In silico molecular engineering for a targeted replacement in a tumor-homing peptide
Zanuy, David; Flores-Ortega, Alejandra; Jiménez, Ana I.; Calaza, M. Isabel; Cativiela, Carlos; Nussinov, Ruth; Ruoslahti, Erkki; Alemán, Carlos
2009-01-01
A new amino acid has been designed as a replacement for arginine (Arg, R) to protect the tumor-homing pentapeptide CREKA from proteases. This amino acid, denoted (Pro)hArg, is characterized by a proline skeleton bearing a specifically oriented guanidinium side chain. This residue combines the ability of Pro to induce turn-like conformations with the Arg side-chain functionality. The conformational profile of the CREKA analogue incorporating this Arg substitute has been investigated by a combination of simulated annealing and Molecular Dynamics. Comparison of the results with those previously obtained for the natural CREKA shows that (Pro)hArg significantly reduces the conformational flexibility of the peptide. Although some changes are observed in the backbone···backbone and side chain···side chain interactions, the modified peptide exhibits a strong tendency to accommodate turn conformations centered at the (Pro)hArg residue and the overall shape of the molecule in the lowest energy conformations characterized for the natural and the modified peptide exhibit a high degree of similarity. In particular, the turn orients the backbone such that the Arg, Glu and Lys side chains face the same side of the molecule, which is considered essential for bioactivity. These results suggest that replacement of Arg by (Pro)hArg in CREKA may be useful in providing resistance against proteolytic enzymes while retaining conformational features which are essential for tumor-homing activity. PMID:19432404
Kuo, Hsiou-Ting; Liu, Shing-Lung; Chiu, Wen-Chieh; Fang, Chun-Jen; Chang, Hsien-Chen; Wang, Wei-Ren; Yang, Po-An; Li, Jhe-Hao; Huang, Shing-Jong; Huang, Shou-Ling; Cheng, Richard P
2015-05-01
β-Sheet is one of the major protein secondary structures. Oppositely charged residues are frequently observed across neighboring strands in antiparallel sheets, suggesting the importance of cross-strand ion pairing interactions. The charged amino acids Asp, Glu, Arg, and Lys have different numbers of hydrophobic methylenes linking the charged functionality to the backbone. To investigate the effect of side chain length of guanidinium- and carboxylate-containing residues on lateral cross-strand ion pairing interactions at non-hydrogen-bonded positions, β-hairpin peptides containing Zbb-Agx (Zbb = Asp, Glu, Aad in increasing length; Agx = Agh, Arg, Agb, Agp in decreasing length) sequence patterns were studied by NMR methods. The fraction folded population and folding energy were derived from the chemical shift deviation data. Peptides with high fraction folded populations involved charged residue side chain lengths that supported high strand propensity. Double mutant cycle analysis was used to determine the interaction energy for the potential lateral ion pairs. Minimal interaction was observed between residues with short side chains, most likely due to the diffused positive charge on the guanidinium group, which weakened cross-strand electrostatic interactions with the carboxylate side chain. Only the Aad-Arg/Agh interactions with long side chains clearly exhibited stabilizing energetics, possibly relying on hydrophobics. A survey of a non-redundant protein structure database revealed that the statistical sheet pair propensity followed the trend Asp-Arg < Glu-Arg, implying the need for matching long side chains. This suggested the need for long side chains on both guanidinium-bearing and carboxylate-bearing residues to stabilize the β-hairpin motif.
Kumaki, Yasuhiro; Nitta, Katsutoshi; Hikichi, Kunio; Matsumoto, Takeshi; Matsushima, Norio
2004-07-01
Plant glycine-rich RNA-binding proteins (GRRBPs) contain a glycine-rich region at the C-terminus whose structure is quite unknown. The C-terminal glycine-rich part is interposed with arginine and tyrosine (arginine/glycine/tyrosine (RGY)-rich domain). Comparative sequence analysis of forty-one GRRBPs revealed that the RGY-rich domain contains multiple repeats of Tyr-(Xaa)h-(Arg)k-(Xaa)l, where Xaa is mainly Gly, "k" is 1 or 2, and "h" and "l" range from 0 to 10. Two peptides, 1 (G1G2Y3G4G5G6R7R8D9G10) and 2 (G1G2R3R4D5G6G7Y8G9G10), corresponding to sections of the RGY-rich domain in Zea mays RAB15, were selected for CD and NMR experiments. The CD spectra indicate a unique, positive band near 228 nm in both peptides that has been ascribed to tyrosine residues in ordered structures. The pH titration by NMR revealed that a side chain-side chain interaction, presumably an H-Nepsilon...O=Cgamma hydrogen bonding interaction in the salt bridge, occurs between Arg (i) and Asp (i + 2). 1D GOESY experiments indicated the presence of NOE between the aromatic side chain proton and the arginine side chain proton in the two peptides suggesting strongly that the Arg (i) aromatic side chain interacts directly with the Tyr (i +/- 4 or i +/- 5) side chain.
Joseph, C G; Sorensen, N B; Wood, M S; Xiang, Z; Moore, M C; Haskell-Luevano, C
2005-11-01
The Ac-His-dPhe-Arg-Trp-NH2 tetrapeptide is a nonselective melanocortin agonist and replacement of Arg in the tetrapeptide with acidic, basic or neutral amino acids results in reduced potency at the melanocortin receptor (MCR) isoforms (MC1R and MC3-5R). To determine the importance of the positive charge and the guanidine moiety for melanocortin activity, a series of urea- and thiourea-substituted tetrapeptides were designed. Replacement of Arg with Lys or ornithine reduced agonist activity at the mouse mMC1 and mMC3-5 receptors, thus supporting the hypothesis that the guanidine moiety is important for receptor potency, particularly at the MC3-5 receptors. The Arg side chain-modified tetrapeptides examined in this study include substituted phenyl, naphthyl, and aliphatic urea and thiourea residues using a Lys side-chain template. These ligands elicit full-agonist pharmacology at the mouse MCRs examined in this study.
Zhu, Hui; Shuman, Stewart
2005-04-01
NAD+-dependent DNA ligase (LigA) is essential for bacterial growth and a potential target for antimicrobial drug discovery. Here we queried the role of 14 conserved amino acids of Escherichia coli LigA by alanine scanning and thereby identified five new residues within the nucleotidyltransferase domain as being essential for LigA function in vitro and in vivo. Structure activity relationships were determined by conservative mutagenesis for the Glu-173, Arg-200, Arg-208, and Arg-277 side chains, as well as four other essential side chains that had been identified previously (Lys-115, Asp-117, Asp-285, and Lys-314). In addition, we identified Lys-290 as important for LigA activity. Reference to the structure of Enterococcus faecalis LigA allowed us to discriminate three classes of essential/important side chains that: (i) contact NAD+ directly (Lys-115, Glu-173, Lys-290, and Lys-314); (ii) comprise the interface between the NMN-binding domain (domain Ia) and the nucleotidyltransferase domain or comprise part of a nick-binding site on the surface of the nucleotidyltransferase domain (Arg-200 and Arg-208); or (iii) stabilize the active site fold of the nucleotidyltransferase domain (Arg-277). Analysis of mutational effects on the isolated ligase adenylylation and phosphodiester formation reactions revealed different functions for essential side chains at different steps of the DNA ligase pathway, consistent with the proposal that the active site is serially remodeled as the reaction proceeds.
UV resonance Raman finds peptide bond-Arg side chain electronic interactions.
Sharma, Bhavya; Asher, Sanford A
2011-05-12
We measured the UV resonance Raman excitation profiles and Raman depolarization ratios of the arginine (Arg) vibrations of the amino acid monomer as well as Arg in the 21-residue predominantly alanine peptide AAAAA(AAARA)(3)A (AP) between 194 and 218 nm. Excitation within the π → π* peptide bond electronic transitions result in UVRR spectra dominated by amide peptide bond vibrations. The Raman cross sections and excitation profiles indicate that the Arg side chain electronic transitions mix with the AP peptide bond electronic transitions. The Arg Raman bands in AP exhibit Raman excitation profiles similar to those of the amide bands in AP which are conformation specific. These Arg excitation profiles distinctly differ from the Arg monomer. The Raman depolarization ratios of Arg in monomeric solution are quite simple with ρ = 0.33 indicating enhancement by a single electronic transition. In contrast, we see very complex depolarization ratios of Arg in AP that indicate that the Arg residues are resonance enhanced by multiple electronic transitions.
Sun, Delin; Forsman, Jan; Woodward, Clifford E
2015-04-14
Abundant peptides and proteins containing arginine (Arg) and lysine (Lys) amino acids can apparently permeate cell membranes with ease. However, the mechanisms by which these peptides and proteins succeed in traversing the free energy barrier imposed by cell membranes remain largely unestablished. Precise thermodynamic studies (both theoretical and experimental) on the interactions of Arg and Lys residues with model lipid bilayers can provide valuable clues to the efficacy of these cationic peptides and proteins. We have carried out molecular dynamics simulations to calculate the interactions of ionized Arg and Lys side-chains with the zwitterionic 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayer for 10 widely used lipid/protein force fields: CHARMM36/CHARMM36, SLIPID/AMBER99SB-ILDN, OPLS-AA/OPLS-AA, Berger/OPLS-AA, Berger/GROMOS87, Berger/GROMOS53A6, GROMOS53A6/GROMOS53A6, nonpolarizable MARTINI, polarizable MARTINI, and BMW MARTINI. We performed umbrella sampling simulations to obtain the potential of mean force for Arg and Lys side-chains partitioning from water to the bilayer interior. We found significant differences between the force fields, both for the interactions between side-chains and bilayer surface, as well as the free energy cost for placing the side-chain at the center of the bilayer. These simulation results were compared with the Wimley-White interfacial scale. We also calculated the free energy cost for transferring ionized Arg and Lys side-chains from water to both dry and wet octanol. Our simulations reveal rapid diffusion of water molecules into octanol whereby the equilibrium mole fraction of water in the wet octanol phase was ∼25%. Surprisingly, our free energy calculations found that the high water content in wet octanol lowered the water-to-octanol partitioning free energies for cationic residues by only 0.6 to 0.7 kcal/mol.
Fukamizo, T; Juffer, A H; Vogel, H J; Honda, Y; Tremblay, H; Boucher, I; Neugebauer, W A; Brzezinski, R
2000-08-18
Based on the crystal structure of chitosanase from Streptomyces sp. N174, we have calculated theoretical pK(a) values of the ionizable groups of this protein using a combination of the boundary element method and continuum electrostatics. The pK(a) value obtained for Arg(205), which is located in the catalytic cleft, was abnormally high (>20.0), indicating that the guanidyl group may interact strongly with nearby charges. Chitosanases possessing mutations in this position (R205A, R205H, and R205Y), produced by Streptomyces lividans expression system, were found to have less than 0.3% of the activity of the wild type enzyme and to possess thermal stabilities 4-5 kcal/mol lower than that of the wild type protein. In the crystal structure, the Arg(205) side chain is in close proximity to the Asp(145) side chain (theoretical pK(a), -1.6), which is in turn close to the Arg(190) side chain (theoretical pK(a), 17.7). These theoretical pK(a) values are abnormal, suggesting that both of these residues may participate in the Arg(205) interaction network. Activity and stability experiments using Asp(145)- and Arg(190)-mutated chitosanases (D145A and R190A) provide experimental data supporting the hypothesis derived from the theoretical pK(a) data and prompt the conclusion that Arg(205) forms a strong interaction network with Asp(145) and Arg(190) that stabilizes the catalytic cleft.
2012-05-25
3. (A) X-ray structure of human CYP2C9 cocrystallized with flurbiprofen showing hydrogen bonding interactions between the anionic carboxyl group with...Figure 3 shows the X-ray crystal structure of human CYP2C9 cocrystallized with flurbiprofen . The structure indicates that the carboxyl group of... flurbiprofen forms hydrogen bonding interactions with the Arg108 and Asn204 side chains of the protein.35 Since the Arg108 and Asn204 side chains are at the
Holder, Jerry Ryan; Xiang, Zhimin; Bauzo, Rayna M; Haskell-Luevano, Carrie
2003-01-01
The melanocortin pathway is involved in the regulation of several physiological functions including skin pigmentation, steroidogenesis, obesity, energy homeostasis, and exocrine gland function. This melanocortin pathway consists of five known G-protein coupled receptors, endogenous agonists derived from the proopiomelanocortin (POMC) gene transcript, the endogenous antagonists Agouti and the Agouti-related protein (AGRP) and signals through the intracellular cAMP signal transduction pathway. The melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R) located in the brain are implicated as participating in the metabolic and food intake aspects of energy homeostasis and are stimulated by melanocortin agonists such as alpha-melanocyte stimulation hormone (alpha-MSH). All the endogenous (POMC-derived) melanocortin agonists contain the putative message sequence "His-Phe-Arg-Trp." Herein, we report 12 tetrapeptides, based upon the template Ac-His(6)-DPhe(7)-Arg(8)-Trp(9)-NH(2) (alpha-MSH numbering) that have been modified at the Arg(8) position by neutral, basic, or acidic amino acid side chains. These peptides have been pharmacologically characterized for agonist activity at the mouse melanocortin receptors MC1R, MC3R, MC4R, and MC5R. The most notable results of this study include the observation that removal of the guanidinyl side chain moiety results in decreased melanocortin receptor potency, but that this Arg(8) side chain is not critical for melanocortin receptor agonist activity. Additionally, incorporation of the homoArg(8) residue results in 56-fold MC4R versus MC3R selectivity, and the Orn(8) residue results in 123-fold MC4R versus MC5R and 63-fold MC5R versus MC3R selectivity. Copyright 2002 Elsevier Science Inc.
Revilla-López, Guillem; Torras, Juan; Jiménez, Ana I.; Cativiela, Carlos; Nussinov, Ruth; Alemán, Carlos
2009-01-01
The intrinsic conformational preferences of the non-proteinogenic amino acids constructed by incorporating the arginine side chain in the β position of 1-aminocyclopentane-1-carboxylic acid (either in a cis or a trans orientation relative to the amino group) have been investigated using computational methods. These compounds may be considered as constrained analogues of arginine (denoted as c5Arg) in which the orientation of the side chain is fixed by the cyclopentane moiety. Specifically, the N-acetyl-N′-methylamide derivatives of cis and trans-c5Arg have been examined in the gas phase and in solution using B3LYP/6-311+G(d,p) calculations and Molecular Dynamics simulations. Results indicate that the conformational space available to these compounds is highly restricted, their conformational preferences being dictated by the ability of the guanidinium group in the side chain to establish hydrogen-bond interactions with the backbone. A comparison with the behavior previously described for the analogous phenylalanine derivatives is presented. PMID:19236034
Kirikoshi, Ryota; Manabe, Noriyoshi; Takahashi, Ohgi
2017-02-16
The Asn-Gly-Arg (NGR) motif and its deamidation product iso Asp-Gly-Arg ( iso DGR) have recently attracted considerable attention as tumor-targeting ligands. Because an NGR-containing peptide and the corresponding iso DGR-containing peptide target different receptors, the spontaneous NGR deamidation can be used in dual targeting strategies. It is well known that the Asn deamidation proceeds via a succinimide derivative. In the present study, we computationally investigated the mechanism of succinimide formation from a cyclic peptide, c[CH₂CO-NGRC]-NH₂, which has recently been shown to undergo rapid deamidation in a phosphate buffer. An H₂PO₄ - ion was explicitly included in the calculations. We employed the density functional theory using the B3LYP functional. While geometry optimizations were performed in the gas phase, hydration Gibbs energies were calculated by the SM8 (solvation model 8) continuum model. We have found a pathway leading to the five-membered ring tetrahedral intermediate in which both the H₂PO₄ - ion and the Arg side chain act as catalyst. This intermediate, once protonated at the NH₂ group on the five-membered ring, was shown to easily undergo NH₃ elimination leading to the succinimide formation. This study is the first to propose a possible catalytic role for the Arg side chain in the NGR deamidation.
Andrew, Charles D; Bhattacharjee, Samita; Kokkoni, Nicoleta; Hirst, Jonathan D; Jones, Gareth R; Doig, Andrew J
2002-10-30
Here we investigate the structures and energetics of interactions between aromatic (Phe or Tyr) and basic (Lys or Arg) amino acids in alpha-helices. Side chain interaction energies are measured using helical peptides, by quantifying their helicities with circular dichroism at 222 nm and interpreting the results with Lifson-Roig-based helix/coil theory. A difficulty in working with Tyr is that the aromatic ring perturbs the CD spectrum, giving an incorrect helicity. We calculated the effect of Tyr on the CD at 222 nm by deriving the intensities of the bands directly from the electronic and magnetic transition dipole moments through the rotational strengths corresponding to each excited state of the polypeptide. This gives an improved value of the helix preference of Tyr (from 0.48 to 0.35) and a correction to the helicity for the peptides containing Tyr. We find that Phe-Lys, Lys-Phe, Phe-Arg, Arg-Phe, and Tyr-Lys are all stabilizing by -0.10 to -0.18 kcal.mol-1 when placed i, i + 4 on the surface of a helix in aqueous solution, despite the great difference in polarity between these residues. Interactions between these side chains have previously been attributed to cation-pi bonds. A survey of protein structures shows that they are in fact predominantly hydrophobic interactions between the CH2 groups of Lys or Arg and the aromatic rings.
Morais, Maurício; Zamora-Carreras, Héctor; Raposinho, Paula D; Oliveira, Maria Cristina; Pantoja-Uceda, David; Correia, João D G; Jiménez, M Angeles
2017-07-15
Linear and cyclic analogues of the α-melanocyte stimulating hormone (α-MSH) targeting the human melanocortin receptor 1 (MC1R) are of pharmacological interest for detecting and treating melanoma. The central sequence of α-MSH (His-Phe-Arg-Trp) has been identified as being essential for receptor binding. To deepen current knowledge on the molecular basis for α-MSH bioactivity, we aimed to understand the effect of cycle size on receptor binding. To that end, we synthesised two macrocyclic isomeric α-MSH analogues, c[NH-NO₂-C₆H₃-CO-His-DPhe-Arg-Trp-Lys]-Lys-NH₂ ( CycN-K6 ) and c[NH-NO₂-C₆H₃-CO-His-DPhe-Arg-Trp-Lys-Lys]-NH₂ ( CycN-K7 ). Their affinities to MC1R receptor were determined by competitive binding assays, and their structures were analysed by ¹H and 13 C NMR. These results were compared to those of the previously reported analogue c[S-NO₂-C₆H₃-CO-His-DPhe-Arg-Trp-Cys]-Lys-NH₂ ( CycS-C6 ). The MC1R binding affinity of the 22-membered macrocyclic peptide CycN-K6 (IC 50 = 155 ± 16 nM) is higher than that found for the 25-membered macrocyclic analogue CycN-K7 (IC 50 = 495 ± 101 nM), which, in turn, is higher than that observed for the 19-membered cyclic analogue CycS-C6 (IC 50 = 1770 ± 480 nM). NMR structural study indicated that macrocycle size leads to changes in the relative dispositions of the side chains, particularly in the packing of the Arg side chain relative to the aromatic rings. In contrast to the other analogues, the 22-membered cycle's side chains are favorably positioned for receptor interaction.
Helicity of short E-R/K peptides.
Sommese, Ruth F; Sivaramakrishnan, Sivaraj; Baldwin, Robert L; Spudich, James A
2010-10-01
Understanding the secondary structure of peptides is important in protein folding, enzyme function, and peptide-based drug design. Previous studies of synthetic Ala-based peptides (>12 a.a.) have demonstrated the role for charged side chain interactions involving Glu/Lys or Glu/Arg spaced three (i, i + 3) or four (i, i + 4) residues apart. The secondary structure of short peptides (<9 a.a.), however, has not been investigated. In this study, the effect of repetitive Glu/Lys or Glu/Arg side chain interactions, giving rise to E-R/K helices, on the helicity of short peptides was examined using circular dichroism. Short E-R/K-based peptides show significant helix content. Peptides containing one or more E-R interactions display greater helicity than those with similar E-K interactions. Significant helicity is achieved in Arg-based E-R/K peptides eight, six, and five amino acids long. In these short peptides, each additional i + 3 and i + 4 salt bridge has substantial contribution to fractional helix content. The E-R/K peptides exhibit a strongly linear melt curve indicative of noncooperative folding. The significant helicity of these short peptides with predictable dependence on number, position, and type of side chain interactions makes them an important consideration in peptide design.
Conformational profile of a proline-arginine hybrid
Revilla-López, Guillermo; Jiménez, Ana I.; Cativiela, Carlos; Nussinov, Ruth; Alemán, Carlos; Zanuy, David
2010-01-01
The intrinsic conformational preferences of a new non-proteinogenic amino acid have been explored by computational methods. This tailored molecule, named (βPro)Arg, is conceived as a replacement for arginine in bioactive peptides when the stabilization of folded turn-like conformations is required. The new residue features a proline skeleton that bears the guanidilated side chain of arginine at the Cβ position of the five-membered pyrrolidine ring, either in a cis or a trans orientation with respect to the carboxylic acid. The conformational profile of the N-acetyl-N'-methylamide derivatives of the cis and trans isomers of (βPro)Arg has been examined in the gas phase and in solution by B3LYP/6–31+G(d,p) calculations and molecular dynamics simulations. The main conformational features of both isomers represent a balance between geometric restrictions imposed by the five-membered pyrrolidine ring and the ability of the guanidilated side chain to interact with the backbone through hydrogen-bonds. Thus, both cis and trans (βPro)Arg exhibit a preference for the αL conformation as a consequence of the interactions established between the guanidinium moiety and the main-chain amide groups. PMID:20886854
Conformational profile of a proline-arginine hybrid.
Revilla-López, Guillermo; Jiménez, Ana I; Cativiela, Carlos; Nussinov, Ruth; Alemán, Carlos; Zanuy, David
2010-10-25
The intrinsic conformational preferences of a new nonproteinogenic amino acid have been explored by computational methods. This tailored molecule, named ((β)Pro)Arg, is conceived as a replacement for arginine in bioactive peptides when the stabilization of folded turn-like conformations is required. The new residue features a proline skeleton that bears the guanidilated side chain of arginine at the C(β) position of the five-membered pyrrolidine ring, in either a cis or a trans orientation with respect to the carboxylic acid. The conformational profiles of the N-acetyl-N'-methylamide derivatives of the cis and trans isomers of ((β)Pro)Arg have been examined in the gas phase and in solution by B3LYP/6-31+G(d,p) calculations and molecular dynamics simulations. The main conformational features of both isomers represent a balance between geometric restrictions imposed by the five-membered pyrrolidine ring and the ability of the guanidilated side chain to interact with the backbone through hydrogen bonds. Thus, both cis- and trans-((β)Pro)Arg exhibit a preference for the α(L) conformation as a consequence of the interactions established between the guanidinium moiety and the main-chain amide groups.
Cai, Minying; Marelli, Udaya Kiran; Mertz, Blake; Beck, Johannes G; Opperer, Florian; Rechenmacher, Florian; Kessler, Horst; Hruby, Victor J
2017-08-15
Systematic N-methylated derivatives of the melanocortin receptor ligand, SHU9119, lead to multiple binding and functional selectivity toward melanocortin receptors. However, the relationship between N-methylation-induced conformational changes in the peptide backbone and side chains and melanocortin receptor selectivity is still unknown. We conducted comprehensive conformational studies in solution of two selective antagonists of the third isoform of the melanocortin receptor (hMC3R), namely, Ac-Nle-c[Asp-NMe-His 6 -d-Nal(2') 7 -NMe-Arg 8 -Trp 9 -Lys]-NH 2 (15) and Ac-Nle-c[Asp-His 6 -d-Nal(2') 7 -NMe-Arg 8 -NMe-Trp 9 -NMe-Lys]-NH 2 (17). It is known that the pharmacophore (His 6 -DNal 7 -Arg 8 -Trp 9 ) of the SHU-9119 peptides occupies a β II-turn-like region with the turn centered about DNal 7 -Arg 8 . The analogues with hMC3R selectivity showed distinct differences in the spatial arrangement of the Trp 9 side chains. In addition to our NMR studies, we also carried out molecular-level interaction studies of these two peptides at the homology model of hMC3R. Earlier chimeric human melanocortin 3 receptor studies revealed insights regarding the binding and functional sites of hMC3R selectivity. Upon docking of peptides 15 and 17 to the binding pocket of hMC3R, it was revealed that Arg 8 and Trp 9 side chains are involved in a majority of the interactions with the receptor. While Arg 8 forms polar contacts with D154 and D158 of hMC3R, Trp 9 utilizes π-π stacking interactions with F295 and F298, located on the transmembrane domain of hMC3R. It is hypothesized that as the frequency of Trp 9 -hMC3R interactions decrease, antagonistic activity increases. The absence of any interactions of the N-methyl groups with hMC3R suggests that their primary function is to modulate backbone conformations of the ligands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leitgeb, Stefan; Petschacher, Barbara; Wilson, David K.
2005-01-11
Aldo-keto reductases of family 2 employ single site replacement Lys → Arg to switch their cosubstrate preference from NADPH to NADH. X-ray crystal structures of Lys-274 → Arg mutant of Candida tenuis xylose reductase (AKR2B5) bound to NAD + and NADP + were determined at a resolution of 2.4 and 2.3 Å, respectively. Due to steric conflicts in the NADP +-bound form, the arginine side chain must rotate away from the position of the original lysine side chain, thereby disrupting a network of direct and water-mediated interactions between Glu-227, Lys-274 and the cofactor 2'-phosphate and 3'-hydroxy groups. Because anchoring contactsmore » of its Glu-227 are lost, the coenzyme-enfolding loop that becomes ordered upon binding of NAD(P) + in the wild-type remains partly disordered in the NADP +-bound mutant. The results delineate a catalytic reaction profile for the mutant in comparison to wild-type.« less
Novoa, Alexandre; Van Dorpe, Sylvia; Wynendaele, Evelien; Spetea, Mariana; Bracke, Nathalie; Stalmans, Sofie; Betti, Cecilia; Chung, Nga N; Lemieux, Carole; Zuegg, Johannes; Cooper, Matthew A; Tourwé, Dirk; De Spiegeleer, Bart; Schiller, Peter W; Ballet, Steven
2012-11-26
The influence of the side chain charges of the second and fourth amino acid residues in the peptidic μ opioid lead agonist Dmt-d-Arg-Phe-Lys-NH(2) ([Dmt(1)]-DALDA) was examined. Additionally, to increase the overall lipophilicity of [Dmt(1)]-DALDA and to investigate the Phe(3) side chain flexibility, the final amide bond was N-methylated and Phe(3) was replaced by a constrained aminobenzazepine analogue. The in vitro receptor binding and activity of the peptides, as well as their in vivo transport (brain in- and efflux and tissue biodistribution) and antinociceptive properties after peripheral administration (ip and sc) in mice were determined. The structural modifications result in significant shifts of receptor binding, activity, and transport properties. Strikingly, while [Dmt(1)]-DALDA and its N-methyl analogue, Dmt-d-Arg-Phe-NMeLys-NH(2), showed a long-lasting antinociceptive effect (>7 h), the peptides with d-Cit(2) generate potent antinociception more rapidly (maximal effect at 1h postinjection) but also lose their analgesic activity faster when compared to [Dmt(1)]-DALDA and [Dmt(1),NMeLys(4)]-DALDA.
Novoa, Alexandre; Van Dorpe, Sylvia; Wynendaele, Evelien; Spetea, Mariana; Bracke, Nathalie; Stalmans, Sofie; Betti, Cecilia; Chung, Nga N.; Lemieux, Carole; Zuegg, Johannes; Cooper, Matthew A.; Tourwé, Dirk; De Spiegeleer, Bart; Schiller, Peter W.; Ballet, Steven
2012-01-01
The influence of the side chain charges of the second and fourth amino acid residues in the peptidic μ opioid lead agonist Dmt-D-Arg-Phe-Lys-NH2 ([Dmt1]-DALDA) was examined. Additionally, to increase the overall lipophilicity of [Dmt1]-DALDA and to investigate the Phe3 side chain flexibility, the final amide bond was N-methylated and Phe3 was replaced by a constrained aminobenzazepine analogue. The in vitro receptor binding and activity of the peptides, as well as their in vivo transport (brain in- and efflux and tissue biodistribution) and antinociceptive properties after peripheral administration (i.p. and s.c.) in mice were determined. The structural modifications result in significant shifts of receptor binding, activity and transport properties. Strikingly, while [Dmt1]-DALDA and its N-methyl analogue, Dmt-D-Arg-Phe-NMeLys-NH2, showed a long-lasting antinociceptive effect (>7h), the peptides with D-Cit2 generate potent antinociception more rapidly (maximal effect at 1h post-injection) but also lose their analgesic activity faster, when compared to [Dmt1]-DALDA and [Dmt1,NMeLys4]-DALDA. PMID:23102273
Blanc, Béatrice; Mayfield, Jeffery A.; McDonald, Claudia A.; Lukat-Rodgers, Gudrun S.; Rodgers, Kenton R.; DuBois, Jennifer L.
2012-01-01
The chlorite dismutase from Dechloromonas aromatica (DaCld) catalyzes the highly efficient decomposition of chlorite to O2 and chloride. Spectroscopic, equilibrium thermodynamic, and kinetic measurements have indicated that Cld has two pH sensitive moieties; one is the heme, and Arg183 in the distal heme pocket has been hypothesized to be the second. This active site residue has been examined by site-directed mutagenesis to understand the roles of positive charge and hydrogen bonding in O–O bond formation. Three Cld mutants, Arg183 to Lys (R183K), Arg183 to Gln (R183Q), and Arg183 to Ala (R183A), were investigated to determine their respective contributions to the decomposition of chlorite ion, the spin state and coordination states of their ferric and ferrous forms, their cyanide and imidazole binding affinities, and their reduction potentials. UV–visible and resonance Raman spectroscopies showed that DaCld(R183A) contains five-coordinate high-spin (5cHS) heme, the DaCld(R183Q) heme is a mixture of five-coordinate and six-coordinate high spin (5c/6cHS) heme, and DaCld(R183K) contains six-coordinate low-spin (6cLS) heme. In contrast to wild-type (WT) Cld, which exhibits pKa values of 6.5 and 8.7, all three ferric mutants exhibited pH-independent spectroscopic signatures and kinetic behaviors. Steady state kinetic parameters of the chlorite decomposition reaction catalyzed by the mutants suggest that in WT DaCld the pKa of 6.5 corresponds to a change in the availability of positive charge from the guanidinium group of Arg183 to the heme site. This could be due to either direct acid–base chemistry at the Arg183 side chain or a flexible Arg183 side chain that can access various orientations. Current evidence is most consistent with a conformational adjustment of Arg183. A properly oriented Arg183 is critical for the stabilization of anions in the distal pocket and for efficient catalysis. PMID:22313119
Tóth, László; Fekete, Attila; Balogh, Gábor; Bereczky, Zsuzsanna; Komáromi, István
2015-09-01
While antithrombin (AT) has small basal inhibitory activity, it reaches its full inhibitory potential against activated blood coagulation factors, FXa, FIXa, and FIIa (thrombin), via an allosteric and/or template (bridging) mechanism by the action of heparin, heparan sulfate, or heparin-mimetic pentasaccharides (PS). From the numerous X-ray structures available for different conformational states of AT, only indirect and incomplete conclusions can be drawn on the inherently dynamic properties of AT. As a typical example, the basal inhibitory activity of AT cannot be interpreted on the basis of "non-activated" free antithrombin X-ray structures since the Arg393 side chain, playing crucial role in antithrombin-proteinase interaction, is not exposed. In order to reveal the intrinsic dynamic properties and the reason of basal inhibitory activity of antithrombin, 2 μs molecular dynamics simulations were carried out on its native free-forms. It was shown from the simulation trajectories that the reactive center loop which is functioning as "bait" for proteases, even without any biasing potential can populate conformational state in which the Arg393 side chain is solvent exposed. It is revealed from the trajectory analysis that the peptide sequences correspond to the helix D extension, and new helix P formation can be featured with especially large root-mean-square fluctuations. Mutual information analyses of the trajectory showed remarkable (generalized) correlation between those regions of antithrombin which changed their conformations as the consequence of AT-PS complex formation. This suggests that allosteric information propagation pathways are present even in the non-activated native form of AT.
El Hiani, Yassine; Linsdell, Paul
2015-01-01
As an ion channel, the cystic fibrosis transmembrane conductance regulator must form a continuous pathway for the movement of Cl− and other anions between the cytoplasm and the extracellular solution. Both the structure and the function of the membrane-spanning part of this pathway are well defined. In contrast, the structure of the pathway that connects the cytoplasm to the membrane-spanning regions is unknown, and functional roles for different parts of the protein forming this pathway have not been described. We used patch clamp recording and substituted cysteine accessibility mutagenesis to identify positively charged amino acid side chains that attract cytoplasmic Cl− ions to the inner mouth of the pore. Our results indicate that the side chains of Lys-190, Arg-248, Arg-303, Lys-370, Lys-1041, and Arg-1048, located in different intracellular loops of the protein, play important roles in the electrostatic attraction of Cl− ions. Mutation and covalent modification of these residues have charge-dependent effects on the rate of Cl− permeation, demonstrating their functional role in maximization of Cl− flux. Other nearby positively charged side chains were not involved in electrostatic interactions with Cl−. The location of these Cl−-attractive residues suggests that cytoplasmic Cl− ions enter the pore via a lateral portal located between the cytoplasmic extensions to the fourth and sixth transmembrane helices; a secondary, functionally less relevant portal might exist between the extensions to the 10th and 12th transmembrane helices. These results define the cytoplasmic mouth of the pore and show how it attracts Cl− ions from the cytoplasm. PMID:25944907
Jha, Vikash; Donald, Lynda J; Loewen, Peter C
2012-09-15
The monofunctional catalase KatE of Esherichia coli exhibits exceptional resistance to heat denaturation and proteolytic degradation. During an investigation of subtle conformation changes in Arg111 and Phe413 on the proximal side of the heme induced by H(2)O(2), variants at position R111, T115 and F413 were constructed. Because the residues are not situated in the distal side heme cavity where catalysis occurs, significant changes in reactivity were not expected and indeed, only small changes in the kinetic characteristics were observed in all of the variants. However, the F413Y variant was found to have undergone main chain cleavage whereas the R111A, T115A, F413E and F413K variants had not. Two sites of cleavage were identified in the crystal structure and by mass spectrometry at residues 111 and 115. In addition to main chain cleavage, modifications to the side chains of Tyr413, Thr115 and Arg111 were suggested by differences in the electron density maps compared to maps of the native and inactive variant H128N/F413Y. The inactive variant H128N/F413Y and the active variant T115A/F413Y both did not exhibit main chain cleavage and the R11A/F413Y variant exhibited less cleavage. In addition, the apparent modification of three side chains was largely absent in these variants. It is also significant that all three F413 single variants contained heme b suggesting that the fidelity of the phenyl group was important for mediating heme b oxidation to heme d. The reactions are attributed to the introduction of a new reactive center possibly involving a transient radical on Tyr413 formed during catalytic turn over. Copyright © 2011 Elsevier Inc. All rights reserved.
El Hiani, Yassine; Linsdell, Paul
2015-06-19
As an ion channel, the cystic fibrosis transmembrane conductance regulator must form a continuous pathway for the movement of Cl(-) and other anions between the cytoplasm and the extracellular solution. Both the structure and the function of the membrane-spanning part of this pathway are well defined. In contrast, the structure of the pathway that connects the cytoplasm to the membrane-spanning regions is unknown, and functional roles for different parts of the protein forming this pathway have not been described. We used patch clamp recording and substituted cysteine accessibility mutagenesis to identify positively charged amino acid side chains that attract cytoplasmic Cl(-) ions to the inner mouth of the pore. Our results indicate that the side chains of Lys-190, Arg-248, Arg-303, Lys-370, Lys-1041, and Arg-1048, located in different intracellular loops of the protein, play important roles in the electrostatic attraction of Cl(-) ions. Mutation and covalent modification of these residues have charge-dependent effects on the rate of Cl(-) permeation, demonstrating their functional role in maximization of Cl(-) flux. Other nearby positively charged side chains were not involved in electrostatic interactions with Cl(-). The location of these Cl(-)-attractive residues suggests that cytoplasmic Cl(-) ions enter the pore via a lateral portal located between the cytoplasmic extensions to the fourth and sixth transmembrane helices; a secondary, functionally less relevant portal might exist between the extensions to the 10th and 12th transmembrane helices. These results define the cytoplasmic mouth of the pore and show how it attracts Cl(-) ions from the cytoplasm. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, J.S.; Gupta, V.; Wilkerson, M.
2004-04-01
Primary (AL) amyloidosis results from the pathologic deposition of monoclonal light chains as amyloid fibrils. Studies of recombinant-derived variable region (V{sub L}) fragments of these proteins have shown an inverse relationship between thermodynamic stability and fibrillogenic potential. Further, ionic interactions within the V{sub L} domain were predicted to influence the kinetics of light chain fibrillogenicity, as evidenced from our analyses of a relatively stable V{sub {lambda}}6 protein (Jto) with a long range electrostatic interaction between Asp and Arg side chains at position 29 and 68, respectively, and an unstable, highly fibrillogenic V{sub {lambda}}6 protein (Wil) that had neutral amino acidsmore » at these locations. To test this hypothesis, we have generated two Jto-related mutants designed to disrupt the interaction between Asp 29 and Arg 68 (JtoD29A and JtoR68S). Although the thermodynamic stabilities of unfolding for these two molecules were identical, they exhibited very different kinetics of fibril formation: the rate of JtoD29A fibrillogenesis was slow and comparable to the parent molecule, whereas that of JtoR68S was significantly faster. High-resolution X-ray diffraction analyses of crystals prepared from the two mutants having the same space group and unit cell dimensions revealed no significant main-chain conformational changes. However, several notable side-chain alterations were observed in JtoR68S, as compared with JtoD29A, that resulted in the solvent exposure of a greater hydrophobic surface and modifications in the electrostatic potential surface. We posit that these differences contributed to the enhanced fibrillogenic potential of the Arg 68 mutant, since both Jto mutants lacked the intrachain ionic interaction and were equivalently unstable. The information gleaned from our studies has provided insight into structural parameters that in addition to overall thermodynamic stability, contribute to the fibril forming propensity of immunoglobulin light chains.« less
Diastereoselective DNA Cleavage Recognition by Ni(II)•Gly-Gly-His Derived Metallopeptides
Fang, Ya-Yin; Claussen, Craig A.; Lipkowitz, Kenny B.; Long, Eric C.
2008-01-01
Site-selective DNA cleavage by diastereoisomers of Ni(II)•Gly-Gly-His-derived metallopeptides was investigated through high-resolution gel analyses and molecular dynamics simulations. Ni(II)•L-Arg-Gly-His and Ni(II)•D-Arg-Gly-His (and their respective Lys analogues) targeted A/T-rich regions; however, the L-isomers consistently modified a sub-set of available nucleotides within a given minor groove site while the D-isomers differed in both their sites of preference and ability to target individual nucleotides within some sites. In comparison, Ni(II)•L-Pro-Gly-His and Ni(II)•D-Pro-Gly-His were unable to exhibit a similar diastereoselectivity. Simulations of the above systems, along with Ni(II)•Gly-Gly-His, indicated that the stereochemistry of the amino-terminal amino acid produces either an isohelical metallopeptide that associates stably at individual DNA sites (L-Arg or L-Lys) or, with D-Arg and D-Lys, a non-complementary metallopeptide structure that cannot fully employ its side chain nor amino-terminal amine as a positional stabilizing moiety. In contrast, amino-terminal Pro-containing metallopeptides of either stereochemistry, lacking an extended side chain directed toward the minor groove, did not exhibit a similar diastereoselectivity. While the identity and stereochemistry of amino acids located in the amino-terminal peptide position influenced DNA cleavage, metallopeptide diastereoisomers containing L- and D-Arg (or Lys) within the second peptide position did not exhibit diastereoselective DNA cleavage patterns; simulations indicated that a positively-charged amino acid in this location alters the interaction of the metallopeptide equatorial plane and the minor groove leading to an interaction similar to Ni(II)•Gly-Gly-His. PMID:16522100
2009-03-19
including suggesstions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215...gen-bonded to the c=o and the NHz of the amide side-chain of Asn19t, as well as NHI ofArg184. The dependence of the carotenoid spectrum on the retinal...protonation of ASp85 [22]. This is unlikely to occur in the xan- thorhodopsin photocyc1e, because NHI and NH2 of Arg93 are both hydrogen-bonded to the peptide
Su, Yan; Patra, Amritraj; Harp, Joel M; Egli, Martin; Guengerich, F Peter
2015-06-26
Like the other Y-family DNA polymerases, human DNA polymerase η (hpol η) has relatively low fidelity and is able to tolerate damage during DNA synthesis, including 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxoG), one of the most abundant DNA lesions in the genome. Crystal structures show that Arg-61 and Gln-38 are located near the active site and may play important roles in the fidelity and efficiency of hpol η. Site-directed mutagenesis was used to replace these side chains either alone or together, and the wild type or mutant proteins were purified and tested by replicating DNA past deoxyguanosine (G) or 8-oxoG. The catalytic activity of hpol η was dramatically disrupted by the R61M and Q38A/R61A mutations, as opposed to the R61A and Q38A single mutants. Crystal structures of hpol η mutant ternary complexes reveal that polarized water molecules can mimic and partially compensate for the missing side chains of Arg-61 and Gln-38 in the Q38A/R61A mutant. The combined data indicate that the positioning and positive charge of Arg-61 synergistically contribute to the nucleotidyl transfer reaction, with additional influence exerted by Gln-38. In addition, gel filtration chromatography separated multimeric and monomeric forms of wild type and mutant hpol η, indicating the possibility that hpol η forms multimers in vivo. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Su, Yan; Patra, Amritraj; Harp, Joel M.; Egli, Martin; Guengerich, F. Peter
2015-01-01
Like the other Y-family DNA polymerases, human DNA polymerase η (hpol η) has relatively low fidelity and is able to tolerate damage during DNA synthesis, including 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-oxoG), one of the most abundant DNA lesions in the genome. Crystal structures show that Arg-61 and Gln-38 are located near the active site and may play important roles in the fidelity and efficiency of hpol η. Site-directed mutagenesis was used to replace these side chains either alone or together, and the wild type or mutant proteins were purified and tested by replicating DNA past deoxyguanosine (G) or 8-oxoG. The catalytic activity of hpol η was dramatically disrupted by the R61M and Q38A/R61A mutations, as opposed to the R61A and Q38A single mutants. Crystal structures of hpol η mutant ternary complexes reveal that polarized water molecules can mimic and partially compensate for the missing side chains of Arg-61 and Gln-38 in the Q38A/R61A mutant. The combined data indicate that the positioning and positive charge of Arg-61 synergistically contribute to the nucleotidyl transfer reaction, with additional influence exerted by Gln-38. In addition, gel filtration chromatography separated multimeric and monomeric forms of wild type and mutant hpol η, indicating the possibility that hpol η forms multimers in vivo. PMID:25947374
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, P.J.; Lassila, J.K.; Fenn, T.D.
2009-05-22
Arginine residues are commonly found in the active sites of enzymes catalyzing phosphoryl transfer reactions. Numerous site-directed mutagenesis experiments establish the importance of these residues for efficient catalysis, but their role in catalysis is not clear. To examine the role of arginine residues in the phosphoryl transfer reaction, we have measured the consequences of mutations to arginine 166 in Escherichia coli alkaline phosphatase on hydrolysis of ethyl phosphate, on individual reaction steps in the hydrolysis of the covalent enzyme-phosphoryl intermediate, and on thio substitution effects. The results show that the role of the arginine side chain extends beyond its positivemore » charge, as the Arg166Lys mutant is as compromised in activity as Arg166Ser. Through measurement of individual reaction steps, we construct a free energy profile for the hydrolysis of the enzyme-phosphate intermediate. This analysis indicates that the arginine side chain strengthens binding by {approx}3 kcal/mol and provides an additional 1-2 kcal/mol stabilization of the chemical transition state. A 2.1 {angstrom} X-ray diffraction structure of Arg166Ser AP is presented, which shows little difference in enzyme structure compared to the wild-type enzyme but shows a significant reorientation of the bound phosphate. Altogether, these results support a model in which the arginine contributes to catalysis through binding interactions and through additional transition state stabilization that may arise from complementarity of the guanidinum group to the geometry of the trigonal bipyramidal transition state.« less
Proneth, Bettina; Pogozheva, Irina D; Portillo, Federico P; Mosberg, Henry I; Haskell-Luevano, Carrie
2008-09-25
The melanocortin-3 and -4 receptors (MC3R, MC4R) have been implicated in energy homeostasis and obesity. Whereas the physiological role of the MC4R is extensively studied, little is known about the MC3R. One caveat is the limited availability of ligands that are selective for the MC3R. Previous studies identified Ac-His-DPhe(p-I)-Arg-Trp-NH 2, which possessed partial agonist/antagonist pharmacology at the mMC3R while retaining full nanomolar agonist pharmacology at the mMC4R. These data allowed for the hypothesis that the DPhe position in melanocortin tetrapeptides can be used to examine ligand side-chain determinants important for differentiation of mMC3R agonist versus antagonist activity. A series of 15 DPhe (7) modified Ac-His-DPhe (7)-Arg-Trp-NH 2 tetrapeptides has been synthesized and pharmacologically characterized. Most notable results include the identification of modifications that resulted in potent antagonists/partial agonists at the mMC3R and full, potent agonists at the mMC4R. These SAR studies provide experimental evidence that the molecular mechanism of antagonism at the mMC3R differentiates this subtype from the mMC4R.
Proneth, Bettina; Pogozheva, Irina D.; Portillo, Federico P.; Mosberg, Henry I.; Haskell-Luevano, Carrie
2010-01-01
The melanocortin-3 and -4 receptors (MC3R, MC4R) have been implicated in energy homeostasis and obesity. Whereas the physiological role of the MC4R is extensively studied, little is known about the MC3R. One caveat is the limited availability of ligands that are selective for the MC3R. Previous studies identified Ac-His-DPhe(p-I)-Arg-Trp-NH2, which possessed partial agonist/antagonist pharmacology at the mMC3R while retaining full nanomolar agonist pharmacology at the mMC4R. These data allowed for the hypothesis that the DPhe position in melanocortin tetrapeptides can be used to examine ligand side-chain determinants important for differentiation of mMC3R agonist versus antagonist activity. A series of 15 DPhe7 modified Ac-His-DPhe7-Arg-Trp-NH2 tetrapeptides has been synthesized and pharmacologically characterized. Most notable results include the identification of modifications that resulted in potent antagonists/partial agonists at the mMC3R and full, potent agonists at the mMC4R. These SAR studies provide experimental evidence that the molecular mechanism of antagonism at the mMC3R differentiates this subtype from the mMC4R. PMID:18800761
Sakamoto, Yasumitsu; Suzuki, Yoshiyuki; Iizuka, Ippei; Tateoka, Chika; Roppongi, Saori; Fujimoto, Mayu; Inaka, Koji; Tanaka, Hiroaki; Yamada, Mitsugu; Ohta, Kazunori; Gouda, Hiroaki; Nonaka, Takamasa; Ogasawara, Wataru; Tanaka, Nobutada
2015-01-01
The dipeptidyl peptidase 11 from Porphyromonas gingivalis (PgDPP11) belongs to the S46 family of serine peptidases and preferentially cleaves substrates with Asp/Glu at the P1 position. The molecular mechanism underlying the substrate specificity of PgDPP11, however, is unknown. Here, we report the crystal structure of PgDPP11. The enzyme contains a catalytic domain with a typical double β-barrel fold and a recently identified regulatory α-helical domain. Crystal structure analyses, docking studies, and biochemical studies revealed that the side chain of Arg673 in the S1 subsite is essential for recognition of the Asp/Glu side chain at the P1 position of the bound substrate. Because S46 peptidases are not found in mammals and the Arg673 is conserved among DPP11s, we anticipate that DPP11s could be utilised as targets for antibiotics. In addition, the present structure analyses could be useful templates for the design of specific inhibitors of DPP11s from pathogenic organisms. PMID:26057589
Coulomb repulsion in short polypeptides.
Norouzy, Amir; Assaf, Khaleel I; Zhang, Shuai; Jacob, Maik H; Nau, Werner M
2015-01-08
Coulomb repulsion between like-charged side chains is presently viewed as a major force that impacts the biological activity of intrinsically disordered polypeptides (IDPs) by determining their spatial dimensions. We investigated short synthetic models of IDPs, purely composed of ionizable amino acid residues and therefore expected to display an extreme structural and dynamic response to pH variation. Two synergistic, custom-made, time-resolved fluorescence methods were applied in tandem to study the structure and dynamics of the acidic and basic hexapeptides Asp6, Glu6, Arg6, Lys6, and His6 between pH 1 and 12. (i) End-to-end distances were obtained from the short-distance Förster resonance energy transfer (sdFRET) from N-terminal 5-fluoro-l-tryptophan (FTrp) to C-terminal Dbo. (ii) End-to-end collision rates were obtained for the same peptides from the collision-induced fluorescence quenching (CIFQ) of Dbo by FTrp. Unexpectedly, the very high increase of charge density at elevated pH had no dynamical or conformational consequence in the anionic chains, neither in the absence nor in the presence of salt, in conflict with the common view and in partial conflict with accompanying molecular dynamics simulations. In contrast, the cationic peptides responded to ionization but with surprising patterns that mirrored the rich individual characteristics of each side chain type. The contrasting results had to be interpreted, by considering salt screening experiments, N-terminal acetylation, and simulations, in terms of an interplay of local dielectric constant and peptide-length dependent side chain charge-charge repulsion, side chain functional group solvation, N-terminal and side chain charge-charge repulsion, and side chain-side chain as well as side chain-backbone interactions. The common picture that emerged is that Coulomb repulsion between water-solvated side chains is efficiently quenched in short peptides as long as side chains are not in direct contact with each other or the main chain.
Kondo, Jiro; Westhof, Eric
2011-10-01
Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide-protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson-Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson-Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues.
Kondo, Jiro; Westhof, Eric
2011-01-01
Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide–protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson–Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson–Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues. PMID:21737431
Sato, Kazuki; Yamaguchi, Yoko; Ishida, Yukisato; Ohizumi, Yasushi
2015-04-01
To study in detail the roles of basic amino acid residues in the activity of μ-conotoxin GIIIA (μ-GIIIA) and GIIIB (μ-GIIIB), specific blockers of muscle sodium channels, seven analogs of μ-GIIIA, and two analogs of μ-GIIIB were synthesized. μ-GIIIA analogs were synthesized by replacing systematically the three Arg residues (Arg1, Arg13, and Arg19) with one, two, and three Lys residues. μ-GIIIB analogs were synthesized by replacing simultaneously all four Lys residues (Lys9, Lys11, Lys16, and Lys19) with Arg residues and further replacement of acidic Asp residues with neutral Ala residues. Circular dichroism spectra of the synthesized analogs suggested that the replacement did not affect the three dimensional structure. The inhibitory effects on the twitch contractions of the rat diaphragm showed that the side chain guanidino group of Arg13 of μ-GIIIA was important for the activity, whereas that of Arg19 had little role for biological activity. Although [Arg9,11,16,19]μ-GIIIB showed higher activity than native μ-GIIIB, highly basic [Ala2,12, Arg9,11,16,19]μ-GIIIB showed lower activity, suggesting that there was an appropriate molecular basicity for the maximum activity. © 2014 John Wiley & Sons A/S.
Structure-Function Studies of Ser-289 in the Class C β-Lactamase from Enterobacter cloacae P99
Trépanier, Sonia; Knox, James R.; Clairoux, Natalie; Sanschagrin, François; Levesque, Roger C.; Huletsky, Ann
1999-01-01
Site-directed mutagenesis of Ser-289 of the class C β-lactamase from Enterobacter cloacae P99 was performed to investigate the role of this residue in β-lactam hydrolysis. This amino acid lies near the active site of the enzyme, where it can interact with the C-3 substituent of cephalosporins. Kinetic analysis of six mutant β-lactamases with five cephalosporins showed that Ser-289 can be substituted by amino acids with nonpolar or polar uncharged side chains without altering the catalytic efficiency of the enzyme. These data suggest that Ser-289 is not essential in the binding or hydrolytic mechanism of AmpC β-lactamase. However, replacement by Lys or Arg decreased by two- to threefold the kcat of four of the five β-lactams tested, particularly cefoperazone, cephaloridine, and cephalothin. Three-dimensional models of the mutant β-lactamases revealed that the length and positive charge of the side chain of Lys and Arg could create an electrostatic linkage to the C-4 carboxylic acid group of the dihydrothiazine ring of the acyl intermediate which could slow the deacylation step or hinder release of the product. PMID:10049265
Solvent-Exposed Salt Bridges Influence the Kinetics of α-Helix Folding and Unfolding.
Meuzelaar, Heleen; Tros, Martijn; Huerta-Viga, Adriana; van Dijk, Chris N; Vreede, Jocelyne; Woutersen, Sander
2014-03-06
Salt bridges are known to play an essential role in the thermodynamic stability of the folded conformation of many proteins, but their influence on the kinetics of folding remains largely unknown. Here, we investigate the effect of Glu-Arg salt bridges on the kinetics of α-helix folding using temperature-jump transient-infrared spectroscopy and steady-state UV circular dichroism. We find that geometrically optimized salt bridges (Glu - and Arg + are spaced four peptide units apart, and the Glu/Arg order is such that the side-chain rotameric preferences favor salt-bridge formation) significantly speed up folding and slow down unfolding, whereas salt bridges with unfavorable geometry slow down folding and slightly speed up unfolding. Our observations suggest a possible explanation for the surprising fact that many biologically active proteins contain salt bridges that do not stabilize the native conformation: these salt bridges might have a kinetic rather than a thermodynamic function.
Selectivity Mechanism of the Voltage-gated Proton Channel, HV1
NASA Astrophysics Data System (ADS)
Dudev, Todor; Musset, Boris; Morgan, Deri; Cherny, Vladimir V.; Smith, Susan M. E.; Mazmanian, Karine; Decoursey, Thomas E.; Lim, Carmay
2015-05-01
Voltage-gated proton channels, HV1, trigger bioluminescence in dinoflagellates, enable calcification in coccolithophores, and play multifarious roles in human health. Because the proton concentration is minuscule, exquisite selectivity for protons over other ions is critical to HV1 function. The selectivity of the open HV1 channel requires an aspartate near an arginine in the selectivity filter (SF), a narrow region that dictates proton selectivity, but the mechanism of proton selectivity is unknown. Here we use a reduced quantum model to elucidate how the Asp-Arg SF selects protons but excludes other ions. Attached to a ring scaffold, the Asp and Arg side chains formed bidentate hydrogen bonds that occlude the pore. Introducing H3O+ protonated the SF, breaking the Asp-Arg linkage and opening the conduction pathway, whereas Na+ or Cl- was trapped by the SF residue of opposite charge, leaving the linkage intact, thus preventing permeation. An Asp-Lys SF behaved like the Asp-Arg one and was experimentally verified to be proton-selective, as predicted. Hence, interacting acidic and basic residues form favorable AspH0-H2O0-Arg+ interactions with hydronium but unfavorable Asp--X-/X+-Arg+ interactions with anions/cations. This proposed mechanism may apply to other proton-selective molecules engaged in bioenergetics, homeostasis, and signaling.
Holder, Jerry Ryan; Bauzo, Rayna M; Xiang, Zhimin; Haskell-Luevano, Carrie
2002-06-20
The melanocortin pathway is an important participant in obesity and energy homeostasis. The centrally located melanocortin-3 and melanocortin-4 receptors (MC3R, MC4R) are involved in the metabolic and food intake aspects of energy homeostasis and are stimulated by melanocortin agonists such as alpha-melanocyte stimulation hormone (alpha-MSH). The melanocortin agonists contain the putative message sequence "His-Phe-Arg-Trp", and it has been well documented that inversion of chirality of the Phe to DPhe results in a dramatic increase in melanocortin receptor potency. Herein, we report a tetrapeptide library based on the template Ac-His-DPhe-Arg-Trp-NH(2), consisting of 17 members that have been modified at the His(6) position (alpha-MSH numbering) and pharmacologically characterized for agonist activity at the mouse melanocortin receptors MC1R, MC3R, MC4R, and MC5R. These studies provide further experimental evidence that the His(6) position can determine MC4R versus MC3R agonist selectivity and that chemically nonreactive side chains may be substituted for the imidazole ring (generally needs to be side chain protected in synthetic schemes) in the design of MC4R-selective, small-molecule, non-peptide agonists. Specifically, the tetrapeptide containing the amino-2-naphthylcarboxylic acid (Anc) amino acid at the His position resulted in a potent agonist at the mMC4R (EC(50) = 21 nM), was a weak mMC3R micromolar antagonist (pA(2) = 5.6, K(i) = 2.5 microM), and possessed >4700-fold agonist selectivity for the MC4R versus the MC3R. Substitution of the His(6) amino acid in the tetrapeptide template by the Phe, Anc, 3-(2-thienyl)alanine (2Thi), and 3-(4-pyridinyl)alanine (4-Pal) resulted in equipotency or only up to a 7-fold decrease in potency, compared to the His(6)-containing tetrapeptide at the mMC4R, demonstrating that these amino acid side chains may be substituted for the imidazole in the design of MC4R-selective non-peptide molecules.
Taskent-Sezgin, Humeyra; Marek, Peter; Thomas, Rosanne; Goldberg, Daniel; Chung, Juah; Carrico, Isaac; Raleigh, Daniel P.
2011-01-01
p-Cyanophenylalanine is an extremely useful fluorescence probe of protein structure which can be recombinantly and chemically incorporated into proteins. The probe has been used to study protein folding, protein-membrane interactions, protein-peptide interactions and amyloid formation, however the factors that control its fluorescence are not fully understood. Hydrogen bonding to the cyano group is known to play a major role in modulating the fluorescence quantum yield, but the role of potential side-chain quenchers has not yet been elucidated. A systematic study on the effects of different side-chains on p-cyanophenylalanine fluorescence is reported. Tyr is found to have the largest effect followed by deprotonated His, Met, Cys, protonated His, Asn, Arg, and protonated Lys. Deprotonated amino groups are much more effective fluorescence quenchers than protonated amino groups. Free neutral imidazole and hydroxide ion are also effective quenchers of p-cyanophenylalanine fluorescence with Stern-Volmer constants of 39.8 M−1 and 22.1 M−1, respectively. The quenching of p-cyanophenylalanine fluorescence by specific side-chains is exploited to develop specific, high sensitivity, fluorescence probes of helix formation. The approach is demonstrated with Ala based peptides that contain a p-cyanophenylalanine-His or a p-cyanophenylalanine-Tyr pair located at positions i and i+4. The p-cyanophenylalanine-His pair is most useful when the His side-chain is deprotonated and is, thus, complimentary to Trp-His pair which is most sensitive when the His side-chain is protonated. PMID:20565125
Hunt, J T; Floyd, D M; Lee, V G; Little, D K; Moreland, S
1989-01-01
Although the amino acid residues that are important for peptide substrates of myosin light-chain kinase have been reported, those that are important for peptide inhibitors of this enzyme have not previously been investigated. Synthetic peptides based on the sequence Lys11-Lys12-Arg13-Ala-Ala-Arg16-Ala-Thr-Ser19 -Asn-Val21-Phe22-Ala of the chicken gizzard myosin light chain were tested as inhibitors of pig carotid-artery myosin light-chain kinase. The basic amino acid residues of the known myosin light-chain kinase inhibitor Lys-Lys-Arg-Ala-Ala-Arg-Ala-Thr-Ser-NH2 (IC50 = 14 microM) [Pearson, Misconi & Kemp (1986) J. Biol. Chem. 261, 25-27] were shown to be the important residues that contribute to inhibitor potency, as evidence by the finding that the hexapeptide Lys-Lys-Arg-Ala-Ala-Arg-NH2 had an IC50 value of 22 microM. This indicates that binding of the phosphorylatable serine residue to myosin light-chain kinase, which is of obvious importance for a substrate, does not enhance the potency of an inhibitor. With the aim of preparing more potent inhibitors, peptides Lys-Lys-Arg-Ala-Ala-Arg-Ala-Ala-Xaa-NH2 were prepared with a variety of amino acids substituted for the phosphorylatable serine residue. None of these peptides was a more potent inhibitor than the serine peptide. PMID:2920029
Meditope-Fab interaction: threading the hole.
Bzymek, Krzysztof P; Ma, Yuelong; Avery, Kendra N; Horne, David A; Williams, John C
2017-12-01
Meditope, a cyclic 12-residue peptide, binds to a unique binding side between the light and heavy chains of the cetuximab Fab. In an effort to improve the affinity of the interaction, it was sought to extend the side chain of Arg8 in the meditope, a residue that is accessible from the other side of the meditope binding site, in order to increase the number of interactions. These modifications included an n-butyl and n-octyl extension as well as hydroxyl, amine and carboxyl substitutions. The atomic structures of the complexes and the binding kinetics for each modified meditope indicated that each extension threaded through the Fab `hole' and that the carboxyethylarginine substitution makes a favorable interaction with the Fab, increasing the half-life of the complex by threefold compared with the unmodified meditope. Taken together, these studies provide a basis for the design of additional modifications to enhance the overall affinity of this unique interaction.
Bandyopadhyay, Dibyendu; Bhanja, K; Mohan, Sadhana; Ghosh, Swapan K; Choudhury, Niharendu
2015-08-27
Like-charge ion-pair formation in an aqueous solution of guanidinium chloride (GdmCl) has two important facets. On one hand, it describes the role of the arginine (ARG) side chain in aggregation and dimer formation in proteins, and on the other hand, it lends support for the direct mechanism of protein denaturation by GdmCl. We employ all-atom molecular dynamics simulations to investigate the effect of GdmCl concentration on the like-charge ion-pair formation of guanidinium ions (Gdm(+)). From analyses of the radial distribution function (RDF) between the carbon atoms of two guanidinium moieties, the existence of both contact pairs and solvent-separated pairs has been observed. Although the peak height corresponding to the contact-pair state decreases, the number of Gdm(+) ions in the contact-pair state actually increases with increasing GdmCl concentration. We have also investigated the effect of the concentration of Gdm(+) on the structure of water. The effect of GdmCl concentration on the radial and tetrahedral structures of water is found to be negligibly small; however, GdmCl concentration has a considerable effect on the hydrogen-bonding structure of water. It is demonstrated that the presence of chloride ions, not Gdm(+), in the first solvation shell of water causes the distortion in the hydrogen-bonding network of water. In order to establish that Gdm(+) not only stacks against another Gdm(+) but also directly attacks the ARG residue of a protein or peptide, simulation of an ARG-rich peptide in 6 M aqueous solution of GdmCl has been performed. The analyses of RDFs and orientation distributions reveal that the Gdm(+) moiety of the GdmCl attacks the same moiety in the ARG side chain with a parallel stacking orientation.
Ben-Shimon, Avraham; Niv, Masha Y.
2011-01-01
Protein kinases are key signaling enzymes that catalyze the transfer of γ-phosphate from an ATP molecule to a phospho-accepting residue in the substrate. Unraveling the molecular features that govern the preference of kinases for particular residues flanking the phosphoacceptor is important for understanding kinase specificities toward their substrates and for designing substrate-like peptidic inhibitors. We applied ANCHORSmap, a new fragment-based computational approach for mapping amino acid side chains on protein surfaces, to predict and characterize the preference of kinases toward Arginine binding. We focus on positions P−2 and P−5, commonly occupied by Arginine (Arg) in substrates of basophilic Ser/Thr kinases. The method accurately identified all the P−2/P−5 Arg binding sites previously determined by X-ray crystallography and produced Arg preferences that corresponded to those experimentally found by peptide arrays. The predicted Arg-binding positions and their associated pockets were analyzed in terms of shape, physicochemical properties, amino acid composition, and in-silico mutagenesis, providing structural rationalization for previously unexplained trends in kinase preferences toward Arg moieties. This methodology sheds light on several kinases that were described in the literature as having non-trivial preferences for Arg, and provides some surprising departures from the prevailing views regarding residues that determine kinase specificity toward Arg. In particular, we found that the preference for a P−5 Arg is not necessarily governed by the 170/230 acidic pair, as was previously assumed, but by several different pairs of acidic residues, selected from positions 133, 169, and 230 (PKA numbering). The acidic residue at position 230 serves as a pivotal element in recognizing Arg from both the P−2 and P−5 positions. PMID:22125489
A mutagenesis study of a catalytic antibody
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, D.Y.; Prudent, J.R.; Baldwin, E.P.
1991-01-01
The authors have generated seven site-specific mutations in the genes encoding the variable region of the heavy chain domain (V{sub H}) of the phosphocholine-binding antibody S107.S107 is a member of a family of well-characterized highly homologous antibodies that bind phosphorylcholine mono- and diesters. Two of these antibodies, MOPC-167 and T15, have previously been shown to catalyze the hydrolysis of 4-nitrophenyl N-trimethylammonioethyl carbonate. Two conserved heavy-chain residues, Tyr-33 and Arg-52, were postulated to be involved in binding and hydrolysis of 4-nitrophenylcholine carbonate esters. To more precisely define the catalytic roles of these residues, three Arg-52 mutants (R52K, R52Q, R52C) and fourmore » Tyr-33 mutants (Y33H, Y33F, Y33E, Y33D) of antibody S107 were generated. The genes encoding the V{sub H} binding domain of S107 were inserted into plasmid pUC-fl, and in vitro mutagenesis was performed. These results not only demonstrate the importance of electrostatic interactions in catalysis by antibody S107 but also show that catalytic side chains can be introduced into antibodies to enhance their catalytic efficiency.« less
Huerta-Viga, Adriana; Amirjalayer, Saeed; Domingos, Sérgio R; Meuzelaar, Heleen; Rupenyan, Alisa; Woutersen, Sander
2015-06-07
Salt bridges play an important role in protein folding and in supramolecular chemistry, but they are difficult to detect and characterize in solution. Here, we investigate salt bridges between glutamate (Glu(-)) and arginine (Arg(+)) using two-dimensional infrared (2D-IR) spectroscopy. The 2D-IR spectrum of a salt-bridged dimer shows cross peaks between the vibrational modes of Glu(-) and Arg(+), which provide a sensitive structural probe of Glu(-)⋯Arg(+) salt bridges. We use this probe to investigate a β-turn locked by a salt bridge, an α-helical peptide whose structure is stabilized by salt bridges, and a coiled coil that is stabilized by intra- and intermolecular salt bridges. We detect a bidentate salt bridge in the β-turn, a monodentate one in the α-helical peptide, and both salt-bridge geometries in the coiled coil. To our knowledge, this is the first time 2D-IR has been used to probe tertiary side chain interactions in peptides, and our results show that 2D-IR spectroscopy is a powerful method for investigating salt bridges in solution.
NASA Astrophysics Data System (ADS)
Huerta-Viga, Adriana; Amirjalayer, Saeed; Domingos, Sérgio R.; Meuzelaar, Heleen; Rupenyan, Alisa; Woutersen, Sander
2015-06-01
Salt bridges play an important role in protein folding and in supramolecular chemistry, but they are difficult to detect and characterize in solution. Here, we investigate salt bridges between glutamate (Glu-) and arginine (Arg+) using two-dimensional infrared (2D-IR) spectroscopy. The 2D-IR spectrum of a salt-bridged dimer shows cross peaks between the vibrational modes of Glu- and Arg+, which provide a sensitive structural probe of Glu-⋯Arg+ salt bridges. We use this probe to investigate a β-turn locked by a salt bridge, an α-helical peptide whose structure is stabilized by salt bridges, and a coiled coil that is stabilized by intra- and intermolecular salt bridges. We detect a bidentate salt bridge in the β-turn, a monodentate one in the α-helical peptide, and both salt-bridge geometries in the coiled coil. To our knowledge, this is the first time 2D-IR has been used to probe tertiary side chain interactions in peptides, and our results show that 2D-IR spectroscopy is a powerful method for investigating salt bridges in solution.
Structural basis of ubiquitin modification by the Legionella effector SdeA.
Dong, Yanan; Mu, Yajuan; Xie, Yongchao; Zhang, Yupeng; Han, Youyou; Zhou, Yu; Wang, Wenhe; Liu, Zihe; Wu, Mei; Wang, Hao; Pan, Man; Xu, Ning; Xu, Cong-Qiao; Yang, Maojun; Fan, Shilong; Deng, Haiteng; Tan, Tianwei; Liu, Xiaoyun; Liu, Lei; Li, Jun; Wang, Jiawei; Fang, Xianyang; Feng, Yue
2018-05-01
Protein ubiquitination is a multifaceted post-translational modification that controls almost every process in eukaryotic cells. Recently, the Legionella effector SdeA was reported to mediate a unique phosphoribosyl-linked ubiquitination through successive modifications of the Arg42 of ubiquitin (Ub) by its mono-ADP-ribosyltransferase (mART) and phosphodiesterase (PDE) domains. However, the mechanisms of SdeA-mediated Ub modification and phosphoribosyl-linked ubiquitination remain unknown. Here we report the structures of SdeA in its ligand-free, Ub-bound and Ub-NADH-bound states. The structures reveal that the mART and PDE domains of SdeA form a catalytic domain over its C-terminal region. Upon Ub binding, the canonical ADP-ribosyltransferase toxin turn-turn (ARTT) and phosphate-nicotinamide (PN) loops in the mART domain of SdeA undergo marked conformational changes. The Ub Arg72 might act as a 'probe' that interacts with the mART domain first, and then movements may occur in the side chains of Arg72 and Arg42 during the ADP-ribosylation of Ub. Our study reveals the mechanism of SdeA-mediated Ub modification and provides a framework for further investigations into the phosphoribosyl-linked ubiquitination process.
Influence of Glu/Arg, Asp/Arg, and Glu/Lys Salt Bridges on α-Helical Stability and Folding Kinetics.
Meuzelaar, Heleen; Vreede, Jocelyne; Woutersen, Sander
2016-06-07
Using a combination of ultraviolet circular dichroism, temperature-jump transient-infrared spectroscopy, and molecular dynamics simulations, we investigate the effect of salt bridges between different types of charged amino-acid residue pairs on α-helix folding. We determine the stability and the folding and unfolding rates of 12 alanine-based α-helical peptides, each of which has a nearly identical composition containing three pairs of positively and negatively charged residues (either Glu(-)/Arg(+), Asp(-)/Arg(+), or Glu(-)/Lys(+)). Within each set of peptides, the distance and order of the oppositely charged residues in the peptide sequence differ, such that they have different capabilities of forming salt bridges. Our results indicate that stabilizing salt bridges (in which the interacting residues are spaced and ordered such that they favor helix formation) speed up α-helix formation by up to 50% and slow down the unfolding of the α-helix, whereas salt bridges with an unfavorable geometry have the opposite effect. Comparing the peptides with different types of charge pairs, we observe that salt bridges between side chains of Glu(-) and Arg(+) are most favorable for the speed of folding, probably because of the larger conformational space of the salt-bridging Glu(-)/Arg(+) rotamer pairs compared to Asp(-)/Arg(+) and Glu(-)/Lys(+). We speculate that the observed impact of salt bridges on the folding kinetics might explain why some proteins contain salt bridges that do not stabilize the final, folded conformation. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Effect of L-arginine supplementation on immune responsiveness in patients with sickle cell disease.
Scavella, Arnette; Leiva, Lily; Monjure, Hanh; Zea, Arnold H; Gardner, Renee V
2010-08-01
L-arginine (L-Arg) is deficient in sickle cell disease (SSD) during vasoocclusion. We investigated possible causal relationship between L-Arg deficiency and immune dysfunction in SSD in steady-state. Fifteen patients with SSD in steady-state and 13 controls were studied. Plasma L-Arg levels were measured using liquid chromatography. T cell subsets and CD3zeta (CD3zeta) chain expression were analyzed using flow cytometry. Lymphocyte proliferative response to phytohemagglutinin (PHA) and production of IL-6 and interferon-gamma (IFN-gamma) were evaluated with and without L-Arg. SSD patients had significantly lower L-Arg levels than controls. CD3 and CD19 cell populations were comparable for both groups, but SSD patients had above normal numbers of natural killer cells (P = 0.06). Patients and controls exhibited significantly increased lymphocyte blastogenesis to PHA after introduction of L-Arg to cultures; response of patients was significantly greater than values for control individuals. Proliferative response to candida in SSD patients was significantly lower than in controls; L-Arg supplementation did not increase this response. L-Arg had no effect on blastogenic response to PPD and candida albicans. No effect was likewise seen in production of IL-6 and IFN-gamma after addition of L-Arg. CD3zeta chain expression increased after addition of L-Arg in both groups; differences were insignificant. L-Arg levels in steady-state SSD are significantly lower than in controls. L-Arg supplementation enhanced lymphocyte blastogenesis to PHA for both controls and patients, but not in response to antigen. There were no significant differences in CD3zeta chain expression although upregulation of expression occurred after L-Arg supplementation for both groups. (c) 2010 Wiley-Liss, Inc.
You, Xinru; Gu, Zhipeng; Huang, Jun; Kang, Yang; Chu, Chih-Chang; Wu, Jun
2018-05-25
Many different types of polycations have been vigorously studied for nucleic acid delivery, but a systematical investigation of the structure-property relationships of polycations for nucleic acid delivery is still lacking. In this study, a new library of biodegradable and biocompatible arginine-based poly(ester amide) (Arg-PEA) biomaterials was designed and synthesized with a tunable structure for such a comprehensive structure-property research. Nanoparticle (NP) complexes were formed through the electrostatic interactions between the polycationic Arg-PEAs and anionic nucleic acids. The following structure effects of the Arg-PEAs on the transfection efficiency of nucleic acids were investigated: 1) the linker/spacer length (length effect and odd-even effect); 2) salt type of arginine; 3) the side chain; 4) chain stiffness; 5) molecular weight (MW). The data obtained revealed that a slight change in the Arg-PEA structure could finely tune its physicochemical property such as hydrophobicity, and this could subsequently affect the nanoparticle size and zeta potential, which, in turn, regulate the transfection efficiency and silencing outcomes. A further study of the Arg-PEA/CpG oligodeoxynucleotide NP complexes indicated that the polymer structure could precisily regulate the immune response of CpG, thus providing a new potential nano-immunotherapy strategy. The in vitro data have further confirmed that the Arg-PEA NPs showed a satisfactory delivery performance for a variety of nucleic acids. Therefore, the data from the current study provide comprehensive information about the Arg-PEA structure-transfection property relationship; the tunable property of the library of Arg-PEA biomaterials can be one of the promising candidates for nucleic acid delivery and other biomedical applications. Polycations have being intensive utilized for nucleic acid delivery. However, there has not been elucidated about the relationship between polycation's structure and the physicochemical properties/biological function. In this timely report, an arginine based poly(ester amide) (Arg-PEA) library was prepared with finely tunable structure to systematically investigate the structure-property relationships of polycations for nucleic acid delivery. The results revealed that slight change of Arg-PEA structure could finely tune the physicochemical property (such as hydrophobicity), which subsequently affect the size and zeta potential of Arg-PEA/nucleic acid nanoparticles(NPs), and finally regulate the resulting transfection or silencing outcomes. Further study of Arg-PEA/CpG NPs indicated that the polymer structure could precisely regulate immuno response of CpG, providing new potential nano-immunotherapy strategy. In vitro evaluations confirmed that the NPs showed satisfied delivery performance for a variety types of nucleic acids. Therefore, these studies provide comprehensive information of Arg-PEA structure-property relationship, and the tunable properties of Arg-PEAs make them promising candidates for nucleic acid delivery and other biomedical applications. Overall, we have shown enough significance and novelty in terms of nucleic acid delivery, biomaterials, pharmaceutical science and nanomedicine. Copyright © 2018. Published by Elsevier Ltd.
Brennan, S O; Hammonds, B; Spearing, R; George, P M
1997-12-01
We report the first direct detection of a fibrinogen mutation by electrospray ionisation mass spectrometry. The propositus, from a family with a history of thrombosis, came to attention after a pulmonary embolism subsequent to a spontaneous abortion. Prolonged thrombin (41 s) and reptilase times (26 s) together with an impairment of fibrinopeptide B release suggested a mutation at the thrombin cleavage site of the Bbeta chain. Direct mass analysis of purified fibrin chains from a thrombin induced clot showed that 50% of the Bbeta chains remained uncleaved. The measured mass of the mono sialo isoform of this uncleaved chain was 54150 Da, compared to a value of 54198 Da for normal Bbeta chains. This decrease of 48 Da in the intact protein is indicative of either a Bbeta 14 Arg to Cys, or Arg to Leu substitution. Heterozygosity for the Bbeta 14 Arg --> Cys mutation was verified by PCR amplification and DNA sequence analysis.
Contributions of all 20 amino acids at site 96 to the stability and structure of T4 lysozyme
Mooers, Blaine H M; Baase, Walter A; Wray, Jonathan W; Matthews, Brian W
2009-01-01
To try to resolve the loss of stability in the temperature-sensitive mutant of T4 lysozyme, Arg 96 → His, all of the remaining 18 naturally occurring amino acids were substituted at site 96. Also, in response to suggestions that the charged residues Lys85 and Asp89, which are 5–8 Å away, may have important effects, each of these amino acids was replaced with alanine. Crystal structures were determined for many of the variants. With the exception of the tryptophan and valine mutants R96W and R96V, the crystallographic analysis shows that the substituted side chain following the path of Arg96 in wildtype (WT). The melting temperatures of the variants decrease by up to ∼16°C with WT being most stable. There are two site 96 replacements, with lysine or glutamine, that leave the stability close to that of WT. The only element that the side chains of these residues have in common with the WT arginine is the set of three carbon atoms at the Cα, Cβ, and Cγ positions. Although each side chain is long and flexible with a polar group at the distal position, the details of the hydrogen bonding to the rest of the protein differ in each case. Also, the glutamine replacement lacks a positive charge. This shows that there is some adaptability in achieving full stabilization at this site. At the other extreme, to be maximally destabilizing a mutation at site 96 must not only eliminate favorable interactions but also introduce an unfavorable element such as steric strain or a hydrogen-bonding group that remains unsatisfied. Overall, the study highlights the essential need for atomic resolution site-specific structural information to understand and to predict the stability of mutant proteins. It can be very misleading to simply assume that conservative amino acid substitutions cause small changes in stability, whereas large stability changes are associated with nonconservative replacements. PMID:19384988
Maghzal, Ghassan J; Brennan, Stephen O; Fellowes, Andrew P; Spearing, Ruth; George, Peter M
2003-02-21
Sequencing of all three fibrinogen genes from an individual with hypofibrinogenaemia led to the identification of two new point mutations in the Bbeta gene. Family studies showed the mutations Bbeta255 Arg-->His (Fibrinogen Merivale) and Bbeta148 Lys-->Asn (Fibrinogen Merivale II) were on different alleles and that only the Bbeta255 Arg-->His mutation segregated with hypofibrinogenaemia. Three simple heterozygotes for this mutation had mean fibrinogen concentrations of 1.4 mg/ml, while heterozygotes for the Bbeta148 Lys-->Asn mutation had normal fibrinogen concentrations. ESI MS analysis of endoproteinase Asp-N digests of Bbeta chains showed that the Bbeta255 Arg-->His substitution was not expressed in plasma, confirming it as the cause of the hypofibrinogenaemia. The Bbeta148 Lys-->Asn chains, on the other hand, were equally expressed with wild-type Bbeta chains in simple heterozygotes. Genotype analysis failed to detect either substitution in 182 healthy controls. Arg(255) is located in the first strand of the five-stranded sheet that forms the main feature of the betaD domain and appears to form an essential H bond with Gly(414). Both the Arg and Gly are absolutely conserved, not only in all known Bbeta chains, but also in all homologous alphaE and gamma chains and in all fibrinogen-related proteins. Protein instability from loss of this contact could easily explain the association of this mutation with hypofibrinogenaemia.
Melis, Melania; Arca, Massimiliano; Aragoni, Maria Carla; Cabras, Tiziana; Caltagirone, Claudia; Castagnola, Massimo; Crnjar, Roberto; Messana, Irene; Tepper, Beverly J; Tomassini Barbarossa, Iole
2015-01-01
Genetic variation in the ability to taste the bitterness of 6-n-propylthiouracil (PROP) is a complex trait that has been used to predict food preferences and eating habits. PROP tasting is primarily controlled by polymorphisms in the TAS2R38 gene. However, a variety of factors are known to modify the phenotype. Principle among them is the salivary protein Ps-1 belonging to the basic proline-rich protein family (bPRP). Recently, we showed that oral supplementation with Ps-1 as well as its related free amino acids (L-Arg and L-Lys) enhances PROP bitterness perception, especially for PROP non-tasters who have low salivary levels of Ps-1. Here, we show that salivary L-Arg levels are higher in PROP super-tasters compared to medium tasters and non-tasters, and that oral supplementation with free L-Arg enhances PROP bitterness intensity as well as reduces bitterness latency in a dose-dependent manner, particularly in individuals with low salivary levels of both free L-Arg and Ps-1 protein. Supplementation with L-Arg also enhanced the bitterness of caffeine. We also used 1H-NMR spectroscopy and quantum-mechanical calculations carried out by Density Functional Theory (DFT) to characterize the chemical interaction between free L-Arg and the PROP molecule. Results showed that the -NH2 terminal group of the L-ArgH+ side chain interacts with the carbonyl or thiocarbonyl groups of PROP by forming two hydrogen bonds with the resulting charged adduct. The formation of this PROP•ArgH+ hydrogen-bonded adduct could enhance bitterness intensity by increasing the solubility of PROP in saliva and its availability to receptor sites. Our data suggest that L-Arg could act as a 'carrier' of various bitter molecules in saliva.
Melis, Melania; Arca, Massimiliano; Aragoni, Maria Carla; Cabras, Tiziana; Caltagirone, Claudia; Castagnola, Massimo; Crnjar, Roberto; Messana, Irene; Tepper, Beverly J.; Tomassini Barbarossa, Iole
2015-01-01
Genetic variation in the ability to taste the bitterness of 6-n-propylthiouracil (PROP) is a complex trait that has been used to predict food preferences and eating habits. PROP tasting is primarily controlled by polymorphisms in the TAS2R38 gene. However, a variety of factors are known to modify the phenotype. Principle among them is the salivary protein Ps-1 belonging to the basic proline-rich protein family (bPRP). Recently, we showed that oral supplementation with Ps-1 as well as its related free amino acids (L-Arg and L-Lys) enhances PROP bitterness perception, especially for PROP non-tasters who have low salivary levels of Ps-1. Here, we show that salivary L-Arg levels are higher in PROP super-tasters compared to medium tasters and non-tasters, and that oral supplementation with free L-Arg enhances PROP bitterness intensity as well as reduces bitterness latency in a dose-dependent manner, particularly in individuals with low salivary levels of both free L-Arg and Ps-1 protein. Supplementation with L-Arg also enhanced the bitterness of caffeine. We also used 1H-NMR spectroscopy and quantum-mechanical calculations carried out by Density Functional Theory (DFT) to characterize the chemical interaction between free L-Arg and the PROP molecule. Results showed that the –NH2 terminal group of the L-ArgH+ side chain interacts with the carbonyl or thiocarbonyl groups of PROP by forming two hydrogen bonds with the resulting charged adduct. The formation of this PROP•ArgH+ hydrogen-bonded adduct could enhance bitterness intensity by increasing the solubility of PROP in saliva and its availability to receptor sites. Our data suggest that L-Arg could act as a ‘carrier’ of various bitter molecules in saliva. PMID:26103639
Thiele, S; Mungalpara, J; Steen, A; Rosenkilde, M M; Våbenø, J
2014-01-01
Background and Purpose The cyclopentapeptide FC131 (cyclo(-L-Arg1-L-Arg2-L-2-Nal3-Gly4-D-Tyr5-)) is an antagonist at the CXC chemokine receptor CXCR4, which plays a role in human immunodeficiency virus infection, cancer and stem cell recruitment. Binding modes for FC131 in CXCR4 have previously been suggested based on molecular docking guided by structure–activity relationship (SAR) data; however, none of these have been verified by in vitro experiments. Experimental Approach Heterologous 125I-12G5-competition binding and functional assays (inhibition of CXCL12-mediated activation) of FC131 and three analogues were performed on wild-type CXCR4 and 25 receptor mutants. Computational modelling was used to rationalize the experimental data. Key Results The Arg2 and 2-Nal3 side chains of FC131 interact with residues in TM-3 (His113, Asp171) and TM-5 (hydrophobic pocket) respectively. Arg1 forms charge-charge interactions with Asp187 in ECL-2, while D-Tyr5 points to the extracellular side of CXCR4. Furthermore, the backbone of FC131 interacts with the chemokine receptor-conserved Glu288 via two water molecules. Intriguingly, Tyr116 and Glu288 form a H-bond in CXCR4 crystal structures and mutation of either residue to Ala abolishes CXCR4 activity. Conclusions and Implications Ligand modification, receptor mutagenesis and computational modelling approaches were used to identify the binding mode of FC131 in CXCR4, which was in agreement with binding modes suggested from previous SAR studies. Furthermore, insights into the mechanism for CXCR4 activation by CXCL12 were gained. The combined findings will facilitate future design of novel CXCR4 antagonists. PMID:25039237
Molecular mechanism of pH-dependent substrate transport by an arginine-agmatine antiporter.
Wang, Sheng; Yan, Renhong; Zhang, Xi; Chu, Qi; Shi, Yigong
2014-09-02
Enteropathogenic bacteria, exemplified by Escherichia coli, rely on acid-resistance systems (ARs) to survive the acidic environment of the stomach. AR3 consumes intracellular protons through decarboxylation of arginine (Arg) in the cytoplasm and exchange of the reaction product agmatine (Agm) with extracellular Arg. The latter process is mediated by the Arg:Agm antiporter AdiC, which is activated in response to acidic pH and remains fully active at pH 6.0 and below. Despite our knowledge of structural information, the molecular mechanism by which AdiC senses acidic pH remains completely unknown. Relying on alanine-scanning mutagenesis and an in vitro proteoliposome-based transport assay, we have identified Tyr74 as a critical pH sensor in AdiC. The AdiC variant Y74A exhibited robust transport activity at all pH values examined while maintaining stringent substrate specificity for Arg:Agm. Replacement of Tyr74 by Phe, but not by any other amino acid, led to the maintenance of pH-dependent substrate transport. These observations, in conjunction with structural information, identify a working model for pH-induced activation of AdiC in which a closed conformation is disrupted by cation-π interactions between proton and the aromatic side chain of Tyr74.
Toro, Camilo; Olivé, Montse; Dalakas, Marinos C; Sivakumar, Kumaraswami; Bilbao, Juan M; Tyndel, Felix; Vidal, Noemí; Farrero, Eva; Sambuughin, Nyamkhishig; Goldfarb, Lev G
2013-03-20
Hereditary myopathy with early respiratory failure (HMERF) was described in several North European families and recently linked to a titin gene (TTN) mutation. We independently studied HMERF-like diseases with the purpose to identify the cause, refine diagnostic criteria, and estimate the frequency of this disease among myopathy patients of various ethnic origins. Whole exome sequencing analysis was carried out in a large U.S. family that included seven members suffering from skeletal muscle weakness and respiratory failure. Subsequent mutation screening was performed in further 45 unrelated probands with similar phenotypes. Studies included muscle strength evaluation, nerve conduction studies and concentric needle EMG, respiratory function test, cardiologic examination, and muscle biopsy. A novel TTN p.Gly30150Asp mutation was identified in the highly conserved A-band of titin that co-segregated with the disease in the U.S. family. Screening of 45 probands initially diagnosed as myofibrillar myopathy (MFM) but excluded based on molecular screening for the known MFM genes led to the identification of a previously reported TTN p.Cys30071Arg mutation in one patient. This same mutation was also identified in a patient with suspected HMERF. The p.Gly30150Asp and p.Cys30071Arg mutations are localized to a side chain of fibronectin type III element A150 of the 10th C-zone super-repeat of titin. Missense mutations in TTN are the cause of HMERF in families of diverse origins. A comparison of phenotypic features of HMERF caused by the three known TTN mutations in various populations allowed to emphasize distinct clinical/pathological features that can serve as the basis for diagnosis. The newly identified p.Gly30150Asp and the p.Cys30071Arg mutation are localized to a side chain of fibronectin type III element A150 of the 10th C-zone super-repeat of titin.
Tee, Meng Kian; Abramsohn, Michal; Loewenthal, Neta; Harris, Mark; Siwach, Sudeep; Kaplinsky, Ana; Markus, Barak; Birk, Ohad; Sheffield, Val C; Parvari, Ruti; Pavari, Ruti; Hershkovitz, Eli; Miller, Walter L
2013-02-01
The cholesterol side-chain cleavage enzyme P450scc, encoded by CYP11A1, converts cholesterol to pregnenolone to initiate steroidogenesis. P450scc deficiency can disrupt adrenal and gonadal steroidogenesis, resembling congenital lipoid adrenal hyperplasia clinically and hormonally; only 12 such patients have been reported previously. We sought to expand clinical and genetic experience with P450scc deficiency. We sequenced candidate genes in 7 children with adrenal insufficiency who lacked disordered sexual development. P450scc missense mutations were recreated in the F2 vector, which expresses the fusion protein P450scc-Ferredoxin Reductase-Ferredoxin. COS-1 cells were transfected, production of pregnenolone was assayed, and apparent kinetic parameters were calculated. Previously described P450scc mutants were assayed in parallel. Four of five Bedouin children in one kindred were compound heterozygotes for mutations c.694C>T (Arg232Stop) and c.644T>C (Phe215Ser). Single-nucleotide polymorphism analysis confirmed segregation of these mutations. The fifth kindred member and another Bedouin patient presented in infancy and were homozygous for Arg232Stop. A patient from Fiji presenting in infancy was homozygous for c.358T>C (Arg120Stop). All mutations are novel. As assayed in the F2 fusion protein, P450scc Phe215Ser retained 2.5% of wild-type activity; previously described mutants Leu141Trp and Ala269Val had 2.6% and 12% of wild-type activity, respectively, and Val415Glu and c.835delA lacked detectable activity. Although P450scc is required to produce placental progesterone required to maintain pregnancy, severe mutations in P450scc are compatible with term gestation; milder P450scc mutations may present later without disordered sexual development. Enlarged adrenals usually distinguish steroidogenic acute regulatory protein deficiency from P450scc deficiency, but only DNA sequencing is definitive.
Zhao, Xiangbo; Khajo, Abdelahad; Jarrett, Sanchez; Suarez, Javier; Levitsky, Yan; Burger, Richard M.; Jarzecki, Andrzej A.; Magliozzo, Richard S.
2012-01-01
Catalase activity of the dual-function heme enzyme catalase-peroxidase (KatG) depends on several structural elements, including a unique adduct formed from covalently linked side chains of three conserved amino acids (Met-255, Tyr-229, and Trp-107, Mycobacterium tuberculosis KatG numbering) (MYW). Mutagenesis, electron paramagnetic resonance, and optical stopped-flow experiments, along with calculations using density functional theory (DFT) methods revealed the basis of the requirement for a radical on the MYW-adduct, for oxyferrous heme, and for conserved residues Arg-418 and Asp-137 in the rapid catalase reaction. The participation of an oxyferrous heme intermediate (dioxyheme) throughout the pH range of catalase activity is suggested from our finding that carbon monoxide inhibits the activity at both acidic and alkaline pH. In the presence of H2O2, the MYW-adduct radical is formed normally in KatG[D137S] but this mutant is defective in forming dioxyheme and lacks catalase activity. KatG[R418L] is also catalase deficient but exhibits normal formation of the adduct radical and dioxyheme. Both mutants exhibit a coincidence between MYW-adduct radical persistence and H2O2 consumption as a function of time, and enhanced subunit oligomerization during turnover, suggesting that the two mutations disrupting catalase turnover allow increased migration of the MYW-adduct radical to protein surface residues. DFT calculations showed that an interaction between the side chain of residue Arg-418 and Tyr-229 in the MYW-adduct radical favors reaction of the radical with the adjacent dioxyheme intermediate present throughout turnover in WT KatG. Release of molecular oxygen and regeneration of resting enzyme are thereby catalyzed in the last step of a proposed catalase reaction. PMID:22918833
2006-01-01
Amino acid side-chain-protecting groups were Pbf for Arg and Boc for Trp. The coupling of Fmoc-4-amino- pyroglutamic acids (Fmoc-aPy-OH, Fmoc-apy-OH...Inc. Biopolymers (Pept Sci) 88:1–7, 2007. Keywords: 4-aminopyroglutamic acid ; cis-peptide bond; b-turn mimetic; constrained insect kinin analog...analogs containing three stereochemical var- iants of the (2S, 4S)-4-aminopyroglutamic acid (APy) com- ponent (see Figure 1), a mimic of the cis-peptide
Kumar, Hemant; Finer-Moore, Janet S.; Kaback, H. Ronald; Stroud, Robert M.
2015-01-01
The X-ray crystal structure of a conformationally constrained mutant of the Escherichia coli lactose permease (the LacY double-Trp mutant Gly-46→Trp/Gly-262→Trp) with bound p-nitrophenyl-α-d-galactopyranoside (α-NPG), a high-affinity lactose analog, is described. With the exception of Glu-126 (helix IV), side chains Trp-151 (helix V), Glu-269 (helix VIII), Arg-144 (helix V), His-322 (helix X), and Asn-272 (helix VIII) interact directly with the galactopyranosyl ring of α-NPG to provide specificity, as indicated by biochemical studies and shown directly by X-ray crystallography. In contrast, Phe-20, Met-23, and Phe-27 (helix I) are within van der Waals distance of the benzyl moiety of the analog and thereby increase binding affinity nonspecifically. Thus, the specificity of LacY for sugar is determined solely by side-chain interactions with the galactopyranosyl ring, whereas affinity is increased by nonspecific hydrophobic interactions with the anomeric substituent. PMID:26157133
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Li-shar; Sun, Gang; Cobessi, David
We report three new structures of mitochondrial respiratory Complex II (succinate ubiquinone oxidoreductase, E.C. 1.3.5.1) at up to 2.1 {angstrom} resolution, with various inhibitors. The structures define the conformation of the bound inhibitors and suggest the residues involved in substrate binding and catalysis at the dicarboxylate site. In particular they support the role of Arg297 as a general base catalyst accepting a proton in the dehydrogenation of succinate. The dicarboxylate ligand in oxaloacetate-containing crystals appears to be the same as that reported for Shewanella flavocytochrome c treated with fumarate. The plant and fungal toxin 3-nitropropionic acid, an irreversible inactivator ofmore » succinate dehydrogenase, forms a covalent adduct with the side chain of Arg297. The modification eliminates a trypsin cleavage site in the flavoprotein, and tandem mass spectroscopic analysis of the new fragment shows the mass of Arg 297 to be increased by 83 Da and to have potential of losing 44 Da, consistent with decarboxylation, during fragmentation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boralugodage, Nilusha Priyadarshani; Arachchige, Rajith Jayasingha; Dutta, Arnab
Amino acids and peptides have been shown to have a significant influence on the H2 production and oxidation reactivity of Ni(P R 2N R’ 2) 2, where P R 2N R’ 2 = 1,5-diaza-3,7-diphosphacyclooctane, R is either phenyl (Ph) or cyclohexyl (Cy), and R’ is either an amino acid or peptide. Most recently, the Ni(P Cy 2Naminoacid 2) 2 complexes (CyAA) have shown enhanced H 2 oxidation rates, water solubility, and in the case of arginine (CyArg) and phenylalanine (CyPhe), electrocatalytic reversibility. Both the backbone –COOH and side chain interactions were shown to be critical to catalytic performance. Here wemore » further investigate the roles of the outer coordination sphere by evaluating amino acids with acidic, basic, and hydrophilic side chains, as well as dipeptides which combine multiple successful features from previous complexes. Six new complexes were prepared, three containing single amino acids: aspartic acid (CyAsp), lysine (CyLys), and serine (CySer) and three containing dipeptides: glycine-phenylalanine (Cy(GlyPhe)), phenylalanine-glycine (Cy(PheGly)), and aspartic acid-phenylananine (Cy(AspPhe)). The resulting catalytic performance demonstrates that complexes need both interactions between side chain and –COOH groups for fast, efficient catalysis. The fastest of all of the catalysts, Cy(AspPhe), had both of these features, while the other dipeptide complexes with an amide replacing the -COOH were both slower; however, the amide group was demonstrated to participate in the proton pathway when side chain interactions are present to position it. Both the hydrophilic and basic side chains, notably lacking in side chain interactions, significantly increased the overpotential, with only modest increases in TOF. Of all of the complexes, only CyAsp was reversible at room temperature, and only in water, the first of these complexes to demonstrate room temperature reversibility in water. These results continue to provide and solidify design rules for controlling reactivity and efficiency of Ni(P 2N 2) 2 complexes with the outer coordination sphere.« less
Sagherian, C; Poroszlay, S; Vavougios, G; Mahuran, D
1993-01-01
Lysosomal beta-hexosaminidase (EC 3.2.1.52) occurs as two major isozymes, Hex A (alpha beta) and Hex B (beta beta). The alpha and beta subunits are encoded by the HEXA and HEXB genes, respectively. Extensive homology in both the gene structures and deduced primary sequences demonstrate their common evolutionary origin. While undergoing similar proteolytic modifications in the lysosome, the pro beta polypeptide is additionally cleaved internally to produce the mature 24-30 kilodalton beta b and beta a chains. Previous data have suggested that this processing event occurs somewhere between residues Ser311 and Lys315. In this report we demonstrate that this area is located in a hydrophilic disulfide-loop structure (between Cys309 and Cys360). The cleavage event is prevented by the deletion through in vitro mutagenesis of the Arg312-Gln-Asn-Lys tetrapeptide or by its substitution with the aligned alpha residues (Gly-Ser-Glu-Pro). Reintroduction of either Arg312 or Lys315 reinstates the processing. Furthermore, we show that this area is not involved in lysosomal targeting of pro-Hex B, or in the increased stability or the variation in substrate specificity of the beta as compared with the alpha subunit. Our data suggest the presence of a novel lysosomal endoprotease. Like other endoproteases it is specific for basic amino acids; however, it cleaves on the amino-terminal side rather than the conventional carboxy-terminal side of such residues and then only if they are fully exposed to the lysosomal environment.(ABSTRACT TRUNCATED AT 250 WORDS)
The equilibrium properties and folding kinetics of an all-atom Go model of the Trp-cage.
Linhananta, Apichart; Boer, Jesse; MacKay, Ian
2005-03-15
The ultrafast-folding 20-residue Trp-cage protein is quickly becoming a new benchmark for molecular dynamics studies. Already several all-atom simulations have probed its equilibrium and kinetic properties. In this work an all-atom Go model is used to accurately represent the side-chain packing and native atomic contacts of the Trp-cage. The model reproduces the hallmark thermodynamics cooperativity of small proteins. Folding simulations observe that in the fast-folding dominant pathway, partial alpha-helical structure forms before hydrophobic core collapse. In the slow-folding secondary pathway, partial core collapse occurs before helical structure. The slow-folding rate of the secondary pathway is attributed to the loss of side-chain rotational freedom, due to the early core collapse, which impedes the helix formation. A major finding is the observation of a low-temperature kinetic intermediate stabilized by a salt bridge between residues Asp-9 and Arg-16. Similar observations [R. Zhou, Proc. Natl. Acad. Sci. U.S.A. 100, 13280 (2003)] were reported in a recent study using an all-atom model of the Trp-cage in explicit water, in which the salt-bridge stabilized intermediate was hypothesized to be the origin of the ultrafast-folding mechanism. A theoretical mutation that eliminates the Asp-9-Arg-16 salt bridge, but leaves the residues intact, is performed. Folding simulations of the mutant Trp-cage observe a two-state free-energy landscape with no kinetic intermediate and a significant decrease in the folding rate, in support of the hypothesis.
The equilibrium properties and folding kinetics of an all-atom Go xAF model of the Trp-cage
NASA Astrophysics Data System (ADS)
Linhananta, Apichart; Boer, Jesse; MacKay, Ian
2005-03-01
The ultrafast-folding 20-residue Trp-cage protein is quickly becoming a new benchmark for molecular dynamics studies. Already several all-atom simulations have probed its equilibrium and kinetic properties. In this work an all-atom Go ¯ model is used to accurately represent the side-chain packing and native atomic contacts of the Trp-cage. The model reproduces the hallmark thermodynamics cooperativity of small proteins. Folding simulations observe that in the fast-folding dominant pathway, partial α-helical structure forms before hydrophobic core collapse. In the slow-folding secondary pathway, partial core collapse occurs before helical structure. The slow-folding rate of the secondary pathway is attributed to the loss of side-chain rotational freedom, due to the early core collapse, which impedes the helix formation. A major finding is the observation of a low-temperature kinetic intermediate stabilized by a salt bridge between residues Asp-9 and Arg-16. Similar observations [R. Zhou, Proc. Natl. Acad. Sci. U.S.A. 100, 13280 (2003)] were reported in a recent study using an all-atom model of the Trp-cage in explicit water, in which the salt-bridge stabilized intermediate was hypothesized to be the origin of the ultrafast-folding mechanism. A theoretical mutation that eliminates the Asp-9-Arg-16 salt bridge, but leaves the residues intact, is performed. Folding simulations of the mutant Trp-cage observe a two-state free-energy landscape with no kinetic intermediate and a significant decrease in the folding rate, in support of the hypothesis.
Rangarajan, Minnie; Hashim, Ahmed; Aduse-Opoku, Joseph; Paramonov, Nikolay; Hounsell, Elizabeth F; Curtis, Michael A
2005-08-01
Arg-gingipains are extracellular cysteine proteases produced by the gram-negative periodontal pathogen Porphyromonas gingivalis and are encoded by rgpA and rgpB. Three Arg-gingipains, heterodimeric high-molecular-mass Arg-gingipain HRgpA comprising the alpha-catalytic chain and the beta-adhesin chain, the monomeric soluble Arg-gingipain comprising only the alpha-catalytic chain (RgpA(cat)), and the monomeric membrane-type heavily glycosylated Arg-gingipain comprising the alpha-catalytic chain (mt-RgPA(cat)), are derived from rgpA. The monomeric enzymes contain between 14 and 30% carbohydrate by weight. rgpB encodes two monomeric enzymes, RgpB and mt-RgpB. Earlier work indicated that rgpB is involved in the glycosylation process, since inactivation of rgpB results in the loss of not only RgpB and mt-RgpB but also mt-RgpA(cat). This work aims to confirm the role of RgpB in the posttranslational modification of RgpA(cat) and the effect of aberrant glycosylation on the properties of this enzyme. Two-dimensional gel electrophoresis of cellular proteins from W50 and an inactivated rgpB strain (D7) showed few differences, suggesting that loss of RgpB has a specific effect on RgpA maturation. Inactivation of genes immediately upstream and downstream of rgpB had no effect on rgpA-derived enzymes, suggesting that the phenotype of the rgpB mutant is not due to a polar effect on transcription at this locus. Matrix-assisted laser desorption ionization-time of flight analysis of purified RgpA(cat) from W50 and D7 strains gave identical peptide mass fingerprints, suggesting that they have identical polypeptide chains. However, RgpA(cat) from D7 strain had a higher isoelectric point and a dramatic decrease in thermostability and did not cross-react with a monoclonal antibody which recognizes a glycan epitope on the parent strain enzyme. Although it had the same total sugar content as the parent strain enzyme, there were significant differences in the monosaccharide composition and linking sugars. These data suggest that RgpB is required for the normal posttranslational glycosylation of Arg-gingipains derived from rgpA and that this process is required for enzyme stabilization.
Peptide/protein-polymer conjugates: synthetic strategies and design concepts.
Gauthier, Marc A; Klok, Harm-Anton
2008-06-21
This feature article provides a compilation of tools available for preparing well-defined peptide/protein-polymer conjugates, which are defined as hybrid constructs combining (i) a defined number of peptide/protein segments with uniform chain lengths and defined monomer sequences (primary structure) with (ii) a defined number of synthetic polymer chains. The first section describes methods for post-translational, or direct, introduction of chemoselective handles onto natural or synthetic peptides/proteins. Addressed topics include the residue- and/or site-specific modification of peptides/proteins at Arg, Asp, Cys, Gln, Glu, Gly, His, Lys, Met, Phe, Ser, Thr, Trp, Tyr and Val residues and methods for producing peptides/proteins containing non-canonical amino acids by peptide synthesis and protein engineering. In the second section, methods for introducing chemoselective groups onto the side-chain or chain-end of synthetic polymers produced by radical, anionic, cationic, metathesis and ring-opening polymerization are described. The final section discusses convergent and divergent strategies for covalently assembling polymers and peptides/proteins. An overview of the use of chemoselective reactions such as Heck, Sonogashira and Suzuki coupling, Diels-Alder cycloaddition, Click chemistry, Staudinger ligation, Michael's addition, reductive alkylation and oxime/hydrazone chemistry for the convergent synthesis of peptide/protein-polymer conjugates is given. Divergent approaches for preparing peptide/protein-polymer conjugates which are discussed include peptide synthesis from synthetic polymer supports, polymerization from peptide/protein macroinitiators or chain transfer agents and the polymerization of peptide side-chain monomers.
Conformational analysis of a modified RGD adhesive sequence.
Triguero, Jordi; Zanuy, David; Alemán, Carlos
2017-02-01
The conformational preferences of the Arg-GlE-Asp sequence, where GlE is an engineered amino acid bearing a 3,4-ethylenedioxythiophene (EDOT) ring as side group, have been determined combining density functional theory calculations with a well-established conformational search strategy. Although the Arg-GlE-Asp sequence was designed to prepare a conducting polymer-peptide conjugate with excellent electrochemical and bioadhesive properties, the behavior of such hybrid material as adhesive biointerface is improvable. Results obtained in this work prove that the bioactive characteristics of the parent Arg-Gly-Asp sequence become unstable in Arg-GlE-Asp because of both the steric hindrance caused by the EDOT side group and the repulsive interactions between the oxygen atoms belonging to the backbone amide groups and the EDOT side group. Detailed analyses of the conformational preferences identified in this work have been used to re-engineer the Arg-GlE-Asp sequence for the future development of a new electroactive conjugate with improved bioadhesive properties. The preparation of this new conjugate is in progress. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pletnev, Sergei; Subach, Fedor V.; Dauter, Zbigniew
2010-03-12
Fast-FT is a fluorescent timer (FT) engineered from DsRed-like fluorescent protein mCherry. Crystal structures of Fast-FT (chromophore Met66-Tyr67-Gly68) and its precursor with blocked blue-to-red conversion Blue102 (chromophore Leu66-Tyr67-Gly68) have been determined at the resolution of 1.15 {angstrom} and 1.81 {angstrom}, respectively. Structural data suggest that blue-to-red conversion, taking place in Fast-FT and in related FTs, is associated with the oxidation of C{alpha}2-C{beta}2 bond of Tyr67. Site directed mutagenesis revealed a crucial role of Arg70 and Tyr83 in the delayed oxidation of C{alpha}2-C{beta}2 bond, introducing the timing factor in maturation of the timer. Substitutions Ser217Ala and Ser217Cys in Fast-FT substantially slowmore » down formation of an intermediate blue chromophore but do not affect much blue-to-red conversion, whereas mutations Arg70Lys or Trp83Leu, having little effect on the blue chromophore formation rate, markedly accelerates formation of the red chromophore. The chromophore of FTs adopts a cis-conformation stabilized by a hydrogen bond between its phenolate oxygen and the side chain hydroxyl of Ser146. In Blue102, a bulky side chain of Ile146 precludes the chromophore from adopting a 'cis-like' conformation, blocking its blue-to-red conversion. Both Fast-FT and Blue102 structures revealed hydrolytic degradation of the chromophores. In Fast-FT, chromophore-forming Met66 residue is eliminated from the polypeptide chain, whereas Leu66 in Blue102 is cleaved out from the chromophore, decarboxylated and remains attached to the preceding Phe65. Hydrolysis of the chromophore competes with chromophore maturation and is driven by the same residues that participate in chromophore maturation.« less
Three-dimensional structure of an antibody-antigen complex.
Sheriff, S; Silverton, E W; Padlan, E A; Cohen, G H; Smith-Gill, S J; Finzel, B C; Davies, D R
1987-11-01
We have determined the three-dimensional structure of two crystal forms of an antilysozyme Fab-lysozyme complex by x-ray crystallography. The epitope on lysozyme consists of three sequentially separated subsites, including one long, nearly continuous, site from Gln-41 through Tyr-53 and one from Gly-67 through Pro-70. Antibody residues interacting with lysozyme occur in each of the six complementarity-determining regions and also include one framework residue. Arg-45 and Arg-68 form a ridge on the surface of lysozyme, which binds in a groove on the antibody surface. Otherwise the surface of interaction between the two proteins is relatively flat, although it curls at the edges. The surface of interaction is approximately 26 X 19 A. No water molecules are found in the interface. The positive charge on the two arginines is complemented by the negative charge of Glu-35 and Glu-50 from the heavy chain of the antibody. The backbone structure of the antigen, lysozyme, is mostly unperturbed, although there are some changes in the epitope region, most notably Pro-70. One side chain not in the epitope, Trp-63, undergoes a rotation of approximately 180 degrees about the C beta--C gamma bond. The Fab elbow bends in the two crystal forms differ by 7 degrees.
D’Silva, Sheryl; Xiao, Xunjun; Lowe, Mark E.
2013-01-01
Type 2 diabetes mellitus is a multifactorial and polygenic disorder with increasing prevalence. Recently, a polymorphism in the gene encoding procolipase, a cysteine for arginine substitution at position 92, was associated with type 2 diabetes in two human populations. Because procolipase plays a critical role in dietary fat metabolism, polymorphisms that affect the function of procolipase could influence the development of type 2 diabetes. We hypothesized that the Arg92Cys polymorphism has functional consequences. To test our hypothesis, we expressed recombinant cysteine 92 (Cys92) procolipase in a yeast expression system and compared the function and stability of purified Cys92 with that of the more common arginine 92 (Arg92) procolipase. Cys92 fully restored the activity of bile-salt inhibited lipase with short- and medium-chain triglycerides but only had 50% of Arg92 function with long-chain triglycerides. After storage at 4°C, Cys92 lost the ability to restore pancreatic triglyceride lipase activity with medium- and long-chain triglycerides. The loss of function correlated with the inability of Cys92 to anchor lipase on an emulsion surface and oxidation of the cysteine. No detectable degradation or intramolecular disulfide formation occurred in Cys92 after storage. Our findings demonstrate that the Arg92Cys polymorphism decreases the function of Cys92 colipase. This change may contribute to the development of type 2 diabetes. PMID:17715423
Ye, Mao; Sun, Mingming; Feng, Yanfang; Li, Xu; Schwab, Arthur P; Wan, Jinzhong; Liu, Manqiang; Tian, Da; Liu, Kuan; Wu, Jun; Jiang, Xin
2016-07-13
The combined accumulation of antibiotics, heavy metals, antibiotic-resistant bacteria (ARB)/antibiotic resistance genes (ARGs) in vegetables has become a new threat to human health. This is the first study to investigate the feasibility of calcined eggshells modified by aluminum sulfate as novel agricultural wastes to impede mixed contaminants from transferring to bell pepper (Capsicum annuum L.). In this work, calcined eggshell amendment mitigated mixed pollutant accumulation in bell pepper significantly, enhanced the dissipation of soil tetracycline, sulfadiazine, roxithromycin, and chloramphenicol, decreased the water-soluble fractions of antibiotics, and declined the diversity of ARB/ARGs inside the vegetable. Moreover, quantitative polymerase chain reaction analysis detected that ARG levels in the bell pepper fruits significantly decreased to 10(-10) copies/16S copies, indicating limited risk of ARGs transferring along the food chain. Furthermore, the restoration of soil microbial biological function suggests that calcined eggshell is an environmentally friendly amendment to control the dissemination of soil ARB/ARGs in the soil-vegetable system.
Kim, Jong-Myoung; Altenbach, Christian; Thurmond, Robin L.; Khorana, H. Gobind; Hubbell, Wayne L.
1997-01-01
The Glu-134–Arg-135 residues in rhodopsin, located near the cytoplasmic end of the C helix, are involved in G protein binding, or activation, or both. Furthermore, the charge-neutralizing mutation Glu-134 to Gln-134 produces hyperactivity in the activated state and produces constitutive activity in opsin. The Glu/Asp-Arg charge pair is highly conserved in equivalent positions in other G protein-coupled receptors. To investigate the structural consequences of charge-neutralizing mutations at Glu-134 and Arg-135 in rhodopsin, single spin-labeled side chains were introduced at sites in the cytoplasmic domains of helices C (140), E (227), F (250), or G (316) to serve as “molecular sensors” of the local helix bundle conformation. In each of the spin-labeled rhodopsins, a Gln substitution was introduced at either Glu-134 or Arg-135, and the electron paramagnetic resonance spectrum of the spin label was used to monitor the structural response of the helix bundle. The results indicate that a Gln substitution at Glu-134 induces a photoactivated conformation around helices C and G even in the dark state, an observation of potential relevance to the hyperactivity and constitutive activity of the mutant. In contrast, little change is induced in helix F, which has been shown to undergo a dominant motion upon photoactivation. This result implies that the multiple helix motions accompanying photoactivation are not strongly coupled and can be induced to take place independently. Gln substitution at Arg-135 produces only minor structural changes in the dark- or light-activated conformation, suggesting that this residue is not a determinant of structure in the regions investigated, although it may be functionally important. PMID:9405602
Akparov, Valery; Timofeev, Vladimir; Khaliullin, Ilyas; Švedas, Vytas; Kuranova, Inna
2018-03-01
Carboxypeptidase B (EC 3.4.17.2) (CPB) is commonly used in the industrial insulin production and as a template for drug design. However, its ability to discriminate substrates with hydrophobic, hydrophilic, and charged side chains is not well understood. We report structure of CPB complex with a transition state analog N-sulfamoyl-L-phenylalanine solved at 1.74Å. The study provided an insight into structural basis of CPB substrate specificity. Ligand binding is affected by structure-depended conformational changes of Asp255 in S1'-subsite, interactions with Asn144 and Arg145 in C-terminal binding subsite, and Glu270 in the catalytic center. Side chain of the non-specific substrate analog SPhe in comparison with that of specific substrate analog SArg (reported earlier) not only loses favorable electrostatic interactions and two hydrogen bonds with Asp255 and three fixed water molecules, but is forced to be in the unfavorable hydrophilic environment. Thus, Ser207, Gly253, Tyr248, and Asp255 residues play major role in the substrate recognition by S1'-subsite.
Modeling of a C-end rule peptide adsorbed onto gold nanoparticles.
Triguero, Jordi; Flores-Ortega, Alejandra; Zanuy, David; Alemán, Carlos
2018-01-01
The RPAR peptide, a prototype C-end Rule (CendR) sequence that binds to neuropilin-1 (NRP-1), has potential therapeutic uses as internalization trigger in anticancer nanodevices. Recently, the functionalization of gold nanoparticles with CendR peptides has been proved to be a successful strategy to target the NRP-1 receptor in prostate cancer cells. In this work, we investigate the influence of two gold surface facets, (100) and (111), on the conformational preferences of RPAR using molecular dynamics simulations. Both clustering and conformational analyses revealed that the peptide backbone becomes very rigid upon adsorption onto gold, which is a very fast and favored process, the only flexibility being attributed to the side chains of the two Arg residues. Thus, the different components of RPAR tend to adopt an elongated shape, which is characterized by the pseudo-extended conformation of both the backbone and the Arg side chains. This conformation is very different from the already known bioactive conformation, indicating that RPAR is drastically affected by the substrate. Interestingly, the preferred conformations of the peptide adsorbed onto gold facets are not stabilized by salt bridges and/or specific intramolecular hydrogen bonds, which represent an important difference with respect to the conformations found in other environments (e.g. the peptide in solution and interacting with NRP-1 receptor). However, the conformational changes induced by the substrate are not detrimental for the use of gold nanoparticles as appropriate vehicles for the transport and targeted delivery of the RPAR. Thus, once their high affinity for the NRP-1 receptor induces the targeted delivery of the elongated peptide molecules from the gold nanoparticles, the lack of intramolecular interactions facilitates their evolution towards the bioactive conformation, increasing the therapeutic efficacy of the peptide. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Everse, S J; Spraggon, G; Veerapandian, L; Doolittle, R F
1999-03-09
The structure of fragment double-D from human fibrin has been solved in the presence and absence of the peptide ligands that simulate the two knobs exposed by the removal of fibrinopeptides A and B, respectively. All told, six crystal structures have been determined, three of which are reported here for the first time: namely, fragments D and double-D with the peptide GHRPam alone and double-D in the absence of any peptide ligand. Comparison of the structures has revealed a series of conformational changes that are brought about by the various knob-hole interactions. Of greatest interest is a moveable "flap" of two negatively charged amino acids (Glubeta397 and Aspbeta398) whose side chains are pinned back to the coiled coil with a calcium atom bridge until GHRPam occupies the beta-chain pocket. Additionally, in the absence of the peptide ligand GPRPam, GHRPam binds to the gamma-chain pocket, a new calcium-binding site being formed concomitantly.
Dudev, Todor; Lin, Yen-lin; Dudev, Minko; Lim, Carmay
2003-03-12
The role of the second shell in the process of metal binding and selectivity in metalloproteins has been elucidated by combining Protein Data Bank (PDB) surveys of Mg, Mn, Ca, and Zn binding sites with density functional theory/continuum dielectric methods (DFT/CDM). Peptide backbone groups were found to be the most common second-shell ligand in Mg, Mn, Ca, and Zn binding sites, followed (in decreasing order) by Asp/Glu, Lys/Arg, Asn/Gln, and Ser/Thr side chains. Aromatic oxygen- or nitrogen-containing side chains (Tyr, His, and Trp) and sulfur-containing side chains (Cys and Met) are seldom found in the second coordination layer. The backbone and Asn/Gln side chain are ubiquitous in the metal second coordination layer as their carbonyl oxygen and amide hydrogen can act as a hydrogen-bond acceptor and donor, respectively, and can therefore partner practically every first-shell ligand. The second most common outer-shell ligand, Asp/Glu, predominantly hydrogen bonds to a metal-bound water or Zn-bound histidine and polarizes the H-O or H-N bond. In certain cases, a second-shell Asp/Glu could affect the protonation state of the metal ligand. It could also energetically stabilize a positively charged metal complex more than a neutral ligand such as the backbone and Asn/Gln side chain. As for the first shell, the second shell is predicted to contribute to the metal selectivity of the binding site by discriminating between metal cations of different ionic radii and coordination geometries. The first-shell-second-shell interaction energies decay rapidly with increasing solvent exposure of the metal binding site. They are less favorable but are of the same order of magnitude as compared to the respective metal-first-shell interaction energies. Altogether, the results indicate that the structure and properties of the second shell are dictated by those of the first layer. The outer shell is apparently designed to stabilize/protect the inner-shell and complement/enhance its properties.
Sreenivas, Suma; Krishnaiah, Sateesh M; Govindappa, Nagaraja; Basavaraju, Yogesh; Kanojia, Komal; Mallikarjun, Niveditha; Natarajan, Jayaprakash; Chatterjee, Amarnath; Sastry, Kedarnath N
2015-01-01
Glargine is an analog of Insulin currently being produced by recombinant DNA technology using two different hosts namely Escherichia coli and Pichia pastoris. Production from E. coli involves the steps of extraction of inclusion bodies by cell lysis, refolding, proteolytic cleavage and purification. In P. pastoris, a single-chain precursor with appropriate disulfide bonding is secreted to the medium. Downstream processing currently involves use of trypsin which converts the precursor into two-chain final product. The use of trypsin in the process generates additional impurities due to presence of Lys and Arg residues in the Glargine molecule. In this study, we describe an alternate approach involving over-expression of endogenous Kex2 proprotein convertase, taking advantage of dibasic amino acid sequence (Arg-Arg) at the end of B-chain of Glargine. KEX2 gene over-expression in Pichia was accomplished by using promoters of varying strengths to ensure production of greater levels of fully functional two-chain Glargine product, confirmed by HPLC and mass analysis. In conclusion, this new production process involving Kex2 protease over-expression improves the downstream process efficiency, reduces the levels of impurities generated and decreases the use of raw materials.
Crystal structure of the 28 kDa glutathione S-transferase from Schistosoma haematobium.
Johnson, Kenneth A; Angelucci, Francesco; Bellelli, Andrea; Hervé, Maxime; Fontaine, Josette; Tsernoglou, Demetrious; Capron, André; Trottein, François; Brunori, Maurizio
2003-09-02
Schistomiasis is a debilitating parasitic disease which affects 200 million people, causing life-threatening complications in 10% of the patients. This paper reports the crystal structure of the Schistosoma haematobium 28 kDa glutathione S-transferase, a multifunctional enzyme involved in host-parasite interactions and presently considered as a promising vaccine candidate against schistosomiasis. The structures of the GSH-free enzyme, as well as the partially (approximately 40%) and almost fully (approximately 80%) GSH-saturated enzyme, exhibit a unique feature, absent in previous GST structures, concerning the crucial and invariant Tyr10 side chain which occupies two alternative positions. The canonical conformer, which allows an H-bond to be formed between the side chain hydroxyl group and the activated thiolate of GSH, is somewhat less than 50% occupied. The new conformer, with the phenoxyl ring on the opposite side of the mobile loop connecting strand 1 and helix 1, is stabilized by a polar interaction with the guanidinium group of the conserved Arg21 side chain. The presence of two conformers of Tyr10 may provide a clue about clarifying the multiple catalytic functions of Sh28GST and might prove to be relevant for the design of specific antischistosomal drugs. The K(d) for GSH binding was determined by equilibrium fluorescence titrations to be approximately 3 microM and by stopped-flow rapid mixing experiments to be approximately 9 microM. The relatively tight binding of GSH by Sh28GST explains the residually bound GSH in the crystal and supports a possible role of GSH as a tightly bound cofactor involved in the catalytic mechanism for prostaglandin D(2) synthase activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mangoni, Monica; Bisanzi, Simonetta; Carozzi, Francesca
Purpose: Clinical radiosensitivity varies considerably among patients, and radiation-induced side effects developing in normal tissue can be therapy limiting. Some single nucleotide polymorphisms (SNPs) have been shown to correlate with hypersensitivity to radiotherapy. We conducted a prospective study of 87 female patients with breast cancer who received radiotherapy after breast surgery. We evaluated the association between acute skin reaction following radiotherapy and 11 genetic polymorphisms in DNA repair genes: XRCC1 (Arg399Gln and Arg194Trp), XRCC3 (Thr241Met), XPD (Asp312Asn and Lys751Gln), MSH2 (gIVS12-6T>C), MLH1 (Ile219Val), MSH3 (Ala1045Thr), MGMT (Leu84Phe), and in damage-detoxification GSTM1 and GSTT1 genes (allele deletion). Methods and Materials: Individualmore » genetic polymorphisms were determined by polymerase chain reaction and single nucleotide primer extension for single nucleotide polymorphisms or by a multiplex polymerase chain reaction assay for deletion polymorphisms. The development of severe acute skin reaction (moist desquamation or interruption of radiotherapy due to toxicity) associated with genetic polymorphisms was modeled using Cox proportional hazards, accounting for cumulative biologically effective radiation dose. Results: Radiosensitivity developed in eight patients and was increased in carriers of variants XRCC3-241Met allele (hazard ratio [HR] unquantifiably high), MSH2 gIVS12-6nt-C allele (HR = 53.36; 95% confidence intervals [95% CI], 3.56-798.98), and MSH3-1045Ala allele (HR unquantifiably high). Carriers of XRCC1-Arg194Trp variant allele in combination with XRCC1-Arg399Gln wild-type allele had a significant risk of radiosensitivity (HR = 38.26; 95% CI, 1.19-1232.52). Conclusions: To our knowledge, this is the first report to find an association between MSH2 and MSH3 genetic variants and the development of radiosensitivity in breast cancer patients. Our findings suggest the hypothesis that mismatch repair mechanisms may be involved in cellular response to radiotherapy. Genetic polymorphisms may be promising candidates for predicting acute radiosensitivity, but further studies are necessary to confirm our findings.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lashkov, A. A.; Zhukhlistova, N. E.; Sotnichenko, S. E.
2010-01-15
The three-dimensional structures of three complexes of Salmonella typhimurium uridine phosphorylase with the inhibitor 2,2'-anhydrouridine, the substrate PO{sub 4}, and with both the inhibitor 2,2'-anhydrouridine and the substrate PO{sub 4} (a binary complex) were studied in detail by X-ray diffraction. The structures of the complexes were refined at 2.38, 1.5, and 1.75 A resolution, respectively. Changes in the three-dimensional structure of the subunits in different crystal structures are considered depending on the presence or absence of the inhibitor molecule and (or) the phosphate ion in the active site of the enzyme. The presence of the phosphate ion in the phosphate-bindingmore » site was found to substantially change the orientations of the side chains of the amino-acid residues Arg30, Arg91, and Arg48 coordinated to this ion. A comparison showed that the highly flexible loop L9 is unstable. The atomic coordinates of the refined structures of the complexes and the corresponding structure factors were deposited in the Protein Data Bank (their PDB ID codes are 3DD0 and 3C74). The experimental data on the spatial reorganization of the active site caused by changes in its functional state from the unligated to the completely inhibited state suggest the structural basis for the mechanism of inhibition of Salmonella typhimurium uridine phosphorylase.« less
The energy landscape of a selective tumor-homing pentapeptide
Zanuy, David; Flores-Ortega, Alejandra; Casanovas, Jordi; Curco, David; Nussinov, Ruth; Aleman, Carlos
2009-01-01
Recently, a potentially powerful strategy based on the of phage-display libraries has been presented to target tumors via homing peptides attached to nanoparticles. The Cys-Arg-Glu-Lys-Ala (CREKA) peptide sequence has been identified as a tumor-homing peptide that binds to clotted plasmas proteins present in tumor vessels and interstitium. The aim of this work consists of mapping the conformational profile of CREKA to identify the bioactive conformation. For this purpose, a conformational search procedure based on modified Simulated Annealing combined with Molecular Dynamics was applied to three systems that mimic the experimentally used conditions: (i) the free peptide; (ii) the peptide attached to a nanoparticle; and (iii) the peptide inserted in a phage display protein. In addition, the free peptide was simulated in an ionized aqueous solution environment, which mimics the ionic strength of the physiological medium. Accessible minima of all simulated systems reveal a multiple interaction pattern involving the ionized side chains of Arg, Glu and Lys, which induces a β-turn motif in the backbone observed in all simulated CREKA systems. PMID:18588341
Tenenholz, T C; Rogowski, R S; Collins, J H; Blaustein, M P; Weber, D J
1997-03-11
PiTX-K alpha, a 35-residue peptide recently isolated from the venom of Pandinus imperator, blocks the rapidly inactivating (A-type) K+ channel(s) in rat brain synaptosomes and the cloned Kv 1.2 potassium channel at very low toxin concentrations (6 nM and 32 pM, respectively) [Rogowski, R. S., Collins, J. H., O'Neil, T. J., Gustafson, T. A., Werkman, T. A., Rogawski, M. A., Tenenholz, T. C., Weber, D. J., & Blaustein, M. P. (1996) Mol. Pharmacol. 50, 1167-1177]. The three-dimensional structure of PiTX-K alpha was determined using NMR spectroscopy in order to understand its selectivity and affinity toward K+ channels. PiTX-K alpha was found to have an alpha-helix from residues 10 to 21 and two beta-strands (betaI, 26-28; betaII, 33-35) connected by a type II beta-turn to form a small antiparallel beta-sheet. Three disulfide bonds, which are conserved in all members of the charybdotoxin family (alpha-K toxins), anchor one face of the alpha-helix to the beta-sheet. The N-terminal portion of PiTX-K alpha has three fewer residues than other alpha-K toxins such as charybdotoxin. Rather than forming a third beta-strand as found for other alpha-K toxins, the N-terminal region of PiTX-K alpha adopts an extended conformation. This structural difference in PiTX-K alpha together with differences in sequence at Pro-10, Tyr-14, and Asn-25 (versus Ser-10, Trp-14, and Arg-25 in CTX) may explain why PiTX-K alpha does not block maxi-K+ channels. Differences in three-dimensional structure between PiTX-K alpha and charybdotoxin are also observed in both the tight turn and the loop that connects the first beta-strand to the alpha-helix. As a result, side chains of two residues (Tyr-23 and Arg-31) are in regions of PiTX-K alpha that probably interact with rapidly inactivating A-type K+ channels. The analogous residues in charybdotoxin are positioned differently on the toxin surface. Thus, the locations of Tyr-23 and Arg-31 side chains in PiTX-K alpha could explain why this toxin blocks A-type channels at much lower concentrations than does charybdotoxin.
Hmb(off/on) as a switchable thiol protecting group for native chemical ligation.
Qi, Yun-Kun; Tang, Shan; Huang, Yi-Chao; Pan, Man; Zheng, Ji-Shen; Liu, Lei
2016-05-04
A new thiol protecting group Hmb(off/on) is described, which has a switchable activity that may be useful in the chemical synthesis of proteins. When placed on the side chain of Cys, Cys(Hmb(off)) is stable to trifluoroacetic acid (TFA) in the process of solid-phase peptide synthesis. When Cys(Hmb(off)) is treated with neutral aqueous buffers, it is cleanly converted to acid-labile Cys(Hmb(on)), which can later be fully deprotected by TFA to generate free Cys. The utility of Cys(Hmb(off/on)) is demonstrated by the chemical synthesis of an erythropoietin segment, EPO[Cys(98)-Arg(166)]-OH through native chemical ligation.
Molecular Basis for the Catalytic Specificity of the CTX-M Extended-Spectrum β-Lactamases
Adamski, Carolyn J.; Cardenas, Ana Maria; Brown, Nicholas G.; ...
2014-12-09
We report that extended-spectrum β-lactamases (ESBLs) pose a threat to public health because of their ability to confer resistance to extended-spectrum cephalosporins such as cefotaxime. The CTX-M β-lactamases are the most widespread ESBL enzymes among antibiotic resistant bacteria. Many of the active site residues are conserved between the CTX-M family and non-ESBL β-lactamases such as TEM-1, but the residues Ser237 and Arg276 are specific to the CTX-M family, suggesting that they may help to define the increased specificity for cefotaxime hydrolysis. To test this hypothesis, site-directed mutagenesis of these positions was performed in the CTX-M-14 β-lactamase. Substitutions of Ser237 andmore » Arg276 with their TEM-1 counterparts, Ala237 and Asn276, had a modest effect on cefotaxime hydrolysis, as did removal of the Arg276 side chain in an R276A mutant. The S237A:R276N and S237A:R276A double mutants, however, exhibited 29- and 14-fold losses in catalytic efficiency for cefotaxime hydrolysis, respectively, while the catalytic efficiency for benzylpenicillin hydrolysis was unchanged. Therefore, together, the Ser237 and Arg276 residues are important contributors to the cefotaximase substrate profile of the enzyme. High-resolution crystal structures of the CTX-M-14 S70G, S70G:S237A, and S70G:S237A:R276A variants alone and in complex with cefotaxime show that residues Ser237 and Arg276 in the wild-type enzyme promote the expansion of the active site to accommodate cefotaxime and favor a conformation of cefotaxime that allows optimal contacts between the enzyme and substrate. In conclusion, the conservation of these residues, linked to their effects on structure and catalysis, imply that their coevolution is an important specificity determinant in the CTX-M family.« less
Neumann, U; Campos, V; Cantarero, S; Urrutia, H; Heinze, R; Weckesser, J; Erhard, M
2000-06-01
A cyanobacterial bloom occurring in 1998 in lake Tres Pascualas (Concepción/Chile) was found to be dominated by Microcystis sp. The bloom contained both non-toxic (cyanopeptolin-type) and hepatotoxic (microcystin-type) peptides. Cyanopeptolin structure of the non-toxic peptides (called cyanopeptolin VW-1 and VW-2, respectively) was revealed by matrix assisted laser desorption ionization mass spectrometry (MALDI-TOF-MS) of whole cells, showing dominant molecular ions at m/z = 975 and m/z 995, respectively. On post source decay (PSD), both cyanopeptolins showed fragments deriving from Ahp-Phe-MTyr (3-amino-6-hydroxy-2-piperidone), the characteristic partial structure of cyanopeptolins. The amounts of each of the two cyanopeptolins could only roughly be estimated to be >0.1% of bloom material dry weight. In addition the blooms contained microcystins (20 microg/g bloom dry weight as determined by RP-HPLC, 13 microg/g according to ELISA determination). MALDI-TOF-MS revealed several structural variants of microcystin: MCYST-RR (microcystin with Arg and Arg, indicated by m/z 1,038 and confirmed by PSD revealing a m/z = 135 fragment deriving from the Adda side chain, MCYST-FR (microcystin with Phe and Arg, indicated by m/z = 1,015). The presence of [Asp(3)]-MCYST-LR (microcystin with Leu and Arg, Asp non-methylated, indicated by m/z 981), and [Asp(3)]-MCYST-YR (microcystin with Tyr and Arg, Asp non-methylated, indicated by m/z 1,031) were likely. The relative amounts of the peptides varied between February, April, and May. Whole cell extracts from the bloom material revealed specific enzyme inhibitory activities. The serin-proteases trypsin, plasmin, elastase were inhibited, assumable due to the cyanopeptolins found. Elastase and the cysteine-protease papain were not inhibited, inhibitions of protein kinase and glutathione S-transferase (GST) were low. Strong inhibition was observed with protein-phosphatase-1, likely due to the microcystins present in the samples.
Discovery of high-affinity BCL6-binding peptide and its structure-activity relationship
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakamoto, Kotaro; Sogabe, Satoshi; Kamada, Yusuke
B cell lymphoma 6 (BCL6) is a transcriptional repressor that interacts with its corepressors BcoR and SMRT. Since this protein-protein interaction (PPI) induces activation and differentiation of B lymphocytes, BCL6 has been an attractive drug target for potential autoimmune disease treatments. Here we report a novel BCL6 inhibitory peptide, F1324 (Ac-LWYTDIRMSWRVP-OH), which we discovered using phage display technology; we also discuss this peptide's structure-activity relationship (SAR). For BCL6(5-129) binding, K{sub D} and IC{sub 50} values of F1324 were 0.57 nM and 1 nM according to the results of an SPR analysis and cell-free ELISA assay, respectively. In contrast, BcoR(Arg498-514Pro) and SMRT(Leu1422-Arg1438) exhibitedmore » relatively weak micromole-order binding to BCL6. Furthermore, Fusion protein AcGFP-F1324 transiently expressed in HEK293T cells inhibited intracellular PPI in cell-based M2H assay. By examination of the truncation and fragmentation of F1324, the C-terminal sequence WRVP, which is similar to the BcoR(509-512) sequence WVVP, was identified as being critical for BCL6 binding. In addition, subsequent single-crystal X-ray diffraction analysis of F1324/BCL6(5-129) complex revealed that the high affinity of F1324 was caused by effective interaction of its side chains while its main chain structure was similar to that of BcoR(Arg498-514Pro). To our knowledge, F1324 is the strongest BCL6-binding peptide yet reported. - Highlights: • F1324 was discovered as 5000-times higher affinity peptide to BCL6 than that of BcoR(R498-P514). • X-ray crystal structure analysis revealed the binding mode. • To our knowledge, F1324 is the strongest BCL6-binding and -inhibition peptide so far.« less
Xie, Neng-Zhong; Du, Qi-Shi; Li, Jian-Xiu; Huang, Ri-Bo
2015-01-01
Three strong interactions between amino acid side chains (salt bridge, cation-π, and amide bridge) are studied that are stronger than (or comparable to) the common hydrogen bond interactions, and play important roles in protein-protein interactions. Quantum chemical methods MP2 and CCSD(T) are used in calculations of interaction energies and structural optimizations. The energies of three types of amino acid side chain interactions in gaseous phase and in aqueous solutions are calculated using high level quantum chemical methods and basis sets. Typical examples of amino acid salt bridge, cation-π, and amide bridge interactions are analyzed, including the inhibitor design targeting neuraminidase (NA) enzyme of influenza A virus, and the ligand binding interactions in the HCV p7 ion channel. The inhibition mechanism of the M2 proton channel in the influenza A virus is analyzed based on strong amino acid interactions. (1) The salt bridge interactions between acidic amino acids (Glu- and Asp-) and alkaline amino acids (Arg+, Lys+ and His+) are the strongest residue-residue interactions. However, this type of interaction may be weakened by solvation effects and broken by lower pH conditions. (2) The cation- interactions between protonated amino acids (Arg+, Lys+ and His+) and aromatic amino acids (Phe, Tyr, Trp and His) are 2.5 to 5-fold stronger than common hydrogen bond interactions and are less affected by the solvation environment. (3) The amide bridge interactions between the two amide-containing amino acids (Asn and Gln) are three times stronger than hydrogen bond interactions, which are less influenced by the pH of the solution. (4) Ten of the twenty natural amino acids are involved in salt bridge, or cation-, or amide bridge interactions that often play important roles in protein-protein, protein-peptide, protein-ligand, and protein-DNA interactions.
Guo, Kunde; Lukacik, Petra; Papagrigoriou, Evangelos; Meier, Marc; Lee, Wen Hwa; Adamski, Jerzy; Oppermann, Udo
2006-04-14
Human DHRS6 is a previously uncharacterized member of the short chain dehydrogenases/reductase family and displays significant homologies to bacterial hydroxybutyrate dehydrogenases. Substrate screening reveals sole NAD(+)-dependent conversion of (R)-hydroxybutyrate to acetoacetate with K(m) values of about 10 mm, consistent with plasma levels of circulating ketone bodies in situations of starvation or ketoacidosis. The structure of human DHRS6 was determined at a resolution of 1.8 A in complex with NAD(H) and reveals a tetrameric organization with a short chain dehydrogenases/reductase-typical folding pattern. A highly conserved triad of Arg residues ("triple R" motif consisting of Arg(144), Arg(188), and Arg(205)) was found to bind a sulfate molecule at the active site. Docking analysis of R-beta-hydroxybutyrate into the active site reveals an experimentally consistent model of substrate carboxylate binding and catalytically competent orientation. GFP reporter gene analysis reveals a cytosolic localization upon transfection into mammalian cells. These data establish DHRS6 as a novel, cytosolic type 2 (R)-hydroxybutyrate dehydrogenase, distinct from its well characterized mitochondrial type 1 counterpart. The properties determined for DHRS6 suggest a possible physiological role in cytosolic ketone body utilization, either as a secondary system for energy supply in starvation or to generate precursors for lipid and sterol synthesis.
Kirby, Karen A; Ong, Yee Tsuey; Hachiya, Atsuko; Laughlin, Thomas G; Chiang, Leslie A; Pan, Yun; Moran, Jennifer L; Marchand, Bruno; Singh, Kamalendra; Gallazzi, Fabio; Quinn, Thomas P; Yoshimura, Kazuhisa; Murakami, Toshio; Matsushita, Shuzo; Sarafianos, Stefan G
2015-01-01
Humanized monoclonal antibody KD-247 targets the Gly(312)-Pro(313)-Gly(314)-Arg(315) arch of the third hypervariable (V3) loop of the HIV-1 surface glycoprotein. It potently neutralizes many HIV-1 clade B isolates, but not of other clades. To understand the molecular basis of this specificity, we solved a high-resolution (1.55 Å) crystal structure of the KD-247 antigen binding fragment and examined the potential interactions with various V3 loop targets. Unlike most antibodies, KD-247 appears to interact with its target primarily through light chain residues. Several of these interactions involve Arg(315) of the V3 loop. To evaluate the role of light chain residues in the recognition of the V3 loop, we generated 20 variants of KD-247 single-chain variable fragments with mutations in the antigen-binding site. Purified proteins were assessed for V3 loop binding using AlphaScreen technology and for HIV-1 neutralization. Our data revealed that recognition of the clade-specificity defining residue Arg(315) of the V3 loop is based on a network of interactions that involve Tyr(L32), Tyr(L92), and Asn(L27d) that directly interact with Arg(315), thus elucidating the molecular interactions of KD-247 with its V3 loop target. © FASEB.
In silico Driven Redesign of a Clinically Relevant Antibody for the Treatment of GD2 Positive Tumors
Ahmed, Mahiuddin; Goldgur, Yehuda; Hu, Jian; Guo, Hong-Fen; Cheung, Nai-Kong V.
2013-01-01
Ganglioside GD2 is a cell surface glycolipid that is highly expressed on cancer cells of neuroectodermal origin, including neuroblastoma, retinoblastoma, melanoma, sarcomas, brain tumors and small cell lung cancer. Monoclonal antibodies (MoAb) that target GD2 have shown clinical efficacy in the treatment of GD2 expressing tumors, and are expected to be the new standard of care for the treatment of pediatric neuroblastoma. In this study, the crystal structure of anti-GD2 murine MoAb 3F8 was solved to 1.65 Å resolution and used as a template for molecular docking simulations of its antigen, the penta-saccharide head group of GD2. Molecular docking revealed a binding motif composed of 12 key interacting amino acid side-chains, involving an extensive network of interactions involving main-chain and side-chain hydrogen bonding, two Pi – CH interactions, and an important charged interaction between Arg95 of the H3 loop with the penultimate sialic acid residue of GD2. Based on in silico scanning mutagenesis of the 12 interacting amino acids from the docked 3F8:GD2 model, a single point mutation (Heavy Chain: Gly54Ile) was engineered into a humanized 3F8 (hu3F8) MoAb and found to have a 6–9 fold enhancement in antibody-dependent cell-mediated cytotoxicity of neuroblastoma and melanoma cell lines. With enhanced tumor-killing properties, the re-engineered hu3F8 has the potential be a more effective antibody for the treatment of GD2-positive tumors. PMID:23696816
Probing Polyoxometalate-Protein Interactions Using Molecular Dynamics Simulations.
Solé-Daura, Albert; Goovaerts, Vincent; Stroobants, Karen; Absillis, Gregory; Jiménez-Lozano, Pablo; Poblet, Josep M; Hirst, Jonathan D; Parac-Vogt, Tatjana N; Carbó, Jorge J
2016-10-17
The molecular interactions between the Ce IV -substituted Keggin anion [PW 11 O 39 Ce(OH 2 ) 4 ] 3- (CeK) and hen egg-white lysozyme (HEWL) were investigated by molecular dynamics simulations. The analysis of CeK was compared with the Ce IV -substituted Keggin dimer [(PW 11 O 39 ) 2 Ce] 10- (CeK 2 ) and the Zr IV -substituted Lindqvist anion [W 5 O 18 Zr(OH 2 )(OH)] 3- (ZrL) to understand how POM features such as shape, size, charge, or type of incorporated metal ion influence the POM⋅⋅⋅protein interactions. Simulations revealed two regions of the protein in which the CeK anion interacts strongly: cationic sites formed by Arg21 and by Arg45 and Arg68. The POMs chiefly interact with the side chains of the positively charged (arginines, lysines) and the polar uncharged residues (tyrosines, serines, aspargines) via electrostatic attraction and hydrogen bonding with the oxygen atoms of the POM framework. The CeK anion shows higher protein affinity than the CeK 2 and ZrL anions, because it is less hydrophilic and it has the right size and shape for establishing interactions with several residues simultaneously. The larger, more negatively charged CeK 2 anion has a high solvent-accessible surface, which is sub-optimal for the interaction, while the smaller ZrL anion is highly hydrophilic and cannot efficiently interact with several residues simultaneously. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Astani, Elahe K.; Hadipour, Nasser L.; Chen, Chun-Jung
2017-03-01
Characterization of the dimer interactions at the dimeric interface of the crystal structure of rice α-amylase/subtilisin inhibitor (RASI) were performed using the quantum theory of atoms in molecules (QTAIM) and natural bonding orbital (NBO) analyses at the density-functional theory (DFT) level. The results revealed that Gly27 and Arg151 of chain A are the main residues involved in hydrogen bonds, dipole-dipole, and charge-dipole interactions with Gly64, Ala66, Ala67 and Arg81 of chain B at the dimeric interface. Calcium ion of chain A plays the significant role in the stability of the dimeric structure through a strong charge-charge interaction with Ala66.
NASA Astrophysics Data System (ADS)
Rahmani, Farzin; Nouranian, Sasan; Mahdavi, Mina; Al-Ostaz, Ahmed
2016-11-01
In this fundamental study, a series of molecular dynamics simulations were performed in vacuo to investigate the energetics and select geometries of 20 standard amino acids (AAs) on pristine graphene (PG) and graphene oxide (GO) surfaces as a function of graphene surface oxygen density. These interactions are of key interest to graphene/biomolecular systems. Our results indicate that aromatic AAs exhibit the strongest total interactions with the PG surfaces due to π-π stacking. Tryptophan (Trp) has the highest aromaticity due to its indole side chain and, hence, has the strongest interaction among all AAs (-16.66 kcal/mol). Aliphatic, polar, and charged AAs show various levels of affinity to the PG sheets depending on the strength of their side chain hydrophobic interactions. For example, arginine (Arg) with its guanidinium side chain exhibits the strongest interaction with the PG sheets (-13.81 kcal/mol) following aromatic AAs. Also, glycine (Gly; a polar AA) has the weakest interaction with the PG sheets (-7.29 kcal/mol). When oxygen-containing functional groups are added to the graphene sheets, the π-π stacking in aromatic AAs becomes disrupted and perfect parallelism of the aromatic rings is lost. Moreover, hydrogen bonding and/or electrostatic interactions become more pronounced. Charged AAs exhibit the strongest interactions with the GO surfaces. In general, the AA-GO interactions increase with increasing surface oxygen density, and the effect is more pronounced at higher O/C ratios. This study provides a quantitative measure of AA-graphene interactions for the design and tuning of biomolecular systems suitable for biosensing, drug delivery, and gene delivery applications.
Guanidinium-Induced Denaturation by Breaking of Salt Bridges.
Meuzelaar, Heleen; Panman, Matthijs R; Woutersen, Sander
2015-12-07
Despite its wide use as a denaturant, the mechanism by which guanidinium (Gdm(+) ) induces protein unfolding remains largely unclear. Herein, we show evidence that Gdm(+) can induce denaturation by disrupting salt bridges that stabilize the folded conformation. We study the Gdm(+) -induced denaturation of a series of peptides containing Arg/Glu and Lys/Glu salt bridges that either stabilize or destabilize the folded conformation. The peptides containing stabilizing salt bridges are found to be denatured much more efficiently by Gdm(+) than the peptides containing destabilizing salt bridges. Complementary 2D-infrared measurements suggest a denaturation mechanism in which Gdm(+) binds to side-chain carboxylate groups involved in salt bridges. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cochard, A; Guilhermet, R; Bonneau, M
1998-01-01
The aim of the present study was to examine, for the first time in pigs, the dose-dependent effect of arginine (ARG) on growth hormone (GH) and insulin release and the effect of the combined ARG and aspartic acid (ASP) treatment on GH and insulin release. ARG (0.5 or 1 g/kg body weight) with or without an equimolar supplement of ASP (0.38 or 0.76 g/kg, respectively) was administered in piglets via the duodenum. ARG increased plasma arginine, ornithine, urea, proline and branched chain amino acid concentrations. ASP increased specifically plasma aspartic acid, glutamic acid, alanine and citrulline concentrations. Plasma insulin increased with no apparent difference between treatments. Maximum GH level and the area under the GH curve (AUC) were increased in a dose-dependent manner in response to ARG treatment. GH response to the combined ARG and ASP treatment (ARGASP) was delayed compared to ARG alone and was not dose-dependent. AUC for GH after ARGASP treatments were intermediate between those observed after the two ARG doses. Our data suggest that high ASP doses transiently inhibit and delay ARG-induced GH release in pigs and that an equimolar supplement of ASP stimulates or inhibits ARG-induced GH release depending on the dose used.
Seymen, Figen; Kim, Youn Jung; Lee, Ye Ji; Kang, Jenny; Kim, Tak-Heun; Choi, Hwajung; Koruyucu, Mine; Kasimoglu, Yelda; Tuna, Elif Bahar; Gencay, Koray; Shin, Teo Jeon; Hyun, Hong-Keun; Kim, Young-Jae; Lee, Sang-Hoon; Lee, Zang Hee; Zhang, Hong; Hu, Jan C-C; Simmer, James P; Cho, Eui-Sic; Kim, Jung-Wook
2016-11-03
Amelogenesis imperfecta (AI) is a heterogeneous group of genetic disorders affecting tooth enamel. The affected enamel can be hypoplastic and/or hypomineralized. In this study, we identified ACPT (testicular acid phosphatase) biallelic mutations causing non-syndromic, generalized hypoplastic autosomal-recessive amelogenesis imperfecta (AI) in individuals from six apparently unrelated Turkish families. Families 1, 4, and 5 were affected by the homozygous ACPT mutation c.713C>T (p.Ser238Leu), family 2 by the homozygous ACPT mutation c.331C>T (p.Arg111Cys), family 3 by the homozygous ACPT mutation c.226C>T (p.Arg76Cys), and family 6 by the compound heterozygous ACPT mutations c.382G>C (p.Ala128Pro) and 397G>A (p.Glu133Lys). Analysis of the ACPT crystal structure suggests that these mutations damaged the activity of ACPT by altering the sizes and charges of key amino acid side chains, limiting accessibility of the catalytic core, and interfering with homodimerization. Immunohistochemical analysis confirmed localization of ACPT in secretory-stage ameloblasts. The study results provide evidence for the crucial function of ACPT during amelogenesis. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Mangoni, Monica; Bisanzi, Simonetta; Carozzi, Francesca; Sani, Cristina; Biti, Giampaolo; Livi, Lorenzo; Barletta, Emanuela; Costantini, Adele Seniori; Gorini, Giuseppe
2011-09-01
Clinical radiosensitivity varies considerably among patients, and radiation-induced side effects developing in normal tissue can be therapy limiting. Some single nucleotide polymorphisms (SNPs) have been shown to correlate with hypersensitivity to radiotherapy. We conducted a prospective study of 87 female patients with breast cancer who received radiotherapy after breast surgery. We evaluated the association between acute skin reaction following radiotherapy and 11 genetic polymorphisms in DNA repair genes: XRCC1 (Arg399Gln and Arg194Trp), XRCC3 (Thr241Met), XPD (Asp312Asn and Lys751Gln), MSH2 (gIVS12-6T>C), MLH1 (Ile219Val), MSH3 (Ala1045Thr), MGMT (Leu84Phe), and in damage-detoxification GSTM1 and GSTT1 genes (allele deletion). Individual genetic polymorphisms were determined by polymerase chain reaction and single nucleotide primer extension for single nucleotide polymorphisms or by a multiplex polymerase chain reaction assay for deletion polymorphisms. The development of severe acute skin reaction (moist desquamation or interruption of radiotherapy due to toxicity) associated with genetic polymorphisms was modeled using Cox proportional hazards, accounting for cumulative biologically effective radiation dose. Radiosensitivity developed in eight patients and was increased in carriers of variants XRCC3-241Met allele (hazard ratio [HR] unquantifiably high), MSH2 gIVS12-6nt-C allele (HR=53.36; 95% confidence intervals [95% CI], 3.56-798.98), and MSH3-1045Ala allele (HR unquantifiably high). Carriers of XRCC1-Arg194Trp variant allele in combination with XRCC1-Arg399Gln wild-type allele had a significant risk of radiosensitivity (HR=38.26; 95% CI, 1.19-1232.52). To our knowledge, this is the first report to find an association between MSH2 and MSH3 genetic variants and the development of radiosensitivity in breast cancer patients. Our findings suggest the hypothesis that mismatch repair mechanisms may be involved in cellular response to radiotherapy. Genetic polymorphisms may be promising candidates for predicting acute radiosensitivity, but further studies are necessary to confirm our findings. Copyright © 2011 Elsevier Inc. All rights reserved.
Adsorption of amino acids by fullerenes and fullerene nanowhiskers
NASA Astrophysics Data System (ADS)
Hashizume, Hideo; Hirata, Chika; Fujii, Kazuko; Miyazawa, Kun'ichi
2015-12-01
We have investigated the adsorption of some amino acids and an oligopeptide by fullerene (C60) and fullerene nanowhiskers (FNWs). C60 and FNWs hardly adsorbed amino acids. Most of the amino acids used have a hydrophobic side chain. Ala and Val, with an alkyl chain, were not adsorbed by the C60 or FNWs. Trp, Phe and Pro, with a cyclic structure, were not adsorbed by them either. The aromatic group of C60 did not interact with the side chain. The carboxyl or amino group, with the frame structure of an amino acid, has a positive or negative charge in solution. It is likely that the C60 and FNWs would not prefer the charged carboxyl or amino group. Tri-Ala was adsorbed slightly by the C60 and FNWs. The carboxyl or amino group is not close to the center of the methyl group of Tri-Ala. One of the methyl groups in Tri-Ala would interact with the aromatic structure of the C60 and FNWs. We compared our results with the theoretical interaction of 20 bio-amino acids with C60. The theoretical simulations showed the bonding distance between C60 and an amino acid and the dissociation energy. The dissociation energy was shown to increase in the order, Val < Phe < Pro < Asp < Ala < Trp < Tyr < Arg < Leu. However, the simulation was not consistent with our experimental results. The adsorption of albumin (a protein) by C60 showed the effect on the side chains of Try and Trp. The structure of albumin was changed a little by C60. In our study Try and Tyr were hardly adsorbed by C60 and FNWs. These amino acids did not show a different adsorption behavior compared with other amino acids. The adsorptive behavior of mono-amino acids might be different from that of polypeptides.
Shi, Dashuang; Sagar, Vatsala; Jin, Zhongmin; Yu, Xiaolin; Caldovic, Ljubica; Morizono, Hiroki; Allewell, Norma M; Tuchman, Mendel
2008-03-14
The crystal structures of N-acetylglutamate synthase (NAGS) in the arginine biosynthetic pathway of Neisseria gonorrhoeae complexed with acetyl-CoA and with CoA plus N-acetylglutamate have been determined at 2.5- and 2.6-A resolution, respectively. The monomer consists of two separately folded domains, an amino acid kinase (AAK) domain and an N-acetyltransferase (NAT) domain connected through a 10-A linker. The monomers assemble into a hexameric ring that consists of a trimer of dimers with 32-point symmetry, inner and outer ring diameters of 20 and 100A, respectively, and a height of 110A(.) Each AAK domain interacts with the cognate domains of two adjacent monomers across two 2-fold symmetry axes and with the NAT domain from a second monomer of the adjacent dimer in the ring. The catalytic sites are located within the NAT domains. Three active site residues, Arg316, Arg425, and Ser427, anchor N-acetylglutamate in a position at the active site to form hydrogen bond interactions to the main chain nitrogen atoms of Cys356 and Leu314, and hydrophobic interactions to the side chains of Leu313 and Leu314. The mode of binding of acetyl-CoA and CoA is similar to other NAT family proteins. The AAK domain, although catalytically inactive, appears to bind arginine. This is the first reported crystal structure of any NAGS, and it provides insights into the catalytic function and arginine regulation of NAGS enzymes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Dashuang; Sagar, Vatsala; Jin, Zhongmin
2010-01-07
The crystal structures of N-acetylglutamate synthase (NAGS) in the arginine biosynthetic pathway of Neisseria gonorrhoeae complexed with acetyl-CoA and with CoA plus N-acetylglutamate have been determined at 2.5- and 2.6-A resolution, respectively. The monomer consists of two separately folded domains, an amino acid kinase (AAK) domain and an N-acetyltransferase (NAT) domain connected through a 10-A linker. The monomers assemble into a hexameric ring that consists of a trimer of dimers with 32-point symmetry, inner and outer ring diameters of 20 and 100A, respectively, and a height of 110A(.) Each AAK domain interacts with the cognate domains of two adjacent monomersmore » across two 2-fold symmetry axes and with the NAT domain from a second monomer of the adjacent dimer in the ring. The catalytic sites are located within the NAT domains. Three active site residues, Arg316, Arg425, and Ser427, anchor N-acetylglutamate in a position at the active site to form hydrogen bond interactions to the main chain nitrogen atoms of Cys356 and Leu314, and hydrophobic interactions to the side chains of Leu313 and Leu314. The mode of binding of acetyl-CoA and CoA is similar to other NAT family proteins. The AAK domain, although catalytically inactive, appears to bind arginine. This is the first reported crystal structure of any NAGS, and it provides insights into the catalytic function and arginine regulation of NAGS enzymes.« less
Structure-function analysis of the OB and latch domains of chlorella virus DNA ligase.
Samai, Poulami; Shuman, Stewart
2011-06-24
Chlorella virus DNA ligase (ChVLig) is a minimized eukaryal ATP-dependent DNA sealing enzyme with an intrinsic nick-sensing function. ChVLig consists of three structural domains, nucleotidyltransferase (NTase), OB-fold, and latch, that envelop the nicked DNA as a C-shaped protein clamp. The OB domain engages the DNA minor groove on the face of the duplex behind the nick, and it makes contacts to amino acids in the NTase domain surrounding the ligase active site. The latch module occupies the DNA major groove flanking the nick. Residues at the tip of the latch contact the NTase domain to close the ligase clamp. Here we performed a structure-guided mutational analysis of the OB and latch domains. Alanine scanning defined seven individual amino acids as essential in vivo (Lys-274, Arg-285, Phe-286, and Val-288 in the OB domain; Asn-214, Phe-215, and Tyr-217 in the latch), after which structure-activity relations were clarified by conservative substitutions. Biochemical tests of the composite nick sealing reaction and of each of the three chemical steps of the ligation pathway highlighted the importance of Arg-285 and Phe-286 in the catalysis of the DNA adenylylation and phosphodiester synthesis reactions. Phe-286 interacts with the nick 5'-phosphate nucleotide and the 3'-OH base pair and distorts the DNA helical conformation at the nick. Arg-285 is a key component of the OB-NTase interface, where it forms a salt bridge to the essential Asp-29 side chain, which is imputed to coordinate divalent metal catalysts during the nick sealing steps.
Uncovering the Protein Lysine and Arginine Methylation Network in Arabidopsis Chloroplasts
Mininno, Morgane; Brugière, Sabine; Gilgen, Annabelle; Ma, Sheng; Mazzoleni, Meryl; Gigarel, Océane; Martin-Laffon, Jacqueline; Ferro, Myriam; Ravanel, Stéphane
2014-01-01
Post-translational modification of proteins by the addition of methyl groups to the side chains of Lys and Arg residues is proposed to play important roles in many cellular processes. In plants, identification of non-histone methylproteins at a cellular or subcellular scale is still missing. To gain insights into the extent of this modification in chloroplasts we used a bioinformatics approach to identify protein methyltransferases targeted to plastids and set up a workflow to specifically identify Lys and Arg methylated proteins from proteomic data used to produce the Arabidopsis chloroplast proteome. With this approach we could identify 31 high-confidence Lys and Arg methylation sites from 23 chloroplastic proteins, of which only two were previously known to be methylated. These methylproteins are split between the stroma, thylakoids and envelope sub-compartments. They belong to essential metabolic processes, including photosynthesis, and to the chloroplast biogenesis and maintenance machinery (translation, protein import, division). Also, the in silico identification of nine protein methyltransferases that are known or predicted to be targeted to plastids provided a foundation to build the enzymes/substrates relationships that govern methylation in chloroplasts. Thereby, using in vitro methylation assays with chloroplast stroma as a source of methyltransferases we confirmed the methylation sites of two targets, plastid ribosomal protein L11 and the β-subunit of ATP synthase. Furthermore, a biochemical screening of recombinant chloroplastic protein Lys methyltransferases allowed us to identify the enzymes involved in the modification of these substrates. The present study provides a useful resource to build the methyltransferases/methylproteins network and to elucidate the role of protein methylation in chloroplast biology. PMID:24748391
Contribution of cation-π interactions to the stability of Sm/LSm oligomeric assemblies.
Mucić, Ivana D; Nikolić, Milan R; Stojanović, Srđan Đ
2015-07-01
In this work, we have analyzed the influence of cation-π interactions to the stability of Sm/LSm assemblies and their environmental preferences. The number of interactions formed by arginine is higher than lysine in the cationic group, while histidine is comparatively higher than phenylalanine and tyrosine in the π group. Arg-Tyr interactions are predominant among the various pairs analyzed. The furcation level of multiple cation-π interactions is much higher than that of single cation-π interactions in Sm/LSm interfaces. We have found hot spot residues forming cation-π interactions, and hot spot composition is similar for all aromatic residues. The Arg-Phe pair has the strongest interaction energy of -8.81 kcal mol(-1) among all the possible pairs of amino acids. The extent of burial of the residue side-chain correlates with the ΔΔG of binding for residues in the core and also for hot spot residues cation-π bonded across the interface. Secondary structure of the cation-π residues shows that Arg and Lys preferred to be in strand. Among the π residues, His prefers to be in helix, Phe prefers to be in turn, and Tyr prefers to be in strand. Stabilization centers for these proteins showed that all the five residues found in cation-π interactions are important in locating one or more of such centers. More than 50 % of the cation-π interacting residues are highly conserved. It is likely that the cation-π interactions contribute significantly to the overall stability of Sm/LSm proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carra,J.; McHugh, C.; Mulligan, S.
2007-01-01
We found that amide ligands can bind weakly but specifically to the ricin active site, producing significant shifts in positions of the critical active site residues Arg180 and Tyr80. These results indicate that fragment-based drug discovery methods are capable of identifying minimal bonding determinants of active-site side-chain rearrangements and the mechanistic origins of spectroscopic shifts. Our results suggest that tryptophan fluorescence provides a sensitive probe for the geometric relationship of arginine-tryptophan pairs, which often have significant roles in protein function. Using the unusual characteristics of the RTA system, we measured the still controversial thermodynamic changes of site-specific urea binding tomore » a protein, results that are relevant to understanding the physical mechanisms of protein denaturation.« less
Development and application of coarse-grained models for lipids
NASA Astrophysics Data System (ADS)
Cui, Qiang
2013-03-01
I'll discuss a number of topics that represent our efforts in developing reliable molecular models for describing chemical and physical processes involving biomembranes. This is an exciting yet challenging research area because of the multiple length and time scales that are present in the relevant problems. Accordingly, we attempt to (1) understand the value and limitation of popular coarse-grained (CG) models for lipid membranes with either a particle or continuum representation; (2) develop new CG models that are appropriate for the particular problem of interest. As specific examples, I'll discuss (1) a comparison of atomistic, MARTINI (a particle based CG model) and continuum descriptions of a membrane fusion pore; (2) the development of a modified MARTINI model (BMW-MARTINI) that features a reliable description of membrane/water interfacial electrostatics and its application to cell-penetration peptides and membrane-bending proteins. Motivated specifically by the recent studies of Wong and co-workers, we compare the self-assembly behaviors of lipids with cationic peptides that include either Arg residues or a combination of Lys and hydrophobic residues; in particular, we attempt to reveal factors that stabilize the cubic ``double diamond'' Pn3m phase over the inverted hexagonal HII phase. For example, to explicitly test the importance of the bidentate hydrogen-bonding capability of Arg to the stabilization of negative Gaussian curvature, we also compare results using variants of the BMW-MARTINI model that treat the side chain of Arg with different levels of details. Collectively, the results suggest that both the bidentate feature of Arg and the overall electrostatic properties of cationic peptides are important to the self-assembly behavior of these peptides with lipids. The results are expected to have general implications to the mechanism of peptides and proteins that stimulate pore formation in biomembranes. Work in collaboration with Zhe Wu, Leili Zhang and Arun Yethiraj
Burch, Tucker R; Sadowsky, Michael J; LaPara, Timothy M
2017-12-19
Residual wastewater solids are a significant reservoir of antibiotic resistance genes (ARGs). While treatment technologies can reduce ARG levels in residual wastewater solids, the effects of these technologies on ARGs in soil during subsequent land-application are unknown. In this study we investigated the use of numerous treatment technologies (air drying, aerobic digestion, mesophilic anaerobic digestion, thermophilic anaerobic digestion, pasteurization, and alkaline stabilization) on the fate of ARGs and class 1 integrons in wastewater solids-amended soil microcosms. Six ARGs [erm(B), qnrA, sul1, tet(A), tet(W), and tet(X)], the integrase gene of class 1 integrons (intI1), and 16S rRNA genes were quantified using quantitative polymerase chain reaction. The quantities of ARGs and intI1 decreased in all microcosms, but thermophilic anaerobic digestion, alkaline stabilization, and pasteurization led to the most extensive decay of ARGs and intI1, often to levels similar to that of the control microcosms to which no wastewater solids had been applied. In contrast, the rates by which ARGs and intI1 declined using the other treatment technologies were generally similar, typically varying by less than 2 fold. These results demonstrate that wastewater solids treatment technologies can be used to decrease the persistence of ARGs and intI1 during their subsequent application to soil.
Garner, Emily; Chen, Chaoqi; Xia, Kang; Bowers, Jolene; Engelthaler, David M; McLain, Jean; Edwards, Marc A; Pruden, Amy
2018-06-05
Water reclamation provides a valuable resource for meeting nonpotable water demands. However, little is known about the potential for wastewater reuse to disseminate antibiotic resistance genes (ARGs). Here, samples were collected seasonally in 2014-2015 from four U.S. utilities' reclaimed and potable water distribution systems before treatment, after treatment, and at five points of use (POU). Shotgun metagenomic sequencing was used to profile the resistome (i.e., full contingent of ARGs) of a subset ( n = 38) of samples. Four ARGs ( qnrA, bla TEM , vanA, sul1) were quantified by quantitative polymerase chain reaction. Bacterial community composition (via 16S rRNA gene amplicon sequencing), horizontal gene transfer (via quantification of intI1 integrase and plasmid genes), and selection pressure (via detection of metals and antibiotics) were investigated as potential factors governing the presence of ARGs. Certain ARGs were elevated in all ( sul1; p ≤ 0.0011) or some ( bla TEM , qnrA; p ≤ 0.0145) reclaimed POU samples compared to corresponding potable samples. Bacterial community composition was weakly correlated with ARGs (Adonis, R 2 = 0.1424-0.1734) and associations were noted between 193 ARGs and plasmid-associated genes. This study establishes that reclaimed water could convey greater abundances of certain ARGs than potable waters and provides observations regarding factors that likely control ARG occurrence in reclaimed water systems.
Worldwide Distribution of Four SNPs in X‐Ray and Repair and Cross‐Complementing Group 1 (XRCC1)
Takeshita, Haruo; Yasuda, Toshihiro; Kimura‐Kataoka, Kaori
2014-01-01
Abstract Purpose X‐ray repair cross‐complementing group 1 (XRCC1) repairs single‐strand breaks in DNA. Several reports have shown the association of single nucleotide polymorphisms (SNPs) (Arg194Trp, Pro206Pro, Arg280His, Arg399Gln) in XRCC1 to diseases. Limited population data are available regarding SNPs in XRCC1, especially in African populations. In this study, genotype distributions of four SNPs in worldwide populations were examined and compared with those reported previously. Materials and Methods Four SNPs (Arg194Trp, Pro206Pro, Arg280His, Arg399Gln) in XRCC1 from genomic DNA samples of 10 populations were evaluated by using polymerase chain reaction followed by restriction fragment length polymorphism analysis. Results The frequency of the minor allele corresponding to the Trp allele of XRCC1Arg194Trp was higher in Asian populations than in African and Caucasian populations. As for XRCC1Pro206Pro, Africans showed higher minor allele frequencies than did Asian populations, except for Tamils and Sinhalese. XRCC1 Arg280His frequencies were similar among Africans and Caucasians but differed among Asian populations. Similarly, lower mutant XRCC1 Arg399Gln frequencies were observed in Africans. Conclusions This study is the first to show the existence of a certain genetic heterogeneity in the worldwide distribution of four SNPs in XRCC1. PMID:25387884
Application of Struvite Alters the Antibiotic Resistome in Soil, Rhizosphere, and Phyllosphere.
Chen, Qing-Lin; An, Xin-Li; Zhu, Yong-Guan; Su, Jian-Qiang; Gillings, Michael R; Ye, Zhi-Long; Cui, Li
2017-07-18
Struvite recovered from wastewater is a renewable source of phosphorus and nitrogen and can be used as fertilizer for plant growth. However, antibiotics and resistome can be enriched in the struvite derived from wastewater. Robust understanding of the potential risks after struvite application to soils has remained elusive. Here, we profiled antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in struvite, soil, rhizosphere and phyllosphere of Brassica using high-throughput quantitative PCR. A total of 165 ARGs and 10 MGEs were detected. Application of struvite was found to increase both the abundance and diversity of ARGs in soil, rhizosphere and phyllosphere. In addition, ARGs shared exclusively between Brassica phyllosphere and struvite were identified, indicating that struvite was an important source of ARGs found in phyllosphere. Furthermore, OTUs shared between rhizosphere and phyllosphere were found to significantly correlate with ARGs, suggesting that microbiota in leaf and root could interconnect and ARGs might transfer from struvite to the surface of plants via rhizosphere using bacteria as spreading medium. These findings demonstrated that struvite as an organic fertilizer can facilitate the spread of antibiotic resistance into human food chain and this environment-acquired antibiotic resistance should be put into human health risk assessment system.
Kralova, Eva; Doka, Gabriel; Pivackova, Lenka; Srankova, Jasna; Kuracinova, Kristina; Janega, Pavol; Babal, Pavel; Klimas, Jan; Krenek, Peter
2015-10-01
In view of previously reported increased capacity for nitric oxide production, we suggested that l-arginine (ARG), the nitric oxide synthase (NOS) substrate, supplementation would improve cardiac function in isoproterenol (ISO)-induced heart failure. Male Wistar rats were treated with ISO for 8 days (5 mg/kg/day, i.p.) or vehicle. ARG was given to control (ARG) and ISO-treated (ISO+ARG) rats in water (0.4 g/kg/day). ISO administration was associated with 40% mortality, ventricular hypertrophy, decreased heart rate, left ventricular dysfunction, fibrosis and ECG signs of ischaemia. RT-PCR showed increased mRNA levels of cardiac hypertrophy marker atrial natriuretic peptide, but not BNP, decreased expression of myosin heavy chain isoform MYH6 and unaltered expression of pathological MYH7. ISO increased the protein levels of endothelial nitric oxide synthase, but at the same time it markedly up-regulated mRNA and protein levels of gp91phox, a catalytical subunit of superoxide-producing NADPH oxidase. Fibrosis was markedly increased by ISO. ARG treatment moderately ameliorated left ventricular dysfunction, but was without effect on cardiac hypertrophy and fibrosis. Combination of ISO and ARG led to a decrease in cav-1 expression, a further increase in MYH7 expression and a down-regulation of MYH6 that inversely correlated with gp91phox mRNA levels. Although ARG, at least partially, improved ISO-impaired basal left ventricular systolic function, it failed to reduce cardiac hypertrophy, fibrosis, oxidative stress and mortality. The protection of contractile performance might be related to increased capacity for nitric oxide production and the up-regulation of MYH7 which may compensate for the marked down-regulation of the major MYH6 isoform. © 2015 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
Feed additives shift gut microbiota and enrich antibiotic resistance in swine gut.
Zhao, Yi; Su, Jian-Qiang; An, Xin-Li; Huang, Fu-Yi; Rensing, Christopher; Brandt, Kristian Koefoed; Zhu, Yong-Guan
2018-04-15
Antibiotic resistance genes (ARGs) are emerging environmental contaminants posing a threat to public health. Antibiotics and metals are widely used as feed additives and could consequently affect ARGs in swine gut. In this study, high-throughput quantitative polymerase chain reaction (HT-qPCR) based ARG chip and next-generation 16S rRNA gene amplicon sequencing data were analyzed using multiple statistical approaches to profile the antibiotic resistome and investigate its linkages to antibiotics and metals used as feed additives and to the microbial community composition in freshly collected swine manure samples from three large-scale Chinese pig farms. A total of 146 ARGs and up to 1.3×10 10 total ARG copies per gram of swine feces were detected. ARGs conferring resistance to aminoglycoside, macrolide-lincosamide-streptogramin B (MLSB) and tetracycline were dominant in pig gut. Total abundance of ARGs was positively correlated with in-feed antibiotics, microbial biomass and abundance of mobile genetic elements (MGEs) (P<0.05). A significant correlation between microbial communities and ARG profiles was observed by Procrustes analysis. Network analysis revealed that Bacteroidetes and Firmicutes were the most dominant phyla co-occurring with specific ARGs. Partial redundancy analysis indicated that the variance in ARG profiles could be primarily attributed to antibiotics and metals in feed (31.8%), gut microbial community composition (23.3%) and interaction between feed additives and community composition (16.5%). These results suggest that increased levels of in-feed additives could aggravate the enrichment of ARGs and MGEs in swine gut. Copyright © 2017 Elsevier B.V. All rights reserved.
McKinney, C.W.; Loftin, K.A.; Meyer, M.T.; Davis, J.G.; Pruden, A.
2010-01-01
Although livestock operations are known to harbor elevated levels of antibiotic resistant bacteria, few studies have examined the potential of livestock waste lagoons to reduce antibiotic resistance genes (ARGs). The purpose of this study was to determine the prevalence and examine the behavior of tetracycline [tet(O) and tet(W)] and sulfonamide [sul(I) and su/(II)] ARGsin a broad cross-section of livestock lagoons within the same semiarid western watershed. ARGs were monitored for one year in the water and the settled solids of eight lagoon systems by quantitative polymerase chain reaction. In addition, antibiotic residues and various bulk water quality constituents were analyzed. It was found that the lagoons of the chicken layer operation had the lowest concentrations of both tet and sul ARGs and low total antibiotic concentrations, whereas su ARGs were highest in the swine lagoons, which generally corresponded to the highest total antibiotic concentrations. A marginal benefit of organic and small dairy operations also was observed compared to conventional and large dairies, respectively. In all lagoons, su ARGs were observed to be generally more recalcitrant than tet ARGs. Also, positive correlations of various bulk water quality constituents were identified with tet ARGs but not sul ARGs. Significant positive correlations were identified between several metals and tet ARGs, but Pearson's correlation coefficients were mostly lower than those determined between antibiotic residues and ARGs. This study represents a quantitative characterization of ARGs in lagoons across a variety of livestock operations and provides insight into potential options for managing antibiotic resistance emanating from agricultural activities. ?? 2010 American Chemical Society.
Rowley, Paul A.; Kachroo, Aashiq H.; Ma, Chien-Hui; Maciaszek, Anna D.; Guga, Piotr; Jayaram, Makkuni
2015-01-01
Tyrosine site-specific recombinases, which promote one class of biologically important phosphoryl transfer reactions in DNA, exemplify active site mechanisms for stabilizing the phosphate transition state. A highly conserved arginine duo (Arg-I; Arg-II) of the recombinase active site plays a crucial role in this function. Cre and Flp recombinase mutants lacking either arginine can be rescued by compensatory charge neutralization of the scissile phosphate via methylphosphonate (MeP) modification. The chemical chirality of MeP, in conjunction with mutant recombinases, reveals the stereochemical contributions of Arg-I and Arg-II. The SP preference of the native reaction is specified primarily by Arg-I. MeP reaction supported by Arg-II is nearly bias-free or RP-biased, depending on the Arg-I substituent. Positional conservation of the arginines does not translate into strict functional conservation. Charge reversal by glutamic acid substitution at Arg-I or Arg-II has opposite effects on Cre and Flp in MeP reactions. In Flp, the base immediately 5′ to the scissile MeP strongly influences the choice between the catalytic tyrosine and water as the nucleophile for strand scission, thus between productive recombination and futile hydrolysis. The recombinase active site embodies the evolutionary optimization of interactions that not only favor the normal reaction but also proscribe antithetical side reactions. PMID:25999343
Cordeiro, Tiago N.; Schmidt, Holger; Madrid, Cristina; Juárez, Antonio; Bernadó, Pau; Griesinger, Christian; García, Jesús; Pons, Miquel
2011-01-01
Ler, a member of the H-NS protein family, is the master regulator of the LEE pathogenicity island in virulent Escherichia coli strains. Here, we determined the structure of a complex between the DNA-binding domain of Ler (CT-Ler) and a 15-mer DNA duplex. CT-Ler recognizes a preexisting structural pattern in the DNA minor groove formed by two consecutive regions which are narrower and wider, respectively, compared with standard B-DNA. The compressed region, associated with an AT-tract, is sensed by the side chain of Arg90, whose mutation abolishes the capacity of Ler to bind DNA. The expanded groove allows the approach of the loop in which Arg90 is located. This is the first report of an experimental structure of a DNA complex that includes a protein belonging to the H-NS family. The indirect readout mechanism not only explains the capacity of H-NS and other H-NS family members to modulate the expression of a large number of genes but also the origin of the specificity displayed by Ler. Our results point to a general mechanism by which horizontally acquired genes may be specifically recognized by members of the H-NS family. PMID:22114557
Cordeiro, Tiago N; Schmidt, Holger; Madrid, Cristina; Juárez, Antonio; Bernadó, Pau; Griesinger, Christian; García, Jesús; Pons, Miquel
2011-11-01
Ler, a member of the H-NS protein family, is the master regulator of the LEE pathogenicity island in virulent Escherichia coli strains. Here, we determined the structure of a complex between the DNA-binding domain of Ler (CT-Ler) and a 15-mer DNA duplex. CT-Ler recognizes a preexisting structural pattern in the DNA minor groove formed by two consecutive regions which are narrower and wider, respectively, compared with standard B-DNA. The compressed region, associated with an AT-tract, is sensed by the side chain of Arg90, whose mutation abolishes the capacity of Ler to bind DNA. The expanded groove allows the approach of the loop in which Arg90 is located. This is the first report of an experimental structure of a DNA complex that includes a protein belonging to the H-NS family. The indirect readout mechanism not only explains the capacity of H-NS and other H-NS family members to modulate the expression of a large number of genes but also the origin of the specificity displayed by Ler. Our results point to a general mechanism by which horizontally acquired genes may be specifically recognized by members of the H-NS family.
Anuradha, C M; Mulakayala, Chaitanya; Babajan, Banaganapalli; Naveen, M; Rajasekhar, Chikati; Kumar, Chitta Suresh
2010-01-01
Multi drug resistance capacity for Mycobacterium tuberculosis (MDR-Mtb) demands the profound need for developing new anti-tuberculosis drugs. The present work is on Mtb-MurC ligase, which is an enzyme involved in biosynthesis of peptidoglycan, a component of Mtb cell wall. In this paper the 3-D structure of Mtb-MurC has been constructed using the templates 1GQQ and 1P31. Structural refinement and energy minimization of the predicted Mtb-MurC ligase model has been carried out by molecular dynamics. The streochemical check failures in the energy minimized model have been evaluated through Procheck, Whatif ProSA, and Verify 3D. Further torsion angles for the side chains of amino acid residues of the developed model were determined using Predictor. Docking analysis of Mtb-MurC model with ligands and natural substrates enabled us to identify specific residues viz. Gly125, Lys126, Arg331, and Arg332, within the Mtb-MurC binding pocket to play an important role in ligand and substrate binding affinity and selectivity. The availability of Mtb-MurC ligase built model, together with insights gained from docking analysis will promote the rational design of potent and selective Mtb-MurC ligase inhibitors as antituberculosis therapeutics.
Kutlar, Ferdane; Ameri, Afshin; Patel, Niren H; Zhuang, Lina; Johnson, Lee E; Cheng, Michael L; Kutlar, Abdullah
2014-01-01
The total number of hemoglobin (Hb) variants so far reported to the HbVar database is 1598 (April 9 2014) and 130 of them are fetal Hb variants. Fetal Hb are categorized as two different subunits, (G)γ- and (A)γ-globin chains, and γ chain variants can be observed in both subunits. There are 72 (G)γ- and 58 (A)γ-globin chain variants. Most of them are clinically silent and detected during newborn screening programs in the USA and outside the USA. In this report, we discuss the molecular characteristics and diagnostic difficulties of two new γ-globin chain variants found in an African American baby with no clinical symptoms. One is a new (G)γ-globin chain variant, Hb F-Augusta GA [(G)γ59(E3)Lys → Arg; HBG2: c.179A > G] and the other one is Hb F-Port Royal-II [(A)γ125(H3)Glu → Ala; HBG1: c.377A > C].
Yu, Ai-Ping; Shi, Bing-Xing; Dong, Chun-Na; Jiang, Zhong-Hua; Wu, Zu-Ze
2005-07-01
To combine the fibrinolytic with anticoagulant activities for therapy of thrombotic deseases, a fusion protein made of tissue-type plasminogen activator (t-PA) and hirudin was constructed and expressed in chia pastoris. To improve thrombolytic properties of t-PA and reduce bleeding side effect of hirudin, FXa-recognition sequence was introduced between t-PA and hirudin molecules.The anticoagulant activity of hirudin can be target-released through cleavage of FXa at thrombus site. t-PA gene and hirudin gene with FXa-recognition sequence at its 5'-terminal were obtained by RT-PCR and PCR respectively. The fusion protein gene was cloned into plasmid pIC9K and electroporated into the genome of Pichia pastoris GS115. The expression of fusion protein was induced by methanol in shaking flask and secreted into the culture medium. Two forms of the fusion protein, single-chain and double-chain linked by a disulfide bond (due to the cleveage of t-PA at Arg275-Ile276), were obtained. The intact fusion protein retained the fibrinolytic activity but lacked any anticoagulant activity. After cleavage by FXa, the fusion protein liberated intact free hirudin to exert its anticoagulant activity. So, the fusion protein is a bifunctional molecule having good prospect to develop into a new targeted therapeutic agent with reduced bleeding side effect for thrombotic diseases.
Klenchin, Vadim A; Taylor Ringia, Erika A; Gerlt, John A; Rayment, Ivan
2003-12-16
o-Succinylbenzoate synthase (OSBS) from Escherichia coli, a member of the enolase superfamily, catalyzes an exergonic dehydration reaction in the menaquinone biosynthetic pathway in which 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate (SHCHC) is converted to 4-(2'-carboxyphenyl)-4-oxobutyrate (o-succinylbenzoate or OSB). Our previous structural studies of the Mg(2+).OSB complex established that OSBS is a member of the muconate lactonizing enzyme subgroup of the superfamily: the essential Mg(2+) is coordinated to carboxylate ligands at the ends of the third, fourth, and fifth beta-strands of the (beta/alpha)(7)beta-barrel catalytic domain, and the OSB product is located between the Lys 133 at the end of the second beta-strand and the Lys 235 at the end of the sixth beta-strand [Thompson, T. B., Garrett, J. B., Taylor, E. A, Meganathan, R., Gerlt, J. A., and Rayment, I. (2000) Biochemistry 39, 10662-76]. Both Lys 133 and Lys 235 were separately replaced with Ala, Ser, and Arg residues; all six mutants displayed no detectable catalytic activity. The structure of the Mg(2+).SHCHC complex of the K133R mutant has been solved at 1.62 A resolution by molecular replacement starting from the structure of the Mg(2+).OSB complex. This establishes the absolute configuration of SHCHC: the C1-carboxylate and the C6-OH leaving group are in a trans orientation, requiring that the dehydration proceed via a syn stereochemical course. The side chain of Arg 133 is pointed out of the active site so that it cannot function as a general base, whereas in the wild-type enzyme complexed with Mg(2+).OSB, the side chain of Lys 133 is appropriately positioned to function as the only acid/base catalyst in the syn dehydration. The epsilon-ammonium group of Lys 235 forms a cation-pi interaction with the cyclohexadienyl moiety of SHCHC, suggesting that Lys 235 also stabilizes the enediolate anion intermediate in the syn dehydration via a similar interaction.
Transfer Learning for Adaptive Relation Extraction
2011-09-13
other NLP tasks, however, supervised learning approach fails when there is not a sufficient amount of labeled data for training, which is often the case...always 12 Syntactic Pattern Relation Instance Relation Type (Subtype) arg-2 arg-1 Arab leaders OTHER-AFF (Ethnic) his father PER-SOC (Family) South...for x. For sequence labeling tasks in NLP , linear-chain conditional random field has been rather suc- cessful. It is an undirected graphical model in
Effect of wastewater colloids on membrane removal of antibiotic resistance genes.
Breazeal, Maria V Riquelme; Novak, John T; Vikesland, Peter J; Pruden, Amy
2013-01-01
Recent studies have demonstrated that wastewater treatment plants (WWTPs) significantly alter the magnitude and distribution of antibiotic resistance genes (ARGs) in receiving environments, indicating that wastewater treatment represents an important node for limiting ARG dissemination. This study examined the potential for membrane treatment of microconstituent ARGs and the effect of native wastewater colloids on the extent of their removal. Plasmids containing vanA (vancomycin) and bla(TEM) (β-lactam) ARGs were spiked into three representative WWTP effluents versus a control buffer and tracked by quantitative polymerase chain reaction through a cascade of microfiltration and ultrafiltration steps ranging from 0.45 μm to 1 kDa. Significant removal of ARGs was achieved by membranes of 100 kDa and smaller, and presence of wastewater colloids resulted in enhanced removal by 10 kDa and 1 kDa membranes. ARG removal was observed to correlate significantly with the corresponding protein, polysaccharide, and total organic carbon colloidal fractions. Alumina membranes removed ARGs to a greater extent than polyvinylidene fluoride membranes of the same pore size (0.1 μm), but only in the presence of wastewater material. Control studies confirmed that membrane treatment was the primary mechanism of ARG removal, versus other potential sources of loss. This study suggests that advanced membrane treatment technology is promising for managing public health risks of ARGs in wastewater effluents and that removal may even be enhanced by colloids in real-world wastewaters. Copyright © 2012 Elsevier Ltd. All rights reserved.
Wu, W Q; Zhang, L S; Liao, S P; Lin, X L; Zeng, J; Du, D
2016-10-05
Laryngeal cancer is the major malignant tumor affecting the upper respiratory tract. Previous studies have reported on the association between XRCC1 genetic polymorphisms and risk of laryngeal cancer, but with conflicting results. In this study, we attempted to assess the association between XRCC1 Arg194Trp, Arg280His and Arg399Gln polymorphisms and risk of laryngeal cancer in a Chinese population. A total of 126 laryngeal cancer patients and 254 control subjects were recruited to this study from the Second Medical College of Jinan University between December 2013 and May 2015. The XRCC1 Arg194Trp, Arg280His, and Arg399Gln polymorphic sites were genotyped by polymerase chain reaction-restriction fragment length polymorphism. Our results revealed a significant association between the AA genotype of XRCC1 Arg280His [odds ratio (OR) = 2.51, 95% confidence interval (CI) = 1.29-4.87, P = 0.01] and an increased risk of laryngeal cancer susceptibility compared to the GG genotype. Moreover, the A allele showed a higher risk of laryngeal cancer susceptibility compared to the G allele (OR = 1.63, 95%CI = 1.19-2.50, P = 0.002). In conclusion, the results of our study suggest that the AA genotype and A allele of the XRCC1 Arg280His polymorphism are associated with an increased laryngeal cancer risk in a Chinese population.
Brennan, S O; Myles, T; Peach, R J; Donaldson, D; George, P M
1990-01-01
Albumin Redhill is an electrophoretically slow genetic variant of human serum albumin that does not bind 63Ni2+ and has a molecular mass 2.5 kDa higher than normal albumin. Its inability to bind Ni2+ was explained by the finding of an additional residue of Arg at position -1. This did not explain the molecular basis of the genetic variation (since proalbumin contains adjacent Arg residues at -1 and -2) or the increase in apparent molecular mass. Fractionation of tryptic digests on concanavalin A-Sepharose followed by peptide mapping of the bound and unbound fractions and sequence analysis of the glycopeptides identified a mutation of 320 Ala----Thr. This introduces an Asn-Tyr-Thr oligosaccharide attachment sequence centered on Asn-318 and explains the increase in molecular mass. This, however, did not satisfactorily explain the presence of the additional Arg residue at position -1. DNA sequencing of polymerase chain reaction-amplified genomic DNA encoding the prepro sequence of albumin indicated an additional mutation of -2 Arg----Cys. This introduces a prepro sequence, Met-Lys-Trp-Val-Thr-Phe-Ile-Ser-Leu-Leu-Phe-Leu-Phe-Ser-Ser-Ala-Tyr- Ser-Arg-Gly-Val-Phe-Cys-Arg (cf.-Tyr-Ser-Arg-Gly-Val-Phe-Arg-Arg- in normal human pre-proalbumin). We propose that the new Phe-Cys-Arg sequence in the propeptide is an aberrant signal peptidase cleavage site and that the signal peptidase cleaves the propeptide of albumin Redhill in the lumen of the endoplasmic reticulum before it reaches the Golgi vesicles, the site of the diarginyl-specific proalbumin convertase.
Oxytocin-Gly-Lys-Arg stimulates cardiomyogenesis by targeting cardiac side population cells.
Danalache, Bogdan A; Yu, Calvin; Gutkowska, Jolanta; Jankowski, Marek
2014-03-01
The functional oxytocin (OT) system is expressed in the human and rodent hearts. OT stimulates differentiation of cardiac stem cells into contracting cardiomyocytes (CM). In this study, we investigated OT receptors (OTR) expressed in the cells of cardiac side population (SP) and the abilities of these cells to differentiate into CM in response to the treatment with OT-Gly-Lys-Arg (OT-GKR), a dominant and biologically active form of OT, in the fetal rodent heart. Immunocytochemistry of whole rat embryo at mid gestation (E11) revealed parallel staining in the heart of OTR and the ATP-binding cassette sub-family G member 2 (brcp1) antigen the marker of the SP phenotype. Using flow cytometry, the SP cells were selected from the newborn CM stained with Höechst 33342: 5.32%±0.06% of SP and 15.2%±1.10 of main population expressed OTR on the cell surface. The OTR was detected in CD29 (6.6%) and then in CD31 (4.7%) but less frequently in CD45 (0.7%) positive SP cell subpopulations. Specifically, the phenotype of SP CD31- cell, but not SP CD31+ cells, proliferates in the presence of OT-GKR and develops large cell aggregates. Then, OT-GKR treatment induced the apparition of beating cell colonies after 11 days (10±2.78%), which increased until day 16 (52±1.21%). The cells in contractile colonies expressed the markers of a CM phenotype, such as troponin, cardiac myosin light chain-2, and actinin. Finally, SP cells stimulated by OT-GKR induced endothelial phenotype. These results suggest that the C-terminally extended OT molecule stimulates cardiac differentiation of SP CD31- cells and is involved in heart growth.
Todorovic, Aleksandar; Holder, Jerry Ryan; Bauzo, Rayna M; Scott, Joseph Walker; Kavanagh, Renny; Abdel-Malek, Zalfa; Haskell-Luevano, Carrie
2005-05-05
The melanocortin system is involved in the regulation of a diverse number of physiologically important pathways including pigmentation, feeding behavior, weight and energy homeostasis, inflammation, and sexual function. All the endogenous melanocortin agonist ligands possess the conserved His-Phe-Arg-Trp tetrapeptide sequence that is postulated to be important for melanocortin receptor molecular recognition and stimulation. Previous studies by our laboratory resulted in the discovery that increasing alkyl chain length at the N-terminal "capping" region of the His-dPhe-Arg-Trp-NH(2) tetrapeptide resulted in a 100-fold increased melanocortin receptor agonist potency. This study was undertaken to systematically evaluate the pharmacological effects of increasing N-capping alkyl chain length of the CH(3)(CH(2))(n)CO-His-dPhe-Arg-Trp-NH(2) (n = 6-16) tetrapeptide template. Twelve analogues were synthesized and pharmacologically characterized at the mouse melanocortin receptors MC1R and MC3R-MC5R and human melanocytes known to express the MC1R. These peptides demonstrated melanocortin receptor selectivity profiles different from those of previously published tetrapeptides. The most notable results of enhanced ligand potency (20- to 200-fold) and receptor selectivity were observed at the MC1R. Tetrapeptides that possessed greater than nine alkyl groups were superior to alpha-MSH in terms of the stimulation of human melanocyte tyrosinase activity. Additionally, the n-pentadecanoyl derivative had a residual effect on tyrosinase activity that existed for at least 4 days after the peptide was removed from the human melanocyte culture medium. These data demonstrate the utility, potency, and residual effect of melanocortin tetrapeptides by adding N-terminal fatty acid moieties.
Lysine and the Na+/K+ Selectivity in Mammalian Voltage-Gated Sodium Channels.
Li, Yang; Liu, Huihui; Xia, Mengdie; Gong, Haipeng
2016-01-01
Voltage-gated sodium (Nav) channels are critical in the generation and transmission of neuronal signals in mammals. The crystal structures of several prokaryotic Nav channels determined in recent years inspire the mechanistic studies on their selection upon the permeable cations (especially between Na+ and K+ ions), a property that is proposed to be mainly determined by residues in the selectivity filter. However, the mechanism of cation selection in mammalian Nav channels lacks direct explanation at atomic level due to the difference in amino acid sequences between mammalian and prokaryotic Nav homologues, especially at the constriction site where the DEKA motif has been identified to determine the Na+/K+ selectivity in mammalian Nav channels but is completely absent in the prokaryotic counterparts. Among the DEKA residues, Lys is of the most importance since its mutation to Arg abolishes the Na+/K+ selectivity. In this work, we modeled the pore domain of mammalian Nav channels by mutating the four residues at the constriction site of a prokaryotic Nav channel (NavRh) to DEKA, and then mechanistically investigated the contribution of Lys in cation selection using molecular dynamics simulations. The DERA mutant was generated as a comparison to understand the loss of ion selectivity caused by the K-to-R mutation. Simulations and free energy calculations on the mutants indicate that Lys facilitates Na+/K+ selection by electrostatically repelling the cation to a highly Na+-selective location sandwiched by the carboxylate groups of Asp and Glu at the constriction site. In contrast, the electrostatic repulsion is substantially weakened when Lys is mutated to Arg, because of two intrinsic properties of the Arg side chain: the planar geometric design and the sparse charge distribution of the guanidine group.
Structure-Function Analysis of the OB and Latch Domains of Chlorella Virus DNA Ligase*
Samai, Poulami; Shuman, Stewart
2011-01-01
Chlorella virus DNA ligase (ChVLig) is a minimized eukaryal ATP-dependent DNA sealing enzyme with an intrinsic nick-sensing function. ChVLig consists of three structural domains, nucleotidyltransferase (NTase), OB-fold, and latch, that envelop the nicked DNA as a C-shaped protein clamp. The OB domain engages the DNA minor groove on the face of the duplex behind the nick, and it makes contacts to amino acids in the NTase domain surrounding the ligase active site. The latch module occupies the DNA major groove flanking the nick. Residues at the tip of the latch contact the NTase domain to close the ligase clamp. Here we performed a structure-guided mutational analysis of the OB and latch domains. Alanine scanning defined seven individual amino acids as essential in vivo (Lys-274, Arg-285, Phe-286, and Val-288 in the OB domain; Asn-214, Phe-215, and Tyr-217 in the latch), after which structure-activity relations were clarified by conservative substitutions. Biochemical tests of the composite nick sealing reaction and of each of the three chemical steps of the ligation pathway highlighted the importance of Arg-285 and Phe-286 in the catalysis of the DNA adenylylation and phosphodiester synthesis reactions. Phe-286 interacts with the nick 5′-phosphate nucleotide and the 3′-OH base pair and distorts the DNA helical conformation at the nick. Arg-285 is a key component of the OB-NTase interface, where it forms a salt bridge to the essential Asp-29 side chain, which is imputed to coordinate divalent metal catalysts during the nick sealing steps. PMID:21527793
Structurally conserved water molecules in ribonuclease T1.
Malin, R; Zielenkiewicz, P; Saenger, W
1991-03-15
In the high resolution (1.7-1.9 A) crystal structures of ribonuclease T1 (RNase T1) in complex with guanosine, guanosine 2'-phosphate, guanylyl 2',5'-guanosine, and vanadate, there are 30 water sites in nearly identical (+/- 1 A) positions that are considered conserved. One water is tightly bound to Asp76(O delta), Thr93(O gamma), Cys6(O), and Asn9(N); another bridges two loops by hydrogen-bonding to Tyr68(O eta) and to Ser35(N), Asn36(N); a loop structure is stabilized by two waters coordinated to Gly31(O) and His27(N delta), and by water bound to cis-Pro39(O). Most notable is a hydrogen-bonded chain of 10 water molecules. Waters 1-5 of this chain are inaccessible to solvent, are anchored at Trp59(N), and stitch together the loop formed by segments 60-68; waters 5-8 coordinate to Ca2+, and waters 9 and 10 hydrogen-bond to N-terminal side chains of the alpha-helix. The water chain and two conserved water molecules are bound to amino acids adjacent to the active site residues His40, Glu58, Arg77, and His92; they are probably involved in maintaining their spatial orientation required for catalysis. Water sites must be considered in genetic engineering; the mutation Trp59Tyr, which probably influences the 10-water chain, doubles the catalytic activity of RNase T1.
Gao, Yang; Shen, Lu; Honzatko, Richard B
2014-03-21
The effects of AMP and fructose 2,6-bisphosphate (Fru-2,6-P2) on porcine fructose-1,6-bisphosphatase (pFBPase) and Escherichia coli FBPase (eFBPase) differ in three respects. AMP/Fru-2,6-P2 synergism in pFBPase is absent in eFBPase. Fru-2,6-P2 induces a 13° subunit pair rotation in pFBPase but no rotation in eFBPase. Hydrophilic side chains in eFBPase occupy what otherwise would be a central aqueous cavity observed in pFBPase. Explored here is the linkage of AMP/Fru-2,6-P2 synergism to the central cavity and the evolution of synergism in FBPases. The single mutation Ser(45) → His substantially fills the central cavity of pFBPase, and the triple mutation Ser(45) → His, Thr(46) → Arg, and Leu(186) → Tyr replaces porcine with E. coli type side chains. Both single and triple mutations significantly reduce synergism while retaining other wild-type kinetic properties. Similar to the effect of Fru-2,6-P2 on eFBPase, the triple mutant of pFBPase with bound Fru-2,6-P2 exhibits only a 2° subunit pair rotation as opposed to the 13° rotation exhibited by the Fru-2,6-P2 complex of wild-type pFBPase. The side chain at position 45 is small in all available eukaryotic FBPases but large and hydrophilic in bacterial FBPases, similar to eFBPase. Sequence information indicates the likelihood of synergism in the FBPase from Leptospira interrogans (lFBPase), and indeed recombinant lFBPase exhibits AMP/Fru-2,6-P2 synergism. Unexpectedly, however, AMP also enhances Fru-6-P binding to lFBPase. Taken together, these observations suggest the evolution of AMP/Fru-2,6-P2 synergism in eukaryotic FBPases from an ancestral FBPase having a central aqueous cavity and exhibiting synergistic feedback inhibition by AMP and Fru-6-P.
Hb taradale [beta82(EF6)Lys-->Arg]: a novel mutation at a 2,3-diphosphoglycerate binding site.
Brennan, Stephen O; Sheen, Campbell; Chan, Tim; George, Peter M
2005-01-01
Hb Taradale [beta82(EF6)Lys-->Arg] was initially detected as a split Hb A0 peak on Hb A1c, monitoring. Red cell parameters, hemoglobin (Hb) electrophoresis and stability tests were normal. Mass spectrometry (ms) clearly identified a variant beta chain with a mass increase of 28 Da and peptide mapping located the mutation site to peptide betaT-9. DNA sequencing confirmed the presence of a novel beta82(EF6)Lys-->Arg mutation. This conservative substitution at a 2,3-diphosphoglycerate (2,3-DPG) binding site did not, however, appear to affect the P50 for oxygen binding.
Aspartic acid 405 contributes to the substrate specificity of aminopeptidase B.
Fukasawa, Kayoko M; Hirose, Junzo; Hata, Toshiyuki; Ono, Yukio
2006-09-26
Aminopeptidase B (EC 3.4.11.6, ApB) specifically cleaves in vitro the N-terminal Arg or Lys residue from peptides and synthetic derivatives. Ap B was shown to have a consensus sequence found in the metallopeptidase family. We determined the putative zinc binding residues (His324, His328, and Glu347) and the essential Glu325 residue for the enzyme using site-directed mutagenesis (Fukasawa, K. M., et al. (1999) Biochem. J. 339, 497-502). To identify the residues binding to the amino-terminal basic amino acid of the substrate, rat cDNA encoding ApB was cloned into pGEX-4T-3 so that recombinant protein was expressed as a GST fusion protein. Twelve acidic amino acid residues (Glu or Asp) in ApB were replaced with a Gln or Asn using site-directed mutagenesis. These mutants were isolated to characterize the kinetic parameters of enzyme activity toward Arg-NA and compare them to those of the wild-type ApB. The catalytic efficiency (kcat/Km) of the mutant D405N was 1.7 x 10(4) M(-1) s(-1), markedly decreased compared with that of the wild-type ApB (6.2 x 10(5) M(-1) s(-1)). The replacement of Asp405 with an Asn residue resulted in the change of substrate specificity such that the specific activity of the mutant D405N toward Lys-NA was twice that toward Arg-NA (in the case of wild-type ApB; 0.4). Moreover, when Asp405 was replaced with an Ala residue, the kcat/Km ratio was 1000-fold lower than that of the wild-type ApB for hydrolysis of Arg-NA; in contrast, in the hydrolysis of Tyr-NA, the kcat/Km ratios of the wild-type (1.1 x 10(4) M(-1) s(-1)) and the mutated (8.2 x 10(3) M(-1) s(-1)) enzymes were similar. Furthermore, the replacement of Asp-405 with a Glu residue led to the reduction of the kcat/Km ratio for the hydrolysis of Arg-NA by a factor of 6 and an increase of that for the hydrolysis of Lys-NA. Then the kcat/Km ratio of the D405E mutant for the hydrolysis of Lys-NA was higher than that for the hydrolysis of Arg-NA as opposed to that of wild-type ApB. These data strongly suggest that the Asp 405 residue is involved in substrate binding via an interaction with the P1 amino group of the substrate's side chain.
Novel XLRS1 gene mutations cause X-linked juvenile retinoschisis in Chinese families.
Ma, Xiang; Li, Xiaoxin; Wang, Lihua
2008-01-01
To investigate various XLRS1 (RS1) gene mutations in Chinese families with X-linked juvenile retinoschisis (XLRS or RS). Genomic DNA was isolated from leukocytes of 29 male patients with X-linked juvenile retinoschisis, 38 female carriers, and 100 normal controls. All 6 exons of the RS1 gene were amplified by polymerase chain reaction, and the RS1 gene mutations were determined by direct sequencing. Eleven different RS1 mutations in 12 families were identified in the 29 male patients. The mutations comprised eight missense, two frameshift, and one splice donor site mutation. Four of these mutations, one frameshift mutation (26 del T) in exon 1, one frameshift mutation (488 del G) in exon 5, Asp145His and Arg156Gly in exon 5, have not been previously described. One novel non-disease-related polymorphism, 576C to T (Pro192Pro) in exon 6, was also found. Six recurrent mutations, Ser73Pro and Arg102Gln mutations in exon 4 and Arg200Cys, Arg209His, Arg213Gln, and Cys223Arg mutations in exon 6, were also identified in this study. RS1 gene mutations caused X-linked juvenile retinoschisis in these Chinese families.
Recombinant production and solution structure of lipid transfer protein from lentil Lens culinaris
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gizatullina, Albina K.; Moscow Institute of Physics and Technology; Finkina, Ekaterina I.
2013-10-04
Highlights: •Lipid transfer protein from lentil seeds (Lc-LTP2) was overexpressed in E. coli. •Antimicrobial activity and spatial structure of the recombinant Lc-LTP2 were examined. •Internal tunnel-like lipid-binding cavity occupies ∼7% of the total Lc-LTP2 volume. •Binding of DMPG lipid induces moderate rearrangements in the Lc-LTP2 structure. •Lc-LTP2/DMPG complex has limited lifetime and dissociates within tens of hours. -- Abstract: Lipid transfer protein, designated as Lc-LTP2, was isolated from seeds of the lentil Lens culinaris. The protein has molecular mass 9282.7 Da, consists of 93 amino acid residues including 8 cysteines forming 4 disulfide bonds. Lc-LTP2 and its stable isotope labeledmore » analogues were overexpressed in Escherichia coli and purified. Antimicrobial activity of the recombinant protein was examined, and its spatial structure was studied by NMR spectroscopy. The polypeptide chain of Lc-LTP2 forms four α-helices (Cys4-Leu18, Pro26-Ala37, Thr42-Ala56, Thr64-Lys73) and a long C-terminal tail without regular secondary structure. Side chains of the hydrophobic residues form a relatively large internal tunnel-like lipid-binding cavity (van der Waals volume comes up to ∼600 Å{sup 3}). The side-chains of Arg45, Pro79, and Tyr80 are located near an assumed mouth of the cavity. Titration with dimyristoyl phosphatidylglycerol (DMPG) revealed formation of the Lc-LTP2/lipid non-covalent complex accompanied by rearrangements in the protein spatial structure and expansion of the internal cavity. The resultant Lc-LTP2/DMPG complex demonstrates limited lifetime and dissociates within tens of hours.« less
Das, Mandakini; Sharma, Santanu Kumar; Sekhon, Gaganpreet Singh; Mahanta, Jagadish; Phukan, Rup Kumar; Jalan, Bimal Kumar
2017-05-01
The high incidence of esophageal cancer in Northeast India and the unique ethnic background and dietary habits provide a great opportunity to study the molecular genetics behind esophageal squamous cell carcinoma in this part of the region. We hypothesized that in addition to currently known environmental risk factors for esophageal cancer, genetic and epigenetic factors are also involved in esophageal carcinogenesis in Northeast India. Therefore, in this study, we explored the possible association between the two important G1 cell cycle regulatory genes p16 and p53 and environmental risk factors and risk of esophageal carcinogenesis. A total of 100 newly diagnosed esophageal cancer cases along with equal number of age-, sex-, and ethnicity-matched controls were included in this study. Methylation-specific polymerase chain reaction was used to determine the p16 promoter methylation status. Single-nucleotide polymorphism at codon 72 of p53 gene was assessed by the polymerase chain reaction-restriction fragment length polymorphism method. Aberrant methylation of p16 gene was seen in 81% of esophageal cancer cases. Hypermethylation of p16 gene was not found in healthy controls. p53 Pro/Pro genotype was found to be a risk genotype in Northeast India compared with Arg/Pro and Arg/Arg. p53 variant/polymorphism was significantly associated with esophageal cancer risk in the study population under all three genetic models, namely, dominant model (Arg/Pro + Pro/Pro vs Arg/Arg odds ratio = 2.25, confidence interval = 1.19-4.26; p = 0.012), recessive model (Arg/Arg + Arg/Pro vs Pro/Pro odds ratio = 2.35, confidence interval = 1.24-4.44; p = 0.008), and homozygous model (Pro/Pro vs Arg/Arg odds ratio = 3.33, confidence interval = 1.54-7.20; p = 0.002). However, p53 variant/polymorphism was not statistically associated with esophageal cancer risk under the heterozygous model (Pro/Pro vs Arg/Pro). In the case-only analysis based on p16 methylation, the p53 variant/polymorphism (Pro/Pro or Arg/Pro) showed significant association for esophageal cancer risk (odds ratio = 3.33, confidence interval = 1.54-7.20; p = 0.002). Gene-gene and gene-environment interaction using the case-only approach revealed a strong association between p16 methylation, p53 single-nucleotide polymorphism, and environmental factors and esophageal cancer risk. Cases with p16 methylation and p53 variant/polymorphism (Pro/Pro or Arg/Pro) along with both betel quid and tobacco chewing habit (odds ratio = 8.29, confidence interval = 1.14-60.23; p = 0.037) conferred eightfold increased risk toward esophageal cancer development. This study reveals a synergistic interaction between epigenetic, genetic, and environmental factors and risk of esophageal cancer in this high-incidence region of Northeast India. The inactivation of either p16 or p53 in a majority of esophageal cancer cases in this study suggests the possible crosstalk between the important cell cycle genes.
Conlon, J M; Fan, H; Fritzsch, B
1998-01-01
The Polypteriformes (bichirs and reedfish) are a family of ray-finned fishes of ancient lineage. Insulin has been isolated from an extract of the pancreas and upper gastrointestinal tract of the bichir Polypterus senegalis and its primary structure established as A-chain: Gly-Ile-Val-Glu-Gln-Cys-Cys-Asp-Thr-Pro10-Cys-Ser- Leu-Tyr-Asp-Leu-Glu-Asn-Tyr-Cys20-Asn: B-chain: Ala-Ala-Asn-Arg-His-Leu-Cys-Gly-Ser-His10-Leu-Val- Glu-Ala-Leu-Tyr-Leu-Val-Cys-Gly20-Asn-Arg-Gly-Phe- Phe-Tyr-Ile-Pro-Ser-Lys30-Met. Despite the fact that Polypterus insulin contains several unusual structural features that are not found in insulins from other jawed fish (Asp at A-8, Thr at A-9, Arg at B-4, Asn at B-21, Ile at B-27, Met at B-31), all the residues in human insulin that are involved in receptor binding, dimerization, and hexamerization have been conserved. A comparison of the structures of insulins from a range of species indicates that Polypterus insulin most closely resembles paddlefish insulin II (seven amino acid substitutions). In contrast, Polypterus glucagon (His-Ser- Gln-Gly-Thr-Phe-Thr-Asn-Asp-Tyr10-Thr-Lys-Tyr- Gln-Asp-Ser-Arg-Arg-Ala-Gln20-Asp-Phe-Val-Gln- Trp-Leu-Met-Ser-Asn) most closely resembles the glucagons from the gar Lepisosteus spatula and the bowfin Amia calva (four amino acid substitutions). The data are consistent with the conclusion based on comparison of morphological characteristics that the Polypterids are the most basal living group of the Actinopterygians with evolutionary connections to both the Acipenserids and the Neopterygians.
Li, Yan; Yan, Jin-Mei; Zhou, Jian-Ying; Lu, Yue-Cheng; Li, Dong-Zhi
2017-01-01
We first report a novel β chain variant, Hb Heze [β144(HC1)Lys→Arg; HBB: c.434A>G], in a Chinese family. Heterozygous inheritance of the mutation results in a mild β-thalassemia (β-thal) phenotype, whereas compound heterozygosity of Hb Heze with β 0 -thal appears as the cause of β-thal intermedia (β-TI) in our case.
Orotidine 5'-Monophosphate Decarboxylase: Probing the Limits of the Possible for Enzyme Catalysis.
Richard, John P; Amyes, Tina L; Reyes, Archie C
2018-04-17
The mystery associated with catalysis by what were once regarded as protein black boxes, diminished with the X-ray crystallographic determination of the three-dimensional structures of enzyme-substrate complexes. The report that several high-resolution X-ray crystal structures of orotidine 5'-monophosphate decarboxylase (OMPDC) failed to provide a consensus mechanism for enzyme-catalyzed decarboxylation of OMP to form uridine 5'-monophosphate, therefore, provoked a flurry of controversy. This controversy was fueled by the enormous 10 23 -fold rate acceleration for this enzyme, which had " jolted many biochemists' assumptions about the catalytic potential of enzymes." Our studies on the mechanism of action of OMPDC provide strong evidence that catalysis by this enzyme is not fundamentally different from less proficient catalysts, while highlighting important architectural elements that enable a peak level of performance. Many enzymes undergo substrate-induced protein conformational changes that trap their substrates in solvent occluded protein cages, but the conformational change induced by ligand binding to OMPDC is incredibly complex, as required to enable the development of 22 kcal/mol of stabilizing binding interactions with the phosphodianion and ribosyl substrate fragments of OMP. The binding energy from these fragments is utilized to activate OMPDC for catalysis of decarboxylation at the orotate fragment of OMP, through the creation of a tight, catalytically active, protein cage from the floppy, open, unliganded form of OMPDC. Such utilization of binding energy for ligand-driven conformational changes provides a general mechanism to obtain specificity in transition state binding. The rate enhancement that results from the binding of carbon acid substrates to enzymes is partly due to a reduction in the carbon acid p K a that is associated with ligand binding. The binding of UMP to OMPDC results in an unusually large >12 unit decrease in the p K a = 29 for abstraction of the C-6 substrate hydrogen, due to stabilization of an enzyme-bound vinyl carbanion, which is also an intermediate of OMPDC-catalyzed decarboxylation. The protein-ligand interactions operate to stabilize the vinyl carbanion at the enzyme active site compared to aqueous solution, rather than to stabilize the transition state for the concerted electrophilic displacement of CO 2 by H + that avoids formation of this reaction intermediate. There is evidence that OMPDC induces strain into the bound substrate. The interaction between the amide side chain of Gln-215 from the phosphodianion gripper loop and the hydroxymethylene side chain of Ser-154 from the pyrimidine umbrella of ScOMPDC position the amide side chain to interact with the phosphodianion of OMP. There are no direct stabilizing interactions between dianion gripper protein side chains Gln-215, Tyr-217, and Arg-235 and the pyrimidine ring at the decarboxylation transition state. Rather these side chains function solely to hold OMPDC in the catalytically active closed conformation. The hydrophobic side chains that line the active site of OMPDC in the region of the departing CO 2 product may function to stabilize the decarboxylation transition state by providing hydrophobic solvation of this product.
Biodegradable copolymers carrying cell-adhesion peptide sequences.
Proks, Vladimír; Machová, Lud'ka; Popelka, Stepán; Rypácek, Frantisek
2003-01-01
Amphiphilic block copolymers are used to create bioactive surfaces on biodegradable polymer scaffolds for tissue engineering. Cell-selective biomaterials can be prepared using copolymers containing peptide sequences derived from extracellular-matrix proteins (ECM). Here we discuss alternative ways for preparation of amphiphilic block copolymers composed of hydrophobic polylactide (PLA) and hydrophilic poly(ethylene oxide) (PEO) blocks with cell-adhesion peptide sequences. Copolymers PLA-b-PEO were prepared by a living polymerisation of lactide in dioxane with tin(II)2-ethylhexanoate as a catalyst. The following approaches for incorporation of peptides into copolymers were elaborated. (a) First, a side-chain protected Gly-Arg-Gly-Asp-Ser-Gly (GRGDSG) peptide was prepared by solid-phase peptide synthesis (SPPS) and then coupled with delta-hydroxy-Z-amino-PEO in solution. In the second step, the PLA block was grafted to it via a controlled polymerisation of lactide initiated by the hydroxy end-groups of PEO in the side-chain-protected GRGDSG-PEO. Deprotection of the peptide yielded a GRGDSG-b-PEO-b-PLA copolymer, with the peptide attached through its C-end. (b) A protected GRGDSG peptide was built up on a polymer resin and coupled with Z-carboxy-PEO using a solid-phase approach. After cleavage of the delta-hydroxy-PEO-GRGDSG copolymer from the resin, polymerisation of lactide followed by deprotection of the peptide yielded a PLA-b-PEO-b-GRGDSG block copolymer, in which the peptide is linked through its N-terminus.
Yu, Qin; Hu, Liyan; Yao, Qing; Zhu, Yongqun; Dong, Na; Wang, Da-Cheng; Shao, Feng
2013-06-01
Rab GTPases are emerging targets of diverse bacterial pathogens. Here, we perform biochemical and structural analyses of LepB, a Rab GTPase-activating protein (GAP) effector from Legionella pneumophila. We map LepB GAP domain to residues 313-618 and show that the GAP domain is Rab1 specific with a catalytic activity higher than the canonical eukaryotic TBC GAP and the newly identified VirA/EspG family of bacterial RabGAP effectors. Exhaustive mutation analyses identify Arg444 as the arginine finger, but no catalytically essential glutamine residues. Crystal structures of LepB313-618 alone and the GAP domain of Legionella drancourtii LepB in complex with Rab1-GDP-AlF3 support the catalytic role of Arg444, and also further reveal a 3D architecture and a GTPase-binding mode distinct from all known GAPs. Glu449, structurally equivalent to TBC RabGAP glutamine finger in apo-LepB, undergoes a drastic movement upon Rab1 binding, which induces Rab1 Gln70 side-chain flipping towards GDP-AlF3 through a strong ionic interaction. This conformationally rearranged Gln70 acts as the catalytic cis-glutamine, therefore uncovering an unexpected RasGAP-like catalytic mechanism for LepB. Our studies highlight an extraordinary structural and catalytic diversity of RabGAPs, particularly those from bacterial pathogens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, W.C.; Reniere, M.L.; Skaar, E.P.
2009-05-19
IsdG and IsdI are paralogous proteins that are intracellular components of a complex heme uptake system in Staphylococcus aureus. IsdG and IsdI were shown previously to reductively degrade hemin. Crystal structures of the apoproteins show that these proteins belong to a newly identified heme degradation family distinct from canonical eukaryotic and prokaryotic heme oxygenases. Here we report the crystal structures of an inactive N7A variant of IsdG in complex with Fe{sup 3+}-protoporphyrin IX (IsdG-hemin) and of IsdI in complex with cobalt protoporphyrin IX (IsdI-CoPPIX) to 1.8 {angstrom} or better resolution. These structures show that the metalloporphyrins are buried into similarmore » deep clefts such that the propionic acids form salt bridges to two Arg residues. His{sup 77} (IsdG) or His{sup 76} (IsdI), a critical residue required for activity, is coordinated to the Fe{sup 3+} or Co{sup 3+} atoms, respectively. The bound porphyrin rings form extensive steric interactions in the binding cleft such that the rings are highly distorted from the plane. This distortion is best described as ruffled and places the {beta}- and {delta}-meso carbons proximal to the distal oxygen-binding site. In the IsdG-hemin structure, Fe{sup 3+} is pentacoordinate, and the distal side is occluded by the side chain of Ile{sup 55}. However, in the structure of IsdI-CoPPIX, the distal side of the CoPPIX accommodates a chloride ion in a cavity formed through a conformational change in Ile{sup 55}. The chloride ion participates in a hydrogen bond to the side chain amide of Asn{sup 6}. Together the structures suggest a reaction mechanism in which a reactive peroxide intermediate proceeds with nucleophilic oxidation at the {beta}- or {delta}-meso carbon of the hemin.« less
Guo, Xueping; Li, Jing; Yang, Fan; Yang, Jie; Yin, Daqiang
2014-09-15
The occurrence and distribution of antibiotic resistance genes (ARGs) in drinking water treatment plants (DWTPs) and finished water are not well understood, and even less is known about the contribution of each treatment process to resistance gene reduction. The prevalence of ten commonly detected sulfonamide and tetracycline resistance genes, namely, sul I, sul II, tet(C), tet(G), tet(X), tet(A), tet(B), tet(O), tet(M) and tet(W) as well as 16S-rRNA genes, were surveyed in seven DWTPs in the Yangtze River Delta, China, with SYBR Green I-based real-time quantitative polymerase chain reaction. All of the investigated ARGs were detected in the source waters of the seven DWTPs, and sul I, sul II, tet(C) and tet(G) were the four most abundant ARGs. Total concentrations of ARGs belonging to either the sulfonamide or tetracycline resistance gene class were above 10(5) copies/mL. The effects of a treatment process on ARG removal varied depending on the overall treatment scheme of the DWTP. With combinations of the treatment procedures, however, the copy numbers of resistance genes were reduced effectively, but the proportions of ARGs to bacteria numbers increased in several cases. Among the treatment processes, the biological treatment tanks might serve as reservoirs of ARGs. ARGs were found in finished water of two plants, imposing a potential risk to human health. The results presented in this study not only provide information for the management of antibiotics and ARGs but also facilitate improvement of drinking water quality. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhang, H; Sun, L W; Wang, Z Y; Deng, M T; Zhang, G M; Guo, R H; Ma, T W; Wang, F
2016-05-01
This study was conducted with an ovine intrauterine growth restriction (IUGR) model to test the hypothesis that dietary -carbamylglutamate (NCG) and rumen-protected -Arg (RP-Arg) supplementation are effective in ameliorating fetal growth restriction in undernourished ewes. Beginning on d 35 of gestation, ewes were fed a diet providing 100% of NRC-recommended nutrient requirements, 50% of NRC recommendations (50% NRC), 50% of NRC recommendations supplemented with 20 g/d RP-Arg (providing 10 g/d of Arg), and 50% of NRC recommendations supplemented with 5 g/d NCG product (providing 2.5 g/d of NCG). On d 110, maternal, fetal, and placental tissues and fluids were collected and weighed. Ewe weights were lower ( < 0.05) in nutrient-restricted ewes compared with adequately fed ewes. Maternal RP-Arg or NCG supplementation did not alter ( = 0.26) maternal BW in nutrient-restricted ewes. Weights of most fetal organs were increased ( < 0.05) in RP-Arg-treated and NCG-treated underfed ewes compared with 50% NRC-fed ewes. Supplementation of RP-Arg or NCG reduced ( < 0.05) concentrations of β-hydroxybutyrate, triglycerides, and ammonia in serum of underfed ewes but had no effect on concentrations of lactate and GH. Maternal RP-Arg or NCG supplementation markedly improved ( < 0.05) concentrations of AA (particularly arginine-family AA and branched-chain AA) and polyamines in maternal and fetal plasma and in fetal allantoic and amniotic fluids within nutrient-restricted ewes. These novel results indicate that dietary NCG and RP-Arg supplementation to underfed ewes ameliorated fetal growth restriction, at least in part, by increasing the availability of AA in the conceptus and provide support for its clinical use to ameliorate IUGR in humans and sheep industry production.
Abundance of antibiotic resistance genes in environmental bacteriophages.
Anand, Taruna; Bera, Bidhan Ch; Vaid, Rajesh K; Barua, Sanjay; Riyesh, Thachamvally; Virmani, Nitin; Hussain, Mubarik; Singh, Raj K; Tripathi, Bhupendra N
2016-12-01
The ecosystem is continuously exposed to a wide variety of antimicrobials through waste effluents, agricultural run-offs and animal-related and anthropogenic activities, which contribute to the spread of antibiotic resistance genes (ARGs). The contamination of ecosystems with ARGs may create increased opportunities for their transfer to naive microbes and eventually lead to entry into the human food chain. Transduction is a significant mechanism of horizontal gene transfer in natural environments, which has traditionally been underestimated as compared to transformation. We explored the presence of ARGs in environmental bacteriophages in order to recognize their contribution in the spread of ARGs in environmental settings. Bacteriophages were isolated against environmental bacterial isolates, purified and bulk cultured. They were characterized, and detection of ARG and intI genes including blaTEM, blaOXA-2, intI1, intI2, intI3, tetA and tetW was carried out by PCR. This study revealed the presence of various genes [tetA (12.7 %), intI1 (10.9 %), intI2 (10.9 %), intI3 (9.1 %), tetW (9.1 %) and blaOXA-2 (3.6 %)] and blaTEM in a significantly higher proportion (30.9 %). blaSHV, blaOXA-1, tetO, tetB, tetG, tetM and tetS were not detected in any of the phages. Soil phages were the most versatile in terms of ARG carriage. Also, the relative abundance of tetA differed significantly vis-à-vis source. The phages from organized farms showed varied ARGs as compared to the unorganized sector, although blaTEM ARG incidences did not differ significantly. The study reflects on the role of phages in dissemination of ARGs in environmental reservoirs, which may provide an early warning system for future clinically relevant resistance mechanisms.
Strong liquid-crystalline polymeric compositions
Dowell, Flonnie
1993-01-01
Strong liquid-crystalline polymeric (LCP) compositions of matter. LCP backbones are combined with liquid crystalline (LC) side chains in a manner which maximizes molecular ordering through interdigitation of the side chains, thereby yielding materials which are predicted to have superior mechanical properties over existing LCPs. The theoretical design of LCPs having such characteristics includes consideration of the spacing distance between side chains along the backbone, the need for rigid sections in the backbone and in the side chains, the degree of polymerization, the length of the side chains, the regularity of the spacing of the side chains along the backbone, the interdigitation of side chains in sub-molecular strips, the packing of the side chains on one or two sides of the backbone to which they are attached, the symmetry of the side chains, the points of attachment of the side chains to the backbone, the flexibility and size of the chemical group connecting each side chain to the backbone, the effect of semiflexible sections in the backbone and the side chains, and the choice of types of dipolar and/or hydrogen bonding forces in the backbones and the side chains for easy alignment.
Brennan, Stephen O.; Wyatt, Jane; Medicina, Daniela; Callea, Francesco; George, Peter M.
2000-01-01
The proposita suffered from liver cirrhosis and biopsy showed type 1 membrane-bound fiberglass inclusions. The hepatic inclusion bodies were weakly periodic acid-Schiff diastase-positive, and on immunoperoxidase staining reacted specifically with anti-fibrinogen antisera. Coagulation investigations revealed low functional and antigenic fibrinogen together with a prolonged thrombin time of 37 seconds (normal, 17 to 22 seconds) suggestive of a hypodysfibrinogenemia. DNA sequencing of all three fibrinogen genes showed a single heterozygous mutation of GGG (Gly)→CGG (Arg) at codon 284 of the γ-chain gene. However, examination of purified fibrinogen chains by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, reverse-phase high-performance liquid chromatography, ion-exchange high-performance liquid chromatography, and isoelectric focusing, failed to show any evidence of the mutant γBr chain in plasma fibrinogen. This finding was substantiated by electrospray ionization mass spectrometry, which showed only a normal γ (and Bβ) chain mass, but a large increase in the portion of their disialo isoforms. We speculate that misfolding of the variant protein causes hepatic retention and the subsequent hypofibrinogenemia, and that the functional defect (dysfibrinogenemia) results from hypersialylation of otherwise normal Bβ and γ chains consequent to the liver cirrhosis. These conclusions were supported by studies on six other family members with hypofibrinogenemia, and essentially normal clotting times, who were heterozygous for the γ284 Gly→Arg mutation. PMID:10880389
Schilling, D; Reid IV, J D; Hujer, A; Morgan, D; Demoll, E; Bummer, P; Fenstermaker, R A; Kaetzel, D M
1998-01-01
Site-directed mutagenesis of the platelet-derived growth factor (PDGF) B-chain was conducted to determine the importance of cationic amino acid residues (Arg160-Lys161-Lys162; RKK) located within the loop III region in mediating the biological and cell-association properties of the molecule. Binding to both PDGF alpha-and beta-receptors was inhibited by the conversion of all three cationic residues into anionic glutamates (RKK-->EEE), whereas an RKK-->SSS mutant also exhibited a modest loss in affinity for beta-receptors. Replacements with serine at either Arg160 (RKK-->SKK) or at all three positions (RKK-->SSS) had little effect on binding to alpha-receptors. Replacements with either glutamic or serine residues at any of the three positions also resulted in significant inhibition of heparin-binding activity. Furthermore, the RKK-->EEE mutant exhibited decreased association with the cell surface and accumulated in the culture medium as 29-32 kDa forms. Stable transfection of U87 astrocytoma cells with RKK-->EEE mutants of either the A-chain or the B-chain inhibited malignant growth in athymic nude mice. Despite altered receptor-binding activities, each of the loop III mutants retained full mitogenic activity when applied to cultured Swiss 3T3 cells. CD spectrophotometric analysis of the RKK-->EEE mutant revealed a secondary structure indistinguishable from the wild type, with a high degree of beta-sheet structure and random coil content (50% and 43% respectively). These findings indicate an important role of the Arg160-Lys161-Lys162 sequence in mediating the biological and cell-associative activities of the PDGF-BB homodimer, and reveal that the mitogenic activity of PDGF-BB is insufficient to mediate its full oncogenic properties. PMID:9677323
Strong liquid-crystalline polymeric compositions
Dowell, F.
1993-12-07
Strong liquid-crystalline polymeric (LCP) compositions of matter are described. LCP backbones are combined with liquid crystalline (LC) side chains in a manner which maximizes molecular ordering through interdigitation of the side chains, thereby yielding materials which are predicted to have superior mechanical properties over existing LCPs. The theoretical design of LCPs having such characteristics includes consideration of the spacing distance between side chains along the backbone, the need for rigid sections in the backbone and in the side chains, the degree of polymerization, the length of the side chains, the regularity of the spacing of the side chains along the backbone, the interdigitation of side chains in sub-molecular strips, the packing of the side chains on one or two sides of the backbone to which they are attached, the symmetry of the side chains, the points of attachment of the side chains to the backbone, the flexibility and size of the chemical group connecting each side chain to the backbone, the effect of semiflexible sections in the backbone and the side chains, and the choice of types of dipolar and/or hydrogen bonding forces in the backbones and the side chains for easy alignment. 27 figures.
Yang, Jun-hua; Zheng, Dong-dong; Dong, Ning-zheng; Yang, Xiang-jun; Song, Jian-ping; Jiang, Ting-bo; Cheng, Xu-jie; Li, Hong-xia; Zhou, Bing-yuan; Zhao, Cai-ming; Jiang, Wen-ping
2006-11-05
Hypertrophic cardiomyopathy (HCM) is a form of cardiomyopathy with an autosomal dominant inherited disease, which is caused by mutations in at least one of the sarcomeric protein genes. Mutations in the beta-myosin heavy chain (beta-MHC) are the most common cause of HCM. This study was to reveal the disease-causing gene mutations in Chinese population with HCM, and to analyze the correlation between the genotype and phenotype. The exons 3 to 26 of MYH7 were amplified by PCR, and the PCR products were sequenced in five non-kin HCM patients. A 17-year-old patient was detected to be an Arg723Gly mutation carrier. Then his family was gene-screened, and the correlation between genotype and phenotype was analyzed. The mutation of Arg723Gly in a Chinese family with HCM was detected for the first time. With a C-G transversion in nucleotide 13,619 of the MYH7 gene, located at the essential light chain interacting region in S1, the replacement of arginine by glycine took place at amino acid residue 723. A two-dimensional echocardiogram showed moderate asymmetrical septal hypertrophy with left atria enlargement. There was no obstruction in the left ventricular outflow tract. In his family, a total of 13 individuals were diagnosed HCM and 5 of them were dead of congestive heart failure at a mean age of 66-year-old. Eight living members were all detected to carry the mutation, in which 3 developed progressive heart failure. Moreover, the heart function of the people evidently deteriorates when their age are older than 50. The mutation and the disease show co-separated. The Arg723Gly mutation is a malignant type. In Chinese the mutation has the similar characters to the former report but has low degree malignant.
Chen, Minjiao; Jiang, Ming; Sun, Yueru; Guo, Zu-Feng; Guo, Zhihong
2011-07-05
1,4-Dihydroxy-2-naphthoyl-coenzyme A (DHNA-CoA) synthase, or MenB, catalyzes an intramolecular Claisen condensation involving two oxyanion intermediates in the biosynthetic pathway of menaquinone, an essential respiration electron transporter in many microorganisms. Here we report the finding that the DHNA-CoA product and its analogues bind and inhibit the synthase from Escherichia coli with significant ultraviolet--visible spectral changes, which are similar to the changes induced by deprotonation of the free inhibitors in a basic solution. Dissection of the structure--affinity relationships of the inhibitors identifies the hydroxyl groups at positions 1 (C1-OH) and 4 (C4-OH) of DHNA-CoA or their equivalents as the dominant and minor sites, respectively, for the enzyme--ligand interaction that polarizes or deprotonates the bound ligands to cause the observed spectral changes. In the meantime, spectroscopic studies with active site mutants indicate that C4-OH of the enzyme-bound DHNA-CoA interacts with conserved polar residues Arg-91, Tyr-97, and Tyr-258 likely through a hydrogen bonding network that also includes Ser-161. In addition, site-directed mutation of the conserved Asp-163 to alanine causes a complete loss of the ligand binding ability of the protein, suggesting that the Asp-163 side chain is most likely hydrogen-bonded to C1-OH of DHNA-CoA to provide the dominant polarizing effect. Moreover, this mutation also completely eliminates the enzyme activity, strongly supporting the possibility that the Asp-163 side chain provides a strong stabilizing hydrogen bond to the tetrahedral oxyanion, which takes a position similar to that of C1-OH of the enzyme-bound DHNA-CoA and is the second high-energy intermediate in the intracellular Claisen condensation reaction. Interestingly, both Arg-91 and Tyr-97 are located in a disordered loop forming part of the active site of all available DHNA-CoA synthase structures. Their involvement in the interaction with the small molecule ligands suggests that the disordered loop is folded in interaction with the substrates or reaction intermediates, supporting an induced-fit catalytic mechanism for the enzyme.
Morgan, Joel E; Vakkasoglu, Ahmet S; Lugtenburg, Johan; Gennis, Robert B; Maeda, Akio
2008-11-04
One of the steps in the proton pumping cycle of bacteriorhodopsin (BR) is the release of a proton from the proton-release group (PRG) on the extracellular side of the Schiff base. This proton release takes place shortly after deprotonation of the Schiff base (L-to-M transition) and results in an increase in the pKa of Asp85, which is a crucial mechanistic step for one-way proton transfer for the entire photocycle. Deprotonation of the PRG can also be brought about without photoactivation, by raising the pH of the enzyme (pKa of PRG; approximately 9). Thus, comparison of the FTIR difference spectrum for formation of the M intermediate (M minus initial unphotolyzed BR state) at pH 7 to the corresponding spectrum generated at pH 10 may reveal structural changes specifically associated with deprotonation of the PRG. Vibrational bands of BR that change upon M formation are distributed across a broad region between 2120 and 1685 cm(-1). This broad band is made up of two parts. The band above 1780 cm(-1), which is insensitive to C15-deuteration of the retinal, may be due to a proton delocalized in the PRG. The band between 1725 and 1685 cm(-1), on the lower frequency side of the broad band, is sensitive to C15-deuteration. This band may arise from transition dipole coupling of the vibrations of backbone carbonyl groups in helix G with the side chain of Tyr57 and with the C15H of the Schiff base. In M, these broad bands are abolished, and the 3657 cm(-1) band, which is due to the disruption of the hydrogen bonding of a water molecule, probably with Arg82, appears. Loss of the interaction of the backbone carbonyl groups in helix G with Tyr57 and the Schiff base, and separation of Tyr57 from Arg82, may be causes of these spectral changes, leading to the stabilization of the protonated Asp85 in M.
Identifying a Small Molecule Blocking Antigen Presentation in Autoimmune Thyroiditis.
Li, Cheuk Wun; Menconi, Francesca; Osman, Roman; Mezei, Mihaly; Jacobson, Eric M; Concepcion, Erlinda; David, Chella S; Kastrinsky, David B; Ohlmeyer, Michael; Tomer, Yaron
2016-02-19
We previously showed that an HLA-DR variant containing arginine at position 74 of the DRβ1 chain (DRβ1-Arg74) is the specific HLA class II variant conferring risk for autoimmune thyroid diseases (AITD). We also identified 5 thyroglobulin (Tg) peptides that bound to DRβ1-Arg74. We hypothesized that blocking the binding of these peptides to DRβ1-Arg74 could block the continuous T-cell activation in thyroiditis needed to maintain the autoimmune response to the thyroid. The aim of the current study was to identify small molecules that can block T-cell activation by Tg peptides presented within DRβ1-Arg74 pockets. We screened a large and diverse library of compounds and identified one compound, cepharanthine that was able to block peptide binding to DRβ1-Arg74. We then showed that Tg.2098 is the dominant peptide when inducing experimental autoimmune thyroiditis (EAT) in NOD mice expressing human DRβ1-Arg74. Furthermore, cepharanthine blocked T-cell activation by thyroglobulin peptides, in particular Tg.2098 in mice that were induced with EAT. For the first time we identified a small molecule that can block Tg peptide binding and presentation to T-cells in autoimmune thyroiditis. If confirmed cepharanthine could potentially have a role in treating human AITD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Apert Syndrome: Molecularly Confirmed C.758C>G (P.Pro253Arg) in FGFR2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cha Gon, Lee, E-mail: leechagon@eulji.ac.kr
A 5-day-old girl was referred to our clinic for evaluation of congenital malformations. She was identified with a pathogenic mutation c.758C>G (p.Pro253Arg) in FGFR2 gene using targeted exome sequencing. The de novo mutation was confirmed with Sanger sequencing in the patient and her parents. She showed occipital plagiocephaly with frontal bossing (Figure A and B). Skull frontal and lateral radiography revealed fusion of most of the sutures except coronal suture, with convolutional markings (Figure D and E). She had complete cleft palate (Figure C). Her fused bilateral hands showed type II syndactyly with complete syndactyly between the ring and themore » little fingers (Figure F1-F3). Both toes were simple syndactyly with side-to-side fusion of skin (Figure G1-)« less
Shaw, Lynn Calvin; Li Calzi, Sergio; Li, Nan; Moldovan, Leni; Sengupta-Caballero, Nilanjana; Quigley, Judith Lindsey; Ivan, Mircea; Jun, Bokkyoo; Bazan, Nicolas G.; Boulton, Michael Edwin; Busik, Julia; Neu, Josef; Grant, Maria B.
2018-01-01
Purpose Low levels of the long chain polyunsaturated fatty acid (LCPUFA) docosahexaenoic acid (DHA) have been implicated in retinopathy of prematurity (ROP). However, oral DHA suffers from poor palatability and is associated with increased bleeding in premature infants. We asked whether oral administration of the neutraceutical arginine-glutamine (Arg-Glu) could increase retinal DHA and improve outcomes in a mouse model of oxygen-induced retinopathy (OIR). Methods Postnatal day 7 (P7) pups were maintained at 75% oxygen for 5 days and then returned to room air on P12. Pups were gavaged twice daily with Arg-Gln or vehicle from P12 to P17 and eyes were harvested for analysis on P17. Vaso-obliteration and vascular density were assessed on retinal flat mounts and preretinal neovascularization was assessed on retinal cross sections. Retinas were used for measurement of DHA and 10,17S-docosatriene (neuroprotectin D1, NPD1), a key DHA-derived lipid, and for analysis by reverse-phase protein array (RPPA). Results With Arg-Gln treatment, retinal DHA and NPD1 levels were increased in OIR pups. Arg-Gln reduced preretinal neovascularization by 39 ± 6% (P < 0.05) relative to vehicle control. This was accompanied by a restoration of vascular density of the retina in the pups treated with Arg-Gln (73.0 ± 3.0%) compared to vehicle (53.1 ± 3.4%; P < 0.05). Arg-Gln dipeptide restored OIR-induced signaling changes toward normoxia and was associated with normalization of insulin-like growth factor receptor 1 signaling and reduction of apoptosis and an increase in anti-apoptosis proteins. Conclusions Arg-Gln may serve as a safer and easily tolerated nutraceutical agent for prevention or treatment of ROP. PMID:29490339
Shaw, Lynn Calvin; Li Calzi, Sergio; Li, Nan; Moldovan, Leni; Sengupta-Caballero, Nilanjana; Quigley, Judith Lindsey; Ivan, Mircea; Jun, Bokkyoo; Bazan, Nicolas G; Boulton, Michael Edwin; Busik, Julia; Neu, Josef; Grant, Maria B
2018-02-01
Low levels of the long chain polyunsaturated fatty acid (LCPUFA) docosahexaenoic acid (DHA) have been implicated in retinopathy of prematurity (ROP). However, oral DHA suffers from poor palatability and is associated with increased bleeding in premature infants. We asked whether oral administration of the neutraceutical arginine-glutamine (Arg-Glu) could increase retinal DHA and improve outcomes in a mouse model of oxygen-induced retinopathy (OIR). Postnatal day 7 (P7) pups were maintained at 75% oxygen for 5 days and then returned to room air on P12. Pups were gavaged twice daily with Arg-Gln or vehicle from P12 to P17 and eyes were harvested for analysis on P17. Vaso-obliteration and vascular density were assessed on retinal flat mounts and preretinal neovascularization was assessed on retinal cross sections. Retinas were used for measurement of DHA and 10,17S-docosatriene (neuroprotectin D1, NPD1), a key DHA-derived lipid, and for analysis by reverse-phase protein array (RPPA). With Arg-Gln treatment, retinal DHA and NPD1 levels were increased in OIR pups. Arg-Gln reduced preretinal neovascularization by 39 ± 6% (P < 0.05) relative to vehicle control. This was accompanied by a restoration of vascular density of the retina in the pups treated with Arg-Gln (73.0 ± 3.0%) compared to vehicle (53.1 ± 3.4%; P < 0.05). Arg-Gln dipeptide restored OIR-induced signaling changes toward normoxia and was associated with normalization of insulin-like growth factor receptor 1 signaling and reduction of apoptosis and an increase in anti-apoptosis proteins. Arg-Gln may serve as a safer and easily tolerated nutraceutical agent for prevention or treatment of ROP.
Sui, Qianwen; Zhang, Junya; Tong, Juan; Chen, Meixue; Wei, Yuansong
2017-04-01
The seasonal variation and removal efficiency of antibiotic resistance genes (ARGs), including tetracycline resistance genes (tetG, tetM, and tetX) and macrolide (ermB, ermF, ereA, and mefA), were investigated in two typical swine wastewater treatment systems in both winter and summer. ARGs, class 1 integron gene, and 16S rRNA gene were quantified using real-time polymerase chain reaction assays. There was a 0.31-3.52 log variation in ARGs in raw swine wastewater, and the abundance of ARGs in winter was higher than in summer. tetM, tetX, ermB, ermF, and mefA were highly abundant. The abundance of ARGs was effectively reduced by most individual treatment process and the removal efficiencies of ARGs were higher in winter than in summer. However, when examining relative abundance, the fate of ARGs was quite variable. Anaerobic digestion reduced the relative abundance of tetX, ermB, ermF, and mefA, while lagoon treatment decreased tetM, ermB, ermF, and mefA. Sequencing batch reactor (SBR) decreased tetM, ermB, and ermF, but biofilters and wetlands did not display consistent removal efficiency on ARGs in two sampling seasons. As far as the entire treatment system is concerned, ermB and mefA were effectively reduced in both winter and summer in both total and relative abundance. The relative abundances of tetG and ereA were significantly correlated with intI1 (p < 0.01), and both tetG and ereA increased after wastewater treatment. This may pose a great threat to public health.
Vila, Jorge A.; Scheraga, Harold A.
2008-01-01
Interest centers here on the analysis of two different, but related, phenomena that affect side-chain conformations and consequently 13Cα chemical shifts and their applications to determine, refine, and validate protein structures. The first is whether 13Cα chemical shifts, computed at the DFT level of approximation with charged residues is a better approximation of observed 13Cα chemical shifts than those computed with neutral residues for proteins in solution. Accurate computation of 13Cα chemical shifts requires a proper representation of the charges, which might not take on integral values. For this analysis, the charges for 139 conformations of the protein ubiquitin were determined by explicit consideration of protein binding equilibria, at a given pH, that is, by exploring the 2ξ possible ionization states of the whole molecule, with ξ being the number of ionizable groups. The results of this analysis, as revealed by the shielding/deshield-ing of the 13Cα nucleus, indicated that: (i) there is a significant difference in the computed 13Cα chemical shifts, between basic and acidic groups, as a function of the degree of charge of the side chain; (ii) this difference is attributed to the distance between the ionizable groups and the 13Cα nucleus, which is shorter for the acidic Asp and Glu groups as compared with that for the basic Lys and Arg groups; and (iii) the use of neutral, rather than charged, basic and acidic groups is a better approximation of the observed 13Cα chemical shifts of a protein in solution. The second is how side-chain flexibility influences computed 13Cα chemical shifts in an additional set of ubiquitin conformations, in which the side chains are generated from an NMR-derived structure with the backbone conformation assumed to be fixed. The 13Cα chemical shift of a given amino acid residue in a protein is determined, mainly, by its own backbone and side-chain torsional angles, independent of the neighboring residues; the conformation of a given residue itself, however, depends on the environment of this residue and, hence, on the whole protein structure. As a consequence, this analysis reveals the role and impact of an accurate side-chain computation in the determination and refinement of protein conformation. The results of this analysis are: (i) a lower error between computed and observed 13Cα chemical shifts (by up to 3.7 ppm), was found for ~68% and ~63% of all ionizable residues and all non-Ala/Pro/Gly residues, respectively, in the additional set of conformations, compared with results for the model from which the set was derived; and (ii) all the additional conformations exhibit a lower root-mean-square-deviation (1.97 ppm ≤ rmsd ≤ 2.13 ppm), between computed and observed 13Cα chemical shifts, than the rmsd (2.32 ppm) computed for the starting conformation from which this additional set was derived. As a validation test, an analysis of the additional set of ubiquitin conformations, comparing computed and observed values of both 13Cα chemical shifts and χ1 torsional angles (given by the vicinal coupling constants, 3JN–Cγ and 3JC′–Cγ, is discussed. PMID:17975838
Nieddu, Erika; Melchiori, A; Pescarolo, M P; Bagnasco, L; Biasotti, B; Licheri, B; Malacarne, D; Tortolina, L; Castagnino, N; Pasa, S; Cimoli, G; Avignolo, C; Ponassi, R; Balbi, C; Patrone, E; D'arrigo, C; Barboro, P; Vasile, F; Orecchia, P; Carnemolla, B; Damonte, G; Millo, E; Palomba, D; Fassina, G; Mazzei, M; Parodi, S
2005-04-01
Our work is focused in the broad area of strategies and efforts to inhibit protein-protein interactions. The possible strategies in this field are definitely much more varied than in the case of ATP-pocket inhibitors. In our previous work (10), we reported that a retro-inverso (RI) form of Helix1 (H1) of c-Myc, linked to an RI-internalization sequence arising from the third alpha-helix of Antennapedia (Int) was endowed with an antiproliferative and proapoptotic activity toward the cancer cell lines MCF-7 and HCT-116. The activity apparently was dependent upon the presence of the Myc motif. In this work, by ala-scan mapping of the H1 portion of our molecules with D-aa, we found two amino acids necessary for antiproliferative activity: D-Lys in 4 and D-Arg in 5 (numbers refer to L-forms). In the natural hetero-dimer, these two side chains project to the outside of the four alpha-helix bundle. Moreover, we were able to obtain three peptides more active than the original lead. They strongly reduced cell proliferation and survival (RI-Int-VV-H1-E2A,S6A,F8A; RI-Int-VV-H1-S6A,F8A,R11A; RI-Int-VV-H1-S6A,F8A,Q13A): after 8 days at 10 muM total cell number was approximately 1% of the number of cells initially seeded. In these more potent molecules, the ablated side chains project to the inside in the corresponding natural four alpha-helix bundle. In the present work, we also investigated the behavior of our molecules at the biochemical level. Using both a circular dichroism (CD) and a fluorescence anisotropy approach, we noted that side chains projecting at the interior of the four alpha-helix bundle are needed for inducing the partial unfolding of Myc-H2, without an opening of the leucine zipper. Side chains projecting at the outside are not required for this biochemical effect. However, antiproliferative activity had the opposite requirements: side chains projecting at the outside of the bundle were essential, and, on the contrary, ablation of one side chain at a time projecting at the inside increased rather than decreased biological activity. We conclude that our active molecules probably interfere at the level of a protein-protein interaction between Myc-Max and a third protein of the transcription complex. Finally, CD and nuclear magnetic resonance (NMR) data, plus dynamic simulations, suggest a prevalent random coil conformation of the H1 portion of our molecules, at least in diluted solutions. The introduction of a kink (substitution with proline in positions 5 or 7) led to an important reduction of biological activity. We have also synthesized a longer peptido-mimetic molecule (RI-Int-H1-S6A,F8A-loop-H2) with the intent of obtaining a wider zone of interaction and a stronger interference at the level of the higher-order structure (enhanceosome). RI-Int-H1-S6A,F8A-loop-H2 was less active rather than more active in respect to RI-Int-VV-H1-S6A,F8A, apparently because it has a clear bent to form a beta-sheet (CD and NMR data).
Gao, Yang; Shen, Lu; Honzatko, Richard B.
2014-01-01
The effects of AMP and fructose 2,6-bisphosphate (Fru-2,6-P2) on porcine fructose-1,6-bisphosphatase (pFBPase) and Escherichia coli FBPase (eFBPase) differ in three respects. AMP/Fru-2,6-P2 synergism in pFBPase is absent in eFBPase. Fru-2,6-P2 induces a 13° subunit pair rotation in pFBPase but no rotation in eFBPase. Hydrophilic side chains in eFBPase occupy what otherwise would be a central aqueous cavity observed in pFBPase. Explored here is the linkage of AMP/Fru-2,6-P2 synergism to the central cavity and the evolution of synergism in FBPases. The single mutation Ser45 → His substantially fills the central cavity of pFBPase, and the triple mutation Ser45 → His, Thr46 → Arg, and Leu186 → Tyr replaces porcine with E. coli type side chains. Both single and triple mutations significantly reduce synergism while retaining other wild-type kinetic properties. Similar to the effect of Fru-2,6-P2 on eFBPase, the triple mutant of pFBPase with bound Fru-2,6-P2 exhibits only a 2° subunit pair rotation as opposed to the 13° rotation exhibited by the Fru-2,6-P2 complex of wild-type pFBPase. The side chain at position 45 is small in all available eukaryotic FBPases but large and hydrophilic in bacterial FBPases, similar to eFBPase. Sequence information indicates the likelihood of synergism in the FBPase from Leptospira interrogans (lFBPase), and indeed recombinant lFBPase exhibits AMP/Fru-2,6-P2 synergism. Unexpectedly, however, AMP also enhances Fru-6-P binding to lFBPase. Taken together, these observations suggest the evolution of AMP/Fru-2,6-P2 synergism in eukaryotic FBPases from an ancestral FBPase having a central aqueous cavity and exhibiting synergistic feedback inhibition by AMP and Fru-6-P. PMID:24436333
Pelcastre, Erika L; Villanueva-Mendoza, Cristina; Zenteno, Juan C
2010-05-01
To present the results of molecular analysis of the NDP gene in Mexican families with Norrie disease (ND) and X-linked familial exudative vitreoretinopathy (XL-FEVR). Two unrelated families with ND and two with XL-FEVR were studied. Clinical diagnosis was suspected on the basis of a complete ophthalmologic examination. Molecular methods included DNA isolation from peripheral blood leucocytes, polymerase chain reaction amplification and direct nucleotide sequencing analysis of the complete coding region and exon-intron junctions of NDP. Haplotype analysis using NDP-linked microsatellites markers was performed in both ND families. A novel Norrin missense mutation, p.Arg41Thr, was identified in two apparently unrelated families with ND. Haplotype analysis demonstrated that affected males in these two families shared the same ND-linked haplotype, suggesting a common origin for this novel mutation. The previously reported p.Arg121Trp and p.Arg121Gln Norrin mutations were identified in the two families with XL-FEVR. Our results expand the mutational spectrum in ND. This is the first report of ND resulting from mutation at arginine position 41 of Norrin. Interestingly, mutations at the same residue but resulting in a different missense change were previously described in subjects with XL-FEVR (p.Arg41Lys) or persistent fetal vasculature syndrome (p.Arg41Ser), indicating that the novel p.Arg41Thr change causes a more severe retinal phenotype. Preliminary data suggest a founder effect for the ND p.Arg41Thr mutation in these two Mexican families.
Quantifying side-chain conformational variations in protein structure
Miao, Zhichao; Cao, Yang
2016-01-01
Protein side-chain conformation is closely related to their biological functions. The side-chain prediction is a key step in protein design, protein docking and structure optimization. However, side-chain polymorphism comprehensively exists in protein as various types and has been long overlooked by side-chain prediction. But such conformational variations have not been quantitatively studied and the correlations between these variations and residue features are vague. Here, we performed statistical analyses on large scale data sets and found that the side-chain conformational flexibility is closely related to the exposure to solvent, degree of freedom and hydrophilicity. These analyses allowed us to quantify different types of side-chain variabilities in PDB. The results underscore that protein side-chain conformation prediction is not a single-answer problem, leading us to reconsider the assessment approaches of side-chain prediction programs. PMID:27845406
Quantifying side-chain conformational variations in protein structure
NASA Astrophysics Data System (ADS)
Miao, Zhichao; Cao, Yang
2016-11-01
Protein side-chain conformation is closely related to their biological functions. The side-chain prediction is a key step in protein design, protein docking and structure optimization. However, side-chain polymorphism comprehensively exists in protein as various types and has been long overlooked by side-chain prediction. But such conformational variations have not been quantitatively studied and the correlations between these variations and residue features are vague. Here, we performed statistical analyses on large scale data sets and found that the side-chain conformational flexibility is closely related to the exposure to solvent, degree of freedom and hydrophilicity. These analyses allowed us to quantify different types of side-chain variabilities in PDB. The results underscore that protein side-chain conformation prediction is not a single-answer problem, leading us to reconsider the assessment approaches of side-chain prediction programs.
Quantifying side-chain conformational variations in protein structure.
Miao, Zhichao; Cao, Yang
2016-11-15
Protein side-chain conformation is closely related to their biological functions. The side-chain prediction is a key step in protein design, protein docking and structure optimization. However, side-chain polymorphism comprehensively exists in protein as various types and has been long overlooked by side-chain prediction. But such conformational variations have not been quantitatively studied and the correlations between these variations and residue features are vague. Here, we performed statistical analyses on large scale data sets and found that the side-chain conformational flexibility is closely related to the exposure to solvent, degree of freedom and hydrophilicity. These analyses allowed us to quantify different types of side-chain variabilities in PDB. The results underscore that protein side-chain conformation prediction is not a single-answer problem, leading us to reconsider the assessment approaches of side-chain prediction programs.
Punihaole, David; Jakubek, Ryan S; Workman, Riley J; Asher, Sanford A
2018-04-19
We determined an empirical correlation that relates the amide I vibrational band frequencies of the glutamine (Q) side chain to the strength of hydrogen bonding, van der Waals, and Lewis acid-base interactions of its primary amide carbonyl. We used this correlation to determine the Q side chain carbonyl interaction enthalpy (Δ H int ) in monomeric and amyloid-like fibril conformations of D 2 Q 10 K 2 (Q10). We independently verified these Δ H int values through molecular dynamics simulations that showed excellent agreement with experiments. We found that side chain-side chain and side chain-peptide backbone interactions in fibrils and monomers are more enthalpically favorable than are Q side chain-water interactions. Q10 fibrils also showed a more favorable Δ H int for side chain-side chain interactions compared to backbone-backbone interactions. This work experimentally demonstrates that interamide side chain interactions are important in the formation and stabilization of polyQ fibrils.
From Comb-like Polymers to Bottle-Brushes
NASA Astrophysics Data System (ADS)
Liang, Heyi; Cao, Zhen; Dobrynin, Andrey; Sheiko, Sergei
We use a combination of the coarse-grained molecular dynamics simulations and scaling analysis to study conformations of bottle-brushes and comb-like polymers in a melt. Our analysis show that bottle-brushes and comb-like polymers can be in four different conformation regimes depending on the number of monomers between grafted side chains and side chain degree of polymerization. In loosely-grafted comb regime (LC) the degree of polymerization between side chains is longer than side chain degree of polymerization, such that the side chains belonging to the same macromolecule do not overlap. Crossover to a new densely-grafted comb regime (DC) takes place when side chains begin to overlap reducing interpenetration of side chains belonging to different macromolecules. In these two regimes both side-chains and backbone behave as unperturbed linear chains with the effective Kuhn length of the backbone being close to that of linear chain. Further decrease spacer degree of polymerization results in crossover to loosely-grafted bottle-brush regime (LB). In this regime, the bottle-brush backbone is stretched while the side-chains still maintain ideal chain conformation. Finally, for even shorter spacer between grafted side chains, which corresponds to densely-grafted bottle-brush regime (DB), the backbone adopts a fully extended chain conformation, and side-chains begin to stretch to maintain a constant monomer density. NSF DMR-1409710, DMR-1407645, DMR-1624569, DMR-1436201.
Yoon, Hye Jin; Kim, Kyoung Hoon; Yang, Jin Kuk; Suh, Se Won; Kim, Hyunsik; Jang, Soonmin
2013-11-01
The intracellular pathogen Mycobacterium tuberculosis (Mtb) causes tuberculosis, and one of its secreted effector proteins, called enhanced intracellular survival (Eis) protein, enhances its survival in macrophages. Mtb Eis activates JNK-specific dual-specificity protein phosphatase 16 (DUSP16)/mitogen-activated protein kinase phosphatase-7 (MKP-7) through the acetylation on Lys55, thus inactivating JNK by dephosphorylation. Based on the recently reported crystal structure of Mtb Eis, a docking model for the binding of Mtb Eis to DUSP16/MKP-7 was generated. In the docking model, the substrate helix containing Lys55 of DUSP16/MKP-7 fits nicely into the active-site cleft of Mtb Eis; the twisted β-sheet of Eis domain II embraces the substrate helix from one side. Most importantly, the side-chain of Lys55 is inserted toward acetyl-CoA and the resulting distance is 4.6 Å between the NZ atom of Lys55 and the carbonyl carbon of the acetyl group in acetyl-CoA. The binding of Mtb Eis and DUSP16/MKP-7 is maintained by strong electrostatic interactions. The active-site cleft of Mtb Eis has a negatively charged surface formed by Asp25, Glu138, Asp286, Glu395 and the terminal carboxylic group of Phe396. In contrast, DUSP16/MKP-7 contains five basic residues, Lys52, Lys55, Arg56, Arg57 and Lys62, which point toward the negatively charged surface of the active-site pocket of Mtb Eis. Thus, the current docking model suggests that the binding of DUSP16/MKP-7 to Mtb Eis should be established by charge complementarity in addition to a very favorable geometric arrangement. The suggested mode of binding requires the dissociation of the hexameric Mtb Eis into dimers or monomers. This study may be useful for future studies aiming to develop inhibitors of Mtb Eis as a new anti-tuberculosis drug candidate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soriano, Erika V.; McCloskey, Diane E.; Kinsland, Cynthia
2008-04-01
The crystal structures of two arginine decarboxylase mutant proteins provide insights into the mechanisms of pyruvoyl-group formation and the decarboxylation reaction. Pyruvoyl-dependent arginine decarboxylase (PvlArgDC) catalyzes the first step of the polyamine-biosynthetic pathway in plants and some archaebacteria. The pyruvoyl group of PvlArgDC is generated by an internal autoserinolysis reaction at an absolutely conserved serine residue in the proenzyme, resulting in two polypeptide chains. Based on the native structure of PvlArgDC from Methanococcus jannaschii, the conserved residues Asn47 and Glu109 were proposed to be involved in the decarboxylation and autoprocessing reactions. N47A and E109Q mutant proteins were prepared and themore » three-dimensional structure of each protein was determined at 2.0 Å resolution. The N47A and E109Q mutant proteins showed reduced decarboxylation activity compared with the wild-type PvlArgDC. These residues may also be important for the autoprocessing reaction, which utilizes a mechanism similar to that of the decarboxylation reaction.« less
Electroactive polymer-peptide conjugates for adhesive biointerfaces.
Maione, Silvana; Gil, Ana M; Fabregat, Georgina; Del Valle, Luis J; Triguero, Jordi; Laurent, Adele; Jacquemin, Denis; Estrany, Francesc; Jiménez, Ana I; Zanuy, David; Cativiela, Carlos; Alemán, Carlos
2015-10-15
Electroactive polymer-peptide conjugates have been synthesized by combining poly(3,4-ethylenedioxythiophene), a polythiophene derivative with outstanding properties, and an Arg-Gly-Asp (RGD)-based peptide in which Gly has been replaced by an exotic amino acid bearing a 3,4-ethylenedioxythiophene ring in the side chain. The incorporation of the peptide at the ends of preformed PEDOT chains has been corroborated by both FTIR and X-ray photoelectron spectroscopy. Although the morphology and topology are not influenced by the incorporation of the peptide at the ends of PEDOT chains, this process largely affects other surface properties. Thus, the wettability of the conjugates is considerably higher than that of PEDOT, independently of the synthetic strategy, whereas the surface roughness only increases when the conjugate is obtained using a competing strategy (i.e. growth of the polymer chains against termination by end capping). The electrochemical activity of the conjugates has been found to be higher than that of PEDOT, evidencing the success of the polymer-peptide links designed by chemical similarity. Density functional theory calculations have been used not only to ascertain the conformational preferences of the peptide but also to interpret the electronic transitions detected by UV-vis spectroscopy. Electroactive surfaces prepared using the conjugates displayed the higher bioactivities in terms of cell adhesion, with the relative viabilities being dependent on the roughness, wettability and electrochemical activity of the conjugate. In addition to the influence of the peptide fragment in the initial cell attachment and subsequent cell spreading and survival, the results indicate that PEDOT promotes the exchange of ions at the conjugate-cell interface.
NASA Astrophysics Data System (ADS)
Porter, Stephen Christopher
1999-10-01
New segmented polyetherurethanes (PEUs) with low surface energy hydrocarbon and fluorocarbon side-chains attached to the polymer hard segments were synthesized. The surface chemistry of solvent cast polymer films was studied using X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and dynamic contact angle (DCA) measurements. Increases in the overall density and length of the alkyl side-chains within the PEUs resulted in greater side-chain concentrations at the polymer surface. PEUs bearing long alkyl (> C10 ) and perfluorocarbon side-chains were found to posses surfaces with highly enriched side-chain concentrations relative to the bulk polymer. In PEUs with significant side-chain surface enrichment, the relatively polar hard segment blocks were shown to reside in high concentrations just below the side-chain enriched surface layer. Furthermore, DCA measurements demonstrated that the surface of the alkyl side-chain PEUs did not undergo significant rearrangement when placed into an aqueous environment, whereas the surface of a hard segment model polymer bearing C18 sidechains (PEU-C18-HS) did. Hydrogen bonding within the PEUs was examined using FTIR and was shown to be disrupted by the addition of side-chains; an effect dependent on the density but not on the length of the side-chains. Heteropolymer blends comprised of mixtures of high side-chain density and side-chain free PEUs were compared with homopolymers having the same overall side-chain concentration as the blends. Significantly more surface enrichment of side-chains was found in the heteropolymer blends whereas hydrogen bonding nearly the same as in the homopolymers. Adsorption of native and delipidized human serum albumin (HSA) from pure solution and blood plasma; the elutabilty of adsorbed HSA; and static platelet adhesion to plasma preadsorbed surfaces, were all examined on alkyl side-chain PEUs. Several polymers with high C18 side-chain densities displayed increased affinity for albumin, and reduced elutability. Among these, PEU-C18-HS demonstrated a significant reduction in platelet adhesion at low plasma pre-adsorption concentrations. However, competitive binary adsorption of fibrinogen in the presence of HSA demonstrated lower relative albumin affinity for PEU-C18-HS than other PEUs. The observed effects are thought to be mainly a result of increased surface hydrophobicity of the alkyl-side chain modified PEU, and not high specificity albumin binding.
The Structural Basis of [beta]-Peptide-Specific Cleavage by the Serine Protease Cyanophycinase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, Adrienne M.; Lai, Sandy W.S.; Tavares, John
2010-10-01
Cyanophycin, or poly-L-Asp-multi-L-Arg, is a non-ribosomally synthesized peptidic polymer that is used for nitrogen storage by cyanobacteria and other select eubacteria. Upon synthesis, it self-associates to form insoluble granules, the degradation of which is uniquely catalyzed by a carboxy-terminal-specific protease, cyanophycinase. We have determined the structure of cyanophycinase from the freshwater cyanobacterium Synechocystis sp. PCC6803 at 1.5-{angstrom} resolution, showing that the structure is dimeric, with individual protomers resembling aspartyl dipeptidase. Kinetic characterization of the enzyme demonstrates that the enzyme displays Michaelis-Menten kinetics with a k{sub cat} of 16.5 s{sup -1} and a k{sub cat}/K{sub M} of 7.5 x 10{sup -6}more » M{sup -1} s{sup -1}. Site-directed mutagenesis experiments confirm that cyanophycinase is a serine protease and that Gln101, Asp172, Gln173, Arg178, Arg180 and Arg183, which form a conserved pocket adjacent to the catalytic Ser132, are functionally critical residues. Modeling indicates that cyanophycinase binds the {beta}-Asp-Arg dipeptide residue immediately N-terminal to the scissile bond in an extended conformation in this pocket, primarily recognizing this penultimate {beta}-Asp-Arg residue of the polymeric chain. Because binding and catalysis depend on substrate features unique to {beta}-linked aspartyl peptides, cyanophycinase is able to act within the cytosol without non-specific cleavage events disrupting essential cellular processes.« less
Duan, Manli; Li, Haichao; Gu, Jie; Tuo, Xiaxia; Sun, Wei; Qian, Xun; Wang, Xiaojuan
2017-05-01
Antibiotics and antibiotic resistance genes (ARGs) in soil can affect human health via the food chain. Biochar is a soil amendment but its impacts on ARGs and the microbial communities associated with soil and vegetables are unclear. Therefore, we established three lettuce pot culture experiments, i.e., O300: 300 mg/kg oxytetracycline (OTC), BO300: 300 mg/kg OTC + 2% biochar, and a control without OTC or biochar. We found that under BO300, the relative abundances of ARGs were reduced by 51.8%, 43.4%, and 44.1% in lettuce leaves, roots, and soil, respectively, compared with O300. intI1 was highly abundant in soil and lettuce, and it co-occurred with some ARGs (tetW, ermF, and sul1). Redundancy analysis and network analysis indicated that the bacterial community succession was the main mechanism that affected the variations in ARGs and intI1. The reduction of Firmicutes due to the biochar treatment of soil and lettuce was the main factor responsible for the removal of tetracycline resistance genes in leaves. Biochar application led to the disappearance of human pathogenic bacteria (HPB), which was significantly correlated with the abundances of ermF and ermX. In summary, biochar is an effective farmland amendment for reducing the abundances of antibiotics, ARGs, and HPB in order to ensure the safety of vegetables and protect human health. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wallace, Joshua S; Garner, Emily; Pruden, Amy; Aga, Diana S
2018-05-01
Manure treatment technologies are rapidly developing to minimize eutrophication of surrounding environments and potentially decrease the introduction of antibiotics and antibiotic resistant genes (ARGs) into the environment. While laboratory and pilot-scale manure treatment systems boast promising results, antibiotic and ARG removals in full-scale systems receiving continuous manure input have not been evaluated. The effect of treatment on ARGs is similarly lacking. This study examines the occurrence and transformation of sulfonamides, tetracyclines, tetracycline degradation products, and related ARGs throughout a full-scale advanced anaerobic digester (AAD) receiving continuous manure and antibiotic input. Manure samples were collected throughout the AAD system to evaluate baseline antibiotic and ARG input (raw manure), the effect of hygenization (post-pasteurized manure) and anaerobic digestion (post-digestion manure) on antibiotic and ARG levels. Antibiotics were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the ARGs tet(O), tet(W), sul1 and sul2 were analyzed by quantitative polymerase chain reaction (Q-PCR). Significant reductions in the concentrations of chlortetracycline, oxytetracycline, tetracycline and their degradation products were observed in manure liquids following treatment (p < 0.001), concomitant to significant increases in manure solids (p < 0.001). These results suggest sorption is the major removal route for tetracyclines during AAD. Significant decreases in the epimer-to-total residue ratios for chlortetracycline and tetracycline in manure solids further indicate degradation is desorption-limited. Moreover, sul1 and sul2 copies decreased significantly (p < 0.001) following AAD in the absence of sulfonamide antibiotics, while tetracyclines-resistant genes remained unchanged. A cross-sectional study of dairy farms utilizing natural aeration and liquid-solid separation treatments was additionally performed to compare levels of antibiotics and ARGs found in AAD with the levels in common manure management systems. The concentration of antibiotics in raw manure varied greatly between farms while minimal differences in ARGs were observed. However, significant (p < 0.01) differences in the levels of antibiotics and ARGs (except tet(W)) were observed in the effluents from the three different manure management systems. Copyright © 2018 Elsevier Ltd. All rights reserved.
Changes in conformational dynamics of basic side chains upon protein–DNA association
Esadze, Alexandre; Chen, Chuanying; Zandarashvili, Levani; Roy, Sourav; Pettitt, B. Montgometry; Iwahara, Junji
2016-01-01
Basic side chains play major roles in recognition of nucleic acids by proteins. However, dynamic properties of these positively charged side chains are not well understood. In this work, we studied changes in conformational dynamics of basic side chains upon protein–DNA association for the zinc-finger protein Egr-1. By nuclear magnetic resonance (NMR) spectroscopy, we characterized the dynamics of all side-chain cationic groups in the free protein and in the complex with target DNA. Our NMR order parameters indicate that the arginine guanidino groups interacting with DNA bases are strongly immobilized, forming rigid interfaces. Despite the strong short-range electrostatic interactions, the majority of the basic side chains interacting with the DNA phosphates exhibited high mobility, forming dynamic interfaces. In particular, the lysine side-chain amino groups exhibited only small changes in the order parameters upon DNA-binding. We found a similar trend in the molecular dynamics (MD) simulations for the free Egr-1 and the Egr-1–DNA complex. Using the MD trajectories, we also analyzed side-chain conformational entropy. The interfacial arginine side chains exhibited substantial entropic loss upon binding to DNA, whereas the interfacial lysine side chains showed relatively small changes in conformational entropy. These data illustrate different dynamic characteristics of the interfacial arginine and lysine side chains. PMID:27288446
Novel mutations in the CHST6 gene associated with macular corneal dystrophy in southern India.
Warren, John F; Aldave, Anthony J; Srinivasan, M; Thonar, Eugene J; Kumar, Abha B; Cevallos, Vicky; Whitcher, John P; Margolis, Todd P
2003-11-01
To further characterize the role of the carbohydrate sulfotransferase (CHST6) gene in macular corneal dystrophy (MCD) through identification of causative mutations in a cohort of affected patients from southern India. Genomic DNA was extracted from buccal epithelium of 75 patients (51 families) with MCD, 33 unaffected relatives, and 48 healthy volunteers. The coding region of the CHST6 gene was evaluated by means of polymerase chain reaction amplification and direct sequencing. Subtyping of MCD into types I and II was performed by measuring serum levels of antigenic keratan sulfate. Seventy patients were classified as having type I MCD, and 5 patients as having type II MCD. Analysis of the CHST6 coding region in patients with type I MCD identified 11 homozygous missense mutations (Leu22Arg, His42Tyr, Arg50Cys, Arg50Leu, Ser53Leu, Arg97Pro, Cys102Tyr, Arg127Cys, Arg205Gln, His249Pro, and Glu274Lys), 2 compound heterozygous missense mutations (Arg93His and Ala206Thr), 5 homozygous deletion mutations (delCG707-708, delC890, delA1237, del1748-1770, and delORF), and 2 homozygous replacement mutations (ACCTAC 1273 GGT, and GCG 1304 AT). One patient with type II MCD was heterozygous for the C890 deletion mutation, whereas 4 possessed no CHST6 coding region mutations. A variety of previously unreported mutations in the coding region of the CHST6 gene are associated with type I MCD in a cohort of patients in southern India. An improved understanding of the genetic basis of MCD allows for earlier, more accurate diagnosis of affected individuals, and may provide the foundation for the development of novel disease treatments.
Li, Xiaoxin; Ma, Xiang; Tao, Yong
2007-06-07
To describe the clinical phenotype of X linked juvenile retinoschisis (XLRS) in 12 Chinese families with 11 different mutations in the XLRS1 (RS1) gene. Complete ophthalmic examinations were carried out in 29 affected males (12 probands), 38 heterozygous females carriers, and 100 controls. The coding regions of the RS1 gene that encodes retinoschisin were amplified by polymerase chain reaction and directly sequenced. Of the 29 male participants, 28 (96.6%) displayed typical foveal schisis. Eleven different RS1 mutations were identified in 12 families; four of these mutations, two frameshift mutations (26 del T of exon 1 and 488 del G of exon 5), and two missense mutations (Asp145His and Arg156Gly) of exon 5, had not been previously described. One non-disease-related polymorphism (NSP): 576C to T (Pro192Pro) change was also newly reported herein. We compared genotypes and observed more severe clinical features in families with the following mutations: frameshift mutation (26 del T) of exon 1, the splice donor site mutation (IVS1+2T to C),or Arg102Gln, Arg209His, and Arg213Gln mutations. Severe XLRS phenotypes are associated with the frameshift mutation 26 del T, splice donor site mutation (IVS1+2T to C), and Arg102Gln, Asp145His, Arg209His, and Arg213Gln mutations. The wide variability in the phenotype in Chinese patients with XLRS and different mutations in the RS1 gene is described. Identification of mutations in the RS1 gene and expanded information on clinical manifestations will facilitate early diagnosis, appropriate early therapy, and genetic counseling regarding the prognosis of XLRS.
Ma, Xiang; Tao, Yong
2007-01-01
Purpose To describe the clinical phenotype of X linked juvenile retinoschisis (XLRS) in 12 Chinese families with 11 different mutations in the XLRS1 (RS1) gene. Methods Complete ophthalmic examinations were carried out in 29 affected males (12 probands), 38 heterozygous females carriers, and 100 controls. The coding regions of the RS1 gene that encodes retinoschisin were amplified by polymerase chain reaction and directly sequenced. Results Of the 29 male participants, 28 (96.6%) displayed typical foveal schisis. Eleven different RS1 mutations were identified in 12 families; four of these mutations, two frameshift mutations (26 del T of exon 1 and 488 del G of exon 5), and two missense mutations (Asp145His and Arg156Gly) of exon 5, had not been previously described. One non-disease-related polymorphism (NSP): 576C to T (Pro192Pro) change was also newly reported herein. We compared genotypes and observed more severe clinical features in families with the following mutations: frameshift mutation (26 del T) of exon 1, the splice donor site mutation (IVS1+2T to C),or Arg102Gln, Arg209His, and Arg213Gln mutations. Conclusions Severe XLRS phenotypes are associated with the frameshift mutation 26 del T, splice donor site mutation (IVS1+2T to C), and Arg102Gln, Asp145His, Arg209His, and Arg213Gln mutations. The wide variability in the phenotype in Chinese patients with XLRS and different mutations in the RS1 gene is described. Identification of mutations in the RS1 gene and expanded information on clinical manifestations will facilitate early diagnosis, appropriate early therapy, and genetic counseling regarding the prognosis of XLRS. PMID:17615541
An improved approach to the analysis of drug-protein binding by distance geometry
NASA Technical Reports Server (NTRS)
Goldblum, A.; Kieber-Emmons, T.; Rein, R.
1986-01-01
The calculation of side chain centers of coordinates and the subsequent generation of side chain-side chain and side chain-backbone distance matrices is suggested as an improved method for viewing interactions inside proteins and for the comparison of protein structures. The use of side chain distance matrices is demonstrated with free PTI, and the use of difference distance matrices for side chains is shown for free and trypsin-bound PTI as well as for the X-ray structures of trypsin complexes with PTI and with benzamidine. It is found that conformational variations are reflected in the side chain distance matrices much more than in the standard C-C distance representations.
Mills, Jeffrey L; Liu, Gaohua; Skerra, Arne; Szyperski, Thomas
2009-08-11
The NMR structure of the 21 kDa lipocalin FluA, which was previously obtained by combinatorial design, elucidates a reshaped binding site specific for the dye fluorescein resulting from 21 side chain replacements with respect to the parental lipocalin, the naturally occurring bilin-binding protein (BBP). As expected, FluA exhibits the lipocalin fold of BBP, comprising eight antiparallel beta-strands forming a beta-barrel with an alpha-helix attached to its side. Comparison of the NMR structure of free FluA with the X-ray structures of BBP.biliverdin IX(gamma) and FluA.fluorescein complexes revealed significant conformational changes in the binding pocket, which is formed by four loops at the open end of the beta-barrel as well as adjoining beta-strand segments. An "induced fit" became apparent for the side chain conformations of Arg 88 and Phe 99, which contact the bound fluorescein in the complex and undergo concerted rearrangement upon ligand binding. Moreover, slower internal motional modes of the polypeptide backbone were identified by measuring transverse (15)N backbone spin relaxation times in the rotating frame for free FluA and also for the FluA.fluorescein complex. A reduction in the level of such motions was detected upon complex formation, indicating rigidification of the protein structure and loss of conformational entropy. This hypothesis was confirmed by isothermal titration calorimetry, showing that ligand binding is enthalpy-driven, thus overcompensating for the negative entropy associated with both ligand binding per se and rigidification of the protein. Our investigation of the solution structure and dynamics as well as thermodynamics of lipocalin-ligand interaction not only provides insight into the general mechanism of small molecule accommodation in the deep and narrow cavity of this abundant class of proteins but also supports the future design of corresponding binding proteins with novel specificities, so-called "anticalins".
Armstrong, Craig T.; Mason, Philip E.; Anderson, J. L. Ross; Dempsey, Christopher E.
2016-01-01
Gating charges in voltage-sensing domains (VSD) of voltage-sensitive ion channels and enzymes are carried on arginine side chains rather than lysine. This arginine preference may result from the unique hydration properties of the side chain guanidinium group which facilitates its movement through a hydrophobic plug that seals the center of the VSD, as suggested by molecular dynamics simulations. To test for side chain interactions implicit in this model we inspected interactions of the side chains of arginine and lysine with each of the 19 non-glycine amino acids in proteins in the protein data bank. The arginine guanidinium interacts with non-polar aromatic and aliphatic side chains above and below the guanidinium plane while hydrogen bonding with polar side chains is restricted to in-plane positions. In contrast, non-polar side chains interact largely with the aliphatic part of the lysine side chain. The hydration properties of arginine and lysine are strongly reflected in their respective interactions with non-polar and polar side chains as observed in protein structures and in molecular dynamics simulations, and likely underlie the preference for arginine as a mobile charge carrier in VSD. PMID:26899474
NASA Astrophysics Data System (ADS)
Armstrong, Craig T.; Mason, Philip E.; Anderson, J. L. Ross; Dempsey, Christopher E.
2016-02-01
Gating charges in voltage-sensing domains (VSD) of voltage-sensitive ion channels and enzymes are carried on arginine side chains rather than lysine. This arginine preference may result from the unique hydration properties of the side chain guanidinium group which facilitates its movement through a hydrophobic plug that seals the center of the VSD, as suggested by molecular dynamics simulations. To test for side chain interactions implicit in this model we inspected interactions of the side chains of arginine and lysine with each of the 19 non-glycine amino acids in proteins in the protein data bank. The arginine guanidinium interacts with non-polar aromatic and aliphatic side chains above and below the guanidinium plane while hydrogen bonding with polar side chains is restricted to in-plane positions. In contrast, non-polar side chains interact largely with the aliphatic part of the lysine side chain. The hydration properties of arginine and lysine are strongly reflected in their respective interactions with non-polar and polar side chains as observed in protein structures and in molecular dynamics simulations, and likely underlie the preference for arginine as a mobile charge carrier in VSD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calvo, Eric; Mans, Ben J.; Ribeiro, José M.C.
The mosquito D7 salivary proteins are encoded by a multigene family related to the arthropod odorant-binding protein (OBP) superfamily. Forms having either one or two OBP domains are found in mosquito saliva. Four single-domain and one two-domain D7 proteins from Anopheles gambiae and Aedes aegypti (AeD7), respectively, were shown to bind biogenic amines with high affinity and with a stoichiometry of one ligand per protein molecule. Sequence comparisons indicated that only the C-terminal domain of AeD7 is homologous to the single-domain proteins from A. gambiae, suggesting that the N-terminal domain may bind a different class of ligands. Here, we describemore » the 3D structure of AeD7 and examine the ligand-binding characteristics of the N- and C-terminal domains. Isothermal titration calorimetry and ligand complex crystal structures show that the N-terminal domain binds cysteinyl leukotrienes (cysLTs) with high affinities (50-60 nM) whereas the C-terminal domain binds biogenic amines. The lipid chain of the cysLT binds in a hydrophobic pocket of the N-terminal domain, whereas binding of norepinephrine leads to an ordering of the C-terminal portion of the C-terminal domain into an alpha-helix that, along with rotations of Arg-176 and Glu-268 side chains, acts to bury the bound ligand.« less
Monti, Susanna; Bramanti, Emilia; Della Porta, Valentina; Onor, Massimo; D'Ulivo, Alessandro; Barone, Vincenzo
2013-09-21
The binding of chlorosulphonated paraffins to collagen triple helices is studied by means of classical molecular dynamics simulations and experimental spectroscopic techniques in order to disclose the principal characteristics of their interaction during the leather fattening process. Indeed, collagen is the main target to develop new leather modifying agents with specific characteristics, and an accurate design of the collagen binders, supported by predictive computational strategies, could be a successful tool to obtain new effective eco-compatible compounds able to impart to the leather the required functionalities and distinctive mechanical properties. Possible effects caused by the tanning agents on the collagen matrix have been identified from both experimental and theoretical points of view. Computational data in agreement with experiment have revealed that chlorosulphonated paraffins can interact favorably with the collagen residues having amine groups in their side chains (Arg, Lys, Asn and Gln) and reduce the tendency of the solvated collagen matrix to swell. However, the interference of chlorosulphonated paraffins with the unfolding process, which is operated mainly by the action of water, can be due both to covalent cross-linking of the collagen chains and intermolecular hydrogen bonding interactions involving also the hydroxyl groups of Hyp, Ser and Thr residues.
Ito, W; Nishimura, M; Sakato, N; Fujio, H; Arata, Y
1987-09-01
A proton nuclear magnetic resonance (NMR) study is reported of the molecular structural basis of antigen-antibody interactions. An immunologically reactive proteolytic fragment corresponding to one of the antigenic regions on hen egg-white lysozyme (HEL) was used in combination with a monoclonal antibody that recognizes this site. Using spin diffusion, we prepared an antibody in which the magnetization of the antigen binding site was saturated by non-specific nuclear Overhauser effect. Under these conditions the effect of the saturation of the antibody was observed to spread over the peptide fragment through the antigen binding site. On the basis of the results obtained for the intermolecular nuclear Overhauser effect, we discuss how the peptide fragment interacts with the antibody. The side chains of aromatic residues, Trp, Tyr, and His, and of ionic residues, especially Arg, Lys, and Glu, are suggested to be important in the antigen-antibody interaction.
Structure-function Analysis of Receptor-binding in Adeno-Associated Virus Serotype 6 (AAV-6)
Xie, Qing; Lerch, Thomas F.; Meyer, Nancy L.; Chapman, Michael S.
2011-01-01
Crystal structures of the AAV-6 capsid at 3 Å reveal a subunit fold homologous to other parvoviruses with greatest differences in two external loops. The electrostatic potential suggests that receptor-attachment is mediated by four residues: Arg576, Lys493, Lys459 and Lys531, defining a positively charged region curving up from the valley between adjacent spikes. It overlaps only partially with the receptor-binding site of AAV-2, and the residues endowing the electrostatic character are not homologous. Mutational substitution of each residue decreases heparin affinity, particularly Lys531 and Lys459. Neither is conserved among heparin-binding serotypes, indicating that diverse modes of receptor attachment have been selected in different serotypes. Surface topology and charge are also distinct at the shoulder of the spike, where linear epitopes for AAV-2’s neutralizing monoclonal antibody A20 come together. Evolutionarily, selection of changed side-chain charge may have offered a conservative means to evade immune neutralization while preserving other essential functionality. PMID:21917284
The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giovannitti, Alexander; Maria, Iuliana P.; Hanifi, David
Here, we report a design strategy that allows the preparation of solution processable n-type materials from low boiling point solvents for organic electrochemical transistors (OECTs). The polymer backbone is based on NDI-T2 copolymers where a branched alkyl side chain is gradually exchanged for a linear ethylene glycol-based side chain. A series of random copolymers was prepared with glycol side chain percentages of 0, 10, 25, 50, 75, 90, and 100 with respect to the alkyl side chains. These were characterized to study the influence of the polar side chains on interaction with aqueous electrolytes, their electrochemical redox reactions, and performancemore » in OECTs when operated in aqueous electrolytes. We observed that glycol side chain percentages of >50% are required to achieve volumetric charging, while lower glycol chain percentages show a mixed operation with high required voltages to allow for bulk charging of the organic semiconductor. A strong dependence of the electron mobility on the fraction of glycol chains was found for copolymers based on NDI-T2, with a significant drop as alkyl side chains are replaced by glycol side chains.« less
The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes.
Giovannitti, Alexander; Maria, Iuliana P; Hanifi, David; Donahue, Mary J; Bryant, Daniel; Barth, Katrina J; Makdah, Beatrice E; Savva, Achilleas; Moia, Davide; Zetek, Matyáš; Barnes, Piers R F; Reid, Obadiah G; Inal, Sahika; Rumbles, Garry; Malliaras, George G; Nelson, Jenny; Rivnay, Jonathan; McCulloch, Iain
2018-05-08
We report a design strategy that allows the preparation of solution processable n-type materials from low boiling point solvents for organic electrochemical transistors (OECTs). The polymer backbone is based on NDI-T2 copolymers where a branched alkyl side chain is gradually exchanged for a linear ethylene glycol-based side chain. A series of random copolymers was prepared with glycol side chain percentages of 0, 10, 25, 50, 75, 90, and 100 with respect to the alkyl side chains. These were characterized to study the influence of the polar side chains on interaction with aqueous electrolytes, their electrochemical redox reactions, and performance in OECTs when operated in aqueous electrolytes. We observed that glycol side chain percentages of >50% are required to achieve volumetric charging, while lower glycol chain percentages show a mixed operation with high required voltages to allow for bulk charging of the organic semiconductor. A strong dependence of the electron mobility on the fraction of glycol chains was found for copolymers based on NDI-T2, with a significant drop as alkyl side chains are replaced by glycol side chains.
The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes
Giovannitti, Alexander; Maria, Iuliana P.; Hanifi, David; ...
2018-04-24
Here, we report a design strategy that allows the preparation of solution processable n-type materials from low boiling point solvents for organic electrochemical transistors (OECTs). The polymer backbone is based on NDI-T2 copolymers where a branched alkyl side chain is gradually exchanged for a linear ethylene glycol-based side chain. A series of random copolymers was prepared with glycol side chain percentages of 0, 10, 25, 50, 75, 90, and 100 with respect to the alkyl side chains. These were characterized to study the influence of the polar side chains on interaction with aqueous electrolytes, their electrochemical redox reactions, and performancemore » in OECTs when operated in aqueous electrolytes. We observed that glycol side chain percentages of >50% are required to achieve volumetric charging, while lower glycol chain percentages show a mixed operation with high required voltages to allow for bulk charging of the organic semiconductor. A strong dependence of the electron mobility on the fraction of glycol chains was found for copolymers based on NDI-T2, with a significant drop as alkyl side chains are replaced by glycol side chains.« less
Changes in conformational dynamics of basic side chains upon protein-DNA association.
Esadze, Alexandre; Chen, Chuanying; Zandarashvili, Levani; Roy, Sourav; Pettitt, B Montgometry; Iwahara, Junji
2016-08-19
Basic side chains play major roles in recognition of nucleic acids by proteins. However, dynamic properties of these positively charged side chains are not well understood. In this work, we studied changes in conformational dynamics of basic side chains upon protein-DNA association for the zinc-finger protein Egr-1. By nuclear magnetic resonance (NMR) spectroscopy, we characterized the dynamics of all side-chain cationic groups in the free protein and in the complex with target DNA. Our NMR order parameters indicate that the arginine guanidino groups interacting with DNA bases are strongly immobilized, forming rigid interfaces. Despite the strong short-range electrostatic interactions, the majority of the basic side chains interacting with the DNA phosphates exhibited high mobility, forming dynamic interfaces. In particular, the lysine side-chain amino groups exhibited only small changes in the order parameters upon DNA-binding. We found a similar trend in the molecular dynamics (MD) simulations for the free Egr-1 and the Egr-1-DNA complex. Using the MD trajectories, we also analyzed side-chain conformational entropy. The interfacial arginine side chains exhibited substantial entropic loss upon binding to DNA, whereas the interfacial lysine side chains showed relatively small changes in conformational entropy. These data illustrate different dynamic characteristics of the interfacial arginine and lysine side chains. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Silva, Marcilene Rezende; Sendin, Shimene Mascarenhas; Araujo, Isabela Couto de Oliveira; Pimentel, Fernanda Silva; Viana, Marcos Borato
2013-01-01
To characterize alpha-chain variant hemoglobins with electric mobility similar to that of hemoglobin S in a newborn screening program. β(S) allele and alpha-thalassemia deletions were investigated in 14 children who had undefined hemoglobin at birth and an electrophoretic profile similar to that of hemoglobin S when they were six months old. Gene sequencing and restriction enzymes (DdeI, BsaJI, NlaIV, Bsu36I and TaqI) were used to identify hemoglobins. Clinical and hematological data were obtained from children who attended scheduled medical visits. THE FOLLOWING ALPHA CHAIN VARIANTS WERE FOUND: seven children with hemoglobin Hasharon [alpha2 47(CE5) Asp>His, HbA2:c.142G>C], all associated with alpha-thalassemia, five with hemoglobin Ottawa [alpha1 15(A13) Gly>Arg, HBA1:c.46G>C], one with hemoglobin St Luke's [alpha1 95(G2) Pro>Arg, HBA1:c.287C>G] and another one with hemoglobin Etobicoke [alpha212 84(F5) Ser>Arg, HBA212:c.255C>G]. Two associations with hemoglobin S were found: one with hemoglobin Ottawa and one with hemoglobin St Luke's. The mutation underlying hemoglobin Etobicoke was located in a hybrid α212 allele in one child. There was no evidence of clinically relevant hemoglobins detected in this study. Apparently these are the first cases of hemoglobin Ottawa, St Luke's, Etobicoke and the α212 gene described in Brazil. The hemoglobins detected in this study may lead to false diagnosis of sickle cell trait or sickle cell disease when only isoelectric focusing is used in neonatal screening. Additional tests are necessary for the correct identification of hemoglobin variants.
Solvation thermodynamics of amino acid side chains on a short peptide backbone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hajari, Timir; Vegt, Nico F. A. van der, E-mail: vandervegt@csi.tu-darmstadt.de
The hydration process of side chain analogue molecules differs from that of the actual amino acid side chains in peptides and proteins owing to the effects of the peptide backbone on the aqueous solvent environment. A recent molecular simulation study has provided evidence that all nonpolar side chains, attached to a short peptide backbone, are considerably less hydrophobic than the free side chain analogue molecules. In contrast to this, the hydrophilicity of the polar side chains is hardly affected by the backbone. To analyze the origin of these observations, we here present a molecular simulation study on temperature dependent solvationmore » free energies of nonpolar and polar side chains attached to a short peptide backbone. The estimated solvation entropies and enthalpies of the various amino acid side chains are compared with existing side chain analogue data. The solvation entropies and enthalpies of the polar side chains are negative, but in absolute magnitude smaller compared with the corresponding analogue data. The observed differences are large; however, owing to a nearly perfect enthalpy-entropy compensation, the solvation free energies of polar side chains remain largely unaffected by the peptide backbone. We find that a similar compensation does not apply to the nonpolar side chains; while the backbone greatly reduces the unfavorable solvation entropies, the solvation enthalpies are either more favorable or only marginally affected. This results in a very small unfavorable free energy cost, or even free energy gain, of solvating the nonpolar side chains in strong contrast to solvation of small hydrophobic or nonpolar molecules in bulk water. The solvation free energies of nonpolar side chains have been furthermore decomposed into a repulsive cavity formation contribution and an attractive dispersion free energy contribution. We find that cavity formation next to the peptide backbone is entropically favored over formation of similar sized nonpolar side chain cavities in bulk water, in agreement with earlier work in the literature on analysis of cavity fluctuations at nonpolar molecular surfaces. The cavity and dispersion interaction contributions correlate quite well with the solvent accessible surface area of the nonpolar side chains attached to the backbone. This correlation however is weak for the overall solvation free energies owing to the fact that the cavity and dispersion free energy contributions are almost exactly cancelling each other.« less
Solvation thermodynamics of amino acid side chains on a short peptide backbone
NASA Astrophysics Data System (ADS)
Hajari, Timir; van der Vegt, Nico F. A.
2015-04-01
The hydration process of side chain analogue molecules differs from that of the actual amino acid side chains in peptides and proteins owing to the effects of the peptide backbone on the aqueous solvent environment. A recent molecular simulation study has provided evidence that all nonpolar side chains, attached to a short peptide backbone, are considerably less hydrophobic than the free side chain analogue molecules. In contrast to this, the hydrophilicity of the polar side chains is hardly affected by the backbone. To analyze the origin of these observations, we here present a molecular simulation study on temperature dependent solvation free energies of nonpolar and polar side chains attached to a short peptide backbone. The estimated solvation entropies and enthalpies of the various amino acid side chains are compared with existing side chain analogue data. The solvation entropies and enthalpies of the polar side chains are negative, but in absolute magnitude smaller compared with the corresponding analogue data. The observed differences are large; however, owing to a nearly perfect enthalpy-entropy compensation, the solvation free energies of polar side chains remain largely unaffected by the peptide backbone. We find that a similar compensation does not apply to the nonpolar side chains; while the backbone greatly reduces the unfavorable solvation entropies, the solvation enthalpies are either more favorable or only marginally affected. This results in a very small unfavorable free energy cost, or even free energy gain, of solvating the nonpolar side chains in strong contrast to solvation of small hydrophobic or nonpolar molecules in bulk water. The solvation free energies of nonpolar side chains have been furthermore decomposed into a repulsive cavity formation contribution and an attractive dispersion free energy contribution. We find that cavity formation next to the peptide backbone is entropically favored over formation of similar sized nonpolar side chain cavities in bulk water, in agreement with earlier work in the literature on analysis of cavity fluctuations at nonpolar molecular surfaces. The cavity and dispersion interaction contributions correlate quite well with the solvent accessible surface area of the nonpolar side chains attached to the backbone. This correlation however is weak for the overall solvation free energies owing to the fact that the cavity and dispersion free energy contributions are almost exactly cancelling each other.
SCit: web tools for protein side chain conformation analysis.
Gautier, R; Camproux, A-C; Tufféry, P
2004-07-01
SCit is a web server providing services for protein side chain conformation analysis and side chain positioning. Specific services use the dependence of the side chain conformations on the local backbone conformation, which is described using a structural alphabet that describes the conformation of fragments of four-residue length in a limited library of structural prototypes. Based on this concept, SCit uses sets of rotameric conformations dependent on the local backbone conformation of each protein for side chain positioning and the identification of side chains with unlikely conformations. The SCit web server is accessible at http://bioserv.rpbs.jussieu.fr/SCit.
New peptidomimetics of insulin.
Maslov, D L; Lokhov, P G; Abakumova, O Yu; Tsvetkova, T A; Prozorovskiy, V N
2002-08-01
New peptidomimetics that have been obtained in the course of our experimental work show distinct insulin-like activity both in vitro and in vivo. The first peptidomimetic (PM 1) is essentially a decapeptide in which sites of A (20-21) and B (19-26) chains of insulin are linked by the peptides bond (Cys-Gly-Glu-Arg-Gly-Phe-Phe-Tyr-Cys-Asn). The second peptidomimetic (PM 2) has similar set of amino acid residues, except that two aromatic amino acids corresponding to the residues of B chain of insulin (B24 and B26) have been replaced with their D optical isomers (Cys-Gly-Glu-Arg-Gly-DPhe-Phe-DTyr-Cys-Asn). The third peptidomimetic (PM 3) has been obtained through acylation of N-terminal of PM 1 by the use of palmitic acid. The peptidomimetic incorporating D aromatic amino acids (PM 2) was demonstrated to exhibit more pronounced hypoglycemic impact, while the acylation of decapeptide tends to prolong the effective time of peptidomimetic influence in vivo.
Karasaki, Yuji; Kashiwazaki, Hiroshi
2004-01-01
To investigate whether population differences in food and/or lifestyle could affect the distribution frequencies of polymorphism in the gene for beta3-adrenergic receptor (beta3-AR), the frequency of Trp64Arg polymorphism was studied among Bolivian people living in rural areas of high (about 4000 m above sea level) and low (about 300 m above sea level) altitudes. Genomic DNA samples of Bolivian subjects (n=508) were amplified by polymerase chain reaction (PCR) for part of the beta3-AR gene. The amplified PCR products were digested with restriction enzyme NciI and analysed by agarose gel electrophoresis. We found no significant difference in the frequency of Arg allele in the beta3-AR gene between 331 native low-altitude Bolivian subjects (18.1%) and 177 native high-altitude Bolivian subjects (17.5%). Body mass index was not associated with Trp64Arg polymorphism among native Bolivian adults. The frequency of this allele in the complete Bolivian population (18%) was lower than that reported in Pima Indians (32%), is comparable to the Japanese (19%) and is higher than several ethnic groups, including Finns (12%) and French (4%). Our data indicate that the altitude-related lifestyle of a population has had little influence on the frequency of Trp64Arg polymorphism and obesity in Bolivian natives.
Alexander, Johannes; Bollmann, Anna; Seitz, Wolfram; Schwartz, Thomas
2015-04-15
The dissemination of medically relevant antibiotic resistance genes (ARGs) (blaVIM-1, vanA, ampC, ermB, and mecA) and opportunistic bacteria (Enterococcus faecium/faecalis, Pseudomonas aeruginosa, Enterobacteriaceae, Staphylococcus aureus, and CNS) was determined in different anthropogenically influenced aquatic habitats in a selected region of Germany. Over a period of two years, four differently sized wastewater treatment plants (WWTPs) with and without clinical influence, three surface waters, four rain overflow basins, and three groundwater sites were analyzed by quantitative Polymerase Chain Reaction (qPCR). Results were calculated in cell equivalents per 100 ng of total DNA extracted from water samples and per 100 mL sample volume, which seems to underestimate the abundance of antibiotic resistance and opportunistic bacteria. High abundances of opportunistic bacteria and ARG were quantified in clinical wastewaters and influents of the adjacent WWTP. The removal capacities of WWTP were up to 99% for some, but not all investigated bacteria. The abundances of most ARG targets were found to be increased in the bacterial population after conventional wastewater treatment. As a consequence, downstream surface water and also some groundwater compartments displayed high abundances of all four ARGs. It became obvious that the dynamics of the ARG differed from the fate of the opportunistic bacteria. This underlines the necessity of an advanced microbial characterization of anthropogenically influenced environments. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brennan, S.O.; Myles, T.; Peach, R.J.
1990-01-01
Albumin Redhill is an electrophoretically slow genetic variant of human serum albumin that does not bind {sup 63}Ni{sup 2+} and has a molecular mass 2.5 kDa higher than normal albumin. Its inability to bind Ni{sup 2+} was explained by the finding of an additional residue of Arg at position -1. This did not explain the molecular basis of the genetic variation or the increase in apparent molecular mass. Fractionation of tryptic digests on concanavalin A-Sepharose followed by peptide mapping of the bound and unbound fractions and sequence analysis of the glycopeptides identified a mutation of 320 Ala {yields} Thr. Thismore » introduces as Asn-Tyr-Thr oligosaccharide attachment sequence centered on Asn-318 and explains the increase in molecular mass. This, however, did not satisfactorily explain the presence of the additional Arg residue at position -1. DNA sequencing of polymerase chain reaction-amplified genomic DNA encoding the prepro sequence of albumin indicated an additional mutation of -2 Arg {yields} Cys. The authors propose that the new Phe-Cys-Arg sequence in the propeptide is an aberrant signal peptidase cleavage site and that the signal peptidase cleaves the propeptide of albumin Redhill in the lumen of the endoplasmic reticulum before it reaches the Golgi vesicles, the site of the diarginyl-specific proalbumin convertase.« less
El-Din, Mennat Allah Kamal; Khorshied, Mervat Mamdooh; El-Saadany, Zainab Ali; El-Banna, Marwa Ahmed; Reda Khorshid, Ola M
2013-12-01
Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous neoplasm. Although several genetic and environmental factors have been postulated, no obvious risk factors have been emerged for DLBCL in the general population. DNA repair systems are responsible for maintaining the integrity of the genome and protecting it against genetic alterations that can lead to malignant transformation. The current study aimed at investigating the possible role of ERCC2/XPD Arg156Arg, Asp312Asn and Lys751Gln genetic polymorphisms as risk factors for DLBCL in Egypt. The study included 81 DLBCL patients and 100 healthy controls. Genotyping of the studied genetic polymorphisms was performed by polymerase chain reaction-restriction fragment length polymorphism technique. Our results revealed that there was no statistical difference encountered in the distribution of -Asp312Asn and -Lys751Gln polymorphic genotypes between DLBCL cases and controls, thus it could not considered as molecular risk factors for DLBCL in Egyptians. However, Arg156Arg polymorphism at exon-6 conferred twofold increased risk of DLBCL (OR 2.034, 95 %CI 1.015-4.35, p = 0.43), and the risk increased when co-inherited with Lys751Gln at exon-23 (OR 3.304, 95 %CI 1.113-9.812, p = 0.038). In conclusion, ERCC2/XPD Arg156Arg polymorphism might be considered as a genetic risk factor for DLBCL in Egyptians, whether alone or conjoined with Lys751Gln.
Morrison, Barclay; Pringle, Ashley K; McManus, Terence; Ellard, John; Bradley, Mark; Signorelli, Francesco; Iannotti, Fausto; Sundstrom, Lars E
2002-01-01
Stroke is the third most common cause of death in the world, and there is a clear need to develop new therapeutics for the stroke victim. To address this need, we generated a combinatorial library of polyamine compounds based on sFTX-3.3 toxin from which L-Arginyl-3,4-Spermidine (L-Arg-3,4) emerged as a lead neuroprotective compound. In the present study, we have extended earlier results to examine the compound's neuroprotective actions in greater detail. In an in vitro ischaemia model, L-Arg-3,4 significantly reduced CA1 cell death when administered prior to induction of 60 min of ischaemia as well as when administered immediately after ischaemia. Surprisingly, L-Arg-3,4 continued to prevent cell death significantly when administration was delayed for as long as 60 min after ischaemia. L-Arg-3,4 significantly reduced cell death in excitotoxicity models mediated by glutamate, NMDA, AMPA, or kainate. Unlike glutamate receptor antagonists, 300 μM L-Arg-3,4 did not suppress synaptic transmission as measured by evoked responses in acute hippocampal slices. L-Arg-3,4 provided significant protection, in vitro, in a superoxide mediated injury model and prevented an increase of superoxide production after AMPA or NMDA stimulation. It also decreased nitric oxide production after in vitro ischaemia and NMDA stimulation, but did so without inhibiting nitric oxide synthase directly. Furthermore, L-Arg-3,4 was significantly neuroprotective in an in vivo model of global forebrain ischaemia, without any apparent neurological side-effects. Taken together, these results demonstrate that L-Arg-3,4 is protective in several models of neurodegeneration and may have potential as a new therapeutic compound for the treatment of stroke, trauma, and other neurodegenerative diseases. PMID:12466235
DNA-Templated Polymerization of Side-Chain-Functionalized Peptide Nucleic Acid Aldehydes
Kleiner, Ralph E.; Brudno, Yevgeny; Birnbaum, Michael E.; Liu, David R.
2009-01-01
The DNA-templated polymerization of synthetic building blocks provides a potential route to the laboratory evolution of sequence-defined polymers with structures and properties not necessarily limited to those of natural biopolymers. We previously reported the efficient and sequence-specific DNA-templated polymerization of peptide nucleic acid (PNA) aldehydes. Here, we report the enzyme-free, DNA-templated polymerization of side-chain-functionalized PNA tetramer and pentamer aldehydes. We observed that the polymerization of tetramer and pentamer PNA building blocks with a single lysine-based side chain at various positions in the building block could proceed efficiently and sequence-specifically. In addition, DNA-templated polymerization also proceeded efficiently and in a sequence-specific manner with pentamer PNA aldehydes containing two or three lysine side chains in a single building block to generate more densely functionalized polymers. To further our understanding of side-chain compatibility and expand the capabilities of this system, we also examined the polymerization efficiencies of 20 pentamer building blocks each containing one of five different side-chain groups and four different side-chain regio- and stereochemistries. Polymerization reactions were efficient for all five different side-chain groups and for three of the four combinations of side-chain regio- and stereochemistries. Differences in the efficiency and initial rate of polymerization correlate with the apparent melting temperature of each building block, which is dependent on side-chain regio- and stereochemistry, but relatively insensitive to side-chain structure among the substrates tested. Our findings represent a significant step towards the evolution of sequence-defined synthetic polymers and also demonstrate that enzyme-free nucleic acid-templated polymerization can occur efficiently using substrates with a wide range of side-chain structures, functionalization positions within each building block, and functionalization densities. PMID:18341334
Comeaux, Evan Q.; Cuya, Selma M.; Kojima, Kyoko; Jafari, Nauzanene; Wanzeck, Keith C.; Mobley, James A.; Bjornsti, Mary-Ann; van Waardenburg, Robert C. A. M.
2015-01-01
Tyrosyl-DNA phosphodiesterase I (Tdp1) catalyzes the repair of 3′-DNA adducts, such as the 3′-phosphotyrosyl linkage of DNA topoisomerase I to DNA. Tdp1 contains two conserved catalytic histidines: a nucleophilic His (Hisnuc) that attacks DNA adducts to form a covalent 3′-phosphohistidyl intermediate and a general acid/base His (Hisgab), which resolves the Tdp1-DNA linkage. A Hisnuc to Ala mutant protein is reportedly inactive, whereas the autosomal recessive neurodegenerative disease SCAN1 has been attributed to the enhanced stability of the Tdp1-DNA intermediate induced by mutation of Hisgab to Arg. However, here we report that expression of the yeast HisnucAla (H182A) mutant actually induced topoisomerase I-dependent cytotoxicity and further enhanced the cytotoxicity of Tdp1 Hisgab mutants, including H432N and the SCAN1-related H432R. Moreover, the HisnucAla mutant was catalytically active in vitro, albeit at levels 85-fold less than that observed with wild type Tdp1. In contrast, the HisnucPhe mutant was catalytically inactive and suppressed Hisgab mutant-induced toxicity. These data suggest that the activity of another nucleophile when Hisnuc is replaced with residues containing a small side chain (Ala, Asn, and Gln), but not with a bulky side chain. Indeed, genetic, biochemical, and mass spectrometry analyses show that a highly conserved His, immediately N-terminal to Hisnuc, can act as a nucleophile to catalyze the formation of a covalent Tdp1-DNA intermediate. These findings suggest that the flexibility of Tdp1 active site residues may impair the resolution of mutant Tdp1 covalent phosphohistidyl intermediates and provide the rationale for developing chemotherapeutics that stabilize the covalent Tdp1-DNA intermediate. PMID:25609251
Cătană, Andreea; Pop, Monica; Hincu, Bianca Domokos; Pop, Ioan V; Petrişor, Felicia M; Porojan, Mihai D; Popp, Radu A
2015-01-01
DNA repair plays an important role in maintaining the integrity of the genome by repairing DNA damage induced by carcinogens. Certain genetic polymorphisms that occur in DNA-repair genes may affect the ability to repair DNA defects, and may represent a risk factor in carcinogenesis. The gene XRCC1 is involved in DNA repair. The purpose of our study was to investigate the association between XRCC1 Arg194Trp and Arg399Gln polymorphisms and the risk of lung cancer in a Romanian population. We recruited 222 healthy controls and 102 patients with lung cancer. Genotypes were determined by multiplex polymerase chain-reaction restriction fragment-length polymorphism. Statistical analysis (odds ratio, recessive model) revealed an increased risk for lung cancer for the homozygous 194Trp genotype (χ2=0.186, odds ratio 10.667, 95% confidence interval 1.309–86.933; P=0.007). Also, we found an association between the 194Trp allele and women with lung adenocarcinoma. In conclusion, the results of the study place the XRCC1 Arg194Trp polymorphism among independent risk factors for developing lung cancer. PMID:26664136
Cătană, Andreea; Pop, Monica; Hincu, Bianca Domokos; Pop, Ioan V; Petrişor, Felicia M; Porojan, Mihai D; Popp, Radu A
2015-01-01
DNA repair plays an important role in maintaining the integrity of the genome by repairing DNA damage induced by carcinogens. Certain genetic polymorphisms that occur in DNA-repair genes may affect the ability to repair DNA defects, and may represent a risk factor in carcinogenesis. The gene XRCC1 is involved in DNA repair. The purpose of our study was to investigate the association between XRCC1 Arg194Trp and Arg399Gln polymorphisms and the risk of lung cancer in a Romanian population. We recruited 222 healthy controls and 102 patients with lung cancer. Genotypes were determined by multiplex polymerase chain-reaction restriction fragment-length polymorphism. Statistical analysis (odds ratio, recessive model) revealed an increased risk for lung cancer for the homozygous 194Trp genotype (χ (2)=0.186, odds ratio 10.667, 95% confidence interval 1.309-86.933; P=0.007). Also, we found an association between the 194Trp allele and women with lung adenocarcinoma. In conclusion, the results of the study place the XRCC1 Arg194Trp polymorphism among independent risk factors for developing lung cancer.
Zykwinska, Agata; Thibault, Jean-François; Ralet, Marie-Christine
2007-01-01
The structure of arabinan and galactan domains in association with cellulose microfibrils was investigated using enzymatic and alkali degradation procedures. Sugar beet and potato cell wall residues (called 'natural' composites), rich in pectic neutral sugar side chains and cellulose, as well as 'artificial' composites, created by in vitro adsorption of arabinan and galactan side chains onto primary cell wall cellulose, were studied. These composites were sequentially treated with enzymes specific for pectic side chains and hot alkali. The degradation approach used showed that most of the arabinan and galactan side chains are in strong interaction with cellulose and are not hydrolysed by pectic side chain-degrading enzymes. It seems unlikely that isolated arabinan and galactan chains are able to tether adjacent microfibrils. However, cellulose microfibrils may be tethered by different pectic side chains belonging to the same pectic macromolecule.
Residue-Specific Side-Chain Polymorphisms via Particle Belief Propagation.
Ghoraie, Laleh Soltan; Burkowski, Forbes; Li, Shuai Cheng; Zhu, Mu
2014-01-01
Protein side chains populate diverse conformational ensembles in crystals. Despite much evidence that there is widespread conformational polymorphism in protein side chains, most of the X-ray crystallography data are modeled by single conformations in the Protein Data Bank. The ability to extract or to predict these conformational polymorphisms is of crucial importance, as it facilitates deeper understanding of protein dynamics and functionality. In this paper, we describe a computational strategy capable of predicting side-chain polymorphisms. Our approach extends a particular class of algorithms for side-chain prediction by modeling the side-chain dihedral angles more appropriately as continuous rather than discrete variables. Employing a new inferential technique known as particle belief propagation, we predict residue-specific distributions that encode information about side-chain polymorphisms. Our predicted polymorphisms are in relatively close agreement with results from a state-of-the-art approach based on X-ray crystallography data, which characterizes the conformational polymorphisms of side chains using electron density information, and has successfully discovered previously unmodeled conformations.
Side-chain mobility in the folded state of Myoglobin
NASA Astrophysics Data System (ADS)
Lammert, Heiko; Onuchic, Jose
We study the accessibility of alternative side-chain rotamer configurations in the native state of Myoglobin, using an all-atom structure-based model. From long, unbiased simulation trajectories we determine occupancies of rotameric states and also estimate configurational and vibrational entropies. Direct sampling of the full native-state dynamics, enabled by the simple model, reveals facilitation of side-chain motions by backbone dynamics. Correlations between different dihedral angles are quantified and prove to be weak. We confirm global trends in the mobilities of side-chains, following burial and also the chemical character of residues. Surface residues loose little configurational entropy upon folding; side-chains contribute significantly to the entropy of the folded state. Mobilities of buried side-chains vary strongly with temperature. At ambient temperature, individual side-chains in the core of the protein gain substantial access to alternative rotamers, with occupancies that are likely observable experimentally. Finally, the dynamics of buried side-chains may be linked to the internal pockets, available to ligand gas molecules in Myoglobin.
Residues with similar hexagon neighborhoods share similar side-chain conformations.
Li, Shuai Cheng; Bu, Dongbo; Li, Ming
2012-01-01
We present in this study a new approach to code protein side-chain conformations into hexagon substructures. Classical side-chain packing methods consist of two steps: first, side-chain conformations, known as rotamers, are extracted from known protein structures as candidates for each residue; second, a searching method along with an energy function is used to resolve conflicts among residues and to optimize the combinations of side chain conformations for all residues. These methods benefit from the fact that the number of possible side-chain conformations is limited, and the rotamer candidates are readily extracted; however, these methods also suffer from the inaccuracy of energy functions. Inspired by threading and Ab Initio approaches to protein structure prediction, we propose to use hexagon substructures to implicitly capture subtle issues of energy functions. Our initial results indicate that even without guidance from an energy function, hexagon structures alone can capture side-chain conformations at an accuracy of 83.8 percent, higher than 82.6 percent by the state-of-art side-chain packing methods.
SCit: web tools for protein side chain conformation analysis
Gautier, R.; Camproux, A.-C.; Tufféry, P.
2004-01-01
SCit is a web server providing services for protein side chain conformation analysis and side chain positioning. Specific services use the dependence of the side chain conformations on the local backbone conformation, which is described using a structural alphabet that describes the conformation of fragments of four-residue length in a limited library of structural prototypes. Based on this concept, SCit uses sets of rotameric conformations dependent on the local backbone conformation of each protein for side chain positioning and the identification of side chains with unlikely conformations. The SCit web server is accessible at http://bioserv.rpbs.jussieu.fr/SCit. PMID:15215438
Takizawa, Yuumi; Shimomura, Takeshi; Miura, Toshiaki
2013-05-23
We study the initial nucleation dynamics of poly(3-hexylthiophene) (P3HT) in solution, focusing on the relationship between the ordering process of main chains and that of side chains. We carried out Langevin dynamics simulation and found that the initial nucleation processes consist of three steps: the ordering of ring orientation, the ordering of main-chain vectors, and the ordering of side chains. At the start, the normal vectors of thiophene rings aligned in a very short time, followed by alignment of main-chain end-to-end vectors. The flexible side-chain ordering took almost 5 times longer than the rigid-main-chain ordering. The simulation results indicated that the ordering of side chains was induced after the formation of the regular stack structure of main chains. This slow ordering dynamics of flexible side chains is one of the factors that cause anisotropic nuclei growth, which would be closely related to the formation of nanofiber structures without external flow field. Our simulation results revealed how the combined structure of the planar and rigid-main-chain backbones and the sparse flexible side chains lead to specific ordering behaviors that are not observed in ordinary linear polymer crystallization processes.
Structures of potent selective peptide mimetics bound to carboxypeptidase B.
Adler, Marc; Buckman, Brad; Bryant, Judi; Chang, Zheng; Chu, Kieu; Emayan, Kumar; Hrvatin, Paul; Islam, Imadul; Morser, John; Sukovich, Drew; West, Christopher; Yuan, Shendong; Whitlow, Marc
2008-02-01
This article reports the crystal structures of inhibitors of the functional form of thrombin-activatable fibrinolysis inhibitor (TAFIa). In vivo experiments indicate that selective inhibitors of TAFIa would be useful in the treatment of heart attacks. Since TAFIa rapidly degrades in solution, the homologous protein porcine pancreatic carboxypeptidase B (pp-CpB) was used in these crystallography studies. Both TAFIa and pp-CpB are zinc-based exopeptidases that are specific for basic residues. The final development candidate, BX 528, is a potent inhibitor of TAFIa (2 nM) and has almost no measurable effect on the major selectivity target, carboxypeptidase N. BX 528 was designed to mimic the tripeptide Phe-Val-Lys. A sulfonamide replaces the Phe-Val amide bond and a phosphinate connects the Val and Lys groups. The phosphinate also chelates the active-site zinc. The electrostatic interactions with the protein mimic those of the natural substrate. The primary amine in BX 528 forms a salt bridge to Asp255 at the base of the S1' pocket. The carboxylic acid interacts with Arg145 and the sulfonamide is hydrogen bonded to Arg71. Isopropyl and phenyl groups replace the side chains of Val and Phe, respectively. A series of structures are presented here that illustrate the evolution of BX 528 from thiol-based inhibitors that mimic a free C-terminal arginine. The first step in development was the replacement of the thiol with a phosphinate. This caused a precipitous drop in binding affinity. Potency was reclaimed by extending the inhibitors into the downstream binding sites for the natural substrate.
Steric interactions determine side-chain conformations in protein cores.
Caballero, D; Virrueta, A; O'Hern, C S; Regan, L
2016-09-01
We investigate the role of steric interactions in defining side-chain conformations in protein cores. Previously, we explored the strengths and limitations of hard-sphere dipeptide models in defining sterically allowed side-chain conformations and recapitulating key features of the side-chain dihedral angle distributions observed in high-resolution protein structures. Here, we show that modeling residues in the context of a particular protein environment, with both intra- and inter-residue steric interactions, is sufficient to specify which of the allowed side-chain conformations is adopted. This model predicts 97% of the side-chain conformations of Leu, Ile, Val, Phe, Tyr, Trp and Thr core residues to within 20°. Although the hard-sphere dipeptide model predicts the observed side-chain dihedral angle distributions for both Thr and Ser, the model including the protein environment predicts side-chain conformations to within 20° for only 60% of core Ser residues. Thus, this approach can identify the amino acids for which hard-sphere interactions alone are sufficient and those for which additional interactions are necessary to accurately predict side-chain conformations in protein cores. We also show that our approach can predict alternate side-chain conformations of core residues, which are supported by the observed electron density. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Luo, Meiling; Deng, Donghong; Xiang, Liqun; Cheng, Peng; Liao, Lin; Deng, Xuelian; Yan, Jie; Lin, Faquan
2016-01-01
Abstract Congenital dysfibrinogenemia (CD) is a qualitative fibrinogen disorder caused by an abnormal fibrinogen molecule structure, leading to dysfunctional blood coagulation. This study describes 3 cases of dysfibrinogenemia identified in the unrelated Chinese pedigrees. Routine coagulation screening tests were performed on the probands and their families. The antigens and functionality of fibrinogen was measured using an immunoturbidimetry assay and the Clauss method, respectively. To identify the genetic mutation responsible for these dysfibrinogens, genomic DNA extracted from the blood was analyzed using PCR amplification and direct sequencing. The presence of the mutant chains was determined using matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectroscopy. Purified plasma fibrinogen of 3 probands was analyzed using SDS–PAGE, fibrinogen clottability, fibrin polymerization, fibrinopeptide release, and scanning electron microscopy (SEM). The 3 probands had a long thrombin time. Levels of functional fibrinogen were found to be very low, while the fibrinogen antigen was within the normal range. DNA sequencing revealed a heterozygous Arg16His substitution in the fibrinogen Aα chain (FGA). The mutant chains were found to be expressed using MALDI-TOF mass spectroscopy. SDS–PAGE did not reveal any difference in the molecular weights of 3 polypeptide chains between normal and abnormal fibrinogens. Fibrinogen clottability showed a slower fibrin clot formation than the healthy control. Fibrin polymerization, after addition of thrombin, showed a prolonged lag phase and decreased final turbidity. The kinetics of fibrinopeptides release revealed a decreased amount of the released fibrinopeptide A. SEM of the patient's fibrin clot was found to be abnormal. Results indicate that the 3 probands with dysfibrinogenemia were caused by mutations of Aα chain Arg16His. Mutation of this fibrinogen induced dysfunction of plasma fibrinogen. PMID:27684817
Switching effect of the side chain on quantum walks on triple graphs
NASA Astrophysics Data System (ADS)
Du, Yi-Mu; Lu, Li-Hua; Li, You-Quan
2015-07-01
We consider a continuous-time quantum walk on a triple graph and investigate the influence of the side chain on propagation in the main chain. Calculating the interchange of the probabilities between the two parts of the main chain, we find that a switching effect appears if there is an odd number of points in the side chain when concrete conditions between the length of the main chain and the position of the side chain are satisfied. However, such an effect does not occur if there is an even number of points in the side chain. We also suggest two proposals for experiments to demonstrate this effect, which may be employed to design a new type of switching device.
Stieglitz, Kimberly A.; Pastra-Landis, Styliani C.; Xia, Jiarong; Tsuruta, Hiro; Kantrowitz, Evan R.
2005-01-01
Modeling of the tetrahedral intermediate within the active site of Escherichia coli aspartate transcarbamoylase revealed a specific interaction with the side chain of Gln137, an interaction not previously observed in the structure of the X-ray enzyme in the presence of N-phosphonacetyl-L-aspartate (PALA). Previous site-specific mutagenesis experiments showed that when Gln137 was replaced by alanine, the resulting mutant enzyme (Q137A) exhibited approximately 50-fold less activity than the wild-type enzyme, exhibited no homotropic cooperativity, and the binding of both carbamoyl phosphate and aspartate were extremely compromised. To elucidate the structural alterations in the mutant enzyme that might lead to such pronounced changes in kinetic and binding properties, the Q137A enzyme was studied by time-resolved small-angle X-ray scattering and its structure was determined in the presence of PALA to 2.7Å resolution. Time-resolved small-angle X-ray scattering established that the natural substrates, carbamoyl phosphate and L-aspartate, do not induce in the Q137A enzyme the same conformational changes as observed for the wild-type enzyme, although the scattering pattern of the Q137A and wild-type enzymes in the presence of PALA were identical. The overall structure of the Q137A enzyme is similar to that of the R-state structure of wild-type enzyme with PALA bound. However, there are differences in the manner by which the Q137A enzyme coordinates PALA, especially in the side chain positions of Arg105 and His134. The replacement of Gln137 by Ala also has a dramatic effect on the electrostatics of the active site. These data taken together suggest that the side chain of Gln137 in the wild-type enzyme is required for the binding of carbamoyl phosphate in the proper orientation so as to induce conformational changes required for the creation of the high-affinity aspartate binding site. The inability of carbamoyl phosphate to create the high-affinity binding site in the Q137A enzyme results in an enzyme locked in the low activity low affinity T state. These results emphasize the absolute requirement of the binding of carbamoyl phosphate for the creation of the high-affinity aspartate binding site and for inducing the homotropic cooperativity in aspartate transcarbamoylase. PMID:15890205
Protein side chain conformation predictions with an MMGBSA energy function.
Gaillard, Thomas; Panel, Nicolas; Simonson, Thomas
2016-06-01
The prediction of protein side chain conformations from backbone coordinates is an important task in structural biology, with applications in structure prediction and protein design. It is a difficult problem due to its combinatorial nature. We study the performance of an "MMGBSA" energy function, implemented in our protein design program Proteus, which combines molecular mechanics terms, a Generalized Born and Surface Area (GBSA) solvent model, with approximations that make the model pairwise additive. Proteus is not a competitor to specialized side chain prediction programs due to its cost, but it allows protein design applications, where side chain prediction is an important step and MMGBSA an effective energy model. We predict the side chain conformations for 18 proteins. The side chains are first predicted individually, with the rest of the protein in its crystallographic conformation. Next, all side chains are predicted together. The contributions of individual energy terms are evaluated and various parameterizations are compared. We find that the GB and SA terms, with an appropriate choice of the dielectric constant and surface energy coefficients, are beneficial for single side chain predictions. For the prediction of all side chains, however, errors due to the pairwise additive approximation overcome the improvement brought by these terms. We also show the crucial contribution of side chain minimization to alleviate the rigid rotamer approximation. Even without GB and SA terms, we obtain accuracies comparable to SCWRL4, a specialized side chain prediction program. In particular, we obtain a better RMSD than SCWRL4 for core residues (at a higher cost), despite our simpler rotamer library. Proteins 2016; 84:803-819. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Chen, Y; Xu, Y; Zhou, L
2001-09-01
To investigate the association between the mutation of beta 3-adrenergoc receptor gene and obesity in patients with type 2 diabetes. Body mass, waist-hip ratio, blood pressure and blood lipids were measured in 154 type 2 diabetic patients. Polymerase chain reaction and the restriction fragment length polymorphism analysis were used to determine the wild, heterozygous and homozygous forms of beta 3-adrenergoc receptor gene. The frequency of the Trp64Arg mutation was 42.5% and the frequency of Arg64 allele was 22.6%. The mutation frequency of the genetic types was significantly different between the obese and non-obese type 2 diabetes mellitus patients. The body mass, systolic blood pressure, diastolic blood pressure, HDL-cholesterol were significantly different, when those with Trp64Arg heterozygous were compared with those with Trp64 homozygous. The genetic mutation of beta 3-adrenegoc receptor in patients with type 2 diabetes is probably related to obesity.
Zeng, Jianyang; Zhou, Pei; Donald, Bruce Randall
2011-01-01
One bottleneck in NMR structure determination lies in the laborious and time-consuming process of side-chain resonance and NOE assignments. Compared to the well-studied backbone resonance assignment problem, automated side-chain resonance and NOE assignments are relatively less explored. Most NOE assignment algorithms require nearly complete side-chain resonance assignments from a series of through-bond experiments such as HCCH-TOCSY or HCCCONH. Unfortunately, these TOCSY experiments perform poorly on large proteins. To overcome this deficiency, we present a novel algorithm, called NASCA (NOE Assignment and Side-Chain Assignment), to automate both side-chain resonance and NOE assignments and to perform high-resolution protein structure determination in the absence of any explicit through-bond experiment to facilitate side-chain resonance assignment, such as HCCH-TOCSY. After casting the assignment problem into a Markov Random Field (MRF), NASCA extends and applies combinatorial protein design algorithms to compute optimal assignments that best interpret the NMR data. The MRF captures the contact map information of the protein derived from NOESY spectra, exploits the backbone structural information determined by RDCs, and considers all possible side-chain rotamers. The complexity of the combinatorial search is reduced by using a dead-end elimination (DEE) algorithm, which prunes side-chain resonance assignments that are provably not part of the optimal solution. Then an A* search algorithm is employed to find a set of optimal side-chain resonance assignments that best fit the NMR data. These side-chain resonance assignments are then used to resolve the NOE assignment ambiguity and compute high-resolution protein structures. Tests on five proteins show that NASCA assigns resonances for more than 90% of side-chain protons, and achieves about 80% correct assignments. The final structures computed using the NOE distance restraints assigned by NASCA have backbone RMSD 0.8 – 1.5 Å from the reference structures determined by traditional NMR approaches. PMID:21706248
Kanimozhi, Catherine; Yaacobi-Gross, Nir; Burnett, Edmund K; Briseno, Alejandro L; Anthopoulos, Thomas D; Salzner, Ulrike; Patil, Satish
2014-08-28
The primary role of substituted side chains in organic semiconductors is to increase their solubility in common organic solvents. In the recent past, many literature reports have suggested that the side chains play a critical role in molecular packing and strongly impact the charge transport properties of conjugated polymers. In this work, we have investigated the influence of side-chains on the charge transport behavior of a novel class of diketopyrrolopyrrole (DPP) based alternating copolymers. To investigate the role of side-chains, we prepared four diketopyrrolopyrrole-diketopyrrolopyrrole (DPP-DPP) conjugated polymers with varied side-chains and carried out a systematic study of thin film microstructure and charge transport properties in polymer thin-film transistors (PTFTs). Combining results obtained from grazing incidence X-ray diffraction (GIXD) and charge transport properties in PTFTs, we conclude side-chains have a strong influence on molecular packing, thin film microstructure, and the charge carrier mobility of DPP-DPP copolymers. However, the influence of side-chains on optical properties was moderate. The preferential "edge-on" packing and dominant n-channel behavior with exceptionally high field-effect electron mobility values of >1 cm(2) V(-1) s(-1) were observed by incorporating hydrophilic (triethylene glycol) and hydrophobic side-chains of alternate DPP units. In contrast, moderate electron and hole mobilities were observed by incorporation of branched hydrophobic side-chains. This work clearly demonstrates that the subtle balance between hydrophobicity and hydrophilicity induced by side-chains is a powerful strategy to alter the molecular packing and improve the ambipolar charge transport properties in DPP-DPP based conjugated polymers. Theoretical analysis supports the conclusion that the side-chains influence polymer properties through morphology changes, as there is no effect on the electronic properties in the gas phase. The exceptional electron mobility is at least partially a result of the strong intramolecular conjugation of the donor and acceptor as evidenced by the unusually wide conduction band of the polymer.
Marcinkiewicz, Mariola M.; Sinha, Dipali; Walsh, Peter N.
2012-01-01
In the intrinsic pathway of blood coagulation factor XIa (FXIa) activates factor IX (FIX) by cleaving the zymogen at Arg145-Ala146 and Arg180-Val181 bonds releasing an 11-kDa activation peptide. FXIa and its isolated light chain (FXIa-LC) cleave S-2366 at comparable rates, but FXIa-LC is a very poor activator of FIX, possibly because FIX undergoes allosteric modification on binding to an exosite on the heavy chain of FXIa (FXIa-HC) required for optimal cleavage rates of the two scissile bonds of FIX. However preincubation of FIX with a saturating concentration of isolated FXIa-HC did not result in any potentiation in the rate of FIX cleavage by FXIa-LC. Furthermore, if FIX binding via the heavy chain exosite of FXIa determines the affinity of the enzyme-substrate interaction, then the isolated FXIa-HC should inhibit the rate of FIX activation by depleting the substrate. However, whereas FXIa/S557A inhibited FIX activation of by FXIa, FXIa-HC did not. Therefore, we examined FIX binding to FXIa/S557A, FXIa-HC, FXIa-LC, FXIa/C362S/C482S, and FXIa/S557A/C362S/C482S. The heavy and light chains are disulfide-linked in FXIa/S557A but not in FXIa/C362S/C482S and FXIa/S557A/C362S/C482S. In an ELISA assay only FXI/S557A ligated FIX with high affinity. Partial reduction of FXIa/S557A to produce heavy and light chains resulted in decreased FIX binding, and this function was regained upon reformation of the disulfide linkage between the heavy and the light chains. We therefore conclude that substrate recognition by the FXIa exosite(s) requires disulfide-linked heavy and light chains. PMID:22207756
Sauvé, K; Nachman, M; Spence, C; Bailon, P; Campbell, E; Tsien, W H; Kondas, J A; Hakimi, J; Ju, G
1991-01-01
Human interleukin 2 (IL-2) analogs with defined amino acid substitutions were used to identify specific residues that interact with the 55-kDa subunit (p55) or alpha chain of the human IL-2 receptor. Analog proteins containing specific substitutions for Lys-35, Arg-38, Phe-42, or Lys-43 were inactive in competitive binding assays for p55. All of these analogs retained substantial competitive binding to the intermediate-affinity p70 subunit (beta chain) of the receptor complex. The analogs varied in ability to interact with the high-affinity p55/p70 receptor. Despite the lack of binding to p55, all analogs exhibited significant biological activity, as assayed on the murine CTLL cell line. The dissociation constants of Arg-38 and Phe-42 analogs for p70 were consistent with intermediate-affinity binding; the Kd values were not significantly affected by the presence of p55 in binding to the high-affinity IL-2 receptor complex. These results confirm the importance of the B alpha-helix in IL-2 as the locus for p55-receptor binding and support a revised model of IL-2-IL-2 receptor interaction. PMID:2052547
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, N.A.; Mulichak, A.M.; Lam, J.S.
D-Rhamnose is a rare 6-deoxy monosaccharide primarily found in the lipopolysaccharide of pathogenic bacteria, where it is involved in host-bacterium interactions and the establishment of infection. The biosynthesis of D-rhamnose proceeds through the conversion of GDP-D-mannose by GDP-D-mannose 4,6-dehydratase (GMD) to GDP-4-keto-6-deoxymannose, which is subsequently reduced to GDP-D-rhamnose by a reductase. We have determined the crystal structure of GMD from Pseudomonas aeruginosa in complex with NADPH and GDP. GMD belongs to the NDP-sugar modifying subfamily of the short-chain dehydrogenase/reductase (SDR) enzymes, all of which exhibit bidomain structures and a conserved catalytic triad (Tyr-XXX-Lys and Ser/Thr). Although most members of thismore » enzyme subfamily display homodimeric structures, this bacterial GMD forms a tetramer in the same fashion as the plant MUR1 from Arabidopsis thaliana. The cofactor binding sites are adjoined across the tetramer interface, which brings the adenosyl phosphate moieties of the adjacent NADPH molecules to within 7 {angstrom} of each other. A short peptide segment (Arg35-Arg43) stretches into the neighboring monomer, making not only protein-protein interactions but also hydrogen bonding interactions with the neighboring cofactor. The interface hydrogen bonds made by the Arg35-Arg43 segment are generally conserved in GMD and MUR1, and the interacting residues are highly conserved among the sequences of bacterial and eukaryotic GMDs. Outside of the Arg35-Arg43 segment, residues involved in tetrameric contacts are also quite conserved across different species. These observations suggest that a tetramer is the preferred, and perhaps functionally relevant, oligomeric state for most bacterial and eukaryotic GMDs.« less
Webb, Nicole A.; Mulichak, Anne M.; Lam, Joseph S.; Rocchetta, Heather L.; Garavito, R. Michael
2004-01-01
d-Rhamnose is a rare 6-deoxy monosaccharide primarily found in the lipopolysaccharide of pathogenic bacteria, where it is involved in host–bacterium interactions and the establishment of infection. The biosynthesis of d-rhamnose proceeds through the conversion of GDP-d-mannose by GDP-d-mannose 4,6-dehydratase (GMD) to GDP-4-keto-6-deoxymannose, which is subsequently reduced to GDP-d-rhamnose by a reductase. We have determined the crystal structure of GMD from Pseudomonas aeruginosa in complex with NADPH and GDP. GMD belongs to the NDP-sugar modifying subfamily of the short-chain dehydrogenase/reductase (SDR) enzymes, all of which exhibit bidomain structures and a conserved catalytic triad (Tyr-XXX-Lys and Ser/Thr). Although most members of this enzyme subfamily display homodimeric structures, this bacterial GMD forms a tetramer in the same fashion as the plant MUR1 from Arabidopsis thaliana. The cofactor binding sites are adjoined across the tetramer interface, which brings the adenosyl phosphate moieties of the adjacent NADPH molecules to within 7 Å of each other. A short peptide segment (Arg35–Arg43) stretches into the neighboring monomer, making not only protein–protein interactions but also hydrogen bonding interactions with the neighboring cofactor. The interface hydrogen bonds made by the Arg35–Arg43 segment are generally conserved in GMD and MUR1, and the interacting residues are highly conserved among the sequences of bacterial and eukaryotic GMDs. Outside of the Arg35–Arg43 segment, residues involved in tetrameric contacts are also quite conserved across different species. These observations suggest that a tetramer is the preferred, and perhaps functionally relevant, oligomeric state for most bacterial and eukaryotic GMDs. PMID:14739333
Nadzirin, Nurul; Willett, Peter; Artymiuk, Peter J.; Firdaus-Raih, Mohd
2013-01-01
We describe a server that allows the interrogation of the Protein Data Bank for hypothetical 3D side chain patterns that are not limited to known patterns from existing 3D structures. A minimal side chain description allows a variety of side chain orientations to exist within the pattern, and generic side chain types such as acid, base and hydroxyl-containing can be additionally deployed in the search query. Moreover, only a subset of distances between the side chains need be specified. We illustrate these capabilities in case studies involving arginine stacks, serine-acid group arrangements and multiple catalytic triad-like configurations. The IMAAAGINE server can be accessed at http://mfrlab.org/grafss/imaaagine/. PMID:23716645
Hinney, A; Lentes, K U; Rosenkranz, K; Barth, N; Roth, H; Ziegler, A; Hennighausen, K; Coners, H; Wurmser, H; Jacob, K; Römer, G; Winnikes, U; Mayer, H; Herzog, W; Lehmkuhl, G; Poustka, F; Schmidt, M H; Blum, W F; Pirke, K M; Schäfer, H; Grzeschik, K H; Remschmidt, H; Hebebrand, J
1997-03-01
The missense mutation (64Trp to 64Arg) in the beta 3-adrenergic-receptor has previously been described to confer a genetic predisposition to the development of obesity. To test the hypothesis we evaluated allele frequencies in children, adolescents and young adults who belonged to different weight groups that were delineated with percentiles for the body mass index (BMI; kg/m2). 99 underweight probands (BMI < or = 15th percentile). 80 normal weight probands (BMI: 5th-85th percentile). 238 obese children and adolescents (BMI > or = 97th percentile). 84 patients with anorexia nervosa (AN). The cohorts were screened by polymerase chain reaction with subsequent restriction fragment length polymorphism (PCR-RFLP) analysis. Data were statistically analysed for association. In addition to these case control studies, the transmission disequilibrium test (TDT) was applied to 80 families of obese probands and to 52 families of patients with AN. Both the tests for association and linkage were negative. The Trp64Arg allele frequencies in the three weight groups (obesity: 0.071; normal weight: 0.081; underweight: 0.056) and the AN patients (0.054) were similar. Extremely obese individuals showed no excess of the Trp64Arg allele. No homozygotes for the Trp64Arg allele were detected. Heterozygosity for the Trp64Arg allele is not of major importance in regulation of body weight in individuals younger than 35 y. Additionally, the extreme obese subgroup is not enriched for the polymorphism.
Polymorphisms of IL-17 and ICAM-1 and their expression in Guillain-Barré syndrome.
Kharwar, N K; Prasad, K N; Singh, K; Paliwal, V K; Modi, D R
2017-08-01
Guillain-Barré syndrome (GBS) is an acute inflammatory, autoimmune disorder of peripheral nervous system. Interleukin-17 (IL-17) and intercellular adhesion molecule-1 (ICAM-1) polymorphisms with higher expression levels have already been studied in many inflammatory and autoimmune diseases. However, the possible role of IL-17 and ICAM-1 polymorphisms in GBS remains unknown. Therefore, the current study investigated IL-17 (His161Arg and Glu126Gly) and ICAM-1 (Gly241Arg) polymorphisms. In this study, total 80 GBS patients and 75 normal healthy controls were included. IL-17 (His161Arg and Glu126Gly) and ICAM-1 (Gly241Arg) polymorphisms were performed using polymerase chain reaction -restriction fragment length polymorphism analysis. Further, the expression of ICAM-1 and IL-17 was determined by reverse-transcriptase PCR and enzyme-linked immunosorbent assay. IL-17 (Glu126Gly) mutant and ICAM-1 (Gly241Arg) heterozygous genotypes were strongly associated with increased risk of GBS (p < 0.016; OR = 3.706, 95% CI = 1.28-10.67; p < 0.001; OR = 4.148, 95% CI = 2.119-8.119, respectively). IL-17 and ICAM-1 genes showed significantly higher expression in GBS when compared with healthy controls. IL-17 and ICAM-1 polymorphisms showed significant association with GBS and their enhanced expressions have possible role in GBS development. IL-17 and ICAM-1 polymorphisms could be genetic markers to GBS susceptibility.
Wu, Xin; Ruan, Zheng; Gao, Yunling; Yin, Yulong; Zhou, Xihong; Wang, Lei; Geng, Meimei; Hou, Yongqing; Wu, Guoyao
2010-08-01
This study determined effects of dietary supplementation with L-arginine (Arg) or N-carbamylglutamate (NCG) on intestinal health and growth in early-weaned pigs. Eighty-four Landrace x Yorkshire pigs (average body weight of 5.56+/-0.07 kg; weaned at 21 days of age) were fed for 7 days one of the three isonitrogenous diets: (1) a corn- and soybean meal-based diet (CSM), (2) CSM+0.08% NCG (0.08%), and (3) CSM+0.6% Arg. There were four pens of pigs per diet (7 pigs/pen). At the end of a 7-day feeding period, six piglets were randomly selected from each treatment for tissue collections. Compared with the control group, Arg or NCG supplementation increased (P<0.05): (1) Arg concentrations in plasma, (2) small-intestinal growth, (3) villus height in duodenum, jejunum and ileum, (4) crypt depth in jejunum and ileum, (5) goblet cell counts in intestinal mucosae, and (6) whole-body weight gain in pigs. Real-time polymerase chain reaction and western blotting analyses revealed that both mRNA and protein levels for heat shock protein-70 (HSP70) were higher (P<0.05) in the intestinal mucosae of Arg- or NCG-supplemented pigs than in the control group. Furthermore, the incidence of diarrhea in the NCG group was 18% lower (P<0.01) than that in the control group. Collectively, these results indicate that dietary supplementation with 0.6% Arg or 0.08% NCG enhances intestinal HSP70 gene expression, intestinal growth and integrity, and the availability of dietary nutrients for whole-body weight gain in postweaning pigs fed a CSM-based diet. Thus, Arg or NCG is a functional ingredient in the weaning diet to improve nutrition, health, and growth performance of these neonates.
Czekalski, Nadine; Sigdel, Radhika; Birtel, Julia; Matthews, Blake; Bürgmann, Helmut
2015-08-01
Antibiotic resistance genes (ARGs) are emerging environmental contaminants, known to be continuously discharged into the aquatic environment via human and animal waste. Freshwater aquatic environments represent potential reservoirs for ARG and potentially allow sewage-derived ARG to persist and spread in the environment. This may create increased opportunities for an eventual contact with, and gene transfer to, human and animal pathogens via the food chain or drinking water. However, assessment of this risk requires a better understanding of the level and variability of the natural resistance background and the extent of the human impact. We have analyzed water samples from 21 Swiss lakes, taken at sampling points that were not under the direct influence of local contamination sources and analyzed the relative abundance of ARG using quantitative real-time PCR. Copy numbers of genes mediating resistance to three different broad-spectrum antibiotic classes (sulfonamides: sul1, sul2, tetracyclines: tet(B), tet(M), tet(W) and fluoroquinolones: qnrA) were normalized to copy numbers of bacterial 16S rRNA genes. We used multiple linear regression to assess if ARG abundance is related to human activities in the catchment, microbial community composition and the eutrophication status of the lakes. Sul genes were detected in all sampled lakes, whereas only four lakes contained quantifiable numbers of tet genes, and qnrA remained below detection in all lakes. Our data indicate higher abundance of sul1 in lakes with increasing number and capacity of wastewater treatment plants (WWTPs) in the catchment. sul2 abundance was rather related to long water residence times and eutrophication status. Our study demonstrates the potential of freshwater lakes to preserve antibiotic resistance genes, and provides a reference for ARG abundance from lake systems with low human impact as a baseline for assessing ARG contamination in lake water. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kaymak, Cetin; Aygun Kocabas, Neslihan; Aydın, Nesrin; Oztuna, Derya; Karakaya, Ali Esat
2016-09-01
Individual differences in the activity of enzymes that metabolize xenobiotics can impact health and disease. Beta-2 adrenoreceptor (ADRB2) is a functional G-coupled protein expressed in the vascular endothelium of lungs, alveolar walls, and the ganglions of cholinergic nerves which induces bronchodilation in response to catecholamines. Glutathione S-Transferase-P1 (GSTP1) is a candidate pi class GST gene, which controls pi class glutathione S-transferase activity. In this study we determined the relationship between the ADRB2 Arg16Gly polymorphism and GSTP1 polymorphisms, involved in bronchodilator response and oxidative stress, respectively, with susceptibility to asthma. In this study, 129 asthmatic patients and 127 healthy control cases were recruited to determine ADRB2 and GSTP1 genotypes by allele-specific polymerase chain reaction and restriction fragment length polymorphism assays, respectively. The ADRB2 genotype frequencies of the patients and control cases were found to be 10.9% (Arg16Arg), 48.8% (Arg16Gly), and 40.3% (Gly16Gly) and 24.4% (Arg16Arg), 36.2% (Arg16Gly), and 39.4% (Gly16Gly), respectively. GSTP1 genotype frequencies of patients and control cases were found to be 55% (Ile105Ile), 43.4% (Ile105Val), and 1.6% (Val105Val) and 75.6% (Ile105Ile), 22% (Ile105Val), and 2.4% (Val105Val), respectively. In the case of the GSTP1 gene, we found statistically significant differences in the genotype frequency of Ile105Val and the allele frequency of Val105 in the asthmatic group compared with the controls. Moreover, we observed a relationship between allele frequencies and clinical phenotypes including atopia nocturnal dyspnea, and steroid dependency in the asthmatic patients. Our results suggest that the GSTP1 Ile105Val polymorphism may be linked to the severeness of airway dysfunction.
Automated side-chain model building and sequence assignment by template matching.
Terwilliger, Thomas C
2003-01-01
An algorithm is described for automated building of side chains in an electron-density map once a main-chain model is built and for alignment of the protein sequence to the map. The procedure is based on a comparison of electron density at the expected side-chain positions with electron-density templates. The templates are constructed from average amino-acid side-chain densities in 574 refined protein structures. For each contiguous segment of main chain, a matrix with entries corresponding to an estimate of the probability that each of the 20 amino acids is located at each position of the main-chain model is obtained. The probability that this segment corresponds to each possible alignment with the sequence of the protein is estimated using a Bayesian approach and high-confidence matches are kept. Once side-chain identities are determined, the most probable rotamer for each side chain is built into the model. The automated procedure has been implemented in the RESOLVE software. Combined with automated main-chain model building, the procedure produces a preliminary model suitable for refinement and extension by an experienced crystallographer.
Abiedalla, Younis; DeRuiter, Jack; Clark, C Randall
2016-07-30
Precursor materials are available to prepare aminoketone drugs containing regioisomeric propyl and isopropyl side-chain groups related to the drug alpha-pyrrovalerone (Flakka) and MDPV (3,4-methylenedioxypyrrovalerone). These compounds yield equivalent regioisomeric iminium cation base peaks in electron ionization mass spectrometry (EI-MS). The propyl and isopropyl side-chain groups related to alpha-pyrrovalerone and MDPV were prepared and evaluated in EI-MS and tandem mass spectrometry (MS/MS) product ion experiments. Deuterium labeling in both the pyrrolidine and alkyl side-chain groups allowed for the confirmation of the structures for the major product ions formed from the regioisomeric EI-MS iminium cation base peaks. These iminium cation base peaks show characteristic product ion spectra which allow differentiation of the side-chain propyl and isopropyl groups in the structure. The n-propyl side chain containing iminium cation base peak (m/z 126) in the EI-MS spectrum yields a major product ion at m/z 84 while the regioisomeric m/z 126 base peak for the isopropyl side chain yields a characteristic product ion at m/z 70. Deuterium labeling in both the pyrrolidine ring and the alkyl side chain confirmed the process for the formation of these major product ions. Product ion fragmentation provides useful data for differentiation of n-propyl and isopropyl side-chain iminium cations from cathinone derivative drugs of abuse. Regioisomeric n-propyl and isopropyl iminium cations of equal mass yield characteristic product ions identifying the alkyl side-chain regioisomers in the pyrrolidine cathinone derivatives. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Protein-ligand docking with multiple flexible side chains
NASA Astrophysics Data System (ADS)
Zhao, Yong; Sanner, Michel F.
2008-09-01
In this work, we validate and analyze the results of previously published cross docking experiments and classify failed dockings based on the conformational changes observed in the receptors. We show that a majority of failed experiments (i.e. 25 out of 33, involving four different receptors: cAPK, CDK2, Ricin and HIVp) are due to conformational changes in side chains near the active site. For these cases, we identify the side chains to be made flexible during docking calculation by superimposing receptors and analyzing steric overlap between various ligands and receptor side chains. We demonstrate that allowing these side chains to assume rotameric conformations enables the successful cross docking of 19 complexes (ligand all atom RMSD < 2.0 Å) using our docking software FLIPDock. The number of side receptor side chains interacting with a ligand can vary according to the ligand's size and shape. Hence, when starting from a complex with a particular ligand one might have to extend the region of potential interacting side chains beyond the ones interacting with the known ligand. We discuss distance-based methods for selecting additional side chains in the neighborhood of the known active site. We show that while using the molecular surface to grow the neighborhood is more efficient than Euclidian-distance selection, the number of side chains selected by these methods often remains too large and additional methods for reducing their count are needed. Despite these difficulties, using geometric constraints obtained from the network of bonded and non-bonded interactions to rank residues and allowing the top ranked side chains to be flexible during docking makes 22 out of 25 complexes successful.
Jia, Tao; Li, Zhenye; Ying, Lei; Jia, Jianchao; Fan, Baobing; Zhong, Wenkai; Pan, Feilong; He, Penghui; Chen, Junwu; Huang, Fei; Cao, Yong
2018-02-13
The design and synthesis of three n-type conjugated polymers based on a naphthalene diimide-thiophene skeleton are presented. The control polymer, PNDI-2HD, has two identical 2-hexyldecyl side chains, and the other polymers have different alkyl side chains; PNDI-EHDT has a 2-ethylhexyl and a 2-decyltetradecyl side chain, and PNDI-BOOD has a 2-butyloctyl and a 2-octyldodecyl side chain. These copolymers with different alkyl side chains exhibit higher melting and crystallization temperatures, and stronger aggregation in solution, than the control copolymer PNDI-2HD that has the same side chain. Polymer solar cells based on the electron-donating copolymer PTB7-Th and these novel copolymers exhibit nearly the same open-circuit voltage of 0.77 V. Devices based on the copolymer PNDI-BOOD with different side chains have a power-conversion efficiency of up to 6.89%, which is much higher than the 4.30% obtained with the symmetric PNDI-2HD. This improvement can be attributed to the improved charge-carrier mobility and the formation of favorable film morphology. These observations suggest that the molecular design strategy of incorporating different side chains can provide a new and promising approach to developing n-type conjugated polymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Makowski, Mariusz; Liwo, Adam; Scheraga, Harold A
2017-01-19
The physics-based potentials of side-chain-side-chain interactions corresponding to pairs composed of charged and polar, polar and polar, charged and hydrophobic, and hydrophobic and hydrophobic side chains have been determined. A total of 144 four-dimensional potentials of mean force (PMFs) of all possible pairs of molecules modeling these pairs were determined by umbrella-sampling molecular dynamics simulations in explicit water as functions of distance and orientation, and the analytical expressions were then fitted to the PMFs. Depending on the type of interacting sites, the analytical approximation to the PMF is a sum of terms corresponding to van der Waals interactions and cavity-creation involving the nonpolar sections of the side chains and van der Waals, cavity-creation, and electrostatic (charge-dipole or dipole-dipole) interaction energies and polarization energies involving the charged or polar sections of the side chains. The model used in this work reproduces all features of the interacting pairs. The UNited RESidue force field with the new side-chain-side-chain interaction potentials was preliminarily tested with the N-terminal part of the B-domain of staphylococcal protein A (PDBL 1BDD ; a three-α-helix bundle) and UPF0291 protein YnzC from Bacillus subtilis (PDB: 2HEP ; an α-helical hairpin).
Higgins, Chelsea D; Koellhoffer, Jayne F; Chandran, Kartik; Lai, Jonathan R
2013-10-01
We previously described potent inhibition of Ebola virus entry by a 'C-peptide' based on the GP2 C-heptad repeat region (CHR) targeted to endosomes ('Tat-Ebo'). Here, we report the synthesis and evaluation of C-peptides conjugated to cholesterol, and Tat-Ebo analogs containing covalent side chain-side chain crosslinks to promote α-helical conformation. We found that the cholesterol-conjugated C-peptides were potent inhibitors of Ebola virus glycoprotein (GP)-mediated cell entry (~10(3)-fold reduction in infection at 40 μM). However, this mechanism of inhibition is somewhat non-specific because the cholesterol-conjugated peptides also inhibited cell entry mediated by vesicular stomatitis virus glycoprotein G. One side chain-side chain crosslinked peptide had moderately higher activity than the parent compound Tat-Ebo. Circular dichroism revealed that the cholesterol-conjugated peptides unexpectedly formed a strong α-helical conformation that was independent of concentration. Side chain-side chain crosslinking enhanced α-helical stability of the Tat-Ebo variants, but only at neutral pH. These result provide insight into mechanisms of C-peptide inhibiton of Ebola virus GP-mediated cell entry. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effects of Alkylthio and Alkoxy Side Chains in Polymer Donor Materials for Organic Solar Cells.
Cui, Chaohua; Wong, Wai-Yeung
2016-02-01
Side chains play a considerable role not only in improving the solubility of polymers for solution-processed device fabrication, but also in affecting the molecular packing, electron affinity and thus the device performance. In particular, electron-donating side chains show unique properties when employed to tune the electronic character of conjugated polymers in many cases. Therefore, rational electron-donating side chain engineering can improve the photovoltaic properties of the resulting polymer donors to some extent. Here, a survey of some representative examples which use electron-donating alkylthio and alkoxy side chains in conjugated organic polymers for polymer solar cell applications will be presented. It is envisioned that an analysis of the effect of such electron-donating side chains in polymer donors would contribute to a better understanding of this kind of side chain behavior in solution-processed conjugated organic polymers for polymer solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dysfibrinogenemia in childhood: two cases of congenital dysfibrinogens.
Kotlín, Roman; Blažek, Bohumír; Suttnar, Jiří; Malý, Martin; Kvasnička, Jan; Dyr, Jan E
2010-10-01
A 2-year-old asymptomatic boy and his relatives were investigated for a suspected fibrinogen mutation after coagulation tests revealed a decreased functional fibrinogen level (family A). Eight-year-old and 1-year-old asymptomatic brothers were investigated for a suspected fibrinogen mutation after coagulation tests revealed a decreased functional fibrinogen level and prolonged thrombin time (family B). To identify whether genetic mutations were responsible for these dysfibrinogens, DNA extracted from the blood was analyzed. Fibrin polymerization and fibrinolysis were measured by a turbidimetric method at 450 nm. DNA analysis was performed by the Sanger method. Mass spectroscopy was performed on a Biflex IV mass spectrometer. DNA sequencing showed the heterozygous point mutation Aα Arg16His in the fibrinogen of family A and the heterozygous point mutation Aα Arg16Cys in the fibrinogen of family B. Kinetics of fibrinopeptide release, fibrinolysis, and fibrin polymerization were impaired in the carriers of the mutations in both families. Mass spectroscopy showed the presence of mutant fibrinogen chains in circulation. Scanning electron microscopy revealed thicker fibrin fibers, differing significantly from the normal control in both cases. Two cases of asymptomatic dysfibrinogenemias, found by routine coagulation testing, were genetically identified as new cases of fibrinogen variants Aα Arg16His and Aα Arg16Cys.
Jørgensen, Agnete; Fagerheim, Toril; Rand-Hendriksen, Svend; Lunde, Per I; Vorren, Torgrim O; Pepin, Melanie G; Leistritz, Dru F; Byers, Peter H
2015-01-01
Vascular Ehlers–Danlos Syndrome (vEDS), also known as EDS type IV, is considered to be an autosomal dominant disorder caused by sequence variants in COL3A1, which encodes the chains of type III procollagen. We identified a family in which there was marked clinical variation with the earliest death due to extensive aortic dissection at age 15 years and other family members in their eighties with no complications. The proband was born with right-sided clubfoot but was otherwise healthy until he died unexpectedly at 15 years. His sister, in addition to signs consistent with vascular EDS, had bilateral frontal and parietal polymicrogyria. The proband and his sister each had two COL3A1 sequence variants, c.1786C>T, p.(Arg596*) in exon 26 and c.3851G>A, p.(Gly1284Glu) in exon 50 on different alleles. Cells from the compound heterozygote produced a reduced amount of type III procollagen, all the chains of which had abnormal electrophoretic mobility. Biallelic sequence variants have a significantly worse outcome than heterozygous variants for either null mutations or missense mutations, and frontoparietal polymicrogyria may be an added phenotype feature. This genetic constellation provides a very rare explanation for marked intrafamilial clinical variation due to sequence variants in COL3A1. PMID:25205403
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang Chen; Puett, D.
1991-10-22
Members of the glycoprotein hormone family contain a common {alpha} subunit and a hormone-specific {beta} subunit. Human choriogonadotropin (hCG) {beta} is a 145 amino acid residue protein glycosylated at 6 positions (2 N-linked and 4 O-linked oligosaccharides). In an effort to elucidate receptor determinants on hCG{beta}, the authors have used site-directed mutagenesis to prepare and express several mutant cDNAs with replacements at arginines-43 and -94. Arg-43 is invariant in all known mammalian CG/lutropin {beta} amino acid sequences, and Arg-94 is conserved in 10 of the 12 sequences. Moreover, various studies involving synthetic peptides and enzymatic digestions of intact {beta} chainsmore » suggest that these residues may be important in hCG receptor binding. Point mutants were made in which these two arginines were replaced with the corresponding residues in human follitropin {beta}, Leu-43 and Asp-94. The wild-type and mutant {beta} chains were expressed in CHO cells containing a stably integrated gene for bovine {alpha}, and heterodimer formation occurred. These heterologous gonadotropins were active in assays using transformed Leydig cells, competitive binding with standard {sup 125}I-hCG, and cAMP and progesterone production, but the potency was considerably less than that associated with the hCG{beta} wild-type-containing gonadotropin. The double-mutant protein Arg-43 to Leu/Arg-94 to Asp also associated with bovine {alpha}, but the resultant heterodimer exhibited only low activity. Replacement but the Lys-43-containing {beta} chain appeared to exhibit a low degree of subunit association or reduced stability relative to the expressed hCG{beta} wild type. These results demonstrate that arginines-43 and -94 contribute to receptor binding through a positive charge.« less
Underhaug, Jarl; Koldsø, Heidi; Runager, Kasper; Nielsen, Jakob Toudahl; Sørensen, Charlotte S; Kristensen, Torsten; Otzen, Daniel E; Karring, Henrik; Malmendal, Anders; Schiøtt, Birgit; Enghild, Jan J; Nielsen, Niels Chr
2013-12-01
Hereditary mutations in the transforming growth factor beta induced (TGFBI) gene cause phenotypically distinct corneal dystrophies characterized by protein deposition in cornea. We show here that the Arg555Trp mutant of the fourth fasciclin 1 (FAS1-4) domain of the protein (TGFBIp/keratoepithelin/βig-h3), associated with granular corneal dystrophy type 1, is significantly less susceptible to proteolysis by thermolysin and trypsin than the WT domain. High-resolution liquid-state NMR of the WT and Arg555Trp mutant FAS1-4 domains revealed very similar structures except for the region around position 555. The Arg555Trp substitution causes Trp555 to be buried in an otherwise empty hydrophobic cavity of the FAS1-4 domain. The first thermolysin cleavage in the core of the FAS1-4 domain occurs on the N-terminal side of Leu558 adjacent to the Arg555 mutation. MD simulations indicated that the C-terminal end of helix α3' containing this cleavage site is less flexible in the mutant domain, explaining the observed proteolytic resistance. This structural change also alters the electrostatic properties, which may explain increased propensity of the mutant to aggregate in vitro with 2,2,2-trifluoroethanol. Based on our results we propose that the Arg555Trp mutation disrupts the normal degradation/turnover of corneal TGFBIp, leading to accumulation and increased propensity to aggregate through electrostatic interactions. © 2013.
Underhaug, Jarl; Koldsø, Heidi; Runager, Kasper; Nielsen, Jakob Toudahl; Sørensen, Charlotte S.; Kristensen, Torsten; Otzen, Daniel E.; Karring, Henrik; Malmendal, Anders; Schiøtt, Birgit; Enghild, Jan J.; Nielsen, Niels Chr.
2014-01-01
Hereditary mutations in the transforming growth factor beta induced (TGFBI) gene cause phenotypically distinct corneal dystrophies characterized by protein deposition in cornea. We show here that the Arg555Trp mutant of the fourth fasciclin 1 (FAS1-4) domain of the protein (TGFBIp/keratoepithelin/βig-h3), associated with granular corneal dystrophy type 1, is significantly less susceptible to proteolysis by thermolysin and trypsin than the WT domain. High-resolution liquid-state NMR of the WT and Arg555Trp mutant FAS1-4 domains revealed very similar structures except for the region around position 555. The Arg555Trp substitution causes Trp555 to be buried in an otherwise empty hydrophobic cavity of the FAS1-4 domain. The first thermolysin cleavage in the core of the FAS1-4 domain occurs on the N-terminal side of Leu558 adjacent to the Arg555 mutation. MD simulations indicated that the C-terminal end of helix α3′ containing this cleavage site is less flexible in the mutant domain, explaining the observed proteolytic resistance. This structural change also alters the electrostatic properties, which may explain increased propensity of the mutant to aggregate in vitro with 2,2,2-trifluoroethanol. Based on our results we propose that the Arg555Trp mutation disrupts the normal degradation/turnover of corneal TGFBIp, leading to accumulation and increased propensity to aggregate through electrostatic interactions. PMID:24129074
Tsigelny, Igor; Mahata, Sushil K.; Taupenot, Laurent; Preece, Nicholas E.; Mahata, Manjula; Khan, Imran; Parmer, Robert J.; O’Connor, Daniel T.
2009-01-01
A novel fragment of chromogranin A, known as ‘catestatin’ (bovine chromogranin A344–364), inhibits catecholamine release from chromaffin cells and noradrenergic neurons by acting as a non-competitive nicotinic cholinergic antagonist, and may therefore constitute an endogenous autocrine feedback regulator of sympathoadrenal activity. To characterize how this activity depends on the peptide’s structure, we searched for common 3-dimensional motifs for this primary structure or its homologs. Catestatin’s primary structure bore significant (29–35.5% identity, general alignment score 44–57) sequence homology to fragment sequences within three homologs of known 3-dimensional structures, based on solved X-ray crystals: 8FAB, 1PKM, and 2IG2. Each of these sequences exists in nature as a β-strand/loop/β-strand structure, stabilized by hydrophobic interactions between the β-strands. The catestatin structure was stable during molecular dynamics simulations. The catestatin loop contains three Arg residues, whose electropositive side chains form the terminus of the structure, and give rise to substantial uncompensated charge asymmetry in the molecule. A hydrophobic moment plot revealed that catestatin is the only segment of chromogranin A predicted to contain amphiphilic β-strand. Circular dichroism in the far ultraviolet showed substantial (63%) β-sheet structure, especially in a hydrophobic environment. Alanine-substitution mutants of catestatin established a crucial role for the three central arginine residues in the loop (Arg351, Arg353, and Arg358), though not for two arginine residues in the strand region toward the amino-terminus. [125I]Catestatin bound to Torpedo membranes at a site other than the nicotinic agonist binding site. When the catestatin structure was ‘docked’ with the extracellular domain of the Torpedo nicotinic cholinergic receptor, it interacted principally with the β and δ subunits, in a relatively hydrophobic region of the cation pore extracellular orifice, and the complex of ligand and receptor largely occluded the cation pore, providing a structural basis for the non-competitive nicotinic cholinergic antagonist properties of the peptide. We conclude that a homology model of catestatin correctly predicts actual features of the peptide, both physical and biological. The model suggests particular spatial and charge features of the peptide which may serve as starting points in the development of non-peptide mimetics of this endogenous nicotinic cholinergic antagonist. PMID:9809795
Antibiotic resistance genes (ARGs) in freshwaters are an emerging contaminant of concern. We used 1,747 water samples from the USEPA’s 2013-2014 National Rivers and Streams Assessment and digital-droplet polymerase chain reaction techniques to quantify the concentrations (t...
Wang, Juan; Xu, Shi-Jie; Zhou, Hua; Wang, Li-Jie; Hu, Bo; Fang, Fang; Zhang, Xu-Min; Luo, Yi-Wei; He, Xiao-Yan; Zhuang, Shao-Wei; Li, Xin-Ming; Liu, Zhong-Ming; Hu, Da-Yi
2009-09-01
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disorder and shows high variability in genetic heterogeneity and phenotypic characteristics. The genetic etiology responsible for HCM in many individuals remains unclear. This instigation was sought to identify novel genetic determinants for familial hypertrophic cardiomyopathy. Six unrelated Chinese families with HCM were studied. For each of the 13 established HCM-susceptibility genes, 3 to 5 microsatellite markers were selected to perform genotyping and haplotype analysis. The linked genes were sequenced. Haplotype analyses on candidate genetic loci revealed cosegregation of the gene beta-myosin heavy chain (MYH7) with HCM in a single family. A novel double heterozygous missense mutation of Ala26Val plus Arg719Trp in MYH7 was subsequently identified by sequencing in this family and was associated with a severe phenotype of HCM. The novel double mutation of Ala26Val plus Arg719Trp in MYH7 identified in a Chinese family highlights the remarkable genetic heterogeneity of HCM, which provides important information for genetic counseling, accurate diagnosis, prognostic evaluation, and appropriate clinical management. Copyright 2009 Wiley Periodicals, Inc.
Hidden regularity and universal classification of fast side chain motions in proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajeshwar, Rajitha; Smith, Jeremy C.; Krishnam, Marimuthu
Proteins display characteristic dynamical signatures that appear to be universal across all proteins regardless of topology and size. Here, we systematically characterize the universal features of fast side chain motions in proteins by examining the conformational energy surfaces of individual residues obtained using enhanced sampling molecular dynamics simulation (618 free energy surfaces obtained from 0.94 s MD simulation). The side chain conformational free energy surfaces obtained using the adaptive biasing force (ABF) method for a set of eight proteins with different molecular weights and secondary structures are used to determine the methyl axial NMR order parameters (O axis 2), populationsmore » of side chain rotamer states (ρ), conformational entropies (S conf), probability fluxes, and activation energies for side chain inter-rotameric transitions. The free energy barriers separating side chain rotamer states range from 0.3 to 12 kcal/mol in all proteins and follow a trimodal distribution with an intense peak at ~5 kcal/mol and two shoulders at ~3 and ~7.5 kcal/mol, indicating that some barriers are more favored than others by proteins to maintain a balance between their conformational stability and flexibility. The origin and the influences of the trimodal barrier distribution on the distribution of O axis 2 and the side chain conformational entropy are discussed. A hierarchical grading of rotamer states based on the conformational free energy barriers, entropy, and probability flux reveals three distinct classes of side chains in proteins. A unique nonlinear correlation is established between O axis 2 and the side chain rotamer populations (ρ). In conclusion, the apparent universality in O axis 2 versus correlation, trimodal barrier distribution, and distinct characteristics of three classes of side chains observed among all proteins indicates a hidden regularity (or commonality) in the dynamical heterogeneity of fast side chain motions in proteins.« less
Recovery and fine structure variability of RGII sub-domains in wine (Vitis vinifera Merlot)
Buffetto, F.; Ropartz, D.; Zhang, X. J.; Gilbert, H. J.; Guillon, F.; Ralet, M.-C.
2014-01-01
Background and Aims Rhamnogalacturonan II (RGII) is a structurally complex pectic sub-domain composed of more than 12 different sugars and 20 different linkages distributed in five side chains along a homogalacturonan backbone. Although RGII has long been described as highly conserved over plant evolution, recent studies have revealed variations in the structure of the polysaccharide. This study examines the fine structure variability of RGII in wine, focusing on the side chains A and B obtained after sequential mild acid hydrolysis. Specifically, this study aims to differentiate intrinsic structural variations in these RGII side chains from structural variations due to acid hydrolysis. Methods RGII from wine (Vitis vinifera Merlot) was sequentially hydrolysed with trifluoroacetic acid (TFA) and the hydrolysis products were separated by anion-exchange chromatography (AEC). AEC fractions or total hydrolysates were analysed by MALDI-TOF mass spectrometry. Key Results The optimal conditions to recover non-degraded side chain B, side chain A and RGII backbone were 0·1 m TFA at 40 °C for 16 h, 0·48 m TFA at 40 °C for 16 h (or 0·1 m TFA at 60 °C for 8 h) and 0·1 m TFA at 60 °C for 16 h, respectively. Side chain B was particularly prone to acid degradation. Side chain A and the RGII GalA backbone were partly degraded by 0·1 m TFA at 80 °C for 1–4 h. AEC allowed separation of side chain B, methyl-esterified side chain A and non-methyl-esterified side chain A. The structure of side chain A and the GalA backbone were highly variable. Conclusions Several modifications to the RGII structure of wine were identified. The observed dearabinosylation and deacetylation were primarily the consequence of acidic treatment, while variation in methyl-esterification, methyl-ether linkages and oxidation reflect natural diversity. The physiological significance of this variability, however, remains to be determined. PMID:24908680
Li, Xiuhua; Nie, Guanghui; Tao, Jinxiong; Wu, Wenjun; Wang, Liuchan; Liao, Shijun
2014-05-28
3,3'-Di(4″-methyl-phenyl)-4,4'-difluorodiphenyl sulfone (DMPDFPS), a new monomer with two pendent benzyl groups, was easily prepared by Suzuki coupling reaction in high yield. A series of side-chain type ionomers (PAES-Qs) containing pendant side-chain benzyltrimethylammonium groups, which linked to the backbone by alkaline resisting conjugated C-C bonds, were synthesized via polycondensation, bromination, followed by quaternization and alkalization. To assess the influence of side-chain and main-chain aromatic benzyltrimethylammonium on anion exchange membranes (AEMs), the main-chain type ionomers (MPAES-Qs) with the same backbone were synthesized following the similar procedure. GPC and (1)H NMR results indicate that the bromination shows no reaction selectivity of polymer configurations and ionizations of the side-chain type polymers display higher conversions than that of the main-chain type ones do. These two kinds of AEMs were evaluated in terms of ion exchange capacity (IEC), water uptake, swelling ratio, λ, volumetric ion exchange capacity (IECVwet), hydroxide conductivity, mechanical and thermal properties, and chemical stability, respectively. The side-chain type structure endows AEMs with lower water uptake, swelling ratio and λ, higher IECVwet, much higher hydroxide conductivity, more robust dimensional stability, mechanical and thermal properties, and higher stability in hot alkaline solution. The side-chain type cationic groups containing molecular configurations have the distinction of being practical AEMs and membrane electrode assemblies of AEMFCs.
Chen, Xingxing; Zhang, Zijian; Ding, Zicheng; Liu, Jun; Wang, Lixiang
2016-08-22
Conjugated polymers are essential for solution-processable organic opto-electronic devices. In contrast to the great efforts on developing new conjugated polymer backbones, research on developing side chains is rare. Herein, we report branched oligo(ethylene glycol) (OEG) as side chains of conjugated polymers. Compared with typical alkyl side chains, branched OEG side chains endowed the resulting conjugated polymers with a smaller π-π stacking distance, higher hole mobility, smaller optical band gap, higher dielectric constant, and larger surface energy. Moreover, the conjugated polymers with branched OEG side chains exhibited outstanding photovoltaic performance in polymer solar cells. A power conversion efficiency of 5.37 % with near-infrared photoresponse was demonstrated and the device performance could be insensitive to the active layer thickness. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tuning the thermal conductivity of solar cell polymers through side chain engineering.
Guo, Zhi; Lee, Doyun; Liu, Yi; Sun, Fangyuan; Sliwinski, Anna; Gao, Haifeng; Burns, Peter C; Huang, Libai; Luo, Tengfei
2014-05-07
Thermal transport is critical to the performance and reliability of polymer-based energy devices, ranging from solar cells to thermoelectrics. This work shows that the thermal conductivity of a low band gap conjugated polymer, poly(4,8-bis-alkyloxybenzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-(alkylthieno[3,4-b]thiophene-2-carboxylate)-2,6-diyl) (PBDTTT), for photovoltaic applications can be actively tuned through side chain engineering. Compared to the original polymer modified with short branched side chains, the engineered polymer using all linear and long side chains shows a 160% increase in thermal conductivity. The thermal conductivity of the polymer exhibits a good correlation with the side chain lengths as well as the crystallinity of the polymer characterized using small-angle X-ray scattering (SAXS) experiments. Molecular dynamics simulations and atomic force microscopy are used to further probe the molecular level local order of different polymers. It is found that the linear side chain modified polymer can facilitate the formation of more ordered structures, as compared to the branched side chain modified ones. The effective medium theory modelling also reveals that the long linear side chain enables a larger heat carrier propagation length and the crystalline phase in the bulk polymer increases the overall thermal conductivity. It is concluded that both the length of the side chains and the induced polymer crystallization are important for thermal transport. These results offer important guidance for actively tuning the thermal conductivity of conjugated polymers through molecular level design.
Suebsuwong, Chalada; Pinkas, Daniel M; Ray, Soumya S; Bufton, Joshua C; Dai, Bing; Bullock, Alex N; Degterev, Alexei; Cuny, Gregory D
2018-02-15
Development of selective kinase inhibitors remains a challenge due to considerable amino acid sequence similarity among family members particularly in the ATP binding site. Targeting the activation loop might offer improved inhibitor selectivity since this region of kinases is less conserved. However, the strategy presents difficulties due to activation loop flexibility. Herein, we report the design of receptor-interacting protein kinase 2 (RIPK2) inhibitors based on pan-kinase inhibitor regorafenib that aim to engage basic activation loop residues Lys169 or Arg171. We report development of CSR35 that displayed >10-fold selective inhibition of RIPK2 versus VEGFR2, the target of regorafenib. A co-crystal structure of CSR35 with RIPK2 revealed a resolved activation loop with an ionic interaction between the carboxylic acid installed in the inhibitor and the side-chain of Lys169. Our data provides principle feasibility of developing activation loop targeting type II inhibitors as a complementary strategy for achieving improved selectivity. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Cathcart, George R; Gilmore, Brendan F; Greer, Brett; Harriott, Pat; Walker, Brian
2009-11-01
We report on the synthesis and biological evaluation of a focussed library of N-alpha mercaptoamide containing dipeptides as inhibitors of the zinc metallopeptidase Pseudomonas aeruginosa elastase (LasB, EC 3.4.24.26). The aim of the study was to derive an inhibitor profile for LasB with regard to mapping the S'1 binding site of the enzyme. Consequently, a focussed library of 160 members has been synthesised, using standard Fmoc-solid phase methods (on a Rink-amide resin), in which a subset of amino acids including examples of those with basic (Lys, Arg), aromatic (Phe, Trp), large aliphatic (Val, Leu) and acidic (Asp, Glu) side-chains populated the P'2 position of the inhibitor sequence and all 20 natural amino acids were incorporated, in turn, at the P'1 position. The study has revealed a preference for aromatic and/or large aliphatic amino acids at P'1 and a distinct bias against acidic residues at P'2. Ten inhibitor sequences were discovered that exhibited sub to low micromolar Ki values.
Gerritz, Samuel W; Zhai, Weixu; Shi, Shuhao; Zhu, Shirong; Toyn, Jeremy H; Meredith, Jere E; Iben, Lawrence G; Burton, Catherine R; Albright, Charles F; Good, Andrew C; Tebben, Andrew J; Muckelbauer, Jodi K; Camac, Daniel M; Metzler, William; Cook, Lynda S; Padmanabha, Ramesh; Lentz, Kimberley A; Sofia, Michael J; Poss, Michael A; Macor, John E; Thompson, Lorin A
2012-11-08
This report describes the discovery and optimization of a BACE-1 inhibitor series containing an unusual acyl guanidine chemotype that was originally synthesized as part of a 6041-membered solid-phase library. The synthesis of multiple follow-up solid- and solution-phase libraries facilitated the optimization of the original micromolar hit into a single-digit nanomolar BACE-1 inhibitor in both radioligand binding and cell-based functional assay formats. The X-ray structure of representative inhibitors bound to BACE-1 revealed a number of key ligand:protein interactions, including a hydrogen bond between the side chain amide of flap residue Gln73 and the acyl guanidine carbonyl group, and a cation-π interaction between Arg235 and the isothiazole 4-methoxyphenyl substituent. Following subcutaneous administration in rats, an acyl guanidine inhibitor with single-digit nanomolar activity in cells afforded good plasma exposures and a dose-dependent reduction in plasma Aβ levels, but poor brain exposure was observed (likely due to Pgp-mediated efflux), and significant reductions in brain Aβ levels were not obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vener, M. V., E-mail: mikhail.vener@gmail.com; Odinokov, A. V.; Wehmeyer, C.
Salt bridges and ionic interactions play an important role in protein stability, protein-protein interactions, and protein folding. Here, we provide the classical MD simulations of the structure and IR signatures of the arginine (Arg)–glutamate (Glu) salt bridge. The Arg-Glu model is based on the infinite polyalanine antiparallel two-stranded β-sheet structure. The 1 μs NPT simulations show that it preferably exists as a salt bridge (a contact ion pair). Bidentate (the end-on and side-on structures) and monodentate (the backside structure) configurations are localized [Donald et al., Proteins 79, 898–915 (2011)]. These structures are stabilized by the short {sup +}N–H⋯O{sup −} bonds.more » Their relative stability depends on a force field used in the MD simulations. The side-on structure is the most stable in terms of the OPLS-AA force field. If AMBER ff99SB-ILDN is used, the backside structure is the most stable. Compared with experimental data, simulations using the OPLS all-atom (OPLS-AA) force field describe the stability of the salt bridge structures quite realistically. It decreases in the following order: side-on > end-on > backside. The most stable side-on structure lives several nanoseconds. The less stable backside structure exists a few tenth of a nanosecond. Several short-living species (solvent shared, completely separately solvated ionic groups ion pairs, etc.) are also localized. Their lifetime is a few tens of picoseconds or less. Conformational flexibility of amino acids forming the salt bridge is investigated. The spectral signature of the Arg-Glu salt bridge is the IR-intensive band around 2200 cm{sup −1}. It is caused by the asymmetric stretching vibrations of the {sup +}N–H⋯O{sup −} fragment. Result of the present paper suggests that infrared spectroscopy in the 2000–2800 frequency region may be a rapid and quantitative method for the study of salt bridges in peptides and ionic interactions between proteins. This region is usually not considered in spectroscopic studies of peptides and proteins.« less
Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacik, John-Paul; Yeager, Chris M.; Twary, Scott N.
FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is hence of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl- CoA, we predicted amino acid positions within the effector binding pocket thatmore » would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in-vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology.« less
Mandal, I; Paul, S; Venkatramani, R
2018-04-17
The absorption of light by proteins can induce charge transfer (CT) transitions in the UV-visible range of the electromagnetic spectrum. Metal-ligand complexes or active site prosthetic groups which absorb in the visible region exhibit prominent CT transitions. Furthermore, the protein backbone also exhibits CT transitions in the far UV range. In this manuscript, we present a detailed computational study of new near UV-visible CT transitions that involve amino acids with charged side chains. Specifically, using time dependent density functional theory calculations, we examine the absorption spectra of naturally charged amino acids (Lys, Glu, Arg, Asp and His), extracted from solution phase protein structures generated by classical molecular dynamics simulations, and phosphorylated amino acids (Tyr, Thr and Ser) from experimentally determined protein structures. We show that amino acids with charged sidechains present a directed electronic donor-bridge-acceptor paradigm, with the lowest energy optical excitations demonstrating peptide backbone-sidechain charge separations. The UV-visible spectral range of the backbone-sidechain CT transitions is determined by the chemical nature of the donor, bridge and acceptor groups within each amino acid, amino acid conformation and the protein secondary structure where the amino acids are located. Photoinduced CT occurs in opposite directions for the anionic and cationic amino acids along the ground state dipole moment vector for the chromophores. We find that photoinduced charge separation is more facile for the anionic amino acids (Asp, Glu, pSer, pThr and pTyr) relative to that for the cationic amino acids (Lys, Arg and Hsp). Our results provide a foundation for the development of spectroscopic markers based on the recently proposed Protein Charge Transfer Spectra (ProCharTS) which are relevant for the study of DNA-binding or intrinsically disordered proteins that are rich in charged amino acids.
Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis
Bacik, John-Paul; Yeager, Chris M.; Twary, Scott N.; ...
2015-09-18
FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is hence of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl- CoA, we predicted amino acid positions within the effector binding pocket thatmore » would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in-vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicola, George; Tomberg, Joshua; Pratt, R.F.
Penicillin-binding proteins (PBPs) are the molecular targets for the widely used {beta}-lactam class of antibiotics, but how these compounds act at the molecular level is not fully understood. We have determined crystal structures of Escherichia coli PBP 5 as covalent complexes with imipenem, cloxacillin, and cefoxitin. These antibiotics exhibit very different second-order rates of acylation for the enzyme. In all three structures, there is excellent electron density for the central portion of the {beta}-lactam, but weak or absent density for the R1 or R2 side chains. Areas of contact between the antibiotics and PBP 5 do not correlate with themore » rates of acylation. The same is true for conformational changes, because although a shift of a loop leading to an electrostatic interaction between Arg248 and the {beta}-lactam carboxylate, which occurs completely with cefoxitin and partially with imipenem and is absent with cloxacillin, is consistent with the different rates of acylation, mutagenesis of Arg248 decreased the level of cefoxitin acylation only 2-fold. Together, these data suggest that structures of postcovalent complexes of PBP 5 are unlikely to be useful vehicles for the design of new covalent inhibitors of PBPs. Finally, superimposition of the imipenem-acylated complex with PBP 5 in complex with a boronic acid peptidomimetic shows that the position corresponding to the hydrolytic water molecule is occluded by the ring nitrogen of the {beta}-lactam. Because the ring nitrogen occupies a similar position in all three complexes, this supports the hypothesis that deacylation is blocked by the continued presence of the leaving group after opening of the {beta}-lactam ring.« less
Genetic analysis of gravity signal transduction in roots
NASA Astrophysics Data System (ADS)
Masson, Patrick; Strohm, Allison; Baldwin, Katherine
To grow downward into the soil, roots use gravity as a guide. Specialized cells, named stato-cytes, enable this directional growth response by perceiving gravity. Located in the columella region of the cap, these cells sense a reorientation of the root within the gravity field through the sedimentation of, and/or tension/pressure exerted by, dense amyloplasts. This process trig-gers a gravity signal transduction pathway that leads to a fast alkalinization of the cytoplasm and a change in the distribution of the plasma membrane-associated auxin-efflux carrier PIN3. The latter protein is uniformly distributed within the plasma membrane on all sides of the cell in vertically oriented roots. However, it quickly accumulates at the bottom side upon gravis-timulation. This process correlates with a preferential transport of auxin to the bottom side of the root cap, resulting in a lateral gradient across the tip. This gradient is then transported to the elongation zone where it promotes differential cellular elongation, resulting in downward curvature. We isolated mutations that affect gravity signal transduction at a step that pre-cedes cytoplasmic alkalinization and/or PIN3 relocalization and lateral auxin transport across the cap. arg1 and arl2 mutations identify a common genetic pathway that is needed for all three gravity-induced processes in the cap statocytes, indicating these genes function early in the pathway. On the other hand, adk1 affects gravity-induced PIN3 relocalization and lateral auxin transport, but it does not interfere with cytoplasmic alkalinization. ARG1 and ARL2 encode J-domain proteins that are associated with membranes of the vesicular trafficking path-way whereas ADK1 encodes adenosine kinase, an enzyme that converts adenosine derived from nucleic acid metabolism and the AdoMet cycle into AMP, thereby alleviating feedback inhibi-tion of this important methyl-donor cycle. Because mutations in ARG1 (and ARL2) do not completely eliminate gravitropism, we sought genetic enhancers of arg1 as a way to identify new gravity signal transducers. Two of these modifiers, named mar1 and mar2, were found to affect genes that encode two subunits of the plastidic outer-membrane protein import complex, TOC75 and TOC132, respectively. mar2 did not affect the ultrastructure of amyloplasts in the statocytes nor did it alter their ability to sediment in response to gravistimulation, suggesting a role for the outer membrane of the amyloplasts in gravity signal transduction (reviewed in Stanga et al., 2009, Plant Signal Behavior 4(10): 1-9). The contribution of TOC132 in gravity signal transduction is being investigated by analyzing the regions of this protein that are needed for the pathway, and investigating the contribution of a putative TOC132-interacting protein in gravity signal transduction. We have also isolated additional putative enhancers of arg1-2 in the hope of identifying new plastid-associated gravity signal transducers, and have initiated a screen for genetic enhancers of mar2 to seek new transducers in the ARG1 branch of the pathway.
Hoernke, Maria; Schwieger, Christian; Kerth, Andreas; Blume, Alfred
2012-07-01
Basic amino acids play a key role in the binding of membrane associated proteins to negatively charged membranes. However, side chains of basic amino acids like lysine do not only provide a positive charge, but also a flexible hydrocarbon spacer that enables hydrophobic interactions. We studied the influence of hydrophobic contributions to the binding by varying the side chain length of pentapeptides with ammonium groups starting with lysine to lysine analogs with shorter side chains, namely omithine (Orn), alpha, gamma-diaminobutyric acid (Dab) and alpha, beta-diaminopropionic acid (Dap). The binding to negatively charged phosphatidylglycerol (PG) membranes was investigated by calorimetry, FT-infrared spectroscopy (FT-IR) and monolayer techniques. The binding was influenced by counteracting and sometimes compensating contributions. The influence of the bound peptides on the lipid phase behavior depends on the length of the peptide side chains. Isothermal titration calorimetry (ITC) experiments showed exothermic and endothermic effects compensating to a different extent as a function of side chain length. The increase in lipid phase transition temperature was more significant for peptides with shorter side chains. FTIR-spectroscopy revealed changes in hydration of the lipid bilayer interface after peptide binding. Using monolayer techniques, the contributions of electrostatic and hydrophobic effects could clearly be observed. Peptides with short side chains induced a pronounced decrease in surface pressure of PG monolayers whereas peptides with additional hydrophobic interactions decreased the surface pressure much less or even lead to an increase, indicating insertion of the hydrophobic part of the side chain into the lipid monolayer.
Wu, Qing-Ping; Zhang, Lei; Shao, Xiao-Xia; Wang, Jia-Hui; Gao, Yu; Xu, Zeng-Guang; Liu, Ya-Li; Guo, Zhan-Yun
2016-04-01
Relaxin is a prototype of the relaxin family peptide hormones and plays important biological functions by binding and activating the G protein-coupled receptor RXFP1. To study their interactions, in the present work, we applied the newly developed bioluminescent ligand-receptor binding assay to the relaxin-RXFP1 system. First, a fully active easily labeled relaxin, in which three Lys residues of human relaxin-2 were replaced by Arg, was prepared through overexpression of a single-chain precursor in Pichia pastoris and in vitro enzymatic maturation. Thereafter, the B-chain N-terminus of the easily labeled relaxin was chemically cross-linked with a C-terminal cysteine residue of an engineered NanoLuc through a disulfide linkage. Receptor-binding assays demonstrated that the NanoLuc-conjugated relaxin retained high binding affinity with the receptor RXFP1 (K d = 1.11 ± 0.08 nM, n = 3) and was able to sensitively monitor binding of a variety of ligands with RXFP1. Using the novel bioluminescent binding assay, we demonstrated that three highly conserved B-chain Arg residues of relaxin-3 had distinct contributions to binding of the receptor RXFP1. In summary, our present work provides a novel bioluminescent ligand-receptor binding assay for the relaxin-RXFP1 system to facilitate their interaction studies, such as characterization of relaxin analogues or screening novel agonists or antagonists of RXFP1.
1991-05-03
Report No. 21 - Latigmuir-Blodgett Films of Aromatic Schiffs Bases , K Fuctionalized in the Side Chains of Polymethacrylate by T. Takahashi, P. Miller...aromatic Schiff’s bases functionalized in the side chains of Polymethacrylate T. Takahashi**, P. Miller*, Y. M. Chen*, L. Samuelson***, D. Galotti, B...has been investigated for polymers in which nonlinear optical (NLO) moieties are attachcd i, the side chain of polymethacrylate (PMA) backbone. Polymer
Effect of unsaturation on the absorption of ethane and ethylene in imidazolium-based ionic liquids.
Moura, Leila; Mishra, Manas; Bernales, Varinia; Fuentealba, Patricio; Padua, Agilio A H; Santini, Catherine C; Costa Gomes, Margarida F
2013-06-20
The influence of the presence of imidazolium side chain unsaturation on the solubility of ethane and ethylene was studied in three ionic liquids: 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide-saturated alkyl side-chain in the cation; 1-methyl-3-(buten-3-yl)imidazolium bis(trifluorosulfonyl)imide-double bond in the side-chain of the cation; and 1-methyl-3-benzylimidazolium bis(trifluorosulfonyl)imide-benzyl group in the side-chain of the cation. The solubility of both gases decreases when the side-chain of the cations is functionalized with an unsaturated group. This can be explained by a less favorable enthalpy of solvation. The difference of solubility between ethane and ethylene can be explained from a balance of enthalpic and entropic factors: for the ionic liquid with the saturated alkyl side-chain and the benzyl-substituted side-chain, it is the favorable entropy of solvation that explains the larger ethylene solubility, whereas in the case of the saturated side-chain, it is the more favorable enthalpy of solvation. Molecular simulation allowed the identification of the mechanisms of solvation and the preferential solvation sites for each gas in the different ionic liquids. Simulations have shown that the entropy of solvation is more favorable when the presence of the gas weakens the cation-anion interactions or when the gas can be solvated near different sites of the ionic liquid.
Rajeshwar T, Rajitha; Krishnan, Marimuthu
2017-05-25
A novel approach to accurately determine residue-specific noncovalent interaction strengths (ξ) of proteins from NMR-measured fast side chain motional parameters (O axis 2 ) is presented. By probing the environmental sensitivity of side chain conformational energy surfaces of individual residues of a diverse set of proteins, the microscopic connections between ξ, O axis 2 , conformational entropy (S conf ), conformational barriers, and rotamer stabilities established here are found to be universal among proteins. The results reveal that side chain flexibility and conformational entropy of each residue decrease with increasing ξ and that for each residue type there exists a critical range of ξ, determined primarily by the mean side chain conformational barriers, within which flexibility of any residue can be reversibly tuned from highly flexible (with O axis 2 ∼ 0) to highly restricted (with O axis 2 ∼ 1) by increasing ξ by ∼3 kcal/mol. Beyond this critical range of ξ, both side chain flexibility and conformational entropy are insensitive to ξ. The interrelationships between conformational dynamics, conformational entropy, and noncovalent interactions of protein side chains established here open up new avenues to probe perturbation-induced (for example, ligand-binding, temperature, pressure) changes in fast side chain dynamics and thermodynamics of proteins by comparing their conformational energy surfaces in the native and perturbed states.
Ahlstrom, Logan S.; Vorontsov, Ivan I.; Shi, Jun; Miyashita, Osamu
2017-01-01
Side chains in protein crystal structures are essential for understanding biochemical processes such as catalysis and molecular recognition. However, crystal packing could influence side-chain conformation and dynamics, thus complicating functional interpretations of available experimental structures. Here we investigate the effect of crystal packing on side-chain conformational dynamics with crystal and solution molecular dynamics simulations using Cyanovirin-N as a model system. Side-chain ensembles for solvent-exposed residues obtained from simulation largely reflect the conformations observed in the X-ray structure. This agreement is most striking for crystal-contacting residues during crystal simulation. Given the high level of correspondence between our simulations and the X-ray data, we compare side-chain ensembles in solution and crystal simulations. We observe large decreases in conformational entropy in the crystal for several long, polar and contacting residues on the protein surface. Such cases agree well with the average loss in conformational entropy per residue upon protein folding and are accompanied by a change in side-chain conformation. This finding supports the application of surface engineering to facilitate crystallization. Our simulation-based approach demonstrated here with Cyanovirin-N establishes a framework for quantitatively comparing side-chain ensembles in solution and in the crystal across a larger set of proteins to elucidate the effect of the crystal environment on protein conformations. PMID:28107510
Ahlstrom, Logan S; Vorontsov, Ivan I; Shi, Jun; Miyashita, Osamu
2017-01-01
Side chains in protein crystal structures are essential for understanding biochemical processes such as catalysis and molecular recognition. However, crystal packing could influence side-chain conformation and dynamics, thus complicating functional interpretations of available experimental structures. Here we investigate the effect of crystal packing on side-chain conformational dynamics with crystal and solution molecular dynamics simulations using Cyanovirin-N as a model system. Side-chain ensembles for solvent-exposed residues obtained from simulation largely reflect the conformations observed in the X-ray structure. This agreement is most striking for crystal-contacting residues during crystal simulation. Given the high level of correspondence between our simulations and the X-ray data, we compare side-chain ensembles in solution and crystal simulations. We observe large decreases in conformational entropy in the crystal for several long, polar and contacting residues on the protein surface. Such cases agree well with the average loss in conformational entropy per residue upon protein folding and are accompanied by a change in side-chain conformation. This finding supports the application of surface engineering to facilitate crystallization. Our simulation-based approach demonstrated here with Cyanovirin-N establishes a framework for quantitatively comparing side-chain ensembles in solution and in the crystal across a larger set of proteins to elucidate the effect of the crystal environment on protein conformations.
A Markov Random Field Framework for Protein Side-Chain Resonance Assignment
NASA Astrophysics Data System (ADS)
Zeng, Jianyang; Zhou, Pei; Donald, Bruce Randall
Nuclear magnetic resonance (NMR) spectroscopy plays a critical role in structural genomics, and serves as a primary tool for determining protein structures, dynamics and interactions in physiologically-relevant solution conditions. The current speed of protein structure determination via NMR is limited by the lengthy time required in resonance assignment, which maps spectral peaks to specific atoms and residues in the primary sequence. Although numerous algorithms have been developed to address the backbone resonance assignment problem [68,2,10,37,14,64,1,31,60], little work has been done to automate side-chain resonance assignment [43, 48, 5]. Most previous attempts in assigning side-chain resonances depend on a set of NMR experiments that record through-bond interactions with side-chain protons for each residue. Unfortunately, these NMR experiments have low sensitivity and limited performance on large proteins, which makes it difficult to obtain enough side-chain resonance assignments. On the other hand, it is essential to obtain almost all of the side-chain resonance assignments as a prerequisite for high-resolution structure determination. To overcome this deficiency, we present a novel side-chain resonance assignment algorithm based on alternative NMR experiments measuring through-space interactions between protons in the protein, which also provide crucial distance restraints and are normally required in high-resolution structure determination. We cast the side-chain resonance assignment problem into a Markov Random Field (MRF) framework, and extend and apply combinatorial protein design algorithms to compute the optimal solution that best interprets the NMR data. Our MRF framework captures the contact map information of the protein derived from NMR spectra, and exploits the structural information available from the backbone conformations determined by orientational restraints and a set of discretized side-chain conformations (i.e., rotamers). A Hausdorff-based computation is employed in the scoring function to evaluate the probability of side-chain resonance assignments to generate the observed NMR spectra. The complexity of the assignment problem is first reduced by using a dead-end elimination (DEE) algorithm, which prunes side-chain resonance assignments that are provably not part of the optimal solution. Then an A* search algorithm is used to find a set of optimal side-chain resonance assignments that best fit the NMR data. We have tested our algorithm on NMR data for five proteins, including the FF Domain 2 of human transcription elongation factor CA150 (FF2), the B1 domain of Protein G (GB1), human ubiquitin, the ubiquitin-binding zinc finger domain of the human Y-family DNA polymerase Eta (pol η UBZ), and the human Set2-Rpb1 interacting domain (hSRI). Our algorithm assigns resonances for more than 90% of the protons in the proteins, and achieves about 80% correct side-chain resonance assignments. The final structures computed using distance restraints resulting from the set of assigned side-chain resonances have backbone RMSD 0.5 - 1.4 Å and all-heavy-atom RMSD 1.0 - 2.2 Å from the reference structures that were determined by X-ray crystallography or traditional NMR approaches. These results demonstrate that our algorithm can be successfully applied to automate side-chain resonance assignment and high-quality protein structure determination. Since our algorithm does not require any specific NMR experiments for measuring the through-bond interactions with side-chain protons, it can save a significant amount of both experimental cost and spectrometer time, and hence accelerate the NMR structure determination process.
Antibody side chain conformations are position-dependent.
Leem, Jinwoo; Georges, Guy; Shi, Jiye; Deane, Charlotte M
2018-04-01
Side chain prediction is an integral component of computational antibody design and structure prediction. Current antibody modelling tools use backbone-dependent rotamer libraries with conformations taken from general proteins. Here we present our antibody-specific rotamer library, where rotamers are binned according to their immunogenetics (IMGT) position, rather than their local backbone geometry. We find that for some amino acid types at certain positions, only a restricted number of side chain conformations are ever observed. Using this information, we are able to reduce the breadth of the rotamer sampling space. Based on our rotamer library, we built a side chain predictor, position-dependent antibody rotamer swapper (PEARS). On a blind test set of 95 antibody model structures, PEARS had the highest average χ 1 and χ1+2 accuracy (78.7% and 64.8%) compared to three leading backbone-dependent side chain predictors. Our use of IMGT position, rather than backbone ϕ/ψ, meant that PEARS was more robust to errors in the backbone of the model structure. PEARS also achieved the lowest number of side chain-side chain clashes. PEARS is freely available as a web application at http://opig.stats.ox.ac.uk/webapps/pears. © 2018 Wiley Periodicals, Inc.
Tomanov, Konstantin; Nehlin, Lilian; Ziba, Ionida
2018-01-01
The small ubiquitin-related modifier (SUMO) conjugation apparatus usually attaches single SUMO moieties to its substrates, but SUMO chains have also been identified. To better define the biochemical requirements and characteristics of SUMO chain formation, mutations in surface-exposed Lys residues of Arabidopsis SUMO-conjugating enzyme (SCE) were tested for in vitro activity. Lys-to-Arg changes in the amino-terminal region of SCE allowed SUMO acceptance from SUMO-activating enzyme and supported substrate mono-sumoylation, but these mutations had significant effects on SUMO chain assembly. We found no indication that SUMO modification of SCE promotes chain formation. A substrate was identified that is modified by SUMO chain addition, showing that SCE can distinguish substrates for either mono-sumoylation or SUMO chain attachment. It is also shown that SCE with active site Cys mutated to Ser can accept SUMO to form an oxyester, but cannot transfer this SUMO moiety onto substrates, explaining a previously known dominant negative effect of this mutation. PMID:29133528
Lan, Pham Thi; Chuc, Nguyen Thi Kim; Hoa, Nguyen Quynh; Nhung, Pham Hong; Thoa, Nguyen Thi Minh; Diwan, Vishal; Tamhankar, Ashok J.; Stålsby Lundborg, Cecilia
2017-01-01
The environmental spread of antibiotic-resistant bacteria has been recognised as a growing public health threat for which hospitals play a significant role. The aims of this study were to investigate the prevalence of antibiotic resistance and antibiotic resistance genes (ARGs) in Escherichia coli isolates from hospital wastewater in Vietnam. Wastewater samples before and after treatment were collected using continuous sampling every month over a year. Standard disk diffusion and E-test were used for antibiotic susceptibility testing. Extended-spectrum beta-lactamase (ESBL) production was tested using combined disk diffusion. ARGs were detected by polymerase chain reactions. Resistance to at least one antibiotic was detected in 83% of isolates; multidrug resistance was found in 32%. The highest resistance prevalence was found for co-trimoxazole (70%) and the lowest for imipenem (1%). Forty-three percent of isolates were ESBL-producing, with the blaTEM gene being more common than blaCTX-M. Co-harbouring of the blaCTX-M, blaTEM and qepA genes was found in 46% of isolates resistant to ciprofloxacin. The large presence of antibiotic-resistant E. coli isolates combined with ARGs in hospital wastewater, even post-treatment, poses a threat to public health. It highlights the need to develop effective processes for hospital wastewater treatment plants to eliminate antibiotic resistant bacteria and ARGs. PMID:28661465
Cardamone, Francesca; Falconi, Mattia; Desideri, Alessandro
2018-05-01
Aicardi-Goutières syndrome, a rare genetic disorder characterized by calcification of basal ganglia, results in psychomotor delays and epilepsy states from the early months of children life. This disease is caused by mutations in seven different genes encoding proteins implicated in the metabolism of nucleic acids, including SAMHD1. Twenty SAMHD1 gene variants have been discovered and in this work, a structural characterization of the SAMHD1 Aicardi-Goutières Arg145Gln mutant is reported by classical molecular dynamics simulation. Four simulations have been carried out and compared. Two concerning the wild-type SAMHD1 form in presence and absence of cofactors, in order to explain the role of cofactors in the SAMHD1 assembly/disassembly process and, two concerning the Arg145Gln mutant, also in presence and absence of cofactors, in order to have an accurate comparison with the corresponding native forms. Results show the importance of native residue Arg145 in maintaining the tetramer, interacting with GTP cofactor inside allosteric sites. Replacement of arginine in glutamine gives rise to a loosening of GTP-protein interactions, when cofactors are present in allosteric sites, whilst in absence of cofactors, the occurrence of intra and inter-chain interactions is observed in the mutant, not seen in the native enzyme, making energetically unfavourable the tetramerization process.
Nanri, Hinako; Nishida, Yuichiro; Nakamura, Kazuyo; Tanaka, Keitaro; Naito, Mariko; Yin, Guang; Hamajima, Nobuyuki; Takashima, Naoyuki; Suzuki, Sadao; Nindita, Yora; Kohno, Michiko; Uemura, Hirokazu; Koyama, Teruhide; Hosono, Satoyo; Mikami, Haruo; Kubo, Michiaki; Tanaka, Hideo
2016-01-01
Interactions between dietary patterns and 2 β-adrenergic receptor (ADRβ) gene polymorphisms (ADRβ2 Gln27Glu and ADRβ3 Trp64Arg) were examined with regard to the effects on serum triglyceride levels. The cross-sectional study comprised 1720 men and women (aged 35–69 years) enrolled in the Japan Multi-Institutional Collaborative Cohort (J-MICC) Study. Genotyping was conducted using a multiplex polymerase chain reaction-based invader assay. We used 46 items from a validated short food frequency questionnaire and examined major dietary patterns by factor analysis. We identified four dietary patterns: healthy, Western, seafood and bread patterns. There was no significant association between any dietary pattern and serum triglyceride levels. After a separate genotype-based analysis, significant interactions between ADRβ3 Trp64Arg genotype and the bread pattern (p for interaction = 0.01) were associated with serum triglyceride levels; specifically, after adjusting for confounding factors, Arg allele carriers with the bread pattern had lower serum triglycerides (p for trend = 0.01). However, the Trp/Trp homozygous subjects with the bread pattern showed no association with serum triglycerides (p for trend = 0.55). Interactions between other dietary patterns and ADRβ polymorphisms were not significant for serum triglyceride levels. Our findings suggest that ADRβ3 polymorphism modifies the effects of the bread pattern on triglyceride levels. PMID:27608039
NASA Astrophysics Data System (ADS)
Cardamone, Francesca; Falconi, Mattia; Desideri, Alessandro
2018-05-01
Aicardi-Goutières syndrome, a rare genetic disorder characterized by calcification of basal ganglia, results in psychomotor delays and epilepsy states from the early months of children life. This disease is caused by mutations in seven different genes encoding proteins implicated in the metabolism of nucleic acids, including SAMHD1. Twenty SAMHD1 gene variants have been discovered and in this work, a structural characterization of the SAMHD1 Aicardi-Goutières Arg145Gln mutant is reported by classical molecular dynamics simulation. Four simulations have been carried out and compared. Two concerning the wild-type SAMHD1 form in presence and absence of cofactors, in order to explain the role of cofactors in the SAMHD1 assembly/disassembly process and, two concerning the Arg145Gln mutant, also in presence and absence of cofactors, in order to have an accurate comparison with the corresponding native forms. Results show the importance of native residue Arg145 in maintaining the tetramer, interacting with GTP cofactor inside allosteric sites. Replacement of arginine in glutamine gives rise to a loosening of GTP-protein interactions, when cofactors are present in allosteric sites, whilst in absence of cofactors, the occurrence of intra and inter-chain interactions is observed in the mutant, not seen in the native enzyme, making energetically unfavourable the tetramerization process.
NASA Astrophysics Data System (ADS)
Cardamone, Francesca; Falconi, Mattia; Desideri, Alessandro
2018-03-01
Aicardi-Goutières syndrome, a rare genetic disorder characterized by calcification of basal ganglia, results in psychomotor delays and epilepsy states from the early months of children life. This disease is caused by mutations in seven different genes encoding proteins implicated in the metabolism of nucleic acids, including SAMHD1. Twenty SAMHD1 gene variants have been discovered and in this work, a structural characterization of the SAMHD1 Aicardi-Goutières Arg145Gln mutant is reported by classical molecular dynamics simulation. Four simulations have been carried out and compared. Two concerning the wild-type SAMHD1 form in presence and absence of cofactors, in order to explain the role of cofactors in the SAMHD1 assembly/disassembly process and, two concerning the Arg145Gln mutant, also in presence and absence of cofactors, in order to have an accurate comparison with the corresponding native forms. Results show the importance of native residue Arg145 in maintaining the tetramer, interacting with GTP cofactor inside allosteric sites. Replacement of arginine in glutamine gives rise to a loosening of GTP-protein interactions, when cofactors are present in allosteric sites, whilst in absence of cofactors, the occurrence of intra and inter-chain interactions is observed in the mutant, not seen in the native enzyme, making energetically unfavourable the tetramerization process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yanagawa, Y.; Abe, T.; Satake, M.
1988-08-23
A novel toxin, tentatively named conotoxin GS (CGS), has been isolated form a marine snail, Conus geographus. CGS was found to exist as a single polypeptide chain, consisting of 34 amino acid residues, cross-linked by three disulfide bonds. Its amino acid sequence was shown to be Ala-Cys-Ser-Gly-Arg-Gly-Ser-Arg-Cys-Hyp-Hyp-Gln-Cys-Cys-Met-Gly-Leu-Arg-Cys-Gly-Arg-Gly-Asn-Pro-Gln-Lys-Cys-Ile-Gly-Ala-His-Gla-Asp-Val. In competition experiments, CGS inhibited the bindings of (/sup 3/H)Lys-tetrodotoxin ((/sup 3/H)Lys-TTX) and (/sup 3/H)propionylconotoxin GIIIA to Electrophorus electricus electroplax membranes, with K/sub i/ values of 34 nM and 24 nM, respectively. The toxin inhibited the binding of (/sup 3/H)Lys-TTX (1 nM) to rat skeletal muscle homogenates with an IC/sub 50/ value ofmore » 880 nM but showed very little effect on this binding to the rat brain P/sub 2/ fraction at 10 ..mu..M. These binding studies indicate that CGS belongs to the same group of Na channel inhibitors as TTX, STX (saxitoxin), and ..mu..-conotoxins. Although CGS, like the ..mu..-conotoxins, is a pharmacological probe for distinguishing between neuronal and muscle Na channel subtypes, the homology in the sequences of CGS and ..mu..-conotoxins is very limited.« less
Kobbi, Sabrine; Nedjar, Naima; Chihib, Nourdine; Balti, Rafik; Chevalier, Mickael; Silvain, Amandine; Chaabouni, Semia; Dhulster, Pascal; Bougatef, Ali
2018-02-01
In this work we evaluated the mode of action of six new synthesized peptides (Met-Asp-Asn; Glu-leu-Ala-Ala-Ala-Cys; Leu-Arg-Asp-Asp-Phe; Gly-Asn-Ala-Pro-Gly-Ala-Val-Ala; Ala-Leu-Arg-Met-Ser-Gly and Arg-Asp-Arg-Phe-Leu), previously identified, from the most active peptide fractions of RuBisCO peptic hydrolysate against Listeria innocua via a membrane damage mechanism. Antibacterial effect and the minimum inhibitory concentrations (MIC) of these peptides were evaluated against six strains and their hemolytic activities towards bovine erythrocytes were determined. Prediction of the secondary structure of peptides indicated that these new antibacterial peptides are characterized by a short peptide chains (3-8 amino acid) and a random coli structure. Moreover, it was observed that one key characteristic of antibacterial peptides is the presence of specific amino acids such as cysteine, glycine, arginine and aspartic acid. In addition the determination of the extracellular potassium concentration revealed that treatment with pure RuBisCO peptides could cause morphological changes of L. innocua and destruction of the cell integrity via irreversible membrane damage. The results could provide information for investigating the antibacterial model of antibacterial peptides derived from RuBisCO protein hydrolysates. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lien, La Thi Quynh; Lan, Pham Thi; Chuc, Nguyen Thi Kim; Hoa, Nguyen Quynh; Nhung, Pham Hong; Thoa, Nguyen Thi Minh; Diwan, Vishal; Tamhankar, Ashok J; Stålsby Lundborg, Cecilia
2017-06-29
The environmental spread of antibiotic-resistant bacteria has been recognised as a growing public health threat for which hospitals play a significant role. The aims of this study were to investigate the prevalence of antibiotic resistance and antibiotic resistance genes (ARGs) in Escherichia coli isolates from hospital wastewater in Vietnam. Wastewater samples before and after treatment were collected using continuous sampling every month over a year. Standard disk diffusion and E-test were used for antibiotic susceptibility testing. Extended-spectrum beta-lactamase (ESBL) production was tested using combined disk diffusion. ARGs were detected by polymerase chain reactions. Resistance to at least one antibiotic was detected in 83% of isolates; multidrug resistance was found in 32%. The highest resistance prevalence was found for co-trimoxazole (70%) and the lowest for imipenem (1%). Forty-three percent of isolates were ESBL-producing, with the bla TEM gene being more common than bla CTX-M . Co-harbouring of the bla CTX-M , bla TEM and qepA genes was found in 46% of isolates resistant to ciprofloxacin. The large presence of antibiotic-resistant E. coli isolates combined with ARGs in hospital wastewater, even post-treatment, poses a threat to public health. It highlights the need to develop effective processes for hospital wastewater treatment plants to eliminate antibiotic resistant bacteria and ARGs.
Influence of Protein Scaffold on Side-Chain Transfer Free Energies.
Marx, Dagen C; Fleming, Karen G
2017-08-08
The process by which membrane proteins fold involves the burial of side chains into lipid bilayers. Both structure and function of membrane proteins depend on the magnitudes of side-chain transfer free energies (ΔΔG sc o ). In the absence of other interactions, ΔΔG sc o is an independent property describing the energetics of an isolated side chain in the bilayer. However, in reality, side chains are attached to the peptide backbone and surrounded by other side chains in the protein scaffold in biology, which may alter the apparent ΔΔG sc o . Previously we reported a whole protein water-to-bilayer hydrophobicity scale using the transmembrane β-barrel Escherichia coli OmpLA as a scaffold protein. To investigate how a different protein scaffold can modulate these energies, we measured ΔΔG sc o for all 20 amino acids using the transmembrane β-barrel E. coli PagP as a scaffold protein. This study represents, to our knowledge, the first instance of ΔΔG sc o measured in the same experimental conditions in two structurally and sequentially distinct protein scaffolds. Although the two hydrophobicity scales are strongly linearly correlated, we find that there are apparent scaffold induced changes in ΔΔG sc o for more than half of the side chains, most of which are polar residues. We propose that the protein scaffold affects the ΔΔG sc o of side chains that are buried in unfavorable environments by dictating the mechanisms by which the side chain can reach a more favorable environment and thus modulating the magnitude of ΔΔG sc o . Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Insights into the Molecular Mechanism of Rotation in the Fo Sector of ATP Synthase
Aksimentiev, Aleksij; Balabin, Ilya A.; Fillingame, Robert H.; Schulten, Klaus
2004-01-01
F1Fo-ATP synthase is a ubiquitous membrane protein complex that efficiently converts a cell's transmembrane proton gradient into chemical energy stored as ATP. The protein is made of two molecular motors, Fo and F1, which are coupled by a central stalk. The membrane unit, Fo, converts the transmembrane electrochemical potential into mechanical rotation of a rotor in Fo and the physically connected central stalk. Based on available data of individual components, we have built an all-atom model of Fo and investigated through molecular dynamics simulations and mathematical modeling the mechanism of torque generation in Fo. The mechanism that emerged generates the torque at the interface of the a- and c-subunits of Fo through side groups aSer-206, aArg-210, and aAsn-214 of the a-subunit and side groups cAsp-61 of the c-subunits. The mechanism couples protonation/deprotonation of two cAsp-61 side groups, juxtaposed to the a-subunit at any moment in time, to rotations of individual c-subunit helices as well as rotation of the entire c-subunit. The aArg-210 side group orients the cAsp-61 side groups and, thereby, establishes proton transfer via aSer-206 and aAsn-214 to proton half-channels, while preventing direct proton transfer between the half-channels. A mathematical model proves the feasibility of torque generation by the stated mechanism against loads typical during ATP synthesis; the essential model characteristics, e.g., helix and subunit rotation and associated friction constants, have been tested and furnished by steered molecular dynamics simulations. PMID:14990464
Breen, Nicholas F.; Weidner, Tobias; Li, Kun; Castner, David G.; Drobny, Gary P.
2011-01-01
The artificial amphiphilic peptide LKα14 adopts a helical structure at interfaces, with opposite orientation of its leucine (L, hydrophobic) and lysine (K, hydrophilic) side chains. When adsorbed onto surfaces, different residue side chains necessarily have different proximities to the surface, depending on both their position in the helix and the composition of the surface itself. Deuterating the individual leucine residues (isopropyl-d7) permits the use of solid-state deuterium NMR as a site-specific probe of side chain dynamics. In conjunction with SFG as a probe of the peptide binding face, we demonstrate that the mobility of specific leucine side chains at the interface is quantifiable in terms of their surface proximity. PMID:19764755
Khan, Sajidah; Phulukdaree, Alisa; Ramkaran, Prithiksha; Moodley, Devapregasan; Chuturgoon, Anil A
2016-11-30
Tumor protein p53 (p53), classically referred to as a tumor suppressor gene, is involved in cell cycle regulation and may be related to atherosclerosis by affecting smooth muscle cell proliferation, a feature of atherogenesis. A polymorphism at codon 72 (rs1042522) results in functional variability and hence plays a role in the pathophysiology of coronary artery disease (CAD). This polymorphism has been well established for its role in cancer and has only recently been investigated in CAD. Limited data is available on South Africans (SA) of Indian ancestry. We examined associations of this polymorphism and clinical markers in a cohort of young SA Indian CAD patients. A total of 284 subjects were recruited into this study which included 100 CAD patients (diagnosed on angiography, mean age 37.5, range 24-45years), 100 age- and sex-matched Indian controls and 84 age- and sex-matched Black controls. Polymorphic variants were assessed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Data for clinical markers were obtained from pathology reports. Genotype distribution differed significantly between CAD patients and Indian controls (Pro/Pro, Pro/Arg, Arg/Arg: 24%, 48%, 28% vs. 30%, 61%, 9% respectively, p=0.0025). There was a significant genotype distribution between Indian and Black controls (Pro/Pro, Pro/Arg, Arg/Arg: 30%, 61%, 9% vs. 45.2% 40.5%, 14.3% respectively, p=0.0212). A significantly higher frequency of the p53 Arg72 allele was found in CAD patients compared to controls (52% vs. 39.5% respectively, p=0.0159). The variant allele was slightly higher in Indian controls (39.5%) compared to Black controls (34.5%), but this did not reach statistical significance (p=0.3324). The levels of total cholesterol, LDL, HDL, triglycerides, fasting glucose, fasting insulin and %HbA1c were not significantly influenced by the p53 genotypic variants. Although the p53 codon 72 SNP is not associated with clinical markers of disease in CAD, the higher frequency of the variant allele in SA Indians may be a contributing factor for this population having an increased risk of developing premature CAD. Copyright © 2016. Published by Elsevier B.V.
Assessment of Protein Side-Chain Conformation Prediction Methods in Different Residue Environments
Peterson, Lenna X.; Kang, Xuejiao; Kihara, Daisuke
2016-01-01
Computational prediction of side-chain conformation is an important component of protein structure prediction. Accurate side-chain prediction is crucial for practical applications of protein structure models that need atomic detailed resolution such as protein and ligand design. We evaluated the accuracy of eight side-chain prediction methods in reproducing the side-chain conformations of experimentally solved structures deposited to the Protein Data Bank. Prediction accuracy was evaluated for a total of four different structural environments (buried, surface, interface, and membrane-spanning) in three different protein types (monomeric, multimeric, and membrane). Overall, the highest accuracy was observed for buried residues in monomeric and multimeric proteins. Notably, side-chains at protein interfaces and membrane-spanning regions were better predicted than surface residues even though the methods did not all use multimeric and membrane proteins for training. Thus, we conclude that the current methods are as practically useful for modeling protein docking interfaces and membrane-spanning regions as for modeling monomers. PMID:24619909
NASA Astrophysics Data System (ADS)
Anderson, Lissa C.; Håkansson, Maria; Walse, Björn; Nilsson, Carol L.
2017-09-01
Structural technologies are an essential component in the design of precision therapeutics. Precision medicine entails the development of therapeutics directed toward a designated target protein, with the goal to deliver the right drug to the right patient at the right time. In the field of oncology, protein structural variants are often associated with oncogenic potential. In a previous proteogenomic screen of patient-derived glioblastoma (GBM) tumor materials, we identified a sequence variant of human mitochondrial branched-chain amino acid aminotransferase 2 as a putative factor of resistance of GBM to standard-of-care-treatments. The enzyme generates glutamate, which is neurotoxic. To elucidate structural coordinates that may confer altered substrate binding or activity of the variant BCAT2 T186R, a 45 kDa protein, we applied combined ETD and CID top-down mass spectrometry in a LC-FT-ICR MS at 21 T, and X-Ray crystallography in the study of both the variant and non-variant intact proteins. The combined ETD/CID fragmentation pattern allowed for not only extensive sequence coverage but also confident localization of the amino acid variant to its position in the sequence. The crystallographic experiments confirmed the hypothesis generated by in silico structural homology modeling, that the Lys59 side-chain of BCAT2 may repulse the Arg186 in the variant protein (PDB code: 5MPR), leading to destabilization of the protein dimer and altered enzyme kinetics. Taken together, the MS and novel 3D structural data give us reason to further pursue BCAT2 T186R as a precision drug target in GBM. [Figure not available: see fulltext.
Liu, Jie; Liu, Zhao-Qian; Tan, Zhi-Rong; Chen, Xiao-Ping; Wang, Lian-Sheng; Zhou, Gan; Zhou, Hong-Hao
2003-10-01
Our objectives were to determine whether the Gly389 polymorphism of the beta(1)-adrenergic receptor exhibits reduced responsiveness in vivo and to test the hypothesis that the Gly389Arg polymorphism affects the blood pressure and heart rate response to metoprolol. beta(1)-Adrenergic receptor genotype was determined by polymerase chain reaction-restriction fragment length polymorphism assay. Exercise-induced heart rate increases were compared to determine the functional significance in vivo in 8 healthy Chinese men homozygous for Gly389 and 8 homozygous for Arg389. All of the subjects were given 25, 50, or 75 mg of metoprolol every 8 hours; the dosages were given in a random order, and each dosage was given for 1 day. The degree of beta-blockade was measured as the reduction in resting and exercise heart rates and blood pressures. Plasma metoprolol concentrations were measured by the use of HPLC-fluorescence detection. Exercise led to a workload-dependent increase in heart rate. There were no differences in exercise-induced heart rate increases between Arg389 and Gly389 homozygotes. Oral metoprolol caused significant dose-dependent decreases in both resting and exercise heart rates in both groups. The reductions in the resting heart rate in 3 dosage levels of metoprolol were 6.3% +/- 0.8% versus 4.1% +/- 0.7%, 10.1% +/- 1.0% versus 6.2% +/- 1.1%, and 14.4% +/- 1.4% versus 10.9% +/- 1.3% in homozygous Arg389 subjects and Gly389 subjects, respectively (P =.008). We also found differences with respect to the exercise heart rate (8.9% +/- 0.5%, 14.0% +/- 0.9%, and 20.1% +/- 1.5% in Arg389 subjects and 6.6% +/- 0.7%, 11.7% +/- 1.0%, and 16.4% +/- 1.3% in Gly389 subjects; P =.017) and systolic pressure (5.9% +/- 0.7%, 9.2% +/- 1.0%, and 11.6% +/- 1.2% in Arg389 subjects and 4.6% +/- 0.5%, 6.0% +/- 0.8%, and 9.9% +/- 0.9% in Gly389 subjects; P =.011). However, the difference in the fall in diastolic pressure was not statistically significant (P =.442). The Arg389 variant of the beta(1)-adrenergic receptor was associated with a greater response to metoprolol than that of Gly389 in young, male Chinese subjects. These data suggested that the beta(1)-adrenergic receptor Gly389Arg polymorphism is of major functional importance in vivo.
Phase separation of comb polymer nanocomposite melts.
Xu, Qinzhi; Feng, Yancong; Chen, Lan
2016-02-07
In this work, the spinodal phase demixing of branched comb polymer nanocomposite (PNC) melts is systematically investigated using the polymer reference interaction site model (PRISM) theory. To verify the reliability of the present method in characterizing the phase behavior of comb PNCs, the intermolecular correlation functions of the system for nonzero particle volume fractions are compared with our molecular dynamics simulation data. After verifying the model and discussing the structure of the comb PNCs in the dilute nanoparticle limit, the interference among the side chain number, side chain length, nanoparticle-monomer size ratio and attractive interactions between the comb polymer and nanoparticles in spinodal demixing curves is analyzed and discussed in detail. The results predict two kinds of distinct phase separation behaviors. One is called classic fluid phase boundary, which is mediated by the entropic depletion attraction and contact aggregation of nanoparticles at relatively low nanoparticle-monomer attraction strength. The second demixing transition occurs at relatively high attraction strength and involves the formation of an equilibrium physical network phase with local bridging of nanoparticles. The phase boundaries are found to be sensitive to the side chain number, side chain length, nanoparticle-monomer size ratio and attractive interactions. As the side chain length is fixed, the side chain number has a large effect on the phase behavior of comb PNCs; with increasing side chain number, the miscibility window first widens and then shrinks. When the side chain number is lower than a threshold value, the phase boundaries undergo a process from enlarging the miscibility window to narrowing as side chain length increases. Once the side chain number overtakes this threshold value, the phase boundary shifts towards less miscibility. With increasing nanoparticle-monomer size ratio, a crossover of particle size occurs, above which the phase separation is consistent with that of chain PNCs. The miscibility window for this condition gradually narrows while the other parameters of the PNCs system are held constant. These results indicate that the present PRISM theory can give molecular-level details of the underlying mechanisms of the comb PNCs. It is hoped that the results can be used to provide useful guidance for the future design control of novel, thermodynamically stable comb PNCs.
Lietzow, Michael A; Hubbell, Wayne L
2004-03-23
A goal in the development of site-directed spin labeling in proteins is to correlate the motion of a nitroxide side chain with local structure, interactions, and dynamics. Significant progress toward this goal has been made using alpha-helical proteins of known structure, and the present study is the first step in a similar exploration of a beta-sheet protein, cellular retinol-binding protein (CRBP). Nitroxide side chains were introduced along both interior and edge strands. At sites in interior strands, the side-chain motion is strongly influenced by interactions with side chains of neighboring strands, giving rise to a rich variety of dynamic modes (weakly ordered, strongly ordered, immobilized) and complex electron paramagnetic resonance spectra that are modulated by strand twist. The interactions giving rise to the dynamic modes are explored using mutagenesis, and the results demonstrate the particular importance of the non-hydrogen-bonded neighbor residue in giving rise to highly ordered states. Along edge strands of the beta-sheet, the motion of the side chain is simple and weakly ordered, resembling that at solvent-exposed surfaces of an alpha-helix. A simple working model is proposed that can account for the wide variety of dynamic modes encountered. Collectively, the results suggest that the nitroxide side chain is an effective probe of side-chain interactions, and that site-directed spin labeling should be a powerful means of monitoring conformational changes that involve changes in beta-sheet topology.
NASA Astrophysics Data System (ADS)
Niimura, Subaru; Kurosu, Hiromichi; Shoji, Akira
2010-04-01
To clarify the positive role of side-chain conformation in the stability of protein secondary structure (main-chain conformation), we successfully calculated the optimization structure of a series of well-defined α-helical octadecapeptides composed of two L-phenylalanine (Phe) and 16 L-alanine (Ala) residues, based on the molecular orbital calculation with density functional theory (DFT/B3LYP/6-31G(d)). From the total energy calculation and the precise secondary structural analysis, we found that the conformational stability of the α-helix is closely related to the reciprocal side-chain combinations (such as positional relation and side-chain conformation) of two Phe residues in this system. Furthermore, we demonstrated that the 1H, 13C, 15N and 17O isotropic chemical shifts of each Phe residue depend on the respective side-chain conformations of the Phe residue.
Side-chain-side-chain interactions and stability of the helical state
NASA Astrophysics Data System (ADS)
Zangi, Ronen
2014-01-01
Understanding the driving forces that lead to the stability of the secondary motifs found in proteins, namely α-helix and β-sheet, is a major goal in structural biology. The thermodynamic stability of these repetitive units is a result of a delicate balance between many factors, which in addition to the peptide chain involves also the solvent. Despite the fact that the backbones of all amino acids are the same (except of that of proline), there are large differences in the propensity of the different amino acids to promote the helical structure. In this paper, we investigate by explicit-solvent molecular dynamics simulations the role of the side chains (modeled as coarse-grained single sites) in stabilizing α helices in an aqueous solution. Our model systems include four (six-mer-nine-mer) peptide lengths in which the magnitude of the effective attraction between the side chains is systematically increased. We find that these interactions between the side chains can induce (for the nine-mer almost completely) a transition from a coil to a helical state. This transition is found to be characterized by three states in which the intermediate state is a partially folded α-helical conformation. In the absence of any interactions between the side chains the free energy change for helix formation has a small positive value indicating that favorable contributions from the side chains are necessary to stabilize the helical conformation. Thus, the helix-coil transition is controlled by the effective potentials between the side-chain residues and the magnitude of the required attraction per residue, which is on the order of the thermal energy, reduces with the length of the peptide. Surprisingly, the plots of the population of the helical state (or the change in the free energy for helix formation) as a function of the total effective interactions between the side chains in the helical state for all peptide lengths fall on the same curve.
Wiśniewska, Marta; Sobolewski, Emil; Ołdziej, Stanisław; Liwo, Adam; Scheraga, Harold A.; Makowski, Mariusz
2015-01-01
Phosphorylation is a common post-translational modification of the amino-acid side chains (serine, tyrosine, and threonine) that contain hydroxyl groups. The transfer of the negatively charged phosphate group from an ATP molecule to such amino-acid side chains leads to changes in the local conformations of proteins and the pattern of interactions with other amino-acid side-chains. A convenient characteristic of the side chain–side chain interactions in the context of an aqueous environment is the potential of mean force (PMF) in water. A series of umbrella-sampling molecular dynamic (MD) simulations with the AMBER force field were carried out for pairs of O-phosphorylated serine (pSer), threonine (pThr), and tyrosine, (pTyr) with natural amino acids in a TIP3P water model as a solvent at 298 K. The weighted-histogram analysis method was used to calculate the four-dimensional potentials of mean force. The results demonstrate that the positions and depths of the contact minima and the positions and heights of the desolvation maxima, including their dependence on the relative orientation depend on the character of the interacting pairs. More distinct minima are observed for oppositely charged pairs such as, e.g., O-phosphorylated side-chains and positively charged ones, such as the side-chains of lysine and arginine. PMID:26100791
Solution structure of a small protein containing a fluorinated side chain in the core
Cornilescu, Gabriel; Hadley, Erik B.; Woll, Matthew G.; Markley, John L.; Gellman, Samuel H.; Cornilescu, Claudia C.
2007-01-01
We report the first high-resolution structure for a protein containing a fluorinated side chain. Recently we carried out a systematic evaluation of phenylalanine to pentafluorophenylalanine (Phe → F5-Phe) mutants for the 35-residue chicken villin headpiece subdomain (c-VHP), the hydrophobic core of which features a cluster of three Phe side chains (residues 6, 10, and 17). Phe → F5-Phe mutations are interesting because aryl–perfluoroaryl interactions of optimal geometry are intrinsically more favorable than either aryl–aryl or perfluoroaryl–perfluoroaryl interactions, and because perfluoroaryl units are more hydrophobic than are analogous aryl units. Only one mutation, Phe10 → F5-Phe, was found to provide enhanced tertiary structural stability relative to the native core (by ∼1 kcal/mol, according to guanidinium chloride denaturation studies). The NMR structure of this mutant, described here, reveals very little variation in backbone conformation or side chain packing relative to the wild type. Thus, although Phe → F5-Phe mutations offer the possibility of greater tertiary structural stability from side chain–side chain attraction and/or side chain desolvation, the constraints associated with the native c-VHP fold apparently prevent the modified polypeptide from taking advantage of this possibility. Our findings are important because they complement several studies that have shown that fluorination of saturated side chain carbon atoms can provide enhanced conformational stability. PMID:17123960
Evaluation of p53 Polymorphism in Patients with Pannus-Derived Prosthetic Dysfunction.
Gursoy, Mustafa Ozan; Karakoyun, Suleyman; Kalcik, Macit; Yesin, Mahmut; Gunduz, Sabahattin; Astarcioğlu, Mehmet Ali; Oğuz, Ali Emrah; Ozkan, Mehmet
2015-09-01
Prosthetic valve dysfunction (PVD) due to pannus formation is considered to occur due to a bioreaction to prosthetic material. The p53 gene plays a critical role in apoptosis and cell proliferation. p53 Arg72Pro polymorphism has been found to be associated with coronary stent restenosis, but has not yet been studied in prosthetic heart valve dysfunction. The study aim was to evaluate the association between pannus-derived PVD and p53 G72C(Arg72Pro) polymorphism. This single-center, prospective study included 25 patients (20 females, five males; mean age 45.6 +/- 12.5 years; group 1) who underwent redo valve surgery due to PVD, and 49 age- and gender-matched control patients (44 females, five males; mean age 47.3 +/- 12.2 years; group 2) with normofunctional prostheses. The prostheses were examined using transthoracic and transesophageal echocardiography. Analyses of p53 G72C(Arg72Pro) polymorphism were performed using Roche LightCyler 2.0 Real-time polymerase chain reaction. The most common location of replaced valves was the mitral position in both groups (88% and 89.8%, respectively). In group 1, normal alleles (GG) were observed in 12 patients (48%), while one patient (4%) showed a homozygous mutation (GC) and 12 patients (48%) showed a heterozygous mutation (CC). In group 2, 21 patients (42.9%) had normal alleles (GG), while four (8.2%) had a homozygous mutation (CC) and 24 (48.9%) had a heterozygous mutation (GC). No significant difference was observed between the groups with regards to p53 Arg72Pro polymorphism (p = 0.769). In patients with prosthetic valves, the underlying mechanism behind pannus formation is unrelated to p53 Arg72Pro polymorphism.
A rare missense mutation in MYH6 associates with non-syndromic coarctation of the aorta.
Bjornsson, Thorsteinn; Thorolfsdottir, Rosa B; Sveinbjornsson, Gardar; Sulem, Patrick; Norddahl, Gudmundur L; Helgadottir, Anna; Gretarsdottir, Solveig; Magnusdottir, Audur; Danielsen, Ragnar; Sigurdsson, Emil L; Adalsteinsdottir, Berglind; Gunnarsson, Sverrir I; Jonsdottir, Ingileif; Arnar, David O; Helgason, Hrodmar; Gudbjartsson, Tomas; Gudbjartsson, Daniel F; Thorsteinsdottir, Unnur; Holm, Hilma; Stefansson, Kari
2018-03-24
Coarctation of the aorta (CoA) accounts for 4-8% of congenital heart defects (CHDs) and confers substantial morbidity despite treatment. It is increasingly recognized as a highly heritable condition. The aim of the study was to search for sequence variants that affect the risk of CoA. We performed a genome-wide association study of CoA among Icelanders (120 cases and 355 166 controls) based on imputed variants identified through whole-genome sequencing. We found association with a rare (frequency = 0.34%) missense mutation p.Arg721Trp in MYH6 (odds ratio = 44.2, P = 5.0 × 10-22), encoding the alpha-heavy chain subunit of cardiac myosin, an essential sarcomere protein. Approximately 20% of individuals with CoA in Iceland carry this mutation. We show that p.Arg721Trp also associates with other CHDs, in particular bicuspid aortic valve. We have previously reported broad effects of p.Arg721Trp on cardiac electrical function and strong association with sick sinus syndrome and atrial fibrillation. Through a population approach, we found that a rare missense mutation p.Arg721Trp in the sarcomere gene MYH6 has a strong effect on the risk of CoA and explains a substantial fraction of the Icelanders with CoA. This is the first mutation associated with non-familial or sporadic form of CoA at a population level. The p.Arg721Trp in MYH6 causes a cardiac syndrome with highly variable expressivity and emphasizes the importance of sarcomere integrity for cardiac development and function.
Synthesis and analgesic activity of some side-chain modified anpirtoline derivatives.
Rádl, S; Hezky, P; Proska, J; Hejnová, L; Krejcí, I
2000-05-01
New derivatives of anpirtoline and deazaanpirtoline modified in the side chain have been synthesized. The series includes compounds 3 with side-chains containing piperidine or pyrrolidine rings, compounds 4 containing 8-azabicyclo[3.2.1]octane moiety, and compounds 5 having piperazine ring in their side-chains. Their receptor binding profiles (5-HT1A, 5-HT1B) and analgesic activity (hot plate, acetic acid induced writhing) have been studied. Optimized structures (PM3-MOPAC, Alchemy 2000, Tripos Inc.) of the synthesized compounds 3-5 were compared with that of anpirtoline.
Barnett, Shonoi A; Amyes, Tina L; Wood, Bryant M; Gerlt, John A; Richard, John P
2008-07-29
Kinetic analysis of decarboxylation catalyzed by S154A, Q215A, and S154A/Q215A mutant yeast orotidine 5'-monophosphate decarboxylases with orotidine 5'-monophosphate (OMP) and with a truncated nucleoside substrate (EO) activated by phosphite dianion shows (1) the side chain of Ser-154 stabilizes the transition state through interactions with the pyrimidine rings of OMP or EO, (2) the side chain of Gln-215 interacts with the phosphodianion group of OMP or with phosphite dianion, and (3) the interloop hydrogen bond between the side chains of Ser-154 and Gln-215 orients the amide side chain of Gln-215 to interact with the phosphodianion group of OMP or with phosphite dianion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorenbos, G., E-mail: dorenbos@ny.thn.ne.jp
Percolation thresholds for solvent diffusion within hydrated model polymeric membranes are derived from dissipative particle dynamics in combination with Monte Carlo (MC) tracer diffusion calculations. The polymer backbones are composed of hydrophobic A beads to which at regular intervals Y-shaped side chains are attached. Each side chain is composed of eight A beads and contains two identical branches that are each terminated with a pendant hydrophilic C bead. Four types of side chains are considered for which the two branches (each represented as [C], [AC], [AAC], or [AAAC]) are splitting off from the 8th, 6th, 4th, or 2nd A bead,more » respectively. Water diffusion through the phase separated water containing pore networks is deduced from MC tracer diffusion calculations. The percolation threshold for the architectures containing the [C] and [AC] branches is at a water volume fraction of ∼0.07 and 0.08, respectively. These are much lower than those derived earlier for linear architectures of various side chain length and side chain distributions. Control of side chain architecture is thus a very interesting design parameter to decrease the percolation threshold for solvent and proton transports within flexible amphiphilic polymer membranes.« less
Liu, Zitong; Zhang, Guanxin; Zhang, Deqing
2018-06-19
Organic semiconductors have received increasing attentions in recent years because of their promising applications in various optoelectronic devices. The key performance metric for organic semiconductors is charge carrier mobility, which is governed by the electronic structures of conjugated backbones and intermolecular/interchain π-π interactions and packing in both microscopic and macroscopic levels. For this reason, more efforts have been paid to the design and synthesis of conjugated frameworks for organic semiconductors with high charge mobilities. However, recent studies manifest that appropriate modifications of side chains that are linked to conjugated frameworks can improve the intermolecular/interchain packing order and boost charge mobilities. In this Account, we discuss our research results in context of modification of side chains in organic semiconductors for charge mobility enhancement. These include the following: (i) The lengths of alkyl chains in sulfur-rich thiepin-fused heteroacences can dramatically influence the intermolecular arrangements and orbital overlaps, ushering in different hole mobilities. Inversely, the lamellar stacking modes of alkyl chains in naphthalene diimide (NDI) derivatives with tetrathiafulvalene (TTF) units are affected by the structures of conjugated cores. (ii) The steric hindrances owing to the bulky branching chains can be weakened by partial replacement of the branching alkyl chains with linear ones for diketopyrrolopyrrole (DPP)-based D (donor)-A (acceptor) conjugated polymers. Such modification of side chains makes the polymer backbones more planar and thus interchain packing order and charge mobilities are improved. The incorporation of hydrophilic tri(ethylene glycol) (TEG) chains into the polymers also leads to improved interchain packing order. In particular, the polymer in which TEG side chains are distributed uniformly exhibits relatively high charge mobility without thermal annealing. (iii) The incorporation of urea groups in the side chains induces the polymer chains to pack more orderly and form large domains because of the additional H-bonding among urea groups. Accordingly, thin film mobilities of the conjugated D-A polymers with side chains entailing urea groups are largely boosted in comparison with those of polymers of the same backbones with either branching alkyl chains or branching/linear alkyl chains. (iv) The torsions of branching alkyl chains in conjugated D-A polymers can be inhibited to some extent upon incorporation of tiny amount of NMe 4 I in the thin film. As a result, the polymer thin films with NMe 4 I exhibit improved crystallinity, and charge mobilities can be boosted by more than 20 times. (v) Side chains with functional groups in the conjugated polymers can endow the thin film field-effect transistors (FETs) with sensing functionality. FETs with the conjugated polymer with -COOH groups in the side chains show sensitive, selective, and fast responses toward ammonia and amines, while FETs with the ultrathin films of the polymer containing tetra(ethylene glycol) (TEEG) in the side chains can sense alcohol vapors (in particular ethanol vapor) sensitively and selectively with fast response.
Koppole, Sampath; Smith, Jeremy C; Fischer, Stefan
2006-08-18
During the recovery stroke, the myosin motor is primed for the next power stroke by a 60 degree rotation of its lever arm. This reversible motion is coupled to the activation of the ATPase function of myosin through conformational changes along the relay helix, which runs from the Switch-2 loop near the ATP to the converter domain carrying the lever arm. Via a hydrogen bond between the side-chain of Asn475 on the relay helix and the Gly457/Ser456 peptide group on the Switch-2, the rotation of the converter domain is coupled to the formation of a hydrogen bond between Gly457 and gamma-phosphate that is essential for ATP hydrolysis. Here, molecular dynamics simulations of Dictyostelium discoideum myosin II in the two end conformations of the recovery stroke with different nucleotide states (ATP, ADP x Pi, ADP) reveal that the side-chain of Asn475 breaks away from Switch-2 upon ATP hydrolysis to make a hydrogen bond with Tyr573. This sensing of the nucleotide state is achieved by a small displacement of the cleaved gamma-phosphate towards Gly457 which in turn pushes Asn475 away. The sensing plays a dual role by (i) preventing the wasteful reversal of the recovery stroke while the nucleotide is in the ADP x Pi state, and (ii) decoupling the relay helix from Switch-2, thus allowing the power stroke to start upon initial binding to actin while Gly457 of Switch-2 keeps interacting with the Pi (known to be released only later after tight actin binding). A catalytically important salt bridge between Arg238 (on Switch-1) and Glu459 (on Switch-2), which covers the hydrolysis site, is seen to form rapidly when ATP is added to the pre-recovery stroke conformer and remains stable after the recovery stroke, indicating that it has a role in shaping the ATP binding site by induced fit.
Ahn, Suk-kyun; Carrillo, Jan-Michael Y.; Keum, Jong K.; ...
2017-04-07
The ability to widely tune the design of macromolecular bottlebrushes provides access to self-assembled nanostructures formed by microphase segregation in melt, thin film and solution that depart from structures adopted by simple linear copolymers. A series of random bottlebrush copolymers containing poly(3-hexylthiophene) (P3HT) and poly(D,L-lactide) (PLA) side chains grafted on a poly(norbornene) backbone were synthesized via ring-opening metathesis polymerization (ROMP) using the grafting through approach. P3HT side chains induce a physical aggregation of the bottlebrush copolymers upon solvent removal by vacuum drying, primarily driven by attractive π–π interactions; however, the amount of aggregation can be controlled by adjusting side chainmore » composition or by adding linear P3HT chains to the bottlebrush copolymers. Coarse-grained molecular dynamics simulations reveal that linear P3HT chains preferentially associate with P3HT side chains of bottlebrush copolymers, which tends to reduce the aggregation. The nanoscale morphology of microphase segregated thin films created by casting P3HT–PLA random bottlebrush copolymers is highly dependent on the composition of P3HT and PLA side chains, while domain spacing of nanostructures is mainly determined by the length of the side chains. The selective removal of PLA side chains under alkaline conditions generates nanoporous P3HT structures that can be tuned by manipulating molecular design of the bottlebrush scaffold, which is affected by molecular weight and grafting density of the side chains, and their sequence. Furthermore, the ability to exploit the unusual architecture of bottlebrushes to fabricate tunable nanoporous P3HT thin film structures may be a useful way to design templates for optoelectronic applications or membranes for separations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Suk-kyun; Carrillo, Jan-Michael Y.; Keum, Jong K.
The ability to widely tune the design of macromolecular bottlebrushes provides access to self-assembled nanostructures formed by microphase segregation in melt, thin film and solution that depart from structures adopted by simple linear copolymers. A series of random bottlebrush copolymers containing poly(3-hexylthiophene) (P3HT) and poly(D,L-lactide) (PLA) side chains grafted on a poly(norbornene) backbone were synthesized via ring-opening metathesis polymerization (ROMP) using the grafting through approach. P3HT side chains induce a physical aggregation of the bottlebrush copolymers upon solvent removal by vacuum drying, primarily driven by attractive π–π interactions; however, the amount of aggregation can be controlled by adjusting side chainmore » composition or by adding linear P3HT chains to the bottlebrush copolymers. Coarse-grained molecular dynamics simulations reveal that linear P3HT chains preferentially associate with P3HT side chains of bottlebrush copolymers, which tends to reduce the aggregation. The nanoscale morphology of microphase segregated thin films created by casting P3HT–PLA random bottlebrush copolymers is highly dependent on the composition of P3HT and PLA side chains, while domain spacing of nanostructures is mainly determined by the length of the side chains. The selective removal of PLA side chains under alkaline conditions generates nanoporous P3HT structures that can be tuned by manipulating molecular design of the bottlebrush scaffold, which is affected by molecular weight and grafting density of the side chains, and their sequence. Furthermore, the ability to exploit the unusual architecture of bottlebrushes to fabricate tunable nanoporous P3HT thin film structures may be a useful way to design templates for optoelectronic applications or membranes for separations.« less
Fujimuro, Masahiro; Nishiya, Tadashi; Nomura, Yasuyuki; Yokosawa, Hideyoshi
2005-12-01
Polyubiquitination plays key roles in various proteasome-dependent and independent cellular events. To elucidate roles in stress response of polyubiquitin chains formed via specific chain linkages in mammalian cells, we established NIH3T3 stable cell lines that are capable of conditionally expressing K29R, K48R and K63R ubiquitin mutants, in which the Lys29, Lys48 and Lys63 residues of ubiquitin had been changed to Arg, and we examined the effects of various stresses on their cell viabilities. The expression of K63R ubiquitin mutant decreased viability of the cells post-exposed to ethanol, H(2)O(2) and methyl methanesulfonate (MMS), while that of K48R mutant decreased viability of the cells post-exposed to heat shock as well as ethanol, H(2)O(2) and MMS. Thus, these results suggest that polyubiquitin chains formed via specific chain linkages are involved in the respective stress responses in mammalian cells.
A protein-dependent side-chain rotamer library.
Bhuyan, Md Shariful Islam; Gao, Xin
2011-12-14
Protein side-chain packing problem has remained one of the key open problems in bioinformatics. The three main components of protein side-chain prediction methods are a rotamer library, an energy function and a search algorithm. Rotamer libraries summarize the existing knowledge of the experimentally determined structures quantitatively. Depending on how much contextual information is encoded, there are backbone-independent rotamer libraries and backbone-dependent rotamer libraries. Backbone-independent libraries only encode sequential information, whereas backbone-dependent libraries encode both sequential and locally structural information. However, side-chain conformations are determined by spatially local information, rather than sequentially local information. Since in the side-chain prediction problem, the backbone structure is given, spatially local information should ideally be encoded into the rotamer libraries. In this paper, we propose a new type of backbone-dependent rotamer library, which encodes structural information of all the spatially neighboring residues. We call it protein-dependent rotamer libraries. Given any rotamer library and a protein backbone structure, we first model the protein structure as a Markov random field. Then the marginal distributions are estimated by the inference algorithms, without doing global optimization or search. The rotamers from the given library are then re-ranked and associated with the updated probabilities. Experimental results demonstrate that the proposed protein-dependent libraries significantly outperform the widely used backbone-dependent libraries in terms of the side-chain prediction accuracy and the rotamer ranking ability. Furthermore, without global optimization/search, the side-chain prediction power of the protein-dependent library is still comparable to the global-search-based side-chain prediction methods.
Andrews, Casey T; Campbell, Brady A; Elcock, Adrian H
2017-04-11
Given the ubiquitous nature of protein-DNA interactions, it is important to understand the interaction thermodynamics of individual amino acid side chains for DNA. One way to assess these preferences is to perform molecular dynamics (MD) simulations. Here we report MD simulations of 20 amino acid side chain analogs interacting simultaneously with both a 70-base-pair double-stranded DNA and with a 70-nucleotide single-stranded DNA. The relative preferences of the amino acid side chains for dsDNA and ssDNA match well with values deduced from crystallographic analyses of protein-DNA complexes. The estimated apparent free energies of interaction for ssDNA, on the other hand, correlate well with previous simulation values reported for interactions with isolated nucleobases, and with experimental values reported for interactions with guanosine. Comparisons of the interactions with dsDNA and ssDNA indicate that, with the exception of the positively charged side chains, all types of amino acid side chain interact more favorably with ssDNA, with intercalation of aromatic and aliphatic side chains being especially notable. Analysis of the data on a base-by-base basis indicates that positively charged side chains, as well as sodium ions, preferentially bind to cytosine in ssDNA, and that negatively charged side chains, and chloride ions, preferentially bind to guanine in ssDNA. These latter observations provide a novel explanation for the lower salt dependence of DNA duplex stability in GC-rich sequences relative to AT-rich sequences.
Sparse networks of directly coupled, polymorphic, and functional side chains in allosteric proteins.
Soltan Ghoraie, Laleh; Burkowski, Forbes; Zhu, Mu
2015-03-01
Recent studies have highlighted the role of coupled side-chain fluctuations alone in the allosteric behavior of proteins. Moreover, examination of X-ray crystallography data has recently revealed new information about the prevalence of alternate side-chain conformations (conformational polymorphism), and attempts have been made to uncover the hidden alternate conformations from X-ray data. Hence, new computational approaches are required that consider the polymorphic nature of the side chains, and incorporate the effects of this phenomenon in the study of information transmission and functional interactions of residues in a molecule. These studies can provide a more accurate understanding of the allosteric behavior. In this article, we first present a novel approach to generate an ensemble of conformations and an efficient computational method to extract direct couplings of side chains in allosteric proteins, and provide sparse network representations of the couplings. We take the side-chain conformational polymorphism into account, and show that by studying the intrinsic dynamics of an inactive structure, we are able to construct a network of functionally crucial residues. Second, we show that the proposed method is capable of providing a magnified view of the coupled and conformationally polymorphic residues. This model reveals couplings between the alternate conformations of a coupled residue pair. To the best of our knowledge, this is the first computational method for extracting networks of side chains' alternate conformations. Such networks help in providing a detailed image of side-chain dynamics in functionally important and conformationally polymorphic sites, such as binding and/or allosteric sites. © 2014 Wiley Periodicals, Inc.
Mutation of the myosin converter domain alters cross-bridge elasticity
Köhler, Jan; Winkler, Gerhard; Schulte, Imke; Scholz, Tim; McKenna, William; Brenner, Bernhard; Kraft, Theresia
2002-01-01
Elastic distortion of a structural element of the actomyosin complex is fundamental to the ability of myosin to generate motile forces. An elastic element allows strain to develop within the actomyosin complex (cross-bridge) before movement. Relief of this strain then drives filament sliding, or more generally, movement of a cargo. Even with the known crystal structure of the myosin head, however, the structural element of the actomyosin complex in which elastic distortion occurs remained unclear. To assign functional relevance to various structural elements of the myosin head, e.g., to identify the elastic element within the cross-bridge, we studied mechanical properties of muscle fibers from patients with familial hypertrophic cardiomyopathy with point mutations in the head domain of the β-myosin heavy chain. We found that the Arg-719 → Trp (Arg719Trp) mutation, which is located in the converter domain of the myosin head fragment, causes an increase in force generation and fiber stiffness under isometric conditions by 48–59%. Under rigor and relaxing conditions, fiber stiffness was 45–47% higher than in control fibers. Yet, kinetics of active cross-bridge cycling were unchanged. These findings, especially the increase in fiber stiffness under rigor conditions, indicate that cross-bridges with the Arg719Trp mutation are more resistant to elastic distortion. The data presented here strongly suggest that the converter domain that forms the junction between the catalytic and the light-chain-binding domain of the myosin head is not only essential for elastic distortion of the cross-bridge, but that the main elastic distortion may even occur within the converter domain itself. PMID:11904418
Multifunctional Diketopyrrolopyrrole-Based Conjugated Polymers with Perylene Bisimide Side Chains.
Li, Cheng; Yu, Changshi; Lai, Wenbin; Liang, Shijie; Jiang, Xudong; Feng, Guitao; Zhang, Jianqi; Xu, Yunhua; Li, Weiwei
2017-11-24
Two conjugated polymers based on diketopyrrolopyrrole (DPP) in the main chain with different content of perylene bisimide (PBI) side chains are developed. The influence of PBI side chain on the photovoltaic performance of these DPP-based conjugated polymers is systematically investigated. This study suggests that the PBI side chains can not only alter the absorption spectrum and energy level but also enhance the crystallinity of conjugated polymers. As a result, such polymers can act as electron donor, electron acceptor, and single-component active layer in organic solar cells. These findings provide a new guideline for the future molecular design of multifunctional conjugated polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, William F. M.; Xie, Guojun; Vatankhah Varnoosfaderani, Mohammad
The goal of this study is to use ABA triblock copolymers with central bottlebrush B segments and crystalline linear chain A segments to demonstrate the effect of side chains on the formation and mechanical properties of physical networks cross-linked by crystallites. For this purpose, a series of bottlebrush copolymers was synthesized consisting of central amorphous bottlebrush polymer segments with a varying degree of polymerization (DP) of poly(n-butyl acrylate) (PnBA) side chains and linear tail blocks of crystallizable poly(octadecyl acrylate-stat-docosyl acrylate) (poly(ODA-stat-DA)). The materials were generated by sequential atom transfer radical polymerization (ATRP) steps starting with a series of bifunctional macroinitiatorsmore » followed by the growth of two ODA-stat-DA linear-chain tails and eventually growing poly(nBA) side chains with increasing DPs. Crystallization of the poly(ODA-stat-DA) tails resulted in a series of reversible physical networks with bottlebrush strands bridging crystalline cross-links. They displayed very low moduli of elasticity of the order of 10 3–10 4 Pa. These distinct properties are due to the bottlebrush architecture, wherein densely grafted side chains play a dual role by facilitating disentanglement of the network strands and confining crystallization of the linear-chain tails. This combination leads to physical cross-linking of supersoft networks without percolation of the crystalline phase. The cross-link density was effectively controlled by the DP of the side chains with respect to the DP of the linear tails (n A). Furthermore, shorter side chains allowed for crystallization of the linear tails of neighboring bottlebrushes, while steric repulsion between longer side chains hindered the phase separation and crystallization process and prevented network formation.« less
Daniel, William F. M.; Xie, Guojun; Vatankhah Varnoosfaderani, Mohammad; ...
2017-02-24
The goal of this study is to use ABA triblock copolymers with central bottlebrush B segments and crystalline linear chain A segments to demonstrate the effect of side chains on the formation and mechanical properties of physical networks cross-linked by crystallites. For this purpose, a series of bottlebrush copolymers was synthesized consisting of central amorphous bottlebrush polymer segments with a varying degree of polymerization (DP) of poly(n-butyl acrylate) (PnBA) side chains and linear tail blocks of crystallizable poly(octadecyl acrylate-stat-docosyl acrylate) (poly(ODA-stat-DA)). The materials were generated by sequential atom transfer radical polymerization (ATRP) steps starting with a series of bifunctional macroinitiatorsmore » followed by the growth of two ODA-stat-DA linear-chain tails and eventually growing poly(nBA) side chains with increasing DPs. Crystallization of the poly(ODA-stat-DA) tails resulted in a series of reversible physical networks with bottlebrush strands bridging crystalline cross-links. They displayed very low moduli of elasticity of the order of 10 3–10 4 Pa. These distinct properties are due to the bottlebrush architecture, wherein densely grafted side chains play a dual role by facilitating disentanglement of the network strands and confining crystallization of the linear-chain tails. This combination leads to physical cross-linking of supersoft networks without percolation of the crystalline phase. The cross-link density was effectively controlled by the DP of the side chains with respect to the DP of the linear tails (n A). Furthermore, shorter side chains allowed for crystallization of the linear tails of neighboring bottlebrushes, while steric repulsion between longer side chains hindered the phase separation and crystallization process and prevented network formation.« less
Relationship between ion pair geometries and electrostatic strengths in proteins.
Kumar, Sandeep; Nussinov, Ruth
2002-01-01
The electrostatic free energy contribution of an ion pair in a protein depends on two factors, geometrical orientation of the side-chain charged groups with respect to each other and the structural context of the ion pair in the protein. Conformers in NMR ensembles enable studies of the relationship between geometry and electrostatic strengths of ion pairs, because the protein structural contexts are highly similar across different conformers. We have studied this relationship using a dataset of 22 unique ion pairs in 14 NMR conformer ensembles for 11 nonhomologous proteins. In different NMR conformers, the ion pairs are classified as salt bridges, nitrogen-oxygen (N-O) bridges and longer-range ion pairs on the basis of geometrical criteria. In salt bridges, centroids of the side-chain charged groups and at least a pair of side-chain nitrogen and oxygen atoms of the ion-pairing residues are within a 4 A distance. In N-O bridges, at least a pair of the side-chain nitrogen and oxygen atoms of the ion-pairing residues are within 4 A distance, but the distance between the side-chain charged group centroids is greater than 4 A. In the longer-range ion pairs, the side-chain charged group centroids as well as the side-chain nitrogen and oxygen atoms are more than 4 A apart. Continuum electrostatic calculations indicate that most of the ion pairs have stabilizing electrostatic contributions when their side-chain charged group centroids are within 5 A distance. Hence, most (approximately 92%) of the salt bridges and a majority (68%) of the N-O bridges are stabilizing. Most (approximately 89%) of the destabilizing ion pairs are the longer-range ion pairs. In the NMR conformer ensembles, the electrostatic interaction between side-chain charged groups of the ion-pairing residues is the strongest for salt bridges, considerably weaker for N-O bridges, and the weakest for longer-range ion pairs. These results suggest empirical rules for stabilizing electrostatic interactions in proteins. PMID:12202384
Blankenburg, Robert; Hackert, Katarzyna; Wurster, Sebastian; Deenen, René; Seidman, J G; Seidman, Christine E; Lohse, Martin J; Schmitt, Joachim P
2014-07-07
Approximately 40% of hypertrophic cardiomyopathy (HCM) is caused by heterozygous missense mutations in β-cardiac myosin heavy chain (β-MHC). Associating disease phenotype with mutation is confounded by extensive background genetic and lifestyle/environmental differences between subjects even from the same family. To characterize disease caused by β-cardiac myosin heavy chain Val606Met substitution (VM) that has been identified in several HCM families with wide variation of clinical outcomes, in mice. Unlike 2 mouse lines bearing the malignant myosin mutations Arg453Cys (RC/+) or Arg719Trp (RW/+), VM/+ mice with an identical inbred genetic background lacked hallmarks of HCM such as left ventricular hypertrophy, disarray of myofibers, and interstitial fibrosis. Even homozygous VM/VM mice were indistinguishable from wild-type animals, whereas RC/RC- and RW/RW-mutant mice died within 9 days after birth. However, hypertrophic effects of the VM mutation were observed both in mice treated with cyclosporine, a known stimulator of the HCM response, and compound VM/RC heterozygous mice, which developed a severe HCM phenotype. In contrast to all heterozygous mutants, both systolic and diastolic function of VM/RC hearts was severely impaired already before the onset of cardiac remodeling. The VM mutation per se causes mild HCM-related phenotypes; however, in combination with other HCM activators it exacerbates the HCM phenotype. Double-mutant mice are suitable for assessing the severity of benign mutations. © 2014 American Heart Association, Inc.
Ionizable side chains at catalytic active sites of enzymes.
Jimenez-Morales, David; Liang, Jie; Eisenberg, Bob
2012-05-01
Catalytic active sites of enzymes of known structure can be well defined by a modern program of computational geometry. The CASTp program was used to define and measure the volume of the catalytic active sites of 573 enzymes in the Catalytic Site Atlas database. The active sites are identified as catalytic because the amino acids they contain are known to participate in the chemical reaction catalyzed by the enzyme. Acid and base side chains are reliable markers of catalytic active sites. The catalytic active sites have 4 acid and 5 base side chains, in an average volume of 1,072 Å(3). The number density of acid side chains is 8.3 M (in chemical units); the number density of basic side chains is 10.6 M. The catalytic active site of these enzymes is an unusual electrostatic and steric environment in which side chains and reactants are crowded together in a mixture more like an ionic liquid than an ideal infinitely dilute solution. The electrostatics and crowding of reactants and side chains seems likely to be important for catalytic function. In three types of analogous ion channels, simulation of crowded charges accounts for the main properties of selectivity measured in a wide range of solutions and concentrations. It seems wise to use mathematics designed to study interacting complex fluids when making models of the catalytic active sites of enzymes.
Ionizable Side Chains at Catalytic Active Sites of Enzymes
Jimenez-Morales, David; Liang, Jie
2012-01-01
Catalytic active sites of enzymes of known structure can be well defined by a modern program of computational geometry. The CASTp program was used to define and measure the volume of the catalytic active sites of 573 enzymes in the Catalytic Site Atlas database. The active sites are identified as catalytic because the amino acids they contain are known to participate in the chemical reaction catalyzed by the enzyme. Acid and base side chains are reliable markers of catalytic active sites. The catalytic active sites have 4 acid and 5 base side chains, in an average volume of 1072 Å3. The number density of acid side chains is 8.3 M (in chemical units); the number density of basic side chains is 10.6 M. The catalytic active site of these enzymes is an unusual electrostatic and steric environment in which side chains and reactants are crowded together in a mixture more like an ionic liquid than an ideal infinitely dilute solution. The electrostatics and crowding of reactants and side chains seems likely to be important for catalytic function. In three types of analogous ion channels, simulation of crowded charges accounts for the main properties of selectivity measured in a wide range of solutions and concentrations. It seems wise to use mathematics designed to study interacting complex fluids when making models of the catalytic active sites of enzymes. PMID:22484856
Streit, Bennett R.; Blanc, Béatrice; Lukat-Rodgers, Gudrun S.; Rodgers, Kenton R.; DuBois, Jennifer L.
2010-01-01
Chlorite dismutase catalyzes O2 release from chlorite with exquisite efficiency and specificity. The spectroscopic properties, ligand binding affinities, and steady state kinetics of chlorite dismutase from Dechloromonas aromatica were examined over pH 3–11.5 to gain insight into how the protonation state of the heme environment influences dioxygen formation. An acid/base transition was observed by UV/visible and resonance Raman spectroscopy with a pKa of 8.7, 2–3 pH units below analogous transitions observed in typical His-ligated peroxidases. This transition marks the conversion of a five coordinate high spin Fe(III) to a mixed high/low spin ferric-hydroxide, as confirmed by resonance Raman (rR) spectroscopy. The two Fe–OH stretching frequencies are quite low, consistent with a weak Fe–OH bond, despite the nearly neutral imidazole side chain of the proximal histidine ligand. The hydroxide is proposed to interact strongly with a distal H-bond donor, thereby weakening the Fe–OH bond. The rR spectra of Cld-CO as a function of pH reveal two forms of the complex, one in which there is minimal interaction of distal residues with the carbonyl oxygen and another, acidic form in which the oxygen is under the influence of positive charge. Recent crystallographic data reveal arginine 183 as the lone H-bond donating residue in the distal pocket. It is likely that this Arg is the strong, positively charged H-bond donor implicated by vibrational data to interact with exogenous axial heme ligands. The same Arg in its neutral (pKa ~ 6.5) form also appears to act as the active site base in binding reactions of protonated ligands, such as HCN, to ferric Cld. The steady state profile for the rate of chlorite decomposition is characterized by these same pKas. The 5 coordinate high spin acidic Cld is more active than the alkaline hydroxide-bound form. The acid form decomposes chlorite most efficiently when the distal Arg is protonated/cationic (maximum kcat = 2.0 (±0.6) × 105 s−1, kcat/KM = 3.2 (±0.4) × 107 M−1s−1, pH 5.2, 4 °C) and to a somewhat lesser extent when it acts as a H-bond donor to the axial hydroxide ligand under alkaline conditions. PMID:20356038
Molecular modeling of calmodulin: a comparison with crystallographic data
NASA Technical Reports Server (NTRS)
McDonald, J. J.; Rein, R.
1989-01-01
Two methods of side-chain placement on a modeled protein have been examined. Two molecular models of calmodulin were constructed that differ in the treatment of side chains prior to optimization of the molecule. A virtual bond analysis program developed by Purisima and Scheraga was used to determine the backbone conformation based on 2.2 angstroms resolution C alpha coordinates for the molecules. In the first model, side chains were initially constructed in an extended conformation. In the second model, a conformational grid search technique was employed. Calcium ions were treated explicitly during energy optimization using CHARMM. The models are compared to a recently published refined crystal structure of calmodulin. The results indicate that the initial choices for side-chains, but also significant effects on the main-chain conformation and supersecondary structure. The conformational differences are discussed. Analysis of these and other methods makes possible the formulation of a methodology for more appropriate side-chain placement in modeled proteins.
Contamination profiles of antibiotic resistance genes in the sediments at a catchment scale.
Su, Hao-Chang; Pan, Chang-Gui; Ying, Guang-Guo; Zhao, Jian-Liang; Zhou, Li-Jun; Liu, You-Sheng; Tao, Ran; Zhang, Rui-Quan; He, Liang-Ying
2014-08-15
The aim of this study was to investigate the contamination profiles of tetracycline, sulfonamide, and macrolide resistance genes, as well as integrons in sediments of Dongjiang River basin of South China by real time quantitative polymerase chain reaction. sul2 was the most abundant resistance gene, with the average concentration of 6.97×10(8) copies/g and 1.00×10(8) copies/g in the dry and wet seasons, respectively, followed by ermF, sul3, sul1, intI1, tetA, ermB, tetX, tetM, tetQ, tetO, tetW, tetS, ermC, and tetB. The abundance of intI2 gene was the lowest in the sediment samples. Significant correlations existed between the ARGs and sediment properties as well as metals (Cu and Zn) and corresponding antibiotic classes, suggesting that the contamination of ARGs is related to chemical pollution of the sediments in the river basin. Principal component analysis showed distinct groupings of the sampling sites, reflecting that human activities are the key player in the dissemination of ARGs in the catchment environment. Copyright © 2014 Elsevier B.V. All rights reserved.
Effect of Dust Storms on the Atmospheric Microbiome in the Eastern Mediterranean.
Mazar, Yinon; Cytryn, Eddie; Erel, Yigal; Rudich, Yinon
2016-04-19
We evaluated the impact of Saharan dust storms on the local airborne microbiome in a city in the Eastern Mediterranean area. Samples of particles with diameter less than 10 μm were collected during two spring seasons on both dusty and nondusty days. DNA was extracted, and partial 16S rRNA gene amplicons were sequenced using the Illumina platform. Bioinformatic analysis showed the effect of dust events on the diversity of the atmospheric microbiome. The relative abundance of desert soil-associated bacteria increased during dust events, while the relative abundance of anthropogenic-influenced taxa decreased. Quantitative polymerase chain reaction measurements of selected clinically significant antibiotic resistance genes (ARGs) showed that their relative abundance decreased during dust events. The ARG profiles on dust-free days were similar to those in aerosol collected in a poultry house, suggesting a strong agricultural influence on the local ambient profiles. We conclude that dust storms enrich the ambient airborne microbiome with new soil-derived bacteria that disappear as the dust settles, suggesting that the bacteria are transported attached to the dust particles. Dust storms do not seem to be an important vector for transport of probed ARGs.
Novel RS1 mutations associated with X-linked juvenile retinoschisis
YI, JUNHUI; LI, SHIQIANG; JIA, XIAOYUN; XIAO, XUESHAN; WANG, PANFENG; GUO, XIANGMING; ZHANG, QINGJIONG
2012-01-01
To identify mutations in the retinoschisin (RS1) gene in families with X-linked retinoschisis (XLRS). Twenty families with XLRS were enrolled in this study. All six coding exons and adjacent intronic regions of RS1 were amplified by polymerase chain reaction (PCR). The nucleotide sequences of the amplicons were determined by Sanger sequencing. Ten hemizygous mutations in RS1 were detected in patients from 14 of the 20 families. Four of the ten mutations were novel, including c:176G>A (p:Cys59Tyr) in exon 3, c:531T>G (p:Tyr177X), c:607C>G (p:Pro203Ala) and c:668G>A (p:Cys223Tyr) in exon 6. These four novel mutations were not present in 176 normal individuals. The remaining six were recurrent mutations, including c:214G>A (p:Glu72Lys), c:304C>T (p:Arg102Trp), c:436G>A (p:Glu146Lys), c:544C>T (p:Arg182Cys), c:599G>A (p:Arg200His) and c:644A>T (p:Glu215Val). Our study expanded the mutation spectrum of RS1 and enriches our understanding of the molecular basis of XLRS. PMID:22245991
Novel RS1 mutations associated with X-linked juvenile retinoschisis.
Yi, Junhui; Li, Shiqiang; Jia, Xiaoyun; Xiao, Xueshan; Wang, Panfeng; Guo, Xiangming; Zhang, Qingjiong
2012-04-01
To identify mutations in the retinoschisin (RS1) gene in families with X-linked retinoschisis (XLRS). Twenty families with XLRS were enrolled in this study. All six coding exons and adjacent intronic regions of RS1 were amplified by polymerase chain reaction (PCR). The nucleotide sequences of the amplicons were determined by Sanger sequencing. Ten hemizygous mutations in RS1 were detected in patients from 14 of the 20 families. Four of the ten mutations were novel, including c:176G>A (p:Cys59Tyr) in exon 3, c:531T>G (p:Tyr177X), c:607C>G (p:Pro203Ala) and c:668G>A (p:Cys223Tyr) in exon 6. These four novel mutations were not present in 176 normal individuals. The remaining six were recurrent mutations, including c:214G>A (p:Glu72Lys), c:304C>T (p:Arg102Trp), c:436G>A (p:Glu146Lys), c:544C>T (p:Arg182Cys), c:599G>A (p:Arg200His) and c:644A>T (p:Glu215Val). Our study expanded the mutation spectrum of RS1 and enriches our understanding of the molecular basis of XLRS.
Lack of correlation between p53 codon 72 polymorphism and anal cancer risk
Contu, Simone S; Agnes, Grasiela; Damin, Andrea P; Contu, Paulo C; Rosito, Mário A; Alexandre, Claudio O; Damin, Daniel C
2009-01-01
AIM: To investigate the potential role of p53 codon 72 polymorphism as a risk factor for development of anal cancer. METHODS: Thirty-two patients with invasive anal carcinoma and 103 healthy blood donors were included in the study. p53 codon 72 polymorphism was analyzed in blood samples through polymerase chain reaction-restriction fragment length polymorphism and DNA sequencing. RESULTS: The relative frequency of each allele was 0.60 for Arg and 0.40 for Pro in patients with anal cancer, and 0.61 for Arg and 0.39 for Pro in normal controls. No significant differences in distribution of the codon 72 genotypes between patients and controls were found. CONCLUSION: These results do not support a role for the p53 codon 72 polymorphism in anal carcinogenesis. PMID:19777616
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zellmeier, M.; Rappich, J.; Nickel, N. H.
The influence of ether groups in the side chain of spin coated regioregular polythiophene derivatives on the polymer layer formation and the hybrid solar cell properties was investigated using electrical, optical, and X-ray diffraction experiments. The polymer layers are of high crystallinity but the polymer with 3 ether groups in the side chain (P3TOT) did not show any vibrational fine structure in the UV-Vis spectrum. The presence of ether groups in the side chains leads to better adhesion resulting in thinner and more homogeneous polymer layers. This, in turn, enhances the electronic properties of the planar c-Si/poly-thiophene hybrid solar cell.more » We find that the power conversion efficiency increases with the number of ether groups in the side chains, and a maximum power conversion efficiency of η = 9.6% is achieved even in simple planar structures.« less
Chan, Linda J.; Rosengren, K. Johan; Layfield, Sharon L.; Bathgate, Ross A. D.; Separovic, Frances; Samuel, Chrishan S.; Hossain, Mohammed A.; Wade, John D.
2012-01-01
Human gene-2 (H2) relaxin is currently in Phase III clinical trials for the treatment of acute heart failure. It is a 53-amino acid insulin-like peptide comprising two chains and three disulfide bonds. It interacts with two of the relaxin family peptide (RXFP) receptors. Although its cognate receptor is RXFP1, it is also able to cross-react with RXFP2, the native receptor for a related peptide, insulin-like peptide 3. In order to understand the basis of this cross-reactivity, it is important to elucidate both binding and activation mechanisms of this peptide. The primary binding mechanism of this hormone has been extensively studied and well defined. H2 relaxin binds to the leucine-rich repeats of RXFP1 and RXFP2 using B-chain-specific residues. However, little is known about the secondary interaction that involves the A-chain of H2 relaxin and transmembrane exoloops of the receptors. We demonstrate here through extensive mutation of the A-chain that the secondary interaction between H2 relaxin and RXFP1 is not driven by any single amino acid, although residues Tyr-3, Leu-20, and Phe-23 appear to contribute. Interestingly, these same three residues are important drivers of the affinity and activity of H2 relaxin for RXFP2 with additional minor contributions from Lys-9, His-12, Lys-17, Arg-18, and Arg-22. Our results provide new insights into the mechanism of secondary activation interaction of RXFP1 and RXFP2 by H2 relaxin, leading to a potent and RXFP1-selective analog, H2:A(4–24)(F23A), which was tested in vitro and in vivo and found to significantly inhibit collagen deposition similar to native H2 relaxin. PMID:23024363
Xu, Min; Unzue, Andrea; Dong, Jing; Spiliotopoulos, Dimitrios; Nevado, Cristina; Caflisch, Amedeo
2016-02-25
We have identified two chemotypes of CREBBP bromodomain ligands by fragment-based high-throughput docking. Only 17 molecules from the original library of two-million compounds were tested in vitro. Optimization of the two low-micromolar hits, the 4-acylpyrrole 1 and acylbenzene 9, was driven by molecular dynamics results which suggested improvement of the polar interactions with the Arg1173 side chain at the rim of the binding site. The synthesis of only two derivatives of 1 yielded the 4-acylpyrrole 6 which shows a single-digit micromolar affinity for the CREBBP bromodomain and a ligand efficiency of 0.34 kcal/mol per non-hydrogen atom. Optimization of the acylbenzene hit 9 resulted in a series of derivatives with nanomolar potencies, good ligand efficiency and selectivity (see Unzue, A.; Xu, M.; Dong, J.; Wiedmer, L.; Spiliotopoulos, D.; Caflisch, A.; Nevado, C.Fragment-Based Design of Selective Nanomolar Ligands of the CREBBP Bromodomain. J. Med. Chem. 2015, DOI: 10.1021/acs.jmedchem.5b00172). The in silico predicted binding mode of the acylbenzene derivative 10 was validated by solving the structure of the complex with the CREBBP bromodomain.
NASA Astrophysics Data System (ADS)
Ohnishi, Inori; Hashimoto, Kazuhito; Tajima, Keisuke
2018-03-01
Linear polydimethylsiloxane (PDMS) was investigated as a solubilizing group for π-conjugated polymers with the aim of combining high solubility in organic solvents with the molecular packing in solid films that is advantageous for charge transport. Diketopyrrolopyrrole-based copolymers with different contents and substitution patterns of the PDMS side chains were synthesized and evaluated for application in organic field-effect transistors. The PDMS side chains greatly increased the solubility of the polymers and led to shorter d-spacings of the π-stacking in the thin films compared with polymers containing conventional branched alkyl side chains.
A combinatorial approach to protein docking with flexible side chains.
Althaus, Ernst; Kohlbacher, Oliver; Lenhof, Hans-Peter; Müller, Peter
2002-01-01
Rigid-body docking approaches are not sufficient to predict the structure of a protein complex from the unbound (native) structures of the two proteins. Accounting for side chain flexibility is an important step towards fully flexible protein docking. This work describes an approach that allows conformational flexibility for the side chains while keeping the protein backbone rigid. Starting from candidates created by a rigid-docking algorithm, we demangle the side chains of the docking site, thus creating reasonable approximations of the true complex structure. These structures are ranked with respect to the binding free energy. We present two new techniques for side chain demangling. Both approaches are based on a discrete representation of the side chain conformational space by the use of a rotamer library. This leads to a combinatorial optimization problem. For the solution of this problem, we propose a fast heuristic approach and an exact, albeit slower, method that uses branch-and-cut techniques. As a test set, we use the unbound structures of three proteases and the corresponding protein inhibitors. For each of the examples, the highest-ranking conformation produced was a good approximation of the true complex structure.
Wang, Li Kai; Nair, Pravin A.; Shuman, Stewart
2008-01-01
NAD+-dependent DNA ligases (LigAs) are ubiquitous in bacteria and essential for growth. LigA enzymes have a modular structure in which a central catalytic core composed of nucleotidyltransferase and oligonucleotide-binding (OB) domains is linked via a tetracysteine zinc finger to distal helix-hairpin-helix (HhH) and BRCT (BRCA1-like C-terminal) domains. The OB and HhH domains contribute prominently to the protein clamp formed by LigA around nicked duplex DNA. Here we conducted a structure-function analysis of the OB and HhH domains of Escherichia coli LigA by alanine scanning and conservative substitutions, entailing 43 mutations at 22 amino acids. We thereby identified essential functional groups in the OB domain that engage the DNA phosphodiester backbone flanking the nick (Arg333); penetrate the minor grove and distort the nick (Val383 and Ile384); or stabilize the OB fold (Arg379). The essential constituents of the HhH domain include: four glycines (Gly455, Gly489, Gly521, Gly553), which bind the phosphate backbone across the minor groove at the outer margins of the LigA-DNA interface; Arg487, which penetrates the minor groove at the outer margin on the 3 ®-OH side of the nick; and Arg446, which promotes protein clamp formation via contacts to the nucleotidyltransferase domain. We find that the BRCT domain is required in its entirety for effective nick sealing and AMP-dependent supercoil relaxation. PMID:18515356
Wang, Li Kai; Nair, Pravin A; Shuman, Stewart
2008-08-22
NAD(+)-dependent DNA ligases (LigAs) are ubiquitous in bacteria and essential for growth. LigA enzymes have a modular structure in which a central catalytic core composed of nucleotidyltransferase and oligonucleotide-binding (OB) domains is linked via a tetracysteine zinc finger to distal helix-hairpin-helix (HhH) and BRCT (BRCA1-like C-terminal) domains. The OB and HhH domains contribute prominently to the protein clamp formed by LigA around nicked duplex DNA. Here we conducted a structure-function analysis of the OB and HhH domains of Escherichia coli LigA by alanine scanning and conservative substitutions, entailing 43 mutations at 22 amino acids. We thereby identified essential functional groups in the OB domain that engage the DNA phosphodiester backbone flanking the nick (Arg(333)); penetrate the minor grove and distort the nick (Val(383) and Ile(384)); or stabilize the OB fold (Arg(379)). The essential constituents of the HhH domain include: four glycines (Gly(455), Gly(489), Gly(521), Gly(553)), which bind the phosphate backbone across the minor groove at the outer margins of the LigA-DNA interface; Arg(487), which penetrates the minor groove at the outer margin on the 3 (R)-OH side of the nick; and Arg(446), which promotes protein clamp formation via contacts to the nucleotidyltransferase domain. We find that the BRCT domain is required in its entirety for effective nick sealing and AMP-dependent supercoil relaxation.
Improved packing of protein side chains with parallel ant colonies.
Quan, Lijun; Lü, Qiang; Li, Haiou; Xia, Xiaoyan; Wu, Hongjie
2014-01-01
The accurate packing of protein side chains is important for many computational biology problems, such as ab initio protein structure prediction, homology modelling, and protein design and ligand docking applications. Many of existing solutions are modelled as a computational optimisation problem. As well as the design of search algorithms, most solutions suffer from an inaccurate energy function for judging whether a prediction is good or bad. Even if the search has found the lowest energy, there is no certainty of obtaining the protein structures with correct side chains. We present a side-chain modelling method, pacoPacker, which uses a parallel ant colony optimisation strategy based on sharing a single pheromone matrix. This parallel approach combines different sources of energy functions and generates protein side-chain conformations with the lowest energies jointly determined by the various energy functions. We further optimised the selected rotamers to construct subrotamer by rotamer minimisation, which reasonably improved the discreteness of the rotamer library. We focused on improving the accuracy of side-chain conformation prediction. For a testing set of 442 proteins, 87.19% of X1 and 77.11% of X12 angles were predicted correctly within 40° of the X-ray positions. We compared the accuracy of pacoPacker with state-of-the-art methods, such as CIS-RR and SCWRL4. We analysed the results from different perspectives, in terms of protein chain and individual residues. In this comprehensive benchmark testing, 51.5% of proteins within a length of 400 amino acids predicted by pacoPacker were superior to the results of CIS-RR and SCWRL4 simultaneously. Finally, we also showed the advantage of using the subrotamers strategy. All results confirmed that our parallel approach is competitive to state-of-the-art solutions for packing side chains. This parallel approach combines various sources of searching intelligence and energy functions to pack protein side chains. It provides a frame-work for combining different inaccuracy/usefulness objective functions by designing parallel heuristic search algorithms.
Zylberg, Jacques; Ecke, Denise; Fischer, Bilha; Reiser, Georg
2007-01-01
The P2Y11-R (P2Y11 receptor) is a less explored drug target. We computed an hP2Y11-R (human P2Y11) homology model with two templates, bovine-rhodopsin (2.6 Å resolution; 1 Å=0.1 nm) and a hP2Y1–ATP complex model. The hP2Y11-R model was refined using molecular dynamics calculations and validated by virtual screening methods, with an enrichment factor of 5. Furthermore, mutational analyses of Arg106, Glu186, Arg268, Arg307 and Ala313 confirmed the adequacy of our hP2Y11-R model and the computed ligand recognition mode. The E186A and R268A mutants reduced the potency of ATP by one and three orders of magnitude respectively. The R106A and R307A mutants were functionally inactive. We propose that residues Arg106, Arg268, Arg307 and Glu186 are involved in ionic interactions with the phosphate moiety of ATP. Arg307 is possibly also H-bonded to N6 of ATP via the backbone carbonyl. Activity of ATP at the F109I mutant revealed that the proposed π-stacking of Phe109 with the adenine ring is a minor interaction. The mutation A313N, which is part of a hydrophobic pocket in the vicinity of the ATP C-2 position, partially explains the high activity of 2-MeS-ATP at P2Y1-R as compared with the negligible activity at the P2Y11-R. Inactivity of ATP at the Y261A mutant implies that Tyr261 acts as a molecular switch, as in other G-protein-coupled receptors. Moreover, analysis of cAMP responses seen with the mutants showed that the efficacy of coupling of the P2Y11-R with Gs is more variable than coupling with Gq. Our model also indicates that Ser206 forms an H-bond with Pγ (the γ-phosphate of the triphosphate chain of ATP) and Met310 interacts with the adenine moiety. PMID:17338680
Thames, Callie H.; Pruden, Amy; James, Robert E.; Ray, Partha P.; Knowlton, Katharine F.
2012-01-01
Elevated levels of antibiotic resistance genes (ARGs) in soil and water have been linked to livestock farms and in some cases feed antibiotics may select for antibiotic resistant gut microbiota. The purpose of this study was to examine the establishment of ARGs in the feces of calves receiving milk replacer containing no antibiotics versus subtherapeutic or therapeutic doses of tetracycline and neomycin. The effect of antibiotics on calf health was also of interest. Twenty-eight male and female dairy calves were assigned to one of the three antibiotic treatment groups at birth and fecal samples were collected at weeks 6, 7 (prior to weaning), and 12 (5 weeks after weaning). ARGs corresponding to the tetracycline (tetC, tetG, tetO, tetW, and tetX), macrolide (ermB, ermF), and sulfonamide (sul1, sul2) classes of antibiotics along with the class I integron gene, intI1, were monitored by quantitative polymerase chain reaction as potential indicators of direct selection, co-selection, or horizontal gene transfer of ARGs. Surprisingly, there was no significant effect of antibiotic treatment on the absolute abundance (gene copies per gram wet manure) of any of the ARGs except ermF, which was lower in the antibiotic-treated calf manure, presumably because a significant portion of host bacterial cells carrying ermF were not resistant to tetracycline or neomycin. However, relative abundance (gene copies normalized to 16S rRNA genes) of tetO was higher in calves fed the highest dose of antibiotic than in the other treatments. All genes, except tetC and intI1, were detectable in feces from 6 weeks onward, and tetW and tetG significantly increased (P < 0.10), even in control calves. Overall, the results provide new insight into the colonization of calf gut flora with ARGs in the early weeks. Although feed antibiotics exerted little effect on the ARGs monitored in this study, the fact that they also provided no health benefit suggests that the greater than conventional nutritional intake applied in this study overrides previously reported health benefits of antibiotics. The results suggest potential benefit of broader management strategies, and that cost and risk may be avoided by minimizing incorporation of antibiotics in milk replacer. PMID:22514550
Shiwaku, K; Nogi, A; Anuurad, E; Kitajima, K; Enkhmaa, B; Shimono, K; Yamane, Y
2003-09-01
Trp64Arg mutation in the beta(3)-adrenergic receptor (beta(3)AR) gene is relatively common in Japanese people. However, it has not been clear whether persons with Trp64Arg mutation in the beta(3)AR gene tend to have obesity and difficulty in losing weight even with a restricted diet and exercise. We investigated the response of body weight and metabolic factors to behavioral intervention in Japanese women with Trp64Arg mutation in the beta(3)AR gene. A 3-month behavioral intervention study using a combination of diet and exercise programs. A total of 76 perimenopausal women with no clinical symptoms (age: 54.7+/-7.7 y, body mass index (BMI): 21.0-33.0 kg/m(2)). Anthropometric measurements (weight, height, body fat, waist circumference, hip circumference, skin fold, resting energy expenditure and blood pressure) and metabolic measurements (serum levels of cholesterol, triglyceride, phospholipid, nonesterified fatty acid, glucose, insulin and leptin) and determination of the beta(3)AR genotype by polymerase chain reaction followed by BstNI digestion. At the baseline of BMI, body weight, body fat, waist circumference, hip circumference, the arm skin fold, resting energy expenditure, or blood lipid and glucose profiles, there was no significant difference in participants with/without mutation of the beta(3)AR gene. The intervention yielded a body weight reduction in 69 and 48%, and induced a significant difference in weight loss (-0.74 and -0.01 kg) for women with wild-type and Trp64Arg mutation, respectively. Significant differences of anthropometric parameters were found in body weight, BMI, waist and hip circumferences and blood pressure of wild type by the intervention. However, women with Trp64Arg mutation did not show significant changes in these anthropometric parameters, except for hip circumference. A significant difference was found in high-density lipoprotein cholesterol (HDL-C) and in the low-density lipoprotein cholesterol/HDL-C ratio in both genotypes. The results of the present study suggest that the Trp64Arg mutation of the beta(3)AR gene is associated with difficulty in losing weight through behavioral intervention, although it is not related to obesity-related phenotypes and resting energy expenditure before the intervention.
Beloglazova, Natalia; Brown, Greg; Zimmerman, Matthew D; Proudfoot, Michael; Makarova, Kira S; Kudritska, Marina; Kochinyan, Samvel; Wang, Shuren; Chruszcz, Maksymilian; Minor, Wladek; Koonin, Eugene V; Edwards, Aled M; Savchenko, Alexei; Yakunin, Alexander F
2008-07-18
Clustered regularly interspaced short palindromic repeats (CRISPRs) together with the associated CAS proteins protect microbial cells from invasion by foreign genetic elements using presently unknown molecular mechanisms. All CRISPR systems contain proteins of the CAS2 family, suggesting that these uncharacterized proteins play a central role in this process. Here we show that the CAS2 proteins represent a novel family of endoribonucleases. Six purified CAS2 proteins from diverse organisms cleaved single-stranded RNAs preferentially within U-rich regions. A representative CAS2 enzyme, SSO1404 from Sulfolobus solfataricus, cleaved the phosphodiester linkage on the 3'-side and generated 5'-phosphate- and 3'-hydroxyl-terminated oligonucleotides. The crystal structure of SSO1404 was solved at 1.6A resolution revealing the first ribonuclease with a ferredoxin-like fold. Mutagenesis of SSO1404 identified six residues (Tyr-9, Asp-10, Arg-17, Arg-19, Arg-31, and Phe-37) that are important for enzymatic activity and suggested that Asp-10 might be the principal catalytic residue. Thus, CAS2 proteins are sequence-specific endoribonucleases, and we propose that their role in the CRISPR-mediated anti-phage defense might involve degradation of phage or cellular mRNAs.
22. VIEW LOOKING FORWARD INTO CHAIN LOCKER FROM PORT SIDE ...
22. VIEW LOOKING FORWARD INTO CHAIN LOCKER FROM PORT SIDE ENTRY THROUGH CHAIN LOCKER BULKHEAD. PAWL BITT SHOWN IN FOREGROUND - Pilot Schooner "Alabama", Moored in harbor at Vineyard Haven, Vineyard Haven, Dukes County, MA
Tomar, Dheeraj S; Weber, Valéry; Pettitt, B Montgomery; Asthagiri, D
2014-04-17
The hydration thermodynamics of the amino acid X relative to the reference G (glycine) or the hydration thermodynamics of a small-molecule analog of the side chain of X is often used to model the contribution of X to protein stability and solution thermodynamics. We consider the reasons for successes and limitations of this approach by calculating and comparing the conditional excess free energy, enthalpy, and entropy of hydration of the isoleucine side chain in zwitterionic isoleucine, in extended penta-peptides, and in helical deca-peptides. Butane in gauche conformation serves as a small-molecule analog for the isoleucine side chain. Parsing the hydrophobic and hydrophilic contributions to hydration for the side chain shows that both of these aspects of hydration are context-sensitive. Furthermore, analyzing the solute-solvent interaction contribution to the conditional excess enthalpy of the side chain shows that what is nominally considered a property of the side chain includes entirely nonobvious contributions of the background. The context-sensitivity of hydrophobic and hydrophilic hydration and the conflation of background contributions with energetics attributed to the side chain limit the ability of a single scaling factor, such as the fractional solvent exposure of the group in the protein, to map the component energetic contributions of the model-compound data to their value in the protein. But ignoring the origin of cancellations in the underlying components the group-transfer model may appear to provide a reasonable estimate of the free energy for a given error tolerance.
NASA Astrophysics Data System (ADS)
Li, M. H.; Brûlet, A.; Keller, P.; Cotton, J. P.
1996-09-01
This article describes the conformation of two species of liquid crystalline polymers as revealed by small angle neutron scattering. The results obtained with side chain polymers are recalled. The procedure used to analyze the scattering data of main chains in the nematic phase is reported in this paper. It permits a demonstration of the existence of hairpins. Comparison of both polymer species shows that in the isotropic phase, the two polymers adopt a random coil conformation. In the nematic phase, the conformations are very different; the side chains behave as a melt of penetrable random coils whereas the main chains behave as a nematic phase of non penetrable cylinders.
Gerecht, Karola; Figueiredo, Angelo Miguel; Hansen, D Flemming
2017-09-16
Arginine residues are imperative for many active sites and protein-interaction interfaces. A new NMR-based method is presented to determine the rotational dynamics around the N ε -C ζ bond of arginine side chains. An application to a 19 kDa protein shows that the strengths of interactions involving arginine side chains can be characterised.
Hackel, Richard P.
1992-01-01
A laser amplifier chain has a plurality of laser amplifiers arranged in a chain to sequentially amplify a low-power signal beam to produce a significantly higher-power output beam. Overall efficiency of such a chain is improved if high-gain, low efficiency amplifiers are placed on the upstream side of the chain where only a very small fraction of the total pumped power is received by the chain and low-gain, high-efficiency amplifiers are placed on the downstream side where a majority of pumping energy is received by the chain.
Linear rheology and structure of molecular bottlebrushes with short side chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
López-Barrón, Carlos R., E-mail: carlos.r.lopez-barron@exxonmobil.com; Brant, Patrick; Crowther, Donna J.
We investigate the microstructure and linear viscoelasticity of model molecular bottlebrushes (BBs) using rheological and small-angle X-ray and neutron scattering measurements. Our polymers have short atactic polypropylene (aPP) side chains of molecular weight ranging from 119 g/mol to 259 g/mol and narrow molecular weight distribution (M{sub w}/M{sub n} 1.02–1.05). The side chain molecular weights are a small fraction of the entanglement molecular weight of the corresponding linear polymer (M{sub e,aPP}= 7.05 kg/mol), and as such, they are unentangled. The morphology of the aPP BBs is characterized as semiflexible thick chains with small side chain interdigitation. Their dynamic master curves, obtained by time-temperature superposition,more » reveal two sequential relaxation processes corresponding to the segmental relaxation and the relaxation of the BB backbone. Due to the short length of the side chains, their fast relaxation could not be distinguished from the glassy relaxation. The fractional free volume is an increasing function of the side chain length (N{sub SC}). Therefore, the glassy behavior of these polymers as well as their molecular friction and dynamic properties are influenced by their N{sub SC} values. The apparent flow activation energies are a decreasing function of N{sub SC}, and their values explain the differences in zero-shear viscosity measured at different temperatures.« less
NASA Astrophysics Data System (ADS)
Vendrell-Criado, Victoria; González-Bello, Concepción; Miranda, Miguel A.; Jiménez, M. Consuelo
2018-06-01
Binding of the immunosuppressive agent mycophenolate mofetil (MMP) and its pharmacologically active metabolite mycophenolic acid (MPA) to human serum albumin (HSA) and α1-acid glycoprotein (HAAG) has been investigated by means of an integrated approach involving selective excitation of the drug fluorophore, following their UV-A triggered fluorescence and docking studies. The formation of the protein/ligand complexes was evidenced by a dramatic enhancement of the fluorescence intensity and a hypsochromic shift of the emission band. In HSA, competitive studies using oleic acid as site I probe revealed site I as the main binding site of the ligands. Binding constants revealed that the affinity of the active metabolite by HSA is four-fold higher than its proactive form. Moreover, the affinity of MMP by HSA is three-fold higher than by HAAG. Docking studies revealed significant molecular binding differences in the binding of MMP and MPA to sub-domain IIA of HSA (site 1). For MPA, the aromatic moiety would be in close contact to Trp214 with the flexible chain pointing to the other end of the sub-domain; on the contrary, for MMP, the carboxylate group of the chain would be fixed nearby Trp214 through electrostatic interactions with residues Arg218 and Arg222.
Osman, Kamelia M; Kappell, Anthony D; Elhadidy, Mohamed; ElMougy, Fatma; El-Ghany, Wafaa A Abd; Orabi, Ahmed; Mubarak, Aymen S; Dawoud, Turki M; Hemeg, Hassan A; Moussa, Ihab M I; Hessain, Ashgan M; Yousef, Hend M Y
2018-04-11
Hatcheries have the power to spread antimicrobial resistant (AMR) pathogens through the poultry value chain because of their central position in the poultry production chain. Currently, no information is available about the presence of AMR Escherichia coli strains and the antibiotic resistance genes (ARGs) they harbor within hatchezries. Therefore, this study aimed to investigate the possible involvement of hatcheries in harboring hemolytic AMR E. coli. Serotyping of the 65 isolated hemolytic E. coli revealed 15 serotypes with the ability to produce moderate biofilms, and shared susceptibility to cephradine and fosfomycin and resistance to spectinomycin. The most common β-lactam resistance gene was bla TEM , followed by bla OXA-1 , bla MOX -like , bla CIT -like , bla SHV and bla FOX . Hierarchical clustering of E. coli isolates based on their phenotypic and genotypic profiles revealed separation of the majority of isolates from hatchlings and the hatchery environments, suggesting that hatchling and environmental isolates may have different origins. The high frequency of β-lactam resistance genes in AMR E. coli from chick hatchlings indicates that hatcheries may be a reservoir of AMR E. coli and can be a major contributor to the increased environmental burden of ARGs posing an eminent threat to poultry and human health.
Rezaeian, Mojtaba; Izadyar, Mohammad; Nakhaei Pour, Ali
2018-06-25
The kinetics and mechanism of CO 2 absorption by ionic liquids (ILs) were studied, theoretically. The studied ILs are composed of 1-ethyl-3-methylimidazolium [Emim] + as the cation with a general formula of the [Emim][X] (X = Gly - , Ala - , Lys - , Arg - ). To investigate the alkyl chain length and the number of the amine group effects on the CO 2 absorption, different amino acid anions were chosen. On the basis of the enthalpy changes during CO 2 capture, a chemisorption nature is confirmed. An increase in the number of amine (-NH 2 ) groups in the ILs structures, facilitates the CO 2 absorption. According to kinetic results, the rate of CO 2 absorption by [Emim][Gly] is higher than that of [Emim][Ala]. This can be interpreted by a higher steric hindrance in [Emim][Ala] due to an additional methyl group in the amino acid chain. Donor-acceptor interactions and C-N bond formation were investigated by natural bond orbital analysis. Moreover, topological studies show a covalent nature for the C-N bond critical point that showing CO 2 capture is a chemisorption process. Finally, on the basis of kinetic energy results, donor-acceptor interaction and topological analysis, [Emim][Arg] is proposed as the best candidate for CO 2 absorption from the kinetic and thermodynamic viewpoints.
Chern, M K; Wu, T C; Hsieh, C H; Chou, C C; Liu, L F; Kuan, I C; Yeh, Y H; Hsiao, C D; Tam, M F
2000-07-28
We investigated the epoxidase activity of a class mu glutathione S-transferase (cGSTM1-1), using 1,2-epoxy-3-(p-nitrophenoxy)propane (EPNP) as substrate. Trp209 on the C-terminal tail, Arg107 on the alpha4 helix, Asp161 and Gln165 on the alpha6 helix of cGSTM1-1 were selected for mutagenesis and kinetic studies. A hydrophobic side-chain at residue 209 is needed for the epoxidase activity of cGSTM1-1. Replacing Trp209 with histidine, isoleucine or proline resulted in a fivefold to 28-fold decrease in the k(cat)(app) of the enzyme, while a modest 25 % decrease in the k(cat)(app) was observed for the W209F mutant. The rGSTM1-1 enzyme has serine at the correponding position. The k(cat)(app) of the S209W mutant is 2. 5-fold higher than that of the wild-type rGSTM1-1. A charged residue is needed at position 107 of cGSTM1-1. The K(m)(app)(GSH) of the R107L mutant is 38-fold lower than that of the wild-type enzyme. On the contrary, the R107E mutant has a K(m)(app)(GSH) and a k(cat)(app) that are 11-fold and 35 % lower than those of the wild-type cGSTM1-1. The substitutions of Gln165 with Glu or Leu have minimal effect on the affinity of the mutants towards GSH or EPNP. However, a discernible reduction in k(cat)(app) was observed. Asp161 is involved in maintaining the structural integrity of the enzyme. The K(m)(app)(GSH) of the D161L mutant is 616-fold higher than that of the wild-type enzyme. In the hydrogen/deuterium exchange experiments, this mutant has the highest level of deuteration among all the proteins tested. We also elucidated the structure of cGSTM1-1 co-crystallized with the glutathionyl-conjugated 1, 2-epoxy-3-(p-nitrophenoxy)propane (EPNP) at 2.8 A resolution. The product found in the active site was 1-hydroxy-2-(S-glutathionyl)-3-(p-nitrophenoxy)propane, instead of the conventional 2-hydroxy isomer. The EPNP moiety orients towards Arg107 and Gln165 in dimer AB, and protrudes into a hydrophobic region formed by the loop connecting beta1 and alpha1 and part of the C-terminal tail in dimer CD. The phenoxyl ring forms strong ring stacking with the Trp209 side-chain in dimer CD. We hypothesize that these two conformations represent the EPNP moiety close to the initial and final stages of the reaction mechanism, respectively. Copyright 2000 Academic Press.
Li, Wei-Shi; Saeki, Akinori; Yamamoto, Yohei; Fukushima, Takanori; Seki, Shu; Ishii, Noriyuki; Kato, Kenichi; Takata, Masaki; Aida, Takuzo
2010-07-05
To tailor organic p/n heterojunctions with molecular-level precision, a rational design strategy using side-chain incompatibility of a covalently connected donor-acceptor (D-A) dyad has been successfully carried out. An oligothiophene-perylenediimide dyad, when modified with triethylene glycol side chains at one terminus and dodecyl side chains at the other (2(Amphi)), self-assembles into nanofibers with a long-range D/A heterojunction. In contrast, when the dyad is modified with dodecyl side chains at both termini (2(Lipo)), ill-defined microfibers result. In steady-state measurements using microgap electrodes, a cast film of the nanofiber of 2(Amphi) displays far better photoconducting properties than that of the microfiber of 2(Lipo). Flash-photolysis time-resolved microwave conductivity measurements, in conjunction with transient absorption spectroscopy, clearly indicate that the nanofiber of 2(Amphi) intrinsically allows for better carrier generation and transport properties than the microfibrous assembly of 2(Lipo).
Häckel, M; Hinz, H J; Hedwig, G R
1999-11-15
The partial molar volumes of tripeptides of sequence glycyl-X-glycine, where X is one of the amino acids alanine, leucine, threonine, glutamine, phenylalanine, histidine, cysteine, proline, glutamic acid, and arginine, have been determined in aqueous solution over the temperature range 10-90 degrees C using differential scanning densitometry . These data, together with those reported previously, have been used to derive the partial molar volumes of the side-chains of all 20 amino acids. The side-chain volumes are critically compared with literature values derived using partial molar volumes for alternative model compounds. The new amino acid side-chain volumes, along with that for the backbone glycyl group, were used to calculate the partial specific volumes of several proteins in aqueous solution. The results obtained are compared with those observed experimentally. The new side-chain volumes have also been used to re-determine residue volume changes upon protein folding.
Chromatography of Penicillins, Penicilloates, and Penicilloylamides on Dextran Gels
Hyslop, Newton E.; Milligan, Richard J.
1974-01-01
The factors influencing the chromatographic behavior on dextran gels of penicillins and their derivatives were investigated by comparing elution profiles and partition coefficients (KD and KAV) of penicillins differing in side-chain structure and among penicillin derivatives of identical side-chain but different nuclear structure. Under the conditions of pH and ionic strength employed (pH 7.4, 0.145 M NaCl, 0.05 M PO4), side-chain adsorptive effects best explained the anomalous behavior of benzylpenicillin and of oxacillin and its chlorine-substituted analogues. Polar side-chain substituents, such as the amino group of ampicillin and the carboxyl group of carbenicillin, and cleavage of the β-lactam ring, exemplified by penicilloates and penicilloylamines, both appeared to interfere with side-chain-directed adsorption. The differential adsorption of penicillins and their derivatives to dextran gels is not only of theoretical interest relative to the mechanism of chromatography but of practical application to analytical and preparative procedures in penicillin chemistry. PMID:15825415
Association of ghrelin polymorphisms with metabolic syndrome in Han Nationality Chinese.
Xu, Ling-Ling; Xiang, Hong-Ding; Qiu, Chang-Chun; Xu, Qun
2008-06-01
To investigate the association of ghrelin gene polymorphisms with metabolic syndrome in Han Nationality Chinese. A total of 240 patients with metabolic syndrome and 427 adults aged above forty years were recruited. Genotypes were determined by polymerase chain reaction and restriction fragment length polymorphism analysis. The allelic frequency of the Leu72Met polymorphism was 17.3% in the patient group and 11.9% in the control group (chi2 = 7.36, P = 0.007). Metabolic syndrome was more prevalent among carriers of the Met72 variant (43.8 vs 33.1%, age- and sex-adjusted odds ratio = 1.57, P = 0.01). No Arg51Gln variants were found in our study subjects. Rather than being associated with its individual components, Leu72Met polymorphism is associated with metabolic syndrome in the Han Nationality Chinese. Arg51Gln polymorphism is rare in the Han Nationality Chinese.
Weidner, Tobias; Breen, Nicholas F.; Li, Kun; Drobny, Gary P.; Castner, David G.
2010-01-01
The power of combining sum frequency generation (SFG) vibrational spectroscopy and solid-state nuclear magnetic resonance (ssNMR) spectroscopy to quantify, with site specificity and atomic resolution, the orientation and dynamics of side chains in synthetic model peptides adsorbed onto polystyrene (PS) surfaces is demonstrated in this study. Although isotopic labeling has long been used in ssNMR studies to site-specifically probe the structure and dynamics of biomolecules, the potential of SFG to probe side chain orientation in isotopically labeled surface-adsorbed peptides and proteins remains largely unexplored. The 14 amino acid leucine-lysine peptide studied in this work is known to form an α-helical secondary structure at liquid-solid interfaces. Selective, individual deuteration of the isopropyl group in each leucine residue was used to probe the orientation and dynamics of each individual leucine side chain of LKα14 adsorbed onto PS. The selective isotopic labeling methods allowed SFG analysis to determine the orientations of individual side chains in adsorbed peptides. Side chain dynamics were obtained by fitting the deuterium ssNMR line shape to specific motional models. Through the combined use of SFG and ssNMR, the dynamic trends observed for individual side chains by ssNMR have been correlated with side chain orientation relative to the PS surface as determined by SFG. This combination provides a more complete and quantitative picture of the structure, orientation, and dynamics of these surface-adsorbed peptides than could be obtained if either technique were used separately. PMID:20628016
2015-01-01
The hydration thermodynamics of the amino acid X relative to the reference G (glycine) or the hydration thermodynamics of a small-molecule analog of the side chain of X is often used to model the contribution of X to protein stability and solution thermodynamics. We consider the reasons for successes and limitations of this approach by calculating and comparing the conditional excess free energy, enthalpy, and entropy of hydration of the isoleucine side chain in zwitterionic isoleucine, in extended penta-peptides, and in helical deca-peptides. Butane in gauche conformation serves as a small-molecule analog for the isoleucine side chain. Parsing the hydrophobic and hydrophilic contributions to hydration for the side chain shows that both of these aspects of hydration are context-sensitive. Furthermore, analyzing the solute–solvent interaction contribution to the conditional excess enthalpy of the side chain shows that what is nominally considered a property of the side chain includes entirely nonobvious contributions of the background. The context-sensitivity of hydrophobic and hydrophilic hydration and the conflation of background contributions with energetics attributed to the side chain limit the ability of a single scaling factor, such as the fractional solvent exposure of the group in the protein, to map the component energetic contributions of the model-compound data to their value in the protein. But ignoring the origin of cancellations in the underlying components the group-transfer model may appear to provide a reasonable estimate of the free energy for a given error tolerance. PMID:24650057
NASA Astrophysics Data System (ADS)
Shute, Richard E.; Jackson, David E.; Bycroft, Barrie W.
1989-06-01
The halogenated 6-spiroepoxypenicillins are a series of novel semisynthetic β-lactam compounds with highly conformationally restricted side chains incorporating an epoxide. Their biological activity profiles depend crucially on the configuration at position C-3 of that epoxide. In derivatives with aromatic-containing side chains, e.g., anilide, the 3 R-compounds possess notable Gram-positive antibacterial activity and potent β-lactamase inhibitory properties. The comparable 3S-compounds are antibacterially inactive, but retain β-lactamase inhibitory activity. Using the molecular simulation programs COSMIC and ASTRAL, we attempted to map a putative, lipophilic accessory binding site on the PBPs that must interact with the side-chain aromatic residue. Comparative computer-assisted modelling of the 3 R, and 3 S-anilides, along with benzylpenicillin, indicated that the available conformational space at room temperature for the side chains of the 3 R and the 3 S-anilides was mutually exclusive. The conformational space for the more flexible benzylpenicillin could accommodate the side chains of both the constrained penicillin derivatives. By a combination of van der Waals surface calculations and a pharmacophoric distance approach, closely coincident conformers of the 3 R-anilide and benzylpenicillin were identified. These conformers must be related to the antibacterial, `bioactive' conformer for the classical β-lactam antibiotics. From these proposed bioactive conformations, a model for the binding of benzylpenicillin to the PBPs relating the three-dimensional arrangement of a putative lipophilic S2-subsite, specific for the side-chain aromatic moiety, and the 3 α-carboxylate functionality is presented.
Dutta, A S; Gormley, J J; Graham, A S; Briggs, I; Growcott, J W; Jamieson, A
1986-07-01
Antagonists of SP and the C-terminal (6-11)-hexapeptide have been obtained by multiple D-amino acid substitutions in various positions of SP and by protecting the N alpha-Arg1 and N epsilon Lys3 amino groups with benzyloxycarbonyl groups. On the guinea pig ileum a number of these antagonized both SP and the hexapeptide. Except [N alpha-Z-Arg1,D-Pro2,N epsilon-Z-Lys3,Asn5,Arg6,D-Phe7,D-Trp9]-SP-OMe (4) and the corresponding amide 7, which were more potent antagonists of SP than the hexapeptide, all the others, e.g., [N alpha-Z-Arg1,D-Pro2,4,N epsilon-Z-Lys3,D-Phe7,8,Sar9,D-Met11]-SP-OMe (9), [N alpha-Z-Arg1,D-Pro2,4,N epsilon-Z-Lys3,D-Phe7,8,Sar9,MeLeu10,D-Met11]-SP -OMe (11), were more potent antagonists of the hexapeptide. On the rat spinal cord preparation, most of the antagonists were only active against the hexapeptide. A few antagonized SP, but these also reduced carbachol or both carbachol and glutamate responses. Two of the antagonists, [D-Pro2,Asn5,Lys6,D-Phe7,D-Trp9]-SP-OMe (2) and [Boc-D-Pro4,D-Phe7,8,Sar9,D-Met11]-SP(4-11)-OMe (10), were inactive on the ileum but still antagonized the hexapeptide on the spinal cord. The smallest peptides to antagonize SP and the hexapeptide were two heptapeptides, 6 and 21, [Z-Asn5,Arg6,D-Phe7,8,Gly9 psi (CH2S)D-Leu10,D-Met11]-SP(5-11)-OMe (21) being more potent than 6. None of the antagonists showed significant analgesic activity without side effects. Some of the antagonists were shown to release histamine from isolated rat peritoneal cells.
Tobias, Fernando; Keiderling, Timothy A
2016-05-10
Poly(glutamic acid) at low pH self-assembles after incubation at higher temperature into fibrils composed of antiparallel sheets that are stacked in a β2-type structure whose amide carbonyls have bifurcated H-bonds involving the side chains from the next sheet. Oligomers of Glu can also form such structures, and isotope labeling has provided insight into their out-of-register antiparallel structure [ Biomacromolecules 2013 , 14 , 3880 - 3891 ]. In this paper we report IR and VCD spectra and transmission electron micrograph (TEM) images for a series of alternately sequenced oligomers, Lys-(Aaa-Glu)5-Lys-NH2, where Aaa was varied over a variety of polar, aliphatic, or aromatic residues. Their spectral and TEM data show that these oligopeptides self-assemble into different structures, both local and morphological, that are dependent on both the nature of the Aaa side chains and growth conditions employed. Such alternate peptides substituted with small or polar residues, Ala and Thr, do not yield fibrils; but with β-branched aliphatic residues, Val and Ile, that could potentially pack with Glu side chains, these oligopeptides do show evidence of β2-stacking. By contrast, for Leu, with longer side chains, only β1-stacking is seen while with even larger Phe side chains, either β-form can be detected separately, depending on preparation conditions. These structures are dependent on high temperature incubation after reducing the pH and in some cases after sonication of initial fibril forms and reincubation. Some of these fibrillar peptides, but not all, show enhanced VCD, which can offer evidence for formation of long, multistrand, often twisted structures. Substitution of Glu with residues having selected side chains yields a variety of morphologies, leading to both β1- and β2-structures, that overall suggests two different packing modes for the hydrophobic side chains depending on size and type.
Saer, Rafael G; Hardjasa, Amelia; Rosell, Federico I; Mauk, A Grant; Murphy, Michael E P; Beatty, J Thomas
2013-04-02
In the native reaction center (RC) of Rhodobacter sphaeroides, the side chain of (M)L214 projects orthogonally toward the plane and into the center of the A branch bacteriopheophytin (BPhe) macrocycle. The possibility that this side chain is responsible for the dechelation of the central Mg(2+) of bacteriochlorophyll (BChl) was investigated by replacement of (M)214 with residues possessing small, nonpolar side chains that can neither coordinate nor block access to the central metal ion. The (M)L214 side chain was also replaced with Cys, Gln, and Asn to evaluate further the requirements for assembly of the RC with BChl in the HA pocket. Photoheterotrophic growth studies showed no difference in growth rates of the (M)214 nonpolar mutants at a low light intensity, but the growth of the amide-containing mutants was impaired. The absorbance spectra of purified RCs indicated that although absorbance changes are associated with the nonpolar mutations, the nonpolar mutant RC pigment compositions are the same as in the wild-type protein. Crystal structures of the (M)L214G, (M)L214A, and (M)L214N mutants were determined (determined to 2.2-2.85 Å resolution), confirming the presence of BPhe in the HA pocket and revealing alternative conformations of the phytyl tail of the accessory BChl in the BA site of these nonpolar mutants. Our results demonstrate that (i) BChl is converted to BPhe in a manner independent of the aliphatic side chain length of nonpolar residues replacing (M)214, (ii) BChl replaces BPhe if residue (M)214 has an amide-bearing side chain, (iii) (M)214 side chains containing sulfur are not sufficient to bind BChl in the HA pocket, and (iv) the (M)214 side chain influences the conformation of the phytyl tail of the BA BChl.
Role of ghrelin polymorphisms in obesity based on three different studies.
Ukkola, Olavi; Ravussin, Eric; Jacobson, Peter; Pérusse, Louis; Rankinen, Tuomo; Tschöp, Matthias; Heiman, Mark L; Leon, Arthur S; Rao, D C; Skinner, James S; Wilmore, Jack H; Sjöström, Lars; Bouchard, Claude
2002-08-01
Associations between preproghrelin DNA variants and obesity-related phenotypes were studied in 3004 subjects from the Québec Family Study (QFS), the HERITAGE Family Study (HERITAGE), and the Swedish Obese Subjects (SOS) Study. Body mass index (BMI), fat mass (FM) from underwater weighing, and abdominal fat from computerized tomography were measured. The ghrelin polymorphisms were identified by polymerase chain reaction. Arg51Gln QFS subjects (n = 6) had lower ghrelin concentrations (p = 0.007) than Arg51Arg subjects (n = 14). White preproghrelin Met72Met subjects in HERITAGE had the lowest BMI (p = 0.020), and those in the QFS cohort had the lowest FM (p < 0.001). Met72 carrier status (Met72+) was associated with lower FM (p = 0.026) and higher insulin-like growth factor-1 levels (p = 0.019) among blacks. Met72Met QFS subjects had less visceral fat (p = 0.002) and a lower fasting respiratory quotient (p = 0.037). HERITAGE Met72+ white subjects also showed lower exercise respiratory quotient (p = 0.030) and higher maximal oxygen uptake (p = 0.023). Furthermore, the prevalence of Met72+ was higher (19.2%; p < 0.05) in SOS subjects whose BMI was < or =25 kg/m(2) than in those with BMI >25 kg/m(2) (14.8%). SOS Met72+ obese women had a lower (11.4%; p = 0.032) prevalence of hypertension than noncarriers (23.9%). Arg51Gln mutation was associated with lower plasma ghrelin levels but not with obesity. The preproghrelin Met72 carrier status seems to be protective against fat accumulation and associated metabolic comorbidities.
Lavilla Lerma, Leyre; Benomar, Nabil; Knapp, Charles W; Correa Galeote, David; Gálvez, Antonio; Abriouel, Hikmate
2014-01-01
The distribution and quantification of tetracycline, sulfonamide and beta-lactam resistance genes were assessed in slaughterhouse zones throughout meat chain production and the meat products; this study represents the first to report quantitatively monitor antibiotic resistance genes (ARG) in goat and lamb slaughterhouse using a culture independent approach, since most studies focused on individual bacterial species and their specific resistance types. Quantitative PCR (qPCR) revealed a high prevalence of tetracycline resistance genes tetA and tetB in almost all slaughterhouse zones. Sulfonamide resistance genes were largely distributed, while beta-lactam resistance genes were less predominant. Statistical analysis revealed that resistant bacteria, in most cases, were spread by the same route in almost all slaughterhouse zones, except for tetB, blaCTX and blaTEM genes, which occurred in few zones as isolated 'hot spots.' The sum of all analyzed ARG indicated that slaughterhouse surfaces and end products act as reservoirs of ARG, mainly tet genes, which were more prevalent in slaughtering room (SR), cutting room (CR) and commercial meat products (MP). Resistance gene patterns suggest they were disseminated throughout slaughterhouse zones being also detected in commercial meat products, with significant correlations between different sampling zones/end products and total resistance in SR, CR and white room (WR) zones, and also refrigerator 4 (F4) and MP were observed. Strategically controlling key zones in slaughterhouse (SR, CR and WR) by adequate disinfection methods could strategically reduce the risks of ARG transmission and minimize the issues of food safety and environment contamination.
Lavilla Lerma, Leyre; Benomar, Nabil; Knapp, Charles W.; Correa Galeote, David; Gálvez, Antonio; Abriouel, Hikmate
2014-01-01
The distribution and quantification of tetracycline, sulfonamide and beta-lactam resistance genes were assessed in slaughterhouse zones throughout meat chain production and the meat products; this study represents the first to report quantitatively monitor antibiotic resistance genes (ARG) in goat and lamb slaughterhouse using a culture independent approach, since most studies focused on individual bacterial species and their specific resistance types. Quantitative PCR (qPCR) revealed a high prevalence of tetracycline resistance genes tetA and tetB in almost all slaughterhouse zones. Sulfonamide resistance genes were largely distributed, while beta-lactam resistance genes were less predominant. Statistical analysis revealed that resistant bacteria, in most cases, were spread by the same route in almost all slaughterhouse zones, except for tetB, blaCTX and blaTEM genes, which occurred in few zones as isolated ‘hot spots.’ The sum of all analyzed ARG indicated that slaughterhouse surfaces and end products act as reservoirs of ARG, mainly tet genes, which were more prevalent in slaughtering room (SR), cutting room (CR) and commercial meat products (MP). Resistance gene patterns suggest they were disseminated throughout slaughterhouse zones being also detected in commercial meat products, with significant correlations between different sampling zones/end products and total resistance in SR, CR and white room (WR) zones, and also refrigerator 4 (F4) and MP were observed. Strategically controlling key zones in slaughterhouse (SR, CR and WR) by adequate disinfection methods could strategically reduce the risks of ARG transmission and minimize the issues of food safety and environment contamination. PMID:25479100
Association of P53 gene polymorphism with gastric cancer in Northern Iran as a high-risk region.
Hedayatizadeh-Omran, Akbar; Alizadeh-Navaei, Reza; Janbabaei, Ghasem; Omrani-Nava, Versa; Hasheminasab, Yahya; Amjadi, Omolbanin; Tehrani, Mohsen
2018-05-01
Gastric cancer has the fourth highest morbidity rate of all cancers worldwide. Genetic factors including alterations in oncogenes and tumor suppressor genes serve an important role in gastric cancer development and progression. The P53 gene acts as a tumor suppressor gene by regulating the cell cycle, DNA transcription and repair, apoptosis, senescence and genome stability. In addition to somatic P53 mutations in cancer development, germline polymorphisms are also involved in different malignancies. The polymorphism of P53 at codon 72 (Arg72Pro) is established as a common variant that increases susceptibility to various cancers. The present case-control study was conducted to evaluate the possible association between this P53 polymorphism and gastric cancer in the Iranian population. A total of 59 patients with gastric cancer and 59 healthy controls were enrolled in the present study. Genomic DNA was extracted from peripheral blood mononuclear cells and genotype analysis was performed using a polymerase chain reaction-based restriction fragment length polymorphism assay. Genotype frequencies did not differ significantly between the patients and controls (P=0.4); the frequencies of the three genotypes Arg/Arg, Arg/Pro and Pro/Pro in gastric cancer patients were 28.8, 49.2 and 22.0%, and in controls were 37.3, 49.2 and 13.6%. Additionally, there were no differences in genotype frequencies based on tumor location, histological differentiation or tumor stage. Based on these findings, it may be concluded that the P53 codon 72 polymorphism does not contribute to gastric cancer susceptibility in Northern Iran.
Rohman, Muhammad S; Tadokoro, Takashi; Angkawidjaja, Clement; Abe, Yumi; Matsumura, Hiroyoshi; Koga, Yuichi; Takano, Kazufumi; Kanaya, Shigenori
2009-01-01
The Arg97 --> Gly and Asp136 --> His mutations stabilized So-RNase HI from the psychrotrophic bacterium Shewanella oneidensis MR-1 by 5.4 and 9.7 degrees C, respectively, in T(m), and 3.5 and 6.1 kJ x mol(-1), respectively, in DeltaG(H2O). These mutations also stabilized the So-RNase HI derivative (4x-RNase HI) with quadruple thermostabilizing mutations in an additive manner. As a result, the resultant sextuple mutant protein (6x-RNase HI) was more stable than the wild-type protein by 28.8 degrees C in T(m) and 27.0 kJ x mol(-1) in DeltaG(H2O). To analyse the effects of the mutations on the protein structure, the crystal structure of the 6x-RNase HI protein was determined at 2.5 A resolution. The main chain fold and interactions of the side-chains of the 6x-RNase HI protein were basically identical to those of the wild-type protein, except for the mutation sites. These results indicate that all six mutations independently affect the protein structure, and are consistent with the fact that the thermostabilizing effects of the mutations are roughly additive. The introduction of favourable interactions and the elimination of unfavourable interactions by the mutations contribute to the stabilization of the 6x-RNase HI protein. We propose that So-RNase HI is destabilized when compared with its mesophilic and thermophilic counterparts in a localized fashion by increasing the number of amino acid residues unfavourable for protein stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crouch, E.; Hartshorn, K; Horlacher, T
2009-01-01
Surfactant protein D (SP-D) plays important roles in antiviral host defense. Although SP-D shows a preference for glucose/maltose, the protein also recognizes d-mannose and a variety of mannose-rich microbial ligands. This latter preference prompted an examination of the mechanisms of mannose recognition, particularly as they relate to high-mannose viral glycans. Trimeric neck plus carbohydrate recognition domains from human SP-D (hNCRD) preferred ?1-2-linked dimannose (DM) over the branched trimannose (TM) core, ?1-3 or ?1-6 DM, or d-mannose. Previous studies have shown residues flanking the carbohydrate binding site can fine-tune ligand recognition. A mutant with valine at 343 (R343V) showed enhanced bindingmore » to mannan relative to wild type and R343A. No alteration in affinity was observed for d-mannose or for ?1-3- or ?1-6-linked DM; however, substantially increased affinity was observed for ?1-2 DM. Both proteins showed efficient recognition of linear and branched subdomains of high-mannose glycans on carbohydrate microarrays, and R343V showed increased binding to a subset of the oligosaccharides. Crystallographic analysis of an R343V complex with 1,2-DM showed a novel mode of binding. The disaccharide is bound to calcium by the reducing sugar ring, and a stabilizing H-bond is formed between the 2-OH of the nonreducing sugar ring and Arg349. Although hNCRDs show negligible binding to influenza A virus (IAV), R343V showed markedly enhanced viral neutralizing activity. Hydrophobic substitutions for Arg343 selectively blocked binding of a monoclonal antibody (Hyb 246-05) that inhibits IAV binding activity. Our findings demonstrate an extended ligand binding site for mannosylated ligands and the significant contribution of the 343 side chain to specific recognition of multivalent microbial ligands, including high-mannose viral glycans.« less
Hienerwadel, Rainer; Gourion-Arsiquaud, Samuel; Ballottari, Matteo; Bassi, Roberto; Diner, Bruce A; Berthomieu, Catherine
2005-06-01
Formate and phosphate affect substantially the rate of tyrosine D (TyrD) oxidation and the stability of the radical TyrD* in Photosystem II [Hienerwadel R, Boussac A, Breton J and Berthomieu C (1996) Biochemistry 35: 15447-15460]. This observation prompted us to analyze the influence of formate and phosphate on the environment of TyrD using FTIR spectroscopy. The nu (CO) IR mode of TyrD* at 1503 cm-1 remains unchanged whatever the buffer used at pH 6 and whether formate is present or not in the sample. Similarly, the main IR mode of reduced TyrD remains at approximately 1250 cm-1 in all tested conditions. We thus conclude that formate does not modify the hydrogen-bonded interactions of TyrD and TyrD* with neighbouring D2His189 and D2Gln164. In the TyrD-state, an IR mode of formate significantly different from that observed in solution, is detected using 13C-formate, showing that formate forms a strong electrostatic interaction within PS II. The presence of formate affects also IR bands that may be assigned to an arginine side chain. Upon TyrD* formation, formate does not protonate but its binding interaction weakens. A proton uptake by Mes or phosphate buffer is detected, which is not observed when BisTris is used as a buffer. In these latter conditions, IR bands characteristic of the protonation of a carboxylate group of the protein are detected instead. The present IR data and the recent structural model of the TyrD environment proposed by Ferreira KN, Iverson TM, Maghlaoui K, Barber J and Iwata S [(2004) Science 303: 1831-1838], suggest that the proton released upon TyrD* formation is shared within a hydrogen bonding network including D2Arg294, and CP47Glu364 and that perturbation of this network by formate - possibly binding near D2Arg294 - substantially affects the properties of TyrD.
NASA Astrophysics Data System (ADS)
Langs, David A.; Strong, Phyllis D.; Triggle, David J.
1990-09-01
Our analysis of the solid state conformations of nifedipine [dimethyl 1,4-dihydro-2,6-dimethyl-4-(2-nitrophenyl)-3,5-pyridinecarboxylate] and its 1,4-dihydropyridine (1,4-DHP) analogues produced a cartoon description of the important interactions between these drugs and their voltage-dependent calcium channel receptor. In the present study a molecular-level detailed model of the 1,4-DHP receptor binding site has been built from the published amino acid sequence of the 215-1 subunit of the voltage-dependent calcium channel isolated from rabbit skeletal muscle transverse tubule membranes. The voltage-sensing component of the channel described in this work differs from others reported for the homologous sodium channel in that it incorporates a water structure and a staggered, rather than eclipsed, hydrogen bonded S4 helix conformation. The major recognition surfaces of the receptor lie in helical grooves on the S4 or voltagesensing α-helix that is positioned in the center of the bundle of transmembrane helices that define each of the four calcium channel domains. Multiple binding clefts defined by Arg-X-X-Arg-P-X-X-S `reading frames' exist on the S4 strand. The tissue selectivity of nifedipine and its analogues may arise, in part, from conservative changes in the amino acid residues at the P and S positions of the reading frame that define the ester-binding regions of receptors from different tissues. The crystal structures of two tissue-selective nifedipine analogues, nimodipine [isopropyl (2-methoxyethyl) 1,4-dihydro-2,6- dimethyl-4-(3-nitrophenyl)-3,5-pyridinecarboxylate] and nitrendipine [ethyl methyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinecarboxylate] are reported. Nimodipine was observed to have an unusual ester side chain conformation that enhances the fit to the proposed ester-sensing region of the receptor.
Couture, Jean-François; Pereira De Jésus-Tran, Karine; Roy, Anne-Marie; Cantin, Line; Côté, Pierre-Luc; Legrand, Pierre; Luu-The, Van; Labrie, Fernand; Breton, Rock
2005-01-01
The aldo-keto reductase (AKR) human type 3 3α-hydroxysteroid dehydrogenase (h3α–HSD3, AKR1C2) plays a crucial role in the regulation of the intracellular concentrations of testosterone and 5α-dihydrotestosterone (5α-DHT), two steroids directly linked to the etiology and the progression of many prostate diseases and cancer. This enzyme also binds many structurally different molecules such as 4-hydroxynonenal, polycyclic aromatic hydrocarbons, and indanone. To understand the mechanism underlying the plasticity of its substrate-binding site, we solved the binary complex structure of h3α–HSD3-NADP(H) at 1.9 Å resolution. During the refinement process, we found acetate and citrate molecules deeply engulfed in the steroid-binding cavity. Superimposition of this structure with the h3α–HSD3-NADP(H)-testosterone/acetate ternary complex structure reveals that one of themobile loops forming the binding cavity operates a slight contraction movement against the citrate molecule while the side chains of many residues undergo numerous conformational changes, probably to create an optimal binding site for the citrate. These structural changes, which altogether cause a reduction of the substrate-binding cavity volume (from 776 Å3 in the presence of testosterone/acetate to 704 Å3 in the acetate/citratecomplex), are reminiscent of the “induced-fit” mechanism previously proposed for the aldose reductase, another member of the AKR superfamily. We also found that the replacement of residues Arg301 and Arg304, localized near the steroid-binding cavity, significantly affects the 3α–HSD activity of this enzyme toward 5α-DHT and completely abolishes its 17β–HSD activity on 4-dione. All these results have thus been used to reevaluate the binding mode of this enzyme for androgens. PMID:15929998
Purification, substrate specificity, and classification of tripeptidyl peptidase II.
Bålöw, R M; Tomkinson, B; Ragnarsson, U; Zetterqvist, O
1986-02-15
An extralysosomal tripeptide-releasing aminopeptidase was recently discovered in rat liver (Bålöw, R.-M., Ragnarsson, U., and Zetterqvist, O. (1983) J. Biol. Chem. 258, 11622-11628). In the present work this tripeptidyl peptidase is shown to occur in several rat tissues and in human erythrocytes. The erythrocyte enzyme was purified about 80,000-fold from a hemolysate while the rat liver enzyme was purified about 4,000-fold from a homogenate. Upon polyacrylamide gel electrophoresis in sodium dodecyl sulfate under reducing conditions more than 90% of the protein was represented by a polypeptide of Mr 135,000 in both cases. In addition, the two enzymes eluted at similar positions in the various chromatographic steps, showed similar specific activity, and had a pH optimum around 7.5. A tryptic pentadecapeptide from the alpha-chain of human hemoglobin, Val-Gly-Ala-His-Ala-Gly-Glu-Tyr-Gly-Ala-Glu-Ala-Leu-Glu-Arg, i.e. residues 17-31, was found to be sequentially cleaved by the erythrocyte enzyme into five tripeptides, beginning from the NH2 terminus. Chromogenic tripeptidylamides showed various rates of hydrolysis at pH 7.5. With Ala-Ala-Phe-4-methyl-7-coumarylamide, Km was 16 microM and Vmax 13 mumol min-1 . mg-1, comparable to the standard substrate Arg-Arg-Ala-Ser(32P)-Val-Ala values (Km 13 microM and Vmax 24 mumol . min-1 . mg-1). The tripeptidyl peptidase of human erythrocytes was classified as a serine peptidase from its irreversible inhibition by phenylmethanesulfonyl fluoride and diisopropyl fluorophosphate. The rate of inhibition was decreased by the presence of an efficient competitive inhibitor, Val-Leu-Arg-Arg-Ala-Ser-Val-Ala (Ki 1.5 microM). [3H]Diisopropylphosphate was incorporated to the extent of 0.7-0.9 mol/mol of Mr 135,000 subunit, which confirms the high purity of the enzyme.
Hackel, R.P.
1992-10-20
A laser amplifier chain has a plurality of laser amplifiers arranged in a chain to sequentially amplify a low-power signal beam to produce a significantly higher-power output beam. Overall efficiency of such a chain is improved if high-gain, low efficiency amplifiers are placed on the upstream side of the chain where only a very small fraction of the total pumped power is received by the chain and low-gain, high-efficiency amplifiers are placed on the downstream side where a majority of pumping energy is received by the chain. 6 figs.
Comparison of the nutrient content of children's menu items at US restaurant chains, 2010-2014.
Deierlein, Andrea L; Peat, Kay; Claudio, Luz
2015-08-15
To determine changes in the nutritional content of children's menu items at U.S. restaurant chains between 2010 and 2014. The sample consisted of 13 sit down and 16 fast-food restaurant chains ranked within the top 50 US chains in 2009. Nutritional information was accessed in June-July 2010 and 2014. Descriptive statistics were calculated for nutrient content of main dishes and side dishes, as well as for those items that were added, removed, or unchanged during the study period. Nutrient content of main dishes did not change significantly between 2010 and 2014. Approximately one-third of main dishes at fast-food restaurant chains and half of main dishes at sit down restaurant chains exceeded the 2010 Dietary Guidelines for Americans recommended levels for sodium, fat, and saturated fat in 2014. Improvements in nutrient content were observed for side dishes. At sit down restaurant chains, added side dishes contained over 50% less calories, fat, saturated fat, and sodium, and were more likely to contain fruits/vegetables compared to removed sides (p < 0.05 for all comparisons). Added side dishes at fast-food restaurant chains contained less saturated fat (p < 0.05). The majority of menu items, especially main dishes, available to children still contain high amounts of calories, fat, saturated fat, and sodium. Efforts must be made by the restaurant industry and policy makers to improve the nutritional content of children's menu items at restaurant chains to align with the Dietary Guidelines for Americans. Additional efforts are necessary to help parents and children make informed choices when ordering at restaurant chains.
Crystal Structure of a Phosphorylated Light Chain Domain of Scallop Smooth-Muscle Myosin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, V.S.; Robinson, H.; O-Neall-Hennessey, E.
2011-11-02
We have determined the crystal structure of a phosphorylated smooth-muscle myosin light chain domain (LCD). This reconstituted LCD is of a sea scallop catch muscle myosin with its phosphorylatable regulatory light chain (RLC SmoA). In the crystal structure, Arg{sup 16}, an arginine residue that is present in this isoform but not in vertebrate smooth-muscle RLC, stabilizes the phosphorylation site. This arginine interacts with the carbonyl group of the phosphorylation-site serine in the unphosphorylated LCD (determined previously), and with the phosphate group when the serine is phosphorylated. However, the overall conformation of the LCD is essentially unchanged upon phosphorylation. This resultmore » provides additional evidence that phosphorylation of the RLC is unlikely to act as an on-switch in regulation of scallop catch muscle myosin.« less
In Vitro Enzymatic Synthesis of New Penicillins Containing Keto Acids as Side Chains
Ferrero, Miguel A.; Reglero, Angel; Martínez-Blanco, Honorina; Fernández-Valverde, Martiniano; Luengo, Jose M.
1991-01-01
Seven different penicillins containing α-ketobutyric, β-ketobutyric, γ-ketovaleric, α-ketohexanoic, δ-ketohexanoic, ε-ketoheptanoic, and α-ketooctanoic acids as side chains have been synthesized in vitro by incubating the enzymes phenylacetyl coenzyme A (CoA) ligase from Pseudomonas putida and acyl-CoA:6-aminopenicillanic acid acyltransferase from Penicillium chrysogenum with CoA, ATP, Mg2+, dithiothreitol, 6-aminopenicillanic acid, and the corresponding side chain precursor. PMID:1952871
[Study on anti-bacterium activity of ginkgolic acids and their momomers].
Yang, Xiaoming; Zhu, Wei; Chen, Jun; Qian, Zhiyu; Xie, Jimin
2004-09-01
Ginkgolic acids and their three monomers were separated from ginkgo sarcotestas. The anti-bacterium activity of ginkgolic acids were tested. The relation between the anti-bacterium activity and side chain of ginkgolic acid were studied. The MIC of ginkgolic acids and their three monomers and salicylic acid were tested. Ginkgolic acid has strong inhibitive effect on G+-bacterium. Salicylic acid has no side chain, so no anti-bacterial activity. When the length of gingkolic acid side chain is C13:0, it has the strongest anti-bacterial activity in three monomers. The side chain of ginkgolic acid is the key functional group that possessed anti-bacterial activity. The length of Ginkgolic acid was the main effective factor of anti-bacterial activity.
NASA Astrophysics Data System (ADS)
Mondal, Sayantan; Mukherjee, Saumyak; Bagchi, Biman
2017-09-01
Dynamical coupling between water and amino acid side-chain residues in solvation dynamics is investigated by selecting residues often used as natural probes, namely tryptophan, tyrosine and histidine, located at different positions on protein surface. Such differently placed residues are found to exhibit different timescales of relaxation. The total solvation response measured by the probe is decomposed in terms of its interactions with (i) protein core, (ii) side-chain and (iii) water. Significant anti cross-correlation among these contributions are observed. When the motion of the protein side-chains is quenched, solvation either becomes faster or slower depending on the location of the probe.
Da Silva, Pedro; Rahioui, Isabelle; Laugier, Christian; Jouvensal, Laurence; Meudal, Hervé; Chouabe, Christophe; Delmas, Agnès F; Gressent, Frédéric
2010-10-22
PA1b (pea albumin 1, subunit b) is a small and compact 37-amino acid protein, isolated from pea seeds (Pisum sativum), that adopts a cystine knot fold. It acts as a potent insecticidal agent against major pests in stored crops and vegetables, making it a promising bioinsecticide. Here, we investigate the influence of individual residues on the structure and bioactivity of PA1b. A collection of 13 PA1b mutants was successfully chemically synthesized in which the residues involved in the definition of PA1b amphiphilic and electrostatic characteristics were individually replaced with an alanine. The three-dimensional structure of PA1b was outstandingly tolerant of modifications. Remarkably, receptor binding and insecticidal activities were both dependent on common well defined clusters of residues located on one single face of the toxin, with Phe-10, Arg-21, Ile-23, and Leu-27 being key residues of the binding interaction. The inactivity of the mutants is clearly due to a change in the nature of the side chain rather than to a side effect, such as misfolding or degradation of the peptide, in the insect digestive tract. We have shown that a hydrophobic patch is the putative site of the interaction of PA1b with its binding site. Overall, the mutagenesis data provide major insights into the functional elements responsible for PA1b entomotoxic properties and give some clues toward a better understanding of the PA1b mode of action.
Improved packing of protein side chains with parallel ant colonies
2014-01-01
Introduction The accurate packing of protein side chains is important for many computational biology problems, such as ab initio protein structure prediction, homology modelling, and protein design and ligand docking applications. Many of existing solutions are modelled as a computational optimisation problem. As well as the design of search algorithms, most solutions suffer from an inaccurate energy function for judging whether a prediction is good or bad. Even if the search has found the lowest energy, there is no certainty of obtaining the protein structures with correct side chains. Methods We present a side-chain modelling method, pacoPacker, which uses a parallel ant colony optimisation strategy based on sharing a single pheromone matrix. This parallel approach combines different sources of energy functions and generates protein side-chain conformations with the lowest energies jointly determined by the various energy functions. We further optimised the selected rotamers to construct subrotamer by rotamer minimisation, which reasonably improved the discreteness of the rotamer library. Results We focused on improving the accuracy of side-chain conformation prediction. For a testing set of 442 proteins, 87.19% of X1 and 77.11% of X12 angles were predicted correctly within 40° of the X-ray positions. We compared the accuracy of pacoPacker with state-of-the-art methods, such as CIS-RR and SCWRL4. We analysed the results from different perspectives, in terms of protein chain and individual residues. In this comprehensive benchmark testing, 51.5% of proteins within a length of 400 amino acids predicted by pacoPacker were superior to the results of CIS-RR and SCWRL4 simultaneously. Finally, we also showed the advantage of using the subrotamers strategy. All results confirmed that our parallel approach is competitive to state-of-the-art solutions for packing side chains. Conclusions This parallel approach combines various sources of searching intelligence and energy functions to pack protein side chains. It provides a frame-work for combining different inaccuracy/usefulness objective functions by designing parallel heuristic search algorithms. PMID:25474164
Su, Ling; Lu, Zhikun; Li, Fatao; Shao, Yongxian; Sheng, Huiying; Cai, Yanna; Liu, Li
2017-06-01
Maple syrup urine disease (MSUD) is a rare autosomal recessive genetic disorder caused by defects in the catabolism of the branched-chain amino acids (BCAAs). Classic form of MSUD (CMSUD) is caused by mutations in BCKDHA, BCKDHB, DBT genes mostly. In this study, we analyzed the clinical and genetic characteristics of two patients with CMSUD. Two homozygous mutations, c.517G > T (p.Asp173Tyr) and c.503G > A (p.Arg168His), both in the exon 5 of BCKDHB were detected respectively. The novel mutation p.Asp173Tyr of patient A, inherited from his parents, is predicted to affect conformation of protein by computer analysis. The reported mutation p.Arg168His observed in patient B seemed to occur in a maternal uniparental disomy inheritance manner. Review of related literature revealed that most missense mutations in exon 5 of BCKDHB in homozygous genotype often result in CMSUD because of its incorrect conformation, and exon 5 of BCKDHB might be a susceptible region. Thus the novel homozygous mutation p.Asp173Tyr and the founder homozygous mutation p.Arg168His may be responsible for the clinical presentation of the two CMSUD patients, facilitating the future genetic counselling and prenatal diagnosis.
Ye, Mao; Sun, Mingming; Feng, Yanfang; Wan, Jinzhong; Xie, Shanni; Tian, Da; Zhao, Yu; Wu, Jun; Hu, Feng; Li, Huixin; Jiang, Xin
2016-05-15
Considering the potential threat of vegetables growing in antibiotic-polluted soil with high abundance of antibiotic-resistant genes (ARGs) against human health through the food chain, it is thus urgent to develop novel control technology to ensure vegetable safety. In the present work, pot experiments were conducted in lettuce cultivation to assess the impedance effect of biochar amendment on soil sulfonamides (SAs), antibiotic-resistant bacteria (ARB), and ARG enrichment in lettuce tissues. After 100 days of cultivation, lettuce cultivation with biochar amendment exhibited the greatest soil SA dissipation as well as the significant improvement of lettuce growth indices, with residual soil SAs mainly existing as the tightly bound fraction. Moreover, the SA contents in roots and new/old leaves were reduced by one to two orders of magnitude compared to those without biochar amendment. In addition, isolate counts for SA-resistant bacterial endophytes in old leaves and sul gene abundances in roots and old leaves also decreased significantly after biochar application. However, neither SA resistant bacteria nor sul genes were detected in new leaves. It was the first study to demonstrate that biochar amendment can be a practical strategy to protect lettuce safety growing in SA-polluted soil with rich ARB and ARGs. Copyright © 2015 Elsevier B.V. All rights reserved.
Exploring backbone-cation alkyl spacers for multi-cation side chain anion exchange membranes
NASA Astrophysics Data System (ADS)
Zhu, Liang; Yu, Xuedi; Hickner, Michael A.
2018-01-01
In order to systematically study how the arrangement of cations on the side chain and length of alkyl spacers between cations impact the performance of multi-cation AEMs for alkaline fuel cells, a series of polyphenylene oxide (PPO)-based AEMs with different cationic side chains were synthesized. This work resulted in samples with two or three cations in a side chain pendant to the PPO backbone. More importantly, the length of the spacer between cations varied from 3 methylene (-CH2-) (C3) groups to 8 methylene (C8) groups. The highest conductivity, up to 99 mS/cm in liquid water at room temperature, was observed for the triple-cation side chain AEM with pentyl (C5) or hexyl (C6) spacers. The multi-cation AEMs were found to have decreased water uptake and ionic conductivity when the spacer chains between cations were lengthened from pentyl (C5) or hexyl (C6) to octyl (C8) linking groups. The triple-cation membranes with pentyl (C5) or hexyl (C6) groups between cations showed greatest stability after immersion in 1 M NaOH at 80 °C for 500 h.
Side-Chain Effects on the Thermoelectric Properties of Fluorene-Based Copolymers.
Liang, Ansheng; Zhou, Xiaoyan; Zhou, Wenqiao; Wan, Tao; Wang, Luhai; Pan, Chengjun; Wang, Lei
2017-09-01
Three conjugated polymers with alkyl chains of different lengths are designed and synthesized, and their structure-property relationship as organic thermoelectric materials is systematically elucidated. All three polymers show similar photophysical properties, thermal properties, and mechanical properties; however, their thermoelectric performance is influenced by the length of their side chains. The length of the alkyl chain significantly influences the electrical conductivity of the conjugated polymers, and polymers with a short alkyl chain exhibit better conductivity than those with a long alkyl chain. The length of the alkyl chain has little effect on the Seebeck coefficient. Only a slight increase in the Seebeck coefficient is observed with the increasing length of the alkyl chain. The purpose of this study is to provide comprehensive insight into fine-tuning the thermoelectric properties of conjugated polymers as a function of side-chain engineering, thereby providing a novel perspective into the design of high-performance thermoelectric conjugated polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dantsker, David; Roche, Camille; Samuni, Uri; Blouin, George; Olson, John S; Friedman, Joel M
2005-11-18
After photodissociation, ligand rebinding to myoglobin exhibits complex kinetic patterns associated with multiple first-order geminate recombination processes occurring within the protein and a simpler bimolecular phase representing second-order ligand rebinding from the solvent. A smooth transition from cryogenic-like to solution phase properties can be obtained by using a combination of sol-gel encapsulation, addition of glycerol as a bathing medium, and temperature tuning (-15 --> 65 degrees C). This approach was applied to a series of double mutants, myoglobin CO (H64L/V68X, where X = Ala, Val, Leu, Asn, and Phe), which were designed to examine the contributions of the position 68(E11) side chain to the appearance and disappearance of internal rebinding phases in the absence of steric and polar interactions with the distal histidine. Based on the effects of viscosity, temperature, and the stereochemistry of the E11 side chain, the three major phases, B --> A, C --> A, and D --> A, can be assigned, respectively, to ligand rebinding from the following: (i) the distal heme pocket, (ii) the xenon cavities prior to large amplitude side chain conformational relaxation, and (iii) the xenon cavities after significant conformational relaxation of the position 68(E11) side chain. The relative amplitudes of the B --> A and C --> A phases depend markedly on the size and shape of the E11 side chain, which regulates sterically both ligand return to the heme iron atom and ligand migration to the xenon cavities. The internal xenon cavities provide a transient docking site that allows side chain relaxations and the entry of water into the vacated distal pocket, which in turn slows ligand recombination markedly.
NASA Astrophysics Data System (ADS)
Bi, Qi-rui; Hou, Jin-jun; Yang, Min; Shen, Yao; Qi, Peng; Feng, Rui-hong; Dai, Zhuo; Yan, Bing-peng; Wang, Jian-wei; Shi, Xiao-jian; Wu, Wan-ying; Guo, De-an
2017-03-01
Fatty acids conjugates (FACs) are ubiquitous but found in trace amounts in the natural world. They are composed of multiple unknown substructures and side chains. Thus, FACs are difficult to be analyzed by traditional mass spectrometric methods. In this study, an integrated strategy was developed to global profiling and targeted structure annotation of FACs in complex matrix by LTQ Orbitrap. Dicarboxylic acid conjugated bufotoxins (DACBs) in Venenum bufonis (VB) were used as model compounds. The new strategy (abbreviated as HPNA) combined higher-energy C-trap dissociation (HCD) with product ion- (PI), neutral loss- (NL) based MSn (n ≥ 3) acquisition in both positive-ion mode and negative-ion mode. Several advantages are presented. First, various side chains were found under HCD in negative-ion mode, which included both known and unknown side chains. Second, DACBs with multiple side chains were simultaneously detected in one run. Compared with traditional quadrupole-based mass method, it greatly increased analysis throughput. Third, the fragment ions of side chain and steroids substructure could be obtained by PI- and NL-based MSn acquisition, respectively, which greatly increased the accuracy of the structure annotation of DACBs. In all, 78 DACBs have been discovered, of which 68 were new compounds; 25 types of substructure formulas and seven dicarboxylic acid side chains were found, especially five new side chains, including two saturated dicarboxylic acids [(azelaic acid (C9) and sebacic acid (C10)] and three unsaturated dicarboxylic acids (u-C8, u-C9, and u-C10). All these results greatly enriched the structures of DACBs in VB.
Galactose-depleted xyloglucan is dysfunctional and leads to dwarfism in Arabidopsis.
Kong, Yingzhen; Peña, Maria J; Renna, Luciana; Avci, Utku; Pattathil, Sivakumar; Tuomivaara, Sami T; Li, Xuemei; Reiter, Wolf-Dieter; Brandizzi, Federica; Hahn, Michael G; Darvill, Alan G; York, William S; O'Neill, Malcolm A
2015-04-01
Xyloglucan is a polysaccharide that has important roles in the formation and function of the walls that surround growing land plant cells. Many of these plants synthesize xyloglucan that contains galactose in two different side chains (L and F), which exist in distinct molecular environments. However, little is known about the contribution of these side chains to xyloglucan function. Here, we show that Arabidopsis (Arabidopsis thaliana) mutants devoid of the F side chain galactosyltransferase MURUS3 (MUR3) form xyloglucan that lacks F side chains and contains much less galactosylated xylose than its wild-type counterpart. The galactose-depleted xyloglucan is dysfunctional, as it leads to mutants that are dwarfed with curled rosette leaves, short petioles, and short inflorescence stems. Moreover, cell wall matrix polysaccharides, including xyloglucan and pectin, are not properly secreted and instead accumulate within intracellular aggregates. Near-normal growth is restored by generating mur3 mutants that produce no detectable amounts of xyloglucan. Thus, cellular processes are affected more by the presence of the dysfunctional xyloglucan than by eliminating xyloglucan altogether. To identify structural features responsible for xyloglucan dysfunction, xyloglucan structure was modified in situ by generating mur3 mutants that lack specific xyloglucan xylosyltransferases (XXTs) or that overexpress the XYLOGLUCAN L-SIDE CHAIN GALACTOSYLTRANSFERASE2 (XLT2) gene. Normal growth was restored in the mur3-3 mutant overexpressing XLT2 and in mur3-3 xxt double mutants when the dysfunctional xyloglucan was modified by doubling the amounts of galactosylated side chains. Our study assigns a role for galactosylation in normal xyloglucan function and demonstrates that altering xyloglucan side chain structure disturbs diverse cellular and physiological processes. © 2015 American Society of Plant Biologists. All Rights Reserved.
Makowski, Mariusz; Liwo, Adam; Sobolewski, Emil; Scheraga, Harold A
2011-05-19
A new model of side-chain-side-chain interactions for charged side-chains of amino acids, to be used in the UNRES force-field, has been developed, in which a side chain consists of a nonpolar and a charged site. The interaction energy between the nonpolar sites is composed of a Gay-Berne and a cavity term; the interaction energy between the charged sites consists of a Lennard-Jones term, a Coulombic term, a generalized-Born term, and a cavity term, while the interaction energy between the nonpolar and charged sites is composed of a Gay-Berne and a polarization term. We parametrized the energy function for the models of all six pairs of natural like-charged amino-acid side chains, namely propionate-propionate (for the aspartic acid-aspartic acid pair), butyrate-butyrate (for the glutamic acid-glutamic acid pair), propionate-butyrate (for the aspartic acid-glutamic acid pair), pentylamine cation-pentylamine cation (for the lysine-lysine pair), 1-butylguanidine cation-1-butylguanidine cation (for the arginine-arginine pair), and pentylamine cation-1-butylguanidine cation (for the lysine-arginine pair). By using umbrella-sampling molecular dynamics simulations in explicit TIP3P water, we determined the potentials of mean force of the above-mentioned pairs as functions of distance and orientation and fitted analytical expressions to them. The positions and depths of the contact minima and the positions and heights of the desolvation maxima, including their dependence on the orientation of the molecules were well represented by analytical expressions for all systems. The values of the parameters of all the energy components are physically reasonable, which justifies use of such potentials in coarse-grain protein-folding simulations. © 2011 American Chemical Society
Functional modulation of a protein folding landscape via side-chain distortion
Kelch, Brian A.; Salimi, Neema L.; Agard, David A.
2012-01-01
Ultrahigh-resolution (< 1.0 Å) structures have revealed unprecedented and unexpected details of molecular geometry, such as the deformation of aromatic rings from planarity. However, the functional utility of such energetically costly strain is unknown. The 0.83 Å structure of α-lytic protease (αLP) indicated that residues surrounding a conserved Phe side-chain dictate a rotamer which results in a ∼6° distortion along the side-chain, estimated to cost 4 kcal/mol. By contrast, in the closely related protease Streptomyces griseus Protease B (SGPB), the equivalent Phe adopts a different rotamer and is undistorted. Here, we report that the αLP Phe side-chain distortion is both functional and conserved in proteases with large pro regions. Sequence analysis of the αLP serine protease family reveals a bifurcation separating those sequences expected to induce distortion and those that would not, which correlates with the extent of kinetic stability. Structural and folding kinetics analyses of family members suggest that distortion of this side-chain plays a role in increasing kinetic stability within the αLP family members that use a large Pro region. Additionally, structural and kinetic folding studies of mutants demonstrate that strain alters the folding free energy landscape by destabilizing the transition state (TS) relative to the native state (N). Although side-chain distortion comes at a cost of foldability, it suppresses the rate of unfolding, thereby enhancing kinetic stability and increasing protein longevity under harsh extracellular conditions. This ability of a structural distortion to enhance function is unlikely to be unique to αLP family members and may be relevant in other proteins exhibiting side-chain distortions. PMID:22635267
1986-10-01
Report No. 2 Liquid Crystalline Polymers Containing Heterocycloalkane Mesogeus 1. Side-Chain Liquid Crystalline Polymethacrylates and . Polyacrylates...8217. " "-"-"-" " "" ’CS" i Liquid Crystalline Polymers Containing Heterocycloalkane Mesogens 1. Side-Chain Liquid Crystalline Polymethacrylates and Polyacrylates...University Cleveland, OH 44106 ABSTRACT Polymethacrylates and polyacrylates containing 2-(p-hydroxyphenyl)-5-(p-meth- oxyphenyl)-1,3-dioxane as a
Synthesis and solution self-assembly of side-chain cobaltocenium-containing block copolymers.
Ren, Lixia; Hardy, Christopher G; Tang, Chuanbing
2010-07-07
The synthesis of side-chain cobaltocenium-containing block copolymers and their self-assembly in solution was studied. Highly pure monocarboxycobaltocenium was prepared and subsequently attached to side chains of poly(tert-butyl acrylate)-block-poly(2-hydroxyethyl acrylate), yielding poly(tert-butyl acrylate)-block-poly(2-acryloyloxyethyl cobaltoceniumcarboxylate). The cobaltocenium block copolymers exhibited vesicle morphology in the mixture of acetone and water, while micelles of nanotubes were formed in the mixture of acetone and chloroform.
How accurately do force fields represent protein side chain ensembles?
Petrović, Dušan; Wang, Xue; Strodel, Birgit
2018-05-23
Although the protein backbone is the most fundamental part of the structure, the fine-tuning of side-chain conformations is important for protein function, for example, in protein-protein and protein-ligand interactions, and also in enzyme catalysis. While several benchmarks testing the performance of protein force fields for side chain properties have already been published, they often considered only a few force fields and were not tested against the same experimental observables; hence, they are not directly comparable. In this work, we explore the ability of twelve force fields, which are different flavors of AMBER, CHARMM, OPLS, or GROMOS, to reproduce average rotamer angles and rotamer populations obtained from extensive NMR studies of the 3 J and residual dipolar coupling constants for two small proteins: ubiquitin and GB3. Based on a total of 196 μs sampling time, our results reveal that all force fields identify the correct side chain angles, while the AMBER and CHARMM force fields clearly outperform the OPLS and GROMOS force fields in estimating rotamer populations. The three best force fields for representing the protein side chain dynamics are AMBER 14SB, AMBER 99SB*-ILDN, and CHARMM36. Furthermore, we observe that the side chain ensembles of buried amino acid residues are generally more accurately represented than those of the surface exposed residues. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.
21. VIEW LOOKING FORWARD INTO STARBOARD SIDE OF CHAIN LOCKER ...
21. VIEW LOOKING FORWARD INTO STARBOARD SIDE OF CHAIN LOCKER FROM CHAIN LOCKER BULKHEAD; PAWL BITT SHOWN IN EXTREME LEFT FOREGROUND, WITH APRON IN BACKGROUND. BREASTHOOK, SHELF AND CLAMP SHOWN AT TOP OF IMAGE - Pilot Schooner "Alabama", Moored in harbor at Vineyard Haven, Vineyard Haven, Dukes County, MA
INOUE, Masayuki
2014-01-01
Antillatoxin 1 is a unique natural product that displays potent neurotoxic and neuritogenic activities through activation of voltage-gated sodium channels. The peptidic macrocycle of 1 was attached to a side chain with an exceptionally high degree of methylation. In this review, we discuss the total synthesis and biological evaluation of 1 and its analogues. First we describe an efficient synthetic route to 1. This strategy enabled the unified preparation of nine side chain analogues. Structure-activity relationship studies of these analogues revealed that subtle side chain modification leads to dramatic changes in activity, and detailed structural analyses indicated the importance of the overall size and three dimensional shape of the side chain. Based on these data, we designed and synthesized a photoresponsive analogue, proving that the activity of 1 was modulated via a photochemical reaction. The knowledge accumulated through these studies will be useful for the rational design of new tailor-made molecules to control the function and behavior of ion channels. PMID:24522155
Zhang, Cai'e; Feng, Shiyu; Liu, Yahui; Hou, Ran; Zhang, Zhe; Xu, Xinjun; Wu, Youzhi; Bo, Zhishan
2017-10-04
Three indacenodithieno[3,2-b]thiophene (IT) cored small molecular acceptors (ITIC-SC6, ITIC-SC8, and ITIC-SC2C6) were synthesized, and the influence of side chains on their performances in solar cells was systematically probed. Our investigations have demonstrated the variation of side chains greatly affects the charge dissociation, charge mobility, and morphology of the donor:acceptor blend films. ITIC-SC2C6 with four branched side chains showed improved solubility, which can ensure the polymer donor to form favorable fibrous nanostructure during the drying of the blend film. Consequently, devices based on PBDB-ST:ITIC-SC2C6 demonstrated higher charge mobility, more effective exciton dissociation, and the optimal power conversion efficiency up to 9.16% with an FF of 0.63, a J sc of 15.81 mA cm -2 , and a V oc of 0.92 V. These results reveal that the side chain engineering is a valid way of tuning the morphology of blend films and further improving PCE in polymer solar cells.
Jan, Yih-Dean; Lee, Bor-Shiunn; Lin, Chun-Pin; Tseng, Wan-Yu
2014-04-01
Polymerization shrinkage is one of the main causes of dental restoration failure. This study tried to conjugate two diisocyanate side chains to dimethacrylate resins in order to reduce polymerization shrinkage and increase the hardness of composite resins. Diisocyanate, 2-hydroxyethyl methacrylate, and bisphenol A dimethacrylate were reacted in different ratios to form urethane-modified new resin matrices, and then mixed with 50 wt.% silica fillers. The viscosities of matrices, polymerization shrinkage, surface hardness, and degrees of conversion of experimental composite resins were then evaluated and compared with a non-modified control group. The viscosities of resin matrices increased with increasing diisocyanate side chain density. Polymerization shrinkage and degree of conversion, however, decreased with increasing diisocyanate side chain density. The surface hardness of all diisocyanate-modified groups was equal to or significantly higher than that of the control group. Conjugation of diisocyanate side chains to dimethacrylate represents an effective means of reducing polymerization shrinkage and increasing the surface hardness of dental composite resins. Copyright © 2012. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beloglazova, Natalia; Brown, Greg; Zimmerman, Matthew D.
Clustered regularly interspaced short palindromic repeats (CRISPRs) together with the associated CAS proteins protect microbial cells from invasion by foreign genetic elements using presently unknown molecular mechanisms. All CRISPR systems contain proteins of the CAS2 family, suggesting that these uncharacterized proteins play a central role in this process. Here we show that the CAS2 proteins represent a novel family of endoribonucleases. Six purified CAS2 proteins from diverse organisms cleaved single-stranded RNAs preferentially within U-rich regions. A representative CAS2 enzyme, SSO1404 from Sulfolobus solfataricus, cleaved the phosphodiester linkage on the 3'-side and generated 5'-phosphate- and 3'-hydroxyl-terminated oligonucleotides. The crystal structure ofmore » SSO1404 was solved at 1.6{angstrom} resolution revealing the first ribonuclease with a ferredoxin-like fold. Mutagenesis of SSO1404 identified six residues (Tyr-9, Asp-10, Arg-17, Arg-19, Arg-31, and Phe-37) that are important for enzymatic activity and suggested that Asp-10 might be the principal catalytic residue. Thus, CAS2 proteins are sequence-specific endoribonucleases, and we propose that their role in the CRISPR-mediated anti-phage defense might involve degradation of phage or cellular mRNAs.« less
Jayaram, M.; Murthy, S. K.; Ganguly, J.
1973-01-01
The cholesterol side-chain cleavage enzyme activity is decreased considerably at the mild stage of vitamin A deficiency in rat testes and ovaries and the decrease in activity becomes more pronounced with progress of deficiency. Supplementation of the deficient rats with retinyl acetate, but not retinoic acid, restores the enzyme activity to normal values. The cholesterol side-chain cleavage enzyme of adrenals is not affected by any of the above treatments. PMID:4772624
Gerecht, Karola; Figueiredo, Angelo Miguel
2017-01-01
Arginine residues are imperative for many active sites and protein-interaction interfaces. A new NMR-based method is presented to determine the rotational dynamics around the Nε–Cζ bond of arginine side chains. An application to a 19 kDa protein shows that the strengths of interactions involving arginine side chains can be characterised. PMID:28840203
C1q deficiency: identification of a novel missense mutation and treatment with fresh frozen plasma.
Topaloglu, Rezan; Taskiran, Ekim Z; Tan, Cagman; Erman, Baran; Ozaltin, Fatih; Sanal, Ozden
2012-07-01
A Turkish patient with C1q deficiency presented with a lupus-like disease, and a new missense mutation at A chain is presented. To characterize the genetic defect, all exons of the genes for the A, B, and C chains of C1q were sequenced in the patient. This revealed a missense mutation in the collagen-like domain of the A chain, p.Gly31 Arg. No other sequence variants, including the common silent mutations, were found in the three chains. Exon 1 of the C1q A chain was sequenced in 105 samples from healthy controls for this particular mutation. None of these carried the mutation. The C1q-deficient patient was treated with fresh frozen plasma infusions. Our findings showed that Turkish patients may have different mutations than the previously described common mutation, and once again, not only nonsense mutations but also missense mutations cause hereditary C1q deficiency. Regular fresh frozen plasma infusions to the patient have been clinically and therapeutically successful.
Guo, Qingbin; Kang, Ji; Wu, Yan; Cui, Steve W; Hu, Xinzhong; Yada, Rickey Y
2015-12-10
The structure and conformation relationships of a heteropolysaccharide (GlcpA)Xylan in terms of various molecular weights, Xylp/GlcpA ratio and the distribution of GlcpA along xylan chain were investigated using computer modeling. The adiabatic contour maps of xylobiose, XylpXylp(GlcpA) and (GlcpA)XylpXylp(GlcpA) indicated that the insertion of the side group (GlcpA) influenced the accessible conformational space of xylobiose molecule. RIS-Metropolis Monte Carlo method indicated that insertion of GlcpA side chain induced a lowering effect of the calculated chain extension at low GlcpA:Xylp ratio (GlcpA:Xylp = 1:3). The chain, however, became extended when the ratio of GlcpA:Xylp above 2/3. It was also shown that the spatial extension of the polymer chains was dependent on the distribution of side chain: the random distribution demonstrated the most flexible structure compared to block and alternative distribution. The present studies provide a unique insight into the dependence of both side chain ratio and distribution on the stiffness and flexibility of various (GlcpA)Xylan molecules. Copyright © 2015. Published by Elsevier Ltd.
Forecasting F10.7 with Solar Magnetic Flux Transport Modeling (Postprint)
2012-04-03
Charles N. Arge Joel B. Mozer Project Manager, RVBXS Chief, RVB This report is published in the interest of...within 6 hours of the F10.7 measurements during the years 1993 through 2010, the Spearman correlation coefficient, rs, for an empirical model of...estimation of the Earth-side solar magnetic field distribution used to forecast F10.7. Spearman correlation values of approximately 0.97, 0.95, and 0.93 are
Shin, Jicheol; Park, Gi Eun; Lee, Dae Hee; Um, Hyun Ah; Lee, Tae Wan; Cho, Min Ju; Choi, Dong Hoon
2015-02-11
New thienothiophene-flanked diketopyrrolopyrrole and thiophene-containing π-extended conjugated polymers with various branched alkyl side-chains were successfully synthesized. 2-Octyldodecyl, 2-decyltetradecyl, 2-tetradecylhexadecyl, 2-hexadecyloctadecyl, and 2-octadecyldocosyl groups were selected as the side-chain moieties and were anchored to the N-positions of the thienothiophene-flanked diketopyrrolopyrrole unit. All five polymers were found to be soluble owing to the bulkiness of the side chains. The thin-film transistor based on the 2-tetradecylhexadecyl-substituted polymer showed the highest hole mobility of 1.92 cm2 V(-1) s(-1) due to it having the smallest π-π stacking distance between the polymer chains, which was determined by grazing incidence X-ray diffraction. Bulk heterojunction polymer solar cells incorporating [6,6]-phenyl-C71-butyric acid methyl ester as the n-type molecule and the additive 1,8-diiodooctane (1 vol %) were also constructed from the synthesized polymers without thermal annealing; the device containing the 2-octyldodecyl-substituted polymer exhibited the highest power conversion efficiency of 5.8%. Although all the polymers showed similar physical properties, their device performance was clearly influenced by the sizes of the branched alkyl side-chain groups.
Poznanski, J; Sodano, P; Suh, S W; Lee, J Y; Ptak, M; Vovelle, F
1999-02-01
Nuclear magnetic resonance (NMR) spectroscopy was used to determine the three dimensional structure of rice nonspecific lipid transfer protein (ns-LTP), a 91 amino acid residue protein belonging to the broad family of plant ns-LTP. Sequence specific assignment was obtained for all but three HN backbone 1H resonances and for more than 95% of the 1H side-chain resonances using a combination of 1H 2D NOESY; TOCSY and COSY experiments at 293 K. The structure was calculated on the basis of four disulfide bridge restraints, 1259 distance constraints derived from 1H-1H Overhauser effects, 72 phi angle restraints and 32 hydrogen-bond restraints. The final solution structure involves four helices (H1: Cys3-Arg18, H2: Ala25-Ala37, H3: Thr41-Ala54 and H4: Ala66-Cys73) followed by a long C-terminal tail (T) with no observable regular structure. N-capping residues (Thr2, Ser24, Thr40), whose side-chain oxygen atoms are involved in hydrogen bonds with i + 3 amide proton additionally stabilize the N termini of the first three helices. The fourth helix involving Pro residues display a mixture of alpha and 3(10) conformation. The rms deviation of 14 final structures with respect to the average structure is 1.14 +/- 0.16 A for all heavy atoms (C, N, O and S) and 0.72 +/- 0.01 A for the backbone atoms. The global fold of rice ns-LTP is close to the previously published structures of wheat, barley and maize ns-LTPs exhibiting nearly identical pattern of the numerous sequence specific interactions. As reported previously for different four-helix topology proteins, hydrophobic, hydrogen bonding and electrostatic mechanisms of fold stabilization were found for the rice ns-LTP. The sequential alignment of 36 ns-LTP primary structures strongly suggests that there is a uniform pattern of specific long-range interactions (in terms of sequence), which stabilize the fold of all plant ns-LTPs.
Vendrell-Criado, Victoria; González-Bello, Concepción; Miranda, Miguel A; Jiménez, M Consuelo
2018-06-15
Binding of the immunosuppressive agent mycophenolate mofetil (MMP) and its pharmacologically active metabolite mycophenolic acid (MPA) to human serum albumin (HSA) and α 1 -acid glycoprotein (HAAG) has been investigated by means of an integrated approach involving selective excitation of the drug fluorophore, following their UV-A triggered fluorescence and docking studies. The formation of the protein/ligand complexes was evidenced by a dramatic enhancement of the fluorescence intensity and a hypsochromic shift of the emission band. In HSA, competitive studies using oleic acid as site I probe revealed site I as the main binding site of the ligands. Binding constants revealed that the affinity of the active metabolite by HSA is four-fold higher than its proactive form. Moreover, the affinity of MMP by HSA is three-fold higher than by HAAG. Docking studies revealed significant molecular binding differences in the binding of MMP and MPA to sub-domain IIA of HSA (site 1). For MPA, the aromatic moiety would be in close contact to Trp214 with the flexible chain pointing to the other end of the sub-domain; on the contrary, for MMP, the carboxylate group of the chain would be fixed nearby Trp214 through electrostatic interactions with residues Arg218 and Arg222. Copyright © 2018 Elsevier B.V. All rights reserved.
Fluorescence probe of polypeptide conformational dynamics in gas phase and in solution
NASA Astrophysics Data System (ADS)
Iavarone, Anthony T.; Meinen, Jan; Schulze, Susanne; Parks, Joel H.
2006-07-01
Fluorescence measurements of polypeptides derivatized with the fluorescent dye BODIPY TMR have been used to probe the polypeptide conformational dynamics as a function of temperature and charge state. Measurements of (BODIPY TMR)-[Pro]n-Arg-Trp and (BODIPY TMR)-[Gly-Ser]m-Arg-Trp have been performed for charge states 1+ and 2+ of n = 4 and 10 and m = 2 and 5. The 2+ charge states of both of these polypeptides exhibit similar temperature dependences for equal chain lengths (n = 4, m = 2 and n = 10, m = 5) and suggest conformations dominated by Coulomb repulsion. In the absence of such Coulomb repulsion, the 1+ charge state conformations appear to be characterized by the flexibility of the polypeptide chain for which [Gly-Ser]m > [Pro]n. Comparisons of these gas phase polypeptide measurements with corresponding measurements in solution provide a direct measure of the effects of solvent on the conformational dynamics. The change in fluorescence as a function of temperature in the gas phase is two orders of magnitude greater than that in solution, a dramatic result we attribute to the restrictions on intramolecular dynamics imposed by diffusion-limited kinetics and the lack of shielding by solvent. Measurements were also made of unsolvated Pron peptides without the tryptophan (Trp) residue to isolate the interaction of the fluorescent dye with charges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pampa, K.J., E-mail: sagarikakj@gmail.com; Lokanath, N.K.; Girish, T.U.
Highlights: • Determined the structure of UDP-D-ManNAcADH to a resolution of 1.55 Å. • First complex structure of PhUDP-D-ManNAcADH with UDP-D-ManMAcA. • The monomeric structure consists of three distinct domains. • Cys258 acting as catalytic nucleophilic and Lys204 acts as acid/base catalyst. • Oligomeric state plays an important role for the catalytic function. - Abstract: UDP-N-acetyl-D-mannosamine dehydrogenase (UDP-D-ManNAcDH) belongs to UDP-glucose/GDP-mannose dehydrogenase family and catalyzes Uridine-diphospho-N-acetyl-D-mannosamine (UDP-D-ManNAc) to Uridine-diphospho-N-acetyl-D-mannosaminuronic acid (UDP-D-ManNAcA) through twofold oxidation of NAD{sup +}. In order to reveal the structural features of the Pyrococcus horikoshii UDP-D-ManNAcADH, we have determined the crystal structure of the product-bound enzyme bymore » X-ray diffraction to resolution of 1.55 Å. The protomer folds into three distinct domains; nucleotide binding domain (NBD), substrate binding domain (SBD) and oligomerization domain (OD, involved in the dimerization). The clear electron density of the UDP-D-ManNAcA is observed and the residues binding are identified for the first time. Crystal structures reveal a tight dimeric polymer chains with product-bound in all the structures. The catalytic residues Cys258 and Lys204 are conserved. The Cys258 acts as catalytic nucleophile and Lys204 as acid/base catalyst. The product is directly interacts with residues Arg211, Thr249, Arg244, Gly255, Arg289, Lys319 and Arg398. In addition, the structural parameters responsible for thermostability and oligomerization of the three dimensional structure are analyzed.« less
Velliquette, Randall W; Hue-Roye, Kim; Lomas-Francis, Christine; Gillen, Barbara; Schierts, Jennifer; Gentzkow, Kristie; Peyrard, Thierry; von Zabern, Inge; Flegel, Willy A; Rodberg, Karen; Debnath, Asim K; Lee, Soohee; Reid, Marion E
2013-11-01
The numerous antigens in the Kell blood group system result from missense nucleotide changes in KEL. Antibodies to antigens in this system can be clinically important. We describe six probands whose plasma contained antibodies to high-prevalence Kell antigens and discuss their relationship. Polymerase chain reaction amplification, direct sequencing, restriction fragment length polymorphism assays, hemagglutination, flow cytometry, and protein modeling were performed by standard methods. Proband 1 (KUCI) and her serologically compatible sister were heterozygous for a nucleotide change in Exon 11 (KEL*1271C/T; Ala424Val). Proband 2 (KANT) was heterozygous for KEL*1283G/T (Arg428Leu) and KEL*1216C/T (Arg406Stop) in Exon 11. Red blood cells (RBCs) from Proband 1 and her sister were not agglutinated by plasma from Proband 2; however, RBCs from Proband 2 were agglutinated by plasma from Proband 1. Probands 3, 4, 5, and 6 had the KEL*1391C>T change associated with the previously reported KETI- phenotype. Proband 5 was also homozygous for KEL*905T>C encoding the K11-K17+ phenotype. Hemagglutination studies revealed an association between KUCI, KANT, KETI, and K11. Protein modeling indicated that whereas Ala424 and Arg428 are clustered, Val302 and Thr464 are not. Ala424 in the Kell glycoprotein is associated with the high-prevalence Kell antigen, KUCI (ISBT 006032), which is detected by the antibody of Proband 1. Arg428 is associated with the high-prevalence Kell antigen, KANT (ISBT 006033). The association between KUCI, KANT, KETI, and K11 and the results of protein modeling are discussed. © 2013 New York Blood Center. Transfusion © 2013 American Association of Blood Banks.
Poly(ionic liquid) based chemosensors for detection of basic amino acids in aqueous medium
NASA Astrophysics Data System (ADS)
Li, Xinjuan; Wang, Kai; Ma, Nana; Jia, Xianbin
2017-09-01
Naked-eye detection of amino acids in water is of great significance in the field of bio-analytical applications. Herein, polymerized ionic liquids (PILs) with controlled chain length structures were synthesized via reversible addition-fragmentation chain-transfer (RAFT) polymerization and post-quaternization approach. The amino acids recognition performance of PILs with different alkyl chain lengths and molecular weights was evaluated by naked-eye color change and ultraviolet-visible (UV-vis) spectral studies. These PILs were successfully used for highly sensitive and selective detection of Arg, Lys and His in water. The recognition performance was improved effectively with increased molecular weight of PILs. The biosensitivity of the PILs in water was strongly dependent on their aggregation effect and polarization effect. Highly sensitive and selective detection of amino acids was successfully accomplished by introducing positively charged pyridinium moieties and controlled RAFT radical polymerization.
Shibata, Yukie; Yamashita, Yoshihisa; van der Ploeg, Jan R
2009-05-01
Bacteriophage M102 is a virulent siphophage that propagates in some serotype c Streptococcus mutans strains, but not in S. mutans of serotype e, f or k. The serotype of S. mutans is determined by the glucose side chain of rhamnose-glucose polysaccharide (RGP). Because the first step in the bacteriophage infection process is adsorption of the phage, it was investigated whether the serotype specificity of phage M102 was determined by adsorption. M102 adsorbed to all tested serotype c strains, but not to strains of different serotypes. Streptococcus mutans serotype c mutants defective in the synthesis of the glucose side chain of RGP failed to adsorb phage M102. These results suggest that the glucose side chain of RGP acts as a receptor for phage M102.
Yesselman, Joseph D; Horowitz, Scott; Brooks, Charles L; Trievel, Raymond C
2015-03-01
The propensity of backbone Cα atoms to engage in carbon-oxygen (CH · · · O) hydrogen bonding is well-appreciated in protein structure, but side chain CH · · · O hydrogen bonding remains largely uncharacterized. The extent to which side chain methyl groups in proteins participate in CH · · · O hydrogen bonding is examined through a survey of neutron crystal structures, quantum chemistry calculations, and molecular dynamics simulations. Using these approaches, methyl groups were observed to form stabilizing CH · · · O hydrogen bonds within protein structure that are maintained through protein dynamics and participate in correlated motion. Collectively, these findings illustrate that side chain methyl CH · · · O hydrogen bonding contributes to the energetics of protein structure and folding. © 2014 Wiley Periodicals, Inc.
Exploring the impact of the side-chain length on peptide/RNA binding events.
Sbicca, Lola; González, Alejandro López; Gresika, Alexandra; Di Giorgio, Audrey; Closa, Jordi Teixido; Tejedor, Roger Estrada; Andréola, Marie-Line; Azoulay, Stéphane; Patino, Nadia
2017-07-19
The impact of the amino-acid side-chain length on peptide-RNA binding events has been investigated using HIV-1 Tat derived peptides as ligands and the HIV-1 TAR RNA element as an RNA model. Our studies demonstrate that increasing the length of all peptide side-chains improves unexpectedly the binding affinity (K D ) but reduces the degree of compactness of the peptide-RNA complex. Overall, the side-chain length appears to modulate in an unpredictable way the ability of the peptide to compete with the cognate TAR RNA partner. Beyond the establishment of non-intuitive fundamental relationships, our results open up new perspectives in the design of effective RNA ligand competitors, since a large number of them have already been identified but few studies report on the modulation of the biological activity by modifying in the same way the length of all chains connecting RNA recognition motives to the central scaffold of a ligand.
Side-chain hydroxylation in the metabolism of 8-aminoquinoline antiparasitic agents.
Idowu, O R; Peggins, J O; Brewer, T G
1995-01-01
Primaquine, 8-(4-amino-1-methylbutylamino)-6-methoxyquinoline, is an antimalarial 8-aminoquinoline derivative. Although it has been in use since 1952, its metabolism has not been clearly defined. This is due to the instability of the expected aminophenol metabolites and their amphoteric nature, which makes their isolation difficult. Recent studies on the metabolism of WR 238605, a new primaquine analog, has shown that these problems may be solved by extracting the metabolites in the presence of ethyl chloroformate. Subsequent identification of the ethoxycarbonyl derivatives of the metabolites has made it possible to define the in vitro metabolism of primaquine. The primary metabolic pathways of primaquine involved hydroxylation of the phenyl ring of the quinoline nucleus and C-hydroxylation of the 3'-position of the 8-aminoalkylamino side chain. Ring-hydroxylation of primaquine gives rise to 5-hydroxyprimaquine, which on demethylation produces 5-hydroxy-6-demethylprimaquine. Side-chain hydroxylation of primaquine gives rise to 3'-hydroxyprimaquine, which also undergoes O-demethylation to 3'-hydroxy-6-demethylprimaquine. 6-Demethylprimaquine, a putative metabolite of primaquine, also underwent metabolism involving 3'-hydroxylation of the side chain. WR 6026, 8-(6-diethylaminohexylamino)-6-methoxy-4-methylquinoline, is an antileishmanial 8-aminoquinoline derivative. The in vitro metabolism of WR 6026 also results in the formation of side chain-oxygenated metabolites. The present results, together with previous observations on the metabolism of WR 238605 and closely related primaquine analog, suggest that side-chain oxygenation is an important metabolic pathway of antiparasitic 8-aminoquinoline compounds in general.
Weininger, Ulrich; Respondek, Michal; Akke, Mikael
2012-09-01
Protein dynamics on the millisecond time scale commonly reflect conformational transitions between distinct functional states. NMR relaxation dispersion experiments have provided important insights into biologically relevant dynamics with site-specific resolution, primarily targeting the protein backbone and methyl-bearing side chains. Aromatic side chains represent attractive probes of protein dynamics because they are over-represented in protein binding interfaces, play critical roles in enzyme catalysis, and form an important part of the core. Here we introduce a method to characterize millisecond conformational exchange of aromatic side chains in selectively (13)C labeled proteins by means of longitudinal- and transverse-relaxation optimized CPMG relaxation dispersion. By monitoring (13)C relaxation in a spin-state selective manner, significant sensitivity enhancement can be achieved in terms of both signal intensity and the relative exchange contribution to transverse relaxation. Further signal enhancement results from optimizing the longitudinal relaxation recovery of the covalently attached (1)H spins. We validated the L-TROSY-CPMG experiment by measuring fast folding-unfolding kinetics of the small protein CspB under native conditions. The determined unfolding rate matches perfectly with previous results from stopped-flow kinetics. The CPMG-derived chemical shift differences between the folded and unfolded states are in excellent agreement with those obtained by urea-dependent chemical shift analysis. The present method enables characterization of conformational exchange involving aromatic side chains and should serve as a valuable complement to methods developed for other types of protein side chains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paez, David, E-mail: dpaez@santpau.cat; Salazar, Juliana; Pare, Laia
Purpose: Several studies have been performed to evaluate the usefulness of neoadjuvant treatment using oxaliplatin and fluoropyrimidines for locally advanced rectal cancer. However, preoperative biomarkers of outcome are lacking. We studied the polymorphisms in thymidylate synthase, epidermal growth factor receptor, glutathione S-transferase pi 1 (GSTP1), and several DNA repair genes to evaluate their usefulness as pharmacogenetic markers in a cohort of 128 rectal cancer patients treated with preoperative chemoradiotherapy. Methods and Materials: Blood samples were obtained from 128 patients with Stage II-III rectal cancer. DNA was extracted from the peripheral blood nucleated cells, and the genotypes were analyzed by polymerasemore » chain reaction amplification and automated sequencing techniques or using a 48.48 dynamic array on the BioMark system. The germline polymorphisms studied were thymidylate synthase, (VNTR/5 Prime UTR, 2R G>C single nucleotide polymorphism [SNP], 3R G>C SNP), epidermal growth factor receptor (Arg497Lys), GSTP1 (Ile105val), excision repair cross-complementing 1 (Asn118Asn, 8092C>A, 19716G>C), X-ray repair cross-complementing group 1 (XRCC1) (Arg194Trp, Arg280His, Arg399Gln), and xeroderma pigmentosum group D (Lys751Gln). The pathologic response, pathologic regression, progression-free survival, and overall survival were evaluated according to each genotype. Results: The Asterisk-Operator 3/ Asterisk-Operator 3 thymidylate synthase genotype was associated with a greater response rate (pathologic complete remission and microfoci residual tumor, 59% in Asterisk-Operator 3/ Asterisk-Operator 3 vs. 35% in Asterisk-Operator 2/ Asterisk-Operator 2 and Asterisk-Operator 2/ Asterisk-Operator 3; p = .013). For the thymidylate synthase genotype, the median progression-free survival was 103 months for the Asterisk-Operator 3/ Asterisk-Operator 3 patients and 84 months for the Asterisk-Operator 2/ Asterisk-Operator 2 and Asterisk-Operator 2/ Asterisk-Operator 3 patients (p = .039). For XRCC1 Arg399Gln SNP, the median progression-free survival was 101 months for the G/G, 78 months for the G/A, and 31 months for the A/A patients (p = .048). Conclusions: The thymidylate synthase genotype and XRCC1 Arg399Gln polymorphism might help to identify Stage II-III rectal cancer patients with a better outcome after preoperative concomitant chemoradiotherapy.« less
AB067. X-linked adrenoleukodystrophy: Phenotype and genotype in Vietnamese patients
Nguyen, Khanh Ngoc; Nguyen, Ha Thu; Can, Ngoc Thi Bich; Bui, Thao Phuong; Nobuyuki, Shimozawa; Vu, Huynh Anh; Do, Mai Thi Thanh; Vu, Dung Chi
2017-01-01
Background X-linked adrenoleukodystrophy (X-ALD) is caused by a defect in the gene ABCD1, which maps to Xq28 and codes for a peroxisomal membrane protein that is a member of the ATP-binding cassette transporter superfamily. This disease characterized by progressive neurologic dysfunction, occasionally associated with adrenal insufficiency. Objective is to identify phenotype and genotype in Vietnamese patients with X-ALD. Methods Genomic DNA from 20 Vietnamese patients from 18 unrelated families was extracted using standard procedures from the peripheral blood leukocytes. Mutation analysis of ABCD1 was performed using polymerase chain reaction (PCR) and DNA direct sequencing. Results We identified 17 different mutations of ABCD1 in 20 patients including missense mutations (2/17), deletion (4/17), frameshift mutation (1/17) and splice site mutation (1/17). Of which, six novel mutations including c.1202G>T (p.Arg401Trp); c.1208T>A (p.Met403Lys); IVS8+28-551bp del; c.1668G>C (p.Q556H); c.292_296delTCGGC (p.S98RfsX95); and the extent of deletion included between IVS1+505 and IVS2+1501, containing whole the exon 2 (4243bp), plus insertion of 79bp from BAP31 and 8bp from unknown origin in this deleted region were identified in six unrelated patients. Eleven reported mutations including c.796G>A (p.Gly266Arg); c.1628C>T (p.Pro543Leu); c.1553G>A (p.Arg518Gln); c.1552 C>T (p.Arg518Trp); c.854G>C (p.R285P); c.1825G>A (p.E609K); c.1415_1416delAG (p.Q472RfsX83) and c.46-53del insG, c.1553G>A (p.Arg518Gln), c.1946-1947insA (p.Asp649fsX733), c.1978C>T (p.Arg660Trp) were identified in 14 patients from 12 families. Most of patients (17/20) presented cerebral ALD type with/without adrenal insufficiency and only 3 patients presented Addison type. Conclusions Mutation analysis of ABCD1 gene helped confirmation of diagnosis of X-ALD, genetic counselling and prenatal diagnosis but could not be used to predict the specific phenotype of X-ALD.
Luprano, Maria Laura; De Sanctis, Marco; Del Moro, Guido; Di Iaconi, Claudio; Lopez, Antonio; Levantesi, Caterina
2016-11-15
In order to mitigate the potential effects on the human health which are associated to the use of treated wastewater in agriculture, antibiotic resistance genes (ARGs) are required to be carefully monitored in wastewater reuse processes and their spread should be prevented by the development of efficient treatment technologies. Objective of this study was the assessment of ARGs reduction efficiencies of a novel technological treatment solution for agricultural reuse of municipal wastewaters. The proposed solution comprises an advanced biological treatment (Sequencing Batch Biofilter Granular Reactor, SBBGR), analysed both al laboratory and pilot scale, followed by sand filtration and two different disinfection final stages: ultraviolet light (UV) radiation and peracetic acid (PAA) treatments. By Polymerase Chain Reaction (PCR), the presence of 9 ARGs (ampC, mecA, ermB, sul1, sul2, tetA, tetO, tetW, vanA) were analysed and by quantitative PCR (qPCR) their removal was determined. The obtained results were compared to the reduction of total bacteria (16S rDNA gene) and of a faecal contamination indicator (Escherichia coli uidA gene). Only four of the analysed genes (ermB, sul1, sul2, tetA) were detected in raw wastewater and their abundance was estimated to be 3.4±0.7 x10(4) - 9.6±0.5 x10(9) and 1.0±0.3 x10(3) to 3.0±0.1 x10(7) gene copies/mL in raw and treated wastewaters, respectively. The results show that SBBGR technology is promising for the reduction of ARGs, achieving stable removal performance ranging from 1.0±0.4 to 2.8±0.7 log units, which is comparable to or higher than that reported for conventional activated sludge treatments. No reduction of the ARGs amount normalized to the total bacteria content (16S rDNA), was instead obtained, indicating that these genes are removed together with total bacteria and not specifically eliminated. Enhanced ARGs removal was obtained by sand filtration, while no reduction was achieved by both UV and PAA disinfection treatments tested in our study. Copyright © 2016 Elsevier B.V. All rights reserved.
Selvaraman, Nagamani; Selvam, Saravana Kumar; Muthusamy, Karthikeyan
2016-08-01
Non-secosteroidal ligands are well-known vitamin D receptor (VDR) agonists. In this study, we described a combined QM/MM to define the protein-ligand interaction energy a strong positive correlation in both QM-MM interaction energy and binding free energy against the biological activity. The molecular dynamics simulation study was performed, and specific interactions were extensively studied. The molecular docking results and surface analysis shed light on steric and electrostatic complementarities of these non-secosteroidal ligands to VDR. Finally, the drug likeness properties were also calculated and found within the acceptable range. The results show that bulky group substitutions in side chain decrease the VDR activity, whereas a small substitution increased it. Functional analyses of H393A and H301A mutations substantiate their roles in the VDR agonistic and antagonistic activities. Apart from the His393 and His301, two other amino acids in the hinge region viz. Ser233 and Arg270 acted as an electron donor/acceptor specific to the agonist in the distinct ligand potency. The results from this study disclose the binding mechanism of VDR agonists and structural modifications required to improve the selectivity. © 2016 John Wiley & Sons A/S.
Electrostatic interactions and binding orientation of HIV-1 matrix studied by neutron reflectivity.
Nanda, Hirsh; Datta, Siddhartha A K; Heinrich, Frank; Lösche, Mathias; Rein, Alan; Krueger, Susan; Curtis, Joseph E
2010-10-20
The N-terminal matrix (MA) domain of the HIV-1 Gag protein is responsible for binding to the plasma membrane of host cells during viral assembly. The putative membrane-binding interface of MA was previously mapped by means of mutagenesis and analysis of its trimeric crystal structure. However, the orientation of MA on membranes has not been directly determined by experimental measurements. We present neutron reflectivity measurements that resolve the one-dimensional scattering length density profile of MA bound to a biomimetic of the native viral membrane. A molecular refinement procedure was developed using atomic structures of MA to determine the orientation of the protein on the membrane. The orientation defines a lipid-binding interface consistent with previous mutagenesis results. The MA protein maintains this orientation without the presence of a myristate group, driven only by electrostatic interactions. Furthermore, MA is found to penetrate the membrane headgroup region peripherally such that only the side chains of specific Lys and Arg residues interact with the surface. The results suggest that electrostatic interactions are sufficient to favorably orient MA on viral membrane mimics. The spatial determination of the membrane-bound protein demonstrates the ability of neutron reflectivity to discern orientation and penetration under physiologically relevant conditions. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Long range Trp-Trp interaction initiates the folding pathway of a pro-angiogenic β-hairpin peptide
NASA Astrophysics Data System (ADS)
Diana, Donatella; De Rosa, Lucia; Palmieri, Maddalena; Russomanno, Anna; Russo, Luigi; La Rosa, Carmelo; Milardi, Danilo; Colombo, Giorgio; D'Andrea, Luca D.; Fattorusso, Roberto
2015-11-01
HPLW, a designed VEGF (Vascular Endothelium Growth Factor) receptor-binding peptide, assumes a well folded β-hairpin conformation in water and is able to induce angiogenesis in vivo. In this study, we investigated at atomic resolution the thermal folding/unfolding pathway of HPLW by means of an original multi-technique approach combining DSC, NMR, MD and mutagenesis analyses. In particular, careful NMR investigation of the single proton melting temperatures together with DSC analysis accurately delineate the peptide folding mechanism, which is corroborated by computational folding/unfolding simulations. The HPLW folding process consists of two main events, which are successive but do not superimpose. The first folding step initiates at 320 K upon the hydrophobic collapse of the Trp5 and Trp13 side-chains which stabilizes the concurrent β-turn formation, whose COi-HNi + 3 hydrogen bond (Asp10 → Arg7) appears particularly stable. At 316 K, once the β-turn is completely formed, the two β-strands pair, very likely starting by Trp5 and Trp13, which thus play a key role also in the final step of the β-hairpin folding. Overall, here we describe a multi-state hierarchical folding pathway of a highly structured β-hairpin, which can be classified as a broken-zipper mechanism.
Machuqueiro, Miguel; Victor, Bruno; Switala, Jacek; Villanueva, Jacylyn; Rovira, Carme; Fita, Ignacio; Loewen, Peter C
2017-05-02
The unusual Met-Tyr-Trp adduct composed of cross-linked side chains along with an associated mobile Arg is essential for catalase activity in catalase-peroxidases. In addition, acidic residues in the entrance channel, in particular an Asp and a Glu ∼7 and ∼15 Å, respectively, from the heme, significantly enhance catalase activity. The mechanism by which these channel carboxylates influence catalase activity is the focus of this work. Seventeen new variants with fewer and additional acidic residues have been constructed and characterized structurally and for enzymatic activity, revealing that their effect on activity is roughly inversely proportional to their distance from the heme and adduct, suggesting that the electrostatic potential of the heme cavity may be affected. A discrete group of protonable residues are contained within a 15 Å sphere surrounding the heme iron, and a computational analysis reveals that the pK a of the distal His 112 , alone, is modulated within the pH range of catalase activity by the remote acidic residues in a pattern consistent with its protonated form having a key role in the catalase reaction cycle. The electrostatic potential also impacts the catalatic reaction through its influence on the charged status of the Met-Tyr-Trp adduct.
Fragment-based screen against HIV protease.
Perryman, Alexander L; Zhang, Qing; Soutter, Holly H; Rosenfeld, Robin; McRee, Duncan E; Olson, Arthur J; Elder, John E; Stout, C David
2010-03-01
We have employed a fragment-based screen against wild-type (NL4-3) HIV protease (PR) using the Active Sight fragment library and X-ray crystallography. The experiments reveal two new binding sites for small molecules. PR was co-crystallized with fragments, or crystals were soaked in fragment solutions, using five crystal forms, and 378 data sets were collected to 2.3-1.3 A resolution. Fragment binding induces a distinct conformation and specific crystal form of TL-3 inhibited PR during co-crystallization. One fragment, 2-methylcyclohexanol, binds in the 'exo site' adjacent to the Gly(16)Gly(17)Gln(18)loop where the amide of Gly(17)is a specific hydrogen bond donor, and hydrophobic contacts occur with the side chains of Lys(14)and Leu(63). Another fragment, indole-6-carboxylic acid, binds on the 'outside/top of the flap' via hydrophobic contacts with Trp(42), Pro(44), Met(46), and Lys(55), a hydrogen bond with Val(56), and a salt-bridge with Arg(57). 2-acetyl-benzothiophene also binds at this site. This study is the first fragment-based crystallographic screen against HIV PR, and the first time that fragments were screened against an inhibitor-bound drug target to search for compounds that both bind to novel sites and stabilize the inhibited conformation of the target.
Fragment-Based Screen against HIV Protease
Perryman, A. L.; Zhang, Q.; Soutter, H. H.; Rosenfeld, R.; McRee, D. E.; Olson, A. J.; Elder, J. E.; Stout, C. D.
2009-01-01
We have employed a fragment-based screen against wild-type (NL4-3) HIV protease (PR) using the Active Sight fragment library and X-ray crystallography. The experiments reveal two new binding sites for small molecules. PR was co-crystallized with fragments, or crystals were soaked in fragment solutions, using five crystal forms, and 378 data sets were collected to 2.3-1.3 Å resolution. Fragment binding induces a distinct conformation and specific crystal form of TL-3 inhibited PR during co-crystallization. One fragment, 2-methylcyclohexanol, binds in the ‘exo site’ adjacent to the Gly16Gly17Gln18 loop where the amide of Gly17 is a specific hydrogen bond donor, and hydrophobic contacts occur with the side chains of Lys14 and Leu63. Another fragment, indole-6-carboxylic acid, binds on the ‘outside/top of the flap’ via hydrophobic contacts with Trp42, Pro44, Met46, and Lys55, a hydrogen bond with Val56, and a salt-bridge with Arg57. 2-acetyl-benzothiophene also binds at this site. This study is the first fragment-based crystallographic screen against HIV PR, and the first time that fragments were screened against an inhibitor-bound drug target to search for compounds that both bind to novel sites and stabilize the inhibited conformation of the target. PMID:20659109
NASA Astrophysics Data System (ADS)
Liu, Xiang; Zheng, Hong-Ning; Yan, Qin; Wang, Cuie; Ma, Yin-Zhou; Tang, Yan-Chun; Xiao, Shou-Jun
2011-06-01
A facile approach was established to construct polyamidoamine (PAMAM) dendrons from polymer brushes of poly(poly(ethylene glycol) monomethacrylate) (Si-g-P(PEGMA-OH)) grafted from a planar silicon hydride surface. First the Si-g-P(PEGMA-OH) brushes were grown via surface-initiated atom transfer radical polymerization with robust Si-C links on silicon surfaces. The side-chain hydroxyl groups of Si-g-P(PEGMA-OH) were chlorinated with thionyl chloride and further chlorines were substituted with amino groups of ethylenediamine, giving terminal primary amines. Borrowing the solution synthesis approach, we constructed second and third generations of PAMAM dendrons on-chip by surface-initiated alternative growth of two monomers, methyl acrylate and ethylenediamine. Two applications of silicon-based PAMAM dendrons were shown: the dense amino groups were activated via a cross-linker, N-succinimidyl-6-maleimidylhexanoate, to capture a free-thiol-carrying peptide of oxytocin and the third generation of PAMAM dendrons was used as a platform to on-chip synthesize a three amino acid peptide of Arg-Gly-Asp (RGD). The above conclusions were mainly derived from a home-built multiple transmission-reflection infrared spectroscopy, and complemented by X-ray photoelectron spectroscopy, UV-Vis spectroscopy and matrix-assisted laser desorption/ionization-time of flight-mass spectrometry.
Merlino, Antonello; Russo Krauss, Irene; Castellano, Immacolata; Ruocco, Maria Rosaria; Capasso, Alessandra; De Vendittis, Emmanuele; Rossi, Bianca; Sica, Filomena
2014-03-01
A peculiar feature of the psychrophilic iron superoxide dismutase from Pseudoalteromonas haloplanktis (PhSOD) is the presence in its amino acid sequence of a reactive cysteine (Cys57). To define the role of this residue, a structural characterization of the effect of two PhSOD mutations, C57S and C57R, was performed. Thermal and denaturant-induced unfolding of wild type and mutant PhSOD followed by circular dichroism and fluorescence studies revealed that C→R substitution alters the thermal stability and the resistance against denaturants of the enzyme, whereas C57S only alters the stability of the protein against urea. The crystallographic data on the C57R mutation suggest an involvement of the Arg side chain in the formation of salt bridges on protein surface. These findings support the hypothesis that the thermal resistance of PhSOD relies on optimization of charge-charge interactions on its surface. Our study contributes to a deeper understanding of the denaturation mechanism of superoxide dismutases, suggesting the presence of a structural dimeric intermediate between the native state and the unfolded state. This hypothesis is supported by the crystalline and solution data on the reduced form of the enzyme. Copyright © 2014 Elsevier B.V. All rights reserved.
Tandem catalysis for the preparation of cylindrical polypeptide brushes.
Rhodes, Allison J; Deming, Timothy J
2012-11-28
Here, we report a method for synthesis of cylindrical copolypeptide brushes via N-carboxyanhydride (NCA) polymerization utilizing a new tandem catalysis approach that allows preparation of brushes with controlled segment lengths in a straightforward, one-pot procedure requiring no intermediate isolation or purification steps. To obtain high-density brush copolypeptides, we used a "grafting from" approach where alloc-α-aminoamide groups were installed onto the side chains of NCAs to serve as masked initiators. These groups were inert during cobalt-initiated NCA polymerization and gave allyloxycarbonyl-α-aminoamide-substituted polypeptide main chains. The alloc-α-aminoamide groups were then activated in situ using nickel to generate initiators for growth of side-chain brush segments. This use of stepwise tandem cobalt and nickel catalysis was found to be an efficient method for preparation of high-chain-density, cylindrical copolypeptide brushes, where both the main chains and side chains can be prepared with controlled segment lengths.
CADB: Conformation Angles DataBase of proteins
Sheik, S. S.; Ananthalakshmi, P.; Bhargavi, G. Ramya; Sekar, K.
2003-01-01
Conformation Angles DataBase (CADB) provides an online resource to access data on conformation angles (both main-chain and side-chain) of protein structures in two data sets corresponding to 25% and 90% sequence identity between any two proteins, available in the Protein Data Bank. In addition, the database contains the necessary crystallographic parameters. The package has several flexible options and display facilities to visualize the main-chain and side-chain conformation angles for a particular amino acid residue. The package can also be used to study the interrelationship between the main-chain and side-chain conformation angles. A web based JAVA graphics interface has been deployed to display the user interested information on the client machine. The database is being updated at regular intervals and can be accessed over the World Wide Web interface at the following URL: http://144.16.71.148/cadb/. PMID:12520049
NASA Astrophysics Data System (ADS)
Liang, Yuxue; Neta, Pedatsur; Yang, Xiaoyu; Stein, Stephen E.
2018-03-01
High-accuracy MS/MS spectra of deprotonated ions of 390 dipeptides and 137 peptides with three to six residues are studied. Many amino acid residues undergo neutral losses from their side chains. The most abundant is the loss of acetaldehyde from threonine. The abundance of losses from the side chains of other amino acids is estimated relative to that of threonine. While some amino acids lose the whole side chain, others lose only part of it, and some exhibit two or more different losses. Side-chain neutral losses are less abundant in the spectra of protonated peptides, being significant mainly for methionine and arginine. In addition to the neutral losses, many amino acid residues in deprotonated peptides produce specific negative ions after peptide bond cleavage. An expanded list of fragment ions from protonated peptides is also presented and compared with those of deprotonated peptides. Fragment ions are mostly different for these two cases. These lists of fragments are used to annotate peptide mass spectral libraries and to aid in the confirmation of specific amino acids in peptides. [Figure not available: see fulltext.
Liang, Yuxue; Neta, Pedatsur; Yang, Xiaoyu; Stein, Stephen E
2018-03-01
High-accuracy MS/MS spectra of deprotonated ions of 390 dipeptides and 137 peptides with three to six residues are studied. Many amino acid residues undergo neutral losses from their side chains. The most abundant is the loss of acetaldehyde from threonine. The abundance of losses from the side chains of other amino acids is estimated relative to that of threonine. While some amino acids lose the whole side chain, others lose only part of it, and some exhibit two or more different losses. Side-chain neutral losses are less abundant in the spectra of protonated peptides, being significant mainly for methionine and arginine. In addition to the neutral losses, many amino acid residues in deprotonated peptides produce specific negative ions after peptide bond cleavage. An expanded list of fragment ions from protonated peptides is also presented and compared with those of deprotonated peptides. Fragment ions are mostly different for these two cases. These lists of fragments are used to annotate peptide mass spectral libraries and to aid in the confirmation of specific amino acids in peptides. Graphical Abstract ᅟ.
Deady, L W; Desneves, J; Kaye, A J; Finlay, G J; Baguley, B C; Denny, W A
2001-02-01
A series of 11-oxo-11H-indeno[1,2-b]quinolines bearing a carboxamide-linked cationic side chain at various positions on the chromophore was studied to determine structure-activity relationships between cytotoxicity and the position of the side chain. The compounds were prepared by Pfitzinger synthesis from an appropriate isatin and 1-indanone, followed by various oxidative steps, to generate the required carboxylic acids. The 4- and 6-carboxamides (with the side chain on a terminal ring, off the short axis of the chromophore) were effective cytotoxins. The dimeric 4- and 6-linked analogues were considerably more cytotoxic than the parent monomers, but had broadly similar activities. In contrast, analogues with side chains at the 8-position (on a terminal ring but off the long axis of the chromophore) or 10-position (off the short axis of the chromophore but in a central ring) were drastically less effective. The 4,10- and 6,10-biscarboxamides had activities between those of the corresponding parent monocarboxamides. The first of these showed good activity against advanced subcutaneous colon 38 tumours in mice.
Tension amplification in tethered layers of bottle-brush polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leuty, Gary M.; Tsige, Mesfin; Grest, Gary S.
2016-02-26
In this paper, molecular dynamics simulations of a coarse-grained bead–spring model have been used to study the effects of molecular crowding on the accumulation of tension in the backbone of bottle-brush polymers tethered to a flat substrate. The number of bottle-brushes per unit surface area, Σ, as well as the lengths of the bottle-brush backbones N bb (50 ≤ N bb ≤ 200) and side chains N sc (50 ≤ N sc ≤ 200) were varied to determine how the dimensions and degree of crowding of bottle-brushes give rise to bond tension amplification along the backbone, especially near the substrate.more » From these simulations, we have identified three separate regimes of tension. For low Σ, the tension is due solely to intramolecular interactions and is dominated by the side chain repulsion that governs the lateral brush dimensions. With increasing Σ, the interactions between bottle-brush polymers induce compression of the side chains, transmitting increasing tension to the backbone. For large Σ, intermolecular side chain repulsion increases, forcing side chain extension and reorientation in the direction normal to the surface and transmitting considerable tension to the backbone.« less
Kepska, Kinga
2018-01-01
The detection and concentration measurements of low concentrations of nitrogen dioxide (NO2) are important because of its negative effects on human health and its application in many fields of industry and safety systems. In our approach, conducting graft copolymers based on the poly(3-hexylthiophene) (P3HT) conducting polymer and other side-chains, polyethylene glycol (PEG) and dodec-1-en, grafted on a poly(methylhydrosiloxane) backbone, were investigated. The grafts containing PEG (PEGSil) and dodec-1-en (DodecSil) in two variants, namely, fractions with shorter (hexane fraction -H) and longer (chloroform fraction -CH) side-chains of P3HT, were tested as receptor structures in NO2 gas sensors. Their responses to NO2, within the concentration range of 1–20 ppm, were investigated in an nitrogen atmosphere at different operating temperatures—room temperature (RT) = 25 °C, 50 °C, and 100 °C. The results indicated that both of the copolymers with PEG side-chains had higher responses to NO2 than the materials with dodec-1-en side-chains. Furthermore, the results indicated that, in both cases, H fractions were more sensitive than CH fractions. The highest response to 1 ppm of NO2, from the investigated graft copolymers, had PEGSil H, which indicated a response of 1330% at RT and 1980% at 100 °C. The calculated lower-limit of the detection of this material is lower than 300 ppb of NO2 at 100 °C. This research indicated that graft copolymers of P3HT had great potential for low temperature NO2 sensing, and that the proper choice of other side-chains in graft copolymers can improve their gas sensing properties. PMID:29558448
Biswas, Goutam; Jeon, Ock-Youm; Lee, Woo Sirl; Kim, Dong-Chan; Kim, Kyong-Tai; Lee, Suho; Chang, Sunghoe; Chung, Sung-Kee
2008-01-01
We have synthesized two lactose-based molecular transporters, each containing seven guanidine residues attached to the lactose scaffold through omega-aminocarboxylate linker chains of two different lengths, and have examined their cellular uptakes and intracellular and organellar localizations in HeLa cells, as well as their tissue distributions in mice. Both molecular transporters showed higher cellular uptake efficiencies than Arg8, and wide tissue distributions including the brain. Mitochondrial localization is of special interest because of its potential relevance to "mitochondrial diseases". Interestingly, it has been found that the intracellular localization sites of the G7 molecular transporters-namely either mitochondria or lysosomes and endocytic vesicles-are largely determined by the linker chain lengths, or their associated lipophilicities.
Iwaniuk, Daniel P; Whetmore, Eric D; Rosa, Nicholas; Ekoue-Kovi, Kekeli; Alumasa, John; de Dios, Angel C; Roepe, Paul D; Wolf, Christian
2009-09-15
We report the synthesis and in vitro antimalarial activity of several new 4-amino- and 4-alkoxy-7-chloroquinolines carrying a linear dibasic side chain. Many of these chloroquine analogues have submicromolar antimalarial activity versus HB3 (chloroquine sensitive) and Dd2 (chloroquine resistant strain of Plasmodium falciparum) and low resistance indices were obtained in most cases. Importantly, compounds 11-15 and 24 proved to be more potent against Dd2 than chloroquine. Branching of the side chain structure proved detrimental to the activity against the CQR strain.
Escamilla-Tilch, Mónica; Estrada-García, Iris; Granados, Julio; Arenas-Guzmán, Roberto; Ramos-Payan, Rosalio; Pérez-Suárez, Thalía Gabriela; Salazar, Ma. Isabel; Pérez-Lucas, Riky Luis; Estrada-Parra, Sergio; Torres-Carrillo, Nora Magdalena
2014-01-01
Background. Leprosy is a chronic infectious disease caused by the intracellular acid-fast bacilli Mycobacterium leprae; it has been determined that genetic factors of the host play an important role in the disease susceptibility. Thus, in this case-control study, we evaluated the possible association between the IL-17A G-197A (rs227593) and IL-17F A7488G (His161Arg, rs763780) gene SNPs and susceptibility to leprosy disease in Mexican population. Methods. Seventy-five leprosy patients and sixty-nine control subjects were included. Both SNPs were genotyped with the polymerase chain reaction-restriction fragment length polymorphism technique. Results. We found nonsignificant differences in genotype and allele frequencies related to IL-17A G-197A (rs227593) and IL-17F A7488G (His161Arg, rs763780) gene SNPs in MB as well as subclinical forms of leprosy disease versus healthy individuals. Conclusions. Since the sample size is not large enough, it is difficult to sustain an association of susceptibility to leprosy with genotypes or allele frequencies of IL-17A G-197A (rs227593) and IL-17F A7488G (His161Arg, rs763780), suggesting that IL-17 polymorphisms have no significant role in the genetic susceptibility to development of this disease in the Mexican Mestizo population. PMID:25431761
Ha, Nguyen Thanh; Chau, Hoang Minh; Cung, Le Xuan; Thanh, Ton Kim; Fujiki, Keiko; Murakami, Akira; Hiratsuka, Yoshimune; Hasegawa, Nobuko; Kanai, Atsushi
2003-08-01
To report the clinical and genetic findings of Vietnamese families affected with macular corneal dystrophy (MCD) in 2 generations. Two families, including 7 patients and 3 unaffected members, were examined clinically. Blood samples were collected. Fifty normal Vietnamese individuals were used as controls. Genomic DNA was extracted from leukocytes. Analysis of the carbohydrate sulfotransferase (CHST6) gene was performed using polymerase chain reaction and direct sequencing. The typical form of MCD was recognized in family B, in which sequencing of CHST6 gene revealed an nt 1067-1068ins(GGCCGTG) mutation (frameshift after 125V) homozygously in MCD patients and heterozygously in the unaffected members. Family N also showed clinical features of MCD, moderate in the mother but severe in the affected son. Sequencing revealed a single heterozygous Arg211Gln in the mother, compound heterozygous Arg211Gln+ Gln82Stop in the affected son, and heterozygous Arg211Gln mutation in the unaffected members. The identified mutations in these pedigrees were excluded from normal controls. The novel frameshift and compound heterozygous mutations might be responsible for MCD in the families studied. The phenotypic variation between affected parents and offspring was unclear. In family N, severe MCD phenotype seen in the affected son may be due the fact that he had an early stop codon mutation (Gln82Stop).
Gök, I; Celebi, I; Hüseyinoğlu, N; Ozic, C
2014-10-20
We determined the distribution of the Arg16Gly and Gln27Glu polymorphisms of the beta-2 adrenergic receptor gene (ADRB2) in patients with obstructive sleep apnea syndrome as well as a control group in Northeastern Turkey. A total of 52 patients diagnosed with obstructive sleep apnea in a sleep laboratory and 78 control subjects were examined. Peripheral blood samples were taken from patients diagnosed with obstructive sleep apnea by polysomnography. DNA was extracted from blood samples and amplified using polymerase chain reaction. Amplification products were digested with restriction enzymes to investigate gene polymorphisms. Restriction products were extracted from agarose gel electrophoresis and polymorphisms were analyzed using gel images. The Arg16Gly polymorphism was observed in 18 of 52 patients and in 23 of 78 controls. The Gln27Glu polymorphism was observed in 21 of 52 patients and in 28 of 78 controls. In conclusion, there was no correlation among polymorphic frequencies between patient and control groups. Based on the results, these polymorphisms do not contribute to the clinical diagnosis of this syndrome. However, the distribution of Arg16Gly vs Gln27Glu polymorphisms may contribute to obesity in patients with a body mass index greater than 30 (P < 0.05). Different results may be obtained if the parameters of obstructive sleep apnea disease are changed.
Li, Yue-Ju; Huang, Tse-Hung; Hsiao, Michael; Lin, Been-Ren; Cheng, Shih-Jung; Yang, Cheng-Ning; Lai, Wei-Ting; Wu, Tai-Sheng; Fan, Jia-Ruei; Kuo, Mark Yen-Ping; Chang, Cheng-Chi
2016-04-01
Glycolysis machinery regulates cancer cell behavior. However, the roles of these glycolysis enzymes in oral squamous cell carcinoma (OSCC) progression remain unknown. Fructose-bisphosphate aldolase C (ALDOC) expression in OSCC patients and cell lines was detected using quantitative real-time polymerase chain reaction (PCR). The functions of ALDOC in migration and invasion were determined using gain and loss of function approaches. An orthotopic OSCC animal model was performed to investigate the effects of ALDOC on metastasis and tumorigenesis in vivo. ALDOC expression is negatively significantly correlated with clinical outcome and cell migration in vitro and in vivo. ALDOC blocks adenosine triphosphate generation and lactate production, and mutation constructs of Arg42 and Lys146 functionally restore ALDOC-inhibited cell migration and invasion. ALDOC functions as an OSCC prognosis marker clinically, and suppresses migration and invasion by its catalytic domain of Arg42 and Lys146. © 2015 Wiley Periodicals, Inc. Head Neck 38: E1075-E1085, 2016. © 2015 Wiley Periodicals, Inc.
Gharakhanian, Eric G; Deming, Timothy J
2016-07-07
A series of thermoresponsive polypeptides has been synthesized using a methodology that allowed facile adjustment of side-chain functional groups. The lower critical solution temperature (LCST) properties of these polymers in water were then evaluated relative to systematic molecular modifications in their side-chains. It was found that in addition to the number of ethylene glycol repeats in the side-chains, terminal and linker groups also have substantial and predictable effects on cloud point temperatures (Tcp). In particular, we found that the structure of these polypeptides allowed for inclusion of polar hydroxyl groups, which significantly increased their hydrophilicity and decreased the need to use long oligoethylene glycol repeats to obtain LCSTs. The thioether linkages in these polypeptides were found to provide an additional structural feature for reversible switching of both polypeptide conformation and thermoresponsive properties.
Fragmentation of alpha-Radical Cations of Arginine-Containing Peptides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laskin, Julia; Yang, Zhibo; Ng, Dominic C.
2010-04-01
Fragmentation pathways of peptide radical cations, M+, with well-defined initial location of the radical site were explored using collision-induced dissociation (CID) experiments. Peptide radical cations were produced by gas-phase fragmentation of CoIII(salen)-peptide complexes [salen = N,N´-ethylenebis (salicylideneaminato)]. Subsequent hydrogen abstraction from the -carbon of the side chain followed by Ca-C bond cleavage results in the loss of a neutral side chain and formation of an a-radical cation with the radical site localized on the a-carbon of the backbone. Similar CID spectra dominated by radical-driven dissociation products were obtained for a number of a-radicals when the basic arginine side chain wasmore » present in the sequence. In contrast, proton-driven fragmentation dominates CID spectra of a-radicals produced via the loss of the arginine side chain. Our results suggest that in most cases radical migration precedes fragmentation of large peptide radical cations.« less
Self-Assembly of Narrowly Dispersed Brush Diblock Copolymers with Domain Spacing more than 100 nm
NASA Astrophysics Data System (ADS)
Gu, Weiyin; Sveinbjornsson, Benjamin; Hong, Sung Woo; Grubbs, Robert; Russell, Thomas
2012-02-01
Self-assembled structures of high molecular weight (MW), narrow molecular weight distribution brush block copolymers containing polylactic acid (PLA) and polystyrene (PS) side chains with similar MWs were studied in both the melt and thin films. The polynorbornene-backbone-based brush diblock copolymers containing approximately equal volume fractions of each block self-assembled into highly ordered lamellae with domain spacing over 100 nm, as revealed by SAXS, GISAXS and AFM. The domain size increased approximately linearly with backbone length, which indicated an extended conformation of the backbone in the ordered state. The length of side chains also played a significant role in terms of controlling the domain size. As the degree of polymerization (DP) increased, the symmetric brush diblock copolymers with longer side chains tended to form larger lamellar microdomains in comparison to those that have the same DP but shorter side chains.
Microscopic insights into the NMR relaxation based protein conformational entropy meter
Kasinath, Vignesh; Sharp, Kim A.; Wand, A. Joshua
2013-01-01
Conformational entropy is a potentially important thermodynamic parameter contributing to protein function. Quantitative measures of conformational entropy are necessary for an understanding of its role but have been difficult to obtain. An empirical method that utilizes changes in conformational dynamics as a proxy for changes in conformational entropy has recently been introduced. Here we probe the microscopic origins of the link between conformational dynamics and conformational entropy using molecular dynamics simulations. Simulation of seven pro! teins gave an excellent correlation with measures of side-chain motion derived from NMR relaxation. The simulations show that the motion of methyl-bearing side-chains are sufficiently coupled to that of other side chains to serve as excellent reporters of the overall side-chain conformational entropy. These results tend to validate the use of experimentally accessible measures of methyl motion - the NMR-derived generalized order parameters - as a proxy from which to derive changes in protein conformational entropy. PMID:24007504
Guo, Yuanyuan; Hou, Jingfei; Zhang, Xuemei; Yang, Yanlian; Wang, Chen
2017-04-19
An analysis is presented of the effects of amino acid side chains on peptide assemblies in ambient conditions on a graphite surface. The molecularly resolved assemblies of binary peptides are examined with scanning tunneling microscopy. A comparative analysis of the assembly structures reveals that the lamellae width has an appreciable dependence on the peptide sequence, which could be considered as a manifestation of a stabilizing effect of side-chain moieties of amino acids with high (phenylalanine) and low (alanine, asparagine, histidine and aspartic acid) propensities for aggregation. These amino acids are representative for the chemical structures involving the side chains of charged (histidine and aspartic acid), aromatic (phenylalanine), hydrophobic (alanine), and hydrophilic (asparagine) amino acids. These results might provide useful insight for understanding the effects of sequence on the assembly of surface-bound peptides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
He, Mingyue; Hamon, Maureen; Liu, Hong; Corper, Adam L; Taussig, Michael J
2006-09-01
The crystal structures of the Fab' fragment of the anti-progesterone monoclonal antibody DB3 and its complexes with steroid haptens have shown that the D-JH junctional residue TrpH100 is a key contributor to binding site interactions with ligands. The indole group of TrpH100 also undergoes a significant conformational change between the bound and unliganded states, effectively opening and closing the combining site pocket. In order to explore the effect of substitutions at this position on steroid recognition, we have carried out mutagenesis on a construct encoding a three-domain single-chain fragment (VH/K) of DB3 expressed in Escherichia coli. TrpH100 was replaced by 13 different amino acids or deleted, and the functional and antigenic properties of the mutated fragments were analyzed. Most substitutions, including small, hydrophobic, hydrophilic, neutral, and negatively charged side chains, were reduced or abolished binding to free progesterone, although binding to progesterone-BSA was partially retained. The reduction in antigen binding was paralleled by alteration of the idiotype associated with the DB3 combining site. In contrast, the replacement of TrpH100 by Arg produced a mutant that retained wild-type antibody affinity and idiotype, but with altered specificity. Significant changes in this mutant included increased relative affinities of 10(4)-fold for progesterone-3-carboxymethyloxime and 10-fold for aetiocholanolone. Our results demonstrate an essential role for the junctional residue H100 in determining steroid-binding specificity and combining site idiotype and show that these properties can be changed by a single amino acid substitution at this position.
Conformation of ionizable poly Para phenylene ethynylene in dilute solutions
Wijesinghe, Sidath; Maskey, Sabina; Perahia, Dvora; ...
2015-11-03
The conformation of dinonyl poly para phenylene ethynylenes (PPEs) with carboxylate side chains, equilibrated in solvents of different quality is studied using molecular dynamics simulations. PPEs are of interest because of their tunable electro-optical properties, chemical diversity, and functionality which are essential in wide range of applications. The polymer conformation determines the conjugation length and their assembly mode and affects electro-optical properties which are critical in their current and potential uses. The current study investigates the effect of carboxylate fraction on PPEs side chains on the conformation of chains in the dilute limit, in solvents of different quality. The dinonylmore » PPE chains are modeled atomistically, where the solvents are modeled both implicitly and explicitly. Dinonyl PPEs maintained a stretched out conformation up to a carboxylate fraction f of 0.7 in all solvents studied. The nonyl side chains are extended and oriented away from the PPE backbone in toluene and in implicit good solvent whereas in water and implicit poor solvent, the nonyl side chains are collapsed towards the PPE backbone. Thus, rotation around the aromatic ring is fast and no long range correlations are seen within the backbone.« less
NASA Astrophysics Data System (ADS)
Mansbach, Rachael A.; Ferguson, Andrew L.
2015-03-01
The conformational states explored by polymers and proteins can be controlled by environmental conditions (e.g., temperature, pressure, and solvent) and molecular chemistry (e.g., molecular weight and side chain identity). We introduce an approach employing the diffusion map nonlinear machine learning technique to recover single molecule free energy landscapes from molecular simulations, quantify changes to the landscape as a function of external conditions and molecular chemistry, and relate these changes to modifications of molecular structure and dynamics. In an application to an n-eicosane chain, we quantify the thermally accessible chain configurations as a function of temperature and solvent conditions. In an application to a family of polyglutamate-derivative homopeptides, we quantify helical stability as a function of side chain length, resolve the critical side chain length for the helix-coil transition, and expose the molecular mechanisms underpinning side chain-mediated helix stability. By quantifying single molecule responses through perturbations to the underlying free energy surface, our approach provides a quantitative bridge between experimentally controllable variables and microscopic molecular behavior, guiding and informing rational engineering of desirable molecular structure and function.
Conformation of ionizable poly Para phenylene ethynylene in dilute solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wijesinghe, Sidath; Maskey, Sabina; Perahia, Dvora
The conformation of dinonyl poly para phenylene ethynylenes (PPEs) with carboxylate side chains, equilibrated in solvents of different quality is studied using molecular dynamics simulations. PPEs are of interest because of their tunable electro-optical properties, chemical diversity, and functionality which are essential in wide range of applications. The polymer conformation determines the conjugation length and their assembly mode and affects electro-optical properties which are critical in their current and potential uses. The current study investigates the effect of carboxylate fraction on PPEs side chains on the conformation of chains in the dilute limit, in solvents of different quality. The dinonylmore » PPE chains are modeled atomistically, where the solvents are modeled both implicitly and explicitly. Dinonyl PPEs maintained a stretched out conformation up to a carboxylate fraction f of 0.7 in all solvents studied. The nonyl side chains are extended and oriented away from the PPE backbone in toluene and in implicit good solvent whereas in water and implicit poor solvent, the nonyl side chains are collapsed towards the PPE backbone. Thus, rotation around the aromatic ring is fast and no long range correlations are seen within the backbone.« less
Mansbach, Rachael A; Ferguson, Andrew L
2015-03-14
The conformational states explored by polymers and proteins can be controlled by environmental conditions (e.g., temperature, pressure, and solvent) and molecular chemistry (e.g., molecular weight and side chain identity). We introduce an approach employing the diffusion map nonlinear machine learning technique to recover single molecule free energy landscapes from molecular simulations, quantify changes to the landscape as a function of external conditions and molecular chemistry, and relate these changes to modifications of molecular structure and dynamics. In an application to an n-eicosane chain, we quantify the thermally accessible chain configurations as a function of temperature and solvent conditions. In an application to a family of polyglutamate-derivative homopeptides, we quantify helical stability as a function of side chain length, resolve the critical side chain length for the helix-coil transition, and expose the molecular mechanisms underpinning side chain-mediated helix stability. By quantifying single molecule responses through perturbations to the underlying free energy surface, our approach provides a quantitative bridge between experimentally controllable variables and microscopic molecular behavior, guiding and informing rational engineering of desirable molecular structure and function.
Density Functional Study of Stacking Structures and Electronic Behaviors of AnE-PV Copolymer.
Dong, Chuan-Ding; Beenken, Wichard J D
2016-10-10
In this work, we report an in-depth investigation on the π-stacking and interdigitating structures of poly(p-anthracene-ethynylene)-alt-poly(p-phenylene-vinylene) copolymer with octyl and ethyl-hexyl side chains and the resulting electronic band structures using density functional theory calculations. We found that in the π-stacking direction, the preferred stacking structure, determined by the steric effect of the branched ethyl-hexyl side chains, is featured by the anthracene-ethynylene units stacking on the phenylene-vinylene units of the neighboring chains and vice versa. This stacking structure, combined with the interdigitating structure where the branched side chains of the laterally neighboring chains are isolated, defines the energetically favorable structure of the ordered copolymer phase, which provides a good compromise between light absorption and charge-carrier transport.
Kannan, Srinivasaraghavan; Zacharias, Martin
2014-01-01
The 20 residue Trp-cage mini-protein is one of smallest proteins that adopt a stable folded structure containing also well-defined secondary structure elements. The hydrophobic core is arranged around a single central Trp residue. Despite several experimental and simulation studies the detailed folding mechanism of the Trp-cage protein is still not completely understood. Starting from fully extended as well as from partially folded Trp-cage structures a series of molecular dynamics simulations in explicit solvent and using four different force fields was performed. All simulations resulted in rapid collapse of the protein to on average relatively compact states. The simulations indicate a significant dependence of the speed of folding to near-native states on the side chain rotamer state of the central Trp residue. Whereas the majority of intermediate start structures with the central Trp side chain in a near-native rotameric state folded successfully within less than 100 ns only a fraction of start structures reached near-native folded states with an initially non-native Trp side chain rotamer state. Weak restraining of the Trp side chain dihedral angles to the state in the folded protein resulted in significant acceleration of the folding both starting from fully extended or intermediate conformations. The results indicate that the side chain conformation of the central Trp residue can create a significant barrier for controlling transitions to a near native folded structure. Similar mechanisms might be of importance for the folding of other protein structures. PMID:24563686
NASA Astrophysics Data System (ADS)
Koehl, Patrice; Orland, Henri; Delarue, Marc
2011-08-01
We present an extension of the self-consistent mean field theory for protein side-chain modeling in which solvation effects are included based on the Poisson-Boltzmann (PB) theory. In this approach, the protein is represented with multiple copies of its side chains. Each copy is assigned a weight that is refined iteratively based on the mean field energy generated by the rest of the protein, until self-consistency is reached. At each cycle, the variational free energy of the multi-copy system is computed; this free energy includes the internal energy of the protein that accounts for vdW and electrostatics interactions and a solvation free energy term that is computed using the PB equation. The method converges in only a few cycles and takes only minutes of central processing unit time on a commodity personal computer. The predicted conformation of each residue is then set to be its copy with the highest weight after convergence. We have tested this method on a database of hundred highly refined NMR structures to circumvent the problems of crystal packing inherent to x-ray structures. The use of the PB-derived solvation free energy significantly improves prediction accuracy for surface side chains. For example, the prediction accuracies for χ1 for surface cysteine, serine, and threonine residues improve from 68%, 35%, and 43% to 80%, 53%, and 57%, respectively. A comparison with other side-chain prediction algorithms demonstrates that our approach is consistently better in predicting the conformations of exposed side chains.
Johnson, Richard J; Smith, Ben E; Sutton, Paul A; McGenity, Terry J; Rowland, Steven J; Whitby, Corinne
2011-01-01
Naphthenic acids (NAs) occur naturally in oil sands and enter the environment through natural and anthropogenic processes. NAs comprise toxic carboxylic acids that are difficult to degrade. Information on NA biodegradation mechanisms is limited, and there are no studies on alkyl branched aromatic alkanoic acid biodegradation, despite their contribution to NA toxicity and recalcitrance. Increased alkyl side chain branching has been proposed to explain NA recalcitrance. Using soil enrichments, we examined the biodegradation of four aromatic alkanoic acid isomers that differed in alkyl side chain branching: (4′-n-butylphenyl)-4-butanoic acid (n-BPBA, least branched); (4′-iso-butylphenyl)-4-butanoic acid (iso-BPBA); (4′-sec-butylphenyl)-4-butanoic acid (sec-BPBA) and (4′-tert-butylphenyl)-4-butanoic acid (tert-BPBA, most branched). n-BPBA was completely metabolized within 49 days. Mass spectral analysis confirmed that the more branched isomers iso-, sec- and tert-BPBA were transformed to their butylphenylethanoic acid (BPEA) counterparts at 14 days. The BPEA metabolites were generally less toxic than BPBAs as determined by Microtox assay. n-BPEA was further transformed to a diacid, showing that carboxylation of the alkyl side chain occurred. In each case, biodegradation of the carboxyl side chain proceeded through beta-oxidation, which depended on the degree of alkyl side chain branching, and a BPBA degradation pathway is proposed. Comparison of 16S rRNA gene sequences at days 0 and 49 showed an increase and high abundance at day 49 of Pseudomonas (sec-BPBA), Burkholderia (n-, iso-, tert-BPBA) and Sphingomonas (n-, sec-BPBA). PMID:20962873
Popoff, Alexandre; Fichou, Denis
2008-05-01
We show here by means of scanning tunneling microscopy (STM) at the liquid/solid interface that paracetamol and benzocaine molecules bearing a long aliphatic chain can be immobilized on highly oriented pyrolitic graphite (HOPG) as perfectly ordered two-dimensional domains extending over several hundreds of nanometers. In both cases, high-resolution STM images reveal that compounds 1 and 2 self-assemble into parallel lamellae having a head-to-head arrangement. The paracetamol heads of 1 are in a zigzag position with entangled n-dodecyloxy side chains while benzocaine heads of compound 2 are perfectly aligned as a double row and have their palmitic side chains on either sides of the head alignment. We attribute the very long-range ordering of these two pro-drug derivatives on HOPG to the combined effects of intermolecular H-bonding on one side and Van der Waals interactions between aliphatic side chains and graphite on the other side. The 2D immobilization of pro-drug derivatives via a non-destructive physisorption mechanism could prove to be useful for applications such as drug delivery if it can be realized on a biocompatible substrate.
From labdanes to drimanes. Degradation of the side chain of dihydrozamoranic acid.
Rodilla, Jesús M L; Díez, D; Urones, J G; Rocha, Pedro M
2004-04-30
A new route for the degradation of the saturated side chain of dihydrozamoranic acid has been devised, giving an advanced intermediate, compound 14, useful for the synthesis of insect antifeedants such as warburganal and polygodial.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caselli, E.; Powers, R.A.; Blaszczak, L.C.
2010-03-05
Penicillins and cephalosporins are among the most widely used and successful antibiotics. The emergence of resistance to these {beta}-lactams, most often through bacterial expression of {beta}-lactamases, threatens public health. To understand how {beta}-lactamases recognize their substrates, it would be helpful to know their binding energies. Unfortunately, these have been difficult to measure because {beta}-lactams form covalent adducts with {beta}-lactamases. This has complicated functional analyses and inhibitor design. To investigate the contribution to interaction energy of the key amide (R1) side chain of {beta}-lactam antibiotics, eight acylglycineboronic acids that bear the side chains of characteristic penicillins and cephalosporins, as well asmore » four other analogs, were synthesized. These transition-state analogs form reversible adducts with serine {beta}-lactamases. Therefore, binding energies can be calculated directly from K{sub i} values. The K{sub i} values measured span four orders of magnitude against the Group I {beta}-lactamase AmpC and three orders of magnitude against the Group II {beta}-lactamase TEM-1. The acylglycineboronic acids have K{sub i} values as low as 20 nM against AmpC and as low as 390 nM against TEM-1. The inhibitors showed little activity against serine proteases, such as chymotrypsin. R1 side chains characteristic of {beta}-lactam inhibitors did not have better affinity for AmpC than did side chains characteristic of {beta}-lactam substrates. Two of the inhibitors reversed the resistance of pathogenic bacteria to {beta}-lactams in cell culture. Structures of two inhibitors in their complexes with AmpC were determined by X-ray crystallography to 1.90 {angstrom} and 1.75 {angstrom} resolution; these structures suggest interactions that are important to the affinity of the inhibitors. Acylglycineboronic acids allow us to begin to dissect interaction energies between {beta}-lactam side chains and {beta}-lactamases. Surprisingly, there is little correlation between the affinity contributed by R1 side chains and their occurrence in {beta}-lactam inhibitors or {beta}-lactam substrates of serine {beta}-lactamases. Nevertheless, presented in acylglycineboronic acids, these side chains can lead to inhibitors with high affinities and specificities. The structures of their complexes with AmpC give a molecular context to their affinities and may guide the design of anti-resistance compounds in this series.« less
Haghani, Karimeh; Bakhtiyari, Salar
2012-11-01
An association between the IRS-1 Gly972Arg and IRS-2 Gly1057Asp polymorphisms and type 2 diabetes mellitus (T2DM) in different ethnic groups is controversial. We aimed to identify the association of these polymorphisms with T2DM in the Kurdish ethnic group of Iran. Study groups included 336 T2DM and 341 normoglycemic subjects. Genotyping was determined by polymerase chain reaction-restriction fragment length polymorphism. Genotypic and allelic frequencies were then evaluated. GR and RR genotypes of IRS-1 Gly972Arg variant gave a higher risk for T2DM (odds ratios [OR]=1.76 and OR=3.86, respectively). IRS-1 Gly972Arg polymorphism was found to be significantly associated with T2DM (OR=1.63) for the dominant model (GG vs. GR+RR). GD genotypes of the IRS-2 Gly1057Asp variant gave a higher risk for T2DM (OR=1.63). The dominant model analysis of the IRS-2 Gly1057Asp genotypes (GG vs. GD+DD) also showed an enhanced association with T2DM (OR=1.69). Among several combinations, GR/GD gave the highest risk for T2DM (OR=3.1). Other combinations were also significantly associated with T2DM, including, GR/GG (OR=1.86), RR/GG (OR=1.76), GG/GD (OR=1.83), and GG/DD (OR=2.35). HbA1c, serum triglyceride, and systolic blood pressure were higher in the control subjects with GR+RR genotypes compared with the GG genotype. Among the T2DM subjects, fasting plasma glucose was significantly lower in subjects with the GG genotype in relation to those with the GR+RR genotypes. Normoglycemic subjects carrying GD+DD genotypes of IRS-2 Gly1057Asp variation had a significantly higher fasting plasma glucose and total cholesterol, as compared with those with the GG genotype. Our findings revealed that IRS-1 Gly972Arg and IRS-2 Gly1057Asp polymorphisms are associated with T2DM in the Kurdish ethnic group.
Colombi, Marina; Dordoni, Chiara; Venturini, Marina; Zanca, Arianna; Calzavara-Pinton, Piergiacomo; Ritelli, Marco
2017-02-01
Classical Ehlers-Danlos syndrome (cEDS) is a rare connective tissue disorder primarily characterized by hyperextensible skin, defective wound healing, abnormal scars, easy bruising, and generalized joint hypermobility; arterial dissections are rarely observed. Mutations in COL5A1 and COL5A2 encoding type V collagen account for more than 90% of the patients so far characterized. In addition, cEDS phenotype was reported in a small number of patients carrying the c.934C>T mutation in COL1A1 that results in an uncommon substitution of a non-glycine residue in one Gly-Xaa-Yaa repeat of the pro-α1(I)-chain p.(Arg312Cys), which leads to disturbed collagen fibrillogenesis due to delayed removal of the type I procollagen N-propeptide. This specific mutation has been associated with propensity to arterial rupture in early adulthood; indeed, in literature the individuals harboring this mutation are also referred to as "(classic) vascular-like" EDS patients. Herein, we describe a three-generation cEDS family with six adults carrying the p.(Arg312Cys) substitution, which show a variable and prevalent cutaneous involvement without any major vascular event. These data, together with those available in literature, suggest that vascular events are not a diagnostic handle to differentiate patients with the p.(Arg312Cys) COL1A1 mutation from those with COL5A1 and COL5A2 defects, and highlight that during the diagnostic process the presence of at least the p.(Arg312Cys) substitution in COL1A1 should be investigated in cEDS patients without type V collagen mutations. Nevertheless, for these patients, as well as for those affected with cEDS, a periodical vascular surveillance should be carried out together with cardiovascular risk factors monitoring. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Scale-Dependent Stiffness and Internal Tension of a Model Brush Polymer
NASA Astrophysics Data System (ADS)
Berezney, John P.; Marciel, Amanda B.; Schroeder, Charles M.; Saleh, Omar A.
2017-09-01
Bottle-brush polymers exhibit closely grafted side chains that interact by steric repulsion, thereby causing stiffening of the main polymer chain. We use single-molecule elasticity measurements of model brush polymers to quantify this effect. We find that stiffening is only significant on long length scales, with the main chain retaining flexibility on short scales. From the elasticity data, we extract an estimate of the internal tension generated by side-chain repulsion; this estimate is consistent with the predictions of blob-based scaling theories.
NASA Astrophysics Data System (ADS)
Walsh, Patrick S.; McBurney, Carl; Gellman, Samuel H.; Zwier, Timothy S.
2015-06-01
Glutamine is widely known to be found in critical regions of peptides which readily fold into amyloid fibrils, the structures commonly associated with Alzheimer's disease and glutamine repeat diseases such as Huntington's disease. Building on previous single-conformation data on Gln-containing peptides containing an aromatic cap on the N-terminus (Z-Gln-OH and Z-Gln-NHMe), we present here single-conformation UV and IR spectra of Ac-Gln-NHBn and Ac-Ala-Gln-NHBn, with its C-terminal benzyl cap. These results point towards side-chain to backbone hydrogen bonds dominating the structures observed in the cold, isolated environment of a molecular beam. We have identified and assigned three main conformers for Ac-Gln-NHBn all involving primary side-chain to backbone interactions. Ac-Ala-Gln-NHBn extends the peptide chain by one amino acid, but affords an improvement in the conformational flexibility. Despite this increase in the flexibility, only a single conformation is observed in the gas-phase: a structure which makes use of both side-chain-to-backbone and backbone-to-backbone hydrogen bonds.
Reengineering of a Corynebacterium glutamicum L-arginine and L-citrulline producer.
Ikeda, Masato; Mitsuhashi, Satoshi; Tanaka, Kenji; Hayashi, Mikiro
2009-03-01
Toward the creation of a robust and efficient producer of L-arginine and L-citrulline (arginine/citrulline), we have performed reengineering of a Corynebacterium glutamicum strain by using genetic information of three classical producers. Sequence analysis of their arg operons identified three point mutations (argR123, argG92(up), and argG45) in one producer and one point mutation (argB26 or argB31) in each of the other two producers. Reconstitution of the former three mutations or of each argB mutation on a wild-type genome led to no production. Combined introduction of argB26 or argB31 with argR123 into a wild type gave rise to arginine/citrulline production. When argR123 was replaced by an argR-deleted mutation (Delta argR), the production was further increased. The best mutation set, Delta argR and argB26, was used to screen for the highest productivity in the backgrounds of different wild-type strains of C. glutamicum. This yielded a robust producer, RB, but the production was still one-third of that of the best classical producer. Transcriptome analysis revealed that the arg operon of the classical producer was much more highly upregulated than that of strain RB. Introduction of leuC456, a mutation derived from a classical L-lysine producer and provoking global induction of the amino acid biosynthesis genes, including the arg operon, into strain RB led to increased production but incurred retarded fermentation. On the other hand, replacement of the chromosomal argB by heterologous Escherichia coli argB, natively insensitive to arginine, caused a threefold-increased production without retardation, revealing that the limitation in strain RB was the activity of the argB product. To overcome this, in addition to argB26, the argB31 mutation was introduced into strain RB, which caused higher deregulation of the enzyme and resulted in dramatically increased production, like the strain with E. coli argB. This reconstructed strain displayed an enhanced performance, thus allowing significantly higher productivity of arginine/citrulline even at the suboptimal 38 degrees C.
Pazos, Gonzalo; Rivadulla, Marcos L; Pérez-García, Xenxo; Gandara, Zoila; Pérez, Manuel
2014-01-01
The Gemini analogs are the last significant contribution to the family of vitamin D derivatives in medicine, for the treatment of cancer. The first Gemini analog was characterized by two symmetric side chains at C-20. Following numerous modifications, the most active analog bears a C-23-triple bond, C-26, 27- hexafluoro substituents on one side chain and a terminal trideuteromethylhydroxy group on the other side chain. This progression was possible due to improvements in the synthetic methods for the preparation of these derivatives, which allowed for increasing molecular complexity and complete diastereoselective control at C-20 and the substituted sidechains.
Iwaniuk, Daniel P.; Whetmore, Eric D.; Rosa, Nicholas; Ekoue-Kovi, Kekeli; Alumasa, John; de Dios, Angel C.; Roepe, Paul D.; Wolf, Christian
2009-01-01
We report the synthesis and in vitro antimalarial activity of several new 4-amino-and 4-alkoxy-7-chloroquinolines carrying a linear dibasic side chain. Many of these chloroquine analogues have submicromolar antimalarial activity versus HB3 (chloroquine sensitive) and Dd2 (chloroquine resistant strain of P. falciparum) and low resistance indices were obtained in most cases. Importantly, compounds 11–15 and 24 proved to be more potent against Dd2 than chloroquine. Branching of the side chain structure proved detrimental to the activity against the CQR strain. PMID:19703776
Polymer composites containing nanotubes
NASA Technical Reports Server (NTRS)
Bley, Richard A. (Inventor)
2008-01-01
The present invention relates to polymer composite materials containing carbon nanotubes, particularly to those containing singled-walled nanotubes. The invention provides a polymer composite comprising one or more base polymers, one or more functionalized m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers and carbon nanotubes. The invention also relates to functionalized m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers, particularly to m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers having side chain functionalization, and more particularly to m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers having olefin side chains and alkyl epoxy side chains. The invention further relates to methods of making polymer composites comprising carbon nanotubes.
Pontikis, R; Benhida, R; Aubertin, A M; Grierson, D S; Monneret, C
1997-06-06
A series of 33 N-1 side chain-modified analogs of 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (1, HEPT) were synthesized and evaluated for their anti-HIV-1 activity. In particular, the influence of substitution of the terminal hydroxy group of the acyclic structure of HEPT and the structural rigidity of this side chain were investigated. Halo (7, 8), azido (9), and amino (10-15) derivatives were synthesized from HEPT via the p-tosylate derivative 6. Acylation of the primary amine 15 afforded the amido analogs 16-20. The diaryl derivatives 26-29 were prepared by reaction of HEPT, or of the 6-(2-pyridylthio) analog 23, with diaryl disulfides in the presence of tri-n-butylphosphine. Compounds 39-41, in which the N-1 side chain is rigidified by incorporation of an E-configured double bond, were obtained by palladium(0)-catalyzed coupling of several different 6-(arylthio)uracil derivatives (37, 38) with allyl acetates 33. Compounds 13, 40a,c,d,f, and 41, incorporating an aromatic ring at the end of the acyclic side chain, were found to be more potent than the known diphenyl-substituted HEPT analog BPT (2), two of them, 40c,d, being 10-fold more active.
Gas-phase spectroscopy of synephrine by laser desorption supersonic jet technique.
Ishiuchi, Shun-ichi; Asakawa, Toshiro; Mitsuda, Haruhiko; Miyazaki, Mitsuhiko; Chakraborty, Shamik; Fujii, Masaaki
2011-09-22
In our previous work, we found that synephrine has six conformers in the gas phase, while adrenaline, which is a catecholamine and has the same side chain as synephrine, has been reported to have only two conformers. To determine the conformational geometries of synephrine, we measured resonance enhanced multiphoton ionization, ultraviolet-ultraviolet hole burning, and infrared dip spectra by utilizing the laser desorption supersonic jet technique. By comparing the observed infrared spectra with theoretical ones, we assigned geometries except for the orientations of the phenolic OH group. Comparison between the determined structures of synephrine and those of 2-methylaminno-1-phenylethanol, which has the same side chain as synephrine but no phenol OH group, leads to the conclusion that the phenolic OH group in synephrine does not affect the conformational flexibility of the side chain. In the case of adrenaline, which is expected to have 12 conformers if there are no interactions between the catecholic OH groups and the side chain, some interactions possibly exist between them because only two conformations are observed. By estimation of the dipole-dipole interaction energy between partial dipole moments of the catecholic OH groups and the side chain, it was concluded that the dipole-dipole interaction stabilizes specific conformers which are actually observed. © 2011 American Chemical Society
Empirical parameterization of a model for predicting peptide helix/coil equilibrium populations.
Andersen, N. H.; Tong, H.
1997-01-01
A modification of the Lifson-Roig formulation of helix/coil transitions is presented; it (1) incorporates end-capping and coulombic (salt bridges, hydrogen bonding, and side-chain interactions with charged termini and the helix dipole) effects, (2) helix-stabilizing hydrophobic clustering, (3) allows for different inherent termination probabilities of individual residues, and (4) differentiates helix elongation in the first versus subsequent turns of a helix. Each residue is characterized by six parameters governing helix formation. The formulation of the conditional probability of helix initiation and termination that we developed is essentially the same as one presented previously (Shalongo W, Stellwagen, E. 1995. Protein Sci 4:1161-1166) and nearly the mathematical equivalent of the new capping formulation incorporated in the model presented by Rohl et al. (1996. Protein Sci 5:2623-2637). Side-chain/side-chain interactions are, in most cases, incorporated as context dependent modifications of propagation rather than nucleation parameters. An alternative procedure for converting [theta]221 values to experimental fractional helicities (
Evaluating minimalist mimics by exploring key orientations on secondary structures (EKOS)☟
Xin, Dongyue; Ko, Eunhwa; Perez, Lisa M.; Ioerger, Thomas R.; Burgess, Kevin
2013-01-01
Peptide mimics that display amino acid side-chains on semi-rigid scaffolds (not peptide polyamides) can be referred to as minimalist mimics. Accessible conformations of these scaffolds may overlay with secondary structures giving, for example, “minimalist helical mimics”. It is difficult for researchers who want to apply minimalist mimics to decide which one to use because there is no widely accepted protocol for calibrating how closely these compounds mimic secondary structures. Moreover, it is also difficult for potential practitioners to evaluate which ideal minimalist helical mimics are preferred for a particular set of side-chains. For instance, what mimic presents i, i+4, i+7 side-chains in orientations that best resemble an ideal α-helix, and is a different mimic required for a i, i+3, i+7 helical combination? This article describes a protocol for fitting each member of an array of accessible scaffold conformations on secondary structures. The protocol involves: (i) use quenched molecular dynamics (QMD) to generate an ensemble consisting of hundreds of accessible, low energy conformers of the mimics; (ii) representation of each of these as a set of Cα and Cβ coordinates corresponding to three amino acid side-chains displayed by the scaffolds;(iii) similar representation of each combination of three side-chains in each ideal secondary structure as a set of Cα and Cβ coordinates corresponding to three amino acid side-chains displayed by the scaffolds; and, (iv) overlay Cα and Cβ coordinates of all the conformers on all the sets of side-chain “triads” in the ideal secondary structures and express the goodness of fit in terms of root mean squared deviation (RMSD, Å) for each overlay. We refer to this process as Exploring Key Orientations on Secondary structures (EKOS). Application of this procedure reveals the relative bias of a scaffold to overlay on different secondary structures, the “side-chain correspondences” (eg i, i+4, i+7 or i, i+3, i+4) of those overlays, and the energy of this state relative to the minimum located. This protocol was tested on some of the most widely cited minimalist α-helical mimics (1 – 8 in the text). The data obtained indicates several of these compounds preferentially exist in conformations that resemble other secondary structures as well as α-helices, and many of the α-helical conformations have unexpected side-chain correspondences. These observations imply the featured minimalist mimics have more scope for disrupting PPI interfaces than previously anticipated. Finally, the same simulation method was used to match preferred conformations of minimalist mimics with actual protein/peptide structures at interfaces providing quantitative comparisons of predicted fits of the test mimics at protein-protein interaction sites. PMID:24121516
Evaluating minimalist mimics by exploring key orientations on secondary structures (EKOS).
Xin, Dongyue; Ko, Eunhwa; Perez, Lisa M; Ioerger, Thomas R; Burgess, Kevin
2013-11-28
Peptide mimics that display amino acid side-chains on semi-rigid scaffolds (not peptide polyamides) can be referred to as minimalist mimics. Accessible conformations of these scaffolds may overlay with secondary structures giving, for example, "minimalist helical mimics". It is difficult for researchers who want to apply minimalist mimics to decide which one to use because there is no widely accepted protocol for calibrating how closely these compounds mimic secondary structures. Moreover, it is also difficult for potential practitioners to evaluate which ideal minimalist helical mimics are preferred for a particular set of side-chains. For instance, what mimic presents i, i + 4, i + 7 side-chains in orientations that best resemble an ideal α-helix, and is a different mimic required for a i, i + 3, i + 7 helical combination? This article describes a protocol for fitting each member of an array of accessible scaffold conformations on secondary structures. The protocol involves: (i) use quenched molecular dynamics (QMD) to generate an ensemble consisting of hundreds of accessible, low energy conformers of the mimics; (ii) representation of each of these as a set of Cα and Cβ coordinates corresponding to three amino acid side-chains displayed by the scaffolds; (iii) similar representation of each combination of three side-chains in each ideal secondary structure as a set of Cα and Cβ coordinates corresponding to three amino acid side-chains displayed by the scaffolds; and, (iv) overlay Cα and Cβ coordinates of all the conformers on all the sets of side-chain "triads" in the ideal secondary structures and express the goodness of fit in terms of root mean squared deviation (RMSD, Å) for each overlay. We refer to this process as Exploring Key Orientations on Secondary structures (EKOS). Application of this procedure reveals the relative bias of a scaffold to overlay on different secondary structures, the "side-chain correspondences" (e.g. i, i + 4, i + 7 or i, i + 3, i + 4) of those overlays, and the energy of this state relative to the minimum located. This protocol was tested on some of the most widely cited minimalist α-helical mimics (1-8 in the text). The data obtained indicates several of these compounds preferentially exist in conformations that resemble other secondary structures as well as α-helices, and many of the α-helical conformations have unexpected side-chain correspondences. These observations imply the featured minimalist mimics have more scope for disrupting PPI interfaces than previously anticipated. Finally, the same simulation method was used to match preferred conformations of minimalist mimics with actual protein/peptide structures at interfaces providing quantitative comparisons of predicted fits of the test mimics at protein-protein interaction sites.
Device and method to relieve cordelle action in a chain driven pump
Dysarz, Edward D.
1994-01-01
A cordelle action relief apparatus or device for use in sucker rod pumps in a petroleum or water well. The device is incorporated in a chain driven pump to prevent the chain from forming a bow or archlike configuration as the chain rolls off of the sprocket and down into the well. When the chain is allowed to form this bow or arch it could damage the well and well casing. The device includes a first rod on the side of the chain and a second rod on the second side of the chain that will allow the rollers of the chain to roll on the rod and further prevent the chain from bowing or arching and will further allow the rollers on the chain to roll on the rods which will further prevent damage to the well casing, the well, and the chain.
Yuan, Zhengrong; Li, Jiao; Hu, Ruiqi; Jiao, Yang; Han, Yingying; Weng, Qiang
2015-01-01
Published data have shown inconsistent results about the pharmacogenetics of XRCC1 gene on clinical outcomes of advanced lung cancer patients treated with platinum-based chemotherapy. This meta-analysis aimed to summarize published findings and provide more reliable association. A total of 53 eligible studies including 7433 patients were included. Patients bearing the favorable TrpTrp and TrpArg genotypes of Arg194Trp were more likely to better response rates to platinum-based chemotherapy compared to those with the unfavorable ArgArg genotype (TrpTrp+TrpArg vs. ArgArg: odds ratio (OR) = 2.02, 95% CI, 1.66–2.45). The GlnGln and GlnArg genotypes of Arg399Gln were significantly associated with the poorer response rates compared to those with the ArgArg genotype (GlnGln +GlnArg vs. ArgArg: OR = 0.68, 95% CI, 0.54–0.86). The GlnGln genotype might be more closely associated with shorter survival time and higher risks of death for patients (GlnGln vs. ArgArg: hazard ratio (HR) = 1.14, 95% CI, 0.75–1.75). Our cumulative meta-analyses indicated a distinct apparent trend toward a better response rate for Arg194Trp, but a poorer response rate in Arg399Gln. These findings indicate a predictive role of XRCC1 polymorphisms in clinical outcomes. The use of XRCC1 polymorphisms as predictive factor of clinical outcomes in personalized chemotherapy treatment requires further verification from large well-designed pharmacogenetics studies. PMID:26585370
A novel PAX3 mutation in a Japanese boy with Waardenburg syndrome type 1.
Yoshida, Yu; Doi, Rieko; Adachi, Kaori; Nanba, Eiji; Kodani, Isamu; Ryoke, Kazuo
2016-01-01
Waardenburg syndrome type 1 (WS1) is a rare autosomal dominant disorder characterized by hair hypopigmentation, abnormal iris pigmentation, and congenital hearing loss. WS1 is caused by mutations in paired box gene 3 (PAX3). We identified a novel PAX3 mutation (c.1107 C>G, p.Ser369Arg) in a Japanese WS1 patient showing abnormal right iris pigmentation, right-sided congenital hearing loss, synophrys, incomplete left cleft lip, and cryptorchidism.
A novel PAX3 mutation in a Japanese boy with Waardenburg syndrome type 1
Yoshida, Yu; Doi, Rieko; Adachi, Kaori; Nanba, Eiji; Kodani, Isamu; Ryoke, Kazuo
2016-01-01
Waardenburg syndrome type 1 (WS1) is a rare autosomal dominant disorder characterized by hair hypopigmentation, abnormal iris pigmentation, and congenital hearing loss. WS1 is caused by mutations in paired box gene 3 (PAX3). We identified a novel PAX3 mutation (c.1107 C>G, p.Ser369Arg) in a Japanese WS1 patient showing abnormal right iris pigmentation, right-sided congenital hearing loss, synophrys, incomplete left cleft lip, and cryptorchidism. PMID:27081571
Dynamics of Polarons in Organic Conjugated Polymers with Side Radicals.
Liu, J J; Wei, Z J; Zhang, Y L; Meng, Y; Di, B
2017-03-16
Based on the one-dimensional tight-binding Su-Schrieffer-Heeger (SSH) model, and using the molecular dynamics method, we discuss the dynamics of electron and hole polarons propagating along a polymer chain, as a function of the distance between side radicals and the magnitude of the transfer integrals between the main chain and the side radicals. We first discuss the average velocities of electron and hole polarons as a function of the distance between side radicals. It is found that the average velocities of the electron polarons remain almost unchanged, while the average velocities of hole polarons decrease significantly when the radical distance is comparable to the polaron width. Second, we have found that the average velocities of electron polarons decrease with increasing transfer integral, but the average velocities of hole polarons increase. These results may provide a theoretical basis for understanding carriers transport properties in polymers chain with side radicals.
Cai, Enbo; Song, Xingzhuo; Han, Mei; Yang, Limin; Zhao, Yan; Li, Wei; Han, Jiahong; Tu, Shumei
2018-02-19
Arctigenin (ARG) is a functional active component that has important physiological and pharmacological activities. The anti-tumour and anti-inflammatory activities of ARG show good potential for application and development, but this material has the defect of low water solubility. In this experiment, the valine derivative of ARG (ARG-V) was designed and synthesized to overcome this disadvantage. The ARG amino acid, EDCI and DMAP were raw materials in the addition reaction, with a molar ratio of 1:2:2:0.5. The yield of ARG-V was up to 80%. ARG-V has strong anti-tumour activity in vivo and in vitro. The inhibitory rate of ARG-V was 69.2%, with less damage to the immune organs and different degrees of increased serum cytotoxicity. Moreover, the pharmacokinetics of ARG following oral administration and ARG-V following oral administration in rats were also studied. The C max and AUC values of ARG-V showed significant differences compared to ARG. The relative bioavailabilities of three doses of ARG-V compared to ARG were 664.7%, 741.5% and 812.9%. These pharmacokinetic results may be useful for further studies of the bioactive mechanism of ARG and provide a theoretical basic for clinical use.
An aptamer-based fluorescence bio-sensor for chiral recognition of arginine enantiomers
NASA Astrophysics Data System (ADS)
Yuan, Haiyan; Huang, Yunmei; Yang, Jidong; Guo, Yuan; Zeng, Xiaoqing; Zhou, Shang; Cheng, Jiawei; Zhang, Yuhui
2018-07-01
In this study, a novel aptamer - based fluorescence bio-sensor (aptamer-AuNps) was developed for chiral recognition of arginine (Arg) enantiomers based on aptamer and gold nanoparticles (AuNps). Carboxyfluorescein (FAM) labeled aptamers (Apt) were absorbed on AuNps and their fluorescence intensity could be significantly quenched by AuNps based on fluorescence resonance energy transfer (FRET). Once D-Arg or L-Arg were added into the above solution, the aptamer specifically bind to Arg enantiomers and released from AuNps, so the fluorescence intensity of D-Arg system and L-Arg system were all enhanced. The affinity of Apt to L-Arg is tighter to D-Arg, so the enhanced fluorescence signals of L-Arg system was stronger than D-Arg system. What's more, the enhanced fluorescence were directly proportional to the concentration of D-Arg and L-Arg ranging from 0-300 nM and 0-400 nM with related coefficients of 0.9939 and 0.9952, respectively. Furthermore, the method was successfully applied to detection L-Arg in human urine samples with satisfactory results. Eventually, a simple "OR" logic gate with D-Arg &L-Arg as inputs and AuNps aggregation state as outputs was fabricated, which can help us understand the chiral recognition process deeply.
Highly Stable, Anion Conductive, Comb-Shaped Copolymers for Alkaline Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, NW; Leng, YJ; Hickner, MA
2013-07-10
To produce an anion-conductive and durable polymer electrolyte for alkaline fuel cell applications, a series of quaternized poly(2,6-dimethyl phenylene oxide)s containing long alkyl side chains pendant to the nitrogen-centered cation were synthesized using a Menshutkin reaction to form comb-shaped structures. The pendant alkyl chains were responsible for the development of highly conductive ionic domains, as confirmed by small-angle X-ray scattering (SAXS). The comb-shaped polymers having one alkyl side chain showed higher hydroxide conductivities than those with benzyltrimethyl ammonium moieties or structures with more than one alkyl side chain per cationic site. The highest conductivity was observed for comb-shaped polymers withmore » benzyldimethylhexadecyl ammonium cations. The chemical stabilities of the comb-shaped membranes were evaluated under severe, accelerated-aging conditions, and degradation was observed by measuring IEC and ion conductivity changes during aging. The comb-shaped membranes retained their high ion conductivity in 1 M NaOH at 80 degrees C for 2000 h. These cationic polymers were employed as ionomers in catalyst layers for alkaline fuel cells. The results indicated that the C-16 alkyl side chain ionomer had a slightly better initial performance, despite its low IEC value, but very poor durability in the fuel cell. In contrast, 90% of the initial performance was retained for the alkaline fuel cell with electrodes containing the C-6 side chain after 60 h of fuel cell operation.« less
Flook, Adam M.; Yang, Jianquan; Miao, Yubin
2013-01-01
The purpose of this study was to examine the melanoma targeting and imaging properties of two new 99mTc-labeled Arg-X-Asp-conjugated alpha-melanocyte stimulating hormone (α-MSH) peptides. RTD-Lys-(Arg11)CCMSH {c[Asp-Arg-Thr-Asp-DTyr]-Lys-Cys-Cys-Glu-His-DPhe-Arg-Trp-Cys-Arg-Pro-Val-NH2} and RVD-Lys-(Arg11)CCMSH peptides were synthesized and their melanocortin-1 (MC1) receptor binding affinities were determined in B16/F1 melanoma cells. The biodistribution and melanoma imaging properties of 99mTc-RTD-Lys-(Arg11)CCMSH and 99mTc-RVD-Lys-(Arg11)CCMSH were determined in B16/F1 melanoma-bearing C57 mice. The IC50 values of RTD-Lys-(Arg11)CCMSH and RVD-Lys-(Arg11)CCMSH were 0.7 ± 0.07 and 1.0 ± 0.3 nM in B16/F1 melanoma cells. Both 99mTc-RTD-Lys-(Arg11)CCMSH and 99mTc-RVD-Lys-(Arg11)CCMSH displayed high melanoma uptake. 99mTc-RTD-Lys-(Arg11)CCMSH exhibited the peak tumor uptake of 18.77 ± 5.13% ID/g at 2 h post-injection, whereas 99mTc-RVD-Lys-(Arg11)CCMSH reached the peak tumor uptake of 19.63 ± 4.68% ID/g at 4 h post-injection. Both 99mTc-RTD-Lys-(Arg11)CCMSH and 99mTc-RVD-Lys-(Arg11)CCMSH showed low accumulation in normal organs (<1.7% ID/g) except for the kidneys at 2 h post-injection. The renal uptake of 99mTc-RTD-Lys-(Arg11)CCMSH and 99mTc-RVD-Lys-(Arg11)CCMSH was 135.14 ± 23.62 and 94.01 ± 18.31% ID/g at 2 h post-injection, respectively. The melanoma lesions were clearly visualized by SPECT/CT using either 99mTc-RTD-Lys-(Arg11)CCMSH or 99mTc-RVD-Lys-(Arg11)CCMSH as an imaging probe at 2 h post-injection. Overall, the introduction of Thr or Val residue retained high melanoma uptake of 99mTc-RTD-Lys-(Arg11)CCMSH and 99mTc-RVD-Lys-(Arg11)CCMSH. However, high renal uptake of 99mTc-RTD-Lys-(Arg11)CCMSH and 99mTc-RVD-Lys-(Arg11)CCMSH need to be reduced to facilitate their future applications. PMID:23885640
Flook, Adam M; Yang, Jianquan; Miao, Yubin
2013-09-03
The purpose of this study was to examine the melanoma targeting and imaging properties of two new (99m)Tc-labeled Arg-X-Asp-conjugated α-melanocyte stimulating hormone (α-MSH) peptides. RTD-Lys-(Arg(11))CCMSH {c[Asp-Arg-Thr-Asp-DTyr]-Lys-Cys-Cys-Glu-His-DPhe-Arg-Trp-Cys-Arg-Pro-Val-NH2} and RVD-Lys-(Arg(11))CCMSH peptides were synthesized, and their melanocortin-1 (MC1) receptor binding affinities were determined in B16/F1 melanoma cells. The biodistribution and melanoma imaging properties of (99m)Tc-RTD-Lys-(Arg(11))CCMSH and (99m)Tc-RVD-Lys-(Arg(11))CCMSH were determined in B16/F1 melanoma-bearing C57 mice. The IC50 values of RTD-Lys-(Arg(11))CCMSH and RVD-Lys-(Arg(11))CCMSH were 0.7 ± 0.07 and 1.0 ± 0.3 nM in B16/F1 melanoma cells. Both (99m)Tc-RTD-Lys-(Arg(11))CCMSH and (99m)Tc-RVD-Lys-(Arg(11))CCMSH displayed high melanoma uptake. (99m)Tc-RTD-Lys-(Arg(11))CCMSH exhibited the highest tumor uptake of 18.77 ± 5.13% ID/g at 2 h postinjection, whereas (99m)Tc-RVD-Lys-(Arg(11))CCMSH reached the highest tumor uptake of 19.63 ± 4.68% ID/g at 4 h postinjection. Both (99m)Tc-RTD-Lys-(Arg(11))CCMSH and (99m)Tc-RVD-Lys-(Arg(11))CCMSH showed low accumulation in normal organs (<1.7% ID/g) except for the kidneys at 2 h postinjection. The renal uptake of (99m)Tc-RTD-Lys-(Arg(11))CCMSH and (99m)Tc-RVD-Lys-(Arg(11))CCMSH was 135.14 ± 23.62 and 94.01 ± 18.31% ID/g at 2 h postinjection, respectively. The melanoma lesions were clearly visualized by single-photon emission computed tomography (SPECT)/CT using either (99m)Tc-RTD-Lys-(Arg(11))CCMSH or (99m)Tc-RVD-Lys-(Arg(11))CCMSH as an imaging probe at 2 h postinjection. Overall, the introduction of Thr or Val residue retained high melanoma uptake of (99m)Tc-RTD-Lys-(Arg(11))CCMSH and (99m)Tc-RVD-Lys-(Arg(11))CCMSH. However, high renal uptake of (99m)Tc-RTD-Lys-(Arg(11))CCMSH and (99m)Tc-RVD-Lys-(Arg(11))CCMSH need to be reduced to facilitate their future applications.
Gibson, James M; Popham, Jennifer M; Raghunathan, Vinodhkumar; Stayton, Patrick S; Drobny, Gary P
2006-04-26
Extracellular matrix proteins regulate hard tissue growth by acting as adhesion sites for cells, by triggering cell signaling pathways, and by directly regulating the primary and/or secondary crystallization of hydroxyapatite, the mineral component of bone and teeth. Despite the key role that these proteins play in the regulation of hard tissue growth in humans, the exact mechanism used by these proteins to recognize mineral surfaces is poorly understood. Interactions between mineral surfaces and proteins very likely involve specific contacts between the lattice and the protein side chains, so elucidation of the nature of interactions between protein side chains and their corresponding inorganic mineral surfaces will provide insight into the recognition and regulation of hard tissue growth. Isotropic chemical shifts, chemical shift anisotropies (CSAs), NMR line-width information, (13)C rotating frame relaxation measurements, as well as direct detection of correlations between (13)C spins on protein side chains and (31)P spins in the crystal surface with REDOR NMR show that, in the peptide fragment derived from the N-terminal 15 amino acids of salivary statherin (i.e., SN-15), the side chain of the phenylalanine nearest the C-terminus of the peptide (F14) is dynamically constrained and oriented near the surface, whereas the side chain of the phenylalanine located nearest to the peptide's N-terminus (F7) is more mobile and is oriented away from the hydroxyapatite surface. The relative dynamics and proximities of F7 and F14 to the surface together with prior data obtained for the side chain of SN-15's unique lysine (i.e., K6) were used to construct a new picture for the structure of the surface-bound peptide and its orientation to the crystal surface.
Yu, Miao; Lau, Thomas Y.; Carr, Steven A.; Krieger, Monty
2013-01-01
The high density lipoprotein (HDL) receptor, scavenger receptor class B, type I (SR-BI), binds HDL and mediates selective cholesteryl ester uptake. SR-BI's structure and mechanism are poorly understood. We used mass spectrometry to assign the two disulfide bonds in SR-BI that connect cysteines within the conserved Cys321-Pro322-Cys323 (CPC) motif and connect Cys280 to Cys334. We used site-specific mutagenesis to evaluate the contributions of the CPC motif and the side chain of extracellular Cys384 to HDL binding and lipid uptake. The effects of CPC mutations on activity were context dependent. Full wild-type (WT) activity required Pro322 and Cys323 only when Cys321 was present. Reduced intrinsic activities were observed for CXC and CPX, but not XXC, XPX or XXX mutants (X≠WT residue). Apparently, a free thiol side chain at position 321 that cannot form an intra-CPC disulfide bond with Cys323 is deleterious, perhaps because of aberrant disulfide bond formation. Pro322 may stabilize an otherwise strained CPC disulfide bond, thus supporting WT activity, but this disulfide bond is not absolutely required for activity. C384X (X=S,T,L,Y,G,A) mutants exhibited altered activities that varied with the side chain's size: larger side chains phenocopied WT SR-BI treated with its thiosemicarbazone inhibitor BLT-1 (increased binding, decreased uptake); smaller side chains produced almost inverse effects (increased uptake:binding ratio). C384X mutants were BLT-1 resistant, supporting the proposal that Cys384's thiol interacts with BLT-1. We discuss the implications of our findings on the functions of the extracellular loop cysteines in SR-BI and compare our results to those presented by other laboratories. PMID:23205738
Otto, H; Marti, T; Holz, M; Mogi, T; Stern, L J; Engel, F; Khorana, H G; Heyn, M P
1990-02-01
Photocycle and flash-induced proton release and uptake were investigated for bacteriorhodopsin mutants in which Asp-85 was replaced by Ala, Asn, or Glu; Asp-212 was replaced by Asn or Glu; Asp-115 was replaced by Ala, Asn, or Glu; Asp-96 was replaced by Ala, Asn, or Glu; and Arg-82 was replaced by Ala or Gln in dimyristoylphosphatidylcholine/3-[(3-cholamidopropyl)dimethylammonio]-1- propanesulfonate micelles at pH 7.3. In the Asp-85----Ala and Asp-85----Asn mutants, the absence of the charged carboxyl group leads to a blue chromophore at 600 and 595 nm, respectively, and lowers the pK of the Schiff base deprotonation to 8.2 and 7, respectively, suggesting a role for Asp-85 as counterion to the Schiff base. The early part of the photocycles of the Asp-85----Ala and Asp-85----Asn mutants is strongly perturbed; the formation of a weak M-like intermediate is slowed down about 100-fold over wild type. In both mutants, proton release is also slower but clearly precedes the rise of M. The amplitude of the early (less than 0.2 microseconds) reversed photovoltage component in the Asp-85----Asn mutant is very large, and the net charge displacement is close to zero, indicating proton release and uptake on the cytoplasmic side of the membrane. The data suggest an obligatory role for Asp-85 in the efficient deprotonation of the Schiff base and in the proton release phase, probably as proton acceptor. In the Asp-212----Asn mutant, the rise of the absorbance change at 410 nm is slowed down to 220 microsecond, its amplitude is small, and the release of protons is delayed to 1.9 ms. The absorbance changes at 650 nm indicate perturbations in the early time range with a slow K intermediate. Thus Asp-212 also participates in the early events of charge translocation and deprotonation of the Schiff base. In the Arg-82----Gln mutant, no net transient proton release was observed, whereas, in the Arg-82----Ala mutant, uptake and release were reversed. The pK shift of the purple-to-blue transition in the Asp-85----Glu, Arg-82----Ala, and Arg-82----Gln mutants and the similarity in the photocycle and photoelectrical signals of the Asp-85----Ala, Asp-85----Asn, and Asp-212----Asn mutants suggest the interaction between Asp-85, Arg-82, Asp-212, and the Schiff base as essential for proton release.
NASA Astrophysics Data System (ADS)
Niimura, Subaru; Suzuki, Junya; Kurosu, Hiromichi; Yamanobe, Takeshi; Shoji, Akira
2010-04-01
To clarify the positive role of side-chain conformation in the stability of protein secondary structure (main-chain conformation), we successfully calculated the optimization structure of a well-defined α-helical octadecapeptide composed of L-alanine (Ala) and L-phenylalanine (Phe) residues, H-(Ala) 8-Phe-(Ala) 9-OH, based on the molecular orbital calculation with density functional theory (DFT/B3LYP/6-31G(d)). From the total energy and the precise secondary structural parameters such as main-chain dihedral angles and hydrogen-bond parameters of the optimized structure, we confirmed that the conformational stability of an α-helix is affected dominantly by the side-chain conformation ( χ1) of the Phe residue in this system: model A ( T form: around 180° of χ1) is most stable in α-helix and model B ( G + form: around -60° of χ1) is next stable, but model C ( G - form: around 60° of χ1) is less stable. In addition, we demonstrate that the stable conformation of poly( L-phenylalanine) is an α-helix with the side-chain T form, by comparison of the carbonyl 13C chemical shift measured by 13C CP-MAS NMR and the calculated one.
Synthesis and Characterization of Itaconic Anhydride and Stearyl Methacrylate Copolymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang, S.; Huang, S; Weiss, R
The free-radical copolymerization and the properties of comb-like copolymers derived from renewable resources, itaconic anhydride (ITA) and stearyl methacrylate (SM), are described. The ITA-SM copolymers were nearly random with a slight alternating tendency. The copolymers exhibited a nanophase-separated morphology, with the stearate side-chains forming a bilayer, semi-crystalline structure. The melting point (Tm) of the side-chains and the crystallinity decreased with increasing ITA concentration. The crystalline side-chains suppressed molecular motion of the main chain, so that a glass transition temperature (Tg) was not resolved unless the ITA concentration was sufficiently high so that Tg > Tm. The softening point and modulusmore » of the copolymers increased with the increasing ITA concentration, but the thermal stability decreased.« less
XRCC1 Polymorphisms and Pancreatic Cancer: A Meta-Analysis
Shen, Wei-dong; Chen, Hong-lin; Liu, Peng-fei
2011-01-01
Objective To assess the association between X-ray repair cross-complementating group 1 (XRCC1) polymorphisms and pancreatic cancer. Methods We searched MEDLINE, Web of Science and HuGE Navigator at June 2010, and then quantitatively summarized associations of the XRCC1 polymorphisms with pancreatic cancer risk using meta-analysis. Results Four studies with 1343 cases and 2302 controls were included. Our analysis found: at codon 194, the Trp allele did not decrease pancreatic cancer risk (Arg/Arg versus Trp/Trp: OR=0.97; 95% CI: 0.48-1.96; P=0.97; Arg/Arg versus Arg/Trp: OR=0.89; 95% CI: 0.70-1.13; P=0.55; Arg/Trp versus Trp/Trp: OR=1.06; 95% CI: 0.52-2.16; P=0.90); at codon 280, only a study showed a nonsignificant association between single nucleotide polymorphism with pancreatic cancer risk; at codon 399, the Gln allele also showed no significant effect on pancreatic cancer compared to Arg allele (Arg/Arg versus Gln/Gln: OR=0.94; 95% CI: 0.74-1.18; Arg/Arg versus Arg/Gln: OR=0.97; 95% CI: 0.83-1.13; Arg/Gln versus Gln/Gln: OR=0.97; 95% CI: 0.77-1.22). The shape of the funnel plot and the Egger’s test did not detect any publication bias. Conclusion There is no evidence that XRCC1 polymorphisms (Arg194Trp, Arg280His, and Arg399Gln) are associated with pancreatic cancer risk. PMID:23467456
Lavrado, João; Cabal, Ghislain G; Prudêncio, Miguel; Mota, Maria M; Gut, Jiri; Rosenthal, Philip J; Díaz, Cecília; Guedes, Rita C; dos Santos, Daniel J V A; Bichenkova, Elena; Douglas, Kenneth T; Moreira, Rui; Paulo, Alexandra
2011-02-10
The synthesis of cryptolepine derivatives containing basic side-chains at the C-11 position and their evaluations for antiplasmodial and cytotoxicity properties are reported. Propyl, butyl, and cycloalkyl diamine side chains significantly increased activity against chloroquine-resistant Plasmodium falciparum strains while reducing cytotoxicity when compared with the parent compound. Localization studies inside parasite blood stages by fluorescence microscopy showed that these derivatives accumulate inside the nucleus, indicating that the incorporation of a basic side chain is not sufficient enough to promote selective accumulation in the acidic digestive vacuole of the parasite. Most of the compounds within this series showed the ability to bind to a double-stranded DNA duplex as well to monomeric hematin, suggesting that these are possible targets associated with the observed antimalarial activity. Overall, these novel cryptolepine analogues with substantially improved antiplasmodial activity and selectivity index provide a promising starting point for development of potent and highly selective agents against drug-resistant malaria parasites.
Natarajan, Jayakumar K.; Alumasa, John; Yearick, Kimberly; Ekoue-Kovi, Kekeli A.; Casabianca, Leah B.; de Dios, Angel C.; Wolf, Christian; Roepe, Paul D.
2009-01-01
Using predictions from heme – quinoline antimalarial complex structures, previous modifications of chloroquine (CQ), and hypotheses for chloroquine resistance (CQR), we synthesize and assay CQ analogues that test structure – function principles. We vary side chain length for both monoethyl and diethyl 4N CQ derivatives. We alter the pKa of the quinolyl N by introducing alkylthio or alkoxy substituents into the 4 position, and vary side chain length for these analogues. We introduce an additional titratable amino group to the side chain of 4O analogues with promising CQR strain selectivity and increase activity while retaining selectivity. We solve atomic resolution structures for complexes formed between representative 4N, 4S and 4O derivatives vs. μ-oxo dimeric heme, measure binding constants for monomeric vs. dimeric heme, and quantify hemozoin (Hz) formation inhibition in vitro. The data provide additional insight for the design of CQ analogues with improved activity vs. CQR malaria. PMID:18512900
Natarajan, Jayakumar K; Alumasa, John N; Yearick, Kimberly; Ekoue-Kovi, Kekeli A; Casabianca, Leah B; de Dios, Angel C; Wolf, Christian; Roepe, Paul D
2008-06-26
Using predictions from heme-quinoline antimalarial complex structures, previous modifications of chloroquine (CQ), and hypotheses for chloroquine resistance (CQR), we synthesize and assay CQ analogues that test structure-function principles. We vary side chain length for both monoethyl and diethyl 4-N CQ derivatives. We alter the pKa of the quinolyl N by introducing alkylthio or alkoxy substituents into the 4 position and vary side chain length for these analogues. We introduce an additional titratable amino group to the side chain of 4-O analogues with promising CQR strain selectivity and increase activity while retaining selectivity. We solve atomic resolution structures for complexes formed between representative 4-N, 4-S, and 4-O derivatives vs mu-oxo dimeric heme, measure binding constants for monomeric vs dimeric heme, and quantify hemozoin (Hz) formation inhibition in vitro. The data provide additional insight for the design of CQ analogues with improved activity vs CQR malaria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chao, Pengjie; Wang, Huan; Qu, Shiwei
Two polymers with fully two-dimensional (2D) conjugated side chains, 2D-PTB-Th and 2D-PTB-TTh, were synthesized and characterized through simultaneously integrating the 2D-TT and the 2D-BDT monomers onto the polymer backbone. Resulting from the synergistic effect from the conjugated side chains on both monomers, the two polymers showed remarkably efficient absorption of the sunlight and improved pi-pi intermolecular interactions for efficient charge carrier transport. The optimized bulk heterojunction device based on 2D-PTB-Th and PC71BM shows a higher PCE of 9.13% compared to PTB7-Th with a PCE of 8.26%, which corresponds to an approximately 10% improvement in solar energy conversion. The fully 2D-conjugatedmore » side-chain concept reported here developed a new molecular design strategy for polymer materials with enhanced sunlight absorption and efficient solar energy conversion.« less
An aptamer-based fluorescence bio-sensor for chiral recognition of arginine enantiomers.
Yuan, Haiyan; Huang, Yunmei; Yang, Jidong; Guo, Yuan; Zeng, Xiaoqing; Zhou, Shang; Cheng, Jiawei; Zhang, Yuhui
2018-07-05
In this study, a novel aptamer - based fluorescence bio-sensor (aptamer-AuNps) was developed for chiral recognition of arginine (Arg) enantiomers based on aptamer and gold nanoparticles (AuNps). Carboxyfluorescein (FAM) labeled aptamers (Apt) were absorbed on AuNps and their fluorescence intensity could be significantly quenched by AuNps based on fluorescence resonance energy transfer (FRET). Once d-Arg or l-Arg were added into the above solution, the aptamer specifically bind to Arg enantiomers and released from AuNps, so the fluorescence intensity of d-Arg system and l-Arg system were all enhanced. The affinity of Apt to l-Arg is tighter to d-Arg, so the enhanced fluorescence signals of l-Arg system was stronger than d-Arg system. What's more, the enhanced fluorescence were directly proportional to the concentration of d-Arg and l-Arg ranging from 0-300 nM and 0-400 nM with related coefficients of 0.9939 and 0.9952, respectively. Furthermore, the method was successfully applied to detection l-Arg in human urine samples with satisfactory results. Eventually, a simple "OR" logic gate with d-Arg &l-Arg as inputs and AuNps aggregation state as outputs was fabricated, which can help us understand the chiral recognition process deeply. Copyright © 2018 Elsevier B.V. All rights reserved.
The introduction of strain and its effects on the structure and stability of T4 lysozyme.
Liu, R; Baase, W A; Matthews, B W
2000-01-07
In order to try to better understand the role played by strain in the structure and stability of a protein a series of "small-to-large" mutations was made within the core of T4 lysozyme. Three different alanine residues, one involved in backbone contacts, one in side-chain contacts, and the third adjacent to a small cavity, were each replaced with subsets of the larger residues, Val, Leu, Ile, Met, Phe and Trp. As expected, the protein is progressively destabilized as the size of the introduced side-chain becomes larger. There does, however, seem to be a limit to the destabilization, suggesting that a protein of a given size may be capable of maintaining only a certain amount of strain. The changes in stability vary greatly from site to site. Substitution of larger residues for both Ala42 and Ala98 substantially destabilize the protein, even though the primary contacts in one case are predominantly with side-chain atoms and in the other with backbone. The results suggest that it is neither practical nor meaningful to try to separate the effects of introduced strain on side-chains from the effects on the backbone. Substitutions at Ala129 are much less destabilizing than at sites 42 or 98. This is most easily understood in terms of the pre-existing cavity, which provides partial space to accommodate the introduced side-chains. Crystal structures were obtained for a number of the mutants. These show that the changes in structure to accommodate the introduced side-chains usually consist of essentially rigid-body displacements of groups of linked atoms, achieved through relatively small changes in torsion angles. On rare occasions, a side-chain close to the site of substitution may change to a different rotamer. When such rotomer changes occur, they permit the structure to dissipate strain by a response that is plastic rather than elastic. In one case, a surface loop moves 1.2 A, not in direct response to a mutation, but in an interaction mediated via an intermolecular contact. It illustrates how the structure of a protein can be modified by crystal contacts. Copyright 2000 Academic Press.
Molecular design of anti-MRSA agents based on the anacardic acid scaffold.
Green, Ivan R; Tocoli, Felismino E; Lee, Sang Hwa; Nihei, Ken-Ichi; Kubo, Isao
2007-09-15
A series of anacardic acid analogues possessing different side chains viz. phenolic, branched, and alicyclic were synthesized and their antibacterial activity tested against methicillin-resistant Staphylococcus aureus (MRSA). The maximum activity against this bacterium occurred with the branched side-chain analogue, 6-(4',8'-dimethylnonyl)salicylic acid, and the alicyclic side-chain analogue, 6-cyclododecylmethyl salicylic acid, with the minimum inhibitory concentration (MIC) of 0.39 microg/mL, respectively. This activity was superior to that of the most potent antibacterial anacardic acid isolated from the cashew Anacardium occidentale (Anacardiaceae), apple and nut, that is, the 6-[8'(Z),11'(Z),14'-pentadecatrienyl]salicylic acid.
Nakajima, Ryo; Yamamoto, Naoshi; Hirayama, Shigeto; Iwai, Takashi; Saitoh, Akiyoshi; Nagumo, Yasuyuki; Fujii, Hideaki; Nagase, Hiroshi
2015-10-01
We designed and synthesized pentacyclic propellane derivatives with a 6-amide side chain to afford compounds with higher MOR/KOR ratio and lower sedative effects than nalfurafine. The obtained etheno-bridged derivative with a β-amide side chain, YNT-854, showed a higher MOR/KOR ratio than nalfurafine. YNT-854 also exhibited a higher dose ratio between the sedative effect and the analgesic effect than observed with nalfurafine, which may guide the future design of useful analgesics with a weaker sedative effect than nalfurafine. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ryu, Joonghyun; Lee, Mokwon; Cha, Jehyun; Laskowski, Roman A.; Ryu, Seong Eon; Kim, Deok-Soo
2016-01-01
Many applications, such as protein design, homology modeling, flexible docking, etc. require the prediction of a protein's optimal side-chain conformations from just its amino acid sequence and backbone structure. Side-chain prediction (SCP) is an NP-hard energy minimization problem. Here, we present BetaSCPWeb which efficiently computes a conformation close to optimal using a geometry-prioritization method based on the Voronoi diagram of spherical atoms. Its outputs are visual, textual and PDB file format. The web server is free and open to all users at http://voronoi.hanyang.ac.kr/betascpweb with no login requirement. PMID:27151195
Devi, K Rekha; Ahmed, Jishan; Narain, Kanwar; Mukherjee, Kaustab; Majumdar, Gautam; Chenkual, Saia; Zonunmawia, Jason C
2017-12-01
X-ray repair cross complementary group gene is one of the most studied candidate gene involved in different types of cancers. Studies have shown that X-ray repair cross complementary genes are significantly associated with increased risk of breast cancer in females. Moreover, studies have revealed that X-ray repair cross complementary gene polymorphism significantly varies between and within different ethnic groups globally. The present case-control study was aimed to investigate the association of X-ray repair cross complementary 1A (Arg194Trp) and X-ray repair cross complementary 3 (Thr241Met) polymorphism with the risk of breast cancer in females from northeastern region of India. The present case-control study includes histopathologically confirmed and newly diagnosed 464 cases with breast cancer and 534 apparently healthy neighborhood community controls. Information on sociodemographic factors and putative risk factors were collected from each study participant by conducting face-to-face interviews. Genotyping of X-ray repair cross complementary 1A (Arg194Trp) and X-ray repair cross complementary 3 (Thr241Met) was carried out by polymerase chain reaction-restriction fragment length polymorphism. For statistical analysis, both univariate and multivariate logistic regression analyses were performed. We also performed stratified analysis to find out the association of X-ray repair cross complementary genes with the risk of breast cancer stratified based on menstrual status. This study revealed that tryptophan allele (R/W-W/W genotype) in X-ray repair cross complementary 1A (Arg194Trp) gene significantly increased the risk of breast cancer (adjusted odds ratio = 1.44, 95% confidence interval = 1.06-1.97, P < .05 for R/W-W/W genotype). Moreover, it was found that tryptophan allele (W/W genotype) at codon 194 of X-ray repair cross complementary 1A (Arg194Trp) gene significantly increased the risk of breast cancer in premenopausal females (crude odds ratio = 1.66, 95% confidence interval = 1.11-2.46, P < .05 for R/W-W/W genotype). The present study did not reveal any significant association of X-ray repair cross complementary 3 (Thr241Met) polymorphism with the risk of breast cancer. The present study has explored that X-ray repair cross complementary 1A (Arg194Trp) gene polymorphism is significantly associated with the increased risk of breast cancer in premenopausal females from northeastern region of India which may be beneficial for prognostic purposes.
Ahmed, Jishan; Narain, Kanwar; Mukherjee, Kaustab; Majumdar, Gautam; Chenkual, Saia; Zonunmawia, Jason C.
2017-01-01
X-ray repair cross complementary group gene is one of the most studied candidate gene involved in different types of cancers. Studies have shown that X-ray repair cross complementary genes are significantly associated with increased risk of breast cancer in females. Moreover, studies have revealed that X-ray repair cross complementary gene polymorphism significantly varies between and within different ethnic groups globally. The present case–control study was aimed to investigate the association of X-ray repair cross complementary 1A (Arg194Trp) and X-ray repair cross complementary 3 (Thr241Met) polymorphism with the risk of breast cancer in females from northeastern region of India. The present case–control study includes histopathologically confirmed and newly diagnosed 464 cases with breast cancer and 534 apparently healthy neighborhood community controls. Information on sociodemographic factors and putative risk factors were collected from each study participant by conducting face-to-face interviews. Genotyping of X-ray repair cross complementary 1A (Arg194Trp) and X-ray repair cross complementary 3 (Thr241Met) was carried out by polymerase chain reaction-restriction fragment length polymorphism. For statistical analysis, both univariate and multivariate logistic regression analyses were performed. We also performed stratified analysis to find out the association of X-ray repair cross complementary genes with the risk of breast cancer stratified based on menstrual status. This study revealed that tryptophan allele (R/W-W/W genotype) in X-ray repair cross complementary 1A (Arg194Trp) gene significantly increased the risk of breast cancer (adjusted odds ratio = 1.44, 95% confidence interval = 1.06-1.97, P < .05 for R/W-W/W genotype). Moreover, it was found that tryptophan allele (W/W genotype) at codon 194 of X-ray repair cross complementary 1A (Arg194Trp) gene significantly increased the risk of breast cancer in premenopausal females (crude odds ratio = 1.66, 95% confidence interval = 1.11-2.46, P < .05 for R/W-W/W genotype). The present study did not reveal any significant association of X-ray repair cross complementary 3 (Thr241Met) polymorphism with the risk of breast cancer. The present study has explored that X-ray repair cross complementary 1A (Arg194Trp) gene polymorphism is significantly associated with the increased risk of breast cancer in premenopausal females from northeastern region of India which may be beneficial for prognostic purposes. PMID:29332455
Zhao, Renxin; Feng, Jie; Yin, Xiaole; Liu, Jie; Fu, Wenjie; Berendonk, Thomas U; Zhang, Tong; Li, Xiaoyan; Li, Bing
2018-05-01
High throughput sequencing-based metagenomic analysis and network analysis were applied to investigate the broad-spectrum profiles of ARGs in landfill leachate from 12 cities in China. In total, 526 ARG subtypes belonging to 21 ARG types were detected with abundances ranging from 1.1 × 10 -6 to 2.09 × 10 -1 copy of ARG/copy of 16S rRNA gene. 68 ARG subtypes that accounted for 73.4%-93.4% of the total ARG abundances were shared by all leachate samples. The four most abundant ARGs, sul1, sul2, aadA and bacA can be served as ARG indicators to quantitatively predict the total abundances by linear functions (r 2 = 0.577-0.819, P < 0.001). No distinct regional distribution pattern of the ARGs was observed among different cities in China, while the ARG compositions of the leachate were clearly distinct from those of other environmental sample types. Nearly 90% ARG subtypes in the anaerobic digestion sludge from sewage treatment plants (STPADS) were shared by the leachate and the abundances of leachate and STPADS ARGs generalists accounted for 84.5% and 87.7% of total abundances in these two types of anaerobic samples, respectively. Furthermore, Procrustes analysis suggested that microbial community composition might be the determining factor of ARG compositions in landfill leachate. ARGs within the same type or among the different types showed higher incidences of non-random co-occurrence and 17 genera might be potential hosts of multiple ARGs. This study highlighted that landfill leachate is an important reservoir of various ARGs and provided a useful reference for the surveillance and risk management of ARGs in landfill environments. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tracking antibiotic resistome during wastewater treatment using high throughput quantitative PCR.
An, Xin-Li; Su, Jian-Qiang; Li, Bing; Ouyang, Wei-Ying; Zhao, Yi; Chen, Qing-Lin; Cui, Li; Chen, Hong; Gillings, Michael R; Zhang, Tong; Zhu, Yong-Guan
2018-05-08
Wastewater treatment plants (WWTPs) contain diverse antibiotic resistance genes (ARGs), and thus are considered as a major pathway for the dissemination of these genes into the environments. However, comprehensive evaluations of ARGs dynamic during wastewater treatment process lack extensive investigations on a broad spectrum of ARGs. Here, we investigated the dynamics of ARGs and bacterial community structures in 114 samples from eleven Chinese WWTPs using high-throughput quantitative PCR and 16S rRNA-based Illumina sequencing analysis. Significant shift of ARGs profiles was observed and wastewater treatment process could significantly reduce the abundance and diversity of ARGs, with the removal of ARGs concentration by 1-2 orders of magnitude. Whereas, a considerable number of ARGs were detected and enriched in effluents compared with influents. In particular, seven ARGs mainly conferring resistance to beta-lactams and aminoglycosides and three mobile genetic elements persisted in all WWTPs samples after wastewater treatment. ARGs profiles varied with wastewater treatment processes, seasons and regions. This study tracked the footprint of ARGs during wastewater treatment process, which would support the assessment on the spread of ARGs from WWTPs and provide data for identifying management options to improve ARG mitigation in WWTPs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Michalak, Karol; Wicha, Jerzy
2011-08-19
An efficient synthesis of the key building block for 17-epi-calctriol from the Hajos-Parrish dione involving a sequence of diastereoselective transformation of the azulene core and the side-chain construction is presented.
NASA Astrophysics Data System (ADS)
Madkour, Tarek M.
2013-08-01
Nano-porous polymers of intrinsic microporosity, PIM, have exhibited excellent permeability and selectivity characteristics that could be utilized in an environmentally friendly gas separation process. A full understanding of the mechanism through which these membranes effectively and selectively allow for the permeation of specific gases will lead to further development of these membranes. Three factors obviously influenced the conformational behavior of these polymers, which are the presence of electronegative atoms, the presence of non-linearity in the polymeric backbones (backbone kinks) and the presence of bulky side groups on the polymeric chains. The dipole moment increased sharply with the presence of backbone kinks more than any other factor. Replacing the fluorine atoms with bulky alkyl groups didn't influence the dipole moment greatly indicating that the size of the side chains had much less dramatic influence on the dipole moment than having a bent backbone. Similarly, the presence of the backbone kinks in the polymeric chains influenced the polymeric chains to assume less extended configuration causing the torsional angles around the interconnecting bonds unable to cross the high potential energy barriers. The presence of the bulky side groups also caused the energy barriers of the cis-configurations to increase dramatically, which prevented the polymeric segments from experiencing full rotation about the connecting bonds. For these polymers, it was clear that the fully extended configurations are the preferred configurations in the absence of strong electronegative atoms, backbones kinks or bulky side groups. The addition of any of these factors to the polymeric structures resulted in the polymeric chains being forced to assume less extended configurations. Rather interestingly, the length or bulkiness of the side groups didn't affect the end-to-end distance distribution to a great deal since the presence of quite large bulky side chain such as the pentyl group has caused the polymeric chains to revert back to the fully extended configurations possibly due to the quite high potential energy barriers that the chains have to cross to reach the less extended configurational states.
Understanding the role of Arg96 in structure and stability of green fluorescent protein
Stepanenko, Olesya V.; Verkhusha, Vladislav V.; Shavlovsky, Michail M.; Kuznetsova, Irina M.; Uversky, Vladimir N.; Turoverov, Konstantin K.
2010-01-01
Arg96 is a highly conservative residue known to catalyze spontaneous green fluorescent protein (GFP) chromophore biosynthesis. To understand a role of Arg96 in conformational stability and structural behavior of EGFP, the properties of a series of the EGFP mutants bearing substitutions at this position were studied using circular dichroism, steady state fluorescence spectroscopy, fluorescence lifetime, kinetics and equilibrium unfolding analysis, and acrylamide-induced fluorescence quenching. During the protein production and purification, high yield was achieved for EGFP/Arg96Cys variant, whereas EGFP/Arg96Ser and EGFP/Arg96Ala were characterized by essentially lower yields and no protein was produced when Arg96 was substituted by Gly. We have also shown that only EGFP/Arg96Cys possessed relatively fast chromophore maturation, whereas it took EGFP/Arg96Ser and EGFP/Arg96Ala about a year to develop a noticeable green fluorescence. The intensity of the characteristic green fluorescence measured for the EGFP/Arg96Cys and EGFP/Arg96Ser (or EGFP/Arg96Ala) was 5- and 50-times lower than that of the nonmodified EGFP. Intriguingly, EGFP/Arg96Cys was shown to be more stable than EGFP toward the GdmCl-induced unfolding both in kinetics and in the quasi-equilibrium experiments. In comparison with EGFP, tryptophan residues of EGFP/Arg96Cys were more accessible to the solvent. These data taken together suggest that besides established earlier crucial catalytic role, Arg96 is important for the overall folding and conformational stability of GFP. PMID:18470931
Pathania, Amit; Gupta, Arvind Kumar; Dubey, Swati; Gopal, Balasubramanian
2016-01-01
ABSTRACT ArgO and LysE are members of the LysE family of exporter proteins and ordinarily mediate the export of l-arginine (Arg) in Escherichia coli and l-lysine (Lys) and Arg in Corynebacterium glutamicum, respectively. Under certain conditions, ArgO also mediates Lys export. To delineate the arrangement of ArgO in the cytoplasmic membrane of E. coli, we have employed a combination of cysteine accessibility in situ, alkaline phosphatase fusion reporters, and protein modeling to arrive at a topological model of ArgO. Our studies indicate that ArgO assumes an Nin-Cout configuration, potentially forming a five-transmembrane helix bundle flanked by a cytoplasmic N-terminal domain (NTD) comprising roughly its first 38 to 43 amino acyl residues and a short periplasmic C-terminal region (CTR). Mutagenesis studies indicate that the CTR, but not the NTD, is dispensable for ArgO function in vivo and that a pair of conserved aspartate residues, located near the opposing edges of the cytoplasmic membrane, may play a pivotal role in facilitating transmembrane Arg flux. Additional studies on amino acid substitutions that impair ArgO function in vivo and their derivatives bearing compensatory amino acid alterations indicate a role for intramolecular interactions in the Arg export mechanism, and some interactions are corroborated by normal-mode analyses. Lastly, our studies suggest that ArgO may exist as a monomer in vivo, thus highlighting the requirement for intramolecular interactions in ArgO, as opposed to interactions across multiple ArgO monomers, in the formation of an Arg-translocating conduit. IMPORTANCE The orthologous proteins LysE of C. glutamicum and ArgO of E. coli function as exporters of the basic amino acids l-arginine and l-lysine and the basic amino acid l-arginine, respectively, and LysE can functionally substitute for ArgO when expressed in E. coli. Notwithstanding this functional equivalence, studies reported here show that ArgO possesses a membrane topology that is distinct from that reported for LysE, with substantial variation in the topological arrangement of the proximal one-third portions of the two exporters. Additional genetic and in silico studies reveal the importance of (i) the cytoplasmic N-terminal domain, (ii) a pair of conserved aspartate residues, and (iii) potential intramolecular interactions in ArgO function and indicate that an Arg-translocating conduit is formed by a monomer of ArgO. PMID:27645388
Servagent-Noinville; Revault; Quiquampoix; Baron
2000-01-15
Interactions between proteins and clays perturb biological activity in ecosystems, particularly soil extracellular enzyme activity. The pH dependence of hydrophobic, hydrophilic, and electrostatic interactions on the adsorption of bovine serum albumin (BSA) is studied. BSA secondary structures and hydration are revealed from computation of the Amide I and II FTIR absorption profiles. The influence of ionization of Asp, Glu, and His side chains on the adsorption processes is deduced from correlation between p(2)H dependent carboxylic/carboxylate ratio and Amide band profiles. We quantify p(2)H dependent internal and external structural unfolding for BSA adsorbed on montmorillonite, which is an electronegative phyllosilicate. Adsorption on talc, a hydrophobic surface, is less denaturing. The results emphasize the importance of electrostatic interactions in both adsorption processes. In the first case, charged side chains directly influence BSA adsorption that generate the structural transition. In the second case, the forces that attract hydrophobic side chains toward the protein-clay interface are large enough to distort peripheral amphiphilic helical domains. The resulting local unfolding displaces enough internal ionized side chains to prevent them from establishing salt bridges as for BSA native structure in solution. On montmorillonite, a particular feature is a higher protonation of the Asp and Glu side chains of the adsorbed BSA than in solution, which decreases coulombic repulsion. Copyright 2000 Academic Press.
Hydration of non-polar anti-parallel β-sheets
NASA Astrophysics Data System (ADS)
Urbic, Tomaz; Dias, Cristiano L.
2014-04-01
In this work we focus on anti-parallel β-sheets to study hydration of side chains and polar groups of the backbone using all-atom molecular dynamics simulations. We show that: (i) water distribution around the backbone does not depend significantly on amino acid sequence, (ii) more water molecules are found around oxygen than nitrogen atoms of the backbone, and (iii) water molecules around nitrogen are highly localized in the planed formed by peptide backbones. To study hydration around side chains we note that anti-parallel β-sheets exhibit two types of cross-strand pairing: Hydrogen-Bond (HB) and Non-Hydrogen-Bond (NHB) pairing. We show that distributions of water around alanine, leucine, and valine side chains are very different at HB compared to NHB faces. For alanine pairs, the space between side chains has a higher concentration of water if residues are located in the NHB face of the β-sheet as opposed to the HB face. For leucine residues, the HB face is found to be dry while the space between side chains at the NHB face alternates between being occupied and non-occupied by water. Surprisingly, for valine residues the NHB face is dry, whereas the HB face is occupied by water. We postulate that these differences in water distribution are related to context dependent propensities observed for β-sheets.
Hydration of non-polar anti-parallel β-sheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urbic, Tomaz; Dias, Cristiano L., E-mail: cld@njit.edu
2014-04-28
In this work we focus on anti-parallel β-sheets to study hydration of side chains and polar groups of the backbone using all-atom molecular dynamics simulations. We show that: (i) water distribution around the backbone does not depend significantly on amino acid sequence, (ii) more water molecules are found around oxygen than nitrogen atoms of the backbone, and (iii) water molecules around nitrogen are highly localized in the planed formed by peptide backbones. To study hydration around side chains we note that anti-parallel β-sheets exhibit two types of cross-strand pairing: Hydrogen-Bond (HB) and Non-Hydrogen-Bond (NHB) pairing. We show that distributions ofmore » water around alanine, leucine, and valine side chains are very different at HB compared to NHB faces. For alanine pairs, the space between side chains has a higher concentration of water if residues are located in the NHB face of the β-sheet as opposed to the HB face. For leucine residues, the HB face is found to be dry while the space between side chains at the NHB face alternates between being occupied and non-occupied by water. Surprisingly, for valine residues the NHB face is dry, whereas the HB face is occupied by water. We postulate that these differences in water distribution are related to context dependent propensities observed for β-sheets.« less
Protein side chain rotational isomerization: A minimum perturbation mapping study
NASA Astrophysics Data System (ADS)
Haydock, Christopher
1993-05-01
A theory of the rotational isomerization of the indole side chain of tryptophan-47 of variant-3 scorpion neurotoxin is presented. The isomerization potential energy, entropic part of the isomerization free energy, isomer probabilities, transition state theory reaction rates, and indole order parameters are calculated from a minimum perturbation mapping over tryptophan-47 χ1×χ2 torsion space. A new method for calculating the fluorescence anisotropy from molecular dynamics simulations is proposed. The method is based on an expansion that separates transition dipole orientation from chromophore dynamics. The minimum perturbation potential energy map is inverted and applied as a bias potential for a 100 ns umbrella sampling simulation. The entropic part of the isomerization free energy as calculated by minimum perturbation mapping and umbrella sampling are in fairly close agreement. Throughout, the approximation is made that two glutamine and three tyrosine side chains neighboring tryptophan-47 are truncated at the Cβ atom. Comparison with the previous combination thermodynamic perturbation and umbrella sampling study suggests that this truncated neighbor side chain approximation leads to at least a qualitatively correct theory of tryptophan-47 rotational isomerization in the wild type variant-3 scorpion neurotoxin. Analysis of van der Waals interactions in a transition state region indicates that for the simulation of barrier crossing trajectories a linear combination of three specially defined dihedral angles will be superior to a simple side chain dihedral reaction coordinate.
Functional consequences of an arginine180 to glutamine mutation in factor IX Hilo.
Monroe, D M; McCord, D M; Huang, M N; High, K A; Lundblad, R L; Kasper, C K; Roberts, H R
1989-05-01
Factor IX Hilo is a variant factor IX molecule that has no detectable coagulant activity. The defect in factor IX Hilo arises from a point mutation in the gene such that in the protein Arg180 is converted to a Gln. Activation of factor IX Hilo by factor Xla was monitored using the fluorescent active site probe p-aminobenzamidine. Normal factor IX showed complete activation in one hour as determined by measuring the increase in fluorescence when p-aminobenzamidine bound to activated factor IX. Factor IX Hilo showed no increase in fluorescence even after 24 hours, indicating that the active site was not exposed. Polyacrylamide gel electrophoresis showed that factor IX Hilo was cleaved to a light chain plus a larger peptide with a molecular weight equivalent to a heavy chain covalently linked to an activation peptide. Amino terminal amino acid sequencing of factor IX Hilo cleaved by factor Xla showed cleavage only at Arg145-Ala146, indicating that the Gln180-Val181 bond was not cleaved and that the active site was thus not exposed. The presence of factor IX Hilo in patient plasma was responsible for the patient having a very long ox brain prothrombin time characteristic of severe hemophilia Bm. Patient plasma had an ox brain prothrombin time of 100 seconds using a Thrombotest kit, significantly prolonged over the normal control value of 45 seconds. When factor IX Hilo was depleted from patient plasma using an immunoaffinity column, the ox brain prothrombin time decreased to 41 seconds. When factor IX Hilo was added back to depleted patient plasma, to normal plasma depleted of factor IX by the same affinity column, or to plasma from a CRM- hemophilia B patient, the ox brain prothrombin time was significantly prolonged. We conclude that the Arg180 to Gln mutation in factor IX Hilo results in a molecule that cannot be activated by factor Xla. Further, our data suggest that the mutation results in a molecule that interacts with components of the extrinsic pathway to give a prolonged ox brain prothrombin time.
Okamoto, Sumika; Hisaoka, Masanori; Meis-Kindblom, Jeanne M; Kindblom, Lars-Gunnar; Hashimoto, Hiroshi
2002-01-01
Juxta-articular myxoma is a rare myxoid tumor of soft tissue that bears a close histologic resemblance to intramuscular myxoma but is distinguished from the latter by its clinical setting and behavior. Activating missense mutations at the Arg 201 codon of the Gs alpha gene ultimately leading to increased levels of cyclic adenosine monophosphate have been implicated in McCune-Albright syndrome and sporadic fibrous dysplasia of bone. Recently, we have demonstrated that the same Gs alpha mutations occur in intramuscular myxomas associated with fibrous dysplasia of bone (Mazabraud's syndrome) as well as in sporadic intramuscular myxoma. The overlapping histologic appearances of juxta-articular myxoma and intramuscular myxoma prompted us to investigate whether there is a relationship between the two entities. We studied this possibility by looking for Gs alpha mutations in juxta-articular myxoma using polymerase chain reaction (PCR) to amplify appropriate genomic DNA fragments extracted from formalin-fixed, paraffin-embedded specimens of five juxta-articular myxomas, followed by single-strand conformation polymorphism analysis. Using these techniques, no aberrant bands were detected in any of the five juxta-articular myxomas, indicating that they lack Gs alpha mutations. Moreover, DNA sequencing of the PCR products of two JAMs showed no abnormalities. We conclude that juxta-articular myxomas, in contrast to intramuscular myxomas, do not involve Arg 201 mutations of the Gs alpha gene, indicating that they represent distinct entities with different underlying molecular mechanisms.
Jiang, Haoyu; Zhou, Renjun; Zhang, Mengdi; Cheng, Zhineng; Li, Jun; Zhang, Gan; Chen, Baowei; Zou, Shichun; Yang, Ying
2018-05-30
To better understand the potential genic communication and dissemination of antibiotic resistance genes (ARGs) in different environmental matrices, the differences of ARG profiles between river surface water and sediments were explored. Metagenomic analysis was applied to investigate the comprehensive ARG profiles in water and sediment samples collected from the highly human-impacted catchment of the Beijiang River and its river source. A total of 135 ARG subtypes belonging to 18 ARG types were identified. Generally, ARGs in surface water were more diverse and abundant than those in sediments. ARG profiles in the surface water and sediment samples were distinct from each other, but some ARGs were shared by the surface water and sediments. Results revealed that multidrug and bacitracin resistance genes were the predominant ARGs types in both surface water (0.30, 0.17 copies/cell) and sediments (0.19, 0.15 copies/cell). 73 ARG subtypes were shared by the water and sediment samples and had taken over 90% of the total detected ARG abundance. Most of the shared ARGs are resistant to the clinically relevant antibiotics. Furthermore, significant correlations between the ARGs and 21 shared genera or mobile genetic elements (MGEs) (plasmids and integrons) were found in surface water and sediments, suggesting the important role of genera or MGEs in shaping ARGs profiles, propagation and distribution. These findings provide deeper insight into mitigating the propagation of ARGs and the associated risks to public health. Copyright © 2018 Elsevier Inc. All rights reserved.