Sample records for arg-gly-asp rgd peptide

  1. Evaluation of a novel Arg-Gly-Asp-conjugated α-melanocyte stimulating hormone hybrid peptide for potential melanoma therapy.

    PubMed

    Yang, Jianquan; Guo, Haixun; Gallazzi, Fabio; Berwick, Marianne; Padilla, R Steven; Miao, Yubin

    2009-08-19

    The purpose of this study was to determine whether Arg-Gly-Asp (RGD)-conjugated α-melanocyte stimulating hormone (α-MSH) hybrid peptide could be employed to target melanocortin-1 (MC1) receptor for potential melanoma therapy. The RGD motif {cyclic(Arg-Gly-Asp-DTyr-Asp)} was coupled to [Cys(3,4,10), DPhe(7), Arg(11)]α-MSH(3-13) {(Arg(11))CCMSH} to generate RGD-Lys-(Arg(11))CCMSH hybrid peptide. The MC1 receptor binding affinity of RGD-Lys-(Arg(11))CCMSH was determined in B16/F1 melanoma cells. The internalization and efflux, melanoma targeting and pharmacokinetic properties and single photon emission computed tomography/CT (SPECT/CT) imaging of (99m)Tc-RGD-Lys-(Arg(11))CCMSH were determined in B16/F1 melanoma cells and melanoma-bearing C57 mice. Clonogenic cytotoxic effect of RGD-Lys-(Arg(11))CCMSH was examined in B16/F1 melanoma cells. RGD-Lys-(Arg(11))CCMSH displayed 2.1 nM MC1 receptor binding affinity. (99m)Tc-RGD-Lys-(Arg(11))CCMSH showed rapid internalization and extended retention in B16/F1 cells. The cellular uptake of (99m)Tc-RGD-Lys-(Arg(11))CCMSH was MC1 receptor-mediated. (99m)Tc-RGD-Lys-(Arg(11))CCMSH exhibited high tumor uptake (14.83 ± 2.94% ID/g 2 h postinjection) and prolonged tumor retention (7.59 ± 2.04% ID/g 24 h postinjection) in B16/F1 melanoma-bearing mice. Nontarget organ uptakes were generally low except for the kidneys. Whole-body clearance of (99m)Tc-RGD-Lys-(Arg(11))CCMSH was rapid, with approximately 62% of the injected radioactivity cleared through the urinary system by 2 h postinjection. Flank melanoma tumors were clearly imaged by small animal SPECT/CT using (99m)Tc-RGD-Lys-(Arg(11))CCMSH as an imaging probe 2 h postinjection. Single treatment (3 h incubation) with 100 nM of RGD-Lys-(Arg(11))CCMSH significantly (p < 0.05) decreased the clonogenic survival of B16/F1 cells by 65% compared to the untreated control cells. Favorable melanoma targeting property of (99m)Tc-RGD-Lys-(Arg(11))CCMSH and remarkable cytotoxic effect of RGD-Lys-(Arg(11))CCMSH in B16/F1 cells warranted the further evaluation of (188)Re-labeled α-MSH hybrid peptides as novel therapeutic peptides for melanoma treatment once the strategies of amino acid coinjection or structural modification of peptide sequence substantially reduce the renal uptake.

  2. Inhibition of angiogenesis in vitro by Arg-Gly-Asp-containing synthetic peptide.

    PubMed Central

    Nicosia, R. F.; Bonanno, E.

    1991-01-01

    This study was designed to evaluate the effect of the synthetic peptide Gly-Arg-Gly-Asp-Ser (GRGDS) on angiogenesis in serum-free collagen gel culture of rat aorta. The GRGDS peptide contains the amino acid sequence Arg-Gly-Asp (RGD), which has been implicated as a recognition site in interactions between extracellular matrix (ECM) molecules and cell membrane receptors. RGD-containing synthetic peptides are known to inhibit attachment of endothelial cells to substrates, but their effect on angiogenesis has not been fully characterized. Aortic explants embedded in collagen gel in the absence of GRGDS generated branching microvessels through a process of endothelial migration and proliferation. Addition of GRGDS to the culture medium caused a marked inhibition of angiogenesis. In contrast, GRGES, a control peptide lacking the RGD sequence, failed to inhibit angiogenesis. The inhibitory effect of GRGDS was nontoxic and reversible. The angiogenic activity of aortic explants previously inhibited with GRGDS could be restored by incubating the cultures in GRGDS-free medium. These findings suggest that angiogenesis is an anchorage-dependent process that can be inhibited by interfering with the attachment of endothelial cells to the ECM. It also indicates that synthetic peptides can be used as probes to study the mechanisms by which the ECM regulates angiogenesis. Images Figure 1 PMID:1707235

  3. A fibronectin receptor on Candida albicans mediates adherence of the fungus to extracellular matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klotz, S.A.; Smith, R.L.

    1991-03-01

    Binding of fibronectin, an extracellular matrix (ECM) protein, to Candida albicans was measured, and adherence of the fungus to immobilized ECM proteins, fibronectin, laminin, types I and IV collagen, and subendothelial ECM was studied. 125I-labeled fibronectin was inhibited from binding to the fungus by unlabeled human plasma fibronectin and by Arg-Gly-Asp (RGD), Gly-Arg-Gly-Glu-Ser-Pro (GRGESP), and Gly-Arg-Gly-Asp-Thr-Pro (GRGDTP), but binding was not inhibited by Gly-Arg-Gly-Asp-Ser-Pro. Soluble fibronectin, RGD, GRGESP, and GRGDTP also inhibited fungal adherence to the individual immobilized ECM proteins in a complex pattern, but only soluble fibronectin (10(-7) M) inhibited fungal adherence to subendothelial ECM. Thus, C. albicans possessesmore » at least one type of cell surface receptor for binding soluble fibronectin that can be inhibited with peptides. This receptor apparently is used to bind the fungus to immobilized ECM proteins and to subendothelial ECM and may play a role in the initiation of disseminated disease by bloodborne fungi by providing for adherence of the microorganisms to ECM proteins.« less

  4. Hyaluronic acid and Arg-Gly-Asp peptide modified Graphene oxide with dual receptor-targeting function for cancer therapy.

    PubMed

    Guo, Yufeng; Xu, Haixing; Li, Yiping; Wu, Fengzheng; Li, Yixuan; Bao, Yun; Yan, Xiumei; Huang, Zhijun; Xu, Peihu

    2017-07-01

    Graphene oxide (GO) modified with hyaluronic acid (HA) and Arg-gly-asp peptide (RGD) was designed as a dual-receptor targeting drug delivery system to enhance the specificity and efficiency of anticancer drug delivery. Firstly, GO-HA-RGD conjugate was characterized to reveal its structure and morphology. Whereafter, doxorubicin (Dox) as a model drug was loaded on GO-HA-RGD carrier, which displayed a high loading rate (72.9%, GO:Dox (w/w) = 1:1), pH-response and sustained drug release behavior. Cytotoxicity experiments showed that GO-HA-RGD possessed excellent biocompatibility towards SKOV-3 and HOSEpiC cells. Additionally, the GO-HA-RGD/Dox had a stronger cytotoxicity for SKOV-3 cells than either GO-HA/Dox (single receptor) or GO/Dox (no receptor). Moreover, celluar uptake studies illustrated that GO-HA-RGD conjugate could be effectively taken up by SKOV-3 cells via a synergic effect of CD44-HA and integrin-RGD mediated endocytosis. Hence, GO-HA-RGD nanocarrier is able to be a promising platform for targeted cancer therapeutic.

  5. Development of pre-implantation porcine blastocysts cultured within alginate hydrogel systems either supplemented with secreted phosphoprotein 1 or conjugated with Arg-Gly-Asp Peptide.

    PubMed

    Laughlin, Taylor D; Miles, Jeremy R; Wright-Johnson, Elane C; Rempel, Lea A; Lents, Clay A; Pannier, Angela K

    2017-11-01

    Although deficiencies in porcine blastocyst elongation play a significant role in early embryonic mortality and establishment of within-litter developmental variation, the exact mechanisms of elongation are poorly understood. Secreted phosphoprotein 1 (SPP1) is increased within the uterine milieu during early porcine pregnancy and contains an Arg-Gly-Asp (RGD) peptide sequence that binds to cell surface integrins on the uterine endometrium and trophectoderm, promoting cell adhesion and migration. The aim of the present study was to evaluate the development of preimplantation porcine blastocysts encapsulated and cultured within alginate hydrogels either supplemented with SPP1 or conjugated with RGD. Blastocysts encapsulated within alginate hydrogels supplemented with SPP1 or conjugated with RGD had increased survival compared with non-encapsulated control blastocysts. In addition, the percentage of blastocysts encapsulated within RGD hydrogels that underwent morphological changes was greater than that of blastocysts encapsulated within standard alginate hydrogels or SPP1-supplemented hydrogels. Finally, only blastocysts encapsulated within RGD hydrogels had both increased expression of steroidogenic and immune responsiveness transcripts and increased 17β-oestradiol production, consistent with blastocysts undergoing elongation in vivo. These results illustrate the importance of the integrin-binding RGD peptide sequence for stimulating the initiation of blastocyst elongation.

  6. In vitro cell studies of technetium-99m labeled RGD-HYNIC peptide, a comparison of tricine and EDDA as co-ligands.

    PubMed

    Su, Zi-Fen; He, Jiang; Rusckowski, Mary; Hnatowich, Donald J

    2003-02-01

    The level of alpha(V)beta(3) integrins on endothelial cells is elevated in angiogenesis. The high binding specificity to alpha(V)beta(3) integrins of peptides containing Arg-Gly-Asp (RGD) residues suggests that the radiolabeled RGD peptides may be useful as tumor specific imaging agents. In this research, cyclised peptides containing Arg-Gly-Asp (RGD) and Arg-Gly-Glu (RGE, as control) residues were conjugated with HYNIC and labeled with (99m)Tc. The goal was to evaluate the influence of co-ligand, either tricine or ethylenediamine-N,N'-diacetic acid (EDDA) on protein and integrin binding and on cellular uptake in culture. The n-octanol/water partition coefficient, binding to bovine serum albumin (BSA) and human umbilical vein endothelial (HUVE) cells, and cell lysate distributions of the radiolabeled peptides were evaluated. The co-ligands had a significant effect on the labeling efficiency of the HYNIC conjugates and on certain properties of the (99m)Tc complexes. The labeling efficiency with tricine was 10 fold higher and BSA binding was over 8 fold greater compared to EDDA. Both RGD labels showed higher (6 to 28 fold) binding to HUVE cells than that of the RGE labels, indicating binding specificity. After cell-lysis, only a small percentage of the total RGD label that accumulated in the cells was found bound to cellular proteins (9% of RGD/tricine and 5% of RGD/EDDA), implying that over 90% of the radiolabeled peptides were internalized for both radiolabeled RGDs. The number of the RGD molecules bound to proteins was estimated to be approximately three per cell, suggesting that only a small number of alpha(V)beta(3) integrin proteins are expressed on the cells. Apart from the differences in radiolabeling, the only important effect of substituting EDDA for tricine as co-ligand on the HYNIC-peptides was the lower degree of serum protein binding. In spite of the lower serum protein binding potential, in vivo tumor accumulation of the RGD/EDDA may not be improved compared to RGD/tricine since quantitation of the cell binding results suggests that the number of alpha(V)beta(3) integrin proteins per cell might be limited.

  7. Amino acids and peptides. XXXII: A bifunctional poly(ethylene glycol) hybrid of fibronectin-related peptides.

    PubMed

    Maeda, M; Izuno, Y; Kawasaki, K; Kaneda, Y; Mu, Y; Tsutsumi, Y; Lem, K W; Mayumi, T

    1997-12-18

    An amino acid type poly(ethylene glycol) (aaPPEG) was prepared and its application to a drug carrier was examined. The peptides, Arg-Gly-Asp (RGD) and Glu-Ile-Leu-Asp-Val (EILDV) which were reported as active fragments of Fibronectin (a cell adhesion protein), were conjugated with aaPEG (molecular weight, 10,000). The hybrid, RGD-aaPEG-EILDV, was prepared by a combination of the solid-phase method and the solution method. Antiadhesive activity of the peptides was not lost by its hybrid formation with the large aaPEG molecule. A mixture of RGD (0.43 mmol) and EILDV (0.43 mmol) did not demonstrate an antiadhesive effect, but the hybrid containing 0.43 mmol of each peptide did exhibit this effect.

  8. Molecularly imprinted polymers for RGD selective recognition and separation.

    PubMed

    Papaioannou, Emmanuel; Koutsas, Christos; Liakopoulou-Kyriakides, Maria

    2009-03-01

    Molecularly imprinted polymers that could recognize the tripeptide Arg-Gly-Asp have been produced with the use of two functional monomers and three different cross-linkers, respectively. Methacrylic acid and acrylamide were used as functional monomers and the role of the ethylene glycol dimethacrylate, trimethylpropane trimethacrylate and N,N'-methylene-bisacrylamide as crosslinking monomers, was investigated on their recognition capability. The % net rebinding and the imprinting factor values were obtained, giving for the methacrylic acid-trimethylpropane trimethacrylate polymer the highest values 12.3% and 2.44, respectively. In addition, this polymer presented lower dissociation constant (K(D)) value and the higher B (max)% of theoretical total binding sites than all the other polymers. Rebinding experiments with Lys-Gly-Asp, an analogue of Arg-Gly-Asp, and other different peptides, such as cholecystokinin C-terminal tri- and pentapeptide and gramicidin, further indicated the selectivity of methacrylic acid-trimethylpropane trimethacrylate copolymer for Arg-Gly-Asp giving specific selectivity factor values 1.27, 1.98, 1.31 and 1.67, respectively.

  9. Matrix regulation of skeletal cell apoptosis II: role of Arg-Gly-Asp-containing peptides.

    PubMed

    Perlot, Robert L; Shapiro, Irving M; Mansfield, Kyle; Adams, Christopher S

    2002-01-01

    This investigation was based on the assumption that arg-gly-asp (RGD)-containing peptides are released from the extracellular matrix of bone and cartilage during the remodeling cycle. We asked the question: Can RGD peptides influence skeletal cell viability? Primary human osteoblasts, mouse MC-3T3-E1 cells, and chick chondrocytes were incubated with purified RGD-containing peptides and cell viability was determined. The RGD peptide did not kill osteoblasts, chondrocytes, or MC-3T3-E1 cells. In contrast, RGDS and GRGDSP peptides killed all three cell types. Osteoblast death was quite rapid, occurring within 6 h of treatment. transferase uridyl mediated nick end labeling (TUNEL) and transmission electron microscopy (TEM) analysis indicated that death was mediated by apoptosis. To learn if mitochondria transduced the death signal, cells were treated with RGDS and organelle function was evaluated using a voltage-sensitive fluorescent probe. It was observed that there was no net loss of fluorescence and, hence, it was concluded that mitochondria were not the primary effectors of the apoptotic response. Experiments were performed with enzyme inhibitors to determine the import of the caspase pathway on RGDS-mediated osteoblast apoptosis. Results of these studies, as well as a study conducted using a fluorescent substrate, pointed to caspase 3 mediating the effector stage of the apoptotic process. Finally, using a purified labeled-RGDS peptide, we showed that the molecule was not restricted by the plasma membrane because it was accumulated in the cytosolic compartment. Results of the investigation support the view that resorption of the extracellular matrix generates peptide products that can induce apoptosis of vicinal cells.

  10. Conformational analysis of a modified RGD adhesive sequence.

    PubMed

    Triguero, Jordi; Zanuy, David; Alemán, Carlos

    2017-02-01

    The conformational preferences of the Arg-GlE-Asp sequence, where GlE is an engineered amino acid bearing a 3,4-ethylenedioxythiophene (EDOT) ring as side group, have been determined combining density functional theory calculations with a well-established conformational search strategy. Although the Arg-GlE-Asp sequence was designed to prepare a conducting polymer-peptide conjugate with excellent electrochemical and bioadhesive properties, the behavior of such hybrid material as adhesive biointerface is improvable. Results obtained in this work prove that the bioactive characteristics of the parent Arg-Gly-Asp sequence become unstable in Arg-GlE-Asp because of both the steric hindrance caused by the EDOT side group and the repulsive interactions between the oxygen atoms belonging to the backbone amide groups and the EDOT side group. Detailed analyses of the conformational preferences identified in this work have been used to re-engineer the Arg-GlE-Asp sequence for the future development of a new electroactive conjugate with improved bioadhesive properties. The preparation of this new conjugate is in progress. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  11. RGD and polyhistidine tumor homing peptides potentiates the action of human Maspin as an antineoplastic candidate.

    PubMed

    Yin, Runting; Guo, Le; Zhang, Jie; Liu, Guangzhao; Yao, Wenjuan; Zhu, Hongyan; Xu, Xiaole; Zhang, Wei

    2016-07-01

    Maspin, a non-inhibitory member of serine protease family, acts as an effective tumor suppressor by inhibiting cell inhesion and mobility. We found that exogenous wild-type rMaspin had a low effect on tumor growth in vivo. However, when the peptide Arg-Gly-Asp-hexahistidine (RGD-6His) was introduced into rMaspin, the modified rMaspin showed significant inhibitory activity in angiogenic assays and tumor-bearing animal models. Overall, our data suggested that both the RGD and hexahistidine fragments contributed to improve the fusion protein activity and polyhistidine peptide could be considered as flexible linker to separate RGD and Maspin moieties to avoid function interference. Besides, it is an efficient tag to achieve purified recombinant proteins. Furthermore, rMaspin fusing with RGD and hexahistidine could be a viable anticancer candidate.

  12. The Rho ADP-ribosylating C3 exoenzyme binds cells via an Arg-Gly-Asp motif.

    PubMed

    Rohrbeck, Astrid; Höltje, Markus; Adolf, Andrej; Oms, Elisabeth; Hagemann, Sandra; Ahnert-Hilger, Gudrun; Just, Ingo

    2017-10-27

    The Rho ADP-ribosylating C3 exoenzyme (C3bot) is a bacterial protein toxin devoid of a cell-binding or -translocation domain. Nevertheless, C3 can efficiently enter intact cells, including neurons, but the mechanism of C3 binding and uptake is not yet understood. Previously, we identified the intermediate filament vimentin as an extracellular membranous interaction partner of C3. However, uptake of C3 into cells still occurs (although reduced) in the absence of vimentin, indicating involvement of an additional host cell receptor. C3 harbors an Arg-Gly-Asp (RGD) motif, which is the major integrin-binding site, present in a variety of integrin ligands. To check whether the RGD motif of C3 is involved in binding to cells, we performed a competition assay with C3 and RGD peptide or with a monoclonal antibody binding to β1-integrin subunit and binding assays in different cell lines, primary neurons, and synaptosomes with C3-RGD mutants. Here, we report that preincubation of cells with the GRGDNP peptide strongly reduced C3 binding to cells. Moreover, mutation of the RGD motif reduced C3 binding to intact cells and also to recombinant vimentin. Anti-integrin antibodies also lowered the C3 binding to cells. Our results indicate that the RGD motif of C3 is at least one essential C3 motif for binding to host cells and that integrin is an additional receptor for C3 besides vimentin. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Radiolabeling of a cyclic RGD (cyclo Arg-Gly-Asp-d-Tyr-Lys) peptide using sodium hypochlorite as an oxidizing agent.

    PubMed

    Doll, Stephanie; Woolum, Karen; Kumar, Krishan

    2016-09-01

    A simple and rapid nonradioactive iodide labeling/radiolabeling method for peptides, using an inexpensive oxidizing agent such as sodium hypochlorite and a cyclic peptide, cRGDyK (cyclo Arg-Gly-Asp-d-Tyr-Lys), was developed in this work. Labeling reaction was optimized by conducting experiments under variable ratios of the reagents, the reaction times, and the pH. The study demonstrated that radiolabeling of the cyclic peptide was fast and pH independent. Monoiodinated and di-iodinated cRGDyK were formed under all conditions and varied with the ratio of the reagents and the reaction time. Total percent of the iodinated cRGDyK (monoiodinated and di-iodinated cRGDyK) varied between 44 and 100 depending on the reaction conditions. Excess cyclic peptide over equal molar ratio of sodium iodide and sodium hypochlorite yielded in predominant amounts of monoiodinated cRGDyK, ie, >60% under 2:1:1 ratio and ~88% under 5:1:1 ratio of cRGDyK:sodium iodide:sodium hypochlorite. Copyright © 2016 John Wiley & Sons, Ltd.

  14. RGD peptide-displaying M13 bacteriophage/PLGA nanofibers as cell-adhesive matrices for smooth muscle cells

    NASA Astrophysics Data System (ADS)

    Shin, Yong Cheol; Lee, Jong Ho; Jin, Oh Seong; Lee, Eun Ji; Jin, Lin Hua; Kim, Chang-Seok; Hong, Suck Won; Han, Dong-Wook; Kim, Chuntae; Oh, Jin-Woo

    2015-01-01

    Extracellular matrices (ECMs) are network structures that play an essential role in regulating cellular growth and differentiation. In this study, novel nanofibrous matrices were fabricated by electrospinning M13 bacteriophage and poly(lactic- co-glycolic acid) (PLGA) and were shown to be structurally and functionally similar to natural ECMs. A genetically-engineered M13 bacteriophage was constructed to display Arg-Gly-Asp (RGD) peptides on its surface. The physicochemical properties of RGD peptide-displaying M13 bacteriophage (RGD-M13 phage)/PLGA nanofibers were characterized by using scanning electron microscopy and Fourier-transform infrared spectroscopy. We used immunofluorescence staining to confirm that M13 bacteriophages were homogenously distributed in RGD-M13 phage/PLGA matrices. Furthermore, RGD-M13 phage/PLGA nanofibrous matrices, having excellent biocompatibility, can enhance the behaviors of vascular smooth muscle cells. This result suggests that RGD-M13 phage/PLGA nanofibrous matrices have potentials to serve as tissue engineering scaffolds.

  15. An Arg-Gly-Asp peptide stimulates Ca2+ efflux from osteoclast precursors through a novel mechanism

    NASA Technical Reports Server (NTRS)

    Yamakawa, K.; Duncan, R.; Hruska, K. A.

    1994-01-01

    We examined the effect of a peptide containing the Arg-Gly-Asp (RGD) sequence on 45Ca2+ efflux from osteoclast precursors. 45Ca(2+)-loaded osteoclast precursors were treated with GRGDSP (170 microM) for 10 min after 30 min of basal perfusion with a bicarbonate-containing buffer. GRGDSP significantly increased fractional efflux of Ca2+ from treated cells compared with vehicle-treated cells (P < 0.01) or cells treated with up to 200 micrograms/ml of a control peptide containing GRGESP. The effect of RGD was sustained for 15 min after the peptide was removed from the perfusate, but control levels of Ca2+ efflux returned by 1 h. The Ca2+ efflux effect of GRGDSP was most likely due to activation of the plasma membrane Ca(2+)-adenosinetriphosphatase (Ca(2+)-ATPase) pump, as indicated by its inhibition with vanadate and a calmodulin antagonist, N-(4-aminobutyl)-5-chloro-2-naphthalenesulfonamide, and the absence of an effect of Na+/Ca2+ exchange inhibition. An inhibitor of cyclic nucleotide-dependent protein kinases, N-[2-(methylamino)ethyl]-5-isoquinoline-sulfonamide (0.1 mM), failed to inhibit GRGDSP-stimulated Ca2+ efflux. However, genistein and herbimycin A, inhibitors of protein-tyrosine kinases, blocked Ca2+ efflux stimulated by GRGDSP. The results indicate that RGD sequences of matrix proteins may stimulate Ca2+ efflux from osteoclasts through activation of protein-tyrosine kinases and suggest that GRGDSP-stimulated Ca2+ efflux is mediated via the plasma membrane Ca(2+)-ATPase.

  16. Highly sensitive SERS analysis of the cyclic Arg-Gly-Asp peptide ligands of cells using nanogap antennas.

    PubMed

    Portela, Alejandro; Yano, Taka-Aki; Santschi, Christian; Martin, Olivier J F; Tabata, Hitoshi; Hara, Masahiko

    2017-02-01

    The cyclic RGD (cRGD) peptide ligands of cells have become widely used for treating several cancers. We report a highly sensitive analysis of c(RGDfC) using surface enhanced Raman spectroscopy (SERS) using single dimer nanogap antennas in aqueous environment. Good agreement between characteristic peaks of the SERS and the Raman spectra of bulk c(RGDfC) with its peptide's constituents were observed. The exhibited blinking of the SERS spectra and synchronization of intensity fluctuations, suggest that the SERS spectra acquired from single dimer nanogap antennas was dominated by the spectrum of single to a few molecules. SERS spectra of c(RGDfC) could be used to detect at the nanoscale, the cells' transmembrane proteins binding to its ligand. SERS of cyclic RGD on nanogap antenna. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. iRGD-conjugated DSPE-PEG2000 nanomicelles for targeted delivery of salinomycin for treatment of both liver cancer cells and cancer stem cells.

    PubMed

    Mao, Xiaoli; Liu, Junjie; Gong, Zhirong; Zhang, He; Lu, Ying; Zou, Hao; Yu, Yuan; Chen, Yan; Sun, Zhiguo; Li, Wei; Li, Bohua; Gao, Jie; Zhong, Yanqiang

    2015-01-01

    To develop novel iRGD (internalizing Arg-Gly-Asp peptide)-conjugated DSPE-PEG2000 nanomicelles (M-SAL-iRGD) for delivery of salinomycin to both liver cancer cells and cancer stem cells (CSCs). The characterization, antitumor activity and mechanism of action of M-SAL-iRGD were evaluated. M-SAL-iRGD possessed a small size of around 10 nm, and drug encapsulation efficacy higher than 90%. M-SAL-iRGD showed significantly increased cytotoxic effect toward both nontargeted M-SAL (salinomycin-loaded DSPE-PEG2000 nanomicelles) and salinomycin in both liver cancer cells and CSCs. The tissue distribution and antitumor assays in mice bearing liver cancer xenograft confirmed the superior penetration tumor efficacy and antitumor activity of M-SAL-iRGD. M-SAL-iRGD represent a potential effective nanomedicine against liver cancer.

  18. Synthetic PAMAM-RGD conjugates target and bind to odontoblast-like MDPC 23 cells and the predentin in tooth organ cultures.

    PubMed

    Hill, Elliott; Shukla, Rameshwer; Park, Steve S; Baker, James R

    2007-01-01

    Screening techniques now allow for the identification of small peptides that bind specifically to molecules like cells. However, despite the enthusiasm for this approach, single peptides often lack the binding affinity to target in vivo and regulate cell function. We took peptides containing the Arg-Gly Asp(RGD) motif that bind to the alpha Vbeta 3 integrin and have shown potential as therapeutics. To improve their binding affinity, we synthesized polyamidoamine (PAMAM) dendrimer-RGD conjugates that that contain 12-13 copies of the peptide. When cultured with human dermal microvessel endothelial cells (HDMEC), human vascular endothelial cells (HUVEC), or odontoblast-like MDPC-23 cells, the PAMAM dendrimer conjugate targets this receptor in a manner that is both time- and dose-dependent. Finally, this conjugate selectively targets RGD binding sites in the predentin of human tooth organ cultures. Taken together, these studies provide proof of principle that synthetic PAMAM-RGD conjugates could prove useful as carriers for the tissue-specific delivery of integrin-targeted therapeutics or imaging agents and could be used to engineer tissue regeneration.

  19. Pathogenetic role of Arg-Gly-Asp-recognizing integrins in acute renal failure. off.

    PubMed Central

    Goligorsky, M S; DiBona, G F

    1993-01-01

    Reorientation of the alpha 3 subunit of integrins from predominantly basal to the apical cell surface of cultured renal tubular epithelial cells subjected to oxidant stress has previously been demonstrated. The present study was designed to assess functional competence of ectopically expressed apical integrins. Cell-cell adhesion assay revealed enhanced cytoatractant properties of stressed cells. Stressed epithelial cells exhibited specific recognition and binding of laminin-coated latex beads. These processes were inhibited with the peptide Gly-Arg-Gly-Asp-Asn-Pro (GRGDNP) suggesting a role of RGD-recognizing integrins in augmented adhesion to stressed cells. Given that such enhanced adhesion in in vivo acute renal failure may govern tubular obstruction by desquamated epithelium, a physiological marker of patency of tubular lumen, proximal tubular pressure, was monitored in rats subjected to 60 min of renal ischemia followed by reperfusion. Proximal tubular pressure increased 2-fold after 2 hr of reperfusion in animals that had undergone 60 min of ischemia. Infusion of GRGDNP into the renal artery during reperfusion period virtually abolished an increase in proximal tubular pressure observed in ischemic acute renal failure. These in vitro and in vivo findings are consistent with the hypothesis that RGD-recognizing integrins play an important role in the pathogenesis of tubular obstruction in ischemic acute renal failure. Images Fig. 2 Fig. 3 PMID:8516318

  20. Connection between integrins and cell activation in rat adrenal glomerulosa cells: a role for Arg-Gly-Asp peptide in the activation of the p42/p44(mapk) pathway and intracellular calcium.

    PubMed

    Campbell, Shirley; Otis, Melissa; Côté, Mylène; Gallo-Payet, Nicole; Payet, Marcel Daniel

    2003-04-01

    Integrins are responsible for adhesion and activation of several intracellular cascades. The present study was aimed at determining whether the interaction between fibronectin and integrins could generate pathways involved in physiological functions of rat adrenal glomerulosa cells. Immunofluorescence studies and adhesion assays showed that fibronectin was the best matrix in promoting the formation of focal adhesion. Binding of glomerulosa cells to fibronectin, but not to collagen I or poly-L-lysine, involved the integrin-binding sequence Arg-Gly-Asp (RGD). Activation of glomerulosa cells with Arg-Gly-Asp-Ser (RGDS) induced an increase in [Ca(2+)](i), whereas fibronectin triggered a release of Ca(2+) from InsP(3)-sensitive Ca(2+) stores. Aldosterone secretion induced by ACTH, angiotensin II, and RGDS and proliferation were improved on fibronectin, compared with poly-L-lysine. The RGDS peptide induced a transient increase in the activity of the p42/p44(mapk), independent of phosphatidylinositol-3 kinase and protein kinase C. Integrins alpha(5) and alpha(V) as well as their fibronectin receptor partners beta(1) and beta(3), were identified. These results suggest that in rat adrenal glomerulosa cells, binding of the alpha(5)beta(1), alpha(v)beta(1), or alpha(v)beta(3) integrins to fibronectin is involved in the generation of two important signaling events, increase in intracellular calcium, and activation of the p42/p44(mapk) cascade, leading to cell proliferation and aldosterone secretion.

  1. Phenotype of hepatocyte spheroids in Arg-GLY-Asp (RGD) containing a thermo-reversible extracellular matrix.

    PubMed

    Park, Keun-Hong; Bae, You Han

    2002-07-01

    The spheroid of specific cells is often regarded as the better form in artificial organs and mammalian cell bioreactors for improved cell-specific functions. In this study, freshly harvested primary rat hepatocytes, which had been cultivated as spheroids and entrapped in a synthetic thermo-reversible extracellular matrix, were examined for differentiated morphology and enhanced liver-specific functions as compared to a control set (hepatocytes in single-cell form). A copolymer of N-isopropylacrylamide (98 mole % in the feed) and acrylic acid (poly(NiPAAm-co-AAc)), and the adhesion molecule, an Arg-Gly-Asp (RGD)-incorporated thermo-reversible matrix, were used to entrap hepatocytes in the form of either spheroids or single cells. In a 28-day culture period, the spheroids in the RGD-incorporated gel maintained higher viability and produced albumin and urea at constant rates, while there was lower cell viability and less albumin secretion by the spheroids in p(NiPAAm-co-AAc). Hepatocytes cultured as spheroids in the RGD-incorporated gel would constitute a potentially useful three-dimensional cell system for application in a bio-artificial liver device.

  2. Graphene oxide-stimulated myogenic differentiation of C2C12 cells on PLGA/RGD peptide nanofiber matrices

    NASA Astrophysics Data System (ADS)

    Shin, Y. C.; Lee, J. H.; Kim, M. J.; Hong, S. W.; Oh, J.-W.; Kim, C.-S.; Kim, B.; Hyun, J. K.; Kim, Y.-J.; Han, D.-W.

    2015-07-01

    During the last decade, much attention has been paid to graphene-based nanomaterials because they are considered as potential candidates for biomedical applications such as scaffolds for tissue engineering and substrates for the differentiation of stem cells. Until now, electrospun matrices composed of various biodegradable copolymers have been extensively developed for tissue engineering and regeneration; however, their use in combination with graphene oxide (GO) is novel and challenging. In this study, nanofiber matrices composed of poly(lactic-co-glycolic acid, PLGA) and M13 phage with RGD peptide displayed on its surface (RGD peptide-M13 phage) were prepared as extracellular matrix (ECM)-mimicking substrates. RGD peptide is a tripeptide (Arg-Gly-Asp) found on ECM proteins that promotes various cellular behaviors. The physicochemical properties of PLGA and RGD peptide-M13 phage (PLGA/RGD peptide) nanofiber matrices were characterized by atomic force microscopy, Fourier-transform infrared spectroscopy and thermogravimetric analysis. In addition, the growth of C2C12 mouse myoblasts on the PLGA/RGD peptide matrices was examined by measuring the metabolic activity. Moreover, the differentiation of C2C12 mouse myoblasts on the matrices when treated with GO was evaluated. The cellular behaviors, including growth and differentiation of C2C12 mouse myoblasts, were substantially enhanced on the PLGA/RGD peptide nanofiber matrices when treated with GO. Overall, these findings suggest that the PLGA/RGD peptide nanofiber matrices can be used in combination with GO as a novel strategy for skeletal tissue regeneration.

  3. Culturing INS-1 cells on CDPGYIGSR-, RGD- and fibronectin surfaces improves insulin secretion and cell proliferation.

    PubMed

    Kuehn, Carina; Dubiel, Evan A; Sabra, Georges; Vermette, Patrick

    2012-02-01

    Rat insulinoma cells (INS-1), an immortalized pancreatic beta cell line, were cultured on low-fouling carboxymethyl-dextran (CMD) layers bearing fibronectin, the tripeptide Arg-Gly-Asp (RGD) or CDPGYIGSR, a laminin nonapeptide. INS-1 cells were non-adherent on CMD and RGE but adhered to fibronectin- and peptide-coated CMD surfaces and to tissue culture polystyrene (TCPS). On CMD bearing fibronectin and the peptides, INS-1 cells showed higher glucose-stimulated insulin secretion compared to those on TCPS, bare CMD and RGE. INS-1 cells experienced a net cell growth, with the lowest found after 7 days on CMD and the highest on fibronectin. Similarly, cells on RGD and CDPGYIGSR showed lower net growth rates than those on fibronectin. Expression of E-cadherin and integrins αvβ3 and α5 were similar between the conditions, except for α5 expression on fibronectin, RGD and CDPGYIGSR. Larger numbers of Ki-67-positive cells were found on CDPGYIGSR, TCPS, fibronectin and RGD. Cells in all conditions expressed Pdx1. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, B.; Cousot, D.; Trzeciak, A.

    The platelet glycoprotein IIb-IIIa complex (GP IIb-IIIa) is a member of the integrin receptor family that recognizes adhesive proteins containing the Arg-Gly-Asp (RGD) sequence. In the present study the binding characteristics of the synthetic hexapeptide Tyr-Asn-Arg-Gly-Asp-Ser (YNRGDS, a sequence present in the fibrinogen alpha-chain at position 570-575) to purified GP IIb-IIIa were determined by equilibrium dialysis. The binding of 125I-YNRGDS to GP IIb-IIIa was specific, saturable, and reversible. The apparent dissociation constant was 1.0 +/- 0.2 microM, and the maximal binding capacity was 0.92 +/- 0.02 mol of 125I-YNRGDS/mol of GP IIb-IIIa, indicating that GP IIb-IIIa contains a single bindingmore » site for RGD peptides. The binding of 125I-YNRGDS to purified GP IIb-IIIa showed many of the characteristics of fibrinogen binding to activated platelets: the binding was inhibited by fibrinogen, by the monoclonal antibody A2A9, and by the dodecapeptide from the C terminus of the fibrinogen gamma-chain. In addition, the binding of 125I-YNRGDS to GP IIb-IIIa was divalent cation-dependent. Our data suggest that two divalent cation binding sites must be occupied for YNRGDS to bind: one site is specific for calcium and is saturated at 1 microM free Ca2+, whereas the other site is less specific and reaches saturation at millimolar concentrations of either Ca2+ or Mg2+. The results of the present study support the hypothesis that the RGD domains within the adhesive proteins are responsible for their binding to GP IIb-IIIa.« less

  5. Synthesis and antibacterial activity of new peptides from Alfalfa RuBisCO protein hydrolysates and mode of action via a membrane damage mechanism against Listeria innocua.

    PubMed

    Kobbi, Sabrine; Nedjar, Naima; Chihib, Nourdine; Balti, Rafik; Chevalier, Mickael; Silvain, Amandine; Chaabouni, Semia; Dhulster, Pascal; Bougatef, Ali

    2018-02-01

    In this work we evaluated the mode of action of six new synthesized peptides (Met-Asp-Asn; Glu-leu-Ala-Ala-Ala-Cys; Leu-Arg-Asp-Asp-Phe; Gly-Asn-Ala-Pro-Gly-Ala-Val-Ala; Ala-Leu-Arg-Met-Ser-Gly and Arg-Asp-Arg-Phe-Leu), previously identified, from the most active peptide fractions of RuBisCO peptic hydrolysate against Listeria innocua via a membrane damage mechanism. Antibacterial effect and the minimum inhibitory concentrations (MIC) of these peptides were evaluated against six strains and their hemolytic activities towards bovine erythrocytes were determined. Prediction of the secondary structure of peptides indicated that these new antibacterial peptides are characterized by a short peptide chains (3-8 amino acid) and a random coli structure. Moreover, it was observed that one key characteristic of antibacterial peptides is the presence of specific amino acids such as cysteine, glycine, arginine and aspartic acid. In addition the determination of the extracellular potassium concentration revealed that treatment with pure RuBisCO peptides could cause morphological changes of L. innocua and destruction of the cell integrity via irreversible membrane damage. The results could provide information for investigating the antibacterial model of antibacterial peptides derived from RuBisCO protein hydrolysates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Engineered peptide-based nanobiomaterials for electrochemical cell chip.

    PubMed

    Kafi, Md Abdul; Cho, Hyeon-Yeol; Choi, Jeong-Woo

    2016-01-01

    Biomaterials having cell adhesion ability are considered to be integral part of a cell chip. A number of researches have been carried out to search for a suitable material for effective immobilization of cell on substrate. Engineered ECM materials or their components like collagen, Poly-l-Lysine (PLL), Arg-Gly-Asp (RGD) peptide have been extensively used for mammalian cell adhesion and proliferation with the aim of tissue regeneration or cell based sensing application. This review focuses on the various approaches for two- and three-dimensionally patterned nanostructures of a short peptide i.e. RGD peptide on chip surfaces together with their effects on cell behaviors and electrochemical measurements. Most of the study concluded with positive remarks on the well-oriented engineered RGD peptide over their homogenous thin film. The engineered RGD peptide not only influences cell adhesion, spreading and proliferation but also their periodic nano-arrays directly influence electrochemical measurements of the chips. The electrochemical signals found to be enhanced when RGD peptides were used in well-defined two-dimensional nano-arrays. The topographic alteration of three-dimensional structure of engineered RGD peptide was reported to be suitably contacted with the integrin receptors of cellular membrane which results indicated the enhanced cell-electrode adhesion and efficient electron exchange phenomenon. This enhanced electrochemical signal increases the sensitivity of the chip against the target analytes. Therefore, development of engineered cellular recognizable peptides and its 3D topological design for fabrication of cell chip will provide the synergetic effect on bio-affinity, sensitivity and accuracy for the in situ real-time monitoring of analytes.

  7. Effect of short peptides on expression of signaling molecules in organotypic pineal cell culture.

    PubMed

    Khavinson, V Kh; Linkova, N S; Chalisova, N I; Dudkov, A V; Koncevaya, E A

    2011-11-01

    We demonstrated the influence of short peptides on the expression of signaling molecules in organotypic culture of the pineal gland from 3-month-old rats. Peptides Ala-Glu-Asp-Gly and Lys-Glu-Asp stimulate the expression of proliferative protein Ki-67 in pineal gland culture. These peptides as well as Glu-Asp-Arg and Lys-Glu do not affect the expression of apoptosis marker AIF. The synthesis of transcription factor CGRP by pinealocytes was stimulated only by Ala-Glu-Asp-Gly. Thus, peptide Ala-Glu-Asp-Gly tissue-specifically stimulates proliferative and secretory activities of pinealocytes, which can be used for recovery of pineal gland functions at the molecular level.

  8. Mechanisms underlying the attachment and spreading of human osteoblasts: from transient interactions to focal adhesions on vitronectin-grafted bioactive surfaces.

    PubMed

    Brun, Paola; Scorzeto, Michele; Vassanelli, Stefano; Castagliuolo, Ignazio; Palù, Giorgio; Ghezzo, Francesca; Messina, Grazia M L; Iucci, Giovanna; Battaglia, Valentina; Sivolella, Stefano; Bagno, Andrea; Polzonetti, Giovanni; Marletta, Giovanni; Dettin, Monica

    2013-04-01

    The features of implant devices and the reactions of bone-derived cells to foreign surfaces determine implant success during osseointegration. In an attempt to better understand the mechanisms underlying osteoblasts attachment and spreading, in this study adhesive peptides containing the fibronectin sequence motif for integrin binding (Arg-Gly-Asp, RGD) or mapping the human vitronectin protein (HVP) were grafted on glass and titanium surfaces with or without chemically induced controlled immobilization. As shown by total internal reflection fluorescence microscopy, human osteoblasts develop adhesion patches only on specifically immobilized peptides. Indeed, cells quickly develop focal adhesions on RGD-grafted surfaces, while HVP peptide promotes filopodia, structures involved in cellular spreading. As indicated by immunocytochemistry and quantitative polymerase chain reaction, focal adhesions kinase activation is delayed on HVP peptides with respect to RGD while an osteogenic phenotypic response appears within 24h on osteoblasts cultured on both peptides. Cellular pathways underlying osteoblasts attachment are, however, different. As demonstrated by adhesion blocking assays, integrins are mainly involved in osteoblast adhesion to RGD peptide, while HVP selects osteoblasts for attachment through proteoglycan-mediated interactions. Thus an interfacial layer of an endosseous device grafted with specifically immobilized HVP peptide not only selects the attachment and supports differentiation of osteoblasts but also promotes cellular migration. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Facile and selective covalent grafting of an RGD-peptide to electrospun scaffolds improves HUVEC adhesion.

    PubMed

    Dettin, Monica; Zamuner, Annj; Roso, Martina; Iucci, Giovanna; Samouillan, Valerie; Danesin, Roberta; Modesti, Michele; Conconi, Maria Teresa

    2015-10-01

    The development of a biomimetic surface able to promote endothelialization is fundamental in the search for blood vessel substitutes that prevent the formation of thrombi or hyperplasia. This study aims at investigating the effect of functionalization of poly-ε-caprolactone or poly(L-lactic acid-co-ɛ-caprolactone) electrospun scaffolds with a photoreactive adhesive peptide. The designed peptide sequence contains four Gly-Arg-Gly-Asp-Ser-Pro motifs per chain and a p-azido-Phe residue at each terminus. Different peptide densities on the scaffold surface were obtained by simply modifying the peptide concentration used in pretreatment of the scaffold before UV irradiation. Scaffolds of poly-ε-caprolactone embedded with adhesive peptides were produced to assess the importance of peptide covalent grafting. Our results show that the scaffolds functionalized with photoreactive peptides enhance adhesion at 24 h with a dose-dependent effect and control the proliferation of human umbilical vein endothelial cells, whereas the inclusion of adhesive peptide in the electrospun matrices by embedding does not give satisfactory results. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  10. Hypertonicity-induced transmitter release at Drosophila neuromuscular junctions is partly mediated by integrins and cAMP/protein kinase A

    NASA Technical Reports Server (NTRS)

    Suzuki, Kazuhiro; Grinnell, Alan D.; Kidokoro, Yoshiaki

    2002-01-01

    The frequency of quantal transmitter release increases upon application of hypertonic solutions. This effect bypasses the Ca(2+) triggering step, but requires the presence of key molecules involved in vesicle fusion, and hence could be a useful tool for dissecting the molecular process of vesicle fusion. We have examined the hypertonicity response at neuromuscular junctions of Drosophila embryos in Ca(2+)-free saline. Relative to wild-type, the response induced by puff application of hypertonic solution was enhanced in a mutant, dunce, in which the cAMP level is elevated, or in wild-type embryos treated with forskolin, an activator of adenylyl cyclase, while protein kinase A (PKA) inhibitors decreased it. The response was also smaller in a mutant, DC0, which lacks the major subunit of PKA. Thus the cAMP/PKA cascade is involved in the hypertonicity response. Peptides containing the sequence Arg-Gly-Asp (RGD), which inhibit binding of integrins to natural ligands, reduced the response, whereas a peptide containing the non-binding sequence Arg-Gly-Glu (RGE) did not. A reduced response persisted in a mutant, myospheroid, which expresses no integrins, and the response in DC0 was unaffected by RGD peptides. These data indicate that there are at lease two components in the hypertonicity response: one that is integrin mediated and involves the cAMP/PKA cascade, and another that is not integrin mediated and does not involve the cAMP/PKA cascade.

  11. Effects of Arg-Gly-Asp sequence peptide and hyperosmolarity on the permeability of interstitial matrix and fenestrated endothelium in joints.

    PubMed

    Poli, A; Mason, R M; Levick, J R

    2004-09-01

    The aims were to assess the contribution of arg-gly-asp (RGD) mediated cell integrin-matrix bonds to interstitial hydraulic resistance and to fenestrated endothelial permeability in joints. Joint fluid is generated by filtration from fenestrated capillaries and drains through a fibronectin-rich synovial intercellular matrix. The role of parenchymal cell-matrix bonding in determining tissue hydraulic resistance is unknown. The knee cavity of anesthetized rabbits was infused with saline or the competitive hexapeptide blocker GRGDTP, with or without added osmotic stress (600 mosm saline). Intra-articular pressure Pj, net trans-synovial drainage rate s, and the permeation of Evans blue-labeled albumin (EVA) from plasma into the joint cavity were measured. GRGDTP increased the hydraulic conductance of the synovial drainage pathway, ds/dPj, by 71% (p =.02, paired t test, n = 6 animals). Synovial plasma EVA clearance (control 7.1 +/- 0.8 microL h-1, mean +/- SEM, n = 15) was unaffected by GRGDTP (7.0 +/- 2.3 microL h(-1), n = 6) or hyperosmolarity (4.9 +/- 1.5 microL h(-1), n = 8) but was increased by GRGDTP and hyperosmolarity together (15.9 +/- 4.8 microL h(-1), n = 5) (p =.01, ANOVA). Changes in dPj/dt evoked by GRGDTP plus hyperosmolarity, but neither alone, demonstrated increased microvascular filtration into the joint cavity (p <.001, ANOVA), as did changes in fluid absorption from the infusion system at fixed Pj. RGD-mediated bonds between the parenchymal cells and interstitial polymers reduce the interstitial hydraulic conductance by 42%. This helps to retain the lubricating fluid inside a joint cavity. RGD-mediated bonds also support the macromolecular barrier function of fenestrated endothelium, but in vivo this is evident only in stressed endothelium (cf. in vitro).

  12. Effects of amino acids on melanoma targeting and clearance properties of Tc-99m-labeled Arg-X-Asp-conjugated α-melanocyte stimulating hormone peptides.

    PubMed

    Flook, Adam M; Yang, Jianquan; Miao, Yubin

    2013-11-14

    The purpose of this study was to examine the effects of amino acids on melanoma targeting and clearance properties of new (99m)Tc-labeled Arg-X-Asp-conjugated α-melanocyte stimulating hormone (α-MSH) peptides. RSD-Lys-(Arg(11))CCMSH {c[Arg-Ser-Asp-DTyr-Asp]-Lys-Cys-Cys-Glu-His-dPhe-Arg-Trp-Cys-Arg-Pro-Val-NH2}, RNleD-Lys-(Arg(11))CCMSH, RPheD-Lys-(Arg(11))CCMSH, and RdPheD-Lys-(Arg(11))CCMSH peptides were synthesized and evaluated for their melanocortin-1 (MC1) receptor binding affinities in B16/F1 melanoma cells. The biodistribution of (99m)Tc-RSD-Lys-(Arg(11))CCMSH, (99m)Tc-RFD-Lys-(Arg(11))CCMSH, and (99m)Tc-RfD-Lys-(Arg(11))CCMSH were determined in B16/F1 melanoma-bearing C57 mice. The substitution of Gly with Ser, Phe, and dPhe increased the MC1 receptor binding affinities of the peptides, whereas the substitution of Gly with Nle decreased the MC1 receptor binding affinity of the peptide. (99m)Tc-RSD-Lys-(Arg(11))CCMSH exhibited the highest melanoma uptake (18.01 ± 4.22% ID/g) and the lowest kidney and liver uptake among these (99m)Tc-peptides. The B16/F1 melanoma lesions could be clearly visualized by SPECT/CT using (99m)Tc-RSD-Lys-(Arg(11))CCMSH as an imaging probe. It is desirable to reduce the renal uptake of (99m)Tc-RSD-Lys-(Arg(11))CCMSH to facilitate its potential therapeutic application.

  13. Effects of Amino Acids on Melanoma Targeting and Clearance Properties of Tc-99m-Labeled Arg-X-Asp-Conjugated α-Melanocyte Stimulating Hormone Peptides

    PubMed Central

    Flook, Adam M.; Yang, Jianquan; Miao, Yubin

    2013-01-01

    The purpose of this study was to examine the effects of amino acids on melanoma targeting and clearance properties of new 99mTc-labeled Arg-X-Asp-conjugated alpha-melanocyte stimulating hormone (α-MSH) peptides. RSD-Lys-(Arg11)CCMSH {c[Arg-Ser-Asp-dTyr-Asp]-Lys-Cys-Cys-Glu-His-dPhe-Arg-Trp-Cys-Arg-Pro-Val-NH2}, RNleD-Lys-(Arg11)CCMSH, RPheD-Lys-(Arg11)CCMSH and RdPheD-Lys-(Arg11)CCMSH peptides were synthesized and evaluated for their melanocortin-1 (MC1) receptor binding affinities in B16/F1 melanoma cells. The biodistribution of 99mTc-RSD-Lys-(Arg11)CCMSH, 99mTc-RFD-Lys-(Arg11)CCMSH and 99mTc-RfD-Lys-(Arg11)CCMSH were determined in B16/F1 melanoma-bearing C57 mice. The substitution of Gly with Ser, Phe and dPhe increased the MC1 receptor binding affinities of the peptides, whereas the substitution of Gly with Nle decreased the MC1 receptor binding affinity of the peptide. 99mTc-RSD-Lys-(Arg11)CCMSH exhibited the highest melanoma uptake (18.01 ± 4.22% ID/g) and the lowest kidney and liver uptake among these 99mTc-peptides. The B16/F1 melanoma lesions could be clearly visualized by SPECT/CT using 99mTc-RSD-Lys-(Arg11)CCMSH as an imaging probe. It is desirable to reduce the renal uptake of 99mTc-RSD-Lys-(Arg11)CCMSH to facilitate its potential therapeutic application. PMID:24131154

  14. Stability assessment of a new antithrombotic small peptide, Arg-Gly-Asp-Trp-Arg (RGDWR), and its derivative.

    PubMed

    Yang, Lijun; Zhang, Litao; Yan, Lihong; Zheng, Haifeng; Lu, Peifen; Chen, Junjun; Dai, Jie; Sun, Haibiao; Xu, Yong; Yang, Tao

    2017-08-01

    To assess the stabilities of Arg-Gly-Asp-Trp-Arg (RGDWR, designated as RWR), a new patented antithrombotic small peptide, and its derivative with ω-aminocaprylic acid on its N-terminus (ωRWR). RWR in rat plasma was decreased by between 32 and 48% after 4 h incubation on ice, indicating its instability in plasma. In contrast, ωRWR in plasma remained at 96-107%. Concentration changes were within 6.2% for ωRWR after storage in various conditions. ωRWR is therefore stable in rat plasma, as well as under different storage methods. Furthermore, ω-aminocaprylic acid added onto the RWR peptide did not affect its antiplatelet aggregation activity. A novel small peptide, ωRWR, has been developed with a good stability for possible antithrombotic use.

  15. Analysis of Arg-Gly-Asp mimetics and soluble receptor of tumour necrosis factor as therapeutic modalities for concanavalin A induced hepatitis in mice.

    PubMed Central

    Bruck, R; Shirin, H; Hershkoviz, R; Lider, O; Kenet, G; Aeed, H; Matas, Z; Zaidel, L; Halpern, Z

    1997-01-01

    BACKGROUND/AIMS: It has been shown that synthetic non-peptidic analogues of Arg-Gly-Asp, a major cell adhesive ligand of extracellular matrix, prevented an increase in serum aminotransferase activity, as a manifestation of concanavalin A induced liver damage in mice. This study examined the effects of an Arg-Gly-Asp mimetic on liver histology and cytokine release in response to concanavalin A administration, and the efficacy of soluble receptor of tumour necrosis factor (TNF) alpha in preventing hepatitis in this model of liver injury. METHODS: Mice were pretreated with either the Arg-Gly-Asp mimetic SF-6,5 or recombinant soluble receptor of TNF alpha before their inoculation with 10 mg/kg concanavalin A. Liver enzymes, histology, and the serum values of TNF alpha and interleukin (IL)6 were examined. RESULTS: The histopathological damage in the liver, and the concanavalin A induced release of TNF alpha and IL6 were significantly inhibited by the synthetic Arg-Gly-Asp mimetic (p < 0.001). Liver injury, manifested by the increase in serum aminotransferase and cytokines, as well as by histological manifestations of hepatic damage, was effectively prevented by pretreatment of the mice with the soluble TNF receptor (p < 0.001). CONCLUSIONS: This study confirms the efficacy of a synthetic Arg-Gly-Asp mimetic and soluble TNF receptor in the prevention of immune mediated liver damage in mice. Images PMID:9155591

  16. In vitro characterization of peptide-modified p(AAm-co-EG/AAc) IPN-coated titanium implants.

    PubMed

    Barber, Thomas A; Gamble, Lara J; Castner, David G; Healy, Kevin E

    2006-07-01

    Interpenetrating polymer networks (IPNs) of poly(acrylamide-co-ethylene glycol/acrylic acid) [p(AAm-co-EG/AAc)] functionalized with an -Arg-Gly-Asp- containing peptide derived from rat bone sialoprotein [bsp-RGD(15)] were grafted to titanium implants in an effort to modulate osteoblast behavior in vitro. Surface characterization data were consistent with the presence of an IPN, and ligand density measurements established that the range of peptide density on the modified implants spanned three orders of magnitude (0.01-20 pmol/cm2). In vitro biological characterization of the modified implants employing the primary rat calvarial osteoblast (RCO) model resulted in the identification of a critical ligand density (0.01

  17. Peri-implant bone formation and implant integration strength of peptide-modified p(AAM-co-EG/AAC) interpenetrating polymer network-coated titanium implants.

    PubMed

    Barber, Thomas A; Ho, James E; De Ranieri, Aladino; Virdi, Amarjit S; Sumner, Dale R; Healy, Kevin E

    2007-02-01

    Interpenetrating polymer networks (IPNs) of poly (acrylamide-co-ethylene glycol/acrylic acid) functionalized with an -Arg-Gly-Asp- (RGD) containing 15 amino acid peptides, derived from rat bone sialoprotein (bsp-RGD(15), were grafted to titanium implants in an effort to modulate bone formation in the peri-implant region in the rat femoral ablation model. Bone-implant contact (BIC) and bone formation within the medullary canal were determined using microcomputed tomography at 2 and 4 weeks postimplantation. BIC for bsp-RGD(15)-IPN implants was enhanced relative to hydroxyapatite tricalcium phosphate (HA-TCP) coated implants, but was similar to all other groups. Aggregate bone formation neither indicated a dose-dependent effect of bsp-RGD(15) nor a meaningful trend. Mechanical testing of implant fixation revealed that only the HA-TCP coated implants supported significant (>1 MPa) interfacial shear strength, despite exhibiting lower overall BIC, an indication that bone ingrowth into the rougher coating was the primary mode of implant fixation. While no evidence was found to support the hypothesis that bsp-RGD(15)-modified IPN coated implants significantly impacted bone-implant bonding, these results point to the lack of correlation between in vitro studies employing primary osteoblasts and in vivo wound healing in the peri-implant region. Copyright 2006 Wiley Periodicals, Inc.

  18. Dipeptidyl-peptidase IV inhibitory activity of peptides derived from tuna cooking juice hydrolysates.

    PubMed

    Huang, Shih-Li; Jao, Chia-Ling; Ho, Kit-Pan; Hsu, Kuo-Chiang

    2012-05-01

    The in vitro DPP-IV inhibitory activity of isolated peptides from of tuna cooking juice hydrolyzed by Protease XXIII (PR) and orientase (OR) was determined. The results showed that the peptide fractions with the molecular weight over 1,422 Da possessed the greatest DPP-IV inhibitory activity. The amino acid sequences of the three peptides isolated from PR and OR hydrolysates were identified by MALDI-TOF/TOF MS/MS, and they were Pro-Gly-Val-Gly-Gly-Pro-Leu-Gly-Pro-Ile-Gly-Pro-Cys-Tyr-Glu (1412.7 Da), Cys-Ala-Tyr-Gln-Trp-Gln-Arg-Pro-Val-Asp-Arg-Ile-Arg (1690.8 Da) and Pro-Ala-Cys-Gly-Gly-Phe-Try-Ile-Ser-Gly-Arg-Pro-Gly (1304.6 Da), while they showed the dose-dependent inhibition effect of DPP-IV with IC(50) values of 116.1, 78.0 and 96.4 μM, respectively. In vitro simulated gastrointestinal digestion retained or even improved the DPP-IV inhibitory activities of the three peptides. The results suggest that tuna cooking juice would be a good precursor of DPP-IV inhibitor, and the DPP-IV inhibitory peptides can successfully passed through the digestive tract. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Suppression of Eosinophil Integrins Prevents Remodeling of Airway Smooth Muscle in Asthma

    PubMed Central

    Januskevicius, Andrius; Gosens, Reinoud; Sakalauskas, Raimundas; Vaitkiene, Simona; Janulaityte, Ieva; Halayko, Andrew J.; Hoppenot, Deimante; Malakauskas, Kestutis

    2017-01-01

    Background: Airway smooth muscle (ASM) remodeling is an important component of the structural changes to airways seen in asthma. Eosinophils are the prominent inflammatory cells in asthma, and there is some evidence that they contribute to ASM remodeling via released mediators and direct contact through integrin–ligand interactions. Eosinophils express several types of outer membrane integrin, which are responsible for cell–cell and cell–extracellular matrix interactions. In our previous study we demonstrated that asthmatic eosinophils show increased adhesion to ASM cells and it may be important factor contributing to ASM remodeling in asthma. According to these findings, in the present study we investigated the effects of suppression of eosinophil integrin on eosinophil-induced ASM remodeling in asthma. Materials and Methods: Individual combined cell cultures of immortalized human ASM cells and eosinophils from peripheral blood of 22 asthmatic patients and 17 healthy controls were prepared. Eosinophil adhesion was evaluated using eosinophil peroxidase activity assay. Genes expression levels in ASM cells and eosinophils were measured using quantitative real-time PCR. ASM cell proliferation was measured using alamarBlue® solution. Eosinophil integrins were blocked by incubating with Arg-Gly-Asp-Ser peptide. Results: Eosinophils from the asthma group showed increased outer membrane α4β1 and αMβ2 integrin expression, increased adhesion to ASM cells, and overexpression of TGF-β1 compared with eosinophils from the healthy control group. Blockade of eosinophil RGD-binding integrins by Arg-Gly-Asp-Ser peptide significantly reduced adhesion of eosinophils to ASM cells in both groups. Integrin-blocking decreased the effects of eosinophils on TGF-β1, WNT-5a, and extracellular matrix protein gene expression in ASM cells and ASM cell proliferation in both groups. These effects were more pronounced in the asthma group compared with the control group. Conclusion: Suppression of eosinophil-ASM interaction via RGD-binding integrins attenuates eosinophil-induced ASM remodeling in asthma. Trial Registration: ClinicalTrials.gov Identifier: NCT02648074. PMID:28119625

  20. Discovery and in vivo evaluation of novel RGD-modified lipid-polymer hybrid nanoparticles for targeted drug delivery.

    PubMed

    Zhao, Yinbo; Lin, Dayong; Wu, Fengbo; Guo, Li; He, Gu; Ouyang, Liang; Song, Xiangrong; Huang, Wei; Li, Xiang

    2014-09-29

    In the current study, the lipid-shell and polymer-core hybrid nanoparticles (lpNPs) modified by Arg-Gly-Asp(RGD) peptide, loaded with curcumin (Cur), were developed by emulsification-solvent volatilization method. The RGD-modified hybrid nanoparticles (RGD-lpNPs) could overcome the poor water solubility of Cur to meet the requirement of intravenous administration and tumor active targeting. The obtained optimal RGD-lpNPs, composed of PLGA (poly(lactic-co-glycolic acid))-mPEG (methoxyl poly(ethylene- glycol)), RGD-polyethylene glycol (PEG)-cholesterol (Chol) copolymers and lipids, had good entrapment efficiency, submicron size and negatively neutral surface charge. The core-shell structure of RGD-lpNPs was verified by TEM. Cytotoxicity analysis demonstrated that the RGD-lpNPs encapsulated Cur retained potent anti-tumor effects. Flow cytometry analysis revealed the cellular uptake of Cur encapsulated in the RGD-lpNPs was increased for human umbilical vein endothelial cells (HUVEC). Furthermore, Cur loaded RGD-lpNPs were more effective in inhibiting tumor growth in a subcutaneous B16 melanoma tumor model. The results of immunofluorescent and immunohistochemical studies by Cur loaded RGD-lpNPs therapies indicated that more apoptotic cells, fewer microvessels, and fewer proliferation-positive cells were observed. In conclusion, RGD-lpNPs encapsulating Cur were developed with enhanced anti-tumor activity in melanoma, and Cur loaded RGD-lpNPs represent an excellent tumor targeted formulation of Cur which might be an attractive candidate for cancer therapy.

  1. Inclusion of an Arg-Gly-Asp receptor-recognition motif into the capsid protein of rabbit hemorrhagic disease virus enables culture of the virus in vitro.

    PubMed

    Zhu, Jie; Miao, Qiuhong; Tan, Yonggui; Guo, Huimin; Liu, Teng; Wang, Binbin; Chen, Zongyan; Li, Chuanfeng; Liu, Guangqing

    2017-05-26

    The fact that rabbit hemorrhagic disease virus (RHDV), an important member of the Caliciviridae family, cannot be propagated in vitro has greatly impeded the progress of investigations into the mechanisms of pathogenesis, translation, and replication of this and related viruses. In this study, we have successfully bypassed this obstacle by constructing a mutant RHDV (mRHDV) by using a reverse genetics technique. By changing two amino acids (S305R,N307D), we produced a specific receptor-recognition motif (Arg-Gly-Asp; called RGD) on the surface of the RHDV capsid protein. mRHDV was recognized by the intrinsic membrane receptor (integrin) of the RK-13 cells, which then gained entry and proliferated as well as imparted apparent cytopathic effects. After 20 passages, the titers of RHDV reached 1 × 10 4.3 50% tissue culture infectious dose (TCID 50 )/ml at 72 h. Furthermore, mRHDV-infected rabbits showed typical rabbit plague symptoms and died within 48-72 h. After immunization with inactivated mRHDV, the rabbits survived wild-type RHDV infection, indicating that mRHDV could be a candidate virus strain for producing a vaccine against RHDV infection. In summary, this study offers a novel strategy for overcoming the challenges of proliferating RHDV in vitro Because virus uptake via specific membrane receptors, several of which specifically bind to the RGD peptide motif, is a common feature of host cells, we believe that this the strategy could also be applied to other RNA viruses that currently lack suitable cell lines for propagation such as hepatitis E virus and norovirus. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Imaging of alpha(v)beta(3) expression by a bifunctional chimeric RGD peptide not cross-reacting with alpha(v)beta(5).

    PubMed

    Zannetti, Antonella; Del Vecchio, Silvana; Iommelli, Francesca; Del Gatto, Annarita; De Luca, Stefania; Zaccaro, Laura; Papaccioli, Angela; Sommella, Jvana; Panico, Mariarosaria; Speranza, Antonio; Grieco, Paolo; Novellino, Ettore; Saviano, Michele; Pedone, Carlo; Salvatore, Marco

    2009-08-15

    To test whether a novel bifunctional chimeric peptide comprising a cyclic Arg-Gly-Asp pentapeptide covalently bound to an echistatin domain can discriminate alpha(v)beta(3) from alpha(v)beta(5) integrin, thus allowing the in vivo selective visualization of alpha(v)beta(3) expression by single-photon and positron emission tomography (PET) imaging. The chimeric peptide was preliminarily tested for inhibition of alpha(v)beta(3)-dependent cell adhesion and competition of 125I-echistatin binding to membrane of stably transfected K562 cells expressing alpha(v)beta(3) (Kalpha(v)beta(3)) or alpha(v)beta(5) (Kalpha(v)beta(5)) integrin. The chimeric peptide was then conjugated with diethylenetriaminepentaacetic acid and labeled with 111In for single-photon imaging, whereas a one-step procedure was used for labeling the full-length peptide and a truncated derivative, lacking the last five C-terminal amino acids, with 18F for PET imaging. Nude mice bearing tumors from Kalpha(v)beta(3), Kalpha(v)beta(5), U87MG human glioblastoma, and A431 human epidermoid cells were subjected to single-photon and PET imaging. Adhesion and competitive binding assays showed that the novel chimeric peptide selectively binds to alpha(v)beta(3) integrin and does not cross-react with alpha(v)beta(5). In agreement with in vitro findings, single-photon and PET imaging studies showed that the radiolabeled chimeric peptide selectively localizes in tumor xenografts expressing alphavbeta3 and fails to accumulate in those expressing alpha(v)beta(5) integrin. When 18F-labeled truncated derivative was used for PET imaging, alphavbeta3- and alpha(v)beta(5)-expressing tumors were visualized, indicating that the five C-terminal amino acids are required to differentially bind the two integrins. Our findings indicate that the novel chimeric Arg-Gly-Asp peptide, having no cross-reaction with alphavbeta5 integrin, allows highly selective alphavbeta3 expression imaging and monitoring.

  3. Tumor-targeted inhibition by a novel strategy - mimoretrovirus expressing siRNA targeting the Pokemon gene.

    PubMed

    Tian, Zhiqiang; Wang, Huaizhi; Jia, Zhengcai; Shi, Jinglei; Tang, Jun; Mao, Liwei; Liu, Hongli; Deng, Yijing; He, Yangdong; Ruan, Zhihua; Li, Jintao; Wu, Yuzhang; Ni, Bing

    2010-12-01

    Pokemon gene has crucial but versatile functions in cell differentiation, proliferation and tumorigenesis. It is a master regulator of the ARF-HDM2-p53 and Rb-E2F pathways. The facts that the expression of Pokemon is essential for tumor formation and many kinds of tumors over-express the Pokemon gene make it an attractive target for therapeutic intervention for cancer treatment. In this study, we used an RNAi strategy to silence the Pokemon gene in a cervical cancer model. To address the issues involving tumor specific delivery and durable expression of siRNA, we applied the Arg-Gly-Asp (RGD) peptide ligand and polylysine (K(18)) fusion peptide to encapsulate a recombinant retrovirus plasmid expressing a siRNA targeting the Pokemon gene and produced the 'mimoretrovirus'. At charge ratio 2.0 of fusion peptide/plasmid, the mimoretrovirus formed stable and homogenous nanoparticles, and provided complete DNase I protection and complete gel retardation. This nanoparticle inhibited SiHa cell proliferation and invasion, while it promoted SiHa cell apoptosis. The binding of the nanoparticle to SiHa cells was mediated via the RGD-integrin α(v)β(3) interaction, as evidenced by the finding that unconjugated RGD peptide inhibited this binding significantly. This tumor-targeting mimoretrovirus exhibited excellent anti-tumor capacity in vivo in a nude mouse model. Moreover, the mimoretrovirus inhibited tumor growth with a much higher efficiency than recombinant retrovirus expressing siRNA or the K(18)/P4 nanoparticle lacking the RGD peptide. Results suggest that the RNAi/RGD-based mimoretrovirus developed in this study represents a novel anti-tumor strategy that may be applicable to most research involving cancer therapy and, thus, has promising potential as a cervical cancer treatment.

  4. Integrin αvβ3 promotes infection by Japanese encephalitis virus.

    PubMed

    Fan, Wenchun; Qian, Ping; Wang, Dandan; Zhi, Xianwei; Wei, Yanming; Chen, Huanchun; Li, Xiangmin

    2017-04-01

    Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that is one of the major causes of viral encephalitis diseases worldwide. The JEV envelope protein facilitates viral entry, and its domain III contains an Arg-Gly-Asp (RGD) motif, that may modulate JEV entry through the RGD-binding integrin. In this study, the roles of integrin αv and β3 on the infection of JEV were evaluated. Reduced expression of integrin αv/β3 by special shRNA confers 2 to 4-fold inhibition of JEV replication in BHK-21 cells. Meanwhile, antibodies specific for integrin αv/β3 displayed ~58% and ~33% inhibition of JEV infectivity and RGD-specific peptides produced ~36% of inhibition. Expression of E protein and JEV RNA loads were clearly increased in CHO cells transfected with cDNA encoding human integrin β3. Moreover, integrin αv mediates JEV infection in viral binding stage of life cycle. Therefore, our study suggested that integrin αv and β3 serve as a host factor associated with JEV entry into the target cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Vitronectin-Based, Biomimetic Encapsulating Hydrogel Scaffolds Support Adipogenesis of Adipose Stem Cells

    PubMed Central

    Clevenger, Tracy N.; Hinman, Cassidy R.; Ashley Rubin, Rebekah K.; Smither, Kate; Burke, Daniel J.; Hawker, Craig J.; Messina, Darin; Van Epps, Dennis

    2016-01-01

    Soft tissue defects are relatively common, yet currently used reconstructive treatments have varying success rates, and serious potential complications such as unpredictable volume loss and reabsorption. Human adipose-derived stem cells (ASCs), isolated from liposuction aspirate have great potential for use in soft tissue regeneration, especially when combined with a supportive scaffold. To design scaffolds that promote differentiation of these cells down an adipogenic lineage, we characterized changes in the surrounding extracellular environment during adipogenic differentiation. We found expression changes in both extracellular matrix proteins, including increases in expression of collagen-IV and vitronectin, as well as changes in the integrin expression profile, with an increase in expression of integrins such as αVβ5 and α1β1. These integrins are known to specifically interact with vitronectin and collagen-IV, respectively, through binding to an Arg-Gly-Asp (RGD) sequence. When three different short RGD-containing peptides were incorporated into three-dimensional (3D) hydrogel cultures, it was found that an RGD-containing peptide derived from vitronectin provided strong initial attachment, maintained the desired morphology, and created optimal conditions for in vitro 3D adipogenic differentiation of ASCs. These results describe a simple, nontoxic encapsulating scaffold, capable of supporting the survival and desired differentiation of ASCs for the treatment of soft tissue defects. PMID:26956095

  6. Method of treating tumors

    DOEpatents

    DeNardo, Sally J.; Burke, Patricia A.; DeNardo, Gerald L.; Goodman, Simon; Matzku, legal representative, Kerstin; Matzku, Siegfried

    2006-04-18

    A method of treating tumors, such as prostate tumors, breast tumors, non-Hodgkin's lymphoma, and the like, includes the sequential steps of administering to the patient at least one dose of an antiangiogenic cyclo-arginine-glycine-aspartic acid-containing pentapeptide (cRGD pentapeptide); administering to the patient an anti-tumor effective amount of a radioimmunotherapeutic agent (RIT); and then administering to the patient at least one additional dose of cRGD pentapeptide. The cRGD pentapeptide is preferably cyclo-(Arg-Gly-Asp-D-Phe-[N-Me]-Val), and the RIT is preferably a radionuclide-labeled chelating agent-ligand complex in which chelating agent is chemically bonded to a tumor-targeting molecule, such as a monoclonal antibody.

  7. Peptide array-based interaction assay of solid-bound peptides and anchorage-dependant cells and its effectiveness in cell-adhesive peptide design.

    PubMed

    Kato, Ryuji; Kaga, Chiaki; Kunimatsu, Mitoshi; Kobayashi, Takeshi; Honda, Hiroyuki

    2006-06-01

    Peptide array, the designable peptide library covalently synthesized on cellulose support, was applied to assay peptide-cell interaction, between solid-bound peptides and anchorage-dependant cells, to study objective peptide design. As a model case, cell-adhesive peptides that could enhance cell growth as tissue engineering scaffold material, was studied. On the peptide array, the relative cell-adhesion ratio of NIH/3T3 cells was 2.5-fold higher on the RGDS (Arg-Gly-Asp-Ser) peptide spot as compared to the spot with no peptide, thus indicating integrin-mediated peptide-cell interaction. Such strong cell adhesion mediated by the RGDS peptide was easily disrupted by single residue substitution on the peptide array, thus indicating that the sequence recognition accuracy of cells was strictly conserved in our optimized scheme. The observed cellular morphological extension with active actin stress-fiber on the RGD motif-containing peptide supported our strategy that peptide array-based interaction assay of solid-bound peptide and anchorage-dependant cells (PIASPAC) could provide quantitative data on biological peptide-cell interaction. The analysis of 180 peptides obtained from fibronectin type III domain (no. 1447-1629) yielded 18 novel cell-adhesive peptides without the RGD motif. Taken together with the novel candidates, representative rules of ineffective amino acid usage were obtained from non-effective candidate sequences for the effective designing of cell-adhesive peptides. On comparing the amino acid usage of the top 20 and last 20 peptides from the 180 peptides, the following four brief design rules were indicated: (i) Arg or Lys of positively charged amino acids (except His) could enhance cell adhesion, (ii) small hydrophilic amino acids are favored in cell-adhesion peptides, (iii) negatively charged amino acids and small amino acids (except Gly) could reduce cell adhesion, and (iv) Cys and Met could be excluded from the sequence combination since they have less influence on the peptide design. Such rules that are indicative of the nature of the functional peptide sequence can be obtained only by the mass comparison analysis of PIASPAC using peptide array. By following such indicative rules, numerous amino acid combinations can be effectively screened for further examination of novel peptide design.

  8. Structure-activity relationship study of Aib-containing amphipathic helical peptide-cyclic RGD conjugates as carriers for siRNA delivery.

    PubMed

    Wada, Shun-Ichi; Takesada, Anna; Nagamura, Yurie; Sogabe, Eri; Ohki, Rieko; Hayashi, Junsuke; Urata, Hidehito

    2017-12-15

    The conjugation of Aib-containing amphipathic helical peptide with cyclo(-Arg-Gly-Asp-d-Phe-Cys-) (cRGDfC) at the C-terminus of the helix peptide (PI) has been reported to be useful for constructing a carrier for targeted siRNA delivery into cells. In order to explore structure-activity relationships for the development of potential carriers for siRNA delivery, we synthesized conjugates of Aib-containing amphipathic helical peptide with cRGDfC at the N-terminus (PII) and both the N- and C-termini (PIII) of the helical peptide. Furthermore, to examine the influence of PI helical chain length on siRNA delivery, truncated peptides containing 16 (PIV), 12 (PV), and 8 (PVI) amino acid residues at the N-terminus of the helical chain were synthesized. PII and PIII, as well as PI, could deliver anti-luciferase siRNA into cells to induce the knockdown of luciferase stably expressed in cells. In contrast, all of the truncated peptides were unlikely to transport siRNA into cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Fabrication and in vitro evaluation of the collagen/hyaluronic acid PEM coating crosslinked with functionalized RGD peptide on titanium.

    PubMed

    Huang, Ying; Luo, Qiaojie; Li, Xiaodong; Zhang, Feng; Zhao, Shifang

    2012-02-01

    Surface modification of titanium (Ti) using biomolecules has attracted much attention recently. In this study, a new strategy has been employed to construct a stable and bioactive coating on Ti. To this end, a derivative of hyaluronic acid (HA), i.e. HA-GRGDSPC-(SH), was synthesized. The disulfide-crosslinked Arg-Gly-Asp (RGD)-containing collagen/hyaluronic acid polyelectrolyte membrane (PEM) coating was then fabricated on Ti through the alternate deposition of collagen and HA-GRGDSPC-(SH) with five assembly cycles and subsequent crosslinking via converting free sulphydryl groups into disulfide linkages (RGD-CHC-Ti group). The assembly processes for PEM coating and the physicochemical properties of the coating were carefully characterized. The stability of PEM coating in phosphate-buffered saline solution could be adjusted by the crosslinking degree, while its degradation behaviors in the presence of glutathione were glutathione concentration dependent. The adhesion and proliferation of MC3T3-E1 cells were significantly enhanced in the RGD-CHC-Ti group. Up-regulated bone specific genes, enhanced alkaline phosphatase activity and osteocalcin production, the increased areas of mineralization were also observed in the RGD-CHC-Ti group. These results indicate that the strategy employed herein may function as an effective way to construct stable, RGD-containing bioactive coatings on Ti. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. 111In-labeled lactam bridge-cyclized alpha-melanocyte stimulating hormone peptide analogues for melanoma imaging.

    PubMed

    Miao, Yubin; Gallazzi, Fabio; Guo, Haixun; Quinn, Thomas P

    2008-02-01

    The purpose of this study was to examine the influence of the lactam bridge cyclization on melanoma targeting and biodistribution properties of the radiolabeled conjugates. Two novel lactam bridge-cyclized alpha-MSH peptide analogues, DOTA-CycMSH (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-c[Lys-Nle-Glu-His-DPhe-Arg-Trp-Gly-Arg-Pro-Val-Asp]) and DOTA-GlyGlu-CycMSH (DOTA-Gly-Glu-c[Lys-Nle-Glu-His-DPhe-Arg-Trp-Gly-Arg-Pro-Val-Asp]), were synthesized and radiolabeled with (111)In. The internalization and efflux of (111)In-labeled CycMSH peptides were examined in B16/F1 melanoma cells. The melanoma targeting properties, pharmacokinetics, and SPECT/CT imaging of (111)In-labeled CycMSH peptides were determined in B16/F1 melanoma-bearing C57 mice. Both (111)In-DOTA-CycMSH and (111)In-DOTA-GlyGlu-CycMSH exhibited fast internalization and extended retention in B16/F1 cells. The tumor uptake values of (111)In-DOTA-CycMSH and (111)In-DOTA-GlyGlu-CycMSH were 9.53+/-1.41% injected dose/gram (% ID/g) and 10.40+/-1.40% ID/g at 2 h postinjection, respectively. Flank melanoma tumors were clearly visualized with (111)In-DOTA-CycMSH and (111)In-DOTA-GlyGlu-CycMSH by SPECT/CT images at 2 h postinjection. Whole-body clearance of the peptides was fast, with greater than 90% of the radioactivities cleared through urinary system by 2 h postinjection. There was low radioactivity (<0.8% ID/g) accumulated in blood and normal organs except kidneys at all time points investigated. Introduction of a negatively charged linker (-Gly-Glu-) into the peptide sequence decreased the renal uptake by 44% without affecting the tumor uptake at 4 h postinjection. High receptor-mediated melanoma uptakes coupled with fast whole-body clearance in B16/F1 melanoma-bearing C57 mice demonstrated the feasibility of using (111)In-labeled lactam bridge-cyclized alpha-MSH peptide analogues as a novel class of imaging probes for receptor-targeting melanoma imaging.

  11. RGD peptide-mediated chitosan-based polymeric micelles targeting delivery for integrin-overexpressing tumor cells.

    PubMed

    Cai, Li-Li; Liu, Ping; Li, Xi; Huang, Xuan; Ye, Yi-Qing; Chen, Feng-Ying; Yuan, Hong; Hu, Fu-Qiang; Du, Yong-Zhong

    2011-01-01

    Solid tumors need new blood vessels to feed and nourish them as well as to allow tumor cells to escape into the circulation and lodge in other organs, which is termed "angiogenesis." Some tumor cells within solid tumors can overexpress integrins α(v)β(3) and α(v)β(5), which can specifically recognize the peptide motif Arg-Gly-Asp (RGD). Thus, the targeting of RGD-modified micelles to tumor vasculature is a promising strategy for tumor-targeting treatment. RGD peptide (GSSSGRGDSPA) was coupled to poly(ethylene glycol)-modified stearic acid-grafted chitosan (PEG-CS-SA) micelles via chemical reaction in the presence of N,N'-Disuccinimidyl carbonate. The critical micelle concentration of the polymeric micelles was determined by measuring the fluorescence intensity of pyrene as a fluorescent probe. The micelle size, size distribution, and zeta potential were measured by light scattering and electrophoretic mobility. Doxorubicin (DOX) was chosen as a model anticancer drug to investigate the drug entrapment efficiency, in vitro drug-release profile, and in vitro antitumor activities of drug-loaded RGD-PEG-CS-SA micelles in cells that overexpress integrins (α(ν)β(3) and α(ν)β(5)) and integrin-deficient cells. Using DOX as a model drug, the drug encapsulation efficiency could reach 90%, and the in vitro drug-release profiles suggested that the micelles could be used as a controlled-release carrier for the hydrophobic drug. Qualitative and quantitative analysis of cellular uptake indicated that RGD-modified micelles could significantly increase the DOX concentration in integrin-overexpressing human hepatocellular carcinoma cell line (BEL-7402), but not in human epithelial carcinoma cell line (Hela). The competitive cellular-uptake test showed that the cellular uptake of RGD-modified micelles in BEL-7402 cells was significantly inhibited in the presence of excess free RGD peptides. In vitro cytotoxicity tests demonstrated DOX-loaded RGD-modified micelles could specifically enhance the cytotoxicity against BEL-7402 compared with DOX-loaded PEG-CS-SA and doxorubicin hydrochlorate. This study suggests that RGD-modified PEG-CS-SA micelles are promising drug carriers for integrin-overexpressing tumor active targeting therapy.

  12. RGD-containing peptides activate S6K1 through beta3 integrin in adult cardiac muscle cells.

    PubMed

    Balasubramanian, Sundaravadivel; Kuppuswamy, Dhandapani

    2003-10-24

    The enzyme p70S6 kinase (S6K1) is critical for cell growth, and we have reported its activation during cardiac hypertrophy. Because cardiac hypertrophy also involves integrin activation, we analyzed whether integrins could contribute to S6K1 activation. Using adult feline cardiomyocytes, here we report that integrin-interacting Arg-Gly-Asp (RGD) peptides activate S6K1 as observed by band shifting, kinase activity and phosphorylation at Thr-389 and Thr-421/Ser-424 of S6K1, and S6 protein phosphorylation. Perturbation of specific integrin function with blocking antibodies and by overexpressing the beta1A cytoplasmic tail revealed that beta3 but not beta1 integrin mediates the RGD-induced S6K1 activation. This activation is focal adhesion complex-independent and is accompanied by the activation of extracellular signal-regulated kinases 1/2 (ERK) and mammalian target of rapamycin (mTOR). Studies using specific inhibitors and dominant negative c-Raf expression in cardiomyocytes indicate that the S6K1 activation involves mTOR, MEK/ERK, and phosphatidylinositol 3-kinase pathways and is independent of protein kinase C and c-Raf. Finally, addition of fluorescent-labeled RGD peptide to cardiomyocytes exhibits its internalization and localization to the endocytic vesicles, and pretreatment of cardiomyocytes with endocytic inhibitors reduced the S6K1 activation. These data suggest that RGD interaction with beta3 integrin and its subsequent endocytosis trigger specific signaling pathway(s) for S6K1 activation in cardiomyocytes and that this process may contribute to hypertrophic growth and remodeling of myocardium.

  13. cRGD-functionalized polymeric magnetic nanoparticles as a dual-drug delivery system for safe targeted cancer therapy.

    PubMed

    Shen, Jian-Min; Gao, Fei-Yun; Yin, Tao; Zhang, Hai-Xia; Ma, Ming; Yang, Yan-Jie; Yue, Feng

    2013-04-01

    In this paper we give a method of integrated treatment for cancer and drug-induced complications in the process of cancer therapy through dual-drug delivery system (DDDS). Two hydrophilic drugs, doxorubicin (an antitumor drug) and verapamil (an antiangiocardiopathy drug) combined preliminarily with chitosan shell coated on magnetic nanoparticles (MNPs), followed by entrapping into the PLGA nanoparticles. Further modification was conducted by conjugating tumor-targeting ligand, cyclo(Arg-Gly-Asp-D-Phe-Lys) (c(RGDfK)) peptide, onto the end carboxyl groups on the PLGA-NPs. The size of the resulting cRGD-DOX/VER-MNP-PLGA NPs was approximately 144nm under simulate physiological environment. Under present experiment condition, the entrapment efficiencies of DOX and VER were approximately 74.8 and 53.2wt% for cRGD-DOX/VER-MNP-PLGA NPs. This paper contains interesting pilot data such as NIR-triggered drug release, in vivo drug distribution studies and whole-mouse optical imaging. Histopathological examinations and electrocardiogram comparison demonstrated that the intelligent DDDS could markedly inhibit the growth of tumor and potentially offer an approach for safe cancer therapy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. A bio-inspired, microchanneled hydrogel with controlled spacing of cell adhesion ligands regulates 3D spatial organization of cells and tissue.

    PubMed

    Lee, Min Kyung; Rich, Max H; Lee, Jonghwi; Kong, Hyunjoon

    2015-07-01

    Bioactive hydrogels have been extensively studied as a platform for 3D cell culture and tissue regeneration. One of the key desired design parameters is the ability to control spatial organization of biomolecules and cells and subsequent tissue in a 3D matrix. To this end, this study presents a simple but advanced method to spatially organize microchanneled, cell adherent gel blocks and non-adherent ones in a single construct. This hydrogel system was prepared by first fabricating a bimodal hydrogel in which the microscale, alginate gel blocks modified with cell adhesion peptides containing Arg-Gly-Asp sequence (RGD peptides), and those free of RGD peptides, were alternatingly presented. Then, anisotropically aligned microchannels were introduced by uniaxial freeze-drying of the bimodal hydrogel. The resulting gel system could drive bone marrow stromal cells to adhere to and differentiate into neuron and glial cells exclusively in microchannels of the alginate gel blocks modified with RGD peptides. Separately, the bimodal gel loaded with microparticles releasing vascular endothelial growth factor stimulated vascular growth solely into microchannels of the RGD-alginate gel blocks in vivo. These results were not attained by the bimodal hydrogel fabricated to present randomly oriented micropores. Overall, the bimodal gel system could regulate spatial organization of nerve-like tissue or blood vessels at sub-micrometer length scale. We believe that the hydrogel assembly demonstrated in this study will be highly useful in developing a better understanding of diverse cellular behaviors in 3D tissue and further improve quality of a wide array of engineered tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. In-vitro and in-vivo phenotype of type Asia 1 foot-and-mouth disease viruses utilizing two non-RGD receptor recognition sites

    PubMed Central

    2011-01-01

    Background Foot-and-mouth disease virus (FMDV) uses a highly conserved Arg-Gly-Asp (RGD) triplet for attachment to host cells and this motif is believed to be essential for virus viability. Previous sequence analyses of the 1D-encoding region of an FMDV field isolate (Asia1/JS/CHA/05) and its two derivatives indicated that two viruses, which contained an Arg-Asp-Asp (RDD) or an Arg-Ser-Asp (RSD) triplet instead of the RGD integrin recognition motif, were generated serendipitously upon short-term evolution of field isolate in different biological environments. To examine the influence of single amino acid substitutions in the receptor binding site of the RDD-containing FMD viral genome on virus viability and the ability of non-RGD FMDVs to cause disease in susceptible animals, we constructed an RDD-containing FMDV full-length cDNA clone and derived mutant molecules with RGD or RSD receptor recognition motifs. Following transfection of BSR cells with the full-length genome plasmids, the genetically engineered viruses were examined for their infectious potential in cell culture and susceptible animals. Results Amino acid sequence analysis of the 1D-coding region of different derivatives derived from the Asia1/JS/CHA/05 field isolate revealed that the RDD mutants became dominant or achieved population equilibrium with coexistence of the RGD and RSD subpopulations at an early phase of type Asia1 FMDV quasispecies evolution. Furthermore, the RDD and RSD sequences remained genetically stable for at least 20 passages. Using reverse genetics, the RDD-, RSD-, and RGD-containing FMD viruses were rescued from full-length cDNA clones, and single amino acid substitution in RDD-containing FMD viral genome did not affect virus viability. The genetically engineered viruses replicated stably in BHK-21 cells and had similar growth properties to the parental virus. The RDD parental virus and two non-RGD recombinant viruses were virulent to pigs and bovines that developed typical clinical disease and viremia. Conclusions FMDV quasispecies evolving in a different biological environment gained the capability of selecting different receptor recognition site. The RDD-containing FMD viral genome can accommodate substitutions in the receptor binding site without additional changes in the capsid. The viruses expressing non-RGD receptor binding sites can replicate stably in vitro and produce typical FMD clinical disease in susceptible animals. PMID:21711567

  16. A heterodimeric [RGD-Glu-[(64)Cu-NO2A]-6-Ahx-RM2] αvβ3/GRPr-targeting antagonist radiotracer for PET imaging of prostate tumors.

    PubMed

    Durkan, Kubra; Jiang, Zongrun; Rold, Tammy L; Sieckman, Gary L; Hoffman, Timothy J; Bandari, Rajendra Prasad; Szczodroski, Ashley F; Liu, Liqin; Miao, Yubin; Reynolds, Tamila Stott; Smith, Charles J

    2014-02-01

    In the present study, we describe a (64)Cu-radiolabeled heterodimeric peptide conjugate for dual αvβ3/GRPr (αvβ3 integrin/gastrin releasing peptide receptor) targeting of the form [RGD-Glu-[(64)Cu-NO2A]-6-Ahx-RM2] (RGD: the amino acid sequence [Arg-Gly-Asp], a nonregulatory peptide used for αvβ3 integrin receptor targeting; Glu: glutamic acid; NO2A: 1,4,7-triazacyclononane-1,4-diacetic acid; 6-Ahx: 6-amino hexanoic acid; and RM2: (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2), an antagonist analogue of bombesin (BBN) peptide used for GRPr targeting). RGD-Glu-6Ahx-RM2] was conjugated to a NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid) complexing agent to produce [RGD-Glu-[NO2A]-6-Ahx-RM2], which was purified by reversed-phase high-performance liquid chromatography (RP-HPLC) and characterized by electrospray ionization-mass spectrometry (ESI-MS). Radiolabeling of the conjugate with (64)Cu produced [RGD-Glu-[(64)Cu-NO2A]-6-Ahx-RM2 in high radiochemical yield (≥95%). In vivo behavior of the radiolabeled peptide conjugate was investigated in normal CF-1 mice and in the PC-3 human prostate cancer experimental model. A competitive displacement receptor binding assay in human prostate PC-3 cells using (125)I-[Tyr(4)]BBN as the radioligand showed high binding affinity of [RGD-Glu-[(nat)Cu-NO2A]-6-Ahx-RM2] conjugate for the GRPr (3.09±0.34 nM). A similar assay in human, glioblastoma U87-MG cells using (125)I-Echistatin as the radioligand indicated a moderate receptor-binding affinity for the αvβ3 integrin (518±37.5 nM). In vivo studies of [RGD-Glu-[(64)Cu-NO2A]-6-Ahx-RM2] showed high accumulation (4.86±1.01 %ID/g, 1h post-intravenous injection (p.i.)) and prolonged retention (4.26±1.23 %ID/g, 24h p.i.) of tracer in PC-3 tumor-bearing mice. Micro-positron emission tomography (microPET) molecular imaging studies produced high-quality, high contrast images in PC-3 tumor-bearing mice at 4h p.i. The favorable pharmacokinetics and enhanced tumor uptake of (64)Cu-NOTA-RGD-Glu-6Ahx-RM2 warrant further investigations for dual integrin and GRPr-positive tumor imaging and possible radiotherapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Modular Small Diameter Vascular Grafts with Bioactive Functionalities

    PubMed Central

    Neufurth, Meik; Wang, Xiaohong; Tolba, Emad; Dorweiler, Bernhard; Schröder, Heinz C.; Link, Thorben; Diehl-Seifert, Bärbel; Müller, Werner E. G.

    2015-01-01

    We report the fabrication of a novel type of artificial small diameter blood vessels, termed biomimetic tissue-engineered blood vessels (bTEBV), with a modular composition. They are composed of a hydrogel scaffold consisting of two negatively charged natural polymers, alginate and a modified chitosan, N,O-carboxymethyl chitosan (N,O-CMC). Into this biologically inert scaffold two biofunctionally active biopolymers are embedded, inorganic polyphosphate (polyP) and silica, as well as gelatin which exposes the cell recognition signal, Arg-Gly-Asp (RGD). These materials can be hardened by exposure to Ca2+ through formation of Ca2+ bridges between the polyanions, alginate, N,O-CMC, and polyP (alginate-Ca2+-N,O-CMC-polyP). The bTEBV are formed by pressing the hydrogel through an extruder into a hardening solution, containing Ca2+. In this universal scaffold of the bTEBV biomaterial, polycations such as poly(l-Lys), poly(d-Lys) or a His/Gly-tagged RGD peptide (three RGD units) were incorporated, which promote the adhesion of endothelial cells to the vessel surface. The mechanical properties of the biopolymer material (alginate-Ca2+-N,O-CMC-polyP-silica) revealed a hardness (elastic modulus) of 475 kPa even after a short incubation period in CaCl2 solution. The material of the artificial vascular grafts (bTEBVs with an outer size 6 mm and 1.8 mm, and an inner diameter 4 mm and 0.8 mm, respectively) turned out to be durable in 4-week pulsatile flow experiments at an alternating pressure between 25 and 100 mbar (18.7 and 75.0 mm Hg). The burst pressure of the larger (smaller) vessels was 850 mbar (145 mbar). Incorporation of polycationic poly(l-Lys), poly(d-Lys), and especially the His/Gly-tagged RGD peptide, markedly increased the adhesion of human, umbilical vein/vascular endothelial cells, EA.HY926 cells, to the surface of the hydrogel. No significant effect of the polyP samples on the clotting of human plasma is measured. We propose that the metabolically degradable polymeric scaffold bTEBV is a promising biomaterial for future prosthetic vascular grafts. PMID:26204529

  18. Cell-mediated remodeling of biomimetic encapsulating hydrogels triggered by adipogenic differentiation of adipose stem cells.

    PubMed

    Clevenger, Tracy N; Luna, Gabriel; Boctor, Daniel; Fisher, Steven K; Clegg, Dennis O

    2016-01-01

    One of the most common regenerative therapies is autologous fat grafting, which frequently suffers from unexpected volume loss. One approach is to deliver adipose stem cells encapsulated in the engineered hydrogels supportive of cell survival, differentiation, and integration after transplant. We describe an encapsulating, biomimetic poly(ethylene)-glycol hydrogel, with embedded peptides for attachment and biodegradation. Poly(ethylene)-glycol hydrogels containing an Arg-Gly-Asp attachment sequence and a matrix metalloprotease 3/10 cleavage site supported adipose stem cell survival and showed remodeling initiated by adipogenic differentiation. Arg-Gly-Asp-matrix metalloprotease 3/10 cleavage site hydrogels showed an increased number and area of lacunae or holes after adipose stem cell differentiation. Image analysis of adipose stem cells in Arg-Gly-Asp-matrix metalloprotease 3/10 cleavage site hydrogels showed larger Voronoi domains, while cell density remained unchanged. The differentiated adipocytes residing within these newly remodeled spaces express proteins and messenger RNAs indicative of adipocytic differentiation. These engineered scaffolds may provide niches for stem cell differentiation and could prove useful in soft tissue regeneration.

  19. Integrin activation and focal complex formation in cardiac hypertrophy.

    PubMed

    Laser, M; Willey, C D; Jiang, W; Cooper, G; Menick, D R; Zile, M R; Kuppuswamy, D

    2000-11-10

    Cardiac hypertrophy is characterized by both remodeling of the extracellular matrix (ECM) and hypertrophic growth of the cardiocytes. Here we show increased expression and cytoskeletal association of the ECM proteins fibronectin and vitronectin in pressure-overloaded feline myocardium. These changes are accompanied by cytoskeletal binding and phosphorylation of focal adhesion kinase (FAK) at Tyr-397 and Tyr-925, c-Src at Tyr-416, recruitment of the adapter proteins p130(Cas), Shc, and Nck, and activation of the extracellular-regulated kinases ERK1/2. A synthetic peptide containing the Arg-Gly-Asp (RGD) motif of fibronectin and vitronectin was used to stimulate adult feline cardiomyocytes cultured on laminin or within a type-I collagen matrix. Whereas cardiocytes under both conditions showed RGD-stimulated ERK1/2 activation, only collagen-embedded cells exhibited cytoskeletal assembly of FAK, c-Src, Nck, and Shc. In RGD-stimulated collagen-embedded cells, FAK was phosphorylated only at Tyr-397 and c-Src association occurred without Tyr-416 phosphorylation and p130(Cas) association. Therefore, c-Src activation is not required for its cytoskeletal binding but may be important for additional phosphorylation of FAK. Overall, our study suggests that multiple signaling pathways originate in pressure-overloaded heart following integrin engagement with ECM proteins, including focal complex formation and ERK1/2 activation, and many of these pathways can be activated in cardiomyocytes via RGD-stimulated integrin activation.

  20. Integrin activation and focal complex formation in cardiac hypertrophy

    NASA Technical Reports Server (NTRS)

    Laser, M.; Willey, C. D.; Jiang, W.; Cooper, G. 4th; Menick, D. R.; Zile, M. R.; Kuppuswamy, D.

    2000-01-01

    Cardiac hypertrophy is characterized by both remodeling of the extracellular matrix (ECM) and hypertrophic growth of the cardiocytes. Here we show increased expression and cytoskeletal association of the ECM proteins fibronectin and vitronectin in pressure-overloaded feline myocardium. These changes are accompanied by cytoskeletal binding and phosphorylation of focal adhesion kinase (FAK) at Tyr-397 and Tyr-925, c-Src at Tyr-416, recruitment of the adapter proteins p130(Cas), Shc, and Nck, and activation of the extracellular-regulated kinases ERK1/2. A synthetic peptide containing the Arg-Gly-Asp (RGD) motif of fibronectin and vitronectin was used to stimulate adult feline cardiomyocytes cultured on laminin or within a type-I collagen matrix. Whereas cardiocytes under both conditions showed RGD-stimulated ERK1/2 activation, only collagen-embedded cells exhibited cytoskeletal assembly of FAK, c-Src, Nck, and Shc. In RGD-stimulated collagen-embedded cells, FAK was phosphorylated only at Tyr-397 and c-Src association occurred without Tyr-416 phosphorylation and p130(Cas) association. Therefore, c-Src activation is not required for its cytoskeletal binding but may be important for additional phosphorylation of FAK. Overall, our study suggests that multiple signaling pathways originate in pressure-overloaded heart following integrin engagement with ECM proteins, including focal complex formation and ERK1/2 activation, and many of these pathways can be activated in cardiomyocytes via RGD-stimulated integrin activation.

  1. Engineering Factor Xa Inhibitor with Multiple Platelet-Binding Sites Facilitates its Platelet Targeting

    NASA Astrophysics Data System (ADS)

    Zhu, Yuanjun; Li, Ruyi; Lin, Yuan; Shui, Mengyang; Liu, Xiaoyan; Chen, Huan; Wang, Yinye

    2016-07-01

    Targeted delivery of antithrombotic drugs centralizes the effects in the thrombosis site and reduces the hemorrhage side effects in uninjured vessels. We have recently reported that the platelet-targeting factor Xa (FXa) inhibitors, constructed by engineering one Arg-Gly-Asp (RGD) motif into Ancylostoma caninum anticoagulant peptide 5 (AcAP5), can reduce the risk of systemic bleeding than non-targeted AcAP5 in mouse arterial injury model. Increasing the number of platelet-binding sites of FXa inhibitors may facilitate their adhesion to activated platelets, and further lower the bleeding risks. For this purpose, we introduced three RGD motifs into AcAP5 to generate a variant NR4 containing three platelet-binding sites. NR4 reserved its inherent anti-FXa activity. Protein-protein docking showed that all three RGD motifs were capable of binding to platelet receptor αIIbβ3. Molecular dynamics simulation demonstrated that NR4 has more opportunities to interact with αIIbβ3 than single-RGD-containing NR3. Flow cytometry analysis and rat arterial thrombosis model further confirmed that NR4 possesses enhanced platelet targeting activity. Moreover, NR4-treated mice showed a trend toward less tail bleeding time than NR3-treated mice in carotid artery endothelium injury model. Therefore, our data suggest that engineering multiple binding sites in one recombinant protein is a useful tool to improve its platelet-targeting efficiency.

  2. Development of a novel cyclic RGD peptide for multiple targeting approaches of liposomes to tumor region.

    PubMed

    Amin, Mohamadreza; Mansourian, Mercedeh; Koning, Gerben A; Badiee, Ali; Jaafari, Mahmoud Reza; Ten Hagen, Timo L M

    2015-12-28

    Liposomes containing cytotoxic agents and targeted with Arg-Gly-Asp based peptides have frequently been used against αvβ3 integrin on tumor neovasculature. However, like many other ligand modified liposomes these preparations suffered from enhanced uptake by the reticulo endothelial system (RES) and off-targeted interaction with integrin receptors vastly expressed in normal organs causing poor biodistribution and toxic effects. Here we mainly focus on development of a RGD-modified liposomal delivery system to enhance both targeting selectivity and tumor uptake. First, sterically stabilized liposomal doxorubicin (SSLD) prepared and decorated with cRGDfK and RGDyC peptides differ in their physical properties. Stability assessments as well as in vitro and in vivo studies revealed that increasing the peptide hydrophobicity promotes the therapeutic efficacy of RGD-SSLD in a C-26 tumor model due to decreased recognition by RES and opsonization and limited off-targeted interactions. Then a novel N-methylated RGD peptide was designed and its capability in targeting integrin presenting cells was comprehensively assessed both in vitro and in vivo. RGDf[N-methyl]C promotes the liposome internalization by HUVEC via integrin mediated endocytosis. Intravital microscopy in window chamber bearing mice illustrated the capability of RGDf[N-methyl]C-liposomes in targeting both tumor vasculature and tumor cells in murine B16F0 and human BLM tumor models. Quantitative biodistribution in mice bearing B16F0 tumor revealed its high affinity to tumor with no considerable affinity to normal organs. Treatment by high dose of RGDf[N-methyl]C-SSLD was found more effective than non-targeted SSLD and no toxic side effect was observed. In conclusion, the RGDf[N-methyl]C-liposome was found promising in targeting tumor vasculature as well as other cells inside the tumor. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Neurospora tryptophan synthase: N-terminal analysis and the sequence of the pyridoxal phosphate active site peptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, M.L.; Hsu, P.Y.; DeMoss, J.A.

    1986-05-01

    Tryptophan synthase (TS), which catalyzes the final step of tryptophan biosynthesis, is a multifunctional protein requiring pyridoxal phosphate (B6P) for two of its three distinct enzyme activities. TS from Neurospora has a blocked N-terminal, is a homodimer of 150 KDa and binds one mole of B6P per mole of subunit. The authors shown the N-terminal residue to be acyl-serine. The B6P-active site of holoenzyme was labelled by reduction of the B6P-Schiff base with (/sup 3/H)-NaBH/sub 4/, and resulted in a proportionate loss of activity in the two B6P-requiring reactions. SDS-polyacrylamide gel electrophoresis of CNBr-generated peptides showed the labelled, active sitemore » peptide to be 6 KDa. The sequence of this peptide, purified to apparent homogeneity by a combination of C-18 reversed phase and TSK gel filtration HPLC is: gly-arg-pro-gly-gln-leu-his-lys-ala-glu-arg-leu-thr-glu-tyr-ala-gly-gly-ala-gln-ile-xxx-leu-lys-arg-glu-asp-leu-asn-his-xxx-gly-xxx-his-/sub ***/-ile-asn-asn-ala-leu. Although four residues (xxx, /sub ***/) are unidentified, this peptide is minimally 78% homologous with the corresponding peptide from yeast TS, in which residue (/sub ***/) is the lysine that binds B6P.« less

  4. Targeted polymeric micelles for siRNA treatment of experimental cancer by intravenous injection.

    PubMed

    Christie, R James; Matsumoto, Yu; Miyata, Kanjiro; Nomoto, Takahiro; Fukushima, Shigeto; Osada, Kensuke; Halnaut, Julien; Pittella, Frederico; Kim, Hyun Jin; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2012-06-26

    Small interfering ribonucleic acid (siRNA) cancer therapies administered by intravenous injection require a delivery system for transport from the bloodstream into the cytoplasm of diseased cells to perform the function of gene silencing. Here we describe nanosized polymeric micelles that deliver siRNA to solid tumors and elicit a therapeutic effect. Stable multifunctional micelle structures on the order of 45 nm in size formed by spontaneous self-assembly of block copolymers with siRNA. Block copolymers used for micelle formation were designed and synthesized to contain three main features: a siRNA binding segment containing thiols, a hydrophilic nonbinding segment, and a cell-surface binding peptide. Specifically, poly(ethylene glycol)-block-poly(L-lysine) (PEG-b-PLL) comprising lysine amines modified with 2-iminothiolane (2IT) and the cyclo-Arg-Gly-Asp (cRGD) peptide on the PEG terminus was used. Modification of PEG-b-PLL with 2IT led to improved control of micelle formation and also increased stability in the blood compartment, while installation of the cRGD peptide improved biological activity. Incorporation of siRNA into stable micelle structures containing the cRGD peptide resulted in increased gene silencing ability, improved cell uptake, and broader subcellular distribution in vitro and also improved accumulation in both the tumor mass and tumor-associated blood vessels following intravenous injection into mice. Furthermore, stable and targeted micelles inhibited the growth of subcutaneous HeLa tumor models and demonstrated gene silencing in the tumor mass following treatment with antiangiogenic siRNAs. This new micellar nanomedicine could potentially expand the utility of siRNA-based therapies for cancer treatments that require intravenous injection.

  5. RGD based peptide amphiphiles as drug carriers for cancer targeting

    NASA Astrophysics Data System (ADS)

    Saraf, Poonam S.

    Specific interactions of ligands with receptors is one of the approaches for active targeting of anticancer drugs to cancer cells. Over expression of integrin receptors is a physiological manifestation in several cancers and is associated with cancer progression and metastasis, which makes it an attractive target for cancer chemotherapy. The peptide sequence for this integrin recognition is the Arg-Gly-Asp (RGD). Self-assembly offers a unique way of presenting ligands to target receptors for recognition and binding. This study focuses on development of integrin specific peptide amphiphile self-assemblies as carriers for targeted delivery of paclitaxel to αvbeta 3 integrin overexpressing cancers. Amphiphiles composed of conjugates of different analogs of RGD (linear, cyclic or glycosylated) and aliphatic fatty acid with or without 8-amino-3,6-dioxaoctanoic acid (ADA) as linker were synthesized and characterized. The amphiphiles exhibited Critical Micellar Concentration in the range of 7-30 μM. Transmission electron microscopy images revealed the formation of spherical micelles in the size range of 10-40 nm. Forster Resonance Energy Transfer studies revealed entrapment of hydrophobic dyes within a tight micellar core and provided information regarding the cargo exchange within micelles. The RGD micelles exhibited competitive binding with 55% displacement of a bound fluorescent probe by the cyclic RGD micelles. The internalization of fluorescein isothiocynate (FITC) loaded RGD micelles was significantly higher in A2058 melanoma cells compared to free FITC within 20 minutes of incubation at 37°C. The same micelles showed significantly lower internalization at 4°C and on pretreatment with 0.45M sucrose confirming endocytotic uptake of the RGD micellar carriers. The IC50 of paclitaxel in A2058 melanoma cells was lower when treated within RGD micelles as compared to treatment of free drug. On the other hand, IC50 values increased by 2 to 9 fold for micellar treatment in comparison to free drug in Detroit 551 cells. In A2058 melanoma xenograft mice model, the Paclitaxel-RGD micelles exhibited a significant inhibition of tumor growth in comparison to control treatment for both alternate day and twice weekly treatments. The studies showed the feasibility of using the non covalent peptide based self-assemblies as vehicles for targeted delivery in cancer.

  6. Insulin and proglucagon-derived peptides from the horned frog, Ceratophrys ornata (Anura:Leptodactylidae).

    PubMed

    White, A M; Secor, S M; Conlon, J M

    1999-07-01

    Insulin and peptides derived from the processing of proglucagon have been isolated from an extract of the pancreas of the South American horned frog, Ceratophrys ornata (Leptodactylidae). Ceratophrys insulin is identical to the insulin previously isolated from the toad, Bufo marinus (Bufonidae). Ceratophrys glucagon was isolated in two molecular forms with 29- and 36-amino acid residues in approximately equal amounts. Glucagon-29 is identical to glucagon from B. marinus and from the bullfrog, Rana catesbeiana (Ranidae) and contains only 1 amino acid substitution (Thr29 --> Ser) compared with glucagon from Xenopus laevis (Pipidae). Glucagon-36 comprises glucagon-29 extended from its C-terminus by Lys-Arg-Ser-Gly-Gly-Met-Ser. This extension is structurally dissimilar to the C-terminal octapeptide of mammalian oxyntomodulin and resembles more closely that found in C-terminally extended glucagons isolated from fish pancreata. Ceratophrys glucagon-like peptide-1 (GLP-1) (His-Ala-Asp-Gly-Thr-Tyr-Gln-Asn-Asp-Val10-Gln-Gln-Phe-Leu-Glu- Glu-Lys-Ala-Ala-Lys20-Glu-Phe-Ile-Asp-Trp-Leu-Ile-Lys-Gly- Lys30-Pro-Lys-Lys-Gln-Arg-Leu-Ser) contains 3 amino acid substitutions compared with the corresponding peptide from B. marinus, 8 substitutions compared with GLP-1 from R. catesbeiana, and between 4 and 11 substitutions compared with the three GLP-1 peptides identified in X. laevis proglucagon. GLP-2 was not identified in the extract of Ceratophrys pancreas. The data indicate that, despite its importance in the regulation of glucose metabolism, the primary structure of GLP-1 has been very poorly conserved during evolution, even among a single order such as the Anura. Copyright 1999 Academic Press.

  7. Structural studies of α-melanocyte-stimulating hormone and a novel β-melanocyte-stimulating hormone from the neurointermediate lobe of the pituitary of the dogfish Squalus acanthias

    PubMed Central

    Bennett, Hugh P. J.; Lowry, Philip J.; McMartin, Colin; Scott, Alexander P.

    1974-01-01

    A melanocyte-stimulating hormone (MSH) has been isolated from extracts of the neurointermediate lobe of the pituitary of the dogfish Squalus acanthias by gel-filtration and ion-exchange chromatography. It had approximately 1% of the potency of mammalian α-MSH on bioassays in vitro on frog skin and dogfish skin. Sequence analysis revealed it to be a hexadecapeptide with the following primary structure: Asp-Gly-Asp-Asp-Tyr-Lys-Phe-Gly-His-Phe-Arg-Trp-Ser-Val-Pro-Leu. It appears to be related to the β-MSH species of mammalian species but has only the sequence -His-Phe-Arg-Trp- in common with the heptapeptide core -Met-Glu-His-Phe-Arg-Trp-Gly- which is characteristic not only of the MSH peptides but also of the adrenocorticotrophins and lipotrophins studied so far. An α-MSH was also isolated, 50% of which was amidated at the C-terminus group. Sequence data from this study taken in conjunction with those from a previous study (Lowry & Chadwick, 1970b) revealed it to be a tridecapeptide which is identical with the N-terminal sequence of dogfish adrenocorticotrophin. PMID:4375978

  8. Electroactive polymer-peptide conjugates for adhesive biointerfaces.

    PubMed

    Maione, Silvana; Gil, Ana M; Fabregat, Georgina; Del Valle, Luis J; Triguero, Jordi; Laurent, Adele; Jacquemin, Denis; Estrany, Francesc; Jiménez, Ana I; Zanuy, David; Cativiela, Carlos; Alemán, Carlos

    2015-10-15

    Electroactive polymer-peptide conjugates have been synthesized by combining poly(3,4-ethylenedioxythiophene), a polythiophene derivative with outstanding properties, and an Arg-Gly-Asp (RGD)-based peptide in which Gly has been replaced by an exotic amino acid bearing a 3,4-ethylenedioxythiophene ring in the side chain. The incorporation of the peptide at the ends of preformed PEDOT chains has been corroborated by both FTIR and X-ray photoelectron spectroscopy. Although the morphology and topology are not influenced by the incorporation of the peptide at the ends of PEDOT chains, this process largely affects other surface properties. Thus, the wettability of the conjugates is considerably higher than that of PEDOT, independently of the synthetic strategy, whereas the surface roughness only increases when the conjugate is obtained using a competing strategy (i.e. growth of the polymer chains against termination by end capping). The electrochemical activity of the conjugates has been found to be higher than that of PEDOT, evidencing the success of the polymer-peptide links designed by chemical similarity. Density functional theory calculations have been used not only to ascertain the conformational preferences of the peptide but also to interpret the electronic transitions detected by UV-vis spectroscopy. Electroactive surfaces prepared using the conjugates displayed the higher bioactivities in terms of cell adhesion, with the relative viabilities being dependent on the roughness, wettability and electrochemical activity of the conjugate. In addition to the influence of the peptide fragment in the initial cell attachment and subsequent cell spreading and survival, the results indicate that PEDOT promotes the exchange of ions at the conjugate-cell interface.

  9. The anti-tumor effects of the recombinant toxin protein rLj-RGD3 from Lampetra japonica on pancreatic carcinoma Panc-1 cells in nude mice.

    PubMed

    Wang, Yue; Zheng, Yuanyuan; Tu, Zuoyu; Dai, Yongguo; Xu, Hong; Lv, Li; Wang, Jihong

    2017-02-01

    Recombinant Lampetra japonica RGD peptide (rLj-RGD3) is a soluble toxin protein with three RGD (Arg-Gly-Asp) motifs and a molecular weight of 13.5kDa. The aim of this study was to investigate the effects and mechanisms of rLj-RGD3 on tumor growth and survival in pancreatic carcinoma Panc-1 cell-bearing mice. A Panc-1 human pancreatic carcinoma-bearing nude mouse model was successfully generated, and the animals were treated with different doses of rLj-RGD3 for 3 weeks. The volume and weight of the subcutaneous tumors, the survival of the nude mice, histopathological changes, the intratumoral MVD, the number of apoptotic Panc-1 cells, and apoptosis-related proteins and gene expressions were determined. rLj-RGD3 significantly decreased the tumor volumes and weights, and the maximum tumor volume and weight IR values were 53.2% (p<0.001) and 55.9% (p<0.001), respectively. The life expectancy of Panc-1-bearing nude mice treated with rLj-RGD3 was increased by 56.3% (p<0.001). Meanwhile, rLj-RGD3 promoted the expression of Bax, caspase-3, and caspase-9 and inhibited Bcl-2 and VEGF expression. In addition, rLj-RGD3 did not change FAK, PI3K and Akt expression, but p-FAK, p-PI3K and p-Akt, levels were down-regulated. These results show that rLj-RGD3 induced potent anti-tumor activity in vivo and suppressed the growth of transplanted Panc-1 cells in a nude mouse model, implying that rLj-RGD3 may serve as a potent clinical therapeutic agent for human pancreatic carcinoma. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, J.-P.; Stehle, T.; Zhang, R.

    The structural basis for the divalent cation-dependent binding of heterodimeric alpha beta integrins to their ligands, which contain the prototypical Arg-Gly-Asp sequence, is unknown. Interaction with ligands triggers tertiary and quaternary structural rearrangements in integrins that are needed for cell signaling. Here we report the crystal structure of the extracellular segment of integrin alpha Vbeta 3 in complex with a cyclic peptide presenting the Arg-Gly-Asp sequence. The ligand binds at the major interface between the alpha V and beta 3 subunits and makes extensive contacts with both. Both tertiary and quaternary changes are observed in the presence of ligand. Themore » tertiary rearrangements take place in beta A, the ligand-binding domain of beta 3; in the complex, beta A acquires two cations, one of which contacts the ligand Asp directly and the other stabilizes the ligand-binding surface. Ligand binding induces small changes in the orientation of alpha V relative to beta 3.« less

  11. Electroactive oligoaniline-containing self-assembled monolayers for tissue engineering applications.

    PubMed

    Guo, Yi; Li, Mengyan; Mylonakis, Andreas; Han, Jingjia; MacDiarmid, Alan G; Chen, Xuesi; Lelkes, Peter I; Wei, Yen

    2007-10-01

    A novel electroactive silsesquioxane precursor, N-(4-aminophenyl)-N'-(4'-(3-triethoxysilyl-propyl-ureido) phenyl-1,4-quinonenediimine) (ATQD), was successfully synthesized from the emeraldine form of amino-capped aniline trimers via a one-step coupling reaction and subsequent purification by column chromatography. The physicochemical properties of ATQD were characterized using mass spectrometry as well as by nuclear magnetic resonance and UV-vis spectroscopy. Analysis by cyclic voltammetry confirmed that the intrinsic electroactivity of ATQD was maintained upon protonic acid doping, exhibiting two distinct reversible oxidative states, similar to polyaniline. The aromatic amine terminals of self-assembled monolayers (SAMs) of ATQD on glass substrates were covalently modified with an adhesive oligopeptide, cyclic Arg-Gly-Asp (RGD) (ATQD-RGD). The mean height of the monolayer coating on the surfaces was approximately 3 nm, as measured by atomic force microscopy. The biocompatibility of the novel electroactive substrates was evaluated using PC12 pheochromocytoma cells, an established cell line of neural origin. The bioactive, derivatized electroactive scaffold material, ATQD-RGD, supported PC12 cell adhesion and proliferation, similar to control tissue-culture-treated polystyrene surfaces. Importantly, electroactive surfaces stimulated spontaneous neuritogenesis in PC12 cells, in the absence of neurotrophic growth factors, such as nerve growth factor (NGF). As expected, NGF significantly enhanced neurite extension on both control and electroactive surfaces. Taken together, our results suggest that the newly electroactive SAMs grafted with bioactive peptides, such as RGD, could be promising biomaterials for tissue engineering.

  12. Gallium-67-labeled lactam bridge-cyclized alpha-MSH peptides with enhanced melanoma uptake and reduced renal uptake.

    PubMed

    Guo, Haixun; Gallazzi, Fabio; Miao, Yubin

    2012-06-20

    The purpose of this study was to examine the melanoma targeting and pharmacokinetic properties of (67)Ga-DOTA-GGNle-CycMSHhex {(67)Ga-1,4,7,10-tetraazacyclononane-1,4,7,10-tetraacetic acid-Gly-Gly-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} and (67)Ga-NOTA-GGNle-CycMSHhex {(67)Ga-1,4,7-triazacyclononane-1,4,7-triacetic acid-Gly-Gly-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} and compare with (67)Ga-DOTA-GlyGlu-CycMSH {(67)Ga-DOTA-Gly-Glu-c[Lys-Nle-Glu-His-DPhe-Arg-Trp-Gly-Arg-Pro-Val-Asp]} we previously reported. DOTA-GGNle-CycMSHhex and NOTA-GGNle-CycMSHhex were synthesized using fluorenylmethyloxy carbonyl (Fmoc) chemistry. The melanocortin-1 (MC1) receptor binding affinity of NOTA-GGNle-CycMSHhex was determined in B16/F1 melanoma cells and compared with DOTA-GGNle-CycMSHhex. The melanoma targeting and pharmacokinetic properties of (67)Ga-NOTA-GGNle-CycMSHhex and (67)Ga-DOTA-GGNle-CycMSHhex were determined in B16/F1 melanoma-bearing C57 mice. NOTA-GGNle-CycMSHhex and DOTA-GGNle-CycMSHhex displayed comparable MC1 receptor binding affinities (1.6 vs 2.1 nM) in B16/F1 melanoma cells. Both (67)Ga-NOTA-GGNle-CycMSHhex and (67)Ga-DOTA-GGNle-CycMSHhex exhibited dramatically enhanced melanoma uptake and reduced renal uptake than (67)Ga-DOTA-GlyGlu-CycMSH in B16/F1 melanoma-bearing C57 mice. Furthermore, (67)Ga-NOTA-GGNle-CycMSHhex exhibited more favorable radiolabeling conditions (>85% radiolabeling yields started at 37 °C), as well as higher tumor/kidney uptake ratios than (67)Ga-DOTA-GGNle-CycMSHhex at 0.5, 2, and 24 h postinjection. High melanoma uptake coupled with low renal uptake highlighted the potential of (67)Ga-NOTA-GGNle-CycMSHhex for melanoma imaging and therapy.

  13. Gallium-67-Labeled Lactam Bridge-Cyclized Alpha-MSH Peptides with Enhanced Melanoma Uptake and Reduced Renal Uptake

    PubMed Central

    Guo, Haixun; Gallazzi, Fabio; Miao, Yubin

    2012-01-01

    The purpose of this study was to examine the melanoma targeting and pharmacokinetic properties of 67Ga-DOTA-GGNle-CycMSHhex {67Ga-1,4,7,10-tetraazacyclononane-1,4,7,10-tetraacetic acid-Gly-Gly-Nle-c[Asp-His-dPhe-Arg-Trp-Lys]-CONH2} and 67Ga-NOTA-GGNle-CycMSHhex {67Ga-1,4,7-triazacyclononane-1,4,7-triacetic acid-Gly-Gly-Nle-c[Asp-His-dPhe-Arg-Trp-Lys]-CONH2} and compare with 67Ga-DOTA-GlyGlu-CycMSH {67Ga-DOTA-Gly-Glu-c[Lys-Nle-Glu-His-dPhe-Arg-Trp-Gly-Arg-Pro-Val-Asp]} we previously reported. DOTA-GGNle-CycMSHhex and NOTA-GGNle-CycMSHhex were synthesized using fluorenylmethyloxy carbonyl (Fmoc) chemistry. The melanocortin-1 (MC1) receptor binding affinity of NOTA-GGNle-CycMSHhex was determined in B16/F1 melanoma cells and compared with DOTA-GGNle-CycMSHhex. The melanoma targeting and pharmacokinetic properties of 67Ga-NOTA-GGNle-CycMSHhex and 67Ga-DOTA-GGNle-CycMSHhex were determined in B16/F1 melanoma-bearing C57 mice. NOTA-GGNle-CycMSHhex and DOTA-GGNle-CycMSHhex displayed comparable MC1 receptor binding affinities (1.6 vs. 2.1 nM) in B16/F1 melanoma cells. Both 67Ga-NOTA-GGNle-CycMSHhex and 67Ga-DOTA-GGNle-CycMSHhex exhibited dramatically enhanced melanoma uptake and reduced renal uptake than 67Ga-DOTA-GlyGlu-CycMSH in B16/F1 melanoma-bearing C57 mice. Furthermore, 67Ga-NOTA-GGNle-CycMSHhexexhibited more favorable radiolabeling conditions (> 85% radiolabeling yields started at 37°C), as well as higher tumor/kidney uptake ratios than 67Ga-DOTA-GGNle-CycMSHhex at 0.5, 2 and 24 h post-injection. High melanoma uptake coupled with low renal uptake highlighted the potential of 67Ga-NOTA-GGNle-CycMSHhexfor melanoma imaging and therapy. PMID:22621181

  14. The promotion of osseointegration of titanium surfaces by coating with silk protein sericin.

    PubMed

    Nayak, Sunita; Dey, Tuli; Naskar, Deboki; Kundu, Subhas C

    2013-04-01

    A promising strategy to influence the osseointegration process around orthopaedic titanium implants is the immobilization of bioactive molecules. This recruits appropriate interaction between the surface and the tissue by directing cells adhesion, proliferation, differentiation and active matrix remodelling. In this study, we aimed to investigate the functionalization of metallic implant titanium with silk protein sericin. Titanium surface was immobilized with non-mulberry Antheraea mylitta sericin using glutaraldehyde as crosslinker. To analyse combinatorial effects the sericin immobilized titanium was further conjugated with integrin binding peptide sequence Arg-Gly-Asp (RGD) using ethyl (dimethylaminopropyl) carbodiimide and N-hydroxysulfosuccinimide as coupling agents. The surface of sericin immobilized titanium was characterized biophysically. Osteoblast-like cells were cultured on sericin and sericin/RGD functionalized titanium and found to be more viable than those on pristine titanium. The enhanced adhesion, proliferation, and differentiation of osteoblast cells were observed. RT-PCR analysis showed that mRNA expressions of bone sialoprotein, osteocalcin and alkaline phosphatase were upregulated in osteoblast cells cultured on sericin and sericin/RGD immobilized titanium substrates. Additionally, no significant amount of pro-inflammatory cytokines TNF-α, IL-1β and nitric oxide production were recorded when macrophages cells and osteoblast-macrophages co culture cells were grown on sericin immobilized titanium. The findings demonstrate that the sericin immobilized titanium surfaces are potentially useful bioactive coated materials for titanium-based medical implants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. A Kinase-Independent Function of c-Src Mediates p130Cas Phosphorylation at the Serine-639 Site in Pressure Overloaded Myocardium

    PubMed Central

    Palanisamy, Arun P.; Suryakumar, Geetha; Panneerselvam, Kavin; Willey, Christopher D.; Kuppuswamy, Dhandapani

    2017-01-01

    Early work in pressure overloaded (PO) myocardium shows that integrins mediate focal adhesion complex formation by recruiting the adaptor protein p130Cas (Cas) and nonreceptor tyrosine kinase c-Src. To explore c-Src role in Cas-associated changes during PO, we used a feline right ventricular in vivo PO model and a three-dimensional (3D) collagen-embedded adult cardiomyocyte in vitro model that utilizes a Gly-Arg-Gly-Asp-Ser (RGD) peptide for integrin stimulation. Cas showed slow electrophoretic mobility (band-shifting), recruitment to the cytoskeleton, and tyrosine phosphorylation at 165, 249, and 410 sites in both 48 h PO myocardium and 1 h RGD-stimulated cardiomyocytes. Adenoviral mediated expression of kinase inactive (negative) c-Src mutant with intact scaffold domains (KN-Src) in cardiomyocytes did not block the RGD stimulated changes in Cas. Furthermore, expression of KN-Src or kinase active c-Src mutant with intact scaffold function (A-Src) in two-dimensionally (2D) cultured cardiomyocytes was sufficient to cause Cas band-shifting, although tyrosine phosphorylation required A-Src. These data indicate that c-Src’s adaptor function, but not its kinase function, is required for a serine/threonine specific phosphorylation(s) responsible for Cas band-shifting. To explore this possibility, Chinese hamster ovary cells that stably express Cas were infected with either β-gal or KN-Src adenoviruses and used for Cas immunoprecipitation combined with mass spectrometry analysis. In the KN-Src expressing cells, Cas showed phosphorylation at the serine-639 (human numbering) site. A polyclonal antibody raised against phospho-serine-639 detected Cas phosphorylation in 24–48 h PO myocardium. Our studies indicate that c-Src’s adaptor function mediates serine-639 phosphorylation of Cas during integrin activation in PO myocardium. PMID:25976166

  16. Evaluating the Usefulness of a Novel 10B-Carrier Conjugated With Cyclic RGD Peptide in Boron Neutron Capture Therapy

    PubMed Central

    Masunaga, Shin-ichiro; Kimura, Sadaaki; Harada, Tomohiro; Okuda, Kensuke; Sakurai, Yoshinori; Tanaka, Hiroki; Suzuki, Minoru; Kondo, Natsuko; Maruhashi, Akira; Nagasawa, Hideko; Ono, Koji

    2012-01-01

    Background To evaluate the usefulness of a novel 10B-carrier conjugated with an integrin-binding cyclic RGD peptide (GPU-201) in boron neutron capture therapy (BNCT). Methods GPU-201 was synthesized from integrin-binding Arg-Gly-Asp (RGD) consensus sequence of matrix proteins and a 10B cluster 1, 2-dicarba-closo-dodecaborane-10B. Mercaptododecaborate-10B (BSH) dissolved in physiological saline and BSH and GPU-201 dissolved with cyclodextrin (CD) as a solubilizing and dispersing agent were intraperitoneally administered to SCC VII tumor-bearing mice. Then, the 10B concentrations in the tumors and normal tissues were measured by γ-ray spectrometry. Meanwhile, tumor-bearing mice were continuously given 5-bromo-2’-deoxyuridine (BrdU) to label all proliferating (P) cells in the tumors, then treated with GPU-201, BSH-CD, or BSH. Immediately after reactor neutron beam or γ-ray irradiation, during which intratumor 10B concentrations were kept at levels similar to each other, cells from some tumors were isolated and incubated with a cytokinesis blocker. The responses of the Q and total (= P + Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. Results The 10B from BSH was washed away rapidly in all these tissues and the retention of 10B from BSH-CD and GPU-201 was similar except in blood where the 10B concentration from GPU-201 was higher for longer. GPU-201 showed a significantly stronger radio-sensitizing effect under neutron beam irradiation on both total and Q cell populations than any other 10B-carrier. Conclusion A novel 10B-carrier conjugated with an integrin-binding RGD peptide (GPU-201) that sensitized tumor cells more markedly than conventional 10B-carriers may be a promising candidate for use in BNCT. However, its toxicity needs to be tested further. PMID:29147290

  17. Synthesis of cyclic, multivalent Arg-Gly-Asp using sequential thiol-ene/thiol-yne photoreactions

    PubMed Central

    Aimetti, Alex A.; Feaver, Kristen R.

    2014-01-01

    A unique method has been developed for the formation of multivalent cyclic peptides. This procedure exploits on-resin peptide cyclization using a photoinitiated thiol-ene click reaction and subsequent clustering using thiol-yne photochemistry. Both reactions utilize the sulfhydryl group on natural cysteine amino acids to participate in the thiol-mediated reactions. PMID:20552127

  18. In vivo guided vascular regeneration with a non-porous elastin-like polypeptide hydrogel tubular scaffold.

    PubMed

    Mahara, Atsushi; Kiick, Kristi L; Yamaoka, Tetsuji

    2017-06-01

    Herein, we demonstrate a new approach for small-caliber vascular reconstruction using a non-porous elastin-like polypeptide hydrogel tubular scaffold, based on the concept of guided vascular regeneration (GVR). The scaffolds are composed of elastin-like polypeptide, (Val-Pro-Gly-Ile-Gly) n , for compliance matching and antithrombogenicity and an Arg-Gly-Asp (RGD) motif for connective tissue regeneration. When the polypeptide was mixed with an aqueous solution of β-[Tris(hydroxymethyl)phosphino]propionic acid at 37°C, the polypeptide hydrogel was rapidly formed. The elastic modulus of the hydrogel was 4.4 kPa. The hydrogel tubular scaffold was formed in a mold and reinforced with poly(lactic acid) nanofibers. When tubular scaffolds with an inner diameter of 1 mm and length of 5 mm were implanted into rat abdominal aortae, connective tissue grew along the scaffold luminal surface from the flanking native tissues, resulting in new blood vessel tissue with a thickness of 200 μm in 1 month. In contrast, rats implanted with control scaffolds without the RGD motif died. These results indicate that the non-porous hydrogel tubular scaffold containing the RGD motif effectively induced rapid tissue regeneration and that GVR is a promising strategy for the regeneration of small-diameter blood vessels. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1746-1755, 2017. © 2017 Wiley Periodicals, Inc.

  19. RGD(Arg-Gly-Asp) internalized docetaxel-loaded pH sensitive liposomes: Preparation, characterization and antitumor efficacy in vivo and in vitro.

    PubMed

    Zuo, Tiantian; Guan, Yuanyuan; Chang, Minglu; Zhang, Fang; Lu, Shanshan; Wei, Ting; Shao, Wei; Lin, Guimei

    2016-11-01

    The goal of this research was to formulate dual-targeting liposomes (RGD/DTX-PSL) that can selectively release loaded contents in a low pH level environment and to actively target to the tumor using liposomes that had surface arginine-glycine-aspartic (RGD) tripeptides. We investigated whether RGD/DTX-PSL could serve as an effective tumor-targeted nanoparticle that is capable of suppressing tumor growth. The results suggest that DTX is released from liposomes faster at pH 5.0 than pH 7.4, demonstrating their pH sensitivity. RGD/DTX-PSL has a longer blood circulation than Duopafei(®) in rats. The RGD/DTX-PSL formulation displayed stronger antiproliferative effects than DTX alone and the strongest inhibition of tumor growth of the formulations tested, thus expanding therapeutic window of DTX. In conclusion, we established a novel, promising and easy-to-handle liposome formulation that has a considerable antitumor activity in vitro and in vivo. This study provides important prerequisite for the clinical application of dual-targeting liposomes in delivering therapies. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Characterization and evaluation of DOTA-conjugated Bombesin/RGD-antagonists for prostate cancer tumor imaging and therapy.

    PubMed

    Stott Reynolds, Tamila J; Schehr, Rebecca; Liu, Dijie; Xu, Jingli; Miao, Yubin; Hoffman, Timothy J; Rold, Tammy L; Lewis, Michael R; Smith, Charles J

    2015-02-01

    Here we present the metallation, characterization, in vivo and in vitro evaluations of dual-targeting, peptide-based radiopharmaceuticals with utility for imaging and potentially treating prostate tumors by virtue of their ability to target the αVβ3 integrin or the gastrin releasing peptide receptor (GRPr). [RGD-Glu-6Ahx-RM2] (RGD: Arg-Gly-Asp; Glu: glutamic acid; 6-Ahx: 6-amino hexanoic acid; RM2: (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2)) was conjugated to a DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) bifunctional chelator (BFCA) purified via reversed-phase high-performance liquid chromatography (RP-HPLC), characterized by electrospray ionization-mass spectrometry (ESI-MS), and radiolabeled with (111)In or (177)Lu. Natural-metallated compounds were assessed for binding affinity for the αVβ3 integrin or GRPr in human glioblastoma U87-MG and prostate PC-3 cell lines and stability prior to in vivo evaluation in normal CF-1 mice and SCID mice xenografted with PC-3 cells. Competitive displacement binding assays with PC-3 and U87-MG cells revealed high to moderate binding affinity for the GRPr or the αVβ3 integrin (IC50 range of 5.39±1.37 nM to 9.26±0.00 nM in PC-3 cells, and a range of 255±47 nM to 321±85 nM in U87-MG cells). Biodistribution studies indicated high tumor uptake in PC-3 tumor-bearing mice (average of 7.40±0.53% ID/g at 1h post-intravenous injection) and prolonged retention of tracer (mean of 4.41±0.91% ID/g at 24h post-intravenous injection). Blocking assays corroborated the specificity of radioconjugates for each target. Micro-single photon emission computed tomography (microSPECT) confirmed favorable radiouptake profiles in xenografted mice at 20h post-injection. [RGD-Glu-[(111)In-DO3A]-6-Ahx-RM2] and [RGD-Glu-[(177)Lu- DO3A]-6-Ahx-RM2] show favorable pharmacokinetic and radiouptake profiles, meriting continued evaluation for molecular imaging in murine U87-MG/PC-3 xenograft models and radiotherapy studies with (177)Lu and (90)Y conjugates. These heterovalent, peptide-targeting ligands perform comparably with many mono- and multivalent conjugates with the potential benefit of increased sensitivity for detecting cancer cells exhibiting differential expression of target receptors. Published by Elsevier Inc.

  1. Independent control of matrix adhesiveness and stiffness within a 3D self-assembling peptide hydrogel.

    PubMed

    Hogrebe, Nathaniel J; Reinhardt, James W; Tram, Nguyen K; Debski, Anna C; Agarwal, Gunjan; Reilly, Matthew A; Gooch, Keith J

    2018-04-01

    A cell's insoluble microenvironment has increasingly been shown to exert influence on its function. In particular, matrix stiffness and adhesiveness strongly impact behaviors such as cell spreading and differentiation, but materials that allow for independent control of these parameters within a fibrous, stromal-like microenvironment are very limited. In the current work, we devise a self-assembling peptide (SAP) system that facilitates user-friendly control of matrix stiffness and RGD (Arg-Gly-Asp) concentration within a hydrogel possessing a microarchitecture similar to stromal extracellular matrix. In this system, the RGD-modified SAP sequence KFE-RGD and the scrambled sequence KFE-RDG can be directly swapped for one another to change RGD concentration at a given matrix stiffness and total peptide concentration. Stiffness is controlled by altering total peptide concentration, and the unmodified base peptide KFE-8 can be included to further increase this stiffness range due to its higher modulus. With this tunable system, we demonstrate that human mesenchymal stem cell morphology and differentiation are influenced by both gel stiffness and the presence of functional cell binding sites in 3D culture. Specifically, cells 24 hours after encapsulation were only able to spread out in stiffer matrices containing KFE-RGD. Upon addition of soluble adipogenic factors, soft gels facilitated the greatest adipogenesis as determined by the presence of lipid vacuoles and PPARγ-2 expression, while increasing KFE-RGD concentration at a given stiffness had a negative effect on adipogenesis. This three-component hydrogel system thus allows for systematic investigation of matrix stiffness and RGD concentration on cell behavior within a fibrous, three-dimensional matrix. Physical cues from a cell's surrounding environment-such as the density of cell binding sites and the stiffness of the surrounding material-are increasingly being recognized as key regulators of cell function. Currently, most synthetic biomaterials used to independently tune these parameters lack the fibrous structure characteristic of stromal extracellular matrix, which can be important to cells naturally residing within stromal tissues. In this manuscript, we describe a 3D hydrogel encapsulation system that provides user-friendly control over matrix stiffness and binding site concentration within the context of a stromal-like microarchitecture. Binding site concentration and gel stiffness both influenced cell spreading and differentiation, highlighting the utility of this system to study the independent effects of these material properties on cell function. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. May TLR4 Asp299Gly and IL17 His161Arg polymorphism be associated with progression of primary measles infection to subacute sclerosing panencephalitis?

    PubMed

    Karakas-Celik, Sevim; Piskin, Ibrahim Etem; Keni, Mehmet Fatih; Calık, Mustafa; Iscan, Akın; Dursun, Ahmet

    2014-09-01

    SSPE is a progressive neurological disorder of children. Only some of the children who are infected with measles virus develop SSPE, which supports individual variation. TLR-2 and TLR-4 play an important role in innate immunity by recognizing envelope proteins of MV. Another important cytokine that plays an important role in orchestrating innate immune function is IL-17. The purpose of our study is to elucidate whether the TLR2, TLR4, IL17F and IL17A gene polymorphisms are susceptibility genes for the development of SSPE. Using the PCR-RFLP methods, the single nucleotide polymorphisms of TLR2 (Arg753Gln, Arg677Trp, -194 to -174 del), TLR4 (Asp299Gly and Thr399Ile) IL17F (His161Arg, Glu126Gly) and IL17A were studied in 54 patients with SSPE and 81 healthy controls. For Asp299Gly polymorphism of the TLR4 gene we found that there were no control individuals who were homozygous carriers of the Gly/Gly genotype, and the risk for SSPE increased at approximately 4.7 fold for the heterozygous carriers of the Asp/Gly genotype (OR 4.727, 95%-CI 1.192-18.742; P=0.01), when compared to healthy controls. Also our findings demonstrate that homozygosity for the Arg161 variant of the IL17F His161Arg polymorphism is inversely associated with development of SSPE (OR 0.114 95%-CI 0.026-0.494; P<0.001). In conclusion, it is suggested that variation in susceptibility to SSPE disease may be in part due to variations in TLR4 and IL17 function resulting from polymorphisms of TLR4 Asp299Gly and IL17F His161Arg. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Amphiphilic cationic peptides mediate cell adhesion to plastic surfaces.

    PubMed

    Rideout, D C; Lambert, M; Kendall, D A; Moe, G R; Osterman, D G; Tao, H P; Weinstein, I B; Kaiser, E T

    1985-09-01

    Four amphiphilic peptides, each with net charges of +2 or more at neutrality and molecular weights under 4 kilodaltons, were found to mediate the adhesion of normal rat kidney fibroblasts to polystyrene surfaces. Two of these peptides, a model for calcitonin (peptide 1, MCT) and melittin (peptide 2, MEL), form amphiphilic alpha-helical structures at aqueous/nonpolar interfaces. The other two, a luteinizing hormone-releasing hormone model (peptide 3, LHM) and a platelet factor model (peptide 4, MPF) form beta-strand structures in amphiphilic environments. Although it contains only 10 residues, LHM mediated adhesion to surfaces coated with solutions containing as little as 10 pmoles/ml of peptide. All four of these peptides were capable of forming monolayers at air-buffer interfaces with collapse pressures greater than 20 dynes/cm. None of these four peptides contains the tetrapeptide sequence Arg-Gly-Asp-Ser, which has been associated with fibronectin-mediated cell adhesion. Ten polypeptides that also lacked the sequence Arg-Gly-Asp-Ser but were nonamphiphilic and/or had net charges less than +2 at neutrality were all incapable of mediating cell adhesion (Pierschbacher and Ruoslahti, 1984). The morphologies of NRK cells spread on polystyrene coated with peptide LHM resemble the morphologies on fibronectin-coated surfaces, whereas cells spread on surfaces coated with MCT or MEL exhibit strikingly different morphologies. The adhesiveness of MCT, MEL, LHM, and MPF implies that many amphiphilic cationic peptides could prove useful as well defined adhesive substrata for cell culture and for studies of the mechanism of cell adhesion.

  4. Fibronectin regulates calvarial osteoblast differentiation

    NASA Technical Reports Server (NTRS)

    Moursi, A. M.; Damsky, C. H.; Lull, J.; Zimmerman, D.; Doty, S. B.; Aota, S.; Globus, R. K.

    1996-01-01

    The secretion of fibronectin by differentiating osteoblasts and its accumulation at sites of osteogenesis suggest that fibronectin participates in bone formation. To test this directly, we determined whether fibronectin-cell interactions regulate progressive differentiation of cultured fetal rat calvarial osteoblasts. Spatial distributions of alpha 5 integrin subunit, fibronectin, osteopontin (bone sialoprotein I) and osteocalcin (bone Gla-protein) were similar in fetal rat calvaria and mineralized, bone-like nodules formed by cultured osteoblasts. Addition of anti-fibronectin antibodies to cultures at confluence reduced subsequent formation of nodules to less than 10% of control values, showing that fibronectin is required for normal nodule morphogenesis. Anti-fibronectin antibodies selectively inhibited steady-state expression of mRNA for genes associated with osteoblast differentiation; mRNA levels for alkaline phosphatase and osteocalcin were suppressed, whereas fibronectin, type I collagen and osteopontin were unaffected. To identify functionally relevant domains of fibronectin, we treated cells with soluble fibronectin fragments and peptides. Cell-binding fibronectin fragments (type III repeats 6-10) containing the Arg-Gly-Asp (RGD) sequence blocked both nodule initiation and maturation, whether or not they contained a functional synergy site. In contrast, addition of the RGD-containing peptide GRGDSPK alone did not inhibit nodule initiation, although it did block nodule maturation. Thus, in addition to the RGD sequence, other features of the large cell-binding fragments contribute to the full osteogenic effects of fibronectin. Nodule formation and osteoblast differentiation resumed after anti-fibronectin antibodies or GRGDSPK peptides were omitted from the media, showing that the inhibition was reversible and the treatments were not cytotoxic. Outside the central cell-binding domain, peptides from the IIICS region and antibodies to the N terminus did not inhibit nodule formation. We conclude that osteoblasts interact with the central cell-binding domain of endogenously produced fibronectin during early stages of differentiation, and that these interactions regulate both normal morphogenesis and gene expression.

  5. Hydrogel Design for Supporting Neurite Outgrowth and Promoting Gene Delivery to Maximize Neurite Extension

    PubMed Central

    Shepard, Jaclyn A.; Stevans, Alyson C.; Holland, Samantha; Wang, Christine E.; Shikanov, Ariella; Shea, Lonnie D.

    2012-01-01

    Hydrogels capable of gene delivery provide a combinatorial approach for nerve regeneration, with the hydrogel supporting neurite outgrowth and gene delivery inducing the expression of inductive factors. This report investigates the design of hydrogels that balance the requirements for supporting neurite growth with those requirements for promoting gene delivery. Enzymatically-degradable PEG hydrogels encapsulating dorsal root ganglia explants, fibroblasts, and lipoplexes encoding nerve growth factor were gelled within channels that can physically guide neurite outgrowth. Transfection of fibroblasts increased with increasing concentration of Arg-Gly-Asp (RGD) cell adhesion sites and decreasing PEG content. The neurite length increased with increasing RGD concentration within 10% PEG hydrogels, yet was maximal within 7.5% PEG hydrogels at intermediate RGD levels. Delivering lipoplexes within the gel produced longer neurites than culture in NGF-supplemented media or co-culture with cells exposed to DNA prior to encapsulation. Hydrogels designed to support neurite outgrowth and deliver gene therapy vectors locally may ultimately be employed to address multiple barriers that limit regeneration. PMID:22038654

  6. Is vitronectin the velcro that binds the gametes together?

    PubMed

    Fusi, F M; Bernocchi, N; Ferrari, A; Bronson, R A

    1996-11-01

    Evidence has been presented that the adhesion of human spermatozoa to the oolemma is mediated by integrins recognizing the Arg-Gly-Asp sequence (RGD). Fibronectin and vitronectin, glycoproteins that contain functional RGD sequences, are both present on human spermatozoa, and integrins that recognize these ligands have been detected on spermatozoa and eggs. In this work, we studied the effects of oligopeptides specifically designed to block fibronectin or vitronectin receptors on the interaction of human spermatozoa with zona-free hamster oocytes. GRGDdSP, a peptide blocking cell attachment to fibronectin, was without effect, while GdRGDSP, which blocks both fibronectin and vitronectin receptors, significantly inhibited the binding of human spermatozoa to the oolemma of zona-free hamster eggs, in a concentration-dependent manner, over a range 1-100 microM. As these experiments suggested that a vitronectin receptor plays a role in sperm-oolemmal adhesion, we performed a series of experiments studying the effects of exogenous vitronectin, when added to spermatozoa and oocytes, on gamete interactions. Sperm-oolemmal adherence, as well as sperm aggregation, was promoted by vitronectin, over range of 2.2 nM to 1 microM, but only in the presence of calcium ions. We propose that vitronectin released during the sperm acrosome reaction is recognized by both gametes and plays a role in their adhesion.

  7. Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells

    NASA Technical Reports Server (NTRS)

    Chen, J.; Fabry, B.; Schiffrin, E. L.; Wang, N.; Ingber, D. E. (Principal Investigator)

    2001-01-01

    A magnetic twisting stimulator was developed based on the previously published technique of magnetic twisting cytometry. Using ligand-coated ferromagnetic microbeads, this device can apply mechanical stresses with varying amplitudes, duration, frequencies, and waveforms to specific cell surface receptors. Biochemical and biological responses of the cells to the mechanical stimulation can be assayed. Twisting integrin receptors with RGD (Arg-Gly-Asp)-containing peptide-coated beads increased endothelin-1 (ET-1) gene expression by >100%. In contrast, twisting scavenger receptors with acetylated low-density lipoprotein-coated beads or twisting HLA antigen with anti-HLA antibody-coated beads did not lead to alterations in ET-1 gene expression. In situ hybridization showed that the increase in ET-1 mRNA was localized in the cells that were stressed with the RGD-coated beads. Blocking stretch-activated ion channels with gadolinium, chelating Ca2+ with EGTA, or inhibiting tyrosine phosphorylation with genistein abolished twist-induced ET-1 mRNA elevation. Abolishing cytoskeletal tension with an inhibitor of the myosin ATPase, with an inhibitor of myosin light chain kinase, or with an actin microfilament disrupter blocked twisted-induced increases in ET-1 expression. Our results are consistent with the hypothesis that the molecular structural linkage of integrin-cytoskeleton is an important pathway for stress-induced ET-1 gene expression.

  8. Micropatterning of a nanoporous alumina membrane with poly(ethylene glycol) hydrogel to create cellular micropatterns on nanotopographic substrates.

    PubMed

    Lee, Hyun Jong; Kim, Dae Nyun; Park, Saemi; Lee, Yeol; Koh, Won-Gun

    2011-03-01

    In this paper, we describe a simple method for fabricating micropatterned nanoporous substrates that are capable of controlling the spatial positioning of mammalian cells. Micropatterned substrates were prepared by fabricating poly(ethylene glycol) (PEG) hydrogel microstructures on alumina membranes with 200 nm nanopores using photolithography. Because hydrogel precursor solution could infiltrate and become crosslinked within the nanopores, the resultant hydrogel micropatterns were firmly anchored on the substrate without the use of adhesion-promoting monolayers, thereby allow tailoring of the surface properties of unpatterned nanoporous areas. For mammalian cell patterning, arrays of microwells of different dimensions were fabricated. These microwells were composed of hydrophilic PEG hydrogel walls surrounding nanoporous bottoms that were modified with cell-adhesive Arg-Gly-Asp (RGD) peptides. Because the PEG hydrogel was non-adhesive towards proteins and cells, cells adhered selectively and remained viable within the RGD-modified nanoporous regions, thereby creating cellular micropatterns. Although the morphology of cell clusters and the number of cells inside one microwell were dependent on the lateral dimension of the microwells, adhered cells that were in direct contact with nanopores were able to penetrate into the nanopores by small extensions (filopodia) for all the different sizes of microwells evaluated. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Adsorption of arginine, glycine and aspartic acid on Mg and Mg-based alloy surfaces: A first-principles study

    NASA Astrophysics Data System (ADS)

    Fang, Zhe; Wang, Jianfeng; Yang, Xiaofan; Sun, Qiang; Jia, Yu; Liu, Hairong; Xi, Tingfei; Guan, Shaokang

    2017-07-01

    Studying the adsorption behaviors of biomolecules on the surface of Mg and Mg-based alloy has a fundamental and important role for related applications in biotechnology. In the present work, we systematically investigate and compare the adsorption properties of three typical amino acids, i.e., Arg (arginine), Gly (glycine) and Asp (aspartic acid), which form RGD tripeptide, on the Mg (0 0 0 1) surface with various doping (Zn, Y, and Nd), and aim to realize proper binding between biomolecules and Mg and Mg-based biomedical materials. Our results show that flat adsorption configurations of the functional groups binding to the surfaces are favored in energy for all the three selected amino acids. In specific, for the amino acids adsorped on clean Mg (0 0 0 1) surface, the adsorption energy (Eads) of Arg is found to be -1.67 eV for the most stable configuration, with amino and guanidyl groups binding with the surface. However, Gly (Asp) is found to binding with the surface through amino and carboxyl groups, with a -1.16 eV (-1.15 eV) binding energy. On the 2% Zn doped Mg (0 0 0 1) alloy surface (Mg-Zn (2%)), the Eads are significantly increased to be -1.91 eV, -1.32 eV and -1.35 eV for Arg, Gly and Asp, respectively. While the Mg-Y (1%) and Mg-Nd (1%) slightly weaken the adsorption of three amino acids. Moreover, we have performed detail discussions of the binding properties between amino acids and surfaces by projected density of states (PDOS) combined with charge transfer analyses. Our studies provide a comprehensive understanding on the interactions between amino acids and Mg and Mg-based alloy surfaces, with respect to facilitate the applications of Mg and Mg-based biomedical alloys in biosensing, drug delivery, biomolecule coating and other fields in biotechnology.

  10. Effect of peptides Lys-Glu-Asp-Gly and Ala-Glu-Asp-Gly on the morphology of the thymus in hypophysectomized young and old birds.

    PubMed

    Pateyk, A V; Baranchugova, L M; Rusaeva, N S; Obydenko, V I; Kuznik, B I

    2013-03-01

    Investigations were carried out on chicks of different age. It was found that the most pronounced changes in the morphology of the thymus occurred after neonatal hypophysectomy. These changes are least pronounced in old chicks. Peptides Lys-Glu-Asp-Gly and Ala-Glu-Asp-Gly synthesized on the basis of amino acid composition of peptide complexes of the anterior and posterior pituitary lobes administered to hypophysectomized birds regardless of age promoted recovery of the morphological structures of the thymus. The anterior pituitary peptide (Lys-Glu-Asp-Gly) had more pronounced effect on the recovery of thymic structure than posterior pituitary peptide (Ala-Glu-Asp-Gly).

  11. The study on the relationship between IRS-1 Gly972Arg and IRS-2 Gly1057Asp polymorphisms and type 2 diabetes in the Kurdish ethnic group in West Iran.

    PubMed

    Haghani, Karimeh; Bakhtiyari, Salar

    2012-11-01

    An association between the IRS-1 Gly972Arg and IRS-2 Gly1057Asp polymorphisms and type 2 diabetes mellitus (T2DM) in different ethnic groups is controversial. We aimed to identify the association of these polymorphisms with T2DM in the Kurdish ethnic group of Iran. Study groups included 336 T2DM and 341 normoglycemic subjects. Genotyping was determined by polymerase chain reaction-restriction fragment length polymorphism. Genotypic and allelic frequencies were then evaluated. GR and RR genotypes of IRS-1 Gly972Arg variant gave a higher risk for T2DM (odds ratios [OR]=1.76 and OR=3.86, respectively). IRS-1 Gly972Arg polymorphism was found to be significantly associated with T2DM (OR=1.63) for the dominant model (GG vs. GR+RR). GD genotypes of the IRS-2 Gly1057Asp variant gave a higher risk for T2DM (OR=1.63). The dominant model analysis of the IRS-2 Gly1057Asp genotypes (GG vs. GD+DD) also showed an enhanced association with T2DM (OR=1.69). Among several combinations, GR/GD gave the highest risk for T2DM (OR=3.1). Other combinations were also significantly associated with T2DM, including, GR/GG (OR=1.86), RR/GG (OR=1.76), GG/GD (OR=1.83), and GG/DD (OR=2.35). HbA1c, serum triglyceride, and systolic blood pressure were higher in the control subjects with GR+RR genotypes compared with the GG genotype. Among the T2DM subjects, fasting plasma glucose was significantly lower in subjects with the GG genotype in relation to those with the GR+RR genotypes. Normoglycemic subjects carrying GD+DD genotypes of IRS-2 Gly1057Asp variation had a significantly higher fasting plasma glucose and total cholesterol, as compared with those with the GG genotype. Our findings revealed that IRS-1 Gly972Arg and IRS-2 Gly1057Asp polymorphisms are associated with T2DM in the Kurdish ethnic group.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schürpf, Thomas; Chen, Qiang; Liu, Jin-huan

    Developmental endothelial cell locus-1 (Del-1) glycoprotein is secreted by endothelial cells and a subset of macrophages. Del-1 plays a regulatory role in vascular remodeling and functions in innate immunity through interaction with integrin {alpha}{sub V}{beta}{sub 3}. Del-1 contains 3 epidermal growth factor (EGF)-like repeats and 2 discoidin-like domains. An Arg-Gly-Asp (RGD) motif in the second EGF domain (EGF2) mediates adhesion by endothelial cells and phagocytes. We report the crystal structure of its 3 EGF domains. The RGD motif of EGF2 forms a type II' {beta} turn at the tip of a long protruding loop, dubbed the RGD finger. Whereas EGF2more » and EGF3 constitute a rigid rod via an interdomain calcium ion binding site, the long linker between EGF1 and EGF2 lends considerable flexibility to EGF1. Two unique O-linked glycans and 1 N-linked glycan locate to the opposite side of EGF2 from the RGD motif. These structural features favor integrin binding of the RGD finger. Mutagenesis data confirm the importance of having the RGD motif at the tip of the RGD finger. A database search for EGF domain sequences shows that this RGD finger is likely an evolutionary insertion and unique to the EGF domain of Del-1 and its homologue milk fat globule-EGF 8. The RGD finger of Del-1 is a unique structural feature critical for integrin binding.« less

  13. Focal complex formation in adult cardiomyocytes is accompanied by the activation of beta3 integrin and c-Src.

    PubMed

    Willey, Christopher D; Balasubramanian, Sundaravadivel; Rodríguez Rosas, María C; Ross, Robert S; Kuppuswamy, Dhandapani

    2003-06-01

    In pressure-overloaded myocardium, our recent study demonstrated cytoskeletal assembly of c-Src and other signaling proteins which was partially mimicked in vitro using adult feline cardiomyocytes embedded in three-dimensional (3D) collagen matrix and stimulated with an integrin-binding Arg-Gly-Asp (RGD) peptide. In the present study, we improved this model further to activate c-Src and obtain a full assembly of the focal adhesion complex (FAC), and characterized c-Src localization and integrin subtype(s) involved. RGD dose response experiments revealed that c-Src activation occurs subsequent to its cytoskeletal recruitment and is accompanied by p130Cas cytoskeletal binding and focal adhesion kinase (FAK) Tyr925 phosphorylation. When cardiomyocytes expressing hexahistidine-tagged c-Src via adenoviral gene delivery were used for RGD stimulation, the expressed c-Src exhibited relocation: (i) biochemical analysis revealed c-Src movement from the detergent-soluble to the -insoluble cytoskeletal fraction and (ii) confocal microscopic analysis showed c-Src movement from a nuclear/perinuclear to a sarcolemmal region. RGD treatment also caused sarcolemmal co-localization of FAK and vinculin. Characterization of integrin subtypes revealed that beta3, but not beta1, integrin plays a predominant role: (i) expression of cytoplasmic domain of beta1A integrin did not affect the RGD-stimulated FAC formation and (ii) both pressure-overloaded myocardium and RGD-stimulated cardiomyocytes exhibited phosphorylation of beta3 integrin at Tyr773/785 sites but not beta1 integrin at Thr788/789 sites. Together these data indicate that RGD treatment in cardiomyocytes causes beta3 integrin activation and c-Src sarcolemmal localization, that subsequent c-Src activation is accompanied by p130Cas binding and FAK Tyr925 phosphorylation, and that these events might be crucial for growth and remodeling of hypertrophying adult cardiomyocytes.

  14. Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects.

    PubMed

    Mendis, Eresha; Rajapakse, Niranjan; Byun, Hee-Guk; Kim, Se-Kwon

    2005-09-09

    Peptides derived from tryptic hydrolysate of jumbo squid (Dosidicus gigas) skin gelatin were assessed for their antioxidant properties in different in vitro assay systems. The hydrolysate itself exhibited a strong lipid peroxidation inhibition and it was much higher than that of natural antioxidant, alpha-tocopherol. In addition, it could scavenge highly active free radicals in oxidative systems, in the order of hydroxyl and carbon-centered radicals. Two representative peptides with comparatively higher antioxidant potency were purified and characterized as Phe-Asp-Ser-Gly-Pro-Ala-Gly-Val-Leu (880.18 Da) and Asn-Gly-Pro-Leu-Gln-Ala-Gly-Gln-Pro-Gly-Glu-Arg (1241.59 Da). Furthermore, viability of radical-mediated oxidation-induced human lung fibroblasts was enhanced following the treatment of two peptides. However it did not exhibit substantial ion chelation, and we presumed that the observed radical scavenging potency of these peptides play a vital role for their strong antioxidant activity. Based on our results we suggest that hydrophobic amino acids present in peptide sequences contributed greatly for observed antioxidant activities.

  15. Triazole RGD antagonist reverts TGFβ1-induced endothelial-to-mesenchymal transition in endothelial precursor cells.

    PubMed

    Bianchini, Francesca; Peppicelli, Silvia; Fabbrizzi, Pierangelo; Biagioni, Alessio; Mazzanti, Benedetta; Menchi, Gloria; Calorini, Lido; Pupi, Alberto; Trabocchi, Andrea

    2017-01-01

    Fibrosis is the dramatic consequence of a dysregulated reparative process in which activated fibroblasts (myofibroblasts) and Transforming Growth Factor β1 (TGFβ1) play a central role. When exposed to TGFβ1, fibroblast and epithelial cells differentiate in myofibroblasts; in addition, endothelial cells may undergo endothelial-to-mesenchymal transition (EndoMT) and actively participate to the progression of fibrosis. Recently, the role of αv integrins, which recognize the Arg-Gly-Asp (RGD) tripeptide, in the release and signal transduction activation of TGFβ1 became evident. In this study, we present a class of triazole-derived RGD antagonists that interact with αvβ3 integrin. Above different compounds, the RGD-2 specifically interferes with integrin-dependent TGFβ1 EndoMT in Endothelial Colony-Forming Cells (ECPCs) derived from circulating Endothelial Precursor Cells (ECPCs). The RGD-2 decreases the amount of membrane-associated TGFβ1, and reduces both ALK5/TGFβ1 type I receptor expression and Smad2 phosphorylation in ECPCs. We found that RGD-2 antagonist reverts EndoMT, reducing α-smooth muscle actin (α-SMA) and vimentin expression in differentiated ECPCs. Our results outline the critical role of integrin in fibrosis progression and account for the opportunity of using integrins as target for anti-fibrotic therapeutic treatment.

  16. Development of pre-implantation porcine blastocysts cultured within alginate hydrogel systems either supplemented with secreted phosphoprotein 1 or conjugated with Arg-Gly-Asp Peptide

    USDA-ARS?s Scientific Manuscript database

    Although deficiencies in porcine blastocyst elongation play a significant role in early embryonic mortality and establishment of within-litter developmental variation, the exact mechanisms of elongation are poorly understood. Secreted phosphoprotein 1 (SPP1) is increased within the uterine milieu du...

  17. Purification and structural characterization of insulin and glucagon from the bichir Polypterus senegalis (Actinopterygii: Polypteriformes).

    PubMed

    Conlon, J M; Fan, H; Fritzsch, B

    1998-01-01

    The Polypteriformes (bichirs and reedfish) are a family of ray-finned fishes of ancient lineage. Insulin has been isolated from an extract of the pancreas and upper gastrointestinal tract of the bichir Polypterus senegalis and its primary structure established as A-chain: Gly-Ile-Val-Glu-Gln-Cys-Cys-Asp-Thr-Pro10-Cys-Ser- Leu-Tyr-Asp-Leu-Glu-Asn-Tyr-Cys20-Asn: B-chain: Ala-Ala-Asn-Arg-His-Leu-Cys-Gly-Ser-His10-Leu-Val- Glu-Ala-Leu-Tyr-Leu-Val-Cys-Gly20-Asn-Arg-Gly-Phe- Phe-Tyr-Ile-Pro-Ser-Lys30-Met. Despite the fact that Polypterus insulin contains several unusual structural features that are not found in insulins from other jawed fish (Asp at A-8, Thr at A-9, Arg at B-4, Asn at B-21, Ile at B-27, Met at B-31), all the residues in human insulin that are involved in receptor binding, dimerization, and hexamerization have been conserved. A comparison of the structures of insulins from a range of species indicates that Polypterus insulin most closely resembles paddlefish insulin II (seven amino acid substitutions). In contrast, Polypterus glucagon (His-Ser- Gln-Gly-Thr-Phe-Thr-Asn-Asp-Tyr10-Thr-Lys-Tyr- Gln-Asp-Ser-Arg-Arg-Ala-Gln20-Asp-Phe-Val-Gln- Trp-Leu-Met-Ser-Asn) most closely resembles the glucagons from the gar Lepisosteus spatula and the bowfin Amia calva (four amino acid substitutions). The data are consistent with the conclusion based on comparison of morphological characteristics that the Polypterids are the most basal living group of the Actinopterygians with evolutionary connections to both the Acipenserids and the Neopterygians.

  18. Flagellin based biomimetic coatings: From cell-repellent surfaces to highly adhesive coatings.

    PubMed

    Kovacs, Boglarka; Patko, Daniel; Szekacs, Inna; Orgovan, Norbert; Kurunczi, Sandor; Sulyok, Attila; Khanh, Nguyen Quoc; Toth, Balazs; Vonderviszt, Ferenc; Horvath, Robert

    2016-09-15

    Biomimetic coatings with cell-adhesion-regulating functionalities are intensively researched today. For example, cell-based biosensing for drug development, biomedical implants, and tissue engineering require that the surface adhesion of living cells is well controlled. Recently, we have shown that the bacterial flagellar protein, flagellin, adsorbs through its terminal segments to hydrophobic surfaces, forming an oriented monolayer and exposing its variable D3 domain to the solution. Here, we hypothesized that this nanostructured layer is highly cell-repellent since it mimics the surface of the flagellar filaments. Moreover, we proposed flagellin as a carrier molecule to display the cell-adhesive RGD (Arg-Gly-Asp) peptide sequence and induce cell adhesion on the coated surface. The D3 domain of flagellin was replaced with one or more RGD motifs linked by various oligopeptides modulating flexibility and accessibility of the inserted segment. The obtained flagellin variants were applied to create surface coatings inducing cell adhesion and spreading to different levels, while wild-type flagellin was shown to form a surface layer with strong anti-adhesive properties. As reference surfaces synthetic polymers were applied which have anti-adhesive (PLL-g-PEG poly(l-lysine)-graft-poly(ethylene glycol)) or adhesion inducing properties (RGD-functionalized PLL-g-PEG). Quantitative adhesion data was obtained by employing optical biochips and microscopy. Cell-adhesion-regulating coatings can be simply formed on hydrophobic surfaces by using the developed flagellin-based constructs. The developed novel RGD-displaying flagellin variants can be easily obtained by bacterial production and can serve as alternatives to create cell-adhesion-regulating biomimetic coatings. In the present work, we show for the first time that. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. A Kinase-Independent Function of c-Src Mediates p130Cas Phosphorylation at the Serine-639 Site in Pressure Overloaded Myocardium.

    PubMed

    Palanisamy, Arun P; Suryakumar, Geetha; Panneerselvam, Kavin; Willey, Christopher D; Kuppuswamy, Dhandapani

    2015-12-01

    Early work in pressure overloaded (PO) myocardium shows that integrins mediate focal adhesion complex formation by recruiting the adaptor protein p130Cas (Cas) and nonreceptor tyrosine kinase c-Src. To explore c-Src role in Cas-associated changes during PO, we used a feline right ventricular in vivo PO model and a three-dimensional (3D) collagen-embedded adult cardiomyocyte in vitro model that utilizes a Gly-Arg-Gly-Asp-Ser (RGD) peptide for integrin stimulation. Cas showed slow electrophoretic mobility (band-shifting), recruitment to the cytoskeleton, and tyrosine phosphorylation at 165, 249, and 410 sites in both 48 h PO myocardium and 1 h RGD-stimulated cardiomyocytes. Adenoviral mediated expression of kinase inactive (negative) c-Src mutant with intact scaffold domains (KN-Src) in cardiomyocytes did not block the RGD stimulated changes in Cas. Furthermore, expression of KN-Src or kinase active c-Src mutant with intact scaffold function (A-Src) in two-dimensionally (2D) cultured cardiomyocytes was sufficient to cause Cas band-shifting, although tyrosine phosphorylation required A-Src. These data indicate that c-Src's adaptor function, but not its kinase function, is required for a serine/threonine specific phosphorylation(s) responsible for Cas band-shifting. To explore this possibility, Chinese hamster ovary cells that stably express Cas were infected with either β-gal or KN-Src adenoviruses and used for Cas immunoprecipitation combined with mass spectrometry analysis. In the KN-Src expressing cells, Cas showed phosphorylation at the serine-639 (human numbering) site. A polyclonal antibody raised against phospho-serine-639 detected Cas phosphorylation in 24-48 h PO myocardium. Our studies indicate that c-Src's adaptor function mediates serine-639 phosphorylation of Cas during integrin activation in PO myocardium. © 2015 Wiley Periodicals, Inc.

  20. Modulation of mitochondrial activity in HaCaT keratinocytes by the cell penetrating peptide Z-Gly-RGD(DPhe)-mitoparan.

    PubMed

    Richardson, Adam; Muir, Lewis; Mousdell, Sasha; Sexton, Darren; Jones, Sarah; Howl, John; Ross, Kehinde

    2018-01-30

    Biologically active cell penetrating peptides (CPPs) are an emerging class of therapeutic agent. The wasp venom peptide mastoparan is an established CPP that modulates mitochondrial activity and triggers caspase-dependent apoptosis in cancer cells, as does the mastoparan analogue mitoparan (mitP). Mitochondrial depolarisation and activation of the caspase cascade also underpins the action of dithranol, a topical agent for treatment of psoriasis. The effects of a potent mitP analogue on mitochondrial activity were therefore examined to assess its potential as a novel approach for targeting mitochondria for the treatment of psoriasis. In HaCaT keratinocytes treated with the mitP analogue Z-Gly-RGD(DPhe)-mitP for 24 h, a dose-dependent loss of mitochondrial activity was observed using the methyl-thiazolyl-tetrazolium (MTT) assay. At 10 μmol L -1 , MTT activity was less than 30% that observed in untreated cells. Staining with the cationic dye JC-1 suggested that Z-Gly-RGD(DPhe)-mitP also dissipated the mitochondrial membrane potential, with a threefold increase in mitochondrial depolarisation levels. However, caspase activity appeared to be reduced by 24 h exposure to Z-Gly-RGD(DPhe)-mitP treatment. Furthermore, Z-Gly-RGD(DPhe)-mitP treatment had little effect on overall cell viability. Our findings suggest Z-Gly-RGD(DPhe)-mitP promotes the loss of mitochondrial activity but does not appear to evoke apoptosis in HaCaT keratinocytes.

  1. Penetration of short fluorescence-labeled peptides into the nucleus in HeLa cells and in vitro specific interaction of the peptides with deoxyribooligonucleotides and DNA.

    PubMed

    Fedoreyeva, L I; Kireev, I I; Khavinson, V Kh; Vanyushin, B F

    2011-11-01

    Marked fluorescence in cytoplasm, nucleus, and nucleolus was observed in HeLa cells after incubation with each of several fluorescein isothiocyanate-labeled peptides (epithalon, Ala-Glu-Asp-Gly; pinealon, Glu-Asp-Arg; testagen, Lys-Glu-Asp-Gly). This means that short biologically active peptides are able to penetrate into an animal cell and its nucleus and, in principle they may interact with various components of cytoplasm and nucleus including DNA and RNA. It was established that various initial (intact) peptides differently affect the fluorescence of the 5,6-carboxyfluorescein-labeled deoxyribooligonucleotides and DNA-ethidium bromide complexes. The Stern-Volmer constants characterizing the degree of fluorescence quenching of various single- and double-stranded fluorescence-labeled deoxyribooligonucleotides with short peptides used were different depending on the peptide primary structures. This indicates the specific interaction between short biologically active peptides and nucleic acid structures. On binding to them, the peptides discriminate between different nucleotide sequences and recognize even their cytosine methylation status. Judging from corresponding constants of the fluorescence quenching, the epithalon, pinealon, and bronchogen (Ala-Glu-Asp-Leu) bind preferentially with deoxyribooligonucleotides containing CNG sequence (CNG sites are targets for cytosine DNA methylation in eukaryotes). Epithalon, testagen, and pinealon seem to preferentially bind with CAG- but bronchogen with CTG-containing sequences. The site-specific interactions of peptides with DNA can control epigenetically the cell genetic functions, and they seem to play an important role in regulation of gene activity even at the earliest stages of life origin and in evolution.

  2. Evidence that a functional fertilin-like ADAM plays a role in human sperm-oolemmal interactions.

    PubMed

    Bronson, R A; Fusi, F M; Calzi, F; Doldi, N; Ferrari, A

    1999-05-01

    Fertilin is a protein initially identified in guinea pig spermatozoa; it is the prototype of a larger family of conserved, proteins designated as a disintegrin and a metalloproteinase (ADAM). These heterodimers which consist of alpha and beta subunits, containing metalloproteinase-like and disintegrin-like domains, appear to play a role in mammalian fertilization. Peptides derived from the disintegrin domains of two ADAMs, fertilin and cyritestin, interfere with gamete adhesion and sperm-egg membrane fusion in non-human species. It has been suggested that fertilin-beta binds to an oolemmal integrin, and it is proposed that the tripeptide FEE (Phe-Glu-Glu) is the integrin recognition sequence in human fertilin-beta. We evaluated whether fertilin beta plays a role in human fertilization by studying the effects of a linear octapeptide containing the FEE sequence, SFEECDLP, and a scrambled octapeptide with the same amino acids, SFPCEDEL, on the incorporation of human spermatozoa by human zona-free eggs. The effects of G4120, a potent RGD-containing (Arg-Gly-Asp) thioether-bridged cyclic peptide which blocks both fibronectin and vitronectin receptors, and the relationship between FEE- and RGD-receptor interactions on sperm-egg interactions were also studied. The FEE-containing peptide, but not the scrampled peptide, inhibited sperm adhesion to oocytes and their penetration, over the range 1-5 microM. The inhibition induced by SFEECDLP was reversible and occurred only in the presence of peptide itself. The G4120 peptide exhibited 10-fold less inhibitory effects on sperm adhesion and penetration than did SFEECDLP. When combined, SFEECDLP and G4120 exhibited strong inhibition of both adhesion and penetration at concentrations that individually had been ineffective, suggesting co-operation between the two receptor-ligand interactions during fertilization. We propose that a fertilin-like molecule is functionally active on human spermatozoa and that its interaction with an oolemmal integrin receptor plays a role in fertilization in humans.

  3. Core-shell nanosized assemblies mediated by the alpha-beta cyclodextrin dimer with a tumor-triggered targeting property.

    PubMed

    Quan, Chang-Yun; Chen, Jing-Xiao; Wang, Hui-Yuan; Li, Cao; Chang, Cong; Zhang, Xian-Zheng; Zhuo, Ren-Xi

    2010-07-27

    In this paper, the alpha-beta cyclodextrin dimer is designed via "click" chemistry to connect the hydrophilic and hydrophobic segments to form self-assembled noncovalently connected micelles (NCCMs) through host-guest interactions. A peptide containing the Arg-Gly-Asp (RGD) sequence was introduced to NCCMs as a target ligand to improve the cell uptake efficacy, while PEGylated technology was employed via benzoic-imine bonds to protect the ligands in normal tissues and body fluid. In addition, two fluorescent dyes were conjugated to different segments to track the formation of the micelles as well as the assemblies. It was found that the targeting property of NCCMs was switched off before reaching the tumor sites and switched on after removing the poly(ethylene glycol) (PEG) segment in the tumor sites, which was called "tumor-triggered targeting". With deshielding of the PEG segment, the drugs loaded in NCCMs could be released rapidly due to the thermoinduced phase transition. The new concept of "tumor-triggered targeting" proposed here has great potential for cancer treatment.

  4. Succinimide Formation from an NGR-Containing Cyclic Peptide: Computational Evidence for Catalytic Roles of Phosphate Buffer and the Arginine Side Chain.

    PubMed

    Kirikoshi, Ryota; Manabe, Noriyoshi; Takahashi, Ohgi

    2017-02-16

    The Asn-Gly-Arg (NGR) motif and its deamidation product iso Asp-Gly-Arg ( iso DGR) have recently attracted considerable attention as tumor-targeting ligands. Because an NGR-containing peptide and the corresponding iso DGR-containing peptide target different receptors, the spontaneous NGR deamidation can be used in dual targeting strategies. It is well known that the Asn deamidation proceeds via a succinimide derivative. In the present study, we computationally investigated the mechanism of succinimide formation from a cyclic peptide, c[CH₂CO-NGRC]-NH₂, which has recently been shown to undergo rapid deamidation in a phosphate buffer. An H₂PO₄ - ion was explicitly included in the calculations. We employed the density functional theory using the B3LYP functional. While geometry optimizations were performed in the gas phase, hydration Gibbs energies were calculated by the SM8 (solvation model 8) continuum model. We have found a pathway leading to the five-membered ring tetrahedral intermediate in which both the H₂PO₄ - ion and the Arg side chain act as catalyst. This intermediate, once protonated at the NH₂ group on the five-membered ring, was shown to easily undergo NH₃ elimination leading to the succinimide formation. This study is the first to propose a possible catalytic role for the Arg side chain in the NGR deamidation.

  5. Molecular imaging of alpha v beta3 integrin expression in atherosclerotic plaques with a mimetic of RGD peptide grafted to Gd-DTPA.

    PubMed

    Burtea, Carmen; Laurent, Sophie; Murariu, Oltea; Rattat, Dirk; Toubeau, Gérard; Verbruggen, Alfons; Vansthertem, David; Vander Elst, Luce; Muller, Robert N

    2008-04-01

    The integrin alpha v beta3 is highly expressed in atherosclerotic plaques by medial and intimal smooth muscle cells and by endothelial cells of angiogenic microvessels. In this study, we have assessed non-invasive molecular magnetic resonance imaging (MRI) of plaque-associated alpha v beta3 integrin expression on transgenic ApoE-/- mice with a low molecular weight peptidomimetic of Arg-Gly-Asp (mimRGD) grafted to gadolinium diethylenetriaminepentaacetate (Gd-DTPA-g-mimRGD). The analogous compound Eu-DTPA-g-mimRGD was employed for an in vivo competition experiment and to confirm the molecular targeting. The specific interaction of mimRGD conjugated to Gd-DTPA or to 99mTc-DTPA with alpha v beta3 integrin was furthermore confirmed on Jurkat T lymphocytes. The mimRGD was synthesized and conjugated to DTPA. DTPA-g-mimRGD was complexed with GdCl3.6H2O, EuCl3.6H2O, or with [99mTc(CO)3(H2O)3]+. MRI evaluation was performed on a 4.7 T Bruker imaging system. Blood pharmacokinetics of Gd-DTPA-g-mimRGD were assessed in Wistar rats and in c57bl/6j mice. The presence of angiogenic blood vessels and the expression of alpha v beta3 integrin were confirmed in aorta specimens by immunohistochemistry. Gd-DTPA-g-mimRGD produced a strong enhancement of the external structures of the aortic wall and of the more profound layers (possibly tunica media and intima). The aortic lumen seemed to be restrained and distorted. Pre-injection of Eu-DTPA-g-mimRGD diminished the Gd-DTPA-g-mimRGD binding to atherosclerotic plaque and confirmed the specific molecular targeting. A slower blood clearance was observed for Gd-DTPA-g-mimRGD, as indicated by a prolonged elimination half-life and a diminished total clearance. The new compound is potentially useful for the diagnosis of vulnerable atherosclerotic plaques and of other pathologies characterized by alpha v beta3 integrin expression, such as cancer and inflammation. The delayed blood clearance, the significant enhancement of the signal-to-noise ratio, and the low immunogenicity of the mimetic molecule highlight its potential for an industrial and clinical implementation.

  6. In vivo imaging of tumour angiogenesis in mice with the alpha(v)beta (3) integrin-targeted tracer 99mTc-RAFT-RGD.

    PubMed

    Sancey, Lucie; Ardisson, Valérie; Riou, Laurent M; Ahmadi, Mitra; Marti-Batlle, Danièle; Boturyn, Didier; Dumy, Pascal; Fagret, Daniel; Ghezzi, Catherine; Vuillez, Jean-Philippe

    2007-12-01

    The molecular imaging of tumour neoangiogenesis currently represents a major field of research for the diagnostic and treatment strategy of solid tumours. Endothelial cells from tumour neovessels overexpress the alpha(v)beta(3) integrin, which selectively binds to Arg-Gly-Asp (RGD)-containing peptides. We evaluated the potential of the novel radiotracer (99m)Tc-RAFT-RGD for the non-invasive molecular imaging of alpha(v)beta(3) integrin expression in mice models of tumour development. (99m)Tc-RAFT-RGD, (99m)Tc-cRGD (specific control) and (99m)Tc-RAFT-RAD (non-specific control) were injected intravenously to mice bearing B16F0 or TS/A-pc tumours. In vivo whole-body tomographic imaging and post-mortem biodistribution studies were performed 60 min following tracer injection. Adjacent tumour slices were used to compare the localisation of neovessels from immunostaining and the pattern of (99m)Tc-RAFT-RGD uptake from autoradiographic ex vivo imaging. Biodistribution studies indicated that (99m)Tc-RAFT-RGD tumour uptake was significantly higher than that of (99m)Tc-RAFT-RAD in B16F0 (2.4+/-0.5 vs 1.0+/-0.1%ID/g, respectively) and in TS/A-pc tumours (2.7+/-0.8 vs 0.7+/-0.1%ID/g, respectively). Immunohistochemical and autoradiographic studies indicated that (99m)Tc-RAFT-RGD intratumoural uptake preferentially occurred in angiogenic areas. Tomographic imaging allowed tumour visualisation following injection of (99m)Tc-RAFT-RGD and (99m)Tc-cRGD with similar tumour-to-contralateral muscle (T/CM) ratios in B16F0 and in TS/A-pc tumours whereas (99m)Tc-RAFT-RAD T/CM ratios did not allow tumour imaging. In accordance with the higher level of alpha(v)beta(3) integrin expression on TS/A-pc tumours than on B16F0 tumours as determined from western blot and immunoprecipitation analyses, the (99m)Tc-RAFT-RGD T/CM ratio was significantly higher in TS/A-pc than in B16F0 tumours. (99m)Tc-RAFT-RGD allowed the in vivo imaging of alpha(v)beta(3) integrin tumour expression.

  7. Evolution subverting essentiality: Dispensability of the cell attachment Arg-Gly-Asp motif in multiply passaged foot-and-mouth disease virus

    PubMed Central

    Martínez, Miguel A.; Verdaguer, Nuria; Mateu, Mauricio G.; Domingo, Esteban

    1997-01-01

    Aphthoviruses use a conserved Arg-Gly-Asp triplet for attachment to host cells and this motif is believed to be essential for virus viability. Here we report that this triplet—which is also a widespread motif involved in cell-to-cell adhesion—can become dispensable upon short-term evolution of the virus harboring it. Foot-and-mouth disease virus (FMDV), which was multiply passaged in cell culture, showed an altered repertoire of antigenic variants resistant to a neutralizing monoclonal antibody. The altered repertoire includes variants with substitutions at the Arg-Gly-Asp motif. Mutants lacking this sequence replicated normally in cell culture and were indistinguishable from the parental virus. Studies with individual FMDV clones indicate that amino acid replacements on the capsid surface located around the loop harboring the Arg-Gly-Asp triplet may mediate in the dispensability of this motif. The results show that FMDV quasispecies evolving in a constant biological environment have the capability of rendering totally dispensable a receptor recognition motif previously invariant, and to ensure an alternative pathway for normal viral replication. Thus, variability of highly conserved motifs, even those that viruses have adapted from functional cellular motifs, can contribute to phenotypic flexibility of RNA viruses in nature. PMID:9192645

  8. The isolation and amino acid sequence of an adrenocorticotrophin from the pars distalis and a corticotrophin-like intermediate-lobe peptide from the neurointermediate lobe of the pituitary of the dogfish Squalus acanthias

    PubMed Central

    Lowry, Philip J.; Bennett, Hugh P. J.; McMartin, Colin; Scott, Alexander P.

    1974-01-01

    An adrenocorticotrophic hormone (ACTH) was isolated from extracts of the pars distalis of the pituitary of the dogfish Squalus acanthias by gel filtration and ion-exchange chromatography. It had 15% of the potency of human ACTH in promoting cortico-steroidogenesis in isolated rat adrenal cells. Sequence analysis revealed it to be a nonatria-contapeptide with the following primary structure: Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-Met-Gly-Arg-Lys-Arg-Arg-Pro-Ile-Lys-Val-Tyr-Pro-Asn-Ser-Phe-Glu-Asp-Glu-Ser-Val-Glu-Asn-Met-Gly-Pro-Glu-Leu. The N-terminal tridecapeptide sequence was identical with the proposed structure of dogfish α-melanocyte-stimulating hormone (α-MSH). On comparison with human ACTH eleven amino acid differences were seen, nine of which are in the 20–39 region of the molecule which is not essential for the steroidogenic activity of ACTH. A peptide identical with the 18–39 portion of this new ACTH was similarly isolated from the neurointermediate lobe of the pituitary where considerable amounts of dogfish α-MSH were found. This supported our view that ACTH as well as having a distinct biological role of its own is also the precursor of α-MSH. PMID:4375977

  9. Chimeric NDP-MSH and MTII melanocortin peptides with agouti-related protein (AGRP) Arg-Phe-Phe amino acids possess agonist melanocortin receptor activity.

    PubMed

    Joseph, Christine G; Wilczynski, Andrzej; Holder, Jerry R; Xiang, Zhimin; Bauzo, Rayna M; Scott, Joseph W; Haskell-Luevano, Carrie

    2003-12-01

    Agouti-related protein (AGRP) is one of only two known endogenous antagonists of G-protein coupled receptors (GPCRs). Specifically, AGRP antagonizes the brain melanocortin-3 and -4 receptors involved in energy homeostasis, regulation of feeding behavior, and obesity. Alpha-melanocyte stimulating hormone (alpha-MSH) is one of the known endogenous agonists for these receptors. It has been hypothesized that the Arg-Phe-Phe (111-113) human AGRP amino acids may be mimicking the melanocortin agonist Phe-Arg-Trp (7-9) residue interactions with the melanocortin receptors that are important for both receptor molecular recognition and stimulation. To test this hypothesis, we generated thirteen chimeric peptide ligands based upon the melanocortin agonist peptides NDP-MSH (Ac-Ser-Tyr-Ser-Nle4-Glu-His-DPhe-Arg-Trp-Gly-Lys-Pro-Val-NH2) and MTII (Ac-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-NH2). In these chimeric ligands, the agonist DPhe-Arg-Trp amino acids were replaced by the AGRP Arg-Phe-Phe residues, and resulted in agonist activity at the mouse melanocortin receptors (mMC1R and mMC3-5Rs), supporting the hypothesis that the AGRP antagonist ligand Arg-Phe-Phe residues mimic the agonist Phe-Arg-Trp amino acids. Interestingly, the Ac-Ser-Tyr-Ser-Nle4-Glu-His-Arg-DPhe-Phe-Gly-Lys-Pro-Val-NH2 peptide possessed 7 nM mMC1R agonist potency, and is 850-fold selective for the mMC1R versus the mMC3R, 2300-fold selective for the mMC1R versus the mMC4R, and 60-fold selective for the MC1R versus the mMC5R, resulting in the discovery of a new peptide template for the design of melanocortin receptor selective ligands.

  10. [Effects of Lys-Glu-Asp-Gly and Ala-Glu-Asp-Gly peptides on hormonal activity and thyroid morphology in hypophysectomized mature and old birds].

    PubMed

    Kuznik, B I; Pateiuk, A V; Rusaeva, N S; Baranchugova, L M; Obydenko, V I

    2011-01-01

    The aim of the paper was to investigate effects of Lys-Glu-Asp-Gly and Ala-Glu-Asp-Gly peptides which were designed and synthesized on the basis of amino acid study of the hypophyseal anterior and posterior lobe peptides on the thyroid morphology and hormonal activity in mature chicken and old birds. Hypophysectomy was established to produce atrophic changes in the thyroid gland and development of secondary hypothyrosis. Administration of Lys-Glu-Asp-Gly and Ala-Glu-Asp-Gly tetrapeptides significantly prevented these impairments by increasing the levels of the thyroid-stimulating hormone (TSH) as well as T3 and T4. Restoration of the thyroid functions and morphology was registered to be greater in one-year-old chicken as compared to five-year-old ones.

  11. Constructing polyamidoamine dendrons from poly(poly(ethylene glycol) monomethacrylate) brushes grafted from planar silicon hydride surfaces for biomedical applications

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Zheng, Hong-Ning; Yan, Qin; Wang, Cuie; Ma, Yin-Zhou; Tang, Yan-Chun; Xiao, Shou-Jun

    2011-06-01

    A facile approach was established to construct polyamidoamine (PAMAM) dendrons from polymer brushes of poly(poly(ethylene glycol) monomethacrylate) (Si-g-P(PEGMA-OH)) grafted from a planar silicon hydride surface. First the Si-g-P(PEGMA-OH) brushes were grown via surface-initiated atom transfer radical polymerization with robust Si-C links on silicon surfaces. The side-chain hydroxyl groups of Si-g-P(PEGMA-OH) were chlorinated with thionyl chloride and further chlorines were substituted with amino groups of ethylenediamine, giving terminal primary amines. Borrowing the solution synthesis approach, we constructed second and third generations of PAMAM dendrons on-chip by surface-initiated alternative growth of two monomers, methyl acrylate and ethylenediamine. Two applications of silicon-based PAMAM dendrons were shown: the dense amino groups were activated via a cross-linker, N-succinimidyl-6-maleimidylhexanoate, to capture a free-thiol-carrying peptide of oxytocin and the third generation of PAMAM dendrons was used as a platform to on-chip synthesize a three amino acid peptide of Arg-Gly-Asp (RGD). The above conclusions were mainly derived from a home-built multiple transmission-reflection infrared spectroscopy, and complemented by X-ray photoelectron spectroscopy, UV-Vis spectroscopy and matrix-assisted laser desorption/ionization-time of flight-mass spectrometry.

  12. Homology modeling, molecular dynamics, and docking studies of pattern-recognition transmembrane protein-lipopolysaccharide and β-1,3 glucan-binding protein from Fenneropenaeus indicus.

    PubMed

    Sivakamavalli, Jeyachandran; Tripathi, Sunil Kumar; Singh, Sanjeev Kumar; Vaseeharan, Baskaralingam

    2015-01-01

    Lipopolysaccharide and β-1,3 glucan-binding protein (LGBP) is a family of pattern-recognition transmembrane proteins (PRPs) which plays a vital role in the immune mechanism of crustaceans in adverse conditions. Fenneropenaeus indicus LGBP-deduced amino acid has conserved potential recognition motif for β-1,3 linkages of polysaccharides and putative RGD (Arg-Gly-Asp) cell adhesion sites for the activation of innate defense mechanism. In order to understand the stimulating activity of β-1,3 glucan (β-glucan) and its interaction with LGBP, a 3D model of LGBP is generated. Molecular docking is performed with this model, and the results indicate Arg71 with strong hydrogen bond from RGD domain of LGBP. Moreover, from the docking studies, we also suggest that Arg34, Lys68, Val135, and Ala146 in LGBP are important amino acid residues in binding as they have strong bonding interaction in the active site of LGBP. In our in vitro studies, yeast agglutination results suggest that shrimp F. indicus LGBP possesses sugar binding and recognition sites in its structure, which is responsible for agglutination reaction. Our results were synchronized with the already reported evidence both in vivo and in vitro experiments. This investigation may be valuable for further experimental investigation in the synthesis of novel immunomodulator.

  13. Skin peptide tyrosine-tyrosine, a member of the pancreatic polypeptide family: isolation, structure, synthesis, and endocrine activity.

    PubMed

    Mor, A; Chartrel, N; Vaudry, H; Nicolas, P

    1994-10-25

    Pancreatic polypeptide, peptide tyrosine-tyrosine (PYY), and neuropeptide tyrosine (NPY), three members of a family of structurally related peptides, are mainly expressed in the endocrine pancreas, in endocrine cells of the gut, and in the brain, respectively. In the present study, we have isolated a peptide of the pancreatic polypeptide family from the skin of the South American arboreal frog Phyllomedusa bicolor. The primary structure of the peptide was established as Tyr-Pro-Pro-Lys-Pro-Glu-Ser-Pro-Gly-Glu10-Asp-Ala-Ser-Pro-Glu-Glu- Met-Asn- Lys-Tyr20-Leu-Thr-Ala-Leu-Arg-His-Tyr-Ile-Asn-Leu30-Val-Thr- Arg-Gln-Arg-Tyr-NH2 . This unusual peptide, named skin peptide tyrosine-tyrosine (SPYY), exhibits 94% similarity with PYY from the frog Rana ridibunda. A synthetic replicate of SPYY inhibits melanotropin release from perifused frog neurointermediate lobes in very much the same way as NPY. These results demonstrate the occurrence of a PYY-like peptide in frog skin. Our data also suggest the existence of a pituitary-skin regulatory loop in amphibians.

  14. Skin peptide tyrosine-tyrosine, a member of the pancreatic polypeptide family: isolation, structure, synthesis, and endocrine activity.

    PubMed Central

    Mor, A; Chartrel, N; Vaudry, H; Nicolas, P

    1994-01-01

    Pancreatic polypeptide, peptide tyrosine-tyrosine (PYY), and neuropeptide tyrosine (NPY), three members of a family of structurally related peptides, are mainly expressed in the endocrine pancreas, in endocrine cells of the gut, and in the brain, respectively. In the present study, we have isolated a peptide of the pancreatic polypeptide family from the skin of the South American arboreal frog Phyllomedusa bicolor. The primary structure of the peptide was established as Tyr-Pro-Pro-Lys-Pro-Glu-Ser-Pro-Gly-Glu10-Asp-Ala-Ser-Pro-Glu-Glu- Met-Asn- Lys-Tyr20-Leu-Thr-Ala-Leu-Arg-His-Tyr-Ile-Asn-Leu30-Val-Thr- Arg-Gln-Arg-Tyr-NH2 . This unusual peptide, named skin peptide tyrosine-tyrosine (SPYY), exhibits 94% similarity with PYY from the frog Rana ridibunda. A synthetic replicate of SPYY inhibits melanotropin release from perifused frog neurointermediate lobes in very much the same way as NPY. These results demonstrate the occurrence of a PYY-like peptide in frog skin. Our data also suggest the existence of a pituitary-skin regulatory loop in amphibians. PMID:7937944

  15. Novel angiotensin I-converting enzyme inhibitory peptides isolated from Alcalase hydrolysate of mung bean protein.

    PubMed

    Li, Guan-Hong; Wan, Ju-Zhen; Le, Guo-Wei; Shi, Yong-Hui

    2006-08-01

    Mung bean protein isolates were hydrolyzed for 2 h by Alcalase. The generated hydrolysate showed angiotensin I-converting enzyme (ACE) inhibitory activity with the IC(50) value of 0.64 mg protein/ml. Three kinds of novel ACE inhibitory peptides were isolated from the hydrolysate by Sephadex G-15 and reverse-phase high performance liquid chromatography (RP-HPLC). These peptides were identified by amino acid composition analysis and matrix assisted-laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF MS/MS), as Lys-Asp-Tyr-Arg-Leu, Val-Thr-Pro-Ala-Leu-Arg and Lys-Leu-Pro-Ala-Gly-Thr-Leu-Phe with the IC(50) values of 26.5 microM, 82.4 microM and 13.4 microM, respectively. Copyright (c) 2006 European Peptide Society and John Wiley & Sons, Ltd.

  16. A DNA Nanotube-Peptide biocomplex for mRNA Detection and Its Application in Cancer Diagnosis and Targeted Therapy.

    PubMed

    Ji, Xiaoting; Lv, Haoyuan; Guo, Jiayi; Ding, Caifeng; Luo, Xiliang

    2018-04-25

    A biocomplex of DNA nanotube-peptide, consisting of six concatenated DNA strands, three lock DNA strands and a cell-penetrating peptide was developed herein. The barrel structured DNA nanotube-peptide was successfully applied as a co-drug delivery system for targeting cancer therapy. The mucin 1 proteins (MUC-1) aptamer which is part of DNA nanotube can specially recognize MUC-1 protein on the surface of MCF-7 cells. Cyclo (Arg-Gly-Asp-D-phe-Lys) (cRGD), as a cell-penetrating peptide, facilitates recruitment and uptake of targeting drugs by binding to integrin receptors (αvβ3) of cytomembrane surface. Anti-cancer drug doxorubicin (DOX) and paclitaxel (PTX) were loaded into the capsulated DNA nanotube-peptide (CDNP), which was used as co-drug cargo models. The as-prepared biocomplex can be utilized not only to deliver drug but also to achieve the anticancer effect in vivo. The experimental results suggested that the treatment efficacy of co-drug delivery platform (CDNP/DOX/PTX) was better than single-drug delivery platform (CDNP/DOX or CDNP/PTX). This system that was composed by DNA strands and peptide has good biocompatibility and biodegradability. Furthermore, the system can readily achieve detection of target mRNA of MCF-7 cell in vitro. The detection limits of mRNA are 9.7×10-8 M and 1.8×10-8 M by using CDNP/DOX and CDNP/PTX-FITC as a probe, respectively. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Surface chemical immobilization of bioactive peptides on synthetic polymers for cardiac tissue engineering.

    PubMed

    Rosellini, Elisabetta; Cristallini, Caterina; Guerra, Giulio D; Barbani, Niccoletta

    2015-01-01

    The aim of this work was the development of new synthetic polymeric systems, functionalized by surface chemical modification with bioactive peptides, for myocardial tissue engineering. Polycaprolactone and a poly(ester-ether-ester) block copolymer synthesized in our lab, polycaprolactone-poly(ethylene oxide)-polycaprolactone (PCL-PEO-PCL), were used as the substrates to be modified. Two pentapeptides, H-Gly-Arg-Gly-Asp-Ser-OH (GRGDS) from fibronectin and H-Tyr-Ile-Gly-Ser-Arg-OH (YIGSR) from laminin, were used for the functionalization. Polymeric membranes were obtained by casting from solutions and then functionalized by means of alkaline hydrolysis and subsequent coupling of the bioactive molecules through 1-(3-dimethylaminopropyl)-3-ethylcarbodimide hydrochloride/N-hydroxysuccinimide chemistry. The hydrolysis conditions, in terms of hydrolysis time, temperature, and sodium hydroxide concentration, were optimized for the two materials. The occurrence of the coupling reaction was demonstrated by infrared spectroscopy, as the presence on the functionalized materials of the absorption peaks typical of the two peptides. The peptide surface density was determined by chromatographic analysis and the distribution was studied by infrared chemical imaging. The results showed a nearly homogeneous peptide distribution, with a density above the minimum value necessary to promote cell adhesion. Preliminary in vitro cell culture studies demonstrated that the introduction of the bioactive molecules had a positive effect on improving C2C12 myoblasts growth on the synthetic materials.

  18. AntiAngioPred: A Server for Prediction of Anti-Angiogenic Peptides.

    PubMed

    Ettayapuram Ramaprasad, Azhagiya Singam; Singh, Sandeep; Gajendra P S, Raghava; Venkatesan, Subramanian

    2015-01-01

    The process of angiogenesis is a vital step towards the formation of malignant tumors. Anti-angiogenic peptides are therefore promising candidates in the treatment of cancer. In this study, we have collected anti-angiogenic peptides from the literature and analyzed the residue preference in these peptides. Residues like Cys, Pro, Ser, Arg, Trp, Thr and Gly are preferred while Ala, Asp, Ile, Leu, Val and Phe are not preferred in these peptides. There is a positional preference of Ser, Pro, Trp and Cys in the N terminal region and Cys, Gly and Arg in the C terminal region of anti-angiogenic peptides. Motif analysis suggests the motifs "CG-G", "TC", "SC", "SP-S", etc., which are highly prominent in anti-angiogenic peptides. Based on the primary analysis, we developed prediction models using different machine learning based methods. The maximum accuracy and MCC for amino acid composition based model is 80.9% and 0.62 respectively. The performance of the models on independent dataset is also reasonable. Based on the above study, we have developed a user-friendly web server named "AntiAngioPred" for the prediction of anti-angiogenic peptides. AntiAngioPred web server is freely accessible at http://clri.res.in/subramanian/tools/antiangiopred/index.html (mirror site: http://crdd.osdd.net/raghava/antiangiopred/).

  19. Silk fibroin produced by transgenic silkworms overexpressing the Arg-Gly-Asp motif accelerates cutaneous wound healing in mice.

    PubMed

    Baba, Atsunori; Matsushita, Shigeto; Kitayama, Kasumi; Asakura, Tetsuo; Sezutsu, Hideki; Tanimoto, Akihide; Kanekura, Takuro

    2018-03-04

    We investigated the effect of silk fibroin (SF) on wound healing in mice. SF or an amorphous SF film (ASFF) prepared from silk produced by the wild-type silkworm Bombyx mori (WT-SF, WT-ASFF) or by transgenic worms that overexpress the Arg-Gly-Asp (RGD) sequence (TG-SF, TG-ASFF) was placed on 5-mm diameter full-thickness skin wounds made by biopsy punch on the back of 8-12 week-old BALB/c mice. Each wound was covered with WT-ASFF and urethane film (UF), TG-ASFF plus UF, or UF alone (control). Wound closure, histological thickness, the area of granulation tissue, and neovascularization were analyzed 4, 8, and 12 days later. The effect of SF on cell migration and proliferation was examined in vitro by scratch- and MTT-assay using human dermal fibroblasts. Wound closure was prompted by TG-ASFF, granulation tissue was thicker and larger in ASFF-treated wounds than the control, and neovascularization was promoted significantly by WT-ASFF. Both assays showed that SF induced the migration and proliferation of human dermal fibroblasts. The effects of TG-ASFF and TG-SF on wound closure, granulation formation, and cell proliferation were more profound than that of WT-ASFF and WT-SF. We document that SF accelerates cutaneous wound healing, and this effect is enhanced with TG-SF. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.

  20. Possible Release of an ArgGlyArgProGln Pentapeptide with Innate Immunity Properties from Acidic Proline-Rich Proteins by Proteolytic Activity in Commensal Streptococcus and Actinomyces Species

    PubMed Central

    Li, Tong; Bratt, Per; Jonsson, Andreas P.; Ryberg, Mats; Johansson, Ingegerd; Griffiths, William J.; Bergman, Tomas; Strömberg, Nicklas

    2000-01-01

    This study suggests degradation of salivary acidic proline-rich proteins (PRPs) into potential innate-immunity-like peptides by oral Streptococcus and Actinomyces species. PRP degradation paralleled cleavage of Pro-containing substrates. PRP degradation by S. gordonii strain SK12 instantly released a Pyr1-Pro104Pro105 and a Gly111-Pro149Gln150 peptide together with a presumed Arg106Gly107Arg108Pro109Gln110 pentapeptide. The synthetic Arg106Gly107Arg108Pro109Gln110 peptide desorbed bound bacteria and counteracted sucrose-induced decrease of dental plaque pH in vitro. PMID:10948176

  1. Green tea polyphenol tailors cell adhesivity of RGD displaying surfaces: multicomponent models monitored optically

    PubMed Central

    Peter, Beatrix; Farkas, Eniko; Forgacs, Eniko; Saftics, Andras; Kovacs, Boglarka; Kurunczi, Sandor; Szekacs, Inna; Csampai, Antal; Bosze, Szilvia; Horvath, Robert

    2017-01-01

    The interaction of the anti-adhesive coating, poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) and its Arg-Gly-Asp (RGD) functionalized form, PLL-g-PEG-RGD, with the green tea polyphenol, epigallocatechin-gallate (EGCg) was in situ monitored. After, the kinetics of cellular adhesion on the EGCg exposed coatings were recorded in real-time. The employed plate-based waveguide biosensor is applicable to monitor small molecule binding and sensitive to sub-nanometer scale changes in cell membrane position and cell mass distribution; while detecting the signals of thousands of adhering cells. The combination of this remarkable sensitivity and throughput opens up new avenues in testing complicated models of cell-surface interactions. The systematic studies revealed that, despite the reported excellent antifouling properties of the coatings, EGCg strongly interacted with them, and affected their cell adhesivity in a concentration dependent manner. Moreover, the differences between the effects of the fresh and oxidized EGCg solutions were first demonstrated. Using a semiempirical quantumchemical method we showed that EGCg binds to the PEG chains of PLL-g-PEG-RGD and effectively blocks the RGD sites by hydrogen bonds. The calculations supported the experimental finding that the binding is stronger for the oxidative products. Our work lead to a new model of polyphenol action on cell adhesion ligand accessibility and matrix rigidity. PMID:28186133

  2. Green tea polyphenol tailors cell adhesivity of RGD displaying surfaces: multicomponent models monitored optically.

    PubMed

    Peter, Beatrix; Farkas, Eniko; Forgacs, Eniko; Saftics, Andras; Kovacs, Boglarka; Kurunczi, Sandor; Szekacs, Inna; Csampai, Antal; Bosze, Szilvia; Horvath, Robert

    2017-02-10

    The interaction of the anti-adhesive coating, poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) and its Arg-Gly-Asp (RGD) functionalized form, PLL-g-PEG-RGD, with the green tea polyphenol, epigallocatechin-gallate (EGCg) was in situ monitored. After, the kinetics of cellular adhesion on the EGCg exposed coatings were recorded in real-time. The employed plate-based waveguide biosensor is applicable to monitor small molecule binding and sensitive to sub-nanometer scale changes in cell membrane position and cell mass distribution; while detecting the signals of thousands of adhering cells. The combination of this remarkable sensitivity and throughput opens up new avenues in testing complicated models of cell-surface interactions. The systematic studies revealed that, despite the reported excellent antifouling properties of the coatings, EGCg strongly interacted with them, and affected their cell adhesivity in a concentration dependent manner. Moreover, the differences between the effects of the fresh and oxidized EGCg solutions were first demonstrated. Using a semiempirical quantumchemical method we showed that EGCg binds to the PEG chains of PLL-g-PEG-RGD and effectively blocks the RGD sites by hydrogen bonds. The calculations supported the experimental finding that the binding is stronger for the oxidative products. Our work lead to a new model of polyphenol action on cell adhesion ligand accessibility and matrix rigidity.

  3. Green tea polyphenol tailors cell adhesivity of RGD displaying surfaces: multicomponent models monitored optically

    NASA Astrophysics Data System (ADS)

    Peter, Beatrix; Farkas, Eniko; Forgacs, Eniko; Saftics, Andras; Kovacs, Boglarka; Kurunczi, Sandor; Szekacs, Inna; Csampai, Antal; Bosze, Szilvia; Horvath, Robert

    2017-02-01

    The interaction of the anti-adhesive coating, poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) and its Arg-Gly-Asp (RGD) functionalized form, PLL-g-PEG-RGD, with the green tea polyphenol, epigallocatechin-gallate (EGCg) was in situ monitored. After, the kinetics of cellular adhesion on the EGCg exposed coatings were recorded in real-time. The employed plate-based waveguide biosensor is applicable to monitor small molecule binding and sensitive to sub-nanometer scale changes in cell membrane position and cell mass distribution; while detecting the signals of thousands of adhering cells. The combination of this remarkable sensitivity and throughput opens up new avenues in testing complicated models of cell-surface interactions. The systematic studies revealed that, despite the reported excellent antifouling properties of the coatings, EGCg strongly interacted with them, and affected their cell adhesivity in a concentration dependent manner. Moreover, the differences between the effects of the fresh and oxidized EGCg solutions were first demonstrated. Using a semiempirical quantumchemical method we showed that EGCg binds to the PEG chains of PLL-g-PEG-RGD and effectively blocks the RGD sites by hydrogen bonds. The calculations supported the experimental finding that the binding is stronger for the oxidative products. Our work lead to a new model of polyphenol action on cell adhesion ligand accessibility and matrix rigidity.

  4. Effect of DOTA position on melanoma targeting and pharmacokinetic properties of 111In-labeled lactam bridge-cyclized alpha-melanocyte stimulating hormone peptide.

    PubMed

    Guo, Haixun; Yang, Jianquan; Gallazzi, Fabio; Prossnitz, Eric R; Sklar, Larry A; Miao, Yubin

    2009-11-01

    The purpose of this study was to examine the effect of DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) position on melanoma targeting and pharmacokinetics of radiolabeled lactam bridge-cyclized alpha-melanocyte stimulating hormone (alpha-MSH) peptide. A novel lactam bridge-cyclized alpha-MSH peptide, Ac-GluGlu-CycMSH[DOTA] {Ac-Glu-Glu-c[Lys-Nle-Glu-His-DPhe-Arg-Trp-Gly-Arg-Pro-Val-Lys(DOTA)]}, was synthesized using standard 9-fluorenylmethyloxycarbonyl (Fmoc) chemistry. DOTA was directly attached to the alpha-amino group of Lys in the cyclic ring, while the N-terminus of the peptide was acetylated to generate Ac-GluGlu-CycMSH[DOTA]. The MC1 receptor binding affinity of Ac-GluGlu-CycMSH[DOTA] was determined in B16/F1 melanoma cells. Melanoma targeting and pharmacokinetic properties of Ac-GluGlu-CycMSH[DOTA]-111In were determined in B16/F1 melanoma-bearing C57 mice and compared to that of 111In-DOTA-Gly-Glu-c[Lys-Nle-Glu-His-DPhe-Arg-Trp-Gly-Arg-Pro-Val-Asp] (111In-DOTA-GlyGlu-CycMSH; DOTA was coupled to the N-terminus of the peptide). Ac-GluGlu-CycMSH[DOTA] displayed 0.6 nM MC1 receptor binding affinity in B16/F1 cells. Ac-GluGlu-CycMSH[DOTA]-111In was readily prepared with greater than 95% radiolabeling yield. Ac-GluGlu-CycMSH[DOTA]-111In exhibited high tumor uptake (11.42 +/- 2.20% ID/g 2 h postinjection) and prolonged tumor retention (9.42 +/- 2.41% ID/g 4 h postinjection) in B16/F1 melanoma-bearing C57 mice. The uptake values for nontarget organs were generally low (<1.3% ID/g) except for the kidneys 2, 4, and 24 h postinjection. DOTA position exhibited profound effect on melanoma targeting and pharmacokinetic properties of Ac-GluGlu-CycMSH[DOTA]-111In, providing a new insight into the design of lactam bridge-cyclized peptide for melanoma imaging and therapy.

  5. The synthesis and cell interaction of statistical L-arginine - glycine - L-aspartic acid terpolypeptides.

    PubMed

    Mbizana, Siyasanga; Hlalele, Lebohang; Pfukwa, Rueben; du Toit, Andre; Lumkwana, Dumisile; Loos, Benjamin; Klumperman, Bert

    2018-05-01

    Copolymerizations and terpolymerizations of N-carboxyanhydrides (NCAs) of glycine (Gly), Nδ-carbobenzyloxy-L-ornithine ((Z)-Orn) and β-benzyl-L-aspartate ((Bz)-Asp) were investigated. In situ 1H NMR spectroscopy was used to monitor individual comonomer consumptions during binary and ternary copolymerizations. The six relevant reactivity ratios were determined from copolymerizations of the NCAs of amino acids via nonlinear least squares curve fitting. The reactivity ratios were subsequently used to maximize the occurrence of the Asp-Gly-Orn (DGR') sequence in the terpolymers. Terpolymers with variable probability of occurrence of DGR' were prepared in the lab. Subsequently, the ornithine residues on the terpolymers were converted to L-arginine (R) residues via guanidination reaction after removal of the protecting groups. The resulting DGR terpolymers translate to traditional peptides and proteins with variable RGD content, due to the convention in nomenclature that peptides are depicted from N- to C-terminus, whereas the NCA ring-opening polymerization is conducted from C- to N-terminus. The L-arginine containing terpolymers were evaluated for cell interaction, where it was found that neuronal cells display enhanced adhesion and process formation when plated in the presence of statistical DGR terpolymers.

  6. STAT3 activation in pressure-overloaded feline myocardium: role for integrins and the tyrosine kinase BMX.

    PubMed

    Willey, Christopher D; Palanisamy, Arun P; Johnston, Rebecca K; Mani, Santhosh K; Shiraishi, Hirokazu; Tuxworth, William J; Zile, Michael R; Balasubramanian, Sundaravadivel; Kuppuswamy, Dhandapani

    2008-06-27

    Growth, survival and cytoskeletal rearrangement of cardiomyocytes are critical for cardiac hypertrophy. Signal transducer and activator of transcription-3 (STAT3) activation is an important cardioprotective factor associated with cardiac hypertrophy. Although STAT3 activation has been reported via signaling through Janus Kinase 2 (JAK2) in several cardiac models of hypertrophy, the importance of other nonreceptor tyrosine kinases (NTKs) has not been explored. Utilizing an in vivo feline right ventricular pressure-overload (RVPO) model of hypertrophy, we demonstrate that in 48 h pressure-overload (PO) myocardium, STAT3 becomes phosphorylated and redistributed to detergent-insoluble fractions with no accompanying JAK2 activation. PO also caused increased levels of phosphorylated STAT3 in both cytoplasmic and nuclear fractions. To investigate the role of other NTKs, we used our established in vitro cell culture model of hypertrophy where adult feline cardiomyocytes are embedded three-dimensionally (3D) in type-I collagen and stimulated with an integrin binding peptide containing an Arg-Gly-Asp (RGD) motif that we have previously shown to recapitulate the focal adhesion complex (FAC) formation of 48 h RVPO. RGD stimulation of adult cardiomyocytes in vitro caused both STAT3 redistribution and activation that were accompanied by the activation and redistribution of c-Src and the TEC family kinase, BMX, but not JAK2. However, infection with dominant negative c-Src adenovirus was unable to block RGD-stimulated changes on either STAT3 or BMX. Further analysis in vivo in 48 h PO myocardium showed the presence of both STAT3 and BMX in the detergent-insoluble fraction with their complex formation and phosphorylation. Therefore, these studies indicate a novel mechanism of BMX-mediated STAT3 activation within a PO model of cardiac hypertrophy that might contribute to cardiomyocyte growth and survival.

  7. Engineering the bone-ligament interface using polyethylene glycol diacrylate incorporated with hydroxyapatite.

    PubMed

    Paxton, Jennifer Z; Donnelly, Kenneth; Keatch, Robert P; Baar, Keith

    2009-06-01

    Ligaments and tendons have previously been tissue engineered. However, without the bone attachment, implantation of a tissue-engineered ligament would require it to be sutured to the remnant of the injured native tissue. Due to slow repair and remodeling, this would result in a chronically weak tissue that may never return to preinjury function. In contrast, orthopaedic autograft reconstruction of the ligament often uses a bone-to-bone technique for optimal repair. Since bone-to-bone repairs heal better than other methods, implantation of an artificial ligament should also occur from bone-to-bone. The aim of this study was to investigate the use of a poly(ethylene glycol) diacrylate (PEGDA) hydrogel incorporated with hydroxyapatite (HA) and the cell-adhesion peptide RGD (Arg-Gly-Asp) as a material for creating an in vitro tissue interface to engineer intact ligaments (i.e., bone-ligament-bone). Incorporation of HA into PEG hydrogels reduced the swelling ratio but increased mechanical strength and stiffness of the hydrogels. Further, HA addition increased the capacity for cell growth and interface formation. RGD incorporation increased the swelling ratio but decreased mechanical strength and stiffness of the material. Optimum levels of cell attachment were met using a combination of both HA and RGD, but this material had no better mechanical properties than PEG alone. Although adherence of the hydrogels containing HA was achieved, failure occurs at about 4 days with 5% HA. Increasing the proportion of HA improved interface formation; however, with high levels of HA, the PEG HA composite became brittle. This data suggests that HA, by itself or with other materials, might be well suited for engineering the ligament-bone interface.

  8. Structural analysis of peptides that fill sites near the active center of the two different enzyme molecules by artificial intelligence and computer simulations

    NASA Astrophysics Data System (ADS)

    Nishiyama, Katsuhiko

    2018-05-01

    Using artificial intelligence, the binding styles of 167 tetrapeptides were predicted in the active site of papain and cathepsin K. Five tetrapeptides (Asn-Leu-Lys-Trp, Asp-Gln-Trp-Gly, Cys-Gln-Leu-Arg, Gln-Leu-Trp-Thr and Arg-Ser-Glu-Arg) were found to bind sites near the active center of both papain and cathepsin K. These five tetrapeptides have the potential to also bind sites of other cysteine proteases, and structural characteristics of these tetrapeptides should aid the design of a common inhibitor of cysteine proteases. Smart application of artificial intelligence should accelerate data mining of important complex systems.

  9. Balancing Cell Migration with Matrix Degradation Enhances Gene Delivery to Cells Cultured Three-Dimensionally Within Hydrogels

    PubMed Central

    Shepard, Jaclyn A.; Huang, Alyssa; Shikanova, Ariella; Shea, Lonnie D.

    2010-01-01

    In regenerative medicine, hydrogels are employed to fill defects and support the infiltration of cells that can ultimately regenerate tissue. Gene delivery within hydrogels targeting infiltrating cells has the potential to promote tissue formation, but the delivery efficiency of nonviral vectors within hydrogels is low hindering their applicability in tissue regeneration. To improve their functionality, we have conducted a mechanistic study to investigate the contribution of cell migration and matrix degradation on gene delivery. In this report, lipoplexes were entrapped within hydrogels based on poly(ethylene glycol) (PEG) crosslinked with peptides containing matrix metalloproteinase degradable sequences. The mesh size of these hydrogels is substantially less than the size of the entrapped lipoplexes, which can function to retain vectors. Cell migration and transfection were simultaneously measured within hydrogels with varying density of cell adhesion sites (Arg-Gly-Asp peptides) and solids content. Increasing RGD density increased expression levels up to 100-fold, while greater solids content sustained expression levels for 16 days. Increasing RGD density and decreasing solids content increased cell migration, which indicates expression levels increase with increased cell migration. Initially exposing cells to vector resulted in transient expression that declined after 2 days, verifying the requirement of migration to sustain expression. Transfected cells were predominantly located within the population of migrating cells for hydrogels that supported cell migration. Although the small mesh size retained at least 70% of the lipoplexes in the absence of cells after 32 days, the presence of cells decreased retention to 10% after 16 days. These results indicate that vectors retained within hydrogels contact migrating cells, and that persistent cell migration can maintain elevated expression levels. Thus matrix degradation and cell migration are fundamental design parameters for maximizing gene delivery from hydrogels. PMID:20450944

  10. Fe3O4-based PLGA nanoparticles as MR contrast agents for the detection of thrombosis

    PubMed Central

    Liu, Jia; Xu, Jie; Zhou, Jun; Zhang, Yu; Guo, Dajing; Wang, Zhigang

    2017-01-01

    Thrombotic disease is a great threat to human health, and early detection is particularly important. Magnetic resonance (MR) molecular imaging provides noninvasive imaging with the potential for early disease diagnosis. In this study, we developed Fe3O4-based poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) surface-modified with a cyclic Arg-Gly-Asp (cRGD) peptide as an MR contrast agent for the detection of thrombosis. The physical and chemical characteristics, biological toxicity, ability to target thrombi, and biodistribution of the NPs were studied. The Fe3O4-PLGA-cRGD NPs were constructed successfully, and hematologic and pathologic assays indicated no in vivo toxicity of the NPs. In a rat model of FeCl3-induced abdominal aorta thrombosis, the NPs readily and selectively accumulated on the surface of the thrombosis and under vascular endothelial cells ex vivo and in vivo. In the in vivo experiment, the biodistribution of the NPs suggested that the NPs might be internalized by the macrophages of the reticuloendothelial system in the liver and the spleen. The T2 signal decreased at the mural thrombus 10 min after injection and then gradually increased until 50 min. These results suggest that the NPs are suitable for in vivo molecular imaging of thrombosis under high shear stress conditions and represent a very promising MR contrast agent for sensitive and specific detection of thrombosis. PMID:28223802

  11. Exploring the Potential of (99m)Tc(CO)3-Labeled Triazolyl Peptides for Tumor Diagnosis.

    PubMed

    Gaonkar, Raghuvir H; Ganguly, Soumya; Baishya, Rinku; Dewanjee, Saikat; Sinha, Samarendu; Gupta, Amit; Ganguly, Shantanu; Debnath, Mita C

    2016-04-01

    In recent years the authors have reported on (99m)Tc(CO)3-labeled peptides that serve as carriers for biomolecules or radiopharmaceuticals to the tumors. In continuation of that work they report the synthesis of a pentapeptide (Met-Phe-Phe-Gly-His; pep-1), a hexapeptide (Met-Phe-Phe-Asp-Gly-His; pep-2), and a tetrapeptide (Asp-Gly-Arg-His; pep-3) and the attachment of 3-amino-1,2,4-triazole to the β carboxylic function of the aspartic acid unit of pep-2 and pep-3. The pharmacophores were radiolabeled in high yields with [(99m)Tc(CO)3(H2O)3](+) metal aqua ion, characterized for their stability in serum and saline, as well as in His solution, and found to be substantially stable. B16F10 cell line binding studies showed favorable uptake and internalization. In vivo behavior of the radiolabeled triazolyl peptides was assessed in mice bearing induced tumor. The (99m)Tc(CO)3-triazolyl pep-3 demonstrated rapid urinary clearance and comparatively better tumor uptake. Imaging studies showed visualization of the tumor using (99m)Tc(CO)3-triazolyl pep-3, but due to high abdominal background, low delineation occurred. Based on the results further experiments will be carried out for targeting tumor with triazolyl peptides.

  12. Effects of peptides Lys-Glu-Asp-Gly and Ala-Glu-Asp-Gly on hormonal activity and structure of the thyroid gland in hypophysectomized young chickens and old hens.

    PubMed

    Kuznik, B I; Pateyuk, A V; Rusaeva, N S; Baranchugova, L M; Obydenko, V I

    2011-02-01

    Hypophysectomy in 5-days chickens and old hens was followed by hormonal disturbances and structural changes in the thyroid gland. Administration of peptides Lys-Glu-Asp-Gly and Ala-Glu-Asp-Gly synthesized on the basis the amino acid composition of extracts from the anterior and posterior lobes of the pituitary gland, respectively, to hypophysectomized birds for 40 days significantly reduced the degree of these changes. The normalizing effect of synthetic peptides on the concentration of thyrotrophic hormone and thyroid hormones in old hens was less pronounced than in chickens.

  13. Inhibition of intimal thickening after vascular injury with a cocktail of vascular endothelial growth factor and cyclic Arg-Gly-Asp peptide.

    PubMed

    Li, Yue; McRobb, Lucinda S; Khachigian, Levon M

    2016-10-01

    Percutaneous coronary intervention is widely used for the treatment of coronary artery disease; however, significant challenges such as restenosis remain. Key to solving these problems is to inhibit smooth muscle cell activation while enhancing re-endothelialization. Early growth response-1 (Egr-1) is a transcription factor that regulates vascular smooth muscle cell (SMC) proliferation and migration through its control of an array of downstream genes. A "cocktail" of vascular endothelial growth factor (VEGF)-A, VEGF-D and cyclic RGD was tested for its ability to inhibit neointima formation and accelerate re-endothelialization following balloon injury to carotid arteries of rats. In vitro, the cocktail stimulated endothelial cell growth yet inhibited smooth muscle cell growth. In vivo, cocktail-treated injured arteries exhibited reduced intimal thickening by >50% (P<0.05). It increased both re-endothelialization and endothelial nitric oxide synthase (NOS) expression. Cocktail reduced Egr-1 expression, an effect blocked by the NOS inhibitor L-N(G)-nitroarginine methyl ester (L-NAME) that also prevented cocktail inhibition of neointima inhibition. This combination may potentially be useful for the treatment of restenosis with concomitant stimulation of revascularization. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. A natural variant of the cysteine protease virulence factor of group A Streptococcus with an arginine-glycine-aspartic acid (RGD) motif preferentially binds human integrins alphavbeta3 and alphaIIbbeta3.

    PubMed

    Stockbauer, K E; Magoun, L; Liu, M; Burns, E H; Gubba, S; Renish, S; Pan, X; Bodary, S C; Baker, E; Coburn, J; Leong, J M; Musser, J M

    1999-01-05

    The human pathogenic bacterium group A Streptococcus produces an extracellular cysteine protease [streptococcal pyrogenic exotoxin B (SpeB)] that is a critical virulence factor for invasive disease episodes. Sequence analysis of the speB gene from 200 group A Streptococcus isolates collected worldwide identified three main mature SpeB (mSpeB) variants. One of these variants (mSpeB2) contains an Arg-Gly-Asp (RGD) sequence, a tripeptide motif that is commonly recognized by integrin receptors. mSpeB2 is made by all isolates of the unusually virulent serotype M1 and several other geographically widespread clones that frequently cause invasive infections. Only the mSpeB2 variant bound to transfected cells expressing integrin alphavbeta3 (also known as the vitronectin receptor) or alphaIIbbeta3 (platelet glycoprotein IIb-IIIa), and binding was blocked by a mAb that recognizes the streptococcal protease RGD motif region. In addition, mSpeB2 bound purified platelet integrin alphaIIbbeta3. Defined beta3 mutants that are altered for fibrinogen binding were defective for SpeB binding. Synthetic peptides with the mSpeB2 RGD motif, but not the RSD sequence present in other mSpeB variants, blocked binding of mSpeB2 to transfected cells expressing alphavbeta3 and caused detachment of cultured human umbilical vein endothelial cells. The results (i) identify a Gram-positive virulence factor that directly binds integrins, (ii) identify naturally occurring variants of a documented Gram-positive virulence factor with biomedically relevant differences in their interactions with host cells, and (iii) add to the theme that subtle natural variation in microbial virulence factor structure alters the character of host-pathogen interactions.

  15. Development and biophysical characterization of HK polymer for siRNA delivery to tumor in a mouse model

    NASA Astrophysics Data System (ADS)

    Chou, Szu-Ting

    Delivery has been the major obstacle for nucleic acid therapeutics, including the RNA interference (RNAi) approach. Mixson's lab has been focused on the development of a non-viral peptide-based delivery system, HK (histidine-lysine) polymers, which have shown promise as carriers of plasmids and small interference RNA (siRNA) in several cell lines and in tumor-bearing models. In a previous study, a four-branched peptide, denoted H3K(+H)4b, with the predominant repeating -HHHK- sequence in the branch, has been shown to be the most effective and least toxic carrier in vitro and in vivo.. Building on these results, I utilized different approaches including several structure and stability molecular characterization methods to study polyplex and to develop more effective carriers for improved therapy with siRNAs targeting malignancies. To understand the role of histidine in the stability of the H3K(+H)4b/siRNA polyplex, the physicochemical properties were investigated. With the use of isothermal titration calorimetry and heteronuclear single quantum coherence NMR, histidines were shown to form hydrogen bonds with siRNA, which enhanced the stability and biological activity of the polyplexes. In addition, to enhance resistance to nucleases and to target the tumors selectively, H3K(+H)4b was chemically modified with different patterns of polyethylene glycol (PEG) and cyclic RGD (Arg-Gly-Asp, cRGD) peptide conjugates. The luciferase marker gene expressed stably by tumor xenografts in mouse models was targeted in order to evaluate the efficacy of HK carriers of siRNA that differed in location and number of cRGD-PEG attachments. The most effective carrier was (RGD-PEG)4H3K(+H) (RP-HK), which has a cRGD-PEG on each of its four terminal branches. Consistent with its prolonged stability, as observed by pharmacokinetic studies, the RP-HK polyplex down-regulated luciferase activity in tumor xenografts by nearly 70% compared with the untreated group. Subsequently, the RP-HK polyplex was used to target the Raf-1 oncogene, an important mediator of tumor cell growth and angiogenesis. As in the luciferase studies, the polyplex reduced Raf-1 mRNA by more than 75%, and more importantly, the treatment inhibited the tumor growth by 60% in a mouse model. We anticipate that further design and engineering of HK carriers will improve the predictability and therapeutic activity of siRNA polyplexes in cancer treatment.

  16. [Peptide Ala-Glu-Asp-Gly and interferon gamma: their role in immune response during aging].

    PubMed

    Lin'kova, N S; Kuznik, B I; Khavinson, V Kh

    2012-01-01

    The decrease of lymphocyte interferon gamma expression during aging is one of the main mechanisms leading to the immunodeficiency state in the elderly. Cell penetrating geroprotective peptide Ala-Glu-Asp-Gly has the capability to activate the proliferation of lymphocytes in thymus during its aging. The nucleotide sequence which is complementary contacted with peptide Ala-Glu-Asp-Gly was found in promoter region of interferon gamma gene. Thus, the immune protection of this peptide can be explained by its activation of the interferon gamma production in T-cells.

  17. Substitution of the Lys Linker with the β-Ala Linker Dramatically Decreased the Renal Uptake of 99mTc-Labeled Arg-X-Asp-Conjugated and X-Ala-Asp-Conjugated α-Melanocyte Stimulating Hormone Peptides

    PubMed Central

    2015-01-01

    The purpose of this study was to examine whether the substitution of the Lys linker with the β-Ala could reduce the renal uptake of 99mTc-labeled Arg-X-Asp-conjugated and X-Ala-Asp-conjugated α-melanocyte stimulating hormone (α-MSH) peptides. RSD-β-Ala-(Arg11)CCMSH (1) {c[Arg-Ser-Asp-dTyr-Asp]-β-Ala-Cys-Cys-Glu-His-dPhe-Arg-Trp-Cys-Arg-Pro-Val-NH2}, RTD-β-Ala-(Arg11)CCMSH (2), RVD-β-Ala-(Arg11)CCMSH (3), RAD-β-Ala-(Arg11)CCMSH (4), NAD-β-Ala-(Arg11)CCMSH (5), and EAD-β-Ala-(Arg11)CCMSH (6) peptides were synthesized and evaluated for their melanocortin 1 (MC1) receptor binding affinities in B16/F1 melanoma cells. The biodistribution of their 99mTc-conjugates were determined in B16/F1 melanoma-bearing C57 mice. The substitution of the Lys linker with β-Ala linker dramatically reduced the renal uptake of all six 99mTc-peptides. 99mTc-4 exhibited the highest melanoma uptake (15.66 ± 6.19% ID/g) and the lowest kidney uptake (20.18 ± 3.86% ID/g) among these 99mTc-peptides at 2 h postinjection. The B16/F1 melanoma lesions could be clearly visualized by single photon emission computed tomography (SPECT)/CT using 99mTc-4 as an imaging probe. PMID:25290883

  18. Substitution of the Lys linker with the β-Ala linker dramatically decreased the renal uptake of 99mTc-labeled Arg-X-Asp-conjugated and X-Ala-Asp-conjugated α-melanocyte stimulating hormone peptides.

    PubMed

    Flook, Adam M; Yang, Jianquan; Miao, Yubin

    2014-11-13

    The purpose of this study was to examine whether the substitution of the Lys linker with the β-Ala could reduce the renal uptake of (99m)Tc-labeled Arg-X-Asp-conjugated and X-Ala-Asp-conjugated α-melanocyte stimulating hormone (α-MSH) peptides. RSD-β-Ala-(Arg(11))CCMSH (1) {c[Arg-Ser-Asp-dTyr-Asp]-β-Ala-Cys-Cys-Glu-His-dPhe-Arg-Trp-Cys-Arg-Pro-Val-NH2}, RTD-β-Ala-(Arg(11))CCMSH (2), RVD-β-Ala-(Arg(11))CCMSH (3), RAD-β-Ala-(Arg(11))CCMSH (4), NAD-β-Ala-(Arg(11))CCMSH (5), and EAD-β-Ala-(Arg(11))CCMSH (6) peptides were synthesized and evaluated for their melanocortin 1 (MC1) receptor binding affinities in B16/F1 melanoma cells. The biodistribution of their (99m)Tc-conjugates were determined in B16/F1 melanoma-bearing C57 mice. The substitution of the Lys linker with β-Ala linker dramatically reduced the renal uptake of all six (99m)Tc-peptides. (99m)Tc-4 exhibited the highest melanoma uptake (15.66 ± 6.19% ID/g) and the lowest kidney uptake (20.18 ± 3.86% ID/g) among these (99m)Tc-peptides at 2 h postinjection. The B16/F1 melanoma lesions could be clearly visualized by single photon emission computed tomography (SPECT)/CT using (99m)Tc-4 as an imaging probe.

  19. Cooperative Assembly of a Peptide Gelator and Silk Fibroin Afford an Injectable Hydrogel for Tissue Engineering.

    PubMed

    Cheng, Baochang; Yan, Yufei; Qi, Jingjing; Deng, Lianfu; Shao, Zeng-Wu; Zhang, Ke-Qin; Li, Bin; Sun, Ziling; Li, Xinming

    2018-04-18

    Silk fibroin (SF) from Bombyx mori has received increasing interest in biomedical fields, because of its slow biodegradability, good biocompatibility, and low immunogenicity. Although SF-based hydrogels have been studied intensively as a potential matrix for tissue engineering, weak gelation performance and low mechanical strength are major limitations that hamper their widespread applicability. Therefore, searching for new strategies to improve the SF gelation property is highly desirable in tissue engineering research. Herein, we report a facile approach to induce rapid gelation of SF by a small peptide gelator (e.g., NapFF). Following the simple mixing of SF and NapFF in water, a stable hydrogel of SF was obtained in a short time period at physiological pH, and the minimum gelation concentration of SF can reach as low as 0.1%. In this process of gelation, NapFF not only can behave itself as a gelator for supramolecular self-assembly, but also can trigger the conformational transition of the SF molecule from random coil to β-sheet structure via hydrophobic and hydrogen-bonding interactions. More importantly, for the generation of a scaffold with favorable cell-surface interactions, a new peptide gelator (NapFFRGD) with Arg-Gly-Asp (RGD) domain was applied to functionalize SF hydrogel with improved bioactivity for cell adhesion and growth. Following encapsulating the vascular endothelial growth factor (VEGF), the SF gel was subcutaneously injected in mice, and served as an effective matrix to trigger the generation of new blood capillaries in vivo.

  20. Trimucrin, an Arg-Gly-Asp containing disintegrin, attenuates myocardial ischemia-reperfusion injury in murine by inhibiting platelet function.

    PubMed

    Hung, Yu-Chun; Kuo, Yu-Ju; Huang, Shiang-Suo; Huang, Tur-Fu

    2017-10-15

    Trimucrin, a novel small-mass Arg-Gly-Asp (RGD)-containing disintegrin, has been demonstrated to possess anti-platelet and anti-inflammatory effect through blockade of platelet αIIbβ3 and phagocyte αvβ3 integrin. In this study, we found that the platelet-rich plasma prepared from trimucrin-treated rats platelet aggregation was diminished in response to adenosine diphosphate (ADP). We tried to determine whether trimucrin is cardioprotective in rats subjected to myocardial ischemia-reperfusion (I-R) injury. The left anterior descending coronary artery of anesthetized rats was subjected to 1h occlusion and 3h reperfusion. The animals received intravenous trimucrin or saline, and the severities of I-R-induced arrhythmia and infarction were compared. Trimucrin significantly reduced I-R-induced arrhythmias and reduced mortality, as well as infarct volume, troponin-I levels, creatine kinase, and lactate dehydrogenase activity in carotid blood compared with vehicle-treated animals during the same period. Trimucrin also improved cardiac function and survival rates after I-R injury. In addition, trimucrin concentration-dependently inhibited platelet adhesion on collagen- and fibrinogen-coated surfaces without affecting platelet counts. Trimucrin also significantly reduced neutrophil infiltration into heart tissues after I-R compared with controls. Furthermore, trimucrin treatment caused significant downregulation of Bax, Caspase-3 apoptotic proteins and upregulation of anti-apoptotic Bcl-2 protein. These results demonstrate that trimucrin exerts cardioprotective property against myocardial I-R injury mediated through antiplatele, anti-inflammatory, anti-apoptotic mechanism, as well as improvements in cardiac function. Copyright © 2017. Published by Elsevier B.V.

  1. RGD-modified liposomes enhance efficiency of aclacinomycin A delivery: evaluation of their effect in lung cancer.

    PubMed

    Feng, Chan; Li, Xiaoyan; Dong, Chunyan; Zhang, Xuemei; Zhang, Xie; Gao, Yong

    2015-01-01

    In this study, long-circulating Arg-Gly-Asp (RGD)-modified aclacinomycin A (ACM) liposomes were prepared by thin film hydration method. Their morphology, particle size, encapsulation efficiency, and in vitro release were investigated. The RGD-ACM liposomes was about 160 nm in size and had the visual appearance of a yellowish suspension. The zeta potential was -22.2 mV and the encapsulation efficiency was more than 93%. The drug-release behavior of the RGD-ACM liposomes showed a biphasic pattern, with an initial burst release and followed by sustained release at a constant rate. After being dissolved in phosphate-buffered saline (pH 7.4) and kept at 4°C for one month, the liposomes did not aggregate and still had the appearance of a milky white colloidal solution. In a pharmacokinetic study, rats treated with RGD-ACM liposomes showed slightly higher plasma concentrations than those treated with ACM liposomes. Maximum plasma concentrations of RGD-ACM liposomes and ACM liposomes were 4,532 and 3,425 ng/mL, respectively. RGD-ACM liposomes had a higher AUC0-∞ (1.54-fold), mean residence time (2.09-fold), and elimination half-life (1.2-fold) when compared with ACM liposomes. In an in vivo study in mice, both types of liposomes inhibited growth of human lung adenocarcinoma (A549) cells and markedly decreased tumor size when compared with the control group. There were no obvious pathological tissue changes in any of the treatment groups. Our results indicate that RGD-modified ACM liposomes have a better antitumor effect in vivo than their unmodified counterparts.

  2. RGD-modified liposomes enhance efficiency of aclacinomycin A delivery: evaluation of their effect in lung cancer

    PubMed Central

    Feng, Chan; Li, Xiaoyan; Dong, Chunyan; Zhang, Xuemei; Zhang, Xie; Gao, Yong

    2015-01-01

    In this study, long-circulating Arg-Gly-Asp (RGD)-modified aclacinomycin A (ACM) liposomes were prepared by thin film hydration method. Their morphology, particle size, encapsulation efficiency, and in vitro release were investigated. The RGD-ACM liposomes was about 160 nm in size and had the visual appearance of a yellowish suspension. The zeta potential was −22.2 mV and the encapsulation efficiency was more than 93%. The drug-release behavior of the RGD-ACM liposomes showed a biphasic pattern, with an initial burst release and followed by sustained release at a constant rate. After being dissolved in phosphate-buffered saline (pH 7.4) and kept at 4°C for one month, the liposomes did not aggregate and still had the appearance of a milky white colloidal solution. In a pharmacokinetic study, rats treated with RGD-ACM liposomes showed slightly higher plasma concentrations than those treated with ACM liposomes. Maximum plasma concentrations of RGD-ACM liposomes and ACM liposomes were 4,532 and 3,425 ng/mL, respectively. RGD-ACM liposomes had a higher AUC0–∞ (1.54-fold), mean residence time (2.09-fold), and elimination half-life (1.2-fold) when compared with ACM liposomes. In an in vivo study in mice, both types of liposomes inhibited growth of human lung adenocarcinoma (A549) cells and markedly decreased tumor size when compared with the control group. There were no obvious pathological tissue changes in any of the treatment groups. Our results indicate that RGD-modified ACM liposomes have a better antitumor effect in vivo than their unmodified counterparts. PMID:26316700

  3. Identification of Equine Lactadherin-derived Peptides That Inhibit Rotavirus Infection via Integrin Receptor Competition.

    PubMed

    Civra, Andrea; Giuffrida, Maria Gabriella; Donalisio, Manuela; Napolitano, Lorenzo; Takada, Yoshikazu; Coulson, Barbara S; Conti, Amedeo; Lembo, David

    2015-05-08

    Human rotavirus is the leading cause of severe gastroenteritis in infants and children under the age of 5 years in both developed and developing countries. Human lactadherin, a milk fat globule membrane glycoprotein, inhibits human rotavirus infection in vitro, whereas bovine lactadherin is not active. Moreover, it protects breastfed infants against symptomatic rotavirus infections. To explore the potential antiviral activity of lactadherin sourced by equines, we undertook a proteomic analysis of milk fat globule membrane proteins from donkey milk and elucidated its amino acid sequence. Alignment of the human, bovine, and donkey lactadherin sequences revealed the presence of an Asp-Gly-Glu (DGE) α2β1 integrin-binding motif in the N-terminal domain of donkey sequence only. Because integrin α2β1 plays a critical role during early steps of rotavirus host cell adhesion, we tested a minilibrary of donkey lactadherin-derived peptides containing DGE sequence for anti-rotavirus activity. A 20-amino acid peptide containing both DGE and RGD motifs (named pDGE-RGD) showed the greatest activity, and its mechanism of antiviral action was characterized; pDGE-RGD binds to integrin α2β1 by means of the DGE motif and inhibits rotavirus attachment to the cell surface. These findings suggest the potential anti-rotavirus activity of equine lactadherin and support the feasibility of developing an anti-rotavirus peptide that acts by hindering virus-receptor binding. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Potential of inherent RGD containing silk fibroin-poly (Є-caprolactone) nanofibrous matrix for bone tissue engineering.

    PubMed

    Bhattacharjee, Promita; Kundu, Banani; Naskar, Deboki; Kim, Hae-Won; Bhattacharya, Debasis; Maiti, T K; Kundu, S C

    2016-02-01

    The current study deals with the fabrication and characterization of blended nanofibrous scaffolds of tropical tasar silk fibroin of Antheraea mylitta and poly (Є-caprolactone) to act as an ideal scaffold for bone regeneration. The use of poly (Є-caprolactone) in osteogenesis is well-recognized. At the same time, the osteoconductive nature of the non-mulberry tasar fibroin is also established due to its internal integrin binding peptide RGD (Arg-Gly-Asp) sequences, which enhance cellular interaction and proliferation. Considering that the materials have the required and favorable properties, the blends are formed using an equal volume ratio of fibroin (2 and 4 wt%) and poly (Є-caprolactone) solution (10 wt%) to fabricate nanofibers. The nanofibers possess an average diameter of 152 ± 18 nm (2 % fibroin/PCL) and 175 ± 15 nm (4% fibroin/PCL). The results of Fourier transform infrared spectroscopy substantiates the preservation of the secondary structure of the fibroin in the blends indicating the structural stability of the neo-matrix. With an increase in the fibroin percentage, the hydrophobicity and thermal stability of the matrices as measured from melting temperature Tm (using DSC) decrease, while the mechanical strength is improved. The blended nanofibrous scaffolds are biodegradable, and support the viability and proliferation of human osteoblast-like cells as observed through scanning electron and confocal microscopes. Alkaline phosphatase assay indicates the cell proliferation and the generation of the neo-bone matrix. Taken together, these findings illustrate that the silk-poly (Є-caprolactone) blended nanofibrous scaffolds have an excellent prospect as scaffolding material in bone tissue engineering.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    James Graham, Robert Leslie; Graham, Ciaren; McClean, Stephen

    A novel undecapeptide has been isolated and structurally characterized from the venoms of three species of New World pit vipers from the subfamily, Crotalinae. These include the Mexican moccasin (Agkistrodon bilineatus), the prairie rattlesnake (Crotalus viridis viridis), and the South American bushmaster (Lachesis muta). The peptide was purified from all three venoms using a combination of gel permeation chromatography and reverse-phase HPLC. Automated Edman degradation sequencing and MALDI-TOF mass spectrometry established its peptide primary structure as: Thr-Pro-Pro-Ala-Gly-Pro-Asp-Val-Gly-Pro-Arg-OH, with a non-protonated molecular mass of 1063.18 Da. A synthetic replicate of the peptide was found to be an antagonist of bradykinin actionmore » at the rat vascular B2 receptor. This is the first bradykinin inhibitory peptide isolated from snake venom. Database searching revealed the peptide to be highly structurally related (10/11 residues) with a domain residing between the bradykinin-potentiating peptide and C-type natriuretic peptide domains of a recently cloned precursor from tropical rattlesnake (Crotalus durissus terrificus) venom gland. BIP thus represents a novel biological entity from snake venom.« less

  6. EEC- and ADULT-associated TP63 mutations exhibit functional heterogeneity toward P63 responsive sequences.

    PubMed

    Monti, Paola; Russo, Debora; Bocciardi, Renata; Foggetti, Giorgia; Menichini, Paola; Divizia, Maria T; Lerone, Margherita; Graziano, Claudio; Wischmeijer, Anita; Viadiu, Hector; Ravazzolo, Roberto; Inga, Alberto; Fronza, Gilberto

    2013-06-01

    TP63 germ-line mutations are responsible for a group of human ectodermal dysplasia syndromes, underlining the key role of P63 in the development of ectoderm-derived tissues. Here, we report the identification of two TP63 alleles, G134V (p.Gly173Val) and insR155 (p.Thr193_Tyr194insArg), associated to ADULT and EEC syndromes, respectively. These alleles, along with previously identified G134D (p.Gly173Asp) and R204W (p.Arg243Trp), were functionally characterized in yeast, studied in a mammalian cell line and modeled based on the crystal structure of the P63 DNA-binding domain. Although the p.Arg243Trp mutant showed both complete loss of transactivation function and ability to interfere over wild-type P63, the impact of p.Gly173Asp, p.Gly173Val, and p.Thr193_Tyr194insArg varied depending on the response element (RE) tested. Interestingly, p.Gly173Asp and p.Gly173Val mutants were characterized by a severe defect in transactivation along with interfering ability on two DN-P63α-specific REs derived from genes closely related to the clinical manifestations of the TP63-associated syndromes, namely PERP and COL18A1. The modeling of the mutations supported the distinct functional effect of each mutant. The present results highlight the importance of integrating different functional endpoints that take in account the features of P63 proteins' target sequences to examine the impact of TP63 mutations and the associated clinical variability. © 2013 Wiley Periodicals, Inc.

  7. Expedient generation of patterned surface aldehydes by microfluidic oxidation for chemoselective immobilization of ligands and cells.

    PubMed

    Westcott, Nathan P; Pulsipher, Abigail; Lamb, Brian M; Yousaf, Muhammad N

    2008-09-02

    An expedient and inexpensive method to generate patterned aldehydes on self-assembled monolayers (SAMs) of alkanethiolates on gold with control of density for subsequent chemoselective immobilization from commercially available starting materials has been developed. Utilizing microfluidic cassettes, primary alcohol oxidation of tetra(ethylene glycol) undecane thiol and 11-mercapto-1-undecanol SAMs was performed directly on the surface generating patterned aldehyde groups with pyridinium chlorochromate. The precise density of surface aldehydes generated can be controlled and characterized by electrochemistry. For biological applications, fibroblast cells were seeded on patterned surfaces presenting biospecifc cell adhesive (Arg-Glyc-Asp) RGD peptides.

  8. Pharmacological characterization of the inhibitory activity of beta h-endorphin (beta h-EP), [Arg9,19,24,28,29]-beta h-EP, [Gln8,Gly31]-beta h-EP-Gly-Gly-NH2, in the neuroeffector junction of the mouse vas deferens.

    PubMed

    Valenzuela, R; Li, C H; Huidobro-Toro, J P

    1991-08-01

    The inhibitory opioid activities of beta h-endorphin (beta h-EP), its structurally related peptide analogues [Gln8,Gly31]-beta h-EP-Gly-Gly-NH2 (Gly-Gly-beta h-EP), [Arg9,19,24,28,29]-beta h-EP (Arg-beta h-EP) and methionine enkephalin have been examined in the electrically stimulated mouse vas deferens bioassay. All four peptides behaved as full agonists; methionine enkephalin was the most potent followed by Arg-beta h-EP, beta h-EP and Gly-Gly-beta h-EP. Neither Gly-Gly-beta h-EP nor Arg-beta h-EP antagonized the inhibitory action of beta h-EP or methionine enkephalin. An hour of tissue exposure to 30 nM beta-funaltrexamine followed by thorough washing, displaced to the right, in a parallel fashion, the concentration-response curves of beta h-EP and analogues. Whereas the displacement of the concentration response curves was 8 to 10-fold for beta h-EP and Arg-beta h-EP, it was only about 3-fold for Gly-Gly-beta h-EP and methionine enkephalin. Naltrindole was the most potent antagonist of methionine enkephalin with an apparent pA2 of 9.4; its potency as an antagonist of beta h-EP and related analogues was approximately one-tenth of this with pA2 values approximately 8.5. Norbinaltorphimine also antagonized the action of the opioid peptides with pA2 values close to 7.8.

  9. PET-Based Human Dosimetry of the Dimeric αvβ3 Integrin Ligand 68Ga-DOTA-E-[c(RGDfK)]2, a Potential Tracer for Imaging Tumor Angiogenesis.

    PubMed

    López-Rodríguez, Victoria; Galindo-Sarco, Carlos; García-Pérez, Francisco O; Ferro-Flores, Guillermina; Arrieta, Oscar; Ávila-Rodríguez, Miguel A

    2016-03-01

    Peptides containing the Arg-Gly-Asp (RGD) sequence have high affinity for αvβ3 integrin receptors overexpressed in tumor cells. The objective of this research was to determine the biodistribution and estimate the radiation dose from (68)Ga-DOTA-E-[c(RGDfK)]2 using whole-body PET scans in humans. Five healthy volunteers (2 women, 3 men; mean age ± SD, 37.2 ± 15.6 y; range, 28-65 y; mean weight, 79.2 ± 21.0 kg; range, 64-115 kg) were included. After intravenous injection of the tracer (198.3 ± 3.3 MBq), 3 successive whole-body (vertex to mid thigh) PET/CT scans at 3 time points (30, 60, and 120 min) were obtained on a 16-slice PET/CT scanner. The subjects did not void the bladder until the entire series of images was completed. Low-dose CT without contrast agent was used for anatomic localization and attenuation correction. OLINDA/EXM software was applied to calculate human radiation doses using the reference adult model. The highest uptake was in the urinary bladder, followed by the liver, kidneys, and spleen, in descending order. The critical organ was the urinary bladder wall. The mean effective doses (all subjects, men and women) were 34.1 ± 4.9, 31.0 ± 2.4, and 20.9 ± 5.2 μSv/MBq for the no-voiding, 2.5-h-voiding, and 1-h-voiding models, respectively. Of particular interest in this research was the visualization of the choroid plexus and ventricular system, which seems to be a characteristic of RGD-dimeric peptides. Measured absorbed doses and effective doses are comparable to other previously reported RGD-based radiopharmaceuticals labeled with (68)Ga and (18)F. Therefore, (68)Ga-DOTA-E-[c(RGDfK)]2 can safely be used for imaging integrin αVβ3 expression. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  10. Side chain-side chain interactions of arginine with tyrosine and aspartic acid in Arg/Gly/Tyr-rich domains within plant glycine-rich RNA binding proteins.

    PubMed

    Kumaki, Yasuhiro; Nitta, Katsutoshi; Hikichi, Kunio; Matsumoto, Takeshi; Matsushima, Norio

    2004-07-01

    Plant glycine-rich RNA-binding proteins (GRRBPs) contain a glycine-rich region at the C-terminus whose structure is quite unknown. The C-terminal glycine-rich part is interposed with arginine and tyrosine (arginine/glycine/tyrosine (RGY)-rich domain). Comparative sequence analysis of forty-one GRRBPs revealed that the RGY-rich domain contains multiple repeats of Tyr-(Xaa)h-(Arg)k-(Xaa)l, where Xaa is mainly Gly, "k" is 1 or 2, and "h" and "l" range from 0 to 10. Two peptides, 1 (G1G2Y3G4G5G6R7R8D9G10) and 2 (G1G2R3R4D5G6G7Y8G9G10), corresponding to sections of the RGY-rich domain in Zea mays RAB15, were selected for CD and NMR experiments. The CD spectra indicate a unique, positive band near 228 nm in both peptides that has been ascribed to tyrosine residues in ordered structures. The pH titration by NMR revealed that a side chain-side chain interaction, presumably an H-Nepsilon...O=Cgamma hydrogen bonding interaction in the salt bridge, occurs between Arg (i) and Asp (i + 2). 1D GOESY experiments indicated the presence of NOE between the aromatic side chain proton and the arginine side chain proton in the two peptides suggesting strongly that the Arg (i) aromatic side chain interacts directly with the Tyr (i +/- 4 or i +/- 5) side chain.

  11. Peptide-formation on cysteine-containing peptide scaffolds

    NASA Technical Reports Server (NTRS)

    Chu, B. C.; Orgel, L. E.

    1999-01-01

    Monomeric cysteine residues attached to cysteine-containing peptides by disulfide bonds can be activated by carbonyldiimidazole. If two monomeric cysteine residues, attached to a 'scaffold' peptide Gly-Cys-Glyn-Cys-Glu10, (n = 0, 1, 2, 3) are activated, they react to form the dipeptide Cys-Cys. in 25-65% yield. Similarly, the activation of a cysteine residue attached to the 'scaffold' peptide Gly-Cys-Gly-Glu10 in the presence of Arg5 leads to the formation of Cys-Arg5 in 50% yield. The significance of these results for prebiotic chemistry is discussed.

  12. [Effects of hypophyseal Lys-Glu-Asp-Gly and Ala-Glu-Asp-Gly synthetic peptides on immunity, hemostasis, morphology and functions of the thyroid gland in neonatally hypophysectomized chicken and one-year-old birds].

    PubMed

    Kuznik, B I; Pateiuk, A V; Rusaeva, N S; Baranchugova, L M; Obydenko, V I

    2010-01-01

    Neonatal hypophysectomy in chicken produces enlarged follicles of the thyroid gland, accumulation of colloids, impressed follicular epithelium, increased nucleus-cytoplasm ratio in thyrocytes, atrophied inter-follicular epithelium, depressed immunity, development of hypercoagulation and depressed fibrinolysis. When hypophysectomy is performed in one-year-old birds the impairments developing in thyroid morphology, immunity and hemostasis are less pronounced. Peptides of the anterior (Lys-Glu-Asp-Gly) and posterior (Ala-Glu-Asp-Gly) thyroid lobes injected to hypophysectomized birds prevent atrophic changes of the thyroid gland, normalize immune and hemostatic parameters.

  13. Model-free nuclear magnetic resonance study of intermolecular free energy landscapes in liquids with paramagnetic Ln3+ spotlights: theory and application to Arg-Gly-Asp.

    PubMed

    Fries, Pascal H

    2012-01-28

    We propose an easily applicable method for investigating the pair distribution function of a lanthanide Ln(3+) complex LnL (L = ligand) with respect to any solvent or solute molecule A carrying observable nuclear spins. Let r be the distance of Ln(3+) to the observed nuclear spin I. We derive a simple expression of the experimental value of the configurational average of 1/r(6) in terms of longitudinal paramagnetic relaxation (rate) enhancements (PREs) of the spin I measured on a standard high-resolution NMR spectrometer and due to well-chosen concentrations of LnL complexes in which Ln(3+) is a fast-relaxing paramagnetic lanthanide or the slowly-relaxing gadolinium Gd(3+). The derivation is justified in the general case of a molecule A which is by turns in a bound state where it follows the complex and a free state where it moves independently. It rests on the expression of the underlying PRE theory in terms of the angle-dependent pair distribution function of LnL and A. The simplifications of this theory in the high-field regime and under the condition of fast exchange between bound and free states are carefully discussed. We also show that original information on the angle dependence of the molecular pair distribution function can be gained from the measured paramagnetic dipolar shifts induced by complexed fast-relaxing Ln(3+) ions. The method is illustrated by the case study of the anionic Lnttha(3-) = [Ln(3+)(ttha)](3-) (ttha(6-) = triethylene tetraamine hexacetate) complex interacting with the biologically important tripeptide Arg-Gly-Asp (RGD) which carries peripheral ionic groups. The usefulness of an auxiliary reference outer sphere probe solute is emphasized. © 2012 American Institute of Physics

  14. 67Cu-Radiolabeling of a multimeric RGD peptide for αVβ3 integrin-targeted radionuclide therapy: stability, therapeutic efficacy, and safety studies in mice.

    PubMed

    Jin, Zhao-Hui; Furukawa, Takako; Ohya, Tomoyuki; Degardin, Mélissa; Sugyo, Aya; Tsuji, Atsushi B; Fujibayashi, Yasuhisa; Zhang, Ming-Rong; Higashi, Tatsuya; Boturyn, Didier; Dumy, Pascal; Saga, Tsuneo

    2017-04-01

    Copper-67 (Cu) is one of the most promising radionuclides for internal radiation therapy. Globally, several projects have recently been initiated for developing innovative approaches for the large-scale production of Cu. Encouraged by these, we performed Cu-radiolabeling of a tetrameric cyclic Arg-Gly-Asp (cRGD) peptide conjugate, cyclam-RAFT-c(-RGDfK-)4, which selectively targets αVβ3 integrin (αVβ3), the transmembrane receptor involved in tumor invasion, angiogenesis, and metastasis. We also evaluated the therapeutic potential and safety of this radiocompound. Cu, produced through the Ni(α, p)Cu reaction, was used for the radiolabeling of cyclam-RAFT-c(-RGDfK-)4 at 70°C for 10 min. The radiolabeling efficiency and product stability were assessed using reversed-phase high-performance liquid chromatography and/or thin-layer chromatography. Mice with subcutaneous αVβ3-positive U87MG-glioblastoma xenografts received a single intravenous injection of one of the following: Cu-cyclam-RAFT-c(-RGDfK-)4 (11.1 MBq), peptide control, or vehicle solution. The tumor volumes were measured, side effects were assessed in terms of body weight, routine hematology, and hepatic and renal functions, and the mouse radiation dosimetry was estimated. Cu-cyclam-RAFT-c(-RGDfK-)4 was produced with a radiochemical purity of 97.9±2.4% and a specific activity of 2.7±0.6 MBq/nmol and showed high in-vitro and in-vivo plasma stability. The administration of a single dose of Cu-cyclam-RAFT-c(-RGDfK-)4 resulted in significant tumor growth delay in comparison with that observed upon vehicle or peptide control administration, with an estimated tumor-absorbed dose of 0.712 Gy. No significant toxicity was observed in Cu-cyclam-RAFT-c(-RGDfK-)4-treated mice. Cu-cyclam-RAFT-c(-RGDfK-)4 would be a promising therapeutic agent for αVβ3 integrin-targeted internal radiotherapy.

  15. Cloning and characterization of cDNA encoding cardosin A, an RGD-containing plant aspartic proteinase.

    PubMed

    Faro, C; Ramalho-Santos, M; Vieira, M; Mendes, A; Simões, I; Andrade, R; Veríssimo, P; Lin, X; Tang, J; Pires, E

    1999-10-01

    Cardosin A is an abundant aspartic proteinase from pistils of Cynara cardunculus L. whose milk-clotting activity has been exploited for the manufacture of cheese. Here we report the cloning and characterization of cardosin A cDNA. The deduced amino acid sequence contains the conserved features of plant aspartic proteinases, including the plant-specific insertion (PSI), and revealed the presence of an Arg-Gly-Asp (RGD) motif, which is known to function in cell surface receptor binding by extracellular proteins. Cardosin A mRNA was detected predominantly in young flower buds but not in mature or senescent pistils, suggesting that its expression is likely to be developmentally regulated. Procardosin A, the single chain precursor, was found associated with microsomal membranes of flower buds, whereas the active two-chain enzyme generated upon removal of PSI is soluble. This result implies a role for PSI in promoting the association of plant aspartic proteinase precursors to cell membranes. To get further insights about cardosin A, the functional relevance of the RGD motif was also investigated. A 100-kDa protein that interacts specifically with the RGD sequence was isolated from octyl glucoside pollen extracts by affinity chromatography on cardosin A-Sepharose. This result suggests that the 100-kDa protein is a cardosin A receptor and indicates that the interaction between these two proteins is apparently mediated through RGD recognition. It is possible therefore that cardosin A may have a role in adhesion-mediated proteolytic mechanisms involved in pollen recognition and growth.

  16. Timely Visualization of the Collaterals Formed during Acute Ischemic Stroke with Fe3 O4 Nanoparticle-based MR Imaging Probe.

    PubMed

    Wang, Ting; Hou, Yi; Bu, Bo; Wang, Wenxin; Ma, Tiancong; Liu, Chunyan; Lin, Lan; Ma, Lin; Lou, Xin; Gao, Mingyuan

    2018-04-17

    Ischemic stroke is one of the major leading causes for long-term disability and mortality. Collateral vessels provide an alternative pathway to protect the brain against ischemic injury after arterial occlusion. Aiming at visualizing the collaterals occurring during acute ischemic stroke, an integrin α v β 3 -specific Fe 3 O 4 -Arg-Gly-Asp (RGD) nanoprobe is prepared for magnetic resonance imaging (MRI) of the collaterals. Rat models are constructed by occluding the middle cerebral artery for imaging studies of cerebral ischemia and ischemia-reperfusion on 7.0 Tesla MRI using susceptibility-weighted imaging sequence. To show the binding specificity to the collaterals, the imaging results acquired with the Fe 3 O 4 -RGD nanoprobe and the Fe 3 O 4 mother nanoparticles, respectively, are carefully compared. In addition, an RGD blocking experiment is also carried out to support the excellent binding specificity of the Fe 3 O 4 -RGD nanoprobe. Following the above experiments, cerebral ischemia-reperfusion studies show the collateral dynamics upon reperfusion, which is very important for the prognosis of various revascularization therapies in the clinic. The current study has, for the first time, enabled the direct observation of collaterals in a quasi-real time fashion and further disclosed that the antegrade flow upon reperfusion dominates the blood supply of primary ischemic tissue during the early stage of infarction, which is significantly meaningful for clinical treatment of stroke. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The rescue and evaluation of FLAG and HIS epitope-tagged Asia 1 type foot-and-mouth disease viruses.

    PubMed

    Yang, Bo; Yang, Fan; Zhang, Yan; Liu, Huanan; Jin, Ye; Cao, Weijun; Zhu, Zixiang; Zheng, Haixue; Yin, Hong

    2016-02-02

    The VP1 G-H loop of the foot-and-mouth disease virus (FMDV) contains the primary antigenic site, as well as an Arg-Gly-Asp (RGD) binding motif for the αv-integrin family of cell surface receptors. We anticipated that introducing a foreign epitope tag sequence downstream of the RGD motif would be tolerated by the viral capsid and would not destroy the antigenic site of FMDV. In this study, we have designed, generated, and characterized two recombinant FMDVs with a FLAG tag or histidine (HIS) inserted in the VP1 G-H loop downstream of the RGD motif +9 position. The tagged viruses were genetically stable and exhibited similar growth properties with their parental virus. What is more, the recombinant viruses rFMDV-FLAG and rFMDV-HIS showed neutralization sensitivity to FMDV type Asia1-specific mAbs, as well as to polyclonal antibodies. Additionally, the r1 values of the recombinant viruses were similar to that of the parental virus, indicating that the insertion of FLAG or HIS tag sequences downstream of the RGD motif +9 position do not eradicate the antigenic site of FMDV and do not affect its antigenicity. These results indicated that the G-H loop of Asia1 FMDV is able to effectively display the foreign epitopes, making this a potential approach for novel FMDV vaccines development. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Gallium-67-labeled lactam bridge-cyclized alpha-melanocyte stimulating hormone peptide for primary and metastatic melanoma imaging.

    PubMed

    Guo, Haixun; Yang, Jianquan; Shenoy, Nalini; Miao, Yubin

    2009-12-01

    The purpose of this study was to examine the melanoma imaging properties of a novel 67Ga-labeled lactam bridge-cyclized alpha-melanocyte stimulating hormone (alpha-MSH) peptide. A lactam bridge-cyclized alpha-MSH peptide, DOTA-GlyGlu-CycMSH {DOTA-Gly-Glu-c[Lys-Nle-Glu-His-DPhe-Arg-Trp-Gly-Arg-Pro-Val-Asp]}, was synthesized and radiolabeled with 67Ga. The melanoma targeting and pharmacokinetic properties of 67Ga-DOTA-GlyGlu-CycMSH were determined in B16/F1 flank primary melanoma-bearing and B16/F10 pulmonary metastatic melanoma-bearing C57 mice. Flank primary melanoma and pulmonary metastatic melanoma imaging were performed by small animal single photon emission computed tomography (SPECT)/CT using 67Ga-DOTA-GlyGlu-CycMSH as an imaging probe. 67Ga-DOTA-GlyGlu-CycMSH was readily prepared with greater than 95% radiolabeling yield. 67Ga-DOTA-GlyGlu-CycMSH exhibited substantial tumor uptake (12.93 +/- 1.63%ID/g at 2 h postinjection) and prolonged tumor retention (5.02 +/- 1.35%ID/g at 24 h postinjection) in B16/F1 melanoma-bearing C57 mice. The uptake values for nontarget organs were generally low (<0.30%ID/g) except for the kidneys at 2, 4, and 24 h postinjection. 67Ga-DOTA-GlyGlu-CycMSH exhibited significantly (p < 0.05) higher uptakes (1.44 +/- 0.75%ID/g at 2 h postinjection and 1.49 +/- 0.69%ID/g at 4 h postinjection) in metastatic melanoma-bearing lung than those in normal lung (0.15 +/- 0.10%ID/g and 0.17 +/- 0.11%ID/g at 2 and 4 h postinjection, respectively). Both flank primary B16/F1 melanoma and B16/F10 pulmonary melanoma metastases were clearly visualized by SPECT/CT using 67Ga-DOTA-GlyGlu-CycMSH as an imaging probe 2 h postinjection. 67Ga-DOTA-GlyGlu-CycMSH exhibited favorable melanoma targeting and imaging properties, highlighting its potential as an effective imaging probe for early detection of primary and metastatic melanoma.

  19. Enhanced solubility and targeted delivery of curcumin by lipopeptide micelles.

    PubMed

    Liang, Ju; Wu, Wenlan; Lai, Danyu; Li, Junbo; Fang, Cailin

    2015-01-01

    A lipopeptide (LP)-containing KKGRGDS as the hydrophilic heads and lauric acid (C12) as the hydrophobic tails has been designed and prepared by standard solid-phase peptide synthesis technique. LP can self-assemble into spherical micelles with the size of ~30 nm in PBS (phosphate buffer saline) (pH 7.4). Curcumin-loaded LP micelles were prepared in order to increase the water solubility, sustain the releasing rate, and improve the tumor targeted delivery of curcumin. Water solubility, cytotoxicity, in vitro release behavior, and intracellular uptake of curcumin-loaded LP micelles were investigated. The results showed that LP micelles can increase the water solubility of curcumin 1.1 × 10(3) times and sustain the release of curcumin in a low rate. Curcumin-loaded LP micelles showed much higher cell inhibition than free curcumin on human cervix carcinoma (HeLa) and HepG2 cells. When incubating these curcumin-loaded micelles with HeLa and COS7 cells, due to the over-expression of integrins on cancer cells, the micelles can efficiently use the tumor-targeting function of RGD (functionalized peptide sequences: Arg-Gly-Asp) sequence to deliver the drug into HeLa cells, and better efficiency of the self-assembled LP micelles for curcumin delivery than crude curcumin was also confirmed by LCSM (laser confocal scanning microscope) assays. Combined with the enhanced solubility and higher cell inhibition, LP micelles reported in this study may be promising in clinical application for targeted curcumin delivery.

  20. Direct influence of culture dimensionality on human mesenchymal stem cell differentiation at various matrix stiffnesses using a fibrous self-assembling peptide hydrogel.

    PubMed

    Hogrebe, Nathaniel J; Gooch, Keith J

    2016-09-01

    Much is unknown about the effects of culture dimensionality on cell behavior due to the lack of biomimetic substrates that are suitable for directly comparing cells grown on two-dimensional (2D) and encapsulated within three-dimensional (3D) matrices of the same stiffness and biochemistry. To overcome this limitation, we used a self-assembling peptide hydrogel system that has tunable stiffness and cell-binding site density as well as a fibrous microarchitecture resembling the structure of collagen. We investigated the effect of culture dimensionality on human mesenchymal stem cell differentiation at different values of matrix stiffness (G' = 0.25, 1.25, 5, and 10 kPa) and a constant RGD (Arg-Gly-Asp) binding site concentration. In the presence of the same soluble induction factors, culture on top of stiff gels facilitated the most efficient osteogenesis, while encapsulation within the same stiff gels resulted in a switch to predominantly terminal chondrogenesis. Adipogenesis dominated at soft conditions, and 3D culture induced better adipogenic differentiation than 2D culture at a given stiffness. Interestingly, initial matrix-induced cell morphology was predictive of these end phenotypes. Furthermore, optimal culture conditions corresponded to each cell type's natural niche within the body, highlighting the importance of incorporating native matrix dimensionality and stiffness into tissue engineering strategies. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2356-2368, 2016. © 2016 Wiley Periodicals, Inc.

  1. STAT3 Activation in Pressure-Overloaded Feline Myocardium: Role for Integrins and the Tyrosine Kinase BMX

    PubMed Central

    Willey, Christopher D.; Palanisamy, Arun P.; Johnston, Rebecca K.; Mani, Santhosh K.; Shiraishi, Hirokazu; Tuxworth, William J.; Zile, Michael R.; Balasubramanian, Sundaravadivel; Kuppuswamy, Dhandapani

    2008-01-01

    Growth, survival and cytoskeletal rearrangement of cardiomyocytes are critical for cardiac hypertrophy. Signal transducer and activator of transcription-3 (STAT3) activation is an important cardioprotective factor associated with cardiac hypertrophy. Although STAT3 activation has been reported via signaling through Janus Kinase 2 (JAK2) in several cardiac models of hypertrophy, the importance of other nonreceptor tyrosine kinases (NTKs) has not been explored. Utilizing an in vivo feline right ventricular pressure-overload (RVPO) model of hypertrophy, we demonstrate that in 48 h pressure-overload (PO) myocardium, STAT3 becomes phosphorylated and redistributed to detergent-insoluble fractions with no accompanying JAK2 activation. PO also caused increased levels of phosphorylated STAT3 in both cytoplasmic and nuclear fractions. To investigate the role of other NTKs, we used our established in vitro cell culture model of hypertrophy where adult feline cardiomyocytes are embedded three-dimensionally (3D) in type-I collagen and stimulated with an integrin binding peptide containing an Arg-Gly-Asp (RGD) motif that we have previously shown to recapitulate the focal adhesion complex (FAC) formation of 48 h RVPO. RGD stimulation of adult cardiomyocytes in vitro caused both STAT3 redistribution and activation that were accompanied by the activation and redistribution of c-Src and the TEC family kinase, BMX, but not JAK2. However, infection with dominant negative c-Src adenovirus was unable to block RGD-stimulated changes on either STAT3 or BMX. Further analysis in vivo in 48 h PO myocardium showed the presence of both STAT3 and BMX in the detergent-insoluble fraction with their complex formation and phosphorylation. Therefore, these studies indicate a novel mechanism of BMX-mediated STAT3 activation within a PO model of cardiac hypertrophy that might contribute to cardiomyocyte growth and survival. PMID:18612371

  2. Calcium phosphate cement with biofunctional agents and stem cell seeding for dental and craniofacial bone repair.

    PubMed

    Thein-Han, WahWah; Liu, Jun; Xu, Hockin H K

    2012-10-01

    Calcium phosphate cement (CPC) can be injected to harden in situ and is promising for dental and craniofacial applications. However, human stem cell attachment to CPC is relatively poor. The objectives of this study were to incorporate biofunctional agents into CPC, and to investigate human umbilical cord mesenchymal stem cell (hUCMSC) seeding on biofunctionalized CPC for osteogenic differentiation for the first time. Five types of biofunctional agents were used: RGD (Arg-Gly-Asp) peptides, human fibronectin (Fn), fibronectin-like engineered polymer protein (FEPP), extracellular matrix Geltrex, and human platelet concentrate. Five biofunctionalized CPC scaffolds were fabricated: CPC-RGD, CPC-Fn, CPC-FEPP, CPC-Geltrex, and CPC-Platelets. The hUCMSC attachment, proliferation, osteogenic differentiation and mineral synthesis were measured. The hUCMSCs on biofunctionalized CPCs had much better cell attachment, proliferation, actin fiber expression, osteogenic differentiation and mineral synthesis, compared to the traditional CPC control. Cell proliferation was increased by an order of magnitude via incorporation of biofunctional agents in CPC (p<0.05). Mineral synthesis on biofunctionalized CPCs was 3-5 folds of those of control (p<0.05). hUCMSCs differentiated with high alkaline phosphatase, Runx2, osteocalcin, and collagen I gene expressions. Mechanical properties of biofunctionalized CPC matched the reported strength and elastic modulus of cancellous bone. A new class of biofunctionalized CPCs was developed, including CPC-RGD, CPC-Fn, CPC-FEPP, CPC-Geltrex, and CPC-Platelets. hUCMSCs on biofunctionalized CPCs had cell density, cell proliferation, actin fiber density, and bone mineralization that were dramatically better than those on traditional CPC. Novel biofunctionalized CPC scaffolds with greatly enhanced human stem cell proliferation and differentiation are promising to facilitate bone regeneration in a wide range of dental, craniofacial and orthopedic applications. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Ultra-thin Polyethylene glycol Coatings for Stem Cell Culture

    NASA Astrophysics Data System (ADS)

    Schmitt, Samantha K.

    Human mesenchymal stem cells (hMSCs) are a widely accessible and a clinically relevant cell type that are having a transformative impact on regenerative medicine. However, current clinical expansion methods can lead to selective changes in hMSC phenotype resulting from relatively undefined cell culture surfaces. Chemically defined synthetic surfaces can aid in understanding stem cell behavior. In particular we have developed chemically defined ultra-thin coatings that are stable over timeframes relevant to differentiation of hMSCs (several weeks). The approach employs synthesis of a copolymer with distinct chemistry in solution before application to a substrate. This provides wide compositional flexibility and allows for characterization of the orthogonal crosslinking and peptide binding groups. Characterization is done in solution by proton NMR and after crosslinking by X-ray photoelectron spectroscopy (XPS). The solubility of the copolymer in ethanol and low temperature crosslinking, expands its applicability to plastic substrates, in addition to silicon, glass, and gold. Cell adhesive peptides, namely Arg-Gly-Asp (RGD) fragments, are coupled to coating via different chemistries resulting in the urethane, amide or the thioester polymer-peptide bonds. Development of azlactone-based chemistry allowed for coupling in water at low peptide concentrations and resulted in either an amide or thioester bonds, depending on reactants. Characterization of the peptide functionalized coating by XPS, infrared spectroscopy and cell culture assays, showed that the amide linkages can present peptides for multiple weeks, while shorter-term presentation of a few days is possible using the more labile thioester bond. Regardless, coatings promoted initial adhesion and spreading of hMSCs in a peptide density dependent manner. These coatings address the following challenges in chemically defined cell culture simultaneously: (i) substrate adaptability, (ii) scalability over large areas, (ii) quantification of peptides, (iv) chemically defined passage of hMSCs, (v) stability of peptide-polymer bonds, and (vi) long-term coating stability. These coating platforms can potentially elucidate cell-material interactions in vitro and have far-reaching effects on stem cell culture methods.

  4. Helical peptides with three pairs of Asp-Arg and Glu-Arg residues in different orientations and spacings.

    PubMed Central

    Huyghues-Despointes, B. M.; Scholtz, J. M.; Baldwin, R. L.

    1993-01-01

    The helix-stabilizing effects of repeating pairs of Asp-Arg and Glu-Arg residues have been characterized using a peptide system of the same design used earlier to study Glu-Lys (Marqusee, S. & Baldwin, R.L., 1987, Proc. Natl. Acad. Sci. USA 84, 8898-8902) and Asp-Lys ion pairs (Marqusee, S. & Baldwin, R.L., 1990, In Protein Folding [Gierasch, L.M. & King, J., Eds.], pp. 85-94, AAAS, Washington, D.C.). The consequences of breaking ion pair and charge-helix dipole interactions by titration to pH 2 have been compared with the results of screening these interactions with NaCl at pH 7.0 and pH 2.5. The four peptides in each set contain three pairs of acidic (A) and basic (B) residues spaced either i, i + 4 or i, i + 3 apart. In one peptide of each kind the pairwise order of residues is AB, with the charges oriented favorably to the helix macrodipole, and in the other peptide the order is BA. The results are as follows: (1) Remarkably, both Asp-Arg and Glu-Arg peptides show the same pattern of helix stabilization at pH 7.0 found earlier for Glu-Lys and Asp-Lys peptides: i + 4 AB > i + 4 BA approximately i + 3 AB > i + 3 BA. (2) The ion pairs and charge-helix dipole interactions cannot be cleanly separated, but the results suggest that both interactions make important contributions to helix stability.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8443591

  5. Development of laminated fiber-reinforced nanocomposites for bone regeneration

    NASA Astrophysics Data System (ADS)

    Xu, Weijie

    There have been numerous efforts to develop synthetic and/or natural tissue engineering scaffolds that are suitable for bone regeneration applications to replace autograft and allograft bones. Current biomaterials as a scaffold for bone regeneration are limited by the extent of degradation concurrent with bone formation, mechanical strength, and the extent of osteogenic differentiation of marrow stromal cells migrating from the surrounding tissues. In this project, a novel laminated nanocomposite scaffold is fabricated, consisting of poly (L-lactide ethylene oxide fumarate) (PLEOF) hydrogel reinforced with poly (L-lactic acid) (PLLA) electrospun nanofibers and hydroxyapatite (HA) nanoparticles. PLEOF is a novel in situ crosslinkable macromer synthesized from biocompatible building units which can be functionalized with bioactive peptides like the cell-adhesive Arg--Gly--Asp (RGD) amino acid sequence. The hydrophilicity and degradation rate of the macromer can be tailored to a particular application by controlling the ratio of PEG to PLA blocks in the macromer and the unsaturated fumarate units can be used for in-situ crosslinking. The PLLA nanofibers were electrospun from high molecular weight PLLA. The laminated nanocomposites were fabricated by dry-hand lay up technique followed by compression molding and thermal crosslinking. The laminated nanocomposites were evaluated with respect to degradation, water uptake, mechanical strength, and the extent of osteogenic differentiation of bone marrow stromal (BMS) cells. Laminates with or without HA nanoparticles showed modulus values much higher than that of trabecular bone (50-100 MPa). The effect of laminated nanocomposites on osteogenic differentiation of BMS cells was determined in terms of cell number, ALPase activity and calcium content. Our results demonstrate that grafting RGD peptide and HA nanoparticles to a PLEOF hydrogel reinforced with PLLA nanofibers synergistically enhance osteogenic differentiation of BMS cells. In conclusion, the laminated nanocomposite with controllable degradation characteristics and robust mechanical properties is attractive as a synthetic bone-mimetic matrix for skeletal tissue regeneration.

  6. Exosome release of ADAM15 and the functional implications of human macrophage-derived ADAM15 exosomes.

    PubMed

    Lee, Hee Doo; Koo, Bon-Hun; Kim, Yeon Hyang; Jeon, Ok-Hee; Kim, Doo-Sik

    2012-07-01

    A disintegrin and metalloproteinase 15 (ADAM15), the only ADAM protein containing an Arg-Gly-Asp (RGD) motif in its disintegrin-like domain, is a widely expressed membrane protein that is involved in tumor progression and suppression. However, the underlying mechanism of ADAM15-mediated tumor suppression is not clearly understood. This study demonstrates that ADAM15 is released as an exosomal component, and ADAM15 exosomes exert tumor suppressive activities. We found that exosomal ADAM15 release is stimulated by phorbol 12-myristate 13-acetate, a typical protein kinase C activator, in various tumor cell types, and this results in a corresponding decrease in plasma membrane-associated ADAM15. Exosomes rich in ADAM15 display enhanced binding affinity for integrin αvβ3 in an RGD-dependent manner and suppress vitronectin- and fibronectin-induced cell adhesion, growth, and migration, as well as in vivo tumor growth. Exosomal ADAM15 is released from human macrophages, and macrophage-derived ADAM15 exosomes have tumor inhibitory effects. This work suggests a primary role of ADAM15 for exosome-mediated tumor suppression, as well as functional significance of exosomal ADAM protein in antitumor immunity.

  7. Receptor-Mediated Melanoma Targeting with Radiolabeled α-Melanocyte-Stimulating Hormone: Relevance of the Net Charge of the Ligand.

    PubMed

    Bapst, Jean-Philippe; Eberle, Alex N

    2017-01-01

    A majority of melanotic and amelanotic melanomas overexpress melanocortin type 1 receptors (MC1Rs) for α-melanocyte-stimulating hormone. Radiolabeled linear or cyclic analogs of α-MSH have a great potential as diagnostic or therapeutic tools for the management of malignant melanoma. Compounds such as [ 111 In]DOTA-NAP-amide exhibit high affinity for the MC1R in vitro , good tumor uptake in vivo , but they may suffer from relatively high kidney uptake and retention in vivo . We have shown previously that the introduction of negative charges into radiolabeled DOTA-NAP-amide peptide analogs may enhance their excretion and reduce kidney retention. To address the question of where to place negative charges within the ligand, we have extended these studies by designing two novel peptides, Ac-Nle-Asp-His-d-Phe-Arg-Trp-Gly-Lys(DOTA)-d-Asp-d-Asp-OH (DOTA-NAP-d-Asp-d-Asp) with three negative charges at the C -terminal end (overall net charge of the molecule -2) and DOTA-Gly-Tyr(P)-Nle-Asp-His-d-Phe-Arg-Trp-NH 2 (DOTA-Phospho-MSH 2-9 ) with two negative charges in the N -terminal region (net charge -1). The former peptide showed markedly reduced receptor affinity and biological activity by >10-fold compared to DOTA-NAP-amide as reference compound, and the latter peptide displayed similar bioactivity and receptor affinity as the reference compound. The uptake by melanoma tumor tissue of [ 111 In]DOTA-Phospho-MSH 2-9 was 7.33 ± 0.47 %ID/g 4 h after injection, i.e., almost equally high as with [ 111 In]DOTA-NAP-amide. The kidney retention was 2.68 ± 0.18 %ID/g 4 h after injection and hence 44% lower than that of [ 111 In]DOTA-NAP-amide. Over an observation period from 4 to 48 h, the tumor-to-kidney ratio of [ 111 In]DOTA-Phospho-MSH 2-9 was 35% more favorable than that of the reference compound. In a comparison of DOTA-NAP-d-Asp-d-Asp, DOTA-Phospho-MSH 2-9 and DOTA-NAP-amide with five previously published analogs of DOTA-NAP-amide that altogether cover a range of peptides with an overall net charge between +2 and -2, we now demonstrate that a net charge of -1, with the extra negative charges preferably placed in the N -terminal region, has led to the lowest kidney uptake and retention. Charges of +2 or -2 markedly increased kidney uptake and retention. In conclusion, the novel DOTA-Phospho-MSH 2-9 may represent a new lead compound for negatively charged linear MC1R ligands that can be further developed into a clinically relevant melanoma targeting radiopeptide.

  8. Receptor-Mediated Melanoma Targeting with Radiolabeled α-Melanocyte-Stimulating Hormone: Relevance of the Net Charge of the Ligand

    PubMed Central

    Bapst, Jean-Philippe; Eberle, Alex N.

    2017-01-01

    A majority of melanotic and amelanotic melanomas overexpress melanocortin type 1 receptors (MC1Rs) for α-melanocyte-stimulating hormone. Radiolabeled linear or cyclic analogs of α-MSH have a great potential as diagnostic or therapeutic tools for the management of malignant melanoma. Compounds such as [111In]DOTA-NAP-amide exhibit high affinity for the MC1R in vitro, good tumor uptake in vivo, but they may suffer from relatively high kidney uptake and retention in vivo. We have shown previously that the introduction of negative charges into radiolabeled DOTA-NAP-amide peptide analogs may enhance their excretion and reduce kidney retention. To address the question of where to place negative charges within the ligand, we have extended these studies by designing two novel peptides, Ac-Nle-Asp-His-d-Phe-Arg-Trp-Gly-Lys(DOTA)-d-Asp-d-Asp-OH (DOTA-NAP-d-Asp-d-Asp) with three negative charges at the C-terminal end (overall net charge of the molecule −2) and DOTA-Gly-Tyr(P)-Nle-Asp-His-d-Phe-Arg-Trp-NH2 (DOTA-Phospho-MSH2-9) with two negative charges in the N-terminal region (net charge −1). The former peptide showed markedly reduced receptor affinity and biological activity by >10-fold compared to DOTA-NAP-amide as reference compound, and the latter peptide displayed similar bioactivity and receptor affinity as the reference compound. The uptake by melanoma tumor tissue of [111In]DOTA-Phospho-MSH2-9 was 7.33 ± 0.47 %ID/g 4 h after injection, i.e., almost equally high as with [111In]DOTA-NAP-amide. The kidney retention was 2.68 ± 0.18 %ID/g 4 h after injection and hence 44% lower than that of [111In]DOTA-NAP-amide. Over an observation period from 4 to 48 h, the tumor-to-kidney ratio of [111In]DOTA-Phospho-MSH2-9 was 35% more favorable than that of the reference compound. In a comparison of DOTA-NAP-d-Asp-d-Asp, DOTA-Phospho-MSH2-9 and DOTA-NAP-amide with five previously published analogs of DOTA-NAP-amide that altogether cover a range of peptides with an overall net charge between +2 and −2, we now demonstrate that a net charge of −1, with the extra negative charges preferably placed in the N-terminal region, has led to the lowest kidney uptake and retention. Charges of +2 or −2 markedly increased kidney uptake and retention. In conclusion, the novel DOTA-Phospho-MSH2-9 may represent a new lead compound for negatively charged linear MC1R ligands that can be further developed into a clinically relevant melanoma targeting radiopeptide. PMID:28491052

  9. Biodegradable copolymers carrying cell-adhesion peptide sequences.

    PubMed

    Proks, Vladimír; Machová, Lud'ka; Popelka, Stepán; Rypácek, Frantisek

    2003-01-01

    Amphiphilic block copolymers are used to create bioactive surfaces on biodegradable polymer scaffolds for tissue engineering. Cell-selective biomaterials can be prepared using copolymers containing peptide sequences derived from extracellular-matrix proteins (ECM). Here we discuss alternative ways for preparation of amphiphilic block copolymers composed of hydrophobic polylactide (PLA) and hydrophilic poly(ethylene oxide) (PEO) blocks with cell-adhesion peptide sequences. Copolymers PLA-b-PEO were prepared by a living polymerisation of lactide in dioxane with tin(II)2-ethylhexanoate as a catalyst. The following approaches for incorporation of peptides into copolymers were elaborated. (a) First, a side-chain protected Gly-Arg-Gly-Asp-Ser-Gly (GRGDSG) peptide was prepared by solid-phase peptide synthesis (SPPS) and then coupled with delta-hydroxy-Z-amino-PEO in solution. In the second step, the PLA block was grafted to it via a controlled polymerisation of lactide initiated by the hydroxy end-groups of PEO in the side-chain-protected GRGDSG-PEO. Deprotection of the peptide yielded a GRGDSG-b-PEO-b-PLA copolymer, with the peptide attached through its C-end. (b) A protected GRGDSG peptide was built up on a polymer resin and coupled with Z-carboxy-PEO using a solid-phase approach. After cleavage of the delta-hydroxy-PEO-GRGDSG copolymer from the resin, polymerisation of lactide followed by deprotection of the peptide yielded a PLA-b-PEO-b-GRGDSG block copolymer, in which the peptide is linked through its N-terminus.

  10. A novel solid lipid nanoparticle formulation for active targeting to tumor α(v) β(3) integrin receptors reveals cyclic RGD as a double-edged sword.

    PubMed

    Shuhendler, Adam J; Prasad, Preethy; Leung, Michael; Rauth, Andrew M; Dacosta, Ralph S; Wu, Xiao Yu

    2012-09-01

    The overexpression of α(v) β(3) integrin receptors on tumor cells and tumor vascular endothelium makes it a useful target for imaging, chemotherapy and anti-angiogenic therapy. However integrin-targeted delivery of therapeutics by nanoparticles have provided only marginal, if any, enhancement of therapeutic effect. This work was thus focused on the development of novel α(v) β(3) -targeted near infrared light-emitting solid lipid nanoparticles (SLN) through conjugation to the α(v) β(3) integrin-specific ligand cyclic Arg-Gly-Asp (cRGD), and the assessment of the effects of α(v) β(3) targeting on nanoparticle biodistribution. Since our previously developed non-targeted "stealth" SLN showed little hepatic accumulation, unlike most reported liposomes and micelles, they served as a reference for quantifying the effects of cRGD-conjugation on tumor uptake and whole animal biodistribution of SLN. Non-targeted SLN, actively targeted (RGD-SLN) and blocked RGD-SLN were prepared to contain near infrared quantum dots for live animal imaging. They were injected intravenously to nude mice bearing xenograft orthotopic human breast tumors or dorsal window chamber breast tumors. Tumor micropharmacokinetics of various SLN formulations were determined using intravital microscopy, and whole animal biodistribution was followed over time by optical imaging. The active tumor targeting with cRGD was found to be a "double-edged sword": while the specificity of RGD-SLN accumulation in tumor blood vessels and their tumor residence time increased, their distribution in the liver, spleen, and kidneys was significantly greater than the non-targeted SLN, leaving a smaller amount of nanoparticles in the tumor tissue. Nevertheless the enhanced specificity and retention of RGD-SLN in tumor neovasculature could make this novel formulation useful for tumor neovascular-specific therapies and imaging applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Extracellular-Matrix-Based and Arg-Gly-Asp–Modified Photopolymerizing Hydrogels for Cartilage Tissue Engineering

    PubMed Central

    Kim, Hwan D.; Heo, Jiseung; Hwang, Yongsung; Kwak, Seon-Yeong; Park, Ok Kyu; Kim, Hyunbum; Varghese, Shyni

    2015-01-01

    Articular cartilage damage is a persistent and increasing problem with the aging population. Strategies to achieve complete repair or functional restoration remain a challenge. Photopolymerizing-based hydrogels have long received an attention in the cartilage tissue engineering, due to their unique bioactivities, flexible method of synthesis, range of constituents, and desirable physical characteristics. In the present study, we have introduced unique bioactivity within the photopolymerizing-based hydrogels by copolymerizing polyethylene glycol (PEG) macromers with methacrylated extracellular matrix (ECM) molecules (hyaluronic acid and chondroitin sulfate [CS]) and integrin binding peptides (RGD peptide). Results indicate that cellular morphology, as observed by the actin cytoskeleton structures, was strongly dependent on the type of ECM component as well as the presence of integrin binding moieties. Further, CS-based hydrogel with integrin binding RGD moieties increased the lubricin (or known as superficial zone protein [SZP]) gene expression of the encapsulated chondrocytes. Additionally, CS-based hydrogel displayed cell-responsive degradation and resulted in increased DNA, GAG, and collagen accumulation compared with other hydrogels. This study demonstrates that integrin-mediated interactions within CS microenvironment provide an optimal hydrogel scaffold for cartilage tissue engineering application. PMID:25266634

  12. Penultimate proline in neuropeptides.

    PubMed

    Glover, Matthew S; Bellinger, Earl P; Radivojac, Predrag; Clemmer, David E

    2015-08-18

    A recent ion mobility spectrometry-mass spectrometry (IMS-MS) study revealed that tryptic peptide ions containing a proline residue at the second position from the N-terminus (i.e., penultimate proline) frequently adopt multiple conformations, owing to the cis-trans isomerization of Xaa(1)-Pro(2) peptide bonds [J. Am. Soc. Mass Spectrom. 2015, 26, 444]. Here, we present a statistical analysis of a neuropeptide database that illustrates penultimate proline residues are frequently found in neuropeptides. In order to probe the effect of penultimate proline on neuropeptide conformations, IMS-MS experiments were performed on two model peptides in which penultimate proline residues were known to be important for biological activity: the N-terminal region of human neuropeptide Y (NPY1-9, Tyr(1)-Pro(2)-Ser(3)-Lys(4)-Pro(5)-Asp(6)-Asn(7)-Pro(8)-Gly(9)-NH2) and a tachykinin-related peptide (CabTRP Ia, Ala(1)-Pro(2)-Ser(3)-Gly(4)-Phe(5)-Leu(6)-Gly(7)-Met(8)-Arg(9)-NH2). From these studies, it appears that penultimate prolines allow neuropeptides to populate multiple conformations arising from the cis-trans isomerization of Xaa(1)-Pro(2) peptide bonds. Although it is commonly proposed that the role of penultimate proline residues is to protect peptides from enzymatic degradation, the present results indicate that penultimate proline residues also are an important means of increasing the conformational heterogeneity of neuropeptides.

  13. Fibronectin tetrapeptide is target for syphilis spirochete cytadherence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, D.D.; Baseman, J.B.; Alderete, J.F.

    1985-11-01

    The syphilis bacterium, Treponema pallidum, parasitizes host cells through recognition of fibronectin (Fn) on cell surfaces. The active site of the Fn molecule has been identified as a four-amino acid sequence, arg-gly-asp-ser (RGDS), located on each monomer of the cell-binding domain. The synthetic heptapeptide gly-arg-gly-asp-ser-pro-cys (GRGDSPC), with the active site sequence RGDS, specifically competed with SVI-labeled cell-binding domain acquisition by T. pallidum. Additionally, the same heptapeptide with the RGDS sequence diminished treponemal attachment to HEp-2 and HT1080 cell monolayers. Related heptapeptides altered in one key amino acid within the RGDS sequence failed to inhibit Fn cell-binding domain acquisition or parasitismmore » of host cells by T. pallidum. The data support the view that T. pallidum cytadherence of host cells is through recognition of the RGDS sequence also important for eukaryotic cell-Fn binding.« less

  14. Association between TLR2 and TLR4 Gene Polymorphisms and the Susceptibility to Inflammatory Bowel Disease: A Meta-Analysis.

    PubMed

    Cheng, Yang; Zhu, Yun; Huang, Xiuping; Zhang, Wei; Han, Zelong; Liu, Side

    2015-01-01

    The associations between toll-like receptor 2 (TLR2) and toll-like receptor 4(TLR4) polymorphisms and inflammatory bowel disease (IBD) susceptibility remain controversial. A meta-analysis was performed to assess these associations. A systematic search was performed to identify all relevant studies relating TLR2 and TLR4 polymorphisms and IBD susceptibility. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated. Subgroup analyses were performed by ethnicity and publication quality. Thirty-eight eligible studies, assessing 10970 cases and 7061 controls were included. No TLR2 Arg677Trp polymorphism was found. No significant association was observed between TLR2 Arg753Gln polymorphism and Crohn's disease (CD) or ulcerative colitis (UC) in all genetic models. Interestingly, TLR4 Asp299Gly polymorphism was significantly associated with increased risk of CD and UC in all genetic models, except for the additive one in CD. In addition, a statistically significant association between TLR4 Asp299Gly polymorphism and IBD was observed among high quality studies evaluating Caucasians, but not Asians. Associations between TLR4 Thr399Ile polymorphisms and CD risk were found only in the allele and dominant models. The TLR4 Thr399Ile polymorphism was associated with UC risk in pooled results as well as subgroup analysis of high quality publications assessing Caucasians, in allele and dominant models. The meta-analysis provides evidence that TLR2 Arg753Gln is not associated with CD and UC susceptibility in Asians; TLR4 Asp299Gly is associated with CD and UC susceptibility in Caucasians, but not Asians. TLR4 Thr399Ile may be associated with IBD susceptibility in Caucasians only. Additional well-powered studies of Asp299Gly and other TLR4 variants are warranted.

  15. Structure-activity relationship of cyclic peptide penta-c[Asp-His(6)-DPhe(7)-Arg(8)-Trp(9)-Lys]-NH(2) at the human melanocortin-1 and -4 receptors: His(6) substitution.

    PubMed

    Cheung, Adrian Wai-Hing; Danho, Waleed; Swistok, Joseph; Qi, Lida; Kurylko, Grazyna; Rowan, Karen; Yeon, Mitch; Franco, Lucia; Chu, Xin-Jie; Chen, Li; Yagaloff, Keith

    2003-04-07

    A series of MT-II related cyclic peptides, based on potent but non-selective hMC4R agonist (Penta-c[Asp-His(6)-DPhe(7)-Arg(8)-Trp(9)-Lys]-NH(2)) was prepared in which His(6) residue was systematically substituted. Two of the most interesting peptides identified in this study are Penta-c[Asp-5-ClAtc-DPhe-Arg-Trp-Lys]-NH(2) and Penta-c[Asp-5-ClAtc-DPhe-Cit-Trp-Lys]-NH(2) which are potent hMC4R agonists and are either inactive or weak partial agonists (not tested for their antagonist activities) in hMC1R, hMC3R and hMC5R agonist assays.

  16. Antithrombotic Protective Effects of Arg-Pro-Gly-Pro Peptide during Emotional Stress Provoked by Forced Swimming Test in Rats.

    PubMed

    Grigor'eva, M E; Lyapina, L A

    2017-01-01

    Blood coagulation was enhanced and all factors (total, enzyme, and non-enzyme) of the fibrinolytic system were suppressed in rats in 60 min after forced swimming test. Argininecontaining tetrapeptide glyproline Arg-Pro-Gly-Pro administered prior to this test activated fibrinolysis and prevented hypercoagulation. Administration of this peptide in 5 min after swimming test also enhanced anticoagulant, fibrinolytic, and antithrombotic activity of the blood. Therefore, glyproline Arg-Pro-Gly-Pro exerted both preventive and curative effects on the hemostasis system and prevented enhancement of blood coagulation provoked by emotional stress modeled by forced swimming test.

  17. Expression cloning and chromosomal mapping of the leukocyte activation antigen CD97, a new seven-span transmembrane molecule of the secretin receptor superfamily with an unusual extracellular domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamann, J.; Hamann, D.; Lier, R.A.W.

    1995-08-15

    CD97 is a monomeric glycoprotein of 75 to 85 kDa that is induced rapidly on the surface of most leukocytes upon activation. We herein report the isolation of a cDNA encoding human CD97 by expression cloning in COS cells. The 3-kb cDNA clone encodes a mature polypeptide chain of 722 amino acids with a predicted molecular mass of 79 kDa. Within the C-terminal part of the protein, a region with seven hydrophobic segments was identified, suggesting that CD97 is a seven-span transmembrane molecule. Sequence comparison indicates that CD97 is the first leukocyte Ag in a recently described superfamily that includesmore » the receptors for secretin, calcitonin, and other mammalian and insect peptide hormones. Different from these receptors, CD97 has an extended extracellular region of 433 amino acids that possesses three N-terminal epidermal growth factor-like domains, two of them with a calcium-binding site, and single Arg-Gly-Asp (RGD) motif. The existence of structural elements characteristic for extracellular matrix proteins in a seven-span transmembrane molecule makes CD97 a receptor potentially involved in both adhesion and signaling processes early after leukocyte activation. The gene encoding CD97 is localized on chromosome 19 (19p13.12-13.2).« less

  18. Structure-activity relationship of linear peptide Bu-His-DPhe-Arg-Trp-Gly-NH(2) at the human melanocortin-1 and -4 receptors: arginine substitution.

    PubMed

    Cheung, Adrian Wai-Hing; Danho, Waleed; Swistok, Joseph; Qi, Lida; Kurylko, Grazyna; Franco, Lucia; Yagaloff, Keith; Chen, Li

    2002-09-02

    A series of pentapeptides, based on Bu-His(6)-DPhe(7)-Arg(8)-Trp(9)-Gly(10)-NH(2) and modified at the Arg(8) position, was prepared and pharmacologically characterized. Peptides containing either cyanoguanidine or acylguanidine, two substantially less basic arginine surrogates, were found to retain the agonist activity of the parent peptide at both hMC1R and hMC4R. This study unequivocally shows that the positive charge of Arg(8) is not essential for efficient interactions of our pentapeptide with both hMC1R and hMC4R.

  19. Oxidation-induced Structural Changes of Ceruloplasmin Foster NGR Motif Deamidation That Promotes Integrin Binding and Signaling

    PubMed Central

    Barbariga, Marco; Curnis, Flavio; Spitaleri, Andrea; Andolfo, Annapaola; Zucchelli, Chiara; Lazzaro, Massimo; Magnani, Giuseppe; Musco, Giovanna; Corti, Angelo; Alessio, Massimo

    2014-01-01

    Asparagine deamidation occurs spontaneously in proteins during aging; deamidation of Asn-Gly-Arg (NGR) sites can lead to the formation of isoAsp-Gly-Arg (isoDGR), a motif that can recognize the RGD-binding site of integrins. Ceruloplasmin (Cp), a ferroxidase present in the cerebrospinal fluid (CSF), contains two NGR sites in its sequence: one exposed on the protein surface (568NGR) and the other buried in the tertiary structure (962NGR). Considering that Cp can undergo oxidative modifications in the CSF of neurodegenerative diseases, we investigated the effect of oxidation on the deamidation of both NGR motifs and, consequently, on the acquisition of integrin binding properties. We observed that the exposed 568NGR site can deamidate under conditions mimicking accelerated Asn aging. In contrast, the hidden 962NGR site can deamidate exclusively when aging occurs under oxidative conditions, suggesting that oxidation-induced structural changes foster deamidation at this site. NGR deamidation in Cp was associated with gain of integrin-binding function, intracellular signaling, and cell pro-adhesive activity. Finally, Cp aging in the CSF from Alzheimer disease patients, but not in control CSF, causes Cp deamidation with gain of integrin-binding function, suggesting that this transition might also occur in pathological conditions. In conclusion, both Cp NGR sites can deamidate during aging under oxidative conditions, likely as a consequence of oxidative-induced structural changes, thereby promoting a gain of function in integrin binding, signaling, and cell adhesion. PMID:24366863

  20. Products of cholecystokinin (CCK)-octapeptide proteolysis interact with central CCK receptors.

    PubMed

    Steardo, L; Knight, M; Tamminga, C A; Chase, T N

    1985-03-15

    Peptidases present in central nervous system (CNS) synaptic membranes, hydrolyze the neuroactive peptide cholecystokinin-octapeptide (CCK-8; Asp-Tyr-SO3H-Met-Gly-Trp-Met-Asp-Phe-NH2). In order to determine the pathway of degradation, synthetic CCK-8 was incubated at 37 degrees C with purified synaptic membranes; at various intervals reaction samples were removed from the reaction mixture and analysed by high-performance liquid chromatography to identify and quantify the peptide fragments. The results indicate an initial endopeptidase cleavage at the Met-Gly bond producing CCK-5 (Gly-Trp-Met-Asp-Phe-NH2). The carboxyl-terminal pentapeptide is further proteolysed to CCK-4 (Trp-Met-Asp-Phe-NH2) by a puromycin-sensitive aminopeptidase and to CCK-3 (Met-Asp-Phe-NH2) and Gly-Trp by an endopeptidase action. CCK-3 and CCK-2 appear to be relatively stable end-products. Moreover, these proteolytic fragments are shown to bind to the CCK receptor in brain with varying potencies.

  1. Evaluation of 111In-Labeled Cyclic RGD Peptides: Effects of Peptide and Linker Multiplicity on Their Tumor Uptake, Excretion Kinetics and Metabolic Stability

    PubMed Central

    Shi, Jiyun; Zhou, Yang; Chakraborty, Sudipta; Kim, Young-Seung; Jia, Bing; Wang, Fan; Liu, Shuang

    2011-01-01

    Purpose: The purpose of this study was to demonstrate the valence of cyclic RGD peptides, P-RGD (PEG4-c(RGDfK): PEG4 = 15-amino-4,710,13-tetraoxapentadecanoic acid), P-RGD2 (PEG4-E[c(RGDfK)]2, 2P-RGD4 (E{PEG4-E[c(RGDfK)]2}2, 2P4G-RGD4 (E{PEG4-E[G3-c(RGDfK)]2}2: G3 = Gly-Gly-Gly) and 6P-RGD4 (E{PEG4-E[PEG4-c(RGDfK)]2}2) in binding to integrin αvβ3, and to assess the impact of peptide and linker multiplicity on biodistribution properties, excretion kinetics and metabolic stability of their corresponding 111In radiotracers. Methods: Five new RGD peptide conjugates (DOTA-P-RGD (DOTA =1,4,7,10-tetraazacyclododecane-1,4,7,10-tetracetic acid), DOTA-P-RGD2, DOTA-2P-RGD4, DOTA-2P4G-RGD4, DOTA-6P-RGD4), and their 111In complexes were prepared. The integrin αvβ3 binding affinity of cyclic RGD conjugates were determined by a competitive displacement assay against 125I-c(RGDyK) bound to U87MG human glioma cells. Biodistribution, planar imaging and metabolism studies were performed in athymic nude mice bearing U87MG human glioma xenografts. Results: The integrin αvβ3 binding affinity of RGD conjugates follows the order of: DOTA-6P-RGD4 (IC50 = 0.3 ± 0.1 nM) ~ DOTA-2P4G-RGD4 (IC50 = 0.2 ± 0.1 nM) ~ DOTA-2P-RGD4 (IC50 = 0.5 ± 0.1 nM) > DOTA-3P-RGD2 (DOTA-PEG4-E[PEG4-c(RGDfK)]2: IC50 = 1.5 ± 0.2 nM) > DOTA-P-RGD2 (IC50 = 5.0 ± 1.0 nM) >> DOTA-P-RGD (IC50 = 44.3 ± 3.5 nM) ~ c(RGDfK) (IC50 = 49.9 ± 5.5 nM) >> DOTA-6P-RGK4 (IC50 = 437 ± 35 nM). The fact that DOTA-6P-RGK4 had much lower integrin αvβ3 binding affinity than DOTA-6P-RGD4 suggests that the binding of DOTA-6P-RGD4 to integrin αvβ3 is RGD-specific. This conclusion is consistent with the lower tumor uptake for 111In(DOTA-6P-RGK4) than that for 111In(DOTA-6P-RGD4). It was also found that the G3 and PEG4 linkers between RGD motifs have a significant impact on the integrin αvβ3-targeting capability, biodistribution characteristics, excretion kinetics and metabolic stability of 111In-labeled cyclic RGD peptides. Conclusion: On the basis of their integrin αvβ3 binding affinity and tumor uptake of their corresponding 111In radiotracers, it was conclude that 2P-RGD4, 2P4G-RGD4 and 6P-RGD4 are most likely bivalent in binding to integrin αvβ3, and extra RGD motifs might contribute to the long tumor retention times of 111In(DOTA-2P-RGD4), 111In(DOTA-2P4G-RGD4) and 111In(DOTA-6P-RGD4) than that of 111In(DOTA-3P-RGD3) at 72 h p.i. Among the 111In-labeled cyclic RGD tetramers evaluated in the glioma model, 111In(DOTA-2P4G-RGD4) has very high tumor uptake with the best tumor/kidney and tumor/liver ratios, suggesting that 90Y(DOTA-2P4G-RGD4) and 177Lu(DOTA-2P4G-RGD4) might have the potential for targeted radiotherapy of integrin αvβ3-positive tumors. PMID:21850213

  2. Changes of CFTR functional measurements and clinical improvements in cystic fibrosis patients with non p.Gly551Asp gating mutations treated with ivacaftor.

    PubMed

    Mesbahi, Myriam; Shteinberg, Michal; Wilschanski, Michael; Hatton, Aurelie; Nguyen-Khoa, Thao; Friedman, Hannah; Cohen, Michael; Escabasse, Virginie; Le Bourgeois, Muriel; Lucidi, Vicenzina; Sermet-Gaudelus, Isabelle; Bassinet, Laurence; Livnat, Galit

    2017-01-01

    Ivacaftor, a CFTR potentiator, has been found to improve CFTR function and clinical outcomes in patients with cystic fibrosis (CF) gating mutations. We investigated the effects of ivacaftor on CFTR functional measurement in CF patients carrying gating mutations other than p.Gly551Asp. Two siblings aged 13 and 12 carrying the p.Ser549Asn mutation, two sisters (45 and 43years old) compound heterozygotes for p.Asp1152His and p.Gly1244Glu, a 37year old man homozygous for the p.Gly1244Glu mutation, and a 7year old girl with p.Arg352Gln and p.Gly1244Glu mutations commenced treatment with ivacaftor. NPD was performed in all the patients and approached normal for four patients who had also clinical improvement (p.Ser549Asn compound heterozygotes, and p.Asp1152His/p.Gly1244Glu siblings). Beta-adrenergic sweat chloride secretion performed in thep.Asp1152His/p.Gly1244Glu patients improved significantly. The p.Gly1244Glu mutation homozygous patient, who had undergone an ileal resection with ileostomy and enterocutaneous fistula, did not respond clinically to ivacaftor and did not modify his sweat test. These results highlight the importance of different CFTR activity measurements to explore CFTR modulator efficacy. Copyright © 2016. Published by Elsevier B.V.

  3. The role of collagen charge clusters in the modulation of matrix metalloproteinase activity.

    PubMed

    Lauer, Janelle L; Bhowmick, Manishabrata; Tokmina-Roszyk, Dorota; Lin, Yan; Van Doren, Steven R; Fields, Gregg B

    2014-01-24

    Members of the matrix metalloproteinase (MMP) family selectively cleave collagens in vivo. Several substrate structural features that direct MMP collagenolysis have been identified. The present study evaluated the role of charged residue clusters in the regulation of MMP collagenolysis. A series of 10 triple-helical peptide (THP) substrates were constructed in which either Lys-Gly-Asp or Gly-Asp-Lys motifs replaced Gly-Pro-Hyp (where Hyp is 4-hydroxy-L-proline) repeats. The stabilities of THPs containing the two different motifs were analyzed, and kinetic parameters for substrate hydrolysis by six MMPs were determined. A general trend for virtually all enzymes was that, as Gly-Asp-Lys motifs were moved from the extreme N and C termini to the interior next to the cleavage site sequence, kcat/Km values increased. Additionally, all Gly-Asp-Lys THPs were as good or better substrates than the parent THP in which Gly-Asp-Lys was not present. In turn, the Lys-Gly-Asp THPs were also always better substrates than the parent THP, but the magnitude of the difference was considerably less compared with the Gly-Asp-Lys series. Of the MMPs tested, MMP-2 and MMP-9 most greatly favored the presence of charged residues with preference for the Gly-Asp-Lys series. Lys-Gly-(Asp/Glu) motifs are more commonly found near potential MMP cleavage sites than Gly-(Asp/Glu)-Lys motifs. As Lys-Gly-Asp is not as favored by MMPs as Gly-Asp-Lys, the Lys-Gly-Asp motif appears advantageous over the Gly-Asp-Lys motif by preventing unwanted MMP hydrolysis. More specifically, the lack of Gly-Asp-Lys clusters may diminish potential MMP-2 and MMP-9 collagenolytic activity. The present study indicates that MMPs have interactions spanning the P23-P23' subsites of collagenous substrates.

  4. Correlative Light-Electron Microscopy Shows RGD-Targeted ZnO Nanoparticles Dissolve in the Intracellular Environment of Triple Negative Breast Cancer Cells and Cause Apoptosis with Intratumor Heterogeneity.

    PubMed

    Othman, Basmah A; Greenwood, Christina; Abuelela, Ayman F; Bharath, Anil A; Chen, Shu; Theodorou, Ioannis; Douglas, Trevor; Uchida, Maskai; Ryan, Mary; Merzaban, Jasmeen S; Porter, Alexandra E

    2016-06-01

    ZnO nanoparticles (NPs) are reported to show a high degree of cancer cell selectivity with potential use in cancer imaging and therapy. Questions remain about the mode by which the ZnO NPs cause cell death, whether they exert an intra- or extracellular effect, and the resistance among different cancer cell types to ZnO NP exposure. The present study quantifies the variability between the cellular toxicity, dynamics of cellular uptake, and dissolution of bare and RGD (Arg-Gly-Asp)-targeted ZnO NPs by MDA-MB-231 cells. Compared to bare ZnO NPs, RGD-targeting of the ZnO NPs to integrin αvβ3 receptors expressed on MDA-MB-231 cells appears to increase the toxicity of the ZnO NPs to breast cancer cells at lower doses. Confocal microscopy of live MDA-MB-231 cells confirms uptake of both classes of ZnO NPs with a commensurate rise in intracellular Zn(2+) concentration prior to cell death. The response of the cells within the population to intracellular Zn(2+) is highly heterogeneous. In addition, the results emphasize the utility of dynamic and quantitative imaging in understanding cell uptake and processing of targeted therapeutic ZnO NPs at the cellular level by heterogeneous cancer cell populations, which can be crucial for the development of optimized treatment strategies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Simultaneous Targeting of RGD-Integrins and Dual Murine Double Minute Proteins in Glioblastoma Multiforme.

    PubMed

    Merlino, Francesco; Daniele, Simona; La Pietra, Valeria; Di Maro, Salvatore; Di Leva, Francesco Saverio; Brancaccio, Diego; Tomassi, Stefano; Giuntini, Stefano; Cerofolini, Linda; Fragai, Marco; Luchinat, Claudio; Reichart, Florian; Cavallini, Chiara; Costa, Barbara; Piccarducci, Rebecca; Taliani, Sabrina; Da Settimo, Federico; Martini, Claudia; Kessler, Horst; Novellino, Ettore; Marinelli, Luciana

    2018-05-18

    In the fight against Glioblastoma Multiforme, recent literature data have highlighted that integrin α5β1 and p53 are part of convergent pathways in the control of glioma apoptosis. This observation prompted us to seek a molecule able to simultaneously modulate both target families. Analyzing the results of a previous virtual screening against murine double minute 2 protein (MDM2), we envisaged that Arg-Gly-Asp (RGD)-mimetic molecules could be inhibitors of MDM2/4. Herein we present the discovery of compound 7, which inhibits both MDM2/4 and α5β1/αvβ3 integrins. A lead optimization campaign was carried out on 7 with aim to preserve the activities on integrins while improving those on MDM proteins. Compound 9 turned out to be a potent MDM2/4, and α5β1/αvβ3 blocker. In p53-wild type glioma cells, 9 arrested cell cycle and proliferation and strongly reduced cell invasiveness, emerging as the first molecule of a novel class of integrin/MDM inhibitors, which might be especially useful in subpopulations of patients with glioblastoma expressing a functional p53 concomitantly with a high level of α5β1 integrin.

  6. Functionalized α-Helical Peptide Hydrogels for Neural Tissue Engineering

    PubMed Central

    2015-01-01

    Trauma to the central and peripheral nervous systems often lead to serious morbidity. Current surgical methods for repairing or replacing such damage have limitations. Tissue engineering offers a potential alternative. Here we show that functionalized α-helical-peptide hydrogels can be used to induce attachment, migration, proliferation and differentiation of murine embryonic neural stem cells (NSCs). Specifically, compared with undecorated gels, those functionalized with Arg-Gly-Asp-Ser (RGDS) peptides increase the proliferative activity of NSCs; promote their directional migration; induce differentiation, with increased expression of microtubule-associated protein-2, and a low expression of glial fibrillary acidic protein; and lead to the formation of larger neurospheres. Electrophysiological measurements from NSCs grown in RGDS-decorated gels indicate developmental progress toward mature neuron-like behavior. Our data indicate that these functional peptide hydrogels may go some way toward overcoming the limitations of current approaches to nerve-tissue repair. PMID:26240838

  7. Multifunctional ferritin cage nanostructures for fluorescence and MR imaging of tumor cells

    NASA Astrophysics Data System (ADS)

    Li, Ke; Zhang, Zhi-Ping; Luo, Ming; Yu, Xiang; Han, Yu; Wei, Hong-Ping; Cui, Zong-Qiang; Zhang, Xian-En

    2011-12-01

    Bionanoparticles and nanostructures have attracted increasing interest as versatile and promising tools in many applications including biosensing and bioimaging. In this study, to image and detect tumor cells, ferritin cage-based multifunctional hybrid nanostructures were constructed that: (i) displayed both the green fluorescent protein and an Arg-Gly-Asp peptide on the exterior surface of the ferritin cages; and (ii) incorporated ferrimagnetic iron oxide nanoparticles into the ferritin interior cavity. The overall architecture of ferritin cages did not change after being integrated with fusion proteins and ferrimagnetic iron oxide nanoparticles. These multifunctional nanostructures were successfully used as a fluorescent imaging probe and an MRI contrast agent for specifically probing and imaging αvβ3 integrin upregulated tumor cells. The work provides a promising strategy for tumor cell detection by simultaneous fluorescence and MR imaging.Bionanoparticles and nanostructures have attracted increasing interest as versatile and promising tools in many applications including biosensing and bioimaging. In this study, to image and detect tumor cells, ferritin cage-based multifunctional hybrid nanostructures were constructed that: (i) displayed both the green fluorescent protein and an Arg-Gly-Asp peptide on the exterior surface of the ferritin cages; and (ii) incorporated ferrimagnetic iron oxide nanoparticles into the ferritin interior cavity. The overall architecture of ferritin cages did not change after being integrated with fusion proteins and ferrimagnetic iron oxide nanoparticles. These multifunctional nanostructures were successfully used as a fluorescent imaging probe and an MRI contrast agent for specifically probing and imaging αvβ3 integrin upregulated tumor cells. The work provides a promising strategy for tumor cell detection by simultaneous fluorescence and MR imaging. Electronic supplementary information (ESI) available. See DOI: 10.1039/c1nr11132a

  8. Integrin alphaIIb-subunit cytoplasmic domain mutations demonstrate a requirement for tyrosine phosphorylation of beta3-subunits in actin cytoskeletal organization.

    PubMed

    Yamodo, Innocent H; Blystone, Scott D

    2004-01-01

    Using truncated or mutated alphaIIb integrin cytoplasmic domains fused to the alphaV extracellular domain and expressed with the beta3 integrin subunit, we demonstrate that the double mutation of proline residues 998 and 999 to alanine (PP998/999AA), previously shown to disturb the C-terminal conformation of the alphaIIb integrin cytoplasmic domain, prevents tyrosine phosphorylation of beta3 integrin induced by Arg-Gly-Asp peptide ligation. This mutation also inhibits integrin mediated actin assembly and cell adhesion to vitronectin. In contrast, progressive truncation of the alphaIIb-subunit cytoplasmic domain did not reproduce these effects. Interestingly, the PP998/999AA mutations of alphaIIb did not affect beta3 tyrosine phosphorylation, cell adhesion, or actin polymerization induced by manganese. Exogenous addition of manganese was sufficient to rescue beta3 phosphorylation, cell adhesion, and actin assembly in cells expressing the PP998/999AA mutation when presented with a vitronectin substrate. Further, induction of the high affinity conformation of this mutant beta3 integrin by incubation with either Arg-Gly-Asp peptide or exogenous manganese was equivalent. These results suggest that the extracellular structure of beta3 integrins in the high affinity conformation is not directly related to the structure of the cytoplasmic face of the integrin. Moreover, the requirement for beta3 phosphorylation is demonstrated without mutation of the beta3 subunit. In support of our previous hypothesis of a role for beta3 phosphorylation in adhesion, these studies demonstrate a strong correlation between beta3 tyrosine phosphorylation and assembly of a cytoskeleton competent to support firm cell adhesion.

  9. DNA-fiber EPR investigation of the influence of amino-terminal residue stereochemistry on the DNA binding orientation of Cu(II)•Gly-Gly-His-derived metallopeptides

    PubMed Central

    Hamada, Hirokazu; Abe, Yuko; Nagane, Ryoichi; Fang, Ya-Yin; Lewis, Mark A.; Long, Eric C.; Chikira, Makoto

    2007-01-01

    DNA fiber EPR was used to investigate the DNA binding stabilities and orientations of Cu(II)•Gly-Gly-His-derived metallopeptides containing d- vs. l-amino acid substitutions in the first peptide position. This examination included studies of Cu(II)•d-Arg-Gly-His and Cu(II)•d-Lys-Gly-His for comparison to metallopeptides containing l-Arg/Lys substitutions, and also the diastereoisomeric pairs Cu(II)•d/l-Pro-Gly-His and Cu(II)•d/l-Pro-Lys-His. Results indicated that l-Arg/Lys to d-Arg/Lys substitutions considerably randomized the orientation of the metallopeptides on DNA whereas the replacement of l-Pro by d-Pro in Cu(II)•l-Pro-Gly-His caused a decrease in randomness. The difference in the extent of randomness of d- vs. l-Pro-Gly-His complexes was diminished through the substitution of Gly for Lys in the middle peptide position, supporting the notion that the ε-amino group of Lys triggered further randomization, likely through hydrogen bonding or electrostatic interactions that disrupt binding of the metallopeptide equatorial plane and the DNA. The relationship between the stereochemistry of amino acid residues and the binding and reaction of M(II)•Xaa-Xaa’-His metallopeptides with DNA are also discussed. PMID:17706784

  10. Effects of the Amino Acid Linkers on the Melanoma-Targeting and Pharmacokinetic Properties of Indium-111-labeled Lactam Bridge-Cyclized α-MSH Peptides

    PubMed Central

    Guo, Haixun; Yang, Jianquan; Gallazzi, Fabio; Miao, Yubin

    2011-01-01

    The purpose of this study was to examine the profound effects of the amino acid linkers on the melanoma targeting and pharmacokinetic properties of novel 111In-labeled lactam bridge-cyclized DOTA-[X]-CycMSHhex {1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid-[X]-c[Asp-His-dPhe-Arg-Trp-Lys]-CONH2, X=GlyGlyNle, GlyGluNle or NleGlyGlu} peptides. Methods Three novel DOTA-GGNle-CycMSHhex, DOTA-GENle-CycMSHhex and DOTA-NleGE-CycMSHhex peptides were designed and synthesized. The melanocortin-1 (MC1) receptor binding affinities of the peptides were determined in B16/F1 melanoma cells. The melanoma targeting and pharmacokinetic properties of 111In-DOTA-GGNle-CycMSHhex and 111In-DOTA-GENle-CycMSHhex were determined in B16/F1 melanoma-bearing C57 mice. Results DOTA-GGNle-CycMSHhex and DOTA-GENle-CycMSHhex displayed 2.1 and 11.5 nM MC1 receptor binding affinities, whereas DOTA-NleGE-CycMSHhex showed 873.4 nM MC1 receptor binding affinity. The introduction of the -GlyGly- linker maintained high melanoma uptake while decreased the renal and liver uptakes of 111In-DOTA-GlyGlyNle-CycMSHhex. The tumor uptake values of 111In-DOTA-GGNle-CycMSHhex were 19.05 ± 5.04 and 18.6 ± 3.56 % injected dose/gram (%ID/g) at 2 and 4 h post-injection. 111In-DOTA-GGNle-CycMSHhex exhibited 28, 32 and 42% less renal uptake values than 111In-DOTA-Nle-CycMSHhex we reported previously, and 61, 65 and 68% less liver uptake values than 111In-DOTA-Nle-CycMSHhex at 2, 4 and 24 h post-injection, respectively. Conclusion The amino acid linkers exhibited the profound effects on the melanoma targeting and pharmacokinetic properties of the 111In-labeled lactam bridge-cyclized α-MSH peptides. Introduction of the -GlyGly- linker maintained high melanoma uptake while reducing the renal and liver uptakes of 111In-DOTA-GlyGlyNle-CycMSHhex, highlighting its potential as an effective imaging probe for melanoma detection, as well as a therapeutic peptide for melanoma treatment when labeled with a therapeutic radionuclide. PMID:21421725

  11. Diastereoselective DNA Cleavage Recognition by Ni(II)•Gly-Gly-His Derived Metallopeptides

    PubMed Central

    Fang, Ya-Yin; Claussen, Craig A.; Lipkowitz, Kenny B.; Long, Eric C.

    2008-01-01

    Site-selective DNA cleavage by diastereoisomers of Ni(II)•Gly-Gly-His-derived metallopeptides was investigated through high-resolution gel analyses and molecular dynamics simulations. Ni(II)•L-Arg-Gly-His and Ni(II)•D-Arg-Gly-His (and their respective Lys analogues) targeted A/T-rich regions; however, the L-isomers consistently modified a sub-set of available nucleotides within a given minor groove site while the D-isomers differed in both their sites of preference and ability to target individual nucleotides within some sites. In comparison, Ni(II)•L-Pro-Gly-His and Ni(II)•D-Pro-Gly-His were unable to exhibit a similar diastereoselectivity. Simulations of the above systems, along with Ni(II)•Gly-Gly-His, indicated that the stereochemistry of the amino-terminal amino acid produces either an isohelical metallopeptide that associates stably at individual DNA sites (L-Arg or L-Lys) or, with D-Arg and D-Lys, a non-complementary metallopeptide structure that cannot fully employ its side chain nor amino-terminal amine as a positional stabilizing moiety. In contrast, amino-terminal Pro-containing metallopeptides of either stereochemistry, lacking an extended side chain directed toward the minor groove, did not exhibit a similar diastereoselectivity. While the identity and stereochemistry of amino acids located in the amino-terminal peptide position influenced DNA cleavage, metallopeptide diastereoisomers containing L- and D-Arg (or Lys) within the second peptide position did not exhibit diastereoselective DNA cleavage patterns; simulations indicated that a positively-charged amino acid in this location alters the interaction of the metallopeptide equatorial plane and the minor groove leading to an interaction similar to Ni(II)•Gly-Gly-His. PMID:16522100

  12. Processing of an anglerfish somatostatin precursor to a hydroxylysine-containing somatostatin 28.

    PubMed Central

    Spiess, J; Noe, B D

    1985-01-01

    A novel 28-residue somatostatin (SS) has been isolated from anglerfish pancreatic islets and characterized by complete Edman degradation, peptide mapping, and amino acid analysis. The primary structure of this anglerfish SS-28 (aSS-28) containing hydroxylysine (Hyl) was established to be H-Ser-Val-Asp-Ser-Thr-Asn-Asn-Leu-Pro-Pro-Arg-Glu-Arg-Lys-Ala-Gly-Cys- Lys-Asn-Phe-Tyr-Trp-Hyl-Gly-Phe-Thr-Ser-Cys-OH. This sequence (with the exception of hydroxylysine-23, which is replaced by lysine) is identical to the sequence of the COOH-terminal 28 residues of prepro-SS II predicted on the basis of cDNA analysis [Hobart, P., Crawford, R., Shen, L., Pictet, R. & Rutter, W. J. (1980) Nature (London) 288, 137-141]. This is the first instance in which hydroxylysine (to date characteristically observed in collagen or collagen-like structures) has been found in a potential regulatory peptide. Chromatographic characterization of peptides, radiolabeled in islet culture, revealed that aSS-28 contained 10-12% of the radioactivity incorporated into the 8000- to 1000-dalton SS-like polypeptides, whereas 88-90% of this radioactivity was detected in anglerfish SS-14. It appears probable that aSS-28 represents the predominant primary cleavage product derived from prepro-SS II by cleavage at the COOH-terminal side of a single arginine. Based on knowledge of the collagen biosynthesis, it is speculated that hydroxylation may take place as an early post-translational event. Images PMID:2857489

  13. A Sucrose-derived Scaffold for Multimerization of Bioactive Peptides

    PubMed Central

    Rao, Venkataramanarao; Alleti, Ramesh; Xu, Liping; Tafreshi, Narges K.; Morse, David L.; Gillies, Robert J.; Mash, Eugene A.

    2011-01-01

    A spherical molecular scaffold bearing eight terminal alkyne groups was synthesized in one step from sucrose. One or more copies of a tetrapeptide azide, either N3(CH2)5(C=O)-His-dPhe-Arg-Trp-NH2 (MSH4) or N3(CH2)5(C=O)-Trp-Met-Asp-Phe-NH2 (CCK4), were attached to the scaffold via the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Competitive binding assays using Eu-labeled probes based on the superpotent ligands Ser-Tyr-Ser-Nle-Glu-His-dPhe-Arg-Trp-Gly-Lys-Pro-Val-NH2 (NDP-α-MSH) and Asp-Tyr-Met-Gly-Trp-Met-Asp-Phe-NH2 (CCK8) were used to study the interactions of monovalent and multivalent MSH4 and CCK4 constructs with Hek293 cells engineered to overexpress MC4R and CCK2R. All of the monovalent and multivalent MSH4 constructs exhibited binding comparable to that of the parental ligand, suggesting that either the ligand spacing was inappropriate for multivalent binding, or MSH4 is too weak a binder for a second “anchoring” binding event to occur before the monovalently-bound construct is released from the cell surface. In contrast with this behavior, monovalent CCK4 constructs were significantly less potent than the parental ligand, while multivalent CCK4 constructs were as or more potent than the parental ligand. These results are suggestive of multivalent binding, which may be due to increased residence times for monovalently bound CCK4 constructs on the cell surface relative to MSH4 constructs, the greater residence time being necessary for the establishment of multivalent binding. PMID:21940174

  14. A sucrose-derived scaffold for multimerization of bioactive peptides.

    PubMed

    Rao, Venkataramanarao; Alleti, Ramesh; Xu, Liping; Tafreshi, Narges K; Morse, David L; Gillies, Robert J; Mash, Eugene A

    2011-11-01

    A spherical molecular scaffold bearing eight terminal alkyne groups was synthesized in one step from sucrose. One or more copies of a tetrapeptide azide, either N(3)(CH(2))(5)(CO)-His-DPhe-Arg-Trp-NH(2) (MSH4) or N(3)(CH(2))(5)(CO)-Trp-Met-Asp-Phe-NH(2) (CCK4), were attached to the scaffold via the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Competitive binding assays using Eu-labeled probes based on the superpotent ligands Ser-Tyr-Ser-Nle-Glu-His-DPhe-Arg-Trp-Gly-Lys-Pro-Val-NH(2) (NDP-α-MSH) and Asp-Tyr-Met-Gly-Trp-Met-Asp-Phe-NH(2) (CCK8) were used to study the interactions of monovalent and multivalent MSH4 and CCK4 constructs with Hek293 cells engineered to overexpress MC4R and CCK2R. All of the monovalent and multivalent MSH4 constructs exhibited binding comparable to that of the parental ligand, suggesting that either the ligand spacing was inappropriate for multivalent binding, or MSH4 is too weak a binder for a second 'anchoring' binding event to occur before the monovalently-bound construct is released from the cell surface. In contrast with this behavior, monovalent CCK4 constructs were significantly less potent than the parental ligand, while multivalent CCK4 constructs were as or more potent than the parental ligand. These results are suggestive of multivalent binding, which may be due to increased residence times for monovalently bound CCK4 constructs on the cell surface relative to MSH4 constructs, the greater residence time being necessary for the establishment of multivalent binding. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Association between TLR2 and TLR4 Gene Polymorphisms and the Susceptibility to Inflammatory Bowel Disease: A Meta-Analysis

    PubMed Central

    Huang, Xiuping; Zhang, Wei; Han, Zelong; Liu, Side

    2015-01-01

    Background The associations between toll-like receptor 2 (TLR2) and toll-like receptor 4(TLR4) polymorphisms and inflammatory bowel disease (IBD) susceptibility remain controversial. A meta-analysis was performed to assess these associations. Methods A systematic search was performed to identify all relevant studies relating TLR2 and TLR4 polymorphisms and IBD susceptibility. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated. Subgroup analyses were performed by ethnicity and publication quality. Results Thirty-eight eligible studies, assessing 10970 cases and 7061 controls were included. No TLR2 Arg677Trp polymorphism was found. No significant association was observed between TLR2 Arg753Gln polymorphism and Crohn’s disease (CD) or ulcerative colitis (UC) in all genetic models. Interestingly, TLR4 Asp299Gly polymorphism was significantly associated with increased risk of CD and UC in all genetic models, except for the additive one in CD. In addition, a statistically significant association between TLR4 Asp299Gly polymorphism and IBD was observed among high quality studies evaluating Caucasians, but not Asians. Associations between TLR4 Thr399Ile polymorphisms and CD risk were found only in the allele and dominant models. The TLR4 Thr399Ile polymorphism was associated with UC risk in pooled results as well as subgroup analysis of high quality publications assessing Caucasians, in allele and dominant models. Conclusions The meta-analysis provides evidence that TLR2 Arg753Gln is not associated with CD and UC susceptibility in Asians; TLR4 Asp299Gly is associated with CD and UC susceptibility in Caucasians, but not Asians. TLR4 Thr399Ile may be associated with IBD susceptibility in Caucasians only. Additional well-powered studies of Asp299Gly and other TLR4 variants are warranted. PMID:26023918

  16. Structure-activity relationship of linear peptide Bu-His-DPhe-Arg-Trp-Gly-NH(2) at the human melanocortin-1 and -4 receptors: histidine substitution.

    PubMed

    Cheung, Adrian Wai-Hing; Danho, Waleed; Swistok, Joseph; Qi, Lida; Kurylko, Grazyna; Rowan, Karen; Yeon, Mitch; Franco, Lucia; Chu, Xin-Jie; Chen, Li; Yagaloff, Keith

    2003-01-06

    Systematic substitution of His(6) residue using non-selective hMC4R pentapeptide agonist (Bu-His(6)-DPhe(7)-Arg(8)-Trp(9)-Gly(10)-NH(2)) as the template led to the identification of Bu-Atc(6)(2-aminotetraline-2-carboxylic acid)-DPhe(7)-Arg(8)-Trp(9)-Gly(10)-NH(2) which showed moderate selectivity towards hMC4R over hMC1R. Further SAR studies resulted in the discovery of Penta-5-BrAtc(6)-DPhe(7)-Arg(8)-Trp(9)-Gly(10)-NH(2) and Penta-5-Me(2)NAtc(6)-DPhe(7)-Arg(8)-Trp(9)-Gly(10)-NH(2) which are potent hMC4R agonists and are inactive in hMC1R, hMC3R and hMC5R agonist assays.

  17. Severity of experimental traumatic brain injury modulates changes in concentrations of cerebral free amino acids.

    PubMed

    Amorini, Angela Maria; Lazzarino, Giacomo; Di Pietro, Valentina; Signoretti, Stefano; Lazzarino, Giuseppe; Belli, Antonio; Tavazzi, Barbara

    2017-03-01

    In this study, concentrations of free amino acids (FAA) and amino group containing compounds (AGCC) following graded diffuse traumatic brain injury (mild TBI, mTBI; severe TBI, sTBI) were evaluated. After 6, 12, 24, 48 and 120 hr aspartate (Asp), glutamate (Glu), asparagine (Asn), serine (Ser), glutamine (Gln), histidine (His), glycine (Gly), threonine (Thr), citrulline (Cit), arginine (Arg), alanine (Ala), taurine (Tau), γ-aminobutyrate (GABA), tyrosine (Tyr), S-adenosylhomocysteine (SAH), l-cystathionine (l-Cystat), valine (Val), methionine (Met), tryptophane (Trp), phenylalanine (Phe), isoleucine (Ile), leucine (Leu), ornithine (Orn), lysine (Lys), plus N-acetylaspartate (NAA) were determined in whole brain extracts (n = 6 rats at each time for both TBI levels). Sham-operated animals (n = 6) were used as controls. Results demonstrated that mTBI caused modest, transient changes in NAA, Asp, GABA, Gly, Arg. Following sTBI, animals showed profound, long-lasting modifications of Glu, Gln, NAA, Asp, GABA, Ser, Gly, Ala, Arg, Citr, Tau, Met, SAH, l-Cystat, Tyr and Phe. Increase in Glu and Gln, depletion of NAA and Asp increase, suggested a link between NAA hydrolysis and excitotoxicity after sTBI. Additionally, sTBI rats showed net imbalances of the Glu-Gln/GABA cycle between neurons and astrocytes, and of the methyl-cycle (demonstrated by decrease in Met, and increase in SAH and l-Cystat), throughout the post-injury period. Besides evidencing new potential targets for novel pharmacological treatments, these results suggest that the force acting on the brain tissue at the time of the impact is the main determinant of the reactions ignited and involving amino acid metabolism. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  18. Ionic liquid and deep eutectic solvent-activated CelA2 variants generated by directed evolution.

    PubMed

    Lehmann, Christian; Bocola, Marco; Streit, Wolfgang R; Martinez, Ronny; Schwaneberg, Ulrich

    2014-06-01

    Chemoenzymatic cellulose degradation is one of the key steps for the production of biomass-based fuels under mild conditions. An effective cellulose degradation process requires diverse physico-chemical dissolution of the biomass prior to enzymatic degradation. In recent years, "green" solvents, such as ionic liquids and, more recently, deep eutectic liquids, have been proposed as suitable alternatives for biomass dissolution by homogenous catalysis. In this manuscript, a directed evolution campaign of an ionic liquid tolerant β-1,4-endoglucanase (CelA2) was performed in order to increase its performance in the presence of choline chloride/glycerol (ChCl:Gly) or 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), as a first step to identify residues which govern ionic strength resistance and obtaining insights for employing cellulases on the long run in homogenous catalysis of lignocellulose degradation. After mutant library screening, variant M4 (His288Phe, Ser300Arg) was identified, showing a dramatically reduced activity in potassium phosphate buffer and an increased activity in the presence of ChCl:Gly or [BMIM]Cl. Further characterization showed that the CelA2 variant M4 is activated in the presence of these solvents, representing a first report of an engineered enzyme with an ionic strength activity switch. Structural analysis revealed that Arg300 could be a key residue for the ionic strength activation through a salt bridge with the neighboring Asp287. Experimental and computational results suggest that the salt bridge Asp287-Arg300 generates a nearly inactive CelA2 variant and activity is regained when ChCl:Gly or [BMIM]Cl are supplemented (~5-fold increase from 0.64 to 3.37 μM 4-MU/h with the addition ChCl:Gly and ~23-fold increase from 3.84 to 89.21 μM 4-pNP/h with the addition of [BMIM]Cl). Molecular dynamic simulations further suggest that the salt bridge between Asp287 and Arg300 in variant M4 (His288Phe, Ser300Arg) modulates the observed salt activation.

  19. Shrimp arginine kinase being a binding protein of WSSV envelope protein VP31

    NASA Astrophysics Data System (ADS)

    Ma, Cuiyan; Gao, Qiang; Liang, Yan; Li, Chen; Liu, Chao; Huang, Jie

    2016-11-01

    Viral entry into the host is the earliest stage of infection in the viral life cycle in which attachment proteins play a key role. VP31 (WSV340/WSSV396), an envelope protein of white spot syndrome virus (WSSV), contains an Arg-Gly-Asp (RGD) peptide domain known as a cellular attachment site. At present, the process of VP31 interacting with shrimp host cells has not been explored. Therefore, the VP31 gene was cloned into pET30a (+), expressed in Escherichia coli strain BL21 and purified with immobilized metal ion affinity chromatography. Four gill cellular proteins of shrimp ( Fenneropenaeus chinensis) were pulled down by an affinity column coupled with recombinant VP31 (rVP31), and the amino acid sequences were identified with MALDI-TOF/TOF mass spectrometry. Hemocyanin, beta-actin, arginine kinase (AK), and an unknown protein were suggested as the putative VP31 receptor proteins. SDS-PAGE showed that AK is the predominant binding protein of VP31. An i n vitro binding activity experiment indicated that recombinant AK's (rAK) binding activity with rVP31 is comparable to that with the same amount of WSSV. These results suggested that AK, as a member of the phosphagen kinase family, plays a role in WSSV infection. This is the first evidence showing that AK is a binding protein of VP31. Further studies on this topic will elucidate WSSV infection mechanism in the future.

  20. Delineating the roles of the GPIIb/IIIa and GP-Ib-IX-V platelet receptors in mediating platelet adhesion to adsorbed fibrinogen and albumin.

    PubMed

    Sivaraman, Balakrishnan; Latour, Robert A

    2011-08-01

    Platelet adhesion to adsorbed plasma proteins, such as fibrinogen (Fg), has been conventionally thought to be mediated by the GPIIb/IIIa receptor binding to Arg-Gly-Asp (RGD)-like motifs in the adsorbed protein. In previous studies, we showed that platelet adhesion response to adsorbed Fg and Alb was strongly influenced by the degree of adsorption-induced protein unfolding and that platelet adhesion was only partially blocked by soluble RGD, with RGD-blocked platelets adhering without activation. Based on these results, we hypothesized that in addition to the RGD-specific GPIIb/IIIa receptor, which mediates both adhesion and activation, a non-RGD-specific receptor set likely also plays a role in platelet adhesion (but not activation) to both Fg and albumin (Alb). To identify and elucidate the role of these receptors, in addition to GPIIb/IIIa, we also examined the GPIb-IX-V receptor complex, which has been shown to mediate platelet adhesion (but not activation) in studies by other groups. The platelet suspension was pretreated with either a GPIIb/IIIa-antagonist drug Aggrastat(®) or monoclonal antibodies 6B4 or 24G10 against GPIb-IX-V prior to adhesion on Fg- and Alb-coated OH- and CH(3)-functionalized alkanethiol self-assembled monolayer surfaces. The results revealed that GPIIb/IIIa is the primary receptor set involved in platelet adhesion to adsorbed Fg and Alb irrespective of their degree of adsorption-induced unfolding, while the GPIb-IX-V receptor complex plays an insignificant role. Overall, these studies provide novel insights into the molecular-level mechanisms mediating platelet interactions with adsorbed plasma proteins, thereby assisting the biomaterials field develop potent strategies for inhibiting platelet-protein interactions in the design of more hemocompatible cardiovascular biomaterials and effective anti-thrombotic therapies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Disruption of integrin-fibronectin complexes by allosteric but not ligand-mimetic inhibitors.

    PubMed

    Mould, A Paul; Craig, Susan E; Byron, Sarah K; Humphries, Martin J; Jowitt, Thomas A

    2014-12-15

    Failure of Arg-Gly-Asp (RGD)-based inhibitors to reverse integrin-ligand binding has been reported, but the prevalence of this phenomenon among integrin heterodimers is currently unknown. In the present study we have investigated the interaction of four different RGD-binding integrins (α5β1, αVβ1, αVβ3 and αVβ6) with fibronectin (FN) using surface plasmon resonance. The ability of inhibitors to reverse ligand binding was assessed by their capacity to increase the dissociation rate of pre-formed integrin-FN complexes. For all four receptors we showed that RGD-based inhibitors (such as cilengitide) were completely unable to increase the dissociation rate. Formation of the non-reversible state occurred very rapidly and did not rely on the time-dependent formation of a high-affinity state of the integrin, or the integrin leg regions. In contrast with RGD-based inhibitors, Ca2+ (but not Mg2+) was able to greatly increase the dissociation rate of integrin-FN complexes, with a half-maximal response at ~0.4 mM Ca2+ for αVβ3-FN. The effect of Ca2+ was overcome by co-addition of Mn2+, but not Mg2+. A stimulatory anti-β1 monoclonal antibody (mAb) abrogated the effect of Ca2+ on α5β1-FN complexes; conversely, a function-blocking mAb mimicked the effect of Ca2+. These results imply that Ca2+ acts allosterically, probably through binding to the adjacent metal-ion-dependent adhesion site (ADMIDAS), and that the α1 helix in the β subunit I domain is the key element affected by allosteric modulators. The data suggest an explanation for the limited clinical efficacy of RGD-based integrin antagonists, and we propose that allosteric antagonists could prove to be of greater therapeutic benefit.

  2. Structure-activity relationships of the unique and potent agouti-related protein (AGRP)-melanocortin chimeric Tyr-c[beta-Asp-His-DPhe-Arg-Trp-Asn-Ala-Phe-Dpr]-Tyr-NH2 peptide template.

    PubMed

    Wilczynski, Andrzej; Wilson, Krista R; Scott, Joseph W; Edison, Arthur S; Haskell-Luevano, Carrie

    2005-04-21

    The melanocortin receptor system consists of endogenous agonists, antagonists, G-protein coupled receptors, and auxiliary proteins that are involved in the regulation of complex physiological functions such as energy and weight homeostasis, feeding behavior, inflammation, sexual function, pigmentation, and exocrine gland function. Herein, we report the structure-activity relationship (SAR) of a new chimeric hAGRP-melanocortin agonist peptide template Tyr-c[beta-Asp-His-DPhe-Arg-Trp-Asn-Ala-Phe-Dpr]-Tyr-NH(2) that was characterized using amino acids previously reported in other melanocortin agonist templates. Twenty peptides were examined in this study, and six peptides were selected for (1)H NMR and computer-assisted molecular modeling structural analysis. The most notable results include the identification that modification of the chimeric template at the His position with Pro and Phe resulted in ligands that were nM mouse melanocortin-3 receptor (mMC3R) antagonists and nM mouse melanocortin-4 receptor (mMC4R) agonists. The peptides Tyr-c[beta-Asp-His-DPhe-Ala-Trp-Asn-Ala-Phe-Dpr]-Tyr-NH(2) and Tyr-c[beta-Asp-His-DNal(1')-Arg-Trp-Asn-Ala-Phe-Dpr]-Tyr-NH(2) resulted in 730- and 560-fold, respectively, mMC4R versus mMC3R selective agonists that also possessed nM agonist potency at the mMC1R and mMC5R. Structural studies identified a reverse turn occurring in the His-DPhe-Arg-Trp domain, with subtle differences observed that may account for the differences in melanocortin receptor pharmacology. Specifically, a gamma-turn secondary structure involving the DPhe(4) in the central position of the Tyr-c[beta-Asp-Phe-DPhe-Arg-Trp-Asn-Ala-Phe-Dpr]-Tyr-NH(2) peptide may differentiate the mixed mMC3R antagonist and mMC4R agonist pharmacology.

  3. Near-infrared light-controlled regulation of intracellular calcium to modulate macrophage polarization.

    PubMed

    Kang, Heemin; Zhang, Kunyu; Wong, Dexter Siu Hong; Han, Fengxuan; Li, Bin; Bian, Liming

    2018-04-21

    Macrophages are multifunctional immune cells with diverse physiological functions such as fighting against infection, influencing progression of pathologies, maintaining homeostasis, and regenerating tissues. Macrophages can be induced to adopt distinct polarized phenotypes, such as classically activated pro-inflammatory (M1) phenotypes or alternatively activated anti-inflammatory and pro-healing (M2), to execute diverse and dynamic immune functions. However, unbalanced polarizations of macrophage can lead to various pathologies, such as atherosclerosis, obesity, tumor, and asthma. Thus, the capability to remotely control macrophage phenotypes is important to the success of treating many pathological conditions involving macrophages. In this study, we developed an upconversion nanoparticle (UCNP)-based photoresponsive nanocarrier for near-infrared (NIR) light-mediated control of intracellular calcium levels to regulate macrophage polarization. UCNP was coated with mesoporous silica (UCNP@mSiO 2 ), into which loaded calcium regulators that can either supply or deplete calcium ions. UCNP@mSiO 2 was chemically modified through serial coupling of photocleavable linker and Arg-Gly-Asp (RGD) peptide-bearing molecular cap via cyclodextrin-adamantine host-guest complexation. The RGD-bearing cap functioned as the photolabile gating structure to control the release of calcium regulators and facilitated the cellular uptake of UCNP@mSiO 2 nanocarrier. The upconverted UV light emission from the UCNP@mSiO 2 under NIR light excitation triggered the cleavage of cap and intracellular release of calcium regulators, thereby allowing temporal regulation on the intracellular calcium levels. Application of NIR light through skin tissue promoted M1 or M2 polarization of macrophages, by elevating or depleting intracellular calcium levels, respectively. To the best of our knowledge, this is the first demonstration of NIR light-mediated remote control on macrophage polarization. This photoresponsive nanocarrier offers the potential to remotely manipulate in vivo immune functions, such as inflammation or tissue regeneration, via NIR light-controlled macrophage polarization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Effect of antiangiogenic therapy on luciferase activity in a cytomegalovirus- or HSP70-promoter-transfected M21 tumor model

    NASA Astrophysics Data System (ADS)

    Hundt, Walter; Schink, Christian; Steinbach, Silke; O'Connell-Rodwell, Caitlin E.; Kiessling, Andreas; Librizzi, Damiano; Burbelko, Mykhaylo; Guccione, Samira

    2012-06-01

    We investigated the effect of targeted gene therapy on heat shock protein 70 expression (Hsp70) and protein production (HSP70) in a melanoma tumor model (M21; M21-L). M21 and M21-L cells transfected with a plasmid containing the Hsp70 (Hspa1b) or the cytomegalovirus (CMV) promoter and the luciferase reporter gene were injected into mice; the resulting tumors grew to a size of 650 mm3. Mice (five per group) were intravenously treated with an Arg-Gly-Asp peptide-nanoparticle/Raf-1 kinase inhibitor protein complex [RGD-NP/RAF(-)] or with a nanoparticle control. Bioluminescence imaging (IVIS®, Xenogen, USA) was performed at 12, 24, 48, and 72 h after the treatment cycle. Western blot analysis of HSP70 protein was performed to monitor protein expression. The size of the treated M21 tumors remained fairly constant (647.8+/-103.4 mm2 at the beginning versus 704.8+/-94.4 mm3 at the end of the experiment). The size of the M21-L tumors increased, similar to the untreated control tumors. Bioluminescent imaging demonstrated that when transcription was controlled by the CMV promoter, luciferase activity decreased to 17.9%+/-4.3% of baseline values in the treated M21 tumors. When transcription was controlled by the Hsp70 promoter, the highest luciferase activity (4.5+/-0.7-fold increase over base-line values) was seen 24 h after injection in the M21 tumors; however, no luciferase activity was seen in the M21-L tumors. In accordance with bioluminescent imaging, western blot analysis showed a peak in HSP70 production at 24 h after the injection of the RGD-NP/RAF(-) complex in the M21 tumors; however, no HSP70 protein induction was seen in the M21-L tumors. Thus, targeted antiangiogenic therapy can induce Hsp70 expression and HSP70 protein in melanoma tumors.

  5. Beta-endorphin. Synthesis and biological activity of analogs with disulfide bridges.

    PubMed

    Blake, J; Helmeste, D M; Li, C H

    1985-06-01

    Two analogs of human beta-endorphin (beta-EP) which contain cystine bridges, [Cys15-Cys26,Phe27,Gly31]-beta-EP (I) and [Cys16-Cys26,Phe27,Gly31]-beta-EP (II), were synthesized by the solid-phase method. Peptides I and II were shown to contain 2-2.5 times the opiate receptor binding activity of beta-endorphin. We also synthesized two analogs with reduced alkylated cysteine residues and these peptides, [Arg9,19,24,28,29 Cys(Cam)11,26,Phe27,Gly31] and [Arg9,19,24,28,29,Cys-(Cam)12,26,Phe27,Gly31], were shown to have approximately the same opiate receptor activity as beta-endorphin.

  6. Conformational analysis of the N-terminal sequence Met1 Val60 of the tyrosine hydroxylase

    NASA Astrophysics Data System (ADS)

    Alieva, Irada N.; Mustafayeva, Narmina N.; Gojayev, Niftali M.

    2006-03-01

    Molecular mechanics method and molecular dynamics (MD) simulation techniques are used to study the behavior and the effect of the amino acids substitution on structure and molecular dynamics of the specific portion of Met1-Val60 amino acid residues from N-terminal regulatory domain of the tyrosine hydroxylase (TH) and its mutants in which the positively charged arginine residues at positions 37 and 38 were replaced by electrically neutral Gly and negatively charged Glu, and serine residue at position 40 was replaced by Ala or Asp residue. Our study allowed us to make the following conclusions: (i) the higher conformational flexibility of the Met1-Arg16 sequence is revealed in comparision to other part of the N-terminus; (ii) the stretch of amino acid residues Met30-Ser40 within the N-terminus forms β-turn so that two α-helices (residues 16-29 and residues 41-60) are paralel one another; (ii) the significant differences that are observed for the Arg37→Gly37, Arg37-Arg38→Glu37-Glu38 mutant segments indicates that the positive charge of the Arg37 and Arg38 residues is one of the main factor that maintains the characteristic of the turn; (ii) no major conformational changes are observed between Ser40→Ala40, and Ser40→Asp40 mutant segments.

  7. The Structural Basis of [beta]-Peptide-Specific Cleavage by the Serine Protease Cyanophycinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Law, Adrienne M.; Lai, Sandy W.S.; Tavares, John

    2010-10-01

    Cyanophycin, or poly-L-Asp-multi-L-Arg, is a non-ribosomally synthesized peptidic polymer that is used for nitrogen storage by cyanobacteria and other select eubacteria. Upon synthesis, it self-associates to form insoluble granules, the degradation of which is uniquely catalyzed by a carboxy-terminal-specific protease, cyanophycinase. We have determined the structure of cyanophycinase from the freshwater cyanobacterium Synechocystis sp. PCC6803 at 1.5-{angstrom} resolution, showing that the structure is dimeric, with individual protomers resembling aspartyl dipeptidase. Kinetic characterization of the enzyme demonstrates that the enzyme displays Michaelis-Menten kinetics with a k{sub cat} of 16.5 s{sup -1} and a k{sub cat}/K{sub M} of 7.5 x 10{sup -6}more » M{sup -1} s{sup -1}. Site-directed mutagenesis experiments confirm that cyanophycinase is a serine protease and that Gln101, Asp172, Gln173, Arg178, Arg180 and Arg183, which form a conserved pocket adjacent to the catalytic Ser132, are functionally critical residues. Modeling indicates that cyanophycinase binds the {beta}-Asp-Arg dipeptide residue immediately N-terminal to the scissile bond in an extended conformation in this pocket, primarily recognizing this penultimate {beta}-Asp-Arg residue of the polymeric chain. Because binding and catalysis depend on substrate features unique to {beta}-linked aspartyl peptides, cyanophycinase is able to act within the cytosol without non-specific cleavage events disrupting essential cellular processes.« less

  8. Design and characterization of hirulogs: A novel class of bivalent peptide inhibitors of thrombin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maraganore, J.M.; Bourdon, P.; Jablonski, J.

    1990-07-31

    A novel class of synthetic peptides has been designed that inhibit the thrombin catalytic site and exhibit specificity for the anion-binding exosite (ABE) of {alpha}-thrombin. These peptides, called hirulogs, consist of (i) an active-site specificity sequence with a restricted Arg-Pro scissile bond, (ii) a polymeric linker of glycyl residues from 6 to 18 {angstrom} in length, and (iii) an ABE recognition sequence such as that in the hirudin C-terminus. Hirulog-1 ((D-Phe)-Pro-Arg-Pro-(Gly){sub 4}-Asn-Gly-Asp-Phe-Glu-Glu-Ile-Pro-Glu-Tyr-Leu) inhibits the thrombin-catalyzed hydrolysis of a tripeptide p-nitroanilide substrate with K{sub i} = 2.3 nM. In contrast, the synthetic C-terminal hirudin peptide S-Hir{sub 53-64}, which binds to themore » thrombin ABE, blocked the fibrinogen clotting activity of the enzyme with K{sub i} = 144 nM but failed to inhibit the hydrolysis of p-nitroanilide substrates at concentrations as high as 1 mM. Hirulog-1, but not S-Hir{sub 53-64}, was found to inhibit the incorporation of ({sup 14}C)diisopropyl fluorophosphate in thrombin. Hirulog-1 appears specific for thrombin as it lacks inhibitory activities toward human factor Xa, human plasmin, and bovine trypsin at inhibitor:enzyme concentrations 3 orders of magnitude higher than those required to inhibit thrombin. The optimal inhibitory activity of hirulog-1 depends upon all three components of its structure. Comparison of anticoagulant activities of hirulog-1, hirudin, and S-Hir{sub 53-64} showed that the synthetic hirulog-1 is 2-fold more potent than hirudin and 100-fold more active than S-Hir{sub 53-64} in increasing the activated partial thromboplastin time of normal human plasma.« less

  9. Further screening of the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaithinathan, R.; Berson, E.L.; Dryja, T.P.

    Here the authors report 8 novel mutations and 8 previously reported mutations found from further analysis of the rhodopsin gene in a large set of additional patients with autosomal dominant retinitis pigmentosa. Leukocyte DNA was purified from 122 unrelated patients with autosomal dominant retinitis pigmentosa who were not included in previous analyses. The coding region and splice donor and acceptor sites of the rhodopsin gene were screened for mutations using single-strand conformation polymorphism analysis and direct genomic sequencing. They found 29 patients with varient bands that were due to mutations. Sequence analysis showed that 20 cases each had 1 ofmore » 9 previously published mutations: Pro23His, Thr58Arg, Gly89Asp, Pro171Leu, Glu181Lys, Pro347Leu, Phe45Leu, Arg135Trp, and Lys296Glu. In 9 other cases, they found 8 novel mutations. One was a 3-bp deletion (Cys264-del), and the rest were point mutations resulting in an altered amino acid: Gly51Arg (GGC [yields] CGC), Cys110Tyr (TCG [yields] TAC), Gly114Asp (GGC [yields] GAC), Ala164Glu (GCG [yields] GAG), Pro171Ser (CCA [yields] TCA), Val345Leu (GTG [yields] CTG), and Pro347Gln (CCG [yields] CAG). Each of these novel mutations was found in only one family except for Gly51Arg, which was found in two. In every family tested, the mutation cosegregated with the disease. However, in pedigree D865 only one affected member was available for analysis. About two-thirds of the mutations affect amino acids in transmembrane domains, yet only one-half of opsin's residues are in these regions. One-third of the mutations alter residues in the extracellular/intradiscal space, which includes only 25% of the protein.« less

  10. Novel sodium channel inhibitor from Conus geographus: purification, structure, and pharmacological properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanagawa, Y.; Abe, T.; Satake, M.

    1988-08-23

    A novel toxin, tentatively named conotoxin GS (CGS), has been isolated form a marine snail, Conus geographus. CGS was found to exist as a single polypeptide chain, consisting of 34 amino acid residues, cross-linked by three disulfide bonds. Its amino acid sequence was shown to be Ala-Cys-Ser-Gly-Arg-Gly-Ser-Arg-Cys-Hyp-Hyp-Gln-Cys-Cys-Met-Gly-Leu-Arg-Cys-Gly-Arg-Gly-Asn-Pro-Gln-Lys-Cys-Ile-Gly-Ala-His-Gla-Asp-Val. In competition experiments, CGS inhibited the bindings of (/sup 3/H)Lys-tetrodotoxin ((/sup 3/H)Lys-TTX) and (/sup 3/H)propionylconotoxin GIIIA to Electrophorus electricus electroplax membranes, with K/sub i/ values of 34 nM and 24 nM, respectively. The toxin inhibited the binding of (/sup 3/H)Lys-TTX (1 nM) to rat skeletal muscle homogenates with an IC/sub 50/ value ofmore » 880 nM but showed very little effect on this binding to the rat brain P/sub 2/ fraction at 10 ..mu..M. These binding studies indicate that CGS belongs to the same group of Na channel inhibitors as TTX, STX (saxitoxin), and ..mu..-conotoxins. Although CGS, like the ..mu..-conotoxins, is a pharmacological probe for distinguishing between neuronal and muscle Na channel subtypes, the homology in the sequences of CGS and ..mu..-conotoxins is very limited.« less

  11. Probing the binding of Cu(2+) ions to a fragment of the Aβ(1-42) polypeptide using fluorescence spectroscopy, isothermal titration calorimetry and molecular dynamics simulations.

    PubMed

    Makowska, Joanna; Żamojć, Krzysztof; Wyrzykowski, Dariusz; Żmudzińska, Wioletta; Uber, Dorota; Wierzbicka, Małgorzata; Wiczk, Wiesław; Chmurzyński, Lech

    2016-09-01

    Steady-state and time-resolved fluorescence quenching measurements supported by isothermal titration calorimetry (ITC) and molecular dynamics simulations (MD), with the NMR-derived restraints, were used to investigate the interactions of Cu(2+) ions with a fragment of the Aβ(1-42) polypeptide, Aβ(5-16) with the following sequence: Ac-Arg-His-Asp-Ser-Gly-Tyr-Glu-Val-His-His-Gln-Lys-NH2, denoted as HZ1. The studies presented in this paper, when compared with our previous results (Makowska et al., Spectrochim. Acta A 153: 451-456), show that the affinity of the peptide to metal ions is conformation-dependent. All the measurements were carried out in 20mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer solution, pH6.0. The Stern-Volmer equations, along with spectroscopic observations, were used to determine the quenching and binding parameters. The obtained results unequivocally suggest that Cu(2+) ions quench the fluorescence of HZ1 only through a static quenching mechanism, in contrast to the fragment from the N-terminal part of the FPB28 protein, with sequence Ac-Tyr-Lys-Thr-Ala-Asp-Gly-Lys-Thr-Tyr- NH2 (D9) and its derivative with a single point mutation: Ac-Tyr-Lys-Thr-Ala-Asn-Gly-Lys-Thr-Tyr- NH2 (D9_M), where dynamic quenching occurred. The thermodynamic parameters (ΔITCH, ΔITCS) for the interactions between Cu(2+) ions and the HZ1 peptide were determined from the calorimetric data. The conditional thermodynamic parameters suggest that, under the experimental conditions, the formation of the Cu(2+)-HZ1 complex is both an enthalpy and entropy driven process. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Influence of Glu/Arg, Asp/Arg, and Glu/Lys Salt Bridges on α-Helical Stability and Folding Kinetics.

    PubMed

    Meuzelaar, Heleen; Vreede, Jocelyne; Woutersen, Sander

    2016-06-07

    Using a combination of ultraviolet circular dichroism, temperature-jump transient-infrared spectroscopy, and molecular dynamics simulations, we investigate the effect of salt bridges between different types of charged amino-acid residue pairs on α-helix folding. We determine the stability and the folding and unfolding rates of 12 alanine-based α-helical peptides, each of which has a nearly identical composition containing three pairs of positively and negatively charged residues (either Glu(-)/Arg(+), Asp(-)/Arg(+), or Glu(-)/Lys(+)). Within each set of peptides, the distance and order of the oppositely charged residues in the peptide sequence differ, such that they have different capabilities of forming salt bridges. Our results indicate that stabilizing salt bridges (in which the interacting residues are spaced and ordered such that they favor helix formation) speed up α-helix formation by up to 50% and slow down the unfolding of the α-helix, whereas salt bridges with an unfavorable geometry have the opposite effect. Comparing the peptides with different types of charge pairs, we observe that salt bridges between side chains of Glu(-) and Arg(+) are most favorable for the speed of folding, probably because of the larger conformational space of the salt-bridging Glu(-)/Arg(+) rotamer pairs compared to Asp(-)/Arg(+) and Glu(-)/Lys(+). We speculate that the observed impact of salt bridges on the folding kinetics might explain why some proteins contain salt bridges that do not stabilize the final, folded conformation. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Glow discharge plasma pretreatment enhances osteoclast differentiation and survival on titanium plates.

    PubMed

    Kawai, Hiroyuki; Shibata, Yo; Miyazaki, Takashi

    2004-05-01

    Despite the fact that several reports have demonstrated osteoclast activity on various bioactive ceramics, osteoclast functions on surface-modified titanium have not come under focus. This study aimed to examine whether the increasing surface energy of glow discharge plasma (GDP) involved in protein adhesion containing the RGD (Arg-Gly-Asp) sequence affects osteoclast responses on titanium plates. We examined osteoclast differentiation and survival rates on titanium plates with and without GDP. The amounts of osteoclasts on titanium plates were not increased by GDP after 1 week. However, osteoclast differentiation was greatly activated by GDP pretreatment, as tartrate-resistant acid phosphatase synthesis significantly increased on the titanium plates with GDP. Additionally, since the presence of osteoclasts was detected only on the titanium plates with GDP, even after 4h cultivation in a coculture test, the osteoclasts survival rate was increased by GDP pretreatment. As osteoclast responses were affected even on surface modified metallic materials, we concluded that novel approaches are needed not only for osteoclastic resorption on ceramic materials but also for osteoclast responses on surface-modified metallic materials.

  14. Poly-l-Lactic Acid Nanofiber-Polyamidoamine Hydrogel Composites: Preparation, Properties, and Preliminary Evaluation as Scaffolds for Human Pluripotent Stem Cell Culturing.

    PubMed

    Gualandi, Chiara; Bloise, Nora; Mauro, Nicolò; Ferruti, Paolo; Manfredi, Amedea; Sampaolesi, Maurilio; Liguori, Anna; Laurita, Romolo; Gherardi, Matteo; Colombo, Vittorio; Visai, Livia; Focarete, Maria Letizia; Ranucci, Elisabetta

    2016-10-01

    Electrospun poly-l-lactic acid (PLLA) nanofiber mats carrying surface amine groups, previously introduced by nitrogen atmospheric pressure nonequilibrium plasma, are embedded into aqueous solutions of oligomeric acrylamide-end capped AGMA1, a biocompatible polyamidoamine with arg-gly-asp (RGD)-reminiscent repeating units. The resultant mixture is finally cured giving PLLA-AGMA1 hydrogel composites that absorb large amounts of water and, in the swollen state, are translucent, soft, and pliable, yet as strong as the parent PLLA mat. They do not split apart from each other when swollen in water and remain highly flexible and resistant, since the hydrogel portion is covalently grafted onto the PLLA nanofibers via the addition reaction of the surface amine groups to a part of the terminal acrylic double bonds of AGMA1 oligomers. Preliminary tested as scaffolds, the composites prove capable of maintaining short-term undifferentiated cultures of human pluripotent stem cells in feeder-free conditions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Molecular analysis of Cypriot patients with Glutaric aciduria type I: identification of two novel mutations.

    PubMed

    Georgiou, Theodoros; Nicolaidou, Paola; Hadjichristou, Anastasia; Ioannou, Rodothea; Dionysiou, Maria; Siama, Elli; Chappa, Georgia; Anastasiadou, Violetta; Drousiotou, Anthi

    2014-09-01

    The purpose of this study was to identify the mutations in the glutaryl-CoA dehydrogenase gene (GCDH) in ten Cypriot patients with Glutaric aciduria type I (GAI). Molecular analysis of the GCDH gene was performed by direct sequencing of the patients' genomic DNA. In silico tools were applied to predict the effect of the novel variants on the structure and function of the protein. All disease alleles were characterized (mutation detection rate 100%). Five missense mutations were identified: c.192G>T (p.Glu64Asp) and c.803G>T (p.Gly268Val), which are novel, and three previously described mutations, c.1123T>C (p.Cys375Arg), c.1204C>T (p.Arg402Trp) and c.1286C>T (p.Thr429Met). Two novel mutations, p.Glu64Asp and p.Gly268Val, account for the majority of disease alleles (76.5%) in Cypriot patients with Glutaric aciduria type I. A founder effect for the p.Glu64Asp and the p.Gly268Val can be suggested based on the place of origin of the carriers of these mutations. Identification of the causative mutations of GAI in Cypriot patients will facilitate carrier detection as well as post- and pre-natal diagnosis. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  16. Preparation of human Melanocortin-4 receptor agonist libraries: linear peptides X-Y-DPhe7-Arg8-Trp(or 2-Nal)9-Z-NH2.

    PubMed

    Cheung, Adrian Wai-Hing; Qi, Lida; Gore, Vijay; Chu, Xin-Jie; Bartkovitz, David; Kurylko, Grazyna; Swistok, Joseph; Danho, Waleed; Chen, Li; Yagaloff, Keith

    2005-12-15

    Two libraries of hMC4R agonists, X-Y-DPhe(7)-Arg(8)-2-Nal(9)-Z-NH(2) and X-Y-DPhe(7)-Arg(8)-Trp(9)-Z-NH(2), totaling 185 peptides were prepared using Irori radiofrequency tagging technology and Argonaut Quest 210 Synthesizer, where X stands for N-caps, Y for His(6) surrogates and Z for Gly(10) surrogates. As a result of this study, His-modified pentapeptides with Trp were found to be more hMC4R potent than the corresponding 2-Nal analogs, novel N-caps and Gly surrogates were identified and 19 new peptides which are potent hMC4R agonists (EC(50) 1-15nM) and selective against hMC1R were discovered.

  17. Synthetic Peptide Drugs for Targeting Skin Cancer: Malignant Melanoma and Melanotic Lesions.

    PubMed

    Eberle, Alex N; Rout, Bhimsen; Qi, Mei Bigliardi; Bigliardi, Paul L

    2017-01-01

    Peptides play decisive roles in the skin, ranging from host defense responses to various forms of neuroendocrine regulation of cell and organelle function. Synthetic peptides conjugated to radionuclides or photosensitizers may serve to identify and treat skin tumors and their metastatic forms in other organs of the body. In the introductory part of this review, the role and interplay of the different peptides in the skin are briefly summarized, including their potential application for the management of frequently occurring skin cancers. Special emphasis is given to different targeting options for the treatment of melanoma and melanotic lesions. Radionuclide Targeting: α-Melanocyte-stimulating hormone (α-MSH) is the most prominent peptide for targeting of melanoma tumors via the G protein-coupled melanocortin-1 receptor that is (over-)expressed by melanoma cells and melanocytes. More than 100 different linear and cyclic analogs of α-MSH containing chelators for 111In, 67/68Ga, 64Cu, 90Y, 212Pb, 99mTc, 188Re were synthesized and examined with experimental animals and in a few clinical studies. Linear Ac-Nle-Asp-His-D-Phe-Arg-Trp-Gly-Lys-NH2 (NAP-amide) and Re-cyclized Cys- Cys-Glu-His-D-Phe-Arg-Trp-Cys-Arg-Pro-Val-NH2 (Re[Arg11]CCMSH) containing different chelators at the N- or C-terminus served as lead compounds for peptide drugs with further optimized characteristics. Alternatively, melanoma may be targeted with radiopeptides that bind to melanin granules occurring extracellularly in these tumors. Photosensitizer targeting: A more recent approach is the application of photosensitizers attached to the MSH molecule for targeted photodynamic therapy using LED or coherent laser light that specifically activates the photosensitizer. Experimental studies have demonstrated the feasibility of this approach as a more gentle and convenient alternative compared to radionuclides. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Computational study of the RGD-peptide interactions with perovskite-type BFO-(1 1 1) membranes under aqueous conditions

    NASA Astrophysics Data System (ADS)

    Li, Hai-long; Bian, Liang; Hou, Wen-ping; Dong, Fa-Qin; Song, Mian-Xin; Zhang, Xiao-yan; Wang, Li-sheng

    2016-07-01

    We elucidated a number of facets regarding arginine-glycine-aspartate (RGD)-bismuth ferrite (BFO)-(1 1 1) membrane interactions and reactivity that have previously remained unexplored on a molecular level. Results demonstrate the intra-molecular interaction facilitates a ;horseshoe; structure of RGD adsorbed onto the BFO-(1 1 1) membrane, through the electrostatic (Asp-cation-Fe) and water-bridge (Osbnd H2O and H2Osbnd NH2) interactions. The effect of structural and electron-transfer interactions is attributed to the cation-valences, indicating that the divalent cations are electron-acceptors and the monovalent cations as electron-donors. Notably, the strongly bound Ca2+ ion exerts a ;gluing; effect on the Asp-side-chain, indicating a tightly packed RGD-BFO configuration. Thus, modulating the biological response of BFO-(1 1 1) membrane will allow us to design more appropriate interfaces for implantable diagnostic and therapeutic perovskite-type micro-devices.

  19. Novel 64Cu Labeled RGD2-BBN Heterotrimers for PET Imaging of Prostate Cancer.

    PubMed

    Lucente, Ermelinda; Liu, Hongguang; Liu, Yang; Hu, Xiang; Lacivita, Enza; Leopoldo, Marcello; Cheng, Zhen

    2018-05-16

    Bombesin receptor 2 (BB 2 ) and integrin α v β 3 receptor are privileged targets for molecular imaging of cancer because of their overexpression in a number of tumor tissues. The most recent developments in heterodimer-based radiopharmaceuticals concern BB 2 - and integrin α v β 3 -targeting compounds, consisting of bombesin (BBN) and cyclic arginine-glycine-aspartic acid peptides (RGD), connected through short length linkers. Molecular imaging probes based on RGD-BBN heterodimer design exhibit improved tumor targeting efficacy compared to the single-receptor targeting peptide monomers. However, their application in clinical study is restricted because of inefficient synthesis or unfavorable in vivo properties, which could depend on the short linker nature. Thus, the aim of the present study was to develop a RGD 2 -BBN heterotrimer, composed of (7-14)BBN-NH 2 peptide (BBN) linked to the E[ c(RGDyK)] 2 dimer peptide (RGD 2 ), bearing the new linker type [Pro-Gly] 12 . The heterodimer E[c(RGDyK)] 2 -PEG 3 -Glu-(Pro-Gly) 12 -BBN(7-14)-NH 2 (RGD 2 -PG 12 -BBN) was prepared through conventional solid phase synthesis, then conjugated with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or 1,4,7-triazacyclononane-1-glutaric acid-4,7-diacetic acid (NODA-GA). In 64 Cu labeling, the NODA-GA chelator showed superior radiochemical characteristics compared to DOTA (70% vs 40% yield, respectively). Both conjugates displayed dual targeting ability, showing good α v β 3 affinities and high BB 2 receptor affinities which, in the case of the NODA-GA conjugate, were in the same range as the best RGD-BBN heterodimer ligands reported to date ( K i = 24 nM). 64 Cu-DOTA and 64 Cu-NODA-GA probes were also found to be stable after 1 h incubation in mouse serum (>90%). In a microPET study in prostate cancer PC-3 xenograft mice, both probes showed low tumor uptake, probably due to poor pharmacokinetic properties in vivo. Overall, our study demonstrates that novel RGD-BBN heterodimer with long linker can be prepared and they preserve high binding affinities to BB 2 and integrin α v β 3 receptor binding ability. The present study represents a step forward in the design of effective heterodimer or heterotrimer probes for dual targeting.

  20. Evaluation of New Tc-99m-Labeled Arg-X-Asp-Conjugated Alpha-Melanocyte Stimulating Hormone Peptides for Melanoma Imaging

    PubMed Central

    Flook, Adam M.; Yang, Jianquan; Miao, Yubin

    2013-01-01

    The purpose of this study was to examine the melanoma targeting and imaging properties of two new 99mTc-labeled Arg-X-Asp-conjugated alpha-melanocyte stimulating hormone (α-MSH) peptides. RTD-Lys-(Arg11)CCMSH {c[Asp-Arg-Thr-Asp-DTyr]-Lys-Cys-Cys-Glu-His-DPhe-Arg-Trp-Cys-Arg-Pro-Val-NH2} and RVD-Lys-(Arg11)CCMSH peptides were synthesized and their melanocortin-1 (MC1) receptor binding affinities were determined in B16/F1 melanoma cells. The biodistribution and melanoma imaging properties of 99mTc-RTD-Lys-(Arg11)CCMSH and 99mTc-RVD-Lys-(Arg11)CCMSH were determined in B16/F1 melanoma-bearing C57 mice. The IC50 values of RTD-Lys-(Arg11)CCMSH and RVD-Lys-(Arg11)CCMSH were 0.7 ± 0.07 and 1.0 ± 0.3 nM in B16/F1 melanoma cells. Both 99mTc-RTD-Lys-(Arg11)CCMSH and 99mTc-RVD-Lys-(Arg11)CCMSH displayed high melanoma uptake. 99mTc-RTD-Lys-(Arg11)CCMSH exhibited the peak tumor uptake of 18.77 ± 5.13% ID/g at 2 h post-injection, whereas 99mTc-RVD-Lys-(Arg11)CCMSH reached the peak tumor uptake of 19.63 ± 4.68% ID/g at 4 h post-injection. Both 99mTc-RTD-Lys-(Arg11)CCMSH and 99mTc-RVD-Lys-(Arg11)CCMSH showed low accumulation in normal organs (<1.7% ID/g) except for the kidneys at 2 h post-injection. The renal uptake of 99mTc-RTD-Lys-(Arg11)CCMSH and 99mTc-RVD-Lys-(Arg11)CCMSH was 135.14 ± 23.62 and 94.01 ± 18.31% ID/g at 2 h post-injection, respectively. The melanoma lesions were clearly visualized by SPECT/CT using either 99mTc-RTD-Lys-(Arg11)CCMSH or 99mTc-RVD-Lys-(Arg11)CCMSH as an imaging probe at 2 h post-injection. Overall, the introduction of Thr or Val residue retained high melanoma uptake of 99mTc-RTD-Lys-(Arg11)CCMSH and 99mTc-RVD-Lys-(Arg11)CCMSH. However, high renal uptake of 99mTc-RTD-Lys-(Arg11)CCMSH and 99mTc-RVD-Lys-(Arg11)CCMSH need to be reduced to facilitate their future applications. PMID:23885640

  1. Evaluation of new Tc-99m-labeled Arg-X-Asp-conjugated α-melanocyte stimulating hormone peptides for melanoma imaging.

    PubMed

    Flook, Adam M; Yang, Jianquan; Miao, Yubin

    2013-09-03

    The purpose of this study was to examine the melanoma targeting and imaging properties of two new (99m)Tc-labeled Arg-X-Asp-conjugated α-melanocyte stimulating hormone (α-MSH) peptides. RTD-Lys-(Arg(11))CCMSH {c[Asp-Arg-Thr-Asp-DTyr]-Lys-Cys-Cys-Glu-His-DPhe-Arg-Trp-Cys-Arg-Pro-Val-NH2} and RVD-Lys-(Arg(11))CCMSH peptides were synthesized, and their melanocortin-1 (MC1) receptor binding affinities were determined in B16/F1 melanoma cells. The biodistribution and melanoma imaging properties of (99m)Tc-RTD-Lys-(Arg(11))CCMSH and (99m)Tc-RVD-Lys-(Arg(11))CCMSH were determined in B16/F1 melanoma-bearing C57 mice. The IC50 values of RTD-Lys-(Arg(11))CCMSH and RVD-Lys-(Arg(11))CCMSH were 0.7 ± 0.07 and 1.0 ± 0.3 nM in B16/F1 melanoma cells. Both (99m)Tc-RTD-Lys-(Arg(11))CCMSH and (99m)Tc-RVD-Lys-(Arg(11))CCMSH displayed high melanoma uptake. (99m)Tc-RTD-Lys-(Arg(11))CCMSH exhibited the highest tumor uptake of 18.77 ± 5.13% ID/g at 2 h postinjection, whereas (99m)Tc-RVD-Lys-(Arg(11))CCMSH reached the highest tumor uptake of 19.63 ± 4.68% ID/g at 4 h postinjection. Both (99m)Tc-RTD-Lys-(Arg(11))CCMSH and (99m)Tc-RVD-Lys-(Arg(11))CCMSH showed low accumulation in normal organs (<1.7% ID/g) except for the kidneys at 2 h postinjection. The renal uptake of (99m)Tc-RTD-Lys-(Arg(11))CCMSH and (99m)Tc-RVD-Lys-(Arg(11))CCMSH was 135.14 ± 23.62 and 94.01 ± 18.31% ID/g at 2 h postinjection, respectively. The melanoma lesions were clearly visualized by single-photon emission computed tomography (SPECT)/CT using either (99m)Tc-RTD-Lys-(Arg(11))CCMSH or (99m)Tc-RVD-Lys-(Arg(11))CCMSH as an imaging probe at 2 h postinjection. Overall, the introduction of Thr or Val residue retained high melanoma uptake of (99m)Tc-RTD-Lys-(Arg(11))CCMSH and (99m)Tc-RVD-Lys-(Arg(11))CCMSH. However, high renal uptake of (99m)Tc-RTD-Lys-(Arg(11))CCMSH and (99m)Tc-RVD-Lys-(Arg(11))CCMSH need to be reduced to facilitate their future applications.

  2. Dynamic Seeding of Perfusing Human Umbilical Vein Endothelial Cells (HUVECs) onto Dual-Function Cell Adhesion Ligands: Arg-Gly-Asp (RGD)-Streptavidin and Biotinylated Fibronectin

    PubMed Central

    Anamelechi, Charles C.; Clermont, Edward C.; Novak, Matthew T.; Reichert, William M.

    2014-01-01

    Surfaces decorated with high affinity ligands can be used to facilitate rapid attachment of endothelial cells; however, standard equilibrium cell detachment studies are poorly suited for assessing these initial adhesion events. Here, a dynamic seeding and cell retention method was used to examine the initial attachment of perfusing human umbilical vein endothelial cells (HUVECs) to bare Teflon-AF substrates, substrates pre-adsorbed with fibronectin alone, or substrates co-pre-adsorbed with two dual-function cell-adhesion ligands: biotinylated fibronectin (bFN) and RGD-streptavidin mutant (RGD-SA). Cell attachment was evaluated as a function of cell trypsinization (integrin digestion), surface protein formulation, and cell perfusion rate. Surfaces co-pre-adsorbed with bFN and RGD-SA showed the highest density of attached cells after 8 min of perfusion and the highest percent retention when subjected to shear flow at 60 dynes/cm2 for 2 min. Surfaces with no ligand treatment showed the lowest cell attachment and retention under flow in all cases. HUVECs trypsinized with mild 0.025% trypsin/ethylenediaminetetraacetic acid (EDTA) showed greater cell adhesion after perfusion and higher percent retention after shear flow than those trypsinized using harsher 0.05% trypsin/EDTA. The preferential affinities of the two dual-function ligands for α5β1 and αvβ3 integrins were also examined by surface plasmon resonance (SPR) spectroscopy. The dynamic cell seeding studies confirmed that the dual-function ligand system promotes HUVEC adhesion and retention at short time points when tested using a perfusion assay. SPR studies showed that the two ligands exhibited equal affinity for both α5β1 and αvβ3 integrins but that the combined ligands bound more total integrins than the two ligands tested separately. PMID:19348476

  3. Impact of the β-1 adrenergic receptor polymorphism on tolerability and efficacy of bisoprolol therapy in Korean heart failure patients: association between β adrenergic receptor polymorphism and bisoprolol therapy in heart failure (ABBA) study.

    PubMed

    Lee, Hae-Young; Chung, Wook-Jin; Jeon, Hui-Kyung; Seo, Hong-Seog; Choi, Dong-Ju; Jeon, Eun-Seok; Kim, Jae-Joong; Shin, Joon Han; Kang, Seok-Min; Lim, Sung Cil; Baek, Sang-Hong

    2016-03-01

    We evaluated the association between coding region variants of adrenergic receptor genes and therapeutic effect in patients with congestive heart failure (CHF). One hundred patients with stable CHF (left ventricular ejection fraction [LVEF] < 45%) were enrolled. Enrolled patients started 1.25 mg bisoprolol treatment once daily, then up-titrated to the maximally tolerable dose, at which they were treated for 1 year. Genotypic analysis was carried out, but the results were blinded to the investigators throughout the study period. At position 389 of the β-1 adrenergic receptor gene (ADRB1), the observed minor Gly allele frequency (Gly389Arg + Gly389Gly) was 0.21, and no deviation from Hardy-Weinberg equilibrium was observed in the genotypic distribution of Arg389Gly (p = 0.75). Heart rate was reduced from 80.8 ± 14.3 to 70.0 ± 15.0 beats per minute (p < 0.0001). There was no significant difference in final heart rate across genotypes. However, the Arg389Arg genotype group required significantly more bisoprolol compared to the Gly389X (Gly389Arg + Gly389Gly) group (5.26 ± 2.62 mg vs. 3.96 ± 2.05 mg, p = 0.022). There were no significant differences in LVEF changes or remodeling between two groups. Also, changes in exercise capacity and brain natriuretic peptide level were not significant. However, interestingly, there was a two-fold higher rate of readmission (21.2% vs. 10.0%, p = 0.162) and one CHF-related death in the Arg389Arg group. The ADRB1 Gly389X genotype showed greater response to bisoprolol than the Arg389Arg genotype, suggesting the potential of individually tailoring β-blocker therapy according to genotype.

  4. Electrochemical Detection of Human Mesenchymal Stem Cell Differentiation on Fabricated Gold Nano-Dot Cell Chips.

    PubMed

    An, Jeung Hee; Kim, Seung U; Park, Mi-Kyung; Choi, Jeong Woo

    2015-10-01

    Human mesenchymal stem cells (MSCs) have the capacity for self-renewal and maintain pluripotency, which is defined by their ability to differentiate into cells such as osteoblasts, neurons, and glial cells. In this study, we report a method for defining the status of human MSCs based on electrochemical detection systems. Gold nano-dot structures were fabricated using a nanoporous alumina mask, and the structural formations were confirmed by scanning electron microscopy (SEM). Human MSCs were allowed to attach to RGD (Arg-Gly-Asp) peptide nanopatterned surfaces, and electrochemical tools were applied to the MSCs attached on the chip surface. The cultured MSCs were shown to differentiate into neural cell types, as indicated by immunocytochemical staining for tyrosine hydroxylase and beta tubulin III. Following treatment with basic fibroblast growth factor (bFGF) for 14 days, most of the B10 cells exhibited bipolar or multipolar morphology with branched processes, and the proportion of B10 cells expressing neuronal cell markers considerably increased. Electrophysiological recordings from MSCs treated with bFGF for 5-14 days were examined with cyclic voltammetry, and the electrochemical signals were shown to increase during differentiation from MSCs to neuronal cells. This human MSC cell line is a useful tool for studying organogenesis, specifically neurogenesis, and in addition, the cell line provides a valuable source of cells for cell therapy. The electrochemical measurement system proposed here could be utilized in electrical cell chips for numerous applications, including cell differentiation, disease diagnosis, drug detection, and on-site monitoring.

  5. Binding of extracellular matrix proteins to Aspergillus fumigatus conidia.

    PubMed Central

    Gil, M L; Peñalver, M C; Lopez-Ribot, J L; O'Connor, J E; Martinez, J P

    1996-01-01

    As detected by confocal immunofluorescence microscopy, binding of fibronectin and laminin appeared to be associated with the protrusions present on the outer cell wall layer of resting Aspergillus fumigatus conidia. Flow cytometry confirmed that binding of laminin to conidia was dose dependent and saturable. Laminin binding was virtually eliminated in trypsin-treated organisms, thus suggesting the protein nature of the binding site. Conidia were also able to specifically adhere to laminin immobilized on microtiter plates. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting (immunoblotting) with laminin and antilaminin antibody of whole conidial homogenates allowed identification, among the complex array of protein and glycoprotein species, of one polypeptide with an apparent molecular mass of 37 kDa which specifically interacts with laminin. The fact that binding of conidia to soluble or immobilized laminin or fibronectin was inhibited by fibronectin or laminin, respectively, suggests the existence of common binding sites for both ligands on the surface of conidia. Intact conidia were also able to adhere to type I and IV collagen immobilized on microtiter plates; adhesion was found to be dose dependent and saturable. Adhesion to immobilized type I and IV collagen was markedly inhibited by laminin and weakly inhibited by fibronectin. Coincubation of conidia with Arg-Gly-Asp (RGD) peptides caused a dose-dependent decrease in binding of cells to immobilized or soluble fibronectin, yet interaction of cells with soluble or immobilized laminin and type I and IV collagen remained unaffected. Interactions described here could be important in mediating attachment of the fungus to host tissues, thus playing a role in the establishment of the disease. PMID:8945572

  6. De novo mutations of the ATP6V1A gene cause developmental encephalopathy with epilepsy.

    PubMed

    Fassio, Anna; Esposito, Alessandro; Kato, Mitsuhiro; Saitsu, Hirotomo; Mei, Davide; Marini, Carla; Conti, Valerio; Nakashima, Mitsuko; Okamoto, Nobuhiko; Olmez Turker, Akgun; Albuz, Burcu; Semerci Gündüz, C Nur; Yanagihara, Keiko; Belmonte, Elisa; Maragliano, Luca; Ramsey, Keri; Balak, Chris; Siniard, Ashley; Narayanan, Vinodh; Ohba, Chihiro; Shiina, Masaaki; Ogata, Kazuhiro; Matsumoto, Naomichi; Benfenati, Fabio; Guerrini, Renzo

    2018-06-01

    V-type proton (H+) ATPase (v-ATPase) is a multi-subunit proton pump that regulates pH homeostasis in all eukaryotic cells; in neurons, v-ATPase plays additional and unique roles in synapse function. Through whole exome sequencing, we identified de novo heterozygous mutations (p.Pro27Arg, p.Asp100Tyr, p.Asp349Asn, p.Asp371Gly) in ATP6V1A, encoding the A subunit of v-ATPase, in four patients with developmental encephalopathy with epilepsy. Early manifestations, observed in all patients, were developmental delay and febrile seizures, evolving to encephalopathy with profound delay, hypotonic/dyskinetic quadriparesis and intractable multiple seizure types in two patients (p.Pro27Arg, p.Asp100Tyr), and to moderate delay with milder epilepsy in the other two (p.Asp349Asn, p.Asp371Gly). Modelling performed on the available prokaryotic and eukaryotic structures of v-ATPase predicted p.Pro27Arg to perturb subunit interaction, p.Asp100Tyr to cause steric hindrance and destabilize protein folding, p.Asp349Asn to affect the catalytic function and p.Asp371Gly to impair the rotation process, necessary for proton transport. We addressed the impact of p.Asp349Asn and p.Asp100Tyr mutations on ATP6V1A expression and function by analysing ATP6V1A-overexpressing HEK293T cells and patients' lymphoblasts. The p.Asp100Tyr mutant was characterized by reduced expression due to increased degradation. Conversely, no decrease in expression and clearance was observed for p.Asp349Asn. In HEK293T cells overexpressing either pathogenic or control variants, p.Asp349Asn significantly increased LysoTracker® fluorescence with no effects on EEA1 and LAMP1 expression. Conversely, p.Asp100Tyr decreased both LysoTracker® fluorescence and LAMP1 levels, leaving EEA1 expression unaffected. Both mutations decreased v-ATPase recruitment to autophagosomes, with no major impact on autophagy. Experiments performed on patients' lymphoblasts using the LysoSensor™ probe revealed lower pH of endocytic organelles for p.Asp349Asn and a reduced expression of LAMP1 with no effect on the pH for p.Asp100Tyr. These data demonstrate gain of function for p.Asp349Asn characterized by an increased proton pumping in intracellular organelles, and loss of function for p.Asp100Tyr with decreased expression of ATP6V1A and reduced levels of lysosomal markers. We expressed p.Asp349Asn and p.Asp100Tyr in rat hippocampal neurons and confirmed significant and opposite effects in lysosomal labelling. However, both mutations caused a similar defect in neurite elongation accompanied by loss of excitatory inputs, revealing that altered lysosomal homeostasis markedly affects neurite development and synaptic connectivity. This study provides evidence that de novo heterozygous ATP6V1A mutations cause a developmental encephalopathy with a pathomechanism that involves perturbations of lysosomal homeostasis and neuronal connectivity, uncovering a novel role for v-ATPase in neuronal development.

  7. Solid-phase synthesis of a nucleopeptide from the linking site of adenovirus-2 nucleoprotein, -Ser(p5'CATCAT)-Gly-Asp-. Convergent versus stepwise strategy.

    PubMed Central

    Robles, J; Pedroso, E; Grandas, A

    1995-01-01

    The synthesis of a nucleopeptide with the sequence -Ser(p5'CATCAT)-Gly-Asp- has been undertaken by either convergent or stepwise solid-phase strategies, both of which use base-labile permanent protecting groups. The coupling of phosphitylated protected peptides onto oligonucleotide-resins did not afford the desired nucleopeptide, which was nevertheless obtained after oligonucleotide elongation at the hydroxyl group of the resin-bound peptide and deprotection under mild basic conditions. A preliminary study on the stability of different nucleopeptides to bases is also reported. PMID:7479079

  8. Lack of mixed agonist-antagonist properties of [Gln8-Gly31]-beta h-EP-Gly-Gly-NH2 and [Arg9,19,24,28,29]-beta h-EP in the rat vas deferens neuroeffector junction: studies with naloxone, beta-funaltrexamine and ICI 174,864.

    PubMed

    Valenzuela, R; Li, C H; Huidobro-Toro, J P

    1989-02-01

    The 1-27 truncated fragment of beta h-endorphin (beta h-EP) as well as [Gln8,Gly31]-beta h-EP-Gly-Gly-NH2 or [Arg9,19,24,28,29]-beta h-EP exhibited opiate agonist activity in the rat vas deferens bioassay; the potency of these peptides was 3 to 6 times less than that of beta h-EP. None of these compounds exhibited any degree of antagonism towards the inhibitory action of beta h-EP. Naloxone antagonized and reversed the inhibitory action of beta h-EP and its analogues though with varying potencies. The apparent naloxone-pA2 value for beta h-EP was 8.94; that for [Gln8-Gly31]-beta h-EP-Gly-Gly-NH2 was 8.08 and that for [Arg9,19,24,28,29]-beta h-EP was 8.38. beta-Funaltrexamine (beta-FNA) potently antagonized the inhibitory action of beta h-EP following non-equilibrium kinetics. Tissue preincubation with 10 nM beta-FNA for 60 min followed by extensive washing caused a 10-fold increase in the beta h-EP IC50. However, 10 nM beta-FNA caused only a 1.2 increase in the IC50 of [Gln8,Gly31]-beta h-EP-Gly-Gly-NH2 and a 4.1-fold increase in the IC50 of [Arg9,19,24,28,29]-beta h-EP. In contrast, preincubation of the tissue with 3 microM ICI 174,864 did not modify the potency of beta h-EP or its structural analogues. However, a 60 min pretreatment with 10 microM beta-FNA followed by the addition of 3 microM ICI 174,864 revealed a further decrease in the potency of the opiopeptins compared with tissues exposed to beta-FNA alone or ICI 174,864 alone. In conclusion, the inhibitory action of these peptides is remarkably sensitive to beta-FNA antagonism; in addition the peptides act as pure opiate agonists in marked contrast with the agonist-antagonist properties described in the CNS.

  9. Identification of amino acid sequences in the polyomavirus capsid proteins that serve as nuclear localization signals

    NASA Technical Reports Server (NTRS)

    Chang, D.; Haynes, J. I. Jr; Brady, J. N.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The molecular mechanism participating in the transport of newly synthesized proteins from the cytoplasm to the nucleus in mammalian cells is poorly understood. Recently, the nuclear localization signal sequences (NLS) of many nuclear proteins have been identified, and most have been found to be composed of a highly basic amino acid stretch. A genetic "subtractive" and a biochemical "additive" approach were used in our studies to identify the NLS's of the polyomavirus structural capsid proteins. An NLS was identified at the N-terminus (Ala1-Pro-Lys-Arg-Lys-Ser-Gly-Val-Ser-Lys-Cys11) of the major capsid protein VP1 and at the C-terminus (Glu307 -Glu-Asp-Gly-Pro-Glu-Lys-Lys-Lys-Arg-Arg-Leu318) of the VP2/VP3 minor capsid proteins.

  10. Access of Hydrogen-Radicals to the Peptide-Backbone as a Measure for Estimating the Flexibility of Proteins Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

    PubMed Central

    Takayama, Mitsuo; Nagoshi, Keishiro; Iimuro, Ryunosuke; Inatomi, Kazuma

    2014-01-01

    A factor for estimating the flexibility of proteins is described that uses a cleavage method of “in-source decay (ISD)” coupled with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). The MALDI-ISD spectra of bovine serum albumin (BSA), myoglobin and thioredoxin show discontinuous intense ion peaks originating from one-side preferential cleavage at the N-Cα bond of Xxx-Asp, Xxx-Asn, Xxx-Cys and Gly-Xxx residues. Consistent with these observations, Asp, Asn and Gly residues are also identified by other flexibility measures such as B-factor, turn preference, protection and fluorescence decay factors, while Asp, Asn, Cys and Gly residues are identified by turn preference factor based on X-ray crystallography. The results suggest that protein molecules embedded in/on MALDI matrix crystals partly maintain α-helix and that the reason some of the residues are more susceptible to ISD (Asp, Asn, Cys and Gly) and others less so (Ile and Val) is because of accessibility of the peptide backbone to hydrogen-radicals from matrix molecules. The hydrogen-radical accessibility in MALDI-ISD could therefore be adopted as a factor for measuring protein flexibility. PMID:24828203

  11. Interaction of human platelets with laminin and identification of the 67 kDa laminin receptor on platelets.

    PubMed Central

    Tandon, N N; Holland, E A; Kralisz, U; Kleinman, H K; Robey, F A; Jamieson, G A

    1991-01-01

    A microtitre adhesion assay has been developed to define parameters affecting the adherence of washed platelets to laminin. Adherence was optimally supported by Mg2+ and was inhibited by Ca2+ and by anti-laminin Fab fragments, but significant adhesion (75-90% of control) was found both in heparinized plasma containing physiological levels of bivalent cations and in plasma anti-coagulated with EGTA. Adherence was unaffected by platelet activation with ADP but was decreased by 50% by treatment with alpha-thrombin (1 unit/ml, 5 min). Adherence was unaffected by monospecific polyclonal antibodies to glycoprotein (GP) Ib and GPIV, and was normal with platelets from two patients with Glanzmann's thrombasthaenia, indicating that GPIb, the GPIIb/IIIa complex and GPIV are not involved in platelet-laminin interaction. Affinity chromatography of Triton-solubilized membranes on laminin-Sepharose followed by elution with 0.2 M-glycine/HCl (pH 2.85) identified a major band with a molecular mass of 67 kDa in the reduced and of 53 kDa in the unreduced form. This protein gave a positive reaction on Western blotting with a monospecific polyclonal antibody raised against the high-affinity laminin receptor isolated from human breast carcinoma tissue. The adhesion of platelets to laminin was inhibited by two monoclonal IgM antibodies specific to the LR-1 domain of the 67 kDa receptor. The binding protein was surface-oriented, as shown by flow cytofluorimetry and by the fact that it could be iodinated in intact platelets, but it was not labelled by the periodate-borotritide procedure, suggesting that it did not contain terminal sialic acid. The laminin-derived peptides Tyr-Ile-Gly-Ser-Arg and Cys-Asp-Pro-Gly-Tyr-Ile-Gly-Ser-Arg-NH2, which constitute a complementary binding domain in laminin for the 67 kDa receptor, themselves supported platelet adhesion, bound to the receptor and inhibited the adhesion of platelets to laminin. In addition, Fab fragments of anti-Tyr-Ile-Gly-Ser-Arg antibody inhibited platelet adhesion to laminin. These results demonstrate that the high-affinity 67 kDa laminin receptor previously identified in a range of normal and transformed cells and its complementary Tyr-Ile-Gly-Ser-Arg binding domain play an important role in the interaction of platelets with laminin. Images Fig. 4. Fig. 8. PMID:1826081

  12. Primary structure of pancreatic polypeptide from four species of Perissodactyla (Przewalski's horse, zebra, rhino, tapir).

    PubMed

    Henry, J S; Lance, V A; Conlon, J M

    1991-12-01

    Pancreatic polypeptide (PP) has been purified from extracts of the pancreas of four species of odd-toed ungulates (Perissodactyla): Przewalski's horse, mountain zebra, white rhinoceros, and mountain tapir. The amino acid sequence of Przewalski's horse pancreatic polypeptide was established as Ala-Pro-Met-Glu-Pro-Val-Tyr-Pro-Gly-Asp10-Asn- Ala-Thr-Pro-Glu-Gln-Met-Ala-Gln-Tyr20-Ala-Ala-Glu-Leu-Arg-Arg-Tyr- Ile-Asn-Met30 - Leu-Thr-Arg-Pro-Arg-Tyr.NH2. Zebra PP was identical to Przewalski's horse PP, rhinoceros PP contained three substitutions relative to the horse (Ser for Ala1, Leu for Met3, and Glu for Gln16), and tapir PP contained one substitution relative to the horse (Leu for Met3). On the basis of morphological characteristics and the fossil record, the rhinocerotids are classified with the tapirids in the suborder Ceratomorpha, whereas the horse and zebra belong to a separate suborder, Hippomorpha. On the basis of structural similarity of the PP molecules, however, it would appear that the tapir is more closely related to the horse than to the rhinoceros. These observations provide a further example of the need for extreme caution when inferring taxonomic or phylogenetic relationships between species from the structures of homologous peptides.

  13. Effect of altering local protein fluctuations using artificial intelligence

    NASA Astrophysics Data System (ADS)

    Nishiyama, Katsuhiko

    2017-03-01

    The fluctuations in Arg111, a significantly fluctuating residue in cathepsin K, were locally regulated by modifying Arg111 to Gly111. The binding properties of 15 dipeptides in the modified protein were analyzed by molecular simulations, and modeled as decision trees using artificial intelligence. The decision tree of the modified protein significantly differed from that of unmodified cathepsin K, and the Arg-to-Gly modification exerted a remarkable effect on the peptide binding properties. By locally regulating the fluctuations of a protein, we may greatly alter the original functions of the protein, enabling novel applications in several fields.

  14. Co-occurrence of non-toxic (cyanopeptolin) and toxic (microcystin) peptides in a bloom of Microcystis sp. from a Chilean lake.

    PubMed

    Neumann, U; Campos, V; Cantarero, S; Urrutia, H; Heinze, R; Weckesser, J; Erhard, M

    2000-06-01

    A cyanobacterial bloom occurring in 1998 in lake Tres Pascualas (Concepción/Chile) was found to be dominated by Microcystis sp. The bloom contained both non-toxic (cyanopeptolin-type) and hepatotoxic (microcystin-type) peptides. Cyanopeptolin structure of the non-toxic peptides (called cyanopeptolin VW-1 and VW-2, respectively) was revealed by matrix assisted laser desorption ionization mass spectrometry (MALDI-TOF-MS) of whole cells, showing dominant molecular ions at m/z = 975 and m/z 995, respectively. On post source decay (PSD), both cyanopeptolins showed fragments deriving from Ahp-Phe-MTyr (3-amino-6-hydroxy-2-piperidone), the characteristic partial structure of cyanopeptolins. The amounts of each of the two cyanopeptolins could only roughly be estimated to be >0.1% of bloom material dry weight. In addition the blooms contained microcystins (20 microg/g bloom dry weight as determined by RP-HPLC, 13 microg/g according to ELISA determination). MALDI-TOF-MS revealed several structural variants of microcystin: MCYST-RR (microcystin with Arg and Arg, indicated by m/z 1,038 and confirmed by PSD revealing a m/z = 135 fragment deriving from the Adda side chain, MCYST-FR (microcystin with Phe and Arg, indicated by m/z = 1,015). The presence of [Asp(3)]-MCYST-LR (microcystin with Leu and Arg, Asp non-methylated, indicated by m/z 981), and [Asp(3)]-MCYST-YR (microcystin with Tyr and Arg, Asp non-methylated, indicated by m/z 1,031) were likely. The relative amounts of the peptides varied between February, April, and May. Whole cell extracts from the bloom material revealed specific enzyme inhibitory activities. The serin-proteases trypsin, plasmin, elastase were inhibited, assumable due to the cyanopeptolins found. Elastase and the cysteine-protease papain were not inhibited, inhibitions of protein kinase and glutathione S-transferase (GST) were low. Strong inhibition was observed with protein-phosphatase-1, likely due to the microcystins present in the samples.

  15. Clinical implications of mutation analysis in primary hyperoxaluria type 1.

    PubMed

    van Woerden, Christiaan S; Groothoff, Jaap W; Wijburg, Frits A; Annink, Carla; Wanders, Ronald J A; Waterham, Hans R

    2004-08-01

    Primary hyperoxaluria type 1 (PH1) is an inborn error of glyoxylate metabolism with an extensive clinical and genetic heterogeneity. Although over 50 disease-causing mutations have been identified, the relationship between genotype and clinical outcome remains unclear. The aim of this study was to determine this association in order to find clues for improvement of patient care. AGXT mutation analysis and assessment of biochemical characteristics and clinical outcome were performed on patients from a Dutch PH1 cohort. Thirty-three of a cohort of 57 PH1 patients, identified in The Netherlands over a period of 30 years, were analyzed. Ten different mutations were found. The most common mutations were the Gly170Arg, Phe152Ile, and the 33insC mutations, with an allele frequency of 43%, 19%, and 15%, respectively. Homozygous Gly170Arg and Phe152Ile mutations were associated with pyridoxine responsiveness and a preserved renal function over time when treatment was timely initiated. All patients homozygous for the 33insC mutation had end-stage renal disease (ESRD) before the first year of age. In two unrelated patients, a new Val336Asp mutation was found coupled with the Gly170Arg mutation on the minor allele. We also found 3 patients homozygous for a novel Gly82Arg mutation with adverse outcome in 2 of them. Early detection of Gly170Arg and Phe152Ile mutations in PH1 has important clinical implications because of their association with pyridoxine responsiveness and clinical outcome. The association of a homozygous 33insC mutation with severe infantile ESRD, resulting in early deaths in 2 out of 3 cases, warrants a choice for prenatal diagnostics in affected families.

  16. Out-of-equilibrium dynamics in the cytoskeleton of the living cell

    NASA Astrophysics Data System (ADS)

    Lenormand, Guillaume; Bursac, Predrag; Butler, James P.; Fredberg, Jeffrey J.

    2007-10-01

    We report here measurements of rheological properties of the human airway smooth muscle cell using forced nanoscale motions of Arg-Gly-Asp RGD-coated microbeads tightly bound to the cytoskeleton. With changes of forcing amplitude, the storage modulus showed small but systematic nonlinearities, especially after treatment with a contractile agonist. In a dose-dependent manner, a large oscillatory shear applied from a few seconds up to 400s caused the cytoskeleton matrix to soften, a behavior comparable to physical rejuvenation observed in certain inert soft materials; the stiffness remained constant for as long as the large oscillatory shear was maintained, but suddenly fell with shear cessation. Stiffness then followed a slow scale-free recovery, a phenomenon comparable to physical aging. However, acetylated low-density lipoprotein acLDL-coated microbeads, which connect mainly to scavenger receptors, did not show similar out-of-equilibrium behaviors. Taken together, these data demonstrate in the cytoskeleton of the living cell behaviors with all the same signatures as that of soft inert condensed systems. This unexpected intersection of condensed matter physics and cytoskeletal biology suggests that trapping, intermittency, and approach to kinetic arrest represent central mesoscale features linking underlying molecular events to integrative cellular functions.

  17. Identification of Transglutaminase Reactive Residues in Human Osteopontin and Their Role in Polymerization

    PubMed Central

    Christensen, Brian; Zachariae, Elias D.; Scavenius, Carsten; Thybo, Morten; Callesen, Morten M.; Kløverpris, Søren; Oxvig, Claus; Enghild, Jan J.; Sørensen, Esben S.

    2014-01-01

    Osteopontin (OPN) is a highly posttranslationally modified protein present in several tissues where it is implicated in numerous physiological processes. OPN primarily exerts its functions through interaction with integrins via the Arg-Gly-Asp and Ser-Val-Val-Tyr-Gly-Leu-Arg sequences located in the N-terminal part of the protein. OPN can be polymerized by the cross-linking enzyme transglutaminase 2 (TG2), and polymerization has been shown to enhance the biological activity of OPN. However, little is known about the reactivity and location of the glutamine and lysine residues involved in the TG2-mediated modification of OPN. Here we show that TG2 catalyses the incorporation of 5-(Biotinamido)pentylamine at glutamines in both the N- and C-terminal parts of OPN, whereas TG2 primarily incorporated the glutamine-donor peptide biotinyl-TVQQEL-OH into the C-terminal part of OPN. By mass spectrometric analyses we identified Gln34, Gln42, Gln193 and Gln248 as the major TG2 reactive glutamines in OPN. The distribution of reactive Gln and Lys residues in OPN proved to be important, as the full-length protein but not the physiologically highly active integrin-binding N-terminal part of OPN were able to polymerize in a TG2-mediated reaction. Collectively, these data provide important new molecular knowledge about the mechanism of OPN polymerization. PMID:25419572

  18. Exome sequencing identifies titin mutations causing hereditary myopathy with early respiratory failure (HMERF) in families of diverse ethnic origins.

    PubMed

    Toro, Camilo; Olivé, Montse; Dalakas, Marinos C; Sivakumar, Kumaraswami; Bilbao, Juan M; Tyndel, Felix; Vidal, Noemí; Farrero, Eva; Sambuughin, Nyamkhishig; Goldfarb, Lev G

    2013-03-20

    Hereditary myopathy with early respiratory failure (HMERF) was described in several North European families and recently linked to a titin gene (TTN) mutation. We independently studied HMERF-like diseases with the purpose to identify the cause, refine diagnostic criteria, and estimate the frequency of this disease among myopathy patients of various ethnic origins. Whole exome sequencing analysis was carried out in a large U.S. family that included seven members suffering from skeletal muscle weakness and respiratory failure. Subsequent mutation screening was performed in further 45 unrelated probands with similar phenotypes. Studies included muscle strength evaluation, nerve conduction studies and concentric needle EMG, respiratory function test, cardiologic examination, and muscle biopsy. A novel TTN p.Gly30150Asp mutation was identified in the highly conserved A-band of titin that co-segregated with the disease in the U.S. family. Screening of 45 probands initially diagnosed as myofibrillar myopathy (MFM) but excluded based on molecular screening for the known MFM genes led to the identification of a previously reported TTN p.Cys30071Arg mutation in one patient. This same mutation was also identified in a patient with suspected HMERF. The p.Gly30150Asp and p.Cys30071Arg mutations are localized to a side chain of fibronectin type III element A150 of the 10th C-zone super-repeat of titin. Missense mutations in TTN are the cause of HMERF in families of diverse origins. A comparison of phenotypic features of HMERF caused by the three known TTN mutations in various populations allowed to emphasize distinct clinical/pathological features that can serve as the basis for diagnosis. The newly identified p.Gly30150Asp and the p.Cys30071Arg mutation are localized to a side chain of fibronectin type III element A150 of the 10th C-zone super-repeat of titin.

  19. Cytoskeletal mechanics in pressure-overload cardiac hypertrophy

    NASA Technical Reports Server (NTRS)

    Tagawa, H.; Wang, N.; Narishige, T.; Ingber, D. E.; Zile, M. R.; Cooper, G. 4th

    1997-01-01

    We have shown that the cellular contractile dysfunction characteristic of pressure-overload cardiac hypertrophy results not from an abnormality intrinsic to the myofilament portion of the cardiocyte cytoskeleton but rather from an increased density of the microtubule component of the extramyofilament portion of the cardiocyte cytoskeleton. To determine how, in physical terms, this increased microtubule density mechanically overloads the contractile apparatus at the cellular level, we measured cytoskeletal stiffness and apparent viscosity in isolated cardiocytes via magnetic twisting cytometry, a technique by which magnetically induced force is applied directly to the cytoskeleton through integrin-coupled ferromagnetic beads coated with Arg-Gly-Asp (RGD) peptide. Measurements were made in two groups of cardiocytes from cats with right ventricular (RV) hypertrophy induced by pulmonary artery banding: (1) those from the pressure-overloaded RV and (2) those from the normally loaded same-animal control left ventricle (LV). Cytoskeletal stiffness increased almost twofold, from 8.53 +/- 0.77 dyne/cm2 in the normally loaded LV cardiocytes to 16.46 +/- 1.32 dyne/cm2 in the hypertrophied RV cardiocytes. Cytoskeletal apparent viscosity increased almost fourfold, from 20.97 +/- 1.92 poise in the normally loaded LV cardiocytes to 87.85 +/- 6.95 poise in the hypertrophied RV cardiocytes. In addition to these baseline data showing differing stiffness and, especially, apparent viscosity in the two groups of cardiocytes, microtubule depolymerization by colchicine was found to return both the stiffness and the apparent viscosity of the pressure overload-hypertrophied RV cells fully to normal. Conversely, microtubule hyperpolymerization by taxol increased the stiffness and apparent viscosity values of normally loaded LV cardiocytes to the abnormal values given above for pressure-hypertrophied RV cardiocytes. Thus, increased microtubule density constitutes primarily a viscous load on the cardiocyte contractile apparatus in pressure-overload cardiac hypertrophy.

  20. Isolation: analysis and properties of three bradykinin-potentiating peptides (BPP-II, BPP-III, and BPP-V) from Bothrops neuwiedi venom.

    PubMed

    Ferreira, L A; Galle, A; Raida, M; Schrader, M; Lebrun, I; Habermehl, G

    1998-04-01

    In the course of systematic investigations on low-molecular-weight compounds from the venom of Crotalidae and Viperidae, we have isolated and characterized at least three bradykinin-potentiating peptides (BPP-II, BPP-III, and BPP-V) from Bothrops neuwiedi venom by gel filtration on Sephadex G-25 M, Sephadex G-10 followed by HPLC. The peptides showed bradykinin-potentiating action on isolated guinea-pig ileum, for which the BPP-V was more active than of BPP-II, and BPP-III, rat arterial blood pressure, and a relevant angiotensin-converting enzyme (ACE) competitive inhibiting activity. The kinetic studies showed a Ki of the order of 9.7 x 10(-3) microM to BPP-II, 7 x 10(-3) microM to BPP-III, and 3.3 x 10(-3) microM to BPP-V. The amino acid sequence of the BPP-III has been determined to be pGlu-Gly-Gly-Trp-Pro-Arg-Pro-Gly-Pro-Glu-Ile-Pro-Pro, and the amino acid compositions of the BPP-II and BPP-V by amino acid analysis were 2Glu-2Gly-1Arg-4Pro-1Ile and 2Glu-2Gly-1Ser-3Pro-2Val-1Ile, with molecular weight of 1372, 1046, and 1078, respectively.

  1. In vitro effect of short peptides on expression of interleukin-2 gene in splenocytes.

    PubMed

    Kazakova, T B; Barabanova, S V; Khavinson, V Kh; Glushikhina, M S; Parkhomenko, E P; Malinin, V V; Korneva, E A

    2002-06-01

    Synthetic peptides Vilon (Lys-Glu), Epithalon (Ala-Glu-Asp-Gly), and Cortagen (Ala-Glu-Asp-Pro) in vitro activated interleukin-2 mRNA synthesis in splenocytes from CBA mice in the absence of specific inductors. The intensity of interleukin-2 mRNA synthesis in splenocytes depended on the type, concentration, and duration of treatment with the peptides. Vilon and Epithalon were most potent, while Cortagen produced a less pronounced effect on interleukin-2 mRNA synthesis.

  2. Evaluating the role of acidic, basic, and polar amino acids and dipeptides on a molecular electrocatalyst for H 2 oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boralugodage, Nilusha Priyadarshani; Arachchige, Rajith Jayasingha; Dutta, Arnab

    Amino acids and peptides have been shown to have a significant influence on the H2 production and oxidation reactivity of Ni(P R 2N R’ 2) 2, where P R 2N R’ 2 = 1,5-diaza-3,7-diphosphacyclooctane, R is either phenyl (Ph) or cyclohexyl (Cy), and R’ is either an amino acid or peptide. Most recently, the Ni(P Cy 2Naminoacid 2) 2 complexes (CyAA) have shown enhanced H 2 oxidation rates, water solubility, and in the case of arginine (CyArg) and phenylalanine (CyPhe), electrocatalytic reversibility. Both the backbone –COOH and side chain interactions were shown to be critical to catalytic performance. Here wemore » further investigate the roles of the outer coordination sphere by evaluating amino acids with acidic, basic, and hydrophilic side chains, as well as dipeptides which combine multiple successful features from previous complexes. Six new complexes were prepared, three containing single amino acids: aspartic acid (CyAsp), lysine (CyLys), and serine (CySer) and three containing dipeptides: glycine-phenylalanine (Cy(GlyPhe)), phenylalanine-glycine (Cy(PheGly)), and aspartic acid-phenylananine (Cy(AspPhe)). The resulting catalytic performance demonstrates that complexes need both interactions between side chain and –COOH groups for fast, efficient catalysis. The fastest of all of the catalysts, Cy(AspPhe), had both of these features, while the other dipeptide complexes with an amide replacing the -COOH were both slower; however, the amide group was demonstrated to participate in the proton pathway when side chain interactions are present to position it. Both the hydrophilic and basic side chains, notably lacking in side chain interactions, significantly increased the overpotential, with only modest increases in TOF. Of all of the complexes, only CyAsp was reversible at room temperature, and only in water, the first of these complexes to demonstrate room temperature reversibility in water. These results continue to provide and solidify design rules for controlling reactivity and efficiency of Ni(P 2N 2) 2 complexes with the outer coordination sphere.« less

  3. Total enzymatic synthesis of cholecystokinin CCK-5.

    PubMed

    Xiang, H; Xiang, G Y; Lu, Z M; Guo, L; Eckstein, H

    2004-08-01

    This paper describes the enzymatic synthesis of the C-terminal fragment H-Gly-Trp-Met-Asp-Phe-NH2 of cholecystokinin. Immobilized enzymes were used for the formation of all peptide bonds except thermolysin. Beginning the synthesis with phenylacetyl (PhAc) glycine carboxamidomethyl ester (OCam) and H-Trp-OMe by using immobilized papain as biocatalyst in buffered ethyl acetate, the dipeptide methyl ester was then coupled directly with Met-OEt.HCl by alpha-chymotrypsin/Celite 545 in a solvent free system. For the 3+2 coupling PhAc-Gly-Trp-Met-OEt had to be converted into its OCam ester. The other fragment H-Asp(OMe)-Phe-NH2 resulted from the coupling of Cbo-Asp(OMe)-OH with H-Phe-NH2.HCl and thermolysin as catalyst, followed by catalytic hydrogenation. Finally PhAc-Gly-Trp-Met-Asp-Phe-NH2 was obtained in a smooth reaction from PhAc-Gly-Trp-Met-OCam and H-Asp(OMe)-Phe-NH2 with alpha-chymotrypsin/Celite 545 in acetonitrile, followed by basic hydrolysis of the beta-methyl ester. The PhAc-group is removed with penicillin G amidase and CCK-5 is obtained in an overall isolated yield of 19.6%.

  4. Competitive antagonists discriminate between NK2 tachykinin receptor subtypes.

    PubMed Central

    Maggi, C. A.; Patacchini, R.; Giuliani, S.; Rovero, P.; Dion, S.; Regoli, D.; Giachetti, A.; Meli, A.

    1990-01-01

    1. We have compared the ability of various tachykinins and selective tachykinin receptor agonists to induce contraction of the endothelium-denuded rabbit pulmonary artery (RPA) and hamster trachea (HT) and have estimated the affinity of some newly developed NK2 selective antagonists in the same tissues. 2. In confirmation of previous findings, experiments with the agonists indicated that NK2 receptors are the main if not the sole mediators of the response to tachykinins in both RPA and HT. No evidence for significant degradation of neurokinin A (NKA) was found in either tissue when experiments were repeated in the presence of a mixture of peptidase inhibitors (thiorphan, captopril and bestatin, 1 microM each). 3. The peptide antagonists tested were: Peptide I = [Tyr5, D-Trp6,8,9, Arg10]-NKA(4-10); Peptide II = [Tyr5, D-Trp6,8,9, Arg10]-NKA(3-10); Peptide III = Ac-Leu-Asp-Gln-Trp-Phe-Gly-NH2. The three peptides produced a concentration-dependent rightward shift of the concentration-response curve to NKA in both RPA and HT with no significant depression of the maximal response attainable. The slopes of the Schild plots were not significantly different from unity, indicating a competitive antagonism. Peptides I and II were about 100 times more potent in the RPA than in the HT, while Peptide III was about 100 times more potent in the HT than RPA. 4. The pA2 values obtained in these two tissues with the three antagonists were not significantly different when tested in the absence or presence of peptidase inhibitors, or when a selective NK2 receptor agonist, [beta Ala8]-NKA(4-10) was used instead of NKA.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2167737

  5. Multifunctional ferritin cage nanostructures for fluorescence and MR imaging of tumor cells.

    PubMed

    Li, Ke; Zhang, Zhi-Ping; Luo, Ming; Yu, Xiang; Han, Yu; Wei, Hong-Ping; Cui, Zong-Qiang; Zhang, Xian-En

    2012-01-07

    Bionanoparticles and nanostructures have attracted increasing interest as versatile and promising tools in many applications including biosensing and bioimaging. In this study, to image and detect tumor cells, ferritin cage-based multifunctional hybrid nanostructures were constructed that: (i) displayed both the green fluorescent protein and an Arg-Gly-Asp peptide on the exterior surface of the ferritin cages; and (ii) incorporated ferrimagnetic iron oxide nanoparticles into the ferritin interior cavity. The overall architecture of ferritin cages did not change after being integrated with fusion proteins and ferrimagnetic iron oxide nanoparticles. These multifunctional nanostructures were successfully used as a fluorescent imaging probe and an MRI contrast agent for specifically probing and imaging α(v)β(3) integrin upregulated tumor cells. The work provides a promising strategy for tumor cell detection by simultaneous fluorescence and MR imaging.

  6. Synthesis, Characterization, and Initial Biological Evaluation of [99m Tc]Tc-Tricarbonyl-labeled DPA-α-MSH Peptide Derivatives for Potential Melanoma Imaging.

    PubMed

    Gao, Feng; Sihver, Wiebke; Bergmann, Ralf; Belter, Birgit; Bolzati, Cristina; Salvarese, Nicola; Steinbach, Jörg; Pietzsch, Jens; Pietzsch, Hans-Jürgen

    2018-06-06

    α-Melanocyte stimulating hormone (α-MSH) derivatives target the melanocortin-1 receptor (MC1R) specifically and selectively. In this study, the α-MSH-derived peptide NAP-NS1 (Nle-Asp-His-d-Phe-Arg-Trp-Gly-NH 2 ) with and without linkers was conjugated with 5-(bis(pyridin-2-ylmethyl)amino)pentanoic acid (DPA-COOH) and labeled with [ 99m Tc]Tc-tricarbonyl by two methods. With the one-pot method the labeling was faster than with the two-pot method, while obtaining similarly high yields. Negligible trans-chelation and high stability in physiological solutions was determined for the [ 99m Tc]Tc-tricarbonyl-peptide conjugates. Coupling an ethylene glycol (EG)-based linker increased the hydrophilicity. The peptide derivatives displayed high binding affinity in murine B16F10 melanoma cells as well as in human MeWo and TXM13 melanoma cell homogenates. Preliminary in vivo studies with one of the [ 99m Tc]Tc-tricarbonyl-peptide conjugates showed good stability in blood and both renal and hepatobiliary excretion. Biodistribution was performed on healthy rats to gain initial insight into the potential relevance of the 99m Tc-labeled peptides for in vivo imaging. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The frequent mutation Gly/Asp in CDR1H may determine a cross-reactive idiotope in anti-I cold agglutinins

    PubMed Central

    ABATANGELO, C; PLOTKIN, L; MATHOV, I; SQUIQUERA, L; LEONI, J

    1996-01-01

    Variable domains (VH) of all known anti i/I cold agglutinin (CA) heavy chains are codified by the VH4–21 gene. While anti-i CAs are the expression of gene rearrangement without mutations represented by amino acid changes, anti-I CAs present, among others, a frequent somatic mutation of Gly by Asp at position 31. The hydropathy profile calculated for the CDR1H (position 30 to position 35), as well as some adjacent positions of the heavy chain belonging to anti-i and anti-I antibodies, showed the conformational changes accompanying the replacement of Gly by Asp. A MoAb (LP91), which had been obtained in BALB/c mice immunized with a Fabμ fragment from a monoclonal IgMκIIIb anti-I CA (protein KAU), proved capable of inhibiting human adult erythrocyte cryoagglutination by anti-I CAs but not that of fetal erythrocytes by anti-i CAs. Western blot analysis disclosed that such MoAbs recognized a sequential epitope located in the Fd fragment of all anti-I CAs employed in this study. With the purpose of checking whether Asp31 was involved in the epitope recognized by the MoAb, two peptides, D and G, were synthesized which mimicked the CDR1H structure of anti-I and anti-i, respectively; the MoAb only reacted with peptide D by ELISA. Subsequent experimental results indicate that the Gly/Asp mutation could be associated with the diverse specificity presented by these autoantibodies, a change determining a characteristic epitope/idiotope, recognized by LP91 in the CDR1H. PMID:8603526

  8. [GENOMIC VARIABILITY IN PATIENTS WITH DUCTAL FORM OF BREAST CANCER AND THE POSSIBILITY OF CORRECTION THE PEPTIDE BIOREGULATOR AND METAL IONS].

    PubMed

    Jokhadze, T; Monaselidze, J; Nemsadze, G; Buadze, T; Gaiozishvili, M; Lezhava, T

    2017-01-01

    Level of genome stability (structural aberrations, aneuploidy and fragile sites) was studied in cells of the lymphocyte culture of ductal breast cancer patients (DBC). Was studied the correctional influence of separate and combinative action of peptide bioregulator (Ala-Glu-Asp-Gly) and heavy metal - nickel. It is shown that DBC patients are characterized by high level of genome instability, which is the result of the chromatin changing state. The used tests makes it possible to conclude that in the case of this form of cancer subordinates to specific epigenetic variation as a hetero- also euchromatic regions of genome. The agents - peptide bioregulator (Ala-Glu-Asp-Gly) and nickel ions, used in cell culture of ductal breast cancer patients, revealed the protective effect what indicates the prospects to further study for their involving purpose in combined therapy of this form of cancer.

  9. Salt-bridging effects on short amphiphilic helical structure and introducing sequence-based short beta-turn motifs.

    PubMed

    Guarracino, Danielle A; Gentile, Kayla; Grossman, Alec; Li, Evan; Refai, Nader; Mohnot, Joy; King, Daniel

    2018-02-01

    Determining the minimal sequence necessary to induce protein folding is beneficial in understanding the role of protein-protein interactions in biological systems, as their three-dimensional structures often dictate their activity. Proteins are generally comprised of discrete secondary structures, from α-helices to β-turns and larger β-sheets, each of which is influenced by its primary structure. Manipulating the sequence of short, moderately helical peptides can help elucidate the influences on folding. We created two new scaffolds based on a modestly helical eight-residue peptide, PT3, we previously published. Using circular dichroism (CD) spectroscopy and changing the possible salt-bridging residues to new combinations of Lys, Arg, Glu, and Asp, we found that our most helical improvements came from the Arg-Glu combination, whereas the Lys-Asp was not significantly different from the Lys-Glu of the parent scaffold, PT3. The marked 3 10 -helical contributions in PT3 were lessened in the Arg-Glu-containing peptide with the beginning of cooperative unfolding seen through a thermal denaturation. However, a unique and unexpected signature was seen for the denaturation of the Lys-Asp peptide which could help elucidate the stages of folding between the 3 10 and α-helix. In addition, we developed a short six-residue peptide with β-turn/sheet CD signature, again to help study minimal sequences needed for folding. Overall, the results indicate that improvements made to short peptide scaffolds by fine-tuning the salt-bridging residues can enhance scaffold structure. Likewise, with the results from the new, short β-turn motif, these can help impact future peptidomimetic designs in creating biologically useful, short, structured β-sheet-forming peptides.

  10. Molecular cloning of the pheromone biosynthesis-activating neuropeptide in Helicoverpa zea.

    PubMed Central

    Davis, M T; Vakharia, V N; Henry, J; Kempe, T G; Raina, A K

    1992-01-01

    Pheromone biosynthesis-activating neuropeptide (PBAN) regulates sex pheromone biosynthesis in female Helicoverpa (Heliothis) zea. Two oligonucleotide probes representing two overlapping amino acid regions of PBAN were used to screen 2.5 x 10(5) recombinant plaques, and a positive recombinant clone was isolated. Sequence analysis of the isolated clone showed that the PBAN gene is interrupted after the codon encoding amino acid 14 by a 0.63-kilobase (kb) intron. Preceding the PBAN amino acid sequence is a 10-amino acid sequence containing a pentapeptide Phe-Thr-Pro-Arg-Leu, which is followed by a Gly-Arg-Arg processing site. Immediately after the PBAN amino acid sequence is a Gly-Arg processing site and a short stretch of 10 amino acids. This 10-amino acid sequence contains a repeat of the PBAN C-terminal pentapeptide Phe-Ser-Pro-Arg-Leu and is terminated by another Gly-Arg processing site. It is suggested that the PBAN gene in H. zea might carry, besides PBAN, a 7- and an 8-residue amidated peptide, which share with PBAN the core C-terminal pentapeptide Phe-(Ser or Thr)-Pro-Arg-Leu-NH2. The C-terminal pentapeptide sequence of PBAN represents the minimum sequence required for pheromonotropic activity in H. zea and also bears a high degree of homology to the pyrokinin family of insect peptides with myotropic activity. It is possible that the putative heptapeptide and octapeptide might be new members of the pyrokinin family, with pheromonotropic and/or myotropic activities. Thus, the PBAN gene products, besides affecting sexual behavior, might have broad influence on many biological processes in H. zea. Images PMID:1729680

  11. 99mTc-3P4-RGD2 Scintimammography in the Assessment of Breast Lesions: Comparative Study with 99mTc-MIBI

    PubMed Central

    Gao, Shi; Ji, Tiefeng; Wen, Qiang; Song, Yan; Zhu, Lei; Xu, Zheli; Liu, Lin

    2014-01-01

    Purpose To compare the potential application of 99mTc-3P-Arg-Gly-Asp (99mTc-3P4-RGD2) scintimammography (SMM) and 99mTc-methoxyisobutylisonitrile (99mTc-MIBI) SMM for the differentiation of malignant from benign breast lesions. Method Thirty-six patients with breast masses on physical examination and/or suspicious mammography results that required fine needle aspiration cytology biopsy (FNAB) were included in the study. 99mTc-3P4-RGD2 and 99mTc-MIBI SMM were performed with single photon emission computed tomography (SPECT) at 60 min and 20 min respectively after intravenous injection of 738±86 MBq radiotracers on a separate day. Images were evaluated by the tumor to non-tumor localization ratios (T/NT). Receiver operating characteristic (ROC) curve analysis was performed on each radiotracer to calculate the cut-off values of quantitative indices and to compare the diagnostic performance for the ability to differentiate malignant from benign diseases. Results The mean T/NT ratio of 99mTc-3P4-RGD2 in malignant lesions was significantly higher than that in benign lesions (3.54±1.51 vs. 1.83±0.98, p<0.001). The sensitivity, specificity, and accuracy of 99mTc-3P4-RGD2 SMM were 89.3%, 90.9% and 89.7%, respectively, with a T/NT cut-off value of 2.40. The mean T/NT ratio of 99mTc-MIBI in malignant lesions was also significantly higher than that in benign lesions (2.86±0.99 vs. 1.51±0.61, p<0.001). The sensitivity, specificity and accuracy of 99mTc-MIBI SMM were 87.5%, 72.7% and 82.1%, respectively, with a T/NT cut-off value of 1.45. According to the ROC analysis, the area under the curve for 99mTc-3P4-RGD2 SMM (area = 0.851) was higher than that for 99mTc-MIBI SMM (area = 0.781), but the statistical difference was not significant. Conclusion 99mTc-3P4-RGD2 SMM does not provide any significant advantage over the established 99mTc-MIBI SMM for the detection of primary breast cancer. The T/NT ratio of 99mTc-3P4-RGD2 SMM was significantly higher than that of 99mTc-MIBI SMM. Both tracers could offer an alternative method for elucidating non-diagnostic mammograms. PMID:25250628

  12. [Peptide fragments of chemokine domain of fractalkine: effect on human monocyte migration].

    PubMed

    Kukhtina, N B; Aref'eva, T I; Ruleva, N Iu; Sidorova, M V; Az'muko, A A; Bespalova, Zh D; Krasnikova, T L

    2012-01-01

    Leukocyte chemotaxis to the area of tissue damage is mediated by chemokines. According to the primary structure, chemokines are divided into four families, fractalkine (CX3CL1) is the only one member of CX3C family and the only membrane-bound chemokine. Fractalkine molecule includes the extracellular N-terminal chemokine domain, mucin-like rod, the transmembrane and the intracellular domains. In membrane-bound state fractalkine has the properties of an adhesion molecule. Chemokine domain of fractalkine (CDF) is released from cell membrane by proteolysis, and this soluble form acts as a chemoattractant for leukocytes expressing fractalkine receptor CX3CR1. Fractalkine is involved in development of a number of pathological processes caused by inflammation, and therefore a search for fractalkine inhibitors is very important. For this purpose we identified several antigenic determinants--the fragments of CDF, and the following peptides were synthesized--P41-52 H-Leu-Glu-Thr-Arg-Gln-His-Arg-Leu-Phe-Cys-Ala-Asp-NH2, P53-60 H-Pro-Lys-Glu-Gln-Trp-Val-Lys-Asp-NH2 and P60-71 H-Asp-Ala-Met-Gln-His-Leu-Asp-Arg-Gln-Ala-Ala-Ala-NH2. The peptide effects on adhesion and migration of human peripheral blood monocytes expressing fractalkine receptors were investigated. In the presence of CDF and P41-52 we observed the increased adhesion and migration of monocytes compared with spontaneous values. Peptides P53-60 and P60-71 significantly inhibited monocyte adhesion and migration stimulated by CDF. Since the chemotactic activity of chemokines was shown to be dependent on their binding to glycosaminoglycans of the cell surface and extracellular matrix, the effect ofpeptides on the interaction of CDF with heparin was analyzed by ELISA. Peptide P41-52 competed with CDF for heparin binding, while peptides P53-60 and P60-71 had no significant activity.

  13. The alyteserins: two families of antimicrobial peptides from the skin secretions of the midwife toad Alytes obstetricans (Alytidae).

    PubMed

    Conlon, J Michael; Demandt, Anni; Nielsen, Per F; Leprince, Jérôme; Vaudry, Hubert; Woodhams, Douglas C

    2009-06-01

    Two families of structurally related C-terminally alpha-amidated antimicrobial peptides have been identified in norepinephrine-stimulated skin secretions of the midwife toad Alytes obstetricans (Alytidae). The alyteserin-1 peptides (Gly-Leu-Lys-(Asp/Glu)-Ile-Phe-Lys-Ala-Gly-Leu-Gly-Ser-Leu-Val-Lys-(Gly/Asn)-Ile-Ala-Ala-His-Val-Ala-(Asn/Ser).NH(2)) show limited structural similarity to the ascaphins from the skins of frogs of the family Leiopelmatidae. Alyteserin-2a (Ile-Leu-Gly-Lys-Leu-Leu-Ser-Thr-Ala-Ala-Gly-Leu-Leu-Ser-Asn-Leu.NH(2)) and alyteserin-2b and -2c (Ile-Leu-Gly-Ala-Ile-Leu-Pro-Leu-Val-Ser-Gly-Leu-Leu-Ser-(Asn/Ser)-Lys-Leu x NH(2)) show limited sequence identity with bombinin H6, present in the skins of frogs of the family Bombinatoridae. The alyteserin-1 peptides show selective growth inhibitory activity against the Gram-negative bacteria Escherichia coli (MIC=25 microM) whereas alyteserin-2a is more potent against the Gram-positive bacteria Staphylococcus aureus (MIC=50 microM). The hemolytic activity against human erythrocytes of all peptides tested is relatively weak (LC(50)>100 microM). The data demonstrate that the frogs belonging to the family Alytidae are among those producing dermal antimicrobial peptides that may represent a component of the animal's system of innate immunity.

  14. Purification, characterization, and biological activity of a substance P-related peptide from the gut of the Australian lungfish, Neoceratodus forsteri.

    PubMed

    Liu, Lu; Conlon, J Michael; Joss, Jean M P; Burcher, Elizabeth

    2002-01-01

    A peptide with mammalian substance P (SP)-like immunoreactivity was isolated from an extract of the spiral intestine of the Australian lungfish, Neoceratodus forsteri. The primary structure of this peptide was established as Lys-Pro-Arg-Pro-Asp-Glu-Phe-Tyr-Gly-Leu-Met . NH2, showing 64% identity with mammalian SP. In isolated preparations of lungfish foregut circular muscle, lungfish SP produced a slow, long-lasting tonic contraction, with a pD2 value of 8.19. Lungfish midgut circular muscle preparations responded to lungfish SP rapidly and in a more complex manner. There was an increase in the frequency of spontaneous activity (pD2 = 8.76), associated with diminished amplitude of the spontaneous contractions (pD2 = 9.24), also coupled in some preparations with a tonic contraction (pD2 = 8.43). The response patterns of foregut and midgut circular muscle to acetylcholine (ACh) were very similar to those seen to lungfish SP. Lungfish SP and ACh, however, had very weak effects on both foregut and midgut longitudinal muscle. These data demonstrate that lungfish SP may be a physiologically important regulator of gastrointestinal motility in Neoceratodus. This study further confirmed that the structures of SP-related peptides have been strongly conserved under the pressure of vertebrate evolution, particularly in preserving the functionally important sequence, Phe-Xaa-Gly-Leu-Met . amide, at the C-terminus. The sequence of lungfish SP is identical to that of bufokinin, a SP-related peptide previously isolated from the intestine of the cane toad, Bufo marinus, supporting the hypothesis that lungfishes and amphibians share a common ancestor.

  15. Quantification and characterization of enkephalins in the upper part of the cat digestive tract and the coeliac ganglia.

    PubMed

    Julé, Y; Cupo, A; Niel, J P; Miolan, J P; Jarry, T

    1988-07-01

    The [Met]enkephalin, [Leu]enkephalin and [Met]enkephalin-arg-gly-leu contents of the upper part of the digestive tract (lower oesophageal sphincter, fundus, antrum, pylorus, duodenum, ileum) and coeliac ganglia of the cat were determined and identified. The enkephalin content of all the structures studied, expressed in femtomole/mg of wet tissue, was found to range from 83 to 446 with [Met]enkephalin; 19 to 63 with [Leu]enkephalin; 2.5 to 13 with [Met]enkephalin-arg-gly-leu. In the muscular and plexus layers the [Met]- and [Leu]enkephalin contents increase gradually from the lower oesophageal sphincter to the pylorus and then decrease from the duodenum to the ileum. The [Met]enkephalin versus [Leu]enkephalin ratio is 2.7 in the coeliac ganglia and ranges from 4.3 to 8.1 in the areas of the digestive tract investigated. In addition, the presence of authentic [Met]- and [Leu]enkephalin was confirmed in all the structures assayed by high pressure liquid chromatography. Owing to the low amounts of [Met]enkephalin-arg-gly-leu detected in individual samples of the coeliac ganglia and in the areas of the digestive tract investigated, it was not possible to characterize this peptide using high pressure liquid chromatography and therefore to confirm the presence of authentic [Met]enkephalin-arg-gly-leu in these structures. The differences in the enkephalin concentrations observed among these various areas of the digestive tract suggest that these peptides may act differently from one area to another, thus playing a complex integrative role in the nervous control of gastrointestinal tract motility.

  16. αVβ3 Integrin-Targeted Radionuclide Therapy with 64Cu-cyclam-RAFT-c(-RGDfK-)4.

    PubMed

    Jin, Zhao-Hui; Furukawa, Takako; Degardin, Mélissa; Sugyo, Aya; Tsuji, Atsushi B; Yamasaki, Tomoteru; Kawamura, Kazunori; Fujibayashi, Yasuhisa; Zhang, Ming-Rong; Boturyn, Didier; Dumy, Pascal; Saga, Tsuneo

    2016-09-01

    The transmembrane cell adhesion receptor αVβ3 integrin (αVβ3) has been identified as an important molecular target for cancer imaging and therapy. We have developed a tetrameric cyclic RGD (Arg-Gly-Asp) peptide-based radiotracer (64)Cu-cyclam-RAFT-c(-RGDfK-)4, which successfully captured αVβ3-positive tumors and angiogenesis by PET. Here, we subsequently evaluated its therapeutic potential and side effects using an established αVβ3-positive tumor mouse model. Mice with subcutaneous U87MG glioblastoma xenografts received single administrations of 37 and 74 MBq of (64)Cu-cyclam-RAFT-c(-RGDfK-)4 (37 MBq/nmol), peptide control, or vehicle solution and underwent tumor growth evaluation. Side effects were assessed in tumor-bearing and tumor-free mice in terms of body weight, routine hematology, and hepatorenal functions. Biodistribution of (64)Cu-cyclam-RAFT-c(-RGDfK-)4 with ascending peptide doses (0.25-10 nmol) and with the therapeutic dose of 2 nmol were determined at 3 hours and at various time points (2 minutes-24 hours) postinjection, respectively, based on which radiation-absorbed doses were estimated. The results revealed that (64)Cu-cyclam-RAFT-c(-RGDfK-)4 dose dependently slowed down the tumor growth. The mean tumor doses were 1.28 and 1.81 Gy from 37 and 74 MBq of (64)Cu-cyclam-RAFT-c(-RGDfK-)4, respectively. Peptide dose study showed that the tumor uptake of (64)Cu-cyclam-RAFT-c(-RGDfK-)4 dose dependently decreased at doses ≥1 nmol, indicating a saturation of αVβ3 with the administered therapeutic doses (1 and 2 nmol). Combined analysis of the data from tumor-bearing and tumor-free mice revealed no significant toxicity caused by 37-74 MBq of (64)Cu-cyclam-RAFT-c(-RGDfK-)4 Our study demonstrates the therapeutic efficacy and safety of (64)Cu-cyclam-RAFT-c(-RGDfK-)4 for αVβ3-targeted radionuclide therapy. (64)Cu-cyclam-RAFT-c(-RGDfK-)4 would be a promising theranostic drug for cancer imaging and therapy. Mol Cancer Ther; 15(9); 2076-85. ©2016 AACR. ©2016 American Association for Cancer Research.

  17. Peptide/protein-polymer conjugates: synthetic strategies and design concepts.

    PubMed

    Gauthier, Marc A; Klok, Harm-Anton

    2008-06-21

    This feature article provides a compilation of tools available for preparing well-defined peptide/protein-polymer conjugates, which are defined as hybrid constructs combining (i) a defined number of peptide/protein segments with uniform chain lengths and defined monomer sequences (primary structure) with (ii) a defined number of synthetic polymer chains. The first section describes methods for post-translational, or direct, introduction of chemoselective handles onto natural or synthetic peptides/proteins. Addressed topics include the residue- and/or site-specific modification of peptides/proteins at Arg, Asp, Cys, Gln, Glu, Gly, His, Lys, Met, Phe, Ser, Thr, Trp, Tyr and Val residues and methods for producing peptides/proteins containing non-canonical amino acids by peptide synthesis and protein engineering. In the second section, methods for introducing chemoselective groups onto the side-chain or chain-end of synthetic polymers produced by radical, anionic, cationic, metathesis and ring-opening polymerization are described. The final section discusses convergent and divergent strategies for covalently assembling polymers and peptides/proteins. An overview of the use of chemoselective reactions such as Heck, Sonogashira and Suzuki coupling, Diels-Alder cycloaddition, Click chemistry, Staudinger ligation, Michael's addition, reductive alkylation and oxime/hydrazone chemistry for the convergent synthesis of peptide/protein-polymer conjugates is given. Divergent approaches for preparing peptide/protein-polymer conjugates which are discussed include peptide synthesis from synthetic polymer supports, polymerization from peptide/protein macroinitiators or chain transfer agents and the polymerization of peptide side-chain monomers.

  18. Identification of putative agouti-related protein(87-132)-melanocortin-4 receptor interactions by homology molecular modeling and validation using chimeric peptide ligands.

    PubMed

    Wilczynski, Andrzej; Wang, Xiang S; Joseph, Christine G; Xiang, Zhimin; Bauzo, Rayna M; Scott, Joseph W; Sorensen, Nicholas B; Shaw, Amanda M; Millard, William J; Richards, Nigel G; Haskell-Luevano, Carrie

    2004-04-22

    Agouti-related protein (AGRP) is one of only two naturally known antagonists of G-protein-coupled receptors (GPCRs) identified to date. Specifically, AGRP antagonizes the brain melanocortin-3 and -4 receptors involved in energy homeostasis. Alpha-melanocyte stimulating hormone (alpha-MSH) is one of the known endogenous agonists for these melanocortin receptors. Insight into putative interactions between the antagonist AGRP amino acids with the melanocortin-4 receptor (MC4R) may be important for the design of unique ligands for the treatment of obesity related diseases and is currently lacking in the literature. A three-dimensional homology molecular model of the mouse MC4 receptor complex with the hAGRP(87-132) ligand docked into the receptor has been developed to identify putative antagonist ligand-receptor interactions. Key putative AGRP-MC4R interactions include the Arg111 of hAGRP(87-132) interacting in a negatively charged pocket located in a cavity formed by transmembrane spanning (TM) helices 1, 2, 3, and 7, capped by the acidic first extracellular loop (EL1) and specifically with the conserved melanocortin receptor residues mMC4R Glu92 (TM2), mMC4R Asp114 (TM3), and mMC4R Asp118 (TM3). Additionally, Phe112 and Phe113 of hAGRP(87-132) putatively interact with an aromatic hydrophobic pocket formed by the mMC4 receptor residues Phe176 (TM4), Phe193 (TM5), Phe253 (TM6), and Phe254 (TM6). To validate the AGRP-mMC4R model complex presented herein from a ligand perspective, we generated nine chimeric peptide ligands based on a modified antagonist template of the hAGRP(109-118) (Tyr-c[Asp-Arg-Phe-Phe-Asn-Ala-Phe-Dpr]-Tyr-NH(2)). In these chimeric ligands, the antagonist AGRP Arg-Phe-Phe residues were replaced by the melanocortin agonist His/D-Phe-Arg-Trp amino acids. These peptides resulted in agonist activity at the mouse melanocortin receptors (mMC1R and mMC3-5Rs). The most notable results include the identification of a novel subnanomolar melanocortin peptide template Tyr-c[Asp-His-DPhe-Arg-Trp-Asn-Ala-Phe-Dpr]-Tyr-NH(2) that is equipotent to alpha-MSH at the mMC1, mMC3, and mMC5 receptors but is 30-fold more potent than alpha-MSH at the mMC4R. Additionally, these studies identified a new and novel >200-fold MC4R versus MC3R selective peptide Tyr-c[Asp-D-Phe-Arg-Trp-Asn-Ala-Phe-Dpr]-Tyr-NH(2) template. Furthermore, when the His-DPhe-Arg-Trp sequence is used to replace the hAGRP Arg-Phe-Phe residues in the "mini"-AGRP (hAGRP87-120, C105A) template, a potent nanomolar agonist resulted at the mMC1R and MC3-5Rs.

  19. Geroprotective effect of ala-glu-asp-gly peptide in male rats exposed to different illumination regimens.

    PubMed

    Vinogradova, I A; Bukalev, A V; Zabezhinski, M A; Semenchenko, A V; Khavinson, V Kh; Anisimov, V N

    2008-04-01

    Exposure of male rats to permanent or natural illumination of North-Western Russia accelerated their death in comparison with animals exposed to standard (12 h) light. Permanent illumination promoted the development of spontaneous tumors in comparison with the standard photoregimen. Injection of epithalone (synthetic Ala-Glu-Asp-Gly peptide; subcutaneously 0.1 microg/rat 5 times a week from the age of 4 months until natural death) virtually did not change the mean lifespan of male rats, but was associated with a significant (p<0.05) normalization of population aging rate and hence, time of mortality rate doubling in groups exposed to natural or constant illumination. Epithalone injected to rats exposed to any photoregimen significantly inhibited the development of spontaneous tumors, primarily testicular leydigomas and leukemias.

  20. Hydrolysis by somatic angiotensin-I converting enzyme of basic dipeptides from a cholecystokinin/gastrin and a LH-RH peptide extended at the C-terminus with gly-Arg/Lys-arg, but not from diarginyl insulin.

    PubMed

    Isaac, R E; Michaud, A; Keen, J N; Williams, T A; Coates, D; Wetsel, W C; Corvol, P

    1999-06-01

    Endoproteolytic cleavage of protein prohormones often generates intermediates extended at the C-terminus by Arg-Arg or Lys-Arg, the removal of which by a carboxypeptidase (CPE) is normally an important step in the maturation of many peptide hormones. Recent studies in mice that lack CP activity indicate the existence of alternative tissue or plasma enzymes capable of removing C-terminal basic residues from prohormone intermediates. Using inhibitors of angiotensin I-converting enzyme (ACE) and CP, we show that both these enzymes in mouse serum can remove the basic amino acids from the C-terminus of CCK5-GRR and LH-RH-GKR, but only CP is responsible for converting diarginyl insulin to insulin. ACE activity removes C-terminal dipeptides to generate the Gly-extended peptides, whereas CP hydrolysis gives rise to CCK5-GR and LH-RH-GK, both of which are susceptible to the dipeptidyl carboxypeptidase activity of ACE. Somatic ACE has two similar protein domains (the N-domain and the C-domain), each with an active site that can display different substrate specificities. CCK5-GRR is a high-affinity substrate for both the N-domain and C-domain active sites of human sACE (Km of 9.4 microm and 9.0 microm, respectively) with the N-domain showing greater efficiency (kcat : Km ratio of 2.6 in favour of the N-domain). We conclude that somatic forms of ACE should be considered as alternatives to CPs for the removal of basic residues from some Arg/Lys-extended peptides.

  1. A glycine-leucine-rich peptide structurally related to the plasticins from skin secretions of the frog Leptodactylus laticeps (Leptodactylidae).

    PubMed

    Conlon, J Michael; Abdel-Wahab, Yasser H A; Flatt, Peter R; Leprince, Jérôme; Vaudry, Hubert; Jouenne, Thierry; Condamine, Eric

    2009-05-01

    A glycine-leucine-rich peptide was isolated from norepinephrine-stimulated skin secretions of the Sante Fe frog Leptodactylus laticeps (Leptodactylidae) whose primary structure (Gly-Leu-Val-Asn-Gly-Leu-Leu-Ser-Ser-Val-Leu-Gly-Gly-Gly-Gln-Gly-Gly-Gly-Gly-Leu-Leu-Gly-Gly-Ile-Leu) contains the (GXXXG)(3) motif found in the plasticins, previously identified only in phyllomedusid frogs (Hylidae). Circular dichroism studies showed that the secondary structure of the peptide, termed plasticin-L1, was markedly solvent-dependent displaying a random coil conformation in water, a beta-sheet structure in methanol, and an alpha-helical conformation in 50% trifluoroethanol-water. A synthetic replicate of the peptide did not inhibit the growth of Escherichia coli or Staphylococcus aureus or lyse human erythrocytes at concentrations up to 500 microM. At relatively high concentrations (>or=1 microM), the peptide produced a significant (P<0.05), although modest (139% of basal rate at 3 microM), increase in the rate of glucose-induced release of insulin from rat clonal BRIN-BD11 beta cells without increasing the rate of release of lactate dehydrogenase. A peptide, termed ocellatin-L2 was also identified in the skin secretion that was identical to the previously described ocellatin-L1 except for the substitution Asn(23)-->Asp. Ocellatin-L2 was devoid of antimicrobial and hemolytic activity but also showed significant activity in stimulating insulin release from BRIN-BD11 cells (181% of basal rate at 3 microM).

  2. Bioresponsive cancer-targeted polysaccharide nanosystem to inhibit angiogenesis.

    PubMed

    Yang, Fang; Fang, Xueyang; Jiang, Wenting; Chen, Tianfeng

    2017-01-01

    With many desirable features, such as being more effective and having multiple effects, antiangiogenesis has become one of the promising cancer treatments. The aim of this study was to design and synthesize a new targeted bioresponsive nanosystem with antiangiogenesis properties. The mUPR@Ru(POP) nanosystem was constructed by the polymerization of Ulva lactuca polysaccharide and N -isopropyl acrylamide, decorated with methoxy polyethylene glycol and Arg-Gly-Asp peptide, and encapsulated with anticancer complex [Ru(phen)2p-MOPIP](PF 6 ) 2 ·2H 2 O. The nanosystem was both pH responsive and targeted. Therefore, the cellular uptake of the drug was greatly improved. Moreover, the mUPR@Ru(POP) had strong suppressive effects against vascular endothelial growth factor (VEGF)-induced angiogenesis through apoptosis. The mUPR@Ru(POP) significantly inhibited VEGF-induced human umbilical vein endothelial cell migration, invasion, and tube formation. These findings have presented new insights into the development of antiangiogenesis drugs.

  3. Quantum-mechanical calculations of magnesium aspartate arginine structure and spectroscopic characteristics

    NASA Astrophysics Data System (ADS)

    Marcoin, W.; Pasterny, K.; Wrzalik, R.

    2005-05-01

    Theoretical calculations of magnesium aspartate-arginine (Mg[Asp-Arg]) structure and spectroscopic characteristics have been performed in the gas phase with the GAUSSIAN 98 software package using density functional theory (DFT) at the B3PW91 level. The 6-31+G* basis set was selected due to their reasonable quality and size. The comparison with corresponding results for magnesium aspartate-glycine (Mg[Asp-Gly]) is presented. NMR and IR measurements were carried out and obtained experimental 1H and 13C chemical shifts and IR spectra are compared with calculated spectral parameters.

  4. Foot-and-mouth disease virus replicates only transiently in well-differentiated porcine nasal epithelial cells.

    PubMed

    Dash, Pradyot; Barnett, Paul V; Denyer, Michael S; Jackson, Terry; Stirling, Catrina M A; Hawes, Philippa C; Simpson, Jennifer L; Monaghan, Paul; Takamatsu, Haru-H

    2010-09-01

    Three-dimensional (3D) porcine nasal mucosal and tracheal mucosal epithelial cell cultures were developed to analyze foot-and-mouth disease virus (FMDV) interactions with mucosal epithelial cells. The cells in these cultures differentiated and polarized until they closely resemble the epithelial layers seen in vivo. FMDV infected these cultures predominantly from the apical side, primarily by binding to integrin alphav beta6, in an Arg-Gly-Asp (RGD)-dependent manner. However, FMDV replicated only transiently without any visible cytopathic effect (CPE), and infectious progeny virus could be recovered only from the apical side. The infection induced the production of beta interferon (IFN-beta) and the IFN-inducible gene Mx1 mRNA, which coincided with the disappearance of viral RNA and progeny virus. The induction of IFN-beta mRNA correlated with the antiviral activity of the supernatants from both the apical and basolateral compartments. IFN-alpha mRNA was constitutively expressed in nasal mucosal epithelial cells in vitro and in vivo. In addition, FMDV infection induced interleukin 8 (IL-8) protein, granulocyte-macrophage colony-stimulating factor (GM-CSF), and RANTES mRNA in the infected epithelial cells, suggesting that it plays an important role in modulating the immune response.

  5. Crystal structure of the zymogen form of the group A Streptococcus virulence factor SpeB: an integrin-binding cysteine protease.

    PubMed

    Kagawa, T F; Cooney, J C; Baker, H M; McSweeney, S; Liu, M; Gubba, S; Musser, J M; Baker, E N

    2000-02-29

    Pathogenic bacteria secrete protein toxins that weaken or disable their host, and thereby act as virulence factors. We have determined the crystal structure of streptococcal pyrogenic exotoxin B (SpeB), a cysteine protease that is a major virulence factor of the human pathogen Streptococcus pyogenes and participates in invasive disease episodes, including necrotizing fasciitis. The structure, determined for the 40-kDa precursor form of SpeB at 1.6-A resolution, reveals that the protein is a distant homologue of the papain superfamily that includes the mammalian cathepsins B, K, L, and S. Despite negligible sequence identity, the protease portion has the canonical papain fold, albeit with major loop insertions and deletions. The catalytic site differs from most other cysteine proteases in that it lacks the Asn residue of the Cys-His-Asn triad. The prosegment has a unique fold and inactivation mechanism that involves displacement of the catalytically essential His residue by a loop inserted into the active site. The structure also reveals the surface location of an integrin-binding Arg-Gly-Asp (RGD) motif that is a feature unique to SpeB among cysteine proteases and is linked to the pathogenesis of the most invasive strains of S. pyogenes.

  6. A molecular dynamics simulation study decodes the Zika virus NS5 methyltransferase bound to SAH and RNA analogue.

    PubMed

    Chuang, Chih-Hung; Chiou, Shean-Jaw; Cheng, Tian-Lu; Wang, Yeng-Tseng

    2018-04-20

    Since 2015, widespread Zika virus outbreaks in Central and South America have caused increases in microcephaly cases, and this acute problem requires urgent attention. We employed molecular dynamics and Gaussian accelerated molecular dynamics techniques to investigate the structure of Zika NS5 protein with S-adenosyl-L-homocysteine (SAH) and an RNA analogue, namely 7-methylguanosine 5'-triphosphate (m7GTP). For the binding motif of Zika virus NS5 protein and SAH, we suggest that the four Zika NS5 substructures (residue orders: 101-112, 54-86, 127-136 and 146-161) and the residues (Ser56, Gly81, Arg84, Trp87, Thr104, Gly106, Gly107, His110, Asp146, Ile147, and Gly148) might be responsible for the selectivity of the new Zika virus drugs. For the binding motif of Zika NS5 protein and m7GTP, we suggest that the three Zika NS5 substructures (residue orders: 11-31, 146-161 and 207-218) and the residues (Asn17, Phe24, Lys28, Lys29, Ser150, Arg213, and Ser215) might be responsible for the selectivity of the new Zika virus drugs.

  7. Structure-activity relationship of linear peptide Bu-His6-DPhe7-Arg8-Trp9-Gly10-NH2 at the human melanocortin-1 and -4 receptors: DPhe7 and Trp9 substitution.

    PubMed

    Danho, Waleed; Swistok, Joseph; Cheung, Adrian Wai-Hing; Kurylko, Grazyna; Franco, Lucia; Chu, Xin-Jie; Chen, Li; Yagaloff, Keith

    2003-02-24

    A series of pentapeptides, based on hMC4R pentapeptide agonist (Bu-His(6)-DPhe(7)-Arg(8)-Trp(9)-Gly(10)-NH(2)), was prepared in which either DPhe(7) or Trp(9) residue was systematically substituted. A number of interesting DPhe surrogates (D-Thi, D-3-CF(3)Phe, D-2-Nal and D-3,4-diClPhe) as well as Trp surrogates (2-Nal and Bta) were identified in this study.

  8. Thermodynamics, morphology, and kinetics of early-stage self-assembly of π-conjugated oligopeptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Synthetic oligopeptides containing π-conjugated cores self-assemble novel materials with attractive electronic and photophysical properties. All-atom, explicit solvent molecular dynamics simulations of Asp-Phe-Ala-Gly-OPV3-Gly-Ala-Phe-Asp peptides were used to parameterize an implicit solvent model to simulate early-stage self-assembly. Under low-pH conditions, peptides assemble into β-sheet-like stacks with strongly favorable monomer association free energies of ΔF ≈ -25kBT. Aggregation at high-pH produces disordered aggregates destabilized by Coulombic repulsion between negatively charged Asp termini (ΔF ≈ -5kBT). In simulations of hundreds of monomers over 70 ns we observe the spontaneous formation of up to undecameric aggregates under low-pH conditions. Modeling assembly as a continuous-time Markovmore » process, we infer transition rates between different aggregate sizes and microsecond relaxation times for early-stage assembly. Our data suggests a hierarchical model of assembly in which peptides coalesce into small clusters over tens of nanoseconds followed by structural ripening and diffusion limited aggregation on longer time scales. This work provides new molecular-level understanding of early-stage assembly, and a means to study the impact of peptide sequence and aromatic core chemistry upon the thermodynamics, assembly kinetics, and morphology of the supramolecular aggregates.« less

  9. Thermodynamics, morphology, and kinetics of early-stage self-assembly of π-conjugated oligopeptides

    DOE PAGES

    None, None

    2016-03-22

    Synthetic oligopeptides containing π-conjugated cores self-assemble novel materials with attractive electronic and photophysical properties. All-atom, explicit solvent molecular dynamics simulations of Asp-Phe-Ala-Gly-OPV3-Gly-Ala-Phe-Asp peptides were used to parameterize an implicit solvent model to simulate early-stage self-assembly. Under low-pH conditions, peptides assemble into β-sheet-like stacks with strongly favorable monomer association free energies of ΔF ≈ -25kBT. Aggregation at high-pH produces disordered aggregates destabilized by Coulombic repulsion between negatively charged Asp termini (ΔF ≈ -5kBT). In simulations of hundreds of monomers over 70 ns we observe the spontaneous formation of up to undecameric aggregates under low-pH conditions. Modeling assembly as a continuous-time Markovmore » process, we infer transition rates between different aggregate sizes and microsecond relaxation times for early-stage assembly. Our data suggests a hierarchical model of assembly in which peptides coalesce into small clusters over tens of nanoseconds followed by structural ripening and diffusion limited aggregation on longer time scales. This work provides new molecular-level understanding of early-stage assembly, and a means to study the impact of peptide sequence and aromatic core chemistry upon the thermodynamics, assembly kinetics, and morphology of the supramolecular aggregates.« less

  10. Actin filaments regulate the adhesion between the plasma membrane and the cell wall of tobacco guard cells.

    PubMed

    Yu, Qin; Ren, Jing-Jing; Kong, Lan-Jing; Wang, Xiu-Ling

    2018-01-01

    During the opening and closing of stomata, guard cells undergo rapid and reversible changes in their volume and shape, which affects the adhesion of the plasma membrane (PM) to the cell wall (CW). The dynamics of actin filaments in guard cells are involved in stomatal movement by regulating structural changes and intracellular signaling. However, it is unclear whether actin dynamics regulate the adhesion of the PM to the CW. In this study, we investigated the relationship between actin dynamics and PM-CW adhesion by the hyperosmotic-induced plasmolysis of tobacco guard cells. We found that actin filaments in guard cells were depolymerized during mannitol-induced plasmolysis. The inhibition of actin dynamics by treatment with latrunculin B or jasplakinolide and the disruption of the adhesion between the PM and the CW by treatment with RGDS peptide (Arg-Gly-Asp-Ser) enhanced guard cell plasmolysis. However, treatment with latrunculin B alleviated the RGDS peptide-induced plasmolysis and endocytosis. Our results reveal that the actin depolymerization is involved in the regulation of the PW-CW adhesion during hyperosmotic-induced plasmolysis in tobacco guard cells.

  11. An antimicrobial peptide from the skin secretions of the mountain chicken frog Leptodactylus fallax (Anura:Leptodactylidae).

    PubMed

    Rollins-Smith, Louise A; King, Jay D; Nielsen, Per F; Sonnevend, Agnes; Conlon, J Michael

    2005-01-15

    A 25 amino-acid-residue, C-terminally alpha-amidated peptide with antimicrobial activity, which has been termed fallaxin, was isolated in high yield from the norepinephrine-stimulated skin secretions of the mountain chicken frog Leptodactylus fallax (Anura:Leptodactylidae). The amino acid sequence of the peptide (Gly-Val-Val-Asp-Ile-Leu-Lys-Gly-Ala-Ala-Lys-Asp-Ile-Ala-Gly-His-Leu-Ala-Ser-Lys-Val-Met-Asn-Lys-Leu.NH2) shows structural similarity with members of the ranatuerin-2 family previously isolated from the skins of frogs of the genus Rana that are only distantly related to the Leptodactylidae. This observation is consistent with the hypothesis that many frog skin antimicrobial peptides are related evolutionarily, having arisen from multiple duplications of an ancestral gene that existed before the radiation of the different families. Fallaxin inhibited the growth of reference strains of Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Enterobacter cloacae, Klebsiella pneumoniae) but with relatively low potency (MIC> or =20 microM) and was inactive against the Gram-positive bacterium (Staphylococcus aureus) and the yeast Candida albicans. The hemolytic activity of fallaxin was very low (HC50>200 microM). A second peptide, comprising residues (1-22) of fallaxin, was also isolated from the skin secretions but this component was inactive against the microorganisms tested.

  12. Interaction model of steviol glycosides from Stevia rebaudiana (Bertoni) with sweet taste receptors: A computational approach.

    PubMed

    Mayank; Jaitak, Vikas

    2015-08-01

    Docking studies were performed on natural sweeteners from Stevia rebaudiana by constructing homology models of T1R2 and T1R3 subunits of human sweet taste receptors. Ramachandran plot, PROCHECK results and ERRAT overall quality factor were used to validate the quality of models. Furthermore, docking results of steviol glycosides (SG's) were correlated significantly with data available in the literature which enabled to predict the exact sweetness rank order of SG's. The binding pattern indicated that Asn 44, Ans 52, Ala 345, Pro 343, Ile 352, Gly 346, Gly 47, Ala 354, Ser 336, Thr 326 and Ser 329 are the main interacting amino acid residues in case of T1R2 and Arg 56, Glu 105, Asp 215, Asp 216, Glu 148, Asp 258, Lys 255, Ser 104, Glu 217, Leu 51, Arg 52 for T1R3, respectively. Amino acids interact with SG's mainly by forming hydrogen bonds with the hydroxyl group of glucose moieties. Significant variation in docked poses of all the SG's were found. In this study, we have proposed the mechanism of the sweetness of the SG's in the form of multiple point stimulation model by considering the diverse binding patterns of various SG's, as well as their structural features. It will give further insight in understanding the differences in the quality of taste and will be used to improve the taste of SG's using semi-synthetic approaches. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Signature motif-guided identification of receptors for peptide hormones essential for root meristem growth.

    PubMed

    Song, Wen; Liu, Li; Wang, Jizong; Wu, Zhen; Zhang, Heqiao; Tang, Jiao; Lin, Guangzhong; Wang, Yichuan; Wen, Xing; Li, Wenyang; Han, Zhifu; Guo, Hongwei; Chai, Jijie

    2016-06-01

    Peptide-mediated cell-to-cell signaling has crucial roles in coordination and definition of cellular functions in plants. Peptide-receptor matching is important for understanding the mechanisms underlying peptide-mediated signaling. Here we report the structure-guided identification of root meristem growth factor (RGF) receptors important for plant development. An assay based on a signature ligand recognition motif (Arg-x-Arg) conserved in a subfamily of leucine-rich repeat receptor kinases (LRR-RKs) identified the functionally uncharacterized LRR-RK At4g26540 as a receptor of RGF1 (RGFR1). We further solved the crystal structure of RGF1 in complex with the LRR domain of RGFR1 at a resolution of 2.6 Å, which reveals that the Arg-x-Gly-Gly (RxGG) motif is responsible for specific recognition of the sulfate group of RGF1 by RGFR1. Based on the RxGG motif, we identified additional four RGFRs. Participation of the five RGFRs in RGF-induced signaling is supported by biochemical and genetic data. We also offer evidence showing that SERKs function as co-receptors for RGFs. Taken together, our study identifies RGF receptors and co-receptors that can link RGF signals with their downstream components and provides a proof of principle for structure-based matching of LRR-RKs with their peptide ligands.

  14. Peptide (Lys-Leu) and amino acids (Lys and Leu) supplementations improve physiological activity and fermentation performance of brewer's yeast during very high-gravity (VHG) wort fermentation.

    PubMed

    Yang, Huirong; Zong, Xuyan; Cui, Chun; Mu, Lixia; Zhao, Haifeng

    2017-12-22

    Lys and Leu were generally considered as the key amino acids for brewer's yeast during beer brewing. In the present study, peptide Lys-Leu and a free amino acid (FAA) mixture of Lys and Leu (Lys + Leu) were supplemented in 24 °P wort to examine their effects on physiological activity and fermentation performance of brewer's yeast during very high-gravity (VHG) wort fermentation. Results showed that although both peptide Lys-Leu and their FAA mixture supplementations could increase the growth and viability, intracellular trehalose and glycerol content, wort fermentability, and ethanol content for brewer's yeast during VHG wort fermentation, and peptide was better than their FAA mixture at promoting growth and fermentation for brewer's yeast when the same dose was kept. Moreover, peptide Lys-Leu supplementation significantly increased the assimilation of Asp, but decreased the assimilation of Gly, Ala, Val, (Cys)2, Ile, Leu, Tyr, Phe, Lys, Arg, and Pro. However, the FAA mixture supplementation only promoted the assimilation of Lys and Leu, while reduced the absorption of total amino acids to a greater extent. Thus, the peptide Lys-Leu was more effective than their FAA mixture on the improvement of physiological activity, fermentation performance, and nitrogen metabolism of brewer's yeast during VHG wort fermentation. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  15. A Novel High-Molecular-Mass Bacteriocin Produced by Enterococcus faecium: Biochemical Features and Mode of Action.

    PubMed

    Vasilchenko, A S; Vasilchenko, A V; Valyshev, A V; Rogozhin, E A

    2018-02-08

    Discovery of a novel bacteriocin is always an event in sciences, since cultivation of most bacterial species is a general problem in microbiology. This statement is reflected by the fact that number of bacteriocins is smaller for tenfold comparing to known antimicrobial peptides. We cultivated Enterococcus faecium on simplified medium to reduce amount of purification steps. This approach allows to purify the novel heavy weight bacteriocin produced by E. faecium ICIS 7. The novelty of this bacteriocin, named enterocin-7, was confirmed by N-terminal sequencing and by comparing the structural-functional properties with available data. Purified enterocin-7 is characterized by a sequence of amino acid residues having no homology in UniProt/SwissProt/TrEMBL databases: NH2 - Asp - Ala - His - Leu - Ser - Glu - Val - Ala - Glu - Arg - Phe - Glu - Asp - Leu - Gly. Isolated thermostable protein has a molecular mass of 65 kDa, which allows it to be classified into class III in bacteriocin classification schemes. Enterocin-7 displayed a broad spectrum of activity against some Gram-positive and Gram-negative microorganisms. Fluorescent microscopy and spectroscopy showed the permeabilizing mechanism of the action of enterocin-7, which is realized within a few minutes.

  16. Design of a new peptidomimetic agonist for the melanocortin receptors based on the solution structure of the peptide ligand, Ac-Nle-cyclo[Asp-Pro-DPhe-Arg-Trp-Lys]-NH(2).

    PubMed

    Fotsch, Christopher; Smith, Duncan M; Adams, Jeffrey A; Cheetham, Janet; Croghan, Michael; Doherty, Elizabeth M; Hale, Clarence; Jarosinski, Mark A; Kelly, Michael G; Norman, Mark H; Tamayo, Nuria A; Xi, Ning; Baumgartner, James W

    2003-07-21

    The solution structure of a potent melanocortin receptor agonist, Ac-Nle-cyclo[Asp-Pro-DPhe-Arg-Trp-Lys]-NH(2) (1) was calculated using distance restraints determined from 1H NMR spectroscopy. Eight of the lowest energy conformations from this study were used to identify non-peptide cores that mimic the spatial arrangement of the critical tripeptide region, DPhe-Arg-Trp, found in 1. From these studies, compound 2a, containing the cis-cyclohexyl core, was identified as a functional agonist of the melanocortin-4 receptor (MC4R) with an IC(50) and EC(50) below 10 nM. Compound 2a also showed 36- and 7-fold selectivity over MC3R and MC1R, respectively, in the binding assays. Subtle changes in cyclohexane stereochemistry and removal of functional groups led to analogues with lower affinity for the MC receptors.

  17. Ferrocene tripeptide Gly-Pro-Arg conjugates: synthesis and inhibitory effects on Alzheimer's Aβ(1-42) fibrillogenesis and Aβ-induced cytotoxicity in vitro.

    PubMed

    Zhou, Binbin; Li, Chun-Lan; Hao, Yuan-Qiang; Johnny, Muya Chabu; Liu, You-Nian; Li, Juan

    2013-01-15

    Alzheimer's disease (AD) is the most common cause of dementia, and currently there is no clinical treatment to cure it or to halt its progression. Aggregation and fibril formation of β-amyloid peptides (Aβ) are central events in the pathogenesis of AD. Many efforts have been spent on the development of effective inhibitors to prevent Aβ fibrillogenesis and cause disaggregation of preformed Aβ fibrils. In this study, the conjugates of ferrocene and Gly-Pro-Arg (GPR) tripeptide, Boc-Gly-Pro-Arg(NO(2))-Fca-OMe (4, GPR-Fca) and Fc-Gly-Pro-Arg-OMe (7, Fc-GPR) (Fc: ferrocene; Fca: ferrocene amino acid) were synthesized by HOBT/HBTU protocol in solution. These ferrocene GPR conjugates were employed to inhibit Aβ(1-42) fibrillogenesis and to disaggregate preformed Aβ fibrils. The inhibitory properties of ferrocene GPR conjugates on Aβ(1-42) fibrillogenesis were evaluated by thioflavin T (ThT) fluorescence assay, and confirmed by atomic force microscopy (AFM) analysis. The interaction between the ferrocene GPR conjugates and Aβ(1-42) was monitored by electrochemical means. Our results showed that both GPR and GPR-Fca can significantly inhibit the fibril formation of Aβ(1-42), and cause disaggregation of the preformed fibrils. As expected, GPR-Fca shows stronger inhibitory effect on Aβ(1-42) fibrillogenesis than that of its parent peptide GPR. In contrast, Fc-GPR shows no inhibitory effect on fibrillogenesis of Aβ(1-42). Furthermore, GPR-Fca demonstrates significantly protection against Aβ-induced cytotoxicity and exhibits high resistance to proteolysis and good lipophilicity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Evidence by site-directed mutagenesis that arginine 203 of thermolysin and arginine 717 of neprilysin (neutral endopeptidase) play equivalent critical roles in substrate hydrolysis and inhibitor binding.

    PubMed

    Marie-Claire, C; Ruffet, E; Antonczak, S; Beaumont, A; O'Donohue, M; Roques, B P; Fournié-Zaluski, M C

    1997-11-11

    Neprilysin (neutral endopeptidase-24.11, EC 3.4.24.11) is a mammalian zinc-endopeptidase involved in the degradation of biologically active peptides. Although no atomic structure is available for this enzyme, site-directed mutagenesis studies have shown that its active site resembles closely that of the bacterial zinc-endopeptidase, thermolysin (EC 3.4.24.27). One active site residue of thermolysin, Arg-203, is involved in inhibitor binding by forming hydrogen bonds with the carbonyl group of a residue in the P1 position and also participates in a hydrogen bond network involving Asp-170. Sequence alignment data shows that Arg-717 of neprilysin could play a similar role to Arg-203 of thermolysin. This was investigated by site-directed mutagenesis with Arg-203 of thermolysin and Arg-717 of neprilysin being replaced by methionine residues. This led, in both cases, to decreases in kcat/Km values, of 122-fold for neprilysin and 2300-fold for thermolysin, essentially due to changes in kcat. The Ki values of several inhibitors were also increased for the mutated enzymes. In addition, the replacement of Asp-170 of thermolysin by Ala residue resulted in a decrease in kcat/Km of 220-fold. The results, coupled with a molecular modeling study, suggest that Arg-717 of neprilysin corresponds to Arg-203 of thermolysin and that in both enzymes a hydrogen bond network exists, involving His-142, Asp-170, and Arg-203 in thermolysin and His-583, Asp-650, and Arg-717 in neprilysin, which is crucial for hydrolytic activity.

  19. Effects of peptides on proliferative activity of retinal and pigmented epithelial cells.

    PubMed

    Khavinson, V Kh; Zemchikhina, V N; Trofimova, S V; Malinin, V V

    2003-06-01

    We studied the effects of Retinalamin (polypeptide preparation isolated from the retina) and a synthetic peptide Epithalon (Ala-Glu-Asp-Gly) on proliferative activity of retinal and pigmented epithelial cells. Experiments showed that Retinalamin and Epithalon (in certain concentrations) tissue-specifically stimulated proliferation of retinal and pigmented epithelial cell in culture.

  20. Fibrinogen variant B[beta]D432A has normal polymerization but does not bind knob 'B'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowley, Sheryl R.; Lord, Susan T.; UNC)

    2009-10-23

    Fibrinogen residue B{beta}432Asp is part of hole 'b' that interacts with knob 'B,' whose sequence starts with Gly-His-Arg-Pro-amide (GHRP). Because previous studies showed B{beta}D432A has normal polymerization, we hypothesized that B{beta}432Asp is not critical for knob 'B' binding and that new knob-hole interactions would compensate for the loss of this Asp residue. To test this hypothesis, we solved the crystal structure of fragment D from B{beta}D432A. Surprisingly, the structure (rfD-B{beta}D432A+GH) showed the peptide GHRP was not bound to hole 'b.' We then re-evaluated the polymerization of this variant by examining clot turbidity, clot structure, and the rate of FXIIIa cross-linking.more » The turbidity and the rate of - dimer formation for B{beta}D432A were indistinguishable compared with normal fibrinogen. Scanning electron microscopy showed no significant differences between the clots of B{beta}D432A and normal, but the thrombin-derived clots had thicker fibers than clots obtained from batroxobin, suggesting that cleavage of FpB is more important than 'B:b' interactions. We conclude that hole 'b' and 'B:b' knob-hole binding per se have no influence on fibrin polymerization.« less

  1. Effects of short peptides on thymocyte blast transformation and signal transduction along the sphingomyelin pathway.

    PubMed

    Khavinson, V Kh; Rybakina, E G; Malinin, V V; Pivanovich, I Yu; Shanin, S N; Korneva, E A

    2002-05-01

    Immunomodulating effects of synthetic peptides Vilon (Lys-Glu), Epithalon (Ala-Glu-Asp-Gly), and Cortagen (Ala-Glu-Asp-Pro) and possible involvement of the sphingomyelin signal transduction pathway in their effects in mouse thymocytes were studied. Vilon produced the most potent comitogenic effect on thymocyte proliferation and modulated comitogenic activity of interleukin-1b. Epithalon was less potent, while Cortagen produced no such effects. Vilon produced a more pronounced stimulatory effect on sphingomyelinase activity in mouse thymocyte membranes compared to Epithalon and Cortagen.

  2. Structure of N-terminal sequence Asp-Ala-Glu-Phe-Arg-His-Asp-Ser of Aβ-peptide with phospholipase A2 from venom of Andaman Cobra sub-species Naja naja sagittifera at 2.0 Å resolution.

    PubMed

    Mirza, Zeenat; Pillai, Vikram Gopalakrishna; Zhong, Wei-Zhu

    2014-03-10

    Alzheimer's disease (AD) is one of the most significant social and health burdens of the present century. Plaques formed by extracellular deposits of amyloid β (Aβ) are the prime player of AD's neuropathology. Studies have implicated the varied role of phospholipase A2 (PLA2) in brain where it contributes to neuronal growth and inflammatory response. Overall contour and chemical nature of the substrate-binding channel in the low molecular weight PLA2s are similar. This study involves the reductionist fragment-based approach to understand the structure adopted by N-terminal fragment of Alzheimer's Aβ peptide in its complex with PLA2. In the current communication, we report the structure determined by X-ray crystallography of N-terminal sequence Asp-Ala-Glu-Phe-Arg-His-Asp-Ser (DAEFRHDS) of Aβ-peptide with a Group I PLA2 purified from venom of Andaman Cobra sub-species Naja naja sagittifera at 2.0 Å resolution (Protein Data Bank (PDB) Code: 3JQ5). This is probably the first attempt to structurally establish interaction between amyloid-β peptide fragment and hydrophobic substrate binding site of PLA2 involving H bond and van der Waals interactions. We speculate that higher affinity between Aβ and PLA2 has the therapeutic potential of decreasing the Aβ-Aβ interaction, thereby reducing the amyloid aggregation and plaque formation in AD.

  3. Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems.

    PubMed

    Rajapakse, Niranjan; Mendis, Eresha; Byun, Hee-Guk; Kim, Se-Kwon

    2005-09-01

    Low molecular weight peptides obtained from ultrafiltration (UF) of giant squid (Dosidicus gigas) muscle protein were studied for their antioxidative effects in different in vitro oxidative systems. The most potent two peptides, Asn-Ala-Asp-Phe-Gly-Leu-Asn-Gly-Leu-Glu-Gly-Leu-Ala (1307 Da) and Asn-Gly-Leu-Glu-Gly-Leu-Lys (747 Da), exhibited their antioxidant potential to act as chain-breaking antioxidants by inhibiting radical-mediated peroxidation of linoleic acid, and their activities were closer to highly active synthetic antioxidant, butylated hydroxytoluene. Addition of these peptides could enhance the viability of cytotoxic embryonic lung fibroblasts significantly (P<.05) at a low concentration of 50 microg/ml, and it was presumed due to the suppression of radical-induced oxidation of membrane lipids. Electron spin trapping studies revealed that the peptides were potent scavengers of free radicals in the order of carbon-centered (IC(50) 396.04 and 304.67 microM), hydroxyl (IC(50) 497.32 and 428.54 microM) and superoxide radicals (IC(50) 669.34 and 573.83 microM). Even though the exact molecular mechanism for scavenging of free radicals was unclear, unusually high hydrophobic amino acid composition (more than 75%) of giant squid muscle peptides was presumed to be involved in the observed activities.

  4. From topical antidote against skin irritants to a novel counter-irritating and anti-inflammatory peptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Berta; Erlanger-Rosengarten, Avigail; Proscura, Elena

    2008-06-15

    The primary purpose of the present study was to investigate the mechanism of the counter-irritating activity of topical iodine against skin lesions induced by chemical and thermal stimuli. The hypothesis that iodine exerts its activity by inducing an endogenous anti-inflammatory factor was confirmed by exposing guinea pig skin to heat stimulus followed by topical iodine treatment and skin extraction. Injection of the extract into naive guinea pigs reduced heat-induced irritation by 69%. The protective factor, identified as a new nonapeptide (histone H2A 36-44, H-Lys-Gly-Asn-Tyr-Ala-Glu-Arg-Ileu-Ala-OH), caused reduction of 40% in irritation score in heat-exposed guinea pigs. The murine analog (H-Lys-Gly-His-Tyr-Ala-Glu-Arg-Val-Gly-OH, termedmore » IIIM1) reduced sulfur mustard (SM)-induced ear swelling at a dose-dependent bell-shape manner reaching peak activity of 1 mg/kg. Cultured keratinocytes transfected with the peptide were more resistant towards SM than the control cells. The peptide suppressed oxidative burst in activated neutrophils in a concentration-dependent manner. In addition, the peptide reduced glucose oxidase-induced skin edema in mice at a dose-dependent bell-shape manner. Apart from thermal and chemical-induced skin irritation this novel peptide might be of potential use in chronic dermal disorders such as psoriasis and pemphigus as well as non-dermal inflammatory diseases like multiple sclerosis, arthritis and colitis.« less

  5. Peptide-Induced Antiviral Protection by Cytotoxic T Cells

    NASA Astrophysics Data System (ADS)

    Schulz, Manfred; Zinkernagel, Rolf M.; Hengartner, Hans

    1991-02-01

    A specific antiviral cytotoxic immune response in vivo could be induced by the subcutaneous injection of the T-cell epitope of the lymphocytic choriomeningitis virus (LCMV) nucleoprotein as an unmodified free synthetic peptide (Arg-Pro-Gln-Ala-Ser-Gly-Val-Tyr-Met-Gly-Asn-Leu-Thr-Ala-Gln) emulsified in incomplete Freund's adjuvant. This immunization rendered mice into a LCMV-specific protective state as shown by the inhibition of LCMV replication in spleens of such mice. The protection level of these mice correlated with the ability to respond to the peptide challenge by CD8^+ virus-specific cytotoxic T cells. This is a direct demonstration that peptide vaccines can be antivirally protective in vivo, thus encouraging further search for appropriate mixtures of stable peptides that may be used as T-cell vaccines.

  6. Truncation studies of alpha-melanotropin peptides identify tripeptide analogues exhibiting prolonged agonist bioactivity.

    PubMed

    Haskell-Luevano, C; Sawyer, T K; Hendrata, S; North, C; Panahinia, L; Stum, M; Staples, D J; Castrucci, A M; Hadley, M F; Hruby, V J

    1996-01-01

    Truncation studies of alpha-melanotropin peptides identify tripeptide analogues exhibiting prolonged agonist bioactivity: PEPTIDES 17(6) 995-1002, 1996.-Systematic analysis of fragment derivatives of the superpotent alpha-MSH analogue. Ac-Ser.Tyr-Ser-Nle4-Glu- His-DPhe7-Arg-Trp-Gly-Lys-Pro-Val-NH2(NDP-MSH), led to the discovery of tripeptide agonists possessing prolonged bioactivity in the frog skin assay. Of particular significance to this discovery was Ac-DPhe-Arg-DTrp-NH2, which was the most potent tripeptide in this series exhibiting sustained melanotropic activity. Different pharmacophore models appear to exist that are dependent on the substructure and stereochemistry of the MSH(6-9) "active site." The tripeptides Ac-DPhe-Arg-Trp-NH2, Ac-DPhe-Arg-DTrp-NH2, and Ac-DPhe-DArg-Trp-NH2 stereo-chemical combinations require only Phe7-Xaa8-Trp9, whereas Ac-DPhe-DArg-DTrp-NH2, Ac-Phe-Arg-DTrp-NH2, and Ac-Phe-Arg-Trp-NH2 additionally require His4 for minimal biological activity. Ac-DPhe-Arg-DTrp-NH2 represents a novel prototype lead for the development of MSH-based peptidomimetic agonists.

  7. Coarse-Grained Molecular Simulation of the Hierarchical Self-Assembly of π-Conjugated Optoelectronic Peptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mansbach, Rachael A.; Ferguson, Andrew L.

    Self-assembled aggregates of peptides containing aromatic groups possess optoelectronic properties that make them attractive targets for the fabrication of biocompatible electronics. Molecular-level understanding of how the microscopic peptide chemistry influences the properties of the aggregates is vital for rational peptide design. We construct a coarse-grained model of Asp-Phe-Ala-Gly-OPV3-Gly-Ala-Phe-Asp (DFAG-OPV3-GAFD) peptides containing OPV3 (distyrylbenzene) π-conjugated cores explicitly parameterized against all-atom calculations and perform molecular dynamics simulations of the self-assembly of hundreds of molecules over hundreds of nanoseconds. We observe a hierarchical assembly mechanism wherein ~2-8 peptides assemble into stacks with aligned aromatic cores that subsequently form elliptical aggregates and ultimately amore » branched network with a fractal dimensionality of ~1.5. The assembly dynamics are well described by a Smoluchowski coagulation process for which we extract rate constants from the molecular simulations to both furnish insight into the microscopic assembly kinetics and extrapolate our aggregation predictions to time and length scales beyond the reach of molecular simulation. Lastly, this study presents new molecular-level understanding of the morphology and dynamics of the spontaneous self-assembly of DFAG-OPV3-GAFD peptides and establishes a systematic protocol to develop coarse-grained models of optoelectronic peptides for the exploration and design of π-conjugated peptides with tunable optoelectronic properties.« less

  8. Coarse-Grained Molecular Simulation of the Hierarchical Self-Assembly of π-Conjugated Optoelectronic Peptides

    DOE PAGES

    Mansbach, Rachael A.; Ferguson, Andrew L.

    2017-02-10

    Self-assembled aggregates of peptides containing aromatic groups possess optoelectronic properties that make them attractive targets for the fabrication of biocompatible electronics. Molecular-level understanding of how the microscopic peptide chemistry influences the properties of the aggregates is vital for rational peptide design. We construct a coarse-grained model of Asp-Phe-Ala-Gly-OPV3-Gly-Ala-Phe-Asp (DFAG-OPV3-GAFD) peptides containing OPV3 (distyrylbenzene) π-conjugated cores explicitly parameterized against all-atom calculations and perform molecular dynamics simulations of the self-assembly of hundreds of molecules over hundreds of nanoseconds. We observe a hierarchical assembly mechanism wherein ~2-8 peptides assemble into stacks with aligned aromatic cores that subsequently form elliptical aggregates and ultimately amore » branched network with a fractal dimensionality of ~1.5. The assembly dynamics are well described by a Smoluchowski coagulation process for which we extract rate constants from the molecular simulations to both furnish insight into the microscopic assembly kinetics and extrapolate our aggregation predictions to time and length scales beyond the reach of molecular simulation. Lastly, this study presents new molecular-level understanding of the morphology and dynamics of the spontaneous self-assembly of DFAG-OPV3-GAFD peptides and establishes a systematic protocol to develop coarse-grained models of optoelectronic peptides for the exploration and design of π-conjugated peptides with tunable optoelectronic properties.« less

  9. Familial hypofibrinogenaemia associated with heterozygous substitution of a conserved arginine residue; Bbeta255 Arg-->His (Fibrinogen Merivale).

    PubMed

    Maghzal, Ghassan J; Brennan, Stephen O; Fellowes, Andrew P; Spearing, Ruth; George, Peter M

    2003-02-21

    Sequencing of all three fibrinogen genes from an individual with hypofibrinogenaemia led to the identification of two new point mutations in the Bbeta gene. Family studies showed the mutations Bbeta255 Arg-->His (Fibrinogen Merivale) and Bbeta148 Lys-->Asn (Fibrinogen Merivale II) were on different alleles and that only the Bbeta255 Arg-->His mutation segregated with hypofibrinogenaemia. Three simple heterozygotes for this mutation had mean fibrinogen concentrations of 1.4 mg/ml, while heterozygotes for the Bbeta148 Lys-->Asn mutation had normal fibrinogen concentrations. ESI MS analysis of endoproteinase Asp-N digests of Bbeta chains showed that the Bbeta255 Arg-->His substitution was not expressed in plasma, confirming it as the cause of the hypofibrinogenaemia. The Bbeta148 Lys-->Asn chains, on the other hand, were equally expressed with wild-type Bbeta chains in simple heterozygotes. Genotype analysis failed to detect either substitution in 182 healthy controls. Arg(255) is located in the first strand of the five-stranded sheet that forms the main feature of the betaD domain and appears to form an essential H bond with Gly(414). Both the Arg and Gly are absolutely conserved, not only in all known Bbeta chains, but also in all homologous alphaE and gamma chains and in all fibrinogen-related proteins. Protein instability from loss of this contact could easily explain the association of this mutation with hypofibrinogenaemia.

  10. Combined effects of ankylosing spondylitis-associated ERAP1 polymorphisms outside the catalytic and peptide-binding sites on the processing of natural HLA-B27 ligands.

    PubMed

    Martín-Esteban, Adrian; Gómez-Molina, Patricia; Sanz-Bravo, Alejandro; López de Castro, José A

    2014-02-14

    ERAP1 polymorphism involving residues 528 and 575/725 is associated with ankylosing spondylitis among HLA-B27-positive individuals. We used four recombinant variants to address the combined effects of the K528R and D575N polymorphism on the processing of HLA-B27 ligands. The hydrolysis of a fluorogenic substrate, Arg-528/Asp-575 < Lys-528/Asp-575 < Arg-528/Asn-575 < Lys-528/Asn-575, indicated that the relative activity of variants carrying Arg-528 or Lys-528 depends on residue 575. Asp-575 conferred lower activity than Asn-575, but the difference depended on residue 528. The same hierarchy was observed with synthetic precursors of HLA-B27 ligands, but the effects were peptide-dependent. Sometimes the epitope yields were variant-specific at all times. For other peptides, concomitant generation and destruction led to similar epitope amounts with all the variants at long, but not at short, digestion times. The generation/destruction balance of two related HLA-B27 ligands was analyzed in vitro and in live cells. Their relative yields at long digestion times were comparable with those from HLA-B27-positive cells, suggesting that ERAP1 was a major determinant of the abundance of these peptides in vivo. The hydrolysis of fluorogenic and peptide substrates by an HLA-B27 ligand or a shorter peptide, respectively, was increasingly inhibited as a function of ERAP1 activity, indicating that residues 528 and 575 affect substrate inhibition of ERAP1 trimming. The significant and complex effects of co-occurring ERAP1 polymorphisms on multiple HLA-B27 ligands, and their potential to alter the immunological and pathogenetic features of HLA-B27 as a function of the ERAP1 context, explain the epistatic association of both molecules in ankylosing spondylitis.

  11. Combined Effects of Ankylosing Spondylitis-associated ERAP1 Polymorphisms Outside the Catalytic and Peptide-binding Sites on the Processing of Natural HLA-B27 Ligands*

    PubMed Central

    Martín-Esteban, Adrian; Gómez-Molina, Patricia; Sanz-Bravo, Alejandro; López de Castro, José A.

    2014-01-01

    ERAP1 polymorphism involving residues 528 and 575/725 is associated with ankylosing spondylitis among HLA-B27-positive individuals. We used four recombinant variants to address the combined effects of the K528R and D575N polymorphism on the processing of HLA-B27 ligands. The hydrolysis of a fluorogenic substrate, Arg-528/Asp-575 < Lys-528/Asp-575 < Arg-528/Asn-575 < Lys-528/Asn-575, indicated that the relative activity of variants carrying Arg-528 or Lys-528 depends on residue 575. Asp-575 conferred lower activity than Asn-575, but the difference depended on residue 528. The same hierarchy was observed with synthetic precursors of HLA-B27 ligands, but the effects were peptide-dependent. Sometimes the epitope yields were variant-specific at all times. For other peptides, concomitant generation and destruction led to similar epitope amounts with all the variants at long, but not at short, digestion times. The generation/destruction balance of two related HLA-B27 ligands was analyzed in vitro and in live cells. Their relative yields at long digestion times were comparable with those from HLA-B27-positive cells, suggesting that ERAP1 was a major determinant of the abundance of these peptides in vivo. The hydrolysis of fluorogenic and peptide substrates by an HLA-B27 ligand or a shorter peptide, respectively, was increasingly inhibited as a function of ERAP1 activity, indicating that residues 528 and 575 affect substrate inhibition of ERAP1 trimming. The significant and complex effects of co-occurring ERAP1 polymorphisms on multiple HLA-B27 ligands, and their potential to alter the immunological and pathogenetic features of HLA-B27 as a function of the ERAP1 context, explain the epistatic association of both molecules in ankylosing spondylitis. PMID:24352655

  12. Effect of ADRB2 polymorphisms on the efficacy of salmeterol and tiotropium in preventing COPD exacerbations: a prespecified substudy of the POET-COPD trial.

    PubMed

    Rabe, Klaus F; Fabbri, Leonardo M; Israel, Elliot; Kögler, Harald; Riemann, Kathrin; Schmidt, Hendrik; Glaab, Thomas; Vogelmeier, Claus F

    2014-01-01

    The effect of β2-adrenergic receptor (ADRB2) polymorphisms on the treatment response to longacting bronchodilators in chronic obstructive pulmonary disease (COPD) is unclear. We aimed to establish whether ADRB2 polymorphisms differentially affected COPD exacerbation outcomes in response to tiotropium versus salmeterol. We did a prespecified analysis of the ADRB2 polymorphisms Arg16Gly and Gln27Glu within the 1 year randomised, double-blind, double-dummy, parallel-group Prevention Of Exacerbations with Tiotropium in COPD (POET-COPD) trial, comparing the effects of treatment with tiotropium or salmeterol on exacerbations in 7376 patients with COPD. One blood sample was collected for pharmacogenetic testing from each patient who elected to participate in the substudy. Random assignment of patients to treatment groups was not stratified according to genotypes. Genomic DNA was extracted from whole-blood specimens and samples were genotyped for the two SNPs, rs1042713 (Arg16Gly) and rs1042714 (Gln27Glu). All assays were done in technical duplicates and 10% of samples that were randomly chosen were repeated as technical duplicates in a second independent genotyping process. Our primary endpoint was the risk of a first exacerbation of COPD based on time to first exacerbation data. An exacerbation of COPD was defined as the increase or new onset of more than one symptom of COPD (cough, sputum, wheezing, dyspnoea, or chest tightness), with at least one of the symptoms lasting for 3 days or more and needing treatment with antibiotics or systemic glucocorticoids (moderate exacerbations), or admission to hospital (severe exacerbations). POET-COPD is registered with ClinicalTrials.gov, number NCT00563381. 5125 patients gave informed consent for genotyping. The distributions of ADRB2 genotypes were well matched among groups. Polymorphisms at aminoacid 27 did not affect exacerbation outcomes. In the salmeterol group, patients with Arg16Arg genotype had a significantly reduced exacerbation risk compared with patients with Arg16Gly (p=0·0130) and Gly16Gly (p=0·0018) genotypes (proportion of patients with at least one exacerbation was 32·3% in Arg16Arg, 39·8% in Arg16Gly, and 42·1% in Gly16Gly). By contrast, exacerbation risk was not modified by polymorphisms at aminoacid 16 in the tiotropium group. The effect of the Arg16Gly polymorphism on treatment response to salmeterol was dependent on the use of inhaled corticosteroids (ICS). In patients untreated with ICS at baseline, Arg16Gly and Arg16Arg genotypes were associated with significantly prolonged time to first exacerbation compared with Gly16Gly (vs Arg16Gly p=0·0164; Arg16Arg p=0·0316; proportion of patients with at least one exacerbation was 28·3% in Arg16Arg, 31·6% in Arg16Gly, and 39·2% in Gly16Gly), whereas in patients on ICS at baseline, only the Arg16Arg genotype was associated with significantly prolonged time to first exacerbation compared with Gly16Gly (p=0·0198; not Arg16Gly p=0·64; proportion of patients with at least one exacerbation was 35·9% in Arg16Arg, 46·7% in Arg16Gly, and 44·8% in Gly16Gly). The respiratory disorders, in particular worsening of COPD, were the most common serious adverse events. Patients with the Arg16Arg genotype had better exacerbation outcomes in response to salmeterol than Gly16Gly and Arg16Gly genotypes, suggesting a potential differential Arg16Gly genotype effect on treatment response to longacting β-agonists (LABAs). However, the use of ADRB2 polymorphisms for predicting LABA treatment response is still limited and further prospective validation will be needed to advance the mechanistic understanding of β-adrenergic polymorphisms and their association with clinical features of COPD. Boehringer Ingelheim and Pfizer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Purification and characterization of angiotensin I converting enzyme inhibition peptides from sandworm Sipunculus nudus

    NASA Astrophysics Data System (ADS)

    Sun, Xueping; Wang, Man; Liu, Buming; Sun, Zhenliang

    2017-10-01

    Three angiotensin I converting enzyme (ACE) inhibition peptides were isolated from sandworm Sipunculus nudus protein hydrolysate prepared using protamex. Consecutive purification methods, including size exclusion chromatography and reverse-phase high performance liquid chromatography (RP-HPLC), were used to isolate the ACE inhibition peptides. The amino acid sequences of the peptides were identified as Ile-Asn-Asp, Val-Glu-Pro-Gly and Leu-Ala-Asp-Glu-Phe. The IC50 values of the purified peptides for ACE inhibition activity were 34.72 μmol L-1, 20.55 μmol L-1 and 22.77 μmol L-1, respectively. These results suggested that S. nudus proteins contain specific peptides that can be released by enzymatic hydrolysis. This study may provide an experimental basis for further systematic research, rational development and clinical utilization of sandworm resources.

  14. Un-catalyzed peptide bond formation between two monomers of glycine, alanine, serine, threonine, and aspartic acid in gas phase: a density functional theory study

    NASA Astrophysics Data System (ADS)

    Bhunia, Snehasis; Singh, Ajeet; Ojha, Animesh K.

    2016-05-01

    In the present report, un-catalyzed peptide bond formation between two monomers of glycine (Gly), alanine (Ala), serine (Ser), threonine (Thr), and aspartic acid (Asp) has been investigated in gas phase via two steps reaction mechanism and concerted mechanism at B3LYP/6-31G(d,p) and M062X/6-31G(d,p) level of theories. The peptide bond is formed through a nucleophilic reaction via transition states, TS1 and TS2 in stepwise mechanism. The TS1 reveals formation of a new C-N bond while TS2 illustrate the formation of C=O bond. In case of concerted mechanism, C-N bond is formed by a single four-centre transition state (TS3). The energy barrier is used to explain the involvement of energy at each step of the reaction. The energy barrier (20-48 kcal/mol) is required for the transformation of reactant state R1 to TS1 state and intermediate state I1 to TS2 state. The large value of energy barrier is explained in terms of distortion and interaction energies for stepwise mechanism. The energy barrier of TS3 in concerted mechanism is very close to the energy barrier of the first transition state (TS1) of the stepwise mechanism for the formation of Gly-Gly and Ala-Ala di- peptide. However, in case of Ser-Ser, Thr-Thr and Asp-Asp di-peptide, the energy barrier of TS3 is relatively high than that of the energy barrier of TS1 calculated at B3LYP/6-31G(d,p) and M062X/6-31G(d,p) level of theories. In both the mechanisms, the value of energy barrier calculated at B3LYP/6-31G(d,p) level of theory is greater than that of the value calculated at M062X/6-31G(d,p) level of theory.

  15. Analyses of insulin-potentiating fragments of human growth hormone by computative simulation; essential unit for insulin-involved biological responses.

    PubMed

    Ohkura, K; Hori, H

    2000-07-01

    We analyzed the structural features of insulin-potentiating fragments of human growth hormone by computative simulations. The peptides were designated from the N-terminus sequences of the hormone positions at 1-15 (hGH(1-15); H2N-Phe1-Pro2-Thr3-Ile4-Pro5-Leu6-Ser7-Arg8-L eu9-Phe10-Asp11-Asn12-Ala13-Met14-Leu15 -COOH), 6-13 (hGH(6-13)), 7-13 (hGH(7-13)) and 8-13 (hGH(8-13)), which enhanced insulin-producing hypoglycemia. In these peptide molecules, ionic bonds were predicted to form between 8th-arginyl residue and 11th-aspartic residue, and this intramolecular interaction caused the formation of a macrocyclic structure containing a tetrapeptide Arg8-Leu9-Phe10-Asp11. The peptide positions at 6-10 (hGH(6-10)), 9-13 (hGH(9-13)) and 10-13 (hGH(10-13)) did not lead to a macrocyclic formation in the molecules, and had no effect on the insulin action. Although beta-Ala13hGH(1-15), in which the 13th-alanine was replaced by a beta-alanyl residue, had no effect on insulin-producing hypoglycemia, the macrocyclic region (Arg8-Leu9-Phe10-Asp11) was observed by the computative simulation. An isothermal vibration analysis of both of beta-Ala13hGH(1-15) and hGH(1-15) peptide suggested that beta-Ala13hGH(1-15) is molecule was more flexible than hGH(1-15); C-terminal carboxyl group of Leu15 easily accessed to Arg8 and inhibited the ionic bond formation between Arg8 and Asp11 in beta-Ala13hGH(1-15). The peptide of hGH(8-13) dose-dependently enhanced the insulin-involved fatty acid synthesis in rat white adipocytes, and stabilized the C6-NBD-PC (1-acyl-2-[6-[(7-nitro-2,1,3benzoxadiazol-4-yl)amino]-caproyl]-sn- glycero-3-phosphatidylcholine) model membranes. In contrast, hGH(9-13) had no effect both on the fatty acid synthesis and the membrane stability. In the same culture conditions as the fatty acid synthesis assay, hGH(8-13) had no effect on the transcript levels of glucose transporter isoforms (GLUT 1, 4) and hexokinase isozymes (HK I, II) in rat white adipocytes. Judging from these results we considered that the macrocyclic structure in human growth hormonal peptides is regarded with the modification of insulin action, and hGH(8-13) is an essential sequence for the modification of insulin action. This hGH(8-13) peptide modifies the insulin action via stabilizing the cell membrane, and does not directly act on the insulin-involved glucose metabolism.

  16. Effect of charged amino acid side chain length on lateral cross-strand interactions between carboxylate- and guanidinium-containing residues in a β-hairpin.

    PubMed

    Kuo, Hsiou-Ting; Liu, Shing-Lung; Chiu, Wen-Chieh; Fang, Chun-Jen; Chang, Hsien-Chen; Wang, Wei-Ren; Yang, Po-An; Li, Jhe-Hao; Huang, Shing-Jong; Huang, Shou-Ling; Cheng, Richard P

    2015-05-01

    β-Sheet is one of the major protein secondary structures. Oppositely charged residues are frequently observed across neighboring strands in antiparallel sheets, suggesting the importance of cross-strand ion pairing interactions. The charged amino acids Asp, Glu, Arg, and Lys have different numbers of hydrophobic methylenes linking the charged functionality to the backbone. To investigate the effect of side chain length of guanidinium- and carboxylate-containing residues on lateral cross-strand ion pairing interactions at non-hydrogen-bonded positions, β-hairpin peptides containing Zbb-Agx (Zbb = Asp, Glu, Aad in increasing length; Agx = Agh, Arg, Agb, Agp in decreasing length) sequence patterns were studied by NMR methods. The fraction folded population and folding energy were derived from the chemical shift deviation data. Peptides with high fraction folded populations involved charged residue side chain lengths that supported high strand propensity. Double mutant cycle analysis was used to determine the interaction energy for the potential lateral ion pairs. Minimal interaction was observed between residues with short side chains, most likely due to the diffused positive charge on the guanidinium group, which weakened cross-strand electrostatic interactions with the carboxylate side chain. Only the Aad-Arg/Agh interactions with long side chains clearly exhibited stabilizing energetics, possibly relying on hydrophobics. A survey of a non-redundant protein structure database revealed that the statistical sheet pair propensity followed the trend Asp-Arg < Glu-Arg, implying the need for matching long side chains. This suggested the need for long side chains on both guanidinium-bearing and carboxylate-bearing residues to stabilize the β-hairpin motif.

  17. Missense SLC25A38 variations play an important role in autosomal recessive inherited sideroblastic anemia

    PubMed Central

    Kannengiesser, Caroline; Sanchez, Mayka; Sweeney, Marion; Hetet, Gilles; Kerr, Briedgeen; Moran, Erica; Fuster Soler, Jose L.; Maloum, Karim; Matthes, Thomas; Oudot, Caroline; Lascaux, Axelle; Pondarré, Corinne; Sevilla Navarro, Julian; Vidyatilake, Sudharma; Beaumont, Carole; Grandchamp, Bernard; May, Alison

    2011-01-01

    Background Congenital sideroblastic anemias are rare disorders with several genetic causes; they are characterized by erythroblast mitochondrial iron overload, differ greatly in severity and some occur within a syndrome. The most common cause of non-syndromic, microcytic sideroblastic anemia is a defect in the X-linked 5-aminolevulinate synthase 2 gene but this is not always present. Recently, variations in the gene for the mitochondrial carrier SLC25A38 were reported to cause a non-syndromic, severe type of autosomal-recessive sideroblastic anemia. Further evaluation of the importance of this gene was required to estimate the proportion of patients affected and to gain further insight into the range and types of variations involved. Design and Methods In three European diagnostic laboratories sequence analysis of SLC25A38 was performed on DNA from patients affected by congenital sideroblastic anemia of a non-syndromic nature not caused by variations in the 5-aminolevulinate synthase 2 gene. Results Eleven patients whose ancestral origins spread across several continents were homozygous or compound heterozygous for ten different SLC25A38 variations causing premature termination of translation (p.Arg117X, p.Tyr109LeufsX43), predicted splicing alteration (c.625G>C; p.Asp209His) or missense substitution (p.Gln56Lys, p.Arg134Cys, p.Ile147Asn, p.Arg187Gln, p.Pro190Arg, p.Gly228Val, p.Arg278Gly). Only three of these variations have been described previously (p.Arg117X, p.Tyr109LeufsX43 and p.Asp209His). All new variants reported here are missense and affect conserved amino acids. Structure modeling suggests that these variants may influence different aspects of transport as described for mutations in other mitochondrial carrier disorders. Conclusions Mutations in the SLC25A38 gene cause severe, non-syndromic, microcytic/hypochromic sideroblastic anemia in many populations. Missense mutations are shown to be of importance as are mutations that affect protein production. Further investigation of these mutations should shed light on structure-function relationships in this protein. PMID:21393332

  18. Peptide-modified PELCL electrospun membranes for regulation of vascular endothelial cells.

    PubMed

    Zhou, Fang; Jia, Xiaoling; Yang, Yang; Yang, Qingmao; Gao, Chao; Zhao, Yunhui; Fan, Yubo; Yuan, Xiaoyan

    2016-11-01

    The efficiency of biomaterials used in small vascular repair depends greatly on their ability to interact with vascular endothelial cells (VECs). Rapid endothelialization of the vascular grafts is a promising way to prevent thrombosis and intimal hyperplasia. In this work, modification of electrospun membranes of poly(ethylene glycol)-b-poly(l-lactide-co-ε-caprolactone) (PELCL) by three different peptides for regulation of VECs were studied in order to obtain ideal bioactive biomaterials as small diameter vascular grafts. QK (a mimetic peptide to vascular endothelial growth factor), Arg-Glu-Asp-Val (REDV, a specific adhesive peptide to VECs) and Val-Ala-Pro-Gly (VAPG, a specific adhesive peptide to vascular smooth muscle cells) were investigated. Surface properties of the modified membranes and the response of VECs were verified. It was found that protein adsorption and platelet adhesion were effectively suppressed with the introduction of QK, REDV or VAPG peptides on the PELCL electrospun membranes. Both QK- and REDV-modified electrospun membranes could accelerate the proliferation of VECs in the first 9days, and the QK-modified electrospun membrane promoted cell proliferation more significantly than the REDV-modified one. The REDV-modified PELCL membrane was the most favorable for VECs adhesion than QK- and VAPG-modified membranes. It was suggested that QK- or REDV-modified PELCL electrospun membranes may have great potential applications in cardiovascular biomaterials for rapid endothelialization in situ. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Extracellular matrix stiffness causes systematic variations in proliferation and chemosensitivity in myeloid leukemias.

    PubMed

    Shin, Jae-Won; Mooney, David J

    2016-10-25

    Extracellular matrix stiffness influences biological functions of some tumors. However, it remains unclear how cancer subtypes with different oncogenic mutations respond to matrix stiffness. In addition, the relevance of matrix stiffness to in vivo tumor growth kinetics and drug efficacy remains elusive. Here, we designed 3D hydrogels with physical parameters relevant to hematopoietic tissues and adapted them to a quantitative high-throughput screening format to facilitate mechanistic investigations into the role of matrix stiffness on myeloid leukemias. Matrix stiffness regulates proliferation of some acute myeloid leukemia types, including MLL-AF9 + MOLM-14 cells, in a biphasic manner by autocrine regulation, whereas it decreases that of chronic myeloid leukemia BCR-ABL + K-562 cells. Although Arg-Gly-Asp (RGD) integrin ligand and matrix softening confer resistance to a number of drugs, cells become sensitive to drugs against protein kinase B (PKB or AKT) and rapidly accelerated fibrosarcoma (RAF) proteins regardless of matrix stiffness when MLL-AF9 and BCR-ABL are overexpressed in K-562 and MOLM-14 cells, respectively. By adapting the same hydrogels to a xenograft model of extramedullary leukemias, we confirm the pathological relevance of matrix stiffness in growth kinetics and drug sensitivity against standard chemotherapy in vivo. The results thus demonstrate the importance of incorporating 3D mechanical cues into screening for anticancer drugs.

  20. Applications of Microscale Technologies for Regenerative Dentistry

    PubMed Central

    Hacking, S.A.; Khademhosseini, A.

    2009-01-01

    While widespread advances in tissue engineering have occurred over the past decade, many challenges remain in the context of tissue engineering and regeneration of the tooth. For example, although tooth development is the result of repeated temporal and spatial interactions between cells of ectoderm and mesoderm origin, most current tooth engineering systems cannot recreate such developmental processes. In this regard, microscale approaches that spatially pattern and support the development of different cell types in close proximity can be used to regulate the cellular microenvironment and, as such, are promising approaches for tooth development. Microscale technologies also present alternatives to conventional tissue engineering approaches in terms of scaffolds and the ability to direct stem cells. Furthermore, microscale techniques can be used to miniaturize many in vitro techniques and to facilitate high-throughput experimentation. In this review, we discuss the emerging microscale technologies for the in vitro evaluation of dental cells, dental tissue engineering, and tooth regeneration. Abbreviations: AS, adult stem cell; BMP, bone morphogenic protein; ECM, extracellular matrix; ES, embryonic stem cell; HA, hydroxyapatite; FGF-2, fibroblast growth factor; iPS, inducible pleuripotent stem cell; IGF-1, insulin-like growth factor; PDGF, platelet-derived growth factor; PDMS, poly(dimethylsiloxane); PGA, polyglycolate; PGS, polyglycerol sebacate; PLGA, poly-L-lactate-co-glycolate; PLL, poly-L-lactate; RGD, Arg-Gly-Asp attachment site; TCP, tricalcium phosphate; TGF-β, transforming growth factor beta; and VEGF, vascular endothelial growth factor. PMID:19493883

  1. New peptidomimetics of insulin.

    PubMed

    Maslov, D L; Lokhov, P G; Abakumova, O Yu; Tsvetkova, T A; Prozorovskiy, V N

    2002-08-01

    New peptidomimetics that have been obtained in the course of our experimental work show distinct insulin-like activity both in vitro and in vivo. The first peptidomimetic (PM 1) is essentially a decapeptide in which sites of A (20-21) and B (19-26) chains of insulin are linked by the peptides bond (Cys-Gly-Glu-Arg-Gly-Phe-Phe-Tyr-Cys-Asn). The second peptidomimetic (PM 2) has similar set of amino acid residues, except that two aromatic amino acids corresponding to the residues of B chain of insulin (B24 and B26) have been replaced with their D optical isomers (Cys-Gly-Glu-Arg-Gly-DPhe-Phe-DTyr-Cys-Asn). The third peptidomimetic (PM 3) has been obtained through acylation of N-terminal of PM 1 by the use of palmitic acid. The peptidomimetic incorporating D aromatic amino acids (PM 2) was demonstrated to exhibit more pronounced hypoglycemic impact, while the acylation of decapeptide tends to prolong the effective time of peptidomimetic influence in vivo.

  2. Effects of the amino acid linkers on the melanoma-targeting and pharmacokinetic properties of 111In-labeled lactam bridge-cyclized alpha-MSH peptides.

    PubMed

    Guo, Haixun; Yang, Jianquan; Gallazzi, Fabio; Miao, Yubin

    2011-04-01

    The purpose of this study was to examine the profound effects of the amino acid linkers on the melanoma-targeting and pharmacokinetic properties of (111)In-labeled lactam bridge-cyclized DOTA-[X]-CycMSH(hex) {1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-[X]-c[Asp-His-dPhe-Arg-Trp-Lys]-CONH(2); X = GGNle, GENle, or NleGE; GG = -Gly-Gly- and GE = -Gly-Glu-} peptides. Three novel peptides (DOTA-GGNle-CycMSH(hex), DOTA-GENle-CycMSH(hex), and DOTA-NleGE-CycMSH(hex)) were designed and synthesized. The melanocortin-1 (MC1) receptor-binding affinities of the peptides were determined in B16/F1 melanoma cells. The melanoma-targeting and pharmacokinetic properties of (111)In-DOTA-GGNle-CycMSH(hex) and (111)In-DOTA-GENle-CycMSH(hex) were determined in B16/F1 melanoma-bearing C57 mice. DOTA-GGNle-CycMSH(hex) and DOTA-GENle-CycMSH(hex) displayed 2.1 and 11.5 nM MC1 receptor-binding affinities, whereas DOTA-NleGE-CycMSH(hex) showed 873.4 nM MC1 receptor-binding affinity. The introduction of the -GG- linker maintained high melanoma uptake while decreasing kidney and liver uptake of (111)In-DOTA-GGNle-CycMSH(hex). The tumor uptake of (111)In-DOTA-GGNle-CycMSH(hex) was 19.05 ± 5.04 and 18.6 ± 3.56 percentage injected dose per gram at 2 and 4 h after injection, respectively. (111)In-DOTA-GGNle-CycMSH(hex) exhibited 28%, 32%, and 42% less kidney uptake than (111)In-DOTA-Nle-CycMSH(hex) we reported previously, and 61%, 65%, and 68% less liver uptake than (111)In-DOTA-Nle-CycMSH(hex) at 2, 4, and 24 h after injection, respectively. The amino acid linkers exhibited profound effects on the melanoma-targeting and pharmacokinetic properties of the (111)In-labeled lactam bridge-cyclized α-melanocyte-stimulating hormone peptides. Introduction of the -GG- linker maintained high melanoma uptake while reducing kidney and liver uptake of (111)In-DOTA-GGNle-CycMSH(hex), highlighting its potential as an effective imaging probe for melanoma detection, as well as a therapeutic peptide for melanoma treatment when labeled with a therapeutic radionuclide.

  3. Isolation and structural analysis of antihypertensive peptides that exist naturally in Gouda cheese.

    PubMed

    Saito, T; Nakamura, T; Kitazawa, H; Kawai, Y; Itoh, T

    2000-07-01

    Seven kinds of ripened cheeses (8-mo-aged and 24-mo-aged Gouda, Emmental, Blue, Camembert, Edam, and Havarti) were homogenized with distilled water, and water-soluble peptides were prepared by C-18 hydrophobic chromatography. The inhibitory activity to angiotensin I-converting enzyme and decrease in the systolic blood pressure in spontaneously hypertensive rats were measured before and after oral administration of each peptide sample. The strongest depressive effect in the systolic blood pressure (-24.7 mm Hg) and intensive inhibitory activity to angiotensin I-converting enzyme (75.7%) were detected in the peptides from 8-mo-aged Gouda cheese. Four peptides were isolated by HPLC with reverse-phase and gel filtration modes. Their chemical structures and origins, clarified by combination analyses of protein sequencing, amino acid composition, and mass spectrometry, were as follows: peptide A, Arg-Pro-Lys-His-Pro-Ile-Lys-His-Gln [alpha(s1)-casein (CN), B-8P; f 1-9]; peptide B, Arg-Pro-Lys-His-Pro-Ile-Lys-His-Gln-Gly-Leu-Pro-Gln (alpha(s1)-CN, B-8P; f 1-13); peptide F, Tyr-Pro-Phe-Pro-Gly-Pro-Ile-Pro-Asn (beta-CN, A2-5P; f 60-68); and peptide G, Met-Pro-Phe-Pro-Lys-Tyr-Pro-Val-Gln-Pro-Phe (beta-CN, A2-5P; f 109-119). Peptides A and F, which were chemically synthesized, showed potent angiotensin I-converting enzyme inhibitory activity with little antihypertensive effects.

  4. [Rhythm of protein synthesis in cultures of hepatocytes from rats of different ages. Norm and effect of the peptide livagen].

    PubMed

    Brodskiĭ, V Ia; Khavinson, V Kh; Zolotarev, Iu A; Nechaeva, N V; Malinin, V V; Novikova, T E; Gvazava, I G; Fateeva, V I

    2001-01-01

    The circumhoralian rhythm of protein synthesis was determined in a monolayer culture of hepatocytes from rats at the age of 1 to 24 months and weighing from 45 to 480 g, respectively. The peptide lyvagen (Lys-Glu-Asp-Ala) obtained by directed chemical synthesis on the basis of amino acid analysis of the liver polypeptide preparations increased the level of protein synthesis in the hepatocytes from rats of different ages; the highest effect was observed in the cells of old animals. In old rats, lyvagen increased the amplitude of protein synthesis fluctuations. The peptide epitalon (Ala-Glu-Asp-Gly) constructed on the basis of analysis of the epiphysis peptides did not change the intensity of protein synthesis in the cultured hepatocytes.

  5. Adhesion of protein residues to substituted (111) diamond surfaces: an insight from density functional theory and classical molecular dynamics simulations.

    PubMed

    Borisenko, Konstantin B; Reavy, Helen J; Zhao, Qi; Abel, Eric W

    2008-09-15

    Protein-repellent diamond coatings have great potential value for surface coatings on implants and surgical instruments. The design of these coatings relies on a fundamental understanding of the intermolecular interactions involved in the adhesion of proteins to surfaces. To get insight into these interactions, adhesion energies of glycine to pure and Si and N-doped (111) diamond surfaces represented as clusters were calculated in the gas phase, using density functional theory (DFT) at the B3LYP/6-31G* level. The computed adhesion energies indicated that adhesion of glycine to diamond surface may be modified by introducing additional elements into the surface. The adhesion was also found to induce considerable change in the conformation of glycine when compared with the lowest-energy conformer of the free molecule. In the Si and N-substituted diamond clusters, notable changes in the structures involving the substituents atoms when compared with smaller parent molecules, such as 1-methyl-1-silaadamantane and 1-azaadamantane, were detected. Adhesion free energy differences were estimated for a series of representative peptides (hydrophobic Phe-Gly-Phe, amphiphilic Arg-Gly-Phe, and hydrophilic Arg-Gly-Arg) to a (111) diamond surface substituted with different amounts of N, Si, or F, using molecular dynamics simulations in an explicit water environment employing a Dreiding force field. The calculations were in agreement with the DFT results in that adsorption of the studied peptides to diamond surface is influenced by introducing additional elements to the surface. It has been shown that, in general, substitution will enhance electrostatic interactions between a surface and surrounding water, leading to a weaker adhesion of the studied peptides.

  6. Exploration of peptides that fit into the thermally vibrating active site of cathepsin K protease by alternating artificial intelligence and molecular simulation

    NASA Astrophysics Data System (ADS)

    Nishiyama, Katsuhiko

    2017-08-01

    Eighteen tripeptides that fit into the thermally vibrating active site of cathepsin K were discovered by alternating artificial intelligence and molecular simulation. The 18 tripeptides fit the active site better than the cysteine protease inhibitor E64, and a better inhibitor of cathepsin K could be designed considering these tripeptides. Among the 18 tripeptides, Phe-Arg-Asp and Tyr-Arg-Asp fit the active site the best and their structural similarity should be considered in the design process. Interesting factors emerged from the structure of the decision tree, and its structural information will guide exploration of potential inhibitor molecules for proteases.

  7. Sungsanpin, a lasso peptide from a deep-sea streptomycete.

    PubMed

    Um, Soohyun; Kim, Young-Joo; Kwon, Hyuknam; Wen, He; Kim, Seong-Hwan; Kwon, Hak Cheol; Park, Sunghyouk; Shin, Jongheon; Oh, Dong-Chan

    2013-05-24

    Sungsanpin (1), a new 15-amino-acid peptide, was discovered from a Streptomyces species isolated from deep-sea sediment collected off Jeju Island, Korea. The planar structure of 1 was determined by 1D and 2D NMR spectroscopy, mass spectrometry, and UV spectroscopy. The absolute configurations of the stereocenters in this compound were assigned by derivatizations of the hydrolysate of 1 with Marfey's reagents and 2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl isothiocyanate, followed by LC-MS analysis. Careful analysis of the ROESY NMR spectrum and three-dimensional structure calculations revealed that sungsanpin possesses the features of a lasso peptide: eight amino acids (-Gly(1)-Phe-Gly-Ser-Lys-Pro-Ile-Asp(8)-) that form a cyclic peptide and seven amino acids (-Ser(9)-Phe-Gly-Leu-Ser-Trp-Leu(15)) that form a tail that loops through the ring. Sungsanpin is thus the first example of a lasso peptide isolated from a marine-derived microorganism. Sungsanpin displayed inhibitory activity in a cell invasion assay with the human lung cancer cell line A549.

  8. BEST1 sequence variants in Italian patients with vitelliform macular dystrophy

    PubMed Central

    Sodi, Andrea; Passerini, Ilaria; Caputo, Roberto; Bacci, Giacomo Maria; Bodoj, Mirela; Torricelli, Francesca; Menchini, Ugo

    2012-01-01

    Purpose To analyze the spectrum of sequence variants in the BEST1 gene in a group of Italian patients affected by Best vitelliform macular dystrophy (VMD). Methods Thirty Italian patients with a diagnosis of VMD and 20 clinically healthy relatives were recruited. They belonged to 19 Italian families predominantly originating from central Italy. They received a standard ophthalmologic examination, OCT scan, and electrophysiological tests (ERG and EOG). Fluorescein and ICG angiographies and fundus autofluorescence imaging were performed in selected cases. DNA samples were analyzed for sequence variants of the BEST1 gene by direct sequencing techniques. Results Nine missense variants and one deletion were found in the affected patients; each patient carried one mutation. Five variants [c.73C>T (p.Arg25Trp), c.652C>T (p.Arg218Cys), c.652C>G (p.Arg218Gly), c.728C>T (p.Ala243Val), c.893T>C (p.Phe298Ser)] have already been described in literature while another five variants [c.217A>C (p.Ile73Leu), c.239T>G (p.Phe80Cys), c.883_885del (p.Ile295del), c.907G>A (p.Asp303Asn), c.911A>G (p.Asp304Gly)] had not previously been reported. Affected patients, sometimes even from the same family, occasionally showed variable phenotypes. One heterozygous variant was also found in five clinically healthy relatives with normal fundus, visual acuity and ERG but with abnormal EOG. Conclusions Ten variants in the BEST1 gene were detected in a group of individuals with clinically apparent VMD, and in some clinically normal individuals with an abnormal EOG. The high prevalence of novel variants and the frequent report of a specific variant (p.Arg25Trp) that has rarely been described in other ethnic groups suggests a distribution of BEST1 variants peculiar to Italian VMD patients. PMID:23213274

  9. Extraction and identification of α-amylase inhibitor peptides from Nephelium lappacheum and Nephelium mutabile seed protein using gastro-digestive enzymes.

    PubMed

    Evaristus, Natashya Anak; Wan Abdullah, Wan Nadiah; Gan, Chee-Yuen

    2018-04-01

    The potential of N. lappacheum and N. mutabile seed as a source of α-amylase inhibitor peptides was explored based on the local traditional practice of using the seed. Different gastro-digestive enzymes (i.e. pepsin or chymotrypsin) or a sequential digestion were used to extract the peptides. The effects of digestion time and enzyme to substrate (E:S) ratio on the α-amylase inhibitory activity were investigated. Results showed that chymotrypsin was effective in producing the inhibitor peptides from rambutan seed protein at E:S ratio 1:20 for 1 h, whereas pepsin was more effective for pulasan seed protein under the same condition. A total of 20 and 31 novel inhibitor peptides were identified, respectively. These peptides could bind with the subsites of α-amylase (i.e. Trp58, Trp59, Tyr62, Asp96, Arg195, Asp197, Glu233, His299, Asp300, and His305) and formed a sliding barrier that preventing the formation of enzyme/substrate intermediate leading to lower α-amylase activity. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Effect of β2-adrenergic receptor polymorphism on response to longacting β2 agonist in asthma (LARGE trial): a genotype-stratified, randomised, placebo-controlled, crossover trial

    PubMed Central

    Wechsler, Michael E.; Kunselman, Susan J.; Chinchilli, Vernon M; Bleecker, Eugene; Boushey, Homer A.; Calhoun, William J.; Ameredes, Bill T.; Castro, Mario; Craig, Timothy J; Denlinger, Loren; Fahy, John V.; Jarjour, Nizar; Kazani, Shamsah; Kim, Sophia; Kraft, Monica; Lazarus, Stephen C.; Lemanske, Robert F; Markezich, Amy; Martin, Richard J.; Permaul, Perdita; Peters, Stephen P; Ramsdell, Joe; Sorkness, Christine A.; Sutherland, E Rand; Szefler, Stanley J; Walter, Michael J; Wasserman, Stephen; Israel, Elliot

    2010-01-01

    Summary Background Combined long-acting β2-agonist and inhaled corticosteroid (LABA/ICS) therapy improves outcomes in many asthmatics. Some studies suggest that patients homozygous for arginine at the 16th amino-acid position of the β2 adrenergic receptor (B16 Arg/Arg) benefit less than those with B16 Gly/Gly. Methods In an NIH-funded, B16 genotype-stratified, prospective, randomized, double-blind, placebo-controlled, cross-over trial (www.ClinicalTrials.gov registration ID NCT00200967), we compared adding salmeterol or placebo to ICS in patients with moderate asthma, using AM PEF as the primary outcome. Findings After 18 weeks, Arg/Arg (n=42) and Gly/Gly (n=45) subjects had greater AM PEF with salmeterol than placebo, with no difference in improvement by genotype (Arg/Arg 21.4 (p<0.0001) vs. Gly/Gly 21.5 L/min (p<0.0001); 0.1 L/min difference between genotypes, 95% CI (−14.2, 14.4), p=0.99). In Gly/Gly subjects, methacholine PC20 (a secondary outcome) doubled when salmeterol was added to ICS (p<0.0001), but remained unchanged in Arg/Arg subjects (p=0.87) (1.32 doubling dose difference between genotypes (95%CI 0.43,2.21), p=0.0038). An exploratory posthoc subset analysis of African Americans showed that salmeterol improved the AM and PM PEF for the 8 Gly/Gly subjects (29 L/min, p=0.013 and 45 L/min, p= 0.0005, respectively) but not for the 9 Arg/Arg subjects (−12 L/min, p=0.57 and−2.2 L/min, p=0.92, respectively). Interpretation B16 Arg/Arg and Gly/Gly patients experience improved airway function with salmeterol added to moderate-dose ICS. While these data provide reassurance that in the general population these polymorphisms should not alter the use of LABA with moderate-dose ICS, the significance of the genotype-differentiated response in airway reactivity favoring Gly/Gly subjects and the post-hoc analysis in African Americans require further investigation. PMID:19932356

  11. Functional variants in intercellular adhesion molecule-1 and toll-like receptor-4 genes are more frequent in children with febrile urinary tract infection with renal parenchymal involvement.

    PubMed

    Hussein, Almontaser; Saad, Khaled; Askar, Eman; Zahran, Asmaa M; Farghaly, Hekma; Metwalley, Kotb; Elderwy, Ahmad A

    2018-02-01

    We studied the functional polymorphisms of intercellular adhesion molecule-1 (ICAM-1) and toll-like receptor-4 (TLR-4) genes and risk of acute pyelonephritis (APN) in children attending Assiut University Children's Hospitals, Egypt, from 2011 to 2015. Urinary tract infections (UTIs) were diagnosed in 380 children: 98 had APN and 282 had lower UTIs. Four single-nucleotide polymorphisms in ICAM-1 and TLR-4 genes were genotyped in all subjects: ICAM-1 rs1799969 Gly241Arg, ICAM-1 rs5498 Glu469Lys, TLR-4 rs4896791 Thr399Ile and TLR-4 rs4896790 Asp299Gly. Patients with APN were significantly more likely to have AA genotype of the ICAM-1 rs5498 (1462 A/G) polymorphism (p = 0.04) than children with lower UTIs and the TLR-4 Asp299Gly GG genotype (p = 0.002) and G allele (p = 0.006) than healthy controls. The association with the ICAM-1 Glu469Lys (1462A/G) was less evident. The GG genotype was associated with a modest relative risk of 1.4 (p = 0.1) of developing APN, but was not an independent odds ratio, at 1.2 (p = 0.48). Functional variants in ICAM-1 and TLR-4 genes were increasingly common in children with febrile UTIs with renal parenchymal involvement, but the ICAM-1 Glu469Lys (1462A/G) association was less evident. TLR4 Asp299Gly might independently increase renal parenchymal infection rather than renal scarring. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  12. Proline Editing: A General and Practical Approach to the Synthesis of Functionally and Structurally Diverse Peptides. Analysis of Steric versus Stereoelectronic Effects of 4-Substituted Prolines on Conformation within Peptides

    PubMed Central

    Pandey, Anil K.; Naduthambi, Devan; Thomas, Krista M.; Zondlo, Neal J.

    2013-01-01

    Functionalized proline residues have diverse applications. Herein we describe a practical approach, proline editing, for the synthesis of peptides with stereospecifically modified proline residues. Peptides are synthesized by standard solid-phase-peptide-synthesis to incorporate Fmoc-Hydroxyproline (4R-Hyp). In an automated manner, the Hyp hydroxyl is protected and the remainder of the peptide synthesized. After peptide synthesis, the Hyp protecting group is orthogonally removed and Hyp selectively modified to generate substituted proline amino acids, with the peptide main chain functioning to “protect” the proline amino and carboxyl groups. In a model tetrapeptide (Ac-TYPN-NH2), 4R-Hyp was stereospecifically converted to 122 different 4-substituted prolyl amino acids, with 4R or 4S stereochemistry, via Mitsunobu, oxidation, reduction, acylation, and substitution reactions. 4-Substituted prolines synthesized via proline editing include incorporated structured amino acid mimetics (Cys, Asp/Glu, Phe, Lys, Arg, pSer/pThr), recognition motifs (biotin, RGD), electron-withdrawing groups to induce stereoelectronic effects (fluoro, nitrobenzoate), handles for heteronuclear NMR (19F:fluoro; pentafluorophenyl or perfluoro-tert-butyl ether; 4,4-difluoro; 77SePh) and other spectroscopies (fluorescence, IR: cyanophenyl ether), leaving groups (sulfonate, halide, NHS, bromoacetate), and other reactive handles (amine, thiol, thioester, ketone, hydroxylamine, maleimide, acrylate, azide, alkene, alkyne, aryl halide, tetrazine, 1,2-aminothiol). Proline editing provides access to these proline derivatives with no solution phase synthesis. All peptides were analyzed by NMR to identify stereoelectronic and steric effects on conformation. Proline derivatives were synthesized to permit bioorthogonal conjugation reactions, including azide-alkyne, tetrazinetrans-cyclooctene, oxime, reductive amination, native chemical ligation, Suzuki, Sonogashira, cross-metathesis, and Diels-Alder reactions. These proline derivatives allowed three parallel bioorthogonal reactions to be conducted in one solution. PMID:23402492

  13. Detectable reporter gene expression following transduction of adenovirus and adeno-associated virus serotype 2 vectors within full-thickness osteoarthritic and unaffected canine cartilage in vitro and unaffected guinea pig cartilage in vivo.

    PubMed

    Santangelo, Kelly S; Baker, Sarah A; Nuovo, Gerard; Dyce, Jonathan; Bartlett, Jeffrey S; Bertone, Alicia L

    2010-02-01

    This study quantified and compared the transduction efficiencies of adenoviral (Ad), Arg-Gly-Asp (RGD)-modified Ad, adeno-associated viral serotype 2 (AAV2), and self-complementary AAV2 (scAAV2) vectors within full-thickness osteoarthritic (OA) and unaffected canine cartilage explants in vitro. Intraarticular administration of Ad and scAAV2 vectors was performed to determine the ability of these vectors to transduce unaffected guinea pig cartilage in vivo. Following explant exposure to vector treatment or control, the onset and surface distribution of reporter gene expression was monitored daily with fluorescent microscopy. At termination, explants were divided: one half was digested for analysis using flow cytometry; the remaining portion was used for histology and immunohistochemistry (IHC). Intact articular joints were collected for real-time RT-PCR and IHC to detect reporter gene expression following injection of selected vectors. Ad vector transduced focal areas along the perimeters of explants; the remaining vectors transduced chondrocytes across 100% of the surface. Greater mean transduction efficiencies were found with both AAV2 vectors as compared to the Ad vector (p < or = 0.026). Ad and Ad-RGD vectors transduced only superficial chondrocytes of OA and unaffected cartilage. Uniform reporter gene expression from AAV2 and scAAV2 was detected in the tangential and transitional zones of OA cartilage, but not deeper zones. AAV2 and scAAV2 vectors achieved partial and full-thickness transduction of unaffected cartilage. In vivo work revealed that scAAV2 vector, but not Ad vector, transduced deeper zones of cartilage and menisci. This study demonstrates that AAV2 and scAAV2 are reliable vectors for use in cartilage in vitro and in vivo. (c) 2009 Orthopaedic Research Society.

  14. Ligand-induced Epitope Masking

    PubMed Central

    Mould, A. Paul; Askari, Janet A.; Byron, Adam; Takada, Yoshikazu; Jowitt, Thomas A.; Humphries, Martin J.

    2016-01-01

    We previously demonstrated that Arg-Gly-Asp (RGD)-containing ligand-mimetic inhibitors of integrins are unable to dissociate pre-formed integrin-fibronectin complexes (IFCs). These observations suggested that amino acid residues involved in integrin-fibronectin binding become obscured in the ligand-occupied state. Because the epitopes of some function-blocking anti-integrin monoclonal antibodies (mAbs) lie near the ligand-binding pocket, it follows that the epitopes of these mAbs may become shielded in the ligand-occupied state. Here, we tested whether function-blocking mAbs directed against α5β1 can interact with the integrin after it forms a complex with an RGD-containing fragment of fibronectin. We showed that the anti-α5 subunit mAbs JBS5, SNAKA52, 16, and P1D6 failed to disrupt IFCs and hence appeared unable to bind to the ligand-occupied state. In contrast, the allosteric anti-β1 subunit mAbs 13, 4B4, and AIIB2 could dissociate IFCs and therefore were able to interact with the ligand-bound state. However, another class of function-blocking anti-β1 mAbs, exemplified by Lia1/2, could not disrupt IFCs. This second class of mAbs was also distinguished from 13, 4B4, and AIIB2 by their ability to induce homotypic cell aggregation. Although the epitope of Lia1/2 was closely overlapping with those of 13, 4B4, and AIIB2, it appeared to lie closer to the ligand-binding pocket. A new model of the α5β1-fibronectin complex supports our hypothesis that the epitopes of mAbs that fail to bind to the ligand-occupied state lie within, or very close to, the integrin-fibronectin interface. Importantly, our findings imply that the efficacy of some therapeutic anti-integrin mAbs could be limited by epitope masking. PMID:27484800

  15. Epidemiological Survey of Amoxicillin-Clavulanate Resistance and Corresponding Molecular Mechanisms in Escherichia coli Isolates in France: New Genetic Features of blaTEM Genes

    PubMed Central

    Leflon-Guibout, V.; Speldooren, V.; Heym, B.; Nicolas-Chanoine, M.-H.

    2000-01-01

    Amoxicillin-clavulanate resistance (MIC >16 μg/ml) and the corresponding molecular mechanisms were prospectively studied in Escherichia coli over a 3-year period (1996 to 1998) in 14 French hospitals. The overall frequency of resistant E. coli isolates remained stable at about 5% over this period. The highest frequency of resistant isolates (10 to 15%) was observed, independently of the year, among E. coli isolated from lower respiratory tract samples, and the isolation rate of resistant strains was significantly higher in surgical wards than in medical wards in 1998 (7.8 versus 2.8%). The two most frequent mechanisms of resistance for the 3 years were the hyperproduction of the chromosomal class C β-lactamase (48, 38.4, and 39.7%) and the production of inhibitor-resistant TEM (IRT) enzymes (30.4, 37.2, and 41.2%). By using the single-strand conformational polymorphism–PCR technique and sequencing methods, we determined that 59 IRT enzymes corresponded to previously described IRT enzymes whereas 8 were new. Three of these new enzymes derived from TEM-1 by only one amino acid substitution (Ser130Gly, Arg244Gly, and Asn276Asp), whereas three others derived by two amino acid substitutions (Met69Leu and Arg244Ser, Met69Leu and Ile127Val, and Met69Val and Arg275Gln). The two remaining new IRTs showed three amino acid substitutions (Met69Val, Trp165Arg, and Asn276Asp and Met69Ile, Trp165Cys, and Arg275Gln). New genetic features were also found in blaTEM genes, namely, blaTEM-1B with either the promoters Pa and Pb, P4, or a promoter displaying a C→G transversion at position 3 of the −35 consensus sequence and new blaTEM genes, notably one encoding TEM-1 but possessing the silent mutations originally described in blaTEM-2 and then in some blaTEM-encoding IRT enzymes. PMID:10991849

  16. Clinical features of X linked juvenile retinoschisis in Chinese families associated with novel mutations in the RS1 gene.

    PubMed

    Li, Xiaoxin; Ma, Xiang; Tao, Yong

    2007-06-07

    To describe the clinical phenotype of X linked juvenile retinoschisis (XLRS) in 12 Chinese families with 11 different mutations in the XLRS1 (RS1) gene. Complete ophthalmic examinations were carried out in 29 affected males (12 probands), 38 heterozygous females carriers, and 100 controls. The coding regions of the RS1 gene that encodes retinoschisin were amplified by polymerase chain reaction and directly sequenced. Of the 29 male participants, 28 (96.6%) displayed typical foveal schisis. Eleven different RS1 mutations were identified in 12 families; four of these mutations, two frameshift mutations (26 del T of exon 1 and 488 del G of exon 5), and two missense mutations (Asp145His and Arg156Gly) of exon 5, had not been previously described. One non-disease-related polymorphism (NSP): 576C to T (Pro192Pro) change was also newly reported herein. We compared genotypes and observed more severe clinical features in families with the following mutations: frameshift mutation (26 del T) of exon 1, the splice donor site mutation (IVS1+2T to C),or Arg102Gln, Arg209His, and Arg213Gln mutations. Severe XLRS phenotypes are associated with the frameshift mutation 26 del T, splice donor site mutation (IVS1+2T to C), and Arg102Gln, Asp145His, Arg209His, and Arg213Gln mutations. The wide variability in the phenotype in Chinese patients with XLRS and different mutations in the RS1 gene is described. Identification of mutations in the RS1 gene and expanded information on clinical manifestations will facilitate early diagnosis, appropriate early therapy, and genetic counseling regarding the prognosis of XLRS.

  17. Clinical features of X linked juvenile retinoschisis in Chinese families associated with novel mutations in the RS1 gene

    PubMed Central

    Ma, Xiang; Tao, Yong

    2007-01-01

    Purpose To describe the clinical phenotype of X linked juvenile retinoschisis (XLRS) in 12 Chinese families with 11 different mutations in the XLRS1 (RS1) gene. Methods Complete ophthalmic examinations were carried out in 29 affected males (12 probands), 38 heterozygous females carriers, and 100 controls. The coding regions of the RS1 gene that encodes retinoschisin were amplified by polymerase chain reaction and directly sequenced. Results Of the 29 male participants, 28 (96.6%) displayed typical foveal schisis. Eleven different RS1 mutations were identified in 12 families; four of these mutations, two frameshift mutations (26 del T of exon 1 and 488 del G of exon 5), and two missense mutations (Asp145His and Arg156Gly) of exon 5, had not been previously described. One non-disease-related polymorphism (NSP): 576C to T (Pro192Pro) change was also newly reported herein. We compared genotypes and observed more severe clinical features in families with the following mutations: frameshift mutation (26 del T) of exon 1, the splice donor site mutation (IVS1+2T to C),or Arg102Gln, Arg209His, and Arg213Gln mutations. Conclusions Severe XLRS phenotypes are associated with the frameshift mutation 26 del T, splice donor site mutation (IVS1+2T to C), and Arg102Gln, Asp145His, Arg209His, and Arg213Gln mutations. The wide variability in the phenotype in Chinese patients with XLRS and different mutations in the RS1 gene is described. Identification of mutations in the RS1 gene and expanded information on clinical manifestations will facilitate early diagnosis, appropriate early therapy, and genetic counseling regarding the prognosis of XLRS. PMID:17615541

  18. Polyplex micelle installing intracellular self-processing functionalities without free catiomers for safe and efficient systemic gene therapy through tumor vasculature targeting.

    PubMed

    Chen, Qixian; Osada, Kensuke; Ge, Zhishen; Uchida, Satoshi; Tockary, Theofilus A; Dirisala, Anjaneyulu; Matsui, Akitsugu; Toh, Kazuko; Takeda, Kaori M; Liu, Xueying; Nomoto, Takahiro; Ishii, Tekihiko; Oba, Makoto; Matsumoto, Yu; Kataoka, Kazunori

    2017-01-01

    Both efficiency and safety profiles are crucial for promotion of gene delivery systems towards practical applications. A promising template system was previously developed based on block catiomer of poly(ethylene glycol) (PEG)-b-poly{N'-[N-(2-aminoethyl)-2-aminoehtyl]aspartamide}-cholesteryl [PEG-PAsp(DET)-cholesteryl] with strategies of ligand conjugation at the α-terminus for specific affinity to the targeted cells and cholesteryl conjugation at the ω-terminus for structural stabilization to obtain systemic retention. Aiming for advocating this formulation towards practical applications, in the current study, the binding profile of this polymer to plasmid DNA (pDNA) was carefully studied to address an issue of toxicity origin. Quantification of free polymer composition confirmed that the toxicity mainly results from unbound polymer and polyplex micelle itself has negligible toxicity. This evaluation allowed for identifying an optimal condition to prepare safe polyplex micelles for systemic application that possess maximal polymer-binding but exclude free polymers. The identified polyplex micelles then faced a drawback of limited transfection efficiency due to the absence of free polymer, which is an acknowledged tendency found in various synthetic gene carriers. Thus, series of functional components was strategically compiled to improve the transfection efficiency such as attachment of cyclic (Arg-Gly-Asp) (cRGD) peptide as a ligand onto the polyplex micelles to facilitate cellular uptake, use of endosome membrane disruptive catiomer of PAsp(DET) for facilitating endosome escape along with use of the conjugated cholesteryl group to amplify the effect of PAsp(DET) on membrane disruption, so as to obtain efficient transfection. The mechanistic investigation respecting the appreciated pH dependent protonation behavior of PAsp(DET) permitted to depict an intriguing scenario how the block catiomers manage to escape from the endosome entrapment in response to the pH gradient. Subsequent systemic application to the pancreatic tumor demonstrated a capability of vascular targeting mediated by the cRGD ligand, which was directly confirmed based on in situ confocal laser scanning microscopy observation. Encouraging this result, the vascular targeting to transfect a secretable anti-angiogenic gene was attempted to treat the intractable pancreatic tumor with anticipation that the strategy could circumvent the intrinsic physiological barriers derived from hypovascular and fibrotic characters. The obtained therapeutic efficiency demonstrates promising utilities of the proposed formulation as a safe systemic gene delivery carrier in practical use. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Enzymes processing somatostatin precursors: an Arg-Lys esteropeptidase from the rat brain cortex converting somatostatin-28 into somatostatin-14.

    PubMed Central

    Gluschankof, P; Morel, A; Gomez, S; Nicolas, P; Fahy, C; Cohen, P

    1984-01-01

    The post-translational proteolytic conversion of somatostatin-14 precursors was studied to characterize the enzyme system responsible for the production of the tetradecapeptide either from its 15-kDa precursor protein or from its COOH-terminal fragment, somatostatin-28. A synthetic undecapeptide Pro-Arg-Glu-Arg-Lys-Ala-Gly-Ala-Lys-Asn-Tyr(NH2), homologous to the amino acid sequence of the octacosapeptide at the putative Arg-Lys cleavage locus, was used as substrate, after 125I labeling on the COOH-terminal tyrosine residue. A 90-kDa proteolytic activity was detected in rat brain cortex extracts after molecular sieve fractionation followed by ion exchange chromatography. The protease released the peptide 125I-Ala-Gly-Ala-Lys-Asn-Tyr(NH2) from the synthetic undecapeptide substrate and converted somatostatin-28 into somatostatin-14 under similar conditions (pH 7.0). Under these experimental conditions, the product tetradecapeptide was not further degraded by the enzyme. In contrast, the purified 15-kDa hypothalamic precursor remained unaffected when exposed to the proteolytic enzyme under identical conditions. It is concluded that this Arg-Lys esteropeptidase from the brain cortex may be involved in the in vivo processing of the somatostatin-28 fragment of prosomatostatin into somatostatin-14, the former species being an obligatory intermediate in a two-step proteolytic mechanism leading to somatostatin-14. PMID:6149550

  20. Arg16Gly polymorphism of the beta2-adrenergic receptor is associated with differences in cardiovascular function at rest and during exercise in humans.

    PubMed

    Snyder, Eric M; Beck, Kenneth C; Dietz, Niki M; Eisenach, John H; Joyner, Michael J; Turner, Stephen T; Johnson, Bruce D

    2006-02-15

    In humans, subjects homozygous for arginine (ArgArg) at codon 16 of the beta2-adrenergic receptor (beta2AR) have been shown to have greater agonist-mediated desensitization than subjects homozygous for glycine (GlyGly). We sought to determine if this substitution differentially influenced cardiovascular function during short duration (9 min) low and high intensity exercise (40 and 75% of peak work). Healthy Caucasian ArgArg (n = 16), GlyGly (n = 31) and ArgGly (n = 17) subjects matched for age, sex and peak oxygen uptake were studied. There were no differences in adrenaline (ADR) at rest or with heavy exercise, but the ArgArg group had lower ADR with light exercise (P = 0.04). Resting heart rate (HR) was higher in ArgArg (P < 0.01), while cardiac output (Q), stroke volume (SV), and mean arterial pressure (MAP) were lower than the other groups (HR = 86+/-2, 78+/-2, 80+/-1 beats min(-1); Q = 5.7+/-0.81, 6.1+/-0.18, 6.7+/-0.22 l min(-1); SV = 68+/-3, 82+/-3, 89+/-4 ml beat(-1); MAP = 92+/-1, 103+/-2, 98+/-1 mmHg-- for ArgArg, ArgGly and GlyGly, respectively, means +/-s.e.m., P < 0.01), however, no differences were observed in systemic vascular resistance (SVR). With low intensity exercise and high intensity exercise the ArgArg group continued to have a lower , SV and MAP compared to the other groups (P < 0.05), with no differences observed in SVR. During recovery, the ArgArg subjects continued to have a lower MAP but there were no differences in HR, , or SVR. These data suggest that subjects homozygous for Arg at codon 16 of the beta2AR have reduced and MAP at rest that persist during exercise with no evidence for differential changes over the course of exercise despite large changes in catecholamines. This may suggest possible genotype-related differences in baseline receptor function or density which causes phenotypic differences at rest that are sustained during short-term exercise.

  1. Trypsin activation pathway of rotavirus infectivity.

    PubMed Central

    Arias, C F; Romero, P; Alvarez, V; López, S

    1996-01-01

    The infectivity of rotaviruses is increased by and most probably is dependent on trypsin treatment of the virus. This proteolytic treatment specifically cleaves VP4, the protein that forms the spikes on the surface of the virions, to polypeptides VP5 and VP8. This cleavage has been reported to occur in rotavirus SA114fM at two conserved, closely spaced arginine residues located at VP4 amino acids 241 and 247. In this work, we have characterized the VP4 cleavage products of rotavirus SA114S generated by in vitro treatment of the virus with increasing concentrations of trypsin and with proteases AspN and alpha-chymotrypsin. The VP8 and VP5 polypeptides were analyzed by gel electrophoresis and by Western blotting (immunoblotting) with antibodies raised to synthetic peptides that mimic the terminal regions of VP4 generated by the trypsin cleavage. It was shown that in addition to arginine residues 241 and 247, VP4 is cleaved at arginine residue 231. These three sites were found to have different susceptibilities to trypsin, Arg-241 > Arg-231 > Arg-247, with the enhancement of infectivity correlating with cleavage at Arg-247 rather than at Arg-231 or Arg-241. Proteases AspN and alpha-chymotrypsin cleaved VP4 at Asp-242 and Tyr-246, respectively, with no significant enhancement of infectivity, although this enhancement could be achieved by further treatment of the virus with trypsin. The VP4 end products of trypsin treatment were a homogeneous VP8 polypeptide comprising VP4 amino acids 1 to 231 and a heterogeneous VP5, which is formed by two polypeptide species (present at a ratio of approximately 1:5) as a result of cleavage at either Arg-241 or Arg-247. A pathway for the trypsin activation of rotavirus infectivity is proposed. PMID:8709201

  2. Short cell-penetrating peptides: a model of interactions with gene promoter sites.

    PubMed

    Khavinson, V Kh; Tarnovskaya, S I; Linkova, N S; Pronyaeva, V E; Shataeva, L K; Yakutseni, P P

    2013-01-01

    Analysis of the main parameters of molecular mechanics (number of hydrogen bonds, hydrophobic and electrostatic interactions, DNA-peptide complex minimization energy) provided the data to validate the previously proposed qualitative models of peptide-DNA interactions and to evaluate their quantitative characteristics. Based on these estimations, a three-dimensional model of Lys-Glu and Ala-Glu-Asp-Gly peptide interactions with DNA sites (GCAG and ATTTC) located in the promoter zones of genes encoding CD5, IL-2, MMP2, and Tram1 signal molecules.

  3. Effect of Ala-Glu-Asp-Gly peptide on life span and development of spontaneous tumors in female rats exposed to different illumination regimes.

    PubMed

    Vinogradova, I A; Bukalev, A V; Zabezhinski, M A; Semenchenko, A V; Khavinson, V Kh; Anisimov, V N

    2007-12-01

    The effects of Ala-Glu-Asp-Gly peptide (Epithalon) on the life span and development of spontaneous tumors were studied in female rats exposed to standard, natural for North-Western Russia, and constant illumination. The mean life span of animals exposed to constant or natural illumination decreased by 13.5 and 25.5%, the maximum by 9 and 7 months, respectively, and spontaneous tumors developed much more rapidly than in animals living under conditions of the standard light regimen. Epithalon (0.1 microg daily 5 times a week from the age of 4 months) did not change the life span of rats living under conditions of standard day/night regimen, while in rats exposed to the natural and constant light it promoted prolongation of the maximum life span by 95 and 24 days, respectively. Epithalon prolonged the mean life span of the last 10% of rats exposed to natural and constant illumination, treated with Epithalon, by 137 and 43 days, respectively. This peptide exhibited virtually no effect on the development of spontaneous tumors in rats exposed to standard and constant illumination, but significantly inhibited their development in rats exposed to natural light.

  4. Tetrapod-type [Asp1] angiotensin is present in a holostean fish, Amia calva.

    PubMed

    Takei, Y; Itahara, Y; Butler, D G; Watanabe, T X; Oudit, G Y

    1998-05-01

    The renin-angiotensin system has been identified in various vertebrates, from elasmobranchs to mammals. Tetrapod (amphibians to mammals) angiotensin (ANG) has Asp at the N-terminus, but Asp is replaced by Asn in elasmobranch and teleost fish. ANG I has been isolated from incubates of plasma and kidney extracts of the bowfin Amia calva, a holostean fish, using the eel vasopressor activity as an assay system; its sequence was found to be H-Asp-Arg-Val-Tyr-Val-His-Pro-Phe-Asn-Leu-OH after sequence analysis, mass spectrometry, and comparison with the synthetic peptide. This sequence is identical to bullfrog ANG I. [Asn1] ANG I was not detected. Thus the bowfin is the first fish species which contains only [Asp1] ANG I. The bowfin ANG I and II were no more vasopressor than eel peptides in the bowfin, indicating that bowfin ANG II receptors do not distinguish between [Asp1] and [Asn1] peptides. In the rat, bowfin ANG I and rat [Ile5, His9] ANG I have equipressor activities when examined in different animals, but the vasopressor activity of bowfin ANG I decreased following rat ANG I in the same animals, although the activity of rat ANG I was unaffected after bowfin ANG I. The present study directly demonstrates the presence of the renin-angiotensin system in a holostean fish and showed that its ANG II receptors have not yet fully coevolved with the homologous [Asp1] peptide.

  5. Effects of sex and the common ADRB1 389 genetic polymorphism on the hemodynamic response to dobutamine.

    PubMed

    Yogev, Dotan; Basheer, Maamoun; Blotnick, Simcha; Caraco, Yoseph; Muszkat, Mordechai

    2015-11-01

    The ADRB1 389 polymorphism affects responses to the β-1 adrenergic receptor (β1AR) agonist in vitro. Previous studies on its effect on the response to dobutamine stress echocardiography were conflicting. In addition, sex differences in the response to dobutamine have been suggested. The aim of this study was to determine whether the ADRB1 389 polymorphism affects the hemodynamic response to dobutamine in healthy individuals including men and women. Healthy individuals were recruited according to their ADRB1 49 and 389 genotypes [15 Arg389Arg, 10 Gly389Arg, and 10 Gly389Gly individuals, (all Ser49Ser), 21 men and 14 women]. Dobutamine was infused at 2, 4, and 6 mcg/kg/min. Standardized exercise was performed during the last minute of each infusion. Resting heart rate (HR) response to 6 mcg/kg/min dobutamine (ΔHR) was 4.7-fold larger in Arg389Arg than in Gly389Gly [(mean ± SD) 12.95 ± 6.99, 2.75 ± 1.65 bpm, respectively, PANOVA=0.012]. Renin response to dobutamine (ΔRenin) was 3.9-fold greater in Arg389Arg than in Gly389Gly (PANOVA=0.032). Among Arg389Gly heterozygotes, ΔHR and ΔRenin were not significantly different from either homozygote group. In multivariate analysis for ΔHR variance, significant contributions were observed for genotype (P=0.011), baseline HR (P=0.011), and borderline effect for sex (P=0.049). In healthy individuals, HR and renin responses to dobutamine were more than three-fold greater among ADRB1 Arg389 compared with Gly389 homozygotes. Future studies on the effect of the ADRB1 389 polymorphism on dobutamine stress echocardiography should compare Arg389 and Gly389 homozygotes.

  6. Carbohydrate protease conjugates: Stabilized proteases for peptide synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wartchow, C.A.; Wang, Peng; Bednarski, M.D.

    1995-12-31

    The synthesis of oligopeptides using stable carbohydrate protease conjugates (CPCs) was examined in acetonitrile solvent systems. CPC[{alpha}-chymotrypsin] was used for the preparation of peptides containing histidine, phenylalanine, tryptophan in the P{sub 1} position in 60-93% yield. The CPC[{alpha}-chymotrypsin]-catalyzed synthesis of octamer Z-Gly-Gly-Phe-Gly-Gly-Phe-Gly-Gly-OEt from Z-Gly-Gly-Phe-Gly-Gly-Phe-OMe was achieved in 71% yield demonstrating that synthesis peptides containing both hydrophylic and hydrophobic amino acids. The P{sub 2} specificity of papain for aromatic residues was utilized for the 2 + 3 coupling of Z-Tyr-Gly-OMe to H{sub 2}N-Gly-Phe-Leu-OH to generate the leucine enkephalin derivative in 79% yield. Although papain is nonspecific for the hydrolysis of N-benzyloxycarbonylmore » amino acid methyl esters in aqueous solution, the rates of synthesis for these derivitives with nucleophile leucine tert-butyl ester differed by nearly 2 orders of magnitude. CPC[thermolysin] was used to prepare the aspartame precursor Z-Asp-Phe-OMe in 90% yield. The increased stability of CPCs prepared from periodate-modified poly(2-methacryl- amido-2-deoxy-D-glucose), poly(2-methacrylamido-2-deoxy-D-galactose), and poly(5-methacryl-amido-5-deoxy-D-ribose), carbohydrate materials designed to increase the aldehyde concentration in aqueous solution, suggests that the stability of CPCs is directly related to the aldehyde concentration of the carbohydrate material. Periodate oxidation of poly(2-methacrylamido-2-deoxy-D-glucose) followed by covalent attachment to {alpha}-chymotrypsin gave a CPC with catalytic activity in potassium phosphate buffer at 90{degrees}C for 2 h. 1 fig., 1 tab., 40 refs.« less

  7. Structural Insights into Selective Ligand-Receptor Interactions Leading to Receptor Inactivation Utilizing Selective Melanocortin 3 Receptor Antagonists.

    PubMed

    Cai, Minying; Marelli, Udaya Kiran; Mertz, Blake; Beck, Johannes G; Opperer, Florian; Rechenmacher, Florian; Kessler, Horst; Hruby, Victor J

    2017-08-15

    Systematic N-methylated derivatives of the melanocortin receptor ligand, SHU9119, lead to multiple binding and functional selectivity toward melanocortin receptors. However, the relationship between N-methylation-induced conformational changes in the peptide backbone and side chains and melanocortin receptor selectivity is still unknown. We conducted comprehensive conformational studies in solution of two selective antagonists of the third isoform of the melanocortin receptor (hMC3R), namely, Ac-Nle-c[Asp-NMe-His 6 -d-Nal(2') 7 -NMe-Arg 8 -Trp 9 -Lys]-NH 2 (15) and Ac-Nle-c[Asp-His 6 -d-Nal(2') 7 -NMe-Arg 8 -NMe-Trp 9 -NMe-Lys]-NH 2 (17). It is known that the pharmacophore (His 6 -DNal 7 -Arg 8 -Trp 9 ) of the SHU-9119 peptides occupies a β II-turn-like region with the turn centered about DNal 7 -Arg 8 . The analogues with hMC3R selectivity showed distinct differences in the spatial arrangement of the Trp 9 side chains. In addition to our NMR studies, we also carried out molecular-level interaction studies of these two peptides at the homology model of hMC3R. Earlier chimeric human melanocortin 3 receptor studies revealed insights regarding the binding and functional sites of hMC3R selectivity. Upon docking of peptides 15 and 17 to the binding pocket of hMC3R, it was revealed that Arg 8 and Trp 9 side chains are involved in a majority of the interactions with the receptor. While Arg 8 forms polar contacts with D154 and D158 of hMC3R, Trp 9 utilizes π-π stacking interactions with F295 and F298, located on the transmembrane domain of hMC3R. It is hypothesized that as the frequency of Trp 9 -hMC3R interactions decrease, antagonistic activity increases. The absence of any interactions of the N-methyl groups with hMC3R suggests that their primary function is to modulate backbone conformations of the ligands.

  8. Azadirachtin(A) distinctively modulates subdomain 2 of actin - novel mechanism to induce depolymerization revealed by molecular dynamics study.

    PubMed

    Pravin Kumar, R; Roopa, L; Sudheer Mohammed, M M; Kulkarni, Naveen

    2016-12-01

    Azadirachtin(A) (AZA), a potential insecticide from neem, binds to actin and induces depolymerization in Drosophila. AZA binds to the pocket same as that of Latrunculin A (LAT), but LAT inhibits actin polymerization by stiffening the actin structure and affects the ADP-ATP exchange. The mechanism by which AZA induces actin depolymerization is not clearly understood. Therefore, different computational experiments were conducted to delineate the precise mechanism of AZA-induced actin depolymerization. Molecular dynamics studies showed that AZA strongly interacted with subdomain 2 and destabilized the interactions between subdomain 2 of one actin and subdomains 1 and 4 of the adjacent actin, causing the separation of actin subunits. The separation was observed between subdomain 3 of subunit n and subdomain 4 of subunit n + 2. However, the specific triggering point for the separation of the subunits was the destabilization of direct interactions between subdomain 2 of subunit n (Arg39, Val45, Gly46 and Arg62) and subdomain 4 of subunit n + 2 (Asp286, Ile287, Asp288, Ile289, Asp244 and Lys291). These results reveal a unique mechanism of an actin filament modulator that induces depolymerization. This mechanism of AZA can be used to design similar molecules against mammalian actins for cancer therapy.

  9. Novel adipokinetic hormones in the kissing bugs Rhodnius prolixus, Triatoma infestans, Dipetalogaster maxima and Panstrongylus megistus.

    PubMed

    Marco, Heather G; Simek, Petr; Clark, Kevin D; Gäde, Gerd

    2013-03-01

    Peptides of the adipokinetic hormone (AKH)/red pigment-concentrating hormone (RPCH) family were isolated and sequenced from the retrocerebral corpora cardiaca of four kissing bugs which are all vectors of the protozoan Trypanosoma cruzi responsible for Chagas' disease. The sequence of three novel AKHs were deduced from the multiple MS(N) electrospray mass data: the octapeptide pGlu-Leu-Thr-Phe-Ser-Thr-Asp-Trp amide (denoted Rhopr-AKH) in Rhodnius prolixus and Panstrongylus megistus, the nonapeptide pGlu-Leu-Thr-Phe-Thr-Pro-Asn-Trp-Gly amide (denoted Triin-AKH) in Triatoma infestans and the decapeptide pGlu-Leu-Thr-Phe-Ser-Asp-Gly-Trp-Gly-Asn amide (denoted Dipma-AKH) in Dipetalogaster maxima. The sequences were confirmed by identical behavior of natural and synthetic forms in reversed-phase HPLC and by CID-MS mass spectra. Conspecific injections of a dose of 10 pmol of the respective synthetic peptides resulted in a small but significant increase of the lipid concentration in the hemolymph. These experiments suggest that AKHs in kissing bugs act to regulate lipid metabolism, possibly during dispersal flights which is one of the mechanisms whereby the insects reach new outbreak areas. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Effect of tetrapeptides Lys-Glu-Asp-Gly and Ala-Glu-Asp-Gly on the structure and function of the thyroid gland in neonatally hypophysectomized chickens.

    PubMed

    Kuznik, B I; Pateyuk, A V; Rusaeva, N S

    2008-01-01

    Tetrapeptides Lys-Glu-Asp-Gly and Ala-Glu-Asp-Gly were synthesized on the basis of amino acid composition of pituitary cytomedins. Administration of these tetrapeptides to hypophysectomized chickens for 40 days was followed by an increase in the concentrations of thyrotropic hormone and thyroid hormones and recovery of thyroid gland structure.

  11. Further study on the effects of achatin-I, an Achatina endogenous neuroexcitatory tetrapeptide having a D-phenylalanine residue, on Achatina neurones.

    PubMed

    Takeuchi, H; Emaduddin, M; Araki, Y; Zhang, W; Han, X Y; Salunga, T L; Wong, S M

    1995-01-01

    Achatin-I (Gly-D-Phe-Ala-Asp), a tetrapeptide having a D-phenylalanine residue and isolated from Achatina ganglia, has been proposed as an excitatory neurotransmitter of Achatina neurones. In the present study, it was demonstrated using Achatina giant neurones that achetin-I, perfused at alow concentration, enhanced an inward current (Iin) caused by 5-hydroxytryptamine (fast component) and an outward current (Iout) caused by FMRFamide (Phe-Met-Arg-Phe-NH2), and that this peptide suppressed an Iin caused by oxytocin, and Iout caused by acetylcholine and APGW-amide (Ala-Pro-Gly-Trp-NH2). These findings indicate that achatin-I acts not only as a neurotransmitter but also as a neuromodulator for these neurones. In the preliminary experiments, it was shown that an Iin caused by achatin-I on an Achatina giant neurone type, PON (periodically oscillating neurone), was suppressed by H-89 (a PKA inhibitor) and W-7 (calmodulin inhibitor), and that an Iin caused by achatin-I on v-RCON (ventral-right cerebral distinct neurone) was suppressed by KT5823 (PKG inhibitor), suggesting that achatin-I acts on PON via the cyclic AMP-PKA system and on v-RCON via the cyclic GMP-PKG system. Moreover, calmodulin would play a role to produce the Iin for achatin-I on PON via the system mentioned.

  12. Alveolar air and oxidative metabolic demand during exercise in healthy adults: the role of single-nucleotide polymorphisms of the β2AR gene.

    PubMed

    Van Iterson, Erik H; Snyder, Eric M; Johnson, Bruce D

    2017-11-01

    The predominating β -adrenergic receptor subtype expressed on human alveolar tissue is the β 2 AR The homozygous arginine (Arg16Arg) single-nucleotide polymorphism (SNP) at codon 16 of the β 2 AR gene has been associated with abnormal β 2 AR function accompanied by decreased resting alveolar-capillary membrane gas-transfer in certain healthy adults. Although not previously studied in the context of the β 2 AR gene, pulmonary gas-transfer is also influenced by alveolar volume ( V A ) and with it the availability of alveolar surface area, particularly during exercise. Small V A implies less alveolar surface area available for O 2 transport. We tested the following hypothesis in healthy adults during exercise: compared with Gly16Gly and Arg16Gly β2AR genotypes, Arg16Arg will demonstrate reduced V A and ventilation ( V̇ A ) relative to V̇ E and oxidative metabolic demand. Age- BMI- and gender-matched groups of Arg16Arg ( N  = 16), Gly16Gly ( N  = 31), and Arg16Gly ( N  = 17) performed consecutive low (9-min, 40%-peak workload) and moderate (9-min, 75%-peak workload) intensity exercise. We derived V A and V̇ A using "ideal" alveolar equations via arterialized gases combined with breath-by-breath ventilation and gas-exchange measurements; whereas steady-state V̇ O 2 was used in metabolic equations to derive exercise economy (EC = workload÷ V̇ O 2 ). Variables at rest did not differ across β 2 AR genotype. Strongest β 2 AR genotype effects occurred during moderate exercise. Accordingly, while V̇ E did not differ across genotype ( P  > 0.05), decreased in Arg16Arg versus Arg16Gly and Gly16Gly were V̇ O 2 (1110 ± 263, 1269 ± 221, 1300 ± 319 mL/(min·m 2 ), respectively, both P  < 0.05), V̇ A (59 ± 21, 70 ± 16, 70 ± 21 L/min, respectively, both P  <   0.05), and V A (1.43 ± 0.37, 1.95 ± 0.61, 1.93 ± 0.65 L, respectively, both P  <   0.05). Also reduced was EC in Arg16Arg versus Arg16Gly ( P  <   0.05) and Gly16Gly ( P  >   0.05) (1.81 ± 0.23, 1.99 ± 0.30, and 1.94 ± 0.26 kcal/(L·m 2 ), respectively). Compared with Gly16Gly and Arg16Gly genotypes, these data suggest the Arg16Arg β 2 AR genotype plays a role in the loss of oxidative metabolic efficiency coupled with an inadaptive V A and, hence, smaller alveolar surface area available for O 2 transport during submaximal exercise in healthy adults. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  13. Novel XLRS1 gene mutations cause X-linked juvenile retinoschisis in Chinese families.

    PubMed

    Ma, Xiang; Li, Xiaoxin; Wang, Lihua

    2008-01-01

    To investigate various XLRS1 (RS1) gene mutations in Chinese families with X-linked juvenile retinoschisis (XLRS or RS). Genomic DNA was isolated from leukocytes of 29 male patients with X-linked juvenile retinoschisis, 38 female carriers, and 100 normal controls. All 6 exons of the RS1 gene were amplified by polymerase chain reaction, and the RS1 gene mutations were determined by direct sequencing. Eleven different RS1 mutations in 12 families were identified in the 29 male patients. The mutations comprised eight missense, two frameshift, and one splice donor site mutation. Four of these mutations, one frameshift mutation (26 del T) in exon 1, one frameshift mutation (488 del G) in exon 5, Asp145His and Arg156Gly in exon 5, have not been previously described. One novel non-disease-related polymorphism, 576C to T (Pro192Pro) in exon 6, was also found. Six recurrent mutations, Ser73Pro and Arg102Gln mutations in exon 4 and Arg200Cys, Arg209His, Arg213Gln, and Cys223Arg mutations in exon 6, were also identified in this study. RS1 gene mutations caused X-linked juvenile retinoschisis in these Chinese families.

  14. Codon usage analysis of photolyase encoding genes of cyanobacteria inhabiting diverse habitats.

    PubMed

    Rajneesh; Pathak, Jainendra; Kannaujiya, Vinod K; Singh, Shailendra P; Sinha, Rajeshwar P

    2017-07-01

    Nucleotide and amino acid compositions were studied to determine the genomic and structural relationship of photolyase gene in freshwater, marine and hot spring cyanobacteria. Among three habitats, photolyase encoding genes from hot spring cyanobacteria were found to have highest GC content. The genomic GC content was found to influence the codon usage and amino acid variability in photolyases. The third position of codon was found to have more effect on amino acid variability in photolyases than the first and second positions of codon. The variation of amino acids Ala, Asp, Glu, Gly, His, Leu, Pro, Gln, Arg and Val in photolyases of three different habitats was found to be controlled by first position of codon (G1C1). However, second position (G2C2) of codon regulates variation of Ala, Cys, Gly, Pro, Arg, Ser, Thr and Tyr contents in photolyases. Third position (G3C3) of codon controls incorporation of amino acids such as Ala, Phe, Gly, Leu, Gln, Pro, Arg, Ser, Thr and Tyr in photolyases from three habitats. Photolyase encoding genes of hot spring cyanobacteria have 85% codons with G or C at third position, whereas marine and freshwater cyanobacteria showed 82 and 60% codons, respectively, with G or C at third position. Principal component analysis (PCA) showed that GC content has a profound effect in separating the genes along the first major axis according to their RSCU (relative synonymous codon usage) values, and neutrality analysis indicated that mutational pressure has resulted in codon bias in photolyase genes of cyanobacteria.

  15. Amyloid-β peptide structure in aqueous solution varies with fragment size

    NASA Astrophysics Data System (ADS)

    Wise-Scira, Olivia; Xu, Liang; Kitahara, Taizo; Perry, George; Coskuner, Orkid

    2011-11-01

    Various fragment sizes of the amyloid-β (Aβ) peptide have been utilized to mimic the properties of the full-length Aβ peptide in solution. Among these smaller fragments, Aβ16 and Aβ28 have been investigated extensively. In this work, we report the structural and thermodynamic properties of the Aβ16, Aβ28, and Aβ42 peptides in an aqueous solution environment. We performed replica exchange molecular dynamics simulations along with thermodynamic calculations for investigating the conformational free energies, secondary and tertiary structures of the Aβ16, Aβ28, and Aβ42 peptides. The results show that the thermodynamic properties vary from each other for these peptides. Furthermore, the secondary structures in the Asp1-Lys16 and Asp1-Lys28 regions of Aβ42 cannot be completely captured by the Aβ16 and Aβ28 fragments. For example, the β-sheet structures in the N-terminal region of Aβ16 and Aβ28 are either not present or the abundance is significantly decreased in Aβ42. The α-helix and β-sheet abundances in Aβ28 and Aβ42 show trends - to some extent - with the potential of mean forces but no such trend could be obtained for Aβ16. Interestingly, Arg5 forms salt bridges with large abundances in all three peptides. The formation of a salt bridge between Asp23-Lys28 is more preferred over the Glu22-Lys28 salt bridge in Aβ28 but this trend is vice versa for Aβ42. This study shows that the Asp1-Lys16 and Asp1-Lys28 regions of the full length Aβ42 peptide cannot be completely mimicked by studying the Aβ16 and Aβ28 peptides.

  16. Secretion of the Streptomyces tyrosinase is mediated through its trans-activator protein, MelC1.

    PubMed

    Leu, W M; Chen, L Y; Liaw, L L; Lee, Y H

    1992-10-05

    The tyrosinase of Streptomyces antibioticus is encoded by the second open reading frame, melC2 of the melanin operon (melC). The upstream open reading frame melC1 specifies a 146-amino acid protein with a typical NH2-terminal signal-peptide characteristic of a secretory protein. The MelC1 protein is involved in the transfer of copper ion to apotyrosinase MelC2 via binary complex formation (Lee, Y.-H. W., Chen, B.-F., Wu, S.-Y., Leu, W.-M., Lin, J.-J., Chen, C. W., and Lo, S. J. (1988) Gene (Amst.) 65, 71-81; Chen, L.-Y., Leu, W.-M., Wang, K.-T., and Lee, Y.-H.W. (1992) J. Biol. Chem. 267, 20100-20107). To investigate whether the export of tyrosinase is also dependent on MelC1, a mutational study of its signal-peptide sequence was performed. Four different mutants were obtained. Mutation at the positively charged region (mutant M-6LE, Arg6-Arg7----Leu6-Glu7) or the hydrophobic region (mutant M-16D, Val16----Asp16) led to Mel- phenotypes. These lesions caused a severe 7-10-fold reduction of the export of both the MelC1 and MelC2 proteins and a concomitant accumulation of the two proteins in the cytosolic fraction. The cell-associated tyrosinase activity in M-6LE but not in the M-16D mutant was dramatically reduced to 4% of the activity found in the wild type strain, suggesting that the basic NH2 terminus of MelC1 is also important for the trans-activation function of this protein. Nevertheless, the defects on the trans-activation and/or secretory functions of MelC1 in mutants M-6LE and M-16D are not due to the impairment of the formation of the MelC1.MelC2 complex. The translation of melanin operon genes in these two mutants also decreased. In contrast, the tyrosinase activity and the secretion of MelC2 were not affected if the mutations occurred at the putative cleavage site of the signal peptidase (e.g. mutant M-29SM, Arg29-Ala30----Ser29-Met30 or mutant 29-SMG, Arg29-Ala30-Asp31----Ser29-Med30-Gly31+ ++). Additionally, tyrosinase activity and its export were abolished in a MelC1-negative mutant, M-950. Taken together, these results demonstrate that a functional MelC1 is essential for tyrosinase secretion and activity. Furthermore, the results suggest that like other secretory proteins, basic and hydrophobic residues in the MelC1 signal sequence are an important feature of the signal-peptide and play a pivotal role in the secretion of both the MelC1 and MelC2 proteins.(ABSTRACT TRUNCATED AT 400 WORDS)

  17. The Arg389Gly beta1-adrenoceptor polymorphism does not affect cardiac effects of exercise after parasympathetic inhibition by atropine.

    PubMed

    Leineweber, Kirsten; Bruck, Heike; Temme, Thomas; Heusch, Gerd; Philipp, Thomas; Brodde, Otto-Erich

    2006-01-01

    In vitro, Arg389Gly beta1-adrenoceptor (AR) polymorphism exhibits decreased beta-AR signalling. In vivo, beta1-AR-mediated cardiac effects of exercise showed no genotype-dependent differences in Arg389 vs. Gly389 beta1-AR subjects. We studied in 16 male subjects homozygous Arg389 or Gly389 beta1-AR, whether blockade of parasympathetic activity might unmask genotype-dependence of exercise effects. Subjects were infused with atropine (10 microg/kg i.v. loading dose followed by continuous i.v. infusion of 0.15 microg/kg/min throughout exercise-time); 20 min after start of atropine bicycle-exercise in supine position (25, 50, 75 and 100 W for 5 min each) was performed and heart rate, contractility, blood pressure, plasma noradrenaline and plasma-renin activity were assessed. Exercise-evoked increases in all but one parameters were not different between Arg389 and Gly389 beta1-AR subjects; only plasma noradrenaline increased slightly more in Gly389 vs. Arg389 beta1-AR subjects. It appears to be unlikely that lack of Arg389Gly beta1-AR genotype-dependence of exercise-effects can be explained by influences of parasympathetic activity.

  18. Staphylococcal phosphoenolpyruvate-dependent phosphotransferase system: purification and characterization of the mannitol-specific enzyme III/sup mtl/ of Staphylococcus aureus and Staphylococcus carnosus and homology with the enzyme II/sup mtl/ of Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiche, B.; Frank, R.; Deutscher, J.

    1988-08-23

    Enzyme III/sup mtl/ is part of the mannitol phosphotransferase system of Staphylococcus aureus and Staphylococcus carnosus and is phosphorylated by phosphoenolpyruvate in a reaction sequence requiring enzyme I (phosphoenolpyruvate-protein phosphotransferase) and the histidine-containing protein HPr. In this paper, the authors report the isolation of III/sup mtl/ from both S. aureus and S. carnosus and the characterization of the active center. After phosphorylation of III/sup mtl/ with (/sup 32/P)PEP, enzyme I, and HPr, the phosphorylated protein was cleaved with endoproteinase GLu(C). The amino acid sequence of the S. aureus peptide carrying the phosphoryl group was found to be Gln-Val-Val-Ser-Thr-Phe-Met-Gly-Asn-Gly-Leu-Ala-Ile-Pro-His-Gly-Thr-Asp-Asp. The correspondingmore » peptide from S. carnosus shows an equal sequence except that the first residue is Ala instead of Gln. These peptides both contain a single histidyl residue which they assume to carry the phosphoryl group. All proteins of the PTS so far investigated indeed carry the phosphoryl group attached to a histidyl residue. According to sodium dodecyl sulfate gels, the molecular weight of the III/sup mtl/ proteins was found to be 15,000. They have also determined the N-terminal sequence of both proteins. Comparison of the III/sup mtl/ peptide sequences and the C-terminal part of the enzyme II/sup mtl/ of Escherichia coli reveals considerable sequence homology, which supports the suggestion that II/sup mtl/ of E. coli is a fusion protein of a soluble III protein with a membrane-bound enzyme II.« less

  19. NTS2-selective neurotensin mimetics with tetrahydrofuran amino acids.

    PubMed

    Simeth, Nadja A; Bause, Manuel; Dobmeier, Michael; Kling, Ralf C; Lachmann, Daniel; Hübner, Harald; Einsiedel, Jürgen; Gmeiner, Peter; König, Burkhard

    2017-01-01

    Stimulation of the NTS2 neurotensin receptor causes antipsychotic effects and leads to a promotion of the μ-opioid-independent antinociception, which is important in the modulation of tonic pain sensitivity. We report the synthesis and properties of a small library of peptidic agonists based on the active neurotensin fragment NT(8-13). Two tetrahydrofuran amino acid derivatives were synthesized to replace Tyr 11 in NT(8-13). Additionally, Arg 8 , Arg 9 , and Ile 12 of the lead peptide were exchanged by Lys, Lys, and Gly, respectively. The new compounds showed substantial NTS2 binding affinity and up to 1000-fold selectivity over NTS1. The highest selectivity (K i (NTS2): 29nM, K i (NTS1): 35,000nM) was observed for the peptide analog 17R trans . Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Transport and metabolism of delta sleep-inducing peptide in cultured human intestinal epithelial cell monolayers.

    PubMed

    Augustijns, P F; Borchardt, R T

    1995-12-01

    A cultured human intestinal epithelial (Caco-2) cell monolayer was used to study the transport and metabolism of delta sleep-inducing peptide [DSIP (Trp-Ala-Gly-Gly-Asp-Ala-Ser-Gly-Glu)]. DSIP is of interest because it has been reported to be capable of permeating biological barriers (e.g. blood-brain barrier), and this property has been related to its solution conformation. When applied to the apical (AP) side of Caco-2 cell monolayers, DSIP was rapidly metabolized (8.2 +/- 1.1% remaining after a 2-hr incubation), affording Trp as the major metabolite and Trp-Ala as a minor metabolite. When DSIP was added to the basolateral (BL) side of the monolayer, the same metabolites were detected, but the peptide was more stable (70.6 +/- 3.0% remaining after a 2-hr incubation). Inclusion of bestatin, an inhibitor of aminopeptidases, at concentrations up to 0.29 mM with DSIP on the AP side of the Caco-2 cell monolayer increased the stability of the peptide only slightly but dramatically altered the distribution of the metabolites (Trp-Ala became the major metabolite, and Trp became the minor metabolite). Inclusion of other aminopeptidase inhibitors (e.g. amastatin, puromycin) alone, dipeptidylpeptidase IV inhibitors (e.g. diprotin A, Gly-Pro) alone, inhibitors of proteases that require heavy metals for proper activity (e.g. EDTA, 1,10-phenanthroline) alone, or cysteine protease inhibitors (e.g. leupeptin) alone did not lead to significant stabilization of the peptide. However, inclusion of a combination of 0.29 mM bestatin and 1 mM diprotin A with DSIP on the AP side of the monolayers resulted in a substantial increase in the stability of the peptide (83.2 +/- 3.7% remaining after a 2-hr incubation). However, under these conditions, a new metabolite (Trp-Ala-Gly-Gly-Asp-Ala-Ser) was observed with a formation that could be inhibited by inclusion of 1 mM captopril, an inhibitor of peptidyl dipeptidase A. Therefore, the stability of DSIP could be further increased (95.1 +/- 1.6% remaining after a 2-hr incubation) by incubating the peptide with 0.29 mM bestatin, 1 mM diprotin A, and 1 mM captopril. However, even when the major metabolic pathways were inhibited on the AP side of the cell monolayer, no DSIP was detected on the BL side of a Caco-2 cell monolayer. These results suggest that a yet unidentified metabolic pathway is preventing the AP-to-BL flux of DSIP or that DSIP has lower "intrinsic" ability to permeate across cultured intestinal epithelial cells than across cultured brain endothelial cells, a cell culture model of the blood-brain barrier.

  1. Major antigenic determinants of F and ColB2 pili.

    PubMed Central

    Finlay, B B; Frost, L S; Paranchych, W; Parker, J M; Hodges, R S

    1985-01-01

    F-like conjugative pili are expressed by plasmids with closely related transfer systems. They are tubular filaments that are composed of repeating pilin subunits arranged in a helical array. Both F and ColB2 pilin have nearly identical protein sequences, and both contain an acetylated amino-terminal alanine residue. However, they differ by a few amino acid residues at their amino termini. Rabbit antisera raised against purified F and ColB2 pili are immunologically cross-reactive by only 25%, as measured by a competition enzyme-linked immunosorbent assay (ELISA). A tryptic peptide corresponding to the first 15 amino acid residues of ColB2 pilin was isolated and found to remove nearly 80% of ColB2 pilus-directed rabbit antibodies. The corresponding tryptic peptide from F pilin, which reacted with anti-F pilus antibodies to remove 80%, was less than 20% reactive with anti-ColB2 pilus antiserum. Cleavage of these peptides with cyanogen bromide (at a methionine residue approximately in the middle of the peptide) did not affect the antigenicity of these peptides. Synthetic N alpha-acetylated peptides corresponding to the first eight amino acids of F pilin (Ac-Ala-Gly-Ser-Ser-Gly-Gln-Asp-Leu-COOH) and the first six amino acids of ColB2 pilin (Ac-Ala-Gln-Gly-Gln-Asp-Leu-COOH) were prepared and tested by competition ELISA with homologous and heterologous anti-pilus antisera. The F peptide F(1-8) inhibited the interaction of F pili and anti-F pilus antiserum to 80%, while the ColB2 peptide ColB2(1-6) inhibited anti-ColB2 pilus antiserum reacting with ColB2 pili by greater than 60%. The two peptides F(1-8) and ColB2(1-6) were inactive by competition ELISAs with heterologous antisera. These results suggest that the major antigenic determinant of both F and ColB2 pili is at the amino terminus of the pilin subunit and that 80% of antibodies raised against these pili are specific for this region of the pilin molecule. PMID:2409073

  2. STUDIES ON THE IMMUNE RESPONSE TO A CHARACTERIZED ANTIGENIC DETERMINANT OF THE TOBACCO MOSAIC VIRUS PROTEIN

    PubMed Central

    Spitler, Lynn; Benjamini, E.; Young, Janis D.; Kaplan, Harvey; Fudenberg, H. H.

    1970-01-01

    The following peptides have previously been shown to bind specifically with antibodies to TMVP: (a) An eicosapeptide representing residues 93–112 of TMVP and having the sequence Ileu-Ileu-Glu-Val-Glu-AspNH2-GluNH2-Ala-AspNH2-Pro-Thr-Thr-Ala-Glu-Thr-Leu-Asp-Ala-Thr-Arg. (b) Its C-terminal decapeptide. (c) Its C-terminal pentapeptide. (d) N-octanoyl-C-terminal-tripeptide. (e) (Lys)4-C-terminal-pentapeptide. (f) (Lys)7 C-terminal-pentapeptide. The present communication deals with the investigation of several parameters of the immunological activity of the peptides. The results show that none of the peptides tested were immunogenic in guinea pigs, nor did they stimulate the incorporation of 14C-thymidine by spleen cells derived from TMVP-primed animals. Results also showed that all of the peptides tested could elicit specific delayed and immediate skin reactions in TMVP-sensitized guinea pigs, and furthermore, that the peptides could specifically inhibit the migration of peritoneal exudate cells derived from these animals. The elicitation of delayed skin reactions and the ability to inhibit migration of peritoneal exudate cells were independent of carrier specificity. PMID:5409944

  3. [Effect of new peptide bioregulators livagen and epitalon on enkephalin-degrading enzymes in human serum].

    PubMed

    Kost, N V; Sokolov, O Iu; Gabaeva, M V; Zolotarev, Iu A; Malinin, V V; Khavinson, V Kh

    2003-01-01

    The effect of new peptide bioregulators--Livagen (Lys-Glu-Asp-Ala) and Epitalon (Ala-Glu-Asp-Gly)--on endogenous opioid system was studied, particularly, their ability to change the activity of enkephalin-degrading enzymes from serum and interact with opioid receptors of the brain membrane fraction. Enkephalinase activity was assayed in vitro by the rate of 3H-Leu-enkephalin hydrolysis in the presence of the tested peptides. Livagen and Epitalon inhibited enkephalin-degrading enzymes from human serum. Livagen proved to be more efficient also as compared to well-known peptidase inhibitors such as puromycin, leupeptin, and D-PAM. The dose-inhibitory effect curves for Livagen and Epitalon were plotted; their IC50 equaled 20 and 500 microM, respectively. The interaction between the peptides and opioid receptors was estimated using a radioreceptor method with [3H][D-Ala2, D-Leu5]-enkephalin. No interaction was observed between the tested peptides and mu- or delta-opioid receptors of the membrane fraction from the rat brain.

  4. Effect of grafting RGD and BMP-2 protein-derived peptides to a hydrogel substrate on osteogenic differentiation of marrow stromal cells.

    PubMed

    He, Xuezhong; Ma, Junyu; Jabbari, Esmaiel

    2008-11-04

    Osteogenic differentiation and mineralization of bone marrow stromal (BMS) cells depends on the cells' interactions with bioactive peptides associated with the matrix proteins. The RGD peptides of ECM proteins interact with BMS cells through integrin surface receptors to facilitate cell spreading and adhesion. The BMP peptide corresponding to residues 73-92 of bone morphogenetic protein-2 promotes differentiation and mineralization of BMS cells. The objective of this work was to investigate the effects of RGD and BMP peptides, grafted to a hydrogel substrate, on osteogenic differentiation and mineralization of BMS cells. RGD peptide was acrylamide-terminated by reacting acrylic acid with the N-terminal amine group of the peptide to produce the functionalized Ac-GRGD peptide. The PEGylated BMP peptide was reacted with 4-carboxybenzenesulfonazide to produce an azide functionalized Az-mPEG-BMP peptide. Poly (lactide-co-ethylene oxide- co-fumarate) (PLEOF) macromer was cross-linked with Ac-GRGD peptide and propargyl acrylate to produce an RGD conjugated hydrogel. Az-mPEG-BMP peptide was grafted to the hydrogel by "click chemistry". The RGD and BMP peptide density on the hydrogel surface was 1.62+/-0.37 and 5.2+/-0.6 pmol/cm2, respectively. BMS cells were seeded on the hydrogels and the effect of RGD and BMP peptides on osteogenesis was evaluated by measuring ALPase activity and calcium content with incubation time. BMS cells cultured on RGD conjugated, BMP peptide grafted, and RGD+BMP peptide modified hydrogels showed 3, 2.5, and 5-fold increase in ALPase activity after 14 days incubation. BMS cells seeded on RGD+BMP peptides modified hydrogel showed 4.9- and 11.8-fold increase in calcium content after 14 and 21 days, respectively, which was significantly higher than RGD conjugated or BMP grafted hydrogels. These results demonstrate that RGD and BMP peptides, grafted to a hydrogel substrate, act synergistically to enhance osteogenic differentiation and mineralization of BMS cells. These findings are potentially useful in developing engineered scaffolds for bone regeneration.

  5. Structurally Ordered Nanowire Formation from Co-Assembly of DNA Origami and Collagen-Mimetic Peptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Tao; Meyer, Travis A.; Modlin, Charles

    In this paper, we describe the co-assembly of two different building units: collagen-mimetic peptides and DNA origami. Two peptides CP ++ and sCP ++ are designed with a sequence comprising a central block (Pro-Hyp-Gly) and two positively charged domains (Pro-Arg-Gly) at both N- and C-termini. Co-assembly of peptides and DNA origami two-layer (TL) nanosheets affords the formation of one-dimensional nanowires with repeating periodicity of similar to 10 nm. Structural analyses suggest a face-to-face stacking of DNA nanosheets with peptides aligned perpendicularly to the sheet surfaces. We demonstrate the potential of selective peptide-DNA association between face-to-face and edge-to-edge packing by tailoringmore » the size of DNA nanostructures. Finally, this study presents an attractive strategy to create hybrid biomolecular assemblies from peptide and DNA-based building blocks that takes advantage of the intrinsic chemical and physical properties of the respective components to encode structural and, potentially, functional complexity within readily accessible biomimetic materials.« less

  6. Structurally Ordered Nanowire Formation from Co-Assembly of DNA Origami and Collagen-Mimetic Peptides

    DOE PAGES

    Jiang, Tao; Meyer, Travis A.; Modlin, Charles; ...

    2017-09-26

    In this paper, we describe the co-assembly of two different building units: collagen-mimetic peptides and DNA origami. Two peptides CP ++ and sCP ++ are designed with a sequence comprising a central block (Pro-Hyp-Gly) and two positively charged domains (Pro-Arg-Gly) at both N- and C-termini. Co-assembly of peptides and DNA origami two-layer (TL) nanosheets affords the formation of one-dimensional nanowires with repeating periodicity of similar to 10 nm. Structural analyses suggest a face-to-face stacking of DNA nanosheets with peptides aligned perpendicularly to the sheet surfaces. We demonstrate the potential of selective peptide-DNA association between face-to-face and edge-to-edge packing by tailoringmore » the size of DNA nanostructures. Finally, this study presents an attractive strategy to create hybrid biomolecular assemblies from peptide and DNA-based building blocks that takes advantage of the intrinsic chemical and physical properties of the respective components to encode structural and, potentially, functional complexity within readily accessible biomimetic materials.« less

  7. Size-exclusion chromatography of tea tannins and intercepting potentials of peptides for the inhibition of trypsin-caseinolytic activity by tea tannins.

    PubMed

    Kasai, Naoya; Nakatsubo, Genki

    2006-07-12

    Molecular-weight distribution and characterization of tea tannin were investigated by high-performance liquid chromatography and the equivalent preparative exclusion gel chromatography using Sephadex G-25. The characteristics of the fractions were studied regarding the amounts of terminal catechin, sugar, and gallic acid, the color reaction of the Folin-Chiocalteu reagent, the UV absorbance, and the inhibition activity for the trypsin-caseinolytic activity per weight. Furthermore, we investigated the intercepting activities of the inhibition by the amino acids, peptides, their analogues, poly(ethylene glycol)s (PEGs), and histatin 5 using the inhibition of trypsin-caseinolytic activity by tea. Arg, Lys, and their peptides had strong intercepting activities for the inhibition, but only a weak activity was detected in the Pro peptides or gelatin-like peptides of (Pro-Pro-Gly)(n) (n = 5 or 10). The guanidyl group of Arg and the amino methylene group of Lys were important for the intercepting activity, but the activity was weakly dependent upon the peptide bond formation. The intercepting activity of the peptides or PEG exponentially increased with the number of polymerizations. Histatin 5 did not have a remarkably strong intercepting activity considering the peptide length. The activity of the synthetic histatin 5 in which all of the Lys and Arg were substituted by Ala was at the same level as histatin 5.

  8. Computational Study on Substrate Specificity of a Novel Cysteine Protease 1 Precursor from Zea mays

    PubMed Central

    Liu, Huimin; Chen, Liangcheng; Li, Quan; Zheng, Mingzhu; Liu, Jingsheng

    2014-01-01

    Cysteine protease 1 precursor from Zea mays (zmCP1) is classified as a member of the C1A family of peptidases (papain-like cysteine protease) in MEROPS (the Peptidase Database). The 3D structure and substrate specificity of the zmCP1 is still unknown. This study is the first one to build the 3D structure of zmCP1 by computer-assisted homology modeling. In order to determine the substrate specificity of zmCP1, docking study is used for rapid and convenient analysis of large populations of ligand–enzyme complexes. Docking results show that zmCP1 has preference for P1 position and P2 position for Arg and a large hydrophobic residue (such as Phe). Gly147, Gly191, Cys189, and Asp190 are predicted to function as active residues at the S1 subsite, and the S2 subsite contains Leu283, Leu193, Ala259, Met194, and Ala286. SIFt results indicate that Gly144, Arg268, Trp308, and Ser311 play important roles in substrate binding. Then Molecular Mechanics-Poisson-Boltzmann Surface Area (MM-PBSA) method was used to explain the substrate specificity for P1 position of zmCp1. This study provides insights into the molecular basis of zmCP1 activity and substrate specificity. PMID:24921705

  9. Albumin Redhill (-1 Arg, 320 Ala----Thr): a glycoprotein variant of human serum albumin whose precursor has an aberrant signal peptidase cleavage site.

    PubMed

    Brennan, S O; Myles, T; Peach, R J; Donaldson, D; George, P M

    1990-01-01

    Albumin Redhill is an electrophoretically slow genetic variant of human serum albumin that does not bind 63Ni2+ and has a molecular mass 2.5 kDa higher than normal albumin. Its inability to bind Ni2+ was explained by the finding of an additional residue of Arg at position -1. This did not explain the molecular basis of the genetic variation (since proalbumin contains adjacent Arg residues at -1 and -2) or the increase in apparent molecular mass. Fractionation of tryptic digests on concanavalin A-Sepharose followed by peptide mapping of the bound and unbound fractions and sequence analysis of the glycopeptides identified a mutation of 320 Ala----Thr. This introduces an Asn-Tyr-Thr oligosaccharide attachment sequence centered on Asn-318 and explains the increase in molecular mass. This, however, did not satisfactorily explain the presence of the additional Arg residue at position -1. DNA sequencing of polymerase chain reaction-amplified genomic DNA encoding the prepro sequence of albumin indicated an additional mutation of -2 Arg----Cys. This introduces a prepro sequence, Met-Lys-Trp-Val-Thr-Phe-Ile-Ser-Leu-Leu-Phe-Leu-Phe-Ser-Ser-Ala-Tyr- Ser-Arg-Gly-Val-Phe-Cys-Arg (cf.-Tyr-Ser-Arg-Gly-Val-Phe-Arg-Arg- in normal human pre-proalbumin). We propose that the new Phe-Cys-Arg sequence in the propeptide is an aberrant signal peptidase cleavage site and that the signal peptidase cleaves the propeptide of albumin Redhill in the lumen of the endoplasmic reticulum before it reaches the Golgi vesicles, the site of the diarginyl-specific proalbumin convertase.

  10. Purification and characterization of galanin and scyliorhinin I from the hybrid sturgeon, Scaphirhynchus platorynchus x Scaphirhynchus albus (Acipenseriformes).

    PubMed

    Wang, Y; Barton, B A; Thim, L; Nielsen, P F; Conlon, J M

    1999-01-01

    The sturgeons (order Acipenseriformes) are extant representatives of a group of ancient Actinopterygian (ray-finned) fish. Galanin and scyliorhinin I (a tachykinin with limited structural similarity to mammalian substance P) have been isolated from an extract of the gastrointestinal tract of a sturgeon (an F1 hybrid between the shovelnose sturgeon, Scaphirhynchus platorynchus, and the pallid sturgeon, Scaphirhynchus albus). The primary structure of sturgeon galanin (Gly-Trp-Thr-Leu-Asn-Ser-Ala-Gly-Tyr-Leu10-Leu-Gly-Pro-His-Ala-Val -As p-Gly-His-Arg20-Ser-Leu-Ser-Asp-Lys-His-Gly-Leu-Pro.NH2) contains only two amino acid substitutions (Ser23 --> Asn and Pro29 --> Ala) compared with galanin from the bowfin, Amia calva (Amiiformes), but five amino acid substitutions compared with galanin from the trout (Teleostei). Similarly, the sturgeon tachykinin (Ser-Lys-Tyr-His-Gln-Phe-Tyr-Gly-Leu-Met.NH2) contains only one amino acid substitution (Tyr3 --> Ser) compared with scyliorhinin I previously isolated from bowfin stomach but five amino acid substitutions compared with trout substance P. The data support the hypothesis that the Acipenseriformes and the basal Neopterygians (gars and bowfin) share a close phylogenetic relationship. Copyright 1999 Academic Press.

  11. Isotopic tracing for calculating the surface density of arginine-glycine-aspartic acid-containing peptide on allogeneic bone.

    PubMed

    Hou, Xiao-bin; Hu, Yong-cheng; He, Jin-quan

    2013-02-01

    To investigate the feasibility of determining the surface density of arginine-glycine-aspartic acid (RGD) peptides grafted onto allogeneic bone by an isotopic tracing method involving labeling these peptides with (125) I, evaluating the impact of the input concentration of RGD peptides on surface density and establishing the correlation between surface density and their input concentration. A synthetic RGD-containing polypeptide (EPRGDNYR) was labeled with (125) I and its specific radioactivity calculated. Reactive solutions of RGD peptide with radioactive (125) I-RGD as probe with input concentrations of 0.01 mg/mL, 0.10 mg/mL, 0.50 mg/mL, 1.00 mg/mL, 2.00 mg/mL and 4.00 mg/mL were prepared. Using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide as a cross-linking agent, reactions were induced by placing allogeneic bone fragments into reactive solutions of RGD peptide of different input concentrations. On completion of the reactions, the surface densities of RGD peptides grafted onto the allogeneic bone fragments were calculated by evaluating the radioactivity and surface areas of the bone fragments. The impact of input concentration of RGD peptides on surface density was measured and a curve constructed. Measurements by a radiodensity γ-counter showed that the RGD peptides had been labeled successfully with (125) I. The allogeneic bone fragments were radioactive after the reaction, demonstrating that the RGD peptides had been successfully grafted onto their surfaces. It was also found that with increasing input concentration, the surface density increased. It was concluded that the surface density of RGD peptides is quantitatively related to their input concentration. With increasing input concentration, the surface density gradually increases to saturation value. © 2013 Chinese Orthopaedic Association and Wiley Publishing Asia Pty Ltd.

  12. A Cyclic Peptidic Serine Protease Inhibitor: Increasing Affinity by Increasing Peptide Flexibility

    PubMed Central

    Jiang, Longguang; Paaske, Berit; Kromann-Hansen, Tobias; Jensen, Jan K.; Sørensen, Hans Peter; Liu, Zhuo; Nielsen, Jakob T.; Christensen, Anni; Hosseini, Masood; Sørensen, Kasper K.; Nielsen, Niels Christian; Jensen, Knud J.; Huang, Mingdong; Andreasen, Peter A.

    2014-01-01

    Peptides are attracting increasing interest as protease inhibitors. Here, we demonstrate a new inhibitory mechanism and a new type of exosite interactions for a phage-displayed peptide library-derived competitive inhibitor, mupain-1 (CPAYSRYLDC), of the serine protease murine urokinase-type plasminogen activator (uPA). We used X-ray crystal structure analysis, site-directed mutagenesis, liquid state NMR, surface plasmon resonance analysis, and isothermal titration calorimetry and wild type and engineered variants of murine and human uPA. We demonstrate that Arg6 inserts into the S1 specificity pocket, its carbonyl group aligning improperly relative to Ser195 and the oxyanion hole, explaining why the peptide is an inhibitor rather than a substrate. Substitution of the P1 Arg with novel unnatural Arg analogues with aliphatic or aromatic ring structures led to an increased affinity, depending on changes in both P1 - S1 and exosite interactions. Site-directed mutagenesis showed that exosite interactions, while still supporting high affinity binding, differed substantially between different uPA variants. Surprisingly, high affinity binding was facilitated by Ala-substitution of Asp9 of the peptide, in spite of a less favorable binding entropy and loss of a polar interaction. We conclude that increased flexibility of the peptide allows more favorable exosite interactions, which, in combination with the use of novel Arg analogues as P1 residues, can be used to manipulate the affinity and specificity of this peptidic inhibitor, a concept different from conventional attempts at improving inhibitor affinity by reducing the entropic burden. PMID:25545505

  13. New features of the delta opioid receptor: conformational properties of deltorphin I analogues.

    PubMed

    Balboni, G; Marastoni, M; Picone, D; Salvadori, S; Tancredi, T; Temussi, P A; Tomatis, R

    1990-06-15

    Deltorphin I is an opioid peptide of sequence H-Tyr-D-Ala-Phe-Asp-Val-Val-Gly-NH2, recently isolated from the skin of Phyllomedusa bicolor. Its enormous selectivity towards the delta opioid receptor and the similarity of the conformation of the N-terminal part of the sequence with that of dermorphin (H-Tyr-D-Ala-he-Gly-Tyr-Pro-Ser-NH2), a mu selective peptide, prompted the synthesis, biological evaluation and comparative conformational study of four analogs. A 1H-NMR study showed that the conformational preferences of the N-terminal sequences of all peptides are similar. The different selectivities towards opioid receptors have been interpreted in terms of charge effects in the interaction with the membrane and at the receptor site and of hydrophobicity of the C-terminal part, when structured in a folded conformation.

  14. Specificity of the collagenolytic serine proteinase from the pancreas of the catfish (Parasilurus asotus).

    PubMed

    Yoshinaka, R; Sato, M; Yamashita, M; Itoko, M; Ikeda, S

    1987-01-01

    The collagenolytic serine proteinase from the pancreas of the catfish (Parasilus asotus) had a pH optimum of 7.5 for native, reconstituted calf skin collagen fibrils. The enzyme was most stable at pH 6-9. The enzyme hydrolyzed heat-denatured collagen (gelatin), casein, hemoglobin and elastin in addition to native collagen but not virtually Tos-Arg-OEe, Bz-Tyr-OEe and Suc-(Ala)3-NA. The enzyme cleaved Leu-Gly (or Gln-Gly), Gly-Ile and Ile-Ala bonds on DNP-Pro-Leu-Gly-Ile-Ala-Gly-Arg-NH2 and DNP-Pro-Gln-Gly-Ile-Ala-Gly-Gln-D-Arg.

  15. Plasma growth hormone (GH), insulin and amino acid responses to arginine with or without aspartic acid in pigs. Effect of the dose.

    PubMed

    Cochard, A; Guilhermet, R; Bonneau, M

    1998-01-01

    The aim of the present study was to examine, for the first time in pigs, the dose-dependent effect of arginine (ARG) on growth hormone (GH) and insulin release and the effect of the combined ARG and aspartic acid (ASP) treatment on GH and insulin release. ARG (0.5 or 1 g/kg body weight) with or without an equimolar supplement of ASP (0.38 or 0.76 g/kg, respectively) was administered in piglets via the duodenum. ARG increased plasma arginine, ornithine, urea, proline and branched chain amino acid concentrations. ASP increased specifically plasma aspartic acid, glutamic acid, alanine and citrulline concentrations. Plasma insulin increased with no apparent difference between treatments. Maximum GH level and the area under the GH curve (AUC) were increased in a dose-dependent manner in response to ARG treatment. GH response to the combined ARG and ASP treatment (ARGASP) was delayed compared to ARG alone and was not dose-dependent. AUC for GH after ARGASP treatments were intermediate between those observed after the two ARG doses. Our data suggest that high ASP doses transiently inhibit and delay ARG-induced GH release in pigs and that an equimolar supplement of ASP stimulates or inhibits ARG-induced GH release depending on the dose used.

  16. Identification of eight novel coagulation factor XIII subunit A mutations: implied consequences for structure and function

    PubMed Central

    Ivaskevicius, Vytautas; Biswas, Arijit; Bevans, Carville; Schroeder, Verena; Kohler, Hans Peter; Rott, Hannelore; Halimeh, Susan; Petrides, Petro E.; Lenk, Harald; Krause, Manuele; Miterski, Bruno; Harbrecht, Ursula; Oldenburg, Johannes

    2010-01-01

    Background Severe hereditary coagulation factor XIII deficiency is a rare homozygous bleeding disorder affecting one person in every two million individuals. In contrast, heterozygous factor XIII deficiency is more common, but usually not associated with severe hemorrhage such as intracranial bleeding or hemarthrosis. In most cases, the disease is caused by F13A gene mutations. Causative mutations associated with the F13B gene are rarer. Design and Methods We analyzed ten index patients and three relatives for factor XIII activity using a photometric assay and sequenced their F13A and F13B genes. Additionally, structural analysis of the wild-type protein structure from a previously reported X-ray crystallographic model identified potential structural and functional effects of the missense mutations. Results All individuals except one were heterozygous for factor XIIIA mutations (average factor XIII activity 51%), while the remaining homozygous individual was found to have severe factor XIII deficiency (<5% of normal factor XIII activity). Eight of the 12 heterozygous patients exhibited a bleeding tendency upon provocation. Conclusions The identified missense (Pro289Arg, Arg611His, Asp668Gly) and nonsense (Gly390X, Trp664X) mutations are causative for factor XIII deficiency. A Gly592Ser variant identified in three unrelated index patients, as well as in 200 healthy controls (minor allele frequency 0.005), and two further Tyr167Cys and Arg540Gln variants, represent possible candidates for rare F13A gene polymorphisms since they apparently do not have a significant influence on the structure of the factor XIIIA protein. Future in vitro expression studies of the factor XIII mutations are required to confirm their pathological mechanisms. PMID:20179087

  17. Identification of eight novel coagulation factor XIII subunit A mutations: implied consequences for structure and function.

    PubMed

    Ivaskevicius, Vytautas; Biswas, Arijit; Bevans, Carville; Schroeder, Verena; Kohler, Hans Peter; Rott, Hannelore; Halimeh, Susan; Petrides, Petro E; Lenk, Harald; Krause, Manuele; Miterski, Bruno; Harbrecht, Ursula; Oldenburg, Johannes

    2010-06-01

    Severe hereditary coagulation factor XIII deficiency is a rare homozygous bleeding disorder affecting one person in every two million individuals. In contrast, heterozygous factor XIII deficiency is more common, but usually not associated with severe hemorrhage such as intracranial bleeding or hemarthrosis. In most cases, the disease is caused by F13A gene mutations. Causative mutations associated with the F13B gene are rarer. We analyzed ten index patients and three relatives for factor XIII activity using a photometric assay and sequenced their F13A and F13B genes. Additionally, structural analysis of the wild-type protein structure from a previously reported X-ray crystallographic model identified potential structural and functional effects of the missense mutations. All individuals except one were heterozygous for factor XIIIA mutations (average factor XIII activity 51%), while the remaining homozygous individual was found to have severe factor XIII deficiency (<5% of normal factor XIII activity). Eight of the 12 heterozygous patients exhibited a bleeding tendency upon provocation. The identified missense (Pro289Arg, Arg611His, Asp668Gly) and nonsense (Gly390X, Trp664X) mutations are causative for factor XIII deficiency. A Gly592Ser variant identified in three unrelated index patients, as well as in 200 healthy controls (minor allele frequency 0.005), and two further Tyr167Cys and Arg540Gln variants, represent possible candidates for rare F13A gene polymorphisms since they apparently do not have a significant influence on the structure of the factor XIIIA protein. Future in vitro expression studies of the factor XIII mutations are required to confirm their pathological mechanisms.

  18. Development and characterisation of highly antibiotic resistant Bartonella bacilliformis mutants

    PubMed Central

    Gomes, Cláudia; Martínez-Puchol, Sandra; Ruiz-Roldán, Lidia; Pons, Maria J.; del Valle Mendoza, Juana; Ruiz, Joaquim

    2016-01-01

    The objective was to develop and characterise in vitro Bartonella bacilliformis antibiotic resistant mutants. Three B. bacilliformis strains were plated 35 or 40 times with azithromycin, chloramphenicol, ciprofloxacin or rifampicin discs. Resistance-stability was assessed performing 5 serial passages without antibiotic pressure. MICs were determined with/without Phe-Arg-β-Napthylamide and artesunate. Target alterations were screened in the 23S rRNA, rplD, rplV, gyrA, gyrB, parC, parE and rpoB genes. Chloramphenicol and ciprofloxacin resistance were the most difficult and easiest (>37.3 and 10.6 passages) to be selected, respectively. All mutants but one selected with chloramphenicol achieved high resistance levels. All rifampicin, one azithromycin and one ciprofloxacin mutants did not totally revert when cultured without antibiotic pressure. Azithromycin resistance was related to L4 substitutions Gln-66 → Lys or Gly-70 → Arg; L4 deletion Δ62–65 (Lys-Met-Tyr-Lys) or L22 insertion 83::Val-Ser-Glu-Ala-His-Val-Gly-Lys-Ser; in two chloramphenicol-resistant mutants the 23S rRNA mutation G2372A was detected. GyrA Ala-91 → Val and Asp-95 → Gly and GyrB Glu474 → Lys were detected in ciprofloxacin-resistant mutants. RpoB substitutions Gln-527 → Arg, His-540 → Tyr and Ser-545 → Phe plus Ser-588 → Tyr were detected in rifampicin-resistant mutants. In 5 mutants the effect of efflux pumps on resistance was observed. Antibiotic resistance was mainly related to target mutations and overexpression of efflux pumps, which might underlie microbiological failures during treatments. PMID:27667026

  19. RGDfK-Peptide Modified Alginate Scaffold for Cell Transplantation and Cardiac Neovascularization.

    PubMed

    Sondermeijer, Hugo P; Witkowski, Piotr; Seki, Tetsunori; van der Laarse, Arnoud; Itescu, Silviu; Hardy, Mark A

    2018-05-01

    Cell implantation for tissue repair is a promising new therapeutic strategy. Although direct injection of cells into tissue is appealing, cell viability and retention are not very good. Cell engraftment and survival following implantation are dependent on a sufficient supply of oxygen and nutrients through functional microcirculation as well as a suitable local microenvironment for implanted cells. In this study, we describe the development of a porous, biocompatible, three-dimensional (3D) alginate scaffold covalently modified with the synthetic cyclic RGDfK (Arg-Gly-Asp-D-Phe-Lys) peptide. Cyclic RGDfK peptide is protease resistant, highly stable in aqueous solutions, and has high affinity for cellular integrins. Cyclic RGDfK-modified alginate scaffolds were generated using a novel silicone sheet sandwich technique in combination with freeze-gelation, resulting in highly porous nonimmunogenic scaffolds that promoted both human and rodent cell survival in vitro, and neoangiogenesis in vivo. Two months following implantation in abdominal rectus muscles in rats, cyclic RGDfK-modified scaffolds were fully populated by host cells, especially microvasculature without an overt immune response or fibrosis, whereas unmodified control scaffolds did not show cell ingrowth. Importantly, modified scaffolds that were seeded with human mesenchymal precursor cells and were patched to the epicardial surface of infarcted myocardium induced myocardial neoangiogenesis and significantly improved cardiac function. In summary, purified cyclic RGDfK peptide-modified 3D alginate scaffolds are biocompatible and nonimmunogenic, enhance cell viability, promote angiogenesis, and may be used as a means to deliver cells to myocardial infarct areas to improve neovascularization and cardiac function.

  20. Study of Xanthorhodopsin, the Retinal-Protein Proton Pump of Salinibacter ruber with Light-Harvesting Carotenoid Antenna

    DTIC Science & Technology

    2009-03-19

    including suggesstions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215...gen-bonded to the c=o and the NHz of the amide side-chain of Asn19t, as well as NHI ofArg184. The dependence of the carotenoid spectrum on the retinal...protonation of ASp85 [22]. This is unlikely to occur in the xan- thorhodopsin photocyc1e, because NHI and NH2 of Arg93 are both hydrogen-bonded to the peptide

  1. Primary structure of a guanyl-specific ribonuclease from the fungus Penicillium brevicompactum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulikov, V.A.; Shlyapnikov, S.V.; Yakovlev, G.I.

    1986-01-01

    By the automatic Edman degradation of the intact S-carboxymethylated protein and a mixture of the products of its proteolytic cleavage at Arg, Lys, and Glu residues, together with results on the kinetics of the proteolysis of the protein under the action of carboxypeptidase Y, the primary structure of the extracellular guanyl-specific RNase of the fungus Penicillium brevicompactum has been determined. The RNase contains 102 amino acid residues: 7 Asp, 7 Asn, 9 Thr, 11 Ser, 4 Glu, 1 Gln, 4 Pro, 10 Gly, 11 Ala, 4 Cys, 7 Val, 4 Ile, 3 Leu, 9 Tyr, 5 Phe, 2 Lys, 3more » His, 1 Arg (M/sub r/ 10,801). It has been established that four hemicystine residues of the P. compactum RNase form, in pairs, two disulfide bonds« less

  2. Phosphorylation-induced conformational changes in short peptides probed by fluorescence resonance energy transfer in the 10A domain.

    PubMed

    Sahoo, Harekrushna; Nau, Werner M

    2007-03-26

    Phosphorylation-induced conformational changes in short polypeptides were probed by a fluorescence resonance energy transfer (FRET) method by employing a short-distance FRET pair (R(0) approximately 10 A) based on tryptophan as natural donor and a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine (Dbo) as synthetic acceptor. Two substrates for kinases, LeuArgArgTrpSerLeuGly-Dbo (peptide I) and TrpLysArgThrLeuArgArg-Dbo (peptide II), were investigated, with serine and threonine, respectively, as phosphorylation sites. Steady-state and time-resolved fluorescence experiments in H(2)O revealed a decrease in FRET efficiency for peptide I and an increase for peptide II; this suggested that the effective distances between donor and acceptor increased and decreased, respectively. The same trends and similar absolute variations in effective donor-acceptor distances were observed in propylene glycol, a less polar and highly viscous solvent; this suggested that the variations are due to intrinsic structural preferences. Fitting of the time-resolved decay traces according to a distribution function model (Gaussian distribution) provided the mean donor-acceptor distances, which showed an increase upon phosphorylation for peptide I (from 9.7 to 10.5 A) and a decrease for peptide II (from 10.9 to 9.3 A) in H(2)O. The broadness (half-width) of the distributions, which provides a measure of the rigidity of the peptides, remained similar upon phosphorylation of peptide I (3.0 versus 3.1 A), but decreased for peptide II (from 3.1 to 0.73 A in H(2)O); this suggests a more compact, structured conformation upon phosphorylation of the latter peptide. The elongation of the peptide backbone (by ca. 0.7 A) for peptide I is attributed to an increase in steric demand upon phosphorylation, which favors an extended conformation. The contraction (by ca. 1.4 A) and structural rigidification of peptide II is attributed to attractive Coulombic interactions and hydrogen bonding between the phosphate group and the arginine residues.

  3. Role of ASCA and the NOD2/CARD15 mutation Gly908Arg in predicting increased surgical costs in Crohn's disease patients: a project of the European Collaborative Study Group on Inflammatory Bowel Disease.

    PubMed

    Odes, Shmuel; Friger, Michael; Vardi, Hillel; Claessens, Greet; Bossuyt, Xavier; Riis, Lene; Munkholm, Pia; Wolters, Frank; Yona, Hagit; Hoie, Ole; Beltrami, Marina; Tsianos, Epameinondas; Katsanos, Kostas; Mouzas, Ioannis; Clofent, Juan; Monteiro, Estela; Messori, Andrea; Politi, Patrizia; O'Morain, Colm; Limonard, Charles; Russel, Maurice; Vatn, Morten; Moum, Bjorn; Stockbrugger, Reinhold; Vermeire, Severine

    2007-07-01

    NOD2/CARD15, the first identified susceptibility gene in Crohn's disease (CD), is associated with ileal stenosis and increased frequency of surgery. Anti-Saccharomyces cerevisiae antibody (ASCA), a serological marker for CD, is associated with ileal location and a high likelihood for surgery. We hypothesized that the presence of ASCA and NOD2/CARD15 mutations could predict increased health care cost in CD. CD patients in a prospectively designed community-based multinational European and Israeli cohort (n = 228) followed for mean 8.3 (SD 2.6) years had blood drawn for measurement of ASCA (IgG, IgA), Arg702Trp, Gly908Arg, and Leu1007fsinsC. Days spent in the hospital and the costs of medical and surgical hospitalizations and medications were calculated. The median duration of surgical hospitalizations was longer in Gly908Arg-positive than -negative patients, 3.5 and 1.5 days/patient-year (P < 0.01), and in ASCA-positive than -negative patients, 1.1 and 0 days/patient-year (P < 0.001). Median surgical hospitalization cost was 1,580 euro/patient-year in Gly908Arg-positive versus 0 euro/patient-year in -negative patients (P < 0.01), and 663 euro/patient-year in ASCA-positive versus 0 euro/patient-year in -negative patients (P < 0.001). Differences in cost of medications between groups were not significant. The effect of Gly908Arg was expressed in countries with higher Gly908Arg carriage rates. ASCA raised surgical costs independently of the age at diagnosis of disease. Arg702Trp and Leu1007fsinsC did not affect the cost of health care. Since CD patients positive for Gly908Arg and ASCA demonstrated higher health care costs, it is possible that measurement of Gly908Arg and ASCA at disease diagnosis can forecast the expensive CD patients.

  4. Activatable iRGD-based peptide monolith: Targeting, internalization, and fluorescence activation for precise tumor imaging.

    PubMed

    Cho, Hong-Jun; Lee, Sung-Jin; Park, Sung-Jun; Paik, Chang H; Lee, Sang-Myung; Kim, Sehoon; Lee, Yoon-Sik

    2016-09-10

    A disulfide-bridged cyclic RGD peptide, named iRGD (internalizing RGD, c(CRGDK/RGPD/EC)), is known to facilitate tumor targeting as well as tissue penetration. After the RGD motif-induced targeting on αv integrins expressed near tumor tissue, iRGD encounters proteolytic cleavage to expose the CendR motif that promotes penetration into cancer cells via the interaction with neuropilin-1. Based on these proteolytic cleavage and internalization mechanism, we designed an iRGD-based monolithic imaging probe that integrates multiple functions (cancer-specific targeting, internalization and fluorescence activation) within a small peptide framework. To provide the capability of activatable fluorescence signaling, we conjugated a fluorescent dye to the N-terminal of iRGD, which was linked to the internalizing sequence (CendR motif), and a quencher to the opposite C-terminal. It turned out that fluorescence activation of the dye/quencher-conjugated monolithic peptide probe requires dual (reductive and proteolytic) cleavages on both disulfide and amide bond of iRGD peptide. Furthermore, the cleavage of the iRGD peptide leading to fluorescence recovery was indeed operative depending on the tumor-related angiogenic receptors (αvβ3 integrin and neuropilin-1) in vitro as well as in vivo. Compared to an 'always fluorescent' iRGD control probe without quencher conjugation, the dye/quencher-conjugated activatable monolithic peptide probe visualized tumor regions more precisely with lower background noise after intravenous injection, owing to the multifunctional responses specific to tumor microenvironment. All these results, along with minimal in vitro and in vivo toxicity profiles, suggest potential of the iRGD-based activatable monolithic peptide probe as a promising imaging agent for precise tumor diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Effect of beta2-adrenergic receptor polymorphism on response to longacting beta2 agonist in asthma (LARGE trial): a genotype-stratified, randomised, placebo-controlled, crossover trial.

    PubMed

    Wechsler, Michael E; Kunselman, Susan J; Chinchilli, Vernon M; Bleecker, Eugene; Boushey, Homer A; Calhoun, William J; Ameredes, Bill T; Castro, Mario; Craig, Timothy J; Denlinger, Loren; Fahy, John V; Jarjour, Nizar; Kazani, Shamsah; Kim, Sophia; Kraft, Monica; Lazarus, Stephen C; Lemanske, Robert F; Markezich, Amy; Martin, Richard J; Permaul, Perdita; Peters, Stephen P; Ramsdell, Joe; Sorkness, Christine A; Sutherland, E Rand; Szefler, Stanley J; Walter, Michael J; Wasserman, Stephen I; Israel, Elliot

    2009-11-21

    Some studies suggest that patients with asthma who are homozygous for arginine at the 16th amino acid position of the beta2-adrenergic receptor (B16 Arg/Arg) benefit less from treatment with longacting beta2 agonists and inhaled corticosteroids than do those homozygous for glycine (B16 Gly/Gly). We investigated whether there is a genotype-specific response to treatment with a longacting beta2 agonist in combination with inhaled corticosteroid. In this multicentre, randomised, double-blind, placebo-controlled trial, adult patients with moderate asthma were enrolled in pairs matched for forced expiratory volume in 1 s and ethnic origin, according to whether they had the B16 Arg/Arg (n=42) or B16 Gly/Gly (n=45) genotype. Individuals in a matched pair were randomly assigned by computer-generated randomisation sequence to receive inhaled longacting beta2 agonist (salmeterol 50 microg twice a day) or placebo given in a double-blind, crossover design for two 18-week periods. Open-label inhaled corticosteroid (hydrofluoroalkane beclometasone 240 microg twice a day) was given to all participants during the treatment periods. The primary endpoint was morning peak expiratory flow (PEF). Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00200967. After 18 weeks of treatment, mean morning PEF in Arg/Arg participants was 21.4 L/min (95% CI 11.8-31.1) higher when participants were assigned to receive salmeterol than when assigned to receive placebo (p<0.0001). In Gly/Gly participants, morning PEF was 21.5 L/min (11.0-32.1) higher when participants were assigned to receive salmeterol than when assigned to receive placebo (p<0.0001). The improvement in PEF did not differ between genotypes (difference [Arg/Arg-Gly/Gly] -0.1, -14.4 to 14.2; p=0.99). In Gly/Gly participants, methacholine PC20 (20% reduction in forced expiratory volume in 1 s; a prespecified secondary outcome) was 2.4 times higher when participants were assigned to salmeterol than when assigned to placebo (p<0.0001). Responsiveness to methacholine did not differ between salmeterol and placebo in Arg/Arg participants (p=0.87). The 2.5 times higher genotype-specific difference in responsiveness to methacholine was significant (1.32 doubling dose difference between genotypes, 0.43-2.21, p=0.0038). Seven Arg/Arg participants (placebo, n=5; salmeterol, n=2) and six Gly/Gly participants (placebo, n=3; salmeterol, n=3) had an asthma exacerbation. Five serious adverse events were reported, one each during the pre-match and run-in phases on open-label inhaled corticosteroid, two during double-blind treatment with salmeterol/inhaled corticosteroid, and one during double-blind treatment with placebo/inhaled corticosteroid. None of the serious events was asthma-related or related to study drugs or procedures. In asthma patients with B16 Arg/Arg and B16 Gly/Gly genotypes, combination treatment with salmeterol and inhaled corticosteroid improved airway function when compared with inhaled corticosteroid therapy alone. These findings suggest that patients should continue to be treated with longacting beta2 agonists plus moderate-dose inhaled corticosteroids irrespective of B16 genotype. Further investigation is needed to establish the importance of the genotype-specific difference in responsiveness to methacholine. National Institutes of Health.

  6. Toll like receptor-4 gene polymorphisms in patients with solitary cysticercus granuloma.

    PubMed

    Singh, Akhilesh; Garg, Ravindra Kumar; Jain, Amita; Malhotra, Hardeep Singh; Prakash, Shantanu; Verma, Rajesh; Sharma, Praveen Kumar

    2015-08-15

    Solitary cysticercus granuloma (SCG) of the brain is the most common type of neurocysticercosis in India. In this study, we evaluated TLR4 polymorphisms in patients with SCG. One-hundred-forty-three patients with SCG and 134 controls were enrolled. Assessment for TLR4 Asp299Gly and Thr399Ile polymorphism was done. TLR4 genotype was determined by PCR-sequencing chain termination method. The patients were followed for 6 months. Asp/Gly (P=0.024) and Thr/Ile (P=0.004) genotypes were significantly associated with the SCG. The Gly (Asp/Gly plus Gly/Gly) genotype (P=0.025) and Ile (Thr/Ile plus Ile/Ile) genotype (P=0.008) were significantly associated with the SCG. Gly/Gly and Ile/Ile genotypes were not significantly associated with SCG (P=0.767 for Gly/Gly, P=0.936 for Ile/Ile). At 6 months, TLR4 299Asp/Gly (P=0.02) and 399Ile/Thr (P=0.023) polymorphisms were significantly associated with the calcification or persistence of SCG. TLR4 polymorphisms are associated with the susceptibility to infection with SCG. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Nanolithographic control of the spatial organization of cellular adhesion receptors at the single-molecule level

    PubMed Central

    Schvartzman, Mark; Palma, Matteo; Sable, Julia; Abramson, Justin; Hu, Xian; Sheetz, Michael P.; Wind, Shalom J.

    2011-01-01

    The ability to control the placement of individual molecules promises to enable a wide range of applications and is a key challenge in nanoscience and nanotechnology. Many biological interactions, in particular, are sensitive to the precise geometric arrangement of proteins. We have developed a technique which combines molecular-scale nanolithography with site-selective biochemistry to create biomimetic arrays of individual protein binding sites. The binding sites can be arranged in heterogeneous patterns of virtually any possible geometry with a nearly unlimited number of degrees of freedom. We have used these arrays to explore how the geometric organization of the extracellular matrix (ECM) binding ligand RGD (Arg-Gly-Asp) affects cell adhesion and spreading. Systematic variation of spacing, density and cluster size of individual integrin binding sites was used to elicit different cell behavior. Cell spreading assays on arrays of different geometric arrangements revealed a dramatic increase in spreading efficiency when at least 4 liganded sites were spaced within 60 nm or less, with no dependence on global density. This points to the existence of a minimal matrix adhesion unit for fibronectin defined in space and stoichiometry. Developing an understanding of the ECM geometries that activate specific cellular functional complexes is a critical step toward controlling cell behavior. Potential practical applications range from new therapeutic treatments to the rational design of tissue scaffolds that can optimize healing without scarring. More broadly, spatial control at the single-molecule level can elucidate factors controlling individual molecular interactions and can enable synthesis of new systems based on molecular-scale architectures. PMID:21319842

  8. Increased metastatic potential of tumor cells in von Willebrand factor-deficient mice.

    PubMed

    Terraube, V; Pendu, R; Baruch, D; Gebbink, M F B G; Meyer, D; Lenting, P J; Denis, C V

    2006-03-01

    The key role played by von Willebrand factor (VWF) in platelet adhesion suggests a potential implication in various pathologies, where this process is involved. In cancer metastasis development, tumor cells interact with platelets and the vessel wall to extravasate from the circulation. As a potential mediator of platelet-tumor cell interactions, VWF could influence this early step of tumor spread and therefore play a role in cancer metastasis. To investigate whether VWF is involved in metastasis development. In a first step, we characterized the interaction between murine melanoma cells B16-BL6 and VWF in vitro. In a second step, an experimental metastasis model was used to compare the formation of pulmonary metastatic foci in C57BL/6 wild-type and VWF-null mice following the injection of B16-BL6 cells or Lewis lung carcinoma cells. In vitro adhesion assays revealed that VWF is able to promote a dose-dependent adhesion of B16-BL6 cells via its Arg-Gly-Asp (RGD) sequence. In the experimental metastasis model, we found a significant increase in the number of pulmonary metastatic foci in VWF-null mice compared with the wild-type mice, a phenotype that could be corrected by restoring VWF plasma levels. We also showed that increased survival of the tumor cells in the lungs during the first 24 h in the absence of VWF was the cause of this increased metastasis. These findings suggest that VWF plays a protective role against tumor cell dissemination in vivo. Underlying mechanisms remain to be investigated.

  9. Acidity-Triggered Tumor Retention/Internalization of Chimeric Peptide for Enhanced Photodynamic Therapy and Real-Time Monitoring of Therapeutic Effects.

    PubMed

    Han, Kai; Zhang, Wei-Yun; Ma, Zhao-Yu; Wang, Shi-Bo; Xu, Lu-Ming; Liu, Jia; Zhang, Xian-Zheng; Han, He-You

    2017-05-17

    Photodynamic therapy (PDT) holds great promise in tumor treatment. Nevertheless, it remains highly desirable to develop easy-to-fabricated PDT systems with improved tumor accumulation/internalization and timely therapeutic feedback. Here, we report a tumor-acidity-responsive chimeric peptide for enhanced PDT and noninvasive real-time apoptosis imaging. Both in vitro and in vivo studies revealed that a tumor mildly acidic microenvironment could trigger rapid protonation of carboxylate anions in chimeric peptide, which led to increased ζ potential, improved hydrophobicity, controlled size enlargement, and precise morphology switching from sphere to spherocylinder shape of the chimeric peptide. All of these factors realized superfast accumulation and prolonged retention in the tumor region, selective cellular internalization, and enhanced PDT against the tumor. Meanwhile, this chimeric peptide could further generate reactive oxygen species and initiate cell apoptosis during PDT. The subsequent formation of caspase-3 enzyme hydrolyzed the chimeric peptide, achieving a high signal/noise ratio and timely fluorescence feedback. Importantly, direct utilization of the acidity responsiveness of a biofunctional Asp-Glu-Val-Asp-Gly (DEVDG, caspase-3 enzyme substrate) peptide sequence dramatically simplified the preparation and increased the performance of the chimeric peptide furthest.

  10. The Arg16/Gly beta2-adrenergic receptor polymorphism is associated with altered cardiovascular responses to isometric exercise.

    PubMed

    Eisenach, John H; McGuire, Antonio M; Schwingler, Rachel M; Turner, Stephen T; Joyner, Michael J

    2004-02-13

    A polymorphism in the gene encoding the beta(2)-adrenergic receptor (arginine or glycine at amino acid position 16) is associated with altered vasodilator responses to beta(2)-agonists, which may modulate the pressor response to endogenous catecholamines during stress. To test the hypothesis that the Arg16/Gly polymorphism is associated with differences in acute pressor responses to sympathoexcitation, we measured mean arterial pressure (MAP, Finapres) and heart rate (HR, ECG) during mental stress (MS), cold pressor test (CPT), and handgrip (HG) to fatigue in 31 healthy, nonobese, normotensive adults (mean age +/- SE: 31 +/- 1; 16 females). Subjects were homozygous for Gly16 (n = 16) or Arg16 (n = 15). Both groups had similar baseline MAP (Arg16, 86 +/- 3 mmHg; Gly16, 89 +/- 2 mmHg; P = 0.4) and HR (Arg16, 68 +/- 2 beats/min; Gly16, 65 +/- 3 beats/min; P = 0.3). For MS and CPT, MAP and HR did not differ between genotype groups. Handgrip also produced similar increases in MAP; however, the change in HR was greater in the Gly16 homozygotes (P(ANOVA) = 0.001, genotype-by-time interaction). During HG, peak HR at fatigue was 100 +/- 4 beats/min for Gly16 (54% increase from rest) vs. 93 +/- 3 beats/min for Arg16 (37% increase). We conclude that the cardiovascular responses to MS and CPT do not differ between Gly16 and Arg16 homozygotes. However, the greater HR response to exercise in the Gly16 homozygotes may serve to maintain the pressor response (increased cardiac output) in the face of augmented peripheral vasodilation (decreased total peripheral resistance) in this group.

  11. Synthetic peptide, Ala-Arg-Glu-Gly-Glu-Met, abolishes pro-proliferative and anti-apoptotic effects of high glucose in vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Xiaozhou; Lyu, Yi; Collaborative Innovation Centre for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023

    Apoptosis plays a critical role in normal vascular development and atherosclerosis. However, high glucose has been reported to generate a certain level of ROS that can inhibit vascular smooth muscle cell (VSMC) apoptosis, with the underlying mechanism remaining unclear. In this study, a synthetic peptide AREGEM (Ala-Arg-Glu-Gly-Glu-Met) exhibited antioxidative effects and was used to investigate its function in VSMCs during hyperglycaemia. MTT assay results demonstrated that AREGEM significantly attenuated high glucose-induced VSMCs proliferation. Flow cytometry displayed that high glucose levels inhibited cell apoptosis, whereas this effect was attenuated by pre-incubation with AREGEM. In addition, the 2′,7'-dichlorofluorescein diacetate (DCFH-DA) fluorescent probemore » assay further demonstrated that AREGEM reduced intracellular ROS accumulation in VSMCs. Furthermore, this peptide was able to prevent the decrease of caspase-3 activity and the increase of the ratio of Bcl-2/Bax protein in VSMCs exposed to high glucose. These findings demonstrated that AREGEM is able to abolish the effects of high glucose in VSMCs; therefore, this peptide can be a potential candidate to develop a novel strategy for curing diabetic related diseases. - Highlights: • A peptide, AREGEM, can reduce intracellular ROS accumulation in vascular smooth muscle cells (VSMCs). • AREGEM significantly inhibits high glucose-induced proliferation of VSMCs. • AREGEM attenuates the inhibitory effect of high glucose on VSMC Apoptosis and caspase-3 activity. • AREGEM decreases the ratio of Bcl-2/Bax protein in VSMCs exposed to high glucose.« less

  12. Ternary Aligned Nanofibers of RGD Peptide-Displaying M13 Bacteriophage/PLGA/Graphene Oxide for Facilitated Myogenesis

    PubMed Central

    Shin, Yong Cheol; Kim, Chuntae; Song, Su-Jin; Jun, Seungwon; Kim, Chang-Seok; Hong, Suck Won; Hyon, Suong-Hyu; Han, Dong-Wook; Oh, Jin-Woo

    2018-01-01

    Recently, there have been tremendous efforts to develop the biofunctional scaffolds by incorporating various biochemical factors. In the present study, we fabricated poly(lactic-co-glycolic acid) (PLGA) nanofiber sheets decorated with graphene oxide (GO) and RGD peptide. The decoration of GO and RGD peptide was readily achieved by using RGD peptide-displaying M13 bacteriophage (RGD-M13 phage) and electrospinning. Furthermore, the aligned GO-decorated PLGA/RGD peptide (GO-PLGA/RGD) ternary nanofiber sheets were prepared by magnetic field-assisted electrospinning, and their potentials as bifunctional scaffolds for facilitating myogenesis were explored. We characterized the physicochemical and mechanical properties of the sheets by scanning electron microscopy, Raman spectroscopy, contact angle measurement, and tensile test. In addition, the C2C12 skeletal myoblasts were cultured on the aligned GO-PLGA/RGD nanofiber sheets, and their cellular behaviors, including initial attachment, proliferation and myogenic differentiation, were evaluated. Our results revealed that the GO-PLGA/RGD nanofiber sheets had suitable physicochemical and mechanical properties for supporting cell growth, and could significantly promote the spontaneous myogenic differentiation of C2C12 skeletal myoblasts. Moreover, it was revealed that the myogenic differentiation was further accelerated on the aligned GO-PLGA/RGD nanofiber sheets due to the synergistic effects of RGD peptide, GO and aligned nanofiber structure. Therefore, , it is suggested that the aligned GO-PLGA/RGD ternary nanofiber sheets are one of the most promising approaches for facilitating myogenesis and promoting skeletal tissue regeneration. PMID:29577018

  13. Ternary Aligned Nanofibers of RGD Peptide-Displaying M13 Bacteriophage/PLGA/Graphene Oxide for Facilitated Myogenesis.

    PubMed

    Shin, Yong Cheol; Kim, Chuntae; Song, Su-Jin; Jun, Seungwon; Kim, Chang-Seok; Hong, Suck Won; Hyon, Suong-Hyu; Han, Dong-Wook; Oh, Jin-Woo

    2018-01-01

    Recently, there have been tremendous efforts to develop the biofunctional scaffolds by incorporating various biochemical factors. In the present study, we fabricated poly(lactic- co -glycolic acid) (PLGA) nanofiber sheets decorated with graphene oxide (GO) and RGD peptide. The decoration of GO and RGD peptide was readily achieved by using RGD peptide-displaying M13 bacteriophage (RGD-M13 phage) and electrospinning. Furthermore, the aligned GO-decorated PLGA/RGD peptide (GO-PLGA/RGD) ternary nanofiber sheets were prepared by magnetic field-assisted electrospinning, and their potentials as bifunctional scaffolds for facilitating myogenesis were explored. We characterized the physicochemical and mechanical properties of the sheets by scanning electron microscopy, Raman spectroscopy, contact angle measurement, and tensile test. In addition, the C2C12 skeletal myoblasts were cultured on the aligned GO-PLGA/RGD nanofiber sheets, and their cellular behaviors, including initial attachment, proliferation and myogenic differentiation, were evaluated. Our results revealed that the GO-PLGA/RGD nanofiber sheets had suitable physicochemical and mechanical properties for supporting cell growth, and could significantly promote the spontaneous myogenic differentiation of C2C12 skeletal myoblasts. Moreover, it was revealed that the myogenic differentiation was further accelerated on the aligned GO-PLGA/RGD nanofiber sheets due to the synergistic effects of RGD peptide, GO and aligned nanofiber structure. Therefore, , it is suggested that the aligned GO-PLGA/RGD ternary nanofiber sheets are one of the most promising approaches for facilitating myogenesis and promoting skeletal tissue regeneration.

  14. Purification, structural characterization, and myotropic activity of a peptide related to des-Arg(9)-bradykinin from an elasmobranch fish, the little skate, Leucoraja erinacea.

    PubMed

    Anderson, W Gary; Leprince, Jérôme; Conlon, J Michael

    2008-08-01

    A bradykinin (BK)-related peptide was isolated from heat-denaturated plasma from an elasmobranch fish, the little skate, Leucoraja erinacea after incubation with porcine pancreatic kallikrein. The primary structure of the peptide (H-Gly-Ile-Thr-Ser-Trp-Leu-Pro-Phe-OH; skate BK) shows limited structural similarity to the mammalian B1 receptor agonist, des-Arg(9)-BK. The myotropic activities of synthetic skate BK, and the analog skate [Arg(9)]BK, were examined in isolated skate vascular and intestinal smooth muscle preparations. Skate BK produced a concentration-dependent constriction of the mesenteric artery (EC(50)=4.37x10(-8)M; maximum response=103.4+/-10.23% of the response to 60mM KCl) but the response to skate [Arg(9)]BK was appreciably weaker (response to 10(-6)M=73.0+/-23.4% of the response to 60mM KCl). Neither the first branchial gill arch nor the ventral aorta responded to either purified peptide. Skate BK also produced a concentration-dependent constriction of intestinal smooth muscle preparations (EC(50)=2.74x10(-7)M; maximum response 31.0+/-12.2% of the response to 10(-5)M acetylcholine). Skate [Arg(9)]BK was without effect on the intestinal preparation. The data provide evidence for the existence of the kallikrein-kinin system in a phylogenetically ancient vertebrate group and the greater potency of skate BK compared with the analog skate [Arg(9)]BK suggests that the receptor mediating vascular responses resembles the mammalian B1 receptor more closely than the B2 receptor.

  15. Structure characterization of lipocyclopeptide antibiotics, aspartocins A, B & C, by ESI-MSMS and ESI-nozzle-skimmer-MSMS.

    PubMed

    Siegel, Marshall M; Kong, Fangming; Feng, Xidong; Carter, Guy T

    2009-12-01

    Three lipocyclopeptide antibiotics, aspartocins A (1), B (2), and C (3), were obtained from the aspartocin complex by HPLC separation methodology. Their structures were elucidated using previously published chemical degradation results coupled with spectroscopic studies including ESI-MS, ESI-Nozzle Skimmer-MSMS and NMR. All three aspartocin compounds share the same cyclic decapeptide core of cyclo [Dab2 (Asp1-FA)-Pip3-MeAsp4-Asp5-Gly6-Asp7-Gly8-Dab9-Val10-Pro11]. They differ only in the fatty acid side chain moiety (FA) corresponding to (Z)-13-methyltetradec-3-ene-carbonyl, (+,Z)-12-methyltetradec-3-ene-carbonyl and (Z)-12-methyltridec-3-ene-carbonyl for aspartocins A (1), B (2), and C (3), respectively. All of the sequence ions were observed by ESI-MSMS of the doubly charged parent ions. However, a number of the sequence ions observed were of low abundance. To fully sequence the lipocyclopeptide antibiotic structures, these low abundance sequence ions together with complementary sequence ions were confirmed by ESI-Nozzle-Skimmer-MSMS of the singly charged linear peptide parent fragment ions H-Asp5-Gly6-Asp7-Gly8-Dab9-Val10-Pro11-Dab2(1+)-Asp1-FA. Cyclization of the aspartocins was demonstrated to occur via the beta-amino group of Dab2 from ions of moderate intensity in the ESI-MSMS spectra. As the fatty acid moieties do not undergo internal fragmentations under the experimental ESI mass spectral conditions used, the 14 Da mass difference between the fatty acid moieties of aspartocins A (1) and B (2) versus aspartocin C (3) was used as an internal mass tag to differentiate fragment ions containing fatty acid moieties and those not containing the fatty acid moieties. The most numerous and abundant fragment ions observed in the tandem mass spectra are due to the cleavage of the tertiary nitrogen amide of the pipecolic acid residue-3 (16 fragment ions) and the proline residue-11 (7 fragment ions). In addition, the neutral loss of ethanimine from alpha,beta-diaminobutyric acid residue 9 was observed for the parent molecular ion and for 7 fragment ions. Copyright 2009 John Wiley & Sons, Ltd.

  16. Ligand-induced Epitope Masking: DISSOCIATION OF INTEGRIN α5β1-FIBRONECTIN COMPLEXES ONLY BY MONOCLONAL ANTIBODIES WITH AN ALLOSTERIC MODE OF ACTION.

    PubMed

    Mould, A Paul; Askari, Janet A; Byron, Adam; Takada, Yoshikazu; Jowitt, Thomas A; Humphries, Martin J

    2016-09-30

    We previously demonstrated that Arg-Gly-Asp (RGD)-containing ligand-mimetic inhibitors of integrins are unable to dissociate pre-formed integrin-fibronectin complexes (IFCs). These observations suggested that amino acid residues involved in integrin-fibronectin binding become obscured in the ligand-occupied state. Because the epitopes of some function-blocking anti-integrin monoclonal antibodies (mAbs) lie near the ligand-binding pocket, it follows that the epitopes of these mAbs may become shielded in the ligand-occupied state. Here, we tested whether function-blocking mAbs directed against α5β1 can interact with the integrin after it forms a complex with an RGD-containing fragment of fibronectin. We showed that the anti-α5 subunit mAbs JBS5, SNAKA52, 16, and P1D6 failed to disrupt IFCs and hence appeared unable to bind to the ligand-occupied state. In contrast, the allosteric anti-β1 subunit mAbs 13, 4B4, and AIIB2 could dissociate IFCs and therefore were able to interact with the ligand-bound state. However, another class of function-blocking anti-β1 mAbs, exemplified by Lia1/2, could not disrupt IFCs. This second class of mAbs was also distinguished from 13, 4B4, and AIIB2 by their ability to induce homotypic cell aggregation. Although the epitope of Lia1/2 was closely overlapping with those of 13, 4B4, and AIIB2, it appeared to lie closer to the ligand-binding pocket. A new model of the α5β1-fibronectin complex supports our hypothesis that the epitopes of mAbs that fail to bind to the ligand-occupied state lie within, or very close to, the integrin-fibronectin interface. Importantly, our findings imply that the efficacy of some therapeutic anti-integrin mAbs could be limited by epitope masking. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Two Salt Bridges Differentially Contribute to the Maintenance of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Channel Function*

    PubMed Central

    Cui, Guiying; Freeman, Cody S.; Knotts, Taylor; Prince, Chengyu Z.; Kuang, Christopher; McCarty, Nael A.

    2013-01-01

    Previous studies have identified two salt bridges in human CFTR chloride ion channels, Arg352-Asp993 and Arg347-Asp924, that are required for normal channel function. In the present study, we determined how the two salt bridges cooperate to maintain the open pore architecture of CFTR. Our data suggest that Arg347 not only interacts with Asp924 but also interacts with Asp993. The tripartite interaction Arg347-Asp924-Asp993 mainly contributes to maintaining a stable s2 open subconductance state. The Arg352-Asp993 salt bridge, in contrast, is involved in stabilizing both the s2 and full (f) open conductance states, with the main contribution being to the f state. The s1 subconductance state does not require either salt bridge. In confirmation of the role of Arg352 and Asp993, channels bearing cysteines at these sites could be latched into a full open state using the bifunctional cross-linker 1,2-ethanediyl bismethanethiosulfonate, but only when applied in the open state. Channels remained latched open even after washout of ATP. The results suggest that these interacting residues contribute differently to stabilizing the open pore in different phases of the gating cycle. PMID:23709221

  18. Adrenergic Receptor Polymorphism and Maximal Exercise Capacity after Orthotopic Heart Transplantation.

    PubMed

    Métrich, Mélanie; Mehmeti, Fortesa; Feliciano, Helene; Martin, David; Regamey, Julien; Tozzi, Piergiorgio; Meyer, Philippe; Hullin, Roger

    Maximal exercise capacity after heart transplantion (HTx) is reduced to the 50-70% level of healthy controls when assessed by cardiopulmonary exercise testing (CPET) despite of normal left ventricular function of the donor heart. This study investigates the role of donor heart β1 and β2- adrenergic receptor (AR) polymorphisms for maximal exercise capacity after orthotopic HTx. CPET measured peak VO2 as outcome parameter for maximal exercise in HTx recipients ≥9 months and ≤4 years post-transplant (n = 41; mean peak VO2: 57±15% of predicted value). Donor hearts were genotyped for polymorphisms of the β1-AR (Ser49Gly, Arg389Gly) and the β2-AR (Arg16Gly, Gln27Glu). Circumferential shortening of the left ventricle was measured using magnetic resonance based CSPAMM tagging. Peak VO2 was higher in donor hearts expressing the β1-Ser49Ser alleles when compared with β1-Gly49 carriers (60±15% vs. 47±10% of the predicted value; p = 0.015), and by trend in cardiac allografts with the β1-AR Gly389Gly vs. β1-Arg389 (61±15% vs. 54±14%, p = 0.093). Peak VO2 was highest for the haplotype Ser49Ser-Gly389, and decreased progressively for Ser49Ser-Arg389Arg > 49Gly-389Gly > 49Gly-Arg389Arg (adjusted R2 = 0.56, p = 0.003). Peak VO2 was not different for the tested β2-AR polymorphisms. Independent predictors of peak VO2 (adjusted R2 = 0.55) were β1-AR Ser49Gly SNP (p = 0.005), heart rate increase (p = 0.016), and peak systolic blood pressure (p = 0.031). Left ventricular (LV) motion kinetics as measured by cardiac MRI CSPAMM tagging at rest was not different between carriers and non-carriers of the β1-AR Gly49allele. Similar LV cardiac motion kinetics at rest in donor hearts carrying either β1-AR Gly49 or β1-Ser49Ser variant suggests exercise-induced desensitization and down-regulation of the β1-AR Gly49 variant as relevant pathomechanism for reduced peak VO2 in β1-AR Gly49 carriers.

  19. Association between Toll-like receptor 4 Asp299Gly polymorphism and coronary heart disease susceptibility.

    PubMed

    Wu, B W; Zhu, J; Shi, H M; Jin, B; Wen, Z C

    2017-08-07

    Published data on the association between Toll-like receptor 4 (TLR4) Asp299Gly polymorphism and coronary heart disease (CHD) susceptibility are inconclusive. To derive a more precise estimation of the relationship, a meta-analysis was performed. English-language studies were identified by searching PubMed and Embase databases (up to November 2016). All epidemiological studies were regarding Caucasians because no TLR4 Asp/Gly and Gly/Gly genotypes have been detected in Asians. A total of 20 case-control studies involving 14,416 cases and 10,764 controls were included in the meta-analysis. Overall, no significant associations were found between TLR4 Asp299Gly polymorphism and CHD susceptibility in the dominant model (OR=0.89; 95%CI=0.74 to 1.06; P=0.20) pooled in the meta-analysis. In the subgroup analysis by CHD, non-significant associations were found in cases compared to controls. When stratified by control source, no significantly decreased risk was found in the additive model or dominant model. The present meta-analysis suggests that the TLR4 Asp299Gly polymorphism was not associated with decreased CHD risk in Caucasians.

  20. Exploration of the molecular interactions between angiotensin-I-converting enzyme (ACE) and the inhibitory peptides derived from hazelnut (Corylus heterophylla Fisch.).

    PubMed

    Liu, Chunlei; Fang, Li; Min, Weihong; Liu, Jingsheng; Li, Hongmei

    2018-04-15

    The mechanism of action of food-derived angiotensin-I-converting enzyme (ACE) inhibitory peptides has not been completely elucidated. In the present study, ion-exchange chromatography, gel filtration chromatography, reverse phase-high performance liquid chromatography, and liquid chromatography-electrospray ionization-tandem mass (LC-ESI-MS/MS) were employed for purifying and identifying the ACE inhibitory peptides from hazelnut. To understand the mode of action of these peptides, ACE inhibition kinetics, in vitro and in vivo bioavailability assays, active site analysis, and interaction between the inhibitory peptides and ACE were investigated. The results identified novel ACE inhibitory peptides Ala-Val-Lys-Val-Leu (AVKVL), Tyr-Leu-Val-Arg (YLVR), and Thr-Leu-Val-Gly-Arg (TLVGR) with IC 50 values of 73.06, 15.42, and 249.3 μM, respectively. All peptides inhibited the ACE activity via a non-competitive mode. The binding free energies of AVKVL, YLVR, and TLVGR for ACE were -3.46, -6.48, and -7.37 kcal/mol, respectively. The strong inhibition of ACE by YLVR may be attributed to the formation of cation-pi interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Multiplex SNaPshot-a new simple and efficient CYP2D6 and ADRB1 genotyping method.

    PubMed

    Ben, Songtao; Cooper-DeHoff, Rhonda M; Flaten, Hanna K; Evero, Oghenero; Ferrara, Tracey M; Spritz, Richard A; Monte, Andrew A

    2016-04-23

    Reliable, inexpensive, high-throughput genotyping methods are required for clinical trials. Traditional assays require numerous enzyme digestions or are too expensive for large sample volumes. Our objective was to develop an inexpensive, efficient, and reliable assay for CYP2D6 and ADRB1 accounting for numerous polymorphisms including gene duplications. We utilized the multiplex SNaPshot® custom genotype method to genotype CYP2D6 and ADRB1. We compared the method to reference standards genotyped using the Taqman Copy Number Variant Assay followed by pyrosequencing quantification and determined assigned genotype concordance. We genotyped 119 subjects. Seven (5.9 %) were found to be CYP2D6 poor metabolizers (PMs), 18 (15.1 %) intermediate metabolizers (IMs), 89 (74.8 %) extensive metabolizers (EMs), and 5 (4.2 %) ultra-rapid metabolizers (UMs). We genotyped two variants in the β1-adrenoreceptor, rs1801253 (Gly389Arg) and rs1801252 (Ser49Gly). The Gly389Arg genotype is Gly/Gly 18 (15.1 %), Gly/Arg 58 (48.7 %), and Arg/Arg 43 (36.1 %). The Ser49Gly genotype is Ser/Ser 82 (68.9 %), Ser/Gly 32 (26.9), and Gly/Gly 5 (4.2 %). The multiplex SNaPshot method was concordant with genotypes in reference samples. The multiplex SNaPshot method allows for specific and accurate detection of CYP2D6 genotypes and ADRB1 genotypes and haplotypes. This platform is simple and efficient and suited for high throughput.

  2. Short Exogenous Peptides Regulate Expression of CLE, KNOX1, and GRF Family Genes in Nicotiana tabacum.

    PubMed

    Fedoreyeva, L I; Dilovarova, T A; Ashapkin, V V; Martirosyan, Yu Ts; Khavinson, V Kh; Kharchenko, P N; Vanyushin, B F

    2017-04-01

    Exogenous short biologically active peptides epitalon (Ala-Glu-Asp-Gly), bronchogen (Ala-Glu-Asp-Leu), and vilon (Lys-Glu) at concentrations 10 -7 -10 -9  M significantly influence growth, development, and differentiation of tobacco (Nicotiana tabacum) callus cultures. Epitalon and bronchogen, in particular, both increase growth of calluses and stimulate formation and growth of leaves in plant regenerants. Because the regulatory activity of the short peptides appears at low peptide concentrations, their action to some extent is like that of the activity of phytohormones, and it seems to have signaling character and epigenetic nature. The investigated peptides modulate in tobacco cells the expression of genes including genes responsible for tissue formation and cell differentiation. These peptides differently modulate expression of CLE family genes coding for known endogenous regulatory peptides, the KNOX1 genes (transcription factor genes) and GRF (growth regulatory factor) genes coding for respective DNA-binding proteins such as topoisomerases, nucleases, and others. Thus, at the level of transcription, plants have a system of short peptide regulation of formation of long-known peptide regulators of growth and development. The peptides studied here may be related to a new generation of plant growth regulators. They can be used in the experimental botany, plant molecular biology, biotechnology, and practical agronomy.

  3. Competitive antagonists discriminate between NK2 tachykinin receptor subtypes.

    PubMed

    Maggi, C A; Patacchini, R; Giuliani, S; Rovero, P; Dion, S; Regoli, D; Giachetti, A; Meli, A

    1990-07-01

    1. We have compared the ability of various tachykinins and selective tachykinin receptor agonists to induce contraction of the endothelium-denuded rabbit pulmonary artery (RPA) and hamster trachea (HT) and have estimated the affinity of some newly developed NK2 selective antagonists in the same tissues. 2. In confirmation of previous findings, experiments with the agonists indicated that NK2 receptors are the main if not the sole mediators of the response to tachykinins in both RPA and HT. No evidence for significant degradation of neurokinin A (NKA) was found in either tissue when experiments were repeated in the presence of a mixture of peptidase inhibitors (thiorphan, captopril and bestatin, 1 microM each). 3. The peptide antagonists tested were: Peptide I = [Tyr5, D-Trp6,8,9, Arg10]-NKA(4-10); Peptide II = [Tyr5, D-Trp6,8,9, Arg10]-NKA(3-10); Peptide III = Ac-Leu-Asp-Gln-Trp-Phe-Gly-NH2. The three peptides produced a concentration-dependent rightward shift of the concentration-response curve to NKA in both RPA and HT with no significant depression of the maximal response attainable. The slopes of the Schild plots were not significantly different from unity, indicating a competitive antagonism. Peptides I and II were about 100 times more potent in the RPA than in the HT, while Peptide III was about 100 times more potent in the HT than RPA. 4. The pA2 values obtained in these two tissues with the three antagonists were not significantly different when tested in the absence or presence of peptidase inhibitors, or when a selective NK2 receptor agonist, [beta Ala8]-NKA(4-10) was used instead of NKA. Similar pA2 values were obtained after 15 or 90min of incubation with the antagonists. Peptides I, II and III had no inhibitory effect on contractions produced by noradrenaline in the RPA or by carbachol in the HT. 5. Peptides I, II and III showed weak or no antagonistic activity toward the vasodilatator effect of substance P in the dog carotid artery (NK, receptor-mediated) or toward the contractile effect of neurokinin B in the rat portal vein (NK3 receptor-mediated). 6. These results provide pharmacological evidence for heterogeneity of NK2 receptors in the RPA and HT. The NK2 receptors present in these tissues are not discriminated by natural tachykinins or selective agonists, but are recognized with very different affinity by NK2 receptor antagonists.

  4. Preparation of an Arg-Glu-Asp-Val Peptide Density Gradient on Hyaluronic Acid-Coated Poly(ε-caprolactone) Film and Its Influence on the Selective Adhesion and Directional Migration of Endothelial Cells.

    PubMed

    Yu, Shan; Gao, Ying; Mei, Xu; Ren, Tanchen; Liang, Su; Mao, Zhengwei; Gao, Changyou

    2016-11-02

    Selective adhesion and migration of endothelial cells (ECs) over smooth muscle cells (SMCs) is very important in the rapid endothelialization of blood-contacting implants to prevent vascular restenosis. In this study, a uniform cell-resistant layer of methacrylate-functionalized hyaluronic acid (HA) was first immobilized on a poly(ε-caprolactone) (PCL) film via polydopamine coupling. Then, a density gradient of thiol-functionalized Arg-Glu-Asp-Val (REDV) peptide was prepared on the HA layer via thiol-ene click chemistry and the continuous injection method. The REDV gradient selectively enhanced EC adhesion and preferential directional migration toward the region of higher REDV density, reaching 86% directionality in the middle of the gradient. The migration rate of ECs was also significantly enhanced twofold compared with that on tissue culture polystyrene (TCPS). In contrast, the gradient significantly weakened the adhesion of SMCs to 25% of that on TCPS but had no obvious impact on the migration rate and directionality. Successful modulation of the selective adhesion and directional migration of ECs over SMCs on biodegradable polymers serves as an important step toward practical applications for guided tissue regeneration.

  5. Effects of peptides on generation of reactive oxygen species in subcellular fractions of Drosophila melanogaster.

    PubMed

    Khavinson, V K; Myl'nikov, S V; Oparina, T I; Arutyunyan, A V

    2001-07-01

    We studied the effects of Epithalon (Ala-Glu-Asp-Gly) and Vilon (Lys-Glu) on free radical processes in highly inbred HA(+)line of Drosophila melanogaster. Vilon inhibited generation of reactive oxygen species in mitochondria, but stimulated this process in the cytosol. We found sex- and age-related differences in the generation of reactive oxygen species and cytosol antioxidant activity.

  6. The Gly972Arg polymorphism in insulin receptor substrate-1 is associated with decreased birth weight in a population-based sample of Brazilian newborns.

    PubMed

    Bezerra, Rosângela M N; de Castro, Vagner; Sales, Teresa; Passini, Renato; Marba, Sergio T M; Saad, Sara T O; Saad, Mario J A

    2002-03-01

    We studied the association between the Gly972Arg polymorphism in insulin receptor substrate-1 (IRS-1) and birth weight in a population-based sample of Brazilian newborns. We studied 194 newborn children with adequate gestational age to identify the association between the Gly972Arg polymorphism and birth weight using PCR-restriction fragment length polymorphism analysis. The data showed that the birth weight was lower in the newborns with the Gly972Arg polymorphism in IRS-1 compared with control subjects (3,141 +/- 31.8 vs. 3,373 +/- 80.3 g, P < 0.008). The results also showed that the frequency of this polymorphism was increased in newborns with a birth weight <3,000 g (P=0.041). These results suggest that the genotype Gly972Arg may influence birth weight, reinforcing the hypothesis that genetically determined insulin resistance and/or reduced insulin secretion can result in impaired insulin-mediated growth in the fetus.

  7. Melanoma targeting with alpha-melanocyte stimulating hormone analogs labeled with fac-[99mTc(CO)3]+: effect of cyclization on tumor-seeking properties.

    PubMed

    Raposinho, Paula D; Xavier, Catarina; Correia, João D G; Falcão, Soraia; Gomes, Paula; Santos, Isabel

    2008-03-01

    Early detection of primary melanoma tumors is essential because there is no effective treatment for metastatic melanoma. Several linear and cyclic radiolabeled alpha-melanocyte stimulating hormone (alpha-MSH) analogs have been proposed to target the melanocortin type 1 receptor (MC1R) overexpressed in melanoma. The compact structure of a rhenium-cyclized alpha-MSH analog (Re-CCMSH) significantly enhanced its in vivo tumor uptake and retention. Melanotan II (MT-II), a cyclic lactam analog of alpha-MSH (Ac-Nle-cyclo[Asp-His-DPhe-Arg-Trp-Lys]-NH2]), is a very potent and stable agonist peptide largely used in the characterization of melanocortin receptors. Taking advantage of the superior biological features associated with the MT-II cyclic peptide, we assessed the effect of lactam-based cyclization on the tumor-seeking properties of alpha-MSH analogs by comparing the pharmacokinetics profile of the 99mTc-labeled cyclic peptide betaAla-Nle-cyclo[Asp-His-D-Phe-Arg-Trp-Lys]-NH2 with that of the linear analog betaAla-Nle-Asp-His-DPhe-Arg-Trp-Lys-NH2 in melanoma-bearing mice. We have synthesized and coupled the linear and cyclic peptides to a bifunctional chelator containing a pyrazolyl-diamine backbone (pz) through the amino group of betaAla, and the resulting pz-peptide conjugates were reacted with the fac-[99mTc(CO)3]+ moiety. The 99mTc(CO)3-labeled conjugates were obtained in high yield, high specific activity, and high radiochemical purity. The cyclic 99mTc(CO)3-labeled conjugate presents a remarkable internalization (87.1% of receptor-bound tracer and 50.5% of total applied activity, after 6 h at 37 degrees C) and cellular retention (only 24.7% released from the cells after 5 h) in murine melanoma B16F1 cells. A significant tumor uptake and retention was obtained in melanoma-bearing C57BL6 mice for the cyclic radioconjugate [9.26 +/- 0.83 and 11.31 +/- 1.83% ID/g at 1 and 4 h after injection, respectively]. The linear 99mTc(CO)3-pz-peptide presented lower values for both cellular internalization and tumor uptake. Receptor blocking studies with the potent (Nle4,DPhe7)-alphaMSH agonist demonstrated the specificity of the radioconjugates to MC1R (74.8 and 44.5% reduction of tumor uptake at 4 h after injection for cyclic and linear radioconjugates, respectively).

  8. Selectivity Mechanism of the Voltage-gated Proton Channel, HV1

    NASA Astrophysics Data System (ADS)

    Dudev, Todor; Musset, Boris; Morgan, Deri; Cherny, Vladimir V.; Smith, Susan M. E.; Mazmanian, Karine; Decoursey, Thomas E.; Lim, Carmay

    2015-05-01

    Voltage-gated proton channels, HV1, trigger bioluminescence in dinoflagellates, enable calcification in coccolithophores, and play multifarious roles in human health. Because the proton concentration is minuscule, exquisite selectivity for protons over other ions is critical to HV1 function. The selectivity of the open HV1 channel requires an aspartate near an arginine in the selectivity filter (SF), a narrow region that dictates proton selectivity, but the mechanism of proton selectivity is unknown. Here we use a reduced quantum model to elucidate how the Asp-Arg SF selects protons but excludes other ions. Attached to a ring scaffold, the Asp and Arg side chains formed bidentate hydrogen bonds that occlude the pore. Introducing H3O+ protonated the SF, breaking the Asp-Arg linkage and opening the conduction pathway, whereas Na+ or Cl- was trapped by the SF residue of opposite charge, leaving the linkage intact, thus preventing permeation. An Asp-Lys SF behaved like the Asp-Arg one and was experimentally verified to be proton-selective, as predicted. Hence, interacting acidic and basic residues form favorable AspH0-H2O0-Arg+ interactions with hydronium but unfavorable Asp--X-/X+-Arg+ interactions with anions/cations. This proposed mechanism may apply to other proton-selective molecules engaged in bioenergetics, homeostasis, and signaling.

  9. Deficiencies in pro-thyrotropin-releasing hormone processing and abnormalities in thermoregulation in Cpefat/fat mice.

    PubMed

    Nillni, Eduardo A; Xie, Weihua; Mulcahy, Lawrence; Sanchez, Vanesa C; Wetsel, William C

    2002-12-13

    Cpe(fat/fat) mice are obese, diabetic, and infertile. They have a mutation in carboxypeptidase E (CPE), an enzyme that converts prohormone intermediates to bioactive peptides. The Cpe(fat) mutation leads to rapid degradation of the enzyme. To test whether pro-thyrotropin-releasing hormone (TRH) conversion to TRH involves CPE, processing was examined in the Cpe(fat/fat) mouse. Hypothalamic TRH is depressed by at least 75% compared with wild-type controls. Concentrations of pro-TRH forms are increased in homozygotes. TRH-[Gly(4)-Lys(5)-Arg(6)] and TRH-[Gly(4)-Lys(5)] represent approximately 45% of the total TRH-like immunoreactivity in Cpe(fat/fat) mice; they constitute approximately 1% in controls. Levels of TRH-[Gly(4)] were depressed in homozygotes. Because the hypothalamus contains some TRH, another carboxypeptidase must be responsible for processing. Immunocytochemical studies indicate that TRH neurons contain CPE- and carboxypeptidase D-like immunoreactivity. Recombinant CPE or carboxypeptidase D can convert synthetic TRH-[Gly(4)-Lys(5)] and TRH-[Gly(4)-Lys(5)-Arg(6)] to TRH-[Gly(4)]. When Cpe(fat/fat) mice are exposed to cold, they cannot maintain their body temperatures, and this loss is associated with hypothalamic TRH depletion and reduction in thyroid hormone. These findings demonstrate that the Cpe(fat) mutation can affect not only carboxypeptidase activity but also endoproteolysis. Because Cpe(fat/fat) mice cannot sustain a cold challenge, and because alterations in the hypothalamic-pituitary-thyroid axis can affect metabolism, deficits in pro-TRH processing may contribute to the obese and diabetic phenotype in these mice.

  10. The pharmacological properties of the novel peptide BPC 157 (PL-10).

    PubMed

    Sikiric, P

    1999-01-01

    The reported beneficial effects of the gastric mucosal derived pentadecapeptide BPC 157 (Gly Glu Pro Pro Pro Gly Lys Pro Ala Asp Asp Ala Gly Leu Val, M.W. 1419) on different organ lesions are reviewed. Apart from the effects on various gastrointestinal lesions, the potentially beneficial effect on pancreas, liver injuries, endothelium and heart damage, i.e. dysrhythmias following reoxygenation, and blood pressure, along with effect on experimental acute/chronic inflammation, wound and fracture (pseudoarthrosis) healing are described. It appears that these beneficial effects all together provide a particular network reflecting activity of a special peptidergic defence system. In support of this concept, it appears that there are interactions of this pentadecapeptide with many important systems (namely, dopamine-, NO-, prostaglandin-, somatosensory neurone-systems), that could provide a basis for the observed protective effects. Moreover, since disturbance of these systems' functions (i.e. dopamine-, NO-, somatosensory neuronal-system) which manifest either over-activity or as inhibition, may contribute to the multiple lesions in different organs. The reported evidence that this pentadecapeptide is able to counteract both their over-action, and their inhibition, may suggest this pentadecapeptide as a new, but most probably essential physiological defence system and that should be further investigated.

  11. Asp- and Glu-specific Novel Dipeptidyl Peptidase 11 of Porphyromonas gingivalis Ensures Utilization of Proteinaceous Energy Sources*

    PubMed Central

    Ohara-Nemoto, Yuko; Shimoyama, Yu; Kimura, Shigenobu; Kon, Asako; Haraga, Hiroshi; Ono, Toshio; Nemoto, Takayuki K.

    2011-01-01

    Porphyromonas gingivalis and Porphyromonas endodontalis, asaccharolytic black-pigmented anaerobes, are predominant pathogens of human chronic and periapical periodontitis, respectively. They incorporate di- and tripeptides from the environment as carbon and energy sources. In the present study we cloned a novel dipeptidyl peptidase (DPP) gene of P. endodontalis ATCC 35406, designated as DPP11. The DPP11 gene encoded 717 amino acids with a molecular mass of 81,090 Da and was present as a 75-kDa form with an N terminus of Asp22. A homology search revealed the presence of a P. gingivalis orthologue, PGN0607, that has been categorized as an isoform of authentic DPP7. P. gingivalis DPP11 was exclusively cell-associated as a truncated 60-kDa form, and the gene ablation retarded cell growth. DPP11 specifically removed dipeptides from oligopeptides with the penultimate N-terminal Asp and Glu and has a P2-position preference to hydrophobic residues. Optimum pH was 7.0, and the kcat/Km value was higher for Asp than Glu. Those activities were lost by substitution of Ser652 in P. endodontalis and Ser655 in P. gingivalis DPP11 to Ala, and they were consistently decreased with increasing NaCl concentration. Arg670 is a unique amino acid completely conserved in all DPP11 members distributed in the genera Porphyromonas, Bacteroides, and Parabacteroides, whereas this residue is converted to Gly in all authentic DPP7 members. Substitution analysis suggested that Arg670 interacts with an acidic residue of the substrate. Considered to preferentially utilize acidic amino acids, DPP11 ensures efficient degradation of oligopeptide substrates in these Gram-negative anaerobic rods. PMID:21896480

  12. Asp- and Glu-specific novel dipeptidyl peptidase 11 of Porphyromonas gingivalis ensures utilization of proteinaceous energy sources.

    PubMed

    Ohara-Nemoto, Yuko; Shimoyama, Yu; Kimura, Shigenobu; Kon, Asako; Haraga, Hiroshi; Ono, Toshio; Nemoto, Takayuki K

    2011-11-04

    Porphyromonas gingivalis and Porphyromonas endodontalis, asaccharolytic black-pigmented anaerobes, are predominant pathogens of human chronic and periapical periodontitis, respectively. They incorporate di- and tripeptides from the environment as carbon and energy sources. In the present study we cloned a novel dipeptidyl peptidase (DPP) gene of P. endodontalis ATCC 35406, designated as DPP11. The DPP11 gene encoded 717 amino acids with a molecular mass of 81,090 Da and was present as a 75-kDa form with an N terminus of Asp(22). A homology search revealed the presence of a P. gingivalis orthologue, PGN0607, that has been categorized as an isoform of authentic DPP7. P. gingivalis DPP11 was exclusively cell-associated as a truncated 60-kDa form, and the gene ablation retarded cell growth. DPP11 specifically removed dipeptides from oligopeptides with the penultimate N-terminal Asp and Glu and has a P2-position preference to hydrophobic residues. Optimum pH was 7.0, and the k(cat)/K(m) value was higher for Asp than Glu. Those activities were lost by substitution of Ser(652) in P. endodontalis and Ser(655) in P. gingivalis DPP11 to Ala, and they were consistently decreased with increasing NaCl concentration. Arg(670) is a unique amino acid completely conserved in all DPP11 members distributed in the genera Porphyromonas, Bacteroides, and Parabacteroides, whereas this residue is converted to Gly in all authentic DPP7 members. Substitution analysis suggested that Arg(670) interacts with an acidic residue of the substrate. Considered to preferentially utilize acidic amino acids, DPP11 ensures efficient degradation of oligopeptide substrates in these Gram-negative anaerobic rods.

  13. Determination of the binding mode for the cyclopentapeptide CXCR4 antagonist FC131 using a dual approach of ligand modifications and receptor mutagenesis

    PubMed Central

    Thiele, S; Mungalpara, J; Steen, A; Rosenkilde, M M; Våbenø, J

    2014-01-01

    Background and Purpose The cyclopentapeptide FC131 (cyclo(-L-Arg1-L-Arg2-L-2-Nal3-Gly4-D-Tyr5-)) is an antagonist at the CXC chemokine receptor CXCR4, which plays a role in human immunodeficiency virus infection, cancer and stem cell recruitment. Binding modes for FC131 in CXCR4 have previously been suggested based on molecular docking guided by structure–activity relationship (SAR) data; however, none of these have been verified by in vitro experiments. Experimental Approach Heterologous 125I-12G5-competition binding and functional assays (inhibition of CXCL12-mediated activation) of FC131 and three analogues were performed on wild-type CXCR4 and 25 receptor mutants. Computational modelling was used to rationalize the experimental data. Key Results The Arg2 and 2-Nal3 side chains of FC131 interact with residues in TM-3 (His113, Asp171) and TM-5 (hydrophobic pocket) respectively. Arg1 forms charge-charge interactions with Asp187 in ECL-2, while D-Tyr5 points to the extracellular side of CXCR4. Furthermore, the backbone of FC131 interacts with the chemokine receptor-conserved Glu288 via two water molecules. Intriguingly, Tyr116 and Glu288 form a H-bond in CXCR4 crystal structures and mutation of either residue to Ala abolishes CXCR4 activity. Conclusions and Implications Ligand modification, receptor mutagenesis and computational modelling approaches were used to identify the binding mode of FC131 in CXCR4, which was in agreement with binding modes suggested from previous SAR studies. Furthermore, insights into the mechanism for CXCR4 activation by CXCL12 were gained. The combined findings will facilitate future design of novel CXCR4 antagonists. PMID:25039237

  14. Obesity is associated with the Arg389Gly ADRB1 but not with the Trp64Arg ADRB3 polymorphism in children from San Luis PotosÍ and León, México.

    PubMed

    Aradillas-Garc X Cd, Celia; Cruz, Miguel; Pérez-Luque, Elva; Garay-Sevilla, María E; Malacara, Juan M; R, Aduna; Peralta, Jesús; Burguete-García, Ana; Alegría-Torres, Jorge A

    2016-10-17

    This research was designed to analyze the possible associations of Arg389Gly ADRB1 and Trp64Arg ADRB3 polymorphisms in children with obesity. A cross-sectional study included 1,046 school-age Mexican participants (6-12 years old) from the cities of San Luis PotosÍ and León. Children were classified as non-obese or obese according to their body mass index (BMI) percentile; obese children had a BMI≥95th percentile for sex and age. Biochemical data were collected. Polymorphisms were detected using TaqMan qPCR assay. A logistic regression analysis was used to calculate the risk of obesity based on genotypes. Differences were found between groups where obese children had a significant increase in systolic and diastolic blood pressure, fasting plasma glucose, insulin, HOMA-IR, LDL-cholesterol, triglycerides, and lower HDL-cholesterol compared with the normal weight group (P<0.05). The distribution of allele frequency in the population was Arg= 87.4 and Gly= 12.6 (Hardy Weinberg equilibrium c 2 = 3.16 , P = 0.07 ); Trp= 81.5 and Arg= 18.5 (Hardy Weinberg equilibrium c 2 = 2.2, P = 0.14 ) for ADRB1 and ADRB3, respectively. Even though no different frequencies of Arg389Gly polymorphism between groups were found (P = 0.08), children carriers of one Gly389 ADRB1 allele had a risk for obesity of OR=1.40 (95%CI, 1.03-1.90, P = 0.03) after adjustment for age and gender. No other association was found for Trp64Arg ADRB3 polymorphism. Only the Arg389Gly ADRB1 polymorphism was associated with risk for obesity in Mexican children.

  15. Structure of the carboxypeptidase B complex with N-sulfamoyl-L-phenylalanine - a transition state analog of non-specific substrate.

    PubMed

    Akparov, Valery; Timofeev, Vladimir; Khaliullin, Ilyas; Švedas, Vytas; Kuranova, Inna

    2018-03-01

    Carboxypeptidase B (EC 3.4.17.2) (CPB) is commonly used in the industrial insulin production and as a template for drug design. However, its ability to discriminate substrates with hydrophobic, hydrophilic, and charged side chains is not well understood. We report structure of CPB complex with a transition state analog N-sulfamoyl-L-phenylalanine solved at 1.74Å. The study provided an insight into structural basis of CPB substrate specificity. Ligand binding is affected by structure-depended conformational changes of Asp255 in S1'-subsite, interactions with Asn144 and Arg145 in C-terminal binding subsite, and Glu270 in the catalytic center. Side chain of the non-specific substrate analog SPhe in comparison with that of specific substrate analog SArg (reported earlier) not only loses favorable electrostatic interactions and two hydrogen bonds with Asp255 and three fixed water molecules, but is forced to be in the unfavorable hydrophilic environment. Thus, Ser207, Gly253, Tyr248, and Asp255 residues play major role in the substrate recognition by S1'-subsite.

  16. Molecular dynamics simulations of certain RGD-based peptides from Kistrin provide insight into the higher activity of REI-RGD34 protein at higher temperature.

    PubMed

    Upadhyay, Sanjay K

    2014-05-01

    To determine the bioactive conformation required to bind with receptor aIIbb3, the peptide sequence RIPRGDMP from Kistrin was inserted into CDR 1 loop region of REI protein, resulting in REI-RGD34. The activity of REI-RGD34 was observed to increase at higher temperature towards the receptor aIIbb3. It could be justified in either way: the modified complex forces the restricted peptide to adapt bioactive conformation or it unfolds the peptide in a way that opens its binding surface with high affinity for receptor. Here, we model the conformational preference of RGD sequence in RIPRGDMP at 25 and 42 °C using multiple MD simulations. Further, we model the peptide sequence RGD, PRGD and PRGDMP from kistrin to observe the effect of flanking residues on conformational sampling of RGD. The presence of flanking residues around RGD peptide greatly influenced the conformational sampling. A transition from bend to turn conformation was observed for RGD sequence at 42 °C. The turn conformation shows pharmacophoric parameters required to recognize the receptor aIIbb3. Thus, the temperaturedependent activity of RIPRGDMP when inserted into the loop region of REI can be explained by the presence of the turn conformation. This study will help in designing potential antagonist for the receptor aIIbb3.

  17. Tunable ultrasmall visible-to-extended near-infrared emitting silver sulfide quantum dots for integrin-targeted cancer imaging.

    PubMed

    Tang, Rui; Xue, Jianpeng; Xu, Baogang; Shen, Duanwen; Sudlow, Gail P; Achilefu, Samuel

    2015-01-27

    The large size of many near-infrared (NIR) fluorescent nanoparticles prevents rapid extravasation from blood vessels and subsequent diffusion to tumors. This confines in vivo uptake to the peritumoral space and results in high liver retention. In this study, we developed a viscosity modulated approach to synthesize ultrasmall silver sulfide quantum dots (QDs) with distinct tunable light emission from 500 to 1200 nm and a QD core diameter between 1.5 and 9 nm. Conjugation of a tumor-avid cyclic pentapeptide (Arg-Gly-Asp-DPhe-Lys) resulted in monodisperse, water-soluble QDs (hydrodynamic diameter < 10 nm) without loss of the peptide's high binding affinity to tumor-associated integrins (KI = 1.8 nM/peptide). Fluorescence and electron microscopy showed that selective integrin-mediated internalization was observed only in cancer cells treated with the peptide-labeled QDs, demonstrating that the unlabeled hydrophilic nanoparticles exhibit characteristics of negatively charged fluorescent dye molecules, which typically do not internalize in cells. The biodistribution profiles of intravenously administered QDs in different mouse models of cancer reveal an exceptionally high tumor-to-liver uptake ratio, suggesting that the small sized QDs evaded conventional opsonization and subsequent high uptake in the liver and spleen. The seamless tunability of the QDs over a wide spectral range with only a small increase in size, as well as the ease of labeling the bright and noncytotoxic QDs with biomolecules, provides a platform for multiplexing information, tracking the trafficking of single molecules in cells, and selectively targeting disease biomarkers in living organisms without premature QD opsonization in circulating blood.

  18. The potential role of toll-like receptor 4 Asp299Gly polymorphism and its association with recurrent cystic echinococcosis in postoperative patients.

    PubMed

    Noori, Jafar; Spotin, Adel; Ahmadpour, Ehsan; Mahami-Oskouei, Mahmoud; Sadeghi-Bazargani, Homayoun; Kazemi, Tohid; Sakhinia, Ebrahim; Aghebati-Maleki, Leili; Shahrivar, Firooz

    2018-06-01

    The study of pathogenesis mechanisms of larval stages in the Taeniidae has recently focused on host genetic factors, particularly toll-like receptor (TLR) variations. However, the potential role of TLR4 polymorphism in hydatidosis has not yet been sufficiently elucidated in postoperative patients. In this case-control investigation, 80 patients from Iran, including 40 with acute hydatidosis (AH) and 40 with recurrent hydatidosis (RH), and 80 ethnically matched controls were evaluated from February 2015 to February 2017. Hydatidosis patients were confirmed using radiological, immunological, and histopathological examinations. Genotyping of Asp299Gly and Thr399Ile of TLR4 single-nucleotide polymorphisms was determined by restriction fragment length polymorphism, sequencing, and phylogenetic strategies. The heterozygous mutant-type TLR4 Asp299Gly genotype indicated a tendency to be associated with the occurrence of RH (P = 0.060) and conferred a 3-fold risk for susceptibility. There was no difference in genotype frequency of Asp299Gly between patients with AH and healthy controls (P = 0.42; OR, 1.82; 95% CI, 0.11-30.1%). Interestingly, a frequency of the G allele (12%: Gly) was observed to be a risk factor for susceptibility to RH patients (P = 0.050; OR, 7.08; 95% CI, 0.97-51.5%). A relative genetic variability of TLR4 Asp299Gly was found in RH patients (haplotype diversity: 0.700) compared to AH patients and healthy controls (Hd: 0.000). The Asp299Gly genotype was dominantly identified in patients with hepatic hydatid cysts. The TLR4 Thr399Ile codon was not detected except in a patient with a pulmonary hydatid cyst. The current findings enhance our knowledge regarding the TLR4 Asp299Gly polymorphism potentially leading to the development of RH, by skewing the immune system towards a Th2 response. Identification of the Asp299Gly codon may be a diagnostic hallmark in RH patients who have undergone unsuccessful postoperative intervention. However, further studies with a higher case number are needed on ethnic population from various geographic regions, in order to confirm this hypothesis.

  19. Binding of Cu(II) ions to peptides studied by fluorescence spectroscopy and isothermal titration calorimetry.

    PubMed

    Makowska, Joanna; Żamojć, Krzysztof; Wyrzykowski, Dariusz; Uber, Dorota; Wierzbicka, Małgorzata; Wiczk, Wiesław; Chmurzyński, Lech

    2016-01-15

    Steady-state and time-resolved fluorescence quenching measurements supported by Isothermal Titration Calorimetry (ITC) were used to study the interactions of Cu(2+) with four peptides. Two of them were taken from the N-terminal part of the FBP28 protein (formin binding protein) WW domain: Tyr-Lys-Thr-Ala-Asp-Gly-Lys-Thr-Tyr-NH2 (D9) and its mutant Tyr-Lys-Thr-Ala-Asn-Gly-Lys-Thr-Tyr-NH2 (D9_M) as well as two mutated peptides from the B3 domain of the immunoglobulin binding protein G derived from Streptococcus: Asp-Val-Ala-Thr-Tyr-Thr-NH2 (J1) and Glu-Val-Ala-Thr-Tyr-Thr-NH2 (J2). The measurements were carried out at 298.15K in 20mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer solution with a pH of 6. The fluorescence of all peptides was quenched by Cu(2+) ions. The stoichiometry, conditional stability constants and thermodynamic parameters for the interactions of the Cu(2+) ions with D9 and D9_M were determined from the calorimetric data. The values of the conditional stability constants were additionally determined from fluorescence quenching measurements and compared with those obtained from calorimetric studies. There was a good correlation between data obtained from the two techniques. On the other hand, the studies revealed that J1 and J2 do not exhibit an affinity towards metal ions. The obtained results prove that fluorescence quenching experiments may be successfully used in order to determine stability constants of complexes with fluorescent ligands. Finally, based on the obtained results, the coordinating properties of the peptides towards the Cu(2+) ions are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Binding of Cu(II) ions to peptides studied by fluorescence spectroscopy and isothermal titration calorimetry

    NASA Astrophysics Data System (ADS)

    Makowska, Joanna; Żamojć, Krzysztof; Wyrzykowski, Dariusz; Uber, Dorota; Wierzbicka, Małgorzata; Wiczk, Wiesław; Chmurzyński, Lech

    2016-01-01

    Steady-state and time-resolved fluorescence quenching measurements supported by Isothermal Titration Calorimetry (ITC) were used to study the interactions of Cu2 + with four peptides. Two of them were taken from the N-terminal part of the FBP28 protein (formin binding protein) WW domain: Tyr-Lys-Thr-Ala-Asp-Gly-Lys-Thr-Tyr-NH2 (D9) and its mutant Tyr-Lys-Thr-Ala-Asn-Gly-Lys-Thr-Tyr-NH2 (D9_M) as well as two mutated peptides from the B3 domain of the immunoglobulin binding protein G derived from Streptococcus: Asp-Val-Ala-Thr-Tyr-Thr-NH2 (J1) and Glu-Val-Ala-Thr-Tyr-Thr-NH2 (J2). The measurements were carried out at 298.15 K in 20 mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer solution with a pH of 6. The fluorescence of all peptides was quenched by Cu2 + ions. The stoichiometry, conditional stability constants and thermodynamic parameters for the interactions of the Cu2 + ions with D9 and D9_M were determined from the calorimetric data. The values of the conditional stability constants were additionally determined from fluorescence quenching measurements and compared with those obtained from calorimetric studies. There was a good correlation between data obtained from the two techniques. On the other hand, the studies revealed that J1 and J2 do not exhibit an affinity towards metal ions. The obtained results prove that fluorescence quenching experiments may be successfully used in order to determine stability constants of complexes with fluorescent ligands. Finally, based on the obtained results, the coordinating properties of the peptides towards the Cu2 + ions are discussed.

  1. Inhibition of polyphenol oxidases activity by various dipeptides.

    PubMed

    Girelli, Anna M; Mattei, Enrico; Messina, Antonella; Tarola, Anna M

    2004-05-19

    In an effort to develop natural and nontoxic inhibitors on the activity of mushroom polyphenol oxidase (PPO) the effect of various glycyl-dipeptides (GlyAsp, GlyGly, GlyHis, GlyLeu, GlyLys, GlyPhe, GlyPro, GlyTyr) was investigated. The inhibition study with dihydroxyphenylalanine (DOPA) as substrate is based on separation of the enzymatic reaction components by reversed phase HPLC and the UV detection of the dopachrome formed. The results have evidenced that several of tested dipeptides inhibited PPO activity in the range of 20-40% while GlyPro and GlyLeu had no effect. The study has also permitted the characterization of the following kinetic pattern: a linear-mixed-type mechanism for GlyAsp, GlyGly, GlyLys, and GlyPhe and a hyperbolic-mixed-type for GlyTyr. It was not possible to identify the inhibition mechanism for GlyHis, although it affects PPO activity. In addition the effects of GlyAsp, GlyLys and GlyHis were evaluated for lessening the browning of fresh Golden Delicious apple and Irish White Skinned potato. The effectiveness of such inhibitors was determined by the difference between the colors observed in the dipeptide-treated sample and the controls using the color space CIE-Lab system. The % browning inhibition on potato (20-50%) was greater than of apple (20-30%) by the all tested dipeptides. Only GlyLys presented the significant value of 50%.

  2. A fluorescently labeled undecapeptide derived from a protein in royal jelly of the honeybee-royalisin-for specific detection of oxidized low-density lipoprotein.

    PubMed

    Sato, Akira; Unuma, Hiroto; Yamazaki, Yoji; Ebina, Keiichi

    2018-06-01

    The probes for detection of oxidized low-density lipoprotein (ox-LDL) in plasma and in atherosclerotic plaques are expected to facilitate the diagnosis, prevention, and treatment of atherosclerosis. Recently, we have reported that a heptapeptide (Lys-Trp-Tyr-Lys-Asp-Gly-Asp, KP6) coupled through the ε-amino group of N-terminal Lys to fluorescein isothiocyanate (FITC), (FITC)KP6, can be useful as a fluorescent probe for specific detection of ox-LDL. In the present study, to develop a novel fluorescent peptide for specific detection of ox-LDL, we investigated the interaction (with ox-LDL) of an undecapeptide corresponding to positions 41 to 51 of a potent antimicrobial protein (royalisin, which consists of 51 residues; from royal jelly of honeybees), conjugated at the N-terminus to FITC in the presence of 6-amino-n-caproic acid (AC) linker, (FITC-AC)-royalisin P11, which contains both sequences, Phe-Lys-Asp and Asp-Lys-Tyr, similar to Tyr-Lys-Asp in (FITC)KP6. The (FITC-AC)-royalisin P11 bound with high specificity to ox-LDL in a dose-dependent manner, through the binding to major lipid components in ox-LDL (lysophosphatidylcholine and oxidized phosphatidylcholine). In contrast, a (FITC-AC)-shuffled royalisin P11 peptide, in which sequences Phe-Lys-Asp and Asp-Lys-Tyr were modified to Lys-Phe-Asp and Asp-Tyr-Lys, respectively, hardly bound to LDL and ox-LDL. These findings strongly suggest that (FITC-AC)-royalisin P11 may be an effective fluorescent probe for specific detection of ox-LDL and that royalisin from the royal jelly of honeybees may play a role in the treatment of atherosclerosis through the specific binding of the region at positions 41 to 51 to ox-LDL. Copyright © 2018 European Peptide Society and John Wiley & Sons, Ltd.

  3. Mechanism of degradation of LH-RH and neurotensin by synaptosomal peptidases.

    PubMed

    McDermott, J R; Smith, A I; Dodd, P R; Hardy, J A; Edwardson, J A

    1983-01-01

    The products of degradation of LH-RH and neurotensin by synaptosomes isolated from rat hypothalamus and cortex have been identified. LH-RH is cleaved at Tyr5-Gly6 and Pro9-Gly10 giving rise to LH-RH (1-5), LH-RH (6-10) and LH-RH (1-9). Neurotensin is cleaved at Arg8-Arg9, Pro10-Tyr11 and Ile12-Leu13, giving neurotensin (1-8), neurotensin (1-10), neurotensin (1-12) and neurotensin (9-13) as major products. While most of the peptidase activity is localized in the cytoplasmic fraction, a small but significant proportion is membrane bound. For LH-RH, the specificity of the membrane-bound activity is similar to that in the cytosol fraction; for neurotensin, the membrane fraction preferentially gives rise to the (1-10) and (1-11) peptides. The most potent inhibitors of the LH-RH and neurotensin degrading enzymes in synaptosomes are heavy metal ions (mercury and copper), p-chloromercuribenzoate and 1,10 phenanthroline.

  4. Rare and common variants in LPL and APOA5 in Thai subjects with severe hypertriglyceridemia: A resequencing approach.

    PubMed

    Khovidhunkit, Weerapan; Charoen, Supannika; Kiateprungvej, Arunrat; Chartyingcharoen, Palm; Muanpetch, Suwanna; Plengpanich, Wanee

    2016-01-01

    Severe hypertriglyceridemia usually results from a combination of genetic and environmental factors. Few data exist on the genetics of severe hypertriglyceridemia in Asian populations. To examine the genetic variants of 3 candidate genes known to influence triglyceride metabolism, LPL, APOC2, and APOA5, which encode lipoprotein lipase, apolipoprotein C-II, and apolipoprotein A-V, respectively, in a large group of Thai subjects with severe hypertriglyceridemia. We identified sequence variants of LPL, APOC2, and APOA5 by sequencing exons and exon-intron junctions in 101 subjects with triglyceride levels ≥ 10 mmol/L (886 mg/dL) and compared with those of 111 normotriglyceridemic subjects. Six different rare variants in LPL were found in 13 patients, 2 of which were novel (1 heterozygous missense variant: p.Arg270Gly and 1 frameshift variant: p.Asp308Glyfs*3). Four previously identified heterozygous missense variants in LPL were p.Ala98Thr, p.Leu279Val, p.Leu279Arg, and p.Arg432Thr. Collectively, these rare variants were found only in the hypertriglyceridemic group but not in the control group (13% vs 0%, P < .0001). One common variant in APOA5 (p.Gly185Cys, rs2075291) was found at a higher frequency in the hypertriglyceridemic group compared with the control group (25% vs 6%, respectively, P < .0005). Altogether, rare variants in LPL or APOA5 and/or the common APOA5 p.Gly185Cys variant were found in 37% of the hypertriglyceridemic group vs 6% in the controls (P = 3.1 × 10(-8)). No rare variant in APOC2 was identified. Rare variants in LPL and a common variant in APOA5 were more commonly found in Thai subjects with severe hypertriglyceridemia. A common p.Gly185Cys APOA5 variant, in particular, was quite prevalent and potentially contributed to hypertriglyceridemia in this group of patients. Copyright © 2015 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  5. Enkephalins in the inferior mesenteric ganglion of the cat and in the area of the lower digestive tract innervated by this ganglion: quantification by radio-immunoassay and characterization by high pressure liquid chromatography.

    PubMed

    Cupo, A; Niel, J P; Miolan, J P; Jule, Y; Jarry, T

    1988-01-01

    Met-enkephalin, Leu-enkephalin and Met-enkephalin-Arg-Gly-Leu were quantified and characterized in the cat inferior mesenteric ganglion and in the area of the lower digestive tract innervated by this ganglion, including the proximal colon, distal colon and internal anal sphincter. In the structures studied, the concentrations of enkephalins expressed as femtomole/mg of wet tissue ranged from 66 to 160 with Met-enkephalin, from 15 to 45 with Leu-enkephalin and from 2 to 12 for Met-enkephalin-arg-gly-leu. In the lower digestive tract, the Met- and Leu-enkephalin content decreased from the proximal colon to the internal anal sphincter. The Met-enkephalin versus Leu-enkephalin ratio of the structures investigated were as follows: inferior mesenteric ganglion 3.2, proximal colon 4.4, distal colon 5, internal and sphincter 4.5. In individual samples of all the structures assayed the results of high pressure liquid chromatography (HPLC) analysis pointed to the presence of authentic Met- and Leu-enkephalin. HPLC analysis could not be carried out on Met-enkephalin-Arg-Gly-Leu due to the very low concentrations of this peptide in all the structures assayed. Our results, combined with those of previous immunohistochemical and physiological studies, support the idea that enkephalins are involved in the nervous control of the motility of the lower digestive tract.

  6. Impact of microencapsulated peptidase (Aspergillus oryzae) on cheddar cheese proteolysis and its biologically active peptide profile.

    PubMed

    Seneweera, Saman; Kailasapathy, Kaila

    2011-07-01

    We investigated the delivery of calcium-alginate encapsulated peptidase (Flavourzyme(®), Aspergillus oryzae) on proteolysis of Cheddar cheese. Physical and chemical characteristics such as moisture, pH and fat content were measured, and no differences were found between control and experimental cheese at day 0. SDS-PAGE analysis clearly showed that proteolysis of α and k casein was significantly accelerated after three months of maturity in the experimental cheese. A large number of low molecular weight peptides were found in the water soluble fraction of the experimental cheeses and some of these peptides were new. N-terminal amino acid sequence analysis identified these as P(1), Leu-Thu-Glu; P(3), Asp-Val-Pro-Ser-Glu) and relatively abundant stable peptides P(2), P(4), Arg-Pro-Lys-His-Pro-Ile; P(5), Arg-Pro-Lys-His-Pro-Ile-Lys and P(6). These peptides were mainly originated from αs1-CN and β-CN. Three of the identified peptides (P(1), P(2), P(3) and P(4)) are known to biologically active and P(1) and P(3) were only present in experimental cheese suggesting that experimental cheese has improved health benefits.

  7. Use of regularly scheduled albuterol treatment in asthma: genotype-stratified, randomised, placebo-controlled cross-over trial.

    PubMed

    Israel, Elliot; Chinchilli, Vernon M; Ford, Jean G; Boushey, Homer A; Cherniack, Reuben; Craig, Timothy J; Deykin, Aaron; Fagan, Joanne K; Fahy, John V; Fish, James; Kraft, Monica; Kunselman, Susan J; Lazarus, Stephen C; Lemanske, Robert F; Liggett, Stephen B; Martin, Richard J; Mitra, Nandita; Peters, Stephen P; Silverman, Eric; Sorkness, Christine A; Szefler, Stanley J; Wechsler, Michael E; Weiss, Scott T; Drazen, Jeffrey M

    The issue of whether regular use of an inhaled beta2-adrenergic agonist worsens airflow and clinical outcomes in asthma is controversial. Retrospective studies have suggested that adverse effects occur in patients with a genetic polymorphism that results in homozygosity for arginine (Arg/Arg), rather than glycine (Gly/Gly), at aminoacid residue 16 of the beta2-adrenergic receptor. However, the existence of any genotype-dependent difference has not been tested in a prospective clinical trial. Patients with mild asthma, not using a controller medication, were enrolled in pairs matched for forced expiratory volume in 1 s (FEV1) according to whether they had the Arg/Arg (n=37; four of 41 matches withdrew before randomisation) or Gly/Gly (n=41) genotype. Regularly scheduled treatment with albuterol or placebo was given in a masked, cross-over design, for 16-week periods. During the study, as-needed albuterol use was discontinued and ipratropium bromide was used as needed. Morning peak expiratory flow rate (PEFR) was the primary outcome variable. The primary comparisons were between treatment period for each genotype; the secondary outcome was a treatment by genotype effect. Analyses were by intention to treat. During the run-in period, when albuterol use was kept to a minimum, patients with the Arg/Arg genotype had an increase in morning PEFR of 23 L/min (p=0.0162); the change in patients with the Gly/Gly genotype was not significant (2 L/min; p=0.8399). During randomised treatment, patients with the Gly/Gly genotype had an increase in morning PEFR during treatment with regularly scheduled albuterol compared with placebo (14 L/min [95% CI 3 to 25]; p=0.0175). By contrast, patients with the Arg/Arg genotype had lower morning PEFR during treatment with albuterol than during the placebo period, when albuterol use was limited (-10 L/min [-19 to -2]; p=0.0209). The genotype-attributable treatment difference was therefore -24 L/min (-37 to -12; p=0.0003). There were similar genotype-specific effects in FEV1, symptoms, and use of supplementary reliever medication. Genotype at the 16th aminoacid residue of the beta2-adrenergic receptor affects the long-term response to albuterol use. Bronchodilator treatments avoiding albuterol may be appropriate for patients with the Arg/Arg genotype.

  8. Substitution of amino acids Asp-85, Asp-212, and Arg-82 in bacteriorhodopsin affects the proton release phase of the pump and the pK of the Schiff base.

    PubMed

    Otto, H; Marti, T; Holz, M; Mogi, T; Stern, L J; Engel, F; Khorana, H G; Heyn, M P

    1990-02-01

    Photocycle and flash-induced proton release and uptake were investigated for bacteriorhodopsin mutants in which Asp-85 was replaced by Ala, Asn, or Glu; Asp-212 was replaced by Asn or Glu; Asp-115 was replaced by Ala, Asn, or Glu; Asp-96 was replaced by Ala, Asn, or Glu; and Arg-82 was replaced by Ala or Gln in dimyristoylphosphatidylcholine/3-[(3-cholamidopropyl)dimethylammonio]-1- propanesulfonate micelles at pH 7.3. In the Asp-85----Ala and Asp-85----Asn mutants, the absence of the charged carboxyl group leads to a blue chromophore at 600 and 595 nm, respectively, and lowers the pK of the Schiff base deprotonation to 8.2 and 7, respectively, suggesting a role for Asp-85 as counterion to the Schiff base. The early part of the photocycles of the Asp-85----Ala and Asp-85----Asn mutants is strongly perturbed; the formation of a weak M-like intermediate is slowed down about 100-fold over wild type. In both mutants, proton release is also slower but clearly precedes the rise of M. The amplitude of the early (less than 0.2 microseconds) reversed photovoltage component in the Asp-85----Asn mutant is very large, and the net charge displacement is close to zero, indicating proton release and uptake on the cytoplasmic side of the membrane. The data suggest an obligatory role for Asp-85 in the efficient deprotonation of the Schiff base and in the proton release phase, probably as proton acceptor. In the Asp-212----Asn mutant, the rise of the absorbance change at 410 nm is slowed down to 220 microsecond, its amplitude is small, and the release of protons is delayed to 1.9 ms. The absorbance changes at 650 nm indicate perturbations in the early time range with a slow K intermediate. Thus Asp-212 also participates in the early events of charge translocation and deprotonation of the Schiff base. In the Arg-82----Gln mutant, no net transient proton release was observed, whereas, in the Arg-82----Ala mutant, uptake and release were reversed. The pK shift of the purple-to-blue transition in the Asp-85----Glu, Arg-82----Ala, and Arg-82----Gln mutants and the similarity in the photocycle and photoelectrical signals of the Asp-85----Ala, Asp-85----Asn, and Asp-212----Asn mutants suggest the interaction between Asp-85, Arg-82, Asp-212, and the Schiff base as essential for proton release.

  9. Multifunctional particles for melanoma-targeted drug delivery.

    PubMed

    Wadajkar, Aniket S; Bhavsar, Zarna; Ko, Cheng-Yu; Koppolu, Bhanuprasanth; Cui, Weina; Tang, Liping; Nguyen, Kytai T

    2012-08-01

    New magnetic-based core-shell particles (MBCSPs) were developed to target skin cancer cells while delivering chemotherapeutic drugs in a controlled fashion. MBCSPs consist of a thermo-responsive shell of poly(N-isopropylacrylamide-acrylamide-allylamine) and a core of poly(lactic-co-glycolic acid) (PLGA) embedded with magnetite nanoparticles. To target melanoma cancer cells, MBCSPs were conjugated with Gly-Arg-Gly-Asp-Ser (GRGDS) peptides that specifically bind to the α(5)β(3) receptors of melanoma cells. MBCSPs consist of unique multifunctional and controlled drug delivery characteristics. Specially, they can provide dual drug release mechanisms (a sustained release of drugs through degradation of PLGA core and a controlled release in response to changes in temperature via thermo-responsive polymer shell), and dual targeting mechanisms (magnetic localization and receptor-mediated targeting). Results from in vitro studies indicate that GRGDS-conjugated MBCSPs have an average diameter of 296 nm and exhibit no cytotoxicity towards human dermal fibroblasts up to 500 μg ml(-1). Further, a sustained release of curcumin from the core and a temperature-dependent release of doxorubicin from the shell of MBCSPs were observed. The particles also produced a dark contrast signal in magnetic resonance imaging. Finally, the particles were accumulated at the tumor site in a B16F10 melanoma orthotopic mouse model, especially in the presence of a magnet. Results indicate great potential of MBCSPs as a platform technology to target, treat and monitor melanoma for targeted drug delivery to reduce side effects of chemotherapeutic reagents. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. ChLpMab-23: Cancer-Specific Human-Mouse Chimeric Anti-Podoplanin Antibody Exhibits Antitumor Activity via Antibody-Dependent Cellular Cytotoxicity.

    PubMed

    Kaneko, Mika K; Nakamura, Takuro; Kunita, Akiko; Fukayama, Masashi; Abe, Shinji; Nishioka, Yasuhiko; Yamada, Shinji; Yanaka, Miyuki; Saidoh, Noriko; Yoshida, Kanae; Fujii, Yuki; Ogasawara, Satoshi; Kato, Yukinari

    2017-06-01

    Podoplanin is expressed in many cancers, including oral cancers and brain tumors. The interaction between podoplanin and its receptor C-type lectin-like receptor 2 (CLEC-2) has been reported to be involved in cancer metastasis and tumor malignancy. We previously established many monoclonal antibodies (mAbs) against human podoplanin using the cancer-specific mAb (CasMab) technology. LpMab-23 (IgG 1 , kappa), one of the mouse anti-podoplanin mAbs, was shown to be a CasMab. However, we have not shown the usefulness of LpMab-23 for antibody therapy against podoplanin-expressing cancers. In this study, we first determined the minimum epitope of LpMab-23 and revealed that Gly54-Leu64 peptide, especially Gly54, Thr55, Ser56, Glu57, Asp58, Arg59, Tyr60, and Leu64 of podoplanin, is a critical epitope of LpMab-23. We further produced human-mouse chimeric LpMab-23 (chLpMab-23) and investigated whether chLpMab-23 exerts antibody-dependent cellular cytotoxicity (ADCC) and antitumor activity. In flow cytometry, chLpMab-23 showed high sensitivity against a podoplanin-expressing glioblastoma cell line, LN319, and an oral cancer cell line, HSC-2. chLpMab-23 also showed ADCC activity against podoplanin-expressing CHO cells (CHO/podoplanin). In xenograft models with HSC-2 and CHO/podoplanin, chLpMab-23 exerts antitumor activity using human natural killer cells, indicating that chLpMab-23 could be useful for antibody therapy against podoplanin-expressing cancers.

  11. Gly389Arg polymorphism of beta1-adrenergic receptor is associated with the cardiovascular response to metoprolol.

    PubMed

    Liu, Jie; Liu, Zhao-Qian; Tan, Zhi-Rong; Chen, Xiao-Ping; Wang, Lian-Sheng; Zhou, Gan; Zhou, Hong-Hao

    2003-10-01

    Our objectives were to determine whether the Gly389 polymorphism of the beta(1)-adrenergic receptor exhibits reduced responsiveness in vivo and to test the hypothesis that the Gly389Arg polymorphism affects the blood pressure and heart rate response to metoprolol. beta(1)-Adrenergic receptor genotype was determined by polymerase chain reaction-restriction fragment length polymorphism assay. Exercise-induced heart rate increases were compared to determine the functional significance in vivo in 8 healthy Chinese men homozygous for Gly389 and 8 homozygous for Arg389. All of the subjects were given 25, 50, or 75 mg of metoprolol every 8 hours; the dosages were given in a random order, and each dosage was given for 1 day. The degree of beta-blockade was measured as the reduction in resting and exercise heart rates and blood pressures. Plasma metoprolol concentrations were measured by the use of HPLC-fluorescence detection. Exercise led to a workload-dependent increase in heart rate. There were no differences in exercise-induced heart rate increases between Arg389 and Gly389 homozygotes. Oral metoprolol caused significant dose-dependent decreases in both resting and exercise heart rates in both groups. The reductions in the resting heart rate in 3 dosage levels of metoprolol were 6.3% +/- 0.8% versus 4.1% +/- 0.7%, 10.1% +/- 1.0% versus 6.2% +/- 1.1%, and 14.4% +/- 1.4% versus 10.9% +/- 1.3% in homozygous Arg389 subjects and Gly389 subjects, respectively (P =.008). We also found differences with respect to the exercise heart rate (8.9% +/- 0.5%, 14.0% +/- 0.9%, and 20.1% +/- 1.5% in Arg389 subjects and 6.6% +/- 0.7%, 11.7% +/- 1.0%, and 16.4% +/- 1.3% in Gly389 subjects; P =.017) and systolic pressure (5.9% +/- 0.7%, 9.2% +/- 1.0%, and 11.6% +/- 1.2% in Arg389 subjects and 4.6% +/- 0.5%, 6.0% +/- 0.8%, and 9.9% +/- 0.9% in Gly389 subjects; P =.011). However, the difference in the fall in diastolic pressure was not statistically significant (P =.442). The Arg389 variant of the beta(1)-adrenergic receptor was associated with a greater response to metoprolol than that of Gly389 in young, male Chinese subjects. These data suggested that the beta(1)-adrenergic receptor Gly389Arg polymorphism is of major functional importance in vivo.

  12. LIGR, a protease-activated receptor-2-derived peptide, enhances skin pigmentation without inducing inflammatory processes.

    PubMed

    Lin, Connie B; Chen, Nannan; Scarpa, Richard; Guan, Fei; Babiarz-Magee, Laura; Liebel, Frank; Li, Wen-Hwa; Kizoulis, Menas; Shapiro, Stanley; Seiberg, Miri

    2008-04-01

    The protease-activated receptor-2 (PAR-2) is a seven transmembrane G-protein-coupled receptor that could be activated by serine protease cleavage or by synthetic peptide agonists. We showed earlier that activation of PAR-2 with Ser-Leu-Ile-Gly-Arg-Leu-NH(2) (SLIGRL), a known PAR-2 activating peptide, induces keratinocyte phagocytosis and increases skin pigmentation, indicating that PAR-2 regulates pigmentation by controlling phagocytosis of melanosomes. Here, we show that Leu-Ile-Gly-Arg-NH(2) (LIGR) can also induce skin pigmentation. Both SLIGRL and LIGR increased melanin deposition in vitro and in vivo, and visibly darkened human skins grafted onto severe combined immuno-deficient (SCID) mice. Both SLIGRL and LIGR stimulated Rho-GTP activation resulting in keratinocyte phagocytosis. Interestingly, LIGR activates only a subset of the PAR-2 signaling pathways, and unlike SLIGRL, it does not induce inflammatory processes. LIGR did not affect many PAR-2 signaling pathways, including [Ca(2+)] mobilization, cAMP induction, the induction of cyclooxgenase-2 (COX-2) expression and the secretion of prostaglandin E2, interleukin-6 and -8. PAR-2 siRNA inhibited LIGR-induced phagocytosis, indicating that LIGR signals via PAR-2. Our data suggest that LIGR is a more specific regulator of PAR-2-induced pigmentation relative to SLIGRL. Therefore, enhancing skin pigmentation by topical applications of LIGR may result in a desired tanned-like skin color, without enhancing inflammatory processes, and without the need of UV exposure.

  13. Arg16/Gly beta2-adrenergic receptor polymorphism alters the cardiac output response to isometric exercise.

    PubMed

    Eisenach, John H; Barnes, Sunni A; Pike, Tasha L; Sokolnicki, Lynn A; Masuki, Shizue; Dietz, Niki M; Rehfeldt, Kent H; Turner, Stephen T; Joyner, Michael J

    2005-11-01

    Normotensive adults homozygous for glycine (Gly) of the Arg16/Gly beta2-adrenergic-receptor polymorphism have 1) greater forearm beta2-receptor mediated vasodilation and 2) a higher heart rate (HR) response to isometric handgrip than arginine (Arg) homozygotes. To test the hypothesis that the higher HR response in Gly16 subjects serves to maintain the pressor response [increased cardiac output (CO)] in the setting of augmented peripheral vasodilation to endogenous catecholamines, we measured continuous HR (ECG), arterial pressure (Finapres), and CO (transthoracic echocardiography) during isometric, 40% submaximal handgrip to fatigue in healthy subjects homozygous for Gly (n = 30; mean age +/- SE: 30 +/- 1.2, 13 women) and Arg (n = 17, age 30 +/- 1.6, 11 women). Resting data were similar between groups. Handgrip produced similar increases in arterial pressure and venous norepinephrine and epinephrine concentrations; however, HR increased more in the Gly group (60.1 +/- 4.3% increase from baseline vs. 45.5 +/- 3.9%, P = 0.03), and this caused CO to be higher (Gly: 7.6 +/- 0.3 l/m vs. Arg: 6.5 +/- 0.3 l/m, P = 0.03), whereas the decrease in systemic vascular resistance in the Gly group did not reach significance (P = 0.09). We conclude that Gly16 homozygotes generate a higher CO to maintain the pressor response to handgrip. The influence of polymorphic variants in the beta2-adrenergic receptor gene on the cardiovascular response to sympathoexcitation may have important implications in the development of hypertension and heart failure.

  14. XRCC1 Arg399Gln was associated with repair capacity for DNA damage induced by occupational chromium exposure

    PubMed Central

    2012-01-01

    Background Occupational chromium exposure may induce DNA damage and lead to lung cancer and other work-related diseases. DNA repair gene polymorphisms, which may alter the efficiency of DNA repair, thus may contribute to genetic susceptibility of DNA damage. The aim of this study was to test the hypothesis that the genetic variations of 9 major DNA repair genes could modulate the hexavalent chromium (Cr (VI))-induced DNA damage. Findings The median (P25-P75) of Olive tail moment was 0.93 (0.58–1.79) for individuals carrying GG genotype of XRCC1 Arg399Gln (G/A), 0.73 (0.46–1.35) for GA heterozygote and 0.50 (0.43–0.93) for AA genotype. Significant difference was found among the subjects with three different genotypes (P = 0.048) after adjusting the confounding factors. The median of Olive tail moment of the subjects carrying A allele (the genotypes of AA and GA) was 0.66 (0.44–1.31), which was significantly lower than that of subjects with GG genotype (P = 0.043). The A allele conferred a significantly reduced risk of DNA damage with the OR of 0.39 (95% CI: 0.15–0.99, P = 0.048). No significant association was found between the XRCC1Arg194Trp, ERCC1 C8092A, ERCC5 His1104Asp, ERCC6 Gly399Asp, GSTP1 Ile105Val, OGG1 Ser326Cys, XPC Lys939Gln, XPD Lys751Gln and DNA damage. Conclusion The polymorphism of Arg399Gln in XRCC1 was associated with the Cr (VI)- induced DNA damage. XRCC1 Arg399Gln may serve as a genetic biomarker of susceptibility for Cr (VI)- induced DNA damage. PMID:22642904

  15. Novel activity of angiotensin-converting enzyme. Hydrolysis of cholecystokinin and gastrin analogues with release of the amidated C-terminal dipeptide.

    PubMed Central

    Dubreuil, P; Fulcrand, P; Rodriguez, M; Fulcrand, H; Laur, J; Martinez, J

    1989-01-01

    ACE (angiotensin-converting enzyme; peptidyl dipeptidase A; EC 3.4.15.1), cleaves C-terminal dipeptides from active peptides containing a free C-terminus. We investigated the hydrolysis of cholecystokinin-8 [CCK-8; Asp-Tyr(SO3H)-Met-Gly-Trp-Met-Asp-Phe-NH2] and of various gastrin analogues by purified rabbit lung ACE. Although these peptides are amidated at their C-terminal end, they were metabolized by ACE to several peptide fragments. These fragments were analysed by h.p.l.c., isolated and identified by comparison with synthetic fragments, and by amino acid analysis. The initial and major site of hydrolysis was the penultimate peptide bond, which generated a major product, the C-terminal amidated dipeptide Asp-Phe-NH2. As a secondary cleavage, ACE subsequently released di- or tri-peptides from the C-terminal end of the remaining N-terminal fragments. The cleavage of CCK-8 and gastrin analogues was inhibited by ACE inhibitors (Captopril and EDTA), but not by other enzyme inhibitors (phosphoramidon, thiorphan, bestatin etc.). Hydrolysis of [Leu15]gastrin-(14-17)-peptide [Boc (t-butoxycarbonyl)-Trp-Leu-Asp-Phe-NH2] in the presence of ACE was found to be dependent on the chloride-ion concentration. Km values for the hydrolysis of CCK-8, [Leu15]gastrin-(11-17)-peptide and Boc-[Leu15]gastrin-(14-17)-peptide at an NaCl concentration of 300 mM were respectively 115, 420 and 3280 microM, and the catalytic constants were about 33, 115 and 885 min-1. The kcat/Km for the reactions at 37 degrees C was approx. 0.28 microM-1.min-1, which is approx. 35 times less than that reported for the cleavage of angiotensin I. These results suggest that ACE might be involved in the metabolism in vivo of CCK and gastrin short fragments. PMID:2554881

  16. Aspartic acid 405 contributes to the substrate specificity of aminopeptidase B.

    PubMed

    Fukasawa, Kayoko M; Hirose, Junzo; Hata, Toshiyuki; Ono, Yukio

    2006-09-26

    Aminopeptidase B (EC 3.4.11.6, ApB) specifically cleaves in vitro the N-terminal Arg or Lys residue from peptides and synthetic derivatives. Ap B was shown to have a consensus sequence found in the metallopeptidase family. We determined the putative zinc binding residues (His324, His328, and Glu347) and the essential Glu325 residue for the enzyme using site-directed mutagenesis (Fukasawa, K. M., et al. (1999) Biochem. J. 339, 497-502). To identify the residues binding to the amino-terminal basic amino acid of the substrate, rat cDNA encoding ApB was cloned into pGEX-4T-3 so that recombinant protein was expressed as a GST fusion protein. Twelve acidic amino acid residues (Glu or Asp) in ApB were replaced with a Gln or Asn using site-directed mutagenesis. These mutants were isolated to characterize the kinetic parameters of enzyme activity toward Arg-NA and compare them to those of the wild-type ApB. The catalytic efficiency (kcat/Km) of the mutant D405N was 1.7 x 10(4) M(-1) s(-1), markedly decreased compared with that of the wild-type ApB (6.2 x 10(5) M(-1) s(-1)). The replacement of Asp405 with an Asn residue resulted in the change of substrate specificity such that the specific activity of the mutant D405N toward Lys-NA was twice that toward Arg-NA (in the case of wild-type ApB; 0.4). Moreover, when Asp405 was replaced with an Ala residue, the kcat/Km ratio was 1000-fold lower than that of the wild-type ApB for hydrolysis of Arg-NA; in contrast, in the hydrolysis of Tyr-NA, the kcat/Km ratios of the wild-type (1.1 x 10(4) M(-1) s(-1)) and the mutated (8.2 x 10(3) M(-1) s(-1)) enzymes were similar. Furthermore, the replacement of Asp-405 with a Glu residue led to the reduction of the kcat/Km ratio for the hydrolysis of Arg-NA by a factor of 6 and an increase of that for the hydrolysis of Lys-NA. Then the kcat/Km ratio of the D405E mutant for the hydrolysis of Lys-NA was higher than that for the hydrolysis of Arg-NA as opposed to that of wild-type ApB. These data strongly suggest that the Asp 405 residue is involved in substrate binding via an interaction with the P1 amino group of the substrate's side chain.

  17. Identification of a nuclear localization sequence in the polyomavirus capsid protein VP2

    NASA Technical Reports Server (NTRS)

    Chang, D.; Haynes, J. I. 2nd; Brady, J. N.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    A nuclear localization signal (NLS) has been identified in the C-terminal (Glu307-Glu-Asp-Gly-Pro-Gln-Lys-Lys-Lys-Arg-Arg-Leu318) amino acid sequence of the polyomavirus minor capsid protein VP2. The importance of this amino acid sequence for nuclear transport of newly synthesized VP2 was demonstrated by a genetic "subtractive" study using the constructs pSG5VP2 (expressing full-length VP2) and pSG5 delta 3VP2 (expressing truncated VP2, lacking amino acids Glu307-Leu318). These constructs were transfected into COS-7 cells, and the intracellular localization of the VP2 protein was determined by indirect immunofluorescence. These studies revealed that the full-length VP2 was localized in the nucleus, while the truncated VP2 protein was localized in the cytoplasm and not transported to the nucleus. A biochemical "additive" approach was also used to determine whether this sequence could target nonnuclear proteins to the nucleus. A synthetic peptide identical to VP2 amino acids Glu307-Leu318 was cross-linked to the nonnuclear proteins bovine serum albumin (BSA) or immunoglobulin G (IgG). The conjugates were then labeled with fluorescein isothiocyanate and microinjected into the cytoplasm of NIH 3T6 cells. Both conjugates localized in the nucleus of the microinjected cells, whereas unconjugated BSA and IgG remained in the cytoplasm. Taken together, these genetic subtractive and biochemical additive approaches have identified the C-terminal sequence of polyoma-virus VP2 (containing amino acids Glu307-Leu318) as the NLS of this protein.

  18. Novel Approach to Prepare {sup 99m}Tc-Based Multivalent RGD Peptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shuang Liu

    2012-10-24

    This project presents a novel approach to prepare the {sup 99m}Tc-bridged multivalent RGD (arginine-glycine-aspartate) peptides. This project will focus on fundamentals of {sup 99m}Tc radiochemistry. The main objective of this project is to demonstrate the proof-of-principle for the proposed radiotracers. Once a kit formulation is developed for preparation of the {sup 99m}Tc-bridged multivalent RGD peptides, various tumor-bearing animal models will be used to evaluate their potential for SPECT (single photon-emission computed tomography) imaging of cancer. We have demonstrated that (1) multimerization of cyclic RGD peptides enhances the integrin {alpha}{sub v}{beta}{sub 3} bonding affinity and radiotracer tumor uptake; (2) addition ofmore » G{sub 3} or PEG{sub 4} linkers makes it possible for two RGD motifs in 3P-RGD{sub 2} and 3G-RGD{sub 2} to achieve simultaneous integrin {alpha}{sub v}{beta}{sub 3} binding; and (3) multimers are actually bivalent (not multivalent), the presence of extra RGD motifs can enhance the tumor retention time of the radiotracer.« less

  19. Receptor binding properties and antinociceptive effects of chimeric peptides consisting of a micro-opioid receptor agonist and an ORL1 receptor antagonist.

    PubMed

    Kawano, Susumu; Ito, Risa; Nishiyama, Miharu; Kubo, Mai; Matsushima, Tomoko; Minamisawa, Motoko; Ambo, Akihiro; Sasaki, Yusuke

    2007-07-01

    Receptor binding properties and antinociceptive activities of chimeric peptides linked by spacers were investigated. The peptides consisted of the micro-opioid receptor ligand dermorphin (Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH(2)) or its analog YRFB (Tyr-D-Arg-Phe-betaAla-NH(2)) linked to the ORL1 receptor ligand Ac-Arg-Tyr-Tyr-Arg-Ile-Lys-NH(2) (Ac-RYYRIK-NH(2)). All chimeric peptides were found to possess high receptor binding affinities for both micro-opioid and ORL1 receptors in mouse brain membranes although their binding affinities for both receptors in spinal membranes were significantly lower. Among them, chimeric peptide 2, which consists of dermorphin and Ac-RYYRIK-NH(2) connected by a long spacer, had the highest binding affinity towards both receptors. In the tail-flick test following intrathecal (i.t.) administration to mice, all chimeric peptides showed potent and dose-dependent antinociceptive activities with an ED(50) of 1.34-4.51 (pmol/mouse), nearly comparable to dermorphin alone (ED(50); 1.08 pmol/mouse). In contrast to their micro-opioid receptor binding profiles, intracerebroventricular (i.c.v.) administration of the chimeric peptides resulted in much less potent antinociceptive activity (ED(50) 5.55-100< pmol/mouse) than when administered i.t. (ED(50): 1.34-4.51 pmol/mouse). These results suggest the involvement of nociceptin-like agonistic effects of the Ac-RYYRIK pharmacophore in the peptides, and the regulation of mu-opioid receptor-mediated antinociception in brain. The present chimeric peptides may be useful as pharmacological tools for studies on micro-opioid receptor/ORL1 receptor heterodimers.

  20. Suppression of murine collagen-induced arthritis by targeted apoptosis of synovial neovasculature

    PubMed Central

    Gerlag, Danielle M; Borges, Eric; Tak, Paul P; Ellerby, H Michael; Bredesen, Dale E; Pasqualini, Renata; Ruoslahti, Erkki; Firestein, Gary S

    2001-01-01

    Because angiogenesis plays a major role in the perpetuation of inflammatory arthritis, we explored a method for selectively targeting and destroying new synovial blood vessels. Mice with collagen-induced arthritis were injected intravenously with phage expressing an RGD motif. In addition, the RGD peptide (RGD-4C) was covalently linked to a proapoptotic heptapeptide dimer, D(KLAKLAK)2, and was systemically administered to mice with collagen-induced arthritis. A phage displaying an RGD-containing cyclic peptide (RGD-4C) that binds selectively to the αvβ3 and αvβ5 integrins accumulated in inflamed synovium but not in normal synovium. Homing of RGD-4C phage to inflamed synovium was inhibited by co-administration of soluble RGD-4C. Intravenous injections of the RGD-4C–D(KLAKLAK)2 chimeric peptide significantly decreased clinical arthritis and increased apoptosis of synovial blood vessels, whereas treatment with vehicle or uncoupled mixture of the RGD-4C and the untargeted proapoptotic peptide had no effect. Targeted apoptosis of synovial neovasculature can induce apoptosis and suppress clinical arthritis. This form of therapy has potential utility in the treatment of inflammatory arthritis. PMID:11714389

  1. Improved tumor-targeting MRI contrast agents: Gd(DOTA) conjugates of a cycloalkane-based RGD peptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Ji-Ae, E-mail: jpark@kirams.re.kr; Lee, Yong Jin; Ko, In Ok

    2014-12-12

    Highlights: • Development of improved tumor-targeting MRI contrast agents. • To increase the targeting ability of RGD, we developed cycloalkane-based RGD peptides. • Gd(DOTA) conjugates of cycloalkane-based RGD peptide show improved tumor signal enhancement in vivo MR images. - Abstract: Two new MRI contrast agents, Gd-DOTA-c(RGD-ACP-K) (1) and Gd-DOTA-c(RGD-ACH-K) (2), which were designed by incorporating aminocyclopentane (ACP)- or aminocyclohexane (ACH)-carboxylic acid into Gd-DOTA (gadolinium-tetraazacyclo dodecanetetraacetic acid) and cyclic RGDK peptides, were synthesized and evaluated for tumor-targeting ability in vitro and in vivo. Binding affinity studies showed that both 1 and 2 exhibited higher affinity for integrin receptors than cyclic RGDyKmore » peptides, which were used as a reference. These complexes showed high relaxivity and good stability in human serum and have the potential to improve target-specific signal enhancement in vivo MR images.« less

  2. The Human Leukocyte Antigen (HLA)-B27 Peptidome in Vivo, in Spondyloarthritis-susceptible HLA-B27 Transgenic Rats and the Effect of Erap1 Deletion *

    PubMed Central

    Barnea, Eilon; Melamed Kadosh, Dganit; Haimovich, Yael; Satumtira, Nimman; Dorris, Martha L.; Nguyen, Mylinh T.; Hammer, Robert E.; Tran, Tri M.; Colbert, Robert A.; Taurog, Joel D.

    2017-01-01

    HLA-B27 is a class I major histocompatibility (MHC-I) allele that confers susceptibility to the rheumatic disease ankylosing spondylitis (AS) by an unknown mechanism. ERAP1 is an aminopeptidase that trims peptides in the endoplasmic reticulum for binding to MHC-I molecules. ERAP1 shows genetic epistasis with HLA-B27 in conferring susceptibility to AS. Male HLA-B27 transgenic rats develop arthritis and serve as an animal model of AS, whereas female B27 transgenic rats remain healthy. We used large scale quantitative mass spectrometry to identify over 15,000 unique HLA-B27 peptide ligands, isolated after immunoaffinity purification of the B27 molecules from the spleens of HLA-B27 transgenic rats. Heterozygous deletion of Erap1, which reduced the Erap1 level to less than half, had no qualitative or quantitative effects on the B27 peptidome. Homozygous deletion of Erap1 affected approximately one-third of the B27 peptidome but left most of the B27 peptidome unchanged, suggesting the possibility that some of the HLA-B27 immunopeptidome is not processed in the presence of Erap1. Deletion of Erap1 was permissive for the AS-like phenotype, increased mean peptide length and increased the frequency of C-terminal hydrophobic residues and of N-terminal Ala, Ser, or Lys. The presence of Erap1 increased the frequency of C-terminal Lys and Arg, of Glu and Asp at intermediate residues, and of N-terminal Gly. Several peptides of potential interest in AS pathogenesis, previously identified in human cell lines, were isolated. However, rats susceptible to arthritis had B27 peptidomes similar to those of non-susceptible rats, and no peptides were found to be uniquely associated with arthritis. Whether specific B27-bound peptides are required for AS pathogenesis remains to be determined. Data are available via ProteomeXchange with identifier PXD005502. PMID:28188227

  3. Targeted systemic gene therapy and molecular imaging of cancer contribution of the vascular-targeted AAVP vector.

    PubMed

    Hajitou, Amin

    2010-01-01

    Gene therapy and molecular-genetic imaging have faced a major problem: the lack of an efficient systemic gene delivery vector. Unquestionably, eukaryotic viruses have been the vectors of choice for gene delivery to mammalian cells; however, they have had limited success in systemic gene therapy. This is mainly due to undesired uptake by the liver and reticuloendothelial system, broad tropism for mammalian cells causing toxicity, and their immunogenicity. On the other hand, prokaryotic viruses such as bacteriophage (phage) have no tropism for mammalian cells, but can be engineered to deliver genes to these cells. However, phage-based vectors have inherently been considered poor vectors for mammalian cells. We have reported a new generation of vascular-targeted systemic hybrid prokaryotic-eukaryotic vectors as chimeras between an adeno-associated virus (AAV) and targeted bacteriophage (termed AAV/phage; AAVP). In this hybrid vector, the targeted bacteriophage serves as a shuttle to deliver the AAV transgene cassette inserted in an intergenomic region of the phage DNA genome. As a proof of concept, we assessed the in vivo efficacy of vector in animal models of cancer by displaying on the phage capsid the cyclic Arg-Gly-Asp (RGD-4C) ligand that binds to alphav integrin receptors specifically expressed on the angiogenic blood vessels of tumors. The ligand-directed vector was able to specifically deliver imaging and therapeutic transgenes to tumors in mice, rats, and dogs while sparing the normal organs. This chapter reviews some gene transfer strategies and the potential of the vascular-targeted AAVP vector for enhancing the effectiveness of existing systemic gene delivery and genetic-imaging technologies. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  4. Synthesis and evaluation of two NIR fluorescent cyclic RGD penta-peptides for targeting integrins

    NASA Astrophysics Data System (ADS)

    Ye, Yunpeng; Bloch, Sharon; Xu, Baogang; Achilefu, Samuel

    2006-02-01

    Interest in novel RGD peptides has been increasingly growing as the interactions between RGD peptides and integrins are the basis for a variety of cellular functions and medical applications such as modulation of cell adhesion, invasion, tumor angiogenesis, and metastasis. In particular, we have been interested in novel NIR fluorescent RGD peptides as potential optical contrast agents for in vivo tumor optical imaging. Therefore, two cyclic RGD penta-peptides conjugated with a NIR fluorescent carbocyanine (Cypate), i.e. lactam-based cyclo[RGDfK(Cypate)] (1) and disulfide-containing Cypate-cyclo(CRGDC)-NH II (2), were designed and synthesized. The competitive binding assay between the purified α vβ 3 integrin and the peptide ligands using 125I-echistatin as a tracer showed that 1 had a higher receptor binding affinity (IC 50~10 -7 M) than 2 (IC 50~10 -6 M). Furthermore, the internalization of 1 in A549 cells in vitro was less than 2, as revealed by fluorescence microscopy. These results suggest that both the lactam- and disulfide-based cyclic RGD penta-peptides should be further studied structurally and functionally to elucidate the advantages of each class of compounds.

  5. Melting of DNA double strand after binding to geroprotective tetrapeptide.

    PubMed

    Khavinson, V Kh; Solovyov, A Yu; Shataeva, L K

    2008-11-01

    Experimental relationship between the hyperchromic effect of DNA [poly(dA-dT):poly(dA-dT)] interacting with Ala-Glu-Asp-Gly peptide is presented by a saturation isotherm. The free DNA double strand is melting (the strands separate) at 69.5 degrees C and at higher energy expenditures (enthalpy increase by 976.4 kJ/mol b.p.) in comparison with melting of the DNA-peptide complex (28 degrees C and 444.6 kJ/mol b.p.). The detected regularities of melting of duplex DNA and the thermodynamic parameters of this process indicate the natural mechanism of interaction between DNA and regulatory peptides underlying functioning of the living matter.

  6. Isolation and structural elucidation of antioxidant peptides from oyster (Saccostrea cucullata) protein hydrolysate.

    PubMed

    Umayaparvathi, S; Meenakshi, S; Vimalraj, V; Arumugam, M; Balasubramanian, T

    2014-01-01

    Protein derived from the oyster (Saccostrea cucullata) was hydrolyzed using protease from Bacillus cereus SU12 for isolation of antioxidant peptides. The oyster hydrolysate exhibited a strong antioxidant potential in DPPH (85.7±0.37%) followed by Hydrogen peroxide radical scavenging activity (81.6±0.3%), Hydroxyl radical-scavenging activity (79.32±0.6%), Reducing power assay (2.63±0.2 OD at 700nm). Due to the high antioxidant potential, hydrolysate was fractionated in Sephadex G-25 gel filtration chromatography. The active peptide fraction was further purified by UPLC-MS. Totally 7 antioxidant peptides were collected. Among 7 peptides (SCAP 1-7), 3 peptides (SCAP 1, 3 and 7) had highest scavenging ability on DPPH radicals. The amino acid sequence and molecular mass of purified antioxidant peptides (SCAP1, SCAP3 and SCAP7) were determined by Q-TOF ESI mass spectroscopy and structures of the peptides were Leu-Ala-Asn-Ala-Lys (MW=515.29Da), Pro-Ser-Leu-Val-Gly-Arg-Pro-Pro-Val-Gly-Lys-Leu-Thr-Leu (MW=1432.89Da) and Val-Lys-Val-Leu-Leu-Glu-His-Pro-Val-Leu (MW=1145.75Da), respectively. The unique amino acid composition and sequence in the peptides might play an important role in expression of their antioxidant activity. The results of this study suggest that oyster protein hydrolysate is good source of natural antioxidants.

  7. Growth promoting in vitro effect of synthetic cyclic RGD-peptides on human osteoblast-like cells attached to cancellous bone.

    PubMed

    Magdolen, Ursula; Auernheimer, Jörg; Dahmen, Claudia; Schauwecker, Johannes; Gollwitzer, Hans; Tübel, Jutta; Gradinger, Reiner; Kessler, Horst; Schmitt, Manfred; Diehl, Peter

    2006-06-01

    In tissue engineering, the application of biofunctional compounds on biomaterials such as integrin binding RGD-peptides has gained growing interest. Anchorage-dependent cells like osteoblasts bind to these peptides thus ameliorating the integration of a synthetic implant. In case sterilized bone grafts are used as substitutes for reconstruction of bone defects, the ingrowth of the implanted bone is often disturbed because of severe pretreatment such as irradiation or autoclaving, impairing the biological and mechanical properties of the bone. We report for the first time on the in vitro coating of the surface of freshly resected, cleaned bone discs with synthetic, cyclic RGD-peptides. For this approach, two different RGD-peptides were used, one containing two phosphonate anchors, the other peptide four of these binding moieties to allow efficient association of these reactive RGD-peptides to the inorganic bone matrix. Human osteoblast-like cells were cultured on RGD-coated bone discs and the adherence and growth of the cells were analyzed. Coating of bone discs with RGD-peptides did not improve the adhesion rate of osteoblast-like cells to the discs but significantly (up to 40%) accelerated growth of these cells within 8 days after attachment. This effect points to pretreatment of bone implants, especially at the critical interface area between the implanted bone and the non-resected residual bone structure, before re-implantation in order to stimulate and enhance osteointegration of a bone implant.

  8. Classification of pseudo pairs between nucleotide bases and amino acids by analysis of nucleotide-protein complexes.

    PubMed

    Kondo, Jiro; Westhof, Eric

    2011-10-01

    Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide-protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson-Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson-Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues.

  9. Classification of pseudo pairs between nucleotide bases and amino acids by analysis of nucleotide–protein complexes

    PubMed Central

    Kondo, Jiro; Westhof, Eric

    2011-01-01

    Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide–protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson–Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson–Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues. PMID:21737431

  10. Comparative Effect Between Laser and Radiofrequency Heating of RGD-Gold Nanospheres on MCF7 Cell Viability.

    PubMed

    Sánchez-Hernández, Lidia; Ferro-Flores, Guillermina; Jiménez-Mancilla, Nallely P; Luna-Gutiérrez, Myrna A; Santos-Cuevas, Clara L; Ocampo-García, Blanca E; Azorín-Vega, Erika; Isaac-Olivé, Keila

    2015-12-01

    Gold nanoparticles conjugated to cyclo-[Arg-Gly-Asp-D-Phe-Lys(Cys)] peptides (AuNP-c[RGDfK(C)]) have been reported as systems with specific cell internalization in breast cancer cells. AuNPs have also been proposed as localized heat sources for cancer treatment using laser irradiation or radiofrequency (RF). The aim of this research was to analyze, based on the Mie theory, the AuNP-c[RGDfK(C)] absorption cross-sections (C(abs)) of low-frequency electromagnetic waves (13.56 MHz, λ = 22 m) and optical frequency waves (laser at λ = 532 nm) and to compare their effect on MCF7 cell viability as thermal conversion sources in AuNPs (20 nm) located inside cells. Cell viability was assessed in MCF7 cells treated with AuNP-c[RGDfK(C)] or water after exposure to the RF field (200 W, 100 V/cm) or laser irradiation (Irradiance 0.65 W/cm2). In both cases (RF and laser) the presence of nanoparticles in cells caused a significant increase in the temperature of the medium (RF: AT = 29.9 ± 1.7 degrees C for AuNP compared to ΔT = 13.0 ± 1.4 degrees C for water; laser: ΔT = 13.5 ± 0.7 degrees C for AuNP compared to 3.3 ± 0.5 degrees C for water). Although RF induced a higher increase in the temperature of the medium with nanoparticles, the largest effect on the cell viability was produced by laser when nanoparticles were located inside the cells (8.7?0.7% for laser compared to 19.4 ± 0.9% for RF). The differences obtained in C(abs) values (laser: 3.7 x 10- (16) m2; RF: 7.9 x 10-(23) m2) and the observed effect on MFC7 cell viability support two mechanisms previously proposed "wave energy absorption by AuNPs" when laser is used as a thermal conversion source, and "attenuation of the wave passing through the AuNP suspension" when RF is applied. The AuNP-c[RGDfK(C)] nanosystem shows suitable properties to improve hyperthermia treatments under laser irradiation due to a larger heat release inside cells.

  11. Systemic Administration of siRNA via cRGD-containing Peptide.

    PubMed

    Huang, Yuanyu; Wang, Xiaoxia; Huang, Weiyan; Cheng, Qiang; Zheng, Shuquan; Guo, Shutao; Cao, Huiqing; Liang, Xing-Jie; Du, Quan; Liang, Zicai

    2015-08-24

    Although small interfering RNAs (siRNAs) have been demonstrated to specifically silence their target genes in disease models and clinical trials, in vivo siRNA delivery is still the technical bottleneck that limits their use in therapeutic applications. In this study, a bifunctional peptide named RGD10-10R was designed and tested for its ability to deliver siRNA in vitro and in vivo. Because of their electrostatic interactions with polyarginine (10R), negatively charged siRNAs were readily complexed with RGD10-10R peptides, forming spherical RGD10-10R/siRNA nanoparticles. In addition to enhancing their serum stability by preventing RNase from attacking siRNA through steric hindrance, peptide binding facilitated siRNA transfection into MDA-MB-231 cells, as demonstrated by FACS and confocal microscopy assays and by the repressed expression of target genes. When RGD10 peptide, a receptor competitor of RGD10-10R, was added to the transfection system, the cellular internalization of RGD10-10R/siRNA was significantly compromised, suggesting a mechanism of ligand/receptor interaction. Tissue distribution assays indicated that the peptide/siRNA complex preferentially accumulated in the liver and in several exocrine/endocrine glands. Furthermore, tumor-targeted delivery of siRNA was also demonstrated by in vivo imaging and cryosection assays. In summary, RGD10-10R might constitute a novel siRNA delivery tool that could potentially be applied in tumor treatment.

  12. Systemic Administration of siRNA via cRGD-containing Peptide

    PubMed Central

    Huang, Yuanyu; Wang, Xiaoxia; Huang, Weiyan; Cheng, Qiang; Zheng, Shuquan; Guo, Shutao; Cao, Huiqing; Liang, Xing-Jie; Du, Quan; Liang, Zicai

    2015-01-01

    Although small interfering RNAs (siRNAs) have been demonstrated to specifically silence their target genes in disease models and clinical trials, in vivo siRNA delivery is still the technical bottleneck that limits their use in therapeutic applications. In this study, a bifunctional peptide named RGD10-10R was designed and tested for its ability to deliver siRNA in vitro and in vivo. Because of their electrostatic interactions with polyarginine (10R), negatively charged siRNAs were readily complexed with RGD10-10R peptides, forming spherical RGD10-10R/siRNA nanoparticles. In addition to enhancing their serum stability by preventing RNase from attacking siRNA through steric hindrance, peptide binding facilitated siRNA transfection into MDA-MB-231 cells, as demonstrated by FACS and confocal microscopy assays and by the repressed expression of target genes. When RGD10 peptide, a receptor competitor of RGD10-10R, was added to the transfection system, the cellular internalization of RGD10-10R/siRNA was significantly compromised, suggesting a mechanism of ligand/receptor interaction. Tissue distribution assays indicated that the peptide/siRNA complex preferentially accumulated in the liver and in several exocrine/endocrine glands. Furthermore, tumor-targeted delivery of siRNA was also demonstrated by in vivo imaging and cryosection assays. In summary, RGD10-10R might constitute a novel siRNA delivery tool that could potentially be applied in tumor treatment. PMID:26300278

  13. Dual integrin and gastrin-releasing peptide receptor targeted tumor imaging using 18F-labeled PEGylated RGD-bombesin heterodimer 18F-FB-PEG3-Glu-RGD-BBN.

    PubMed

    Liu, Zhaofei; Yan, Yongjun; Chin, Frederic T; Wang, Fan; Chen, Xiaoyuan

    2009-01-22

    Radiolabeled RGD and bombesin peptides have been extensively investigated for tumor integrin alpha(v)beta(3) and GRPR imaging, respectively. Due to the fact that many tumors are both integrin and GRPR positive, we designed and synthesized a heterodimeric peptide Glu-RGD-BBN, which is expected to be advantageous over the monomeric peptides for dual-receptor targeting. A PEG(3) spacer was attached to the glutamate alpha-amino group of Glu-RGD-BBN to enhance the (18)F labeling yield and to improve the in vivo kinetics. PEG(3)-Glu-RGD-BBN possesses the comparable GRPR and integrin alpha(v)beta(3) receptor-binding affinities as the corresponding monomers, respectively. The dual-receptor targeting properties of (18)F-FB-PEG(3)-Glu-RGD-BBN were observed in PC-3 tumor model. (18)F-FB-PEG(3)-Glu-RGD-BBN with high tumor contrast and favorable pharmacokinetics is a promising PET tracer for dual integrin and GRPR positive tumor imaging. This heterodimer strategy may also be an applicable method to develop other molecules with improved in vitro and in vivo characterizations for tumor diagnosis and therapy.

  14. The Relationship Between Glutathione S-Transferase-P1 and Beta-2 Adrenoreceptor Genotypes with Asthmatic Patients in the Turkish Population.

    PubMed

    Kaymak, Cetin; Aygun Kocabas, Neslihan; Aydın, Nesrin; Oztuna, Derya; Karakaya, Ali Esat

    2016-09-01

    Individual differences in the activity of enzymes that metabolize xenobiotics can impact health and disease. Beta-2 adrenoreceptor (ADRB2) is a functional G-coupled protein expressed in the vascular endothelium of lungs, alveolar walls, and the ganglions of cholinergic nerves which induces bronchodilation in response to catecholamines. Glutathione S-Transferase-P1 (GSTP1) is a candidate pi class GST gene, which controls pi class glutathione S-transferase activity. In this study we determined the relationship between the ADRB2 Arg16Gly polymorphism and GSTP1 polymorphisms, involved in bronchodilator response and oxidative stress, respectively, with susceptibility to asthma. In this study, 129 asthmatic patients and 127 healthy control cases were recruited to determine ADRB2 and GSTP1 genotypes by allele-specific polymerase chain reaction and restriction fragment length polymorphism assays, respectively. The ADRB2 genotype frequencies of the patients and control cases were found to be 10.9% (Arg16Arg), 48.8% (Arg16Gly), and 40.3% (Gly16Gly) and 24.4% (Arg16Arg), 36.2% (Arg16Gly), and 39.4% (Gly16Gly), respectively. GSTP1 genotype frequencies of patients and control cases were found to be 55% (Ile105Ile), 43.4% (Ile105Val), and 1.6% (Val105Val) and 75.6% (Ile105Ile), 22% (Ile105Val), and 2.4% (Val105Val), respectively. In the case of the GSTP1 gene, we found statistically significant differences in the genotype frequency of Ile105Val and the allele frequency of Val105 in the asthmatic group compared with the controls. Moreover, we observed a relationship between allele frequencies and clinical phenotypes including atopia nocturnal dyspnea, and steroid dependency in the asthmatic patients. Our results suggest that the GSTP1 Ile105Val polymorphism may be linked to the severeness of airway dysfunction.

  15. Covalent Functionalization of NiTi Surfaces with Bioactive Peptide Amphiphile Nanofibers

    PubMed Central

    Sargeant, Timothy D.; Rao, Mukti S.; Koh, Chung-Yan

    2009-01-01

    Surface modification enables the creation of bioactive implants using traditional material substrates without altering the mechanical properties of the bulk material. For applications such as bone plates and stents, it is desirable to modify the surface of metal alloy substrates to facilitate cellular attachment, proliferation, and possibly differentiation. In this work we present a general strategy for altering the surface chemistry of nickel-titanium shape memory alloy (NiTi) in order to covalently attach self-assembled peptide amphiphile (PA) nanofibers with bioactive functions. Bioactivity in the systems studied here includes biological adhesion and proliferation of osteoblast and endothelial cell types. The optimized surface treatment creates a uniform TiO2 layer with low levels of Ni on the NiTi surface, which is subsequently covered with an aminopropylsilane coating using a novel, lower temperature vapor deposition method. This method produces an aminated surface suitable for covalent attachment of PA molecules containing terminal carboxylic acid groups. The functionalized NiTi surfaces have been characterized by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectroscopy (ToF-SIMS), and atomic force microscopy (AFM). These techniques offer evidence that the treated metal surfaces consist primarily of TiO2 with very little Ni, and also confirm the presence of the aminopropylsilane overlayer. Self-assembled PA nanofibers presenting the biological peptide adhesion sequence Arg-Gly-Asp-Ser are capable of covalently anchoring to the treated substrate, as demonstrated by spectrofluorimetry and AFM. Cell culture and scanning electron microscopy (SEM) demonstrate cellular adhesion, spreading, and proliferation on these functionalized metal surfaces. Furthermore, these experiments demonstrate that covalent attachment is crucial for creating robust PA nanofiber coatings, leading to confluent cell monolayers. PMID:18083225

  16. Anti-thrombosis Repertoire of Blood-feeding Horsefly Salivary Glands*

    PubMed Central

    Ma, Dongying; Wang, Yipeng; Yang, Hailong; Wu, Jing; An, Shu; Gao, Li; Xu, Xueqing; Lai, Ren

    2009-01-01

    Blood-feeding arthropods rely heavily on the pharmacological properties of their saliva to get a blood meal and suppress immune reactions of hosts. Little information is available on antihemostatic substances in horsefly salivary glands although their saliva has been thought to contain wide range of physiologically active molecules. In traditional Eastern medicine, horseflies are used as anti-thrombosis material for hundreds of years. By proteomics coupling transcriptome analysis with pharmacological testing, several families of proteins or peptides, which exert mainly on anti-thrombosis functions, were identified and characterized from 60,000 pairs of salivary glands of the horsefly Tabanus yao Macquart (Diptera, Tabanidae). They are: (I) ten fibrin(ogen)olytic enzymes, which hydrolyze specially alpha chain of fibrin(ogen) and are the first family of fibrin(ogen)olytic enzymes purified and characterized from arthropods; (II) another fibrin(ogen)olytic enzyme, which hydrolyzes both alpha and beta chain of fibrin(ogen); (III) ten Arg-Gly-Asp-motif containing proteins acting as platelet aggregation inhibitors; (IV) five thrombin inhibitor peptides; (V) three vasodilator peptides; (VI) one apyrase acting as platelet aggregation inhibitor; (VII) one peroxidase with both platelet aggregation inhibitory and vasodilator activities. The first three families are belonging to antigen five proteins, which show obvious similarity with insect allergens. They are the first members of the antigen 5 family found in salivary glands of blood sucking arthropods to have anti-thromobosis function. The current results imply a possible evolution from allergens of blood-sucking insects to anti-thrombosis agents. The extreme diversity of horsefly anti-thrombosis components also reveals the anti-thrombosis molecular mechanisms of the traditional Eastern medicine insect material. PMID:19531497

  17. Recombinant Brucella abortus gene expressing immunogenic protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayfield, J.E.; Tabatabai, L.B.

    This patent describes a synthetic recombinant DNA molecule containing a DNA sequence. It comprises a gene of Brucella abortus encoding an immunogenic protein having a molecular weight of approximately 31,000 daltons as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis under denaturing conditions, the protein having an isoelectric point around 4.9, and containing a twenty-five amino acid sequence from its amino terminal end consisting of Gln-Ala-Pro-Thr-Phe-Phe-Arg-Ile-Gly-Thr-Gly-Gly-Thr-Ala-Gly-Thr-Tyr-Tyr-Pro-Ile-Gly-Gly-Leu-Ile-Ala, wherein Gln, Ala, Pro, Thr, Phe, Arg, Ile, Gly, Tyr, and Leu, respectively, represent glutamine, alanine, proline, threonine, phenylalanine, arginine, isolecuine, glycine, tyrosine, and leucine.

  18. Beta 2 adrenergic receptor polymorphisms, at codons 16 and 27, and bronchodilator responses in adult Venezuelan asthmatic patients.

    PubMed

    Larocca, Nancy; Moreno, Dolores; Garmendia, Jenny Valentina; Velasquez, Olga; Martin-Rojo, Joana; Talamo, Carlos; Garcia, Alexis; De Sanctis, Juan Bautista

    2013-12-01

    One of the gene polymorphisms often studied in asthmatic patients is the β2 adrenergic receptor (ADRβ2). Even though in the Venezuelan Mestizo population there is a high incidence of asthma, there are no direct reports of ADRβ2 gene polymorphism, and treatment response. The aim of this study was to assess, in this population, the gene frequency of ADRβ2 polymorphisms at codons 16 Arg/Gly and 27 Gln/Glu, allergen sensitization, and its relationship to bronchodilator response. Purified genomic DNA was obtained form 105 Mestizo asthmatic and 100 Mestizo healthy individuals from Venezuela. The two polymorphisms were assessed by PCR-RFLP. Patient sensitization to aeroallergens and their response to bronchodilatation were correlated. Significant differences between patients and controls were recorded in: 1) the prevalence of Arg/Arg at codon 16 (28.6% in patients vs. 47% in controls, P<0.01), 2) the frequency of heterozygotes Arg/Gly (55% in patients vs. 35% in controls, P<0.01). Conversely, no differences in polymorphism frequencies were found at codon 27. The haplotypes Arg/Gly-Gln/Gln were more common in patients than controls (P <0.01), whereas the Arg/Arg-Gln/Glu combination prevailed in the control group (P<0.01). The Arg/Gly and Gln/Glu genotypes were associated with better responses after salbutamol. The asthmatic homozygotes Arg/Arg have higher sensitivity to aeroallergens. The difference in Arg/Arg frequency between groups suggests that this could be a protective genotype although the asthmatic group had a higher sensitivity to aeroallergens. The asthmatic heterozygotes had better bronchodilator responses than the homozygotes.

  19. A novel Alaska pollack-derived peptide, which increases glucose uptake in skeletal muscle cells, lowers the blood glucose level in diabetic mice.

    PubMed

    Ayabe, Tatsuhiro; Mizushige, Takafumi; Ota, Wakana; Kawabata, Fuminori; Hayamizu, Kohsuke; Han, Li; Tsuji, Tomoko; Kanamoto, Ryuhei; Ohinata, Kousaku

    2015-08-01

    We found that the tryptic digest of Alaska pollack protein exhibits a glucose-lowering effect in KK-Ay mice, a type II diabetic model. We then searched for glucose-lowering peptides in the digest. Ala-Asn-Gly-Glu-Val-Ala-Gln-Trp-Arg (ANGEVAQWR) was identified from a peak of the HPLC fraction selected based on the glucose-lowering activity in an insulin resistance test using ddY mice. ANGEVAQWR (3 mg kg(-1)) decreased the blood glucose level after intraperitoneal administration. Among its fragment peptides, the C-terminal tripeptide, Gln-Trp-Arg (QWR, 1 mg kg(-1)), lowered the blood glucose level, suggesting that the C-terminal is critical for glucose-lowering activity. QWR also enhanced glucose uptake into C2C12, a mouse skeletal muscle cell line. QWR did not induce the phosphorylation of serine/threonine protein kinase B (Akt) and adenosine monophosphate-activated protein kinase (AMPK). We also demonstrated that QWR lowered the blood glucose level in NSY and KK-Ay, type II diabetic models.

  20. 3D Bioprinting of Developmentally Inspired Templates for Whole Bone Organ Engineering.

    PubMed

    Daly, Andrew C; Cunniffe, Gráinne M; Sathy, Binulal N; Jeon, Oju; Alsberg, Eben; Kelly, Daniel J

    2016-09-01

    The ability to print defined patterns of cells and extracellular-matrix components in three dimensions has enabled the engineering of simple biological tissues; however, bioprinting functional solid organs is beyond the capabilities of current biofabrication technologies. An alternative approach would be to bioprint the developmental precursor to an adult organ, using this engineered rudiment as a template for subsequent organogenesis in vivo. This study demonstrates that developmentally inspired hypertrophic cartilage templates can be engineered in vitro using stem cells within a supporting gamma-irradiated alginate bioink incorporating Arg-Gly-Asp adhesion peptides. Furthermore, these soft tissue templates can be reinforced with a network of printed polycaprolactone fibers, resulting in a ≈350 fold increase in construct compressive modulus providing the necessary stiffness to implant such immature cartilaginous rudiments into load bearing locations. As a proof-of-principal, multiple-tool biofabrication is used to engineer a mechanically reinforced cartilaginous template mimicking the geometry of a vertebral body, which in vivo supported the development of a vascularized bone organ containing trabecular-like endochondral bone with a supporting marrow structure. Such developmental engineering approaches could be applied to the biofabrication of other solid organs by bioprinting precursors that have the capacity to mature into their adult counterparts over time in vivo. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. (68)Ga small peptide imaging: comparison of NOTA and PCTA.

    PubMed

    Ferreira, Cara L; Yapp, Donald T T; Mandel, Derek; Gill, Rajanvir K; Boros, Eszter; Wong, May Q; Jurek, Paul; Kiefer, Garry E

    2012-11-21

    In this study, a bifunctional version of the chelate PCTA was compared to the analogous NOTA derivative for peptide conjugation, (68)Ga radiolabeling, and small peptide imaging. Both p-SCN-Bn-PCTA and p-SCN-Bn-NOTA were conjugated to cyclo-RGDyK. The resulting conjugates, PCTA-RGD and NOTA-RGD, retained their affinity for the peptide target, the α(v)β(3) receptor. Both PCTA-RGD and NOTA-RGD could be radiolabeled with (68)Ga in >95% radiochemical yield (RCY) at room temperature within 5 min. For PCTA-RGD, higher effective specific activities, up to 55 MBq/nmol, could be achieved in 95% RCY with gentle heating at 40 °C. The (68)Ga-radiolabeled conjugates were >90% stable in serum and in the presence of excess apo-transferrin over 4 h; (68)Ga-PCTA-RGD did have slightly lower stability than (68)Ga-NOTA-RGD, 93 ± 2% compared to 98 ± 1%, at the 4 h time point. Finally, the tumor and nontarget organ uptake and clearance of (68)Ga-radiolabeled PCTA-RGD and NOTA-RGD was compared in mice bearing HT-29 colorectal tumor xenografts. Activity cleared quickly from the blood and muscle tissue with >90% and >70% of the initial activity cleared within the first 40 min, respectively. The majority of activity was observed in the kidney, liver, and tumor tissue. The observed tumor uptake was specific with up to 75% of the tumor uptake blocked when the mice were preinjected with 160 nmol (100 μg) of unlabeled peptide. Uptake observed in the blocked tumors was not significantly different than the background activity observed in muscle tissue. The only significant difference between the two (68)Ga-radiolabeled bioconjugates in vivo was the kidney uptake. (68)Ga-radiolabeled PCTA-RGD had significantly lower (p < 0.05) kidney uptake (1.1 ± 0.5%) at 2 h postinjection compared to (68)Ga-radiolabeled NOTA-RGD (2.7 ± 1.3%). Overall, (68)Ga-radiolabeled PCTA-RGD and NOTA-RGD performed similarly, but the lower kidney uptake for (68)Ga-radiolabeled PCTA-RGD may be advantageous in some imaging applications.

  2. MALDI based identification of soybean protein markers--possible analytical targets for allergen detection in processed foods.

    PubMed

    Cucu, Tatiana; De Meulenaer, Bruno; Devreese, Bart

    2012-02-01

    Soybean (Glycine max) is extensively used all over the world due to its nutritional qualities. However, soybean is included in the "big eight" list of food allergens. According to the EU directive 2007/68/EC, food products containing soybeans have to be labeled in order to protect the allergic consumers. Nevertheless, soybeans can still inadvertently be present in food products. The development of analytical methods for the detection of traces of allergens is important for the protection of allergic consumers. Mass spectrometry of marker proteolytical fragments of protein allergens is growingly recognized as a detection method in food control. However, quantification of soybean at the peptide level is hindered due to limited information regarding specific stable markers derived after proteolytic digestion. The aim of this study was to use MALDI-TOF/MS and MS/MS as a fast screening tool for the identification of stable soybean derived tryptic markers which were still identifiable even if the proteins were subjected to various changes at the molecular level through a number of reactions typically occurring during food processing (denaturation, the Maillard reaction and oxidation). The peptides (401)Val-Arg(410) from the G1 glycinin (Gly m 6) and the (518)Gln-Arg(528) from the α' chain of the β-conglycinin (Gly m 5) proved to be the most stable. These peptides hold potential to be used as targets for the development of new analytical methods for the detection of soybean protein traces in processed foods. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Hydrolysis of substance P in the presence of the osteosarcoma cell line SaOS-2: release of free amino acids.

    PubMed

    Cavazza, Antonella; Marini, Mario; Roda, L Giorgio; Tarantino, Umberto; Valenti, Angela

    2011-12-01

    The possible hydrolysis of substance P (Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met) in presence of the osteoblastic cell line SaOS-2 was measured by capillary electrophoresis coupled to mass detection. The results obtained indicate that a very rapid disappearance of the intact undecapeptide was associated to a slower appearance of seven of its eight component amino acids. These results can be interpreted as indicating that an extremely fast hydrolysis of substance P by endopeptidases, which released peptidic by-products, was followed by a noticeably slower secondary degradation which released free amino acids. In decreasing quantitative importance, these phenomena appear to originate by the hydrolysis of the Pro(4)-Gln(5) bond, followed by C-terminal sequential degradation of the Arg(1)-Pro(4) tetrapeptide; by the hydrolysis of or Phe(7)-Phe(8) bond (or, possibly, of Gln(6)-Phe(7)) leading to release of free Phe and Gln; by hydrolysis of the Gly(9)-Leu(10) bond with subsequent release of Met and Leu. Results obtained appear to be compatible with the expression by SaOS-2 cells of enzymes already known to catalyze substance P hydrolysis, together with an apparent low efficiency of aminopeptidases. Because of the activity of C-terminal fragments on NK1 receptors, the delay between primary hydrolysis of substance P and secondary hydrolysis of its peptidic fragments indicated by the data shown implies a possible persistence of substance P physiological effects even after degradation of the intact peptide.

  4. Functional Characterization of MODY2 Mutations Highlights the Importance of the Fine-Tuning of Glucokinase and Its Role in Glucose Sensing

    PubMed Central

    García-Herrero, Carmen-María; Rubio-Cabezas, Oscar; Azriel, Sharona; Gutierrez-Nogués, Angel; Aragonés, Angel; Vincent, Olivier; Campos-Barros, Angel; Argente, Jesús; Navas, María-Angeles

    2012-01-01

    Glucokinase (GK) acts as a glucose sensor in the pancreatic beta-cell and regulates insulin secretion. Heterozygous mutations in the human GK-encoding GCK gene that reduce the activity index increase the glucose-stimulated insulin secretion threshold and cause familial, mild fasting hyperglycaemia, also known as Maturity Onset Diabetes of the Young type 2 (MODY2). Here we describe the biochemical characterization of five missense GK mutations: p.Ile130Thr, p.Asp205His, p.Gly223Ser, p.His416Arg and p.Ala449Thr. The enzymatic analysis of the corresponding bacterially expressed GST-GK mutant proteins show that all of them impair the kinetic characteristics of the enzyme. In keeping with their position within the protein, mutations p.Ile130Thr, p.Asp205His, p.Gly223Ser, and p.His416Arg strongly decrease the activity index of GK, affecting to one or more kinetic parameters. In contrast, the p.Ala449Thr mutation, which is located in the allosteric activator site, does not affect significantly the activity index of GK, but dramatically modifies the main kinetic parameters responsible for the function of this enzyme as a glucose sensor. The reduced Kcat of the mutant (3.21±0.28 s−1 vs 47.86±2.78 s−1) is balanced by an increased glucose affinity (S0.5 = 1.33±0.08 mM vs 7.86±0.09 mM) and loss of cooperativity for this substrate. We further studied the mechanism by which this mutation impaired GK kinetics by measuring the differential effects of several competitive inhibitors and one allosteric activator on the mutant protein. Our results suggest that this mutation alters the equilibrium between the conformational states of glucokinase and highlights the importance of the fine-tuning of GK and its role in glucose sensing. PMID:22291974

  5. [Peptides and CCL11 and HMGB1 as molecular markers of aging: literature review and own data].

    PubMed

    Khavinson, V Kh; Kuznik, B I; Tarnovskaia, S I; Lin'kova, N S

    2014-01-01

    Cytokines CCL11 (eotaxin) and HMGB1 (alarmin1) are molecular markers of ageing and neurological, cardiovascular and immune diseases. Created in St. Petersburg Institute of Bioregulation and Gerontology short peptides are known to regulate gene expression and protein synthesis. They promote the mortality decrease and slowdown the development of pathology in the elderly. The article presents the proposed role of dipeptide vilon (Lys-Glu) and tetrapeptide epitalon (Ala-Glu-Asp-Gly) in CCL11 and HMGB1 genes regulation as activators of their expression. Geroprotective action of vilon and epitalon probably realizes in suppression of these genes.

  6. Asp-Gly based peptides confined at the surface of cationic gemini surfactant aggregates.

    PubMed

    Brizard, Aurélie; Dolain, Christel; Huc, Ivan; Oda, Reiko

    2006-04-11

    Cationic gemini surfactants complexed with anionic oligoglycine-aspartate (called gemini peptides hereafter) were synthesized, and their aggregation behaviors were studied. The effects of the hydrophobic chain length (C10-C22) and the length of the oligoglycine (0-4) were investigated, and it was clearly shown by critical micellar concentration, Krafft temperature, and isothermal surface pressure measurements that the hydrophobic effect and interpeptidic interaction influence the aggregation behavior in a cooperative manner. Below their Krafft temperatures, some of them formed both hydro- and organogels with three-dimensional networks and the Fourier transform infrared measurements show the presence of interpeptidic hydrogen bonds.

  7. (18)F-glyco-RGD peptides for PET imaging of integrin expression: efficient radiosynthesis by click chemistry and modulation of biodistribution by glycosylation.

    PubMed

    Maschauer, Simone; Haubner, Roland; Kuwert, Torsten; Prante, Olaf

    2014-02-03

    Glycosylation frequently improves the biokinetics and clearance properties of macromolecules in vivo and could therefore be used for the design of radiopharmaceuticals for positron emission tomography (PET). Recently, we have developed a click chemistry method for (18)F-fluoroglycosylation of alkyne-bearing RGD-peptides targeting the integrin receptor. To investigate whether this strategy could yield an (18)F-labeled RGD glycopeptide with favorable biokinetics, we generated a series of new RGD glycopeptides, varying the 6-fluoroglycosyl residue from monosaccharide to disaccharide units, which provided the glucosyl ([(19)F]6Glc-RGD, 4b), galactosyl ([(19)F]Gal-RGD, 4c), maltosyl ([(19)F]Mlt-RGD, 4e), and cellobiosyl ([(19)F]Cel-RGD, 4f) conjugated peptides in high yields and purities of >97%. All of these RGD glycopeptides showed high affinity to αvβ3 (11-55 nM), αvβ5 (6-14 nM), and to αvβ3-positive U87MG cells (90-395 nM). (18)F-labeling of the various carbohydrate precursors (1a-f) using cryptate-assisted reaction conditions (CH3CN, 85 °C, 10 min) gave (18)F-labeled glycosyl azides in radiochemical yields (RCYs) of up to 84% ([(18)F]2b). The deacetylation and subsequent click reaction with the alkyne-bearing cyclic RGD peptide proceeded in one-pot reactions with RCYs as high as 81% in 15-20 min at 60 °C, using a minimal amount of peptide precursor (100 nmol). Optimization of the radiosynthesis strategy gave a decay-uncorrected RCY of 16-24% after 70-75 min (based on [(18)F]fluoride). Due to their high-yield radiosyntheses, the glycopeptides [(18)F]6Glc-RGD and [(18)F]Mlt-RGD were chosen for comparative biodistribution studies and dynamic small-animal PET imaging using U87MG tumor-bearing nude mice. [(18)F]6Glc-RGD and [(18)F]Mlt-RGD showed significantly decreased liver and kidney uptake by PET relative to the 2-[(18)F]fluoroglucosyl analog [(18)F]2Glc-RGD, and showed specific tumor uptake in vivo. Notably, [(18)F]Mlt-RGD revealed uptake and retention in the U87MG tumor comparable to that of [(18)F]Galacto-RGD. Both [(18)F]6Glc-RGD and [(18)F]Mlt-RGD were obtained by a reliable and easy click chemistry-based procedure, much more rapidly than was [(18)F]Galacto-RGD. Due to its favorable biodistribution and tissue clearance in vivo, [(18)F]Mlt-RGD represents a viable alternative radiotracer for imaging integrin expression in solid tumors by PET.

  8. MALDI-based identification of stable hazelnut protein derived tryptic marker peptides.

    PubMed

    Cucu, T; De Meulenaer, B; Devreese, B

    2012-01-01

    Food allergy is an important health problem especially in industrialised countries. Tree nuts, among which are hazelnuts (Corylus avellana), are typically causing serious and life-threatening symptoms in sensitive subjects. Hazelnut is used as a food ingredient in pastry, confectionary products, ice cream and meat products, therefore undeclared hazelnut can be often present as a cross-contaminant representing a threat for allergic consumers. Mass spectrometric techniques are used for the detection of food allergens in processed foods, but limited information regarding stable tryptic peptide markers for hazelnut is available. The aim of this study was to detect stable peptide markers from modified hazelnut protein through the Maillard reaction and oxidation in a buffered solution. Peptides ³⁹⁵Gly-Arg⁴⁰³ from Cor a 11 and ²⁰⁹Gln-Arg²¹⁷, ³⁵¹Ile-Arg³⁶³, ⁴⁶⁴Ala-Arg⁴⁷⁸ and ⁴⁰¹Val-Arg⁴¹⁷ from Cor a 9 hazelnut allergens proved to be the most stable and could be detected and confirmed with high scores in most of the modified samples. The identified peptides can be further used as analytical targets for the development of more robust quantitative methods for hazelnut detection in processed foods.

  9. Genetic polymorphisms of beta1 adrenergic receptor and their influence on the cardiovascular responses to metoprolol in a South Indian population.

    PubMed

    Mahesh Kumar, Koratagere Nagaraju; Ramu, Periasamy; Rajan, Subramanian; Shewade, Deepak Gopal; Balachander, Jayaraman; Adithan, Chandrasekaran

    2008-11-01

    Beta-blockers show interindividual and interethnic variability in their response. Such variability might be due to the polymorphic variations in the beta1 adrenergic receptor genes viz, Ser49Gly and Arg389Gly. The study evaluated the influence of Ser49Gly and Arg389Gly polymorphisms on the cardiovascular responses to metoprolol in a South Indian population. Forty-one genetically prescreened healthy male volunteers participated in the study. They were divided on the basis of genotype of each polymorphism: Ser49Ser, Ser49Gly, and Gly49Gly and Arg389Arg, Arg389Gly, and Gly389Gly. They were also grouped into combination genotypes viz, S49S R389R, S49G R389R, G49G R389R, S49S R389G, S49S G389G, and S49G R389G. They were subjected to treadmill exercise testing, and cardiovascular parameters were measured before and after metoprolol administration. Metoprolol concentration was determined by reversed phase high-performance liquid chromatography method. The diastolic blood pressure (DBP) was significantly lower in S49S/G389G group when compared to S49S/A389A group. The cardiac parameters were significantly increased in all the genotype groups during treadmill exercise test done for a period of 9 minutes. During predrug treadmill exercise at the end of third and sixth minute, Gly49Gly showed a higher increase in heart rate and volume of oxygen consumption compared to Ser49Ser. Same group showed a higher increase of volume of oxygen consumption at the end of ninth minute of exercise compared to the Ser49Ser. Systolic and diastolic blood pressures were not different between Ser49Gly polymorphisms. However, there was no statistical difference between the genotype groups of both polymorphisms at any stage of post-drug treadmill exercise. The analysis of combination of genotypes showed no significant difference during predrug and postdrug exercise testing. The increase in cardiac responses to treadmill test was influenced by Ser49Gly polymorphism. Nevertheless, the above polymorphisms did not alter the beta-blocker response during treadmill exercise in South Indian population.

  10. Substrate Binding Mode and its Implication on Drug Design for Botulinum Neurotoxin A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumaran, D.; Rawat, R; Ahmed, A

    2008-01-01

    The seven antigenically distinct serotypes of Clostridium botulinum neurotoxins, the causative agents of botulism, block the neurotransmitter release by specifically cleaving one of the three SNARE proteins and induce flaccid paralysis. The Centers for Disease Control and Prevention (CDC) has declared them as Category A biowarfare agents. The most potent among them, botulinum neurotoxin type A (BoNT/A), cleaves its substrate synaptosome-associated protein of 25 kDa (SNAP-25). An efficient drug for botulism can be developed only with the knowledge of interactions between the substrate and enzyme at the active site. Here, we report the crystal structures of the catalytic domain ofmore » BoNT/A with its uncleavable SNAP-25 peptide 197QRATKM202 and its variant 197RRATKM202 to 1.5 A and 1.6 A, respectively. This is the first time the structure of an uncleavable substrate bound to an active botulinum neurotoxin is reported and it has helped in unequivocally defining S1 to S5? sites. These substrate peptides make interactions with the enzyme predominantly by the residues from 160, 200, 250 and 370 loops. Most notably, the amino nitrogen and carbonyl oxygen of P1 residue (Gln197) chelate the zinc ion and replace the nucleophilic water. The P1?-Arg198, occupies the S1? site formed by Arg363, Thr220, Asp370, Thr215, Ile161, Phe163 and Phe194. The S2? subsite is formed by Arg363, Asn368 and Asp370, while S3? subsite is formed by Tyr251, Leu256, Val258, Tyr366, Phe369 and Asn388. P4?-Lys201 makes hydrogen bond with Gln162. P5?-Met202 binds in the hydrophobic pocket formed by the residues from the 250 and 200 loop. Knowledge of interactions between the enzyme and substrate peptide from these complex structures should form the basis for design of potent inhibitors for this neurotoxin.« less

  11. Induction of neurite outgrowth in 3D hydrogel-based environments.

    PubMed

    Assunção-Silva, Rita C; Oliveira, Cátia Costa; Ziv-Polat, Ofra; Gomes, Eduardo D; Sahar, Abraham; Sousa, Nuno; Silva, Nuno A; Salgado, António J

    2015-10-20

    The ability of peripheral nervous system (PNS) axons to regenerate and re-innervate their targets after an injury has been widely recognized. However, despite the considerable advances made in microsurgical techniques, complete functional recovery is rarely achieved, especially for severe peripheral nerve injuries (PNIs). Therefore, alternative therapies that can successfully repair peripheral nerves are still essential. In recent years the use of biodegradable hydrogels enriched with growth-supporting and guidance cues, cell transplantation, and biomolecular therapies have been explored for the treatment of PNIs. Bearing this in mind, the aim of this study was to assess whether Gly-Arg-Gly-Asp-Ser synthetic peptide (GRGDS)-modified gellan gum (GG) based hydrogels could foster an amenable environment for neurite/axonal growth. Additionally, strategies to further improve the rate of neurite outgrowth were also tested, namely the use of adipose tissue derived stem cells (ASCs), as well as the glial derived neurotrophic factor (GDNF). In order to increase its stability and enhance its bioactivity, the GDNF was conjugated covalently to iron oxide nanoparticles (IONPs). The impact of hydrogel modification as well as the effect of the GDNF-IONPs on ASC behavior was also screened. The results revealed that the GRGDS-GG hydrogel was able to support dorsal root ganglia (DRG)-based neurite outgrowth, which was not observed for non-modified hydrogels. Moreover, the modified hydrogels were also able to support ASCs attachment. In contrast, the presence of the GDNF-IONPs had no positive or negative impact on ASC behavior. Further experiments revealed that the presence of ASCs in the hydrogel improved axonal growth. On the other hand, GDNF-IONPs alone or combined with ASCs significantly increased neurite outgrowth from DRGs, suggesting a beneficial role of the proposed strategy for future applications in PNI regenerative medicine.

  12. Functional map of arrestin-1 at single amino acid resolution

    PubMed Central

    Ostermaier, Martin K.; Peterhans, Christian; Jaussi, Rolf; Deupi, Xavier; Standfuss, Jörg

    2014-01-01

    Arrestins function as adapter proteins that mediate G protein-coupled receptor (GPCR) desensitization, internalization, and additional rounds of signaling. Here we have compared binding of the GPCR rhodopsin to 403 mutants of arrestin-1 covering its complete sequence. This comprehensive and unbiased mutagenesis approach provides a functional dimension to the crystal structures of inactive, preactivated p44 and phosphopeptide-bound arrestins and will guide our understanding of arrestin–GPCR complexes. The presented functional map quantitatively connects critical interactions in the polar core and along the C tail of arrestin. A series of amino acids (Phe375, Phe377, Phe380, and Arg382) anchor the C tail in a position that blocks binding of the receptor. Interaction of phosphates in the rhodopsin C terminus with Arg29 controls a C-tail exchange mechanism in which the C tail of arrestin is released and exposes several charged amino acids (Lys14, Lys15, Arg18, Lys20, Lys110, and Lys300) for binding of the phosphorylated receptor C terminus. In addition to this arrestin phosphosensor, our data reveal several patches of amino acids in the finger (Gln69 and Asp73–Met75) and the lariat loops (L249–S252 and Y254) that can act as direct binding interfaces. A stretch of amino acids at the edge of the C domain (Trp194–Ser199, Gly337–Gly340, Thr343, and Thr345) could act as membrane anchor, binding interface for a second rhodopsin, or rearrange closer to the central loops upon complex formation. We discuss these interfaces in the context of experimentally guided docking between the crystal structures of arrestin and light-activated rhodopsin. PMID:24449856

  13. Functional map of arrestin-1 at single amino acid resolution.

    PubMed

    Ostermaier, Martin K; Peterhans, Christian; Jaussi, Rolf; Deupi, Xavier; Standfuss, Jörg

    2014-02-04

    Arrestins function as adapter proteins that mediate G protein-coupled receptor (GPCR) desensitization, internalization, and additional rounds of signaling. Here we have compared binding of the GPCR rhodopsin to 403 mutants of arrestin-1 covering its complete sequence. This comprehensive and unbiased mutagenesis approach provides a functional dimension to the crystal structures of inactive, preactivated p44 and phosphopeptide-bound arrestins and will guide our understanding of arrestin-GPCR complexes. The presented functional map quantitatively connects critical interactions in the polar core and along the C tail of arrestin. A series of amino acids (Phe375, Phe377, Phe380, and Arg382) anchor the C tail in a position that blocks binding of the receptor. Interaction of phosphates in the rhodopsin C terminus with Arg29 controls a C-tail exchange mechanism in which the C tail of arrestin is released and exposes several charged amino acids (Lys14, Lys15, Arg18, Lys20, Lys110, and Lys300) for binding of the phosphorylated receptor C terminus. In addition to this arrestin phosphosensor, our data reveal several patches of amino acids in the finger (Gln69 and Asp73-Met75) and the lariat loops (L249-S252 and Y254) that can act as direct binding interfaces. A stretch of amino acids at the edge of the C domain (Trp194-Ser199, Gly337-Gly340, Thr343, and Thr345) could act as membrane anchor, binding interface for a second rhodopsin, or rearrange closer to the central loops upon complex formation. We discuss these interfaces in the context of experimentally guided docking between the crystal structures of arrestin and light-activated rhodopsin.

  14. Kit preparation and biokinetics in women of 99mTc-EDDA/HYNIC-E-[c(RGDfK)]2 for breast cancer imaging.

    PubMed

    Ortiz-Arzate, Zareth; Santos-Cuevas, Clara L; Ocampo-García, Blanca E; Ferro-Flores, Guillermina; García-Becerra, Rocío; Estrada, Gisela; Gómez-Argumosa, Edgar; Izquierdo-Sánchez, Vanessa

    2014-04-01

    In breast cancer, α(ν)β(3) and/or α(ν)β(5) integrins are overexpressed in both endothelial and tumour cells. Radiolabelled peptides based on the Arg-Gly-Asp (RGD) sequence are radiopharmaceuticals with high affinity and selectivity for these integrins. The RGD-dimer peptide (E-[c(RGDfK)]2) radiolabelled with (99m)Tc has been reported as a radiopharmaceutical with a 10-fold higher affinity for the α(ν)β(3) integrin compared with the RGD-monomer. Ethylenediamine-N,N'-diacetic acid (EDDA) is a hydrophilic molecule that may favour renal excretion when used as coligand in the (99m)Tc labelling of hydrazinonicotinamide (HYNIC) peptides and can easily be formulated in a lyophilized kit. The aim of this study was to establish a biokinetic model for (99m)Tc-EDDA/HYNIC-E-[c(RGDfK)]2 prepared from lyophilized kits and evaluate its dosimetry as a tumour-imaging agent in seven healthy women and three breast cancer patients. (99m)Tc labelling was performed by adding sodium pertechnetate solution and 0.2 mol/l phosphate buffer (pH 7.0) to a lyophilized formulation containing E-[c(RGDfK)]2, EDDA, tricine, mannitol and stannous chloride. The radiochemical purity was evaluated using reverse-phase high-performance liquid chromatography and instant thin-layer chromatography on silica gel analyses. Stability studies in human serum were carried out using size-exclusion high-performance liquid chromatography. In-vitro cell uptake was tested using breast cancer cells (MCF7, T47D and MDA-MB-231) with blocked and nonblocked receptors. Biodistribution and tumour uptake were determined in MCF7 tumour-bearing nude mice with blocked and nonblocked receptors, and images were obtained using a micro-SPECT/PET/CT. Whole-body images from seven healthy women were acquired at 0.5, 1, 3, 6 and 24 h after (99m)Tc-EDDA/HYNIC-E-[c(RGDfK)]2 administration with radiochemical purities greater than 94%. Regions of interest were drawn around the source organs at each time frame. Each region of interest was converted to activity using the conjugate view counting method. The image sequence was used to extrapolate the (99m)Tc-EDDA/HYNIC-E-[c(RGDfK)]2 time-activity curves of each organ to adjust the biokinetic model and calculate the total number of disintegrations (N) that occurred in the source regions. N data were the input for the OLINDA/EXM code to calculate internal radiation dose estimates. In three breast cancer patients with histologically confirmed cancer, static images were obtained at 1 h in the supine position with hands placed behind the head. (99m)Tc-EDDA/HYNIC-E-[c(RGDfK)]2 obtained from lyophilized kits demonstrated high stability in human serum and specific cell receptor binding. The biodistribution data from mice showed rapid blood clearance, with both renal and hepatobiliary excretion, and specific binding towards α(ν)β(3) integrins in the MCF7 tumours. In women, the blood activity showed a half-life value of 1.60 min for the fast component (T1/2α = ln2/26.01) and half-life values of 1.0 h for the first slow component (T1/2β = ln2/0.69) and 4.03 h for the second slow component (T1/2γ = ln2/0.16). Images from patients showed an average tumour/heart (blood) ratio of 3.61 ± 0.62 at 1 h. The average equivalent doses calculated for a study using 740 MBq were 4.9, 6.2, 20.7, 34.5 and 57.0 mSv for the liver, intestines, spleen, kidneys and thyroid, respectively, and the effective dose was 6.1 mSv. All absorbed doses were comparable to those known from most of the (99m)Tc studies. (99m)Tc-EDDA/HYNIC-E-[c(RGDfK)]2 obtained from kit formulations showed high tumour uptake in patients with malignant lesions, making it a promising imaging radiopharmaceutical for targeting site-specific breast cancer. The results obtained in this study warrant further clinical studies to determine the specificity and sensitivity of (99m)Tc-EDDA/HYNIC-E-[c(RGDfK)]2.

  15. Polymorphisms of IL-17 and ICAM-1 and their expression in Guillain-Barré syndrome.

    PubMed

    Kharwar, N K; Prasad, K N; Singh, K; Paliwal, V K; Modi, D R

    2017-08-01

    Guillain-Barré syndrome (GBS) is an acute inflammatory, autoimmune disorder of peripheral nervous system. Interleukin-17 (IL-17) and intercellular adhesion molecule-1 (ICAM-1) polymorphisms with higher expression levels have already been studied in many inflammatory and autoimmune diseases. However, the possible role of IL-17 and ICAM-1 polymorphisms in GBS remains unknown. Therefore, the current study investigated IL-17 (His161Arg and Glu126Gly) and ICAM-1 (Gly241Arg) polymorphisms. In this study, total 80 GBS patients and 75 normal healthy controls were included. IL-17 (His161Arg and Glu126Gly) and ICAM-1 (Gly241Arg) polymorphisms were performed using polymerase chain reaction -restriction fragment length polymorphism analysis. Further, the expression of ICAM-1 and IL-17 was determined by reverse-transcriptase PCR and enzyme-linked immunosorbent assay. IL-17 (Glu126Gly) mutant and ICAM-1 (Gly241Arg) heterozygous genotypes were strongly associated with increased risk of GBS (p < 0.016; OR = 3.706, 95% CI = 1.28-10.67; p < 0.001; OR = 4.148, 95% CI = 2.119-8.119, respectively). IL-17 and ICAM-1 genes showed significantly higher expression in GBS when compared with healthy controls. IL-17 and ICAM-1 polymorphisms showed significant association with GBS and their enhanced expressions have possible role in GBS development. IL-17 and ICAM-1 polymorphisms could be genetic markers to GBS susceptibility.

  16. Mutation spectrum of the Norrie disease pseudoglioma (NDP) gene in Indian patients with FEVR.

    PubMed

    Musada, Ganeswara Rao; Jalali, Subhadra; Hussain, Anjli; Chururu, Anupama Reddy; Gaddam, Pramod Reddy; Chakrabarti, Subhabrata; Kaur, Inderjeet

    2016-01-01

    Mutations in the Norrie disease pseudoglioma (NDP; Xp11.3) gene have been involved in retinal blood vessel formation and neural differentiation and are implicated in familial exudative vitreoretinopathy (FEVR) cases. However, the role of the gene has not been explored in the Indian context. Thus, this study was designed to understand the involvement of NDP among Indian patients with FEVR. The study cohort comprised 225 subjects, including unrelated patients with FEVR (n = 110) and ethnically matched healthy subjects (n = 115) recruited from a tertiary eye care center in India. The entire coding regions, intron-exon boundaries, along with the 5' and 3' untranslated regions of NDP were screened with resequencing following standard protocols. The spectrum of the observed variants was analyzed in conjunction with data available from other populations. Eight potentially pathogenic mutations (p.His4ArgfsX21, p.Asp23GlufsX9, p.Ile48ValfsX55, p.His50Asp, p.Ser57*, p.Gly113Asp, p.Arg121Gln, and p.Cys126Arg, including five novel ones), were observed in the coding region of the NDP gene in ten unrelated FEVR probands (9%). The novel changes were not observed in the control subjects and were unavailable in the dbSNP, ESP5400, NIEHS95, and ExAC databases. All probands with NDP mutations exhibited classical features of the disease as observed among patients with FEVR worldwide. This is perhaps the first study to demonstrate the involvement of NDP among patients with Indian FEVR that further expands its mutation spectrum. The data generated could have broad implications in genetic counseling, disease management, and early intervention for a better prognosis in FEVR.

  17. Mutation spectrum of the Norrie disease pseudoglioma (NDP) gene in Indian patients with FEVR

    PubMed Central

    Musada, Ganeswara Rao; Jalali, Subhadra; Hussain, Anjli; Chururu, Anupama Reddy; Gaddam, Pramod Reddy; Chakrabarti, Subhabrata

    2016-01-01

    Purpose Mutations in the Norrie disease pseudoglioma (NDP; Xp11.3) gene have been involved in retinal blood vessel formation and neural differentiation and are implicated in familial exudative vitreoretinopathy (FEVR) cases. However, the role of the gene has not been explored in the Indian context. Thus, this study was designed to understand the involvement of NDP among Indian patients with FEVR. Methods The study cohort comprised 225 subjects, including unrelated patients with FEVR (n = 110) and ethnically matched healthy subjects (n = 115) recruited from a tertiary eye care center in India. The entire coding regions, intron–exon boundaries, along with the 5′ and 3′ untranslated regions of NDP were screened with resequencing following standard protocols. The spectrum of the observed variants was analyzed in conjunction with data available from other populations. Results Eight potentially pathogenic mutations (p.His4ArgfsX21, p.Asp23GlufsX9, p.Ile48ValfsX55, p.His50Asp, p.Ser57*, p.Gly113Asp, p.Arg121Gln, and p.Cys126Arg, including five novel ones), were observed in the coding region of the NDP gene in ten unrelated FEVR probands (9%). The novel changes were not observed in the control subjects and were unavailable in the dbSNP, ESP5400, NIEHS95, and ExAC databases. All probands with NDP mutations exhibited classical features of the disease as observed among patients with FEVR worldwide. Conclusions This is perhaps the first study to demonstrate the involvement of NDP among patients with Indian FEVR that further expands its mutation spectrum. The data generated could have broad implications in genetic counseling, disease management, and early intervention for a better prognosis in FEVR. PMID:27217716

  18. Key role of hydrazine to the interaction between oxaloacetic against phosphoenolpyruvic carboxykinase (PEPCK): ONIOM calculations.

    PubMed

    Prajongtat, Pongthep; Phromyothin, Darinee Sae-Tang; Hannongbua, Supa

    2013-08-01

    The interactions between oxaloacetic (OAA) and phosphoenolpyruvic carboxykinase (PEPCK) binding pocket in the presence and absence of hydrazine were carried out using quantum chemical calculations, based on the two-layered ONIOM (ONIOM2) approach. The complexes were partially optimized by ONIOM2 (B3LYP/6-31G(d):PM6) method while the interaction energies between OAA and individual residues surrounding the pocket were performed at the MP2/6-31G(d,p) level of theory. The calculated interaction energies (INT) indicated that Arg87, Gly237, Ser286, and Arg405 are key residues for binding to OAA with the INT values of -1.93, -2.06, -2.47, and -3.16 kcal mol(-1), respectively. The interactions are mainly due to the formation of hydrogen bonding interactions with OAA. Moreover, using ONIOM2 (B3LYP/6-31G(d):PM6) applied on the PEPCKHS complex, two proton transfers were observed; first, the proton was transferred from the carboxylic group of OAA to hydrazine while the second one was from Asp311 to Lys244. Such reactions cause the generation of binding strength of OAA to the pocket via electrostatic interaction. The orientations of Lys243, Lys244, His264, Asp311, Phe333, and Arg405 were greatly deviated after hydrazine incorporation. These indicate that hydrazine plays an important role in terms of not only changing the conformation of the binding pocket, but is also tightly bound to OAA resulting in its conformation change in the pocket. The understanding of such interaction can be useful for the design of hydrazine-based inhibitor for antichachexia agents.

  19. Purification and characterization of novel antioxidant peptides from enzymatic hydrolysates of tilapia (Oreochromis niloticus) skin gelatin.

    PubMed

    Zhang, Yufeng; Duan, Xiu; Zhuang, Yongliang

    2012-11-01

    To obtain hydrolysates with high degree of hydrolysis (DH) and scavenging radical activity, tilapia skin gelatin (TSG) was hydrolyzed by properase E and multifect neutral. The optimum hydrolysis condition of each enzyme was determined using the orthogonal experiment, and double-enzyme hydrolysis was further applied. The results showed the tilapia skin gelatin hydrolysate (TSGH) obtained by progressive hydrolysis using multifect neutral and properase E had the highest DH and hydroxyl radical scavenging activity. The IC(50) values of TSGH on scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, superoxide anion radical (·O(2)) and hydroxyl radical (·OH) activities were also determined. TSGH was further purified using gel filtration chromatography, ion exchange chromatography, and RP-HPLC. The peptides were identified using nano-LC-ESI mass spectrometry. Finally, two antioxidant peptides were identified and the amino acid sequences were Glu-Gly-Leu (317.33 Da) and Tyr-Gly-Asp-Glu-Tyr (645.21 Da), respectively. The IC(50) values of two peptides on hydroxyl radical scavenging activities were 4.61 μg mL(-1)and 6.45 μg mL(-1), respectively. Therefore, the results demonstrated that the hydrolysates of TSG prepared by multifect neutral and properase E could serve as a source of peptides with high antioxidant activity. It provided a scientific basis for the preparation of antioxidant peptides. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Use of arginine-glycine-aspartic acid adhesion peptides coupled with a new collagen scaffold to engineer a myocardium-like tissue graft.

    PubMed

    Schussler, O; Coirault, C; Louis-Tisserand, M; Al-Chare, W; Oliviero, P; Menard, C; Michelot, R; Bochet, P; Salomon, D R; Chachques, J C; Carpentier, A; Lecarpentier, Y

    2009-03-01

    Cardiac tissue engineering might be useful in treatment of diseased myocardium or cardiac malformations. The creation of functional, biocompatible contractile tissues, however, remains challenging. We hypothesized that coupling of arginine-glycine-aspartic acid-serine (RGD+) adhesion peptides would improve cardiomyocyte viability and differentiation and contractile performance of collagen-cell scaffolds. Clinically approved collagen scaffolds were functionalized with RGD+ cells and seeded with cardiomyocytes. Contractile performance, cardiomyocyte viability and differentiation were analyzed at days 1 and 8 and/or after culture for 1 month. The method used for the RGD+ cell-collagen scaffold coupling enabled the following features: high coupling yields and complete washout of excess reagent and by-products with no need for chromatography; spectroscopic quantification of RGD+ coupling; a spacer arm of 36 A, a length reported as optimal for RGD+-peptide presentation and favorable for integrin-receptor clustering and subsequent activation. Isotonic and isometric mechanical parameters, either spontaneous or electrostimulated, exhibited good performance in RGD+ constructs. Cell number and viability was increased in RGD+ scaffolds, and we saw good organization of cell contractile apparatus with occurrence of cross-striation. We report a novel method of engineering a highly effective collagen-cell scaffold based on RGD+ peptides cross-linked to a clinically approved collagen matrix. The main advantages were cell contractile performance, cardiomyocyte viability and differentiation.

  1. Acute systemic effects of inhaled salbutamol in asthmatic subjects expressing common homozygous beta2-adrenoceptor haplotypes at positions 16 and 27.

    PubMed

    Lee, Daniel K C; Bates, Caroline E; Lipworth, Brian J

    2004-01-01

    The relationship between beta2-adrenoceptor polymorphisms at positions 16 and 27, and the acute systemic beta2-adrenoceptor effects of inhaled salbutamol is unclear. We therefore elected to evaluate the influence of common homozygous beta2-adrenoceptor haplotypes on the acute systemic beta2-adrenoceptor effects following inhaled salbutamol in asthmatic subjects. An initial database search of 531 asthmatic subjects identified the two commonest homozygous haplotypes at positions 16 and 27 to be Arg16-Gln27 (12%) and Gly16-Glu27 (19%). After a 1-week washout period where all beta2-adrenoceptor agonists were withdrawn, 16 Caucasian subjects (Arg16-Gln27: n = 8 and Gly16-Glu27: n = 8) were given a single dose of inhaled salbutamol (1200 microg), followed by serial blood sampling for serum potassium, along with measurements of diastolic blood pressure and heart rate, at 5-min intervals for 20 min. The two groups were well matched for age, sex, FEV1, and inhaled corticosteroid dose. Baseline values for serum potassium, diastolic blood pressure and heart rate were not significantly different comparing Arg16-Gln27 vs Gly16-Glu27. The mean +/- SEM maximum serum potassium change from baseline over 20 min was significantly greater (P = 0.04) for Arg16-Gln27: -0.37 +/- 0.05 mmol l(-1) vs Gly16-Glu27: -0.23 +/- 0.04 mmol l(-1); 95% CI for difference: -0.01 to -0.28 mmol l(-1). The maximum diastolic blood pressure change from baseline over 20 min was significantly greater (P = 0.0008) for Arg16-Gln27: -13 +/- 1 mmHg vs Gly16-Glu27: -4 +/- 2 mmHg; 95% CI for difference: -5, 14 mmHg. There was no significant difference comparing the maximum heart rate change from baseline for Arg16-Gln27: 10 +/- 3 beats min(-1) vs Gly16-Glu27: 10 +/- 3 beats min(-1). Caucasian asthmatic subjects with the Arg16-Gln27 haplotype exhibited a greater systemic response to inhaled salbutamol, compared with those with the Gly16-Glu27 haplotype. The attenuated beta2-adrenoceptor response in the Gly16-Glu27 haplotype would be in keeping with increased susceptibility to prior down-regulation by endogenous catecholamines.

  2. An RGDS peptide-binding receptor, FR-1R, localizes to the basal side of the ectoderm and to primary mesenchyme cells in sand dollar embryos.

    PubMed

    Katow, H; Sofuku, S

    2001-10-01

    Immunoblotting using polyclonal antibodies (pAb) raised against an FR-1 receptor (FR-1R), a 57 kDa Arg-Gly-Asp-Ser (RGDS)-binding protein, of the sand dollar Clypeaster japonicus showed that the pAb monospecifically bound to the protein. FR-1R was present in purified plasma membrane, suggesting that the protein is a membrane-bound protein. The molecular structure of FR-1R did not change throughout the early embryogenesis, whereas its expression changed significantly during this period. FR-1R was present in the cortex of unfertilized eggs and was then transferred to the hyaline layer soon after the fertilization. The hyaline layer retained FR-1R immunoreactivity during early embryogenesis. FR-1R appeared on the basal side of the ectoderm at the morula stage and was retained basolaterally, at least, to the early gastrula stage. In mesenchyme blastulae, FR-1R was also present on the surface of primary mesenchyme cells (PMC). FR-1R was localized on the basal side of the ectoderm in early gastrulae, exclusively at the place where PMC formed ventrolateral aggregates, and at the apical tuft ectoderm. In vitro, PMC bound to FR-1R and its binding was inhibited in the presence of a synthetic RGDS peptide or the pAb. The pAb introduced into the blastocoele perturbed PMC migration and gastrulation. FR-1R was weakly recognized by antihuman integrin beta5 subunit pAb.

  3. Association of β1 and β3 adrenergic receptors gene polymorphisms with insulin resistance and high lipid profiles related to type 2 diabetes and metabolic syndrome.

    PubMed

    Burguete-Garcia, Ana I; Martinez-Nava, Gabriela A; Valladares-Salgado, Adan; Bermudez Morales, V H; Estrada-Velasco, Barbara; Wacher, Niels; Peralta-Romero, Jesus; Garcia-Mena, Jaime; Parra, Esteban; Cruz, Miguel

    2014-06-01

    Among the diverse genes associated to type 2 diabetes (T2D), the β-adrenergic receptors are an excellent candidate to study in Mexican population. The objective of this work was to analyze the association of polymorphisms in ADRB1 (rs1801253) (Arg389Gly) and ADRB3 (Trp64Arg) genes with T2D and metabolic syndrome (MS). We studied 445 MS patients, 502 with T2D and 552 healthy controls. Anthropometric features and complete biochemical profile were evaluated, and Arg389Gly and Trp64Arg SNPs were determined by TaqMan assays. Data analysis was adjusted by African, Caucasian and Amerindian ancestral percentage. The variant Arg389Gly of ADRB1 was statistically associated with an increase of LDL levels (P < 0.008), and the variant ADRB3 Trp64Arg was associated to larger HOMA-IR (P < 0.018) and with an increase of insulin levels (P < 0.001). A multiple logistic regression analysis was made in three grouping models: For ADRB3 in the codominant model Trp/Arg genotype, there was an OR of 1.53 (1.09-2.13, P < 0.003) which was increased up to OR 2.99 (1.44-6.22, P < 0.003) for the Arg/Arg genotype. Similar risk association was found under the dominant model Trp/Arg-Arg/Arg genotype with OR 1.67 (1.21-2.30; P < 0.002). In the recessive model (Arg/Arg genotype), there was also a high association OR 2.56 (1.24-5.26, P < 0.01). The ADRB3 Trp64Arg variant is a susceptibility gene polymorphism for T2D and the ADRB1 Gly389Arg for lipid metabolism disruption. These results show that these variants are potential biomarkers for predicting metabolic alterations and evolution in diabetic and metabolic syndrome patients. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  4. Modeling the effect of 3 missense AGXT mutations on dimerization of the AGT enzyme in primary hyperoxaluria type 1.

    PubMed

    Robbiano, Angela; Frecer, Vladimir; Miertus, Jan; Zadro, Cristina; Ulivi, Sheila; Bevilacqua, Elena; Mandrile, Giorgia; De Marchi, Mario; Miertus, Stanislav; Amoroso, Antonio

    2010-01-01

    Mutations of the AGXT gene encoding the alanine:glyoxylate aminotransferase liver enzyme (AGT) cause primary hyperoxaluria type 1 (PH1). Here we report a molecular modeling study of selected missense AGXT mutations: the common Gly170Arg and the recently described Gly47Arg and Ser81Leu variants, predicted to be pathogenic using standard criteria. Taking advantage of the refined 3D structure of AGT, we computed the dimerization energy of the wild-type and mutated proteins. Molecular modeling predicted that Gly47Arg affects dimerization with a similar effect to that shown previously for Gly170Arg through classical biochemical approaches. In contrast, no effect on dimerization was predicted for Ser81Leu. Therefore, this probably demonstrates pathogenic properties via a different mechanism, similar to that described for the adjacent Gly82Glu mutation that affects pyridoxine binding. This study shows that the molecular modeling approach can contribute to evaluating the pathogenicity of some missense variants that affect dimerization. However, in silico studies--aimed to assess the relationship between structural change and biological effects--require the integrated use of more than 1 tool.

  5. Effect of herbicide resistance endowing Ile-1781-Leu and Asp-2078-Gly ACCase gene mutations on ACCase kinetics and growth traits in Lolium rigidum

    PubMed Central

    Vila-Aiub, Martin M.; Yu, Qin; Han, Heping; Powles, Stephen B.

    2015-01-01

    The rate of herbicide resistance evolution in plants depends on fitness traits endowed by alleles in both the presence and absence (resistance cost) of herbicide selection. The effect of two Lolium rigidum spontaneous homozygous target-site resistance-endowing mutations (Ile-1781-Leu, Asp-2078-Gly) on both ACCase activity and various plant growth traits have been investigated here. Relative growth rate (RGR) and components (net assimilation rate, leaf area ratio), resource allocation to different organs, and growth responses in competition with a wheat crop were assessed. Unlike plants carrying the Ile-1781-Leu resistance mutation, plants homozygous for the Asp-2078-Gly mutation exhibited a significantly lower RGR (30%), which translated into lower allocation of biomass to roots, shoots, and leaves, and poor responses to plant competition. Both the negligible and significant growth reductions associated, respectively, with the Ile-1781-Leu and Asp-2078-Gly resistance mutations correlated with their impact on ACCase activity. Whereas the Ile-1781-Leu mutation showed no pleiotropic effects on ACCase kinetics, the Asp-2078-Gly mutation led to a significant reduction in ACCase activity. The impaired growth traits are discussed in the context of resistance costs and the effects of each resistance allele on ACCase activity. Similar effects of these two particular ACCase mutations on the ACCase activity of Alopecurus myosuroides were also confirmed. PMID:26019257

  6. RGD Peptide Cell-Surface Display Enhances the Targeting and Therapeutic Efficacy of Attenuated Salmonella-mediated Cancer Therapy.

    PubMed

    Park, Seung-Hwan; Zheng, Jin Hai; Nguyen, Vu Hong; Jiang, Sheng-Nan; Kim, Dong-Yeon; Szardenings, Michael; Min, Jung Hyun; Hong, Yeongjin; Choy, Hyon E; Min, Jung-Joon

    2016-01-01

    Bacteria-based anticancer therapies aim to overcome the limitations of current cancer therapy by actively targeting and efficiently removing cancer. To achieve this goal, new approaches that target and maintain bacterial drugs at sufficient concentrations during the therapeutic window are essential. Here, we examined the tumor tropism of attenuated Salmonella typhimurium displaying the RGD peptide sequence (ACDCRGDCFCG) on the external loop of outer membrane protein A (OmpA). RGD-displaying Salmonella strongly bound to cancer cells overexpressing αvβ3, but weakly bound to αvβ3-negative cancer cells, suggesting the feasibility of displaying a preferential homing peptide on the bacterial surface. In vivo studies revealed that RGD-displaying Salmonellae showed strong targeting efficiency, resulting in the regression in αvβ3-overexpressing cancer xenografts, and prolonged survival of mouse models of human breast cancer (MDA-MB-231) and human melanoma (MDA-MB-435). Thus, surface engineering of Salmonellae to display RGD peptides increases both their targeting efficiency and therapeutic effect.

  7. Targeted drug delivery and penetration into solid tumors.

    PubMed

    Corti, Angelo; Pastorino, Fabio; Curnis, Flavio; Arap, Wadih; Ponzoni, Mirco; Pasqualini, Renata

    2012-09-01

    Delivery and penetration of chemotherapeutic drugs into tumors are limited by a number of factors related to abnormal vasculature and altered stroma composition in neoplastic tissues. Coupling of chemotherapeutic drugs with tumor vasculature-homing peptides or administration of drugs in combination with biological agents that affect the integrity of the endothelial lining of tumor vasculature is an appealing strategy to improve drug delivery to tumor cells. Promising approaches to achieve this goal are based on the use of Asn-Gly-Arg (NGR)-containing peptides as ligands for drug delivery and of NGR-TNF, a peptide-tumor necrosis factor-α fusion protein that selectively alters drug penetration barriers and that is currently tested in a randomized Phase III trial in patients with malignant pleural mesothelioma. © 2011 Wiley Periodicals, Inc.

  8. Arginine- and lysine-specific polymers for protein recognition and immobilization.

    PubMed

    Renner, Christian; Piehler, Jacob; Schrader, Thomas

    2006-01-18

    Free radical polymerization of methacrylamide-based bisphosphonates turns weak arginine binders into powerful polymeric protein receptors. Dansyl-labeled homo- and copolymers with excellent water solubility are accessible through a simple copolymerization protocol. Modeling studies point to a striking structural difference between the stiff rodlike densely packed homopolymer 1 and the flexible copolymer 2 with spatially separated bisphosphonate units. Fluorescence titrations in buffered aqueous solution (pH = 7.0) confirm the superior affinity of the homopolymer toward oligoarginine peptides reaching nanomolar K(D) values for the Tat peptide. Basic proteins are bound almost equally well by 1 and 2 with micromolar affinities, with the latter producing much more soluble complexes. The Arg selectivity of the monomer is transferred to the polymer, which binds Arg-rich proteins 1 order of magnitude tighter than lysine-rich pendants of comparable pI, size, and (Arg/Lys vs Glu/Asp) ratio. Noncovalent deposition of both polymers on glass substrates via polyethyleneimine layers results in new materials suitable for peptide and protein immobilization. RIfS measurements allow calculation of association constants K(a) as well as dissociation kinetics k(D). They generally confirm the trends already found in free solution. Close inspection of electrostatic potential surfaces suggest that basic domains favor protein binding on the flat surface. The high specificity of the bisphosphonate polymers toward basic proteins is demonstrated by comparison with polyvinyl sulfate, which has almost no effect in RIfS experiments. Thus, copolymerization of few different comonomer units without cross-linking enables surface recognition of basic proteins in free solution as well as their effective immobilization on surfaces.

  9. Characterization of labelling and de-labelling reagents for detection and recovery of tyrosine residue in peptide.

    PubMed

    Toyo'oka, Toshimasa; Mantani, Tomomi; Kato, Masaru

    2003-01-01

    This paper characterized the labelling and de-labelling reagents for reversible labelling of tyrosine (Tyr)-containing peptide, which involves detection and recovery. The phenolic hydroxyl group (-OH) in Tyr structure reacted with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F), 4-(N,N-dimethylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (DBD-F), and 1-fluoro-2,4-dinitrobenzene (DNFB) under mild conditions at room temperature at pH 9.3. The labels in the resulting derivatives were removed with the treatment of nucleophiles, such as thiols (cysteine, N-acetyl-L-cysteine and dithiothreitol) and amines (dimethylamine, methylamine, diethylamine, ethylamine and pyrrolidine). The de-labelling reactions of NBD-labelled N-acetyl-L-tyrosine (N-AcTyr) with the nucleophiles produced N-AcTyr, accompanied by NBD-nucleophile. Although DBD-F and DNFB also successfully labeled the -OH group in N-AcTyr, the efficiency of Cbond;O bond cleavage and recovery of N-AcTyr by the nucleophiles was relatively low compared with NBD-label. Among the de-labelling reagents, N-acetyl-L-cysteine and dimethylamine were recommended for the elimination of NBD moiety, with respect to the reaction rate, the side reaction, and the yield of recovery. The proposed procedure, which includes the labelling with NBD-F and the removal of NBD moiety by the nucleophiles, was successfully applied to the reversible labelling of N-terminal amine-blocked peptides, i.e. N-AcTyr-Val-Gly, Z-Glu-Tyr, Z-Phe-Tyr, N-Formyl-Met-Leu-Tyr, and N-AcArg-Pro-Pro-Gly-Phe-Ser-Pro-Tyr-Arg. Copyright 2003 John Wiley & Sons, Ltd.

  10. Identification of dipeptidyl peptidase-IV inhibitory peptides from mare whey protein hydrolysates.

    PubMed

    Song, J J; Wang, Q; Du, M; Ji, X M; Mao, X Y

    2017-09-01

    Inhibition of dipeptidyl peptidase-IV (DPP-IV) activity is a promising strategy for treatment of type 2 diabetes. In the current study, DPP-IV inhibitory peptides were identified from mare whey protein hydrolysates obtained by papain. The results showed that all the mare whey protein hydrolysates obtained at various hydrolysis durations possessed more potent DPP-IV inhibitory activity compared with intact whey protein. The 4-h hydrolysates showed the greatest DPP-IV inhibitory activity with half-maximal inhibitory concentration of 0.18 mg/mL. The 2 novel peptides from 4-h hydrolysate fractions separated by successive chromatographic steps were characterized by liquid chromatography-electrospray ionization tandem mass spectrometry. The novel peptides Asn-Leu-Glu-Ile-Ile-Leu-Arg and Thr-Gln-Met-Val-Asp-Glu-Glu-Ile-Met-Glu-Lys-Phe-Arg, which corresponded to β-lactoglobulin 1 f(71-77) and β-lactoglobulin 1 f(143-155), demonstrated DPP-IV inhibitory activity with half-maximal inhibitory concentrations of 86.34 and 69.84 μM, respectively. The DPP-IV inhibitory activity of the 2 peptides was retained or even improved after simulated gastrointestinal digestion in vitro. Our findings indicate that mare whey protein-derived peptides may possess potential as functional food ingredients in the management of type 2 diabetes. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Roles of basic amino acid residues in the activity of μ-conotoxin GIIIA and GIIIB, peptide blockers of muscle sodium channels.

    PubMed

    Sato, Kazuki; Yamaguchi, Yoko; Ishida, Yukisato; Ohizumi, Yasushi

    2015-04-01

    To study in detail the roles of basic amino acid residues in the activity of μ-conotoxin GIIIA (μ-GIIIA) and GIIIB (μ-GIIIB), specific blockers of muscle sodium channels, seven analogs of μ-GIIIA, and two analogs of μ-GIIIB were synthesized. μ-GIIIA analogs were synthesized by replacing systematically the three Arg residues (Arg1, Arg13, and Arg19) with one, two, and three Lys residues. μ-GIIIB analogs were synthesized by replacing simultaneously all four Lys residues (Lys9, Lys11, Lys16, and Lys19) with Arg residues and further replacement of acidic Asp residues with neutral Ala residues. Circular dichroism spectra of the synthesized analogs suggested that the replacement did not affect the three dimensional structure. The inhibitory effects on the twitch contractions of the rat diaphragm showed that the side chain guanidino group of Arg13 of μ-GIIIA was important for the activity, whereas that of Arg19 had little role for biological activity. Although [Arg9,11,16,19]μ-GIIIB showed higher activity than native μ-GIIIB, highly basic [Ala2,12, Arg9,11,16,19]μ-GIIIB showed lower activity, suggesting that there was an appropriate molecular basicity for the maximum activity. © 2014 John Wiley & Sons A/S.

  12. A novel chimeric peptide binds MC3T3‑E1 cells to titanium and enhances their proliferation and differentiation.

    PubMed

    Wang, Dan; Liao, Xiaofu; Qin, Xu; Shi, Wei; Zhou, Bin

    2013-05-01

    Previous studies have demonstrated that the modification of the titanium (Ti) surface of an implant with RGD (Arg‑Gly‑Asp) promotes the activity of osteoblasts. A novel Ti‑binding peptide, minTBP‑1, and a chimeric peptide, minTBP‑1‑PRGDN, have been synthesized to assist the fixing of RGD to Ti. In our previous study, minTBP‑1‑PRGDN demonstrated favorable affinity for Ti surfaces and facilitated the adhesion of MC3T3‑E1 cells. The aim of the present study was to evaluate the effect of this chimeric peptide on the proliferation and differentiation of MC3T3‑E1 cells. For this purpose, MC3T3‑E1 cells were cultured and differentiation was induced on Ti discs precoated with minTBP‑1‑PRGDN, minTBP‑1 or PRGDN. The MC3T3‑E1 cells on the minTBP‑1‑PRGDN‑precoated Ti disc were observed to exhibit the highest cell number after 24 h and alkaline phosphatase levels in all groups increased in a time‑dependent manner. In addition, marked expression of osteogenic marker genes [osteopontin (OPN) and osteocalcin (OC)] was detected on minTBP‑1‑PRGDN/Ti at day 14. Mineralized deposits on minTBP‑1‑PRGDN/Ti presented the maximal average area and the highest number of deposits was observed on PRGDN/Ti. The present study indicates that minTBP‑1‑PRGDN may enhance and accelerate the activities of MC3T3‑E1 cells on Ti, however, its role in vivo must be determined by further studies.

  13. Complete covalent structure of statherin, a tyrosine-rich acidic peptide which inhibits calcium phosphate precipitation from human parotid saliva.

    PubMed

    Schlesinger, D H; Hay, D I

    1977-03-10

    The complete amino acid sequence of human salivary statherin, a peptide which strongly inhibits precipitation from supersaturated calcium phosphate solutions, and therefore stabilizes supersaturated saliva, has been determined. The NH2-terminal half of this Mr=5380 (43 amino acids) polypeptide was determined by automated Edman degradations (liquid phase) on native statherin. The peptide was digested separately with trypsin, chymotrypsin, and Staphylococcus aureus protease, and the resulting peptides were purified by gel filtration. Manual Edman degradations on purified peptide fragments yielded peptides that completed the amino acid sequence through the penultimate COOH-terminal residue. These analyses, together with carboxypeptidase digestion of native statherin and of peptide fragments of statherin, established the complete sequence of the molecule. The 2 serine residues (positions 2 and 3) in statherin were identified as phosphoserine. The amino acid sequence of human salivary statherin is striking in a number of ways. The NH2-terminal one-third is highly polar and includes three polar dipeptides: H2PO3-Ser-Ser-H2PO3-Arg-Arg-, and Glu-Glu-. The COOH-terminal two-thirds of the molecule is hydrophobic, containing several repeating dipeptides: four of -Gn-Pro-, three of -Tyr-Gln-, two of -Gly-Tyr-, two of-Gln-Tyr-, and two of the tetrapeptide sequence -Pro-Tyr-Gln-Pro-. Unusual cleavage sites in the statherin sequence obtained with chymotrypsin and S. aureus protease were also noted.

  14. Characterization of melanocortin NDP-MSH agonist peptide fragments at the mouse central and peripheral melanocortin receptors.

    PubMed

    Haskell-Luevano, C; Holder, J R; Monck, E K; Bauzo, R M

    2001-06-21

    The central melanocortin receptors, melanocortin-4 (MC4R) and melanocortin-3 (MC3R), are involved in the regulation of satiety and energy homeostasis. The MC4R in particular has become a pharmaceutical industry drug target due to its direct involvement in the regulation of food intake and its potential therapeutic application for the treatment of obesity-related diseases. The melanocortin receptors are stimulated by the native ligand, alpha-melanocyte stimulating hormone (alpha-MSH). The potent and enzymatically stable analogue NDP-MSH (Ac-Ser-Tyr-Ser-Nle-Glu-His-DPhe-Arg-Trp-Gly-Lys-Pro-Val-NH(2)) is a lead peptide for the identification of melanocortin amino acids important for receptor molecular recognition and stimulation. We have synthesized nine peptide fragments of NDP-MSH, deleting N- and C-terminal amino acids to determine the "minimally active" sequence of NDP-MSH. Additionally, five peptides were synthesized to study stereochemical inversion at the Phe 7 and Trp 9 positions in attempts to increase tetra- and tripeptide potencies. These peptide analogues were pharmacologically characterized at the mouse melanocortin MC1, MC3, MC4, and MC5 receptors. This study has identified the Ac-His-DPhe-Arg-Trp-NH(2) tetrapeptide as possessing 10 nM agonist activity at the brain MC4R. The tripeptide Ac-DPhe-Arg-Trp-NH(2) possessed micromolar agonist activities at the MC1R, MC4R, and MC5R but only slight stimulatory activity was observed at the MC3R (at up to 100 microM concentration). This study has also examined to importance of both N- and C-terminal NDP-MSH amino acids at the different melanocortin receptors, providing information for drug design and identification of putative ligand-receptor interactions.

  15. Comparison of Biological Properties of 99mTc-Labeled Cyclic RGD Peptide Trimer and Dimer Useful as SPECT Radiotracers for Tumor Imaging

    PubMed Central

    Zhao, Zuo-Quan; Yang, Yong; Fang, Wei; Liu, Shuang

    2016-01-01

    Introduction This study sought to evaluate a 99mTc-labeled trimeric cyclic RGD peptide (99mTc-4P-RGD3) as the new radiotracer for tumor imaging. The objective was to compare its biological properties with those of 99mTc-3P-RGD2 in the same animal model. Methods HYNIC-4P-RGD3 was prepared by reacting 4P-RGD3 with excess HYNIC-OSu in the presence of diisopropylethylamine. 99mTc-4P-RGD3 was prepared using a kit formulation, and evaluated for its tumor-targeting capability and biodistribution properties in the BALB/c nude mice with U87MG human glioma xenografts. Planar and SPECT imaging studies were performed in athymic nude mice with U87MG glioma xenografts. For comparison purpose, 99mTc-3P-RGD2 (a αvβ3-targeted radiotracer currently under clinical evaluation for tumor imaging in cancer patients) was also evaluated in the same animal models. Blocking experiments were used to demonstrate the αvβ3 specificity of 99mTc-4P-RGD3. Results 99mTc-4P-RGD3 was prepared with >95% RCP and high specific activity (~200 GBq/µmol). 99mTc-4P-RGD3 and 99mTc-3P-RGD2 shared almost identical tumor uptake and similar biodistribution properties. 99mTc-4P-RGD3 had higher uptake than 99mTc-3P-RGD2 in the intestines and kidneys; but it showed better metabolic stability. The U87MG tumors were clearly visualized by SPECT with excellent contrast with 99mTc-4P-RGD3 and 99mTc-3P-RGD2. Conclusion Increasing peptide multiplicity from 3P-RGD2 to 4P-RGD3 offers no advantages with respect to the tumor-targeting capability. 99mTc-4P-RGD3 is as good a SPECT radiotracer as 99mTc-3P-RGD2 for imaging αvβ3-positive tumors. PMID:27556955

  16. The Human Leukocyte Antigen (HLA)-B27 Peptidome in Vivo, in Spondyloarthritis-susceptible HLA-B27 Transgenic Rats and the Effect of Erap1 Deletion.

    PubMed

    Barnea, Eilon; Melamed Kadosh, Dganit; Haimovich, Yael; Satumtira, Nimman; Dorris, Martha L; Nguyen, Mylinh T; Hammer, Robert E; Tran, Tri M; Colbert, Robert A; Taurog, Joel D; Admon, Arie

    2017-04-01

    HLA-B27 is a class I major histocompatibility (MHC-I) allele that confers susceptibility to the rheumatic disease ankylosing spondylitis (AS) by an unknown mechanism. ERAP1 is an aminopeptidase that trims peptides in the endoplasmic reticulum for binding to MHC-I molecules. ERAP1 shows genetic epistasis with HLA-B27 in conferring susceptibility to AS. Male HLA-B27 transgenic rats develop arthritis and serve as an animal model of AS, whereas female B27 transgenic rats remain healthy. We used large scale quantitative mass spectrometry to identify over 15,000 unique HLA-B27 peptide ligands, isolated after immunoaffinity purification of the B27 molecules from the spleens of HLA-B27 transgenic rats. Heterozygous deletion of Erap1, which reduced the Erap1 level to less than half, had no qualitative or quantitative effects on the B27 peptidome. Homozygous deletion of Erap1 affected approximately one-third of the B27 peptidome but left most of the B27 peptidome unchanged, suggesting the possibility that some of the HLA-B27 immunopeptidome is not processed in the presence of Erap1. Deletion of Erap1 was permissive for the AS-like phenotype, increased mean peptide length and increased the frequency of C-terminal hydrophobic residues and of N-terminal Ala, Ser, or Lys. The presence of Erap1 increased the frequency of C-terminal Lys and Arg, of Glu and Asp at intermediate residues, and of N-terminal Gly. Several peptides of potential interest in AS pathogenesis, previously identified in human cell lines, were isolated. However, rats susceptible to arthritis had B27 peptidomes similar to those of non-susceptible rats, and no peptides were found to be uniquely associated with arthritis. Whether specific B27-bound peptides are required for AS pathogenesis remains to be determined. Data are available via ProteomeXchange with identifier PXD005502. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Selective coupling of methotrexate to peptide hormone carriers through a gamma-carboxamide linkage of its glutamic acid moiety: benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate activation in salt coupling.

    PubMed Central

    Nagy, A; Szoke, B; Schally, A V

    1993-01-01

    A convenient synthetic method is described for the preparation of peptide-methotrexate (MTX) conjugates in which MTX is coupled selectively through the gamma-carboxyl group of its glutamic acid moiety to a free amino group in peptide analogs. The syntheses of a somatostatin analog-MTX conjugate (MTX-D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Thr-NH2) (AN-51) and two conjugates of analogs of luteinizing hormone-releasing hormone (LH-RH) with MTX [Glp-His-Trp-Ser-Tyr-D-Lys(MTX)-Leu-Arg-Pro-Gly-NH2] (AJ-04) and [Ac-Ser-Tyr-D-Lys(MTX)-Leu-Arg-Pro-NH-Et] AJ-51 are presented as examples. Benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate (BOP reagent) was used in the synthesis for activation of 4-amino-4-deoxy-N10-methylpteroic acid, which reacted with the potassium salt of glutamic acid alpha-tert-butyl ester in dimethyl sulfoxide to form the suitably protected MTX derivative. This synthesis provides an example of the high suitability of BOP reagent for the salt-coupling method. The selectively protected MTX derivative was then coupled to the different peptide carriers and deprotected under relatively mild conditions by trifluoroacetic acid. The conjugates of MTX with hormonal analogs are suitable for targeting to various tumors that possess receptors for the peptide moieties. PMID:8101004

  18. Gene analysis of steroid 5 alpha-reductase 1 in hyperandrogenic women.

    PubMed

    Eminović, Izet; Komel, Radovan; Prezelj, Janez; Karamehić, Jasenko; Gavrankapetanović, Faris; Heljić, Becir

    2005-08-01

    To examine the gene encoding for 5alpha-reductase type 1 in hyperandrogenic women, and assess the association of its eventual mutations or polymorphisms with the development of the hyperandrogenic female pattern. Sixteen hyperandrogenic women were included in the study. Single-stranded conformation polymorphism analysis (SSCP) and DNA sequencing were performed after polymerase chain reaction amplification of each of the 5 exons of the SRD5A1 gene in both hyperandrogenic and control group (16 participants). Sequence analysis identified the existence of many polymorphisms; in codon 24 of exon 1, GGC (Gly) into GAC (Asp); in codon 30 of exon 1, CGG (Arg) into CGC (Arg); in exon 3 codon 169, ACA to ACG (both encoding for threonine); in exon 5, AGA to AGG (both encoding for arginine, codon 260); and T/C polymorphism in intron 2. Polymorphisms were found in both groups. Polymorphisms of SRD5A1 gene were the same in both hyperandrogenic and healthy women, indicating no significant associations of genetic polymorphisms/variations of SRD5A1 gene with clinical manifestations of hyperandrogenic disorders in women.

  19. Effect of herbicide resistance endowing Ile-1781-Leu and Asp-2078-Gly ACCase gene mutations on ACCase kinetics and growth traits in Lolium rigidum.

    PubMed

    Vila-Aiub, Martin M; Yu, Qin; Han, Heping; Powles, Stephen B

    2015-08-01

    The rate of herbicide resistance evolution in plants depends on fitness traits endowed by alleles in both the presence and absence (resistance cost) of herbicide selection. The effect of two Lolium rigidum spontaneous homozygous target-site resistance-endowing mutations (Ile-1781-Leu, Asp-2078-Gly) on both ACCase activity and various plant growth traits have been investigated here. Relative growth rate (RGR) and components (net assimilation rate, leaf area ratio), resource allocation to different organs, and growth responses in competition with a wheat crop were assessed. Unlike plants carrying the Ile-1781-Leu resistance mutation, plants homozygous for the Asp-2078-Gly mutation exhibited a significantly lower RGR (30%), which translated into lower allocation of biomass to roots, shoots, and leaves, and poor responses to plant competition. Both the negligible and significant growth reductions associated, respectively, with the Ile-1781-Leu and Asp-2078-Gly resistance mutations correlated with their impact on ACCase activity. Whereas the Ile-1781-Leu mutation showed no pleiotropic effects on ACCase kinetics, the Asp-2078-Gly mutation led to a significant reduction in ACCase activity. The impaired growth traits are discussed in the context of resistance costs and the effects of each resistance allele on ACCase activity. Similar effects of these two particular ACCase mutations on the ACCase activity of Alopecurus myosuroides were also confirmed. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Influence of secondary structure on in-source decay of protein in matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Takayama, Mitsuo; Osaka, Issey; Sakakura, Motoshi

    2012-01-01

    The susceptibility of the N-Cα bond of the peptide backbone to specific cleavage by in-source decay (ISD) in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) was studied from the standpoint of the secondary structure of three proteins. A naphthalene derivative, 5-amino-1-naphtol (5,1-ANL), was used as the matrix. The resulting c'-ions, which originate from the cleavage at N-Cα bonds in flexible secondary structures such as turn and bend, and are free from intra-molecular hydrogen-bonded α-helix structure, gave relatively intense peaks. Furthermore, ISD spectra of the proteins showed that the N-Cα bonds of specific amino acid residues, namely Gly-Xxx, Xxx-Asp, and Xxx-Asn, were more susceptible to MALDI-ISD than other amino acid residues. This is in agreement with the observation that Gly, Asp and Asn residues usually located in turns, rather than α-helix. The results obtained indicate that protein molecules embedded into the matrix crystal in the MALDI experiments maintain their secondary structures as determined by X-ray crystallography, and that MALDI-ISD has the capability for providing information concerning the secondary structure of protein.

  1. Peptide-surfactant interactions: A combined spectroscopic and molecular dynamics simulation approach

    NASA Astrophysics Data System (ADS)

    Roussel, Guillaume; Caudano, Yves; Matagne, André; Sansom, Mark S.; Perpète, Eric A.; Michaux, Catherine

    2018-02-01

    In the present contribution, we report a combined spectroscopic and computational approach aiming to unravel at atomic resolution the effect of the anionic SDS detergent on the structure of two model peptides, the α-helix TrpCage and the β-stranded TrpZip. A detailed characterization of the specific amino acids involved is performed. Monomeric (single molecules) and micellar SDS species differently interact with the α-helix and β-stranded peptides, emphasizing the different mechanisms occurring below and above the critical aggregation concentration (CAC). Below the CAC, the α-helix peptide is fully unfolded, losing its hydrophobic core and its Asp-Arg salt bridge, while the β-stranded peptide keeps its native structure with its four Trp well oriented. Above the CAC, the SDS micelles have the same effect on both peptides, that is, destabilizing the tertiary structure while keeping their secondary structure. Our studies will be helpful to deepen our understanding of the action of the denaturant SDS on peptides and proteins.

  2. Potent and selective agonists of alpha-melanotropin (alphaMSH) action at human melanocortin receptor 5; linear analogs of alpha-melanotropin.

    PubMed

    Bednarek, Maria A; MacNeil, Tanya; Tang, Rui; Fong, Tung M; Cabello, M Angeles; Maroto, Marta; Teran, Ana

    2007-05-01

    Alpha-melanotropin, Ac-Ser(1)-Tyr-Ser-Met-Glu-His(6)-Phe(7)-Arg(8)-Trp(9)-Gly-Lys-Pro-Val(13)-NH(2)(1), is a non-selective endogenous agonist for the melanocortin receptor 5; the receptor present in various peripheral tissues and in the brain, cortex and cerebellum. Most of the synthetic analogs of alphaMSH, including a broadly used and more potent the NDP-alphaMSH peptide, Ac-Ser(1)-Tyr-Ser-Nle(4)-Glu-His(6)-D-Phe(7)-Arg(8)-Trp(9)-Gly-Lys-Pro-Val(13)-NH(2), are also not particularly selective for MC5R. To elucidate physiological functions of the melanocortin receptor 5 in rodents and humans, the receptor subtype selective research tools are needed. We report herein syntheses and pharmacological evaluation in vitro of several analogs of NDP-alphaMSH which are highly potent and specific agonists for the human MC5R. The new linear peptides, of structures and solubility properties similar to those of the endogenous ligand alphaMSH, are exemplified by compound 7, Ac-Ser(1)-Tyr-Ser-Met-Glu-Oic(6)-D-4,4'-Bip(7)-Pip(8)-Trp(9)-Gly-Lys-Pro-Val(13)-NH(2) (Oic: octahydroindole-2-COOH, 4,4'-Bip: 4,4'-biphenylalanine, Pip: pipecolic acid), shortly NODBP-alphaMSH, which has an IC(50)=0.74 nM (binding assay) and EC(50)=0.41 (cAMP production assay) at hMC5R nM and greater than 3500-fold selectivity with respect to the melanocortin receptors 1b, 3 and 4. A shorter peptide derived from NODBP-alphaMSH: Ac-Nle-Glu-Oic(6)-D-4,4'-Bip(7)-Pip(8)-Trp(9) -NH(2) (17) was measured to be an agonist only 10-fold less potent at hMC5R than the full length parent peptide. In the structure of this smaller analog, the Nle-Glu-Oic(6)-D-4,4'-Bip(7)-Pip(8) segment was found to be critical for high agonist potency, while the C-terminal Trp(9) residue was shown to be required for high hMC5R selectivity versus hMC1b,3,4R.

  3. SIFamide peptides in clawed lobsters and freshwater crayfish (Crustacea, Decapoda, Astacidea): a combined molecular, mass spectrometric and electrophysiological investigation.

    PubMed

    Dickinson, Patsy S; Stemmler, Elizabeth A; Cashman, Christopher R; Brennan, Henry R; Dennison, Bobbi; Huber, Kristen E; Peguero, Braulio; Rabacal, Whitney; Goiney, Christopher C; Smith, Christine M; Towle, David W; Christie, Andrew E

    2008-04-01

    Recently, we identified the peptide VYRKPPFNGSIFamide (Val(1)-SIFamide) in the stomatogastric nervous system (STNS) of the American lobster Homarus americanus using matrix-assisted laser desorption/ionization-Fourier transform mass spectrometry (MALDI-FTMS). Given that H. americanus is the only species thus far shown to possess this peptide, and that a second SIFamide isoform, Gly(1)-SIFamide, is broadly conserved in other decapods, including another astacidean, the crayfish Procambarus clarkii, we became interested both in confirming our identification of Val(1)-SIFamide via molecular methods and in determining the extent to which this isoform is conserved within other members of the infraorder Astacidea. Here, we present the identification and characterization of an H. americanus prepro-SIFamide cDNA that encodes the Val(1) isoform. Moreover, we demonstrate via MALDI-FTMS the presence of Val(1)-SIFamide in a second Homarus species, Homarus gammarus. In contrast, only the Gly(1) isoform was detected in the other astacideans investigated, including the lobster Nephrops norvegicus, a member of the same family as Homarus, and the crayfish Cherax quadricarinatus, P. clarkii and Pacifastacus leniusculus, which represent members of each of the extant families of freshwater astacideans. These results suggest that Val(1)-SIFamide may be a genus (Homarus)-specific isoform. Interestingly, both Val(1)- and Gly(1)-SIFamide possess an internal dibasic site, Arg(3)-Lys(4), raising the possibility of the ubiquitously conserved isoform PPFNGSIFamide. However, this octapeptide was not detected via MALDI-FTMS in any of the investigated species, and when applied to the isolated STNS of H. americanus possessed little bioactivity relative to the full-length Val(1) isoform. Thus, it appears that the dodeca-variants Val(1)- and Gly(1)-SIFamide are the sole bioactive isoforms of this peptide family in clawed lobsters and freshwater crayfish.

  4. Comparison of non-volatile umami components in chicken soup and chicken enzymatic hydrolysate.

    PubMed

    Kong, Yan; Yang, Xiao; Ding, Qi; Zhang, Yu-Yu; Sun, Bao-Guo; Chen, Hai-Tao; Sun, Ying

    2017-12-01

    Umami taste is an important part to the taste of chicken. To isolate and identify non-volatile umami compounds, fractions from chicken soup and hydrolysate were prepared and analyzed. Amino acids were analyzed by amino acid analyzer. Organic acids and nucleotides were determined by ultra-performance liquid chromatography. Separation procedures utilizing ultrafiltration, Sephadex G-15 and reversed-phase high-performance liquid chromatography were used to isolate umami taste peptides. Combined with sensory evaluation and LC-Q-TOF-MS, the amino acid sequences of 12 oligopeptides were determined. The amount of taste compounds was higher in chicken enzymatic hydrolysate than that of chicken soup. Eight oligopeptides from chicken enzymatic hydrolysate were identified, including Ala-Asp, Ala-Met, His-Ser, Val-Glu, Ala-Glu, Asp-Ala-Gly, Glu-Asp and Ala-Glu-Ala. Four oligopeptides from chicken soup were identified, including Val-Thr, Ala-His, Ala-Phe and Thr-Glu. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Gracilaria lemaneiformis polysaccharide as integrin-targeting surface decorator of selenium nanoparticles to achieve enhanced anticancer efficacy.

    PubMed

    Jiang, Wenting; Fu, Yuanting; Yang, Fang; Yang, Yufeng; Liu, Ting; Zheng, Wenjie; Zeng, Lilan; Chen, Tianfeng

    2014-08-27

    The poor permeability of glioma parenchyma represents a major limit for antiglioblastoma drug delivery. Gracilaria lemaneiformis polysaccharide (GLP), which has a high binding affinity to αvβ3 integrin overexpressed in glioma cells, was employed in the present study to functionalize selenium nanoparticles (SeNPs) to achieve antiglioblastoma efficacy. GLP-SeNPs showed satisfactory size distribution, high stability, and selectivity between cancer and normal cells. In U87 glioma cell membrane, which has a high integrin expression level, GLP-SeNPs exhibited significantly higher cellular uptake than unmodified SeNPs. As expected, U87 cells exhibited a greater uptake of GLP-SeNPs than C6 cells with low integrin expression level. Furthermore, the internalization of GLP-SeNPs was inhibited by cyclo-(Arg-Gly-Asp-Phe-Lys) peptides, suggesting that cellular uptake into U87 cells and C6 cells occurred via αvβ3 integrin-mediated endocytosis. For U87 cells, the cytotoxicity of SeNPs decorated by GLP was enhanced significantly because of the induction of various apoptosis signaling pathways. Internalized GLP-SeNPs triggered intracellular reactive oxygen species downregulation. Therefore, p53, MAPKs, and AKT pathways were activated to advance cell apoptosis. These findings suggest that surface decoration of nanomaterials with GLP could be an efficient strategy for design and preparation of glioblastoma targeting nanodrugs.

  6. Using the interplay of magnetic guidance and controlled TGF-β release from protein-based nanocapsules to stimulate chondrogenesis.

    PubMed

    Chiang, Chih-Sheng; Chen, Jian-Yi; Chiang, Min-Yu; Hou, Kai-Ting; Li, Wei-Ming; Chang, Shwu-Jen; Chen, San-Yuan

    2018-01-01

    Stimulating the proliferation and differentiation of chondrocytes for the regeneration of articular cartilage is a promising strategy, but it is currently ineffective. Although both physical stimulation and growth factors play important roles in cartilage repair, their interplay remains unclear and requires further investigation. In this study, we aimed to clarify their contribution using a magnetic drug carrier that not only can deliver growth factors but also provide an external stimulation to cells in the two-dimensional environment. We developed a nanocapsule (transforming growth factor-β1 [TGF-β1]-loaded magnetic amphiphilic gelatin nanocapsules [MAGNCs]; TGF-β1@MAGNCs) composed of hexanoic-anhydride-grafted gelatin and iron oxide nanoparticles to provide a combination treatment of TGF-β1 and magnetically induced physical stimuli. With the expression of Arg-Gly-Asp peptide in the gelatin, the TGF-β1@MAGNCs have an inherent affinity for chondrogenic ATDC5 cells. In the absence of TGF-β1, ATDC5 cells treated with a magnetic field show significantly upregulated Col2a1 expression. Moreover, TGF-β1 slowly released from biodegradable TGF-β1@ MAGNCs further improves the differentiation with increased expression of Col2a1 and Aggrecan. Our study shows the time-dependent interplay of physical stimuli and growth factors on chondrogenic regeneration, and demonstrates the promising use of TGF-β1@MAGNCs for articular cartilage repair.

  7. Influence of β(2)-adrenergic receptor polymorphisms on asthma exacerbation in children with severe asthma regularly receiving salmeterol.

    PubMed

    Giubergia, Verónica; Gravina, Luis; Castaños, Claudio; Chertkoff, Lilien

    2013-03-01

    New evidence suggests that different β(2)-adrenergic receptor (β2AR) polymorphisms may influence asthma control in patients receiving long-acting β(2)agonists (LABAs) as regular therapy. To determine the influence of β2AR polymorphisms on asthma exacerbations in children with severe asthma from Argentina receiving inhaled corticosteroid (ICS) and LABAs regularly. Ninety-seven children with severe asthma were genotyped for polymorphisms of β2AR at codons 16 and 27. The number of severe exacerbations, the time of first asthma exacerbation, and the number of hospitalizations during 12 months were assessed. Changes on pulmonary function from the beginning to the end of the study were also evaluated. The number of overall asthma exacerbations and the proportion of children with these events were similar among β2AR genotypes at position 16 (Arg/Arg, Arg/Gly, and Gly/Gly) and at position 27 (Gln/Gln, Gln/Glu, and Glu/Glu). The time to first asthma exacerbation was similar among individuals carrying different β2AR polymorphisms. No β2AR genotype association was found in relation to the number of hospitalizations. Longitudinal analysis of forced expiratory volume in 1 second from baseline to the end of the study also showed no differences among β2AR genotypes at position 16 or 27. No association was observed among the 3 most common haplotypes (Arg/Arg-Gln/Gln, Gly/Gly-Gln/Gln, and Gly/Gly-Glu/Glu) and the number of participants with asthmatic crisis or with the overall number of exacerbations. β2AR polymorphisms were not associated with an increased risk of having asthma exacerbations or lung function decline in a population of Argentinian children with severe asthma receiving ICS and LABAs regularly. Copyright © 2013 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  8. Targeting nanoparticles to M cells with non-peptidic ligands for oral vaccination.

    PubMed

    Fievez, Virginie; Plapied, Laurence; des Rieux, Anne; Pourcelle, Vincent; Freichels, Hélène; Wascotte, Valentine; Vanderhaeghen, Marie-Lyse; Jerôme, Christine; Vanderplasschen, Alain; Marchand-Brynaert, Jacqueline; Schneider, Yves-Jacques; Préat, Véronique

    2009-09-01

    The presence of RGD on nanoparticles allows the targeting of beta1 integrins at the apical surface of human M cells and the enhancement of an immune response after oral immunization. To check the hypothesis that non-peptidic ligands targeting intestinal M cells or APCs would be more efficient for oral immunization than RGD, novel non-peptidic and peptidic analogs (RGD peptidomimitic (RGDp), LDV derivative (LDVd) and LDV peptidomimetic (LDVp)) as well as mannose were grafted on the PEG chain of PCL-PEG and incorporated in PLGA-based nanoparticles. RGD and RGDp significantly increased the transport of nanoparticles across an in vitro model of human M cells as compared to enterocytes. RGD, LDVp, LDVd and mannose enhanced nanoparticle uptake by macrophages in vitro. The intraduodenal immunization with RGDp-, LDVd- or mannose-labeled nanoparticles elicited a higher production of IgG antibodies than the intramuscular injection of free ovalbumin or intraduodenal administration of either non-targeted or RGD-nanoparticles. Targeted formulations were also able to induce a cellular immune response. In conclusion, the in vitro transport of nanoparticles, uptake by macrophages and the immune response were positively influenced by the presence of ligands at the surface of nanoparticles. These targeted-nanoparticles could thus represent a promising delivery system for oral immunization.

  9. Influence of arginine-glycine-aspartic acid (RGD), integrins (alphaV and alpha5) and osteopontin on bovine sperm-egg binding, and fertilization in vitro.

    PubMed

    Gonçalves, R F; Wolinetz, C D; Killian, G J

    2007-02-01

    Osteopontin (OPN), a phosphoprotein containing an arginine-glycine-aspartic acid (RGD) sequence, has been identified in cow oviduct epithelium and fluid. To investigate the potential role OPN in fertilization, we evaluated the ability of RGD peptide (arginine-glycine-aspartic), RGE peptide (arginine-glycine-glutamic acid), integrins alphaV and alpha5 antibodies and OPN antibody to influence bovine in vitro sperm-egg binding and fertilization. Treatment of sperm or oocytes with the RGD peptide prior fertilization significantly decreased in vitro sperm-egg binding and fertilization compared to the non-treated controls or those treated with RGE peptide. Binding and fertilization were also significantly decreased when in vitro matured bovine oocytes or sperm were pre-incubated with integrins alphaV and alpha5 antibodies at concentration ranging from 5 to 20 microg/mL. Addition of a rabbit polyclonal IgG antibody against purified bovine milk OPN with sperm or/and oocytes decreased (P<0.05) fertilization compared to the in vitro-fertilized control. These data provided evidence that integrin ligands existed on bovine oocytes and spermatozoa that contained RGD recognition sequences, and that antibody to OPN, a protein that contains that RGD sequence, was capable of reducing sperm-egg binding and fertilization in vitro.

  10. Peptide promotes overcoming of the division limit in human somatic cell.

    PubMed

    Khavinson, V Kh; Bondarev, I E; Butyugov, A A; Smirnova, T D

    2004-05-01

    We previously showed that treatment of normal human diploid cells with Epithalon (Ala-Glu-Asp-Gly) induced expression of telomerase catalytic subunit, its enzymatic activity, and elongation of telomeres. Here we studied the effect of this peptide on proliferative potential of human fetal fibroblasts. Primary pulmonary fibroblasts derived from a 24-week fetus lost the proliferative potential at the 34th passage. The mean size of telomeres in these cells was appreciably lower than during early passages (passage 10). Addition of Epithalon to aging cells in culture induced elongation of telomeres to the size comparable to their length during early passages. Peptide-treated cells with elongated telomeres made 10 extra divisions (44 passages) in comparison with the control and continued dividing. Hence, Epithalon prolonged the vital cycle of normal human cells due to overcoming the Heyflick limit.

  11. [Maple syrup urine disease and gene mutations in twin neonates].

    PubMed

    Li, Tao; Wang, Yu; Li, Cui; Xu, Wei-Wei; Niu, Feng-Hai; Zhang, Di

    2016-12-01

    To investigate the clinical features of one pair of twin neonates with maple syrup urine disease (MSUD) in the Chinese Han population and pathogenic mutations in related genes, and to provide guidance for the early diagnosis and treatment of MSUD. The clinical and imaging data of the twin neonates were collected. The peripheral blood samples were collected from the twin neonates and their parents to detect the genes related to MSUD (BCKDHA, BCKDHB, DBT, and DLD). The loci with gene mutations were identified, and a bioinformatic analysis was performed. Two mutations were detected in the BCKDHB gene, missense mutation c.304G>A (p.Gly102Arg) and nonsense mutation c.331C>T (p.Arg111*), and both of them were heterozygotes. The mutation c.304G>A (p.Gly102Arg) had not been reported in the world. Their father carried the missense mutation c.304G>A (p.Gly102Arg), and their mother carried the nonsense mutation c.331C>T (p.Arg111*). The c.331C>T (p.Arg111*) heterozygous mutation in BCKDHB gene is the pathogenic mutation in these twin neonates and provides a genetic and molecular basis for the clinical features of children with MSUD.

  12. The common Arg389gly ADRB1 polymorphism affects heart rate response to the ultra-short-acting β(1) adrenergic receptor antagonist esmolol in healthy individuals.

    PubMed

    Muszkat, Mordechai; Hoofien, Assaf; Orlanski-Meyer, Esther; Makhoul, Hani; Porat, Einav; Davidson, Eliad M; Blotnick, Simcha; Caraco, Yoseph

    2013-01-01

    The β1-adrenergic receptor (β1AR) Arg389Gly polymorphism affects responses to orally administered β1AR antagonists (β-blockers) in vivo. However, the effect of this polymorphism on the early heart rate response to β-blockers has not been evaluated. The aim of this study was to determine the effect of the Arg389Gly polymorphism on the inhibition of exercise-induced tachycardia by esmolol, an ultra-short-acting intravenously administered β1AR antagonist. Healthy nonsmoking White individuals were enrolled on the basis of their ADRB1 genotype, including carriers of 0, 1 or 2 Arg389 alleles (n=9 in each group, total 27, 18 men). Placebo and esmolol were infused consecutively for 10 min each, separated by 30 min. At the end of each infusion, participants performed dynamic handgrip exercise. Heart rate and blood pressure were compared among three ADRB1 genotypes. Carriers of 0, 1, or 2 Arg389 alleles varied significantly in both exercise-induced tachycardia during esmolol (P(ANOVA)=0.030) and esmolol inhibition of exercise-induced tachycardia [0.78±7.70, 5.11±4.05, 10.22±9.78 bpm, respectively (P=0.014)]. The early effect of esmolol on exercise-induced tachycardia was significantly greater among Arg389 than in Gly389 homozygote healthy individuals (NCT01388036). © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.

  13. Clinical and functional characterization of TNNT2 mutations identified in patients with dilated cardiomyopathy

    PubMed Central

    Hershberger, Ray E.; Pinto, Jose Renato; Parks, Sharie B.; Kushner, Jessica D.; Li, Duanxiang; Ludwigsen, Susan; Cowan, Jason; Morales, Ana; Parvatiyar, Michelle S.; Potter, James D.

    2009-01-01

    Background A key issue for cardiovascular genetic medicine is ascertaining if a putative mutation indeed causes dilated cardiomyopathy (DCM). This is critically important as genetic DCM, usually presenting with advanced, life-threatening disease, may be preventable with early intervention in relatives known to carry the mutation. Methods and Results We recently undertook bidirectional resequencing of TNNT2, the cardiac troponin T gene, in 313 probands with DCM. We identified six TNNT2 protein-altering variants in nine probands, all who had early onset, aggressive disease. Additional family members of mutation carriers were then studied when available. Four of the nine probands had DCM without a family history, and five had familial DCM. Only one mutation (Lys210del) could be attributed as definitively causative from prior reports. Four of the five missense mutations were novel (Arg134Gly, Arg151Cys, Arg159Gln, Arg205Trp), and one was previously reported with hypertrophic cardiomyopathy (Glu244Asp). Based on the clinical, pedigree and molecular genetic data these five mutations were considered possibly or likely disease causing. To further clarify their potential pathophysiologic impact, we undertook functional studies of these mutations in cardiac myocytes reconstituted with mutant troponin T proteins. We observed decreased Ca2+ sensitivity of force development, a hallmark of DCM, in support of the conclusion that these mutations are disease-causing. Conclusions We conclude that the combination of clinical, pedigree, molecular genetic and functional data strengthen the interpretation of TNNT2 mutations in DCM. PMID:20031601

  14. Duck-billed platypus venom peptides induce Ca2+ influx in neuroblastoma cells.

    PubMed

    Kita, Masaki; Black, David StC; Ohno, Osamu; Yamada, Kaoru; Kigoshi, Hideo; Uemura, Daisuke

    2009-12-23

    The duck-billed platypus (Ornithorhynchus anatinus) is one of the few venomous Australian mammals. We previously found that its crude venom potently induces Ca(2+) influx in human neuroblastoma IMR-32 cells. Guided by this bioassay, we identified 11 novel peptides, including the heptapeptide H-His-Asp-His-Pro-Asn-Pro-Arg-OH (1). Compounds 1-4 and 5-11 coincided with the 6-9 N-terminal residues of Ornithorhynchus venom C-type natriuretic peptide (OvCNP) and the 132-150 part of OvCNP precursor peptide, respectively. Heptapeptide 1, which is one of the primary components of the venom fluid (approximately 200 ng/microL), induced a significant increase in [Ca(2+)](i) in IMR-32 cells at 75 microM. To the best of our knowledge, this is the first example of the isolation of the N-terminal linear fragments of CNPs in any mammal.

  15. Structure-Activity Relationships of Bifunctional Cyclic Disulfide Peptides Based on Overlapping Pharmacophores at Opioid and Cholecystokinin Receptors

    PubMed Central

    Agnes, Richard S.; Ying, Jinfa; Kövér, Katalin E.; Lee, Yeon Sun; Davis, Peg; Ma, Shou-wu; Badghisi, Hamid; Porreca, Frank; Lai, Josephine; Hruby, Victor J.

    2008-01-01

    Prolonged opioid exposure increases the expression of cholecystokinin (CCK) and its receptors in the central nervous system, where CCK may attenuate the antinociceptive effects of opioids. The complex interactions between opioid and CCK may play a role in the development of opioid tolerance. We designed and synthesized cyclic disulfide peptides and determined their agonist properties at opioid receptors and antagonist properties at CCK receptors. Compound 1 (Tyr-c[D-Cys-Gly-Trp-Cys]-Asp-Phe-NH2) showed potent binding and agonist activities at δ and µ opioid receptors while displaying some binding to CCK receptors. The NMR structure of the lead compound displayed similar conformational features of opioid and CCK ligands. PMID:18502541

  16. Chitosan microsphere scaffold tethered with RGD-conjugated poly(methacrylic acid) brushes as effective carriers for the endothelial cells.

    PubMed

    Yang, Zhenyi; Yuan, Shaojun; Liang, Bin; Liu, Yang; Choong, Cleo; Pehkonen, Simo O

    2014-09-01

    Endothelial cell-matrix interactions play a vital role in promoting vascularization of engineered tissues. The current study reports a facile and controllable method to develop a RGD peptide-functionalized chitosan microsphere scaffolds for rapid cell expansion of human umbilical vein endothelial cells (HUVECs). Functional poly(methacrylic acid) (PMAA) brushes are grafted from the chitosan microsphere surfaces via surface-initiated ATRP. Subsequent conjugation of RGD peptides on the pendent carboxyl groups of PMAA side chain is accomplished by carbodiimide chemistry to facilitate biocompatibility of the 3D CS scaffolding system. In vitro cell-loading assay of HUVECs exhibits a significant improvment of cell adhesion, spreading, and proliferation on the RGD peptide-immobilized CS microsphere surfaces. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Role of toll-like receptor 4 Asp299Gly polymorphism in the development of cardiovascular diseases in HIV-infected patients.

    PubMed

    Tarancon-Diez, Laura; De Pablo-Bernal, Rebeca S; Jiménez, José L; Álvarez-Ríos, Ana I; Genebat, Miguel; Rosado-Sánchez, Isaac; Muñoz-Fernández, María-Ángeles; Ruiz-Mateos, Ezequiel; Leal, Manuel

    2018-05-15

    Cardiovascular diseases (CVDs) are one of the main causes of morbimortality in HIV-infected patients on suppressive antiretroviral therapy. The objective of this work was to evaluate the role of single nucleotide polymorphisms (SNPs) in lipopolysaccharide (LPS) Toll-like receptor 4 (TLR4) and CVDs occurrence in HIV-infected patients. Additionally, the functional consequences of carrying these SNPs were analyzed. The association of TLR4 SNPs, Asp299Gly/Thr399Ile with CVDs occurrence was analyzed using multivariate logistic regression models. Clinical, immunological, and traditional cardiovascular risk factors were used as covariates. The monocyte phenotype and response were assessed by multiparametric flow cytometry comparing carriers with noncarriers of this SNP. Asp299Gly SNP, assayed in 253 HIV-infected patients, was independently associated with the occurrence of CVDs after adjusting for CD4 T-cell nadir, HCV-coinfection, bacterial pneumonia, diabetes mellitus, and traditional cardiovascular risk factors [odds ratio (confidence interval 95%) = 3.672 (1.061-12.712), P = 0.04). Carriers of Asp299Gly SNP showed higher percentage of patrolling and intermediate monocytes producing a proinflammatory combination of cytokines compared with noncarriers (P = 0.037 and P = 0.046, respectively). Intermediate monocyte subset levels correlated with soluble interleukin-6 levels only in carriers (r = 0.89; P = 0.01). TLR4 Asp299Gly polymorphism is independently associated with the occurrence of CVDs in HIV-infected patients. The proinflammatory profile associated to this variant could be involved in the development of atherosclerotic pathologies.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, G.E.

    When intact Arbacia punctulata spermatozoa are exposed to solubilized egg jelly, the electrophoretic mobility of an abundant sperm flagellar membrane protein changes from an apparent molecular mass of 160 kDa to 150 kDa. A. punctulata spermatozoa can be labeled in vivo with /sup 32/P-labeled cells it was demonstrated that the mobility shift of the 160-kDa protein is due to dephosphorylation. The peptide resact (Cys-Val-Thr-Gly-Ala-Pro-Gly-Cys-Val-Gly-Gly-Gly-Arg-Leu-NH/sub 2/) is the component of egg jelly which is responsible for inducing the dephosphorylation. The 160/150-kdal sperm membrane protein has been purified to homogeneity by affinity chromatography on concanavalin A-agarose, and identified as sperm guanylate cyclase.more » The enzymatic activity of the guanylate cyclase is tightly coupled to its phosphorylation state. Resact has been shown to act as a potent chemoattractant for A. punctulata spermatozoa. The chemotactic response is concentration-dependent, is abolished by pretreatment of the spermatozoa with resact, and shows an absolute requirement for external calcium. This work represents the first demonstration of animal sperm chemotaxis in response to a precisely-defined molecule of egg origin. The results established a new, biologically meaningful function for resact, and may implicate sperm guanylate cyclase and cGMP in flagellar function and the chemotactic response.« less

  19. Near-infrared light-activated red-emitting upconverting nanoplatform for T1-weighted magnetic resonance imaging and photodynamic therapy.

    PubMed

    Tang, Xiang-Long; Wu, Jun; Lin, Ben-Lan; Cui, Sheng; Liu, Hong-Mei; Yu, Ru-Tong; Shen, Xiao-Dong; Wang, Ting-Wei; Xia, Wei

    2018-05-12

    Photodynamic therapy (PDT) has increasingly become an efficient and attractive cancer treatment modality based on reactive oxygen species (ROS) that can induce tumor death after irradiation with ultraviolet or visible light. Herein, to overcome the limited tissue penetration in traditional PDT, a novel near-infrared (NIR) light-activated NaScF 4 : 40% Yb, 2% Er@CaF 2 upconversion nanoparticle (rUCNP) is successfully designed and synthesized. Chlorin e6, a photosensitizer and a chelating agent for Mn 2+ , is loaded into human serum albumin (HSA) that further conjugates onto rUCNPs. To increase the ability to target glioma tumor, an acyclic Arg-Gly-Asp peptide (cRGDyK) is linked to rUCNPs@HSA(Ce6-Mn). This nanoplatform enables efficient adsorption and conversion of NIR light (980 nm) into bright red emission (660 nm), which can trigger the photosensitizer Ce6-Mn complex for PDT and T 1 -weighted magnetic resonance imaging (T 1 -weighted MRI) for glioma diagnosis. Our in vitro and in vivo experiments demonstrate that NIR light-activated and glioma tumor-targeted PDT can generate large amounts of intracellular ROS that induce U87 cell apoptosis and suppress glioma tumor growth owing to the deep tissue penetration of irradiated light and excellent tumor-targeting ability. Thus, this nanoplatform holds potential for applications in T 1 -weighted MRI diagnosis and PDT of glioma for antitumor therapy. A near-infrared (NIR) light-activated nanoplatform for photodynamic therapy (PDT) was designed and synthesized. The Red-to-Green (R/G) ratio of NaScF 4 : 40% Yb, 2% Er almost reached 9, a value that was much higher than that of a traditional Yb/Er-codoped upconversion nanoparticle (rUCNP). By depositing a CaF 2 shell, the red-emission intensities of the rUCNPs were seven times strong as that of NaScF 4 : 40% Yb, 2% Er. The enhanced red-emitting rUCNPs could be applied in many fields such as bioimaging, controlled release, and real-time diagnosis. The nanoplatform had a strong active glioma-targeting ability, and all results achieved on subcutaneous glioma demonstrated that our NIR light-activated red-emitting upconverting nanoplatform was efficient for PDT. By loading Ce6-Mn complex into rUCNPs@HSA-RGD, the nanoplatform could be used as a T 1 -weighted magnetic resonance imaging agent for tumor diagnosis. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Evaluation of RGD peptide hydrogel in the posterior segment of the rabbit eye.

    PubMed

    Wang, Xing-Hua; Li, Shuang; Liang, Liang; Xu, Xiao-Ding; Zhang, Xian-Zheng; Jiang, Fa-Gang

    2013-01-01

    The aim of this study was to evaluate the biocompatibility and biodegradability of RGD peptide hydrogel in the posterior segment of the eye as a biomaterial potentially useful for sustained drug delivery systems. RGD peptide hydrogel was injected into the vitreous cavity and suprachoroidal space of rabbit eyes. Clinical follow-up and histological observation were performed up to four weeks. The biodegradability was also evaluated by the lifetime of the hydrogel which was defined by ophthalmoscopic observation or ultrasonography. The results showed that RGD peptide hydrogel was well tolerated in the vitreous cavity and suprachoroidal space, and disappeared from the injection sites progressively. As for suprachoroidal injection, the hydrogel was clearly identified by ultrasound echography and was confirmed innoxious to the retinal vessels by fluorescein angiography. Histological observations showed that the structures of retina, choroid and other tissues around the injection site remained normal after the injection. The lifetime of the hydrogel was 25.7 ± 2.65 days and 14.3 ± 3.3 days in the vitreous cavity and suprachoroidal space, respectively. The results obtained demonstrated that RGD peptide hydrogel, which showed excellent biocompatibility and favorable biodegradability in the posterior segment of rabbit eyes, appears to be a promising biomaterial to deliver drugs focally to the choroid and the retina.

Top