also induced parthenocarpy. These results indicate that SmARF8 could affect the dimerization of auxin/indole acetic acid repressors with SmARF8 via domains III and IV and thus induce fruit development. Furthermore, the introduction of SmARF8 full-length cDNA could partially complement the parthenocarpic phenotypes in Arabidopsis arf8-1 and arf8-4 mutants. Collectively, our results demonstrate that SmARF8 may act as a key negative regulator involved in parthenocarpic fruit development of eggplant. These findings give more insights into the conserved mechanisms leading to parthenocarpy in which auxin signaling plays a pivotal role, and provide potential target for eggplant breeding. PMID:26174736

  8. SmARF8, a transcription factor involved in parthenocarpy in eggplant.

    PubMed

    Du, Liming; Bao, Chonglai; Hu, Tianhua; Zhu, Qinmei; Hu, Haijiao; He, Qunyan; Mao, Weihai

    2016-02-01

    Parthenocarpic fruit is a very attractive trait for consumers and especially in eggplants where seeds can lead to browning of the flesh and bitterness. However, the molecular mechanisms underlying parthenocarpy in eggplant still remain unknown. Some auxin response factors have been previously shown in model species, such as Arabidopsis and tomato, to play an important role in such a process. Here, we have identified a natural parthenocarpic mutant and showed that ARF8 from eggplant (SmARF8), is down-regulated in buds compared to wild-type plants. Further characterization of SmARF8 showed that it is a nuclear protein and an active transcriptional regulator. We determined that amino acids 629-773 of SmARF8 act as the transcriptional activation domain, the C terminus of SmARF8 is the protein-binding domain, and that SmARF8 might form homodimers. Expression analysis in eggplant showed that SmARF8 is expressed ubiquitously in all tissues and organs and is responsive to auxin. Eggplant transgenic lines harboring RNA interference of SmARF8 exhibited parthenocarpy in unfertilized flowers, suggesting that SmARF8 negatively regulates fruit initiation. Interestingly, SmARF8-overexpressing Arabidopsis lines also induced parthenocarpy. These results indicate that SmARF8 could affect the dimerization of auxin/indole acetic acid repressors with SmARF8 via domains III and IV and thus induce fruit development. Furthermore, the introduction of SmARF8 full-length cDNA could partially complement the parthenocarpic phenotypes in Arabidopsis arf8-1 and arf8-4 mutants. Collectively, our results demonstrate that SmARF8 may act as a key negative regulator involved in parthenocarpic fruit development of eggplant. These findings give more insights into the conserved mechanisms leading to parthenocarpy in which auxin signaling plays a pivotal role, and provide potential target for eggplant breeding.

  9. Photoinhibition superresolution lithography

    NASA Astrophysics Data System (ADS)

    Forman, Darren Lawrence

    While the prospect of nanoscale manufacturing has generated tremendous excitement, arbitrary patterning at nanometer length scales cannot be brought about with current photolithography---the technology that for decades has driven electronics miniaturization and enabled mass production of digital logic, memory, MEMS and flat-panel displays. This is due to the relatively long wavelength of light and diffraction, which imposes a physical not technological limit on the resolution of a far-field optical pattern. Photoinhibited superresolution (PInSR) lithography is a new scheme designed to beat the diffraction limit through two-color confinement of photopolymerization and, via efficient single-photon absorption kinetics, also be high-throughput capable. This thesis describes development of an integrated optical and materials system for investigating spatiotemporal dynamics of photoinhibited superresolution lithography, with a demonstrated 3x superresolution beyond the diffraction limit. The two-color response, arising from orthogonal photogeneration of species that participate in competing reactions, is shown to be highly complex. This is both a direct and indirect consequence of mobility. Interesting trade-offs arise: thin-film resins (necessitated by single-photon absorption kinetics) require high viscosity for film stability, but the photoinhibition effect is suppressed in viscous resins. Despite this apparent suppression, which can be overcome with high excitation of the photoinhibition system, the low mobility afforded by viscous materials is beneficial for confinement of active species. Diffusion-induced blurring of patterned photoinhibition is problematic in a resin with viscosity = 1,000 cP, and overcome in a resin with viscosity eta = 500,000 cP. Superresolution of factor 3x beyond the diffraction limit is demonstrated at 0.2 NA, with additional results indicating superresolution ability at 1.2 NA. Investigating the effect of diminished photoinhibition efficacy

  10. What Works in Immersion?

    ERIC Educational Resources Information Center

    Trimino, Andy; Ferguson, Nancy

    Materials used in conducting a conference workshop on language immersion are presented, including an introductory overview, a guide for observing and analyzing immersion instruction, findings resulting from analysis of the program in question, and the text of a related presentation made at the same conference. The introductory section describes…

  11. Immunolocalization of human p14(ARF) to the granular component of the interphase nucleolus.

    PubMed

    Lindström, M S; Klangby, U; Inoue, R; Pisa, P; Wiman, K G; Asker, C E

    2000-05-01

    The human p14(ARF) protein is encoded by an alternative transcript from the INK4a/ARF locus on chromosome 9p21, a locus frequently afflicted in human tumors. By use of two novel specific antisera against p14(ARF) we show that the protein is localized mainly in nucleoli but also in the nucleoplasm. Transfection of full-length and deletion mutant GFP-p14(ARF) fusion proteins confirmed this subcellular localization and assigned the nucleolar localization signal to the exon 2-encoded C-terminal region. In order to determine p14(ARF) expression in human tumor cells, we examined p14(ARF) in 32 tumor cell lines by immunofluorescence staining. Nucleolar p14(ARF) was detected in 10 lines, all of which lacked functional p53. Double immunostaining with p14(ARF) and B23/nucleophosmin or fibrillarin antibodies using 3D microscopy revealed that p14(ARF) is located mainly in the granular component of the nucleolus. p14(ARF) was also found in distinct granular aggregates scattered throughout the nucleoplasm. RNase digestion or selective inhibition of rRNA transcription by low doses of actinomycin D caused nucleoplasmic translocation of p14(ARF). This indicates that the nucleolar localization of p14(ARF) is dependent on ongoing transcriptional activity in intact functional nucleoli.

  12. Physical Limitations in Lithography for Microelectronics.

    ERIC Educational Resources Information Center

    Flavin, P. G.

    1981-01-01

    Describes techniques being used in the production of microelectronics kits which have replaced traditional optical lithography, including contact and optical projection printing, and X-ray and electron beam lithography. Also includes limitations of each technique described. (SK)

  13. Immersion grating mount design for IGRINS and GMTNIRS

    NASA Astrophysics Data System (ADS)

    Moon, Bongkon; Wang, Weisong; Park, Chan; Yuk, In-soo; Chun, Moo-Young; Jaffe, Daniel T.

    2012-09-01

    The IGRINS (Immersion GRating INfrared Spectrometer) is a high resolution wide-band infrared spectrograph developed by the Korea Astronomy and Space Science Institute (KASI) and the University of Texas at Austin (UT). Immersion grating is a key component of IGRINS, which disperses the input ray by using a silicon material with a lithography technology. Optomechanical mount for the immersion grating is important to keep the high spectral resolution and the optical alignment in a cold temperature of 130+/-0.06K. The optical performance of immersion grating can maintain within the de-center tolerance of +/-0.05mm and the tip-tilt tolerance of +/-1.5arcmin. The mount mechanism utilizes the flexure and the semikinematic support design to satisfy the requirement and the operation condition. When the IGRINS system is cooled down to a cold temperature, three flexures compensate for the thermal contraction stress due to the different material between the immersion grating and the mounting part (aluminum 6061). They also support the immersion grating by an appropriate preload. Thermal stability is controlled by a copper strap with proper dimensions and a heater. Typically, structural and thermal analysis was performed to confirm the mount mechanism. This mechanism will be also applied to the GMTNIRS (Giant Magellan Telescope Near InfraRed Spectrograph) instrument, which is a first-generation candidate of the GMT telescope.

  14. Sub-20nm hybrid lithography using optical, pitch-division, and e-beam

    NASA Astrophysics Data System (ADS)

    Belledent, J.; Smayling, M.; Pradelles, J.; Pimenta-Barros, P.; Barnola, S.; Mage, L.; Icard, B.; Lapeyre, C.; Soulan, S.; Pain, L.

    2012-03-01

    A roadmap extending far beyond the current 22nm CMOS node has been presented several times. [1] This roadmap includes the use of a highly regular layout style which can be decomposed into "lines and cuts."[2] The "lines" can be done with existing optical immersion lithography and pitch division with self-aligned spacers.[3] The "cuts" can be done with either multiple exposures using immersion lithography, or a hybrid solution using either EUV or direct-write ebeam.[ 4] The choice for "cuts" will be driven by the availability of cost-effective, manufacturing-ready equipment and infrastructure. Optical lithography improvements have enabled scaling far beyond what was expected; for example, soft x-rays (aka EUV) were in the semiconductor roadmap as early as 1994 since optical resolution was not expected for sub-100nm features. However, steady improvements and innovations such as Excimer laser sources and immersion photolithography have allowed some manufacturers to build 22nm CMOS SOCs with single-exposure optical lithography. With the transition from random complex 2D shapes to regular 1D-patterns at 28nm, the "lines and cuts" approach can extend CMOS logic to at least the 7nm node. The spacer double patterning for lines and optical cuts patterning is expected to be used down to the 14nm node. In this study, we extend the scaling to 18nm half-pitch which is approximately the 10-11nm node using spacer pitch division and complementary e-beam lithography. For practical reasons, E-Beam lithography is used as well to expose the "mandrel" patterns that support the spacers. However, in a production mode, it might be cost effective to replace this step by a standard 193nm exposure and applying the spacer technique twice to divide the pitch by 3 or 4. The Metal-1 "cut" pattern is designed for a reasonably complex logic function with ~100k gates of combinatorial logic and flip-flops. Since the final conductor is defined by a Damascene process, the "cut" patterns become islands

  15. Polymer nanofibers by soft lithography

    NASA Astrophysics Data System (ADS)

    Pisignano, Dario; Maruccio, Giuseppe; Mele, Elisa; Persano, Luana; Di Benedetto, Francesca; Cingolani, Roberto

    2005-09-01

    The fabrication of polymeric fibers by soft lithography is demonstrated. Polyurethane, patterned by capillarity-induced molding with high-resolution elastomeric templates, forms mm-long fibers with a diameter below 0.3μm. The Young's modulus of the fabricated structures, evaluated by force-distance scanning probe spectroscopy, has a value of 0.8MPa. This is an excellent example of nanostructures feasible by the combination of soft nanopatterning and high-resolution fabrication approaches for master templates, and particularly electron-beam lithography.

  16. Porphyrin-Based Photocatalytic Lithography

    SciTech Connect

    Bearinger, J; Stone, G; Christian, A; Dugan, L; Hiddessen, A; Wu, K J; Wu, L; Hamilton, J; Stockton, C; Hubbell, J

    2007-10-15

    Photocatalytic lithography is an emerging technique that couples light with coated mask materials in order to pattern surface chemistry. We excite porphyrins to create radical species that photocatalytically oxidize, and thereby pattern, chemistries in the local vicinity. The technique advantageously does not necessitate mass transport or specified substrates, it is fast and robust and the wavelength of light does not limit the resolution of patterned features. We have patterned proteins and cells in order to demonstrate the utility of photocatalytic lithography in life science applications.

  17. Impact of reticle absorber on the imaging properties in ArFi lithography

    NASA Astrophysics Data System (ADS)

    Finders, Jo; Mouraille, O.; Bouma, A.; Ngai, A.; Grim, K.; van Praagh, J.; Toma, C.; Miyazaki, J.; Higuchi, M.; Kojima, Y.; Connolly, B.; Englard, I.; Cohen, Y.; Mangan, S.; Ben Yishai, Michael; Jullian, Karine

    2012-02-01

    In this paper we compare the imaging properties of lithographic test structures formed on test masks with different reticle absorbers for use in1.35 NA immersion lithography. We will look into different aspects like process windows and CD fingerprints. Beyond that we look into the topographic effects caused by the different absorbers, the mask 3D effects. We will study the interaction between the different masks and immersion scanner. Special attention is given towards the correctability of the intrafield CD fingerprint by mask and scanner applying dose corrections.

  18. Microfabrication using soft lithography

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-Mei

    Soft Lithography is a group of non-photolithographic techniques currently being explored in our group. Four such techniques-microcontact printing (μCP), replica molding (REM), micromolding in capillaries (MIMIC), and microtransfer molding (μTM)-have been demonstrated for fabricating micro- and nanostructures of a variety of materials with dimension >=30 nm. Part I (Chapters 1-5) reviews several aspects of the three molding techniques REM, MIMIC, and μTM. Chapters 1-3 describe μTM and MIMIC, and the use of these techniques in the fabrication of functional devices. μTM is capable of generating μm-scale structures over large areas, on both planar and contoured surfaces, and is able to make 3-dimensional structures layer by layer. The capability of μTM and MIMIC has been demonstrated in the fabrication of single-mode waveguides, waveguide couplers and interferometers. The coupling between waveguides can be tailored by waveguide spacing or the differential in curing time between the waveguides and the cladding. Chapters 4-5 demonstrate the combination of REM and shrinkable polystyrene (PS) films to reduce the feature size of microstructures and to generate microstructures with high aspect ratios on both planar and curved surfaces. A shrinkable PS film is patterned with relief structures, and then heated and shrinks. Thermal shrinkage results in a 100-fold increase in the aspect ratio of the patterned microstructures in the PS film. The microstructures in the shrunken PS films can be transferred to many other materials by REM. Part II (Chapters 6-7) focuses on two issues in the microfabrication using self-assembled monolayers (SAMs) as ultrathin resists. Chapter 6 describes a selective etching solution for transferring patterns of SAMs of alkanethiolates into the underlying layers (e.g., gold, silver, and copper). This etching solution uses thiosulfate as the ligand that coordinates to the metal ions, and ferricyanide as the oxidant. It has been demonstrated to be

  19. Graphic Arts/Offset Lithography.

    ERIC Educational Resources Information Center

    Hoisington, James; Metcalf, Joseph

    This revised curriculum for graphic arts is designed to provide secondary and postsecondary students with entry-level skills and an understanding of current printing technology. It contains lesson plans based on entry-level competencies for offset lithography as identified by educators and industry representatives. The guide is divided into 15…

  20. Maskless, reticle-free, lithography

    DOEpatents

    Ceglio, Natale M.; Markle, David A.

    1997-11-25

    A lithography system in which the mask or reticle, which usually carries the pattern to be printed onto a substrate, is replaced by a programmable array of binary (i.e. on/off) light valves or switches which can be programmed to replicate a portion of the pattern each time an illuminating light source is flashed. The pattern of light produced by the programmable array is imaged onto a lithographic substrate which is mounted on a scanning stage as is common in optical lithography. The stage motion and the pattern of light displayed by the programmable array are precisely synchronized with the flashing illumination system so that each flash accurately positions the image of the pattern on the substrate. This is achieved by advancing the pattern held in the programmable array by an amount which corresponds to the travel of the substrate stage each time the light source flashes. In this manner the image is built up of multiple flashes and an isolated defect in the array will only have a small effect on the printed pattern. The method includes projection lithographies using radiation other than optical or ultraviolet light. The programmable array of binary switches would be used to control extreme ultraviolet (EUV), x-ray, or electron, illumination systems, obviating the need for stable, defect free masks for projection EUV, x-ray, or electron, lithographies.

  1. Maskless, reticle-free, lithography

    DOEpatents

    Ceglio, N.M.; Markle, D.A.

    1997-11-25

    A lithography system in which the mask or reticle, which usually carries the pattern to be printed onto a substrate, is replaced by a programmable array of binary (i.e. on/off) light valves or switches which can be programmed to replicate a portion of the pattern each time an illuminating light source is flashed. The pattern of light produced by the programmable array is imaged onto a lithographic substrate which is mounted on a scanning stage as is common in optical lithography. The stage motion and the pattern of light displayed by the programmable array are precisely synchronized with the flashing illumination system so that each flash accurately positions the image of the pattern on the substrate. This is achieved by advancing the pattern held in the programmable array by an amount which corresponds to the travel of the substrate stage each time the light source flashes. In this manner the image is built up of multiple flashes and an isolated defect in the array will only have a small effect on the printed pattern. The method includes projection lithographies using radiation other than optical or ultraviolet light. The programmable array of binary switches would be used to control extreme ultraviolet (EUV), x-ray, or electron, illumination systems, obviating the need for stable, defect free masks for projection EUV, x-ray, or electron, lithographies. 7 figs.

  2. Biomolecular Patterning via Photocatalytic Lithography

    SciTech Connect

    Bearinger, J P; Hiddessen, A L; Wu, K J; Christian, A T; Dugan, L C; Stone, G; Camarero, J; Hinz, A K; Hubbell, J A

    2005-02-18

    We have developed a novel method for patterning surface chemistry: Photocatalytic Lithography. This technique relies on inexpensive stamp materials and light; it does not necessitate mass transport or specified substrates, and the wavelength of light should not limit feature resolution. We have demonstrated the utility of this technique through the patterning of proteins, single cells and bacteria.

  3. Manufacturing implementation of scatterometry and other techniques for 300-mm lithography tool controls

    NASA Astrophysics Data System (ADS)

    Wiltshire, T.; Corliss, D.; Brunner, T.; Ausschnitt, C.; Young, R.; Nielson, R.; Hwang, E.; Iannucci, J., Jr.

    2009-03-01

    Focus and dose control of lithography tools for leading edge semiconductor manufacturing are critical to obtaining acceptable process yields and device performance. The need for these controls is increasing due to the apparent limitation of optical water immersion lithography at NA values of approximately 1.35 and the need to use the same equipment for 45nm, 32nm, and 22nm node production. There is a rich history of lithographic controls using various techniques described in the literature. These techniques include (but are not limited to) Phase Grating Focus Monitoring1 (PGFM), optical CD control using optical overlay metrology equipment (OOCD)2,3, and in more recent years optical scatterometry4,5. Some of the techniques, even though they are technically sound, have not been practical to implement in volume manufacturing as controls for various reasons. This work describes the implementation and performance of two of these techniques (optical scatterometry and OOCD) in a volume 300mm production facility. Data to be reviewed include: - General implementation approach. - Scatterometry dose and focus stability data for 193nm immersion and 248nm dry lithography systems. - Analysis of the stability of optical scatterometry dose and focus deconvolution coefficients over time for 193nm immersion and 248nm dry systems. - Comparison between scatterometry and OOCD techniques for focus monitoring of 248nm dry systems. The presentation will also describe the practical issues with implementing these techniques as well as describe some possible extensions to enhance the current capabilities being described.

  4. French Immersion Weekends.

    ERIC Educational Resources Information Center

    Mydlarski, Donna; Klinck, Pat

    1983-01-01

    Describes immersion weekends sponsored by the University of Calgary. The discussion includes examples from actual weekends to describe the planning and implementation. A qualitative evaluation is also discussed. (Author/AMH)

  5. Arf4 Determines Dentate Gyrus-Mediated Pattern Separation by Regulating Dendritic Spine Development

    PubMed Central

    Jain, Sachi; Yoon, Seo Yeon; Zhu, Lei; Brodbeck, Jens; Dai, Jessica; Walker, David; Huang, Yadong

    2012-01-01

    The ability to distinguish between similar experiences is a critical feature of episodic memory and is primarily regulated by the dentate gyrus (DG) region of the hippocampus. However, the molecular mechanisms underlying such pattern separation tasks are poorly understood. We report a novel role for the small GTPase ADP ribosylation factor 4 (Arf4) in controlling pattern separation by regulating dendritic spine development. Arf4+/− mice at 4–5 months of age display severe impairments in a pattern separation task, as well as significant dendritic spine loss and smaller miniature excitatory post-synaptic currents (mEPSCs) in granule cells of the DG. Arf4 knockdown also decreases spine density in primary neurons, whereas Arf4 overexpression promotes spine development. A constitutively active form of Arf4, Arf4-Q71L, promotes spine density to an even greater extent than wildtype Arf4, whereas the inactive Arf4-T31N mutant does not increase spine density relative to controls. Arf4′s effects on spine development are regulated by ASAP1, a GTPase-activating protein that modulates Arf4 GTPase activity. ASAP1 overexpression decreases spine density, and this effect is partially rescued by concomitant overexpression of wildtype Arf4 or Arf4-Q71L. In addition, Arf4 overexpression rescues spine loss in primary neurons from an Alzheimer's disease-related apolipoprotein (apo) E4 mouse model. Our findings suggest that Arf4 is a critical modulator of DG-mediated pattern separation by regulating dendritic spine development. PMID:23050017

  6. CD and defect improvement challenges for immersion processes

    NASA Astrophysics Data System (ADS)

    Ehara, Keisuke; Ema, Tatsuhiko; Yamasaki, Toshinari; Nakagawa, Seiji; Ishitani, Seiji; Morita, Akihiko; Kim, Jeonghun; Kanaoka, Masashi; Yasuda, Shuichi; Asai, Masaya

    2009-03-01

    The intention of this study is to develop an immersion lithography process using advanced track solutions to achieve world class critical dimension (CD) and defectivity performance in a state of the art manufacturing facility. This study looks at three important topics for immersion lithography: defectivity, CD control, and wafer backside contamination. The topic of defectivity is addressed through optimization of coat, develop, and rinse processes as well as implementation of soak steps and bevel cleaning as part of a comprehensive defect solution. Develop and rinse processing techniques are especially important in the effort to achieve a zero defect solution. Improved CD control is achieved using a biased hot plate (BHP) equipped with an electrostatic chuck. This electrostatic chuck BHP (eBHP) is not only able to operate at a very uniform temperature, but it also allows the user to bias the post exposure bake (PEB) temperature profile to compensate for systematic within-wafer (WiW) CD non-uniformities. Optimized CD results, pre and post etch, are presented for production wafers. Wafer backside particles can cause focus spots on an individual wafer or migrate to the exposure tool's wafer stage and cause problems for a multitude of wafers. A basic evaluation of the cleaning efficiency of a backside scrubber unit located on the track was performed as a precursor to a future study examining the impact of wafer backside condition on scanner focus errors as well as defectivity in an immersion scanner.

  7. Optical characterization of subwavelength-scale solid immersion lenses

    NASA Astrophysics Data System (ADS)

    Kim, Myun-Sik; Scharf, Toralf; Haq, Mohammad Tahdiul; Nakagawa, Wataru; Herzig, Hans Peter

    2012-03-01

    We present the fabrication and optical characterization of nano-scale solid immersion lenses (nano-SILs) with sizes down to a subwavelength range. Submicron-scale cylinders fabricated by electron-beam lithography (EBL) are thermally reflowed to form a spherical shape. Subsequent soft lithography leads to nano-SILs on transparent substrates, i.e. glass, for optical characterization with visible light. The optical characterization is performed using a high-resolution interference microscope (HRIM) with illumination at 642 nm wavelength. The measurements of the 3D amplitude and phase fields provide information on the spot size and the peak intensity. In particular, the phase measurement is a more convincing proof of the Airy disc size reduction rather than the full-width at half maximum (FWHM) spot size. The focal spots produced by the nano-SILs show both spot-size reduction and enhanced optical intensity, which are consistent with the immersion effect. In this way, we experimentally confirm the immersion effect of a subwavelength-size SIL (d = 530 nm and h = 45 nm) with a spot reduction ratio of 1.35, which is less than the expected value of 1.5, most likely due to the slightly non-ideal shape of the nano-SIL.

  8. E-beam to complement optical lithography for 1D layouts

    NASA Astrophysics Data System (ADS)

    Lam, David K.; Liu, Enden D.; Smayling, Michael C.; Prescop, Ted

    2011-04-01

    The semiconductor industry is moving to highly regular designs, or 1D gridded layouts, to enable scaling to advanced nodes, as well as improve process latitude, chip size and chip energy consumption. The fabrication of highly regular ICs is straightforward. Poly and metal layers are arranged into 1D layouts. These 1D layouts facilitate a two-step patterning approach: a line-creation step, followed by a line-cutting step, to form the desired IC pattern (See Figure 1). The first step, line creation, can be accomplished with a variety of lithography techniques including 193nm immersion (193i) and Self-Aligned Double Patterning (SADP). It appears feasible to create unidirectional parallel lines to at least 11 nm half-pitch, with two applications of SADP for pitch division by four. Potentially, this step can also be accomplished with interference lithography or directed self assembly in the future. The second step, line cutting, requires an extremely high-resolution lithography technique. At advanced nodes, the only options appear to be the costly quadruple patterning with 193i, or EUV or E-Beam Lithography (EBL). This paper focuses on the requirements for a lithography system for "line cutting", using EBL to complement Optical. EBL is the most cost-effective option for line cutting at advanced nodes for HVM.

  9. ARF Impedes NPM/B23 Shuttling in an Mdm2-Sensitive Tumor Suppressor Pathway

    PubMed Central

    Brady, Suzanne N.; Yu, Yue; Maggi, Leonard B.; Weber, Jason D.

    2004-01-01

    The ARF tumor suppressor is widely regarded as an upstream activator of p53-dependent growth arrest and apoptosis. However, recent findings indicate that ARF can also regulate the cell cycle in the absence of p53. In search of p53-independent ARF targets, we isolated nucleophosmin (NPM/B23), a protein we show is required for proliferation, as a novel ARF binding protein. In response to hyperproliferative signals, ARF is upregulated, resulting in the nucleolar retention of NPM and concomitant cell cycle arrest. The Mdm2 oncogene outcompetes NPM/B23 for ARF binding, and introduction of Mdm2 reverses ARF's p53-independent properties: in vitro, NPM is released from ARF-containing protein complexes, and in vivo S phase progression ensues. ARF induction by oncogenes or replicative senescence does not alter NPM/B23 protein levels but rather prevents its nucleocytoplasmic shuttling without inhibiting rRNA processing. By actively sequestering NPM in the nucleolus, ARF utilizes an additional mechanism of tumor suppression, one that is readily antagonized by Mdm2. PMID:15485902

  10. SlARF2a plays a negative role in mediating axillary shoot formation

    PubMed Central

    Xu, Tao; Liu, Xin; Wang, Rong; Dong, Xiufen; Guan, Xiaoxi; Wang, Yanling; Jiang, Yun; Shi, Zihang; Qi, Mingfang; Li, Tianlai

    2016-01-01

    SlARF2a is expressed in most plant organs, including roots, leaves, flowers and fruits. A detailed expression study revealed that SlARF2a is mainly expressed in the leaf nodes and cross-sections of the nodes indicated that SlARF2a expression is restricted to vascular organs. Decapitation or the application of 6-benzylaminopurine (BAP) can initially promote axillary shoots, during which SlARF2a expression is significantly reduced. Down-regulation of SlARF2a expression results in an increased frequency of dicotyledons and significantly increased lateral organ development. Stem anatomy studies have revealed significantly altered cambia and phloem in tomato plants expressing down-regulated levels of ARF2a, which is associated with obvious alterations in auxin distribution. Further analysis has revealed that altered auxin transport may occur via altered pin expression. To identify the interactions of AUX/IAA and TPL with ARF2a, four axillary shoot development repressors that are down-regulated during axillary shoot development, IAA3, IAA9, SlTPL1 and SlTPL6, were tested for their direct interactions with ARF2a. Although none of these repressors are directly involved in ARF2a activity, similar expression patterns of IAA3, IAA9 and ARF2a implied they might work tightly in axillary shoot formation and other developmental processes. PMID:27645097

  11. SlARF2a plays a negative role in mediating axillary shoot formation.

    PubMed

    Xu, Tao; Liu, Xin; Wang, Rong; Dong, Xiufen; Guan, Xiaoxi; Wang, Yanling; Jiang, Yun; Shi, Zihang; Qi, Mingfang; Li, Tianlai

    2016-01-01

    SlARF2a is expressed in most plant organs, including roots, leaves, flowers and fruits. A detailed expression study revealed that SlARF2a is mainly expressed in the leaf nodes and cross-sections of the nodes indicated that SlARF2a expression is restricted to vascular organs. Decapitation or the application of 6-benzylaminopurine (BAP) can initially promote axillary shoots, during which SlARF2a expression is significantly reduced. Down-regulation of SlARF2a expression results in an increased frequency of dicotyledons and significantly increased lateral organ development. Stem anatomy studies have revealed significantly altered cambia and phloem in tomato plants expressing down-regulated levels of ARF2a, which is associated with obvious alterations in auxin distribution. Further analysis has revealed that altered auxin transport may occur via altered pin expression. To identify the interactions of AUX/IAA and TPL with ARF2a, four axillary shoot development repressors that are down-regulated during axillary shoot development, IAA3, IAA9, SlTPL1 and SlTPL6, were tested for their direct interactions with ARF2a. Although none of these repressors are directly involved in ARF2a activity, similar expression patterns of IAA3, IAA9 and ARF2a implied they might work tightly in axillary shoot formation and other developmental processes. PMID:27645097

  12. RuMBa: a rule-model OPC for low MEEF 130-nm KrF lithography

    NASA Astrophysics Data System (ADS)

    Hsu, Stephen; Shi, Xuelong; Hsu, Chungwei Michael; Corcoran, Noel P.; Chen, J. Fung; Desai, Sunil; Sherrill, Micheal J.; Tseng, Y. C.; Chang, H. A.; Kao, J. F.; Tseng, Alex; Liu, WeiJyh; Chen, Anseime; Lin, Arthur; Kujten, Jan P.; Jacobs, Eric; Verhappen, Arjan

    2001-09-01

    For cost effective 130nm node manufacturing, it is prefer to use KrF binary chrome mask. To realize a production worth process for making random logic device, we need to effectively control mask error enhancement factor (MEEF) through pitch. In low k1 lithography, process parameters such as focus, lens aberration, linewidth, and line pitch, style of proximity correction (OPC), and resist process conditions, etc., all impact MEEF. We show a powerful RuMBa OPC method that can reduce MEEF to an acceptable level (close to 1(using KrF resist process. We believe that RuMBa OPC method can be further extended for sub 100nm ArF process. In wafer printing experiment, we have designed a new style of LineSweeper reticles for our lithography process optimization. Both simulated and printed wafer CD data were used to calculate the overlapped process window along with respective MEEF. These are the metric we used to assess the 130nm process performance. Using RuMBa OPC, we are able to achieve overlapped process window that is sufficient for 130nm gate mask process. The CD through pitch calibration is critical for an accurate model-based correct at location where OPC rule cannot cover. A high accuracy CD through pitch calibration methodology is developed for model calibration. In this paper, we have compared the 130nm performance using KrF binary mask, KrF 6% attenuated PSM, and ArF binary mask.

  13. Direct write electron beam lithography: a historical overview

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Hans C.

    2010-09-01

    of opportunity for EPL had closed with the quick implementation of immersion lithography and the interest of the industry has since shifted back to maskless lithography (ML2). This historical overview of EBDW will highlight opportunities and limitation of the technology with particular focus on technical challenges facing the current ML2 development efforts in Europe and the US. A brief status report and risk assessment of the ML2 approaches will be provided.

  14. Comparison of star and linear ArF resists

    NASA Astrophysics Data System (ADS)

    Forman, Drew C.; Wieberger, Florian; Gröschel, Andre; Müller, Axel H. E.; Schmidt, Hans-Werner; Ober, Christopher K.

    2010-04-01

    Linear and star-shaped ArF photoresists were prepared and preliminary lithographic comparison was performed using electron-beam exposure. An oligo-initiator based on saccharose forms the core of the star shaped photoresist from which three standard ArF photoresist monomers, α-gamma butyrolactone methacrylate (GBLMA), methyl adamantyl methacrylate (MAMA) and hydroxyl adamantyl methacrylate (HAMA) were polymerized. Conditions were adjusted to obtain a low polydispersity, 6 kg/mol star polymer with a degree of polymerization of approximately five mers per arm. For comparison, a linear photoresist control was prepared using the same scheme. The star resist architecture was found to improve roughness without reducing sensitivity or resolution.

  15. Immersive cyberspace system

    NASA Technical Reports Server (NTRS)

    Park, Brian V. (Inventor)

    1997-01-01

    An immersive cyberspace system is presented which provides visual, audible, and vibrational inputs to a subject remaining in neutral immersion, and also provides for subject control input. The immersive cyberspace system includes a relaxation chair and a neutral immersion display hood. The relaxation chair supports a subject positioned thereupon, and places the subject in position which merges a neutral body position, the position a body naturally assumes in zero gravity, with a savasana yoga position. The display hood, which covers the subject's head, is configured to produce light images and sounds. An image projection subsystem provides either external or internal image projection. The display hood includes a projection screen moveably attached to an opaque shroud. A motion base supports the relaxation chair and produces vibrational inputs over a range of about 0-30 Hz. The motion base also produces limited translation and rotational movements of the relaxation chair. These limited translational and rotational movements, when properly coordinated with visual stimuli, constitute motion cues which create sensations of pitch, yaw, and roll movements. Vibration transducers produce vibrational inputs from about 20 Hz to about 150 Hz. An external computer, coupled to various components of the immersive cyberspace system, executes a software program and creates the cyberspace environment. One or more neutral hand posture controllers may be coupled to the external computer system and used to control various aspects of the cyberspace environment, or to enter data during the cyberspace experience.

  16. X-ray lithography source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  17. X-ray lithography source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  18. EUV Lithography: New Metrology Challenges

    SciTech Connect

    Wood, Obert

    2007-09-26

    Extreme ultraviolet lithography is one of the most promising printing techniques for high volume semiconductor manufacturing at the 22 nm half-pitch device node and beyond. Because its imaging wavelength is approximately twenty times shorter than those currently in use (13.5 nm versus 193-248 nm) and because EUV optics and masks must be provided with highly-precise reflective multilayer coatings, EUV lithography presents a number of new and difficult metrology challenges. In this paper, the current status of the metrology tools being used to characterize the figure and finish of EUV mirror surfaces, the defectivity and flatness of EUV mask blanks and the outgassing rates of EUV resist materials are discussed.

  19. ArF pellicle degradation mechanism for resolving CD variation

    NASA Astrophysics Data System (ADS)

    Choi, Hyungseok; Ahn, Yohan; Ryu, Jua; Lee, Yangkoo; An, Bumhyun; Lee, Seokryeol

    2007-03-01

    With the introduction of ArF laser, a binary mask is preferred because a PSM mask is still weak to the crystal defect called as photomask haze although extensive studies trying to resolve the haze impact to a photomask have been performed by various researchers in company and school. However, a new problem was happened after a binary mask introduction that CD variation in an exposure shot is appeared and is gradually increased. And finally, CD variation considerably causes defects in wafer level. It was proven that CD variation is closely related to the change of the reticle transmittance by a lot of researches. In this study, the mechanism of ArF pellicle degradation is focused on because the pellicle degradation affects a reticle transmittance in direct. The components outgassed from a pellicle by the high photon energy of ArF laser, for example carbon or fluorine, are absorbed on the surface of the reticle, so that the transmittance of the reticle is decreased. The phenomena of the pellicle degradation have been studied by the various viewpoints, theoretical background, experiment and results tested in mass production line in this study. Therefore, this study has the important meaning by providing the substantial clues to resolve CD variation problem in a near future.

  20. STAT3 regulated ARF expression suppresses prostate cancer metastasis

    PubMed Central

    Pencik, Jan; Schlederer, Michaela; Gruber, Wolfgang; Unger, Christine; Walker, Steven M.; Chalaris, Athena; Marié, Isabelle J.; Hassler, Melanie R.; Javaheri, Tahereh; Aksoy, Osman; Blayney, Jaine K.; Prutsch, Nicole; Skucha, Anna; Herac, Merima; Krämer, Oliver H.; Mazal, Peter; Grebien, Florian; Egger, Gerda; Poli, Valeria; Mikulits, Wolfgang; Eferl, Robert; Esterbauer, Harald; Kennedy, Richard; Fend, Falko; Scharpf, Marcus; Braun, Martin; Perner, Sven; Levy, David E.; Malcolm, Tim; Turner, Suzanne D.; Haitel, Andrea; Susani, Martin; Moazzami, Ali; Rose-John, Stefan; Aberger, Fritz; Merkel, Olaf; Moriggl, Richard; Culig, Zoran; Dolznig, Helmut; Kenner, Lukas

    2015-01-01

    Prostate cancer (PCa) is the most prevalent cancer in men. Hyperactive STAT3 is thought to be oncogenic in PCa. However, targeting of the IL-6/STAT3 axis in PCa patients has failed to provide therapeutic benefit. Here we show that genetic inactivation of Stat3 or IL-6 signalling in a Pten-deficient PCa mouse model accelerates cancer progression leading to metastasis. Mechanistically, we identify p19ARF as a direct Stat3 target. Loss of Stat3 signalling disrupts the ARF–Mdm2–p53 tumour suppressor axis bypassing senescence. Strikingly, we also identify STAT3 and CDKN2A mutations in primary human PCa. STAT3 and CDKN2A deletions co-occurred with high frequency in PCa metastases. In accordance, loss of STAT3 and p14ARF expression in patient tumours correlates with increased risk of disease recurrence and metastatic PCa. Thus, STAT3 and ARF may be prognostic markers to stratify high from low risk PCa patients. Our findings challenge the current discussion on therapeutic benefit or risk of IL-6/STAT3 inhibition. PMID:26198641

  1. Extending standard mask lithography exposure technique to spherical surfaces

    NASA Astrophysics Data System (ADS)

    Stumpf, Daniela; Zeitner, Uwe D.

    2014-06-01

    Similar to planar lithography, the use of a mask to produce multiple copies of a binary master sample is also possible in the case of spherical surfaces. Evidently, the spherical mask needs to have the opposite radius of curvature of the desired substrate, and additional problems arising from the curved geometry have to be taken into consideration. Inhomogeneities of the illumination impinging on the resist-coated surface negatively influence the exposure result. Ways of overcoming these difficulties to obtain satisfactory results for the implementation of the exposure in a conventional mask aligner are shown. Despite a lowered contrast due to back reflections and a varying distance between mask and substrate, exposure results of sufficient quality are achieved with the help of an adapted aperture and the use of water as an immersion fluid.

  2. Maskless, resistless ion beam lithography

    SciTech Connect

    Ji, Qing

    2003-03-10

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O{sub 2}{sup +}, BF{sub 2}{sup +}, P{sup +} etc., for surface modification and doping applications. With optimized source condition, around 85% of BF{sub 2}{sup +}, over 90% of O{sub 2}{sup +} and P{sup +} have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He{sup +} beam is as high as 440 A/cm{sup 2} {center_dot} Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O{sub 2}{sup +} ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O{sub 2}{sup +} ions with the dose of 10{sup 15} cm{sup -2}. The oxide can then serve as a hard mask for patterning of the Si film. The process flow and the experimental results for directly patterned poly-Si features

  3. The Arf GTPase-Activating Protein Family Is Exploited by Salmonella enterica Serovar Typhimurium To Invade Nonphagocytic Host Cells

    PubMed Central

    Davidson, Anthony C.; Humphreys, Daniel; Brooks, Andrew B. E.; Hume, Peter J.

    2015-01-01

    ABSTRACT To establish intracellular infections, Salmonella bacteria trigger host cell membrane ruffling and invasion by subverting cellular Arf guanine nucleotide exchange factors (GEFs) that activate Arf1 and Arf6 GTPases by promoting GTP binding. A family of cellular Arf GTPase-activating proteins (GAPs) can downregulate Arf signaling by stimulating GTP hydrolysis, but whether they do this during infection is unknown. Here, we uncovered a remarkable role for distinct Arf GAP family members in Salmonella invasion. The Arf6 GAPs ACAP1 and ADAP1 and the Arf1 GAP ASAP1 localized at Salmonella-induced ruffles, which was not the case for the plasma membrane-localized Arf6 GAPs ARAP3 and GIT1 or the Golgi-associated Arf1 GAP1. Surprisingly, we found that loss of ACAP1, ADAP1, or ASAP1 impaired Salmonella invasion, revealing that GAPs cannot be considered mere terminators of cytoskeleton remodeling. Salmonella invasion was restored in Arf GAP-depleted cells by expressing fast-cycling Arf derivatives, demonstrating that Arf GTP/GDP cycles facilitate Salmonella invasion. Consistent with this view, both constitutively active and dominant-negative Arf derivatives that cannot undergo GTP/GDP cycles inhibited invasion. Furthermore, we demonstrated that Arf GEFs and GAPs colocalize at invading Salmonella and collaborate to drive Arf1-dependent pathogen invasion. This study revealed that Salmonella bacteria exploit a remarkable interplay between Arf GEFs and GAPs to direct cycles of Arf GTPase activation and inactivation. These cycles drive Salmonella cytoskeleton remodeling and enable intracellular infections. PMID:25670778

  4. Block-based mask optimization for optical lithography.

    PubMed

    Ma, Xu; Song, Zhiyang; Li, Yanqiu; Arce, Gonzalo R

    2013-05-10

    Pixel-based optical proximity correction (PBOPC) methods have been developed as a leading-edge resolution enhancement technique (RET) for integrated circuit fabrication. PBOPC independently modulates each pixel on the reticle, which tremendously increases the mask's complexity and, at the same time, deteriorates its manufacturability. Most current PBOPC algorithms recur to regularization methods or a mask manufacturing rule check (MRC) to improve the mask manufacturability. Typically, these approaches either fail to satisfy manufacturing constraints on the practical product line, or lead to suboptimal mask patterns that may degrade the lithographic performance. This paper develops a block-based optical proximity correction (BBOPC) algorithm to pursue the optimal masks with manufacturability compliance, where the mask is shaped by a set of overlapped basis blocks rather than pixels. BBOPC optimization is formulated based on a vector imaging model, which is adequate for both dry lithography with lower numerical aperture (NA), and immersion lithography with hyper-NA. The BBOPC algorithm successively optimizes the main features (MF) and subresolution assist features (SRAF) based on a modified conjugate gradient method. It is effective at smoothing any unmanufacturable jogs along edges. A weight matrix is introduced in the cost function to preserve the edge fidelity of the printed images. Simulations show that the BBOPC algorithm can improve lithographic imaging performance while maintaining mask manufacturing constraints. PMID:23669851

  5. Total Technology Immersion

    ERIC Educational Resources Information Center

    Vaughn, Sandy

    2010-01-01

    Total technology immersion doesn't happen overnight, but with vision and determination, transformation can take hold and start to grow. Floydada Independent School District (FISD), winner of the 2010 Sylvia Charp Award for District Innovation in Technology, is a great example of what a district can achieve when starting with a modest tech…

  6. The Perception of Immersion

    NASA Technical Reports Server (NTRS)

    Begault, Durand Rene'; Wenzel, Elizabeth M.

    2016-01-01

    Immersion refers acoustically to sounds as coming from all directions about a listener, which normally is an inevitable consequence of human listening in an air medium. Audible sound sources are everywhere in everyday environments where sound waves propagate and reflect from surfaces around a listener. Even in environments where sounds are minimized to the greatest degree possible, such as an anechoic chamber, self-generated sound will be audible. However, the common meaning of immersion in audio and acoustics refers to the psychological sensation of being surrounded by specific sound sources. Although acoustically a sound can reach a listener from multiple surrounding directions, its spatial characteristics may be judged as unrealistic, static or constrained. For example, good quality concert hall acoustics has traditionally been correlated with a listeners sensation of being immersed by the sound of the orchestra, as opposed to the sound seeming distant and removed. Spatial audio techniques, particularly 3D audio, can provide an immersive experience because virtual sound sources and sounds reflections can be made to appear from anywhere in space about a listener. This chapter introduces a listener to the physiological, psychoacoustic and acoustic bases of these sensations.

  7. The Guanine Nucleotide Exchange Factor ARNO mediates the activation of ARF and phospholipase D by insulin

    PubMed Central

    Li, Hai-Sheng; Shome, Kuntala; Rojas, Raúl; Rizzo, Mark A; Vasudevan, Chandrasekaran; Fluharty, Eric; Santy, Lorraine C; Casanova, James E; Romero, Guillermo

    2003-01-01

    Background Phospholipase D (PLD) is involved in many signaling pathways. In most systems, the activity of PLD is primarily regulated by the members of the ADP-Ribosylation Factor (ARF) family of GTPases, but the mechanism of activation of PLD and ARF by extracellular signals has not been fully established. Here we tested the hypothesis that ARF-guanine nucleotide exchange factors (ARF-GEFs) of the cytohesin/ARNO family mediate the activation of ARF and PLD by insulin. Results Wild type ARNO transiently transfected in HIRcB cells was translocated to the plasma membrane in an insulin-dependent manner and promoted the translocation of ARF to the membranes. ARNO mutants: ΔCC-ARNO and CC-ARNO were partially translocated to the membranes while ΔPH-ARNO and PH-ARNO could not be translocated to the membranes. Sec7 domain mutants of ARNO did not facilitate the ARF translocation. Overexpression of wild type ARNO significantly increased insulin-stimulated PLD activity, and mutations in the Sec7 and PH domains, or deletion of the PH or CC domains inhibited the effects of insulin. Conclusions Small ARF-GEFs of the cytohesin/ARNO family mediate the activation of ARF and PLD by the insulin receptor. PMID:12969509

  8. Genomewide identification and expression analysis of the ARF gene family in apple.

    PubMed

    Luo, Xiao-Cui; Sun, Mei-Hong; Xu, Rui-Rui; Shu, Huai-Rui; Wang, Jia-Wei; Zhang, Shi-Zhong

    2014-12-01

    Auxin response factors (ARF) are transcription factors that regulate auxin responses in plants. Although the genomewide analysis of this family has been performed in some species, little is known regarding ARF genes in apple (Malus domestica). In this study, 31 putative apple ARF genes have been identified and located within the apple genome. The phylogenetic analysis revealed that MdARFs could be divided into three subfamilies (groups I, II and III). The predicted MdARFs were distributed across 15 of 17 chromosomes with different densities. In addition, the analysis of exon-intron junctions and of the intron phase inside the predicted coding region of each candidate gene has revealed high levels of conservation within and between phylogenetic groups. Expression profile analyses of MdARF genes were performed in different tissues (root, stem, leaf, flower and fruit), and all the selected genes were expressed in at least one of the tissues that were tested, which indicated that MdARFs are involved in various aspects of physiological and developmental processes of apple. To our knowledge, this report is the first to provide a genomewide analysis of the apple ARF gene family. This study provides valuable information for understanding the classification and putative functions of the ARF signal in apple.

  9. High yield production of myristoylated Arf6 small GTPase by recombinant N-myristoyl transferase

    PubMed Central

    Padovani, Dominique; Zeghouf, Mahel; Traverso, José A.; Giglione, Carmela; Cherfils, Jacqueline

    2013-01-01

    Small GTP-binding proteins of the Arf family (Arf GTPases) interact with multiple cellular partners and with membranes to regulate intracellular traffic and organelle structure. Understanding the underlying molecular mechanisms requires in vitro biochemical assays to test for regulations and functions. Such assays should use proteins in their cellular form, which carry a myristoyl lipid attached in N-terminus. N-myristoylation of recombinant Arf GTPases can be achieved by co-expression in E. coli with a eukaryotic N-myristoyl transferase. However, purifying myristoylated Arf GTPases is difficult and has a poor overall yield. Here we show that human Arf6 can be N-myristoylated in vitro by recombinant N-myristoyl transferases from different eukaryotic species. The catalytic efficiency depended strongly on the guanine nucleotide state and was highest for Arf6-GTP. Large-scale production of highly pure N-myristoylated Arf6 could be achieved, which was fully functional for liposome-binding and EFA6-stimulated nucleotide exchange assays. This establishes in vitro myristoylation as a novel and simple method that could be used to produce other myristoylated Arf and Arf-like GTPases for biochemical assays. PMID:23319116

  10. Extending single-exposure patterning towards 38-nm half-pitch using 1.35 NA immersion

    NASA Astrophysics Data System (ADS)

    Bouchoms, Igor; Engelen, Andre; Mulkens, Jan; Boom, Herman; Moerman, Richard; Liebregts, Paul; de Graaf, Roelof; van Veen, Marieke; Thomassen, Patrick; Emer, Wolfgang; Sperling, Frank

    2009-03-01

    Immersion lithography started to become the main workhorse for volume production of 45-nm devices, and while waiting for EUV lithography, immersion will continue to be the main technology for further shrinks. In a first step single exposure can be stretched towards the 0.25 k1 limit, after which various double patterning methods are lining up to print 32-nm and even 22-nm devices. The immersion exposure system plays a key role here, and continuous improvement steps are required to support tighter CD and overlay budgets. Additionally cost of ownership (COO) needs to be reduced and one important way to achieve this is to increase the wafer productivity. In this paper we discuss the design and performance of a new improved immersion exposure system XT:1950i. This system will extend immersion towards 38-nm half pitch resolution using a 1.35 NA lens and extreme off axis illumination (e.g. dipole). The system improvements result in better CDU, more accurate overlay towards 4-nm and higher wafer productivity towards 148- wph. Last but not least a next step in immersion technology is implemented. A novel immersion hood is introduced giving more robust low and stable defects performance.

  11. Genome-wide identification of auxin response factor (ARF) genes and its tissue-specific prominent expression in Gossypium raimondii.

    PubMed

    Sun, Runrun; Wang, Kunbo; Guo, Tenglong; Jones, Don C; Cobb, Juliana; Zhang, Baohong; Wang, Qinglian

    2015-07-01

    Auxin response factors (ARFs) are recently discovered transcription factors that bind with auxin response elements (AuxRE, TGTCTC) to regulate the expression of early auxin-responsive genes. To our knowledge, the ARF gene family has never been characterized in cotton, the most important fiber crop in the world. In this study, a total of 35 ARF genes, named as GrARFs, were identified in a diploid cotton species Gossypium raimondii. The 35 ARF genes were located in 12 of the 13 cotton chromosomes; the intron/exon distribution of the GrARF genes was similar among sister pairs, whereas the divergence of some GrARF genes suggests the possibility of functional diversification. Our results show that the middle domains of nine GrARF proteins rich in glutamine (Q) are activators, while 26 other GrARF proteins rich in proline (P), serine (S), and threonine (T) are repressors. Our results also show that the expression of GrARF genes is diverse in different tissues. The expression of GrARF1 was significantly higher in leaves, whereas GrARF2a had higher expression level in shoots, which implicates different roles in the tested tissues. The GrARF11 has a higher expression level in buds than that in leaves, while GrARF19.2 shows contrasting expression patterns, having higher expression in leaves than that in buds. This suggests that they play different roles in leaves and buds. During long-term evolution of G. raimondii, some ARF genes were lost and some arose. The identification and characterization of the ARF genes in G. raimondii elucidate its important role in cotton that ARF genes regulate the development of flower buds, sepals, shoots, and leaves.

  12. Why bother with x-ray lithography?

    NASA Astrophysics Data System (ADS)

    Smith, Henry I.; Schattenburg, Mark L.

    1992-07-01

    The manufacture of state-of-the-art integrated circuits uses UV optical projection lithography. Conventional wisdom (i.e., the trade journals) holds that this technology will take the industry to quarter-micrometer minimum features sizes and below. So, why bother with X-ray lithography? The reason is that lithography is a 'system problem', and proximity X-ray lithography is better matched to that system problem than any other technology, once the initial investment is surmounted. X-ray lithography offers the most cost-effective path to the future of ultra-large-scale integrated circuits with feature sizes of tenth micrometer and below (i.e., gigascale electronics and quantum-effect electronics).

  13. Mask lithography for display manufacturing

    NASA Astrophysics Data System (ADS)

    Sandstrom, T.; Ekberg, P.

    2010-05-01

    The last ten years have seen flat displays conquer our briefcases, desktops, and living rooms. There has been an enormous development in production technology, not least in lithography and photomasks. Current masks for large displays are more than 2 m2 and make 4-6 1X prints on glass substrates that are 9 m2. One of the most challenging aspects of photomasks for displays is the so called mura, stripes or blemishes which cause visible defects in the finished display. For the future new and even tighter maskwriter specifications are driven by faster transistors and more complex pixel layouts made necessary by the market's wish for still better image quality, multi-touch panels, 3D TVs, and the next wave of e-book readers. Large OLED screens will pose new challenges. Many new types of displays will be lowcost and use simple lithography, but anything which can show video and high quality photographic images needs a transistor backplane and sophisticated masks for its production.

  14. Next-generation 193-nm laser for sub-100-nm lithography

    NASA Astrophysics Data System (ADS)

    Duffey, Thomas P.; Blumenstock, Gerry M.; Fleurov, Vladimir B.; Pan, Xiaojiang; Newman, Peter C.; Glatzel, Holger; Watson, Tom A.; Erxmeyer, J.; Kuschnereit, Ralf; Weigl, Bernhard

    2001-09-01

    The next generation 193 nm (ArF) laser has been designed and developed for high-volume production lithography. The NanoLithTM 7000, offering 20 Watts average output power at 4 kHz repetition rates is designed to support the highest exposure tool scan speeds for maximum productivity and wafer throughput. Fundamental design changes made to the laser core technologies are described. These advancements in core technology support the delivery of highly line-narrowed light with lithography, meeting specifications for bandwidth, dose stability (+/- 0.3% in 20 ms window) and wavelength stability (+/- 0.05 pm average line center error in 20 ms window) across 2 - 4 kHz repetition rates. Improvements in optical materials and coatings have led to increased lifetime of optics modules. Optimization of the discharge electrode design has increased chamber lifetime. Early life-testing indicates that the NanoLithTM core technologies have the potential for 400% reduction of cost of consumables as compared to its predecessor, the ELX-5000A and has been discussed elsewhere.

  15. Performance overview and outlook of EUV lithography systems

    NASA Astrophysics Data System (ADS)

    Pirati, Alberto; Peeters, Rudy; Smith, Daniel; Lok, Sjoerd; Minnaert, Arthur; van Noordenburg, Martijn; Mallmann, Jörg; Harned, Noreen; Stoeldraijer, Judon; Wagner, Christian; Zoldesi, Carmen; van Setten, Eelco; Finders, Jo; de Peuter, Koen; de Ruijter, Chris; Popadic, Milos; Huang, Roger; Lin, Martin; Chuang, Frank; van Es, Roderik; Beckers, Marcel; Brandt, David; Farrar, Nigel; Schafgans, Alex; Brown, Daniel; Boom, Herman; Meiling, Hans; Kool, Ron

    2015-03-01

    Multiple NXE:3300 are operational at customer sites. These systems, equipped with a Numerical Aperture (NA) of 0.33, are being used by semiconductor manufacturers to support device development. Full Wafer Critical Dimension Uniformity (CDU) of 1.0 nm for 16nm dense lines and 1.1 nm for 20nm isolated space and stable matched overlay performance with ArF immersion scanner of less than 4nm provide the required lithographic performance for these device development activities. Steady progresses in source power have been achieved in the last 12 months, with 100Watts (W) EUV power capability demonstrated on multiple machines. Power levels up to 90W have been achieved on a customer machine, while 110W capability has been demonstrated in the ASML factory. Most NXE:3300 installed at customers have demonstrated the capability to expose 500 wafers per day, and one field system upgraded to the 80W configuration has proven capable of exposing 1,000 wafers per day. Scanner defectivity keeps being reduced by a 10x factor each year, while the first exposures obtained with full size EUV pellicles show no appreciable difference in CDU when compared to exposures done without pellicle. The 4th generation EUV system, the NXE: 3350, is being qualified in the ASML factory.

  16. EUV lithography performance for manufacturing: status and outlook

    NASA Astrophysics Data System (ADS)

    Pirati, Alberto; Peeters, Rudy; Smith, Daniel; Lok, Sjoerd; van Noordenburg, Martijn; van Es, Roderik; Verhoeven, Eric; Meijer, Henk; Minnaert, Arthur; van der Horst, Jan-Willem; Meiling, Hans; Mallmann, Joerg; Wagner, Christian; Stoeldraijer, Judon; Fisser, Geert; Finders, Jo; Zoldesi, Carmen; Stamm, Uwe; Boom, Herman; Brandt, David; Brown, Daniel; Fomenkov, Igor; Purvis, Michael

    2016-03-01

    NXE:3300B scanners have been operational at customer sites since almost two years, and the NXE:3350B, the 4th generation EUV system, has started shipping at the end of 2015. All these exposure tools operate using MOPA pre-pulse source technology, which enabled significant productivity scaling, demonstrated at customers and at ASML. Having achieved the required throughput to support device development, the main priority of the ASML EUV program has shifted towards improving stability and availability. Continuous progresses in defectivity reduction and in the realization of a reticle pellicle are taking place at increased speed. Today's overlay and imaging results are in line with the requirements of 7nm logic devices; Matched Machine overlay to ArF immersion below 2.5 nm and full wafer CDU performance of less than 1.0nm are regularly achieved. The realization of an intensity loss-less illuminator and improvements in resist formulation are significant progress towards enabling the use of EUV technology for 5nm logic devices at full productivity. This paper will present an overview of the status of the ASML EUV program and product roadmap by reviewing the current performance and on-going developments in productivity, imaging, overlay and mask defectivity reduction.

  17. AKT regulates NPM dependent ARF localization and p53mut stability in tumors.

    PubMed

    Hamilton, Garth; Abraham, Aswin G; Morton, Jennifer; Sampson, Oliver; Pefani, Dafni E; Khoronenkova, Svetlana; Grawenda, Anna; Papaspyropoulos, Angelos; Jamieson, Nigel; McKay, Colin; Sansom, Owen; Dianov, Grigory L; O'Neill, Eric

    2014-08-15

    Nucleophosmin (NPM) is known to regulate ARF subcellular localization and MDM2 activity in response to oncogenic stress, though the precise mechanism has remained elusive. Here we describe how NPM and ARF associate in the nucleoplasm to form a MDM2 inhibitory complex. We find that oligomerization of NPM drives nucleolar accumulation of ARF. Moreover, the formation of NPM and ARF oligomers antagonizes MDM2 association with the inhibitory complex, leading to activation of MDM2 E3-ligase activity and targeting of p53. We find that AKT phosphorylation of NPM-Ser48 prevents oligomerization that results in nucleoplasmic localization of ARF, constitutive MDM2 inhibition and stabilization of p53. We also show that ARF promotes p53 mutant stability in tumors and suppresses p73 mediated p21 expression and senescence. We demonstrate that AKT and PI3K inhibitors may be effective in treatment of therapeutically resistant tumors with elevated AKT and carrying gain of function mutations in p53. Our results show that the clinical candidate AKT inhibitor MK-2206 promotes ARF nucleolar localization, reduced p53(mut) stability and increased sensitivity to ionizing radiation in a xenograft model of pancreatic cancer. Analysis of human tumors indicates that phospho-S48-NPM may be a useful biomarker for monitoring AKT activity and in vivo efficacy of AKT inhibitor treatment. Critically, we propose that combination therapy involving PI3K-AKT inhibitors would benefit from a patient stratification rationale based on ARF and p53(mut) status.

  18. Inactivation of arf-bp1 induces p53 activation and diabetic phenotypes in mice.

    PubMed

    Kon, Ning; Zhong, Jiayun; Qiang, Li; Accili, Domenico; Gu, Wei

    2012-02-10

    It is well accepted that the Mdm2 ubiquitin ligase acts as a major factor in controlling p53 stability and activity in vivo. Although several E3 ligases have been reported to be involved in Mdm2-independent p53 degradation, the roles of these ligases in p53 regulation in vivo remain largely unknown. To elucidate the physiological role of the ubiquitin ligase ARF-BP1, we generated arf-bp1 mutant mice. We found that inactivation of arf-bp1 during embryonic development in mice resulted in p53 activation and embryonic lethality, but the mice with arf-bp1 deletion specifically in the pancreatic β-cells (arf-bp1(FL/Y)/RIP-cre) were viable and displayed no obvious abnormality after birth. Interestingly, these mice showed dramatic loss of β-cells as mice aged, and >50% of these mice died of severe diabetic symptoms before reaching 1 year of age. Notably, the diabetic phenotype of these mice was largely reversed by concomitant deletion of p53, and the life span of the mice was significantly extended (p53(LFL/FL)/arf-bp1(FL/Y)/RIP-cre). These findings underscore an important role of ARF-BP1 in maintaining β-cell homeostasis in aging mice and reveal that the stability of p53 is critically regulated by ARF-BP1 in vivo.

  19. Tissue-specific p19Arf regulation dictates the response to oncogenic K-ras.

    PubMed

    Young, Nathan P; Jacks, Tyler

    2010-06-01

    The ability of oncogenes to engage tumor suppressor pathways represents a key regulatory mechanism that can limit the outgrowth of incipient tumor cells. For example, in a number of settings oncogenic Ras strongly activates the Ink4a/Arf locus, resulting in cell cycle arrest or senescence. The capacity of different cell types to execute tumor suppressor programs following expression of endogenous K-ras(G12D) in vivo has not been examined. Using compound mutant mice containing the Arf(GFP) reporter and the spontaneously activating K-ras(LA2) allele, we have uncovered dramatic tissue specificity of K-ras(G12D)-dependent p19(Arf) up-regulation. Lung tumors, which can arise in the presence of functional p19(Arf), rarely display p19(Arf) induction. In contrast, sarcomas always show robust activation, which correlates with genetic evidence, suggesting that loss of the p19(Arf)-p53 pathway is a requisite event for sarcomagenesis. Using constitutive and inducible RNAi systems in vivo, we highlight cell type-specific chromatin regulation of Ink4a/Arf as a critical determinant of cellular responses to oncogenic K-ras. Polycomb-group complexes repress the locus in lung tumors, whereas the SWI/SNF family member Snf5 acts as an important mediator of p19(Arf) induction in sarcomas. This variation in tumor suppressor induction might explain the inherent differences between tissues in their sensitivity to Ras-mediated transformation. PMID:20479239

  20. Physiological functions of the small GTPase Arf6 in the nervous system

    PubMed Central

    Akiyama, Masahiro; Kanaho, Yasunori

    2015-01-01

    The small GTPase ADP-ribosylation factor 6 (Arf6) plays important roles in membrane dynamics-based neuronal cell events such as neurite outgrowth and spine formation. However, physiological functions of Arf6 in the nervous system at whole animal level have not yet been explored. We have recently generated conditional knockout mice lacking Arf6 in neurons or oligodendrocytes of central nervous system (CNS) or both cell lineages, and analyzed them. We found that ablation of Arf6 gene from neurons, but not from oligodendrocytes, caused the defect in axon myelination at the fimbria of hippocampus (Fim) and corpus callosum (CC). We also found that migration of oligodendrocyte precursor cells (OPCs) from the subventricular zone to the Fim and CC in mice lacking Arf6 in neurons was impaired. Finally, it was found that secretion of fibroblast growth factor-2 (FGF-2), a guidance factor for OPC migration, from hippocampi lacking Arf6 was impaired. Collectively, these findings demonstrate that Arf6 in neurons of the CNS plays an important role in OPC migration by regulating secretion of FGF-2 from neurons, thereby contributing to the axon myelination. Here, we discuss our current understanding of physiological functions of Arf6 in the nervous system. PMID:26291245

  1. Arf6 plays an early role in platelet activation by collagen and convulxin.

    PubMed

    Choi, Wangsun; Karim, Zubair A; Whiteheart, Sidney W

    2006-04-15

    Small GTPases play critical roles in hemostasis, though the roster of such molecules in platelets is not complete. In this study, we report the presence of Ras-related GTPases of the ADP-ribosylation factor (Arf) family. Platelets contain Arf1 or 3 and Arf6, with the latter being predominantly membrane associated. Using effector domain pull-down assays, we show, counter to other GTPases, that Arf6-GTP is present in resting platelets and decreases rapidly upon activation with collagen or convulxin. This decrease does not completely rely on secondary agonists (ADP and thromboxane A2) or require integrin signaling. The decrease in free Arf6-GTP temporally precedes activation of Rho family GTPases (RhoA, Cdc42, and Rac1). Using a membrane-permeant, myristoylated peptide, which mimics the N-terminus of Arf6, we show that the Arf6-GTP decrease is essential for collagen- and convulxin-induced aggregation, platelet adherence, and spreading on collagen-coated glass. Treatment with this peptide also affects the activation of Rho family GTPases, but has little effect on RalA and Rap1 or on agonist-induced calcium mobilization. These data show that Arf6 is a key element in activation through GPVI, and is required for activation of the Rho family GTPases and the subsequent cytoskeletal rearrangements needed for full platelet function. PMID:16352809

  2. 20 CFR 228.16 - Adjustments in the age reduction factor (ARF).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false Adjustments in the age reduction factor (ARF... RETIREMENT ACT COMPUTATION OF SURVIVOR ANNUITIES The Tier I Annuity Component § 228.16 Adjustments in the age reduction factor (ARF). Upon the attainment of retirement age, the previously-computed age reduction...

  3. 20 CFR 228.16 - Adjustments in the age reduction factor (ARF).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 1 2014-04-01 2012-04-01 true Adjustments in the age reduction factor (ARF... RETIREMENT ACT COMPUTATION OF SURVIVOR ANNUITIES The Tier I Annuity Component § 228.16 Adjustments in the age reduction factor (ARF). Upon the attainment of retirement age, the previously-computed age reduction...

  4. 20 CFR 228.16 - Adjustments in the age reduction factor (ARF).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true Adjustments in the age reduction factor (ARF... RETIREMENT ACT COMPUTATION OF SURVIVOR ANNUITIES The Tier I Annuity Component § 228.16 Adjustments in the age reduction factor (ARF). Upon the attainment of retirement age, the previously-computed age reduction...

  5. 20 CFR 228.16 - Adjustments in the age reduction factor (ARF).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 1 2012-04-01 2012-04-01 false Adjustments in the age reduction factor (ARF... RETIREMENT ACT COMPUTATION OF SURVIVOR ANNUITIES The Tier I Annuity Component § 228.16 Adjustments in the age reduction factor (ARF). Upon the attainment of retirement age, the previously-computed age reduction...

  6. AKT regulates NPM dependent ARF localization and p53mut stability in tumors

    PubMed Central

    Morton, Jennifer; Sampson, Oliver; Pefani, Dafni E.; Khoronenkova, Svetlana; Grawenda, Anna; Papaspyropoulos, Angelos; Jamieson, Nigel; McKay, Colin; Sansom, Owen; Dianov, Grigory L.; O'Neill, Eric

    2014-01-01

    Nucleophosmin (NPM) is known to regulate ARF subcellular localization and MDM2 activity in response to oncogenic stress, though the precise mechanism has remained elusive. Here we describe how NPM and ARF associate in the nucleoplasm to form a MDM2 inhibitory complex. We find that oligomerization of NPM drives nucleolar accumulation of ARF. Moreover, the formation of NPM and ARF oligomers antagonizes MDM2 association with the inhibitory complex, leading to activation of MDM2 E3-ligase activity and targeting of p53. We find that AKT phosphorylation of NPM-Ser48 prevents oligomerization that results in nucleoplasmic localization of ARF, constitutive MDM2 inhibition and stabilization of p53. We also show that ARF promotes p53 mutant stability in tumors and suppresses p73 mediated p21 expression and senescence. We demonstrate that AKT and PI3K inhibitors may be effective in treatment of therapeutically resistant tumors with elevated AKT and carrying gain of function mutations in p53. Our results show that the clinical candidate AKT inhibitor MK-2206 promotes ARF nucleolar localization, reduced p53mut stability and increased sensitivity to ionizing radiation in a xenograft model of pancreatic cancer. Analysis of human tumors indicates that phospho-S48-NPM may be a useful biomarker for monitoring AKT activity and in vivo efficacy of AKT inhibitor treatment. Critically, we propose that combination therapy involving PI3K-AKT inhibitors would benefit from a patient stratification rationale based on ARF and p53mut status. PMID:25071014

  7. Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa

    SciTech Connect

    Kalluri, Udaya C; DiFazio, Stephen P; Brunner, A.; Tuskan, Gerald A

    2007-01-01

    Auxin/Indole-3-Acetic Acid (Aux/IAA) and Auxin Response Factor (ARF) transcription factors are key regulators of auxin responses in plants. A total of 35 Aux/IAA and 39 ARF genes were identified in the Populus genome. Comparative phylogenetic analysis revealed that the subgroups PoptrARF2, 6, 9 and 16 and PoptrIAA3, 16, 27 and 29 have differentially expanded in Populus relative to Arabidopsis. Activator ARFs were found to be two fold-overrepresented in the Populus genome. PoptrIAA and PoptrARF gene families appear to have expanded due to high segmental and low tandem duplication events. Furthermore, expression studies showed that genes in the expanded PoptrIAA3 subgroup display differential expression. The gene-family analysis reported here will be useful in conducting future functional genomics studies to understand how the molecular roles of these large gene families translate into a diversity of biologically meaningful auxin effects.

  8. Transient inactivation of Rb and ARF yields regenerative cells from postmitotic mammalian muscle.

    PubMed

    Pajcini, Kostandin V; Corbel, Stephane Y; Sage, Julien; Pomerantz, Jason H; Blau, Helen M

    2010-08-01

    An outstanding biological question is why tissue regeneration in mammals is limited, whereas urodele amphibians and teleost fish regenerate major structures, largely by cell cycle reentry. Upon inactivation of Rb, proliferation of postmitotic urodele skeletal muscle is induced, whereas in mammalian muscle this mechanism does not exist. We postulated that a tumor suppressor present in mammals but absent in regenerative vertebrates, the Ink4a product ARF (alternative reading frame), is a regeneration suppressor. Concomitant inactivation of Arf and Rb led to mammalian muscle cell cycle reentry, loss of differentiation properties, and upregulation of cytokinetic machinery. Single postmitotic myocytes were isolated by laser micro-dissection-catapulting, and transient suppression of Arf and Rb yielded myoblast colonies that retained the ability to differentiate and fuse into myofibers upon transplantation in vivo. These results show that differentiation of mammalian cells is reversed by inactivation of Arf and Rb and support the hypothesis that Arf evolved at the expense of regeneration. PMID:20682446

  9. ArF Excimer Emission from Microhollow Cathode Discharges

    NASA Astrophysics Data System (ADS)

    Shi, Wenhui; El-Habachi, Ahmed; Schoenbach, Karl H.

    1999-10-01

    Microhollow cathode discharges (MHCD) in Ar and Xe have been shown to emit excimer radiation at 128 nm and 172 nm, respectively, with an efficiency (in case of Xe) of approximately 8range towards longer wavelengths we have studied MHCD in argon fluoride mixtures (1to generate stable dc discharges in flowing gas at pressures ranging from 100 Torr to atmospheric pressure. The discharge voltage was approximately 500 V, the discharge current in these experiments was 10 mA. Whereas the spectrum at 300 Torr was dominated by atomic lines, at 700 Torr only excimer radiation peaking at 193 nm is observed in the spectral range from 120 nm to 300 nm. Absolute measurements of ArF excimer emission provided a value of approximately 3efficiency, or a total optical power of the excimer radiation of 150 mW. The peak power at 193 nm is 17 mW/nm. This is higher by a factor of 2 to 3, compared to xenon excimer emitters, due to the small FWHM of the 193nm ArF line (4 nm) compared to that of the Xe excimer line (24 nm). [1] Karl H. Schenbach, Ahmed El-Habachi, Wenhui Shi, and Marco Ciocca, Plasma Source Science and Technology 6, 468 (1997). [2] Ahmed El-Habachi and Karl H. Schoenbach, Appl.Phys.Lett. 73, 885 (1998). This work was funded by the DOE, Advanced Energy Division, and by the National Science Foundation.

  10. Arf6 coordinates actin assembly through the WAVE complex, a mechanism usurped by Salmonella to invade host cells

    PubMed Central

    Humphreys, Daniel; Davidson, Anthony C.; Hume, Peter J.; Makin, Laura E.; Koronakis, Vassilis

    2013-01-01

    ADP ribosylation factor (Arf) 6 anchors to the plasma membrane, where it coordinates membrane trafficking and cytoskeleton remodelling, but how it assembles actin filaments is unknown. By reconstituting membrane-associated actin assembly mediated by the WASP family veroprolin homolog (WAVE) regulatory complex (WRC), we recapitulated an Arf6-driven actin polymerization pathway. We show that Arf6 is divergent from other Arf members, as it was incapable of directly recruiting WRC. We demonstrate that Arf6 triggers actin assembly at the membrane indirectly by recruiting the Arf guanine nucleotide exchange factor (GEF) ARNO that activates Arf1 to enable WRC-dependent actin assembly. The pathogen Salmonella usurped Arf6 for host cell invasion by recruiting its canonical GEFs EFA6 and BRAG2. Arf6 and its GEFs facilitated membrane ruffling and pathogen invasion via ARNO, and triggered actin assembly by generating an Arf1–WRC signaling hub at the membrane in vitro and in cells. This study reconstitutes Arf6-dependent actin assembly to reveal a mechanism by which related Arf GTPases orchestrate distinct steps in the WRC cytoskeleton remodelling pathway. PMID:24085844

  11. Arf6 coordinates actin assembly through the WAVE complex, a mechanism usurped by Salmonella to invade host cells.

    PubMed

    Humphreys, Daniel; Davidson, Anthony C; Hume, Peter J; Makin, Laura E; Koronakis, Vassilis

    2013-10-15

    ADP ribosylation factor (Arf) 6 anchors to the plasma membrane, where it coordinates membrane trafficking and cytoskeleton remodelling, but how it assembles actin filaments is unknown. By reconstituting membrane-associated actin assembly mediated by the WASP family veroprolin homolog (WAVE) regulatory complex (WRC), we recapitulated an Arf6-driven actin polymerization pathway. We show that Arf6 is divergent from other Arf members, as it was incapable of directly recruiting WRC. We demonstrate that Arf6 triggers actin assembly at the membrane indirectly by recruiting the Arf guanine nucleotide exchange factor (GEF) ARNO that activates Arf1 to enable WRC-dependent actin assembly. The pathogen Salmonella usurped Arf6 for host cell invasion by recruiting its canonical GEFs EFA6 and BRAG2. Arf6 and its GEFs facilitated membrane ruffling and pathogen invasion via ARNO, and triggered actin assembly by generating an Arf1-WRC signaling hub at the membrane in vitro and in cells. This study reconstitutes Arf6-dependent actin assembly to reveal a mechanism by which related Arf GTPases orchestrate distinct steps in the WRC cytoskeleton remodelling pathway.

  12. Defect tolerant transmission lithography mask

    DOEpatents

    Vernon, Stephen P.

    2000-01-01

    A transmission lithography mask that utilizes a transparent substrate or a partially transparent membrane as the active region of the mask. A reflective single layer or multilayer coating is deposited on the membrane surface facing the illumination system. The coating is selectively patterned (removed) to form transmissive (bright) regions. Structural imperfections and defects in the coating have negligible effect on the aerial image of the mask master pattern since the coating is used to reflect radiation out of the entrance pupil of the imaging system. Similarly, structural imperfections in the clear regions of the membrane have little influence on the amplitude or phase of the transmitted electromagnetic fields. Since the mask "discards," rather than absorbs, unwanted radiation, it has reduced optical absorption and reduced thermal loading as compared to conventional designs. For EUV applications, the mask circumvents the phase defect problem, and is independent of the thermal load during exposure.

  13. Method for extreme ultraviolet lithography

    DOEpatents

    Felter, T. E.; Kubiak, Glenn D.

    1999-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods.

  14. Method for extreme ultraviolet lithography

    DOEpatents

    Felter, T. E.; Kubiak, G. D.

    2000-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods.

  15. Stage Cylindrical Immersive Display

    NASA Technical Reports Server (NTRS)

    Abramyan, Lucy; Norris, Jeffrey S.; Powell, Mark W.; Mittman, David S.; Shams, Khawaja S.

    2011-01-01

    Panoramic images with a wide field of view intend to provide a better understanding of an environment by placing objects of the environment on one seamless image. However, understanding the sizes and relative positions of the objects in a panorama is not intuitive and prone to errors because the field of view is unnatural to human perception. Scientists are often faced with the difficult task of interpreting the sizes and relative positions of objects in an environment when viewing an image of the environment on computer monitors or prints. A panorama can display an object that appears to be to the right of the viewer when it is, in fact, behind the viewer. This misinterpretation can be very costly, especially when the environment is remote and/or only accessible by unmanned vehicles. A 270 cylindrical display has been developed that surrounds the viewer with carefully calibrated panoramic imagery that correctly engages their natural kinesthetic senses and provides a more accurate awareness of the environment. The cylindrical immersive display offers a more natural window to the environment than a standard cubic CAVE (Cave Automatic Virtual Environment), and the geometry allows multiple collocated users to simultaneously view data and share important decision-making tasks. A CAVE is an immersive virtual reality environment that allows one or more users to absorb themselves in a virtual environment. A common CAVE setup is a room-sized cube where the cube sides act as projection planes. By nature, all cubic CAVEs face a problem with edge matching at edges and corners of the display. Modern immersive displays have found ways to minimize seams by creating very tight edges, and rely on the user to ignore the seam. One significant deficiency of flat-walled CAVEs is that the sense of orientation and perspective within the scene is broken across adjacent walls. On any single wall, parallel lines properly converge at their vanishing point as they should, and the sense of

  16. Enabling immersive simulation.

    SciTech Connect

    McCoy, Josh; Mateas, Michael; Hart, Derek H.; Whetzel, Jonathan; Basilico, Justin Derrick; Glickman, Matthew R.; Abbott, Robert G.

    2009-02-01

    The object of the 'Enabling Immersive Simulation for Complex Systems Analysis and Training' LDRD has been to research, design, and engineer a capability to develop simulations which (1) provide a rich, immersive interface for participation by real humans (exploiting existing high-performance game-engine technology wherever possible), and (2) can leverage Sandia's substantial investment in high-fidelity physical and cognitive models implemented in the Umbra simulation framework. We report here on these efforts. First, we describe the integration of Sandia's Umbra modular simulation framework with the open-source Delta3D game engine. Next, we report on Umbra's integration with Sandia's Cognitive Foundry, specifically to provide for learning behaviors for 'virtual teammates' directly from observed human behavior. Finally, we describe the integration of Delta3D with the ABL behavior engine, and report on research into establishing the theoretical framework that will be required to make use of tools like ABL to scale up to increasingly rich and realistic virtual characters.

  17. Gradient-based inverse extreme ultraviolet lithography.

    PubMed

    Ma, Xu; Wang, Jie; Chen, Xuanbo; Li, Yanqiu; Arce, Gonzalo R

    2015-08-20

    Extreme ultraviolet (EUV) lithography is the most promising successor of current deep ultraviolet (DUV) lithography. The very short wavelength, reflective optics, and nontelecentric structure of EUV lithography systems bring in different imaging phenomena into the lithographic image synthesis problem. This paper develops a gradient-based inverse algorithm for EUV lithography systems to effectively improve the image fidelity by comprehensively compensating the optical proximity effect, flare, photoresist, and mask shadowing effects. A block-based method is applied to iteratively optimize the main features and subresolution assist features (SRAFs) of mask patterns, while simultaneously preserving the mask manufacturability. The mask shadowing effect may be compensated by a retargeting method based on a calibrated shadowing model. Illustrative simulations at 22 and 16 nm technology nodes are presented to validate the effectiveness of the proposed methods. PMID:26368764

  18. 1x stencil masks fabrication and their use in Low-Energy Electron-beam Proximity Lithography (LEEPL)

    NASA Astrophysics Data System (ADS)

    Behringer, Uwe F. W.

    2004-12-01

    Thirty years ago it was the common believe of most of the lithographer that the limit end for the optical lithography will be at about 1 μm ground rule. So NGL tools were developed to go in the 500nm and 250nm regions. 15 years later the different optical lithography techniques were still alive exposing feature sizes down to 200nm and the NGL tool developer had to move to 100nm and below. Today 100nm features made by optical lithography is world wide a common technique in most of the modern chip manufacturing plants, and feature sizes beyond the used wavelength are state of art. So do we really need NGL or will the optical lithography lives forever? Well, there are already optical system available or will be soon delivered to the manufacturing lines which are able to expose feature sizes down to 70nm and even to 50nm if they use 193nm immersion lithography. But for what price? The optical lithography became extremely expensive. Reticles for the 70nm technology full with OPC structures may cost up to 500 K and an optical reticle set up to 2 Million. So in my understanding the introduction of any NGL technique will only happen if such a technique can demonstrate at least the same performance as the optical lithography but at a lower cost level. The best understood NGLs are the electron beam lithography techniques used in e-beam direct writing tools for the exposure of masks and reticles or e-beam techniques which expose the wafers using masks like E-beam Projection Lithography (EPL) or Low Energy E-beam Proximity Lithography (LEEPL) respectively. Both EPL and LEEPL require a similar mask technique so called stencil masks. The first 1x stencil masks (a silicon wafer with a thin membrane area containing the pattern as physical holes) were developed by IBM Germany more than 25 years ago and perfected in the Advanced Mask Facility (AMF) at IBM Vermont. Today, these 1x stencil masks used for LEEPL are mainly produced by Hoya, DNP, Toppan and NTT-AT in Japan. This paper

  19. Molecular analysis of ARF1 expression profiles during development of physic nut (Jatropha curcas L.).

    PubMed

    Qin, Xiaobo; Lin, Fanrong; Lii, Yifan; Gou, Chunbao; Chen, Fang

    2011-03-01

    A cDNA clone designated arf1 was isolated from a physic nut (Jatropha curcas L.) endosperm cDNA library which encodes a small GTP-binding protein and has significant homology to ADP-ribosylation factors (ARF) in plants, animals and microbes. The cDNA contains an open reading frame that encodes a polypeptide of 181 amino acids with a calculated molecular mass of 20.7 kDa. The deduced amino acid sequence showed high homology to known ARFs from other organisms. The products of the arf1 obtained by overexpression in E. coli revealed the specific binding activity toward GTP. The expression of arf1 was observed in flowers, roots, stems and leaves as analyzed by RT-PCR, and its transcriptional level was highest in flowers. In particular, the accumulation of arf1 transcripts was different under various environmental stresses in seedlings. The results suggest that arf1 plays distinct physiological roles in Jatropha curcas cells. PMID:20853149

  20. Elimination of p19ARF-expressing cells enhances pulmonary function in mice

    PubMed Central

    Hashimoto, Michihiro; Asai, Azusa; Kawagishi, Hiroyuki; Mikawa, Ryuta; Iwashita, Yuji; Kanayama, Kazuki; Sugimoto, Kazushi; Sato, Tadashi; Maruyama, Mitsuo

    2016-01-01

    Senescent cells accumulate in many tissues as animals age and are considered to underlie several aging-associated pathologies. The tumor suppressors p19ARF and p16INK4a, both of which are encoded in the CDKN2A locus, play critical roles in inducing and maintaining permanent cell cycle arrest during cellular senescence. Although the elimination of p16INK4a-expressing cells extends the life span of the mouse, it is unclear whether tissue function is restored by the elimination of senescent cells in aged animals and whether and how p19ARF contributes to tissue aging. The aging-associated decline in lung function is characterized by an increase in compliance as well as pathogenic susceptibility to pulmonary diseases. We herein demonstrated that pulmonary function in 12-month-old mice was reversibly restored by the elimination of p19ARF-expressing cells. The ablation of p19ARF-expressing cells using a toxin receptor-mediated cell knockout system ameliorated aging-associated lung hypofunction. Furthermore, the aging-associated gene expression profile was reversed after the elimination of p19ARF. Our results indicate that the aging-associated decline in lung function was, at least partly, attributed to p19ARF and was recovered by eliminating p19ARF-expressing cells. PMID:27699227

  1. The human ARF tumor suppressor senses blastema activity and suppresses epimorphic tissue regeneration

    PubMed Central

    Hesse, Robert G; Kouklis, Gayle K; Ahituv, Nadav; Pomerantz, Jason H

    2015-01-01

    The control of proliferation and differentiation by tumor suppressor genes suggests that evolution of divergent tumor suppressor repertoires could influence species’ regenerative capacity. To directly test that premise, we humanized the zebrafish p53 pathway by introducing regulatory and coding sequences of the human tumor suppressor ARF into the zebrafish genome. ARF was dormant during development, in uninjured adult fins, and during wound healing, but was highly expressed in the blastema during epimorphic fin regeneration after amputation. Regenerative, but not developmental signals resulted in binding of zebrafish E2f to the human ARF promoter and activated conserved ARF-dependent Tp53 functions. The context-dependent activation of ARF did not affect growth and development but inhibited regeneration, an unexpected distinct tumor suppressor response to regenerative versus developmental environments. The antagonistic pleiotropic characteristics of ARF as both tumor and regeneration suppressor imply that inducing epimorphic regeneration clinically would require modulation of ARF –p53 axis activation. DOI: http://dx.doi.org/10.7554/eLife.07702.001 PMID:26575287

  2. Elimination of p19ARF-expressing cells enhances pulmonary function in mice

    PubMed Central

    Hashimoto, Michihiro; Asai, Azusa; Kawagishi, Hiroyuki; Mikawa, Ryuta; Iwashita, Yuji; Kanayama, Kazuki; Sugimoto, Kazushi; Sato, Tadashi; Maruyama, Mitsuo

    2016-01-01

    Senescent cells accumulate in many tissues as animals age and are considered to underlie several aging-associated pathologies. The tumor suppressors p19ARF and p16INK4a, both of which are encoded in the CDKN2A locus, play critical roles in inducing and maintaining permanent cell cycle arrest during cellular senescence. Although the elimination of p16INK4a-expressing cells extends the life span of the mouse, it is unclear whether tissue function is restored by the elimination of senescent cells in aged animals and whether and how p19ARF contributes to tissue aging. The aging-associated decline in lung function is characterized by an increase in compliance as well as pathogenic susceptibility to pulmonary diseases. We herein demonstrated that pulmonary function in 12-month-old mice was reversibly restored by the elimination of p19ARF-expressing cells. The ablation of p19ARF-expressing cells using a toxin receptor-mediated cell knockout system ameliorated aging-associated lung hypofunction. Furthermore, the aging-associated gene expression profile was reversed after the elimination of p19ARF. Our results indicate that the aging-associated decline in lung function was, at least partly, attributed to p19ARF and was recovered by eliminating p19ARF-expressing cells.

  3. Genome-wide identification, isolation and expression analysis of auxin response factor (ARF) gene family in sweet orange (Citrus sinensis)

    PubMed Central

    Li, Si-Bei; OuYang, Wei-Zhi; Hou, Xiao-Jin; Xie, Liang-Liang; Hu, Chun-Gen; Zhang, Jin-Zhi

    2015-01-01

    Auxin response factors (ARFs) are an important family of proteins in auxin-mediated response, with key roles in various physiological and biochemical processes. To date, a genome-wide overview of the ARF gene family in citrus was not available. A systematic analysis of this gene family in citrus was begun by carrying out a genome-wide search for the homologs of ARFs. A total of 19 nonredundant ARF genes (CiARF) were found and validated from the sweet orange. A comprehensive overview of the CiARFs was undertaken, including the gene structures, phylogenetic analysis, chromosome locations, conserved motifs of proteins, and cis-elements in promoters of CiARF. Furthermore, expression profiling using real-time PCR revealed many CiARF genes, albeit with different patterns depending on types of tissues and/or developmental stages. Comprehensive expression analysis of these genes was also performed under two hormone treatments using real-time PCR. Indole-3-acetic acid (IAA) and N-1-napthylphthalamic acid (NPA) treatment experiments revealed differential up-regulation and down-regulation, respectively, of the 19 citrus ARF genes in the callus of sweet orange. Our comprehensive analysis of ARF genes further elucidates the roles of CiARF family members during citrus growth and development process. PMID:25870601

  4. Genome-wide identification, isolation and expression analysis of auxin response factor (ARF) gene family in sweet orange (Citrus sinensis).

    PubMed

    Li, Si-Bei; OuYang, Wei-Zhi; Hou, Xiao-Jin; Xie, Liang-Liang; Hu, Chun-Gen; Zhang, Jin-Zhi

    2015-01-01

    Auxin response factors (ARFs) are an important family of proteins in auxin-mediated response, with key roles in various physiological and biochemical processes. To date, a genome-wide overview of the ARF gene family in citrus was not available. A systematic analysis of this gene family in citrus was begun by carrying out a genome-wide search for the homologs of ARFs. A total of 19 nonredundant ARF genes (CiARF) were found and validated from the sweet orange. A comprehensive overview of the CiARFs was undertaken, including the gene structures, phylogenetic analysis, chromosome locations, conserved motifs of proteins, and cis-elements in promoters of CiARF. Furthermore, expression profiling using real-time PCR revealed many CiARF genes, albeit with different patterns depending on types of tissues and/or developmental stages. Comprehensive expression analysis of these genes was also performed under two hormone treatments using real-time PCR. Indole-3-acetic acid (IAA) and N-1-napthylphthalamic acid (NPA) treatment experiments revealed differential up-regulation and down-regulation, respectively, of the 19 citrus ARF genes in the callus of sweet orange. Our comprehensive analysis of ARF genes further elucidates the roles of CiARF family members during citrus growth and development process.

  5. Proteobacterial ArfA peptides are synthesized from non-stop messenger RNAs.

    PubMed

    Schaub, Ryan E; Poole, Stephen J; Garza-Sánchez, Fernando; Benbow, Sarah; Hayes, Christopher S

    2012-08-24

    The translation of non-stop mRNA (which lack in-frame stop codons) represents a significant quality control problem for all organisms. In eubacteria, the transfer-messenger RNA (tmRNA) system facilitates recycling of stalled ribosomes from non-stop mRNA in a process termed trans-translation or ribosome rescue. During rescue, the nascent chain is tagged with the tmRNA-encoded ssrA peptide, which promotes polypeptide degradation after release from the stalled ribosome. Escherichia coli possesses an additional ribosome rescue pathway mediated by the ArfA peptide. The E. coli arfA message contains a hairpin structure that is cleaved by RNase III to produce a non-stop transcript. Therefore, ArfA levels are controlled by tmRNA through ssrA-peptide tagging and proteolysis. Here, we examine whether ArfA homologues from other bacteria are also regulated by RNase III and tmRNA. We searched 431 arfA coding sequences for mRNA secondary structures and found that 82.8% of the transcripts contain predicted hairpins in their 3'-coding regions. The arfA hairpins from Haemophilus influenzae, Proteus mirabilis, Vibrio fischeri, and Pasteurella multocida are all cleaved by RNase III as predicted, whereas the hairpin from Neisseria gonorrhoeae functions as an intrinsic transcription terminator to generate non-stop mRNA. Each ArfA homologue is ssrA-tagged and degraded when expressed in wild-type E. coli cells, but accumulates in mutants lacking tmRNA. Together, these findings show that ArfA synthesis from non-stop mRNA is a conserved mechanism to regulate the alternative ribosome rescue pathway. This strategy ensures that ArfA homologues are only deployed when the tmRNA system is incapacitated or overwhelmed by stalled ribosomes. PMID:22791716

  6. Simultaneous Immersion Mirau Interferometry

    NASA Astrophysics Data System (ADS)

    Lyulko, Oleksandra

    The present work describes a novel imaging technique for label-free no-UV vibration-insensitive imaging of live cells in an epi-illumination geometry. This technique can be implemented in a variety of imaging applications. For example, it can be used for cell targeting as a part of a platform for targeted cell irradiations - single-cell microbeam. The goal of microbeam facilities is to provide biological researchers with tools to study the effects of ionizing radiation on live cells. A common way of cell labeling - fluorescent staining - may alter cellular metabolism and UV illumination presents potential damage for the genetic material. The new imaging technique will allow the researchers to separate radiation-induced effects from the effects caused by confounding factors like fluorescent staining or UV light. Geometry of irradiation endstations at some microbeam facilities precludes the use of transmitted light, e.g. in the Columbia University's Radiological Research Accelerator Facility microbeam endstation, where the ion beam exit window is located just below the sample. Imaging techniques used at such endstations must use epi-illumination. Mirau Interferometry is an epi-illumination, non-stain imaging modality suitable for implementation at a microbeam endstation. To facilitate interferometry and to maintain cell viability, it is desirable that cells stay in cell growth medium during the course of an experiment. To accommodate the use of medium, Immersion Mirau Interferometry has been developed. A custom attachment for a microscope objective has been designed and built for interferometric imaging with the possibility of immersion of the apparatus into cell medium. The implemented data collection algorithm is based on the principles of Phase-Shifting Interferometry. The largest limitation of Phase-Shifting Interferometry is its sensitivity to the vertical position of the sample. In environments where vibration isolation is difficult, this makes image

  7. Arf Induction by Tgfβ Is Influenced by Sp1 and C/ebpβ in Opposing Directions

    PubMed Central

    Zheng, Yanbin; Devitt, Caitlin; Liu, Jing; Iqbal, Nida; Skapek, Stephen X.

    2013-01-01

    Recent studies show that Arf, a bona fide tumor suppressor, also plays an essential role during mouse eye development. Tgfβ is required for Arf promoter activation in developing mouse eyes, and its capacity to induce Arf depends on Smads 2/3 as well as p38 Mapk. Substantial delay between activation of these pathways and increased Arf transcription imply that changes in the binding of additional transcription factors help orchestrate changes in Arf expression. Focusing on proteins with putative DNA binding elements near the mouse Arf transcription start, we now show that Tgfβ induction of this gene correlated with decreased expression and DNA binding of C/ebpβ to the proximal Arf promoter. Ectopic expression of C/ebpβ in mouse embryo fibroblasts (MEFs) blocked Arf induction by Tgfβ. Although basal levels of Arf mRNA were increased by C/ebpβ loss in MEFs and in the developing eye, Tgfβ was still able to increase Arf, indicating that derepression was not the sole factor. Chromatin immunoprecipitation (ChIP) assay showed increased Sp1 binding to the Arf promotor at 24 and 48 hours after Tgfβ treatment, at which time points Arf expression was significantly induced by Tgfβ. Chemical inhibition of Sp1 and its knockdown by RNA interference blocked Arf induction by Tgfβ in MEFs. In summary, our results indicate that C/ebpβ and Sp1 are negative and positive Arf regulators that are influenced by Tgfβ. PMID:23940569

  8. Immersion echelle spectrograph

    DOEpatents

    Stevens, Charles G.; Thomas, Norman L.

    2000-01-01

    A small spectrograph containing no moving components and capable of providing high resolution spectra of the mid-infrared region from 2 microns to 4 microns in wavelength. The resolving power of the spectrograph exceeds 20,000 throughout this region and at an optical throughput of about 10.sup.-5 cm.sup.2 sr. The spectrograph incorporates a silicon immersion echelle grating operating in high spectral order combined with a first order transmission grating in a cross-dispersing configuration to provide a two-dimensional (2-D) spectral format that is focused onto a two-dimensional infrared detector array. The spectrometer incorporates a common collimating and condensing lens assembly in a near aberration-free axially symmetric design. The spectrometer has wide use potential in addition to general research, such as monitoring atmospheric constituents for air quality, climate change, global warming, as well as monitoring exhaust fumes for smog sources or exhaust plumes for evidence of illicit drug manufacture.

  9. Broadcasting presence: immersive television

    NASA Astrophysics Data System (ADS)

    Harrison, David; Lodge, Nicholas

    2000-06-01

    Being present at a live event is undeniably the most exciting way to experience any entertainment. This is true whether we are talking about a musical concert, a theatrical performance, a cricket match, or even a firework display. The ability to direct your gaze where you wish, to hear sounds from all around you, to experience the immediacy and expectation of an unscripted happening, to feel the buzz of the crowd and to smell the grass or smoke, are all sensory cues which contribute to the powerful experience of being there. This paper examines the ways in which entertainment media have attempted to recreate experiences which encourage the viewer to suspend disbelief and become part of a remote or recorded event. We introduce the concept of immersive television and look at some of the research, spanning many disciplines of science and art, which the ITC is conducting to explore the potential of this new medium.

  10. Immersion in China: lessons learned.

    PubMed

    Wiegerink-Roe, Elizabeth; Rucker-Shannon, Marcia

    2008-01-01

    Students can learn a great deal from international experiences. Although one can learn about another culture from books and discussions, immersing oneself in a culture tends to have a greater impact on both intended and incidental learning. The authors describe the lessons learned and student outcomes during a faculty-led 5-week immersion trip to China. PMID:18317318

  11. Nanometer x-ray lithography

    NASA Astrophysics Data System (ADS)

    Hartley, Frank T.; Khan Malek, Chantal G.

    1999-10-01

    New developments for x-ray nanomachining include pattern transfer onto non-planar surfaces coated with electrodeposited resists using synchrotron radiation x-rays through extremely high-resolution mask made by chemically assisted focused ion beam lithography. Standard UV photolithographic processes cannot maintain sub-micron definitions over large variation in feature topography. The ability of x-ray printing to pattern thin or thick layers of photoresist with high resolution on non-planar surfaces of large and complex topographies with limited diffraction and scattering effects and no substrate reflection is known and can be exploited for patterning microsystems with non-planar 3D geometries as well as multisided and multilayered substrates. Thin conformal coatings of electro-deposited positive and negative tone photoresist have been shown to be x-ray sensitive and accommodate sub-micro pattern transfer over surface of extreme topographical variations. Chemically assisted focused ion beam selective anisotropic erosion was used to fabricate x-ray masks directly. Masks with feature sizes less than 20 nm through 7 microns of gold were made on bulk silicon substrates and x-ray mask membranes. The technique is also applicable to other high density materials. Such masks enable the primary and secondary patterning and/or 3D machining of Nano-Electro-Mechanical Systems over large depths or complex relief and the patterning of large surface areas with sub-optically dimensioned features.

  12. Extreme-UV lithography condenser

    DOEpatents

    Sweatt, William C.; Sweeney, Donald W.; Shafer, David; McGuire, James

    2001-01-01

    Condenser system for use with a ringfield camera in projection lithography where the condenser includes a series of segments of a parent aspheric mirror having one foci at a quasi-point source of radiation and the other foci at the radius of a ringfield have all but one or all of their beams translated and rotated by sets of mirrors such that all of the beams pass through the real entrance pupil of a ringfield camera about one of the beams and fall onto the ringfield radius as a coincident image as an arc of the ringfield. The condenser has a set of correcting mirrors with one of the correcting mirrors of each set, or a mirror that is common to said sets of mirrors, from which the radiation emanates, is a concave mirror that is positioned to shape a beam segment having a chord angle of about 25 to 85 degrees into a second beam segment having a chord angle of about 0 to 60 degrees.

  13. Masks for extreme ultraviolet lithography

    SciTech Connect

    Cardinale, G; Goldsmith, J; Kearney, P A; Larson, C; Moore, C E; Prisbrey, S; Tong, W; Vernon, S P; Weber, F; Yan, P-Y

    1998-09-01

    In extreme ultraviolet lithography (EUVL), the technology specific requirements on the mask are a direct consequence of the utilization of radiation in the spectral region between 10 and 15 nm. At these wavelengths, all condensed materials are highly absorbing and efficient radiation transport mandates the use of all-reflective optical systems. Reflectivity is achieved with resonant, wavelength-matched multilayer (ML) coatings on all of the optical surfaces - including the mask. The EUV mask has a unique architecture - it consists of a substrate with a highly reflective ML coating (the mask blank) that is subsequently over-coated with a patterned absorber layer (the mask). Particulate contamination on the EUVL mask surface, errors in absorber definition and defects in the ML coating all have the potential to print in the lithographic process. While highly developed technologies exist for repair of the absorber layer, no viable strategy for the repair of ML coating defects has been identified. In this paper the state-of-the-art in ML deposition technology, optical inspection of EUVL mask blank defects and candidate absorber patterning approaches are reviewed.

  14. Semiconductor foundry, lithography, and partners

    NASA Astrophysics Data System (ADS)

    Lin, Burn J.

    2002-07-01

    The semiconductor foundry took off in 1990 with an annual capacity of less than 0.1M 8-inch-equivalent wafers at the 2-mm node. In 2000, the annual capacity rose to more than 10M. Initially, the technology practiced at foundries was 1 to 2 generations behind that at integrated device manufacturers (IDMs). Presently, the progress in 0.13-mm manufacturing goes hand-in-hand with any of the IDMs. There is a two-order of magnitude rise in output and the progress of technology development outpaces IDMs. What are the reasons of the success? Is it possible to sustain the pace? This paper shows the quick rise of foundries in capacity, sales, and market share. It discusses the their uniqueness which gives rise to advantages in conjunction with challenges. It also shows the role foundries take with their customer partners and supplier partners, their mutual dependencies, as well as expectations. What role then does lithography play in the foundries? What are the lithographic challenges to sustain the pace of technology? The experience of technology development and transfer, at one of the major foundries, is used to illustrate the difficulties and progresses made. Looking into the future, as semiconductor manufacturing will become even more expensive and capital investment more prohibitive, we will make an attempt to suggest possible solutions.

  15. Multi-focal multiphoton lithography.

    PubMed

    Ritschdorff, Eric T; Nielson, Rex; Shear, Jason B

    2012-03-01

    Multiphoton lithography (MPL) provides unparalleled capabilities for creating high-resolution, three-dimensional (3D) materials from a broad spectrum of building blocks and with few limitations on geometry, qualities that have been key to the design of chemically, mechanically, and biologically functional microforms. Unfortunately, the reliance of MPL on laser scanning limits the speed at which fabrication can be performed, making it impractical in many instances to produce large-scale, high-resolution objects such as complex micromachines, 3D microfluidics, etc. Previously, others have demonstrated the possibility of using multiple laser foci to simultaneously perform MPL at numerous sites in parallel, but use of a stage-scanning system to specify fabrication coordinates resulted in the production of identical features at each focal position. As a more general solution to the bottleneck problem, we demonstrate here the feasibility for performing multi-focal MPL using a dynamic mask to differentially modulate foci, an approach that enables each fabrication site to create independent (uncorrelated) features within a larger, integrated microform. In this proof-of-concept study, two simultaneously scanned foci produced the expected two-fold decrease in fabrication time, and this approach could be readily extended to many scanning foci by using a more powerful laser. Finally, we show that use of multiple foci in MPL can be exploited to assign heterogeneous properties (such as differential swelling) to micromaterials at distinct positions within a fabrication zone.

  16. Multi-focal multiphoton lithography.

    PubMed

    Ritschdorff, Eric T; Nielson, Rex; Shear, Jason B

    2012-03-01

    Multiphoton lithography (MPL) provides unparalleled capabilities for creating high-resolution, three-dimensional (3D) materials from a broad spectrum of building blocks and with few limitations on geometry, qualities that have been key to the design of chemically, mechanically, and biologically functional microforms. Unfortunately, the reliance of MPL on laser scanning limits the speed at which fabrication can be performed, making it impractical in many instances to produce large-scale, high-resolution objects such as complex micromachines, 3D microfluidics, etc. Previously, others have demonstrated the possibility of using multiple laser foci to simultaneously perform MPL at numerous sites in parallel, but use of a stage-scanning system to specify fabrication coordinates resulted in the production of identical features at each focal position. As a more general solution to the bottleneck problem, we demonstrate here the feasibility for performing multi-focal MPL using a dynamic mask to differentially modulate foci, an approach that enables each fabrication site to create independent (uncorrelated) features within a larger, integrated microform. In this proof-of-concept study, two simultaneously scanned foci produced the expected two-fold decrease in fabrication time, and this approach could be readily extended to many scanning foci by using a more powerful laser. Finally, we show that use of multiple foci in MPL can be exploited to assign heterogeneous properties (such as differential swelling) to micromaterials at distinct positions within a fabrication zone. PMID:22282105

  17. Secondary Electrons in EUV Lithography

    SciTech Connect

    Torok, Justin; Re, Ryan Del; Herbol, Henry; Das, Sanjana; Bocharova, Irina; Paolucci, Angela; Ocola, Leonidas E.; Ventrice Jr., Carl; Lifshin, Eric; Denbeaux, Greg; Brainard, Robert L.

    2013-01-01

    Secondary electrons play critical roles in several imaging technologies, including extreme ultraviolet (EUV) lithography. At longer wavelengths of light (e.g. 193 and 248 nm), the photons are directly involved in the photochemistry occurring during photolysis. EUV light (13.5 nm, 92 eV), however, first creates a photoelectron, and this electron, or its subsequent daughter electrons create most of the chemical changes that occur during exposure. Despite the importance of these electrons, the details surrounding the chemical events leading to acid production remain poorly understood. Previously reported experimental results using high PAG-loaded resists have demonstrated that up to five or six photoacids can be generated per incident photon. Until recently, only electron recombination events were thought to play a role in acid generation, requiring that at least as many secondary electrons are produced to yield a given number of acid molecules. However, the initial results we have obtained using a Monte Carlo-based modeling program, LESiS, demonstrate that only two to three secondary electrons are made per absorbed EUV photon. A more comprehensive understanding of EUV-induced acid generation is therefore needed for the development of higher performance resists

  18. Data supporting Arf6 regulation of Schwann cell differentiation and myelination.

    PubMed

    Torii, Tomohiro; Miyamoto, Yuki; Yamamoto, Masahiro; Ohbuchi, Katsuya; Tsumura, Hideki; Kawahara, Kazuko; Tanoue, Akito; Sakagami, Hiroyuki; Yamauchi, Junji

    2015-12-01

    The data is related to the research article entitled "Arf6 mediates Schwann cell differentiation and myelination" [1]. To further investigate the role of Arf6 in promoting myelination by Schwann cells in vivo, we have characterized an another line (#2) of small-hairpin (sh)RNA transgenic mice targeting Arf6. The number of transgenes per one allele in this line was very low (2 transgenes), comparing with high copies in the previous line (#1, 20 transgenes) [1]. In 4 days of neonatal age, transgenic mice exhibited decreased myelin thickness; however, decreased levels were not as much as those in the line #1, likely depending on transgene copy number. In 60-day-old mice, the difference became smaller. On the other hand, transgene׳s effect was not related to cell proliferation and apoptosis. These data support the key role of Arf6 in Schwann cell myelination, especially in the initiation.

  19. ARF6, PI3-kinase and host cell actin cytoskeleton in Toxoplasma gondii cell invasion

    SciTech Connect

    Vieira da Silva, Claudio; Alves da Silva, Erika; Costa Cruz, Mario; Chavrier, Philippe; Arruda Mortara, Renato

    2009-01-16

    Toxoplasma gondii infects a variety of different cell types in a range of different hosts. Host cell invasion by T. gondii occurs by active penetration of the host cell, a process previously described as independent of host actin polymerization. Also, the parasitophorous vacuole has been shown to resist fusion with endocytic and exocytic pathways of the host cell. ADP-ribosylation factor-6 (ARF6) belongs to the ARF family of small GTP-binding proteins. ARF6 regulates membrane trafficking and actin cytoskeleton rearrangements at the plasma membrane. Here, we have observed that ARF6 is recruited to the parasitophorous vacuole of tachyzoites of T. gondii RH strain and it also plays an important role in the parasite cell invasion with activation of PI3-kinase and recruitment of PIP{sub 2} and PIP{sub 3} to the parasitophorous vacuole of invading parasites. Moreover, it was verified that maintenance of host cell actin cytoskeleton integrity is important to parasite invasion.

  20. In die mask overlay control for 14nm double-patterning lithography

    NASA Astrophysics Data System (ADS)

    Chou, William; Cheng, James; Tseng, Alex C. P.; Wu, J. K.; Chang, Chin Kuei; Cheng, Jeffrey; Lee, Adder; Huang, Chain Ting; Peng, N. T.; Hsu, Simon C. C.; Yu, Chun Chi; Lu, Colbert; Yu, Julia; Craig, Peter; Pollock, Chuck; Ham, Young; McMurran, Jeff

    2015-10-01

    According to the ITRS roadmap, semiconductor industry drives the 193nm lithography to its limits, using techniques like Double Pattern Technology (DPT), Source Mask Optimization (SMO) and Inverse Lithography Technology (ILT). In terms of considering the photomask metrology, full in-die measurement capability is required for registration and overlay control with challenging specifications for repeatability and accuracy. Double patterning using 193nm immersion lithography has been adapted as the solution to enable 14nm technology nodes. The overlay control is one of the key figures for the successful realization of this technology. In addition to the various error contributions from the wafer scanner, the reticles play an important role in terms of considering lithographic process contributed errors. Accurate pattern placement of the features on reticles with a registration error below 4nm is mandatory to keep overall photomask contributions to overlay of sub 20nm logic within the allowed error budget. In this paper, we show in-die registration errors using 14nm DPT product masks, by measuring in-die overlay patterns comparing with regular registration patterns. The mask measurements are used to obtain an accurate model to predict mask contribution on wafer overlay of double patterning technology.

  1. Auxin Response Factor SlARF2 Is an Essential Component of the Regulatory Mechanism Controlling Fruit Ripening in Tomato.

    PubMed

    Hao, Yanwei; Hu, Guojian; Breitel, Dario; Liu, Mingchun; Mila, Isabelle; Frasse, Pierre; Fu, Yongyao; Aharoni, Asaph; Bouzayen, Mondher; Zouine, Mohamed

    2015-12-01

    Ethylene is the main regulator of climacteric fruit ripening, by contrast the putative role of other phytohormones in this process remains poorly understood. The present study brings auxin signaling components into the mechanism regulating tomato fruit ripening through the functional characterization of Auxin Response Factor2 (SlARF2) which encodes a downstream component of auxin signaling. Two paralogs, SlARF2A and SlARF2B, are found in the tomato genome, both displaying a marked ripening-associated expression but distinct responsiveness to ethylene and auxin. Down-regulation of either SlARF2A or SlARF2B resulted in ripening defects while simultaneous silencing of both genes led to severe ripening inhibition suggesting a functional redundancy among the two ARFs. Tomato fruits under-expressing SlARF2 produced less climacteric ethylene and exhibited a dramatic down-regulation of the key ripening regulators RIN, CNR, NOR and TAGL1. Ethylene treatment failed to reverse the non-ripening phenotype and the expression of ethylene signaling and biosynthesis genes was strongly altered in SlARF2 down-regulated fruits. Although both SlARF proteins are transcriptional repressors the data indicate they work as positive regulators of tomato fruit ripening. Altogether, the study defines SlARF2 as a new component of the regulatory network controlling the ripening process in tomato. PMID:26716451

  2. Auxin Response Factor SlARF2 Is an Essential Component of the Regulatory Mechanism Controlling Fruit Ripening in Tomato

    PubMed Central

    Hao, Yanwei; Hu, Guojian; Breitel, Dario; Liu, Mingchun; Mila, Isabelle; Frasse, Pierre; Fu, Yongyao; Aharoni, Asaph; Bouzayen, Mondher; Zouine, Mohamed

    2015-01-01

    Ethylene is the main regulator of climacteric fruit ripening, by contrast the putative role of other phytohormones in this process remains poorly understood. The present study brings auxin signaling components into the mechanism regulating tomato fruit ripening through the functional characterization of Auxin Response Factor2 (SlARF2) which encodes a downstream component of auxin signaling. Two paralogs, SlARF2A and SlARF2B, are found in the tomato genome, both displaying a marked ripening-associated expression but distinct responsiveness to ethylene and auxin. Down-regulation of either SlARF2A or SlARF2B resulted in ripening defects while simultaneous silencing of both genes led to severe ripening inhibition suggesting a functional redundancy among the two ARFs. Tomato fruits under-expressing SlARF2 produced less climacteric ethylene and exhibited a dramatic down-regulation of the key ripening regulators RIN, CNR, NOR and TAGL1. Ethylene treatment failed to reverse the non-ripening phenotype and the expression of ethylene signaling and biosynthesis genes was strongly altered in SlARF2 down-regulated fruits. Although both SlARF proteins are transcriptional repressors the data indicate they work as positive regulators of tomato fruit ripening. Altogether, the study defines SlARF2 as a new component of the regulatory network controlling the ripening process in tomato. PMID:26716451

  3. Auxin Response Factor SlARF2 Is an Essential Component of the Regulatory Mechanism Controlling Fruit Ripening in Tomato.

    PubMed

    Hao, Yanwei; Hu, Guojian; Breitel, Dario; Liu, Mingchun; Mila, Isabelle; Frasse, Pierre; Fu, Yongyao; Aharoni, Asaph; Bouzayen, Mondher; Zouine, Mohamed

    2015-12-01

    Ethylene is the main regulator of climacteric fruit ripening, by contrast the putative role of other phytohormones in this process remains poorly understood. The present study brings auxin signaling components into the mechanism regulating tomato fruit ripening through the functional characterization of Auxin Response Factor2 (SlARF2) which encodes a downstream component of auxin signaling. Two paralogs, SlARF2A and SlARF2B, are found in the tomato genome, both displaying a marked ripening-associated expression but distinct responsiveness to ethylene and auxin. Down-regulation of either SlARF2A or SlARF2B resulted in ripening defects while simultaneous silencing of both genes led to severe ripening inhibition suggesting a functional redundancy among the two ARFs. Tomato fruits under-expressing SlARF2 produced less climacteric ethylene and exhibited a dramatic down-regulation of the key ripening regulators RIN, CNR, NOR and TAGL1. Ethylene treatment failed to reverse the non-ripening phenotype and the expression of ethylene signaling and biosynthesis genes was strongly altered in SlARF2 down-regulated fruits. Although both SlARF proteins are transcriptional repressors the data indicate they work as positive regulators of tomato fruit ripening. Altogether, the study defines SlARF2 as a new component of the regulatory network controlling the ripening process in tomato.

  4. HIV-1 requires Arf6-mediated membrane dynamics to efficiently enter and infect T lymphocytes

    PubMed Central

    García-Expósito, Laura; Barroso-González, Jonathan; Puigdomènech, Isabel; Machado, José-David; Blanco, Julià; Valenzuela-Fernández, Agustín

    2011-01-01

    As the initial barrier to viral entry, the plasma membrane along with the membrane trafficking machinery and cytoskeleton are of fundamental importance in the viral cycle. However, little is known about the contribution of plasma membrane dynamics during early human immunodeficiency virus type 1 (HIV-1) infection. Considering that ADP ribosylation factor 6 (Arf6) regulates cellular invasion via several microorganisms by coordinating membrane trafficking, our aim was to study the function of Arf6-mediated membrane dynamics on HIV-1 entry and infection of T lymphocytes. We observed that an alteration of the Arf6–guanosine 5′-diphosphate/guanosine 5′-triphosphate (GTP/GDP) cycle, by GDP-bound or GTP-bound inactive mutants or by specific Arf6 silencing, inhibited HIV-1 envelope–induced membrane fusion, entry, and infection of T lymphocytes and permissive cells, regardless of viral tropism. Furthermore, cell-to-cell HIV-1 transmission of primary human CD4+ T lymphocytes was inhibited by Arf6 knockdown. Total internal reflection fluorescence microscopy showed that Arf6 mutants provoked the accumulation of phosphatidylinositol-(4,5)-biphosphate–associated structures on the plasma membrane of permissive cells, without affecting CD4-viral attachment but impeding CD4-dependent HIV-1 entry. Arf6 silencing or its mutants did not affect fusion, entry, and infection of vesicular stomatitis virus G–pseudotyped viruses or ligand-induced CXCR4 or CCR5 endocytosis, both clathrin-dependent processes. Therefore we propose that efficient early HIV-1 infection of CD4+ T lymphocytes requires Arf6-coordinated plasma membrane dynamics that promote viral fusion and entry. PMID:21346189

  5. Arf6 controls platelet spreading and clot retraction via integrin αIIbβ3 trafficking

    PubMed Central

    Huang, Yunjie; Joshi, Smita; Xiang, Binggang; Kanaho, Yasunori; Li, Zhenyu; Bouchard, Beth A.; Moncman, Carole L.

    2016-01-01

    Platelet and megakaryocyte endocytosis is important for loading certain granule cargo (ie, fibrinogen [Fg] and vascular endothelial growth factor); however, the mechanisms of platelet endocytosis and its functional acute effects are understudied. Adenosine 5'-diphosphate–ribosylation factor 6 (Arf6) is a small guanosine triphosphate–binding protein that regulates endocytic trafficking, especially of integrins. To study platelet endocytosis, we generated platelet-specific Arf6 knockout (KO) mice. Arf6 KO platelets had less associated Fg suggesting that Arf6 affects αIIbβ3-mediated Fg uptake and/or storage. Other cargo was unaffected. To measure Fg uptake, mice were injected with biotinylated- or fluorescein isothiocyanate (FITC)–labeled Fg. Platelets from the injected Arf6 KO mice showed lower accumulation of tagged Fg, suggesting an uptake defect. Ex vivo, Arf6 KO platelets were also defective in FITC-Fg uptake and storage. Immunofluorescence analysis showed initial trafficking of FITC-Fg to a Rab4-positive compartment followed by colocalization with Rab11-positive structures, suggesting that platelets contain and use both early and recycling endosomes. Resting and activated αIIbβ3 levels, as measured by flow cytometry, were unchanged; yet, Arf6 KO platelets exhibited enhanced spreading on Fg and faster clot retraction. This was not the result of alterations in αIIbβ3 signaling, because myosin light-chain phosphorylation and Rac1/RhoA activation were unaffected. Consistent with the enhanced clot retraction and spreading, Arf6 KO mice showed no deficits in tail bleeding or FeCl3-induced carotid injury assays. Our studies present the first mouse model for defining the functions of platelet endocytosis and suggest that altered integrin trafficking may affect the efficacy of platelet function. PMID:26738539

  6. Cost-effective x-ray lithography

    NASA Astrophysics Data System (ADS)

    Roltsch, Tom J.

    1991-08-01

    The push towards faster, denser VLSI device structures and eventually to ULSI devices means ever-decreasing design rules for IC manufacturers. In order to define patterns on silicon and gallium arsenide substrates with feature sizes of 0.25 microns, lithography, metallization, and electronic materials processing techniques will be pushed beyond current limitations. Of these technologies, lithography in the sub-0.5 micron region appears to be the main obstacle yet to be overcome. As deep-UV optical systems become more expensive and the useful field sized decrease in the attempt to achieve finer resolutions, the question of whether to switch to an alternate lithographic method becomes imminent. X-ray lithography is the leading candidate. In this paper, the question of whether x-ray lithography is economically superior to optical lithography and the cost-effectiveness of x-ray lithography are addressed. Also, the question of how x-ray lithography can be performed in a production environment is considered. First shown is that more elaborate optical systems are simply not going to match x-ray proximity system in terms of resolution because of the need to use exotic lens materials or complicated and ever finer reflection systems, none of which can correct for diffraction effects, yet must be corrected for every other aberration. The economic superiority of a synchrotron-based x- ray lithography beamline is demonstrated in a production facility using a processing-cost model based on Shinji Okazaki's cost-per-bit model. Considered, as well, is the strong possibility that exists for the use of an optically based production line which would use an anode or plasma x-ray stepper to define only the smallest geometries, such as the gate level on a DRAM chip. It is shown that it is unlikely, even pushing the limits of materials and optics, that deep-UV systems will be able to define patterns below 0.35 microns in a production environment. X-ray lithography systems could define 0

  7. Constitutive auxin response in Physcomitrella reveals complex interactions between Aux/IAA and ARF proteins.

    PubMed

    Lavy, Meirav; Prigge, Michael J; Tao, Sibo; Shain, Stephanie; Kuo, April; Kirchsteiger, Kerstin; Estelle, Mark

    2016-01-01

    The coordinated action of the auxin-sensitive Aux/IAA transcriptional repressors and ARF transcription factors produces complex gene-regulatory networks in plants. Despite their importance, our knowledge of these two protein families is largely based on analysis of stabilized forms of the Aux/IAAs, and studies of a subgroup of ARFs that function as transcriptional activators. To understand how auxin regulates gene expression we generated a Physcomitrella patens line that completely lacks Aux/IAAs. Loss of the repressors causes massive changes in transcription with misregulation of over a third of the annotated genes. Further, we find that the aux/iaa mutant is blind to auxin indicating that auxin regulation of transcription occurs exclusively through Aux/IAA function. We used the aux/iaa mutant as a simplified platform for studies of ARF function and demonstrate that repressing ARFs regulate auxin-induced genes and fine-tune their expression. Further the repressing ARFs coordinate gene induction jointly with activating ARFs and the Aux/IAAs. PMID:27247276

  8. P53- and mevalonate pathway–driven malignancies require Arf6 for metastasis and drug resistance

    PubMed Central

    Hashimoto, Ari; Oikawa, Tsukasa; Hashimoto, Shigeru; Sugino, Hirokazu; Yoshikawa, Ayumu; Otsuka, Yutaro; Handa, Haruka; Onodera, Yasuhito; Nam, Jin-Min; Oneyama, Chitose; Okada, Masato; Fukuda, Mitsunori

    2016-01-01

    Drug resistance, metastasis, and a mesenchymal transcriptional program are central features of aggressive breast tumors. The GTPase Arf6, often overexpressed in tumors, is critical to promote epithelial–mesenchymal transition and invasiveness. The metabolic mevalonate pathway (MVP) is associated with tumor invasiveness and known to prenylate proteins, but which prenylated proteins are critical for MVP-driven cancers is unknown. We show here that MVP requires the Arf6-dependent mesenchymal program. The MVP enzyme geranylgeranyl transferase II (GGT-II) and its substrate Rab11b are critical for Arf6 trafficking to the plasma membrane, where it is activated by receptor tyrosine kinases. Consistently, mutant p53, which is known to support tumorigenesis via MVP, promotes Arf6 activation via GGT-II and Rab11b. Inhibition of MVP and GGT-II blocked invasion and metastasis and reduced cancer cell resistance against chemotherapy agents, but only in cells overexpressing Arf6 and components of the mesenchymal program. Overexpression of Arf6 and mesenchymal proteins as well as enhanced MVP activity correlated with poor patient survival. These results provide insights into the molecular basis of MVP-driven malignancy. PMID:27044891

  9. Golgi enlargement in Arf-depleted yeast cells is due to altered dynamics of cisternal maturation

    PubMed Central

    Bhave, Madhura; Papanikou, Effrosyni; Iyer, Prasanna; Pandya, Koushal; Jain, Bhawik Kumar; Ganguly, Abira; Sharma, Chandrakala; Pawar, Ketakee; Austin, Jotham; Day, Kasey J.; Rossanese, Olivia W.; Glick, Benjamin S.; Bhattacharyya, Dibyendu

    2014-01-01

    ABSTRACT Regulation of the size and abundance of membrane compartments is a fundamental cellular activity. In Saccharomyces cerevisiae, disruption of the ADP-ribosylation factor 1 (ARF1) gene yields larger and fewer Golgi cisternae by partially depleting the Arf GTPase. We observed a similar phenotype with a thermosensitive mutation in Nmt1, which myristoylates and activates Arf. Therefore, partial depletion of Arf is a convenient tool for dissecting mechanisms that regulate Golgi structure. We found that in arf1Δ cells, late Golgi structure is particularly abnormal, with the number of late Golgi cisternae being severely reduced. This effect can be explained by selective changes in cisternal maturation kinetics. The arf1Δ mutation causes early Golgi cisternae to mature more slowly and less frequently, but does not alter the maturation of late Golgi cisternae. These changes quantitatively explain why late Golgi cisternae are fewer in number and correspondingly larger. With a stacked Golgi, similar changes in maturation kinetics could be used by the cell to modulate the number of cisternae per stack. Thus, the rates of processes that transform a maturing compartment can determine compartmental size and copy number. PMID:24190882

  10. Expression of p14ARF, MDM2, and MDM4 in human retinoblastoma.

    PubMed

    Guo, Ying; Pajovic, Sanja; Gallie, Brenda L

    2008-10-10

    It is still not clear whether the p53 pathway is altered in retinoblastoma development. We assessed the expression of the p53 pathway genes p14(ARF), mouse double minute 2 (MDM2), and mouse double minute 4 (MDM4) in human retinoblastoma compared to normal retina. Primary human retinoblastomas, retinoblastoma cell lines and normal retinas were assessed for p14(ARF) and MDM4 mRNA by quantitative RT-PCR. p14(ARF), MDM2, and MDM4 protein were measured by immunoblot and immunohistochemistry. Compared to retina, p14(ARF) mRNA expression was notably increased in retinoblastoma but p14(ARF) protein was undetectable. MDM2 and MDM4 proteins were expressed in 22/22 retinoblastomas. MDM2 was expressed in 3/10 retinas tested, and MDM4 in 10/10 retinas. The expression level of MDM2 protein in retinoblastomas and retina was comparable, while MDM4 protein was overexpressed in one retinoblastoma cell line Y79 and two primary retinoblastomas. We observe that overexpression of MDM2 and MDM4 is not a necessary step in retinoblastoma development. However, loss of detectable p14(ARF) protein and resultant lack of functional inactivation of these p53 inhibitors may contribute to retinoblastoma development by constitutive inhibition of p53. PMID:18644346

  11. Liver Sinusoidal Endothelial Cells Escape Senescence by Loss of p19ARF

    PubMed Central

    Koudelkova, Petra; Weber, Gerhard; Mikulits, Wolfgang

    2015-01-01

    Liver sinusoidal endothelial cells (LSECs) represent a highly differentiated cell type that lines hepatic sinusoids. LSECs form a discontinuous endothelium due to fenestrations under physiological conditions, which are reduced upon chronic liver injury. Cultivation of rodent LSECs associates with a rapid onset of stress-induced senescence a few days post isolation, which limits genetic and biochemical studies ex vivo. Here we show the establishment of LSECs isolated from p19ARF-/- mice which undergo more than 50 cell doublings in the absence of senescence. Isolated p19ARF-/- LSECs display a cobblestone-like morphology and show the ability of tube formation. Analysis of DNA content revealed a stable diploid phenotype after long-term passaging without a gain of aneuploidy. Notably, p19ARF-/- LSECs express the endothelial markers CD31, vascular endothelial growth factor receptor (VEGFR)-2, VE-cadherin, von Willebrand factor, stabilin-2 and CD146 suggesting that these cells harbor and maintain an endothelial phenotype. In line, treatment with small molecule inhibitors against VEGFR-2 caused cell death, demonstrating the sustained ability of p19ARF-/- LSECs to respond to anti-angiogenic therapeutics. From these data we conclude that loss of p19ARF overcomes senescence of LSECs, allowing immortalization of cells without losing endothelial characteristics. Thus, p19ARF-/- LSECs provide a novel cellular model to study endothelial cell biology. PMID:26528722

  12. Constitutive auxin response in Physcomitrella reveals complex interactions between Aux/IAA and ARF proteins

    PubMed Central

    Lavy, Meirav; Prigge, Michael J; Tao, Sibo; Shain, Stephanie; Kuo, April; Kirchsteiger, Kerstin; Estelle, Mark

    2016-01-01

    The coordinated action of the auxin-sensitive Aux/IAA transcriptional repressors and ARF transcription factors produces complex gene-regulatory networks in plants. Despite their importance, our knowledge of these two protein families is largely based on analysis of stabilized forms of the Aux/IAAs, and studies of a subgroup of ARFs that function as transcriptional activators. To understand how auxin regulates gene expression we generated a Physcomitrella patens line that completely lacks Aux/IAAs. Loss of the repressors causes massive changes in transcription with misregulation of over a third of the annotated genes. Further, we find that the aux/iaa mutant is blind to auxin indicating that auxin regulation of transcription occurs exclusively through Aux/IAA function. We used the aux/iaa mutant as a simplified platform for studies of ARF function and demonstrate that repressing ARFs regulate auxin-induced genes and fine-tune their expression. Further the repressing ARFs coordinate gene induction jointly with activating ARFs and the Aux/IAAs. DOI: http://dx.doi.org/10.7554/eLife.13325.001 PMID:27247276

  13. Soft Lithography Using Nectar Droplets.

    PubMed

    Biswas, Saheli; Chakrabarti, Aditi; Chateauminois, Antoine; Wandersman, Elie; Prevost, Alexis M; Chaudhury, Manoj K

    2015-12-01

    In spite of significant advances in replication technologies, methods to produce well-defined three-dimensional structures are still at its infancy. Such a limitation would be evident if we were to produce a large array of simple and, especially, compound convex lenses, also guaranteeing that their surfaces would be molecularly smooth. Here, we report a novel method to produce such structures by cloning the 3D shape of nectar drops, found widely in nature, using conventional soft lithography.The elementary process involves transfer of a thin patch of the sugar solution coated on a glass slide onto a hydrophobic substrate on which this patch evolves into a microdroplet. Upon the absorption of water vapor, such a microdroplet grows linearly with time, and its final size can be controlled by varying its exposure time to water vapor. At any stage of the evolution of the size of the drop, its shape can be cloned onto a soft elastomer by following the well-known methods of molding and cross-linking the same. A unique new science that emerges in our attempt to understand the transfer of the sugar patch and its evolution to a spherical drop is the elucidation of the mechanics underlying the contact of a deformable sphere against a solid support intervening a thin liquid film. A unique aspect of this work is to demonstrate that higher level structures can also be generated by transferring even smaller nucleation sites on the surface of the primary lenses and then allowing them to grow by absorption of water vapor. What results at the end is either a well-controlled distribution of smooth hemispherical lenses or compound structures that could have potential applications in the fundamental studies of contact mechanics, wettability, and even in optics. PMID:26563988

  14. Thermal comfort following immersion.

    PubMed

    Guéritée, Julien; Redortier, Bernard; House, James R; Tipton, Michael J

    2015-02-01

    Unlike thermal comfort in air, little research has been undertaken exploring thermal comfort around water sports. We investigated the impact of swimming and cooling in air after swimming on thermal comfort. After 10 min of swimming-and-resting cycles in 28°C water, volunteers wearing two types of garments or in swim briefs, faced winds in 24°C air, at rest or when stepping. Thermal comfort was significantly higher during swimming than resting. Post-immersion, following maximum discomfort, in 45 of 65 tests thermal comfort improved although mean skin temperature was still cooling (0.26 [SD 0.19] °C·min(-1) - max was 0.89°C·min(-1)). When thermal comfort was re-established mean skin temperature was lower than at maximal discomfort in 39 of 54 tests (0.81 [SD 0.58] °C - max difference was 2.68°C). The reduction in thermal discomfort in this scenario could be due to the adaptation of thermoreceptors, or to reductions in cooling rates to levels where discomfort was less stimulated. The relief from the recent discomfort may explain why, later, thermal comfort returned to initial levels in spite of poorer thermal profiles.

  15. Immersion echelle spectrograph

    SciTech Connect

    Stevens, C.G.; Thomas, N.L.

    2000-06-20

    A small spectrograph is disclosed containing no moving components and capable of providing high resolution spectra of the mid-infrared region from 2 microns to 4 microns in wavelength. The resolving power of the spectrograph exceeds 20,000 throughout this region and at an optical throughput of about 10{sup {minus}5}cm{sup 2}sr. The spectrograph incorporates a silicon immersion echelle grating operating in high spectral order combined with a first order transmission grating in a cross-dispersing configuration to provide a two-dimensional (2-D) spectral format that is focused onto a two-dimensional infrared detector array. The spectrometer incorporates a common collimating and condensing lens assembly in a near aberration-free axially symmetric design. The spectrometer has wide use potential in addition to general research, such as monitoring atmospheric constituents for air quality, climate change, global warming, as well as monitoring exhaust fumes for smog sources or exhaust plumes for evidence of illicit drug manufacture.

  16. Immersed interface methods. Final report

    SciTech Connect

    LeVeque, R.J.; Adams, L.M.; Bube, K.P.

    1996-11-01

    Cartesian grid methods encompass a wide variety of techniques used to solve partial differential equations in more than one space dimension on uniform Cartesian grids even when the underlying geometry is complex and not aligned with the grid. The authors` groups work on Immersed Interface Methods (IIM) was originally motivated by the desire to understand and improve the ``Immersed Boundary Method``, developed by Charles Peskin to solve incompressible Navier-Stokes equations in complicated geometries with moving elastic boundaries. This report briefly discusses the development of the Immersed Interface Methods and gives examples of application of the method in solving several partial differential equations.

  17. Lithography and design in partnership: a new roadmap

    NASA Astrophysics Data System (ADS)

    Kahng, Andrew B.

    2008-10-01

    We discuss the notion of a 'shared technology roadmap' between lithography and design from several perspectives. First, we examine cultural gaps and other intrinsic barriers to a shared roadmap. Second, we discuss how lithography technology can change the design technology roadmap. Third, we discuss how design technology can change the lithography technology roadmap. We conclude with an example of the 'flavor' of technology roadmapping activity that can truly bridge lithography and design.

  18. PREVAIL: IBM's e-beam technology for next generation lithography

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Hans C.

    2000-07-01

    PREVAIL - Projection Reduction Exposure with Variable Axis Immersion Lenses represents the high throughput e-beam projection approach to NGL which IBM is pursuing in cooperation with Nikon Corporation as alliance partner. This paper discusses the challenges and accomplishments of the PREVAIL project. The supreme challenge facing all e-beam lithography approaches has been and still is throughput. Since the throughput of e-beam projection systems is severely limited by the available optical field size, the key to success is the ability to overcome this limitation. The PREVAIL technique overcomes field-limiting off-axis aberrations through the use of variable axis lenses, which electronically shift the optical axis simultaneously with the deflected beam so that the beam effectively remains on axis. The resist images obtained with the Proof-of-Concept (POC) system demonstrate that PREVAIL effectively eliminates off- axis aberrations affecting both resolution and placement accuracy of pixels. As part of the POC system a high emittance gun has been developed to provide uniform illumination of the patterned subfield and to fill the large numerical aperture projection optics designed to significantly reduce beam blur caused by Coulomb interaction.

  19. The Ink4/Arf locus is a barrier for iPS reprogramming

    PubMed Central

    Li, Han; Collado, Manuel; Villasante, Aranzazu; Strati, Katerina; Ortega, Sagrario; Cañamero, Marta; Blasco, Maria A.; Serrano, Manuel

    2013-01-01

    The mechanisms involved in the reprogramming of differentiated cells into induced Pluripotent Stem (iPS) cells by Oct4, Klf4 and Sox2 (3F) remain poorly understood 1. The Ink4/Arf tumour suppressor locus encodes three potent inhibitors of proliferation, namely p16Ink4a, p15Ink4b and Arf, which are basally expressed in differentiated cells and upregulated by aberrant mitogenic signals 2-4. We show here that the locus is completely silenced in iPS cells, as well as in embryonic stem (ES) cells, acquiring the epigenetic marks of a bivalent chromatin domain, and retaining the ability to be reactivated upon differentiation. Cell culture conditions during reprogramming enhance the expression of the Ink4/Arf locus, further highlighting the importance of silencing the locus to allow proliferation and reprogramming. Indeed, the 3F together repress the Ink4/Arf locus soon after their expression and concomitant with the appearance of the first molecular markers of stemness. This downregulation also occurs in cells carrying the oncoprotein large-T, which functionally inactivates the pathways regulated by the Ink4/Arf locus, thus implying that the silencing of the locus is intrinsic to reprogramming and not the result of a selective process. Genetic inhibition of the Ink4/Arf locus has a profound positive impact on the efficiency of iPS generation, increasing both the kinetics of reprogramming and the number of emerging iPS colonies. In murine cells, Arf, rather than Ink4a, is the main barrier to reprogramming through activation of p53 and p21; whereas, in human fibroblasts, INK4a is more important than ARF. Finally, organismal aging upregulates the Ink4/Arf locus 2,5 and, accordingly, reprogramming is less efficient in cells from old organisms, but this defect can be rescued by inhibiting the locus with an shRNA. All together, we conclude that the silencing of Ink4/Arf locus is rate limiting for reprogramming, and its transient inhibition may significantly improve the

  20. Extreme ultraviolet lithography and three dimensional integrated circuit—A review

    NASA Astrophysics Data System (ADS)

    Wu, Banqiu; Kumar, Ajay

    2014-03-01

    Extreme ultraviolet lithography (EUVL) and three dimensional integrated circuit (3D IC) were thoroughly reviewed. Since proposed in 1988, EUVL obtained intensive studies globally and, after 2000, became the most promising next generation lithography method even though challenges were present in almost all aspects of EUVL technology. Commercial step-and-scan tools for preproduction are installed now with full field capability; however, EUV source power at intermediate focus (IF) has not yet met volume manufacturing requirements. Compared with the target of 200 W in-band power at IF, current tools can supply only approximately 40-55 W. EUVL resist has improved significantly in the last few years, with 13 nm line/space half-pitch resolution being produced with approximately 3-4 nm line width roughness (LWR), but LWR needs 2× improvement. Creating a defect-free EUVL mask is currently an obstacle. Actual adoption of EUVL for 22 nm and beyond technology nodes will depend on the extension of current optical lithography (193 nm immersion lithography, combined with multiple patterning techniques), as well as other methods such as 3D IC. Lithography has been the enabler for IC performance improvement by increasing device density, clock rate, and transistor rate. However, after the turn of the century, IC scaling resulted in short-channel effect, which decreases power efficiency dramatically, so clock frequency almost stopped increasing. Although further IC scaling by lithography reduces gate delay, interconnect delay and memory wall are dominant in determining the IC performance. 3D IC technology is a critical technology today because it offers a reasonable route to further improve IC performance. It increases device density, reduces the interconnect delay, and breaks memory wall with the application of 3D stacking using through silicon via. 3D IC also makes one chip package have more functional diversification than those enhanced only by shrinking the size of the features

  1. SYSTEM CONSIDERATIONS FOR MASKLESS LITHOGRAPHY

    SciTech Connect

    Karnowski, Thomas Paul; Joy, David; Allard Jr, Lawrence Frederick; Clonts, Lloyd G

    2004-01-01

    Lithographic processes for printing device structures on integrated circuits (ICs) are the fundamental technology behind Moore's law. Next-generation techniques like maskless lithography or ML2 have the advantage that the long, tedious and expensive process of fabricating a unique mask for the manufactured chip is not necessary. However, there are some rather daunting problems with establishing ML2 as a viable commercial technology. The data rate necessary for ML2 to be competitive in manufacturing is not feasible with technology in the near future. There is also doubt that the competing technologies for the writing mechanisms and corresponding photoresist (or analogous medium) will be able to accurately produce the desired patterns necessary to produce multi-layer semiconductor devices. In this work, we model the maskless printing system from a signal processing point of view, utilizing image processing algorithms and concepts to study the effects of various real-world constraints and their implications for a ML2 system. The ML2 elements are discrete devices, and it is doubtful that their motion can be controlled to the level where a one-for-one element to exposed pixel relationship is allowable. Some level of sub-element resolution can be achieved with gray scale levels, but with the highly integrated manufacturing practices required to achieve massive parallelism, the most effective elements will be simple on-off switches that fire a fixed level of energy at the target medium. Consequently gray-scale level devices are likely not an option. Another problem with highly integrated manufacturing methods is device uniformity. Consequently, we analyze the redundant scanning array concept (RSA) conceived by Berglund et al. which can defeat many of these problems. We determine some basic equations governing its application and we focus on applying the technique to an array of low-energy electron emitters. Using the results of Monte Carlo simulations on electron beam

  2. Challenges for immersion lithography extension based on negative tone imaging (NTI) process

    NASA Astrophysics Data System (ADS)

    Shirakawa, Michihiro; Omatsu, Tadashi; Ou, Keiyu; Yonekuta, Yasunori; Hatakeyama, Naoya; Asakawa, Daisuke; Yakushiji, Takashi; Fujita, Mitsuhiro; Muraki, Nanae

    2016-03-01

    Negative tone imaging (NTI) process is a method for obtaining a negative-tone reversal pattern by developing with an organic solvent. As NTI process can break-through the resolution limit of a conventional positive tone development (PTD) process at specific pattern such as trenches and contact holes, it have been applied for a mass production in 20nm and 14nm nodes devices. In NTI system, because a developer is changed from a hydrophilic aqueous solution to a hydrophobic organic solvent, it is possible to review the common resist stack which is optimized for a PTD process. In this paper, we examined the possibility of a bi-layer process using a Si-containing NTI resist. Etching selectivity between the Si-NTI resist and a SOC improved by raising Si-content of the Si-NTI resist, but resolution deteriorates as a trade-off. By suppressing swelling behavior of the Si-NTI resist with a polymer structure control, we overcame this trade-off. As a result, in sub-90 nm pitch L/S and CH patterns, the resolution of the Si-NTI resist achieved comparable level to a conventional NTI resist. In addition, SOC etching was successfully carried out by using the Si-NTI resist pattern as an etching hard mask.

  3. Azidothymidine and cisplatin increase p14ARF expression in OVCAR-3 ovarian cancer cell line

    SciTech Connect

    Vaskivuo, Liisa; Rysae, Jaana; Koivuperae, Johanna; Myllynen, Paeivi; Vaskivuo, Tommi; Chvalova, Katerina; Serpi, Raisa; Savolainen, Eeva-Riitta; Puistola, Ulla; Vaehaekangas, Kirsi . E-mail: kirsi.vahakangas@uku.fi

    2006-10-01

    p14{sup ARF} tumor suppressor protein regulates p53 by interfering with mdm2-p53 interaction. p14{sup ARF} is activated in response to oncogenic stimuli but little is known of the responses of endogenous p14{sup ARF} to different types of cellular stress or DNA damage. Azidothymidine (AZT) is being tested in several clinical trials as an enhancer of anticancer chemotherapy. However, the knowledge of the relationship between AZT and cellular pathways, e.g. p53 pathway, is very limited. In this study, we show that AZT, cisplatin (CDDP) and docetaxel (DTX) all induce unique molecular responses in OVCAR-3 ovarian carcinoma cells carrying a mutated p53, while in A2780, ovarian carcinoma and MCF-7 breast carcinoma cells with wild type p53, all of these drugs cause similar p53 responses. We found that endogenous p14{sup ARF} protein in OVCAR-3 cells is down-regulated by DTX but induced by AZT and a short CDDP pulse treatment. In HT-29 colon carcinoma cells with a mutated p53, all treatments down-regulated p14{sup ARF} protein. Both CDDP and AZT increased the expression of p14ARF mRNA in OVCAR-3 cells. Differences in cell death induced by these drugs did not explain the differences in protein and mRNA expressions. No increase in the level of either c-Myc or H-ras oncoproteins was seen in OVCAR-3 cells after AZT or CDDP-treatment. These results suggest that p14{sup ARF} can respond to DNA damage without oncogene activation in cell lines without functional p53.

  4. NXT:1980Di immersion scanner for 7nm and 5nm production nodes

    NASA Astrophysics Data System (ADS)

    de Graaf, Roelof; Weichselbaum, Stefan; Droste, Richard; McLaren, Matthew; Koek, Bert; de Boeij, Wim

    2016-03-01

    Immersion scanners remain the critical lithography workhorses in semiconductor device manufacturing. When progressing towards the 7nm device node for logic and D18 device node for DRAM production, pattern-placement and layer-to-layer overlay requirements keep progressively scaling down and consequently require system improvements in immersion scanners. The on-product-overlay requirements are approaching levels of only a few nanometers, imposing stringent requirements on the scanner tool design in terms of reproducibility, accuracy and stability. In this paper we report on the performance of the NXT:1980Di immersion scanner. The NXT:1980Di builds upon the NXT:1970Ci, that is widely used for 16nm, 14nm and 10nm high-volume manufacturing. We will discuss the NXT:1980Di system- and sub-system/module enhancements that drive the scanner overlay, focus and productivity performance. Overlay, imaging, focus, productivity and defectivity data will be presented for multiple tools. To further reduce the on-product overlay system performance, alignment sensor contrast improvements as well as active reticle temperature conditioning are implemented on the NXT:1980Di. Reticle temperature conditioning will reduce reticle heating overlay and the higher contrast alignment sensor will improve alignment robustness for processed alignment targets. Due to an increased usage of multiple patterning techniques, an increased number of immersion exposures is required. NXT:1980Di scanner design modifications raised productivity levels from 250wph to 275wph. This productivity enhancement provides lower cost of ownership (CoO) for customers using immersion technology.

  5. Development of MOEMS technology in maskless lithography

    NASA Astrophysics Data System (ADS)

    Smith, David; Klenk, Dieter

    2009-02-01

    Micro-opto-electro-mechanical-systems (MOEMS) have proven to be a facilitating technology in the lithography industry. Recently, there have been significant advancements in digital micromirror device (DMD) based maskless lithography. These advancements have been in the areas of throughput, resolution, accuracy, and cost reduction. This progression in digital micromirror evolution provides considerable opportunities to displace existing lithographic techniques. Precise control of the individual mircormirrors, including scrolling, and full utilization of the FPGA, have allowed DMD-based lithography systems to reach new levels of throughput and repeatability, while reducing production and warranty costs. Throughput levels have far surpassed scanning laser techniques. Chip level cooling technologies allow for higher incident power to be reliably distributed over larger areas of the substrate. Resolution roadmaps are in place to migrate from the current 2400dpi (11μm) to 4800dpi (5.3μm). Without the constraints of mask requirements, mask alignment, storage, and defect analysis are not required, thus increasing accuracy and reducing cost. This contribution will examine the advancements in and benefits of DMD based maskless lithography.

  6. Genetic interactions in yeast between Ypt GTPases and Arf guanine nucleotide exchangers.

    PubMed Central

    Jones, S; Jedd, G; Kahn, R A; Franzusoff, A; Bartolini, F; Segev, N

    1999-01-01

    Two families of GTPases, Arfs and Ypt/rabs, are key regulators of vesicular transport. While Arf proteins are implicated in vesicle budding from the donor compartment, Ypt/rab proteins are involved in the targeting of vesicles to the acceptor compartment. Recently, we have shown a role for Ypt31/32p in exit from the yeast trans-Golgi, suggesting a possible function for Ypt/rab proteins in vesicle budding as well. Here we report the identification of a new member of the Sec7-domain family, SYT1, as a high-copy suppressor of a ypt31/32 mutation. Several proteins that belong to the Sec7-domain family, including the yeast Gea1p, have recently been shown to stimulate nucleotide exchange by Arf GTPases. Nucleotide exchange by Arf GTPases, the switch from the GDP- to the GTP-bound form, is thought to be crucial for their function. Sec7p itself has an important role in the yeast secretory pathway. However, its mechanism of action is not yet understood. We show that all members of the Sec7-domain family exhibit distinct genetic interactions with the YPT genes. Biochemical assays demonstrate that, although the homology between the members of the Sec7-domain family is relatively low (20-35%) and limited to a small domain, they all can act as guanine nucleotide exchange factors (GEFs) for Arf proteins, but not for Ypt GTPases. The Sec7-domain of Sec7p is sufficient for this activity. Interestingly, the Sec7 domain activity is inhibited by brefeldin A (BFA), a fungal metabolite that inhibits some of the Arf-GEFs, indicating that this domain is a target for BFA. These results demonstrate that the ability to act as Arf-GEFs is a general property of all Sec7-domain proteins in yeast. The genetic interactions observed between Arf GEFs and Ypt GTPases suggest the existence of a Ypt-Arf GTPase cascade in the secretory pathway. PMID:10430582

  7. EUV lithography cost of ownership analysis

    SciTech Connect

    Hawryluk, A.M.; Ceglio, N.M.

    1995-01-19

    The cost of fabricating state-of-the-art integrated circuits (ICs) has been increasing and it will likely be economic rather than technical factors that ultimately limit the progress of ICs toward smaller devices. It is estimated that lithography currently accounts for approximately one-third the total cost of fabricating modem ICs({sup 1}). It is expected that this factor will be fairly stable for the forseeable future, and as a result, any lithographic process must be cost-effective before it can be considered for production. Additionally, the capital equipment cost for a new fabrication facility is growing at an exponential rate (2); it will soon require a multibillion dollar investment in capital equipment alone to build a manufacturing facility. In this regard, it is vital that any advanced lithography candidate justify itself on the basis of cost effectiveness. EUV lithography is no exception and close attention to issues of wafer fabrication costs have been a hallmark of its early history. To date, two prior cost analyses have been conducted for EUV lithography (formerly called {open_quotes}Soft X-ray Projection Lithography{close_quotes}). The analysis by Ceglio, et. al., provided a preliminary system design, set performance specifications and identified critical technical issues for cost control. A follow-on analysis by Early, et.al., studied the impact of issues such as step time, stepper overhead, tool utilization, escalating photoresist costs and limited reticle usage on wafer exposure costs. This current study provides updated system designs and specifications and their impact on wafer exposure costs. In addition, it takes a first cut at a preliminary schematic of an EUVL fabrication facility along with an estimate of the capital equipment costs for such a facility.

  8. Genome-wide analysis of auxin response factor (ARF) gene family from tomato and analysis of their role in flower and fruit development.

    PubMed

    Kumar, Rahul; Tyagi, Akhilesh K; Sharma, Arun K

    2011-03-01

    Auxin response transcription factors have been widely implicated in auxin-mediated responses during various developmental processes ranging from root and shoot development to flower and fruit development in plants. In order to use them for improvement of agronomic traits related to fruit, we need to have better understanding of their role during fruit development. In this study, 17 SlARF genes have been identified from tomato (Solanum lycopersicum), using various publically available tomato EST databases. Phylogenetic analysis of the 23 AtARF and 17 SlARF proteins results in formation of three major classes and a total of 14 sister pairs, including seven SlARF-AtARF, four SlARF-SlARF and three AtARF-AtARF sister pairs, providing insights into various orthologous relationships between AtARFs and SlARFs. Further, search for orthologs of these SlARFs resulted in identification of nine, ten, four and three ARF genes from potato, tobacco, N. benthemiana and pepper, respectively. A phylogenetic analysis of these genes, along with their orthologs from Solanaceae species, suggests the presence of a common set of the ARF genes in this family. Comparison of the expression of these SlARF genes in wild type and rin mutant provides an insight into their role during different stages of flower and fruit development. This study suggests that ARF genes may play diverse role during flower and fruit development. Comprehensive data generated here will provide a platform for identification of ARF genes and elucidation of their function during reproductive development stages in Solanaceae in general and fruit development in tomato, in particular.

  9. Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed.

    PubMed

    Liu, Jing; Hua, Wei; Hu, Zhiyong; Yang, Hongli; Zhang, Liang; Li, Rongjun; Deng, Linbin; Sun, Xingchao; Wang, Xinfa; Wang, Hanzhong

    2015-09-15

    Seed weight (SW), which is one of the three major factors influencing grain yield, has been widely accepted as a complex trait that is controlled by polygenes, particularly in polyploid crops. Brassica napus L., which is the second leading crop source for vegetable oil around the world, is a tetraploid (4×) species. In the present study, we identified a major quantitative trait locus (QTL) on chromosome A9 of rapeseed in which the genes for SW and silique length (SL) were colocated. By fine mapping and association analysis, we uncovered a 165-bp deletion in the auxin-response factor 18 (ARF18) gene associated with increased SW and SL. ARF18 encodes an auxin-response factor and shows inhibitory activity on downstream auxin genes. This 55-aa deletion prevents ARF18 from forming homodimers, in turn resulting in the loss of binding activity. Furthermore, reciprocal crossing has shown that this QTL affects SW by maternal effects. Transcription analysis has shown that ARF18 regulates cell growth in the silique wall by acting via an auxin-response pathway. Together, our results suggest that ARF18 regulates silique wall development and determines SW via maternal regulation. In addition, our study reveals the first (to our knowledge) QTL in rapeseed and may provide insights into gene cloning involving polyploid crops.

  10. Delocalization and destabilization of the Arf tumor suppressor by the leukemia-associated NPM mutant.

    PubMed

    Colombo, Emanuela; Martinelli, Paola; Zamponi, Raffaella; Shing, Danielle C; Bonetti, Paola; Luzi, Lucilla; Volorio, Sara; Bernard, Loris; Pruneri, Giancarlo; Alcalay, Myriam; Pelicci, Pier Giuseppe

    2006-03-15

    One third of acute myeloid leukemias (AMLs) are characterized by the aberrant cytoplasmic localization of nucleophosmin (NPM) due to mutations within its putative nucleolar localization signal. NPM mutations are mutually exclusive with major AML-associated chromosome rearrangements and are frequently associated with a normal karyotype, suggesting that they are critical during leukemogenesis. The underlying molecular mechanisms are, however, unknown. NPM is a nucleocytoplasmic shuttling protein that has been implicated in several cellular processes, including ribosome biogenesis, centrosome duplication, cell cycle progression, and stress response. It has been recently shown that NPM is required for the stabilization and proper nucleolar localization of the tumor suppressor p19(Arf). We report here that the AML-associated NPM mutant localizes mainly in the cytoplasm due to an alteration of its nucleus-cytoplasmic shuttling equilibrium, forms a direct complex with p19(Arf), but is unable to protect it from degradation. Consequently, cells or leukemic blasts expressing the NPM mutant have low levels of cytoplasmic Arf. Furthermore, we show that expression of the NPM mutant reduces the ability of Arf to initiate a p53 response and to induce cell cycle arrest. Inactivation of p19(Arf), a key regulator of the p53-dependent cellular response to oncogene expression, might therefore contribute to leukemogenesis in AMLs with mutated NPM.

  11. Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed

    PubMed Central

    Liu, Jing; Hua, Wei; Hu, Zhiyong; Yang, Hongli; Zhang, Liang; Li, Rongjun; Deng, Linbin; Sun, Xingchao; Wang, Xinfa; Wang, Hanzhong

    2015-01-01

    Seed weight (SW), which is one of the three major factors influencing grain yield, has been widely accepted as a complex trait that is controlled by polygenes, particularly in polyploid crops. Brassica napus L., which is the second leading crop source for vegetable oil around the world, is a tetraploid (4×) species. In the present study, we identified a major quantitative trait locus (QTL) on chromosome A9 of rapeseed in which the genes for SW and silique length (SL) were colocated. By fine mapping and association analysis, we uncovered a 165-bp deletion in the auxin-response factor 18 (ARF18) gene associated with increased SW and SL. ARF18 encodes an auxin-response factor and shows inhibitory activity on downstream auxin genes. This 55-aa deletion prevents ARF18 from forming homodimers, in turn resulting in the loss of binding activity. Furthermore, reciprocal crossing has shown that this QTL affects SW by maternal effects. Transcription analysis has shown that ARF18 regulates cell growth in the silique wall by acting via an auxin-response pathway. Together, our results suggest that ARF18 regulates silique wall development and determines SW via maternal regulation. In addition, our study reveals the first (to our knowledge) QTL in rapeseed and may provide insights into gene cloning involving polyploid crops. PMID:26324896

  12. Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed.

    PubMed

    Liu, Jing; Hua, Wei; Hu, Zhiyong; Yang, Hongli; Zhang, Liang; Li, Rongjun; Deng, Linbin; Sun, Xingchao; Wang, Xinfa; Wang, Hanzhong

    2015-09-15

    Seed weight (SW), which is one of the three major factors influencing grain yield, has been widely accepted as a complex trait that is controlled by polygenes, particularly in polyploid crops. Brassica napus L., which is the second leading crop source for vegetable oil around the world, is a tetraploid (4×) species. In the present study, we identified a major quantitative trait locus (QTL) on chromosome A9 of rapeseed in which the genes for SW and silique length (SL) were colocated. By fine mapping and association analysis, we uncovered a 165-bp deletion in the auxin-response factor 18 (ARF18) gene associated with increased SW and SL. ARF18 encodes an auxin-response factor and shows inhibitory activity on downstream auxin genes. This 55-aa deletion prevents ARF18 from forming homodimers, in turn resulting in the loss of binding activity. Furthermore, reciprocal crossing has shown that this QTL affects SW by maternal effects. Transcription analysis has shown that ARF18 regulates cell growth in the silique wall by acting via an auxin-response pathway. Together, our results suggest that ARF18 regulates silique wall development and determines SW via maternal regulation. In addition, our study reveals the first (to our knowledge) QTL in rapeseed and may provide insights into gene cloning involving polyploid crops. PMID:26324896

  13. Characterization of the Tomato ARF Gene Family Uncovers a Multi-Levels Post-Transcriptional Regulation Including Alternative Splicing

    PubMed Central

    Chateigner-Boutin, Anne-Laure; Mila, Isabelle; Frasse, Pierre; Wang, Hua; Audran, Corinne; Roustan, Jean-Paul; Bouzayen, Mondher

    2014-01-01

    Background The phytohormone auxin is involved in a wide range of developmental processes and auxin signaling is known to modulate the expression of target genes via two types of transcriptional regulators, namely, Aux/IAA and Auxin Response Factors (ARF). ARFs play a major role in transcriptional activation or repression through direct binding to the promoter of auxin-responsive genes. The present study aims at gaining better insight on distinctive structural and functional features among ARF proteins. Results Building on the most updated tomato (Solanum lycopersicon) reference genome sequence, a comprehensive set of ARF genes was identified, extending the total number of family members to 22. Upon correction of structural annotation inconsistencies, renaming the tomato ARF family members provided a consensus nomenclature for all ARF genes across plant species. In silico search predicted the presence of putative target site for small interfering RNAs within twelve Sl-ARFs while sequence analysis of the 5′-leader sequences revealed the presence of potential small uORF regulatory elements. Functional characterization carried out by transactivation assay partitioned tomato ARFs into repressors and activators of auxin-dependent gene transcription. Expression studies identified tomato ARFs potentially involved in the fruit set process. Genome-wide expression profiling using RNA-seq revealed that at least one third of the gene family members display alternative splicing mode of regulation during the flower to fruit transition. Moreover, the regulation of several tomato ARF genes by both ethylene and auxin, suggests their potential contribution to the convergence mechanism between the signaling pathways of these two hormones. Conclusion All together, the data bring new insight on the complexity of the expression control of Sl-ARF genes at the transcriptional and post-transcriptional levels supporting the hypothesis that these transcriptional mediators might represent

  14. Development of high-performance negative-tone resists for 193-nm lithography

    NASA Astrophysics Data System (ADS)

    Hattori, Takashi; Yokoyama, Yoshiyuki; Kimura, Kaori; Yamanaka, Ryoko; Tanaka, Toshihiko; Fukuda, Hiroshi

    2003-06-01

    We have been developing negative-tone resist systems utilizing an acid-catalyzed intramolecular esterification of γ- and δ-hydroxy acid for ArF phase-shifting lithography. In this paper, α-acryloyloxy-β, β-dimethyl-γ-butyrolactone (DBLA), adamantane lactone acrylate (AdLA), and norbornene lactone acrylate (NLA) were examined as a precursor of hydroxy acid. It was found that AdLA and NLA are not hydrolyzed intro hydroxy acid under an alkali hydrolysis condition. DBLA was found to produce γ-hydroxy acid, which is stable in the resist solution. The γ-hydroxy acid derived from DBLA becomes γ-lactone relatively easily by an acid-catalyzed reaction and can be used to make resists insoluble. Since the variation and the flexibility of the copolymer composition of the base polymer can be increased, the resist properties are controllable and the pattern quality can be improved by utilizing γ-hydroxy acid derived from DBLA.

  15. ARF and ATM/ATR cooperate in p53-mediated apoptosis upon oncogenic stress

    SciTech Connect

    Pauklin, Siim . E-mail: spauklin@ut.ee; Kristjuhan, Arnold; Maimets, Toivo; Jaks, Viljar

    2005-08-26

    Induction of apoptosis is pivotal for eliminating cells with damaged DNA or deregulated proliferation. We show that tumor suppressor ARF and ATM/ATR kinase pathways cooperate in the induction of apoptosis in response to elevated expression of c-myc, {beta}-catenin or human papilloma virus E7 oncogenes. Overexpression of oncogenes leads to the formation of phosphorylated H2AX foci, induction of Rad51 protein levels and ATM/ATR-dependent phosphorylation of p53. Inhibition of ATM/ATR kinases abolishes both induction of Rad51 and phosphorylation of p53, and remarkably reduces the level of apoptosis induced by co-expression of oncogenes and ARF. However, the induction of apoptosis is downregulated in p53-/- cells and does not depend on activities of ATM/ATR kinases, indicating that efficient induction of apoptosis by oncogene activation depends on coordinated action of ARF and ATM/ATR pathways in the regulation of p53.

  16. ARF6 Is an Actionable Node that Orchestrates Oncogenic GNAQ Signaling in Uveal Melanoma.

    PubMed

    Yoo, Jae Hyuk; Shi, Dallas S; Grossmann, Allie H; Sorensen, Lise K; Tong, ZongZhong; Mleynek, Tara M; Rogers, Aaron; Zhu, Weiquan; Richards, Jackson R; Winter, Jacob M; Zhu, Jie; Dunn, Christine; Bajji, Ashok; Shenderovich, Mark; Mueller, Alan L; Woodman, Scott E; Harbour, J William; Thomas, Kirk R; Odelberg, Shannon J; Ostanin, Kirill; Li, Dean Y

    2016-06-13

    Activating mutations in Gαq proteins, which form the α subunit of certain heterotrimeric G proteins, drive uveal melanoma oncogenesis by triggering multiple downstream signaling pathways, including PLC/PKC, Rho/Rac, and YAP. Here we show that the small GTPase ARF6 acts as a proximal node of oncogenic Gαq signaling to induce all of these downstream pathways as well as β-catenin signaling. ARF6 activates these diverse pathways through a common mechanism: the trafficking of GNAQ and β-catenin from the plasma membrane to cytoplasmic vesicles and the nucleus, respectively. Blocking ARF6 with a small-molecule inhibitor reduces uveal melanoma cell proliferation and tumorigenesis in a mouse model, confirming the functional relevance of this pathway and suggesting a therapeutic strategy for Gα-mediated diseases. PMID:27265506

  17. PML IV/ARF interaction enhances p53 SUMO-1 conjugation, activation, and senescence.

    PubMed

    Ivanschitz, Lisa; Takahashi, Yuki; Jollivet, Florence; Ayrault, Olivier; Le Bras, Morgane; de Thé, Hugues

    2015-11-17

    Promyelocytic leukemia protein (PML) nuclear bodies (NBs) recruit multiple partners, including p53 and many of its regulators. NBs are believed to facilitate several posttranslational modifications and are key regulators of senescence. PML, the organizer of NBs, is expressed as a number of splice variants that all efficiently recruit p53 partners. However, overexpression of only one of them, PML IV, triggers p53-driven senescence. Here, we show that PML IV specifically binds ARF, a key p53 regulator. Similar to ARF, PML IV enhances global SUMO-1 conjugation, particularly that of p53, resulting in p53 stabilization and activation. ARF interacts with and stabilizes the NB-associated UBC9 SUMO-conjugating enzyme, possibly explaining PML IV-enhanced SUMOylation. These results unexpectedly link two key tumor suppressors, highlighting their convergence for global control of SUMO conjugation, p53 activation, and senescence induction.

  18. WAVE regulatory complex activation by cooperating GTPases Arf and Rac1.

    PubMed

    Koronakis, Vassilis; Hume, Peter J; Humphreys, Daniel; Liu, Tao; Hørning, Ole; Jensen, Ole N; McGhie, Emma J

    2011-08-30

    The WAVE regulatory complex (WRC) is a critical element in the control of actin polymerization at the eukaryotic cell membrane, but how WRC is activated remains uncertain. While Rho GTPase Rac1 can bind and activate WRC in vitro, this interaction is of low affinity, suggesting other factors may be important. By reconstituting WAVE-dependent actin assembly on membrane-coated beads in mammalian cell extracts, we found that Rac1 was not sufficient to engender bead motility, and we uncovered a key requirement for Arf GTPases. In vitro, Rac1 and Arf1 were individually able to bind weakly to recombinant WRC and activate it, but when both GTPases were bound at the membrane, recruitment and concomitant activation of WRC were dramatically enhanced. This cooperativity between the two GTPases was sufficient to induce WAVE-dependent bead motility in cell extracts. Our findings suggest that Arf GTPases may be central components in WAVE signalling, acting directly, alongside Rac1.

  19. Immersible solar heater for fluids

    DOEpatents

    Kronberg, James W.

    1995-01-01

    An immersible solar heater comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

  20. Immersion francaise precoce: Maternelle (Early French Immersion: Kindergarten).

    ERIC Educational Resources Information Center

    Burt, Andy; And Others

    An extensive resource manual and teaching guide is presented for the kindergarten teacher in the early French immersion program. The first three chapters contain introductory material discussing the kindergarten child, this particular program, language development in kindergarten, and the role of the kindergarten teacher which is analagous to that…

  1. The Sec7 N-terminal regulatory domains facilitate membrane-proximal activation of the Arf1 GTPase

    PubMed Central

    Richardson, Brian C; Halaby, Steve L; Gustafson, Margaret A; Fromme, J Christopher

    2016-01-01

    The Golgi complex is the central sorting compartment of eukaryotic cells. Arf guanine nucleotide exchange factors (Arf-GEFs) regulate virtually all traffic through the Golgi by activating Arf GTPase trafficking pathways. The Golgi Arf-GEFs contain multiple autoregulatory domains, but the precise mechanisms underlying their function remain largely undefined. We report a crystal structure revealing that the N-terminal DCB and HUS regulatory domains of the Arf-GEF Sec7 form a single structural unit. We demonstrate that the established role of the N-terminal region in dimerization is not conserved; instead, a C-terminal autoinhibitory domain is responsible for dimerization of Sec7. We find that the DCB/HUS domain amplifies the ability of Sec7 to activate Arf1 on the membrane surface by facilitating membrane insertion of the Arf1 amphipathic helix. This enhancing function of the Sec7 N-terminal domains is consistent with the high rate of Arf1-dependent trafficking to the plasma membrane necessary for maximal cell growth. DOI: http://dx.doi.org/10.7554/eLife.12411.001 PMID:26765562

  2. Protein-protein interaction and gene co-expression maps of ARFs and Aux/IAAs in Arabidopsis

    PubMed Central

    Piya, Sarbottam; Shrestha, Sandesh K.; Binder, Brad; Stewart, C. Neal; Hewezi, Tarek

    2014-01-01

    The phytohormone auxin regulates nearly all aspects of plant growth and development. Based on the current model in Arabidopsis thaliana, Auxin/indole-3-acetic acid (Aux/IAA) proteins repress auxin-inducible genes by inhibiting auxin response transcription factors (ARFs). Experimental evidence suggests that heterodimerization between Aux/IAA and ARF proteins are related to their unique biological functions. The objective of this study was to generate the Aux/IAA-ARF protein-protein interaction map using full length sequences and locate the interacting protein pairs to specific gene co-expression networks in order to define tissue-specific responses of the Aux/IAA-ARF interactome. Pairwise interactions between 19 ARFs and 29 Aux/IAAs resulted in the identification of 213 specific interactions of which 79 interactions were previously unknown. The incorporation of co-expression profiles with protein-protein interaction data revealed a strong correlation of gene co-expression for 70% of the ARF-Aux/IAA interacting pairs in at least one tissue/organ, indicative of the biological significance of these interactions. Importantly, ARF4-8 and 19, which were found to interact with almost all Aux-Aux/IAA showed broad co-expression relationships with Aux/IAA genes, thus, formed the central hubs of the co-expression network. Our analyses provide new insights into the biological significance of ARF-Aux/IAA associations in the morphogenesis and development of various plant tissues and organs. PMID:25566309

  3. Annealing of induced absorption in quartz glasses by ArF laser radiation

    SciTech Connect

    Sergeev, P B; Sergeev, A P

    2010-11-13

    Annealing of individual bands of electron-beam-induced absorption (IA) in the region of 150 - 400 nm in KS-4V, KU-1, and Corning 7980 (ArF Grade) quartz glasses by ArF laser radiation is studied. It is shown that the phototransformation of the IA spectra occurs mainly due to a significant decrease in the amplitudes of bands at {lambda} = 183.5, 213, and 260 nm. The role played by interstitial oxygen, hydrogen, and chlorine in the formation and relaxation of glass defects is considered. (effects of laser radiation on matter. laser plasma)

  4. Tunable lithography masks using chiral nematic fluids

    NASA Astrophysics Data System (ADS)

    Jeong, Hyeon Su; Srinivasarao, Mohan; Jung, Hee-Tae

    2013-03-01

    We present a facile route for pattern formation using chiral nematic fluids as tunable masks in lithography process. The chiral nematic phase prepared by adding a chiral dopant (CB15) to 5CB acted as a set of parallel cylindrical lenses and as a polarization selective photomask for the preparation of periodic line patterns. The pitch of the helical twist was easily controlled by the concentration of chiral agent and the feature size of the resulting pattern was easily tuned. Because of the high mobility of the small liquid crystalline compound, the preparation of chiral nematic fluids based lithography masks requires only a few seconds. This approach has significant advantages including facility, range of surface ordering, and rate of forming periodic arrays. Current affiliation: SK Innovation, Daejeon, Korea

  5. Learning immersion without getting wet

    NASA Astrophysics Data System (ADS)

    Aguilera, Julieta C.

    2012-03-01

    This paper describes the teaching of an immersive environments class on the Spring of 2011. The class had students from undergraduate as well as graduate art related majors. Their digital background and interests were also diverse. These variables were channeled as different approaches throughout the semester. Class components included fundamentals of stereoscopic computer graphics to explore spatial depth, 3D modeling and skeleton animation to in turn explore presence, exposure to formats like a stereo projection wall and dome environments to compare field of view across devices, and finally, interaction and tracking to explore issues of embodiment. All these components were supported by theoretical readings discussed in class. Guest artists presented their work in Virtual Reality, Dome Environments and other immersive formats. Museum professionals also introduced students to space science visualizations, which utilize immersive formats. Here I present the assignments and their outcome, together with insights as to how the creation of immersive environments can be learned through constraints that expose students to situations of embodied cognition.

  6. Immersive Education, an Annotated Webliography

    ERIC Educational Resources Information Center

    Pricer, Wayne F.

    2011-01-01

    In this second installment of a two-part feature on immersive education a webliography will provide resources discussing the use of various types of computer simulations including: (a) augmented reality, (b) virtual reality programs, (c) gaming resources for teaching with technology, (d) virtual reality lab resources, (e) virtual reality standards…

  7. ADP Ribosylation Factor 6 (ARF6) Promotes Acrosomal Exocytosis by Modulating Lipid Turnover and Rab3A Activation*

    PubMed Central

    Pelletán, Leonardo E.; Suhaiman, Laila; Vaquer, Cintia C.; Bustos, Matías A.; De Blas, Gerardo A.; Vitale, Nicolas; Mayorga, Luis S.; Belmonte, Silvia A.

    2015-01-01

    Regulated secretion is a central issue for the specific function of many cells; for instance, mammalian sperm acrosomal exocytosis is essential for egg fertilization. ARF6 (ADP-ribosylation factor 6) is a small GTPase implicated in exocytosis, but its downstream effectors remain elusive in this process. We combined biochemical, functional, and microscopy-based methods to show that ARF6 is present in human sperm, localizes to the acrosomal region, and is required for calcium and diacylglycerol-induced exocytosis. Results from pulldown assays show that ARF6 exchanges GDP for GTP in sperm challenged with different exocytic stimuli. Myristoylated and guanosine 5′-3-O-(thio)triphosphate (GTPγS)-loaded ARF6 (active form) added to permeabilized sperm induces acrosome exocytosis even in the absence of extracellular calcium. We explore the ARF6 signaling cascade that promotes secretion. We demonstrate that ARF6 stimulates a sperm phospholipase D activity to produce phosphatidic acid and boosts the synthesis of phosphatidylinositol 4,5-bisphosphate. We present direct evidence showing that active ARF6 increases phospholipase C activity, causing phosphatidylinositol 4,5-bisphosphate hydrolysis and inositol 1,4,5-trisphosphate-dependent intra-acrosomal calcium release. We show that active ARF6 increases the exchange of GDP for GTP on Rab3A, a prerequisite for secretion. We propose that exocytic stimuli activate ARF6, which is required for acrosomal calcium efflux and the assembly of the membrane fusion machinery. This report highlights the physiological importance of ARF6 as a key factor for human sperm exocytosis and fertilization. PMID:25713146

  8. Combined overlay, focus and CD metrology for leading edge lithography

    NASA Astrophysics Data System (ADS)

    Ebert, Martin; Cramer, Hugo; Tel, Wim; Kubis, Michael; Megens, Henry

    2011-04-01

    As leading edge lithography moves to 22-nm design rules, low k1 technologies like double patterning are the new resolution enablers, and system control and setup are the new drivers to meet remarkably tight process requirements. The way of thinking and executing setup and control of lithography scanners is changing in four ways. First, unusually tight process tolerances call for very dense sampling [1], which in effect means measurements at high throughput combined with high order modeling and corrections to compensate for wafer spatial fingerprint. Second, complex interactions between scanner and process no longer allow separation of error sources through traditional metrology approaches, which are based on using one set of metrology tools and methods for setup and another for scanner performance control. Moreover, setup and control of overlay is done independently from CD uniformity, which in effect leads to independent and conflicting adjustments for the scanner. Third, traditional CD setup and control is based on the focus and dose calculated from their CD response and not from measurement of their effect on pattern profile, which allows a clean and orthogonal de-convolution of focus and dose variations across the wafer. Fourth, scanner setup and control has to take into consideration the final goal of lithography, which is the accurate printing of a complex pattern describing a real device layout. To this end we introduce a new setup and control metrology step: measuring-to-match scanner 1D and 2D proximity. In this paper we will describe the strategy for setup and control of overlay, focus, CD and proximity based on the YieldStarTM metrology tool and present the resulting performance. YieldStar-200 is a new, high throughput metrology tool based on a high numerical aperture scatterometer concept. The tool can be used stand-alone as well as integrated in a processing track. It is suitable for determining process offsets in X,Y and Z directions through Overlay

  9. Formation of Magnetic Anisotropy by Lithography

    PubMed Central

    Kim, Si Nyeon; Nam, Yoon Jae; Kim, Yang Doo; Choi, Jun Woo; Lee, Heon; Lim, Sang Ho

    2016-01-01

    Artificial interface anisotropy is demonstrated in alternating Co/Pt and Co/Pd stripe patterns, providing a means of forming magnetic anisotropy using lithography. In-plane hysteresis loops measured along two principal directions are explained in depth by two competing shape and interface anisotropies, thus confirming the formation of interface anisotropy at the Co/Pt and Co/Pd interfaces of the stripe patterns. The measured interface anisotropy energies, which are in the range of 0.2–0.3 erg/cm2 for both stripes, are smaller than those observed in conventional multilayers, indicating a decrease in smoothness of the interfaces when formed by lithography. The demonstration of interface anisotropy in the Co/Pt and Co/Pd stripe patterns is of significant practical importance, because this setup makes it possible to form anisotropy using lithography and to modulate its strength by controlling the pattern width. Furthermore, this makes it possible to form more complex interface anisotropy by fabricating two-dimensional patterns. These artificial anisotropies are expected to open up new device applications such as multilevel bits using in-plane magnetoresistive thin-film structures. PMID:27216420

  10. Formation of Magnetic Anisotropy by Lithography.

    PubMed

    Kim, Si Nyeon; Nam, Yoon Jae; Kim, Yang Doo; Choi, Jun Woo; Lee, Heon; Lim, Sang Ho

    2016-01-01

    Artificial interface anisotropy is demonstrated in alternating Co/Pt and Co/Pd stripe patterns, providing a means of forming magnetic anisotropy using lithography. In-plane hysteresis loops measured along two principal directions are explained in depth by two competing shape and interface anisotropies, thus confirming the formation of interface anisotropy at the Co/Pt and Co/Pd interfaces of the stripe patterns. The measured interface anisotropy energies, which are in the range of 0.2-0.3 erg/cm(2) for both stripes, are smaller than those observed in conventional multilayers, indicating a decrease in smoothness of the interfaces when formed by lithography. The demonstration of interface anisotropy in the Co/Pt and Co/Pd stripe patterns is of significant practical importance, because this setup makes it possible to form anisotropy using lithography and to modulate its strength by controlling the pattern width. Furthermore, this makes it possible to form more complex interface anisotropy by fabricating two-dimensional patterns. These artificial anisotropies are expected to open up new device applications such as multilevel bits using in-plane magnetoresistive thin-film structures. PMID:27216420

  11. Metallic resist for phase-change lithography

    PubMed Central

    Zeng, Bi Jian; Huang, Jun Zhu; Ni, Ri Wen; Yu, Nian Nian; Wei, Wei; Hu, Yang Zhi; Li, Zhen; Miao, Xiang Shui

    2014-01-01

    Currently, the most widely used photoresists in optical lithography are organic-based resists. The major limitations of such resists include the photon accumulation severely affects the quality of photolithography patterns and the size of the pattern is constrained by the diffraction limit. Phase-change lithography, which uses semiconductor-based resists such as chalcogenide Ge2Sb2Te5 films, was developed to overcome these limitations. Here, instead of chalcogenide, we propose a metallic resist composed of Mg58Cu29Y13 alloy films, which exhibits a considerable difference in etching rate between amorphous and crystalline states. Furthermore, the heat distribution in Mg58Cu29Y13 thin film is better and can be more easily controlled than that in Ge2Sb2Te5 during exposure. We succeeded in fabricating both continuous and discrete patterns on Mg58Cu29Y13 thin films via laser irradiation and wet etching. Our results demonstrate that a metallic resist of Mg58Cu29Y13 is suitable for phase change lithography, and this type of resist has potential due to its outstanding characteristics. PMID:24931505

  12. A compact X-ray lithography lattice using superferric magnets

    NASA Astrophysics Data System (ADS)

    Swenson, C. A.; Huson, F. R.; Mackay, W. W.; Chen, L. K.; Ohnuma, S.

    A conceptual lattice design for a very compact superconducting synchrotron dedicated to X-ray lithography is presented. The synchrotron radiation produced in the high field superconducting magnets has a critical wavelength of 10 angstrom at a beam energy of about 787 MeV. The size and angular divergence of the beam in this lattice can satisfy future requirements for X-ray lithography. An optimization of the lithography parameters is presented.

  13. 75 FR 44015 - Certain Semiconductor Products Made by Advanced Lithography Techniques and Products Containing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... COMMISSION Certain Semiconductor Products Made by Advanced Lithography Techniques and Products Containing... importation of certain semiconductor products made by advanced lithography techniques and products containing... certain semiconductor products made by advanced lithography techniques or products containing same...

  14. Hybrid immersed interface-immersed boundary methods for AC dielectrophoresis

    SciTech Connect

    Hossan, Mohammad Robiul; Dillon, Robert; Dutta, Prashanta

    2014-08-01

    Dielectrophoresis, a nonlinear electrokinetic transport mechanism, has become popular in many engineering applications including manipulation, characterization and actuation of biomaterials, particles and biological cells. In this paper, we present a hybrid immersed interface–immersed boundary method to study AC dielectrophoresis where an algorithm is developed to solve the complex Poisson equation using a real variable formulation. An immersed interface method is employed to obtain the AC electric field in a fluid media with suspended particles and an immersed boundary method is used for the fluid equations and particle transport. The convergence of the proposed algorithm as well as validation of the hybrid scheme with experimental results is presented. In this paper, the Maxwell stress tensor is used to calculate the dielectrophoretic force acting on particles by considering the physical effect of particles in the computational domain. Thus, this study eliminates the approximations used in point dipole methods for calculating dielectrophoretic force. A comparative study between Maxwell stress tensor and point dipole methods for computing dielectrophoretic forces are presented. The hybrid method is used to investigate the physics of dielectrophoresis in microfluidic devices using an AC electric field. The numerical results show that with proper design and appropriate selection of applied potential and frequency, global electric field minima can be obtained to facilitate multiple particle trapping by exploiting the mechanism of negative dielectrophoresis. Our numerical results also show that electrically neutral particles form a chain parallel to the applied electric field irrespective of their initial orientation when an AC electric field is applied. This proposed hybrid numerical scheme will help to better understand dielectrophoresis and to design and optimize microfluidic devices.

  15. The Area Resource File (ARF). A Health Professions Planning and Research Tool.

    ERIC Educational Resources Information Center

    Applied Management Sciences, Inc., Silver Spring, MD.

    This report presents a description and sample products of the Area Resource File (ARF), a computer-based county-specific health resources information system which consolidates U.S. data on the health professions, hospital and nursing home facilities, hospital utilization levels, health professions training, hospital expenditures, Medicare…

  16. A dose-dependent tug of war involving the NPM1 leukaemic mutant, nucleophosmin, and ARF.

    PubMed

    Bolli, N; De Marco, M F; Martelli, M P; Bigerna, B; Pucciarini, A; Rossi, R; Mannucci, R; Manes, N; Pettirossi, V; Pileri, S A; Nicoletti, I; Falini, B

    2009-03-01

    In acute myeloid leukaemia (AML), nucleophosmin-1 (NPM1) mutations create a nuclear export signal (NES) motif and disrupt tryptophans at NPM1 C-terminus, leading to nucleophosmin accumulation in leukaemic cell cytoplasm. We investigated how nucleophosmin NES motifs (two physiological and one created by the mutation) regulate traffic and interaction of mutated NPM1, NPM1wt and p14(ARF). Nucleophosmin export into cytoplasm was maximum when the protein contained all three NES motifs, as naturally occurs in NPM1-mutated AML. The two physiological NES motifs mediated NPM1 homo/heterodimerization, influencing subcellular distribution of NPM1wt, mutated NPM1 and p14(ARF) in a 'dose-dependent tug of war' fashion. In transfected cells, excess doses of mutant NPM1 relocated completely NPM1wt (and p14(ARF)) from the nucleoli to the cytoplasm. This distribution pattern was also observed in a proportion of NPM1-mutated AML patients. In transfected cells, excess of NPM1wt (and p14(ARF)) relocated NPM1 mutant from the cytoplasm to the nucleoli. Notably, this distribution pattern was not observed in AML patients where the mutant was consistently cytoplasmic restricted. These findings reinforce the concept that NPM1 mutants are naturally selected for most efficient cytoplasmic export, pointing to this event as critical for leukaemogenesis. Moreover, they provide a rationale basis for designing small molecules acting at the interface between mutated NPM1 and other interacting proteins. PMID:19005479

  17. Lysophosphatidic acid activates Arf6 to promote the mesenchymal malignancy of renal cancer.

    PubMed

    Hashimoto, Shigeru; Mikami, Shuji; Sugino, Hirokazu; Yoshikawa, Ayumu; Hashimoto, Ari; Onodera, Yasuhito; Furukawa, Shotaro; Handa, Haruka; Oikawa, Tsukasa; Okada, Yasunori; Oya, Mototsugu; Sabe, Hisataka

    2016-01-01

    Acquisition of mesenchymal properties by cancer cells is critical for their malignant behaviour, but regulators of the mesenchymal molecular machinery and how it is activated remain elusive. Here we show that clear cell renal cell carcinomas (ccRCCs) frequently utilize the Arf6-based mesenchymal pathway to promote invasion and metastasis, similar to breast cancers. In breast cancer cells, ligand-activated receptor tyrosine kinases employ GEP100 to activate Arf6, which then recruits AMAP1; and AMAP1 then binds to the mesenchymal-specific protein EPB41L5, which promotes epithelial-mesenchymal transition and focal adhesion dynamics. In renal cancer cells, lysophosphatidic acid (LPA) activates Arf6 via its G-protein-coupled receptors, in which GTP-Gα12 binds to EFA6. The Arf6-based pathway may also contribute to drug resistance. Our results identify a specific mesenchymal molecular machinery of primary ccRCCs, which is triggered by a product of autotaxin and it is associated with poor outcome of patients. PMID:26854204

  18. Inhibition of cell migration by PITENINs: the role of ARF6

    PubMed Central

    Miao, Benchun; Skidan, Igor; Yang, Jinsheng; You, Zerong; Fu, Xueyan; Famulok, Michael; Schaffhausen, Brian; Torchilin, Vladimir; Yuan, Junying; Degterev, Alexei

    2011-01-01

    We have previously reported the development of small molecule phosphatidylinositol-3,4,5-trisphosphate (PIP3) antagonists (PITs) that block pleckstrin homology (PH) domain interaction, including activation of Akt, and show anti-tumor potential. Here we show that the same molecules inhibit growth factor-induced actin remodeling, lamellipodia formation and, ultimately, cell migration and invasion, consistent with an important role of PIP3 in these processes. In vivo, a PIT-1 analog displays significant inhibition on tumor angiogenesis and metastasis. ADP ribosylation factor 6 (ARF6) was recently identified as an important mediator of cytoskeleton and cell motility, which is regulated by PIP3-dependent membrane translocation of the guanine nucleotide exchange factors (GEFs) such as ADP-ribosylation factor nucleotide binding-site opener (ARNO) and general receptor for 3-phosphoinositides (GRP1). We demonstrate that PITs inhibit PIP3/ARNO or GRP1 PH domain binding and membrane localization, resulting in the inhibition of ARF6 activation. Importantly, we show that expression of the constitutively active mutant of Arf6 attenuates inhibition of lamellipodia formation and cell migration by PITs, confirming that inhibition of Arf6 contributes to inhibition of these processes by PITs. Overall, our studies demonstrate the feasibility of developing specific small molecule targeting PIP3 binding by PH domains as potential anti-cancer agents that can simultaneously interfere with cancer development at multiple points. PMID:22179837

  19. Cholesterol-Independent SREBP-1 Maturation Is Linked to ARF1 Inactivation.

    PubMed

    Smulan, Lorissa J; Ding, Wei; Freinkman, Elizaveta; Gujja, Sharvari; Edwards, Yvonne J K; Walker, Amy K

    2016-06-28

    Lipogenesis requires coordinated expression of genes for fatty acid, phospholipid, and triglyceride synthesis. Transcription factors, such as SREBP-1 (Sterol regulatory element binding protein), may be activated in response to feedback mechanisms linking gene activation to levels of metabolites in the pathways. SREBPs can be regulated in response to membrane cholesterol and we also found that low levels of phosphatidylcholine (a methylated phospholipid) led to SBP-1/SREBP-1 maturation in C. elegans or mammalian models. To identify additional regulatory components, we performed a targeted RNAi screen in C. elegans, finding that both lpin-1/Lipin 1 (which converts phosphatidic acid to diacylglycerol) and arf-1.2/ARF1 (a GTPase regulating Golgi function) were important for low-PC activation of SBP-1/SREBP-1. Mechanistically linking the major hits of our screen, we find that limiting PC synthesis or LPIN1 knockdown in mammalian cells reduces the levels of active GTP-bound ARF1. Thus, changes in distinct lipid ratios may converge on ARF1 to increase SBP-1/SREBP-1 activity. PMID:27320911

  20. Rab, Arf, and Arl-Regulated Membrane Traffic in Cortical Neuron Migration.

    PubMed

    Tang, Bor Luen

    2016-07-01

    The migration of projection neurons from its birthplace in the subventricular zone to their final destination in the cortical plate is a complex process that requires a series of highly coordinated cellular events. Amongst the key factors involved in the processes are modulators of cytoskeletal dynamics, as well as cellular membrane traffic. Members of the small GTPases family responsible for the latter process, the Rabs and Arfs, have been recently implicated in cortical neuron migration. Rab5 and Rab11, which are key modulators of endocytosis and endocytic recycling respectively, ensure proper surface expression and distribution of N-cadherin, a key adhesion protein that tethers migrating neurons to the radial glia fiber tracts during pia-directed migration. Rab7, which is associated with lysosomal biogenesis and function, is important for the final step of terminal translocation when N-cadherin is downregulated by lysosomal degradation. Arf6 activity, which is known to be important in neuronal processes outgrowth, may negatively impact the multipolar-bipolar transition of cortical neurons undergoing radial migration, but the downstream effector of Arf6 in this regard is not yet known. In addition to the above, members of the Arl family which have been recently shown to be important in radial glia scaffold formation, would also be important for cortical neuron migration. In this short review, we discuss recent advances in our understanding of the importance of membrane traffic regulated by the Rab, Arf, and Arl family members in cortical neuron migration.

  1. Lysophosphatidic acid activates Arf6 to promote the mesenchymal malignancy of renal cancer

    PubMed Central

    Hashimoto, Shigeru; Mikami, Shuji; Sugino, Hirokazu; Yoshikawa, Ayumu; Hashimoto, Ari; Onodera, Yasuhito; Furukawa, Shotaro; Handa, Haruka; Oikawa, Tsukasa; Okada, Yasunori; Oya, Mototsugu; Sabe, Hisataka

    2016-01-01

    Acquisition of mesenchymal properties by cancer cells is critical for their malignant behaviour, but regulators of the mesenchymal molecular machinery and how it is activated remain elusive. Here we show that clear cell renal cell carcinomas (ccRCCs) frequently utilize the Arf6-based mesenchymal pathway to promote invasion and metastasis, similar to breast cancers. In breast cancer cells, ligand-activated receptor tyrosine kinases employ GEP100 to activate Arf6, which then recruits AMAP1; and AMAP1 then binds to the mesenchymal-specific protein EPB41L5, which promotes epithelial–mesenchymal transition and focal adhesion dynamics. In renal cancer cells, lysophosphatidic acid (LPA) activates Arf6 via its G-protein-coupled receptors, in which GTP-Gα12 binds to EFA6. The Arf6-based pathway may also contribute to drug resistance. Our results identify a specific mesenchymal molecular machinery of primary ccRCCs, which is triggered by a product of autotaxin and it is associated with poor outcome of patients. PMID:26854204

  2. The Area Resource File: ARF. A Manpower Planning and Research Tool.

    ERIC Educational Resources Information Center

    Applied Management Sciences, Inc., Silver Spring, MD.

    This publication describes the Area Resource File (ARF), a computer-based, county-specific health information system with broad analytical capabilities which utilizes manpower and manpower-related data that are available on a compatible basis for all counties in the United States, and which was developed to summarize statistics from many disparate…

  3. The clathrin adaptor AP-1 complex and Arf1 regulate planar cell polarity in vivo.

    PubMed

    Carvajal-Gonzalez, Jose Maria; Balmer, Sophie; Mendoza, Meg; Dussert, Aurore; Collu, Giovanna; Roman, Angel-Carlos; Weber, Ursula; Ciruna, Brian; Mlodzik, Marek

    2015-04-07

    A key step in generating planar cell polarity (PCP) is the formation of restricted junctional domains containing Frizzled/Dishevelled/Diego (Fz/Dsh/Dgo) or Van Gogh/Prickle (Vang/Pk) complexes within the same cell, stabilized via Flamingo (Fmi) across cell membranes. Although models have been proposed for how these complexes acquire and maintain their polarized localization, the machinery involved in moving core PCP proteins around cells remains unknown. We describe the AP-1 adaptor complex and Arf1 as major regulators of PCP protein trafficking in vivo. AP-1 and Arf1 disruption affects the accumulation of Fz/Fmi and Vang/Fmi complexes in the proximo-distal axis, producing severe PCP phenotypes. Using novel tools, we demonstrate a direct and specific Arf1 involvement in Fz trafficking in vivo. Moreover, we uncover a conserved Arf1 PCP function in vertebrates. Our data support a model whereby the trafficking machinery plays an important part during PCP establishment, promoting formation of polarized PCP-core complexes in vivo.

  4. The clathrin adaptor AP-1 complex and Arf1 regulate planar cell polarity in vivo

    PubMed Central

    Mendoza, Meg; Dussert, Aurore; Collu, Giovanna; Roman, Angel-Carlos; Weber, Ursula; Ciruna, Brian; Mlodzik, Marek

    2015-01-01

    A key step in generating planar cell polarity (PCP) is the formation of restricted junctional domains containing Frizzled/Dishevelled/Diego (Fz/Dsh/Dgo) or Van Gogh/Prickle (Vang/Pk) complexes within the same cell, stabilized via Flamingo (Fmi) across cell membranes. Although models have been proposed for how these complexes acquire and maintain their polarized localization, the machinery involved in moving core PCP proteins around cells remains unknown. We describe the AP-1 adaptor complex and Arf1 as major regulators of PCP protein trafficking in vivo. AP-1 and Arf1 disruption affects the accumulation of Fz/Fmi and Vang/Fmi complexes in the proximo–distal axis, producing severe PCP phenotypes. Using novel tools, we demonstrate a direct and specific Arf1 involvement in Fz trafficking in vivo. Moreover, we uncover a conserved Arf1 PCP function in vertebrates. Our data support a model whereby the trafficking machinery plays an important part during PCP establishment, promoting formation of polarized PCP-core complexes in vivo. PMID:25849195

  5. MUC1 oncoprotein suppresses activation of the ARF-MDM2-p53 pathway

    PubMed Central

    Raina, Deepak; Ahmad, Rehan; Chen, Dongshu; Kumar, Shailendra; Kharbanda, Surender; Kufe, Donald

    2011-01-01

    The MUC1 oncoprotein interacts with the c-Abl tyrosine kinase and blocks nuclear targeting of c-Abl in the apoptotic response to DNA damage. Mutation of the MUC1 cytoplasmic domain at Tyr-60 disrupts the MUC1-c-Abl interaction. The present results demonstrate that the MUC1(Y60F) mutant is a potent inducer of the ARF tumor suppressor. MUC1(Y60F) induces transcription of the ARF locus by a c-Abl-dependent mechanism that promotes CUL-4A-mediated nuclear export of the replication protein Cdc6. The functional significance of these findings is that MUC1(Y60F)-induced ARF expression and thereby inhibition of MDM2 results in the upregulation of p53 and the homeodomain interacting protein kinase 2 (HIPK2) serine/threonine kinase. HIPK2-mediated phosphorylation of p53 on Ser-46 was further associated with a shift from expression of the cell cycle arrest-related p21 gene to the apoptosis-related PUMA gene. We also show that the MUC1(Y60F) mutant functions as dominant negative inhibitor of tumorigenicity. These findings indicate that the oncogenic function of MUC1 is conferred by suppressing activation of the ARF-MDM2-p53 pathway. PMID:18981727

  6. Ultrastructural Localization of Endogenous Exchange Factor for ARF6 in Adrenocortical Cells In Situ of Mice.

    PubMed

    Chomphoo, Surang; Mothong, Wilaiwan; Sawatpanich, Tarinee; Kanla, Pipatphong; Sakagami, Hiroyuki; Kondo, Hisatake; Hipkaeo, Wiphawi

    2016-06-28

    EFA6 (exchange factor for ARF6) activates Arf6 (ADP ribosylation factor 6) by exchanging ADP to ATP, and the resulting activated form of Arf6 is involved in the membrane dynamics and actin re-organization of cells. The present study was attempted to localize EFA6 type D (EFA6D) in mouse adrenocortical cells in situ whose steroid hormone secretion is generally considered not to depend on the vesicle-involved regulatory mechanism. In immunoblotting, an immunoreactive band with the same size as brain EFA6D was detected in homogenates of adrenal cortical tissues almost free of adrenal capsules and medulla. In immuno-light microscopy, EFA6D-immunoreactivity was positive in adrenocortical cells and it was often distinct along the plasmalemma, especially along portions of the cell columns facing the interstitium. In immuno-electron microscopy, the gold-labeling was more dense in the peripheral intracellular domains than the central domain of the immunopositive cells. The labeling was deposited on the plasma membranes in a discontinuous pattern and in cytoplasmic domains rich in filaments. It was also associated with some, but not all, of pleiomorphic vesicles and coated pits/vesicles. No labeling was seen in association with lipid droplets or smooth endoplasmic reticulum. The present finding is in support of the importance of EFA6D for activation of Arf6 in adrenocortical cells. PMID:27462133

  7. Rab, Arf, and Arl-Regulated Membrane Traffic in Cortical Neuron Migration.

    PubMed

    Tang, Bor Luen

    2016-07-01

    The migration of projection neurons from its birthplace in the subventricular zone to their final destination in the cortical plate is a complex process that requires a series of highly coordinated cellular events. Amongst the key factors involved in the processes are modulators of cytoskeletal dynamics, as well as cellular membrane traffic. Members of the small GTPases family responsible for the latter process, the Rabs and Arfs, have been recently implicated in cortical neuron migration. Rab5 and Rab11, which are key modulators of endocytosis and endocytic recycling respectively, ensure proper surface expression and distribution of N-cadherin, a key adhesion protein that tethers migrating neurons to the radial glia fiber tracts during pia-directed migration. Rab7, which is associated with lysosomal biogenesis and function, is important for the final step of terminal translocation when N-cadherin is downregulated by lysosomal degradation. Arf6 activity, which is known to be important in neuronal processes outgrowth, may negatively impact the multipolar-bipolar transition of cortical neurons undergoing radial migration, but the downstream effector of Arf6 in this regard is not yet known. In addition to the above, members of the Arl family which have been recently shown to be important in radial glia scaffold formation, would also be important for cortical neuron migration. In this short review, we discuss recent advances in our understanding of the importance of membrane traffic regulated by the Rab, Arf, and Arl family members in cortical neuron migration. PMID:26587959

  8. AltPSM contact hole application at DRAM 4xnm nodes with dry 193nm lithography

    NASA Astrophysics Data System (ADS)

    Noelscher, Christoph; Henkel, Thomas; Jauzion-Graverolle, Franck; Hennig, Mario; Morgana, Nicolo; Schlief, Ralph; Moukara, Molela; Koehle, Roderick; Neubauer, Ralf

    2008-03-01

    To avoid expensive immersion lithography and to further use existing dry tools for critical contact layer lithography at 4Xnm DRAM nodes the application of altPSM is investigated and compared to attPSM. Simulations and experiments with several test masks showed that by use of altPSM with suitable 0°/180° coloring and assist placement 30nm smaller contacts can be resolved through pitch with sufficient process windows (PW). This holds for arrays of contacts with variable lengths through short and long side pitches. A further benefit is the lower mask error enhancement factor (MEEF). Nevertheless 3D mask errors (ME) consume benefits in the PW and the assist placement and coloring of the main features (MF) put some constraints on the chip design. An altPSM compatible 4Xnm full-chip layout was realized without loss of chip area. Mask making showed very convincing results with respect to CDU, etch depth uniformity and defectiveness. The printed intra-field CD uniformity was comparable to attPSM despite the smaller target CDs. Room for improvement is identified in OPC accuracy and in automatic assist placement and sizing.

  9. 3-D patterning of silicon by laser-initiated, liquid-assisted colloidal (LILAC) lithography.

    PubMed

    Ulmeanu, M; Grubb, M P; Jipa, F; Quignon, B; Ashfold, M N R

    2015-06-01

    We report a comprehensive study of laser-initiated, liquid-assisted colloidal (LILAC) lithography, and illustrate its utility in patterning silicon substrates. The method combines single shot laser irradiation (frequency doubled Ti-sapphire laser, 50fs pulse duration, 400nm wavelength) and medium-tuned optical near-field effects around arrays of silica colloidal particles to achieve 3-D surface patterning of silicon. A monolayer (or multilayers) of hexagonal close packed silica colloidal particles act as a mask and offer a route to liquid-tuned optical near field enhancement effects. The resulting patterns are shown to depend on the difference in refractive index of the colloidal particles (ncolloid) and the liquid (nliquid) in which they are immersed. Two different topographies are demonstrated experimentally: (a) arrays of bumps, centred beneath the original colloidal particles, when using liquids with nliquidncolloid - and explained with the aid of complementary Mie scattering simulations. The LILAC lithography technique has potential for rapid, large area, organized 3-D patterning of silicon (and related) substrates.

  10. Which Way In? The RalF Arf-GEF Orchestrates Rickettsia Host Cell Invasion.

    PubMed

    Rennoll-Bankert, Kristen E; Rahman, M Sayeedur; Gillespie, Joseph J; Guillotte, Mark L; Kaur, Simran J; Lehman, Stephanie S; Beier-Sexton, Magda; Azad, Abdu F

    2015-08-01

    Bacterial Sec7-domain-containing proteins (RalF) are known only from species of Legionella and Rickettsia, which have facultative and obligate intracellular lifestyles, respectively. L. pneumophila RalF, a type IV secretion system (T4SS) effector, is a guanine nucleotide exchange factor (GEF) of ADP-ribosylation factors (Arfs), activating and recruiting host Arf1 to the Legionella-containing vacuole. In contrast, previous in vitro studies showed R. prowazekii (Typhus Group) RalF is a functional Arf-GEF that localizes to the host plasma membrane and interacts with the actin cytoskeleton via a unique C-terminal domain. As RalF is differentially encoded across Rickettsia species (e.g., pseudogenized in all Spotted Fever Group species), it may function in lineage-specific biology and pathogenicity. Herein, we demonstrate RalF of R. typhi (Typhus Group) interacts with the Rickettsia T4SS coupling protein (RvhD4) via its proximal C-terminal sequence. RalF is expressed early during infection, with its inactivation via antibody blocking significantly reducing R. typhi host cell invasion. For R. typhi and R. felis (Transitional Group), RalF ectopic expression revealed subcellular localization with the host plasma membrane and actin cytoskeleton. Remarkably, R. bellii (Ancestral Group) RalF showed perinuclear localization reminiscent of ectopically expressed Legionella RalF, for which it shares several structural features. For R. typhi, RalF co-localization with Arf6 and PI(4,5)P2 at entry foci on the host plasma membrane was determined to be critical for invasion. Thus, we propose recruitment of PI(4,5)P2 at entry foci, mediated by RalF activation of Arf6, initiates actin remodeling and ultimately facilitates bacterial invasion. Collectively, our characterization of RalF as an invasin suggests that, despite carrying a similar Arf-GEF unknown from other bacteria, different intracellular lifestyles across Rickettsia and Legionella species have driven divergent roles for Ral

  11. Which Way In? The RalF Arf-GEF Orchestrates Rickettsia Host Cell Invasion

    PubMed Central

    Rennoll-Bankert, Kristen E.; Rahman, M. Sayeedur; Gillespie, Joseph J.; Guillotte, Mark L.; Kaur, Simran J.; Lehman, Stephanie S.; Beier-Sexton, Magda; Azad, Abdu F.

    2015-01-01

    Bacterial Sec7-domain-containing proteins (RalF) are known only from species of Legionella and Rickettsia, which have facultative and obligate intracellular lifestyles, respectively. L. pneumophila RalF, a type IV secretion system (T4SS) effector, is a guanine nucleotide exchange factor (GEF) of ADP-ribosylation factors (Arfs), activating and recruiting host Arf1 to the Legionella-containing vacuole. In contrast, previous in vitro studies showed R. prowazekii (Typhus Group) RalF is a functional Arf-GEF that localizes to the host plasma membrane and interacts with the actin cytoskeleton via a unique C-terminal domain. As RalF is differentially encoded across Rickettsia species (e.g., pseudogenized in all Spotted Fever Group species), it may function in lineage-specific biology and pathogenicity. Herein, we demonstrate RalF of R. typhi (Typhus Group) interacts with the Rickettsia T4SS coupling protein (RvhD4) via its proximal C-terminal sequence. RalF is expressed early during infection, with its inactivation via antibody blocking significantly reducing R. typhi host cell invasion. For R. typhi and R. felis (Transitional Group), RalF ectopic expression revealed subcellular localization with the host plasma membrane and actin cytoskeleton. Remarkably, R. bellii (Ancestral Group) RalF showed perinuclear localization reminiscent of ectopically expressed Legionella RalF, for which it shares several structural features. For R. typhi, RalF co-localization with Arf6 and PI(4,5)P2 at entry foci on the host plasma membrane was determined to be critical for invasion. Thus, we propose recruitment of PI(4,5)P2 at entry foci, mediated by RalF activation of Arf6, initiates actin remodeling and ultimately facilitates bacterial invasion. Collectively, our characterization of RalF as an invasin suggests that, despite carrying a similar Arf-GEF unknown from other bacteria, different intracellular lifestyles across Rickettsia and Legionella species have driven divergent roles for Ral

  12. Repression of ARF10 by microRNA160 plays an important role in the mediation of leaf water loss.

    PubMed

    Liu, Xin; Dong, Xiufen; Liu, Zihan; Shi, Zihang; Jiang, Yun; Qi, Mingfang; Xu, Tao; Li, Tianlai

    2016-10-01

    Solanum lycopersicum auxin response factor 10 (SlARF10) is post-transcriptionally regulated by Sl-miR160. Overexpression of a Sl-miR160-resistant SlARF10 (mSlARF10) resulted in narrower leaflet blades with larger stomata but lower densities. 35S:mSlARF10-6 plants with narrower excised leaves had greater water loss, which was in contrast to the wild type (WT). Further analysis revealed that the actual water loss was not consistent with the calculated stomatal water loss in 35S:mSlARF10-6 and the WT under the dehydration treatment, indicating that there is a difference in hydraulic conductance. Pretreatment with abscisic acid (ABA) and HgCl2 confirmed higher hydraulic conductance in 35S:mSlARF10, which is related to the larger stomatal size and higher activity of aquaporins (AQPs). Under ABA treatment, 35S:mSlARF10-6 showed greater sensitivity, and the stomata closed rapidly. Screening by RNA sequencing revealed that five AQP-related genes, fourteen ABA biosynthesis/signal genes and three stomatal development genes were significantly altered in 35S:mSlARF10-6 plants, and this result was verified by qRT-PCR. The promoter analysis showed that upregulated AQPs contain AuxRE and ABRE, implying that these elements may be responsible for the high expression levels of AQPs in 35S:mSlARF10-6. The three most upregulated AQPs (SlTIP1-1-like, SlPIP2;4 and SlNIP-type-like) were chosen to confirm AuxRE and ABRE function. Promoters transient expression demonstrated that the SlPIP2;4 and SlNIP-type-like AuxREs and SlPIP2;4 and SlTIP1-1-like ABREs could significantly enhance the expression of the GUS reporter in 35S:mSlARF10-6, confirming that AuxRE and ABRE may be the main factors inducing the expression of AQPs. Additionally, two upregulated transcription factors in 35S:mSlARF10-6, SlARF10 and SlABI5-like were shown to directly bind to those elements in an electromobility shift assay and a yeast one-hybrid assay. Furthermore, transient expression of down-regulated ARF10 or up

  13. A novel proapoptotic gene PANO encodes a post-translational modulator of the tumor suppressor p14ARF

    SciTech Connect

    Watari, Akihiro; Li, Yang; Higashiyama, Shinji; Yutsudo, Masuo

    2012-02-01

    The protein p14ARF is a known tumor suppressor protein controlling cell proliferation and survival, which mainly localizes in nucleoli. However, the regulatory mechanisms that govern its activity or expression remain unclear. Here, we report that a novel proapoptotic nucleolar protein, PANO, modulates the expression and activity of p14ARF in HeLa cells. Overexpression of PANO enhances the stability of p14ARF protein by protecting it from degradation, resulting in an increase in p14ARF expression levels. Overexpression of PANO also induces apoptosis under low serum conditions. This effect is dependent on the nucleolar localization of PANO and inhibited by knocking-down p14ARF. Alternatively, PANO siRNA treated cells exhibit a reduction in p14ARF protein levels. In addition, ectopic expression of PANO suppresses the tumorigenicity of HeLa cells in nude mice. These results indicate that PANO is a new apoptosis-inducing gene by modulating the tumor suppressor protein, p14ARF, and may itself be a new candidate tumor suppressor gene.

  14. Variation in Efficacy of Isolates of the Fungus ARF Against the Soybean Cyst Nematode Heterodera glycines

    PubMed Central

    Timper, P.; Riggs, R. D.

    1998-01-01

    An unnamed fungus, designated ARF, that parasitizes eggs and sedentary stages of cyst nematodes is a potential biological control agent of Heterodera glycines. The objectives of this study were to determine whether ARF isolates differ in their ability to suppress nematode numbers in soil and to compare the efficacy of ARF in heat-treated and native soil. The effectiveness of 11 ARF isolates was compared by introducing homogenized mycelium into heat-treated soil. Soybean seedlings were transplanted into pots containing fungus-infested soil and inoculated with H. glycines. After 30 or 60 days, the number of nematodes and the percentage of parasitized eggs were determined. Three isolates (907, 908, and TN14), which were previously reported to be weak egg parasites in vitro, consistently suppressed nematode numbers by 50% to 100%. Of the isolates previously reported to be aggressive egg parasites, four (903, BG2, MS3, and TN12) reduced nematode numbers by 56% to 69% in at least one experimental trial, but the other four had no effect on nematode numbers. When the efficacy of isolate TN14 was tested in heat-treated and native soil, nematode suppression was greater in the heat-treated soil in only one of two trials. In both soil treatments, nematode numbers were reduced by more than 60%. We conclude that virulence toward nematode eggs in vitro is a poor indicator of effectiveness of an ARF isolate in soil, and that the presence of soil microbes may reduce, but does not completely inhibit, activity of isolate TN14. PMID:19274239

  15. High frequency of p53/MDM2/p14ARF pathway abnormalities in relapsed neuroblastoma

    PubMed Central

    Carr-Wilkinson, Jane; O' Toole, Kieran; Wood, Katrina M.; Challen, Christine C.; Baker, Angela G.; Board, Julian R.; Evans, Laura; Cole, Michael; Cheung, Nai-Kong V.; Boos, Joachim; Köhler, Gabriele; Leuschner, Ivo; Pearson, Andrew D.J.; Lunec, John; Tweddle, Deborah A.

    2010-01-01

    Purpose: Most neuroblastomas initially respond to therapy but many relapse with chemoresistant disease. p53 mutations are rare in diagnostic neuroblastomas, but we have previously reported inactivation of the p53/MDM2/p14ARF pathway in 9/17 (53%) neuroblastoma cell lines established at relapse. Hypothesis: Inactivation of the p53/MDM2/p14ARF pathway develops during treatment and contributes to neuroblastoma relapse. Methods: Eighty-four neuroblastomas were studied from 41 patients with relapsed neuroblastoma including 38 paired neuroblastomas at different stages of therapy. p53 mutations were detected by automated sequencing, p14ARF methylation and deletion by methylation-specific PCR and duplex PCR respectively, and MDM2 amplification by fluorescent in-situ hybridisation. Results: Abnormalities in the p53 pathway were identified in 20/41(49%) cases. Downstream defects due to inactivating missense p53 mutations were identified in 6/41 (15%) cases, 5 following chemotherapy and/or at relapse and 1 at diagnosis, post chemotherapy and relapse. The presence of a p53 mutation was independently prognostic for overall survival (hazard ratio 3.4, 95% confidence interval 1.2, 9.9; p = 0.02). Upstream defects were present in 35% cases: MDM2 amplification in 3 cases, all at diagnosis & relapse and p14ARF inactivation in 12/41 (29%) cases: 3 had p14ARF methylation, 2 after chemotherapy, and 9 had homozygous deletions, 8 at diagnosis and relapse. Conclusions: These results show that a high proportion of neuroblastomas which relapse have an abnormality in the p53 pathway. The majority have upstream defects suggesting that agents which reactivate wild-type p53 would be beneficial, in contrast to those with downstream defects where p53 independent therapies are indicated. PMID:20145180

  16. An Arf-Egr-C/EBPβ Pathway Linked to Ras-Induced Senescence and Cancer

    PubMed Central

    Salotti, Jacqueline; Sakchaisri, Krisada; Tourtellotte, Warren G.

    2014-01-01

    Oncogene-induced senescence (OIS) protects normal cells from transformation by Ras, whereas cells lacking p14/p19Arf or other tumor suppressors can be transformed. The transcription factor C/EBPβ is required for OIS in primary fibroblasts but is downregulated by H-RasV12 in immortalized NIH 3T3 cells through a mechanism involving p19Arf loss. Here, we report that members of the serum-induced early growth response (Egr) protein family are also downregulated in 3T3Ras cells and directly and redundantly control Cebpb gene transcription. Egr1, Egr2, and Egr3 recognize three sites in the Cebpb promoter and associate transiently with this region after serum stimulation, coincident with Cebpb induction. Codepletion of all three Egrs prevented Cebpb expression, and serum induction of Egrs was significantly blunted in 3T3Ras cells. Egr2 and Egr3 levels were also reduced in RasV12-expressing p19Arf null mouse embryonic fibroblasts (MEFs), and overall Egr DNA-binding activity was suppressed in Arf-deficient but not wild-type (WT) MEFs, leading to Cebpb downregulation. Analysis of human cancers revealed a strong correlation between EGR levels and CEBPB expression, regardless of whether CEBPB was increased or decreased in tumors. Moreover, overexpression of Egrs in tumor cell lines induced CEBPB and inhibited proliferation. Thus, our findings identify the Arf-Egr-C/EBPβ axis as an important determinant of cellular responses (senescence or transformation) to oncogenic Ras signaling. PMID:25535333

  17. Authoring Immersive Mixed Reality Experiences

    NASA Astrophysics Data System (ADS)

    Misker, Jan M. V.; van der Ster, Jelle

    Creating a mixed reality experience is a complicated endeavour. From our practice as a media lab in the artistic domain we found that engineering is “only” a first step in creating a mixed reality experience. Designing the appearance and directing the user experience are equally important for creating an engaging, immersive experience. We found that mixed reality artworks provide a very good test bed for studying these topics. This chapter details three steps required for authoring mixed reality experiences: engineering, designing and directing. We will describe a platform (VGE) for creating mixed reality environments that incorporates these steps. A case study (EI4) is presented in which this platform was used to not only engineer the system, but in which an artist was given the freedom to explore the artistic merits of mixed reality as an artistic medium, which involved areas such as the look and feel, multimodal experience and interaction, immersion as a subjective emotion and game play scenarios.

  18. Immersible solar heater for fluids

    DOEpatents

    Hazen, T.C.; Fliermans, C.B.

    1994-01-01

    An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

  19. Immersible solar heater for fluids

    DOEpatents

    Kronberg, J.W.

    1995-07-11

    An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater. 11 figs.

  20. High Efficiency Germanium Immersion Gratings

    SciTech Connect

    Kuzmenko, P J; Davis, P J; Little, S L; Little, L M; Bixler, J V

    2006-05-01

    We have fabricated several germanium immersion gratings by single crystal, single point diamond flycutting on an ultra-precision lathe. Use of a dead sharp tool produces groove corners less than 0.1 micron in radius and consequently high diffraction efficiency. We measured first order efficiencies in immersion of over 80% at 10.6 micron wavelength. Wavefront error was low averaging 0.06 wave rms (at 633 nm) across the full aperture. The grating spectral response was free of ghosts down to our detection limit of 1 part in 10{sup 4}. Scatter should be low based upon the surface roughness. Measurement of the spectral line profile of a CO{sub 2} laser sets an upper bound on total integrated scatter of 0.5%.

  1. Immersive Environments - A Connectivist Approach

    NASA Astrophysics Data System (ADS)

    Loureiro, Ana; Bettencourt, Teresa

    We are conducting a research project with the aim of achieving better and more efficient ways to facilitate teaching and learning in Higher Level Education. We have chosen virtual environments, with particular emphasis to Second Life® platform augmented by web 2.0 tools, to develop the study. The Second Life® environment has some interesting characteristics that captured our attention, it is immersive; it is a real world simulator; it is a social network; it allows real time communication, cooperation, collaboration and interaction; it is a safe and controlled environment. We specifically chose tools from web 2.0 that enable sharing and collaborative way of learning. Through understanding the characteristics of this learning environment, we believe that immersive learning along with other virtual tools can be integrated in today's pedagogical practices.

  2. Polycomb Mediated Epigenetic Silencing and Replication Timing at the INK4a/ARF Locus during Senescence

    PubMed Central

    Verthuy, Christophe; Chasson, Lionel; Serrano, Manuel; Djabali, Malek

    2009-01-01

    Background The INK4/ARF locus encodes three tumor suppressor genes (p15Ink4b, Arf and p16Ink4a) and is frequently inactivated in a large number of human cancers. Mechanisms regulating INK4/ARF expression are not fully characterized. Principal Findings Here we show that in young proliferating embryonic fibroblasts (MEFs) the Polycomb Repressive Complex 2 (PRC2) member EZH2 together with PRC1 members BMI1 and M33 are strongly expressed and localized at the INK4/ARF regulatory domain (RD) identified as a DNA replication origin. When cells enter senescence the binding to RD of both PRC1 and PRC2 complexes is lost leading to a decreased level of histone H3K27 trimethylation (H3K27me3). This loss is accompanied with an increased expression of the histone demethylase Jmjd3 and with the recruitment of the MLL1 protein, and correlates with the expression of the Ink4a/Arf genes. Moreover, we show that the Polycomb protein BMI1 interacts with CDC6, an essential regulator of DNA replication in eukaryotic cells. Finally, we demonstrate that Polycomb proteins and associated epigenetic marks are crucial for the control of the replication timing of the INK4a/ARF locus during senescence. Conclusions We identified the replication licencing factor CDC6 as a new partner of the Polycomb group member BMI1. Our results suggest that in young cells Polycomb proteins are recruited to the INK4/ARF locus through CDC6 and the resulting silent locus is replicated during late S-phase. Upon senescence, Jmjd3 is overexpressed and the MLL1 protein is recruited to the locus provoking the dissociation of Polycomb from the INK4/ARF locus, its transcriptional activation and its replication during early S-phase. Together, these results provide a unified model that integrates replication, transcription and epigenetics at the INK4/ARF locus. PMID:19462008

  3. Compact Imaging Spectrometer Utilizing Immersed Gratings

    DOEpatents

    Chrisp, Michael P.; Lerner, Scott A.; Kuzmenko, Paul J.; Bennett, Charles L.

    2006-03-21

    A compact imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The imaging spectrometer comprises an entrance slit for transmitting light, a system for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the system for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the system for receiving the light and the system for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light through an optical element to the detector array.

  4. Fabrication of metallic nanowires and nanoribbons using laser interference lithography and shadow lithography

    SciTech Connect

    Park, Joong- Mok; Nalwa, Kanwar Singh; Leung, Wai; Constant, Kristen; Chaudhary, Sumit; Ho, Kai-Ming

    2010-04-30

    Ordered and free-standing metallic nanowires were fabricated by e-beam deposition on patterned polymer templates made by interference lithography. The dimensions of the nanowires can be controlled through adjustment of deposition conditions and polymer templates. Grain size, polarized optical transmission and electrical resistivity were measured with ordered and free-standing nanowires.

  5. Overview of Lithography: Challenges and Metrologies

    NASA Astrophysics Data System (ADS)

    Levinson, Harry J.

    2003-09-01

    Semiconductor microlithography is rapidly reaching a point where it becomes exceedingly difficult to shrink features at historical rates. We will no longer be able to increase process windows by going to shorter wavelengths with optical lithography, because we are running out of useable wavelengths. This necessitates either the implementation of processes with very small process windows or a transition to radically new types of lithographic technologies. Either situation presents numerous challenges to lithographers and metrologists. Particularly daunting are the requirements for gate linewidth control for microprocessors. Reducing variation requires improvement in the components of variation, each of which must be smaller than the total result. In order to improve a particular parameter, such as CD variation, metrology must be adequate for identifying improvements in the components of that parameter, not just the total. This places very tight requirements on metrology capability. Departing from optical lithography into the Brave New World of Next Generation Lithography will necessitate new metrology capabilities in several areas, not just the measurement of features on wafers. Creating the capabilities that will be needed in the future requires that funding be available for the requisite development. The need for huge amounts of funding to develop new lithographic technologies will likely necessitate a slowing down in the pace at which we shrink features. It is absolutely essential that a balance is re-established between the prices that purchasers of chips are willing to pay and chip development and manufacturing costs. This will be very challenging with 300 mm wafer fabs coming on-line, since low chip prices have historically been associated with overcapacity in the semiconductor industry, and it is anticipated that new lithographic technologies will be very expensive.

  6. Image-projection ion-beam lithography

    SciTech Connect

    Miller, P.A. )

    1989-09-01

    Image-projection ion-beam lithography is an attractive alternative for submicron patterning because it may provide high throughput; it uses demagnification to gain advantages in reticle fabrication, inspection, and lifetime; and it enjoys the precise deposition characteristics of ions which cause essentially no collateral damage. This lithographic option involves extracting low-mass ions (e.g., He{sup +} ) from a plasma source, transmitting the ions at low voltage through a stencil reticle, and then accelerating and focusing the ions electrostatically onto a resist-coated wafer. While the advantages of this technology have been demonstrated experimentally by the work of IMS (Austria), many difficulties still impede extension of the technology to the high-volume production of microelectronic devices. We report a computational study of a lithography system designed to address problem areas in field size, telecentricity, and chromatic and geometric aberration. We present a novel ion-column-design approach and conceptual ion-source and column designs which address these issues. We find that image-projection ion-beam technology should in principle meet high-volume-production requirements. The technical success of our present relatively compact-column design requires that a glow-discharge-based ion source (or equivalent cold source) be developed and that moderate further improvement in geometric aberration levels be obtained. Our system requires that image predistortion be employed during reticle fabrication to overcome distortion due to residual image nonlinearity and space-charge forces. This constitutes a software data preparation step, as do correcting for distortions in electron lithography columns and performing proximity-effect corrections. Areas needing further fundamental work are identified.

  7. EUV lithography imaging using novel pellicle membranes

    NASA Astrophysics Data System (ADS)

    Pollentier, Ivan; Vanpaemel, Johannes; Lee, Jae Uk; Adelmann, Christoph; Zahedmanesh, Houman; Huyghebaert, Cedric; Gallagher, Emily E.

    2016-03-01

    EUV mask protection against defects during use remains a challenge for EUV lithography. A stand-off protective membrane - a pellicle - is targeted to prevent yield losses in high volume manufacturing during handling and exposure, just as it is for 193nm lithography. The pellicle is thin enough to transmit EUV exposure light, yet strong enough to remain intact and hold any particles out of focus during exposure. The development of pellicles for EUV is much more challenging than for 193nm lithography for multiple reasons including: high absorption of most materials at EUV wavelength, pump-down sequences in the EUV vacuum system, and exposure to high intensity EUV light. To solve the problems of transmission and film durability, various options have been explored. In most cases a thin core film is considered, since the deposition process for this is well established and because it is the simplest option. The transmission specification typically dictates that membranes are very thin (~50nm or less), which makes both fabrication and film mechanical integrity difficult. As an alternative, low density films (e.g. including porosity) will allow thicker membranes for a given transmission specification, which is likely to improve film durability. The risk is that the porosity could influence the imaging. At imec, two cases of pellicle concepts based on reducing density have been assessed : (1) 3D-patterned SiN by directed self-assembly (DSA), and (2) carbon nanomaterials such as carbon nanotubes (CNT) and carbon nanosheets (CNS). The first case is based on SiN membranes that are 3D-patterned by Directed Self Assembly (DSA). The materials are tested relative to the primary specifications: EUV transmission and film durability. A risk assessment of printing performance is provided based on simulations of scattered energy. General conclusions on the efficacy of various approaches will provided.

  8. The next generation of maskless lithography

    NASA Astrophysics Data System (ADS)

    Diez, Steffen

    2016-02-01

    The essential goal for fast prototyping of microstructures is to reduce the cycle time. Conventional methods up to now consist of creating designs with a CAD software, then fabricating or purchasing a Photomask and finally using a mask aligner to transfer the pattern to the photoresist. The new Maskless Aligner (MLA) enables to expose the pattern directly without fabricating a mask, which results in a significantly shorter prototyping cycle. To achieve this short prototyping cycle, the MLA has been improved in many aspects compared to other direct write lithography solutions: exposure speed, user interface, ease of operation and flexibility.

  9. Nanoimprint lithography: an enabling technology for nanophotonics

    NASA Astrophysics Data System (ADS)

    Yao, Yuhan; Liu, He; Wang, Yifei; Li, Yuanrui; Song, Boxiang; Bratkovsk, Alexandre; Wang, Shih-Yuan; Wu, Wei

    2015-11-01

    Nanoimprint lithography (NIL) is an indispensable tool to realize a fast and accurate nanoscale patterning in nanophotonics due to high resolution and high yield. The number of publication on NIL has increased from less than a hundred per year to over three thousand per year. In this paper, the most recent developments on NIL patterning transfer processes and its applications on nanophotonics are discussed and reviewed. NIL has been opening up new opportunities for nanophotonics, especially in fabricating optical meta-materials. With more researches on this low-cost high-throughput fabrication technology, we should anticipate a brighter future for nanophotonics and NIL.

  10. Wave and Particle in Molecular Interference Lithography

    SciTech Connect

    Juffmann, Thomas; Truppe, Stefan; Geyer, Philipp; Major, Andras G.; Arndt, Markus; Deachapunya, Sarayut; Ulbricht, Hendrik

    2009-12-31

    The wave-particle duality of massive objects is a cornerstone of quantum physics and a key property of many modern tools such as electron microscopy, neutron diffraction or atom interferometry. Here we report on the first experimental demonstration of quantum interference lithography with complex molecules. Molecular matter-wave interference patterns are deposited onto a reconstructed Si(111) 7x7 surface and imaged using scanning tunneling microscopy. Thereby both the particle and the quantum wave character of the molecules can be visualized in one and the same image. This new approach to nanolithography therefore also represents a sensitive new detection scheme for quantum interference experiments.

  11. Plasma formed ion beam projection lithography system

    DOEpatents

    Leung, Ka-Ngo; Lee, Yung-Hee Yvette; Ngo, Vinh; Zahir, Nastaran

    2002-01-01

    A plasma-formed ion-beam projection lithography (IPL) system eliminates the acceleration stage between the ion source and stencil mask of a conventional IPL system. Instead a much thicker mask is used as a beam forming or extraction electrode, positioned next to the plasma in the ion source. Thus the entire beam forming electrode or mask is illuminated uniformly with the source plasma. The extracted beam passes through an acceleration and reduction stage onto the resist coated wafer. Low energy ions, about 30 eV, pass through the mask, minimizing heating, scattering, and sputtering.

  12. Resolution Improvement and Pattern Generator Development for theMaskless Micro-Ion-Beam Reduction Lithography System

    SciTech Connect

    Jiang, Ximan

    2006-05-18

    The shrinking of IC devices has followed the Moore's Law for over three decades, which states that the density of transistors on integrated circuits will double about every two years. This great achievement is obtained via continuous advance in lithography technology. With the adoption of complicated resolution enhancement technologies, such as the phase shifting mask (PSM), the optical proximity correction (OPC), optical lithography with wavelength of 193 nm has enabled 45 nm printing by immersion method. However, this achievement comes together with the skyrocketing cost of masks, which makes the production of low volume application-specific IC (ASIC) impractical. In order to provide an economical lithography approach for low to medium volume advanced IC fabrication, a maskless ion beam lithography method, called Maskless Micro-ion-beam Reduction Lithography (MMRL), has been developed in the Lawrence Berkeley National Laboratory. The development of the prototype MMRL system has been described by Dr. Vinh Van Ngo in his Ph.D. thesis. But the resolution realized on the prototype MMRL system was far from the design expectation. In order to improve the resolution of the MMRL system, the ion optical system has been investigated. By integrating a field-free limiting aperture into the optical column, reducing the electromagnetic interference and cleaning the RF plasma, the resolution has been improved to around 50 nm. Computational analysis indicates that the MMRL system can be operated with an exposure field size of 0.25 mm and a beam half angle of 1.0 mrad on the wafer plane. Ion-ion interactions have been studied with a two-particle physics model. The results are in excellent agreement with those published by the other research groups. The charge-interaction analysis of MMRL shows that the ion-ion interactions must be reduced in order to obtain a throughput higher than 10 wafers per hour on 300-mm wafers. In addition, two different maskless lithography strategies

  13. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs

    SciTech Connect

    Kurayoshi, Kenta; Ozono, Eiko; Iwanaga, Ritsuko; Bradford, Andrew P.; Komori, Hideyuki; Ohtani, Kiyoshi

    2014-07-18

    Highlights: • ARF promoter showed higher responsiveness to deregulated E2F activity than the E2F1 promoter. • ARF promoter showed higher cancer cell-specificity than E2F1 promoter to drive gene expression. • HSV-TK driven by ARF promoter showed higher cancer cell-specific cytotoxicity than that driven by E2F1 promoter. - Abstract: In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter

  14. Immersive Earth: Teaching Earth and Space with inexpensive immersive technology

    NASA Astrophysics Data System (ADS)

    Reiff, P. H.; Sumners, C.; Law, C. C.; Handron, K.

    2003-12-01

    In 1995 we pioneered "Space Update", the Digital Library for the rest of us", software that was so simple that a child could use it without a keyboard and yet would allow one-click updating of the daily earth and space science images without the dangers of having an open web browser on display. Thanks to NASA support, it allowed museums and schools to have a powerful exhibit for a tiny price. Over 40,000 disks in our series have been distributed so far to educators and the public. In 2003, with our partners we are again revolutionizing educational technology with a low-cost hardware and software solution to creating and displaying immersive content. Recently selected for funding as part of the REASoN competition, Immersive Earth is a partnership of scientists, museums, educators, and content providers. The hardware consists of a modest projector with a special fisheye lens to be used in an inflatable dome which many schools already have. This, coupled with a modest personal computer, can now easily project images and movies of earth and space, allows training students in 3-D content at a tiny fraction of the cost of a cave or fullscale dome theater. Another low-cost solution is the "Imove" system, where spherical movies can play on a personal computer, with the user changing the viewing direction with a joystick. We were the first to create immersive earth science shows, remain the leader in creating educational content that people want to see. We encourage people with "allsky" images or movies to bring it and see what it looks like inside a dome! Your content could be in our next show!

  15. Purification and Properties of ArfI, an α-l-Arabinofuranosidase from Cytophaga xylanolytica†

    PubMed Central

    Renner, Michael J.; Breznak, John A.

    1998-01-01

    An α-l-arabinofuranosidase (α-l-arabinofuranoside arabinofuranohydrolase [EC 3.2.1.55]; referred to below as ArfI) from Cytophaga xylanolytica XM3 was purified 85-fold by anion-exchange and hydrophobic interaction column chromatography. The native enzyme had a pI of 6.1 and an apparent molecular mass of 160 to 210 kDa, and it appeared to be a trimer or tetramer consisting of 56-kDa subunits. With p-nitrophenyl-α-l-arabinofuranoside as the substrate, the enzyme exhibited a Km of 0.504 mM and a Vmax of 319 μmol · min−1 · mg of protein−1, and it had optimum activity at pH 5.8 and 45°C. ArfI was relatively stable over a pH range of 4 to 10 and at temperatures up to 45°C, and it retained nearly full activity when stored at 4°C for periods as long as 24 months. The enzyme also released arabinose from 4-methylumbelliferyl-α-l-arabinofuranoside, as well as from rye, wheat, corn cob, and oat spelt arabinoxylans and sugar beet arabinan, but not from arabinogalactan. ArfI showed no hydrolytic activity toward a range of p-nitrophenyl- or 4-methylumbelliferyl-glycosides other than arabinoside, for which it was entirely specific for the α-l-furanoside configuration. ArfI interacted synergistically with three partially purified endoxylanase fractions from C. xylanolytica in hydrolyzing rye arabinoxylan. However, cell fractionation studies revealed that ArfI was largely, if not entirely, cytoplasmic, so its activity in vivo is probably most relevant to hydrolysis of arabinose-containing oligosaccharides small enough to pass through the cytoplasmic membrane. Antibodies prepared against purified ArfI also cross-reacted with arabinofuranosidases from other freshwater and marine strains of C. xylanolytica, as well as with some proteins that did not possess arabinofuranosidase activity. To our knowledge, this is the first α-l-arabinofuranosidase to be purified and characterized from any gliding bacterium. PMID:9435061

  16. Economic consequences of high throughput maskless lithography

    NASA Astrophysics Data System (ADS)

    Hartley, John G.; Govindaraju, Lakshmi

    2005-11-01

    Many people in the semiconductor industry bemoan the high costs of masks and view mask cost as one of the significant barriers to bringing new chip designs to market. All that is needed is a viable maskless technology and the problem will go away. Numerous sites around the world are working on maskless lithography but inevitably, the question asked is "Wouldn't a one wafer per hour maskless tool make a really good mask writer?" Of course, the answer is yes, the hesitation you hear in the answer isn't based on technology concerns, it's financial. The industry needs maskless lithography because mask costs are too high. Mask costs are too high because mask pattern generators (PG's) are slow and expensive. If mask PG's become much faster, mask costs go down, the maskless market goes away and the PG supplier is faced with an even smaller tool demand from the mask shops. Technical success becomes financial suicide - or does it? In this paper we will present the results of a model that examines some of the consequences of introducing high throughput maskless pattern generation. Specific features in the model include tool throughput for masks and wafers, market segmentation by node for masks and wafers and mask cost as an entry barrier to new chip designs. How does the availability of low cost masks and maskless tools affect the industries tool makeup and what is the ultimate potential market for high throughput maskless pattern generators?

  17. Mask cost of ownership for advanced lithography

    NASA Astrophysics Data System (ADS)

    Muzio, Edward G.; Seidel, Philip K.

    2000-07-01

    As technology advances, becoming more difficult and more expensive, the cost of ownership (CoO) metric becomes increasingly important in evaluating technical strategies. The International SEMATECH CoC analysis has steadily gained visibility over the past year, as it attempts to level the playing field between technology choices, and create a fair relative comparison. In order to predict mask cots for advanced lithography, mask process flows are modeled using bets-known processing strategies, equipment cost, and yields. Using a newly revised yield mode, and updated mask manufacture flows, representative mask flows can be built. These flows are then used to calculate mask costs for advanced lithography down to the 50 nm node. It is never the goal of this type of work to provide absolute cost estimates for business planning purposes. However, the combination of a quantifiable yield model with a clearly defined set of mask processing flows and a cost model based upon them serves as an excellent starting point for cost driver analysis and process flow discussion.

  18. Mask and lithography techniques for FPD

    NASA Astrophysics Data System (ADS)

    Sandstrom, T.; Wahlsten, M.; Sundelin, E.; Hansson, G.; Svensson, A.

    2015-09-01

    Large-field projection lithography for FPDs has developed gradually since the 90s. The LCD screen technology has remained largely unchanged and incremental development has given us better image quality, larger screen sizes, and above all lower cost per area. Recently new types of mobile devices with very high pixel density and/or OLED displays have given rise to dramatically higher requirem ents on photomask technology. Devices with 600 ppi or m ore need lithography with higher optical resolution and better linewidth control. OLED di splays pose new challenges with high sensitivity to transistor parameters and to capacitive cross-talk. New mask requirements leads to new maskwriter requirements and Mycronic has developed a new generation of large -area mask writers with significantly improved properties. This paper discusses and shows data for the improved writers. Mask production to high er quality stan dards also need metrology to verify the quality and Mycronic has introduced a 2D metrology tool with accuracy adequate for current and future masks. New printing or additive methods of producing disp lays on plastic or metal foil will make low-cost disp lays available. This inexpensive type of disp lays will exist side by side with the photographic quality displays of TVs and mobile devices, which will continue to be a challenge in terms of mask and production quality.

  19. Inverse lithography source optimization via compressive sensing.

    PubMed

    Song, Zhiyang; Ma, Xu; Gao, Jie; Wang, Jie; Li, Yanqiu; Arce, Gonzalo R

    2014-06-16

    Source optimization (SO) has emerged as a key technique for improving lithographic imaging over a range of process variations. Current SO approaches are pixel-based, where the source pattern is designed by solving a quadratic optimization problem using gradient-based algorithms or solving a linear programming problem. Most of these methods, however, are either computational intensive or result in a process window (PW) that may be further extended. This paper applies the rich theory of compressive sensing (CS) to develop an efficient and robust SO method. In order to accelerate the SO design, the source optimization is formulated as an underdetermined linear problem, where the number of equations can be much less than the source variables. Assuming the source pattern is a sparse pattern on a certain basis, the SO problem is transformed into a l1-norm image reconstruction problem based on CS theory. The linearized Bregman algorithm is applied to synthesize the sparse optimal source pattern on a representation basis, which effectively improves the source manufacturability. It is shown that the proposed linear SO formulation is more effective for improving the contrast of the aerial image than the traditional quadratic formulation. The proposed SO method shows that sparse-regularization in inverse lithography can indeed extend the PW of lithography systems. A set of simulations and analysis demonstrate the superiority of the proposed SO method over the traditional approaches.

  20. Inverse lithography technique for advanced CMOS nodes

    NASA Astrophysics Data System (ADS)

    Villaret, Alexandre; Tritchkov, Alexander; Entradas, Jorge; Yesilada, Emek

    2013-04-01

    Resolution Enhancement Techniques have continuously improved over the last decade, driven by the ever growing constraints of lithography process. Despite the large number of RET applied, some hotspot configurations remain challenging for advanced nodes due to aggressive design rules. Inverse Lithography Technique (ILT) is evaluated here as a substitute to the dense OPC baseline. Indeed ILT has been known for several years for its near-to-ideal mask quality, while also being potentially more time consuming in terms of OPC run and mask processing. We chose to evaluate Mentor Graphics' ILT engine "pxOPCTM" on both lines and via hotspot configurations. These hotspots were extracted from real 28nm test cases where the dense OPC solution is not satisfactory. For both layer types, the reference OPC consists of a dense OPC engine coupled to rule-based and/or model-based assist generation method. The same CM1 model is used for the reference and the ILT OPC. ILT quality improvement is presented through Optical Rule Check (ORC) results with various adequate detectors. Several mask manufacturing rule constraints (MRC) are considered for the ILT solution and their impact on process ability is checked after mask processing. A hybrid OPC approach allowing localized ILT usage is presented in order to optimize both quality and runtime. A real mask is prepared and fabricated with this method. Finally, results analyzed on silicon are presented to compare localized ILT to reference dense OPC.

  1. Dry etching of SiC using Ar/F2 plasma and XeF2 plasma

    NASA Astrophysics Data System (ADS)

    Matsutani, Akihiro; Koyama, Fumio

    2015-06-01

    We investigated the SiC dry etching process using Ar/F2 plasma and XeF2 plasma. We carried out optical observation of Ar/F2 plasma and XeF2 plasma. The dominant etching species were different between Ar/F2 plasma and XeF2 plasma. The etching rates of SiC were approximately 100 nm/min at 25 sccm and 200 W for Ar/F2 plasma and 45 nm/min at 2.5 sccm and 100 W for XeF2 plasma. Vertical etching profiles and a smooth etched surface were obtained. The average roughness of the etched bottom surface was 1 nm, which satisfied the requirements for optical device fabrication. We believe that the proposed etching process using F2 of zero-global-warming-potential gases is very simple and useful for fabricating optical devices and micro-electromechanical systems (MEMSs).

  2. Structure of an ADP-ribosylation factor, ARF1, from Entamoeba histolytica bound to Mg(2+)-GDP.

    PubMed

    Serbzhinskiy, Dmitry A; Clifton, Matthew C; Sankaran, Banumathi; Staker, Bart L; Edwards, Thomas E; Myler, Peter J

    2015-05-01

    Entamoeba histolytica is the etiological agent of amebiasis, a diarrheal disease which causes amoebic liver abscesses and amoebic colitis. Approximately 50 million people are infected worldwide with E. histolytica. With only 10% of infected people developing symptomatic amebiasis, there are still an estimated 100,000 deaths each year. Because of the emergence of resistant strains of the parasite, it is necessary to find a treatment which would be a proper response to this challenge. ADP-ribosylation factor (ARF) is a member of the ARF family of GTP-binding proteins. These proteins are ubiquitous in eukaryotic cells; they generally associate with cell membranes and regulate vesicular traffic and intracellular signalling. The crystal structure of ARF1 from E. histolytica has been determined bound to magnesium and GDP at 1.8 Å resolution. Comparison with other structures of eukaryotic ARF proteins shows a highly conserved structure and supports the interswitch toggle mechanism of communicating the conformational state to partner proteins.

  3. Gestural interfaces for immersive environments

    NASA Astrophysics Data System (ADS)

    Margolis, Todd

    2014-02-01

    We are witnessing an explosion of new forms of Human Computer Interaction devices lately for both laboratory research and home use. With these new affordance in user interfaces (UI), how can gestures be used to improve interaction for large scale immersive display environments. Through the investigation of full body, head and hand tracking, this paper will discuss various modalities of gesture recognition and compare their usability to other forms of interactivity. We will explore a specific implementation of hand gesture tracking within a large tiled display environment for use with common collaborative media interaction activities.

  4. Ectopic Expression of a Maize Hybrid Down-Regulated Gene ZmARF25 Decreases Organ Size by Affecting Cellular Proliferation in Arabidopsis

    PubMed Central

    Meng, Lingxue; Xing, Jiewen; Wang, Tianya; Yang, Hua; Yao, Yingyin; Peng, Huiru; Hu, Zhaorong; Sun, Qixin; Ni, Zhongfu

    2014-01-01

    Heterosis is associated with differential gene expression between hybrids and their parental lines, and the genes involved in cell proliferation played important roles. AtARF2 is a general cell proliferation repressor in Arabidopsis. In our previous study, two homologues (ZmARF10 and ZmARF25) of AtARF2 were identified in maize, but their relationship with heterosis was not elucidated. Here, the expression patterns of ZmARF10 and ZmARF25 in seedling leaves of maize hybrids and their parental lines were analyzed. The results of qRT-PCR exhibited that ZmARF25 was down-regulated in leaf basal region of hybrids. Moreover, overexpression of ZmARF25 led to reduced organ size in Arabidopsis, which was mainly due to the decrease in cell number, not cell size. In addition, the cell proliferation related genes AtANT, AtGIF1 and AtGRF5 were down-regulated in 35S::ZmARF25 transgenic lines. Collectively, we proposed that the down-regulation of ZmARF25 in maize hybrid may accelerate cell proliferation and promote leaf development, which, in turn, contributes to the observed leaf size heterosis in maize. PMID:24756087

  5. Low p14ARF expression in neuroblastoma cells is associated with repressed histone mark status, and enforced expression induces growth arrest and apoptosis.

    PubMed

    Dreidax, Daniel; Gogolin, Sina; Schroeder, Christina; Muth, Daniel; Brueckner, Lena Marie; Hess, Elisa Maria; Zapatka, Marc; Theißen, Jessica; Fischer, Matthias; Ehemann, Volker; Schwab, Manfred; Savelyeva, Larissa; Westermann, Frank

    2013-05-01

    The TP53 tumor suppressor pathway is abrogated by TP53 mutations in the majority of human cancers. Increased levels of wild-type TP53 in aggressive neuroblastomas appear paradox but are tolerated by tumor cells due to co-activation of the TP53 ubiquitin ligase, MDM2. The role of the MDM2 antagonist, p14(ARF), in controlling the TP53-MDM2 balance in neuroblastoma is unresolved. In the present study, we show that conditional p14(ARF) expression substantially suppresses viability, clonogenicity and anchorage-independent growth in p14(ARF)-deficient or MYCN-amplified neuroblastoma cell lines. Furthermore, ectopic 14(ARF) expression induced accumulation of cells in the G1 phase and apoptosis, which was paralleled by accumulation of TP53 and its targets. Comparative genomic hybridization analysis of 193 primary neuroblastomas detected one homozygous deletion of CDKN2A (encoding both p14(ARF) and p16(INK4A)) and heterozygous loss of CDKN2A in 22% of tumors. Co-expression analysis of p14(ARF) and its transactivator, E2F1, in a set of 68 primary tumors revealed only a weak correlation, suggesting that further regulatory mechanisms govern p14(ARF) expression in neuroblastomas. Intriguingly, analyses utilizing chromatin immunoprecipitation revealed different histone mark-defined epigenetic activity states of p14(ARF) in neuroblastoma cell lines that correlated with endogenous p14(ARF) expression but not with episomal p14(ARF) promoter reporter activity, indicating that the native chromatin context serves to epigenetically repress p14(ARF) in neuroblastoma cells. Collectively, the data pinpoint p14(ARF) as a critical factor for efficient TP53 response in neuroblastoma cells and assign p14(ARF) as a neuroblastoma suppressor candidate that is impaired by genomic loss and epigenetic repression.

  6. Immersive interfaces for engagement and learning.

    PubMed

    Dede, Chris

    2009-01-01

    Immersion is the subjective impression that one is participating in a comprehensive, realistic experience. Interactive media now enable various degrees of digital immersion. The more a virtual immersive experience is based on design strategies that combine actional, symbolic, and sensory factors, the greater the participant's suspension of disbelief that she or he is "inside" a digitally enhanced setting. Studies have shown that immersion in a digital environment can enhance education in at least three ways: by allowing multiple perspectives, situated learning, and transfer. Further studies are needed on the capabilities of immersive media for learning, on the instructional designs best suited to each type of immersive medium, and on the learning strengths and preferences these media develop in users.

  7. Genetics of Aux/IAA and ARF action in plant growth and development.

    PubMed

    Liscum, E; Reed, J W

    2002-01-01

    Dramatic advances in our understanding of auxin signal-response pathways have been made in recent years. Much of this new knowledge has come through the study of mutants in Arabidopsis thaliana. Mutations have been identified in a wide variety of auxin-response components, including auxin transporters, protein kinases and phosphatases, components of a ubiquitin-proteosome pathway, and transcriptional regulators. This review focuses on mutations that affect auxin-modulated transcription factors, in particular those in the Aux/IAA and AUXIN RESPONSE FACTOR (ARF) genes. Mutants in members of these related gene families exhibit phenotypes that indicate both unique localized functions, as well as overlapping redundant functions, throughout plant development - from embryogenesis to flowering. Effects of specific mutations on Aux/IAA and ARF protein functions at the biochemical and physiological levels will be discussed. We will also discuss potential mechanisms for interactions between auxin and light response pathways that are suggested by these mutants.

  8. Over-expression of mango (Mangifera indica L.) MiARF2 inhibits root and hypocotyl growth of Arabidopsis.

    PubMed

    Wu, Bei; Li, Yun-He; Wu, Jian-Yong; Chen, Qi-Zhu; Huang, Xia; Chen, Yun-Feng; Huang, Xue-Lin

    2011-06-01

    An auxin response factor 2 gene, MiARF2, was cloned in our previous study [1] from the cotyledon section of mango (Mangifera indica L. cv. Zihua) during adventitious root formation, which shares an 84% amino acid sequence similarity to Arabidopsis ARF2. This study was to examine the effects of over-expression of the full-length MiARF2 open reading frame on the root and hypocotyl growth in Arabidopsis. Phenotype analysis showed that the T(3) transgenic lines had about 20-30% reduction in the length of hypocotyls and roots of the seedlings in comparison with the wild-type. The transcription levels of ANT and ARGOS genes which play a role in controlling organ size and cell proliferation in the transgenic seedlings also decreased. Therefore, the inhibited root and hypocotyl growth in the transgenic seedlings may be associated with the down-regulated transcription of ANT and ARGOS by the over-expression of MiARF2. This study also suggests that although MiARF2 only has a single DNA-binding domain (DBD), it can function as other ARF-like proteins containing complete DBD, middle region (MR) and carboxy-terminal dimerization domain (CTD).

  9. A presynaptic role for the ADP ribosylation factor (ARF)-specific GDP/GTP exchange factor msec7-1.

    PubMed

    Ashery, U; Koch, H; Scheuss, V; Brose, N; Rettig, J

    1999-02-01

    ADP ribosylation factors (ARFs) represent a family of small monomeric G proteins that switch from an inactive, GDP-bound state to an active, GTP-bound state. One member of this family, ARF6, translocates on activation from intracellular compartments to the plasma membrane and has been implicated in regulated exocytosis in neuroendocrine cells. Because GDP release in vivo is rather slow, ARF activation is facilitated by specific guanine nucleotide exchange factors like cytohesin-1 or ARNO. Here we show that msec7-1, a rat homologue of cytohesin-1, translocates ARF6 to the plasma membrane in living cells. Overexpression of msec7-1 leads to an increase in basal synaptic transmission at the Xenopus neuromuscular junction. msec7-1-containing synapses have a 5-fold higher frequency of spontaneous synaptic currents than control synapses. On stimulation, the amplitudes of the resulting evoked postsynaptic currents of msec7-1-overexpressing neurons are increased as well. However, further stimulation leads to a decline in amplitudes approaching the values of control synapses. This transient effect on amplitude is strongly reduced on overexpression of msec7-1E157K, a mutant incapable of translocating ARFs. Our results provide evidence that small G proteins of the ARF family and activating factors like msec7-1 play an important role in synaptic transmission, most likely by making more vesicles available for fusion at the plasma membrane.

  10. Breaking a paradigm: IL-6/STAT3 signaling suppresses metastatic prostate cancer upon ARF expression.

    PubMed

    Culig, Zoran; Pencik, Jan; Merkel, Olaf; Kenner, Lukas

    2016-03-01

    Interleukin 6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signaling is considered to have important oncogenic functions in prostate cancer (PCa). However, a recent study highlighted the central role of IL-6/STAT3 signaling in regulation of the ARF-MDM2-p53 senescence axis. This reversal of the postulated oncogenic properties of IL-6/STAT3 signaling in PCa has important therapeutic implications. PMID:27308625

  11. Rayleigh rejection filters for 193-nm ArF laser Raman spectroscopy

    NASA Technical Reports Server (NTRS)

    Mckenzie, Robert L.

    1993-01-01

    Selected organic absorbers and their solvents are evaluated as spectral filters for the rejection of 193-nm Rayleigh light associated with the use of an ArF excimer laser for Raman spectroscopy. A simply constructed filter cell filled with 0.5 percent acetone in water and an optical path of 7 mm is shown effectively to eliminate stray Rayleigh light underlying the Raman spectrum from air while transmitting 60 percent of the Raman light scattered by O2.

  12. Single spherical mirror optic for extreme ultraviolet lithography enabled by inverse lithography technology.

    PubMed

    Scranton, Gregg; Bhargava, Samarth; Ganapati, Vidya; Yablonovitch, Eli

    2014-10-20

    Traditionally, aberration correction in extreme ultraviolet (EUV) projection optics requires the use of multiple lossy mirrors, which results in prohibitively high source power requirements. We analyze a single spherical mirror projection optical system where aberration correction is built into the mask itself, through Inverse Lithography Technology (ILT). By having fewer mirrors, this would reduce the power requirements for EUV lithography. We model a single spherical mirror system with orders of magnitude more spherical aberration than would ever be tolerated in a traditional multiple mirror system. By using ILT, (implemented by an adjoint-based gradient descent optimization algorithm), we design photomasks that successfully print test patterns, in spite of these enormous aberrations. This mathematical method was tested with a 6 plane wave illumination source. Nonetheless, it would have poor power throughput from a totally incoherent source. PMID:25401536

  13. Improved near field lithography by surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Zeng, Beibei; Zhao, Yanhui; Fang, Liang; Wang, Changtao; Luo, Xiangang

    2009-05-01

    Conventionally, the finest pattern obtained in optical lithography is determined by wavelength and numerical aperture of optical system, due to diffraction effect. This principle delivers theoretical obstacles for nano lithography using conventional light source, like Hg lamp. According to theory, this obstacle can be circumvented with near field lithography (NFL) technique, just by confining the mask and photo resist into sub-wavelength dimensions. Sub-wavelength patterns with features down to 100nm can be realized in the NFL, as demonstrated numerically and experimentally in many papers. One obvious problem associated with NFL is that low efficiency in the lithography process, since it is difficult to transmit through sub-wavelength scaled apertures in the mask. This usually results in the deleterious effect to the patterns on photo resist. In this paper, we demonstrate that the extraordinary optical transmission (EOT) effect helps to solve this problem. It is found that noble metal, instead of chromium, usually gives much greater transmission when employed as mask material. The enhancement is contributed to resonant excitation of surface plasmon mode. Further, the transmission can be enhanced by appropriately design of patterns. The polarization of illumination light affects lithography efficiency as well. As illustrative examples, mask patterns like lines group, grating structure and holes array are designed and simulated with greatly improved lithography efficiency. This method is believed to have potential applications in nano lithography.

  14. The immersion foot syndrome. 1946.

    PubMed

    Ungley, C C; Channell, G D; Richards, R L

    2003-01-01

    1. Prolonged exposure of the extremities to cold insufficient to cause tissue freezing produces a well-defined syndrome. 'Immersion foot' is one of the descriptive but inaccurate terms applied to this syndrome. The clinical features, aetiology, pathology, prevention, and treatment of immersion foot are considered in detail. A discussion on pathogenesis is also included. 2. In the natural history of a typical case of immersion foot there are four stages: the period of exposure and the pre-hyperaemic, hyperaemic, and post-hyperaemic stages. 3. During exposure and immediately after rescue the feet are cold, numb, swollen, and pulseless. Intense vasoconstriction sufficient to arrest blood-flow is believed to be the predominant factor during this phase. 4. This is followed by a period of intense hyperaemia, increased swelling, and severe pain. Hyperaemia is due to the release in chilled and ischaemic tissues of relatively stable vasodilator metabolites; pain may be the result of relative anoxia of sensory nerve-endings. 5. Within 7-10 days of rescue the intense hyperaemia and swelling subside and pain diminishes in intensity. A lesser degree of hyperaemia may persist for several weeks. Objective disturbances of sensation and sweating and muscular atrophy and paralysis now become apparent. These findings are correlated with damage to the peripheral nerves. 6. After several weeks the feet become cold-sensitive; when exposed to low temperature they cool abnormally and may remain cold for several hours. Hyperhidrosis frequently accompanies this cold-sensitivity. The factors responsible for these phenomena are incompletely understood; several possible explanations are considered. 7. Severe cases may develop blisters and gangrene. The latter is usually superficial and massive loss of tissue is rare. 8. The hands may be affected but seldom as severely as the feet. The essential features of immersion hand are the same as those of immersion foot. 9. Prognosis depends upon

  15. Immersion in water during labor and delivery.

    PubMed

    2014-04-01

    Immersion in water has been suggested as a beneficial alternative for labor, delivery, or both and over the past decades has gained popularity in many parts of the world. Immersion in water during the first stage of labor may be associated with decreased pain or use of anesthesia and decreased duration of labor. However, there is no evidence that immersion in water during the first stage of labor otherwise improves perinatal outcomes, and it should not prevent or inhibit other elements of care. The safety and efficacy of immersion in water during the second stage of labor have not been established, and immersion in water during the second stage of labor has not been associated with maternal or fetal benefit. Given these facts and case reports of rare but serious adverse effects in the newborn, the practice of immersion in the second stage of labor (underwater delivery) should be considered an experimental procedure that only should be performed within the context of an appropriately designed clinical trial with informed consent. Facilities that plan to offer immersion in the first stage of labor need to establish rigorous protocols for candidate selection, maintenance and cleaning of tubs and immersion pools, infection control procedures, monitoring of mothers and fetuses at appropriate intervals while immersed, and immediately and safely moving women out of the tubs if maternal or fetal concerns develop.

  16. Arf6 controls retromer traffic and intracellular cholesterol distribution via a phosphoinositide-based mechanism

    PubMed Central

    Marquer, Catherine; Tian, Huasong; Yi, Julie; Bastien, Jayson; Dall'Armi, Claudia; Yang-Klingler, YoungJoo; Zhou, Bowen; Chan, Robin Barry; Di Paolo, Gilbert

    2016-01-01

    Small GTPases play a critical role in membrane traffic. Among them, Arf6 mediates transport to and from the plasma membrane, as well as phosphoinositide signalling and cholesterol homeostasis. Here we delineate the molecular basis for the link between Arf6 and cholesterol homeostasis using an inducible knockout (KO) model of mouse embryonic fibroblasts (MEFs). We find that accumulation of free cholesterol in the late endosomes/lysosomes of Arf6 KO MEFs results from mistrafficking of Niemann–Pick type C protein NPC2, a cargo of the cation-independent mannose-6-phosphate receptor (CI-M6PR). This is caused by a selective increase in an endosomal pool of phosphatidylinositol-4-phosphate (PI4P) and a perturbation of retromer, which controls the retrograde transport of CI-M6PR via sorting nexins, including the PI4P effector SNX6. Finally, reducing PI4P levels in KO MEFs through independent mechanisms rescues aberrant retromer tubulation and cholesterol mistrafficking. Our study highlights a phosphoinositide-based mechanism for control of cholesterol distribution via retromer. PMID:27336679

  17. tasiRNA-ARF pathway moderates floral architecture in Arabidopsis plants subjected to drought stress.

    PubMed

    Matsui, Akihiro; Mizunashi, Kayoko; Tanaka, Maho; Kaminuma, Eli; Nguyen, Anh Hai; Nakajima, Maiko; Kim, Jong-Myong; Nguyen, Dong Van; Toyoda, Tetsuro; Seki, Motoaki

    2014-01-01

    In plants, miRNAs and siRNAs, such as transacting siRNAs (ta-siRNAs), affect their targets through distinct regulatory mechanisms. In this study, the expression profiles of small RNAs (smRNAs) in Arabidopsis plants subjected to drought, cold, and high-salinity stress were analyzed using 454 DNA sequencing technology. Expression of three groups of ta-siRNAs (TAS1, TAS2, and TAS3) and their precursors was downregulated in Arabidopsis plants subjected to drought and high-salinity stress. Analysis of ta-siRNA synthesis mutants and mutated ARF3-overexpressing plants that escape the tasiRNA-ARF target indicated that self-pollination was hampered by short stamens in plants under drought and high-salinity stress. Microarray analysis of flower buds of rdr6 and wild-type plants under drought stress and nonstressed conditions revealed that expression of floral development- and auxin response-related genes was affected by drought stress and by the RDR6 mutation. The overall results of the present study indicated that tasiRNA-ARF is involved in maintaining the normal morphogenesis of flowers in plants under stress conditions through fine-tuning expression changes of floral development-related and auxin response-related genes.

  18. Biochemical methods for studying kinetic regulation of Arf1 activation by Sec7

    PubMed Central

    Richardson, Brian C.; Fromme, J. Christopher

    2015-01-01

    The Arf family of small GTPases regulates vesicular transport at several locations within the cell, and is in turn regulated by guanine nucleotide exchange factors (GEFs) via a conserved catalytic domain, termed the Sec7 domain. The catalytic activity of the Sec7 domain is well characterized in the context of a few GEFs acting at the periphery of the cell. This chapter describes techniques used to extend biochemical analysis of activity to the much larger GEFs acting on the Arf family in the core secretory pathway, using the activity of S. cerevisiae Sec7 on Arf1, regulating export from the trans-Golgi network (TGN), as a model. Complete methods for purification to near-homogeneity of all proteins required, including several Sec7 constructs and multiple relevant small GTPases, are detailed. These are followed by methods for quantification of the nucleotide exchange activity of Sec7 in a physiologically relevant context, including modifications required to dissect the signal integration functions of Sec7 as an effector of several other small GTPases, and methods for identifying stable Sec7-small GTPase interactions in the presence of membranes. These techniques may be extended to analysis of similar members of the Sec7 GEF subfamily in other species and acting elsewhere in the secretory pathway. PMID:26360031

  19. Arf6 guanine-nucleotide exchange factor cytohesin-2 regulates myelination in nerves.

    PubMed

    Torii, Tomohiro; Ohno, Nobuhiko; Miyamoto, Yuki; Kawahara, Kazuko; Saitoh, Yurika; Nakamura, Kazuaki; Takashima, Shou; Sakagami, Hiroyuki; Tanoue, Akito; Yamauchi, Junji

    2015-05-01

    In postnatal development of the peripheral nervous system (PNS), Schwann cells differentiate to insulate neuronal axons with myelin sheaths, increasing the nerve conduction velocity. To produce the mature myelin sheath with its multiple layers, Schwann cells undergo dynamic morphological changes. While extracellular molecules such as growth factors and cell adhesion ligands are known to regulate the myelination process, the intracellular molecular mechanism underlying myelination remains unclear. In this study, we have produced Schwann cell-specific conditional knockout mice for cytohesin-2, a guanine-nucleotide exchange factor (GEF) specifically activating Arf6. Arf6, a member of the Ras-like protein family, participates in various cellular functions including cell morphological changes. Cytohesin-2 knockout mice exhibit decreased Arf6 activity and reduced myelin thickness in the sciatic nerves, with decreased expression levels of myelin protein zero (MPZ), the major myelin marker protein. These results are consistent with those of experiments in which Schwann cell-neuronal cultures were treated with pan-cytohesin inhibitor SecinH3. On the other hand, the numbers of Ki67-positive cells in knockout mice and controls are comparable, indicating that cytohesin-2 does not have a positive effect on cell numbers. Thus, signaling through cytohesin-2 is required for myelination by Schwann cells, and cytohesin-2 is added to the list of molecules known to underlie PNS myelination.

  20. Extension of optical lithography by mask-litho integration with computational lithography

    NASA Astrophysics Data System (ADS)

    Takigawa, T.; Gronlund, K.; Wiley, J.

    2010-05-01

    Wafer lithography process windows can be enlarged by using source mask co-optimization (SMO). Recently, SMO including freeform wafer scanner illumination sources has been developed. Freeform sources are generated by a programmable illumination system using a micro-mirror array or by custom Diffractive Optical Elements (DOE). The combination of freeform sources and complex masks generated by SMO show increased wafer lithography process window and reduced MEEF. Full-chip mask optimization using source optimized by SMO can generate complex masks with small variable feature size sub-resolution assist features (SRAF). These complex masks create challenges for accurate mask pattern writing and low false-defect inspection. The accuracy of the small variable-sized mask SRAF patterns is degraded by short range mask process proximity effects. To address the accuracy needed for these complex masks, we developed a highly accurate mask process correction (MPC) capability. It is also difficult to achieve low false-defect inspections of complex masks with conventional mask defect inspection systems. A printability check system, Mask Lithography Manufacturability Check (M-LMC), is developed and integrated with 199-nm high NA inspection system, NPI. M-LMC successfully identifies printable defects from all of the masses of raw defect images collected during the inspection of a complex mask. Long range mask CD uniformity errors are compensated by scanner dose control. A mask CD uniformity error map obtained by mask metrology system is used as input data to the scanner. Using this method, wafer CD uniformity is improved. As reviewed above, mask-litho integration technology with computational lithography is becoming increasingly important.

  1. Pathogenesis of sudden death following water immersion (immersion syndrome)

    NASA Technical Reports Server (NTRS)

    Buhring, M.; Spies, H. F.

    1981-01-01

    Sympathetic activity under cold stress is investigated. Predominantly vagal cardio-depressive reflexes are discussed besides currently known mechanisms of sudden death after water immersion. Pronounced circulatory centralization in diving animals as well as following exposure in cold water indicates additional sympathetic activity. In cold water baths of 15 C, measurements indicate an increase in plasma catecholamine levels by more than 300 percent. This may lead to cardiac arrhythmias by the following mechanisms: cold water essentially induces sinus bradycardia; brady-and tachycardiarrhythmias may supervene as secondary complications; sinusbradycardia may be enhanced by sympathetic hypertonus. Furthermore, ectopic dysrhythmias are liable to be induced by the strictly sympathetic innervation of the ventricle. Myocardial ischemia following a rise in peripheral blood pressure constitutes another arrhythmogenic factor. Some of these reactions are enhanced by alcohol intoxication.

  2. Immersion and dry scanner extensions for sub-10nm production nodes

    NASA Astrophysics Data System (ADS)

    Weichselbaum, Stefan; Bornebroek, Frank; de Kort, Toine; Droste, Richard; de Graaf, Roelof F.; van Ballegoij, Rob; Botter, Herman; McLaren, Matthew G.; de Boeij, Wim P.

    2015-03-01

    Progressing towards the 10nm and 7nm imaging node, pattern-placement and layer-to-layer overlay requirements keep on scaling down and drives system improvements in immersion (ArFi) and dry (ArF/KrF) scanners. A series of module enhancements in the NXT platform have been introduced; among others, the scanner is equipped with exposure stages with better dynamics and thermal control. Grid accuracy improvements with respect to calibration, setup, stability, and layout dependency tighten MMO performance and enable mix and match scanner operation. The same platform improvements also benefit focus control. Improvements in detectability and reproducibility of low contrast alignment marks enhance the alignment solution window for 10nm logic processes and beyond. The system's architecture allows dynamic use of high-order scanner optimization based on advanced actuators of projection lens and scanning stages. This enables a holistic optimization approach for the scanner, the mask, and the patterning process. Productivity scanner design modifications esp. stage speeds and optimization in metrology schemes provide lower layer costs for customers using immersion lithography as well as conventional dry technology. Imaging, overlay, focus, and productivity data is presented, that demonstrates 10nm and 7nm node litho-capability for both (immersion & dry) platforms.

  3. Hybrid hotspot detection using regression model and lithography simulation

    NASA Astrophysics Data System (ADS)

    Kimura, Taiki; Matsunawa, Tetsuaki; Nojima, Shigeki; Pan, David Z.

    2016-03-01

    As minimum feature sizes shrink, unexpected hotspots appear on wafers. Therefore, it is important to detect and fix these hotspots at design stage to reduce development time and manufacturing cost. Currently, as the most accurate approach, lithography simulation is widely used to detect such hotspots. However, it is known to be time-consuming. This paper proposes a novel aerial image synthesizing method using regression and minimum lithography simulation for only hotspot detection. Experimental results show hotspot detection on the proposed method is equivalent compared with the results on the conventional hotspot detection method which uses only lithography simulation with much less computational cost.

  4. Workshop on compact storage ring technology: applications to lithography

    SciTech Connect

    Not Available

    1986-05-30

    Project planning in the area of x-ray lithography is discussed. Three technologies that are emphasized are the light source, the lithographic technology, and masking technology. The needs of the semiconductor industry in the lithography area during the next decade are discussed, particularly as regards large scale production of high density dynamic random access memory devices. Storage ring parameters and an overall exposure tool for x-ray lithography are addressed. Competition in this area of technology from Germany and Japan is discussed briefly. The design of a storage ring is considered, including lattice design, magnets, and beam injection systems. (LEW)

  5. Lithography aspects of dual-damascene interconnect technology

    NASA Astrophysics Data System (ADS)

    Maenhoudt, Mireille; Van Goidsenhoven, Diziana; Pollentier, Ivan K.; Ronse, Kurt G.; Lepage, Muriel; Struyf, Herbert; Van Hove, Marleen

    2001-04-01

    The introduction of Cu and low-k dielectrics in back-end-of- line processes has serious implications for lithography. Different low-k material shave different reflective properties and also the potential use of hard masks has consequences for lithography. Furthermore, depending on the integration scheme that is chosen, various issues for lithography and etch are showing up. While the first photo step is on a planar substrate, the second photo has to cover a topography. This can have large implications on CD uniformity and the amount of material left for the subsequent etch.

  6. Lithography trends based on projections of the ITRS (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Arden, Wolfgang

    2005-06-01

    The microelectronic industry has gone through an enormous technical evolution in the last four decades. Both the tech-nological and economic challenges of microelectronics were increasing consistently in the past few years. This paper discusses the future trends in micro- and nano-technologies with special emphasis on lithography. The trends of minia-turization will be sketched with reference to the International Technology Roadmap for Semiconductors (ITRS). After a description of general trends in technology node timing, an overview will be given on the future lithography require-ments and the technical solutions including options for post-optical lithography as, for example, Extreme UV.

  7. Challenges of 29nm half-pitch NAND Flash STI patterning with 193nm dry lithography and self-aligned double patterning

    NASA Astrophysics Data System (ADS)

    Chiu, M. C.; Lin, Benjamin Szu-Min; Tsai, M. F.; Chang, Y. S.; Yeh, M. H.; Ying, T. H.; Ngai, Chris; Jin, Jaklyn; Yuen, Stephen; Huang, Sem; Chen, Yongmei; Miao, Liyan; Tai, Kevin; Conley, Amiad; Liu, Ian

    2008-11-01

    High NA (1.35) Immersion litho runs into the fundamental limit of printing at 40-45nm half pitch (HP). The next generation EUVL tool is known to be ready not until year 2012. Double patterning (DP) technology has been identified as the extension of optical photolithography technologies to 3xnm and 2xnm half-pitch for the low k1 regime to fill in the gap between Immersion lithography and EUVL. Self Aligned Double Patterning (SADP) Technology utilized mature process technology to reduce risk and faster time to market to support the continuation of Moore's Law of Scaling to reduce the cost/function. SADP uses spacer to do the pitch splitting bypass the conventional double patterning (e.g. Litho-Freeze-Litho-Etch (LFLE), or Litho-Etch-Litho-Etch (LELE)) overlay problem. Having a tight overlay performance is extremely critical for NAND Flash manufacturers to achieve a fast yield ramp in production. This paper describes the challenges and accomplishment of a Line-By-Spacer (LBS) SADP scheme to pattern the 29nm half-pitch NAND Flash STI application. A 193nm Dry lithography was chosen to pattern on top of the amorphous carbon (a-C) film stack. The resist pattern will be transferred on the top a-C core layer follow by spacer deposition and etch to achieve the pitch splitting. Then the spacer will be used to transfer to the bottom a-C universal hardmask. This high selectivity a-C hardmask will be used to transfer the 29nm half-pitch pattern to the STI. Good within wafer CD uniformity (CDU) <2nm and line width roughness (LWR) <2nm for the 29nm half-pitch NAND FLASH STI were demonstrated as the benefits using double amorphous carbon hardmask layers. The relationships among the photoresist CDs, CD trimming , as-deposited spacer film thickness, spacer width and the final STI line/core space/gap space CDs will also be discussed in this paper since patterning is combining both lithography performance with CVD and Etch process performance. Film selection for amorphous carbon and

  8. Photoresist composition for extreme ultraviolet lithography

    DOEpatents

    Felter, T. E.; Kubiak, G. D.

    1999-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods. A photoresist composition for extreme ultraviolet radiation of boron carbide polymers, hydrochlorocarbons and mixtures thereof.

  9. Inverse lithography using sparse mask representations

    NASA Astrophysics Data System (ADS)

    Ionescu, Radu C.; Hurley, Paul; Apostol, Stefan

    2015-03-01

    We present a novel optimisation algorithm for inverse lithography, based on optimization of the mask derivative, a domain inherently sparse, and for rectilinear polygons, invertible. The method is first developed assuming a point light source, and then extended to general incoherent sources. What results is a fast algorithm, producing manufacturable masks (the search space is constrained to rectilinear polygons), and flexible (specific constraints such as minimal line widths can be imposed). One inherent trick is to treat polygons as continuous entities, thus making aerial image calculation extremely fast and accurate. Requirements for mask manufacturability can be integrated in the optimization without too much added complexity. We also explain how to extend the scheme for phase-changing mask optimization.

  10. Anamorphic high-NA EUV lithography optics

    NASA Astrophysics Data System (ADS)

    Migura, Sascha; Kneer, Bernhard; Neumann, Jens Timo; Kaiser, Winfried; van Schoot, Jan

    2015-09-01

    EUV lithography (EUVL) for a limit resolution below 8 nm requires the numerical aperture (NA) of the projection optics to be larger than 0.50. For such a high-NA optics a configuration of 4x magnification, full field size of 26 x 33 mm² and 6'' mask is not feasible anymore. The increased chief ray angle and higher NA at reticle lead to non-acceptable mask shadowing effects. These shadowing effects can only be controlled by increasing the magnification, hence reducing the system productivity or demanding larger mask sizes. We demonstrate that the best compromise in imaging, productivity and field split is a so-called anamorphic magnification and a half field of 26 x 16.5 mm² but utilizing existing 6'' mask infrastructure. We discuss the optical solutions for such anamorphic high-NA EUVL.

  11. Femtolitre chemistry assisted by microfluidic pen lithography

    PubMed Central

    Carbonell, Carlos; Stylianou, Kyriakos C.; Hernando, Jordi; Evangelio, Emi; Barnett, Sarah A.; Nettikadan, Saju; Imaz, Inhar; Maspoch, Daniel

    2013-01-01

    Chemical reactions at ultrasmall volumes are becoming increasingly necessary to study biological processes, to synthesize homogenous nanostructures and to perform high-throughput assays and combinatorial screening. Here we show that a femtolitre reaction can be realized on a surface by handling and mixing femtolitre volumes of reagents using a microfluidic stylus. This method, named microfluidic pen lithography, allows mixing reagents in isolated femtolitre droplets that can be used as reactors to conduct independent reactions and crystallization processes. This strategy overcomes the high-throughput limitations of vesicles and micelles and obviates the usually costly step of fabricating microdevices and wells. We anticipate that this process enables performing distinct reactions (acid-base, enzymatic recognition and metal-organic framework synthesis), creating multiplexed nanoscale metal-organic framework arrays, and screening combinatorial reactions to evaluate the crystallization of novel peptide-based materials. PMID:23863998

  12. Lithography process window analysis with calibrated model

    NASA Astrophysics Data System (ADS)

    Zhou, Wenzhan; Yu, Jin; Lo, James; Liu, Johnson

    2004-05-01

    As critical-dimension shrink below 0.13 μm, the SPC (Statistical Process Control) based on CD (Critical Dimension) control in lithography process becomes more difficult. Increasing requirements of a shrinking process window have called on the need for more accurate decision of process window center. However in practical fabrication, we found that systematic error introduced by metrology and/or resist process can significantly impact the process window analysis result. Especially, when the simple polynomial functions are used to fit the lithographic data from focus exposure matrix (FEM), the model will fit these systematic errors rather than filter them out. This will definitely impact the process window analysis and determination of the best process condition. In this paper, we proposed to use a calibrated first principle model to do process window analysis. With this method, the systematic metrology error can be filtered out efficiently and give a more reasonable window analysis result.

  13. Nanoimprint lithography using disposable biomass template

    NASA Astrophysics Data System (ADS)

    Hanabata, Makoto; Takei, Satoshi; Sugahara, Kigen; Nakajima, Shinya; Sugino, Naoto; Kameda, Takao; Fukushima, Jiro; Matsumoto, Yoko; Sekiguchi, Atsushi

    2016-04-01

    A novel nanoimprint lithography process using disposable biomass template having gas permeability was investigated. It was found that a disposable biomass template derived from cellulose materials shows an excellent gas permeability and decreases transcriptional defects in conventional templates such as quartz, PMDS, DLC that have no gas permeability. We believe that outgasses from imprinted materials are easily removed through the template. The approach to use a cellulose for template material is suitable as the next generation of clean separation technology. It is expected to be one of the defect-less thermal nanoimprint lithographic technologies. It is also expected that volatile materials and solvent including materials become available that often create defects and peelings in conventional temples that have no gas permeability.

  14. A survey of advanced excimer optical imaging and lithography

    NASA Astrophysics Data System (ADS)

    Matsumoto, Koichi; Suwa, Kyoichi

    1998-11-01

    The first item discussed in this paper is to estimate the future trend regarding minimum geometry and the optical parameters, such as NA and wavelength. Simulations based on aerial images are performed for the estimation. The resolution limit is defined as a minimum feature size which retains practical depth of focus (DOF). Pattern geometry is classified into two categories, which are dense lines and isolated lines. Available wavelengths are assumed to be KrF excimer laser (λ=248 nm), ArF excimer laser (λ=193 nm) and F2 excimer laser (λ=157 nm). Based upon the simulation results, the resolution limit is estimated for each geometry and each wavelength. The second item is to survey ArF optics. At present, the ArF excimer laser is regarded as one of the most promising candidates as a next-generation light source. Discussions are ranging over some critical issues. The lifetime of ArF optics supposedly limited by the radiation compaction of silica glass is estimated in comparison with KrF optics. Availability of calcium fluoride (CaF2) is also discussed. As a designing issue, a comparative study is made about the optical configuration, dioptric or catadioptric. In the end, our resist-based performance is shown.

  15. Novel electrostatic column for ion projection lithography

    SciTech Connect

    Chalupka, A.; Stengl, G.; Buschbeck, H.; Lammer, G.; Vonach, H.; Fischer, R.; Hammel, E.; Loeschner, H.; Nowak, R.; Wolf, P. ); Finkelstein, W.; Hill, R.W. ); Berry, I.L. ); Harriott, L.R. ); Melngailis, J. ); Randall, J.N. ); Wolfe, J.C. ); Stroh, H.; Wollnik, H. ); Mondelli, A.A.; Petillo, J.J. ); Leung, K. (Lawrence Berkeley Laboratory, University of Californi

    1994-11-01

    Ion projection lithography (IPL) is being considered for high volume sub-0.25-[mu]m lithography. A novel ion-optical column has been designed for exposing 20[times]20 mm[sup 2] fields at 3[times] reduction from stencil mask to wafer substrates. A diverging lens is realized by using the stencil mask as the first electrode of the ion-optical column. The second and third electrode form an accelerating field lens. The aberrations of the first two lenses (diverging lens and field lens) are compensated by an asymmetric Einzel lens projecting an ion image of the stencil mask openings onto the wafer substrate with better than 2 mrad telecentricity. Less than 30 nm intrafield distortion was calculated within 20[times]20 mm[sup 2] exposure fields. The calculation uncertainty is estimated to be about 10 nm. The calculation holds for helium ions with [approx]10 keV ion energy at the stencil mask and 150 keV ion energy at the wafer plane. A virtual ion source size of 10 [mu]m has been assumed. The calculated chromatic aberrations are less than 60 nm, assuming 6 eV energy spread of the ions extracted from a duoplasmatron source. Recently a multicusp ion source has been developed for which preliminary results indicate an energy spread of less than 2 eV. Thus, with a multicusp source chromatic aberrations of less than 20 nm are to be expected. The ion energy at the crossover between the field lens and the asymmetric Einzel lens is 200 keV. Therefore, stochastic space charge induced degradations in resolution can be kept sufficiently low. The divergence of the ion image projected to the wafer plane is less than 2 mrad. Thus, the usable'' depth of focus for the novel ion optics is in the order of 10 [mu]m.

  16. Integrating nanosphere lithography in device fabrication

    NASA Astrophysics Data System (ADS)

    Laurvick, Tod V.; Coutu, Ronald A.; Lake, Robert A.

    2016-03-01

    This paper discusses the integration of nanosphere lithography (NSL) with other fabrication techniques, allowing for nano-scaled features to be realized within larger microelectromechanical system (MEMS) based devices. Nanosphere self-patterning methods have been researched for over three decades, but typically not for use as a lithography process. Only recently has progress been made towards integrating many of the best practices from these publications and determining a process that yields large areas of coverage, with repeatability and enabled a process for precise placement of nanospheres relative to other features. Discussed are two of the more common self-patterning methods used in NSL (i.e. spin-coating and dip coating) as well as a more recently conceived variation of dip coating. Recent work has suggested the repeatability of any method depends on a number of variables, so to better understand how these variables affect the process a series of test vessels were developed and fabricated. Commercially available 3-D printing technology was used to incrementally alter the test vessels allowing for each variable to be investigated individually. With these deposition vessels, NSL can now be used in conjunction with other fabrication steps to integrate features otherwise unattainable through current methods, within the overall fabrication process of larger MEMS devices. Patterned regions in 1800 series photoresist with a thickness of ~700nm are used to capture regions of self-assembled nanospheres. These regions are roughly 2-5 microns in width, and are able to control the placement of 500nm polystyrene spheres by controlling where monolayer self-assembly occurs. The resulting combination of photoresist and nanospheres can then be used with traditional deposition or etch methods to utilize these fine scale features in the overall design.

  17. Benchtop micromolding of polystyrene by soft lithography.

    PubMed

    Wang, Yuli; Balowski, Joseph; Phillips, Colleen; Phillips, Ryan; Sims, Christopher E; Allbritton, Nancy L

    2011-09-21

    Polystyrene (PS), a standard material for cell culture consumable labware, was molded into microstructures with high fidelity of replication by an elastomeric polydimethylsiloxane (PDMS) mold. The process was a simple, benchtop method based on soft lithography using readily available materials. The key to successful replica molding by this simple procedure relies on the use of a solvent, for example, gamma-butyrolactone, which dissolves PS without swelling the PDMS mold. PS solution was added to the PDMS mold, and evaporation of the solvent was accomplished by baking the mold on a hotplate. Microstructures with feature sizes as small as 3 μm and aspect ratios as large as 7 were readily molded. Prototypes of microfluidic chips made from PS were prepared by thermal bonding of a microchannel molded in PS with a flat PS substrate. The PS microfluidic chip displayed much lower adsorption and absorption of hydrophobic molecules (e.g. rhodamine B) compared to a comparable chip created from PDMS. The molded PS surface exhibited stable surface properties after plasma oxidation as assessed by contact angle measurement. The molded, oxidized PS surface remained an excellent surface for cell culture based on cell adhesion and proliferation. To demonstrate the application of this process for cell biology research, PS was micromolded into two different microarray formats, microwells and microposts, for segregation and tracking of non-adherent and adherent cells, respectively. The micromolded PS possessed properties that were ideal for biological and bioanalytical needs, thus making it an alternative material to PDMS and suitable for building lab-on-a-chip devices by soft lithography methods.

  18. Learning Relative Motion Concepts in Immersive and Non-Immersive Virtual Environments

    ERIC Educational Resources Information Center

    Kozhevnikov, Michael; Gurlitt, Johannes; Kozhevnikov, Maria

    2013-01-01

    The focus of the current study is to understand which unique features of an immersive virtual reality environment have the potential to improve learning relative motion concepts. Thirty-seven undergraduate students learned relative motion concepts using computer simulation either in immersive virtual environment (IVE) or non-immersive desktop…

  19. Auxin Response Gene SlARF3 Plays Multiple Roles in Tomato Development and is Involved in the Formation of Epidermal Cells and Trichomes.

    PubMed

    Zhang, Xiaolan; Yan, Fang; Tang, Yuwei; Yuan, Yujin; Deng, Wei; Li, Zhengguo

    2015-11-01

    The auxin response factor (ARF) genes encode a large family of proteins involved in auxin signaling transduction. SlARF3, a member of the ARF gene family, encodes a protein containing two conserved domains, B3 and ARF, and lacking an Aux/IAA domain. Expression analysis showed that SlARF3 has a particularly high expression level in trichomes. In situ hybridization also detected the SlARF3 transcripts in epidermal pavement cells of leaves. The physiological function of SlARF3 was studied by using the RNA interference (RNAi) strategy. SlARF3-down-regulated plants exhibited decreased density of epidermal pavement cells and obviously reduced density of type I, V and VI trichomes of leaves, which indicates the important role of SlARF3 in the formation of trichomes and epidermal cells in tomato. The number of shoot xylem cells was also decreased in SlARF3-down-regulated lines. Furthermore, RNA-sequencing (RNA-Seq) analysis identified 51 differentially expressed genes (DEGs) belonging to 14 transcription factor (TF) families, such as MYB, bHLH, WD40 and C2H2 zinc finger. Twenty-seven DEGs were involved in the metabolism and signaling transduction of phytohormones, such as auxin, ethylene and gibberellin. These results indicated the important roles of the TFs and hormones in auxin-dependent transcriptional regulation of trichome formation in tomato. Taken together, our results demonstrate that SlARF3 plays an important role in the formation of epidermal cells and trichomes and reveal novel and specific functions for ARFs in tomato developmental processes. PMID:26412778

  20. Game engines and immersive displays

    NASA Astrophysics Data System (ADS)

    Chang, Benjamin; Destefano, Marc

    2014-02-01

    While virtual reality and digital games share many core technologies, the programming environments, toolkits, and workflows for developing games and VR environments are often distinct. VR toolkits designed for applications in visualization and simulation often have a different feature set or design philosophy than game engines, while popular game engines often lack support for VR hardware. Extending a game engine to support systems such as the CAVE gives developers a unified development environment and the ability to easily port projects, but involves challenges beyond just adding stereo 3D visuals. In this paper we outline the issues involved in adapting a game engine for use with an immersive display system including stereoscopy, tracking, and clustering, and present example implementation details using Unity3D. We discuss application development and workflow approaches including camera management, rendering synchronization, GUI design, and issues specific to Unity3D, and present examples of projects created for a multi-wall, clustered, stereoscopic display.

  1. Immersive video for virtual tourism

    NASA Astrophysics Data System (ADS)

    Hernandez, Luis A.; Taibo, Javier; Seoane, Antonio J.

    2001-11-01

    This paper describes a new panoramic, 360 degree(s) video system and its use in a real application for virtual tourism. The development of this system has required to design new hardware for multi-camera recording, and software for video processing in order to elaborate the panorama frames and to playback the resulting high resolution video footage on a regular PC. The system makes use of new VR display hardware, such as WindowVR, in order to make the view dependent on the viewer's spatial orientation and so enhance immersiveness. There are very few examples of similar technologies and the existing ones are extremely expensive and/or impossible to be implemented on personal computers with acceptable quality. The idea of the system starts from the concept of Panorama picture, developed in technologies such as QuickTimeVR. This idea is extended to the concept of panorama frame that leads to panorama video. However, many problems are to be solved to implement this simple scheme. Data acquisition involves simultaneously footage recording in every direction, and latter processing to convert every set of frames in a single high resolution panorama frame. Since there is no common hardware capable of 4096x512 video playback at 25 fps rate, it must be stripped in smaller pieces which the system must manage to get the right frames of the right parts as the user movement demands it. As the system must be immersive, the physical interface to watch the 360 degree(s) video is a WindowVR, that is, a flat screen with an orientation tracker that the user holds in his hands, moving it like if it were a virtual window through which the city and its activity is being shown.

  2. Initiation of immersed granular avalanches.

    PubMed

    Mutabaruka, Patrick; Delenne, Jean-Yves; Soga, Kenichi; Radjai, Farhang

    2014-05-01

    By means of coupled molecular dynamics-computational fluid dynamics simulations, we analyze the initiation of avalanches in a granular bed of spherical particles immersed in a viscous fluid and inclined above its angle of repose. In quantitative agreement with experiments, we find that the bed is unstable for a packing fraction below 0.59 but is stabilized above this packing fraction by negative excess pore pressure induced by the effect of dilatancy. From detailed numerical data, we explore the time evolution of shear strain, packing fraction, excess pore pressures, and granular microstructure in this creeplike pressure redistribution regime, and we show that they scale excellently with a characteristic time extracted from a model based on the balance of granular stresses in the presence of a negative excess pressure and its interplay with dilatancy. The cumulative shear strain at failure is found to be ≃ 0.2, in close agreement with the experiments, irrespective of the initial packing fraction and inclination angle. Remarkably, the avalanche is triggered when dilatancy vanishes instantly as a result of fluctuations while the average dilatancy is still positive (expanding bed) with a packing fraction that declines with the initial packing fraction. Another nontrivial feature of this creeplike regime is that, in contrast to dry granular materials, the internal friction angle of the bed at failure is independent of dilatancy but depends on the inclination angle, leading therefore to a nonlinear dependence of the excess pore pressure on the inclination angle. We show that this behavior may be described in terms of the contact network anisotropy, which increases with a nearly constant connectivity and levels off at a value (critical state) that increases with the inclination angle. These features suggest that the behavior of immersed granular materials is controlled not only directly by hydrodynamic forces acting on the particles but also by the influence of the

  3. Research on evaluation techniques for immersive multimedia

    NASA Astrophysics Data System (ADS)

    Hashim, Aslinda M.; Romli, Fakaruddin Fahmi; Zainal Osman, Zosipha

    2013-03-01

    Nowadays Immersive Multimedia covers most usage in tremendous ways, such as healthcare/surgery, military, architecture, art, entertainment, education, business, media, sport, rehabilitation/treatment and training areas. Moreover, the significant of Immersive Multimedia to directly meet the end-users, clients and customers needs for a diversity of feature and purpose is the assembly of multiple elements that drive effective Immersive Multimedia system design, so evaluation techniques is crucial for Immersive Multimedia environments. A brief general idea of virtual environment (VE) context and `realism' concept that formulate the Immersive Multimedia environments is then provided. This is followed by a concise summary of the elements of VE assessment technique that is applied in Immersive Multimedia system design, which outlines the classification space for Immersive Multimedia environments evaluation techniques and gives an overview of the types of results reported. A particular focus is placed on the implications of the Immersive Multimedia environments evaluation techniques in relation to the elements of VE assessment technique, which is the primary purpose of producing this research. The paper will then conclude with an extensive overview of the recommendations emanating from the research.

  4. Wedge immersed thermistor bolometer measures infrared radiation

    NASA Technical Reports Server (NTRS)

    Dreyfus, M. G.

    1965-01-01

    Wedge immersed-thermistor bolometer measures infrared radiation in the atmosphere. The thermistor flakes are immersed by optical contact on a wedge-shaped germanium lens whose narrow dimension is clamped between two complementary wedge-shaped germanium blocks bonded with a suitable adhesive.

  5. Immersion Education in China: Teachers' Perspectives

    ERIC Educational Resources Information Center

    Kong, Stella; Hoare, Philip; Chi, Yanping

    2011-01-01

    This paper investigates the views of immersion teachers in Hong Kong and Xi'an towards the immersion curriculum they are teaching. Teachers are important stakeholders in any curriculum implementation and their views are significant in both evaluating progress and determining future directions. The teachers' views were gathered from questionnaires…

  6. Immersive 3D Geovisualization in Higher Education

    ERIC Educational Resources Information Center

    Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold

    2015-01-01

    In this study, we investigate how immersive 3D geovisualization can be used in higher education. Based on MacEachren and Kraak's geovisualization cube, we examine the usage of immersive 3D geovisualization and its usefulness in a research-based learning module on flood risk, called GEOSimulator. Results of a survey among participating students…

  7. Immersive virtual reality simulations in nursing education.

    PubMed

    Kilmon, Carol A; Brown, Leonard; Ghosh, Sumit; Mikitiuk, Artur

    2010-01-01

    This article explores immersive virtual reality as a potential educational strategy for nursing education and describes an immersive learning experience now being developed for nurses. This pioneering project is a virtual reality application targeting speed and accuracy of nurse response in emergency situations requiring cardiopulmonary resuscitation. Other potential uses and implications for the development of virtual reality learning programs are discussed. PMID:21086871

  8. Libraries of La Pocatiere: French Immersion Programs

    ERIC Educational Resources Information Center

    Kuntz, Patricia, S.

    2005-01-01

    Many times summer language immersion administrators and instructors overlook the rich collections housed in various town libraries. Students of French immersion programs have an opportunity to utilize local libraries. This essay describes the facilities and services of five libraries in La Pocatiere, Quebec. A series of interviews of librarians…

  9. Bringing Chinese Immersion to Western Massachusetts

    ERIC Educational Resources Information Center

    Wang, Kathleen

    2009-01-01

    This article describes the Pioneer Valley Chinese Immersion Charter School (PVCICS), a regional public charter school in western Massachusetts, which opened in 2007 and the only Chinese immersion school in New England. The school draws students from over twenty-five towns and cities in a predominantly rural area of Massachusetts that includes the…

  10. Compact imaging spectrometer utilizing immersed gratings

    DOEpatents

    Lerner, Scott A.

    2005-12-20

    A compact imaging spectrometer comprising an entrance slit for directing light, lens means for receiving the light, refracting the light, and focusing the light; an immersed diffraction grating that receives the light from the lens means and defracts the light, the immersed diffraction grating directing the detracted light back to the lens means; and a detector that receives the light from the lens means.

  11. Social Interaction Development through Immersive Virtual Environments

    ERIC Educational Resources Information Center

    Beach, Jason; Wendt, Jeremy

    2014-01-01

    The purpose of this pilot study was to determine if participants could improve their social interaction skills by participating in a virtual immersive environment. The participants used a developing virtual reality head-mounted display to engage themselves in a fully-immersive environment. While in the environment, participants had an opportunity…

  12. Identification and expression profiling of the auxin response factors (ARFs) in the tea plant (Camellia sinensis (L.) O. Kuntze) under various abiotic stresses.

    PubMed

    Xu, Yan-Xia; Mao, Juan; Chen, Wei; Qian, Ting-Ting; Liu, Sheng-Chuan; Hao, Wan-Jun; Li, Chun-Fang; Chen, Liang

    2016-01-01

    Auxin response factor (ARF) proteins are a multigene family of regulators involved in various physiological and developmental processes in plants. However, their modes of action in the tea plant (Camellia sinensis) remain largely unknown. In this study, we identified 15 members of the tea ARF gene family, using the public information about C. sinensis, both in our laboratory, as well as in other laboratories, and analyzed their phylogenetic relationships, conserved domains and the compositions of the amino acids in the middle region. A comprehensive expression analysis in different tissues and organs revealed that many ARF genes were expressed in a tissue-specific manner, suggesting they have different functions in the growth and development processes of the tea plant. The expression analysis under three forms of auxin (indole-3-acetic acid, 2,4-dichlorophenoxyacetic acid, naphthylacetic acid) treatment showed that the majority of the ARF genes were down-regulated in the shoots and up-regulated in the roots, suggesting opposite action mechanisms of the ARF genes in the shoots and roots. The expression levels of most ARF genes were changed under various phytohormone and abiotic stresses, indicating the ARF gene family plays important roles in various phytohormone and abiotic stress signals and may mediate the crosstalk between phytohormones and abiotic stresses. The current study provides basic information for the ARF genes of the tea plant and will pave the way for deciphering the precise role of ARFs in tea developmental processes and breeding stress-tolerant tea varieties.

  13. A Luman/CREB3–ADP-ribosylation factor 4 (ARF4) signaling pathway mediates the response to Golgi stress and susceptibility to pathogens

    PubMed Central

    Reiling, Jan H.; Olive, Andrew J.; Sanyal, Sumana; Carette, Jan E.; Brummelkamp, Thijn R.; Ploegh, Hidde L.; Starnbach, Michael N.; Sabatini, David M.

    2014-01-01

    SUMMARY Treatment of cells with Brefeldin A (BFA) blocks secretory vesicle transport and causes a collapse of the Golgi apparatus. To gain more insight into the cellular mechanisms mediating BFA toxicity, we conducted a genome-wide haploid genetic screen that led to the identification of the small G protein ADP-ribosylation factor 4 (ARF4). ARF4 depletion preserves viability, Golgi integrity and cargo trafficking in the presence of BFA, and these effects depend on the guanine nucleotide exchange factor GBF1 and other ARF isoforms including ARF1 and ARF5. ARF4 knockdown cells show increased resistance to several human pathogens including Chlamydia trachomatis and Shigella flexneri. Furthermore, ARF4 expression is induced when cells are exposed to several Golgi-disturbing agents and requires the CREB3/Luman transcription factor whose downregulation mimics ARF4 loss. Thus, we have uncovered a CREB3–ARF4 signaling cascade that may be part of a Golgi stress response set in motion by stimuli compromising Golgi capacity. PMID:24185178

  14. Human DMTF1β antagonizes DMTF1α regulation of the p14ARF Tumor Suppressor and Promotes Cellular Proliferation

    PubMed Central

    Tschan, Mario P.; Federzoni, Elena A.; Haimovici, Aladin; Britschgi, Christian; Moser, Bettina A.; Jin, Jing; Reddy, Venkateshwar A.; Sheeter, Dennis A.; Fischer, Kimberlee M.; Sun, Peiqing; Torbett, Bruce E.

    2015-01-01

    The human DMTF1 (DMP1) transcription factor, a DNA binding protein that interacts with cyclin D, is a positive regulator of the p14ARF (ARF) tumor suppressor. Our earlier studies have shown that three differentially spliced human DMP1 mRNAs, α, β and γ, arise from the human gene. We now show that DMP1α, β and γ isoforms differentially regulate ARF expression and promote distinct cellular functions. In contrast to DMP1α, DMP1β and γ did not activate the ARF promoter, whereas only β resulted in a dose-dependent inhibition of DMP1α-induced transactivation of the ARF promoter. Ectopic expression of DMP1β reduced endogenous ARF mRNA levels in human fibroblasts. The DMP1β- and γ-isoforms share domains necessary for the inhibitory function of the β-isoform. That DMP1β may interact with DMP1α to antagonize its function was shown in DNA binding assays and in cells by the close proximity of DMP1α/β in the nucleus. Cells stably expressing DMP1β, as well as shRNA targeting all DMP1 isoforms, disrupted cellular growth arrest induced by serum deprivation or in PMA-derived macrophages in the presence or absence of cellular p53. DMP1 mRNA levels in acute myeloid leukemia samples, as compared to granulocytes, were reduced. Treatment of acute promyelocytic leukemia patient samples with all-trans retinoic acid promoted differentiation to granulocytes and restored DMP1 transcripts to normal granulocyte levels. Our findings imply that DMP1α- and β-ratios are tightly regulated in hematopoietic cells and DMP1β antagonizes DMP1α transcriptional regulation of ARF resulting in the alteration of cellular control with a gain in proliferation. PMID:26187004

  15. Long noncoding RNA, polycomb, and the ghosts haunting INK4b-ARF-INK4a expression.

    PubMed

    Aguilo, Francesca; Zhou, Ming-Ming; Walsh, Martin J

    2011-08-15

    Polycomb group proteins (PcG) function as transcriptional repressors of gene expression. The important role of PcG in mediating repression of the INK4b-ARF-INK4a locus, by directly binding to the long noncoding RNA (lncRNA) transcript antisense noncoding RNA in the INK4 locus (ANRIL), was recently shown. INK4b-ARF-INK4a encodes 3 tumor-suppressor proteins, p15(INK4b), p14(ARF), and p16(INK4a), and its transcription is a key requirement for replicative or oncogene-induced senescence and constitutes an important barrier for tumor growth. ANRIL gene is transcribed in the antisense orientation of the INK4b-ARF-INK4a gene cluster, and different single-nucleotide polymorphisms are associated with increased susceptibility to several diseases. Although lncRNA-mediated regulation of INK4b-ARF-INK4a gene is not restricted to ANRIL, both polycomb repressive complex-1 (PRC1) and -2 (PRC2) interact with ANRIL to form heterochromatin surrounding the INK4b-ARF-INK4a locus, leading to its repression. This mechanism would provide an increased advantage for bypassing senescence, sustaining the requirements for the proliferation of stem and/or progenitor cell populations or inappropriately leading to oncogenesis through the aberrant saturation of the INK4b-ARF-INK4a locus by PcG complexes. In this review, we summarize recent findings on the underlying epigenetic mechanisms that link PcG function with ANRIL, which impose gene silencing to control cellular homeostasis as well as cancer development. PMID:21828241

  16. Long Noncoding RNA, Polycomb, and the Ghosts Haunting INK4b-ARF-INK4a Expression

    PubMed Central

    Aguilo, Francesca; Zhou, Ming-Ming; Walsh, Martin J.

    2012-01-01

    Polycomb group proteins (PcG) function as transcriptional repressors of gene expression. The important role of PcG in mediating repression of the INK4b-ARF-INK4a locus, by directly binding to the long noncoding RNA (lncRNA) transcript antisense noncoding RNA in the INK4 locus (ANRIL), was recently shown. INK4b-ARF-INK4a encodes 3 tumor-suppressor proteins, p15INK4b, p14ARF, and p16INK4a, and its transcription is a key requirement for replicative or oncogene-induced senescence and constitutes an important barrier for tumor growth. ANRIL gene is transcribed in the antisense orientation of the INK4b-ARF-INK4a gene cluster, and different single-nucleotide polymorphisms are associated with increased susceptibility to several diseases. Although lncRNA-mediated regulation of INK4b-ARF-INK4a gene is not restricted to ANRIL, both polycomb repressive complex-1 (PRC1) and -2 (PRC2) interact with ANRIL to form heterochromatin surrounding the INK4b-ARF-INK4a locus, leading to its repression. This mechanism would provide an increased advantage for bypassing senescence, sustaining the requirements for the proliferation of stem and/or progenitor cell populations or inappropriately leading to oncogenesis through the aberrant saturation of the INK4b-ARF-INK4a locus by PcG complexes. In this review, we summarize recent findings on the underlying epigenetic mechanisms that link PcG function with ANRIL, which impose gene silencing to control cellular homeostasis as well as cancer development. PMID:21828241

  17. Impacts of cost functions on inverse lithography patterning.

    PubMed

    Yu, Jue-Chin; Yu, Peichen

    2010-10-25

    For advanced CMOS processes, inverse lithography promises better patterning fidelity than conventional mask correction techniques due to a more complete exploration of the solution space. However, the success of inverse lithography relies highly on customized cost functions whose design and know-how have rarely been discussed. In this paper, we investigate the impacts of various objective functions and their superposition for inverse lithography patterning using a generic gradient descent approach. We investigate the most commonly used objective functions, which are the resist and aerial images, and also present a derivation for the aerial image contrast. We then discuss the resulting pattern fidelity and final mask characteristics for simple layouts with a single isolated contact and two nested contacts. We show that a cost function composed of a dominant resist-image component and a minor aerial-image or image-contrast component can achieve a good mask correction and contour targets when using inverse lithography patterning.

  18. Direct-write scanning probe lithography: towards a desktop fab

    NASA Astrophysics Data System (ADS)

    Giam, Louise R.; Senesi, Andrew J.; Liao, Xing; Wong, Lu Shin; Chai, Jinan; Eichelsdoerfer, Daniel J.; Shim, Wooyoung; Rasin, Boris; He, Shu; Mirkin, Chad A.

    2011-06-01

    Massively parallel scanning-probe based methods have been used to address the challenges of nanometer to millimeter scale printing for a variety of materials and mark a step towards the realization of a "desktop fab." Such tools enable simple, flexible, high-throughput, and low-cost nano- and microscale patterning, which allow researchers to rapidly synthesize and study systems ranging from nanoparticle synthesis to biological processes. We have developed a novel scanning probe-based cantilever-free printing method termed polymer pen lithography (PPL), which uses an array of elastomeric tips to transfer materials (e.g. alkanethiols, proteins, polymers) in a direct-write manner onto a variety of surfaces. This technique takes the best attributes of dip-pen nanolithography (DPN) and eliminates many of the disadvantages of contact printing. Various related techniques such as beam pen lithography (BPL), scanning probe block copolymer lithography (SPBCL), and hard-tip, soft spring lithography (HSL) are also discussed.

  19. Depth of immersion as a determinant of the natriuresis of water immersion

    NASA Technical Reports Server (NTRS)

    Epstein, M.; Miller, M.; Schneider, N.

    1974-01-01

    The current study was undertaken to further assess the contribution of an immersion-induced hydrostatic pressure gradient on the redistribution of blood volume. The rate of sodium excretion by seated subjects was significantly increased by water immersion up to the chest and neck compared to waist immersion and controls. These results are consistent with the hypothesis that whereas immersion to the level of the diaphragm merely cancels the intravascular hydrostatic pressure gradient by providing an identical external gradient, immersion above the diaphragm level results in increased water pressure which tends to favor a shift in blood volume from the lower extremities.

  20. Compact imaging spectrometer utilizing immersed gratings

    DOEpatents

    Chrisp, Michael P.; Lerner, Scott A.; Kuzmenko, Paul J.; Bennett, Charles L.

    2007-07-03

    A compact imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The imaging spectrometer comprises an entrance slit for transmitting light, means for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the means for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the means for receiving the light and the means for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light to the means for receiving the light, and the means for receiving the light directs the light to the detector array.

  1. Evolution in the concentration of activities in lithography

    NASA Astrophysics Data System (ADS)

    Levinson, Harry J.

    2016-03-01

    From a perusal of the proceedings of the SPIE Advanced Lithography Symposium, the progression of new concepts in lithographic technology can be seen. A new idea first appears in a few papers, and over time, there is an increase in the number of papers on the same topic. Eventually the method becomes commonplace, and the number of papers on the topic declines, as the idea becomes part of our industry's working knowledge. For example, one or two papers on resolution enhancement techniques (RETs) appeared in the proceedings of the Optical Microlithography Conference in 1989 and 1990. By 1994, the total number of papers had increased to 35. Early lithographers focused on practical issues, such as adhesion promotion and resist edge bead. The introduction of simulation software brought on the next era of lithography. This was followed by a period of time in which RETs were developed and brought to maturity. The introduction of optical proximity corrections (OPC) initiated the next major era of lithography. The traditional path for scaling by using shorter wavelengths, decreasing k1 and increasing numerical aperture has given way to the current era of optical multiple patterning and lithography-design co-optimization. There has been sufficient activity in EUV lithography R and D to justify a separate EUV Lithography Conference as part of the annual Advanced Lithography Symposium. Each era builds on the cumulative knowledge gained previously. Over time, there have been parallel developments in optics, exposure tools, resist, metrology and mask technology, many of which were associated with changes in the wavelength of light used for leading-edge lithography.

  2. Successful demonstration of a comprehensive lithography defect monitoring strategy

    NASA Astrophysics Data System (ADS)

    Peterson, Ingrid B.; Breaux, Louis H.; Cross, Andrew; von den Hoff, Michael

    2003-07-01

    This paper describes the validation of the methodology, the model and the impact of an optimized Lithography Defect Monitoring Strategy at two different semiconductor manufacturing factories. The lithography defect inspection optimization was implemented for the Gate Module at both factories running 0.13-0.15μm technologies on 200mm wafers, one running microprocessor and the other memory devices. As minimum dimensions and process windows decrease in the lithography area, new technologies and technological advances with resists and resist systems are being implemented to meet the demands. Along with these new technological advances in the lithography area comes potentially unforeseen defect issues. The latest lithography processes involve new resists in extremely thin, uniform films, exposing the films under conditions of highly optimized focus and illumination, and finally removing the resist completely and cleanly. The lithography cell is defined as the cluster of process equipment that accomplishes the coating process (surface prep, resist spin, edge-bead removal and soft bake), the alignment and exposure, and the developing process (post-exposure bake, develop, rinse) of the resist. Often the resist spinning process involves multiple materials such as BARC (bottom ARC) and / or TARC (top ARC) materials in addition to the resist itself. The introduction of these new materials with the multiple materials interfaces and the tightness of the process windows leads to an increased variety of defect mechanisms in the lithography area. Defect management in the lithography area has become critical to successful product introduction and yield ramp. The semiconductor process itself contributes the largest number and variety of defects, and a significant portion of the total defects originate within the lithography cell. From a defect management perspective, the lithography cell has some unique characteristics. First, defects in the lithography process module have the

  3. Loss of ARF sensitizes transgenic BRAFV600E mice to UV-induced melanoma via suppression of XPC

    PubMed Central

    Luo, Chi; Sheng, Jinghao; Hu, Miaofen G.; Haluska, Frank G.; Cui, Rutao; Xu, Zhengping; Tsichlis, Philip N.; Hu, Guo-fu; Hinds, Philip W.

    2013-01-01

    Both genetic mutations and ultraviolet (UV) irradiation can predispose individuals to melanoma. Although BRAFV600E is the most prevalent oncogene in melanoma, the BRAFV600E mutant is not sufficient to induce tumors in vivo. Mutation at the CDKN2A locus is another melanoma-predisposing event that can disrupt the function of both p16INK4a and ARF. Numerous studies have focused on the role of p16INK4a in melanoma, but the involvement of ARF, a well-known p53 activator, is still controversial. Using a transgenic BRAFV600E mouse model previously generated in our laboratory, we report that loss of ARF is able to enhance spontaneous melanoma formation and cause profound sensitivity to neonatal UVB exposure. Mechanistically, BRAFV600E and ARF deletion synergize to inhibit nucleotide excision repair by epigenetically repressing XPC and inhibiting the E2F4/DP1 complex. We suggest that the deletion of ARF promotes melanomagenesis not by abrogating p53 activation but by acting in concert with BRAFV600E to increase the load of DNA damage caused by UV irradiation. PMID:23650282

  4. Genome-Wide Characterization and Expression Profiling of the AUXIN RESPONSE FACTOR (ARF) Gene Family in Eucalyptus grandis

    PubMed Central

    Yu, Hong; Soler, Marçal; Mila, Isabelle; San Clemente, Hélène; Savelli, Bruno; Dunand, Christophe; Paiva, Jorge A. P.; Myburg, Alexander A.; Bouzayen, Mondher; Grima-Pettenati, Jacqueline; Cassan-Wang, Hua

    2014-01-01

    Auxin is a central hormone involved in a wide range of developmental processes including the specification of vascular stem cells. Auxin Response Factors (ARF) are important actors of the auxin signalling pathway, regulating the transcription of auxin-responsive genes through direct binding to their promoters. The recent availability of the Eucalyptus grandis genome sequence allowed us to examine the characteristics and evolutionary history of this gene family in a woody plant of high economic importance. With 17 members, the E. grandis ARF gene family is slightly contracted, as compared to those of most angiosperms studied hitherto, lacking traces of duplication events. In silico analysis of alternative transcripts and gene truncation suggested that these two mechanisms were preeminent in shaping the functional diversity of the ARF family in Eucalyptus. Comparative phylogenetic analyses with genomes of other taxonomic lineages revealed the presence of a new ARF clade found preferentially in woody and/or perennial plants. High-throughput expression profiling among different organs and tissues and in response to environmental cues highlighted genes expressed in vascular cambium and/or developing xylem, responding dynamically to various environmental stimuli. Finally, this study allowed identification of three ARF candidates potentially involved in the auxin-regulated transcriptional program underlying wood formation. PMID:25269088

  5. Detection of specific antibodies to HCV-ARF/CORE+1 protein in patients treated with pegylated interferon plus ribavirin.

    PubMed

    Karamitros, T; Kakkanas, A; Katsoulidou, A; Sypsa, V; Dalagiorgou, G; Mavromara, P; Hatzakis, A

    2012-03-01

    Hepatitis C virus (HCV) infection is a major cause for chronic liver disease and hepatocellular carcinoma. The HCV-ARF/core+1 protein is an alternative product of HCV core-encoding sequence of unknown biological function. Highly purified HCV core and ARF/core+1 recombinant proteins from HCV genotype 1a and HCV-ARF/core+1 recombinant protein from HCV genotype 3a were expressed in Escherichia coli. Using an enzyme-linked immunosorbent assay, we assessed the prevalence of anti-ARF/core+1 antibodies in 90 chronic hepatitis C patients infected with HCV genotypes 1a/1b or 3a, treated with pegylated interferon (Peg-IFN-a-2a) plus ribavirin. Samples derived from 92 healthy blood donors were used as negative controls. All HCV-RNA-positive serum samples reacted with core 1a antigen, while 15 (37.5%) of 40 and 14 (28%) of 50 patients infected with HCV-1a/1b and HCV-3a, respectively, were found to have anti-ARF/core+1 antibodies into their serum before treatment initiation. These antibodies were persistently present during treatment follow-up and linked to elevated levels of HCV-RNA at baseline. PMID:22329372

  6. ARF6–JIP3/4 regulate endosomal tubules for MT1-MMP exocytosis in cancer invasion

    PubMed Central

    Marchesin, Valentina; Castro-Castro, Antonio; Lodillinsky, Catalina; Castagnino, Alessia; Cyrta, Joanna; Bonsang-Kitzis, Hélène; Fuhrmann, Laetitia; Irondelle, Marie; Infante, Elvira; Montagnac, Guillaume; Reyal, Fabien; Vincent-Salomon, Anne

    2015-01-01

    Invasion of cancer cells into collagen-rich extracellular matrix requires membrane-tethered membrane type 1–matrix metalloproteinase (MT1-MMP) as the key protease for collagen breakdown. Understanding how MT1-MMP is delivered to the surface of tumor cells is essential for cancer cell biology. In this study, we identify ARF6 together with c-Jun NH2-terminal kinase–interacting protein 3 and 4 (JIP3 and JIP4) effectors as critical regulators of this process. Silencing ARF6 or JIP3/JIP4 in breast tumor cells results in MT1-MMP endosome mispositioning and reduces MT1-MMP exocytosis and tumor cell invasion. JIPs are recruited by Wiskott-Aldrich syndrome protein and scar homologue (WASH) on MT1-MMP endosomes on which they recruit dynein–dynactin and kinesin-1. The interaction of plasma membrane ARF6 with endosomal JIPs coordinates dynactin–dynein and kinesin-1 activity in a tug-of-war mechanism, leading to MT1-MMP endosome tubulation and exocytosis. In addition, we find that ARF6, MT1-MMP, and kinesin-1 are up-regulated in high-grade triple-negative breast cancers. These data identify a critical ARF6–JIP–MT1-MMP–dynein–dynactin–kinesin-1 axis promoting an invasive phenotype of breast cancer cells. PMID:26504170

  7. Interconversion of two GDP-bound conformations and their selection in an Arf-family small G protein.

    PubMed

    Okamura, Hideyasu; Nishikiori, Masaki; Xiang, Hongyu; Ishikawa, Masayuki; Katoh, Etsuko

    2011-07-13

    ADP-ribosylation factor (Arf) and other Arf-family small G proteins participate in many cellular functions via their characteristic GTP/GDP conformational cycles, during which a nucleotide(∗)Mg(2+)-binding site communicates with a remote N-terminal helix. However, the conformational interplay between the nucleotides, the helix, the protein core, and Mg(2+) has not been fully delineated. Herein, we report a study of the dynamics of an Arf-family protein, Arl8, under various conditions by means of NMR relaxation spectroscopy. The data indicated that, when GDP is bound, the protein core, which does not include the N-terminal helix, reversibly transition between an Arf-family GDP form and another conformation that resembles the Arf-family GTP form. Additionally, we found that the N-terminal helix and Mg(2+), respectively, stabilize the aforementioned former and latter conformations in a population-shift manner. Given the dynamics of the conformational changes, we can describe the Arl8 GTP/GDP cycle in terms of an energy diagram.

  8. Role of ARF6 in internalization of metal-binding proteins, metallothionein and transferrin, and cadmium-metallothionein toxicity in kidney proximal tubule cells

    SciTech Connect

    Wolff, Natascha A.; Lee, Wing-Kee; Abouhamed, Marouan

    2008-07-01

    Filtered metal-protein complexes, such as cadmium-metallothionein-1 (CdMT-1) or transferrin (Tf) are apically endocytosed partly via megalin/cubilin by kidney proximal tubule (PT) cells where CdMT-1 internalization causes apoptosis. Small GTPase ARF (ADP-ribosylation factor) proteins regulate endocytosis and vesicular trafficking. We investigated roles of ARF6, which has been shown to be involved in internalization of ligands and endocytic trafficking in PT cells, following MT-1/CdMT-1 and Tf uptake by PT cells. WKPT-0293 Cl.2 cells derived from rat PT S1 segment were transfected with hemagglutinin-tagged wild-type (ARF6-WT) or dominant negative (ARF6-T27N) forms of ARF6. Using immunofluorescence, endogenous ARF6 was associated with the plasma membrane (PM) as well as juxtanuclear and co-localized with Rab5a and Rab11 involved in early and recycling endosomal trafficking. Immunofluorescence staining of megalin showed reduced surface labelling in ARF6 dominant negative (ARF6-DN) cells. Intracellular Alexa Fluor 546-conjugated MT-1 uptake was reduced in ARF6-DN cells and CdMT-1 (14.8 {mu}M for 24 h) toxicity was significantly attenuated from 27.3 {+-} 3.9% in ARF6-WT to 11.1 {+-} 4.0% in ARF6-DN cells (n = 6, P < 0.02). Moreover, reduced Alexa Fluor 546-conjugated Tf uptake was observed in ARF-DN cells (75.0 {+-} 4.6% versus 3.9 {+-} 3.9% of ARF6-WT cells, n = 3, P < 0.01) and/or remained near the PM (89.3 {+-} 5. 6% versus 45.2 {+-} 14.3% of ARF6-WT cells, n = 3, P < 0.05). In conclusion, the data support roles for ARF6 in receptor-mediated endocytosis and trafficking of MT-1/Tf to endosomes/lysosomes and CdMT-1 toxicity of PT cells.

  9. AMF-26, a novel inhibitor of the Golgi system, targeting ADP-ribosylation factor 1 (Arf1) with potential for cancer therapy.

    PubMed

    Ohashi, Yoshimi; Iijima, Hiroshi; Yamaotsu, Noriyuki; Yamazaki, Kanami; Sato, Shigeo; Okamura, Mutsumi; Sugimoto, Kenji; Dan, Shingo; Hirono, Shuichi; Yamori, Takao

    2012-02-01

    ADP-ribosylation factor 1 (Arf1) plays a major role in mediating vesicular transport. Brefeldin A (BFA), a known inhibitor of the Arf1-guanine nucleotide exchange factor (GEF) interaction, is highly cytotoxic. Therefore, interaction of Arf1 with ArfGEF is an attractive target for cancer treatment. However, BFA and its derivatives have not progressed beyond the pre-clinical stage of drug development because of their poor bioavailability. Here, we aimed to identify novel inhibitors of the Arf1-ArfGEF interaction that display potent antitumor activity in vivo but with a chemical structure distinct from that of BFA. We exploited a panel of 39 cell lines (termed JFCR39) coupled with a drug sensitivity data base and COMPARE algorithm, resulting in the identification of a possible novel Arf1-ArfGEF inhibitor AMF-26, which differed structurally from BFA. By using a pulldown assay with GGA3-conjugated beads, we demonstrated that AMF-26 inhibited Arf1 activation. Subsequently, AMF-26 induced Golgi disruption, apoptosis, and cell growth inhibition. Computer modeling/molecular dynamics (MD) simulation suggested that AMF-26 bound to the contact surface of the Arf1-Sec7 domain where BFA bound. AMF-26 affected membrane traffic, including the cis-Golgi and trans-Golgi networks, and the endosomal systems. Furthermore, using AMF-26 and its derivatives, we demonstrated that there was a significant correlation between cell growth inhibition and Golgi disruption. In addition, orally administrated AMF-26 (83 mg/kg of body weight; 5 days) induced complete regression of human breast cancer BSY-1 xenografts in vivo, suggesting that AMF-26 is a novel anticancer drug candidate that inhibits the Golgi system, targeting Arf1 activation.

  10. Photogrammetric Applications of Immersive Video Cameras

    NASA Astrophysics Data System (ADS)

    Kwiatek, K.; Tokarczyk, R.

    2014-05-01

    The paper investigates immersive videography and its application in close-range photogrammetry. Immersive video involves the capture of a live-action scene that presents a 360° field of view. It is recorded simultaneously by multiple cameras or microlenses, where the principal point of each camera is offset from the rotating axis of the device. This issue causes problems when stitching together individual frames of video separated from particular cameras, however there are ways to overcome it and applying immersive cameras in photogrammetry provides a new potential. The paper presents two applications of immersive video in photogrammetry. At first, the creation of a low-cost mobile mapping system based on Ladybug®3 and GPS device is discussed. The amount of panoramas is much too high for photogrammetric purposes as the base line between spherical panoramas is around 1 metre. More than 92 000 panoramas were recorded in one Polish region of Czarny Dunajec and the measurements from panoramas enable the user to measure the area of outdoors (adverting structures) and billboards. A new law is being created in order to limit the number of illegal advertising structures in the Polish landscape and immersive video recorded in a short period of time is a candidate for economical and flexible measurements off-site. The second approach is a generation of 3d video-based reconstructions of heritage sites based on immersive video (structure from immersive video). A mobile camera mounted on a tripod dolly was used to record the interior scene and immersive video, separated into thousands of still panoramas, was converted from video into 3d objects using Agisoft Photoscan Professional. The findings from these experiments demonstrated that immersive photogrammetry seems to be a flexible and prompt method of 3d modelling and provides promising features for mobile mapping systems.

  11. Exclusion of Integrins from CNS Axons Is Regulated by Arf6 Activation and the AIS

    PubMed Central

    Franssen, Elske H. P.; Zhao, Rong-Rong; Koseki, Hiroaki; Kanamarlapudi, Venkateswarlu; Hoogenraad, Casper C.

    2015-01-01

    Integrins are adhesion and survival molecules involved in axon growth during CNS development, as well as axon regeneration after injury in the peripheral nervous system (PNS). Adult CNS axons do not regenerate after injury, partly due to a low intrinsic growth capacity. We have previously studied the role of integrins in axon growth in PNS axons; in the present study, we investigate whether integrin mechanisms involved in PNS regeneration may be altered or lacking from mature CNS axons by studying maturing CNS neurons in vitro. In rat cortical neurons, we find that integrins are present in axons during initial growth but later become restricted to the somato-dendritic domain. We investigated how this occurs and whether it can be altered to enhance axonal growth potential. We find a developmental change in integrin trafficking; transport becomes predominantly retrograde throughout axons, but not dendrites, as neurons mature. The directionality of transport is controlled through the activation state of ARF6, with developmental upregulation of the ARF6 GEF ARNO enhancing retrograde transport. Lowering ARF6 activity in mature neurons restores anterograde integrin flow, allows transport into axons, and increases axon growth. In addition, we found that the axon initial segment is partly responsible for exclusion of integrins and removal of this structure allows integrins into axons. Changing posttranslational modifications of tubulin with taxol also allows integrins into the proximal axon. The experiments suggest that the developmental loss of regenerative ability in CNS axons is due to exclusion of growth-related molecules due to changes in trafficking. PMID:26019348

  12. The role of ARF1 and rab GTPases in polarization of the Golgi stack.

    PubMed

    Bannykh, Serguei I; Plutner, Helen; Matteson, Jeanne; Balch, William E

    2005-09-01

    The organization and sorting of proteins within the Golgi stack to establish and maintain its cis to trans polarization remains an enigma. The function of Golgi compartments involves coat assemblages that facilitate vesicle traffic, Rab-tether-SNAP receptor (SNARE) machineries that dictate membrane identity, as well as matrix components that maintain structure. We have investigated how the Golgi complex achieves compartmentalization in response to a key component of the coat complex I (COPI) coat assembly pathway, the ARF1 GTPase, in relationship to GTPases-regulating endoplasmic reticulum (ER) exit (Sar1) and targeting fusion (Rab1). Following collapse of the Golgi into the ER in response to inhibition of activation of ARF1 by Brefeldin A, we found that Sar1- and Rab1-dependent Golgi reformation took place at multiple peripheral and perinuclear ER exit sites. These rapidly converged into immature Golgi that appeared as onion-like structures composed of multiple concentrically arrayed cisternae of mixed enzyme composition. During clustering to the perinuclear region, Golgi enzymes were sorted to achieve the degree of polarization within the stack found in mature Golgi. Surprisingly, we found that sorting of Golgi enzymes into their subcompartments was insensitive to the dominant negative GTP-restricted ARF1 mutant, a potent inhibitor of COPI coat disassembly and vesicular traffic. We suggest that a COPI-independent, Rab-dependent mechanism is involved in the rapid reorganization of resident enzymes within the Golgi stack following synchronized release from the ER, suggesting an important role for Rab hubs in directing Golgi polarization. PMID:16101683

  13. Nanoparticle fabrication by geometrically confined nanosphere lithography

    NASA Astrophysics Data System (ADS)

    Denomme, Ryan C.; Iyer, Krishna; Kreder, Michael; Smith, Brendan; Nieva, Patricia M.

    2013-07-01

    Arrays of metal nanoparticles, typically gold or silver, exhibit localized surface plasmon resonance, a phenomenon that has many applications, such as chemical and biological sensing. However, fabrication of metal nanoparticle arrays with high uniformity and repeatability, at a reasonable cost, is difficult. Nanosphere lithography (NSL) has been used before to produce inexpensive nanoparticle arrays through the use of monolayers of self-assembled microspheres as a deposition mask. However, control over the size and location of the arrays, as well as uniformity over large areas is poor, thus limiting its use to research purposes. In this paper, a new NSL method, called here geometrically confined NSL (GCNSL), is presented. In GCNSL, microsphere assembly is confined to geometric patterns defined in photoresist, allowing high-precision and large-scale nanoparticle patterning while still remaining low cost. Using this new method, it is demonstrated that 400 nm polystyrene microspheres can be assembled inside of large arrays of photoresist patterns. Results show that optimal microsphere assembly is achieved with long and narrow rectangular photoresist patterns. The combination of microsphere monolayers and photoresist patterns is then used as a deposition mask to produce silver nanoparticles at precise locations on the substrate with high uniformity, repeatability, and quality.

  14. Image-projection ion-beam lithography

    SciTech Connect

    Miller, P.A.

    1989-01-01

    Image-projection ion-beam lithography promises high-throughput patterning with wide process latitude, excellent resolution, and minimal damage to underlying circuit layers. The process involves extracting helium ions from a plasma source, transmitting the ions at low voltage through a stencil reticle, and then accelerating and focusing the ions electrostatically onto the wafer. A key feature is the use of image demagnification which simplifies reticle fabrication and inspection, and leads to low power loading on the reticle and long reticle life. In this paper we report computational studies aimed at improving field size, linearity, and telecentricity over that demonstrated experimentally in the pioneering work by Ion Microfabrication Systems, GmbH (Vienna) during the past decade. We study a mechanically simple arrangement of equal-radii coaxial tubular lenses. We employ ion column optimization by simulated annealing and uncover a new optimization strategy which may be applicable in other optimization work. The resulting column design is much improved over our initial attempts based on an iterative optimization procedure. However, we still are unable to eliminate image distortion, and we would need either to rely on reticle predistortion or on use of a more complex electrode system for a production application. 15 refs., 5 figs.

  15. X-ray lithography using holographic images

    DOEpatents

    Howells, Malcolm R.; Jacobsen, Chris

    1995-01-01

    A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.

  16. Reflective masks for extreme ultraviolet lithography

    SciTech Connect

    Nguyen, Khanh Bao

    1994-05-01

    Extreme ultraviolet lithographic masks are made by patterning multilayer reflective coatings with high normal incidence reflectivity. Masks can be patterned by depositing a patterned absorber layer above the coating or by etching the pattern directly into the coating itself. Electromagnetic simulations showed that absorber-overlayer masks have superior imaging characteristics over etched masks (less sensitive to incident angles and pattern profiles). In an EUVL absorber overlayer mask, defects can occur in the mask substrate, reflective coating, and absorber pattern. Electromagnetic simulations showed that substrate defects cause the most severe image degradation. A printability study of substrate defects for absorber overlayer masks showed that printability of 25 nm high substrate defects are comparable to defects in optical lithography. Simulations also indicated that the manner in which the defects are covered by multilayer reflective coatings can affect printability. Coverage profiles that result in large lateral spreading of defect geometries amplify the printability of the defects by increasing their effective sizes. Coverage profiles of Mo/Si coatings deposited above defects were studied by atomic force microscopy and TEM. Results showed that lateral spread of defect geometry is proportional to height. Undercut at defect also increases the lateral spread. Reductions in defect heights were observed for 0.15 {mu}m wide defect lines. A long-term study of Mo/Si coating reflectivity revealed that Mo/Si coatings with Mo as the top layer suffer significant reductions in reflectivity over time due to oxidation.

  17. Characterization of 'metal resist' for EUV lithography

    NASA Astrophysics Data System (ADS)

    Toriumi, Minoru; Sato, Yuta; Kumai, Reiji; Yamashita, Yoshiyuki; Tsukiyama, Koichi; Itani, Toshiro

    2016-03-01

    We characterized EIDEC metal resist for EUV lithography by various measurement methods. The low-voltage aberration-corrected scanning transmission electron microscopy combined with electron energy-loss spectroscopy showed the morphology of metal resists in nanometer regions and enabled studying the distribution of resist component in the resist film. The zirconium oxide metal resist kept the core-shell structure in the resist films and the titanium oxide metal resist showed the aggregation in the film. X-ray diffractometry and ab initio molecular dynamics simulation showed the amorphous structure with short-range order of the zirconium oxide metal resist. X-ray Photoelectron spectroscopy of the zirconium oxide-methacrylic acid metal resist showed the decomposition of the shell molecules and the increase of electron density at zirconium atoms after the EUV exposure. Infrared (IR) spectra indicated that the shell molecules made the various bindings to the metal core and the specific vibrational mode of shell molecules showed the divergent responsivity to the irradiation wavenumber of the IR Free electron laser.

  18. Smartphone sensors for stone lithography authentication.

    PubMed

    Spagnolo, Giuseppe Schirripa; Cozzella, Lorenzo; Papalillo, Donato

    2014-01-01

    Nowadays mobile phones include quality photo and video cameras, access to wireless networks and the internet, GPS assistance and other innovative systems. These facilities open them to innovative uses, other than the classical telephonic communication one. Smartphones are a more sophisticated version of classic mobile phones, which have advanced computing power, memory and connectivity. Because fake lithographs are flooding the art market, in this work, we propose a smartphone as simple, robust and efficient sensor for lithograph authentication. When we buy an artwork object, the seller issues a certificate of authenticity, which contains specific details about the artwork itself. Unscrupulous sellers can duplicate the classic certificates of authenticity, and then use them to "authenticate" non-genuine works of art. In this way, the buyer will have a copy of an original certificate to attest that the "not original artwork" is an original one. A solution for this problem would be to insert a system that links together the certificate and the related specific artwork. To do this it is necessary, for a single artwork, to find unique, unrepeatable, and unchangeable characteristics. In this article we propose an innovative method for the authentication of stone lithographs. We use the color spots distribution captured by means of a smartphone camera as a non-cloneable texture of the specific artworks and an information management system for verifying it in mobility stone lithography. PMID:24811077

  19. Resist profile simulation with fast lithography model

    NASA Astrophysics Data System (ADS)

    He, Yan-Ying; Chou, Chih-Shiang; Tang, Yu-Po; Huang, Wen-Chun; Liu, Ru-Gun; Gau, Tsai-Sheng

    2014-03-01

    A traditional approach to construct a fast lithographic model is to match wafer top-down SEM images, contours and/or gauge CDs with a TCC model plus some simple resist representation. This modeling method has been proven and is extensively used for OPC modeling. As the technology moves forward, this traditional approach has become insufficient in regard to lithography weak point detection, etching bias prediction, etc. The drawback of this approach is from metrology and simulation. First, top-down SEM is only good for acquiring planar CD information. Some 3D metrology such as cross-section SEM or AFM is necessary to obtain the true resist profile. Second, the TCC modeling approach is only suitable for planar image simulation. In order to model the resist profile, full 3D image simulation is needed. Even though there are many rigorous simulators capable of catching the resist profile very well, none of them is feasible for full-chip application due to the tremendous consumption of computational resource. The authors have proposed a quasi-3D image simulation method in the previous study [1], which is suitable for full-chip simulation with the consideration of sidewall angles, to improve the model accuracy of planar models. In this paper, the quasi-3D image simulation is extended to directly model the resist profile with AFM and/or cross-section SEM data. Resist weak points detected by the model generated with this 3D approach are verified on the wafer.

  20. Metal hierarchical patterning by direct nanoimprint lithography

    PubMed Central

    Radha, Boya; Lim, Su Hui; Saifullah, Mohammad S. M.; Kulkarni, Giridhar U.

    2013-01-01

    Three-dimensional hierarchical patterning of metals is of paramount importance in diverse fields involving photonics, controlling surface wettability and wearable electronics. Conventionally, this type of structuring is tedious and usually involves layer-by-layer lithographic patterning. Here, we describe a simple process of direct nanoimprint lithography using palladium benzylthiolate, a versatile metal-organic ink, which not only leads to the formation of hierarchical patterns but also is amenable to layer-by-layer stacking of the metal over large areas. The key to achieving such multi-faceted patterning is hysteretic melting of ink, enabling its shaping. It undergoes transformation to metallic palladium under gentle thermal conditions without affecting the integrity of the hierarchical patterns on micro- as well as nanoscale. A metallic rice leaf structure showing anisotropic wetting behavior and woodpile-like structures were thus fabricated. Furthermore, this method is extendable for transferring imprinted structures to a flexible substrate to make them robust enough to sustain numerous bending cycles. PMID:23446801

  1. Smartphone Sensors for Stone Lithography Authentication

    PubMed Central

    Schirripa Spagnolo, Giuseppe; Cozzella, Lorenzo; Papalillo, Donato

    2014-01-01

    Nowadays mobile phones include quality photo and video cameras, access to wireless networks and the internet, GPS assistance and other innovative systems. These facilities open them to innovative uses, other than the classical telephonic communication one. Smartphones are a more sophisticated version of classic mobile phones, which have advanced computing power, memory and connectivity. Because fake lithographs are flooding the art market, in this work, we propose a smartphone as simple, robust and efficient sensor for lithograph authentication. When we buy an artwork object, the seller issues a certificate of authenticity, which contains specific details about the artwork itself. Unscrupulous sellers can duplicate the classic certificates of authenticity, and then use them to “authenticate” non-genuine works of art. In this way, the buyer will have a copy of an original certificate to attest that the “not original artwork” is an original one. A solution for this problem would be to insert a system that links together the certificate and the related specific artwork. To do this it is necessary, for a single artwork, to find unique, unrepeatable, and unchangeable characteristics. In this article we propose an innovative method for the authentication of stone lithographs. We use the color spots distribution captured by means of a smartphone camera as a non-cloneable texture of the specific artworks and an information management system for verifying it in mobility stone lithography. PMID:24811077

  2. Collateral damage-free debridement using 193nm ArF laser

    NASA Astrophysics Data System (ADS)

    Wynne, James J.; Felsenstein, Jerome M.; Trzcinski, Robert; Zupanski-Nielsen, Donna; Connors, Daniel P.

    2011-03-01

    Burn eschar and other necrotic areas of the skin and soft tissue are anhydrous compared to the underlying viable tissue. A 193 nm ArF excimer laser, emitting electromagnetic radiation at 6.4 eV at fluence exceeding the ablation threshold, will debride such necrotic areas. Because such radiation is strongly absorbed by aqueous chloride ions through the nonthermal process of electron photodetachment, debridement will cease when hydrated (with chloride ions) viable tissue is exposed, avoiding collateral damage to this tissue. Such tissue will be sterile and ready for further treatment, such as a wound dressing and/or a skin graft.

  3. Regulation of the p14ARF-Mdm2-p53 pathway: an overview in breast cancer.

    PubMed

    Agrawal, Anshu; Yang, Jianhui; Murphy, Richard F; Agrawal, Devendra K

    2006-10-01

    Knowledge of the roles of proteins that are abnormally suppressed or activated due to mutation in the DNA sequences of the common tumor suppressor genes, p14ARF and p53, is critical to the understanding the pathogenesis of breast cancer. Mdm2 is a mediator for the function of both p14ARF and p53. In this review article factors including Pokemon, Geminin, Twist, and Apigenin, which control the action of individual proteins in the p14ARF-Mdm2-p53 pathway in breast cancer as well the consequences of mutation 7 of p53 are discussed. The complexity of interaction of components of the pathway and the underlying development of cancer is emphasized. Opportunities for future therapeutic innovations are indicated. PMID:16919268

  4. Properties and Lithographic Capability of Sulfonium Salts with Aromatic Cyclic Ketone Group for ArF Chemically Amplified Resist

    NASA Astrophysics Data System (ADS)

    Maeda, Katsumi; Nakano, Kaichiro; Iwasa, Shigeyuki; Hasegawa, Etsuo; Shirai, Masamitsu

    2007-01-01

    We evaluated dialkylsulfonium salts with an aromatic cyclic ketone structure (a 1-indanone, 1-tetralone, or 4-chromanone unit) as a photoacid generator for ArF chemically amplified resists. The thermal stability of the salts was affected by alkyl subsitituents. Sulfonium salts with two methyl groups or a pentamethylene group exhibited a decomposition temperature of more than 200 °C. The absorption coefficients at 193 nm for the new PAGs were 1/3 to 1/4 that of the conventional triphenylsulfonium salt. The photosensitivity of sulfonium salt with the 1-oxo-2-indanyl group with an ArF laser was two times that of a phenacyl sulfonium salt with an aromatic linear ketone structure. We also analyzed the photodecomposed compounds produced by irradiation with an ArF excimer laser. A positive resist using a dimethyl(1-oxo-2-indanyl)sulfonium salt achieved a 130 nm line-and space pattern.

  5. Regulation of the p14ARF-Mdm2-p53 pathway: an overview in breast cancer.

    PubMed

    Agrawal, Anshu; Yang, Jianhui; Murphy, Richard F; Agrawal, Devendra K

    2006-10-01

    Knowledge of the roles of proteins that are abnormally suppressed or activated due to mutation in the DNA sequences of the common tumor suppressor genes, p14ARF and p53, is critical to the understanding the pathogenesis of breast cancer. Mdm2 is a mediator for the function of both p14ARF and p53. In this review article factors including Pokemon, Geminin, Twist, and Apigenin, which control the action of individual proteins in the p14ARF-Mdm2-p53 pathway in breast cancer as well the consequences of mutation 7 of p53 are discussed. The complexity of interaction of components of the pathway and the underlying development of cancer is emphasized. Opportunities for future therapeutic innovations are indicated.

  6. Analysis of Arf1 GTPase-dependent membrane binding and remodeling using the exomer secretory vesicle cargo adaptor

    PubMed Central

    Paczkowski, Jon E.; Fromme, J. Christopher

    2016-01-01

    Summary Protein-protein and protein-membrane interactions play a critical role in shaping biological membranes through direct physical contact with the membrane surface. This is particularly evident in many steps of membrane trafficking, in which proteins deform the membrane and induce fission to form transport carriers. The small GTPase Arf1 and related proteins have the ability to remodel membranes by insertion of an amphipathic helix into the membrane. Arf1 and the exomer cargo adaptor coordinate cargo sorting into subset of secretory vesicle carriers in the model organism Saccharomyces cerevisiae. Here, we detail the assays we used to explore the cooperative action of Arf1 and exomer to bind and remodel membranes. We expect these methods are broadly applicable to other small GTPase/effector systems where investigation of membrane binding and remodeling is of interest. PMID:27632000

  7. Analysis of Arf1 GTPase-Dependent Membrane Binding and Remodeling Using the Exomer Secretory Vesicle Cargo Adaptor.

    PubMed

    Paczkowski, Jon E; Fromme, J Christopher

    2016-01-01

    Protein-protein and protein-membrane interactions play a critical role in shaping biological membranes through direct physical contact with the membrane surface. This is particularly evident in many steps of membrane trafficking, in which proteins deform the membrane and induce fission to form transport carriers. The small GTPase Arf1 and related proteins have the ability to remodel membranes by insertion of an amphipathic helix into the membrane. Arf1 and the exomer cargo adaptor coordinate cargo sorting into subset of secretory vesicle carriers in the model organism Saccharomyces cerevisiae. Here, we detail the assays we used to explore the cooperative action of Arf1 and exomer to bind and remodel membranes. We expect these methods are broadly applicable to other small GTPase/effector systems where investigation of membrane binding and remodeling is of interest. PMID:27632000

  8. The role of NPM, p14arf and MDM2 in precursors of bronchial squamous cell carcinoma.

    PubMed

    Mascaux, C; Bex, F; Martin, B; Burny, A; Haller, A; Paesmans, M; Willard-Gallo, K; Ninane, V; Sculier, J-P

    2008-09-01

    Murine double minute clone 2 (MDM2), p14 alternate reading frame (p14arf), and nucleophosmin (NPM) regulate p53 activity. A total of 200 biopsies, including normal bronchial, pre-invasive and invasive tissues, were examined for changes in NPM, p14arf, MDM2 and p53 expression patterns by immunohistochemistry and immunofluorescence with confocal microscopy. NPM and p14arf displayed a diffuse nuclear staining in most normal bronchial tissue. The fraction of biopsies displaying an increased MDM2 staining or a nucleolar relocalisation of NPM increased at mild and moderate dysplasia, respectively. Two different modifications occurred in p14arf expression, i.e. its loss or its nucleolar relocalisation, both increasing at severe dysplasia and both being associated with high MDM2 expression. In addition, the nucleolar relocalisation of p14arf was associated with that of NPM. Immunofluorescence staining indicated that NPM and p14arf either co-localised in the nucleoplasm or in the nucleoli, before and as a result of severe dysplasia, respectively. MDM2 was not detected in the nucleoli. Thus, changes occur in murine double minute clone 2, p14 alternate reading frame and nucleophosmin level of expression and/or cellular distribution during early steps of lung carcinogenesis. Their relative localisation as determined by immunofluorescence, supports the hypothesis that p14 alternate reading frame nucleolar relocalisation impairs p14 alternate reading frame-murine double minute clone 2 complex formation and that nucleophosmin might sequester p14 alternate reading frame. The demonstration of this hypothesis requires further functional studies.

  9. Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14ARF tumor suppressor

    SciTech Connect

    Dimri, Goberdhan P.; Itahana, Koji; Acosta, Meileen; Campisi, Judith

    1999-11-05

    Normal cells do not divide indefinitely due to a process known as replicative senescence. Human cells arrest growth with a senescent phenotype when they acquire one or more critically short telomere as a consequence of cell division. Recent evidence suggests that certain types of DNA damage, chromatin remodeling, or oncogenic forms of Rasor Raf can also elicit a senescence response. We show here that E2F1, a multifunctional transcription factor that binds the retinoblastoma (pRb) tumor suppressor and can either promote or suppress tumorigenesis, induces a senescent phenotype when overexpressed in normal human fibroblasts. Normal human cells stably arrested proliferation and expressed several markers of replicative senescence in response to E2F1. This activity of E2F1 was independent of its pRb binding activity, but dependent on its ability to stimulate gene expression. The E2F1 target gene critical for the senescence response appeared to be the p14ARF tumor suppressor. Replicatively senescent human fibroblasts overexpressed p14ARF, and ectopic expression of p14ARF in presenescent cells induced a phenotype similar to that induced by E2F1. Consistent with a critical role for p14ARF, cells with compromised p53 function were immune to senescence induction by E2F1, as were cells deficient in p14ARF. Our findings support the idea that the senescence response is a critical tumor suppressive mechanism, provide an explanation for the apparently paradoxical roles of E2F1 in oncogenesis, and identify p14ARF as a potentially important mediator of the senescent phenotype.

  10. Immersion diuresis without expected suppression of vasopressin

    NASA Technical Reports Server (NTRS)

    Keil, L. C.; Silver, J. E.; Wong, N.; Spaul, W. A.; Greenleaf, J. E.; Kravik, S. E.

    1984-01-01

    There is a shift of blood from the lower parts of the body to the thoracic circulation during bed rest, water immersion, and presumably during weightlessness. On earth, this central fluid shift is associated with a profound diuresis. However, the mechanism involved is not yet well understood. The present investigation is concerned with measurements regarding the plasma vasopressin, fluid, electrolyte, and plasma renin activity (PRA) responses in subjects with normal preimmersion plasma vasopressin (PVP) concentration. In the conducted experiments, PRA was suppressed significantly at 30 min of immersion and had declined by 74 percent by the end of the experiment. On the basis of previously obtained results, it appears that sodium excretion during immersion may be independent of aldosterone action. Experimental results indicate that PVP is not suppressed by water immersion in normally hydrated subjects and that other factors may be responsible for the diuresis.

  11. Immersion in Movement-Based Interaction

    NASA Astrophysics Data System (ADS)

    Pasch, Marco; Bianchi-Berthouze, Nadia; van Dijk, Betsy; Nijholt, Anton

    The phenomenon of immersing oneself into virtual environments has been established widely. Yet to date (to our best knowledge) the physical dimension has been neglected in studies investigating immersion in Human-Computer Interaction (HCI). In movement-based interaction the user controls the interface via body movements, e.g. direct manipulation of screen objects via gestures or using a handheld controller as a virtual tennis racket. It has been shown that physical activity affects arousal and that movement-based controllers can facilitate engagement in the context of video games. This paper aims at identifying movement features that influence immersion. We first give a brief survey on immersion and movement-based interfaces. Then, we report results from an interview study that investigates how users experience their body movements when interacting with movement-based interfaces. Based on the interviews, we identify four movement-specific features. We recommend them as candidates for further investigation.

  12. Intelligent control system based on ARM for lithography tool

    NASA Astrophysics Data System (ADS)

    Chen, Changlong; Tang, Xiaoping; Hu, Song; Wang, Nan

    2014-08-01

    The control system of traditional lithography tool is based on PC and MCU. The PC handles the complex algorithm, human-computer interaction, and communicates with MCU via serial port; The MCU controls motors and electromagnetic valves, etc. This mode has shortcomings like big volume, high power consumption, and wasting of PC resource. In this paper, an embedded intelligent control system of lithography tool, based on ARM, is provided. The control system used S5PV210 as processor, completing the functions of PC in traditional lithography tool, and provided a good human-computer interaction by using LCD and capacitive touch screen. Using Android4.0.3 as operating system, the equipment provided a cool and easy UI which made the control more user-friendly, and implemented remote control and debug, pushing video information of product by network programming. As a result, it's convenient for equipment vendor to provide technical support for users. Finally, compared with traditional lithography tool, this design reduced the PC part, making the hardware resources efficiently used and reducing the cost and volume. Introducing embedded OS and the concepts in "The Internet of things" into the design of lithography tool can be a development trend.

  13. Conformal Visualization for Partially-Immersive Platforms

    PubMed Central

    Petkov, Kaloian; Papadopoulos, Charilaos; Zhang, Min; Kaufman, Arie E.; Gu, Xianfeng

    2010-01-01

    Current immersive VR systems such as the CAVE provide an effective platform for the immersive exploration of large 3D data. A major limitation is that in most cases at least one display surface is missing due to space, access or cost constraints. This partially-immersive visualization results in a substantial loss of visual information that may be acceptable for some applications, however it becomes a major obstacle for critical tasks, such as the analysis of medical data. We propose a conformal deformation rendering pipeline for the visualization of datasets on partially-immersive platforms. The angle-preserving conformal mapping approach is used to map the 360°3D view volume to arbitrary display configurations. It has the desirable property of preserving shapes under distortion, which is important for identifying features, especially in medical data. The conformal mapping is used for rasterization, realtime raytracing and volume rendering of the datasets. Since the technique is applied during the rendering, we can construct stereoscopic images from the data, which is usually not true for image-based distortion approaches. We demonstrate the stereo conformal mapping rendering pipeline in the partially-immersive 5-wall Immersive Cabin (IC) for virtual colonoscopy and architectural review. PMID:26279083

  14. Human adaptation to repeated cold immersions.

    PubMed Central

    Golden, F S; Tipton, M J

    1988-01-01

    1. The present investigation was designed to examine human adaptation to intermittent severe cold exposure and to assess the effect of exercise on any adaptation obtained. 2. Sixteen subjects were divided into two equal groups. Each subject performed ten head-out immersions; two into thermoneutral water which was then cooled until they shivered vigorously, and eight into water at 15 degrees C for 40 min. During the majority of the 15 degrees C immersions, one group (dynamic group) exercised whilst the other (static group) rested. 3. Results showed that both groups responded to repeated cold immersions with a reduction in their initial responses to cold. The time course of these reductions varied, however, between responses. 4. Only the static group developed a reduced metabolic response to prolonged resting immersion. 5. It is concluded that repeated resting exposure to cold was the more effective way of producing an adaptation. The performance of exercise during repeated exposure to cold prevented the development of an adaptive reduction in the metabolic response to cold during a subsequent resting immersion. In addition, many of the adaptations obtained during repeated resting exposure were overridden or masked during a subsequent exercising immersion. PMID:3411500

  15. Arf-like Protein 3 (ARL3) Regulates Protein Trafficking and Ciliogenesis in Mouse Photoreceptors.

    PubMed

    Hanke-Gogokhia, Christin; Wu, Zhijian; Gerstner, Cecilia D; Frederick, Jeanne M; Zhang, Houbin; Baehr, Wolfgang

    2016-03-25

    Arf-like protein 3 (ARL3) is a ubiquitous small GTPase expressed in ciliated cells of plants and animals. Germline deletion ofArl3in mice causes multiorgan ciliopathy reminiscent of Bardet-Biedl or Joubert syndromes. As photoreceptors are elegantly compartmentalized and have cilia, we probed the function of ARL3 (ADP-ribosylation factor (Arf)-like 3 protein) by generating rod photoreceptor-specific (prefix(rod)) and retina-specific (prefix(ret))Arl3deletions. In predegenerate(rod)Arl3(-/-)mice, lipidated phototransduction proteins showed trafficking deficiencies, consistent with the role of ARL3 as a cargo displacement factor for lipid-binding proteins. By contrast,(ret)Arl3(-/-)rods and cones expressing Cre recombinase during embryonic development formed neither connecting cilia nor outer segments and degenerated rapidly. Absence of cilia infers participation of ARL3 in ciliogenesis and axoneme formation. Ciliogenesis was rescued, and degeneration was reversed in part by subretinal injection of adeno-associated virus particles expressing ARL3-EGFP. The conditional knock-out phenotypes permitted identification of two ARL3 functions, both in the GTP-bound form as follows: one as a regulator of intraflagellar transport participating in photoreceptor ciliogenesis and the other as a cargo displacement factor transporting lipidated protein to the outer segment. Surprisingly, a farnesylated inositol polyphosphate phosphatase only trafficked from the endoplasmic reticulum to the Golgi, thereby excluding it from a role in photoreceptor cilia physiology. PMID:26814127

  16. Efficacy of the Nematophagous Fungus ARF18 in Alginate-clay Pellet Formulations Against Heterodera glycines

    PubMed Central

    Kim, D. G.; Riggs, R. D.

    1995-01-01

    Dry alginate-clay pellets containing mycelium of ARF18 were added to sandy soil in greenhouse tests to determine the formulation's efficacy in the suppression of Heterodera glycines. Pellet formulation variables included quantity of mycelium per pellet (0.0-3.9%), pellet size (2.3 or 8.3 mg), pellet application rate per unit soil (0.4 or 1.0% based on dry soil weight), and pellet storage (0 or 90 days). All of these variables affected efficacy. Nematode suppression was greatest (95%) with 8.3 mg pellets containing 3.9% mycelium that were not stored and applied at the rate of 1.0% of dry soil weight. Storage for 90 days reduced the efficacy of the pellets. The soybean cultivars tested were not equally good hosts of H. glycines, but reproduction of the nematode was reduced equally on all. The average suppression was 96% (range 86-99%). Similar suppression of reproduction occurred in tests with six races of H. glycines. ARF18 appeared to be nonspecific with regard to soybean cultivar and H. glycines race. PMID:19277328

  17. Ablation and cone formation mechanism on CR-39 by ArF laser irradiation

    SciTech Connect

    Shakeri Jooybari, B. E-mail: hafarideh@aut.ac.ir; Afarideh, H. E-mail: hafarideh@aut.ac.ir; Lamehi-Rachti, M.; Ghergherehchi, M.

    2015-03-07

    In this work, chemical properties, surface modification, and micro structures formation on ablated polyallyl di-glycol carbonate (CR-39) polymer by ArF laser irradiation (λ = 193 nm) at various fluences and pulse number were investigated. CR-39 samples have been irradiated with an ArF laser (193 nm) at a repetition rate of 1 Hz. Threshold fluence of ablation and effective absorption coefficient of CR-39 were determined. Conical microstructures (Taylor cone) formed on laser-ablated CR-39 exhibit: smooth, Taylor cone shape walls and sharp tips together with interference and well defined fringe-structure with a period of 230 nm, around cone base. Mechanism of cone formation and cone evolution of CR-39 ablated surface were investigated by change of fluences (at a given pulse number) and pulse number (at a given fluence). Cone height, cone base, and region of interface were increased in micrometer steps by increasing the total fluence. Depression on the base of the cone and the circular fringe were simulated. FTIR spectra were measured and energy dispersive x-ray analysis of irradiated and un-irradiated samples was performed.

  18. ARF6-mediated endosomal transport of Telencephalin affects dendritic filopodia-to-spine maturation

    PubMed Central

    Raemaekers, Tim; Peric, Aleksandar; Baatsen, Pieter; Sannerud, Ragna; Declerck, Ilse; Baert, Veerle; Michiels, Christine; Annaert, Wim

    2012-01-01

    Dendritic filopodia are dynamic structures thought to be the precursors of spines during synapse development. Morphological maturation to spines is associated with the stabilization and strengthening of synapses, and can be altered in various neurological disorders. Telencephalin (TLN/intercellular adhesion molecule-5 (ICAM5)) localizes to dendritic filopodia, where it facilitates their formation/maintenance, thereby slowing spine morphogenesis. As spines are largely devoid of TLN, its exclusion from the filopodia surface appears to be required in this maturation process. Using HeLa cells and primary hippocampal neurons, we demonstrate that surface removal of TLN involves internalization events mediated by the small GTPase ADP-ribosylation factor 6 (ARF6), and its activator EFA6A. This endocytosis of TLN affects filopodia-to-spine transition, and requires Rac1-mediated dephosphorylation/release of actin-binding ERM proteins from TLN. At the somato-dendritic surface, TLN and EFA6A are confined to distinct, flotillin-positive membrane subdomains. The co-distribution of TLN with this lipid raft marker also persists during its endosomal targeting to CD63-positive late endosomes. This suggests a specific microenvironment facilitating ARF6-mediated mobilization of TLN that contributes to promotion of dendritic spine development. PMID:22781129

  19. Extreme Ultraviolet Lithography - Reflective Mask Technology

    SciTech Connect

    Walton, C.C.; Kearney, P.A.; Mirkarimi, P.B.; Bowers, J.M.; Cerjan, C.; Warrick, A.L.; Wilhelmsen, K.; Fought, E.; Moore, C.; Larson, C.; Baker, S.; Burkhart, S.C.; Hector, S.D.

    2000-05-09

    EUVL mask blanks consist of a distributed Bragg reflector made of 6.7nm-pitch bi-layers of MO and Si deposited upon a precision Si or glass substrate. The layer deposition process has been optimized for low defects, by application of a vendor-supplied but highly modified ion-beam sputter deposition system. This system is fully automated using SMIF technology to obtain the lowest possible environmental- and handling-added defect levels. Originally designed to coat 150mm substrates, it was upgraded in July, 1999 to 200 mm and has coated runs of over 50 substrates at a time with median added defects >100nm below 0.05/cm{sup 2}. These improvements have resulted from a number of ion-beam sputter deposition system modifications, upgrades, and operational changes, which will be discussed. Success in defect reduction is highly dependent upon defect detection, characterization, and cross-platform positional registration. We have made significant progress in adapting and extending commercial tools to this purpose, and have identified the surface scanner detection limits for different defect classes, and the signatures of false counts and non-printable scattering anomalies on the mask blank. We will present key results and how they have helped reduce added defects. The physics of defect reduction and mitigation is being investigated by a program on multilayer growth over deliberately placed perturbations (defects) of varying size. This program includes modeling of multilayer growth and modeling of defect printability. We developed a technique for depositing uniformly sized gold spheres on EUVL substrates, and have studied the suppression of the perturbations during multilayer growth under varying conditions. This work is key to determining the lower limit of critical defect size for EUV Lithography. We present key aspects of this work. We will summarize progress in all aspects of EUVL mask blank development, and present detailed results on defect reduction and mask blank

  20. Antireflective surface patterned by rolling mask lithography

    NASA Astrophysics Data System (ADS)

    Seitz, Oliver; Geddes, Joseph B.; Aryal, Mukti; Perez, Joseph; Wassei, Jonathan; McMackin, Ian; Kobrin, Boris

    2014-03-01

    A growing number of commercial products such as displays, solar panels, light emitting diodes (LEDs and OLEDs), automotive and architectural glass are driving demand for glass with high performance surfaces that offer anti-reflective, self-cleaning, and other advanced functions. State-of-the-art coatings do not meet the desired performance characteristics or cannot be applied over large areas in a cost-effective manner. "Rolling Mask Lithography" (RML™) enables highresolution lithographic nano-patterning over large-areas at low-cost and high-throughput. RML is a photolithographic process performed using ultraviolet (UV) illumination transmitted through a soft cylindrical mask as it rolls across a substrate. Subsequent transfer of photoresist patterns into the substrate is achieved using an etching process, which creates a nanostructured surface. The current generation exposure tool is capable of patterning one-meter long substrates with a width of 300 mm. High-throughput and low-cost are achieved using continuous exposure of the resist by the cylindrical photomask. Here, we report on significant improvements in the application of RML™ to fabricate anti-reflective surfaces. Briefly, an optical surface can be made antireflective by "texturing" it with a nano-scale pattern to reduce the discontinuity in the index of refraction between the air and the bulk optical material. An array of cones, similar to the structure of a moth's eye, performs this way. Substrates are patterned using RML™ and etched to produce an array of cones with an aspect ratio of 3:1, which decreases the reflectivity below 0.1%.

  1. Deregulation of the OsmiR160 Target Gene OsARF18 Causes Growth and Developmental Defects with an Alteration of Auxin Signaling in Rice

    PubMed Central

    Huang, Jian; Li, Zhiyong; Zhao, Dazhong

    2016-01-01

    MicroRNAs (miRNAs) control gene expression as key negative regulators at the post-transcriptional level. MiR160 plays a pivotal role in Arabidopsis growth and development through repressing expression of its target AUXIN RESPONSE FACTOR (ARF) genes; however, the function of miR160 in monocots remains elusive. In this study, we found that the mature rice miR160 (OsmiR160) was mainly derived from OsMIR160a and OsMIR160b genes. Among four potential OsmiR160 target OsARF genes, the OsARF18 transcript was cleaved at the OsmiR160 target site. Rice transgenic plants (named mOsARF18) expressing an OsmiR160-resistant version of OsARF18 exhibited pleiotropic defects in growth and development, including dwarf stature, rolled leaves, and small seeds. mOsARF18 leaves were abnormal in bulliform cell differentiation and epidermal cell division. Starch accumulation in mOsARF18 seeds was also reduced. Moreover, auxin induced expression of OsMIR160a, OsMIR160b, and OsARF18, whereas expression of OsMIR160a and OsMIR160b as well as genes involved in auxin signaling was altered in mOsARF18 plants. Our results show that negative regulation of OsARF18 expression by OsmiR160 is critical for rice growth and development via affecting auxin signaling, which will advance future studies on the molecular mechanism by which miR160 fine-tunes auxin signaling in plants. PMID:27444058

  2. Deregulation of the OsmiR160 Target Gene OsARF18 Causes Growth and Developmental Defects with an Alteration of Auxin Signaling in Rice.

    PubMed

    Huang, Jian; Li, Zhiyong; Zhao, Dazhong

    2016-01-01

    MicroRNAs (miRNAs) control gene expression as key negative regulators at the post-transcriptional level. MiR160 plays a pivotal role in Arabidopsis growth and development through repressing expression of its target AUXIN RESPONSE FACTOR (ARF) genes; however, the function of miR160 in monocots remains elusive. In this study, we found that the mature rice miR160 (OsmiR160) was mainly derived from OsMIR160a and OsMIR160b genes. Among four potential OsmiR160 target OsARF genes, the OsARF18 transcript was cleaved at the OsmiR160 target site. Rice transgenic plants (named mOsARF18) expressing an OsmiR160-resistant version of OsARF18 exhibited pleiotropic defects in growth and development, including dwarf stature, rolled leaves, and small seeds. mOsARF18 leaves were abnormal in bulliform cell differentiation and epidermal cell division. Starch accumulation in mOsARF18 seeds was also reduced. Moreover, auxin induced expression of OsMIR160a, OsMIR160b, and OsARF18, whereas expression of OsMIR160a and OsMIR160b as well as genes involved in auxin signaling was altered in mOsARF18 plants. Our results show that negative regulation of OsARF18 expression by OsmiR160 is critical for rice growth and development via affecting auxin signaling, which will advance future studies on the molecular mechanism by which miR160 fine-tunes auxin signaling in plants. PMID:27444058

  3. Shadowing effect modeling and compensation for EUV lithography

    NASA Astrophysics Data System (ADS)

    Song, Hua; Zavyalova, Lena; Su, Irene; Shiely, James; Schmoeller, Thomas

    2011-04-01

    Extreme ultraviolet (EUV) lithography is one of the leading technologies for 16nm and smaller node device patterning. One patterning issue intrinsic to EUV lithography is the shadowing effect due to oblique illumination at the mask and mask absorber thickness. This effect can cause CD errors up to a few nanometers, consequently needs to be accounted for in OPC modeling and compensated accordingly in mask synthesis. Because of the dependence on the reticle field coordinates, shadowing effect is very different from the traditional optical and resist effects. It poses challenges to modeling, compensation, and verification that were not encountered in tradition optical lithography mask synthesis. In this paper, we present a systematic approach for shadowing effect modeling and model-based shadowing compensation. Edge based shadowing effect calculation with reticle and scan information is presented. Model calibration and mask synthesis flows are described. Numerical experiments are performed to demonstrate the effectiveness of the approach.

  4. Deconstructing contact hole CD printing variability in EUV lithography

    NASA Astrophysics Data System (ADS)

    Civay, D.; Wallow, T.; Doganaksoy, N.; Verduijn, E.; Schmid, G.; Mangat, P.

    2014-04-01

    Lithographic CD printing variability can be easily captured with a CDU measurement, however delineating the most significant sources causing the variability is challenging. In EUV lithography, the resist, reticle, metrology methodology, and stochastics are examples of factors that influence printing variability. Determining the most significant sources of variability in contact hole and via patterning is particularly interesting because the variability can be measured as a function of two tethered dimensions. Contact hole (CH) variability has a direct impact on device performance while via variability affects metal area scaling and design. By studying sources of variability opportunities for improving device performance and scaling can be identified. In this paper, we will examine sources of contact patterning variability in EUV lithography comprehensively using various EUV exposure tools as well as simulation methods. We will present a benchmark of current state of the art materials and patterning methods with the goal of assessing contact hole printability at the limit of 0.33 NA EUV lithography.

  5. Recent progress in nanoparticle photoresists development for EUV lithography

    NASA Astrophysics Data System (ADS)

    Kasahara, Kazuki; Kosma, Vasiliki; Odent, Jeremy; Xu, Hong; Yu, Mufei; Giannelis, Emmanuel P.; Ober, Christopher K.

    2016-03-01

    Extreme ultraviolet (EUV) lithography is a promising candidate for next generation lithography. For high volume manufacturing of semiconductor devices, significant improvement of resolution and sensitivity is required for successful implementation of EUV resists. Performance requirements for such resists demand the development of entirely new resist platforms. Cornell University has intensely studied metal oxide nanoparticle photoresists with high sensitivity for EUV lithography applications. Zirconium oxide nanoparticles with PAG enabling sub 30nm line negative tone patterns at an EUV dose below 5 mJ/cm2 show one of the best EUV sensitivity results ever reported. In this paper, recent progress in metal oxide nanoparticle photoresist research will be discussed. Several studies regarding composition investigation and new metal element study are reported.

  6. Thickness optimization for lithography process on silicon substrate

    NASA Astrophysics Data System (ADS)

    Su, Xiaojing; Su, Yajuan; Liu, Yansong; Chen, Fong; Liu, Zhimin; Zhang, Wei; Li, Bifeng; Gao, Tao; Wei, Yayi

    2015-03-01

    With the development of the lithography, the demand for critical dimension (CD) and CD uniformity (CDU) has reached a new level, which is harder and harder to achieve. There exists reflection at the interface between photo-resist and substrate during lithography exposure. This reflection has negative impact on CD and CDU control. It is possible to optimize the litho stack and film stack thickness on different lithography conditions. With the optimized stack, the total reflectivity for all incident angles at the interface can be controlled less than 0.5%, ideally 0.1%, which enhances process window (PW) most of the time. The theoretical results are verified by the experiment results from foundry, which helps the foundry achieve the mass production finally.

  7. X-ray lithography: a system integration effort

    NASA Astrophysics Data System (ADS)

    Selzer, Robert A.; Heaton, John; Vladimirsky, Yuli; Simon, Klaus

    1999-06-01

    Despite growing expectations of significant progress in projection lithography using shorter wavelengths, x-ray lithography is still the most developed and production ready technology compared with the other NGL approaches. For the timely introduction of this technology into the manufacturing environment the development of fully integrated x-ray lithography systems becomes very important. Reflecting manufacturing and R and D demands, the x-ray technology integration has been pursued for goth synchrotron radiation and x-ray point source based approaches. While the synchrotron-based approach provides the high volume platform, the point source will provide the platform for low volume production and R and D efforts. SAL recognizes the needs for both, a synchrotron based stepper as well as a point source stepper and is focused on meeting those needs. This paper will present the status of integration efforts at SAL utilizing a point source system.

  8. Graphene nanoribbon superlattices fabricated via He ion lithography

    SciTech Connect

    Archanjo, Braulio S.; Fragneaud, Benjamin; Gustavo Cançado, Luiz; Winston, Donald; Miao, Feng; Alberto Achete, Carlos; Medeiros-Ribeiro, Gilberto

    2014-05-12

    Single-step nano-lithography was performed on graphene sheets using a helium ion microscope. Parallel “defect” lines of ∼1 μm length and ≈5 nm width were written to form nanoribbon gratings down to 20 nm pitch. Polarized Raman spectroscopy shows that crystallographic orientation of the nanoribbons was partially maintained at their lateral edges, indicating a high-fidelity lithography process. Furthermore, Raman analysis of large exposure areas with different ion doses reveals that He ions produce point defects with radii ∼ 2× smaller than do Ga ions, demonstrating that scanning-He{sup +}-beam lithography can texture graphene with less damage.

  9. ILT for double exposure lithography with conventional and novel materials

    NASA Astrophysics Data System (ADS)

    Poonawala, Amyn; Borodovsky, Yan; Milanfar, Peyman

    2007-03-01

    Multiple paths exists to provide lithography solutions pursuant to Moore's Law for next 3-5 generations of technology, yet each of those paths inevitably leads to solutions eventually requiring patterning at k I < 0.30 and below. In this article, we explore double exposure single development lithography for k I >= 0.25 (using conventional resist) and k1 < 0.25 (using new out-of-sight out-of-mind materials). For the case of k I >= 0.25, we propose a novel double exposure inverse lithography technique (ILT) to split the pattern. Our algorithm is based on our earlier proposed single exposure ILT framework, and works by decomposing the aerial image (instead of the target pattern) into two parts. It also resolves the phase conflicts automatically as part of the decomposition, and the combined aerial image obtained using the estimated masks has a superior contrast. For the case of k I < 0.25, we focus on analyzing the use of various dual patterning techniques enabled by the use of hypothetic materials with properties that allow for the violation of the linear superposition of intensities from the two exposures. We investigate the possible use of two materials: contrast enhancement layer (CEL) and two-photon absorption resists. We propose a mathematical model for CEL, define its characteristic properties, and derive fundamental bounds on the improvement in image log-slope. Simulation results demonstrate that double exposure single development lithography using CEL enables printing 80nm gratings using dry lithography. We also combine ILT, CEL, and DEL to synthesize 2-D patterns with k I = 0.185. Finally, we discuss the viability of two-photon absorption resists for double exposure lithography.

  10. Mix-and-match lithography for half-micron technology

    NASA Astrophysics Data System (ADS)

    Flack, Warren W.; Dameron, David H.

    1991-08-01

    Half-micron lithography for a production environment is not considered realistic with currently available lithography tools. While optical steppers have high wafer throughputs, they do not have sufficient process latitude at half-micron geometries. In contrast, advanced technologies with sufficient capabilities for half-micron processing such as direct-write e-beam and x-ray lithography are extremely expensive and have low effective throughputs. A mix-and- match lithography approach can take advantage of the best features of both types of systems by sing an optical stepper for noncritical levels and an advanced lithography system for critical levels. In order to facilitate processing of a triple level metal half-micron CMOS technology, a mix-and-match scheme has been developed between a Hitachi HL-700 D e-beam direct write system and an Ultratech 1500 wide-field 1x stepper. The Hitachi is used to pattern an accurate zero or registration level. All critical levels are exposed on the Hitachi and aligned back to this zero level. The Ultratech is used to align all other process levels which do not have critical targets that are placed on subsequent process levels. The mix-and-match approach is discussed, and optical to e-beam as well as e-beam to optical alignment results from seven production lots are presented. The linear alignment error components X translation, Y translation, rotation and magnification are extracted and analyzed to determine their source. It was found that a simple adjustment improved the registration capabilities of these two lithography tools by reducing the X translation, Y translation and rotation standard deviations by a factor of two or more, while greatly reducing the magnification errors between the two tools.

  11. EUV lithography optics for sub-9nm resolution

    NASA Astrophysics Data System (ADS)

    Kneer, Bernhard; Migura, Sascha; Kaiser, Winfried; Neumann, Jens Timo; van Schoot, Jan

    2015-03-01

    EUV lithography for resolution below 9 nm requires the numerical aperture of the projection optics to be significantly larger than 0.45. A configuration of 4x magnification, full field size and 6'' reticle is not feasible anymore. The increased chief ray angle and higher NA at reticle lead to non-acceptable shadowing effects, which can only be controlled by increasing the magnification, hence reducing the system productivity. We demonstrate that the best compromise in imaging, productivity and field split is a so-called anamorphic magnification and a half field of 26 x 16.5 mm². We discuss the optical solutions for anamorphic high-NA lithography.

  12. Nanometer-scale placement in electron-beam lithography

    NASA Astrophysics Data System (ADS)

    Ferrera, Juan

    2000-12-01

    Electron-beam lithography is capable of high-resolution lithographic pattern generation (down to 10 nm or below). However, for conventional e-beam lithography, pattern- placement accuracy is inferior to resolution. Despite significant efforts to improve pattern placement, a limit is being approached. The placement capability of conventional e-beam tools is insufficient to fabricate narrow-band optical filters and lasers, which require sub-micrometer-pitch gratings with a high degree of spatial coherence. Moreover, it is widely recognized that placement accuracy will not be sufficient for future semiconductor device generations, with minimum feature sizes below 100 nm. In electron-beam lithography, an electromagnetic deflection system is used in conjunction with a laser-interferometer-controlled stage to generate high-resolution patterns over large areas. Placement errors arise because the laser interferometer monitors the stage position, but the e-beam can independently drift relative to the stage. Moreover, the laser interferometer can itself drift during exposure. To overcome this fundamental limitation, the method of spatial phase-locked electron-beam lithography has been proposed. The beam position is referenced to a high- fidelity grid, exposed by interference lithography, on the substrate surface. In this method, pattern-placement performance depends upon the accuracy of the reference grid and the precision with which patterns can be locked to the grid. The grid must be well characterized to serve as a reliable fiducial. This document describes work done to characterize grids generated by interference lithography. A theoretical model was developed to describe the spatial-phase progression of interferometric gratings and grids. The accuracy of the interference lithography apparatus was found to be limited by substrate mounting errors and uncertainty in setting the geometrical parameters that determine the angle of interference. Experimental measurements were

  13. Learning Environments in Immersion and Non-Immersion Classrooms: Are They Different?

    ERIC Educational Resources Information Center

    Edwards, Viviane; Rehorick, Sally

    1990-01-01

    A study compared immersion and nonimmersion learning environments, as perceived by students, in 95 New Brunswick grade 6, 7, and 9 classes. In grade 6, no significant differences in perception were found; in grade 7, immersion students see their environment more positively; and in grade 9, the differences seem to disappear. (25 references)…

  14. MicroRNA167-Directed Regulation of the Auxin Response Factors GmARF8a and GmARF8b Is Required for Soybean Nodulation and Lateral Root Development.

    PubMed

    Wang, Youning; Li, Kexue; Chen, Liang; Zou, Yanmin; Liu, Haipei; Tian, Yinping; Li, Dongxiao; Wang, Rui; Zhao, Fang; Ferguson, Brett J; Gresshoff, Peter M; Li, Xia

    2015-07-01

    Legume root nodules convert atmospheric nitrogen gas into ammonium through symbiosis with a prokaryotic microsymbiont broadly called rhizobia. Auxin signaling is required for determinant nodule development; however, the molecular mechanism of auxin-mediated nodule formation remains largely unknown. Here, we show in soybean (Glycine max) that the microRNA miR167 acts as a positive regulator of lateral root organs, namely nodules and lateral roots. miR167c expression was up-regulated in the vasculature, pericycle, and cortex of soybean roots following inoculation with Bradyrhizobium japonicum strain USDA110 (the microsymbiont). It was found to positively regulate nodule numbers directly by repressing the target genes GmARF8a and GmARF8b (homologous genes of Arabidopsis [Arabidopsis thaliana] AtARF8 that encode auxin response factors). Moreover, the expression of miR167 and its targets was up- and down-regulated by auxin, respectively. The miR167-GmARF8 module also positively regulated nodulation efficiency under low microsymbiont density, a condition often associated with environmental stress. The regulatory role of miR167 on nodule initiation was dependent on the Nod factor receptor GmNFR1α, and it acts upstream of the nodulation-associated genes nodule inception, nodulation signaling pathway1, early nodulin40-1, NF-YA1 (previously known as HAEM activator protein2-1), and NF-YA2. miR167 also promoted lateral root numbers. Collectively, our findings establish a key role for the miR167-GmARF8 module in auxin-mediated nodule and lateral root formation in soybean. PMID:25941314

  15. MicroRNA167-Directed Regulation of the Auxin Response Factors GmARF8a and GmARF8b Is Required for Soybean Nodulation and Lateral Root Development1[OPEN

    PubMed Central

    Wang, Youning; Li, Kexue; Chen, Liang; Zou, Yanmin; Tian, Yinping; Li, Dongxiao; Wang, Rui; Zhao, Fang; Ferguson, Brett J.; Gresshoff, Peter M.

    2015-01-01

    Legume root nodules convert atmospheric nitrogen gas into ammonium through symbiosis with a prokaryotic microsymbiont broadly called rhizobia. Auxin signaling is required for determinant nodule development; however, the molecular mechanism of auxin-mediated nodule formation remains largely unknown. Here, we show in soybean (Glycine max) that the microRNA miR167 acts as a positive regulator of lateral root organs, namely nodules and lateral roots. miR167c expression was up-regulated in the vasculature, pericycle, and cortex of soybean roots following inoculation with Bradyrhizobium japonicum strain USDA110 (the microsymbiont). It was found to positively regulate nodule numbers directly by repressing the target genes GmARF8a and GmARF8b (homologous genes of Arabidopsis [Arabidopsis thaliana] AtARF8 that encode auxin response factors). Moreover, the expression of miR167 and its targets was up- and down-regulated by auxin, respectively. The miR167-GmARF8 module also positively regulated nodulation efficiency under low microsymbiont density, a condition often associated with environmental stress. The regulatory role of miR167 on nodule initiation was dependent on the Nod factor receptor GmNFR1α, and it acts upstream of the nodulation-associated genes NODULE INCEPTION, NODULATION SIGNALING PATHWAY1, EARLY NODULIN40-1, NF-YA1 (previously known as HAEM ACTIVATOR PROTEIN2-1), and NF-YA2. miR167 also promoted lateral root numbers. Collectively, our findings establish a key role for the miR167-GmARF8 module in auxin-mediated nodule and lateral root formation in soybean. PMID:25941314

  16. MicroRNA167-Directed Regulation of the Auxin Response Factors GmARF8a and GmARF8b Is Required for Soybean Nodulation and Lateral Root Development.

    PubMed

    Wang, Youning; Li, Kexue; Chen, Liang; Zou, Yanmin; Liu, Haipei; Tian, Yinping; Li, Dongxiao; Wang, Rui; Zhao, Fang; Ferguson, Brett J; Gresshoff, Peter M; Li, Xia

    2015-07-01

    Legume root nodules convert atmospheric nitrogen gas into ammonium through symbiosis with a prokaryotic microsymbiont broadly called rhizobia. Auxin signaling is required for determinant nodule development; however, the molecular mechanism of auxin-mediated nodule formation remains largely unknown. Here, we show in soybean (Glycine max) that the microRNA miR167 acts as a positive regulator of lateral root organs, namely nodules and lateral roots. miR167c expression was up-regulated in the vasculature, pericycle, and cortex of soybean roots following inoculation with Bradyrhizobium japonicum strain USDA110 (the microsymbiont). It was found to positively regulate nodule numbers directly by repressing the target genes GmARF8a and GmARF8b (homologous genes of Arabidopsis [Arabidopsis thaliana] AtARF8 that encode auxin response factors). Moreover, the expression of miR167 and its targets was up- and down-regulated by auxin, respectively. The miR167-GmARF8 module also positively regulated nodulation efficiency under low microsymbiont density, a condition often associated with environmental stress. The regulatory role of miR167 on nodule initiation was dependent on the Nod factor receptor GmNFR1α, and it acts upstream of the nodulation-associated genes nodule inception, nodulation signaling pathway1, early nodulin40-1, NF-YA1 (previously known as HAEM activator protein2-1), and NF-YA2. miR167 also promoted lateral root numbers. Collectively, our findings establish a key role for the miR167-GmARF8 module in auxin-mediated nodule and lateral root formation in soybean.

  17. Human Krüppel-related 3 (HKR3) Is a Novel Transcription Activator of Alternate Reading Frame (ARF) Gene*

    PubMed Central

    Yoon, Jae-Hyeon; Choi, Won-Il; Jeon, Bu-Nam; Koh, Dong-In; Kim, Min-Kyeong; Kim, Myung-Hwa; Kim, Jungho; Hur, Sujin Susanne; Kim, Kyung-Sup; Hur, Man-Wook

    2014-01-01

    HKR3 (Human Krüppel-related 3) is a novel POK (POZ-domain Krüppel-like zinc-finger) family transcription factor. Recently, some of the POK (POZ-domain Krüppel-like zinc finger) family proteins have been shown to play roles in cell cycle arrest, apoptosis, cell proliferation, and oncogenesis. We investigated whether HKR3, an inhibitor of cell proliferation and an uncharacterized POK family protein, could regulate the cell cycle by controlling expression of genes within the p53 pathway (ARF-MDM2-TP53-p21WAF/CDKN1A). HKR3 potently activated the transcription of the tumor suppressor gene ARF by acting on the proximal promoter region (bp, −149∼+53), which contains Sp1 and FBI-1 binding elements (FREs). HKR3 interacted with the co-activator p300 to activate ARF transcription, which increased the acetylation of histones H3 and H4 within the proximal promoter. Oligonucleotide pull-down assays and ChIP assays revealed that HKR3 interferes with the binding of the proto-oncogenic transcription repressor FBI-1 to proximal FREs, thus derepressing ARF transcription. PMID:24382891

  18. Structural Basis and Mechanism of Autoregulation in 3-Phosphoionsitide-Dependent Grp1 Family Arf GTPase Exchange Factors

    SciTech Connect

    DiNitto,J.; Delprato, A.; Lee, M.; Cronin, T.; Huang, S.; Guilherme, A.; Czech, M.; Lambright, D.

    2007-01-01

    Arf GTPases regulate membrane trafficking and actin dynamics. Grp1, ARNO, and Cytohesin-1 comprise a family of phosphoinositide-dependent Arf GTPase exchange factors with a Sec7-pleckstrin homology (PH) domain tandem. Here, we report that the exchange activity of the Sec7 domain is potently autoinhibited by conserved elements proximal to the PH domain. The crystal structure of the Grp1 Sec7-PH tandem reveals a pseudosubstrate mechanism of autoinhibition in which the linker region between domains and a C-terminal amphipathic helix physically block the docking sites for the switch regions of Arf GTPases. Mutations within either element result in partial or complete activation. Critical determinants of autoinhibition also contribute to insulin-stimulated plasma membrane recruitment. Autoinhibition can be largely reversed by binding of active Arf6 to Grp1 and by phosphorylation of tandem PKC sites in Cytohesin-1. These observations suggest that Grp1 family GEFs are autoregulated by mechanisms that depend on plasma membrane recruitment for activation.

  19. Four GTPases differentially regulate the Sec7 Arf-GEF to direct traffic at the trans-golgi network.

    PubMed

    McDonold, Caitlin M; Fromme, J Christopher

    2014-09-29

    Traffic through the Golgi complex is controlled by small GTPases of the Arf and Rab families. Guanine nucleotide exchange factor (GEF) proteins activate these GTPases to control Golgi function, yet the full assortment of signals regulating these GEFs is unknown. The Golgi Arf-GEF Sec7 and the homologous BIG1/2 proteins are effectors of the Arf1 and Arl1 GTPases. We demonstrate that Sec7 is also an effector of two Rab GTPases, Ypt1 (Rab1) and Ypt31/32 (Rab11), signifying unprecedented signaling crosstalk between GTPase pathways. The molecular basis for the role of Ypt31/32 and Rab11 in vesicle formation has remained elusive. We find that Arf1, Arl1, and Ypt1 primarily affect the membrane localization of Sec7, whereas Ypt31/32 exerts a dramatic stimulatory effect on the nucleotide exchange activity of Sec7. The convergence of multiple signaling pathways on a master regulator reveals a mechanism for balancing incoming and outgoing traffic at the Golgi.

  20. Critical roles of DMP1 in HER2/neu-Arf-p53 signaling and breast cancer development

    PubMed Central

    Taneja, Pankaj; Maglic, Dejan; Kai, Fumitake; Sugiyama, Takayuki; Kendig, Robert D.; Frazier, Donna P.; Willingham, Mark C.; Inoue, Kazushi

    2010-01-01

    HER2 overexpression stimulates cell growth in p53-mutated cells while it inhibits cell proliferation in those with wild-type p53, but the molecular mechanism is unknown. The Dmp1 promoter was activated by HER2/neu through the PI3K-Akt-NF-κB pathway, which in turn stimulated Arf transcription. Binding of p65 and p52 subunits of NF-κB was demonstrated to the Dmp1 promoter and that of Dmp1 to the Arf promoter upon HER2/neu overexpression. Both Dmp1 and p53 were induced in pre-malignant lesions from MMTV-neu mice and mammary tumorigenesis was significantly accelerated in both Dmp1+/− and Dmp1−/− mice. Selective deletion of Dmp1 and/or overexpression of Tbx2/Pokemon was found in >50 % of wild-type HER2/neu carcinomas while the involvement of Arf, Mdm2, or p53 was rare. Tumors from Dmp1+/−, Dmp1−/−, and wild-type neu mice with hemizygous Dmp1 deletion showed significant downregulation of Arf and p21Cip1/WAF1, showing p53 inactivity and more aggressive phenotypes than tumors without Dmp1 deletion. Notably, endogenous hDMP1 mRNA decreased when HER2 was depleted in human breast cancer cells. Our study demonstrates the pivotal roles of Dmp1 in HER2/neu-p53 signaling and breast carcinogenesis. PMID:21062982

  1. Brassinosteroids regulate the differential growth of Arabidopsis hypocotyls through auxin signaling components IAA19 and ARF7.

    PubMed

    Zhou, Xiao-Yi; Song, Li; Xue, Hong-Wei

    2013-05-01

    Brassinosteroids (BRs) are an important class of phytohormones which regulates a wide range of physiological processes. Genetic and physiological studies have revealed that BR responses usually depend on an intact auxin signaling pathway. Here, we demonstrate that high BR concentration or enhanced BR signaling induce the differential growth of etiolated hypocotyls and result in the morphological changes, while auxin-resistant mutants, msg2 (dominant mutant of IAA19) and arf7, are insensitive to the BR effect and can partially suppress the phenotype of bzr1-D (dominant mutant of BZR1 with enhanced BR signaling). Interestingly, BZR1 protein can directly bind to the promoter regions of both IAA19 and ARF7, indicating that IAA19 and ARF7 mediate the BR-induced differential growth by serving as direct targets of BZR1. Systemic microarray analysis revealed that a number of BR-responsive genes showed reduced BR response in msg2, confirming that BR employs auxin signaling components IAA19 and ARF7 to modulate the specific downstream processes. These results provide informative clues on the crosstalk of BR-auxin signaling and the mechanisms of BR-auxin effects in regulating differential growth.

  2. Nanoimprint lithography for functional polymer patterning

    NASA Astrophysics Data System (ADS)

    Cui, Dehu

    2011-07-01

    Organic semiconductors have generated huge interested in recent years for low-cost and flexible electronics. Current and future device applications for semiconducting polymers include light-emitting diodes, thin-film transistors, photovoltaic cells, photodetectors, lasers, and memories. The performance of conjugated polymer devices depends on two major factors: the chain conformation in polymer film and the device architecture. Highly ordered chain structure usually leads to much improved performance by enhancing interchain interaction to facilitate carrier transport. The goal of this research is to improve the performance of organic devices with the nanoimprint lithography. The work begins with the controlling of polymer chain orientation in patterned nanostructures through nanoimprint mold design and process parameter manipulation, and studying the effect of chain ordering on material properties. Then, step-and-repeat thermal nanoimprint technique for large-scale continuous manufacturing of conjugated polymer nanostructures is developed. After that, Systematic investigation of polymer chain configuration by Raman spectroscopy is carried out to understand how nanoimprint process parameters, such as mold pattern size, temperature, and polymer molecular weight, affects polymer chain configuration. The results indicate that chain orientation in nanoimprinted polymer micro- and nanostructures is highly related to the nanoimprint temperature and the dimensions of the mold structures. The ability to create nanoscale polymer micro- and nanostructures and manipulate their internal chain conformation establishes an original experimental platform that enables studying the properties of functional polymers at the micro- and nanoscale and understanding their fundamental structure-property relationships. In addition to the impact on basic research, the techniques developed in this work are important in applied research and development. Large-area conjugated polymer micro- and

  3. Capillary force lithography for cardiac tissue engineering.

    PubMed

    Macadangdang, Jesse; Lee, Hyun Jung; Carson, Daniel; Jiao, Alex; Fugate, James; Pabon, Lil; Regnier, Michael; Murry, Charles; Kim, Deok-Ho

    2014-06-10

    Cardiovascular disease remains the leading cause of death worldwide(1). Cardiac tissue engineering holds much promise to deliver groundbreaking medical discoveries with the aims of developing functional tissues for cardiac regeneration as well as in vitro screening assays. However, the ability to create high-fidelity models of heart tissue has proven difficult. The heart's extracellular matrix (ECM) is a complex structure consisting of both biochemical and biomechanical signals ranging from the micro- to the nanometer scale(2). Local mechanical loading conditions and cell-ECM interactions have recently been recognized as vital components in cardiac tissue engineering(3-5). A large portion of the cardiac ECM is composed of aligned collagen fibers with nano-scale diameters that significantly influences tissue architecture and electromechanical coupling(2). Unfortunately, few methods have been able to mimic the organization of ECM fibers down to the nanometer scale. Recent advancements in nanofabrication techniques, however, have enabled the design and fabrication of scalable scaffolds that mimic the in vivo structural and substrate stiffness cues of the ECM in the heart(6-9). Here we present the development of two reproducible, cost-effective, and scalable nanopatterning processes for the functional alignment of cardiac cells using the biocompatible polymer poly(lactide-co-glycolide) (PLGA)(8) and a polyurethane (PU) based polymer. These anisotropically nanofabricated substrata (ANFS) mimic the underlying ECM of well-organized, aligned tissues and can be used to investigate the role of nanotopography on cell morphology and function(10-14). Using a nanopatterned (NP) silicon master as a template, a polyurethane acrylate (PUA) mold is fabricated. This PUA mold is then used to pattern the PU or PLGA hydrogel via UV-assisted or solvent-mediated capillary force lithography (CFL), respectively(15,16). Briefly, PU or PLGA pre-polymer is drop dispensed onto a glass coverslip

  4. Capillary Force Lithography for Cardiac Tissue Engineering

    PubMed Central

    Macadangdang, Jesse; Lee, Hyun Jung; Carson, Daniel; Jiao, Alex; Fugate, James; Pabon, Lil; Regnier, Michael; Murry, Charles; Kim, Deok-Ho

    2014-01-01

    Cardiovascular disease remains the leading cause of death worldwide1. Cardiac tissue engineering holds much promise to deliver groundbreaking medical discoveries with the aims of developing functional tissues for cardiac regeneration as well as in vitro screening assays. However, the ability to create high-fidelity models of heart tissue has proven difficult. The heart’s extracellular matrix (ECM) is a complex structure consisting of both biochemical and biomechanical signals ranging from the micro- to the nanometer scale2. Local mechanical loading conditions and cell-ECM interactions have recently been recognized as vital components in cardiac tissue engineering3-5. A large portion of the cardiac ECM is composed of aligned collagen fibers with nano-scale diameters that significantly influences tissue architecture and electromechanical coupling2. Unfortunately, few methods have been able to mimic the organization of ECM fibers down to the nanometer scale. Recent advancements in nanofabrication techniques, however, have enabled the design and fabrication of scalable scaffolds that mimic the in vivo structural and substrate stiffness cues of the ECM in the heart6-9. Here we present the development of two reproducible, cost-effective, and scalable nanopatterning processes for the functional alignment of cardiac cells using the biocompatible polymer poly(lactide-co-glycolide) (PLGA)8 and a polyurethane (PU) based polymer. These anisotropically nanofabricated substrata (ANFS) mimic the underlying ECM of well-organized, aligned tissues and can be used to investigate the role of nanotopography on cell morphology and function10-14. Using a nanopatterned (NP) silicon master as a template, a polyurethane acrylate (PUA) mold is fabricated. This PUA mold is then used to pattern the PU or PLGA hydrogel via UV-assisted or solvent-mediated capillary force lithography (CFL), respectively15,16. Briefly, PU or PLGA pre-polymer is drop dispensed onto a glass coverslip and the PUA

  5. A Novel Membrane Sensor Controls the Localization and ArfGEF Activity of Bacterial RalF

    PubMed Central

    Ray, Pampa; Duarte, Lionel V.; Delprato, Anna; Zeghouf, Mahel; Antonny, Bruno; Campanacci, Valérie; Roy, Craig R.; Cherfils, Jacqueline

    2013-01-01

    The intracellular bacterial pathogen Legionella pneumophila (Lp) evades destruction in macrophages by camouflaging in a specialized organelle, the Legionella-containing vacuole (LCV), where it replicates. The LCV maturates by incorporating ER vesicles, which are diverted by effectors that Lp injects to take control of host cell membrane transport processes. One of these effectors, RalF, recruits the trafficking small GTPase Arf1 to the LCV. LpRalF has a Sec7 domain related to host ArfGEFs, followed by a capping domain that intimately associates with the Sec7 domain to inhibit GEF activity. How RalF is activated to function as a LCV-specific ArfGEF is unknown. We combined the reconstitution of Arf activation on artificial membranes with cellular expression and Lp infection assays, to analyze how auto-inhibition is relieved for LpRalF to function in vivo. We find that membranes activate LpRalF by about 1000 fold, and identify the membrane-binding region as the region that inhibits the Sec7 active site. It is enriched in aromatic and positively charged residues, which establish a membrane sensor to control the GEF activity in accordance with specific lipid environments. A similar mechanism of activation is found in RalF from Rickettsia prowazekii (Rp), with a different aromatic/charged residues ratio that results in divergent membrane preferences. The membrane sensor is the primary determinant of the localization of LpRalF on the LCV, and drives the timing of Arf activation during infection. Finally, we identify a conserved motif in the capping domain, remote from the membrane sensor, which is critical for RalF activity presumably by organizing its active conformation. These data demonstrate that RalF proteins are regulated by a membrane sensor that functions as a binary switch to derepress ArfGEF activity when RalF encounters a favorable lipid environment, thus establishing a regulatory paradigm to ensure that Arf GTPases are efficiently activated at specific

  6. Understanding Immersivity: Image Generation and Transformation Processes in 3D Immersive Environments

    PubMed Central

    Kozhevnikov, Maria; Dhond, Rupali P.

    2012-01-01

    Most research on three-dimensional (3D) visual-spatial processing has been conducted using traditional non-immersive 2D displays. Here we investigated how individuals generate and transform mental images within 3D immersive (3DI) virtual environments, in which the viewers perceive themselves as being surrounded by a 3D world. In Experiment 1, we compared participants’ performance on the Shepard and Metzler (1971) mental rotation (MR) task across the following three types of visual presentation environments; traditional 2D non-immersive (2DNI), 3D non-immersive (3DNI – anaglyphic glasses), and 3DI (head mounted display with position and head orientation tracking). In Experiment 2, we examined how the use of different backgrounds affected MR processes within the 3DI environment. In Experiment 3, we compared electroencephalogram data recorded while participants were mentally rotating visual-spatial images presented in 3DI vs. 2DNI environments. Overall, the findings of the three experiments suggest that visual-spatial processing is different in immersive and non-immersive environments, and that immersive environments may require different image encoding and transformation strategies than the two other non-immersive environments. Specifically, in a non-immersive environment, participants may utilize a scene-based frame of reference and allocentric encoding whereas immersive environments may encourage the use of a viewer-centered frame of reference and egocentric encoding. These findings also suggest that MR performed in laboratory conditions using a traditional 2D computer screen may not reflect spatial processing as it would occur in the real world. PMID:22908003

  7. Waveguide effect in high-NA EUV lithography: The key to extending EUV lithography to the 4-nm node

    NASA Astrophysics Data System (ADS)

    Yeung, Michael; Barouch, Eytan; Oh, Hye-Keun

    2015-06-01

    One of the main concerns about EUV lithography is whether or not it can be extended to very high numerical aperture. In this paper, rigorous electromagnetic simulation is first used to show that there is an interesting waveguide effect occurring in the 4-nm feature size regime. An exact mathematical analysis is then presented to explain the effect observed in the simulation. This waveguide effect is applied to simulate the printing of 4-nm lines and spaces with excellent aerial-image contrast and peak intensity. The feasibility of EUV lithography for printing logic circuits containing general two-dimensional patterns with 4-nm feature size is also demonstrated.

  8. p19ARF is a critical mediator of both cellular senescence and an innate immune response associated with MYC inactivation in mouse model of acute leukemia

    PubMed Central

    Yetil, Alper; Anchang, Benedict; Gouw, Arvin M.; Adam, Stacey J.; Zabuawala, Tahera; Parameswaran, Ramya; van Riggelen, Jan; Plevritis, Sylvia; Felsher, Dean W.

    2015-01-01

    MYC-induced T-ALL exhibit oncogene addiction. Addiction to MYC is a consequence of both cell-autonomous mechanisms, such as proliferative arrest, cellular senescence, and apoptosis, as well as non-cell autonomous mechanisms, such as shutdown of angiogenesis, and recruitment of immune effectors. Here, we show, using transgenic mouse models of MYC-induced T-ALL, that the loss of either p19ARF or p53 abrogates the ability of MYC inactivation to induce sustained tumor regression. Loss of p53 or p19ARF, influenced the ability of MYC inactivation to elicit the shutdown of angiogenesis; however the loss of p19ARF, but not p53, impeded cellular senescence, as measured by SA-beta-galactosidase staining, increased expression of p16INK4A, and specific histone modifications. Moreover, comparative gene expression analysis suggested that a multitude of genes involved in the innate immune response were expressed in p19ARF wild-type, but not null, tumors upon MYC inactivation. Indeed, the loss of p19ARF, but not p53, impeded the in situ recruitment of macrophages to the tumor microenvironment. Finally, p19ARF null-associated gene signature prognosticated relapse-free survival in human patients with ALL. Therefore, p19ARF appears to be important to regulating cellular senescence and innate immune response that may contribute to the therapeutic response of ALL. PMID:25784651

  9. Molecular Basis of Phosphatidylinositol 4-Phosphate and ARF1 GTPase Recognition by the FAPP1 Pleckstrin Homology (PH) Domain

    SciTech Connect

    He, J.; Heroux, A.; Scott, J. L.; Roy, S.; Lenoir, M.; Overduin, M.; Stahelin, R. V.; Kutateladze, T. G.

    2011-05-27

    Four-phosphate-adaptor protein 1 (FAPP1) regulates secretory transport from the trans-Golgi network (TGN) to the plasma membrane. FAPP1 is recruited to the Golgi through binding of its pleckstrin homology (PH) domain to phosphatidylinositol 4-phosphate (PtdIns(4)P) and a small GTPase ADP-ribosylation factor 1 (ARF1). Despite the critical role of FAPP1 in membrane trafficking, the molecular basis of its dual function remains unclear. Here, we report a 1.9 {angstrom} resolution crystal structure of the FAPP1 PH domain and detail the molecular mechanisms of the PtdIns(4)P and ARF1 recognition. The FAPP1 PH domain folds into a seven-stranded {beta}-barrel capped by an {alpha}-helix at one edge, whereas the opposite edge is flanked by three loops and the {beta}4 and {beta}7 strands that form a lipid-binding pocket within the {beta}-barrel. The ARF1-binding site is located on the outer side of the {beta}-barrel as determined by NMR resonance perturbation analysis, mutagenesis, and measurements of binding affinities. The two binding sites have little overlap, allowing FAPP1 PH to associate with both ligands simultaneously and independently. Binding to PtdIns(4)P is enhanced in an acidic environment and is required for membrane penetration and tubulation activity of FAPP1, whereas the GTP-bound conformation of the GTPase is necessary for the interaction with ARF1. Together, these findings provide structural and biochemical insight into the multivalent membrane anchoring by the PH domain that may augment affinity and selectivity of FAPP1 toward the TGN membranes enriched in both PtdIns(4)P and GTP-bound ARF1.

  10. Extreme aberration properties of the combined immersion lenses and their prospects in ion nanolithography

    NASA Astrophysics Data System (ADS)

    Zhukov, Valery A.; Berdnikov, Yaroslav A.; Zhurkin, Evgeni E.

    2004-03-01

    This paper is the further development of work of authors [V.A. Zhukov et. al., Proceedings of SPIE, 5128, (2003)] devoted to theoretical research of the limiting resolution or Critical Development (CD) in ion lithography at use as objectives the combined axial symmetrical immersion lenses. In the given paper the refinement of the basic critical ion-optical parameters of objective combined immersion lenses is carried out. These parameters are the coefficient of a chromatic aberration of first order Cc and the maximal density of a current in the superconducting coil of excitation of combined lens I/S depending on parameter of retardation (immersion) τ=Wt/Wo. Where Wt is energy of ions on a target, W is the energy of ions before a lens, I is a current, and S is area of cross section of the coil. It is shown, that in combined axial symmetrical lenses it is possible to compensate in principle as much as full a chromatic abberation of the first order Cc and a spherical abberation of the third order Cs, since at parametere of retardation τ --> 0 also Cc, Cs -->0. However, full compensation can take place only at τ=0, i.e. at a full stopping of particles. With the help of a method of Monte Carlo the distributions of implanted Ga atoms on depth and on radial coordinate of a crystal target from silicon are calculated at falling for target surface of indefinitely thin beam of Ga+ ions by energy Wt in 1 keV. From these calculations it follows, that using ion implantation from the focused ion beams, it is possible to receive 2 x 1012 pixels with the size 3.6 x 3.6 nm2 everyone, in the frame in the size 3 x 3 mm2 on an ion-lithographic target.

  11. Role of the proto-oncogene Pokemon in cellular transformation and ARF repression.

    PubMed

    Maeda, Takahiro; Hobbs, Robin M; Merghoub, Taha; Guernah, Ilhem; Zelent, Arthur; Cordon-Cardo, Carlos; Teruya-Feldstein, Julie; Pandolfi, Pier Paolo

    2005-01-20

    Aberrant transcriptional repression through chromatin remodelling and histone deacetylation has been postulated to represent a driving force underlying tumorigenesis because histone deacetylase inhibitors have been found to be effective in cancer treatment. However, the molecular mechanisms by which transcriptional derepression would be linked to tumour suppression are poorly understood. Here we identify the transcriptional repressor Pokemon (encoded by the Zbtb7 gene) as a critical factor in oncogenesis. Mouse embryonic fibroblasts lacking Zbtb7 are completely refractory to oncogene-mediated cellular transformation. Conversely, Pokemon overexpression leads to overt oncogenic transformation both in vitro and in vivo in transgenic mice. Pokemon can specifically repress the transcription of the tumour suppressor gene ARF through direct binding. We find that Pokemon is aberrantly overexpressed in human cancers and that its expression levels predict biological behaviour and clinical outcome. Pokemon's critical role in cellular transformation makes it an attractive target for therapeutic intervention. PMID:15662416

  12. Role of the proto-oncogene Pokemon in cellular transformation and ARF repression.

    PubMed

    Maeda, Takahiro; Hobbs, Robin M; Merghoub, Taha; Guernah, Ilhem; Zelent, Arthur; Cordon-Cardo, Carlos; Teruya-Feldstein, Julie; Pandolfi, Pier Paolo

    2005-01-20

    Aberrant transcriptional repression through chromatin remodelling and histone deacetylation has been postulated to represent a driving force underlying tumorigenesis because histone deacetylase inhibitors have been found to be effective in cancer treatment. However, the molecular mechanisms by which transcriptional derepression would be linked to tumour suppression are poorly understood. Here we identify the transcriptional repressor Pokemon (encoded by the Zbtb7 gene) as a critical factor in oncogenesis. Mouse embryonic fibroblasts lacking Zbtb7 are completely refractory to oncogene-mediated cellular transformation. Conversely, Pokemon overexpression leads to overt oncogenic transformation both in vitro and in vivo in transgenic mice. Pokemon can specifically repress the transcription of the tumour suppressor gene ARF through direct binding. We find that Pokemon is aberrantly overexpressed in human cancers and that its expression levels predict biological behaviour and clinical outcome. Pokemon's critical role in cellular transformation makes it an attractive target for therapeutic intervention.

  13. Ventilatory drive during face immersion in man.

    PubMed Central

    Mukhtar, M R; Patrick, J M

    1986-01-01

    Four series of experiments have been performed in normal subjects to determine whether face immersion gives rise to a reduction in ventilatory drive. Such a response might be advantageous, like the cardiovascular components of the 'diving response', in prolonging breath-hold diving. In the first series, ventilatory drive was measured indirectly as the maximal voluntary breath-holding time, starting each breath-hold at the same alveolar partial pressures and at the same lung volume. When the face was immersed in cold water, breath-holding times were increased by 14%. The breaking point occurred at a higher alveolar PCO2 and the rate of rise of PCO2 was not affected. Control immersions in warm water had no effect. In the second and third series, subjects lay prone and breathed either air or 5% CO2 through a valve in the bottom of a bowl. Minute ventilation was measured before, during and after 5 min of face immersion in cold water. Transient hypoventilations of 13% and 10% respectively were seen, accompanied by small rises in alveolar PCO2. In control experiments, immersion of the forearm in cold water produced the opposite responses. In the fourth series, a cold wet pack was applied to the face during moderate steady-state exercise. A small irregular hypoventilation was seen, but not in control experiments when a warm pack was applied. Face temperatures fell by about 10 degrees C in these experiments. No material changes were found in the temperatures of the inspired air or of the aural canal. It is concluded that face immersion in cold water causes a modest reduction in ventilatory drive in man. This appears to be a component of the 'diving response'. PMID:3083097

  14. Biologically inspired omniphobic surfaces by reverse imprint lithography.

    PubMed

    Hensel, René; Finn, Andreas; Helbig, Ralf; Braun, Hans-Georg; Neinhuis, Christoph; Fischer, Wolf-Joachim; Werner, Carsten

    2014-04-01

    Springtail skin morphology is translated into robust omniphobic polymer membranes by reverse imprint lithography. The combination of overhanging cross-sections and their arrangement in a self-supporting comblike pattern are crucial for mechanically stable coatings that can be even applied to curved surfaces. PMID:24375518

  15. Correcting lithography hot spots during physical-design implementation

    NASA Astrophysics Data System (ADS)

    Luk-Pat, Gerard T.; Miloslavsky, Alexander; Ikeuchi, Atsuhiko; Suzuki, Hiroaki; Kyoh, Suigen; Izuha, Kyoko; Tseng, Frank; Wen, Linni

    2006-10-01

    As the technology node shrinks, printed-wafer shapes show progressively less similarity to the design-layout shapes, even with optical proximity correction (OPC). Design tools have a restricted ability to address this shape infidelity. Their understanding of lithography effects is limited, taking the form of design rules that try to prevent "Hot Spots" - locations that demonstrate wafer-printing problems. These design rules are becoming increasingly complex and therefore less useful in addressing the lithography challenges. Therefore, design tools that have a better understanding of lithography are becoming a necessity for technology nodes of 65 nm and below. The general goal of this work is to correct lithography Hot Spots during physical-design implementation. The specific goal is to automatically fix a majority of the Hot Spots in the Metal 2 layers and above, with a run time on the order of a few hours per layer. Three steps were taken to achieve this goal. First, Hot Spot detection was made faster by using rule-based detection. Second, Hot Spot correction was automated by using rule-based correction. Third, convergence of corrections was avoided by performing correction locally, which means that correcting one Hot Spot was very unlikely to create new Hot Spots.

  16. Matrix-assisted polymer pen lithography induced Staudinger Ligation.

    PubMed

    Bian, Shudan; Schesing, Kevin B; Braunschweig, Adam B

    2012-05-21

    The Staudinger Ligation has been combined with Polymer Pen Lithography to create patterns of fluorescent and redox-active inks with 1-micrometer scale feature diameters over centimeter-scale areas. This report presents a straightforward strategy to expand the scope of organic reactions employed in surface science. PMID:22509494

  17. Beyond EUV lithography: a comparative study of efficient photoresists' performance

    PubMed Central

    Mojarad, Nassir; Gobrecht, Jens; Ekinci, Yasin

    2015-01-01

    Extreme ultraviolet (EUV) lithography at 13.5 nm is the main candidate for patterning integrated circuits and reaching sub-10-nm resolution within the next decade. Should photon-based lithography still be used for patterning smaller feature sizes, beyond EUV (BEUV) lithography at 6.x nm wavelength is an option that could potentially meet the rigid demands of the semiconductor industry. We demonstrate simultaneous characterization of the resolution, line-edge roughness, and sensitivity of distinct photoresists at BEUV and compare their properties when exposed to EUV under the same conditions. By using interference lithography at these wavelengths, we show the possibility for patterning beyond 22 nm resolution and characterize the impact of using higher energy photons on the line-edge roughness and exposure latitude. We observe high sensitivity of the photoresist performance on its chemical content and compare their overall performance using the Z-parameter criterion. Interestingly, inorganic photoresists have much better performance at BEUV, while organic chemically-amplified photoresists would need serious adaptations for being used at such wavelength. Our results have immediate implications for deeper understanding of the radiation chemistry of novel photoresists at the EUV and soft X-ray spectra. PMID:25783209

  18. Beyond EUV lithography: a comparative study of efficient photoresists' performance.

    PubMed

    Mojarad, Nassir; Gobrecht, Jens; Ekinci, Yasin

    2015-01-01

    Extreme ultraviolet (EUV) lithography at 13.5 nm is the main candidate for patterning integrated circuits and reaching sub-10-nm resolution within the next decade. Should photon-based lithography still be used for patterning smaller feature sizes, beyond EUV (BEUV) lithography at 6.x nm wavelength is an option that could potentially meet the rigid demands of the semiconductor industry. We demonstrate simultaneous characterization of the resolution, line-edge roughness, and sensitivity of distinct photoresists at BEUV and compare their properties when exposed to EUV under the same conditions. By using interference lithography at these wavelengths, we show the possibility for patterning beyond 22 nm resolution and characterize the impact of using higher energy photons on the line-edge roughness and exposure latitude. We observe high sensitivity of the photoresist performance on its chemical content and compare their overall performance using the Z-parameter criterion. Interestingly, inorganic photoresists have much better performance at BEUV, while organic chemically-amplified photoresists would need serious adaptations for being used at such wavelength. Our results have immediate implications for deeper understanding of the radiation chemistry of novel photoresists at the EUV and soft X-ray spectra. PMID:25783209

  19. Condenser for extreme-UV lithography with discharge source

    DOEpatents

    Sweatt, William C.; Kubiak, Glenn D.

    2001-01-01

    Condenser system, for use with a ringfield camera in projection lithography, employs quasi grazing-incidence collector mirrors that are coated with a suitable reflective metal such as ruthenium to collect radiation from a discharge source to minimize the effect of contaminant accumulation on the collecting mirrors.

  20. Diffractive element in extreme-UV lithography condenser

    DOEpatents

    Sweatt, William C.; Ray-Chaudhurl, Avijit K.

    2000-01-01

    Condensers having a mirror with a diffraction grating in projection lithography using extreme ultra-violet significantly enhances critical dimension control. The diffraction grating has the effect of smoothing the illumination at the camera's entrance pupil with minimum light loss. Modeling suggests that critical dimension control for 100 nm features can be improved from 3 nm to less than about 0.5 nm.

  1. Diffractive element in extreme-UV lithography condenser

    DOEpatents

    Sweatt, William C.; Ray-Chaudhuri, Avijit

    2001-01-01

    Condensers having a mirror with a diffraction grating in projection lithography using extreme ultra-violet significantly enhances critical dimension control. The diffraction grating has the effect of smoothing the illumination at the camera's entrance pupil with minimum light loss. Modeling suggests that critical dimension control for 100 nm features can be improved from 3 nm to less than about 0.5 nm.

  2. Effective decomposition algorithm for self-aligned double patterning lithography

    NASA Astrophysics Data System (ADS)

    Zhang, Hongbo; Du, Yuelin; Wong, Martin D. F.; Topaloglu, Rasit; Conley, Will

    2011-04-01

    Self-aligned double patterning (SADP) lithography is a novel lithography technology that has the intrinsic capability to reduce the overlay in the double patterning lithography (DPL). Although SADP is the critical technology to solve the lithography difficulties in sub-32nm 2D design, the questions - how to decompose a layout with reasonable overlay and how to perform a decomposability check - are still two open problems with no published work. In this paper, by formulating the problem into a SAT formation, we can answer the above two questions optimally. This is the first published paper with detailed algorithm to perform the SADP decomposition. In a layout, we can efficiently check whether a layout is decomposable. For a decomposable layout, our algorithm guarantees to find a decomposition solution with reasonable overlay reduction requirement. With little changes on the clauses in the SAT formula, we can address the decomposition problem for both the positive tone process and the negative tone process. Experimental results validate our method, and decomposition results for Nangate Open Cell Library and larger test cases are also provided with competitive run times.

  3. Technology of alignment mark in electron beam lithography

    NASA Astrophysics Data System (ADS)

    Zhao, Min; Xu, Tang; Chen, Baoqin; Niu, Jiebin

    2014-08-01

    Electron beam direct wring lithography has been an indispensable approach by which all sorts of novel nano-scale devices include many kinds optical devices can be fabricated. Alignment accuracy is a key factor especially to those devices which need multi-level lithography. In addition to electron beam lithography system itself the quality of alignment mark directly influences alignment accuracy. This paper introduces fundamental of alignment mark detection and discusses some techniques of alignment mark fabrication along with considerations for obtaining highly accurate alignment taking JBX5000LS and JBX6300FS e-beam lithography systems for example. The fundamental of alignment mark detection is expounded first. Many kinds of factors which can impact on the quality of alignment mark are analyzed including mark materials, depth of mark groove and influence of multi-channel process. It has been proved from experiments that material used as metal mark with higher average atomic number is better beneficial for getting high alignment accuracy. Depth of mark groove is required to 1.5~5 μm on our experience. The more process steps alignment mark must pass through, the more probability of being damaged there will be. So the compatibility of alignment mark fabrication with the whole device process and the protection of alignment mark are both need to be considered in advance.

  4. Solid state laser driver for Extreme Ultraviolet Lithography. Revision 1

    SciTech Connect

    Zapata, L.E.; Honig, J.; Reichert, P.; Hackel, L.A.

    1994-05-01

    We describe the design and initial performance of a Nd:YAG laser master oscillator/phase conjugated power amplifier as a driver for extreme ultraviolet lithography. The design provides 0.5 to 1 joule per pulse with about 5 ns pulse width and excellent beam quality up through 1.5 kHz repetition frequency.

  5. Study on photochemical analysis system (VLES) for EUV lithography

    NASA Astrophysics Data System (ADS)

    Sekiguchi, A.; Kono, Y.; Kadoi, M.; Minami, Y.; Kozawa, T.; Tagawa, S.; Gustafson, D.; Blackborow, P.

    2007-03-01

    A system for photo-chemical analysis of EUV lithography processes has been developed. This system has consists of 3 units: (1) an exposure that uses the Z-Pinch (Energetiq Tech.) EUV Light source (DPP) to carry out a flood exposure, (2) a measurement system RDA (Litho Tech Japan) for the development rate of photo-resists, and (3) a simulation unit that utilizes PROLITH (KLA-Tencor) to calculate the resist profiles and process latitude using the measured development rate data. With this system, preliminary evaluation of the performance of EUV lithography can be performed without any lithography tool (Stepper and Scanner system) that is capable of imaging and alignment. Profiles for 32 nm line and space pattern are simulated for the EUV resist (Posi-2 resist by TOK) by using VLES that hat has sensitivity at the 13.5nm wavelength. The simulation successfully predicts the resist behavior. Thus it is confirmed that the system enables efficient evaluation of the performance of EUV lithography processes.

  6. Toward Standardized Acoustic Radiation Force (ARF)-Based Ultrasound Elasticity Measurements With Robotic Force Control

    PubMed Central

    Kumar, Shalki; Lily, Kuo; Sen, H. Tutkun; Iordachita, Iulian; Kazanzides, Peter

    2016-01-01

    Objective Acoustic radiation force (ARF)-based approaches to measure tissue elasticity require transmission of a focused high-energy acoustic pulse from a stationary ultrasound probe and ultrasound-based tracking of the resulting tissue displacements to obtain stiffness images or shear wave speed estimates. The method has established benefits in biomedical applications such as tumor detection and tissue fibrosis staging. One limitation, however, is the dependence on applied probe pressure, which is difficult to control manually and prohibits standardization of quantitative measurements. To overcome this limitation, we built a robot prototype that controls probe contact forces for shear wave speed quantification. Methods The robot was evaluated with controlled force increments applied to a tissue-mimicking phantom and in vivo abdominal tissue from three human volunteers. Results The root-mean-square error between the desired and measured forces was 0.07 N in the phantom and higher for the fatty layer of in vivo abdominal tissue. The mean shear wave speeds increased from 3.7 to 4.5 m/s in the phantom and 1.0 to 3.0 m/s in the in vivo fat for compressive forces ranging from 2.5 to 30 N. The standard deviation of shear wave speeds obtained with the robotic approach were low in most cases (< 0.2 m/s) and comparable to that obtained with a semiquantitative landmark-based method. Conclusion Results are promising for the introduction of robotic systems to control the applied probe pressure for ARF-based measurements of tissue elasticity. Significance This approach has potential benefits in longitudinal studies of disease progression, comparative studies between patients, and large-scale multidimensional elasticity imaging. PMID:26552071

  7. Aberrant splicing of the DMP1-ARF-MDM2-p53 pathway in cancer.

    PubMed

    Inoue, Kazushi; Fry, Elizabeth A

    2016-07-01

    Alternative splicing (AS) of mRNA precursors is a ubiquitous mechanism for generating numerous transcripts with different activities from one genomic locus in mammalian cells. The gene products from a single locus can thus have similar, dominant-negative or even opposing functions. Aberrant AS has been found in cancer to express proteins that promote cell growth, local invasion and metastasis. This review will focus on the aberrant splicing of tumor suppressor/oncogenes that belong to the DMP1-ARF-MDM2-p53 pathway. Our recent study shows that the DMP1 locus generates both tumor-suppressive DMP1α (p53-dependent) and oncogenic DMP1β (p53-independent) splice variants, and the DMP1β/α ratio increases with neoplastic transformation of breast epithelial cells. This process is associated with high DMP1β protein expression and shorter survival of breast cancer (BC) patients. Accumulating pieces of evidence show that ARF is frequently inactivated by aberrant splicing in human cancers, demonstrating its involvement in human malignancies. Splice variants from the MDM2 locus promote cell growth in culture and accelerate tumorigenesis in vivo. Human cancers expressing these splice variants are associated with advanced stage/metastasis, and thus have negative clinical impacts. Although they lack most of the p53-binding domain, their activities are mostly dependent on p53 since they bind to wild-type MDM2. The p53 locus produces splice isoforms that have either favorable (β/γ at the C-terminus) or negative impact (Δ40, Δ133 at the N-terminus) on patients' survival. As the oncogenic AS products from these loci are expressed only in cancer cells, they may eventually become targets for molecular therapies.

  8. Cultural Immersion as a Strategy for Empowerment.

    PubMed

    Charles, Jennell P

    2015-01-01

    Cultural immersion experiences offered through study abroad opportunities for nursing students have been increasing in recent years. Examining the impact of these experiences has largely focused on students and not on the faculty leading the experiences. It is important to understand the impact of these experiences on all participants. Exploring the literature on empowerment provides some clarity on the relationship between studying abroad and its impact on participants. Further research linking cultural immersion experiences with empowerment is needed to better understand this relationship and the possibilities of empowering both students and faculty engaged in these exciting opportunities. PMID:26376576

  9. Water immersion in neonatal bereavement photography.

    PubMed

    Duffey, Heather

    2014-01-01

    Water immersion in neonatal bereavement photography is a new technique intended to enhance the quality of the photographs provided to families following their loss. Water immersion appears to be most helpful following a second trimester fetal demise. This technique can be used by nurses, professional photographers and others in addition to more traditional neonatal bereavement photography. It does not require special skills or equipment and can be implemented in virtually any perinatal setting. The enhanced quality of photographs produced with this method can potentially provide a source of comfort to grieving families.

  10. Cultural Immersion as a Strategy for Empowerment.

    PubMed

    Charles, Jennell P

    2015-01-01

    Cultural immersion experiences offered through study abroad opportunities for nursing students have been increasing in recent years. Examining the impact of these experiences has largely focused on students and not on the faculty leading the experiences. It is important to understand the impact of these experiences on all participants. Exploring the literature on empowerment provides some clarity on the relationship between studying abroad and its impact on participants. Further research linking cultural immersion experiences with empowerment is needed to better understand this relationship and the possibilities of empowering both students and faculty engaged in these exciting opportunities.

  11. EUV lithography: NXE platform performance overview

    NASA Astrophysics Data System (ADS)

    Peeters, Rudy; Lok, Sjoerd; Mallman, Joerg; van Noordenburg, Martijn; Harned, Noreen; Kuerz, Peter; Lowisch, Martin; van Setten, Eelco; Schiffelers, Guido; Pirati, Alberto; Stoeldraijer, Judon; Brandt, David; Farrar, Nigel; Fomenkov, Igor; Boom, Herman; Meiling, Hans; Kool, Ron

    2014-04-01

    The first NXE3300B systems have been qualified and shipped to customers. The NXE:3300B is ASML's third generation EUV system and has an NA of 0.33. It succeeds the NXE:3100 system (NA of 0.25), which has allowed customers to gain valuable EUV experience. Good overlay and imaging performance has been shown on the NXE:3300B system in line with 22nm device requirements. Full wafer CDU performance of <1.5nm for 22nm dense and iso lines at a dose of ~16mJ/cm2 has been achieved. Matched machine overlay (NXE to immersion) of around 3.5nm has been demonstrated on multiple systems. Dense lines have been exposed down to 13nm half pitch, and contact holes down to 17nm half pitch. 10nm node Metal-1 layers have been exposed with a DOF of 120nm, and using single spacer assisted double patterning flow a resolution of 9nm has been achieved. Source power is the major challenge to overcome in order to achieve cost-effectiveness in EUV and enable introduction into High Volume Manufacturing. With the development of the MOPA+prepulse operation of the source, steps in power have been made, and with automated control the sources have been prepared to be used in a preproduction fab environment. Flexible pupil formation is under development for the NXE:3300B which will extend the usage of the system in HVM, and the resolution for the full system performance can be extended to 16nm. Further improvements in defectivity performance have been made, while in parallel full-scale pellicles are being developed. In this paper we will discuss the current NXE:3300B performance, its future enhancements and the recent progress in EUV source performance.

  12. Substrate conformal imprint lithography for nanophotonics

    NASA Astrophysics Data System (ADS)

    Verschuuren, M. A.

    2010-03-01

    The field of nano-photonics studies the interaction and control of light with dielectric, semiconductor and metal structures which are comparable in size or smaller than the vacuum wavelength of light. In this thesis we present Substrate Conformal Imprint Lithography (SCIL) as a novel wafer-scale nanoimprint method with nano-scale resolution which combines the resolution and accuracy of rigid stamps with the flexibility of soft stamp methods. Chapter two describes the SCIL soft nanoimprint process and introduces a novel silica sol-gel imprint resist. A new soft rubber stamp material is described which enables sub-10 nm resolution. We demonstrate that SCIL imprinted patterns have on average less than 0.1 nm distortion and demonstrate sub-50 nm overlay alignment. Chapter 3 demonstrates 30 nm dense structures and features with aspect ratios from 1/640 up to 5. Imprinted sol-gel patterns can be transferred into underlying materials while maintaining sub-10 nm resolution. Two methods are demonstrated to pattern noble metals in particle arrays and sub-wavelength hole arrays. SCIL is applied to produce photonic crystal power InGaN LEDs which exhibit strong modification of the emission pattern. Chapter 4 demonstrates a relatively simple route towards 3D woodpile type photonic crystals. We show a four layer woodpile type structure with 70 nm features on a 240 nm pitch, which is temperature stable up to 1000 C. Chapter 5 demonstrates a novel fabrication route to large area nano hole arrays, which are interesting as angle independent color filters and for sensor applications. A solid state index matched hole array exhibits SPP mediated super resonant transmission. Chapter 6 treats single mode polarization stabilized Vertical Cavity Surface Emitting Lasers (VCSELs). The lasers produced by SCIL exhibit equal performance as devices produced by e-beam. VCSELs with SCIL imprinted sub-wavelength gratings increase the laser efficiency by 29 % compared to conventional gratings

  13. Protein assay structured on paper by using lithography

    NASA Astrophysics Data System (ADS)

    Wilhelm, E.; Nargang, T. M.; Al Bitar, W.; Waterkotte, B.; Rapp, B. E.

    2015-03-01

    There are two main challenges in producing a robust, paper-based analytical device. The first one is to create a hydrophobic barrier which unlike the commonly used wax barriers does not break if the paper is bent. The second one is the creation of the (bio-)specific sensing layer. For this proteins have to be immobilized without diminishing their activity. We solve both problems using light-based fabrication methods that enable fast, efficient manufacturing of paper-based analytical devices. The first technique relies on silanization by which we create a flexible hydrophobic barrier made of dimethoxydimethylsilane. The second technique demonstrated within this paper uses photobleaching to immobilize proteins by means of maskless projection lithography. Both techniques have been tested on a classical lithography setup using printed toner masks and on a lithography system for maskless lithography. Using these setups we could demonstrate that the proposed manufacturing techniques can be carried out at low costs. The resolution of the paper-based analytical devices obtained with static masks was lower due to the lower mask resolution. Better results were obtained using advanced lithography equipment. By doing so we demonstrated, that our technique enables fabrication of effective hydrophobic boundary layers with a thickness of only 342 μm. Furthermore we showed that flourescine-5-biotin can be immobilized on the non-structured paper and be employed for the detection of streptavidinalkaline phosphatase. By carrying out this assay on a paper-based analytical device which had been structured using the silanization technique we proofed biological compatibility of the suggested patterning technique.

  14. Controlling linewidth roughness in step and flash imprint lithography

    NASA Astrophysics Data System (ADS)

    Schmid, Gerard M.; Khusnatdinov, Niyaz; Brooks, Cynthia B.; LaBrake, Dwayne; Thompson, Ecron; Resnick, Douglas J.; Owens, Jordan; Ford, Arnie; Sasaki, Shiho; Toyama, Nobuhito; Kurihara, Masaaki; Hayashi, Naoya; Kobayashi, Hideo; Sato, Takashi; Nagarekawa, Osamu; Hart, Mark W.; Gopalakrishnan, Kailash; Shenoy, Rohit; Jih, Ron; Zhang, Ying; Sikorski, Edmund; Rothwell, Mary Beth; Yoshitake, Shusuke; Sunaoshi, Hitoshi; Yasui, Kenichi

    2008-04-01

    Despite the remarkable progress made in extending optical lithography to deep sub-wavelength imaging, the limit for the technology seems imminent. At 22nm half pitch design rules, neither very high NA tools (NA 1.6), nor techniques such as double patterning are likely to be sufficient. One of the key challenges in patterning features with these dimensions is the ability to minimize feature roughness while maintaining reasonable process throughput. This limitation is particularly challenging for electron and photon based NGL technologies, where fast chemically amplified resists are used to define the patterned images. Control of linewidth roughness (LWR) is critical, since it adversely affects device speed and timing in CMOS circuits. Imprint lithography has been included on the ITRS Lithography Roadmap at the 32 and 22 nm nodes. This technology has been shown to be an effective method for replication of nanometer-scale structures from a template (imprint mask). As a high fidelity replication process, the resolution of imprint lithography is determined by the ability to create a master template having the required dimensions. Although the imprint process itself adds no additional linewidth roughness to the patterning process, the burden of minimizing LWR falls to the template fabrication process. Non chemically amplified resists, such as ZEP520A, are not nearly as sensitive but have excellent resolution and can produce features with very low LWR. The purpose of this paper is to characterize LWR for the entire imprint lithography process, from template fabrication to the final patterned substrate. Three experiments were performed documenting LWR in the template, imprint, and after pattern transfer. On average, LWR was extremely low (less than 3nm, 3σ), and independent of the processing step and feature size.

  15. Linewidth roughness characterization in step and flash imprint lithography

    NASA Astrophysics Data System (ADS)

    Schmid, Gerard M.; Khusnatdinov, Niyaz; Brooks, Cynthia B.; LaBrake, Dwayne; Thompson, Ecron; Resnick, Douglas J.

    2008-05-01

    Despite the remarkable progress made in extending optical lithography to deep sub-wavelength imaging, the limit for the technology seems imminent. At 22nm half pitch design rules, neither very high NA tools (NA 1.6), nor techniques such as double patterning are likely to be sufficient. One of the key challenges in patterning features with these dimensions is the ability to minimize feature roughness while maintaining reasonable process throughput. This limitation is particularly challenging for electron and photon based NGL technologies, where fast chemically amplified resists are used to define the patterned images. Control of linewidth roughness (LWR) is critical, since it adversely affects device speed and timing in CMOS circuits. Imprint lithography has been included on the ITRS Lithography Roadmap at the 32 and 22 nm nodes. This technology has been shown to be an effective method for replication of nanometer-scale structures from a template (imprint mask). As a high fidelity replication process, the resolution of imprint lithography is determined by the ability to create a master template having the required dimensions. Although the imprint process itself adds no additional linewidth roughness to the patterning process, the burden of minimizing LWR falls to the template fabrication process. Non chemically amplified resists, such as ZEP520A, are not nearly as sensitive but have excellent resolution and can produce features with very low LWR. The purpose of this paper is to characterize LWR for the entire imprint lithography process, from template fabrication to the final patterned substrate. Three experiments were performed documenting LWR in the template, imprint, and after pattern transfer. On average, LWR was extremely low (less than 3nm, 3σ), and independent of the processing step and feature size.

  16. High-etch-rate bottom-antireflective coating and gap-fill materials using dextrin derivatives in via first dual-Damascene lithography process

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Sakaida, Yasushi; Shinjo, Tetsuya; Hashimoto, Keisuke; Nakajima, Yasuyuki

    2008-03-01

    The present paper describes a novel class of bottom antireflective coating (BARC) and gap fill materials using dextrin derivatives. The general trend of interconnect fabrication for such a high performance LSI is to apply cupper (Cu)/ low-dielectric-constant (low-k) interconnect to reduce RC delay. A via-first dual damascene process is one of the most promising processes to fabricate Cu/ low-k interconnect due to its wide miss-alignment margin. The sacrificial materials containing dextrin derivatives under resist for lithography were developed in via-first dual damascene process. The dextrin derivatives in this study was obtained by the esterification of the hydroxyl groups of dextrin resulting in improved solubility in the resist solvents such as propylene glycol monomethylether, propylene glycol monomethylether acetate, and ethyl lactate due to avoid the issue of defects that were caused by incompatability. The etch rate of our developed BARC and gap fill materials using dextrin derivatives was more than two times faster than one of the ArF resists evaluated in a CF4 gas condition using reactive ion etching. The improved etch performance was also verified by comparison with poly(hydroxystyrene), acrylate-type materials and latest low-k materials as a reference. In addition to superior etch performance, these materials showed good resist profiles and via filling performance without voids in via holes.

  17. Children's Learning Strategies in Language Immersion Classrooms.

    ERIC Educational Resources Information Center

    Chamot, Anna Uhl; El-Dinary, Pamela Beard

    This paper reports on an investigation of learning strategy applications in elementary foreign language immersion classrooms. The focus of the paper is on identifying strategies more and less effective learners use for classroom reading and writing tasks in the target language. Think-aloud data from third grade and fourth grade students were…

  18. Going beyond Words: The Arapaho Immersion Program.

    ERIC Educational Resources Information Center

    Greymorning, Steve

    This paper examines the growth and development of the Arapaho immersion program and discusses language revitalization strategies and methods used on the Wind River Reservation (Wyoming). Following a community request for an Arapaho language and culture program in reservation public schools, a test class of kindergarten students received an hour of…

  19. Miniature optically immersed thermistor bolometer arrays.

    PubMed

    De Waard, R; Weiner, S

    1967-08-01

    Immersed thermistor bolometers have been in use since 1958 as sensors for ir horizon scanners employed in attitude control of earth-orbiting vehicles.(1) These detectors usually use a single small thermistor flake optically immersed in an antireflection coated pure germanium or silicon hemisphere or hyperhemisphere.(2) Studies of the earth's atmospheric horizon from orbiting vehicles indicate that the most useful radiant power lies in the carbon dioxide spectrum near 15 micro and in the rotational water bands of atmospheric moisture in the spectrum beyond 20 micro.(3) These atmospheric constituents produce high ir optical density and hence provide small angle horizon resolution. Carbon dioxide has the additional advantage, by being uniformly distributed in the atmosphere, of providing a stable horizon. The purpose of this paper is to describe briefly two types of five-element linear arrays of thermistor flakes optically immersed in germanium and silicon lenses (Fig. 1). These detecrs were designed for an advanced horizon definition study program at NASA-Langley Research Center.(4) Germanium immersion is employed for best detectivity in the carbon dioxide spectrum from 14 micro to 16 micro and silicon for the spectrum beyond 20 micro.

  20. Digital Immersive Virtual Environments and Instructional Computing

    ERIC Educational Resources Information Center

    Blascovich, Jim; Beall, Andrew C.

    2010-01-01

    This article reviews theory and research relevant to the development of digital immersive virtual environment-based instructional computing systems. The review is organized within the context of a multidimensional model of social influence and interaction within virtual environments that models the interaction of four theoretical factors: theory…