Science.gov

Sample records for arg-specific bifunctional crosslinkers

  1. Bifunctional crosslinking ligands for transthyretin

    PubMed Central

    Mangione, P. Patrizia; Deroo, Stéphanie; Ellmerich, Stephan; Bellotti, Vittorio; Kolstoe, Simon; Wood, Stephen P.; Robinson, Carol V.; Smith, Martin D.; Tennent, Glenys A.; Broadbridge, Robert J.; Council, Claire E.; Thurston, Joanne R.; Steadman, Victoria A.; Vong, Antonio K.; Swain, Christopher J.; Pepys, Mark B.; Taylor, Graham W.

    2015-01-01

    Wild-type and variant forms of transthyretin (TTR), a normal plasma protein, are amyloidogenic and can be deposited in the tissues as amyloid fibrils causing acquired and hereditary systemic TTR amyloidosis, a debilitating and usually fatal disease. Reduction in the abundance of amyloid fibril precursor proteins arrests amyloid deposition and halts disease progression in all forms of amyloidosis including TTR type. Our previous demonstration that circulating serum amyloid P component (SAP) is efficiently depleted by administration of a specific small molecule ligand compound, that non-covalently crosslinks pairs of SAP molecules, suggested that TTR may be also amenable to this approach. We first confirmed that chemically crosslinked human TTR is rapidly cleared from the circulation in mice. In order to crosslink pairs of TTR molecules, promote their accelerated clearance and thus therapeutically deplete plasma TTR, we prepared a range of bivalent specific ligands for the thyroxine binding sites of TTR. Non-covalently bound human TTR–ligand complexes were formed that were stable in vitro and in vivo, but they were not cleared from the plasma of mice in vivo more rapidly than native uncomplexed TTR. Therapeutic depletion of circulating TTR will require additional mechanisms. PMID:26400472

  2. Bifunctional Electrophiles Cross-Link Thioredoxins with Redox Relay Partners in Cells

    PubMed Central

    Naticchia, Matthew R.; Brown, Haley A.; Garcia, Francisco J.; Lamade, Andrew M.; Justice, Samantha L.; Herrin, Rachelle P.; Morano, Kevin A.; West, James D.

    2013-01-01

    Thioredoxin protects cells against oxidative damage by reducing disulfide bonds in improperly oxidized proteins. Previously, we found that the baker's yeast cytosolic thioredoxin Trx2 undergoes cross-linking to form several protein-protein complexes in cells treated with the bifunctional electrophile divinyl sulfone (DVSF). Here, we report that the peroxiredoxin Tsa1 and the thioredoxin reductase Trr1, both of which function in a redox relay network with thioredoxin, become cross-linked in complexes with Trx2 upon DVSF treatment. Treatment of yeast with other bifunctional electrophiles, including diethyl acetylenedicarboxylate (DAD), mechlorethamine (HN2), and 1,2,3,4-diepoxybutane (DEB), resulted in the formation of similar cross-linked complexes. Cross-linking of Trx2 and Tsa1 to other proteins by DVSF and DAD is dependent on modification of the active site Cys residues within these proteins. In addition, the human cytosolic thioredoxin, cytosolic thioredoxin reductase, and peroxiredoxin 2 form cross-linked complexes to other proteins in the presence of DVSF, although each protein shows different susceptibilities to modification by DAD, HN2, and DEB. Taken together, our results indicate that bifunctional electrophiles potentially disrupt redox homeostasis in yeast and human cells by forming cross-linked complexes between thioredoxins and their redox partners. PMID:23414292

  3. Synthesis of acrylic and allylic bifunctional cross-linking monomers derived from PET waste

    NASA Astrophysics Data System (ADS)

    Cruz-Aguilar, A.; Herrera-González, A. M.; Vázquez-García, R. A.; Navarro-Rodríguez, D.; Coreño, J.

    2013-06-01

    An acrylic and two novel allylic monomers synthesized from bis (hydroxyethyl) terephthalate, BHET, are reported. This was obtained by glycolysis of post-consumer PET with boiling ethylene glycol. The bifunctional monomer bis(2-(acryloyloxy)ethyl) terephthalate was obtained from acryloyl chloride, while the allylic monomers 2-(((allyloxi)carbonyl)oxy) ethyl (2-hydroxyethyl) terephthalate and bis(2-(((allyloxi)carbonyl)oxy)ethyl) terephthalate, from allyl chloroformate. Cross-linking was studied in bulk polymerization using two different thermal initiators. Monomers were analyzed by means of 1H NMR and the cross-linked polymers by infrared spectroscopy. Gel content higher than 90% was obtained for the acrylic monomer. In the case of the mixture of the allylic monomers, the cross-linked polymer was 80 % using BPO initiator, being this mixture 24 times less reactive than the acrylic monomer.

  4. Defective DNA cross-link removal in Chinese hamster cell mutants hypersensitive to bifunctional alkylating agents

    SciTech Connect

    Hoy, C.A.; Thompson, L.H.; Mooney, C.L.; Salazar, E.P.

    1985-04-01

    DNA repair-deficient mutants from five genetic complementation groups isolated previously from Chinese hamster cells were assayed for survival after exposure to the bifunctional alkylating agents mitomycin C or diepoxybutane. Groups 1, 3, and 5 exhibited 1.6- to 3-fold hypersensitivity compared to the wild-type cells, whereas Groups 2 and 4 exhibited extraordinary hypersensitivity. Mutants from Groups 1 and 2 were exposed to 22 other bifunctional alkylating agents in a rapid assay that compared cytotoxicity of the mutants to the wild-type parental strain, AA8. With all but two of the compounds, the Group 2 mutant (UV4) was 15- to 60-fold more sensitive than AA8 or the Group 1 mutant (UV5). UV4 showed only 6-fold hypersensitivity to quinacrine mustard. Alkaline elution measurements showed that this compound produced few DNA interstrand cross-links but numerous strand breaks. Therefore, the extreme hypersensitivity of mutants from Groups 2 and 4 appeared specific for compounds the main cytotoxic lesions of which were DNA cross-links. Mutant UV5 was only 1- to 4-fold hypersensitive to all the compounds. Although the initial number of cross-links was similar for the three cell lines, the efficiency of removal of cross-links was lowest in UV4 and intermediate in UV5. These results suggest that the different levels of sensitivity are specifically related to different efficiencies of DNA cross-link removal. The phenotype of hypersensitivity to both UV radiation and cross-link damage exhibited by the mutants in Groups 2 and 4 appears to differ from those of the known human DNA repair syndromes.

  5. Acid–base bifunctional shell cross-linked micelle nanoreactor for one-pot tandem reaction

    DOE PAGES

    Lee, Li -Chen; Lu, Jie; Weck, Marcus; ...

    2015-12-29

    In shell cross-linked micelles (SCMs) containing acid sites in the shell and base sites in the core are prepared from amphiphilic poly(2-oxazoline) triblock copolymers. These materials are utilized as two-chamber nanoreactors for a prototypical acid-base bifunctional tandem deacetalization-nitroaldol reaction. Furthermore, the acid and base sites are localized in different regions of the micelle, allowing the two steps in the reaction sequence to largely proceed in separate compartments, akin to the compartmentalization that occurs in biological systems.

  6. A bifunctional curcumin analogue for two-photon imaging and inhibiting crosslinking of amyloid beta in Alzheimer's disease.

    PubMed

    Zhang, Xueli; Tian, Yanli; Yuan, Peng; Li, Yuyan; Yaseen, Mohammad A; Grutzendler, Jaime; Moore, Anna; Ran, Chongzhao

    2014-10-09

    In this report, we designed a highly bright bifunctional curcumin analogue CRANAD-28. In vivo two-photon imaging suggested that CRANAD-28 could penetrate the blood brain barrier (BBB) and label plaques and cerebral amyloid angiopathies (CAAs). We also demonstrated that this imaging probe could inhibit the crosslinking of amyloid beta induced either by copper or by natural conditions.

  7. pH-Sensitive, N-ethoxybenzylimidazole (NEBI) bifunctional crosslinkers enable triggered release of therapeutics from drug delivery carriers.

    PubMed

    Luong, Alice; Issarapanichkit, Tawny; Kong, Seong Deok; Fong, Rina; Yang, Jerry

    2010-11-21

    This paper presents a pH-sensitive bifunctional crosslinker that enables facile conjugation of small molecule therapeutics to macromolecular carriers for use in drug delivery systems. This N-ethoxybenzylimidazole (NEBI) bifunctional crosslinker was designed to exploit mildly acidic, subcellular environments to trigger the release of therapeutics upon internalization in cells. We demonstrate that an analog of doxorubicin (a representative example of an anticancer therapeutic) conjugated to human serum albumin (HSA, a representative example of a macromolecular carrier) via this NEBI crosslinker can internalize and localize into acidic lysosomes of ovarian cancer cells. Fluorescence imaging and cell viability studies demonstrate that the HSA-NEBI-doxorubicin conjugate exhibited improved uptake and cytotoxic activity compared to the unconjugated doxorubicin analog. The pH-sensitive NEBI group was also shown to be relatively stable to biologically-relevant metal Lewis acids and to serum proteins, supporting that these bifunctional crosslinkers may be useful for constructing drug delivery systems that will be stable in biological fluids such as blood.

  8. Bifunctional alkylating agent-mediated MGMT-DNA cross-linking and its proteolytic cleavage in 16HBE cells.

    PubMed

    Cheng, Jin; Ye, Feng; Dan, Guorong; Zhao, Yuanpeng; Wang, Bin; Zhao, Jiqing; Sai, Yan; Zou, Zhongmin

    2016-08-15

    Nitrogen mustard (NM), a bifunctional alkylating agent (BAA), contains two alkyl arms and can act as a cross-linking bridge between DNA and protein to form a DNA-protein cross-link (DPC). O(6)-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme for alkyl adducts removal, is found to enhance cell sensitivity to BAAs and to promote damage, possibly due to its stable covalent cross-linking with DNA mediated by BAAs. To investigate MGMT-DNA cross-link (mDPC) formation and its possible dual roles in NM exposure, human bronchial epithelial cell line 16HBE was subjected to different concentrations of HN2, a kind of NM, and we found mDPC was induced by HN2 in a concentration-dependent manner, but the mRNA and total protein of MGMT were suppressed. As early as 1h after HN2 treatment, high mDPC was achieved and the level maintained for up to 24h. Quick total DPC (tDPC) and γ-H2AX accumulation were observed. To evaluate the effect of newly predicted protease DVC1 on DPC cleavage, we applied siRNA of MGMT and DVC1, MG132 (proteasome inhibitor), and NMS-873 (p97 inhibitor) and found that proteolysis plays a role. DVC1 was proven to be more important in the cleavage of mDPC than tDPC in a p97-dependent manner. HN2 exposure induced DVC1 upregulation, which was at least partially contributed to MGMT cleavage by proteolysis because HN2-induced mDPC level and DNA damage was closely related with DVC1 expression. Homologous recombination (HR) was also activated. Our findings demonstrated that MGMT might turn into a DNA damage promoter by forming DPC when exposed to HN2. Proteolysis, especially DVC1, plays a crucial role in mDPC repair.

  9. Creation of catalytically active particles from enzymes crosslinked with a natural bifunctional agent--homocysteine thiolactone.

    PubMed

    Stroylova, Yulia Y; Semenyuk, Pavel I; Asriyantz, Regina A; Gaillard, Cedric; Haertlé, Thomas; Muronetz, Vladimir I

    2014-09-01

    The current study describes an approach to creation of catalytically active particles with increased stability from enzymes by N-homocysteinylation, a naturally presented protein modification. Enzymatic activities and properties of two globular tetrameric enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and lactate dehydrogenase (LDH) were studied before and after N-homocysteinylation. Modification of these proteins concerns the accessible lysine residues and introduces an average of 2-2,5 homocysteine residues per protein monomer. Formation of a range of aggregates was observed for both enzymes, which assemble via formation of intermolecular noncovalent bonds and by disulfide bonds. It was demonstrated that both studied enzymes retain their catalytic activities on modification and the subsequent formation of oligomeric forms. At low concentrations of homocysteine thiolactone, modification of GAPDH leads not only to prevention of spontaneous inactivation but also increases thermal stability of this enzyme on heating to 80°C. A moderate reduction of the activity of GAPDH observed in case of its crosslinking with 50-fold excess of homocysteine thiolactone per lysine is probably caused by hindered substrate diffusion. Spherical particles of 100 nm and larger diameters were observed by transmission electron microscopy and atomic force microscope techniques after modification of GAPDH with different homocysteine thiolactone concentrations. In case of LDH, branched fibril-like aggregates were observed under the same conditions. Interestingly, crosslinked samples of both proteins were found to have reversible thermal denaturation profiles, indicating that modification with homocysteine thiolactone stabilizes the spatial structure of these enzymes.

  10. Covalent vectored binding of functional proteins by bifunctional crosslinking at silicone interfaces.

    PubMed

    Steiert, Andreas; Reimers, Kerstin; Burke, William; Zapf, Antonia; Vogt, Peter

    2012-05-01

    In the daily clinical routine, numerous synthetic medical devices are implanted in the human body, either temporarily or permanently. The synthetic material most often implanted is polydimethylsiloxane (silicone). Numerous studies have demonstrated that silicone is encompassed in a connective tissue capsule by the body, preventing integration into the surrounding tissue. This can result in complications. The aim of our study was to develop a simple procedure to functionalize the silicone surface, thereby positively affecting the material's biocompatibility. By combining a silanization with the use of ester activation, a reactive amino group is generated, which can bind any free carboxyl group. Directional crosslinking of a near-infrared-conjugated fluorophore antibody to the activated silicone surface could be demonstrated on a dose-dependent basis. The redox reaction at a silicone surface coated with an HRP-conjugated antibody caused by the addition of NBT/BCIP could be shown. Covering the silicone discs with an anti-FAS-antibody coating followed by a coincubation with FAS-sensitive T-cells allowed highly significant detection of caspase-3. In summary, our crosslinking procedure enables the stable binding of proteins without the loss of biological function. Through this process, silicones could be endowed with new functions which could improve their biocompatibility.

  11. Tunable Bifunctional Silyl Ether Cross-Linkers for the Design of Acid Sensitive Biomaterials

    PubMed Central

    Parrott, Matthew C.; Luft, J. Chris; Byrne, James D.; Fain, John H.; Napier, Mary E.; DeSimone, Joseph M.

    2011-01-01

    Responsive polymeric biomaterials can be triggered to degrade using localized environments found in vivo. A limited number of biomaterials provide precise control over the rate of degradation, the release rate of entrapped cargo, and yield a material that is intrinsically non-toxic. Here we design non-toxic acid-sensitive biomaterials based on silyl ether chemistry. A host of silyl ether cross-linkers were synthesized and molded into relevant medical devices including Trojan horse particles, sutures, and stents. The resulting devices were engineered to degrade under acidic conditions known to exist in tumor tissue, inflammatory tissue, and within diseased cells. The implementation of silyl ether chemistry gave precise control over the rate of degradation, and depending upon the steric bulk around the silicon atom, afforded devices that could degrade over the course of hours, days, weeks, or months. These novel materials could be useful for numerous biomedical applications including drug-delivery, tissue repair, and general surgery. PMID:21105720

  12. Structural dynamics of the actomyosin complex probed by a bifunctional spin label that cross-links SH1 and SH2.

    PubMed

    Thompson, Andrew R; Naber, Nariman; Wilson, Clyde; Cooke, Roger; Thomas, David D

    2008-12-01

    We have used a bifunctional spin label (BSL) to cross-link Cys(707) (SH1) and Cys(697) (SH2) in the catalytic domain of myosin subfragment 1 (S1). BSL induces the same weakened ATPase activity and actin-binding affinity that is observed when SH1 and SH2 are cross-linked with pPDM, which traps an analog of the post-hydrolysis state A.M.ADP.P. Electron paramagnetic resonance showed that BSL reports the global orientation and dynamics of S1. When bound to actin in oriented muscle fibers in the absence of ATP, BSL-S1 showed almost complete orientational disorder, as reported previously for the weakly bound A.M.ADP. In contrast, helical order is observed for the strongly bound state A.M. Saturation transfer electron paramagnetic resonance showed that the disorder of cross-linked S1 on actin is nearly static on the microsecond timescale, at least 30 times slower than that of A.M.ADP. We conclude that cross-linked S1 exhibits rotational disorder comparable to that of A.M.ADP, slow rotational mobility comparable to that of A.M, and intermediate actin affinity. These results support the hypothesis that the catalytic domain of myosin is orientationally disordered on actin in a post-hydrolysis state in the early stages of force generation.

  13. Oligonucleotides with "clickable" sugar residues: synthesis, duplex stability, and terminal versus central interstrand cross-linking of 2'-O-propargylated 2-aminoadenosine with a bifunctional azide.

    PubMed

    Pujari, Suresh S; Leonard, Peter; Seela, Frank

    2014-05-16

    Duplex DNA with terminal and internal sugar cross-links were synthesized by the CuAAC reaction from oligonucleotides containing 2'-O-propargyl-2-aminoadenosine as a clickable site and a bifunctional azide (4). Stepwise click chemistry was employed to introduce cross-links at internal and terminal positions. Copper turnings were used as catalyst, reducing the copper load of the reaction mixture and avoiding complexing agents. For oligonucleotide building block synthesis, a protecting group strategy was developed for 2'-O-propargyl-2-aminoadenosine owing to the rather different reactivities of the two amino groups. Phosphoramidites were synthesized bearing clickable 2'-O-propargyl residues (14 and 18) as well as a 2'-deoxyribofuranosyl residue (10). Hybridization experiments of non-cross-linked oligonucleotides with 2,6-diaminopurine as nucleobase showed no significant thermal stability changes over those containing adenine. Surprisingly, an isobutyryl group protecting the 2-amino function has no negative impact on the stability of DNA-DNA and DNA-RNA duplexes. Oligonucleotide duplexes with cross-linked 2'-O-propargylated 2-aminoadenosine (1) and 2'-O-propargylated adenosine (3) at terminal positions are significantly stabilized (ΔT(m) = +29 °C). The stability results from a molecularity change from duplex to hairpin melting and is influenced by the ligation position. Terminal ligation led to higher melting duplexes than corresponding hairpins, while duplexes with central ligation sites were less stable.

  14. Preparation of molecular imprinted polymers using bi-functional monomer and bi-crosslinker for solid-phase extraction of rutin.

    PubMed

    Zeng, Huan; Wang, Yuzhi; Liu, Xiaojie; Kong, Jinhuan; Nie, Chan

    2012-05-15

    Molecular imprinted polymers (MIPs) were prepared using rutin as the template, different reagents as the functional monomer and different reagents as the cross-linker by solution polymerization. Several parameters that would influence the performance of MIPs were investigated including the type of functional monomer (single or double) and cross-linker (single or double), and the molar ratio of the template, the functional monomer and the cross-linker. The optimum synthesis conditions of MIPs were found to be bi-monomers (acrylamide-co-2-vinyl pyridine, 3:1) and bi-crosslinker (ethylene glycol dimethacrylate-co-divinylbenzene, 3:1). The ratio of the template, the functional monomer and the cross-linker was found to be 1:6:20. MIPs synthesized under these conditions were filled into the cartridges as the adsorbents of solid-phase extraction (SPE). A competition test was conducted to authenticate the selectivity and the specificity of molecularly imprinted solid-phase extraction (MISPE) for rutin using the mixture solution of standard rutin and its structural analogs including quercetin, naringenin and kaempferol. Compared with purchased SPE including C(18), silica and PCX, MISPE showed better selectivity and enrichment property for rutin in the extracted solutions of Chinese medicinal plants than any others. The mean recoveries were 85.93% (RSD: 3.04%, n=3) for Saururus chinensis (Lour.) Bail and 88.61% (RSD: 3.36%, n=3) for Flos Sophorae, respectively, which indicated that the optimized rutin-MIPs possess the value of practical application. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Photophysical, electrochemical characteristics and cross-linking of STAT-3 protein by an efficient bifunctional agent for fluorescence image-guided photodynamic therapy.

    PubMed

    Chen, Yihui; Ohkubo, Kei; Zhang, Min; Wenbo, E; Liu, Weiguo; Pandey, Suresh K; Ciesielski, Michael; Baumann, Heinz; Erin, Tracy; Fukuzumi, Shunichi; Kadish, Karl M; Fenstermaker, Robert; Oseroff, Allan; Pandey, Ravindra K

    2007-12-01

    The photophysical, electrochemical and spectroscopic characteristics of a conjugate of 3-devinyl-3-(1'-hexyloxyethyl)pyropheophorbide-a (HPPH) and a cyanine dye have been investigated both as a linked conjugate and as individual components. A photoexcitation of the HPPH moiety of the conjugate results in electron transfer from the singlet excited state of HPPH (1HPPH*) to the cyanine dye as well as that from the cyanine dye to 1HPPH* and is followed in both cases by facile back electron transfer to the ground state as indicated by time-resolved fluorescence and transient absorption measurements. Intersystem crossing to the triplet excited state (3HPPH*) competes with the electron transfer and 3HPPH* is quenched by oxygen to produce singlet oxygen (1O2), leading to specific covalent cross-linking of the nonactivated signal transducer and activator of transcription (STAT-3). In contrast to excitation of the HPPH moiety, photoexcitation of the cyanine dye unit results in a strong emission at 875 nm, which can be used for efficient tumor imaging. Compared to HPPH alone, the presence of the cyanine dye moiety in the conjugate produces a significantly higher uptake in tumors than in skin. Thus, the HPPH-cyanine dye conjugate can be used as a dual tumor imaging and photodynamic therapy agent.

  16. Solid phase synthesis of bifunctional antibodies.

    PubMed

    DeSilva, B S; Wilson, G S

    1995-12-15

    Bifunctional antibodies were prepared using the principle of solid-phase synthesis. The two Fab' fragments were chemically linked together via a bismaleimide crosslinking reagent. The F(ab')2 fragments from intact IgG were prepared using an immobilized pepsin column. Goat, mouse and human antibodies were digested completely within 4 h. The F(ab')2 fragments thus produced did not contain any IgG impurities. The Fab' fragments were produced by reducing the inter-heavy chain disulfide bonds using 2-mercaptoethylamine. The use of the solid-phase reactor in the preparation of the bifunctional antibodies eliminated many of the time-consuming separation steps between the fragmentation and conjugation steps. This procedure facilitates the automation of the bifunctional antibody preparation and the rapid optimization of reaction conditions.

  17. Synthesis of bifunctional antibodies for immunoassays.

    PubMed

    DeSilva, B S; Wilson, G S

    2000-09-01

    The synthesis of bifunctional antibodies using the principle of solid-phase synthesis is described. Two Fab' fragments were chemically linked together via a bismaleimide crosslinking reagent. The F(ab')(2) fragments from intact immunoglobulin G (IgG) were prepared using an immobilized pepsin column. Goat, mouse, and human antibodies were digested completely within 4 h. The F(ab')(2) fragments thus produced did not contain any IgG impurities. Fab' fragments were produced by reducing the heavy interchain disulfide bonds using 2-mercaptoethylamine. Use of the solid-phase reactor in the preparation of the bifunctional antibodies eliminated many of the time-consuming separation steps between the fragmentation and conjugation steps. This procedure facilitates the automation of bifunctional antibody preparation and the rapid optimization of reaction conditions.

  18. Bifunctional alkaline oxygen electrodes

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.; Mccatty, S. A.

    1991-01-01

    The authors describe the identification and testing of electrocatalysts and supports for the positive electrode of moderate-temperature, single-unit, rechargeable alkaline fuel cells. Recent work on Na(x)Pt3O4, a potential bifunctional catalyst, is described, as well as the application of novel approaches to the development of more efficient bifunctional electrode structures. The three dual-character electrodes considered here showed similar superior performance; the Pt/RhO2 and Rh/RhO2 electrodes showed slightly better performance than the Pt/IrO2 electrode. It is concluded that Na(x)Pt3O4 continues to be a promising bifunctional oxygen electrode catalyst but requires further investigation and development.

  19. Peroxisomal bifunctional enzyme deficiency.

    PubMed Central

    Watkins, P A; Chen, W W; Harris, C J; Hoefler, G; Hoefler, S; Blake, D C; Balfe, A; Kelley, R I; Moser, A B; Beard, M E

    1989-01-01

    Peroxisomal function was evaluated in a male infant with clinical features of neonatal adrenoleukodystrophy. Very long chain fatty acid levels were elevated in both plasma and fibroblasts, and beta-oxidation of very long chain fatty acids in cultured fibroblasts was significantly impaired. Although the level of the bile acid intermediate trihydroxycoprostanoic acid was slightly elevated in plasma, phytanic acid and L-pipecolic acid levels were normal, as was plasmalogen synthesis in cultured fibroblasts. The latter three parameters distinguish this case from classical neonatal adrenoleukodystrophy. In addition, electron microscopy and catalase subcellular distribution studies revealed that, in contrast to neonatal adrenoleukodystrophy, peroxisomes were present in the patient's tissues. Immunoblot studies of peroxisomal beta-oxidation enzymes revealed that the bifunctional enzyme (enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase) was deficient in postmortem liver samples, whereas acyl-CoA oxidase and the mature form of beta-ketothiolase were present. Density gradient centrifugation of fibroblast homogenates confirmed that intact peroxisomes were present. Immunoblots of fibroblasts peroxisomal fractions showed that they contained acyl-CoA oxidase and beta-ketothiolase, but bifunctional enzyme was not detected. Northern analysis, however, revealed that mRNA coding for the bifunctional enzyme was present in the patient's fibroblasts. These results indicate that the primary biochemical defect in this patient is a deficiency of peroxisomal bifunctional enzyme. It is of interest that the phenotype of this patient resembled neonatal adrenoleukodystrophy and would not have been distinguished from this disorder by clinical study alone. Images PMID:2921319

  20. Crosslinked Polyamide

    DOEpatents

    Huang, Zhi H.; McDonald, William F.; Wright, Stacy C.; Taylor, Andrew C.

    2002-06-04

    A crosslinked polyamide material and a process for preparing the crosslinked polyamide material are disclosed. The crosslinked polyamide material comprises a crosslinked chemical combination of (1) a polyamide of the formula: ##STR1## wherein n is between about 50 and 10,000, wherein each R is between 1 and 50 carbon atoms alone and is optionally substituted with heteroatoms, oxygen, nitrogen, sulfur, or phosphorus and combinations thereof, wherein multiple of the R are in vertically aligned spaced relationship along a backbone forming the polyamide, and wherein two or more of the R contain an amino group; and (2) a crosslinking agent containing at least two functional groups capable of reacting with the amino groups of the polyamide. In one embodiment of the invention, the crosslinking agent is an aliphatic or aromatic isocyanate compound having 2 or more --N.dbd.C.dbd.O groups. In another embodiment of the invention, the crosslinking agent is an aliphatic aldehyde or aromatic aldehyde compound having 2 or more --CHO groups. In still another embodiment of the invention, the crosslinking agent is selected from a phosphine having the general formula (A).sub.2 P(B) and mixtures thereof, wherein A is hydroxyalkyl, and B is hydroxyalkyl, alkyl, or aryl. In yet another embodiment of the invention, the crosslinking agent is selected from the group consisting of epoxy resins having more than one epoxide group per molecule.

  1. Mechanism of melphalan crosslink enhancement by misonidazole pretreatment

    SciTech Connect

    Taylor, Y.C.; Sawyer, J.M.; Hsu, B.; Brown, J.M.

    1984-09-01

    Sensitization of Chinese hamster ovary cells to melphalan (L-PAM) toxicity by prior treatment with misonidazole is associated with increased levels of DNA crosslinks believed to be the critical lesion for bifunctional alkylating agent toxicity. Enhanced L-PAM cr

  2. A new RNA-RNA crosslinking reagent and its application to ribosomal 5S RNA.

    PubMed Central

    Wagner, R; Garrett, R A

    1978-01-01

    The synthesis of a new RNA specific bifunctional crosslinking reagent, 1.4-phenyl-diglyoxal, is described which reacts exclusively with guanosines. The properties of the crosslinked products enabled us to develop a straightforward method for identifying the reacted nucleotides. Results obtained with ribosomal 5S RNA of Escherichia coli demonstrate the formation of an intramolecular crosslink between guanosine-2 and guanosine-112 in the stem region. Images PMID:724507

  3. Polymer-Supported Reagents: The Role of Bifunctionality in the Design of Ion-Selective Complexants

    SciTech Connect

    Alexandratos, S. D.

    2001-06-01

    The importance of multi-functionality in the preparation of ion-selective polymers is evident from the structure of enzymes where specific metal ions are bound through cooperative interactions among different amino acids. In synthetic polymers, ionic selectivity is enhanced when a chemical reaction is superimposed on an ion-exchange process. The concept of reactive ion exchange has been extended through the synthesis of crosslinked polymers whose metal ion selectivity is a function of reduction, coordination or precipitation reactions as determined by various covalently bound ligands. Development of three classes of dual mechanism bifunctional polymers, a new series of bifunctional diphosphonate polymers, and novel bifunctional ion-selective polymers with enhanced ionic accessibility has been accomplished.

  4. Bifunctional DTPA-type ligand

    SciTech Connect

    Gansow, O.A.; Brechbiel, M.W.

    1990-03-26

    The subject matter of the invention relates to bifunctional cyclohexyl DTPA ligands and methods of using these compounds. Specifically, such ligands are useful for radiolabeling proteins with radioactive metals, and can consequently be utilized with respect to radioimmunoimaging and/or radioimmunotherapy.

  5. DNA interstrand cross-linking by epichlorohydrin.

    PubMed

    Romano, Keith P; Newman, Adam G; Zahran, Rami W; Millard, Julie T

    2007-05-01

    Epichlorohydrin (ECH), an important industrial chemical, is a bifunctional alkylating agent with the potential to form DNA cross-links. Occupational exposure to this suspect carcinogen leads to chromosomal aberrations, and ECH has been shown previously to undergo reaction with DNA in vivo and in vitro. We used denaturing polyacrylamide gel electrophoresis to monitor the possible formation of interstrand cross-links within DNA oligomers by ECH and the related compound, epibromohydrin (EBH). Although both compounds did indeed form cross-links between deoxyguanosine residues, EBH was a more efficient cross-linker than ECH. The optimal pH for cross-linking also varied, with ECH more efficient at pH 5.0 and EBH more efficient at pH 7.0. Both agents were relatively flexible in the sequences targeted, with comparable efficiencies for 5'-GGC and 5'GC sites. Furthermore, interstrand cross-linking by the two optical isomers of ECH correlated with their relative cytotoxicities, with R-ECH about twice as potent as S-ECH.

  6. In vivo protein cross-linking.

    PubMed

    Agou, Fabrice; Ye, Fei; Véron, Michel

    2004-01-01

    In the cell, homo- and heteroassociations of polypeptide chains evolve and take place within subcellular compartments that are crowded with many other cellular macromolecules. In vivo chemical cross-linking of proteins is a powerful method to examine changes in protein oligomerization and protein-protein interactions upon cellular events such as signal transduction. This chapter is intended to provide a guide to the selection of the cell-membrane-permeable cross-linkers, the optimization of in vivo cross-linking conditions, and the identification of specific cross-links in a cellular context where the frequency of random collisions is high. By combining the chemoselectivity of the homo-bifunctional cross-linker and the length of its spacer arm with knowledge on the protein structure, we show that selective cross-links can be introduced specifically on either the dimer or the hexamer form of the same polypeptide in vitro as well as in vivo, using the human type B nucleoside diphosphate kinase as a protein model.

  7. Bifunctional oxygen/air electrodes

    NASA Astrophysics Data System (ADS)

    Jörissen, Ludwig

    A selective review on the materials and construction principles used for bifunctional oxygen/air electrodes is given. The discussion emphasizes the catalytically active materials used for the construction of these electrodes, which are a key component in electrically rechargeable air breathing electrochemical systems. Whereas, in acid electrolytes normally noble metal catalysts must be used, there is a possibility to use less expensive transition metal oxides in alkaline electrolytes. Typical transition metal oxides have the perovskite, pyrochlore and spinel structure.

  8. Reversible PH Lability of Cross-Linked Vault Nanocapsules

    SciTech Connect

    Yu, M.; Ng, B.C.; Rome, L.H.; Tolbert, S.H.; Monbouquette, H.G.

    2009-05-28

    Vaults are ubiquitous, self-assembled protein nanocapsules with dimension in the sub-100 nm range that are conserved across diverse phyla from worms to humans. Their normal presence in humans at a copy number of over 10 000/cell makes them attractive as potential drug delivery vehicles. Toward this goal, bifunctional amine-reactive reagents are shown to be useful for the reversible cross-linking of recombinant vaults such that they may be closed and opened in a controllable manner.

  9. A dimethacrylate cross-linker cleavable under thermolysis or alkaline hydrolysis conditions: synthesis, polymerization, and degradation.

    PubMed

    Elladiou, Marios; Patrickios, Costas S

    2016-02-21

    We develop a new platform based on 2,6-pyridinediethanol diesters for introducing polymer degradability under thermolysis or alkaline hydrolysis conditions, with the latter being rare in polymers. Such labile diesters can be cross-linkers, bifunctional initiators and inimers. We demonstrate the power of this platform through the synthesis of the 2,6-pyridinediethanol dimethacrylate cross-linker, its controlled (co)polymerization, and the thermal and hydrolytic cleavage of its (co)polymers.

  10. A Bifunctional Amino Acid Enables Both Covalent Chemical Capture and Isolation of in Vivo Protein-Protein Interactions.

    PubMed

    Joiner, Cassandra M; Breen, Meghan E; Clayton, James; Mapp, Anna K

    2017-01-17

    In vivo covalent chemical capture by using photoactivatable unnatural amino acids (UAAs) is a powerful tool for the identification of transient protein-protein interactions (PPIs) in their native environment. However, the isolation and characterization of the crosslinked complexes can be challenging. Here, we report the first in vivo incorporation of the bifunctional UAA BPKyne for the capture and direct labeling of crosslinked protein complexes through post-crosslinking functionalization of a bioorthogonal alkyne handle. Using the prototypical yeast transcriptional activator Gal4, we demonstrate that BPKyne is incorporated at the same level as the commonly used photoactivatable UAA pBpa and effectively captures the Gal4-Gal80 transcriptional complex. Post-crosslinking, the Gal4-Gal80 adduct was directly labeled by treatment of the alkyne handle with a biotin-azide probe; this enabled facile isolation and visualization of the crosslinked adduct from whole-cell lysate. This bifunctional amino acid extends the utility of the benzophenone crosslinker and expands our toolbox of chemical probes for mapping PPIs in their native cellular environment. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. DNA Interstrand Cross-Linking Activity of (1-Chloroethenyl)oxirane, a Metabolite of β-chloroprene

    PubMed Central

    Wadugu, Brian A.; Ng, Christopher; Bartley, Bethany L.; Rowe, Rebecca J.; Millard, Julie T.

    2010-01-01

    With the goal of elucidating the molecular and cellular mechanisms of chloroprene toxicity, we examined the potential DNA cross-linking of the bifunctional chloroprene metabolite, (1-chloroethenyl)oxirane (CEO). We used denaturing polyacrylamide gel electrophoresis to monitor possible formation of interstrand cross-links by CEO within synthetic DNA duplexes. Our data suggest interstrand cross-linking at deoxyguanosine residues within 5′-GC and 5′-GGC sites, with the rate of cross-linking depending on pH (pH 5.0 > pH 6.0 > pH 7.0). A comparison of the cross-linking efficiencies of CEO and the structurally similar cross-linkers diepoxybutane (DEB) and epichlorohydrin (ECH) revealed that DEB > CEO ≥ ECH. Furthermore, we found that cytotoxicity correlates with cross-linking efficiency, supporting a role for interstrand cross-links in the genotoxicology of chloroprene. PMID:20030381

  12. Development of Benzophenone-Alkyne Bifunctional Sigma Receptor Ligands

    PubMed Central

    Guo, Lian-Wang; Hajipour, Abdol R.; Karaoglu, Kerim; Mavlyutov, Timur A.; Ruoho, Arnold E.

    2012-01-01

    Sigma (σ) receptors represent unique non-opioid binding sites that are associated with a broad range of disease states. Sigma-2 receptors provide a promising target for diagnostic imaging and pharmacological interventions to curb tumor progression. Most recently, the progesterone receptor (PGRMC1, 25 kDa) has been identified to contain σ2 receptor-like binding properties, highlighting the need to understand the biological function of an 18-kDa protein that exhibits σ2-like photoaffinity labeling (herein denoted as σ2-18k) but the amino acid sequence of which is not known. In order to provide novel tools for the study of the σ2-18k protein, we have developed bifunctional sigma receptor ligands that bear a benzophenone photo-crosslinking moiety and an alkyne group, to which an azide-containing biotin affinity tag can be covalently attached via click chemistry following photo-crosslink. While several compounds showed favorable σ2 binding properties, compound 22 exhibited the highest affinity (2 nM) and the greatest potency in blocking photolabeling of the σ2-18k by a radioactive photoaffinity ligand. Thus, these benzophenone-alkyne sigma receptor ligands may be amenable for studying the σ2-18k protein via chemical biology approaches. To our knowledge, these compounds represent the first reported benzophenone-containing clickable sigma receptor ligands, which may potentially serve broad applications by “plugging” in various tags. PMID:23001760

  13. Bifunctional transfer-messenger RNA

    PubMed Central

    Ramadoss, Nitya S.

    2011-01-01

    Transfer-messenger RNA (tmRNA) is a bifunctional RNA that has properties of a tRNA and an mRNA. tmRNA uses these two functions to release ribosomes stalled during translation and target the nascent polypeptides for degradation. This concerted reaction, known as trans-translation, contributes to translational quality control and regulation of gene expression in bacteria. tmRNA is conserved throughout bacteria, and is one of the most abundant RNAs in the cell, suggesting that trans-translation is of fundamental importance for bacterial fitness. Mutants lacking tmRNA activity typically have severe phenotypes, including defects in viability, virulence, and responses to environmental stresses. PMID:21664408

  14. Tailored bifunctional polymer for plutonium monitoring.

    PubMed

    Paul, Sumana; Pandey, Ashok K; Kumar, Pranaw; Kaity, Santu; Aggarwal, Suresh K

    2014-07-01

    Monitoring of actinides with sophisticated conventional methods is affected by matrix interferences, spectral interferences, isobaric interferences, polyatomic interferences, and abundance sensitivity problems. To circumvent these limitations, a self-supported disk and membrane-supported bifunctional polymer were tailored in the present work for acidity-dependent selectivity toward Pu(IV). The bifunctional polymer was found to be better than the polymer containing either a phosphate group or a sulfonic acid group in terms of (i) higher Pu(IV) sorption efficiency at 3-4 mol L(-1) HNO3, (ii) selective preconcentration of Pu(IV) in the presence of a trivalent actinide such as Am(III), and (iii) preferential sorption of Pu(IV) in the presence of a large excess of U(VI). The bifunctional polymer was formed as a self-supported matrix by bulk polymerization and also as a 1-2 μm thin layer anchored on a microporous poly(ether sulfone) by surface grafting. The proportions of sulfonic acid and phosphate groups in both the self-supported disk and membrane-supported bifunctional polymer were found to be the same as expected from the mole proportions of monomers in polymerizing solutions used for syntheses. α radiography by a solid-state nuclear track detector indicated fairly homogeneous anchoring of the bifunctional polymer on the surface of the membrane. Pu(IV) preconcentrated on a single bifunctional bead was used for determination of the Pu isotopic composition by thermal ionization mass spectrometry. The membrane-supported bifunctional polymer was used for preconcentration and subsequent quantification of Pu(IV) by α spectrometry using the absolute efficiency at a fixed counting geometry. The analytical performance of the membrane-supported-bifunctional-polymer-based α spectrometry method was found to be highly reproducible for assay of Pu(IV) in a variety of complex samples.

  15. New bifunctional ligands for radioimmunoimaging and radioimmunotherapy

    SciTech Connect

    Brechbiel, M.W.

    1988-01-01

    The bifunctional EDTA ligand and two bifunctional DTPA ligands were synthesized by direct aminolysis of an amino acid ester followed by reduction, alkylation, and functional group modification to introduced bifunctionality. The reactive substituent chosen for protein conjugation was the isothiocyanate group. The generality of this approach was demonstrated with 9 different amino acids to produce the respective substituted diethylenetriamines. The remaining three bifunctional DTPA ligands were synthesized via classical peptide methodology producing a dipeptide amide which, after deprotection, was reduced to the triamine and alkylated to produce the ligand. Biodistribution studies of the ligands conjugated to monoclonal antibody B72.3 and labelled with In-111 revealed that superior retention of In-111 was attained and the dose to the liver was minimized when a full intact octadentate bifunctional DTPA chelate was used, e.g. DTPA > EDTA > DTTA (diethylenetritetraacetic acid from use of DTPA dianhydride (CA-DTPA)). The best scintigraphic images were obtained after 72 hours when a DTPA ligand was used to complex the In-111. Biodistribution studies using Yttrium-88 revealed that the disubstituted bifunctional DTPA was necessary to minimize the bone dose from the Yttrium while maintaining a high dose to the tumor.

  16. Mechanical Characterization of a Bi-functional Tetronic Hydrogel Adhesive for Soft Tissues

    PubMed Central

    Sanders, Lindsey; Stone, Roland; Webb, C. Kenneth; Mefford, O. Thompson; Nagatomi, Jiro

    2014-01-01

    Although a number of tissue adhesives and sealants for surgical use are currently available, attaining a useful balance in high strength, high compliance, and low swelling has proven difficult. Recent studies have demonstrated that a 4-arm poly(propylene oxide)-poly(ethylene oxide) (PPO-PEO) block copolymer, Tetronic, can be chemically modified to form a hydrogel tissue adhesive21–23. Building on the success of these studies, the present study explored bi-functionalization of Tetronic with acrylates for chemical crosslinking of the hydrogel and N-hydroxysuccinimide (NHS) for reaction with tissue amines. The adhesive bond strengths of various uni- and bi-functional Tetronic blends (T1107 ACR: T1107 ACR/NHS) determined by lap shear testing ranged between 8 and 74 kPa, with the 75:25 (T1107 ACR: T1107 ACR/NHS) blend displaying the highest value. These results indicated that addition of NHS led to improvement of tissue bond strength over acrylation alone Furthermore, ex vivo pressure tests using the rat bladder demonstrated that the bi-functional Tetronic adhesive exhibited high compliance and maintained pressures under hundreds of filling and emptying cycles. Together, the results of the present study provided evidence that the bi-functional Tetronic adhesive with a proper blend ratio may be used to achieve an accurate balance in bulk and tissue bond strengths, as well as the compliance and durability for soft tissue such as the bladder. PMID:25111445

  17. Understanding chemical reactivity for homo- and heterobifunctional protein cross-linking agents.

    PubMed

    Chen, Fan; Nielsen, Simone; Zenobi, Renato

    2013-07-01

    Chemical cross-linking, combined with mass spectrometry, has been applied to map three-dimensional protein structures and protein-protein interactions. Proper choice of the cross-linking agent, including its reactive groups and spacer arm length, is of great importance. However, studies to understand the details of reactivity of the chemical cross-linkers with proteins are quite sparse. In this study, we investigated chemical cross-linking from the aspects of the protein structures and the cross-linking reagents involved, by using two structurally well-known proteins, glyceraldehyde 3-phosohate dehydrogenase and ribonuclease S. Chemical cross-linking reactivity was compared using a series of homo- and hetero-bifunctional cross-linkers, including bis(sulfosuccinimidyl) suberate, dissuccinimidyl suberate, bis(succinimidyl) penta (ethylene glycol), bis(succinimidyl) nona (ethylene glycol), m-maleimidobenzoyl-N-hydroxysulfosuccinimide ester, 2-pyridyldithiol-tetraoxaoctatriacontane-N-hydrosuccinimide and succinimidyl-[(N-maleimidopropionamido)-tetracosaethyleneglycol]ester. The protein structure itself, especially the distances between target amino acid residues, was found to be a determining factor for the cross-linking efficiency. Moreover, the reactive groups of the chemical cross-linker also play an important role; a higher cross-linking reaction efficiency was found for maleimides compared to 2-pyrimidyldithiols. The reaction between maleimides and sulfhydryl groups is more favorable than that between N-hydroxysuccinimide esters and amine groups, although cysteine residues are less abundant in proteins compared to lysine residues.

  18. Conformationally trapping the actin-binding cleft of myosin with a bifunctional spin label.

    PubMed

    Moen, Rebecca J; Thomas, David D; Klein, Jennifer C

    2013-02-01

    We have trapped the catalytic domain of Dictyostelium (Dicty) myosin II in a weak actin-binding conformation by chemically crosslinking two engineered cysteines across the actin-binding cleft, using a bifunctional spin label (BSL). By connecting the lower and upper 50 kDa domains of myosin, the crosslink restricts the conformation of the actin-binding cleft. Crosslinking has no effect on the basal ATPase activity of isolated myosin, but it impairs rigor actin binding and actin-activation of myosin ATPase. EPR spectra of BSL provide insight into actomyosin structural dynamics. BSL is highly immobilized within the actin-binding cleft and is thus exquisitely sensitive to the global orientation and rotational motions of the myosin head. Conventional EPR shows that myosin heads bound to oriented actin filaments are highly disordered with respect to the actin filament axis, in contrast to the nearly crystalline order of myosin heads in rigor. This disorder is similar to that of weakly bound heads induced by ATP, but saturation transfer EPR shows that the disorder of crosslinked myosin is at least 100 times slower. Thus this cleft-crosslinked myosin is remarkably similar, in both actin affinity and rotational dynamics, to SH1-SH2 crosslinked BSL-myosin S1. We conclude that, whether myosin is trapped at the actin-myosin interface or in the force-generating region between the active site and lever arm, the structural state of myosin is intermediate between the weak-binding state preceding phosphate release and the strong-binding state that succeeds it. We propose that it represents the threshold of force generation.

  19. Stabilization of a primary loop in myosin subfragment 1 with a fluorescent crosslinker.

    PubMed Central

    Mornet, D; Ue, K; Morales, M F

    1985-01-01

    A bifunctional fluorescent alkylating agent, dibromobimane, has been used to stabilize a preexisting primary loop in myosin subfragment 1 (S-1). The crosslink achieved joins Cys-707 (called sulfhydryl group "SH1") of the 20-kDa domain (formerly called "20K" domain) with a thiol of the 50-kDa domain and seems to place the dibromobimane near the ATP-perturbable tryptophan. Images PMID:3856845

  20. Sister chromatid exchange induced by short-lived monoadducts produced by the bifunctional agents mitomycin C and 8-methoxypsoralen. [CHO cells

    SciTech Connect

    Linnainmaa, K.; Wolff, S.

    1982-01-01

    To see if DNA crosslinks are involved in the induction of sister chromated exchange (SCE), Chinese hamster ovary cells were exposed to two bifunctional alkylating agents,mitomycin C and 8-methoxypsoralen, and their monofunctional derivatives, decarbamoyl mitomycin C and angelicin. The data indicates that monoadducts, rather than crosslinks, are responsible for SCE formation. Furthermore, all agents but angelicin produced short-lived lesions that led to SCEs in the first period of DNA replication after treatment (twin SCEs). In contrast, angelicin, like methyl methanesulfonate and N-acetoxyacetylaminofluorene, produced lesions that lasted more than one cycle, indicating that several different types of DNA lesions are capable of SCE induction.

  1. Hypercrosslinked polystyrene networks with ultimate degrees of crosslinking and their sorption activity

    NASA Astrophysics Data System (ADS)

    Tsyurupa, M. P.; Blinnikova, Z. K.; Davankov, V. A.

    2010-10-01

    Hypercrosslinked networks with 43, 100, 200, 300, 400, and 500% nominal crosslinking, respectively, were prepared by crosslinking the dichloroethane-swollen styrene copolymer with 0.5% divinylbenzene by Friedel-Crafts reaction using 0.3, 0.5, 1.0, 1.5, 2.0, and 2.5 mol of a bifunctional reagent (monochlorodimethyl ether), respectively. The dependences of the free (pore) volume of networks and their equilibrium swelling in water on the degree of crosslinking are extrema with the maximum parameters 0.63 cm3/g and 1.31 ml/g corresponding to the polymer with 300% crosslinking. The apparent specific surfaces of samples with 43-400% bridges are comparable, 1300-1500 m2/g. The ability of water-swollen hypercrosslinked polymers to extract synthetic organic dyes from aqueous solutions is independent of their specific surface measured for dry samples, but depends on the volume of absorbed water.

  2. In vitro cross-linking of elastin peptides and molecular characterization of the resultant biomaterials.

    PubMed

    Heinz, Andrea; Ruttkies, Christoph K H; Jahreis, Günther; Schräder, Christoph U; Wichapong, Kanin; Sippl, Wolfgang; Keeley, Fred W; Neubert, Reinhard H H; Schmelzer, Christian E H

    2013-04-01

    Elastin is a vital protein and the major component of elastic fibers which provides resilience to many vertebrate tissues. Elastin's structure and function are influenced by extensive cross-linking, however, the cross-linking pattern is still unknown. Small peptides containing reactive allysine residues based on sequences of cross-linking domains of human elastin were incubated in vitro to form cross-links characteristic of mature elastin. The resultant insoluble polymeric biomaterials were studied by scanning electron microscopy. Both, the supernatants of the samples and the insoluble polymers, after digestion with pancreatic elastase or trypsin, were furthermore comprehensively characterized on the molecular level using MALDI-TOF/TOF mass spectrometry. MS(2) data was used to develop the software PolyLinX, which is able to sequence not only linear and bifunctionally cross-linked peptides, but for the first time also tri- and tetrafunctionally cross-linked species. Thus, it was possible to identify intra- and intermolecular cross-links including allysine aldols, dehydrolysinonorleucines and dehydromerodesmosines. The formation of the tetrafunctional cross-link desmosine or isodesmosine was unexpected, however, could be confirmed by tandem mass spectrometry and molecular dynamics simulations. The study demonstrated that it is possible to produce biopolymers containing polyfunctional cross-links characteristic of mature elastin from small elastin peptides. MALDI-TOF/TOF mass spectrometry and the newly developed software PolyLinX proved suitable for sequencing of native cross-links in proteolytic digests of elastin-like biomaterials. The study provides important insight into the formation of native elastin cross-links and represents a considerable step towards the characterization of the complex cross-linking pattern of mature elastin. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. The sunburn cell in hairless mouse epidermis: quantitative studies with UV-A radiation and mono- and bifunctional psoralens

    SciTech Connect

    Young, A.R.; Magnus, I.A.

    1982-10-01

    The production of the sunburn cell by UV-A radiation and topical psoralens in hairless mouse epidermis has been studied. It has been shown that the appearance of this cell is dependent on the dose of both UV-A radiation and of the psoralen. The time-course with 8-methoxypsoralen has peak sunburn cell numbers at 28 hr postirradiation. A comparison of 2 bifunctional (8-methoxypsoralen and 5-methoxypsoralen) and 2 monofunctional (angelicin and 3-carbethoxypsoralen) psoralens showed the former are more potent. This suggests that DNA crosslink lesions may play a rle in sunburn cell production.

  4. Bifunctional hydrogen bonds in monohydrated cycloether complexes.

    PubMed

    Vallejos, Margarita M; Angelina, Emilio L; Peruchena, Nélida M

    2010-03-04

    In this work, the cooperative effects implicated in bifunctional hydrogen bonds (H-bonds) were studied (in monohydrated six-membered cycloether) within the framework of the atoms in molecules (AIM) theory and of the natural bond orbitals (NBO) analysis. The study was carried out in complexes formed by six-membered cycloether compounds (tetrahydropyrane, 1,4-dioxane, and 1,3-dioxane) and a water molecule. These compounds were used as model systems instead of more complicated molecules of biological importance. All the results were obtained at the second-order Møller-Plesset (MP2) level theory using a 6-311++G(d,p) basis set. Attention was focused on the indicators of the cooperative effects that arise when a water molecule interacts simultaneously with a polar and a nonpolar portion of a six-membered cycloether (via bifunctional hydrogen bonds) and compared with conventional H-bonds where the water molecule only interacts with the polar portion of the cycloether. Different indicators of H-bonds strength, such as structural and spectroscopic data, electron charge density, population analysis, hyperconjugation energy and charge transference, consistently showed significant cooperative effects in bifunctional H-bonds. From the AIM, as well as from the NBO analysis, the obtained results allowed us to state that in the monohydrated six-membered cycloether, where the water molecule plays a dual role, as proton acceptor and proton donor, a mutual reinforcement of the two interactions occurs. Because of this feature, the complexes engaged by bifunctional hydrogen bonds are more stabilized than the complexes linked by conventional hydrogen bonds.

  5. Variational Convergence Of Bifunctions: Motivating Applications

    DTIC Science & Technology

    2011-01-01

    Research Office (ARO) W911NS1010246 and Fondap- Matematicas Aplicadas, Universidad de Chile 1 Variational convergence of bifunctions The analysis of...The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing...problems. 1 . REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those

  6. Monolithic column modified with bifunctional ionic liquid and styrene stationary phases for capillary electrochromatography.

    PubMed

    Mao, Zhenkun; Chen, Zilin

    2017-01-13

    A novel monolithic column with ionic liquid and styrene-modified bifunctional group was prepared for capillary electrochromatography (CEC) by in situ copolymerization in a ternary porogenic solvent. Ionic liquid (1-allyl-methylimidazolium chloride, AlMeIm(+)Cl(-)) and styrene served as the bifunctional monomer, while ethylene dimethacrylate (EDMA) was used as the cross-linker. The monomer of AlMeIm(+)Cl(-) was introduced as anion-exchange group, while styrene as hydrophobic and aromatic group; the similar conjugated structure in AlMeIm(+)Cl(-) and styrene was beneficial for offeing obvious synergistic effect. The bifunctional stationary phase possessed powerful selectivity for the separation of neutral compounds, acidic analytes and phenols. The highest column efficiency was 2.70×10(5) platesm(-1) (theoretical plates, N) for toluene. A relatively strong electroosmotic flow (EOF) was obtained in a wide range of pH values from 2.0 to 12.0, which could successfully achieve the rapid separation of the analytes within 10min. The proposed monolithic column was characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR). The results indicated that the resultant monolithic column had good permeability and excellent mechanical stability. Good reproducibility was obtained with relative standard deviations (RSDs) of the retention time in the range of 0.24-0.47% and 0.81-2.17% for run-to-run (n=5) and day-to-day (n=5), while 1.09-2.70% and 0.98-1.70% for column-to-column (n=3) and batch-to-batch (n=3), respectively. The combination of AlMeIm(+)Cl(-) and styrene was a promising option in the fabrication of the organic polymer monolithic column. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Dispersion polymerization of methyl methacrylate with a novel bifunctional polyurethane macromonomer as a reactive stabilizer.

    PubMed

    Shim, Sang Eun; Jung, Hyejun; Lee, Kangseok; Lee, Jung Min; Choe, Soonja

    2004-11-15

    A novel macromonomer of vinyl-terminated bifunctional polyurethane was synthesized and applied to the dispersion polymerization of MMA in ethanol. The existence of the vinyl terminal groups and the grafted macromonomer with PMMA was verified using 1H NMR and 13C NMR. The stable and monodisperse PMMA microspheres having a weight-average diameter of 5.09 microm and a good uniformity of 1.01 were obtained with 20 wt% polyurethane macromonomer. The molecular weight increased, but the size of the synthesized PMMA microspheres decreased with the macromonomer concentration since the macromonomer acts as a reactive stabilizer in dispersion polymerization. Furthermore, the molecular weight of the PMMA prepared by the use of the macromonomer was approximately twofold higher than that prepared by a conventional stabilizer, poly(N-vinylpyrrolidone). The higher molecular weight is thought to originate from the grafting and a possibly slight crosslinking of PMMA molecules due to the bifunctional reactive groups at the ends of macromonomer chains.

  8. Development of bifunctional photoactivatable benzophenone probes and their application to glycoside substrates.

    PubMed

    Qvit, Nir; Monderer-Rothkoff, Galya; Ido, Ayelet; Shalev, Deborah E; Amster-Choder, Orna; Gilon, Chaim

    2008-01-01

    Photoaffinity labeling is used to covalently attach ligands to macromolecules to determine their spatial arrangement and structure. Benzophenone (BP) groups are widely used for covalent photoaffinity labeling and for probing protein interactions. We developed bifunctional BP photoactivatable derivatives using three different general chemical approaches. In addition to the photoaffinity reactivity of the BP, these derivatives contain an additional group: A radioactive tracer for biological studies, or an N-ethylmaleimide group as an additional crosslinker, or a biotin group to be used during purification and characterization of probe-protein complexes using the high-affinity biotin-avidin interaction. A model series of photoaffinity labeling probes was synthesized based on the arbutin ligand. These compounds can be used as probes to study the arbutin binding site of microbial beta-glucoside transporters by photolabeling residues in its vicinity. The second functionality provides additional options for studying proteins and binding sites. The probes were developed using different methodologies: (i) a diazotation reaction; (ii) protecting group methodology; and (iii) solid-phase synthesis. These procedures are general and provide a simple and versatile approach for synthesizing bifunctional BP ligands, as demonstrated here on arbutin. Copyright (c) 2008 Wiley Periodicals, Inc.

  9. The 5'-GNC site for DNA interstrand cross-linking is conserved for diepoxybutane stereoisomers.

    PubMed

    Millard, Julie T; Hanly, Trevor C; Murphy, Kris; Tretyakova, Natalia

    2006-01-01

    The bifunctional alkylating agent 1,2,3,4-diepoxybutane forms interstrand DNA-DNA cross-links between the N7 positions of deoxyguanosine residues on opposite strands of the duplex. For racemic diepoxybutane, these cross-links predominate within 5'-GNC/3'CNG sequences, where N is any nucleotide. We used denaturing polyacrylamide gel electrophoresis (dPAGE) to examine the role of stereochemistry in the cross-linking reaction, subjecting a restriction fragment to cross-linking with S,S-DEB, R,R-DEB, or meso-DEB. DNA cross-links generated by each isomer were isolated by dPAGE, and the sites of cross-linking were identified by sequencing gel analysis of DNA fragments generated by hot piperidine cleavage. We found that the 5'-GNC consensus sequence of racemic DEB is conserved, but the efficiencies of cross-linking vary, with S,S- > R,R- > meso-DEB. These results help explain the observed differences between the biological activities of DEB stereoisomers.

  10. Chemical and radiation crosslinked polymer electrolyte membranes prepared from radiation-grafted ETFE films for DMFC applications

    NASA Astrophysics Data System (ADS)

    Chen, Jinhua; Asano, Masaharu; Yamaki, Tetsuya; Yoshida, Masaru

    To develop a highly chemically stable polymer electrolyte membrane for application in a direct methanol fuel cell (DMFC), doubly crosslinked membranes were prepared by chemical crosslinking using bifunctional monomers, such as divinylbenzene (DVB) and bis(p, p-vinyl phenyl) ethane (BVPE), and by radiation crosslinking. The membranes were prepared by grafting of m, p-methylstyrene (MeSt) and p-tert-butylstyrene (tBuSt) into poly(ethylene- co-tetrafluoroethylene) (ETFE) films and subsequent sulfonation. The effects of the DVB and BVPE crosslinkers on the grafting kinetics and the properties of the prepared membranes, such as water uptake, proton conductivity and chemical stability were investigated. Radiation crosslinking was introduced by irradiation of the ETFE base film, the grafted film or the sulfonated membrane. The membrane crosslinked by DVB and BVPE crosslinkers and post-crosslinked by γ-ray irradiation of the corresponding grafted film possessed the highest chemical stability among the prepared membranes, a significantly lower methanol permeability compared to Nafion ® membranes, and a better DMFC performance for high methanol feed concentration. Therefore, this doubly crosslinked membrane was promising for application in a DMFC where relatively high methanol concentration could be fed.

  11. Bifunctional Gallium-68 Chelators: Past, Present, and Future.

    PubMed

    Spang, Philipp; Herrmann, Christian; Roesch, Frank

    2016-09-01

    This article reviews the development of bifunctional chelates for synthesising (68)Ga radiopharmaceuticals. It structures the chelates into groups of macrocycles, nonmacrocycles, and chimeric derivatives. The most relevant bifunctional chelates are discussed in chelate structure, parameters of (68)Ga-labeling, and stability of the (68)Ga-chelate complexes. Furthermore those derivatives are included, where (67)Ga was applied instead of (68)Ga. A particular feature discussed is the ability of certain bifunctional chelate structures to function in kit-type preparation of the (68)Ga radiopharmaceuticals. Currently, nonmacrocyclic and chimeric derivates attract particular attention such as THP-derivates and DATA-derivates. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Bifunctional acoustic metamaterial lens designed with coordinate transformation

    NASA Astrophysics Data System (ADS)

    Zhu, Rongrong; Ma, Chu; Zheng, Bin; Musa, Muhyiddeen Yahya; Jing, Liqiao; Yang, Yihao; Wang, Huaping; Dehdashti, Shahram; Fang, Nicholas X.; Chen, Hongsheng

    2017-03-01

    We propose a method to design bifunctional acoustic lens using acoustic metamaterials that possess separate functions at different directions. The proposed bifunctional acoustic lens can be implemented in practice with subwavelength unit cells exhibiting effective anisotropic parameters. With this methodology, we experimentally demonstrate an acoustic Luneburg-fisheye lens at operational frequencies from 6300 Hz to 7300 Hz. Additionally, a bifunctional acoustic square lens is proposed with different focal lengths for multi directions. This method paves the way to manipulating acoustic energy flows with functional lenses.

  13. Acid-base bifunctional catalytic surfaces for nucleophilic addition reactions.

    PubMed

    Motokura, Ken; Tada, Mizuki; Iwasawa, Yasuhiro

    2008-09-01

    This article illustrates the modification of oxide surfaces with organic amine functional groups to create acid-base bifunctional catalysts, summarizing our previous reports and also presenting new data. Immobilization of organic amines as bases on inorganic solid-acid surfaces afforded highly active acid-base bifunctional catalysts, which enabled various organic transformations including C--C coupling reactions, though these reactions did not proceed with either the homogeneous amine precursors or the acidic supports alone. Spectroscopic characterization, such as by solid-state MAS NMR and FTIR, revealed not only the interactions between acidic and basic sites but also bifunctional catalytic reaction mechanisms.

  14. Crosslinked, porous, polyacrylate beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor)

    1977-01-01

    Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree. C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.

  15. Crosslinked, porous, polyacrylate beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping Siao (Inventor); Dreyer, William J. (Inventor)

    1976-01-01

    Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree.C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.

  16. Iron Group Hydrides in Noyori Bifunctional Catalysis.

    PubMed

    Morris, Robert H

    2016-12-01

    This is an overview of the hydride-containing catalysts prepared in the Morris group for the efficient hydrogenation of simple ketones, imines, nitriles and esters and the asymmetric hydrogenation and transfer hydrogenation of prochiral ketones and imines. The work was inspired by and makes use of Noyori metal-ligand bifunctional concepts involving the hydride-ruthenium amine-hydrogen HRuNH design. It describes the synthesis and some catalytic properties of hydridochloro, dihydride and amide complexes of ruthenium and in one case, osmium, with monodentate, bidentate and tetradentate phosphorus and nitrogen donor ligands. The iron hydride that has been identified in a very effective asymmetric transfer hydrogenation process is also mentioned. The link between the HMNH structure and the sense of enantioinduction is demonstrated by use of simple transition state models.

  17. Targeting Prostate Cancer with Bifunctional Modulators of the Androgen Receptor

    DTIC Science & Technology

    2015-06-01

    Award Number: W81XWH-11-1-0692 TITLE: Targeting Prostate Cancer with Bifunctional Modulators of the Androgen Receptor PRINCIPAL INVESTIGATOR: Anna ...Bifunctional Modulators of the Sb. GRANT NUMBER Androgen Receptor W81XWH-11-1-0692 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Anna ... Carey , N.; Finn, P.; Collins, L.; Tumber, A.; Ritchie, J.; Jensen, P.; Lichenstein, H.; Sehested, M. Determination of the class and isoform

  18. Nanoparticle Superlattices as Efficient Bifunctional Electrocatalysts for Water Splitting.

    PubMed

    Li, Jun; Wang, Yongcheng; Zhou, Tong; Zhang, Hui; Sun, Xuhui; Tang, Jing; Zhang, Lijuan; Al-Enizi, Abdullah M; Yang, Zhongqin; Zheng, Gengfeng

    2015-11-18

    The solar-driven water splitting process is highly attractive for alternative energy utilization, while developing efficient, earth-abundant, bifunctional catalysts for both oxygen evolution reaction and hydrogen evolution reaction has remained as a major challenge. Herein, we develop an ordered CoMnO@CN superlattice structure as an efficient bifunctional water-splitting electrocatalyst, in which uniform Co-Mn oxide (CoMnO) nanoparticles are coated with a thin, continuous nitrogen-doped carbon (CN) framework. The CoMnO nanoparticles enable optimized OER activity with effective electronic structure configuration, and the CN framework serves as an excellent HER catalyst. Importantly, the ordered superlattice structure is beneficial for enhanced reactive sites, efficient charge transfer, and structural stability. This bifunctional superlattice catalyst manifests optimized current densities and electrochemical stability in overall water splitting, outperforming most of the previously reported single- or bifunctional electrocatalysts. Combining with a silicon photovoltaic cell, this CoMnO@CN superlattice bifunctional catalyst enables unassisted solar water splitting continuously for ∼5 days with a solar-to-hydrogen conversion efficiency of ∼8.0%. Our discovery suggests that these transition metal oxide-based superlattices may serve as a unique structure modality for efficient bifunctional water splitting electrocatalysts with scale-up potentials.

  19. A new approach to wastewater remediation based on bifunctional electrodes.

    PubMed

    Asmussen, Robert Matthew; Tian, Min; Chen, Aicheng

    2009-07-01

    Here we report an a novel approach, the marriage of photocatalytic degradation and electrochemical oxidation, to wastewater remediation based on the use of bifunctional electrodes. To illustrate this innovative technique, TiO2/Ti/ Ta2O5-IrO2 bifunctional electrodes were prepared using a facile thermal decomposition technique and employed in this study. The TiO2 photocatalyst was coated on one side of the Ti substrate, while the Ta2O5-IrO2 electrocatalytic thin film was coated on the other side. The fabricated bifunctional electrodes were characterized by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The performance of the bifunctional electrodes was tested using both 4-nitrophenol (4-NPh) and 2-nitrophenol (2-NPh) as model pollutants. Our study demonstrates that the prepared bifunctional electrodes exhibit high efficiency for both 4-NPh and 2-NPh degradation. In the degradation of 4-NPh a rate constant of 1.06 x 10(-2) min(-1) was created and a rate constant of 1.93 x 10(-2) min(-1) was produced for 2-NPh by the combination of the photochemical and electrochemical oxidation on the novel bifunctional electrodes, quadruple the rate constant created by the individual photochemical and photoelectrochemical methods. The innovative approach described in this study provides a very promising and energy efficient environmentally friendly technology for water purification and waste effluent treatment.

  20. Microbes encapsulated within crosslinkable polymers

    DOEpatents

    Chidambaram, Devicharan; Liu, Ying; Rafailovich, Miriam H

    2013-02-05

    The invention relates to porous films comprising crosslinked electrospun hydrogel fibers. Viable microbes are encapsulated within the crosslinked electrospun hydrogel fibers. The crosslinked electrospun hydrogel fibers are water insoluble and permeable. The invention also relates to methods of making and using such porous films.

  1. Preparation of ordered and crosslinked films from liquid crystalline vinyl ether monomers

    SciTech Connect

    Andersson, H.; Sahlen, F.; Gedde, U.W.; Hult, A.

    1993-12-31

    Highly ordered densely crosslinked liquid crystalline poly(vinyl ether) films have been prepared by in-situ photopolymerization of oriented bifunctional mesogenic vinyl ether monomers. Orientation was achieved either by a simple surface treatment, using an unidirectionally rubbed polyimide film or by a magnetic field. Polymerization from various monomer phases resulted in LC polymer network films with different molecular organizations. The films were analyzed with small-angle X-ray scattering, polarized light microscopy and infrared-dichroism measurements. It was shown that films with nematic, smectic A and smectic B structures were obtained, the latter having a very high degree of orientation.

  2. AmpH, a Bifunctional dd-Endopeptidase and dd-Carboxypeptidase of Escherichia coli▿

    PubMed Central

    González-Leiza, Silvia M.; de Pedro, Miguel A.; Ayala, Juan A.

    2011-01-01

    In Escherichia coli, low-molecular-mass penicillin-binding proteins (LMM PBPs) are important for correct cell morphogenesis. These enzymes display dd-carboxypeptidase and/or dd-endopeptidase activities associated with maturation and remodeling of peptidoglycan (PG). AmpH has been classified as an AmpH-type class C LMM PBP, a group closely related to AmpC β-lactamases. AmpH has been associated with PG recycling, although its enzymatic activity remained uncharacterized until now. Construction and purification of His-tagged AmpH from E. coli permitted a detailed study of its enzymatic properties. The N-terminal export signal of AmpH is processed, but the protein remains membrane associated. The PBP nature of AmpH was demonstrated by its ability to bind the β-lactams Bocillin FL (a fluorescent penicillin) and cefmetazole. In vitro assays with AmpH and specific muropeptides demonstrated that AmpH is a bifunctional dd–endopeptidase and dd-carboxypeptidase. Indeed, the enzyme cleaved the cross-linked dimers tetrapentapeptide (D45) and tetratetrapeptide (D44) with efficiencies (kcat/Km) of 1,200 M−1 s−1 and 670 M−1 s−1, respectively, and removed the terminal d-alanine from muropeptides with a C-terminal d-Ala-d-Ala dipeptide. Both dd-peptidase activities were inhibited by 40 μM cefmetazole. AmpH also displayed a weak β-lactamase activity for nitrocefin of 1.4 × 10−3 nmol/μg protein/min, 1/1,000 the rate obtained for AmpC under the same conditions. AmpH was also active on purified sacculi, exhibiting the bifunctional character that was seen with pure muropeptides. The wide substrate spectrum of the dd-peptidase activities associated with AmpH supports a role for this protein in PG remodeling or recycling. PMID:22001512

  3. Sorption and detoxification of toxic compounds by a bifunctional organoclay.

    PubMed

    Groisman, Ludmila; Rav-Acha, Chaim; Gerstl, Zev; Mingelgrin, Uri

    2004-01-01

    Organoclays are excellent sorbents for nonionic contaminants and therefore may have many environmental applications. A major limitation on the use of organoclays is that the contaminant merely changes its location from one environmental compartment to another while still remaining intact. In this study, a new type of organoclay, termed a bifunctional organoclay, has been prepared. It is able not only to sorb organophosphate pesticides, but also to catalyze their hydrolysis, and thereby detoxify them. The bifunctional organoclay prepared in this study is based on sodium montmorillonite, in which the inorganic counter ions are replaced by N-decyl-N,N-dimethyl-N-(2-aminoethyl) ammonium (DDMAEA). The detoxifying capacity of this organoclay for two organophosphate pesticides, methyl parathion [O,O-dimethyl O-(p-nitrophenyl) thionophosphate] and tetrachlorvinphos [2-chloro-1-(2,4,5-trichlorophenyl)ethenyl dimethyl phosphate], was demonstrated. It was shown that although the sorption of these pesticides on the bifunctional organoclay is very similar to that on N-decyl-N,N,N-trimethyl ammonium (DTMA) organoclay (the corresponding nonbifunctional organoclay), the hydrolysis of these pesticides is substantially enhanced only by the bifunctional organoclay. The half-life for the hydrolysis of the investigated pesticides in the presence of the bifunctional organoclay is about 12 times less than for their spontaneous hydrolysis, and the enhancement is even more pronounced relative to the hydrolysis of these pesticides in the presence of the DTMA organoclay (which actually inhibits their hydrolysis). Based on kinetic measurements, the pK(a) of the ethylamino group of the bifunctional organoclay was estimated to be around 9.0. It is postulated that the catalytic effect of the bifunctional organoclay can be attributed to a nucleophilic attack of the unprotonated ethylamino group of the organoclay on the organophosphate ester.

  4. Cross-linking connectivity in bone collagen fibrils: the COOH-terminal locus of free aldehyde

    NASA Technical Reports Server (NTRS)

    Otsubo, K.; Katz, E. P.; Mechanic, G. L.; Yamauchi, M.

    1992-01-01

    Quantitative analyses of the chemical state of the 16c residue of the alpha 1 chain of bone collagen were performed on samples from fetal (4-6-month embryo) and mature (2-3 year old) bovine animals. All of this residue could be accounted for in terms of three chemical states, in relative amounts which depended upon the age of the animal. Most of the residue was incorporated into either bifunctional or trifunctional cross-links. Some of it, however, was present as free aldehyde, and the content increased with maturation. This was established by isolating and characterizing the aldehyde-containing peptides generated by tryptic digestion of NaB3H4-reduced mature bone collagen. We have concluded that the connectivity of COOH-terminal cross-linking in bone collagen fibrils changes with maturation in the following way: at first, each 16c residue in each of the two alpha 1 chains of the collagen molecule is incorporated into a sheet-like pattern of intermolecular iminium cross-links, which stabilizes the young, nonmineralized fibril as a whole. In time, some of these labile cross-links maturate into pyridinoline while others dissociate back to their precursor form. The latter is likely due to changes in the molecular packing brought about by the mineralization of the collagen fibrils. The resultant reduction in cross-linking connectivity may provide a mechanism for enhancing certain mechanical characteristics of the skeleton of a mature animal.

  5. 3D cell entrapment in crosslinked thiolated gelatin-poly(ethylene glycol) diacrylate hydrogels

    PubMed Central

    Fu, Yao; Xu, Kedi; Zheng, Xiaoxiang; Giacomin, A. Jeffrey; Mix, Adam W.; Kao, Weiyuan John

    2012-01-01

    The combined use of natural ECM components and synthetic materials offers an attractive alternative to fabricate hydrogel-based tissue engineering scaffolds to study cell-matrix interactions in three-dimensions (3D). A facile method was developed to modify gelatin with cysteine via a bifunctional PEG linker, thus introducing free thiol groups to gelatin chains. A covalently crosslinked gelatin hydrogel was fabricated using thiolated gelatin and poly(ethylene glycol) diacrylate (PEGdA) via thiol-ene reaction. Unmodified gelatin was physically incorporated in a PEGdA-only matrix for comparison. We sought to understand the effect of crosslinking modality on hydrogel physicochemical properties and the impact on 3D cell entrapment. Compared to physically incorporated gelatin hydrogels, covalently crosslinked gelatin hydrogels displayed higher maximum weight swelling ratio (Qmax), higher water content, significantly lower cumulative gelatin dissolution up to 7 days, and lower gel stiffness. Furthermore, fibroblasts encapsulated within covalently crosslinked gelatin hydrogels showed extensive cytoplasmic spreading and the formation of cellular networks over 28 days. In contrast, fibroblasts encapsulated in the physically incorporated gelatin hydrogels remained spheroidal. Hence, crosslinking ECM protein with synthetic matrix creates a stable scaffold with tunable mechanical properties and with long-term cell anchorage points, thus supporting cell attachment and growth in the 3D environment. PMID:21955690

  6. Astaxanthin diferulate as a bifunctional antioxidant.

    PubMed

    Papa, T B R; Pinho, V D; do Nascimento, E S P; Santos, W G; Burtoloso, A C B; Skibsted, L H; Cardoso, D R

    2015-01-01

    Astaxanthin when esterified with ferulic acid is better singlet oxygen quencher with k2 = (1.58 ± 0.1) 10(10) L mol(-1)s(-1) in ethanol at 25°C compared with astaxanthin with k2 = (1.12 ± 0.01) 10(9) L mol(-1)s(-1). The ferulate moiety in the astaxanthin diester is a better radical scavenger than free ferulic acid as seen from the rate constant of scavenging of 1-hydroxyethyl radicals in ethanol at 25°C with a second-order rate constant of (1.68 ± 0.1) 10(8) L mol(-1)s(-1) compared with (1.60 ± 0.03) 10(7) L mol(-1)s(-1) for the astaxanthin:ferulic acid mixture, 1:2 equivalents. The mutual enhancement of antioxidant activity for the newly synthetized astaxanthin diferulate becoming a bifunctional antioxidant is rationalized according to a two-dimensional classification plot for electron donation and electron acceptance capability.

  7. Peroxisomal D-bifunctional protein deficiency

    PubMed Central

    Lines, Matthew A.; Jobling, Rebekah; Brady, Lauren; Marshall, Christian R.; Scherer, Stephen W.; Rodriguez, Amadeo R.; Lee, Liesly; Lang, Anthony E.; Mestre, Tiago A.; Wanders, Ronald J.A.; Ferdinandusse, Sacha

    2014-01-01

    Objective: To determine the causative genetic lesion in 3 adult siblings with a slowly progressive, juvenile-onset phenotype comprising cerebellar atrophy and ataxia, intellectual decline, hearing loss, hypogonadism, hyperreflexia, a demyelinating sensorimotor neuropathy, and (in 2 of 3 probands) supratentorial white matter changes, in whom numerous prior investigations were nondiagnostic. Methods: The patients’ initial clinical assessment included history and physical examination, cranial MRI, and nerve conduction studies. We performed whole-exome sequencing of all 3 probands, followed by variant annotation and selection of rare, shared, recessive coding changes to identify the gene responsible. We next performed a panel of peroxisomal investigations in blood and cultured fibroblasts, including assessment of D-bifunctional protein (DBP) stability and activity by immunoblot and enzymologic methods, respectively. Results: Exome sequencing identified compound heterozygous mutations in HSD17B4, encoding peroxisomal DBP, in all 3 probands. Both identified mutations alter a conserved residue within the active site of DBP’s enoyl-CoA hydratase domain. Routine peroxisomal screening tests, including very long-chain fatty acids and phytanic acid, were normal. DBP enzymatic activity was markedly reduced. Conclusion: Exome sequencing provides a powerful and elegant tool in the specific diagnosis of “mild” or “atypical” neurometabolic disorders. Given the broad differential diagnosis and the absence of detectable biochemical abnormalities in blood, molecular testing of HSD17B4 should be considered as a first-line investigation in patients with compatible features. PMID:24553428

  8. In vitro murein peptidoglycan synthesis by dimers of the bifunctional transglycosylase-transpeptidase PBP1B from Escherichia coli.

    PubMed

    Bertsche, Ute; Breukink, Eefjan; Kast, Thomas; Vollmer, Waldemar

    2005-11-11

    PBP1B is a major bifunctional murein (peptidoglycan) synthase catalyzing transglycosylation and transpeptidation reactions in Escherichia coli. PBP1B has been shown to form dimers in vivo. The K(D) value for PBP1B dimerization was determined by surface plasmon resonance. The effect of the dimerization of PBP1B on its activities was studied with a newly developed in vitro murein synthesis assay with radioactively labeled lipid II precursor as substrate. Under conditions at which PBP1B dimerizes, the enzyme synthesized murein with long glycan strands (>25 disaccharide units) and with almost 50% of the peptides being part of cross-links. PBP1B was also capable of synthesizing trimeric muropeptide structures. Tri-, tetra-, and pentapeptide compounds could serve as acceptors in the PBP1B-catalyzed transpeptidation reaction.

  9. Crosslinking biopolymers for biomedical applications.

    PubMed

    Reddy, Narendra; Reddy, Roopa; Jiang, Qiuran

    2015-06-01

    Biomaterials made from proteins, polysaccharides, and synthetic biopolymers are preferred but lack the mechanical properties and stability in aqueous environments necessary for medical applications. Crosslinking improves the properties of the biomaterials, but most crosslinkers either cause undesirable changes to the functionality of the biopolymers or result in cytotoxicity. Glutaraldehyde, the most widely used crosslinking agent, is difficult to handle and contradictory views have been presented on the cytotoxicity of glutaraldehyde-crosslinked materials. Recently, poly(carboxylic acids) that can crosslink in both dry and wet conditions have been shown to provide the desired improvements in tensile properties, increase in stability under aqueous conditions, and also promote cell attachment and proliferation. Green chemicals and newer crosslinking approaches are necessary to obtain biopolymeric materials with properties desired for medical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Shadow enhancers enable Hunchback bifunctionality in the Drosophila embryo.

    PubMed

    Staller, Max V; Vincent, Ben J; Bragdon, Meghan D J; Lydiard-Martin, Tara; Wunderlich, Zeba; Estrada, Javier; DePace, Angela H

    2015-01-20

    Hunchback (Hb) is a bifunctional transcription factor that activates and represses distinct enhancers. Here, we investigate the hypothesis that Hb can activate and repress the same enhancer. Computational models predicted that Hb bifunctionally regulates the even-skipped (eve) stripe 3+7 enhancer (eve3+7) in Drosophila blastoderm embryos. We measured and modeled eve expression at cellular resolution under multiple genetic perturbations and found that the eve3+7 enhancer could not explain endogenous eve stripe 7 behavior. Instead, we found that eve stripe 7 is controlled by two enhancers: the canonical eve3+7 and a sequence encompassing the minimal eve stripe 2 enhancer (eve2+7). Hb bifunctionally regulates eve stripe 7, but it executes these two activities on different pieces of regulatory DNA--it activates the eve2+7 enhancer and represses the eve3+7 enhancer. These two "shadow enhancers" use different regulatory logic to create the same pattern.

  11. Bifunctional Oxygen Reaction Catalysis of Quadruple Manganese Perovskites.

    PubMed

    Yamada, Ikuya; Fujii, Hiroshi; Takamatsu, Akihiko; Ikeno, Hidekazu; Wada, Kouhei; Tsukasaki, Hirofumi; Kawaguchi, Shogo; Mori, Shigeo; Yagi, Shunsuke

    2017-01-01

    Bifunctional electrocatalysts for oxygen evolution/reduction reaction (OER/ORR) are desirable for the development of energy conversion technologies. It is discovered that the manganese quadruple perovskites CaMn7 O12 and LaMn7 O12 show bifunctional catalysis in the OER/ORR. A possible origin of the high OER activity is the unique surface structure through corner-shared planar MnO4 and octahedral MnO6 units to promote direct OO bond formations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Novel bifunctional natriuretic peptides as potential therapeutics.

    PubMed

    Dickey, Deborah M; Burnett, John C; Potter, Lincoln R

    2008-12-12

    Synthetic atrial natriuretic peptide (carperitide) and B-type natriuretic peptide (BNP; nesiritide) are used to treat congestive heart failure. However, despite beneficial cardiac unloading properties, reductions in renal perfusion pressures limit their clinical effectiveness. Recently, CD-NP, a chimeric peptide composed of C-type natriuretic peptide (CNP) fused to the C-terminal tail of Dendroaspis natriuretic peptide (DNP), was shown to be more glomerular filtration rate-enhancing than BNP in dogs. However, the molecular basis for the increased responsiveness was not determined. Here, we show that the DNP tail has a striking effect on CNP, converting it from a non-agonist to a partial agonist of natriuretic peptide receptor (NPR)-A while maintaining the ability to activate NPR-B. This effect is specific for human receptors because CD-NP was only a slightly better activator of rat NPR-A due to the promiscuous nature of CNP in this species. Interesting, the DNP tail alone had no effect on any NPR even though it is effective in vivo. To further increase the potency of CD-NP for NPR-A, we converted two different triplet sequences within the CNP ring to their corresponding residues in BNP. Both variants demonstrated increased affinity and full agonist activity for NPR-A, whereas one was as potent as any NPR-A activator known. In contrast to a previous report, we found that DNP binds the natriuretic peptide clearance receptor (NPR-C). However, none of the chimeric peptides bound NPR-C with significantly higher affinity than endogenous ligands. We suggest that bifunctional chimeric peptides represent a new generation of natriuretic peptide therapeutics.

  13. Electrocatalysts for bifunctional oxygen/air electrodes

    NASA Astrophysics Data System (ADS)

    Nikolova, V.; Iliev, P.; Petrov, K.; Vitanov, T.; Zhecheva, E.; Stoyanova, R.; Valov, I.; Stoychev, D.

    Oxygen reduction and evolution have been studied with respect to the development of bifunctional air/oxygen electrode (BFE). Three groups of catalysts have been prepared: (i) Cu xCo 3- xO 4 by thermal decomposition of mixed nitrate and carbonate precursors; (ii) thin films of Co-Ni-Te-O and Co-Te-O were deposited by vacuum co-evaporation of Co, Ni and TeO 2 and (iii) Co xO v/ZrO 2 films were obtained by electrochemical deposition. The electrochemical behavior of the chemically synthesized catalysts was studied on classical bilayered gas diffusion electrodes (GDEs), where the catalyst is in form of powder. The GDE catalyzed with vacuum deposited catalysts was prepared by direct deposition of the catalyst on gas-supplying layer, thus creating a ready-to-use gas diffusion electrode. Catalysts prepared electrochemically were first deposited on Ni foam and than pressed onto the gas-supplying layer. Different catalysts deposited on classical and originally designed GDEs were compared by their electrochemical performances. Cu 0.3Co 2.7O 4 deposited on a classical bilayered GDE with loading of 50 mg cm -2 exhibits stable current-voltage characteristics after 200 charge-discharge cycles in a real metal hydride-air battery. The electrochemically and vacuum deposited Co xO v/ZrO 2, Co-Ni-Te-O and Co-Te-O films exhibit much higher mass activity compared to Cu 0.2Co 2.8O 4 for both oxygen reduction and evolution reactions. The difference is that the loading of electrochemically and vacuum deposited films is 0.06 mg cm -2 only, which is a substantial advantage from a practical viewpoint.

  14. Bifunctional Homodimeric Triokinase/FMN Cyclase

    PubMed Central

    Rodrigues, Joaquim Rui; Couto, Ana; Cabezas, Alicia; Pinto, Rosa María; Ribeiro, João Meireles; Canales, José; Costas, María Jesús; Cameselle, José Carlos

    2014-01-01

    Mammalian triokinase, which phosphorylates exogenous dihydroxyacetone and fructose-derived glyceraldehyde, is neither molecularly identified nor firmly associated to an encoding gene. Human FMN cyclase, which splits FAD and other ribonucleoside diphosphate-X compounds to ribonucleoside monophosphate and cyclic X-phosphodiester, is identical to a DAK-encoded dihydroxyacetone kinase. This bifunctional protein was identified as triokinase. It was modeled as a homodimer of two-domain (K and L) subunits. Active centers lie between K1 and L2 or K2 and L1: dihydroxyacetone binds K and ATP binds L in different subunits too distant (≈14 Å) for phosphoryl transfer. FAD docked to the ATP site with ribityl 4′-OH in a possible near-attack conformation for cyclase activity. Reciprocal inhibition between kinase and cyclase reactants confirmed substrate site locations. The differential roles of protein domains were supported by their individual expression: K was inactive, and L displayed cyclase but not kinase activity. The importance of domain mobility for the kinase activity of dimeric triokinase was highlighted by molecular dynamics simulations: ATP approached dihydroxyacetone at distances below 5 Å in near-attack conformation. Based upon structure, docking, and molecular dynamics simulations, relevant residues were mutated to alanine, and kcat and Km were assayed whenever kinase and/or cyclase activity was conserved. The results supported the roles of Thr112 (hydrogen bonding of ATP adenine to K in the closed active center), His221 (covalent anchoring of dihydroxyacetone to K), Asp401 and Asp403 (metal coordination to L), and Asp556 (hydrogen bonding of ATP or FAD ribose to L domain). Interestingly, the His221 point mutant acted specifically as a cyclase without kinase activity. PMID:24569995

  15. Epoxy Cross-Linked Collagen and Collagen-Laminin Peptide Hydrogels as Corneal Substitutes

    PubMed Central

    Koh, Li Buay; Islam, Mohammad Mirazul; Mitra, Debbie; Noel, Christopher W.; Merrett, Kimberley; Odorcic, Silvia; Fagerholm, Per; Jackson, William. Bruce; Liedberg, Bo; Phopase, Jaywant; Griffith, May

    2013-01-01

    A bi-functional epoxy-based cross-linker, 1,4-Butanediol diglycidyl ether (BDDGE), was investigated in the fabrication of collagen based corneal substitutes. Two synthetic strategies were explored in the preparation of the cross-linked collagen scaffolds. The lysine residues of Type 1 porcine collagen were directly cross-linked using l,4-Butanediol diglycidyl ether (BDDGE) under basic conditions at pH 11. Alternatively, under conventional methodology, using both BDDGE and 1-Ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS) as cross-linkers, hydrogels were fabricated under acidic conditions. In this latter strategy, Cu(BF4)2·XH2O was used to catalyze the formation of secondary amine bonds. To date, we have demonstrated that both methods of chemical cross-linking improved the elasticity and tensile strength of the collagen implants. Differential scanning calorimetry and biocompatibility studies indicate comparable, and in some cases, enhanced properties compared to that of the EDC/NHS controls. In vitro studies showed that human corneal epithelial cells and neuronal progenitor cell lines proliferated on these hydrogels. In addition, improvement of cell proliferation on the surfaces of the materials was observed when neurite promoting laminin epitope, IKVAV, and adhesion peptide, YIGSR, were incorporated. However, the elasticity decreased with peptide incorporation and will require further optimization. Nevertheless, we have shown that epoxy cross-linkers should be further explored in the fabrication of collagen-based hydrogels, as alternatives to or in conjunction with carbodiimide cross-linkers. PMID:24956085

  16. Formation of deoxyguanosine cross-links from calf thymus DNA treated with acrolein and 4-hydroxy-2-nonenal.

    PubMed

    Kozekov, Ivan D; Turesky, Robert J; Alas, Guillermo R; Harris, Constance M; Harris, Thomas M; Rizzo, Carmelo J

    2010-11-15

    Acrolein (AC) and 4-hydroxy-2-nonenal (HNE) are endogenous bis-electrophiles that arise from the oxidation of polyunsaturated fatty acids. AC is also found in high concentrations in cigarette smoke and automobile exhaust. These reactive α,β-unsaturated aldehyde (enal) covalently modify nucleic acids, to form exocyclic adducts, where the three-carbon hydroxypropano unit bridges the N1 and N(2) positions of deoxyguanosine (dG). The bifunctional nature of these enals allows them to undergo reaction with a second nucleophilic group and form DNA cross-links. These cross-linked enal adducts are likely to contribute to the genotoxic effects of both AC and HNE. We have developed a sensitive mass spectrometric method to detect cross-linked adducts of these enals in calf thymus DNA (CT DNA) treated with AC or HNE. The AC and HNE cross-linked adducts were measured by the stable isotope dilution method, employing a linear quadrupole ion trap mass spectrometer and consecutive reaction monitoring at the MS(3) or MS(4) scan stage. The lower limit of quantification of the cross-linked adducts is ∼1 adduct per 10(8) DNA bases, when 50 μg of DNA is assayed. The cross-linked adducts occur at levels that are ∼1-2% of the levels of the monomeric 1,N(2)-dG adducts in CT DNA treated with either enal.

  17. DNA Photolithography with Cinnamate Crosslinkers

    NASA Technical Reports Server (NTRS)

    Feng, Lang (Inventor); Chaikin, Paul Michael (Inventor)

    2016-01-01

    The present invention relates generally to cinnamate crosslinkers. Specifically, the present invention relates to gels, biochips, and functionalized surfaces useful as probes, in assays, in gels, and for drug delivery, and methods of making the same using a newly-discovered crosslinking configuration.

  18. Laser welding and collagen crosslinks

    SciTech Connect

    Reiser, K.M.; Last, J.A.; Small, W. IV; Maitland, D.J.; Heredia, N.J.; Da Silva, L.B.; Matthews, D.L.

    1997-02-20

    Strength and stability of laser-welded tissue may be influenced, in part, by effects of laser exposure on collagen crosslinking. We therefore studied effects of diode laser exposure (805 nm, 1-8 watts, 30 seconds) + indocyanine green dye (ICG) on calf tail tendon collagen crosslinks. Effect of ICG dye alone on crosslink content prior to laser exposure was investigated; unexpectedly, we found that ICG-treated tissue had significantly increased DHLNL and OHP, but not HLNL. Laser exposure after ICG application reduced elevated DHLNL and OHP crosslink content down to their native levels. The monohydroxylated crosslink HLNL was inversely correlated with laser output (p<0.01 by linear regression analysis). DHLNL content was highly correlated with content of its maturational product, OHP, suggesting that precursor-product relations are maintained. We conclude that: (1)ICG alone induces DHLNL and OHP crosslink formation; (2)subsequent laser exposure reduces the ICG-induced crosslinks down to native levels; (3)excessive diode laser exposure destroys normally occurring HLNL crosslinks.

  19. Laser welding and collagen crosslinks

    NASA Astrophysics Data System (ADS)

    Reiser, Karen M.; Small, Ward, IV; Maitland, Duncan J.; Heredia, Nicholas J.; Da Silva, Luiz B.; Matthews, Dennis L.; Last, Jerold A.

    1997-05-01

    The strength and stability of laser-welded tissue may be influenced, in part, by the effects of laser exposure on collagen crosslinking. We therefore studied the effects of diode laser exposure (805 nm, 1 - 8 watts, 30 seconds) plus indocyanine green dye (ICG) on calf tail tendon collagen crosslinks. The effect of ICG dye alone on crosslink content prior to laser exposure was investigated; unexpectedly, we found that ICG-treated tissue had significantly increased DHLNL and OHP, but not HLNL. Laser exposure after ICG application reduced elevated DHLNL and OHP crosslink content down to their native levels. The monohydroxylated crosslink HLNL was inversely correlated with laser output (p less than 0.01 by linear regression analysis). DHLNL content was highly correlated with content of its maturational product, OHP, suggesting that precursor-product relationships are maintained. We conclude that: (1) ICG alone induces DHLNL and OHP crosslink formation; (2) subsequent laser exposure reduces the ICG-induced crosslinks down to native levels; (3) excessive diode laser exposure destroys normally occurring HLNL crosslinks.

  20. Photochemical cross-linking of type I collagen with hydrophobic and hydrophilic 1,8-naphthalimide dyes

    NASA Astrophysics Data System (ADS)

    Judy, Millard M.; Chen, Li; Fuh, L.; Nosir, Hany R.; Jackson, Robert W.; Matthews, James Lester; Lewis, David E.; Utecht, Ronald E.; Yuan, Dongwu

    1996-05-01

    This study extends our previous studies of the photochemical cross-linking of collagen and bonding of collagenous sheets of dura mater using the hydrophobic 1,8-naphthalimide N,N'- bis-(2-({hexylamino)-5-bromo-1H-benz [de]isoquinolin-1,3(2H)-dion-6- yl]amino}ethyl)hexanediamide. We have obtained hydrophilic forms of the bifunctional molecule introducing a spacer and ligands containing alternating carbon-oxygen bonds (polyethers) wherein the oxygen moieties form hydrogen bonds. Additional hydrophilicity is attained by incorporating of an amino group (positive charge) at the end of each ligand. Ongoing studies with these forms of the bifunctional 1,8 naphthalimides have demonstrated welding of meniscal cartilage, articular cartilage, and cornea. These results suggest that the hydrophilic form of the dyes is able to penetrate readily the anionically charged proteoglycan matrix of these tissues and cross-link collagen molecules and possibly the protein cores of the proteoglycans. Gel electrophoretic studies have been performed to assess the photochemical cross-linking of these connective tissue proteins with these new forms of the paththalimide dyes.

  1. Bifunctional mesoporous silicas with clearly distinguished localization of grafted groups

    NASA Astrophysics Data System (ADS)

    Roik, N. V.; Belyakova, L. A.

    2013-12-01

    Bifunctional mesoporous silicas with clearly distinguished localization of grafted groups on the surface of particles and inside their pores were obtained by means of sol-gel synthesis with postsynthetic vapor-phase treatment in vacuum. It was found that the synthesized materials have the hexagonally ordered porous structure typical of MCM-41 type silica.

  2. Accurate measurement of psoralen-crosslinked DNA: direct biochemical measurements and indirect measurement by hybridization

    SciTech Connect

    Matsuo, N.; Ross, P.M.

    1988-11-01

    This paper evaluates methods to measure crosslinkage due to psoralen plus light in total DNA and in specific sequences. DNA exposed in cells or in vitro to a bifunctional psoralen and near ultraviolet light accumulates interstrand crosslinks. Crosslinkage is the DNA mass fraction that is attached in both strands to a crosslink. We show here biochemical methods to measure psoralen photocrosslinkage accurately in total DNA. We also describe methods to measure photocrosslinkage indirectly, in specific sequences, by nucleic acid hybridization. We show that a single 4,5',8-trimethylpsoralen (TMP) crosslink causes at least 50 kbp of alkali-denatured DNA contiguous in both strands with it to snap back into the duplex form when the denatured preparation is returned to neutral pH. This process was so efficient that the DNA was not nicked by the single-strand nuclease S1 at 100-fold excess after snapping back. Uncrosslinked DNA was digested to acid-soluble material by the enzyme. Crosslinkage therefore equals the fraction of S1-resistant nucleotide in this kind of experiment. We alkali-denatured DNA samples crosslinked to varying degrees by varying TMP concentration at constant light exposure. We then measured crosslinkage by ethidium bromide (EtBr) fluorometry at pH 11.8; by EtBr fluorometry at neutral pH of S1 digests of the DNA; and by the fraction of radioactivity remaining acid insoluble in S1-digests of DNA labeled uniformly with (3H)deoxythymidine. These assays measure distinct physical properties of crosslinked DNA. Numerical agreement is expected only when all three measurements are accurate. Under optimum conditions, the three methods yielded identical results over the range of measurement. Using alkaline EtBr fluorescence in crude cell lysates, we detected crosslinks at frequencies in the range of 1.6 X 10(-7) per base pair.

  3. Sterile Keratitis following Collagen Crosslinking.

    PubMed

    Javadi, Mohammad-Ali; Feizi, Sepehr

    2014-01-01

    To report a keratoconic eye that developed severe sterile keratitis and corneal scar after collagen crosslinking necessitating corneal transplantation. A 26-year-old man with progressive keratoconus underwent collagen crosslinking and presented with severe keratitis 72 hours after the procedure. The initial impression was infectious corneal ulcer and a fortified antibiotic regimen was administered. However, the clinical course and confocal microscopy results prompted a diagnosis of sterile keratitis. The eye developed severe corneal scars leading to reduced visual acuity and necessitating corneal transplantation. Sterile keratitis may develop after collagen crosslinking resulting in profound visual loss leading to corneal transplantation.

  4. Recent progress in asymmetric bifunctional catalysis using multimetallic systems.

    PubMed

    Shibasaki, Masakatsu; Kanai, Motomu; Matsunaga, Shigeki; Kumagai, Naoya

    2009-08-18

    The concept of bifunctional catalysis, wherein both partners of a bimolecular reaction are simultaneously activated, is very powerful for designing efficient asymmetric catalysts. Catalytic asymmetric processes are indispensable for producing enantiomerically enriched compounds in modern organic synthesis, providing more economical and environmentally benign results than methods requiring stoichiometric amounts of chiral reagents. Extensive efforts in this field have produced many asymmetric catalysts, and now a number of reactions can be rendered asymmetric. We have focused on the development of asymmetric catalysts that exhibit high activity, selectivity, and broad substrate generality under mild reaction conditions. Asymmetric catalysts based on the concept of bifunctional catalysis have emerged as a particularly effective class, enabling simultaneous activation of multiple reaction components. Compared with conventional catalysts, bifunctional catalysts generally exhibit enhanced catalytic activity and higher levels of stereodifferentiation under milder reaction conditions, attracting much attention as next-generation catalysts for prospective practical applications. In this Account, we describe recent advances in enantioselective catalysis with bifunctional catalysts. Since our identification of heterobimetallic rare earth-alkali metal-BINOL (REMB) complexes, we have developed various types of bifunctional multimetallic catalysts. The REMB catalytic system is effective for catalytic asymmetric Corey-Chaykovsky epoxidation and cyclopropanation. A dinucleating Schiff base has emerged as a suitable multidentate ligand for bimetallic catalysts, promoting catalytic syn-selective nitro-Mannich, anti-selective nitroaldol, and Mannich-type reactions. The sugar-based ligand GluCAPO provides a suitable platform for polymetallic catalysts; structural elucidation revealed that their higher order polymetallic structures are a determining factor for their function in the

  5. New Cross-Linkable Polyimides

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M.; Havens, Stephen J.

    1992-01-01

    Methyl groups cross-link in air at 275 degrees C or upon ultraviolet irradiation to form insoluble polyimides. New materials particularly useful in electronics and microelectronics. Also useful as films, adhesives, and composite matrices.

  6. Radiation crosslinked plasticized PVC - pipes

    NASA Astrophysics Data System (ADS)

    Hell, Z.; Ravlić, M.; Bogdanović, Lj.; Maleš, J.; Dvornik, I.; Ranogajec, F.; Ranogajec, M.; Tudorić-Ghemo, J.

    The efficiency of polyfunctional monomers triallyl cyanurate, allyl methacrylate, diallyl phtalate, 2-ethyl-2(hydroxy-methyl)-propanediol-(1,3) trimethacrylate, divinyl benzene and ethylene glycol dimethacrylate in radiation crosslinking of PVC was investigated. Patterns of pipes were produced and irradiated with gamma rays. The resistance to internal pressure of crosslinked PVC pipes was measured at 80°C and compared with resistance of unirradiated PVC pipes.

  7. Properties of soluble and membrane bound dopamine-beta-monooxygenase from bovine adrenal medulla cross-linked with dimethyl suberimidate.

    PubMed

    Miras-Portugal, M T; Millaruelo, A; Vara, F

    1980-12-10

    Bovine dopamine-beta-monooxygenase from chromaffin granules in its soluble and membrane-bound forms was cross-linked with the bifunctional reagent dimethyl suberimidate, and its structural and kinetic properties were studied. 1. The cross-linking reaction does not affect the activity of soluble dopamine-beta-monooxygenase; it produces a ten percent inactivation in the membrane-bound enzyme, possibly because the linkage to other membrane proteins hinders its activity. 2. The soluble dopamine-beta-monooxygenase reaction mixture was analyzed by sodium dodecyl sulfate gel electrophoresis, showing appreciable amounts of dimer and tetramer, but only small amounts of trimer. In membrane-bound dopamine-beta-monooxygenase, subjected to the same treatment, appreciable amounts of dimer and higher aggregates were found. 3. The kinetic properties of soluble dopamine-beta-monooxygenase after the crosslinking reaction are the same as those of the native enzyme, with a ping-pong kinetic mechanism and the same real Michaelis constants for tyramine and ascorbate: KmT = 0.36 mM and KmA = 0.32 mM. Membrane-bound dopamine-beta-monooxygenase does not present a ping-pong mechanism before or after cross-linking; its real Michaelis constants are slightly modified by the cross-linking reaction: KmT = 0.4 mM and KMA = 0.4 mM.

  8. Bifunctional electrocatalysis in pt-ru nanoparticle systems.

    PubMed

    Roth, C; Benker, N; Theissmann, R; Nichols, R J; Schiffrin, D J

    2008-03-04

    Pt-Ru alloys are prominent electrocatalysts in fuel cell anodes as they feature a very high activity for the oxidation of reformate and methanol. The improved CO tolerance of these alloys has been discussed in relation to the so-called ligand and bifunctional mechanisms. Although these effects have been known for many years, they are still not completely understood. A new approach that bridges the gap between single crystals and practical catalysts is presented in this paper. Nanoparticulate model systems attached to an oxidized glassy carbon electrode were prepared by combining both ligand-stabilized and spontaneously deposited Pt and Ru nanoparticles. These electrodes showed very different voltammetric responses for CO and methanol oxidation. The cyclic voltammograms were deconvoluted into contributions attributed to Pt, Ru, and Pt-Ru contact regions to quantify the contribution of the latter to the bifunctional mechanism. Scanning transmission electron microscopy confirmed the proximity of Pt and Ru nanoparticles in the different samples.

  9. Preparation of a Versatile Bifunctional Zeolite for Targeted Imaging Applications

    PubMed Central

    Ndiege, Nicholas; Raidoo, Renugan; Schultz, Michael K.; Larsen, Sarah

    2011-01-01

    Bifunctional zeolite Y was prepared for use in targeted in vivo molecular imaging applications. The strategy involved functionalization of the external surface of zeolite Y with chloropropyltriethoxysilane followed by reaction with sodium azide to form azide-functionalized NaY, which is amenable to copper(1) catalyzed click chemistry. In this study, a model alkyne (4-pentyn-1-ol) was attached to the azide-terminated surface via click chemistry to demonstrate feasibility for attachment of molecular targeting vectors (e.g., peptides, aptamers) to the zeolite surface. The modified particle efficiently incorporates the imaging radioisotope gallium-68 (68Ga) into the pores of the azide-functionalized NaY zeolite to form a stable bifunctional molecular targeting vector. The result is a versatile “clickable” zeolite platform that can be tailored for future in vivo molecular targeting and imaging modalities. PMID:21306141

  10. The aminoindanol core as a key scaffold in bifunctional organocatalysts.

    PubMed

    G Sonsona, Isaac; Marqués-López, Eugenia; Herrera, Raquel P

    2016-01-01

    The 1,2-aminoindanol scaffold has been found to be very efficient, enhancing the enantioselectivity when present in organocatalysts. This may be explained by its ability to induce a bifunctional activation of the substrates involved in the reaction. Thus, it is easy to find hydrogen-bonding organocatalysts ((thio)ureas, squaramides, quinolinium thioamide, etc.) in the literature containing this favored structural core. They have been successfully employed in reactions such as Friedel-Crafts alkylation, Michael addition, Diels-Alder and aza-Henry reactions. However, the 1,2-aminoindanol core incorporated into proline derivatives has been scarcely explored. Herein, the most representative and illustrative examples are compiled and this review will be mainly focused on the cases where the aminoindanol moiety confers bifunctionality to the organocatalysts.

  11. Preparation of a versatile bifunctional zeolite for targeted imaging applications.

    PubMed

    Ndiege, Nicholas; Raidoo, Renugan; Schultz, Michael K; Larsen, Sarah

    2011-03-15

    Bifunctional zeolite Y was prepared for use in targeted in vivo molecular imaging applications. The strategy involved functionalization of the external surface of zeolite Y with chloropropyltriethoxysilane followed by reaction with sodium azide to form azide-functionalized NaY, which is amenable to copper(1)-catalyzed click chemistry. In this study, a model alkyne (4-pentyn-1-ol) was attached to the azide-terminated surface via click chemistry to demonstrate feasibility for attachment of molecular targeting vectors (e.g., peptides, aptamers) to the zeolite surface. The modified particle efficiently incorporates the imaging radioisotope gallium-68 ((68)Ga) into the pores of the azide-functionalized NaY zeolite to form a stable bifunctional molecular targeting vector. The result is a versatile "clickable" zeolite platform that can be tailored for future in vivo molecular targeting and imaging modalities.

  12. The aminoindanol core as a key scaffold in bifunctional organocatalysts

    PubMed Central

    G. Sonsona, Isaac

    2016-01-01

    Summary The 1,2-aminoindanol scaffold has been found to be very efficient, enhancing the enantioselectivity when present in organocatalysts. This may be explained by its ability to induce a bifunctional activation of the substrates involved in the reaction. Thus, it is easy to find hydrogen-bonding organocatalysts ((thio)ureas, squaramides, quinolinium thioamide, etc.) in the literature containing this favored structural core. They have been successfully employed in reactions such as Friedel–Crafts alkylation, Michael addition, Diels–Alder and aza-Henry reactions. However, the 1,2-aminoindanol core incorporated into proline derivatives has been scarcely explored. Herein, the most representative and illustrative examples are compiled and this review will be mainly focused on the cases where the aminoindanol moiety confers bifunctionality to the organocatalysts. PMID:27340443

  13. (Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents)

    SciTech Connect

    Not Available

    1991-01-01

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III).

  14. [Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents

    SciTech Connect

    Not Available

    1991-12-31

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III).

  15. A protein crosslinking assay for measuring cell surface expression of glutamate receptor subunits in the rodent brain after in vivo treatments

    PubMed Central

    Boudreau, Amy C.; Milovanovic, Mike; Conrad, Kelly L.; Nelson, Christopher; Ferrario, Carrie R.; Wolf, Marina E.

    2012-01-01

    Trafficking of neurotransmitter receptors between intracellular and cell surface compartments is important for regulating neurotransmission. We developed a method for determining if an in vivo treatment has altered receptor distribution in a particular region of rodent brain. After the treatment, brain slices are rapidly prepared from the region of interest. Then cell surface-expressed receptors are covalently crosslinked to nearby proteins using the membrane-impermeable, bifunctional crosslinker bis(sulfosuccinimidyl)suberate (BS3). This increases the apparent molecular weight of surface receptors, while intracellular receptors are not modified. Thus, surface and intracellular receptor pools can be separated and quantified using SDS-PAGE and immunoblotting. This method is particularly useful for analyzing AMPA receptor subunits, offering advantages in accuracy, efficiency and cost compared to biotinylation. A disadvantage is that some antibodies no longer recognize their target protein after crosslinking. We have used this method to quantify changes in receptor distribution after acute and chronic exposure to psychomotor stimulants. PMID:22470150

  16. Elastin-based biopolymers: chemical synthesis and structural characterization of linear and cross-linked poly(OrnGlyGlyOrnGly).

    PubMed

    Martino, M; Perri, T; Tamburro, A M

    2002-01-01

    Poly(OrnGlyGlyOrnGly) was synthesized by classical procedures in solution. The monomeric sequence -OrnGlyGlyOrnGly- was chosen as a modification of -ValGlyGlyValGly-, typical of elastin, to impart primary amine functionality, susceptible to cross-linking with appropriate bifunctional reagents. Herein we focus on the cross-linking of poly(OrnGlyGlyOrnGly) with glutaraldehyde. The polymers, both linear and cross-linked, were characterized and investigated for their molecular and supramolecular properties. Circular dichroism studies performed on linear poly(OrnGlyGlyOrnGly) revealed a variety of conformations similar to elastin. At a supramolecular level, different kinds of aggregates were found such as the elastin-like twisted-rope pattern of filaments and fibrils, together with other specific morphologies, similar to those recently identified in some elastin-mimetic polypeptides.

  17. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons

    NASA Astrophysics Data System (ADS)

    Zecevic, Jovana; Vanbutsele, Gina; de Jong, Krijn P.; Martens, Johan A.

    2015-12-01

    The ability to control nanoscale features precisely is increasingly being exploited to develop and improve monofunctional catalysts. Striking effects might also be expected in the case of bifunctional catalysts, which are important in the hydrocracking of fossil and renewable hydrocarbon sources to provide high-quality diesel fuel. Such bifunctional hydrocracking catalysts contain metal sites and acid sites, and for more than 50 years the so-called intimacy criterion has dictated the maximum distance between the two types of site, beyond which catalytic activity decreases. A lack of synthesis and material-characterization methods with nanometre precision has long prevented in-depth exploration of the intimacy criterion, which has often been interpreted simply as ‘the closer the better’ for positioning metal and acid sites. Here we show for a bifunctional catalyst—comprising an intimate mixture of zeolite Y and alumina binder, and with platinum metal controllably deposited on either the zeolite or the binder—that closest proximity between metal and zeolite acid sites can be detrimental. Specifically, the selectivity when cracking large hydrocarbon feedstock molecules for high-quality diesel production is optimized with the catalyst that contains platinum on the binder, that is, with a nanoscale rather than closest intimacy of the metal and acid sites. Thus, cracking of the large and complex hydrocarbon molecules that are typically derived from alternative sources, such as gas-to-liquid technology, vegetable oil or algal oil, should benefit especially from bifunctional catalysts that avoid locating platinum on the zeolite (the traditionally assumed optimal location). More generally, we anticipate that the ability demonstrated here to spatially organize different active sites at the nanoscale will benefit the further development and optimization of the emerging generation of multifunctional catalysts.

  18. Stereoselective Glycosylation of 2-Nitrogalactals Catalyzed by a Bifunctional Organocatalyst

    PubMed Central

    2016-01-01

    The use of a bifunctional cinchona/thiourea organocatalyst for the direct and α-stereoselective glycosylation of 2-nitrogalactals is demonstrated for the first time. The conditions are mild, practical, and applicable to a wide range of glycoside acceptors with products being isolated in good to excellent yields. The method is exemplified in the synthesis of mucin type Core 6 and 7 glycopeptides. PMID:27529800

  19. Bifunctional air electrodes containing elemental iron powder charging additive

    DOEpatents

    Liu, Chia-tsun; Demczyk, Brian G.; Gongaware, Paul R.

    1982-01-01

    A bifunctional air electrode for use in electrochemical energy cells is made, comprising a hydrophilic layer and a hydrophobic layer, where the hydrophilic layer essentially comprises a hydrophilic composite which includes: (i) carbon; (ii) elemental iron particles having a particle size of between about 25 microns and about 700 microns diameter; (iii) an oxygen evolution material; (iv) a nonwetting agent; and (v) a catalyst, where at least one current collector is formed into said composite.

  20. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons

    PubMed Central

    Zečević, Jovana; Vanbutsele, Gina; de Jong, Krijn P.; Martens, Johan A.

    2016-01-01

    The ability to precisely control nanoscale features is increasingly exploited to develop and improve monofunctional catalysts1–4. Striking effects might also be expected in the case of bifunctional catalysts, which play an important role in hydrocracking of fossil and renewable hydrocarbon sources to provide high-quality diesel fuel5–7. Such bifunctional hydrocracking catalysts contain metal sites and acid sites, and for more than 50 years the so-called ‘intimacy criterion’8 has dictated the maximum distance between the two site types beyond which catalytic activity decreases. The lack of synthesis and material characterization methods with nanometer precision has long prevented in-depth exploration of the criterion, which has often been interpreted simply as ‘the closer the better’ for positioning metal and acid sites8–11. Here we show for a bifunctional catalyst, comprised of an intimate mixture of zeolite Y and alumina binder and with platinum (Pt) metal controllably deposited20,21 on either the zeolite or the binder, that close proximity between metal and zeolite acid sites can be detrimental: the selectivity when cracking large hydrocarbon feedstock molecules for high-quality diesel production is optimized with the catalyst that contains Pt on the binder, i.e. with a larger distance between metal and acid sites. Cracking of the large and complex hydrocarbon molecules typically derived from alternative sources such as gas-to-liquid technology, vegetable oil or algal oil6–7 should thus benefit especially from bifunctional catalysts that avoid locating Pt on the zeolite as the traditionally assumed optimal location. More generally, we anticipate that the ability to spatially organize different active sites at the nanoscale demonstrated here will benefit the further development and optimization of the newly emerging generation of multifunctional catalysts12–15. PMID:26659185

  1. Room Temperature Hydrosilylation of Silicon Nanocrystals with Bifunctional Terminal Alkenes

    PubMed Central

    Yu, Yixuan; Hessel, Colin M.; Bogart, Timothy; Panthani, Matthew G.; Rasch, Michael R.; Korgel, Brian A.

    2013-01-01

    H-terminated Si nanocrystals undergo room temperature hydrosilylation with bifunctional alkenes with distal polar moieties—ethyl-, methyl-ester or carboxylic acids—without the aid of light or added catalyst. The passivated Si nanocrystals exhibit bright photoluminescence (PL) and disperse in polar solvents, including water. We propose a reaction mechanism in which ester or carboxylic acid groups facilitate direct nucleophilic attack of the highly curved Si surface of the nanocrystals by the alkene. PMID:23312033

  2. Phosphine-boronates: efficient bifunctional organocatalysts for Michael addition.

    PubMed

    Baslé, Olivier; Porcel, Susana; Ladeira, Sonia; Bouhadir, Ghenwa; Bourissou, Didier

    2012-05-11

    Phosphine-boronates R(2)P(o-C(6)H(4))B(OR')(2) have been evaluated as bifunctional organocatalysts for the Michael addition of malonate pronucleophiles to methylvinylketone. The presence of the Lewis acidic boron center adjacent to phosphorus significantly improves catalytic performance. Isolation and complete characterization of a key intermediate, namely a β-phosphonium enolate, substantiate the role of the Lewis acidic moiety in the catalytic process.

  3. Invariants reveal multiple forms of robustness in bifunctional enzyme systems.

    PubMed

    Dexter, Joseph P; Dasgupta, Tathagata; Gunawardena, Jeremy

    2015-08-01

    Experimental and theoretical studies have suggested that bifunctional enzymes catalyzing opposing modification and demodification reactions can confer steady-state concentration robustness to their substrates. However, the types of robustness and the biochemical basis for them have remained elusive. Here we report a systematic study of the most general biochemical reaction network for a bifunctional enzyme acting on a substrate with one modification site, along with eleven sub-networks with more specialized biochemical assumptions. We exploit ideas from computational algebraic geometry, introduced in previous work, to find a polynomial expression (an invariant) between the steady state concentrations of the modified and unmodified substrate for each network. We use these invariants to identify five classes of robust behavior: robust upper bounds on concentration, robust two-sided bounds on concentration ratio, hybrid robustness, absolute concentration robustness (ACR), and robust concentration ratio. This analysis demonstrates that robustness can take a variety of forms and that the type of robustness is sensitive to many biochemical details, with small changes in biochemistry leading to very different steady-state behaviors. In particular, we find that the widely-studied ACR requires highly specialized assumptions in addition to bifunctionality. An unexpected result is that the robust bounds derived from invariants are strictly tighter than those derived by ad hoc manipulation of the underlying differential equations, confirming the value of invariants as a tool to gain insight into biochemical reaction networks. Furthermore, invariants yield multiple experimentally testable predictions and illuminate new strategies for inferring enzymatic mechanisms from steady-state measurements.

  4. Shadow enhancers enable Hunchback bifunctionality in the Drosophila embryo

    PubMed Central

    Staller, Max V.; Vincent, Ben J.; Bragdon, Meghan D. J.; Lydiard-Martin, Tara; Wunderlich, Zeba; Estrada, Javier; DePace, Angela H.

    2015-01-01

    Hunchback (Hb) is a bifunctional transcription factor that activates and represses distinct enhancers. Here, we investigate the hypothesis that Hb can activate and repress the same enhancer. Computational models predicted that Hb bifunctionally regulates the even-skipped (eve) stripe 3+7 enhancer (eve3+7) in Drosophila blastoderm embryos. We measured and modeled eve expression at cellular resolution under multiple genetic perturbations and found that the eve3+7 enhancer could not explain endogenous eve stripe 7 behavior. Instead, we found that eve stripe 7 is controlled by two enhancers: the canonical eve3+7 and a sequence encompassing the minimal eve stripe 2 enhancer (eve2+7). Hb bifunctionally regulates eve stripe 7, but it executes these two activities on different pieces of regulatory DNA—it activates the eve2+7 enhancer and represses the eve3+7 enhancer. These two “shadow enhancers” use different regulatory logic to create the same pattern. PMID:25564665

  5. A bi-functional antibody-receptor domain fusion protein simultaneously targeting IGF-IR and VEGF for degradation

    PubMed Central

    Shen, Yang; Zeng, Lin; Novosyadlyy, Ruslan; Forest, Amelie; Zhu, Aiping; Korytko, Andrew; Zhang, Haifan; Eastman, Scott W; Topper, Michael; Hindi, Sagit; Covino, Nicole; Persaud, Kris; Kang, Yun; Burtrum, Douglas; Surguladze, David; Prewett, Marie; Chintharlapalli, Sudhakar; Wroblewski, Victor J; Shen, Juqun; Balderes, Paul; Zhu, Zhenping; Snavely, Marshall; Ludwig, Dale L

    2015-01-01

    Bi-specific antibodies (BsAbs), which can simultaneously block 2 tumor targets, have emerged as promising therapeutic alternatives to combinations of individual monoclonal antibodies. Here, we describe the engineering and development of a novel, human bi-functional antibody-receptor domain fusion molecule with ligand capture (bi-AbCap) through the fusion of the domain 2 of human vascular endothelial growth factor receptor 1 (VEGFR1) to an antibody directed against insulin-like growth factor – type I receptor (IGF-IR). The bi-AbCap possesses excellent stability and developability, and is the result of minimal engineering. Beyond potent neutralizing activities against IGF-IR and VEGF, the bi-AbCap is capable of cross-linking VEGF to IGF-IR, leading to co-internalization and degradation of both targets by tumor cells. In multiple mouse xenograft tumor models, the bi-AbCap improves anti-tumor activity over individual monotherapies. More importantly, it exhibits superior inhibition of tumor growth, compared with the combination of anti-IGF-IR and anti-VEGF therapies, via powerful blockade of both direct tumor cell growth and tumor angiogenesis. The unique “capture-for-degradation” mechanism of the bi-AbCap is informative for the design of next-generation bi-functional anti-cancer therapies directed against independent signaling pathways. The bi-AbCap design represents an alternative approach to the creation of dual-targeting antibody fusion molecules by taking advantage of natural receptor-ligand interactions. PMID:26073904

  6. A bi-functional antibody-receptor domain fusion protein simultaneously targeting IGF-IR and VEGF for degradation.

    PubMed

    Shen, Yang; Zeng, Lin; Novosyadlyy, Ruslan; Forest, Amelie; Zhu, Aiping; Korytko, Andrew; Zhang, Haifan; Eastman, Scott W; Topper, Michael; Hindi, Sagit; Covino, Nicole; Persaud, Kris; Kang, Yun; Burtrum, Douglas; Surguladze, David; Prewett, Marie; Chintharlapalli, Sudhakar; Wroblewski, Victor J; Shen, Juqun; Balderes, Paul; Zhu, Zhenping; Snavely, Marshall; Ludwig, Dale L

    2015-01-01

    Bi-specific antibodies (BsAbs), which can simultaneously block 2 tumor targets, have emerged as promising therapeutic alternatives to combinations of individual monoclonal antibodies. Here, we describe the engineering and development of a novel, human bi-functional antibody-receptor domain fusion molecule with ligand capture (bi-AbCap) through the fusion of the domain 2 of human vascular endothelial growth factor receptor 1 (VEGFR1) to an antibody directed against insulin-like growth factor - type I receptor (IGF-IR). The bi-AbCap possesses excellent stability and developability, and is the result of minimal engineering. Beyond potent neutralizing activities against IGF-IR and VEGF, the bi-AbCap is capable of cross-linking VEGF to IGF-IR, leading to co-internalization and degradation of both targets by tumor cells. In multiple mouse xenograft tumor models, the bi-AbCap improves anti-tumor activity over individual monotherapies. More importantly, it exhibits superior inhibition of tumor growth, compared with the combination of anti-IGF-IR and anti-VEGF therapies, via powerful blockade of both direct tumor cell growth and tumor angiogenesis. The unique "capture-for-degradation" mechanism of the bi-AbCap is informative for the design of next-generation bi-functional anti-cancer therapies directed against independent signaling pathways. The bi-AbCap design represents an alternative approach to the creation of dual-targeting antibody fusion molecules by taking advantage of natural receptor-ligand interactions.

  7. Crosslinking of agarose bioplastic using citric acid.

    PubMed

    Awadhiya, Ankur; Kumar, David; Verma, Vivek

    2016-10-20

    We report chemical crosslinking of agarose bioplastic using citric acid. Crosslinking was confirmed using Fourier transform infrared (FTIR) spectroscopy. The effects of crosslinking on the tensile strength, swelling, thermal stability, and degradability of the bioplastic were studied in detail. The tensile strength of the bioplastic films increased from 25.1MPa for control films up to a maximum of 52.7MPa for citric acid crosslinked films. At 37°C, the amount of water absorbed by crosslinked agarose bioplastic was only 11.5% of the amount absorbed by non-crosslinked controls. Thermogravimetric results showed that the crosslinked samples retain greater mass at high temperature (>450°C) than control samples. Moreover, while the crosslinked films were completely degradable, the rate of degradation was lower compared to non-crosslinked controls.

  8. Different effects of tubulin ligands on the intrachain cross-linking of beta 1-tubulin.

    PubMed

    Roach, M C; Ludueña, R F

    1984-10-10

    When bovine brain tubulin purified in the absence of GTP and MgCl2 is reacted with N,N'-ethylene-bis(iodoacetamide) (EBI), a bifunctional analogue of iodoacetamide, three new electrophoretically distinct species of tubulin are generated, migrating ahead of beta 1-tubulin on gels containing Na dodecyl sulfate. All three bands appear to be derived from the beta 1 subunit of tubulin and not from the alpha or beta 2 subunit. Accordingly, the bands have been designated beta 1 s, beta 1, and beta 1s in order of increasing electrophoretic mobility. EBI appears to introduce two intrachain cross-links into beta 1-tubulin; the beta 1s band contains one of these cross-links, designated beta s, the beta 1 band contains the other cross-link, designated beta s, and the beta 1 s band contains both cross-links. Both cross-links appear to involve sulfhydryl groups. Colchicine, podophyllotoxin, and nocodazole completely inhibit beta formation while GTP, vinblastine, and maytansine enhance it. It contrast, formation of beta s is completely blocked by guanine nucleotides and by maytansine, while vinblastine inhibits this by 70%. Colchicine, podophyllotoxin, and nocodazole enhance beta s formation. These results show that tubulin has the unusual property of having two discrete sites which can be targeted by an alkylating agent with each site having its alkylation inhibited by a different set of ligands. The results are consistent with several models, including one where vinblastine and maytansine have overlapping binding sites on the beta-subunit of tubulin relatively close to the GTP binding site.

  9. Chemical cross-linking of bovine retinal transducin and cGMP phosphodiesterase.

    PubMed

    Hingorani, V N; Tobias, D T; Henderson, J T; Ho, Y K

    1988-05-15

    The bifunctional reagents para-phenyldimaleimide and maleimidobenzoyl-N-hydroxysuccinimide ester were used to chemically cross-link the subunits of the transducin and cGMP phosphodiesterase (PDE) complexes of bovine rod photoreceptor cells. The cross-linked products were identified by Western immunoblotting using antisera against purified subunits of transducin (T alpha and T beta gamma) and PDE. Oligomeric cross-linked products of transducin subunits as large as (T alpha beta gamma)3 were observed in the latent form of transducin with bound GDP. In addition to the expected T alpha beta and T beta gamma cross-linked products, a (T alpha gamma)2 structure was detected. The close proximity of T alpha and T gamma suggests that T gamma may play a role in conferring the specificity of the interaction between T alpha and rhodopsin. Most of the oligomeric cross-linked structures between T alpha and T beta gamma were diminished in the activated form of transducin, with guanosine 5'-(beta, gamma-imidotriphosphate) (Gpp(NH)p) bound. However, cross-linking between T beta and T gamma was not altered. These results suggest that transducin exists as an oligomer in solution which dissociates upon the binding of Gpp(NH)p. To identify the possible interacting domains between the T alpha, T beta, and T gamma subunits, the cross-linked products were subjected to limited tryptic proteolysis. Several cross-linked tryptic peptides of transducin subunits were found and include the cross-linked products of the N terminus 15-kDa fragment of T beta and the C terminus 5-kDa fragment of T alpha, T gamma and the 12-kDa fragment of T alpha, T gamma and the 15-kDa as well as the 23-kDa fragments of T beta, and an intra-T alpha cross-linked product of the 2- and 21-kDa fragments. These results have allowed the construction of a topographical model for the transducin subunits. The organization of the subunits of PDE (P alpha, P beta, and P gamma) was also studied. The formation of the high

  10. Comparison of hydrazone heterobifunctional cross-linking agents for reversible conjugation of thiol-containing chemistry.

    PubMed

    Christie, R James; Anderson, Diana J; Grainger, David W

    2010-10-20

    Reversible covalent conjugation chemistries that allow site- and condition-specific coupling and uncoupling reactions are attractive components in nanotechnologies, bioconjugation methods, imaging, and drug delivery systems. Here, we compare three heterobifunctional cross-linkers, containing both thiol- and amine-reactive chemistries, to form pH-labile hydrazones with hydrazide derivatives of the known and often published water-soluble polymer, poly[N-(2-hydroxypropyl methacrylamide)] (pHPMA), while subsequently coupling thiol-containing molecules to the cross-linker via maleimide addition. Two novel cross-linkers were prepared from the popular heterobifunctional cross-linking agent, succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC), modified to contain either terminal aldehyde groups (i.e., 1-(N-3-propanal)-4-(N-maleimidomethyl) cyclohexane carboxamide, PMCA) or methylketone groups (i.e., 1-(N-3-butanone)-4-(N-maleimidomethyl) cyclohexane carboxamide, BMCA). A third cross-linking agent was the commercially available N-4-acetylphenyl maleimide (APM). PMCA and BMCA exhibited excellent reactivity toward hydrazide-derivatized pHPMA with essentially complete hydrazone conjugation to polymer reactive sites, while APM coupled only ∼60% of available reactive sites on the polymer despite a 3-fold molar excess relative to polymer hydrazide groups. All polymer hydrazone conjugates bearing these bifunctional agents were then further reacted with thiol-modified tetramethylrhodamine dye, confirming cross-linker maleimide reactivity after initial hydrazone polymer conjugation. Incubation of dye-labeled polymer conjugates in phosphate buffered saline at 37 °C showed that hydrazone coupling resulting from APM exhibited the greatest difference in stability between pH 7.4 and 5.0, with hydrolysis and dye release increased at pH 5.0 over a 24 h incubation period. Polymer conjugates bearing hydrazones formed from cross-linker BMCA exhibited intermediate stability

  11. Cupreines and cupreidines: an established class of bifunctional cinchona organocatalysts

    PubMed Central

    Bryant, Laura A; Fanelli, Rossana

    2016-01-01

    Summary Cinchona alkaloids with a free 6'-OH functionality are being increasingly used within asymmetric organocatalysis. This fascinating class of bifunctional catalyst offers a genuine alternative to the more commonly used thiourea systems and because of the different spacing between the functional groups, can control enantioselectivity where other organocatalysts have failed. In the main, this review covers the highlights from the last five years and attempts to show the diversity of reactions that these systems can control. It is hoped that chemists developing asymmetric methodologies will see the value in adding these easily accessible, but underused organocatalysts to their screens. PMID:27340439

  12. Extraction of uranium by macroporous bifunctional phosphinic acid resin

    SciTech Connect

    Sabharwal, K.N.; Rao, P.R.V.; Srinivasan, M.

    1995-05-01

    The extraction of U(VI), Th(IV) and a number of fission products from nitric acid medium by a newly synthesised macroporous bifunctional phosphinic acid resin has been studied. The extraction of uranium from sulphuric acid medium has also been studied. While the gel type phosphinic acid resins seems to pose a number of problems in practical applications, the macroporous type resins are shown to be suitable for a variety of applications where conventional ion exchange resins are of limited use. 12 refs., 5 figs., 3 tabs.

  13. Enantioselective Iodolactonization of Disubstituted Olefinic Acids Using a Bifunctional Catalyst

    PubMed Central

    Fang, Chao; Paull, Daniel H.; Hethcox, J. Caleb; Shugrue, Christopher R.; Martin, Stephen F.

    2012-01-01

    The enantioselective iodolactonizations of a series of diversely-substituted olefinic carboxylic acids are promoted by a BINOL-derived, bifunctional catalyst. Reactions involving 5-alkyl- and 5-aryl-4(Z)-pentenoic acids and 6-alkyl- and 6-aryl-5(Z)-hexenoic acids provide the corresponding γ- and δ-lactones having stereogenic C–I bonds in excellent yields and >97:3 er. Significantly, this represents the first organocatalyst that promotes both bromo- and iodolactonization with high enantioselectivities. The potential of this catalyst to induce kinetic resolutions of racemic unsaturated acids is also demonstrated. PMID:23199100

  14. Charge transfer to a semi-esterified bifunctional phenol

    NASA Astrophysics Data System (ADS)

    Brede, O.; Hermann, R.; Orthner, H.

    1996-03-01

    The charge transfer from solvent radical cations of n-butyl chloride and cyclohexane to 2-butyl-6(3'-t-butyl-2'-hydroxy-5'-methylbenzyl)-4-methyl-phenylacrylate (GM) yields in the first step phenoxyl radicals as well as acrylate radical cations of this semi-acrylated bifunctional phenol. Subsequently an intramolecular charge transfer from the acrylate radical cation to the phenol group takes place. Because of the instability of phenol radical cations, under our experimental conditions (nanosecond pulse radiolysis, non-polar solvents, room temperature) phenoxyl radicals are the only observable products of phenol ionization.

  15. Bifunctional activation of a direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Kulikovsky, A. A.; Schmitz, H.; Wippermann, K.; Mergel, J.; Fricke, B.; Sanders, T.; Sauer, D. U.

    We report a novel method for performance recovery of direct methanol fuel cells. Lowering of air flow rate below a critical value turns the cell into bifunctional regime, when the oxygen-rich part of the cell generates current while the rest part works in electrolysis mode (electrolytic domain). Upon restoring the normal (super-critical) air flow rate, the galvanic performance of the electrolytic domain increases. This recovery effect is presumably attributed to Pt surface cleaning on the cathode with the simultaneous increase in catalyst utilization on the anode.

  16. Electrospinning formaldehyde cross-linked zein solutions

    USDA-ARS?s Scientific Manuscript database

    In order to develop zein fibers with improved physical properties and solvent resistance, formaldehyde was used as the cross-linking reagent before spinning. The cross-linking reaction was carried out in either acetic acid or ethanolic-HCl where the amount of cross-linking reagent was between 1 and...

  17. Stepwise assembly of a cross-linked free-standing nanoparticle sheet with controllable shape

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Liu, Mei; Zhou, Tian; Dong, Bin; Li, Christopher Y.

    2015-06-01

    In this paper, we report a free-standing thin lamella consisting of nanoparticles with controllable shape. A self-assembly technique is utilized to obtain this sheet in a step by step fashion with nanoparticles and polymer single crystals as the basic building blocks. Inside the thin lamella, nanoparticles are not only immobilized on the surface of a polymer single crystal, which functions as a template, but also interconnected by a bifunctional crosslinker, i.e. 1,6-hexane dithiol. As a consequence, the nanoparticle lamella is crosslinked and cannot be destructed by solvent and heat treatment. This fabrication strategy is generally applicable and can be applied to a variety of different nanoparticles with various properties, including catalytically active platinum nanoparticles, superparamagnetic iron oxide nanoparticles or luminescent quantum dots, and different types of polymer single crystals, such as hexagonal polycaprolactone and square-shaped polyethylene glycol ones. Based on the abundant properties originating from both nanoparticles and polymer single crystals, we have demonstrated that the resulting ensemble can function as recyclable catalytically active materials or magnetically responsive luminescent materials.In this paper, we report a free-standing thin lamella consisting of nanoparticles with controllable shape. A self-assembly technique is utilized to obtain this sheet in a step by step fashion with nanoparticles and polymer single crystals as the basic building blocks. Inside the thin lamella, nanoparticles are not only immobilized on the surface of a polymer single crystal, which functions as a template, but also interconnected by a bifunctional crosslinker, i.e. 1,6-hexane dithiol. As a consequence, the nanoparticle lamella is crosslinked and cannot be destructed by solvent and heat treatment. This fabrication strategy is generally applicable and can be applied to a variety of different nanoparticles with various properties, including

  18. Localization of Membrane-Associated Proteins in Vesicular Stomatitis Virus by Use of Hydrophobic Membrane Probes and Cross-Linking Reagents

    PubMed Central

    Zakowski, Jack J.; Wagner, Robert R.

    1980-01-01

    The location of membrane-associated proteins of vesicular stomatitis virus was investigated by using two monofunctional and three bifunctional probes that differ in the degree to which they partition into membranes and in their specific group reactivity. Two hydrophobic aryl azide probes, [125I]5-iodonaphthyl-1-azide and [3H]pyrenesulfonylazide, readily partitioned into virion membrane and, when activated to nitrenes by UV irradiation, formed stable covalent adducts to membrane constituents. Both of these monofunctional probes labeled the glyco-protein G and matrix M proteins, but [125I]5-iodonaphthyl-1-azide also labeled the nucleocapsid N protein and an unidentified low-molecular-weight component. Protein labeling of intact virions was unaffected by the presence of cytochrome c or glutathione, but disruption of membrane by sodium dodecyl sulfate greatly enhanced the labeling of all viral proteins except G. Labeling of G protein was essentially restricted to the membrane-embedded, thermolysin-resistant tail fragment. Three bifunctional reagents, tartryl diazide, dimethylsuberimidate, and 4,4′-dithiobisphenylazide, were tested for their capacity to cross-link proteins to membrane phospholipids of virions grown in the presence of [3H]palmitate. Only G and M proteins of intact virions were labeled with 3H-phospholipid by these cross-linkers; the reactions were not affected by cytochrome c but were abolished by disruption of virus with sodium dodecyl sulfate. Dimethylsuberimidate, which reacts with free amino groups, cross-linked 3H-phospholipid to both G and M protein. In contrast, the hydrophilic tartryl diazide cross-linked phospholipid primarily to the M protein, whereas the hydrophobic 4,4′-dithiobisphenylazide cross-linked phospholipid primarily to the intrinsic G protein. These data support the hypothesis that the G protein traverses the virion membrane and that the M protein is membrane associated but does not penetrate very deeply, if at all. PMID:6255216

  19. Photovoltachromic device with a micropatterned bifunctional counter electrode.

    PubMed

    Cannavale, Alessandro; Manca, Michele; De Marco, Luisa; Grisorio, Roberto; Carallo, Sonia; Suranna, Gian Paolo; Gigli, Giuseppe

    2014-02-26

    A photovoltachromic window can potentially act as a smart glass skin which generates electric energy as a common dye-sensitized solar cell and, at the same time, control the incoming energy flux by reacting to even small modifications in the solar radiation intensity. We report here the successful implementation of a novel architecture of a photovoltachromic cell based on an engineered bifunctional counter electrode consisting of two physically separated platinum and tungsten oxide regions, which are arranged to form complementary comb-like patterns. Solar light is partially harvested by a dye-sensitized photoelectrode made on the front glass of the cell which fully overlaps a bifunctional counter electrode made on the back glass. When the cell is illuminated, the photovoltage drives electrons into the electrochromic stripes through the photoelectrochromic circuit and promotes the Li(+) diffusion towards the WO3 film, which thus turns into its colored state: a photocoloration efficiency of 17 cm(2) min(-1) W(-1) at a wavelength of 650 nm under 1.0 sun was reported along with fast response (coloration time <2 s and bleaching time <5 s). A fairly efficient photovoltaic functionality was also retained due to the copresence of the independently switchable micropatterned platinum electrode.

  20. Stability and kinetics of a bifunctional amylase/trypsin inhibitor.

    PubMed

    Alagiri, S; Singh, T P

    1993-11-10

    The stability of the bifunctional amylase/trypsin inhibitor from ragi (Indian finger millet, Eleusine coracana) has been studied by methods of circular dichroism, UV absorption and intrinsic fluorescence. The inhibitor is stable in 8 M urea and 6 M guanidine-HCl. In 150 mM NaCl, thermal denaturation does not occur up to 90 degrees C. However, it is irreversibly denatured in 5 mM NaCl if heated over 73 degrees C. The acidic denaturation is reversible in both high and low salt conditions, but it shows different behavior below pH 1.65 under similar salt conditions. The helical content is about 2-4% in the pH range of 7-9 at which the inhibitor is active maximally. The NaCl concentration does not have a significant effect on the secondary structure elements. The beta-strand form does not show much variation under various conditions. Arg34-Leu35 is the reactive peptide bond in the trypsin-binding site. Trp and Tyr are involved in the binding with amylase. The bifunctional inhibitor represents the sum of individual inhibitors of trypsin and amylase.

  1. Divergent evolution of a bifunctional de novo protein.

    PubMed

    Smith, Betsy A; Mularz, Ann E; Hecht, Michael H

    2015-02-01

    Primordial proteins, the evolutionary ancestors of modern sequences, are presumed to have been minimally active and nonspecific. Following eons of selective pressure, these early progenitors evolved into highly active and specific proteins. While evolutionary trajectories from poorly active and multifunctional generalists toward highly active specialists likely occurred many times in evolutionary history, such pathways are difficult to reconstruct in natural systems, where primordial sequences are lost to time. To test the hypothesis that selection for enhanced activity leads to a loss of promiscuity, we evolved a de novo designed bifunctional protein. The parental protein, denoted Syn-IF, was chosen from a library of binary patterned 4-helix bundles. Syn-IF was shown previously to rescue two different auxotrophic strains of E. coli: ΔilvA and Δfes. These two strains contain deletions for proteins with very different biochemical functions; IlvA is involved in isoleucine biosynthesis, while Fes is involved in iron assimilation. In two separate experiments, Syn-IF, was evolved for faster rescue of either ΔilvA or Δfes. Following multiple rounds of mutagenesis, two new proteins were selected, each capable of rescuing the selected function significantly faster than the parental protein. In each case, the evolved protein also lost the ability to rescue the unselected function. In both evolutionary trajectories, the original bifunctional generalist was evolved into a monofunctional specialist with enhanced activity. © 2014 The Protein Society.

  2. Divergent evolution of a bifunctional de novo protein

    PubMed Central

    Smith, Betsy A; Mularz, Ann E; Hecht, Michael H

    2015-01-01

    Primordial proteins, the evolutionary ancestors of modern sequences, are presumed to have been minimally active and nonspecific. Following eons of selective pressure, these early progenitors evolved into highly active and specific proteins. While evolutionary trajectories from poorly active and multifunctional generalists toward highly active specialists likely occurred many times in evolutionary history, such pathways are difficult to reconstruct in natural systems, where primordial sequences are lost to time. To test the hypothesis that selection for enhanced activity leads to a loss of promiscuity, we evolved a de novo designed bifunctional protein. The parental protein, denoted Syn-IF, was chosen from a library of binary patterned 4-helix bundles. Syn-IF was shown previously to rescue two different auxotrophic strains of E. coli: ΔilvA and Δfes. These two strains contain deletions for proteins with very different biochemical functions; IlvA is involved in isoleucine biosynthesis, while Fes is involved in iron assimilation. In two separate experiments, Syn-IF, was evolved for faster rescue of either ΔilvA or Δfes. Following multiple rounds of mutagenesis, two new proteins were selected, each capable of rescuing the selected function significantly faster than the parental protein. In each case, the evolved protein also lost the ability to rescue the unselected function. In both evolutionary trajectories, the original bifunctional generalist was evolved into a monofunctional specialist with enhanced activity. PMID:25420677

  3. Constitutive Modeling of Crosslinked Nanotube Materials

    NASA Technical Reports Server (NTRS)

    Odegard, G. M.; Frankland, S. J. V.; Herzog, M. N.; Gates, T. S.; Fay, C. C.

    2004-01-01

    A non-linear, continuum-based constitutive model is developed for carbon nanotube materials in which bundles of aligned carbon nanotubes have varying amounts of crosslinks between the nanotubes. The model accounts for the non-linear elastic constitutive behavior of the material in terms of strain, and is developed using a thermodynamic energy approach. The model is used to examine the effect of the crosslinking on the overall mechanical properties of variations of the crosslinked carbon nanotube material with varying degrees of crosslinking. It is shown that the presence of the crosslinks has significant effects on the mechanical properties of the carbon nanotube materials. An increase in the transverse shear properties is observed when the nanotubes are crosslinked. However, this increase is accompanied by a decrease in axial mechanical properties of the nanotube material upon crosslinking.

  4. EDTA-Cross-Linked β-Cyclodextrin: An Environmentally Friendly Bifunctional Adsorbent for Simultaneous Adsorption of Metals and Cationic Dyes.

    PubMed

    Zhao, Feiping; Repo, Eveliina; Yin, Dulin; Meng, Yong; Jafari, Shila; Sillanpää, Mika

    2015-09-01

    The discharge of metals and dyes poses a serious threat to public health and the environment. What is worse, these two hazardous pollutants are often found to coexist in industrial wastewaters, making the treatment more challenging. Herein, we report an EDTA-cross-linked β-cyclodextrin (EDTA-β-CD) bifunctional adsorbent, which was fabricated by an easy and green approach through the polycondensation reaction of β-cyclodextrin with EDTA as a cross-linker, for simultaneous adsorption of metals and dyes. In this setting, cyclodextrin cavities are expected to capture dye molecules through the formation of inclusion complexes and EDTA units as the adsorption sites for metals. The adsorbent was characterized by FT-IR, elemental analysis, SEM, EDX, ζ-potential, and TGA. In a monocomponent system, the adsorption behaviors showed a monolayer adsorption capacity of 1.241 and 1.106 mmol g(-1) for Cu(II) and Cd(II), respectively, and a heterogeneous adsorption capacity of 0.262, 0.169, and 0.280 mmol g(-1) for Methylene Blue, Safranin O, and Crystal Violet, respectively. Interestingly, the Cu(II)-dye binary experiments showed adsorption enhancement of Cu(II), but no significant effect on dyes. The simultaneous adsorption mechanism was further confirmed by FT-IR, thermodynamic study, and elemental mapping. Overall, its facile and green fabrication, efficient sorption performance, and excellent reusability indicate that EDTA-β-CD has potential for practical applications in integrative and efficient treatment of coexistenting toxic pollutants.

  5. Radiation crosslinking of polyamide 610

    NASA Astrophysics Data System (ADS)

    Feng, W.; Hu, F. M.; Yuan, L. H.; Zhou, Y.; Zhou, Y. Y.

    2002-03-01

    In the present paper the gel formation of polyamide 610 by γ-ray irradiation in the presence of polyfunctional monomer and γ-crystal nucleating agent under vacuum or air atmosphere had been studied. It was found that the gel formation was dependent on the content of polyfunctional monomer and nucleating agent. However, there was very little difference between gel contents irradiated under vacuum and air atmosphere. The results showed that the crosslinking by γ-irradiation enhanced the mechanical properties of PA610 especially at high temperature in the presence of polyfunctional monomer and γ-crystal nucleating agent. The mechanism of radiation crosslinking and scission was discussed according to the composition and quantity of gas released from three kinds of PA during irradiation.

  6. Laser Crosslink Subsystem - An overview

    NASA Astrophysics Data System (ADS)

    Deadrick, R. B.; Deckelman, W. F.

    1992-06-01

    The Laser Crosslink Subsystem (LCS) is a full duplex laser communications terminal in production at McDonnell Douglas Electronics Systems Company. The LCS will provide a data crosslink for geosynchronous satellites. This paper provides an overview of the system design and major elements followed by a brief program history. One LCS is installed on each satellite. The system utilizes a solid state diode pumped Neodymium YAG laser and direct pulse detection to provide 1.28 Mbps data transmission in one direction on the link and 4 Kbps in the other. A single eight inch gimballed telescope provides both the transmit and receive antenna function. After autonomously acquiring, the 200 Hz bandwidth fine tracking system maintains pointing of the 10 microrad optical beam. The LCS began development in 1981. Since then, each of its assemblies has completed-flight qualification testing. The first integrated production unit successfully completed environmental and performance qualification testing in 1990.

  7. Sequence preferences of DNA interstrand crosslinking agents: quantitation of interstrand crosslink locations in DNA duplex fragments containing multiple crosslinkable sites.

    PubMed Central

    Millard, J T; Weidner, M F; Kirchner, J J; Ribeiro, S; Hopkins, P B

    1991-01-01

    A general approach to the quantitative study of the sequence specificity of DNA interstrand crosslinking agents in synthetic duplex DNA fragments is described. In the first step, a DNA fragment previously treated with an interstrand crosslinking agent is subjected to denaturing PAGE. Not only does this distinguish crosslinked from native or monoadducted DNA, it is shown herein that isomeric crosslinked DNAs differing in position of the crosslink can in some cases be separated. In the second stage, the now fractionated crosslinked DNAs isolated from denaturing PAGE are subjected to fragmentation using iron(II)/EDTA. For those fractions which are structurally homogeneous, analysis of the resulting fragment distribution has previously been shown to reveal the crosslink position at nucleotide resolution. It is shown herein that in fractions which are structurally heterogeneous due to differences in position of crosslink, this analysis quantifies the relative extent of crosslinking at distinct sites. Using this method it is shown that reductively activated mitomycin C crosslinks the duplex sequences 5'-GCGC and 5'-TCGA with 3 +/- 1:1 relative efficiency. Images PMID:1903204

  8. Bifunctional monomers having terminal oxime and cyano or amidine groups

    NASA Technical Reports Server (NTRS)

    Rosser, R. W.; Shalhoub, I. M.; Kwongs, H. (Inventor)

    1981-01-01

    The preparation of crosslinked 1,2,4-oxadiazole elastomers is described. The technique involves thermally condensing (1) a monomer having the formula H2N(HON)C-R-Q, wherein Q is a triazine ring-forming groups such as nitrile or amidine or a mixture of such group with amidoxime, or (2) a mixture of the same monomer with R(C(NOH)NH2)2, with R in these formulas standing for a bivalent organic radical. In the monomer charge, the overall proportions of amidoxime groups to triazine ring-forming groups varies depending on the extent of crosslinking desired in the final polymer.

  9. Preparation of molecularly imprinted polymeric fibers using a single bifunctional monomer for the solid-phase microextraction of parabens from environmental solid samples.

    PubMed

    Díaz-Álvarez, Myriam; Smith, Stephen P; Spivak, David A; Martín-Esteban, Antonio

    2016-02-01

    In this study, molecularly imprinted polymer fibers for solid-phase microextraction have been prepared with a single bifunctional monomer, N,O-bismethacryloyl ethanolamine using the so-called "one monomer molecularly imprinted polymers" method, replacing the conventional combination of functional monomer and cross-linker to form high fidelity binding sites. For comparison, imprinted fibers were prepared following the conventional approach based on ethylene glycol dimethacrylate as cross-linker and methacrylic acid as monomer. The recognition performance of the new fibers was evaluated in the solid-phase microextraction of parabens, and from this study it was concluded that they provided superior performance over conventionally formulated fibers. Ultimately, real-world environmental testing on spiked solid samples was successful by the molecularly imprinted solid-phase microextraction of samples, and the relative recoveries obtained at enrichment levels of 10 ng/g of parabens were within 78-109% for soil and 83-109% for sediments with a relative standard deviation <15% (n = 3). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. BIFUNCTIONAL ALUMINUN: A PERMEABLE BARRIER MATERIAL FOR THE DEGRADATION OF MTBE

    EPA Science Inventory

    Bifunctional aluminum is an innovative remedial material for the treatment of gasoline oxygenates in permeable reactive barriers (PRBs). PRBs represent a promising environmental technology for remediation of groundwater contamination. Although zero-valent metals (ZVM) have been...

  11. Bifunctional chelates of RH-105 and AU199 as potential radiotherapeutic agents

    SciTech Connect

    Droege, P.

    1997-03-01

    Research is presented on new bifunctional chelating ligand systems with stability on the macroscopic and radiochemical levels. The synthesis of the following complexes are described: rhodium 105, palladium 109, and gold 198.

  12. Efficient bifunctional gallium-68 chelators for positron emission tomography: tris(hydroxypyridinone) ligands

    PubMed Central

    Berry, David J.; Ma, Yongmin; Ballinger, James R.; Tavaré, Richard; Koers, Alexander; Sunassee, Kavitha; Zhou, Tao; Nawaz, Saima; Mullen, Gregory E. D.; Hider, Robert C.; Blower, Philip J.

    2014-01-01

    A new tripodal tris(hydroxypyridinone) bifunctional chelator for gallium allows easy production of 68Ga-labelled proteins rapidly under mild conditions in high yields at exceptionally high specific activity and low concentration. PMID:21623436

  13. BIFUNCTIONAL ALUMINUN: A PERMEABLE BARRIER MATERIAL FOR THE DEGRADATION OF MTBE

    EPA Science Inventory

    Bifunctional aluminum is an innovative remedial material for the treatment of gasoline oxygenates in permeable reactive barriers (PRBs). PRBs represent a promising environmental technology for remediation of groundwater contamination. Although zero-valent metals (ZVM) have been...

  14. Bifunctional chelating agent for the design and development of site specific radiopharmaceuticals and biomolecule conjugation strategy

    DOEpatents

    Katti, Kattesh V.; Prabhu, Kandikere R.; Gali, Hariprasad; Pillarsetty, Nagavara Kishore; Volkert, Wynn A.

    2003-10-21

    There is provided a method of labeling a biomolecule with a transition metal or radiometal in a site specific manner to produce a diagnostic or therapeutic pharmaceutical compound by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radio metal or a transition metal, and covalently linking the resulting metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. Also provided is a method of synthesizing the --PR.sub.2 containing biomolecules by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radiometal or a transition metal, and covalently linking the resulting radio metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. There is provided a therapeutic or diagnostic agent comprising a --PR.sub.2 containing biomolecule.

  15. The Bi-Functional Organization of Human Basement Membranes

    PubMed Central

    Halfter, Willi; Monnier, Christophe; Müller, David; Oertle, Philipp; Uechi, Guy; Balasubramani, Manimalha; Safi, Farhad; Lim, Roderick; Loparic, Marko; Henrich, Paul Bernhard

    2013-01-01

    The current basement membrane (BM) model proposes a single-layered extracellular matrix (ECM) sheet that is predominantly composed of laminins, collagen IVs and proteoglycans. The present data show that BM proteins and their domains are asymmetrically organized providing human BMs with side-specific properties: A) isolated human BMs roll up in a side-specific pattern, with the epithelial side facing outward and the stromal side inward. The rolling is independent of the curvature of the tissue from which the BMs were isolated. B) The epithelial side of BMs is twice as stiff as the stromal side, and C) epithelial cells adhere to the epithelial side of BMs only. Side-selective cell adhesion was also confirmed for BMs from mice and from chick embryos. We propose that the bi-functional organization of BMs is an inherent property of BMs and helps build the basic tissue architecture of metazoans with alternating epithelial and connective tissue layers. PMID:23844050

  16. Fabrication and Characterization of Cross-Linked Organic Thin Films with Nonlinear Mass Densities.

    PubMed

    Rashed, Md A; Laokroekkiat, Salinthip; Hara, Mitsuo; Nagano, Shusaku; Nagao, Yuki

    2016-06-14

    The preparation of urea (bonded) cross-linked multilayer thin films by sequential deposition of bifunctional and tetrafunctional molecular building blocks is demonstrated. Multilayer growth as a function of deposition cycles was inspected using UV-vis absorption spectroscopy. From infrared results, three characteristic infrared bands of amide I, amide II, and asymmetric νa(N-C-N) stretching confirmed the formation of polyurea networks by alternate dipping into solutions of amine and isocyanate functionality monomers. The deconvoluted component of the C 1s and N 1s spectra obtained by X-ray photoelectron spectroscopy shows clear evidence of stable polyurea networks. The enhancement of structural periodicity with film growth was demonstrated by grazing-incidence small-angle X-ray scattering measurements. The thin film near the substrate surface seems to have an amorphous structure. However, molecular ordering improves in the surface normal direction of the substrate with a certain number of deposited layers. Constant mass density was not observed with deposition cycles. The mass density increased up to 16% within deposited layers from proximate layers to those extending away from the substrate surface. This difference in the packing density might derive from the different degrees of cross-linking among layers proximate to the substrate surface and extending away from the substrate surface.

  17. Detection and isolation of nucleic acid sequences using a bifunctional hybridization probe

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    2000-01-01

    A method for detecting and isolating a target sequence in a sample of nucleic acids is provided using a bifunctional hybridization probe capable of hybridizing to the target sequence that includes a detectable marker and a first complexing agent capable of forming a binding pair with a second complexing agent. A kit is also provided for detecting a target sequence in a sample of nucleic acids using a bifunctional hybridization probe according to this method.

  18. Development of a Tetrathioether (S4) Bifunctional Chelate System for Rh-105

    DTIC Science & Technology

    2012-07-01

    bombesin (BBN) targeting vector. Bombesin targets gastrin releasing peptide (GRP) receptors, which have been shown to be over-expressed on the surface of...prostate cancer cells. Here we report the successful synthesis and characterization of a bombesin agonist coupled tetrathioether (S4) bifunctional...1: Synthesis of bombesin (7-14) coupled tetrathioether bifunctional chelate 1a: Synthesize dicarboxylic acid functionalized ligand 3,3,3-S4-(COOH)2

  19. Viscoelastic behavior of polymers undergoing crosslinking reactions.

    NASA Technical Reports Server (NTRS)

    Moacanin, J.; Aklonis, J. J.

    1971-01-01

    Previously a method was developed for predicting the viscoelastic response of polymers undergoing scission reactions. These results are now extended to include crosslinking reactions. As for scission, at any given time the character of the network chains is determined by the instantaneous crosslink density. For scission all chains were assumed to carry the same stress; for crosslinking, however, the stress is distributed between the 'new' and 'old' chains. Equations for calculating the creep response of a system which experiences a step increase in crosslink density are derived.

  20. Rubber Elasticity in Highly Crosslinked Polyesters.

    DTIC Science & Technology

    Esters, *Polymers, *Elastic properties, Rubber, Propylene glycol , Maleic acid, Anhydrides, Phthalic acids, Mechanical properties, Molecular structure, Crosslinking(Chemistry), Polymerization, Styrenes, Temperature, Transition temperature, Molecular weight

  1. Protein micropatterning on bifunctional organic-inorganic sol-gel hybrid materials.

    PubMed

    Kim, Woo-Soo; Kim, Min-Gon; Ahn, Jun-Hyeong; Bae, Byeong-Soo; Park, Chan Beum

    2007-04-24

    Active protein micropatterns and microarrays made by selective localization are popular candidates for medical diagnostics, such as biosensors, bioMEMS, and basic protein studies. In this paper, we present a simple fabrication process of thick (approximately 20 microm) protein micropatterning using capillary force lithography with bifunctional sol-gel hybrid materials. Because bifunctional sol-gel hybrid material can have both an amine function for linking with protein and a methacryl function for photocuring, proteins such as streptavidin can be immobilized directly on thick bifunctional sol-gel hybrid micropatterns. Another advantage of the bifunctional sol-gel hybrid materials is the high selective stability of the amine group on bifunctional sol-gel hybrid patterns. Because amine function is regularly contained in each siloxane oligomers, immobilizing sites for streptavidin are widely distributed on the surface of thick hybrid micropatterns. The micropatterning processes of active proteins using efficient bifunctional sol-gel hybrid materials will be useful for the development of future bioengineered systems because they can save several processing steps and reduce costs.

  2. Gln-41 is intermolecularly cross-linked to Lys-113 in F-actin by N-(4-azidobenzoyl)-putrescine.

    PubMed Central

    Hegyi, G.; Michel, H.; Shabanowitz, J.; Hunt, D. F.; Chatterjie, N.; Healy-Louie, G.; Elzinga, M.

    1992-01-01

    The bifunctional reagent N-(4-azidobenzoyl)-putrescine was synthesized and covalently bound to rabbit skeletal muscle actin. The incorporation was mediated by guinea pig liver transglutaminase under conditions similar to those described by Takashi (1988, Biochemistry 27, 938-943); up to 0.5 M/M were incorporated into G-actin, whereas F-actin was refractory to incorporation. Peptide fractionation showed that at least 90% of the label was bound to Gln-41. The labeled G-actin was polymerized, and irradiation of the F-actin led to covalent intermolecular cross-linking. A cross-linked peptide complex was isolated from a tryptic digest of the cross-linked actin in which digestion was limited to arginine; sequence analysis as well as mass spectrometry indicated that the linked peptides contained residues 40-62 and residues 96-116, and that the actual cross-link was between Gln-41 and Lys-113. Thus the gamma-carboxyl group of Gln-41 must be within 10.7 A of the side chain (probably the amino group) of Lys-113 in an adjacent actin monomer. In the atomic model for F-actin proposed by Holmes et al. (1990, Nature 347, 44-49), the alpha-carbons of these residues in adjacent monomers along the two-start helices are sufficiently close to permit cross-linking of their side chains, and, pending atomic resolution of the side chains, the results presented here seem to support the proposed model. PMID:1363931

  3. High data rate optical crosslinks

    NASA Astrophysics Data System (ADS)

    Boroson, Don M.; Bondurant, Roy S.

    1992-03-01

    Optical technologies, due to their extremely short wavelengths, can be designed to be much more compact than RF when addressing high data rate crosslinks and multiple apertures approaching the multi-Gbps operational range. Currently available optical technologies can furnish hundreds-of- Mbps in a package of less than 100 lbs and several cubic feet. Attention is presently given to communications and spatial acquisition/tracking system analysis, the character of such space-qualified optics hardware as the requisite laser transmitter, and advanced hardware prototypes.

  4. Measurement of interstrand cross-link frequency and distance between interruptions in DNA exposed to 4,5',8-trimethylpsoralen and near-ultraviolet light

    SciTech Connect

    Matsuo, N.; Ross, P.M.

    1987-04-07

    Bifunctional psoralens react photochemically with DNA to form single-strand adducts and interstrand, chemical cross-links. Cross-link formation is first order with (P), the concentration of added psoralen, when (P) much less than Kd, the psoralen-DNA dissociation constant. DNA molecules containing interstrand cross-links are reversibly bihelical and so are readily detected. It was not heretofore possible to determine cross-link frequency in polydisperse DNA from the mass F of DNA spared cross-linkage. We have derived a statistical relation to calculate cross-link frequency at fixed light exposure and variable (P). We show here that S, the initial slope of the curve described by -ln F as a function of (P), is proportional to Mw, the weight-average molecular weight of nick-free DNA. The cross-link frequency at any (P) can be determined from k, a constant measured for DNA of known Mw at low cross-linkage. This relation is valid for DNA of any molecular weight distribution. In experiments with uniform length DNA, -ln F (cross-link frequency) increased in simple proportion to (P). Intact and restriction endonuclease HindIII digested phage lambda DNA molecules have discrete lengths. S for each was proportional to Mw of the twin helix even though the molecular weight distribution of the restriction fragments was skewed. S was proportional to Mw and to the median molecular weight of sheared cellular DNA over a wide range. Also, we found that 1/S was linear with exposure of cellular DNA to gamma radiation. S can therefore be used to calculate L, the average distance between interruptions in the double helix.

  5. Aglycone geniposidic acid, a naturally occurring crosslinking agent, and its application for the fixation of collagenous tissues.

    PubMed

    Mi, Fwu-Long; Huang, Chin-Tsung; Chiu, Ya-Ling; Chen, Mei-Chin; Liang, Hsiang-Fa; Sung, Hsing-Wen

    2007-12-01

    A natural compound, aglycone geniposidic acid (aGSA), originated from the fruits of Gardenia jasminoides ELLIS was used for the fixation of collagenous tissues. The presumed crosslinking reaction mechanism of collagenous tissues with aGSA was inferred by reacting aGSA with a bifunctional amine, 1,6-hexanediamine, using a series of (1)H NMR, FT-IR, and UV/Vis spectra analyses. aGSA reacted with 1,6-hexanediamine by a nucleophilic attack on the olefinic carbon atom at C-2 of deoxyloganin aglycone, followed by opening the dihydropyran ring to form heterocyclic amine compounds. It is inferred that aGSA may form intramolecular and intermolecular crosslinks with a heterocyclic structure within collagen fibers in tissues. The degrees of tissue fixation by aGSA at different pH values were investigated by examining the fixation indices and denaturation temperatures of test samples. It was found that the fixation indices and denaturation temperatures of test samples fixed at neutral or basic pH (pH 7.4 or pH 8.5) were significantly greater than at acidic pH (pH 4.0). The results obtained in this study may be used to elucidate the crosslinking mechanism and optimize the fixation process for developing bioprostheses fixed by aGSA. Copyright 2007 Wiley Periodicals, Inc.

  6. Relative toxicities of DNA cross-links and monoadducts: new insights from studies of decarbamoyl mitomycin C and mitomycin C.

    PubMed

    Palom, Yolanda; Suresh Kumar, Gopinatha; Tang, Li-Qian; Paz, Manuel M; Musser, Steven M; Rockwell, Sara; Tomasz, Maria

    2002-11-01

    Mitomycin C (MC), a cytotoxic anticancer drug and bifunctional DNA DNA alkylating agent, induces cross-linking of the complementary strands of DNA. The DNA interstrand cross-links (ICLs) are thought to be the critical cytotoxic lesions produced by MC. Decarbamoyl mitomycin C (DMC) has been regarded as a monofunctional mitomycin, incapable of causing ICLs. Paradoxically, DMC is slightly more toxic than MC to hypoxic EMT6 mouse mammary tumor cells as well as to CHO cells. To resolve this paradox, EMT6 cells were treated with MC or DMC under hypoxia at equimolar concentrations and the resulting DNA adducts were analyzed using HPLC and UV detection. MC treatment generated both intrastrand and interstrand cross-link adducts and four monoadducts, as shown previously. DMC generated two stereoisomeric monoadducts and two stereoisomeric ICL adducts, all of which were structurally characterized; one was identical with that formed with MC, the other was new and unique to DMC. Overall, adduct frequencies were strikingly higher (20-30-fold) with DMC than with MC. Although DMC monoadducts greatly exceeded DMC cross-link adducts ( approximately 10:1 ratio), the latter were equal or higher in number than the cross-link adducts from MC. DMC displayed a much higher monoadduct:cross-link ratio than MC. The similar cytotoxicities of the two drug show a correlation with their similar DNA cross-link adduct frequencies, but not with their total adduct or monoadduct frequencies. This provides specific experimental evidence that the ICLs rather than the monoadducts are critical factors in the cell death induced by MC. In vitro, overall alkylation of calf thymus DNA by DMC was much less efficient than by MC. Nevertheless, ICLs formed with DMC were clearly detectable. The chemical pathway of the cross-linking was shown to be analogous to that occurring with MC. These results also suggest that the differential sensitivity of Fanconi's Anemia cells to MC and DMC is related to factors other

  7. Biodegradable, hydrophobic coatings based on crosslinked polycaprolactone

    SciTech Connect

    Koenig, M.F.

    1993-12-31

    Crosslinked poly(caprolactone) (PCL) has been explored as a hydrophobic and biodegradable coating for hydrophilic substrates. Crosslinking of PCL is known to retard its degradation rate, but does not affect its biodegradability. The cross-linking efficiencies of several organic peroxides have been determined for PCL. This has been accomplished by calculating the crosslink density (M{sub c} from dynamic mechanical data) for a given molar concentration of organic peroxide. Various thicknesses of crosslinked PCL have been coated on several different hydrophilic substrates, including paper, MaterBi (regsign), and PCL/starch composites. The hydrophobicity of the coating has been measured by following the weight gain of the coated samples upon exposure to water and a high relative humidity for various lengths of time. Results show that a coating as thin as 10 {mu}m reduces water absorption of paper by a factor of five, and thicker coatings (0.25 mm) by more than two orders of magnitude.

  8. EB radiation crosslinking of elastomers [rapid communication

    NASA Astrophysics Data System (ADS)

    Bik, J.; Głuszewski, W.; Rzymski, W. M.; Zagórski, Z. P.

    2003-06-01

    Radiation-induced crosslinking is proposed as successful alternative to conventional, chemical methods of crosslinking of elastomers. Hydrogenated acrylonitrile-butadiene rubber was irradiated with 10 MeV electron beam to doses up to 300 kGy. Irradiated samples were investigated for the extent of crosslinking and for properties important for understanding of mechanisms. It follows from sol-gel analysis, that for 100 crosslinking acts there are 6-9 acts of chain scission. It is less than expected from the 20% participation of multi-ionization spurs, also in the solid state, as announced during the previous 9th Tihany Conference (Radiat. Phys. Chem. 56 (1999) 559). However, the apparent too low yield of multi-ionization spurs could be explained by partial conversion of scission products into crosslinks of specific trifunctional Y type. Our investigations confirm the usefulness of consideration of different radiation spurs in polymers, as well as in all, low LET irradiated media.

  9. DNA Gel with dynamic cross-links

    NASA Astrophysics Data System (ADS)

    Park, Chang-Young; Fygenson, Deborah; Saleh, Omar

    2014-03-01

    The mechanical properties of a living cell are strongly related to the cytoskeletal network, which is comprised of diverse protein filaments connected by cross-linking proteins, some of which are dynamic. Gels comprised of dynamic cross-linkers exhibit unique mechanical properties not seen in those using permanent cross-linkers. To investigate the effect of a dynamic cross-linker on mechanical properties of a material, we have synthesized biopolymer gels with a well-known semi-flexible biopolymer, DNA, and probed the mechanics of the system using microrheological techniques. We discuss these results in comparison to cytoskeletal systems, and seek to establish universal principles of dynamic cross-link based gels. This work was supported by the NSF-funded UCSB MRSEC program, Award No. DMR-0520415.

  10. New in situ crosslinking chemistries for hydrogelation

    NASA Astrophysics Data System (ADS)

    Roberts, Meredith Colleen

    Over the last half century, hydrogels have found immense value as biomaterials in a vast number of biomedical and pharmaceutical applications. One subset of hydrogels receiving increased attention is in situ forming gels. Gelling by either bioresponsive self-assembly or mixing of binary crosslinking systems, these technologies are useful in minimally invasive applications as well as drug delivery systems in which the sol-to-gel transition aids the formulation's performance. Thus far, the field of in situ crosslinking hydrogels has received limited attention in the development of new crosslinking chemistries. Moreover, not only does the chemical nature of the crosslinking moieties allow these systems to perform in situ, but they contribute dramatically to the mechanical properties of the hydrogel networks. For example, reversible crosslinks with finite lifetimes generate dynamic viscoelastic gels with time-dependent properties, whereas irreversible crosslinks form highly elastic networks. The aim of this dissertation is to explore two new covalent chemistries for their ability to crosslink hydrogels in situ under physiological conditions. First, reversible phenylboronate-salicylhydroxamate crosslinking was implemented in a binary, multivalent polymeric system. These gels formed rapidly and generated hydrogel networks with frequency-dependent dynamic rheological properties. Analysis of the composition-structure-property relationships of these hydrogels---specifically considering the effects of pH, degree of polymer functionality, charge of the polymer backbone and polymer concentration on dynamic theological properties---was performed. These gels demonstrate diverse mechanical properties, due to adjustments in the binding equilibrium of the pH-sensitive crosslinks, and thus have the potential to perform in a range of dynamic or bioresponsive applications. Second, irreversible catalyst-free "click" chemistry was employed in the hydrogelation of multivalent azide

  11. A novel bifunctional electrocatalyst for unitized regenerative fuel cell

    NASA Astrophysics Data System (ADS)

    Zhang, Yining; Zhang, Huamin; Ma, Yuanwei; Cheng, Jinbin; Zhong, Hexiang; Song, Shidong; Ma, Haipeng

    5 wt.% of platinum (Pt) nanoparticles are highly dispersed on the surface of IrO 2 by chemical reduction, and the catalyst is mixed with Pt black to be used as a novel bifunctional oxygen electrocatalyst for the unitized regenerative fuel cell (URFC). The novel cell has been evaluated in the hydrogen and oxygen fuel cell and water electrolysis modes, and compared to a similar cell with an oxygen electrode using conventional mixed Pt black and IrO 2 catalyst. With the novel oxygen electrode catalyst, the highest fuel cell power density is 1160 mW cm -2 at 2600 mA cm -2; the overall performance is close to that with the commercial Pt supported on carbon catalyst and about 1.8 times higher than that with the conventional mixed Pt black and IrO 2 catalyst. Additionally, the cell performance for water electrolysis is also slightly improved, which is probably the result of lower interparticle catalyst resistance with 5 wt.% Pt on IrO 2 compared to no Pt on IrO 2.

  12. Bioinspired Bifunctional Membrane for Efficient Clean Water Generation.

    PubMed

    Liu, Yang; Lou, Jinwei; Ni, Mengtian; Song, Chengyi; Wu, Jianbo; Dasgupta, Neil P; Tao, Peng; Shang, Wen; Deng, Tao

    2016-01-13

    Solving the problems of water pollution and water shortage is an urgent need for the sustainable development of modern society. Different approaches, including distillation, filtration, and photocatalytic degradation, have been developed for the purification of contaminated water and the generation of clean water. In this study, we explored a new approach that uses solar light for both water purification and clean water generation. A bifunctional membrane consisting of a top layer of TiO2 nanoparticles (NPs), a middle layer of Au NPs, and a bottom layer of anodized aluminum oxide (AAO) was designed and fabricated through multiple filtration processes. Such a design enables both TiO2 NP-based photocatalytic function and Au NP-based solar-driven plasmonic evaporation. With the integration of these two functions into a single membrane, both the purification of contaminated water through photocatalytic degradation and the generation of clean water through evaporation were demonstrated using simulated solar illumination. Such a demonstration should also help open up a new strategy for maximizing solar energy conversion and utilization.

  13. Gemini, a Bifunctional Enzymatic and Fluorescent Reporter of Gene Expression

    PubMed Central

    Endy, Drew

    2009-01-01

    Background The development of collections of quantitatively characterized standard biological parts should facilitate the engineering of increasingly complex and novel biological systems. The existing enzymatic and fluorescent reporters that are used to characterize biological part functions exhibit strengths and limitations. Combining both enzymatic and fluorescence activities within a single reporter protein would provide a useful tool for biological part characterization. Methodology/Principal Findings Here, we describe the construction and quantitative characterization of Gemini, a fusion between the β-galactosidase (β-gal) α-fragment and the N-terminus of full-length green fluorescent protein (GFP). We show that Gemini exhibits functional β-gal activity, which we assay with plates and fluorometry, and functional GFP activity, which we assay with fluorometry and microscopy. We show that the protein fusion increases the sensitivity of β-gal activity and decreases the sensitivity of GFP. Conclusions/Significance Gemini is therefore a bifunctional reporter with a wider dynamic range than the β-gal α-fragment or GFP alone. Gemini enables the characterization of gene expression, screening assays via enzymatic activity, and quantitative single-cell microscopy or FACS via fluorescence activity. The analytical flexibility afforded by Gemini will likely increase the efficiency of research, particularly for screening and characterization of libraries of standard biological parts. PMID:19888458

  14. Preparation of proton conducting membranes containing bifunctional titania nanoparticles

    NASA Astrophysics Data System (ADS)

    Aslan, Ayşe; Bozkurt, Ayhan

    2013-07-01

    Throughout this work, the synthesis and characterization of novel proton conducting nanocomposite membranes including binary and ternary mixtures of sulfated nano-titania (TS), poly(vinyl alcohol) (PVA), and nitrilotri(methyl phosphonic acid) (NMPA) are discussed. The materials were produced by means of two different approaches where in the first, PVA and TS (10-15 nm) were admixed to form a binary system. The second method was the ternary nanocomposite membranes including PVA/TS/NMPA that were prepared at several compositions to get PVA-TS-(NMPA) x . The interaction of functional nano particles and NMPA in the host matrix was explored by FT-IR spectroscopy. The homogeneous distribution of bifunctional nanoparticles in the membrane was confirmed by SEM micrographs. The spectroscopic measurements and water/methanol uptake studies suggested a complexation between PVA and NMPA, which inhibited the leaching of the latter. The thermogravimetry analysis results verified that the presence of TS in the composite membranes suppressed the formation of phosphonic acid anhydrides up to 150 °C. The maximum proton conductivity has been measured for PVA-TS-(NMPA)3 as 0.003 S cm-1 at 150 °C.

  15. Identification of a Bifunctional Maize C- and O-Glucosyltransferase*

    PubMed Central

    Falcone Ferreyra, María Lorena; Rodriguez, Eduardo; Casas, María Isabel; Labadie, Guillermo; Grotewold, Erich; Casati, Paula

    2013-01-01

    Flavonoids accumulate in plant vacuoles usually as O-glycosylated derivatives, but several species can also synthesize flavonoid C-glycosides. Recently, we demonstrated that a flavanone 2-hydroxylase (ZmF2H1, CYP93G5) converts flavanones to the corresponding 2-hydroxy derivatives, which are expected to serve as substrates for C-glycosylation. Here, we isolated a cDNA encoding a UDP-dependent glycosyltransferase (UGT708A6), and its activity was characterized by in vitro and in vivo bioconversion assays. In vitro assays using 2-hydroxyflavanones as substrates and in vivo activity assays in yeast co-expressing ZmF2H1 and UGT708A6 show the formation of the flavones C-glycosides. UGT708A6 can also O-glycosylate flavanones in bioconversion assays in Escherichia coli as well as by in vitro assays with the purified recombinant protein. Thus, UGT708A6 is a bifunctional glycosyltransferase that can produce both C- and O-glycosidated flavonoids, a property not previously described for any other glycosyltransferase. PMID:24045947

  16. A novel bifunctional transcriptional regulator of riboflavin metabolism in Archaea.

    PubMed

    Rodionova, Irina A; Vetting, Matthew W; Li, Xiaoqing; Almo, Steven C; Osterman, Andrei L; Rodionov, Dmitry A

    2017-01-09

    Riboflavin (vitamin B2) is the precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide, which are essential coenzymes in all free-living organisms. Riboflavin biosynthesis in many Bacteria but not in Archaea is controlled by FMN-responsive riboswitches. We identified a novel bifunctional riboflavin kinase/regulator (RbkR), which controls riboflavin biosynthesis and transport genes in major lineages of Crenarchaeota, Euryarchaeota and Thaumarchaeota. RbkR proteins are composed of the riboflavin kinase domain and a DNA-binding winged helix-turn-helix-like domain. Using comparative genomics, we predicted RbkR operator sites and reconstructed RbkR regulons in 94 archaeal genomes. While the identified RbkR operators showed significant variability between archaeal lineages, the conserved core of RbkR regulons includes riboflavin biosynthesis genes, known/predicted vitamin uptake transporters and the rbkR gene. The DNA motifs and CTP-dependent riboflavin kinase activity of two RbkR proteins were experimentally validated in vitro The DNA binding activity of RbkR was stimulated by CTP and suppressed by FMN, a product of riboflavin kinase. The crystallographic structure of RbkR from Thermoplasma acidophilum was determined in complex with CTP and its DNA operator revealing key residues for operator and ligand recognition. Overall, this study contributes to our understanding of metabolic and regulatory networks for vitamin homeostasis in Archaea.

  17. A bifunctional spin detector made of quantum anomalous Hall insulator

    NASA Astrophysics Data System (ADS)

    Shi, Zhangsheng; Wu, Jiansheng

    2016-10-01

    The spin selection of the topological boundary states (TBS) which are protected by the chiral-like symmetry in quantum anomalous Hall insulator (QAHI) can be used to construct a bifunctional spin detector (SD). Such device made of QAHIs in parallel with opposite chirality can divide an incoming spin-polarized current into two outgoing currents. The agreement between numerical and analytical calculation proves that the SD device functions as both spin filter and spin separator well in reflecting the spin polarization of source material from the ratio of two currents. The monotonic relation of spin polarization and current ratio suggests that using such kind of device, the spin polarization can be obtained directly. We also find that such device has a broad working energy region attributed by the TBS within the bulk gap. Combining with the result that the current ratio is barely dependent on the coupling between candidate materials and device, it is reasonable to apply this technique with a stable measuring accuracy. Furthermore, the features such as having simple geometry, being manipulated without external magnetic field, and the prospect of working at room temperature make this proposed device seem promising in developing future low-power-consumption spintronic device.

  18. A conserved regulatory mechanism in bifunctional biotin protein ligases.

    PubMed

    Wang, Jingheng; Beckett, Dorothy

    2017-08-01

    Class II bifunctional biotin protein ligases (BirA), which catalyze post-translational biotinylation and repress transcription initiation, are broadly distributed in eubacteria and archaea. However, it is unclear if these proteins all share the same molecular mechanism of transcription regulation. In Escherichia coli the corepressor biotinoyl-5'-AMP (bio-5'-AMP), which is also the intermediate in biotin transfer, promotes operator binding and resulting transcription repression by enhancing BirA dimerization. Like E. coli BirA (EcBirA), Staphylococcus aureus, and Bacillus subtilis BirA (Sa and BsBirA) repress transcription in vivo in a biotin-dependent manner. In this work, sedimentation equilibrium measurements were performed to investigate the molecular basis of this biotin-responsive transcription regulation. The results reveal that, as observed for EcBirA, Sa, and BsBirA dimerization reactions are significantly enhanced by bio-5'-AMP binding. Thus, the molecular mechanism of the Biotin Regulatory System is conserved in the biotin repressors from these three organisms. © 2017 The Protein Society.

  19. Gold-Copper Nanoparticles: Nanostructural Evolution and Bifunctional Catalytic Sites

    SciTech Connect

    Yin, Jun; Shan, Shiyao; Yang, Lefu; Mott, Derrick; Malis, Oana; Petkov, Valeri; Cai, Fan; Ng, Mei; Luo, Jin; Chen, Bing H.; Engelhard, Mark H.; Zhong, Chuan-Jian

    2012-12-12

    Understanding of the atomic-scale structure is essential for exploiting the unique catalytic properties of any nanoalloy catalyst. This report describes novel findings of an investigation of the nanoscale alloying of gold-copper (AuCu) nanoparticles and its impact on the surface catalytic functions. Two pathways have been explored for the formation of AuCu nanoparticles of different compositons, including wet chemical synthesis from mixed Au- and Cu-precursor molecules, and nanoscale alloying via an evolution of mixed Au- and Cu-precursor nanoparticles near the nanoscale melting temperatures. For the evolution of mixed precursor nanoparticles, synchrotron x-ray based in-situ real time XRD was used to monitor the structural changes, revealing nanoscale alloying and reshaping towards an fcc-type nanoalloy (particle or cube) via a partial melting–resolidification mechanism. The nanoalloys supported on carbon or silica were characterized by in-situ high-energy XRD/PDFs, revealing an intriguing lattice "expanding-shrinking" phenomenon depending on whether the catalyst is thermochemically processed under oxidative or reductive atmosphere. This type of controllable structural changes is found to play an important role in determining the catalytic activity of the catalysts for carbon monoxide oxidation reaction. The tunable catalytic activities of the nanoalloys under thermochemically oxidative and reductive atmospheres are also discussed in terms of the bifunctional sites and the surface oxygenated metal species for carbon monoxide and oxygen activation.

  20. Bifunctional drugs for the treatment of asthma and chronic obstructive pulmonary disease.

    PubMed

    Page, Clive; Cazzola, Mario

    2014-08-01

    Over the last decade, there has been a steady increase in the use of fixed-dose combinations of drugs for the treatment of a range of diseases, including hypertension, cancer, AIDS, tuberculosis and other infectious diseases. It is now evident that patients with asthma or chronic obstructive pulmonary disease (COPD) can also benefit from the use of fixed-dose combinations, including combinations of a long-acting β2-agonist and an inhaled corticosteroid, and combinations of long-acting β2-agonists and long-acting muscarinic receptor antagonists. In fact, there are now a number of "triple-inhaler" fixed-dose combinations under development, with the first such triple combination having been approved in India. This use of combinations containing drugs with complementary pharmacological actions in the treatment of patients with asthma or COPD has also led to the discovery and development of drugs having two different primary pharmacological actions in the same molecule, which we have called "bifunctional drugs". In this review, we discuss the state of the art of these new bifunctional drugs as novel treatments for asthma and COPD that can be categorised as bifunctional bronchodilators, bifunctional bronchodilator/anti-inflammatory drugs and bifunctional anti-inflammatory drugs.

  1. Single flexible nanofiber to achieve simultaneous photoluminescence-electrical conductivity bifunctionality.

    PubMed

    Sheng, Shujuan; Ma, Qianli; Dong, Xiangting; Lv, Nan; Wang, Jinxian; Yu, Wensheng; Liu, Guixia

    2015-02-01

    In order to develop new-type multifunctional composite nanofibers, Eu(BA)3 phen/PANI/PVP bifunctional composite nanofibers with simultaneous photoluminescence and electrical conductivity have been successfully fabricated via electrospinning technology. Polyvinyl pyrrolidone (PVP) is used as a matrix to construct composite nanofibers containing different amounts of Eu(BA)3 phen and polyaniline (PANI). X-Ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), fluorescence spectroscopy and a Hall effect measurement system are used to characterize the morphology and properties of the composite nanofibers. The results indicate that the bifunctional composite nanofibers simultaneously possess excellent photoluminescence and electrical conductivity. Fluorescence emission peaks of Eu(3+) ions are observed in the Eu(BA)3 phen/PANI/PVP photoluminescence-electrical conductivity bifunctional composite nanofibers. The electrical conductivity reaches up to the order of 10(-3)  S/cm. The luminescent intensity and electrical conductivity of the composite nanofibers can be tuned by adjusting the amounts of Eu(BA)3 phen and PANI. The obtained photoluminescence-electrical conductivity bifunctional composite nanofibers are expected to possess many potential applications in areas such as microwave absorption, molecular electronics, biomedicine and future nanomechanics. More importantly, the design concept and construction technique are of universal significance to fabricate other bifunctional one-dimensional naonomaterials. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Perovskite-nitrogen-doped carbon nanotube composite as bifunctional catalysts for rechargeable lithium-air batteries.

    PubMed

    Park, Hey Woong; Lee, Dong Un; Park, Moon Gyu; Ahmed, Raihan; Seo, Min Ho; Nazar, Linda F; Chen, Zhongwei

    2015-03-01

    Developing an effective bifunctional catalyst is a significant issue, as rechargeable metal-air batteries are very attractive for future energy systems. In this study, a facile one-pot process is introduced to prepare an advanced bifunctional catalyst (op-LN) incorporating nitrogen-doped carbon nanotubes (NCNTs) into perovskite La0.5 Sr0.5 Co0.8 Fe0.2 O3 nanoparticles (LSCF-NPs). Confirmed by half-cell testing, op-LN exhibits synergistic effects of LSCF-NP and NCNT with excellent bifunctionality for both the oxygen reduction reaction and the oxygen evolution reaction. Furthermore, op-LN exhibits comparable performances in these reactions to Pt/C and Ir/C, respectively, which highlights its potential for use as a commercially viable bifunctional catalyst. Moreover, the results obtained by testing op-LN in a practical Li-air battery demonstrate improved and complementary charge/discharge performance compared to those of LSCF-NP and NCNT, and this confirms that simply prepared op-LN is a promising candidate as a highly effective bifunctional catalyst for rechargeable metal-air batteries.

  3. D-bifunctional protein deficiency: a cause of neonatal onset seizures and hypotonia.

    PubMed

    Nascimento, João; Mota, Céu; Lacerda, Lúcia; Pacheco, Sara; Chorão, Rui; Martins, Esmeralda; Garrido, Cristina

    2015-05-01

    Peroxisomal disorders are classified in two major groups: (1) peroxisome biogenesis disorders and (2) single peroxisomal enzyme/transporter deficiencies. D-bifunctional protein deficiency (OMIM #261515) is included in this last group of rare diseases and leads to an impaired peroxisomal beta-oxidation. D-bifunctional protein deficiencies are divided into four types based on the degree of activity of the 2-enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase protein units. We present the first Portuguese reported type II D-bifunctional protein deficiency patient, whose neonatal clinical picture is indistinguishable from a Zellweger spectrum disease. The clinical features and the neuroimaging findings of polymicrogyria raised suspicion of the diagnosis. After biochemical analysis, D-bifunctional protein deficiency was confirmed with the identification of a homozygous p.Asn457Tyr (N457Y) mutation of the HSD17B4 gene. The patient's parents were carriers of the mutated allele, confirming the patient homozygosity status and allowing prenatal diagnosis in future pregnancies. D-bifunctional protein deficiency is a rare, severe disease and the final diagnosis can only be accomplished after HSD17B4 gene sequencing. Treatment is supportive, aimed at improving nutrition and growth, controlling the central nervous system symptoms, and limiting the eventual progression of liver disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Cross-linked biopolymer bundles: Cross-link reversibility leads to cooperative binding/unbinding phenomena

    NASA Astrophysics Data System (ADS)

    Vink, Richard L. C.; Heussinger, Claus

    2012-01-01

    We consider a biopolymer bundle consisting of filaments that are cross-linked together. The cross-links are reversible: they can dynamically bind and unbind adjacent filament pairs as controlled by a binding enthalpy. The bundle is subjected to a bending deformation and the corresponding distribution of cross-links is measured. For a bundle consisting of two filaments, upon increasing the bending amplitude, a first-order transition is observed. The transition is from a state where the filaments are tightly coupled by many bound cross-links, to a state of nearly independent filaments with only a few bound cross-links. For a bundle consisting of more than two filaments, a series of first-order transitions is observed. The transitions are connected with the formation of an interface between regions of low and high cross-link densities. Combining umbrella sampling Monte Carlo simulations with analytical calculations, we present a detailed picture of how the competition between cross-link shearing and filament stretching drives the transitions. We also find that, when the cross-links become soft, collective behavior is not observed: the cross-links then unbind one after the other leading to a smooth decrease of the average cross-link density.

  5. Protein cross-linking in food.

    PubMed

    Gerrard, J A; Meade, S J; Miller, A G; Brown, P K; Yasir, S B M; Sutton, K H; Newberry, M P

    2005-06-01

    The aims of this paper are (1) to probe the relationship between molecular structure and protein cross-linking ability for a range of small molecules; (2) to establish whether this relationship holds within a food matrix; and (3) to test the impact of Maillard cross-linking on food functionality, particularly texture, in wheat- and soy-based food systems. A variety of molecules were obtained, either commercially or via organic synthesis. Cross-linking ability was tested using our standard model system, employing ribonuclease A and analyzing the results by SDS-PAGE. Molecules of varying reactivity were tested in wheat- and soy-based products, and the changes in functionality were correlated with changes in protein cross-linking. No simple relationship was found between molecular structure and ability to cross-link ribonuclease. Only the most reactive reagents were able to cross-link within the food matrix. Nevertheless, a low degree of cross-linking was shown to have significant consequences on the properties of wheat- and soy-based foods, suggesting that the Maillard reaction may represent a means to control food texture.

  6. Porous Cross-Linked Polyimide Networks

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Guo, Haiquan (Inventor)

    2015-01-01

    Porous cross-linked polyimide networks are provided. The networks comprise an anhydride end-capped polyamic acid oligomer. The oligomer (i) comprises a repeating unit of a dianhydride and a diamine and terminal anhydride groups, (ii) has an average degree of polymerization of 10 to 50, (iii) has been cross-linked via a cross-linking agent, comprising three or more amine groups, at a balanced stoichiometry of the amine groups to the terminal anhydride groups, and (iv) has been chemically imidized to yield the porous cross-linked polyimide network. Also provided are porous cross-linked polyimide aerogels comprising a cross-linked and imidized anhydride end-capped polyamic acid oligomer, wherein the oligomer comprises a repeating unit of a dianhydride and a diamine, and the aerogel has a density of 0.10 to 0.333 g/cm.sup.3 and a Young's modulus of 1.7 to 102 MPa. Also provided are thin films comprising aerogels, and methods of making porous cross-linked polyimide networks.

  7. Enhancing DNA Crystal Durability through Chemical Crosslinking.

    PubMed

    Zhang, Diana; Paukstelis, Paul J

    2016-06-16

    Three-dimensional (3D) DNA crystals have been envisioned as a powerful tool for the positional control of biological and non-biological arrays on the nanoscale. However, most DNA crystals contain short duplex regions that can result in low thermal stability. Additionally, because DNA is a polyanion, DNA crystals often require high cation concentrations to maintain their integrity. Here, we demonstrate that a DNA alkylating mustard, bis(2-chloroethyl)amine, can form interstrand crosslinks within a model 3D DNA crystal. The crosslinking procedure did not alter crystal X-ray diffraction properties, but it did significantly improve the overall stability of the crystals under a variety of conditions. Crosslinked crystals showed enhanced stability at elevated temperature and were stable at Mg(2+) concentrations as low as 1 mm. Remarkably, the crosslinked crystals showed significant resistance to DNase I treatment, while also having improved longevity in tissue culture mediums. Characterization of the crosslinked species suggest that there are multiple crosslinking sites, but that the most prevalent interstrand crosslink involves an unpaired 3'-terminal guanosine residue. The improved stability of these DNA crystals suggests that simple treatment with alkylating reagents might be sufficient to stabilize crystals and other DNA constructs for improved functionality in biological and non-biological applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Crosslinking of water-soluble polymers

    NASA Astrophysics Data System (ADS)

    Lei, Cuiyue

    The crosslinking of water-soluble polymers is important in many industrial processes. In the oil industry, minimizing the concentration of polymers is desirable for technical and economic reasons. This dissertation provides a link between measurable polymer properties and the minimum concentration necessary for crosslinking. The influences of polymer type and concentration, crosslinker type, salt and additives on the crosslinking process were studied by steady shear test, creep test, oscillatory test, Atomic Force Microscopy and other techniques. Solution properties, crosslinked gel properties and the relationship between them were investigated. Test results indicate that the rheological properties of guar solutions and its derivatives are quite different. The critical overlap concentrations increase in the order GW-3, CMG, CMHPG, guar and HPG. And, the intrinsic viscosity increases in the order of HPG, guar, CMHPG, GW-3 and CMG. At low concentrations, steady shear viscosity decreases in the order of CMG, CMHPG, GW-3, guar and HPG, while at high concentrations, the steady shear viscosities decrease in the order of GW-3, guar, CMG, CMHPG and HPG. Addition of urea and sugar reduces the viscosity of guar solutions. The influence of salts on the viscosity of CMG solutions varies with salt types and polymer concentrations. The strength of crosslinked gels increases with polymer concentration. At low polymer concentrations, gel strength of guar derivatives increases in the order of HPG, guar, GW-3, CMG and CMHPG, while at high concentrations, gel strength increases in the order of CMG, CMHPG, HPG, guar and GW-3. The critical crosslinking concentration increases in the order of GW-3, CMG, CMHPG, guar and HPG. A mathematical model is developed to relate critical crosslinking concentration and critical crosslinking concentration. The relationship between them is scaled as a power law. Models of the plateau modulus dependence on concentration are also developed. The modulus

  9. A Novel N-Acetylglutamate Synthase Architecture Revealed by the Crystal Structure of the Bifunctional Enzyme from Maricaulis maris

    PubMed Central

    Shi, Dashuang; Li, Yongdong; Cabrera-Luque, Juan; Jin, Zhongmin; Yu, Xiaolin; Zhao, Gengxiang; Haskins, Nantaporn; Allewell, Norma M.; Tuchman, Mendel

    2011-01-01

    Novel bifunctional N-acetylglutamate synthase/kinases (NAGS/K) that catalyze the first two steps of arginine biosynthesis and are homologous to vertebrate N-acetylglutamate synthase (NAGS), an essential cofactor-producing enzyme in the urea cycle, were identified in Maricaulis maris and several other bacteria. Arginine is an allosteric inhibitor of NAGS but not NAGK activity. The crystal structure of M. maris NAGS/K (mmNAGS/K) at 2.7 Å resolution indicates that it is a tetramer, in contrast to the hexameric structure of Neisseria gonorrhoeae NAGS. The quaternary structure of crystalline NAGS/K from Xanthomonas campestris (xcNAGS/K) is similar, and cross-linking experiments indicate that both mmNAGS/K and xcNAGS are tetramers in solution. Each subunit has an amino acid kinase (AAK) domain, which is likely responsible for N-acetylglutamate kinase (NAGK) activity and has a putative arginine binding site, and an N-acetyltransferase (NAT) domain that contains the putative NAGS active site. These structures and sequence comparisons suggest that the linker residue 291 may determine whether arginine acts as an allosteric inhibitor or activator in homologous enzymes in microorganisms and vertebrates. In addition, the angle of rotation between AAK and NAT domains varies among crystal forms and subunits within the tetramer. A rotation of 26° is sufficient to close the predicted AcCoA binding site, thus reducing enzymatic activity. Since mmNAGS/K has the highest degree of sequence homology to vertebrate NAGS of NAGS and NAGK enzymes whose structures have been determined, the mmNAGS/K structure was used to develop a structural model of human NAGS that is fully consistent with the functional effects of the 14 missense mutations that were identified in NAGS-deficient patients. PMID:22174908

  10. A Novel N-Acetylglutamate Synthase Architecture Revealed by the Crystal Structure of the Bifunctional Enzyme from Maricaulis maris

    SciTech Connect

    Shi, Dashuang; Li, Yongdong; Cabrera-Luque, Juan; Jin, Zhongmin; Yu, Xiaolin; Zhao, Gengxiang; Haskins, Nantaporn; Allewell, Norma M.; Tuchman, Mendel

    2012-05-24

    Novel bifunctional N-acetylglutamate synthase/kinases (NAGS/K) that catalyze the first two steps of arginine biosynthesis and are homologous to vertebrate N-acetylglutamate synthase (NAGS), an essential cofactor-producing enzyme in the urea cycle, were identified in Maricaulis maris and several other bacteria. Arginine is an allosteric inhibitor of NAGS but not NAGK activity. The crystal structure of M. maris NAGS/K (mmNAGS/K) at 2.7 {angstrom} resolution indicates that it is a tetramer, in contrast to the hexameric structure of Neisseria gonorrhoeae NAGS. The quaternary structure of crystalline NAGS/K from Xanthomonas campestris (xcNAGS/K) is similar, and cross-linking experiments indicate that both mmNAGS/K and xcNAGS are tetramers in solution. Each subunit has an amino acid kinase (AAK) domain, which is likely responsible for N-acetylglutamate kinase (NAGK) activity and has a putative arginine binding site, and an N-acetyltransferase (NAT) domain that contains the putative NAGS active site. These structures and sequence comparisons suggest that the linker residue 291 may determine whether arginine acts as an allosteric inhibitor or activator in homologous enzymes in microorganisms and vertebrates. In addition, the angle of rotation between AAK and NAT domains varies among crystal forms and subunits within the tetramer. A rotation of 26{sup o} is sufficient to close the predicted AcCoA binding site, thus reducing enzymatic activity. Since mmNAGS/K has the highest degree of sequence homology to vertebrate NAGS of NAGS and NAGK enzymes whose structures have been determined, the mmNAGS/K structure was used to develop a structural model of human NAGS that is fully consistent with the functional effects of the 14 missense mutations that were identified in NAGS-deficient patients.

  11. Double diastereocontrol in bifunctional thiourea organocatalysis: iterative Michael-Michael-Henry sequence regulated by the configuration of chiral catalysts.

    PubMed

    Varga, Szilárd; Jakab, Gergely; Drahos, László; Holczbauer, Tamás; Czugler, Mátyás; Soós, Tibor

    2011-10-21

    The importance and reactivity consequences of the double diastereocontrol in noncovalent bifunctional organocatalysis were studied. The results suggest that the bifunctional thioureas can have synthetic limitations in multicomponent domino or autotandem catalysis. Nevertheless, we provided a means to exploit this behavior and used the configuration of the chiral catalyst as a control element in organo-sequential reactions.

  12. The radiation crosslinking process and new products

    NASA Astrophysics Data System (ADS)

    Ueno, Keiji

    In 1988 there were over 90 EB accelerators for industrial use in Japan. The number one industrial application was Wire and Cable, the 2nd was PE foam and Curing, and the 3rd was Precure of tyre. R & D has a very high ration of EB accelerator use. Low energy industrial applications were coated steel (white board), plaster slab, coated paper, magnetic tape and floppy disks. As a new application of the radiation crosslinking process, we have studied radiation crosslinking of engineering plastics and succeeded in improving the hea tresistivity without using glass fibers. Many kinds of polyfunctional monomers used as crosslinking reagents of irradiated Nylon and PBT were studied.

  13. Influence of the Expression Level of O6-Alkylguanine-DNA Alkyltransferase on the Formation of DNA Interstrand Crosslinks Induced by Chloroethylnitrosoureas in Cells: A Quantitation Using High-Performance Liquid Chromatography-Mass Spectrometry

    PubMed Central

    Sun, Guohui; Peng, Ruizeng; Zhao, Lijiao; Zhong, Rugang

    2015-01-01

    Chloroethylnitrosoureas (CENUs), which are bifunctional alkylating agents widely used in the clinical treatment of cancer, exert anticancer activity by inducing crosslink within a guanine-cytosine DNA base pair. However, the formation of dG-dC crosslinks can be prevented by O6-alkylguanine-DNA alkyltransferase (AGT), ultimately leading to drug resistance. Therefore, the level of AGT expression is related to the formation of dG-dC crosslinks and the sensitivity of cells to CENUs. In this work, we determined the CENU-induced dG-dC crosslink in mouse L1210 leukemia cells and in human glioblastoma cells (SF-763, SF-767 and SF-126) containing different levels of AGT using high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. The results indicate that nimustine (ACNU) induced more dG-dC crosslinks in L1210 leukemia cells than those induced by carmustine (BCNU), lomustine (CCNU) and fotemustine (FTMS). This result was consistent with a previously reported cohort study, which demonstrated that ACNU had a better survival gain than BCNU, CCNU and FTMS for patients with high-grade glioma. Moreover, we compared the crosslinking levels and the cytotoxicity in SF-763, SF-767 and SF-126 cells with different AGT expression levels after exposure to ACNU. The levels of dG-dC crosslink in SF-126 cells (low AGT expression) were significantly higher than those in SF-767 (medium AGT expression) and SF-763 (high AGT expression) cells at each time point. Correspondingly, the cytotoxicity of SF-126 was the highest followed by SF-767 and SF-763. The results obtained in this work provided unequivocal evidence for drug resistance to CENUs induced by AGT-mediated repair of DNA ICLs. We postulate that the level of dG-dC crosslink has the potential to be employed as a biomarker for estimating drug resistance and anticancer efficiencies of novel CENU chemotherapies. PMID:25799182

  14. Scaling-Relation-Based Analysis of Bifunctional Catalysis: The Case for Homogeneous Bimetallic Alloys

    DOE PAGES

    Andersen, Mie; Medford, Andrew J.; Norskov, Jens K.; ...

    2017-04-14

    Here, we present a generic analysis of the implications of energetic scaling relations on the possibilities for bifunctional gains at homogeneous bimetallic alloy catalysts. Such catalysts exhibit a large number of interface sites, where second-order reaction steps can involve intermediates adsorbed at different active sites. Using different types of model reaction schemes, we show that such site-coupling reaction steps can provide bifunctional gains that allow for a bimetallic catalyst composed of two individually poor catalyst materials to approach the activity of the optimal monomaterial catalyst. However, bifunctional gains cannot result in activities higher than the activity peak of the monomaterialmore » volcano curve as long as both sites obey similar scaling relations, as is generally the case for bimetallic catalysts. These scaling-relation-imposed limitations could be overcome by combining different classes of materials such as metals and oxides.« less

  15. Nickel sulfide microsphere film on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting.

    PubMed

    Zhu, Wenxin; Yue, Xiaoyue; Zhang, Wentao; Yu, Shaoxuan; Zhang, Yuhuan; Wang, Jing; Wang, Jianlong

    2016-01-25

    Developing low-cost, efficient, and bifunctional electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is an appealing yet challenging task. Herein, for the first time, a NiS microsphere film was grown in situ on Ni foam (NiS/Ni foam) via a sulfurization reaction as an efficient bifunctional electrocatalyst for overall water splitting with superior activity and good durability. This NiS/Ni foam electrode delivers 20 mA cm(-2) at an overpotential of 158 mV for the HER and 50 mA cm(-2) at an overpotential of 335 mV for the OER in 1.0 M KOH. This bifunctional electrode also enables a high-efficiency alkaline water electrolyzer with 10 mA cm(-2) at a cell voltage of only 1.64 V, which could be promising in water splitting devices for large-scale hydrogen production.

  16. Watt-Level Continuous-Wave Emission from a Bifunctional Quantum Cascade Laser/Detector

    PubMed Central

    2017-01-01

    Bifunctional active regions, capable of light generation and detection at the same wavelength, allow a straightforward realization of the integrated mid-infrared photonics for sensing applications. Here, we present a high performance bifunctional device for 8 μm capable of 1 W single facet continuous wave emission at 15 °C. Apart from the general performance benefits, this enables sensing techniques which rely on continuous wave operation, for example, heterodyne detection, to be realized within a monolithic platform and demonstrates that bifunctional operation can be realized at longer wavelength, where wavelength matching becomes increasingly difficult and that the price to be paid in terms of performance is negligible. In laser operation, the device has the same or higher efficiency compared to the best lattice-matched QCLs without same wavelength detection capability, which is only 30% below the record achieved with strained material at this wavelength. PMID:28540324

  17. Enhanced Bifunctional Oxygen Catalysis in Strained LaNiO3 Perovskites

    SciTech Connect

    Petrie, Jonathan R.; Cooper, Valentino R.; Freeland, John W.; Meyer, Tricia L.; Zhang, Zhiyong; Lutterman, Daniel A.; Lee, Ho Nyung

    2016-03-02

    Strain is known to greatly influence low temperature oxygen electro catalysis on noble metal films, leading to significant enhancements in bifunctional activity essential for fuel cells and Metal-air batteries. However, its catalytic impact on transition-metal oxide thin films, such as perovskites, is not widely understood. Here, we epitaxially strain the conducting perovskite LaNiO3 to systematically determine its influence on both the oxygen reduction and oxygen evolution reaction. Uniquely, we found that compressive strain could significantly enhance both reactions, yielding a bifunctional catalyst that surpasses the performance of noble metals' such as Pt. We attribute the improved bifunctionality to strain induced splitting of the e(g) Orbitals, which can customize orbital asymmetry at the surface. Analogous to strain induced shifts in the d-band center of noble metals relative to the Fermi level, :such splitting can dramatically affect catalytic activity in this perovskite and other potentially more active Oxides.

  18. Estimation of the Molecular Weight between Crosslinks of Crosslinked Semicrystalline Polyolefins

    NASA Astrophysics Data System (ADS)

    Mangnus, Marc A.; Karjala, Teresa P.; Gelfer, Mikhail M.; Hahn, Stephen F.

    2008-07-01

    The molecular weight between crosslinks (MXL) of crosslinked semicrystalline polyolefins, polyethylene in particular, has been estimated from uniaxial tensile tests in the melt state with the Sentmanat Extensional Rheometer (SER). Applying the Mooney-Rivlin equation to these stress-strain data resulted in the determination of an apparent molecular weight between crosslinks. This fast and convenient technique correlates well with the conventional approach where MXL is obtained via the plateau modulus from shear viscosity.

  19. Synthesis, characterization and catalytic activity of acid-base bifunctional materials through protection of amino groups

    SciTech Connect

    Shao, Yanqiu; Liu, Heng; Yu, Xiaofang; Guan, Jingqi; Kan, Qiubin

    2012-03-15

    Graphical abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. Highlights: Black-Right-Pointing-Pointer The acid-base bifunctional material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized through protection of amino groups. Black-Right-Pointing-Pointer The obtained bifunctional material was tested for aldol condensation. Black-Right-Pointing-Pointer The SO{sub 3}H-SBA-15-NH{sub 2} catalyst containing amine and sulfonic acid groups exhibited excellent acid-basic properties. -- Abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. X-ray diffraction (XRD), N{sub 2} adsorption-desorption, transmission electron micrographs (TEM), back titration, {sup 13}C magic-angle spinning (MAS) NMR and {sup 29}Si magic-angle spinning (MAS) NMR were employed to characterize the synthesized materials. The obtained bifunctional material was tested for aldol condensation reaction between acetone and 4-nitrobenzaldehyde. Compared with monofunctional catalysts of SO{sub 3}H-SBA-15 and SBA-15-NH{sub 2}, the bifunctional sample of SO{sub 3}H-SBA-15-NH{sub 2} containing amine and sulfonic acid groups exhibited excellent acid-basic properties, which make it possess high activity for the aldol condensation.

  20. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1998-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  1. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1997-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  2. Surface Wave Velocity of Crosslinked Polyacrylate Gels

    NASA Astrophysics Data System (ADS)

    Matsuoka, Tatsuro; Kinouchi, Wataru; ShinobuKoda, ShinobuKoda; Nomura, Hiroyasu

    1999-05-01

    Surface wave velocities of crosslinked polyacrylate hydrogelswere measured as a function of water content with differentcompositions of sodium polyacrylate (NaPA) and polyacrylic acid (PAA).The water content and composition dependencies of the surface wavevelocity were discussed.

  3. The colibactin warhead crosslinks DNA

    NASA Astrophysics Data System (ADS)

    Vizcaino, Maria I.; Crawford, Jason M.

    2015-05-01

    Members of the human microbiota are increasingly being correlated to human health and disease states, but the majority of the underlying microbial metabolites that regulate host-microbe interactions remain largely unexplored. Select strains of Escherichia coli present in the human colon have been linked to the initiation of inflammation-induced colorectal cancer through an unknown small-molecule-mediated process. The responsible non-ribosomal peptide-polyketide hybrid pathway encodes ‘colibactin’, which belongs to a largely uncharacterized family of small molecules. Genotoxic small molecules from this pathway that are capable of initiating cancer formation have remained elusive due to their high instability. Guided by metabolomic analyses, here we employ a combination of NMR spectroscopy and bioinformatics-guided isotopic labelling studies to characterize the colibactin warhead, an unprecedented substituted spirobicyclic structure. The warhead crosslinks duplex DNA in vitro, providing direct experimental evidence for colibactin's DNA-damaging activity. The data support unexpected models for both colibactin biosynthesis and its mode of action.

  4. The colibactin warhead crosslinks DNA.

    PubMed

    Vizcaino, Maria I; Crawford, Jason M

    2015-05-01

    Members of the human microbiota are increasingly being correlated to human health and disease states, but the majority of the underlying microbial metabolites that regulate host-microbe interactions remain largely unexplored. Select strains of Escherichia coli present in the human colon have been linked to the initiation of inflammation-induced colorectal cancer through an unknown small-molecule-mediated process. The responsible non-ribosomal peptide-polyketide hybrid pathway encodes 'colibactin', which belongs to a largely uncharacterized family of small molecules. Genotoxic small molecules from this pathway that are capable of initiating cancer formation have remained elusive due to their high instability. Guided by metabolomic analyses, here we employ a combination of NMR spectroscopy and bioinformatics-guided isotopic labelling studies to characterize the colibactin warhead, an unprecedented substituted spirobicyclic structure. The warhead crosslinks duplex DNA in vitro, providing direct experimental evidence for colibactin's DNA-damaging activity. The data support unexpected models for both colibactin biosynthesis and its mode of action.

  5. Corneal Collagen Cross-Linking

    PubMed Central

    Jankov II, Mirko R.; Jovanovic, Vesna; Nikolic, Ljubisa; Lake, Jonathan C.; Kymionis, Georgos; Coskunseven, Efekan

    2010-01-01

    Corneal collagen cross-linking (CXL) with riboflavin and ultraviolet-A (UVA) is a new technique of corneal tissue strengthening by using riboflavin as a photosensitizer and UVA to increase the formation of intra and interfibrillar covalent bonds by photosensitized oxidation. Keratocyte apoptosis in the anterior segment of the corneal stroma all the way down to a depth of about 300 microns has been described and a demarcation line between the treated and untreated cornea has been clearly shown. It is important to ensure that the cytotoxic threshold for the endothelium has not been exceeded by strictly respecting the minimal corneal thickness. Confocal microscopy studies show that repopulation of keratocytes is already visible 1 month after the treatment, reaching its pre-operative quantity and quality in terms of functional morphology within 6 months after the treatment. The major indication for the use of CXL is to inhibit the progression of corneal ectasias, such as keratoconus and pellucid marginal degeneration. CXL may also be effective in the treatment and prophylaxis of iatrogenic keratectasia, resulting from excessively aggressive photoablation. This treatment has also been used to treat infectious corneal ulcers with apparent favorable results. Combination with other treatments, such as intracorneal ring segment implantation, limited topography-guided photoablation and conductive keratoplasty have been used with different levels of success. PMID:20543933

  6. Infection susceptibility of crosslinked and non-crosslinked biological meshes in an experimental contaminated environment.

    PubMed

    Mulder, Irene M; Deerenberg, Eva B; Bemelman, Willem A; Jeekel, Johannes; Lange, Johan F

    2015-07-01

    This experimental study investigates infectious complications and functional outcome of biological meshes in a contaminated environment. In 90 rats peritonitis was induced, and after 24 hours, a biological mesh was implanted intraperitoneally including 2 non-crosslinked mesh groups (Strattice and Surgisis) and 2 crosslinked mesh groups (CollaMendFM and Permacol). Sacrifice was after 90 and 180 days. More mesh infections occurred in crosslinked meshes compared with non-crosslinked meshes (70% vs 4%; P < .001). Mesh infection was the highest in crosslinked CollaMendFM (81.2%) and lowest in non-crosslinked Strattice groups (0%). Incorporation into the abdominal wall was poor in all meshes (0% to 39%). After 180 days no residue of non-crosslinked Surgisis mesh was found. After 180 days, shrinkage was .8% in crosslinked Permacol and 20% in Strattice groups. Strattice showed the least adhesion formation (median 5%). Infection rate of biological meshes in a contaminated field was the highest in crosslinked meshes. All biological meshes showed poor incorporation, which makes long-term abdominal wall repair questionable. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Reaction Current Phenomenon in Bifunctional Catalytic Metal-Semiconductor Nanostructures

    NASA Astrophysics Data System (ADS)

    Hashemian, Mohammad Amin

    Energy transfer processes accompany every elementary step of catalytic chemical processes on material surface including molecular adsorption and dissociation on atoms, interactions between intermediates, and desorption of reaction products from the catalyst surface. Therefore, detailed understanding of these processes on the molecular level is of great fundamental and practical interest in energy-related applications of nanomaterials. Two main mechanisms of energy transfer from adsorbed particles to a surface are known: (i) adiabatic via excitation of quantized lattice vibrations (phonons) and (ii) non-adiabatic via electronic excitations (electron/hole pairs). Electronic excitations play a key role in nanocatalysis, and it was recently shown that they can be efficiently detected and studied using Schottky-type catalytic nanostructures in the form of measureable electrical currents (chemicurrents) in an external electrical circuit. These nanostructures typically contain an electrically continuous nanocathode layers made of a catalytic metal deposited on a semiconductor substrate. The goal of this research is to study the direct observations of hot electron currents (chemicurrents) in catalytic Schottky structures, using a continuous mesh-like Pt nanofilm grown onto a mesoporous TiO2 substrate. Such devices showed qualitatively different and more diverse signal properties, compared to the earlier devices using smooth substrates, which could only be explained on the basis of bifunctionality. In particular, it was necessary to suggest that different stages of the reaction are occurring on both phases of the catalytic structure. Analysis of the signal behavior also led to discovery of a formerly unknown (very slow) mode of the oxyhydrogen reaction on the Pt/TiO2(por) system occurring at room temperature. This slow mode was producing surprisingly large stationary chemicurrents in the range 10--50 microA/cm2. Results of the chemicurrent measurements for the bifunctional

  8. Crosslinked Polybenzimidazole Membrane For Gas Separation

    DOEpatents

    Jorgensen, Betty S.; Young, Jennifer S.; Espinoza, Brent F.

    2005-09-20

    A cross-linked, supported polybenzimidazole membrane for gas separation is prepared by layering a solution of polybenzimidazole (PBI) and a,a'dibromo-p-xylene onto a porous support and evaporating solvent. A supported membrane of cross-linked poly-2,2'-(m-phenylene)-5,5'-bibenzimidazole unexpectedly exhibits an enhanced gas permeability compared to the non-cross linked analog at temperatures over 265° C.

  9. Opioid bifunctional ligands from morphine and the opioid pharmacophore Dmt-Tic.

    PubMed

    Balboni, Gianfranco; Salvadori, Severo; Marczak, Ewa D; Knapp, Brian I; Bidlack, Jean M; Lazarus, Lawrence H; Peng, Xuemei; Si, Yu Gui; Neumeyer, John L

    2011-02-01

    Bifunctional ligands containing an ester linkage between morphine and the δ-selective pharmacophore Dmt-Tic were synthesized, and their binding affinity and functional bioactivity at the μ, δ and κ opioid receptors determined. Bifunctional ligands containing or not a spacer of β-alanine between the two pharmacophores lose the μ agonism deriving from morphine becoming partial μ agonists 4 or μ antagonists 5. Partial κ agonism is evidenced only for compound 4. Finally, both compounds showed potent δ antagonism. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  10. Structural basis for bifunctional peptide recognition at human δ-Opioid receptor

    PubMed Central

    Fenalti, Gustavo; Zatsepin, Nadia A.; Betti, Cecilia; Giguere, Patrick; Han, Gye Won; Ishchenko, Andrii; Liu, Wei; Guillemyn, Karel; Zhang, Haitao; James, Daniel; Wang, Dingjie; Weierstall, Uwe; Spence, John C.H.; Boutet, Sébastien; Messerschmidt, Marc; Williams, Garth J.; Gati, Cornelius; Yefanov, Oleksandr M.; White, Thomas A.; Oberthuer, Dominik; Metz, Markus; Yoon, Chun Hong; Barty, Anton; Chapman, Henry N.; Basu, Shibom; Coe, Jesse; Conrad, Chelsie E.; Fromme, Raimund; Fromme, Petra; Tourwé, Dirk; Schiller, Peter W.; Roth, Bryan L.; Ballet, Steven; Katritch, Vsevolod; Stevens, Raymond C.; Cherezov, Vadim

    2015-01-01

    Bi-functional μ- and δ- opioid receptor (OR) ligands are potential therapeutic alternatives to alkaloid opiate analgesics with diminished side effects. We solved the structure of human δ-OR bound to the bi-functional δ-OR antagonist and μ-OR agonist tetrapeptide H-Dmt(1)-Tic(2)-Phe(3)-Phe(4)-NH2 (DIPP-NH2) by serial femtosecond crystallography, revealing a cis-peptide bond between H-Dmt(1) and Tic(2). The observed receptor-peptide interactions are critical to understand the pharmacological profiles of opioid peptides, and to develop improved analgesics. PMID:25686086

  11. Structural basis for bifunctional peptide recognition at human δ-opioid receptor

    DOE PAGES

    Fenalti, Gustavo; Zatsepin, Nadia A.; Betti, Cecilia; ...

    2015-02-16

    Bi-functional μ- and δ- opioid receptor (OR) ligands are potential therapeutic alternatives to alkaloid opiate analgesics with diminished side effects. We solved the structure of human δ-OR bound to the bi-functional δ-OR antagonist and μ-OR agonist tetrapeptide H-Dmt-Tic-Phe-Phe-NH2 (DIPP-NH2) by serial femtosecond crystallography, revealing a cis-peptide bond between H-Dmt and Tic. In summary, the observed receptor-peptide interactions are critical to understand the pharmacological profiles of opioid peptides, and to develop improved analgesics.

  12. Structural basis for bifunctional peptide recognition at human δ-opioid receptor

    SciTech Connect

    Fenalti, Gustavo; Zatsepin, Nadia A.; Betti, Cecilia; Giguere, Patrick; Han, Gye Won; Ishchenko, Andrii; Liu, Wei; Guillemyn, Karel; Zhang, Haitao; James, Daniel; Wang, Dingjie; Weierstall, Uwe; Spence, John C. H.; Boutet, Sébastien; Messerschmidt, Marc; Williams, Garth J.; Gati, Cornelius; Yefanov, Oleksandr M.; White, Thomas A.; Oberthuer, Dominik; Metz, Markus; Yoon, Chun Hong; Barty, Anton; Chapman, Henry N.; Basu, Shibom; Coe, Jesse; Conrad, Chelsie E.; Fromme, Raimund; Fromme, Petra; Tourwé, Dirk; Schiller, Peter W.; Roth, Bryan L.; Ballet, Steven; Katritch, Vsevolod; Stevens, Raymond C.; Cherezov, Vadim

    2015-02-16

    Bi-functional μ- and δ- opioid receptor (OR) ligands are potential therapeutic alternatives to alkaloid opiate analgesics with diminished side effects. We solved the structure of human δ-OR bound to the bi-functional δ-OR antagonist and μ-OR agonist tetrapeptide H-Dmt-Tic-Phe-Phe-NH2 (DIPP-NH2) by serial femtosecond crystallography, revealing a cis-peptide bond between H-Dmt and Tic. In summary, the observed receptor-peptide interactions are critical to understand the pharmacological profiles of opioid peptides, and to develop improved analgesics.

  13. Design, synthesis and DNA-binding capacity of a new peptidic bifunctional intercalating agent.

    PubMed Central

    Bernier, J L; Henichart, J P; Catteau, J P

    1981-01-01

    A lysyl-lysine bifunctional derivative of 9-aminoacridine has been synthesized and its DNA-binding capacity established by electron-paramagnetic-resonance study. For this purpose the binding parameters of a spin-labelled aminoacridine probe were estimated and the affinities of the lysylacridinyl-lysyldiamino-octane dimer and of 9-amino-acridine could be evaluated by competitive assays. The competition study provided quantitative results concerning the dissociation constant (KD) of the dimer. The obtained value was closely similar to the KD of 9-aminoacridine determined by the same method and to the KD previously reported for the anti-tumour and antibiotic bifunctional intercalator quinomycins. PMID:6280671

  14. Structural basis for bifunctional peptide recognition at human δ-opioid receptor.

    PubMed

    Fenalti, Gustavo; Zatsepin, Nadia A; Betti, Cecilia; Giguere, Patrick; Han, Gye Won; Ishchenko, Andrii; Liu, Wei; Guillemyn, Karel; Zhang, Haitao; James, Daniel; Wang, Dingjie; Weierstall, Uwe; Spence, John C H; Boutet, Sébastien; Messerschmidt, Marc; Williams, Garth J; Gati, Cornelius; Yefanov, Oleksandr M; White, Thomas A; Oberthuer, Dominik; Metz, Markus; Yoon, Chun Hong; Barty, Anton; Chapman, Henry N; Basu, Shibom; Coe, Jesse; Conrad, Chelsie E; Fromme, Raimund; Fromme, Petra; Tourwé, Dirk; Schiller, Peter W; Roth, Bryan L; Ballet, Steven; Katritch, Vsevolod; Stevens, Raymond C; Cherezov, Vadim

    2015-03-01

    Bifunctional μ- and δ-opioid receptor (OR) ligands are potential therapeutic alternatives, with diminished side effects, to alkaloid opiate analgesics. We solved the structure of human δ-OR bound to the bifunctional δ-OR antagonist and μ-OR agonist tetrapeptide H-Dmt-Tic-Phe-Phe-NH2 (DIPP-NH2) by serial femtosecond crystallography, revealing a cis-peptide bond between H-Dmt and Tic. The observed receptor-peptide interactions are critical for understanding of the pharmacological profiles of opioid peptides and for development of improved analgesics.

  15. Engineering Bifunctional Laccase-Xylanase Chimeras for Improved Catalytic Performance*

    PubMed Central

    Ribeiro, Lucas F.; Furtado, Gilvan P.; Lourenzoni, Marcos R.; Costa-Filho, Antonio J.; Santos, Camila R.; Nogueira, Simone C. Peixoto; Betini, Jorge A.; Polizeli, Maria de Lourdes T. M.; Murakami, Mario T.; Ward, Richard J.

    2011-01-01

    Two bifunctional enzymes exhibiting combined xylanase and laccase activities were designed, constructed, and characterized by biochemical and biophysical methods. The Bacillus subtilis cotA and xynA genes were used as templates for gene fusion, and the xynA coding sequence was inserted into a surface loop of the cotA. A second chimera was built replacing the wild-type xynA gene by a thermostable variant (xynAG3) previously obtained by in vitro molecular evolution. Kinetic measurements demonstrated that the pH and temperature optima of the catalytic domains in the chimeras were altered by less than 0.5 pH units and 5 °C, respectively, when compared with the parental enzymes. In contrast, the catalytic efficiency (kcat/Km) of the laccase activity in both chimeras was 2-fold higher than for the parental laccase. Molecular dynamics simulations of the CotA-XynA chimera indicated that the two domains are in close contact, which was confirmed by the low resolution structure obtained by small angle x-ray scattering. The simulation also indicates that the formation of the inter-domain interface causes the dislocation of the loop comprising residues Leu-558 to Lys-573 in the laccase domain, resulting in a more accessible active site and exposing the type I Cu2+ ion to the solvent. These structural changes are consistent with the results from UV-visible electronic and EPR spectroscopy experiments of the type I copper between the native and chimeric enzymes and are likely to contribute to the observed increase in catalytic turnover number. PMID:22006920

  16. Physical properties of bifunctional BST/LSMO nanocomposites

    SciTech Connect

    Beltran-Huarac, Juan Morell, Gerardo; Martinez, Ricardo

    2014-02-28

    We report the fabrication of bifunctional nanocomposites consisting of ferroelectric Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} (BST) and ferromagnetic La{sub 0.67}Sr{sub 0.33}MnO{sub 3} (LSMO) at different concentrations via a high-temperature solid state route. The structural, dielectric, electrical, magnetodielectric (MD), magnetoelectric (ME) and magnetic properties of BST/LSMO nanocomposites were systematically investigated over a wide range of temperatures and frequencies. The X-Ray Diffraction analyses reveal the nanocrystalline nature of the heterostructures, wherein both perovskite phases co-exist. No parasitic phases were observed. The study of the dielectric properties shows that the nanocomposites exhibit relaxor ferroelectric character, with ferroelectric-paraelectric phase transition temperatures around 287–292 K that do not follow the Curie-Weiss law. The electrical measurements indicate that ac conductivities of the nanocomposites follow the Jonscher's universal power law, with activation energies of 0.42–0.63 eV based on Arrhenius-type behavior at high temperatures. The nanocomposites exhibit well-defined ferromagnetic hysteresis loops at room temperature (RT). The MD and ME measurements at RT indicate that BST/LSMO exhibits a nonlinear ME effect at low frequencies, with a threshold near 0.5 T. The magnetocapacitance (MC{sub p}) measurements evidence a quadratic dependence on magnetic field, further confirming the multiferroic nature of BST/LSMO. The order of MC{sub p} was found to be ∼7% per Tesla. The analysis of the MC{sub p} measurements indicates that one of the BST/LSMO compositions studied can be considered as a new multiferroic compound.

  17. Bifunctional Ligands Allow Deliberate Extrinsic Reprogramming of the Glucocorticoid Receptor

    PubMed Central

    Højfeldt, Jonas W.; Cruz-Rodríguez, Osvaldo; Imaeda, Yasuhiro; Van Dyke, Aaron R.; Carolan, James P.; Mapp, Anna K.

    2014-01-01

    Therapies based on conventional nuclear receptor ligands are extremely powerful, yet their broad and long-term use is often hindered by undesired side effects that are often part of the receptor's biological function. Selective control of nuclear receptors such as the glucocorticoid receptor (GR) using conventional ligands has proven particularly challenging. Because they act solely in an allosteric manner, conventional ligands are constrained to act via cofactors that can intrinsically partner with the receptor. Furthermore, effective means to rationally encode a bias for specific coregulators are generally lacking. Using the (GR) as a framework, we demonstrate here a versatile approach, based on bifunctional ligands, that extends the regulatory repertoire of GR in a deliberate and controlled manner. By linking the macrolide FK506 to a conventional agonist (dexamethasone) or antagonist (RU-486), we demonstrate that it is possible to bridge the intact receptor to either positively or negatively acting coregulatory proteins bearing an FK506 binding protein domain. Using this strategy, we show that extrinsic recruitment of a strong activation function can enhance the efficacy of the full agonist dexamethasone and reverse the antagonist character of RU-486 at an endogenous locus. Notably, the extrinsic recruitment of histone deacetylase-1 reduces the ability of GR to activate transcription from a canonical GR response element while preserving ligand-mediated repression of nuclear factor-κB. By providing novel ways for the receptor to engage specific coregulators, this unique ligand design approach has the potential to yield both novel tools for GR study and more selective therapeutics. PMID:24422633

  18. Monodisperse Magneto-Fluorescent Bifunctional Nanoprobes for Bioapplications

    NASA Astrophysics Data System (ADS)

    Zhang, Hongwang; Huang, Heng; Pralle, Arnd; Zeng, Hao

    2013-03-01

    We present the work on the synthesis of dye-doped monodisperse Fe/SiO2 core/shell nanoparticles as bifunctional probes for bioapplications. Magnetic nanoparticles (NP) have been widely studied as nano-probes for bio-imaging, sensing as well as for cancer therapy. Among all the NPs, Fe NPs have been the focus because they have very high magnetization. However, Fe NPs are usually not stable in ambient due to the fast surface oxidation of the NPs. On the other hand, dye molecules have long been used as probes for bio-imaging. But they are sensitive to environmental conditions. It requires passivation for both so that they can be stable for applications. In this work, monodisperse Fe NPs with sizes ranging from 13-20 nm have been synthesized through the chemical thermal-decomposition in a solution. Silica shells were then coated on the Fe NPs by a two-phase oil-in-water method. Dye molecules were first bonded to a silica precursor and then encapsulated into the silica shell during the coating process. The silica shells protect both the Fe NPs and dye molecules, which makes them as robust probes. The dye doped Fe/SiO2 core/shell NPs remain both highly magnetic and highly fluorescent. The stable dye doped Fe/SiO2NPs have been used as a dual functional probe for both magnetic heating and local nanoscale temperature sending, and their performance will be reported. Research supported by NSF DMR 0547036, DMR1104994.

  19. Grafting functional antioxidants on highly crosslinked polyethylene

    NASA Astrophysics Data System (ADS)

    Al-Malaika, S.; Riasat, S.; Lewucha, C.

    2016-05-01

    The problem of interference of antioxidants, such as hindered phenols, with peroxide-initiated crosslinking of polyethylene was addressed through the use of functional (reactive) graftable antioxidants (g-AO). Reactive derivatives of hindered phenol and hindered amine antioxidants were synthesised, characterised and used to investigate their grafting reactions in high density polyethylene; both non-crosslinked (PE) and highly peroxide-crosslinked (PEXa). Assessment of the extent of in-situ grafting of the antioxidants, their retention after exhaustive solvent extraction in PE and PEXa, and the stabilising performance of the grafted antioxidants (g-AO) in the polymer were examined and benchmarked against conventionally stabilised crosslinked & non-crosslinked polyethylene. It was shown that the functional antioxidants graft to a high extent in PEXa, and that the level of interference of the g-AOs with the polymer crosslinking process was minimal compared to that of conventional antioxidants which bear the same antioxidant function. The much higher level of retention of the g-AOs in PEXa after exhaustive solvent extraction, compared to that of the corresponding conventional antioxidants, accounts for their superior long-term thermal stabilising performance under severe extractive conditions.

  20. Enantiomers Recognition of Propranolol Based on Organic-Inorganic Hybrid Open-Tubular MIPs-CEC Column Using 3-(Trimethoxysilyl)Propyl Methacrylate as a Cross-Linking Monomer.

    PubMed

    Chen, Guo-Ning; Li, Ning; Luo, Tian; Dong, Yu-Ming

    2017-01-10

    In this study, 3-(trimethoxysilyl)propyl methacrylate (γ-MPS), a bifunctional group compound, was used as a single cross-linking agent to prepare molecular imprinted inorganic-organic hybrid polymers by in situ polymerization for open-tubular capillary electro chromatography (CEC) column. The optimal preparation conditions were: the ratio between template molecule and functional monomer was 1:4; the volume proportion of porogen toluene and methanol was 1:1 and the volume of cross-linking agent γ-MPS was 69 μL. The optimal separation conditions were separation voltage of 15 kV; detection wavelength at 215 nm and background electrolyte composed of 70% acetonitrile/20 mmol/L boric acid salt (pH 6.9). Under the optimized conditions, the propranolol enantiomers can be separated well by CEC. The method is simple and fast, it can be a potentially useful approach for propranolol enantiomers separation.

  1. Cross-linking of C60 films with 1,8-diaminooctane and further decoration with silver nanoparticles.

    PubMed

    Meza-Laguna, V; Basiuk, E V; Alvarez-Zauco, E; Acosta-Najarro, D; Basiuk, V A

    2007-10-01

    We applied the direct solvent-free functionalization of fullerene C60 with aliphatic bifunctional amine, 1,8-diaminooctane, to prepare chemically cross-linked C60 thin films capable of binding silver nanoparticles. The gas-phase diamine treatment of C60 reduced dramatically the fullerene solubility in toluene, indicating the transformation of pristine C60 into a different solid phase with cross-linked fullerene molecules. Compared to the spectra of pristine C60 film and powder samples, Fourier-transform infrared, UV-Visible, Raman, and 13C nucleic magnetic resonance spectra of the functionalization products exhibited new features, which point to a breaking of C60 ideal structure during the formation of new covalent bonds and to the appearance of sp3 hibridization. The covalent functionalization with 1,8-diaminooctane allowed for a stable and homogeneous deposition of silver nanoparticles of ca. 5-nm diameter onto the functionalized films through the coordination bonding between metal atoms and nitrogen donor atoms of the fullerene derivatives. The proposed mechanism of Ag nanoparticle binding was supported by density functional theory calculations using the hybrid BLYP functional in conjunction with the double numerical basis set DND.

  2. Thermosensitivity of N-isopropylacrylamide hydrogels cross-linked with degradable cross-linker.

    PubMed

    Pérez, Paloma; Gallardo, Alberto; Corrigan, Owen I; Román, Julio San

    2008-01-01

    Thermosensitive N-isopropylacrylamide (NIPA)-based hydrogels have been prepared using a biodegradable pseudo-peptide (DMTLT, a tri-molecular adduct of tyrosine, lysine, tyrosine) as cross-linker. This new cross-linker provides a similar cross-linking efficiency as N,N' methylenbisacrylamide (BIS) (a standard biostable cross-linker) used as reference. The amount of DMTLT has shown to modulate, in addition to the cross-linking density, the transition temperature (the higher the amount of DMTLT, the lower the transition temperature), as well as the morphology and the whole aqueous behaviour. The incorporation of hydrophilic N,N'-dimethylacrylamide (DMA) increases the transition temperature, as expected. Finally, the matrices have exhibited in aqueous media a well-defined pulsatile behaviour in swelling and release of benzoic acid and dextran as models of ionisable molecules and non-ionisable macromolecules.

  3. Ceramic on crosslinked polyethylene in total hip replacement: any better than metal on crosslinked polyethylene?

    PubMed

    Callaghan, John J; Liu, Steve S

    2009-01-01

    The authors evaluated the use of ceramic femoral heads on crosslinked polyethylene bearing couples versus metal on crosslinked polyethylene couples in a consecutive series of hips performed by a single surgeon over a one year interval. Ceramic femoral heads and more extensively crosslinked polyethylene were used more commonly in the younger aged patients with utilization of ceramic heads in patients average age 50.2 versus 63.9 for metal heads, and utilization of more extensively crosslinked polyethylene in patients average age 54.1 versus 77.2 years for patients receiving less extensive crosslinked polyethylene. The authors explain the cost effectiveness of this approach where the difference in cost is approximately 36%.

  4. Asymmetric Michael addition reactions of nitroalkanes to 2-furanones catalyzed by bifunctional thiourea catalysts.

    PubMed

    Bai, Zhushuang; Ji, Ling; Ge, Zemei; Wang, Xin; Li, Runtao

    2015-05-21

    The first bifunctional thiourea catalyzed asymmetric Michael addition reactions of nitroalkanes to 2-furanones are described. The highly functionalized γ-lactones with two or three consecutive stereogenic carbons were obtained in high yields (up to 99%), high diastereoselectivities (up to >20 : 1 dr) and enantioselectivities (up to >99% ee).

  5. Efficient bifunctional gallium-68 chelators for positron emission tomography: tris(hydroxypyridinone) ligands.

    PubMed

    Berry, David J; Ma, Yongmin; Ballinger, James R; Tavaré, Richard; Koers, Alexander; Sunassee, Kavitha; Zhou, Tao; Nawaz, Saima; Mullen, Gregory E D; Hider, Robert C; Blower, Philip J

    2011-07-07

    A new tripodal tris(hydroxypyridinone) bifunctional chelator for gallium allows easy production of (68)Ga-labelled proteins rapidly under mild conditions in high yields at exceptionally high specific activity and low concentration. This journal is © The Royal Society of Chemistry 2011

  6. Liquid phase in situ hydrodeoxygenation of biomass-derived phenolic compounds to hydrocarbons over bifunctional catalysts

    Treesearch

    Junfeng Feng; Chung-yun Hse; Zhongzhi Yang; Kui Wang; Jianchun Jiang; Junming Xu

    2017-01-01

    The objective of this study was to find an effective method for converting renewable biomass-derived phenolic compounds into hydrocarbons bio-fuel via in situ catalytic hydrodeoxygenation. The in situ hydrodeoxygenation of biomass-derived phenolic compounds was carried out in methanol-water solvent over bifunctional catalysts of Raney Ni and HZSM-5 or H-Beta. In the in...

  7. Preparation of bi-functional silica particles for antibacterial and self cleaning surfaces.

    PubMed

    Hebalkar, Neha Y; Acharya, Snigdhatanu; Rao, Tata N

    2011-12-01

    Synthesis of bi-functional silica particles by a simple wet chemical method is described where the mixture of ultra fine nanoparticles (1-3 nm) of titania and silver were attached on the silica particle surface in a controlled way to form a core-shell structure. The silica surface showed efficient bi-functional activity of photo-catalytically self cleaning and antibacterial activity due to nanotitania and nanosilver mutually benefiting each other's function. The optimum silver concentration was found where extremely small silver nanoparticles are formed and the total composite particle remains white in color. This is an important property in view of certain applications such as antibacterial textiles where the original fabric color has to be retained even after applying the nanosilver on it. The particles were characterized at each step of the synthesis by X-ray photoelectron spectroscopy, UV-visible spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and electron energy loss spectroscopy. Bi-functional silica particles showed accelerated photocatalytic degradation of methylene blue as well as enhanced antibacterial property when tested as such particles and textiles coated with these bi-functional silica particles even at lower silver concentration.

  8. Asymmetric α-amination of β-keto esters using a guanidine–bisurea bifunctional organocatalyst

    PubMed Central

    Yamamoto, Yoshiharu

    2016-01-01

    Summary An asymmetric α-amination of β-keto esters with azodicarboxylate in the presence of a guanidine–bisurea bifunctional organocatalyst was investigated. The α-amination products were obtained in up to 99% yield with up to 94% ee. PMID:26977179

  9. Metagenomic Analysis of Apple Orchard Soil Reveals Antibiotic Resistance Genes Encoding Predicted Bifunctional Proteins▿

    PubMed Central

    Donato, Justin J.; Moe, Luke A.; Converse, Brandon J.; Smart, Keith D.; Berklein, Flora C.; McManus, Patricia S.; Handelsman, Jo

    2010-01-01

    To gain insight into the diversity and origins of antibiotic resistance genes, we identified resistance genes in the soil in an apple orchard using functional metagenomics, which involves inserting large fragments of foreign DNA into Escherichia coli and assaying the resulting clones for expressed functions. Among 13 antibiotic-resistant clones, we found two genes that encode bifunctional proteins. One predicted bifunctional protein confers resistance to ceftazidime and contains a natural fusion between a predicted transcriptional regulator and a β-lactamase. Sequence analysis of the entire metagenomic clone encoding the predicted bifunctional β-lactamase revealed a gene potentially involved in chloramphenicol resistance as well as a predicted transposase. A second clone that encodes a predicted bifunctional protein confers resistance to kanamycin and contains an aminoglycoside acetyltransferase domain fused to a second acetyltransferase domain that, based on nucleotide sequence, was predicted not to be involved in antibiotic resistance. This is the first report of a transcriptional regulator fused to a β-lactamase and of an aminoglycoside acetyltransferase fused to an acetyltransferase not involved in antibiotic resistance. PMID:20453147

  10. Nanosheet Supported Single-Metal Atom Bifunctional Catalyst for Overall Water Splitting.

    PubMed

    Ling, Chongyi; Shi, Li; Ouyang, Yixin; Zeng, Xiao Cheng; Wang, Jinlan

    2017-08-09

    Nanosheet supported single-atom catalysts (SACs) can make full use of metal atoms and yet entail high selectivity and activity, and bifunctional catalysts can enable higher performance while lowering the cost than two separate unifunctional catalysts. Supported single-atom bifunctional catalysts are therefore of great economic interest and scientific importance. Here, on the basis of first-principles computations, we report a design of the first single-atom bifunctional eletrocatalyst, namely, isolated nickel atom supported on β12 boron monolayer (Ni1/β12-BM), to achieve overall water splitting. This nanosheet supported SAC exhibits remarkable electrocatalytic performance with the computed overpotential for oxygen/hydrogen evolution reaction being just 0.40/0.06 V. The ab initio molecular dynamics simulation shows that the SAC can survive up to 800 K elevated temperature, while enacting a high energy barrier of 1.68 eV to prevent isolated Ni atoms from clustering. A viable experimental route for the synthesis of Ni1/β12-BM SAC is demonstrated from computer simulation. The desired nanosheet supported single-atom bifunctional catalysts not only show great potential for achieving overall water splitting but also offer cost-effective opportunities for advancing clean energy technology.

  11. Improved bone morphogenetic protein-2 retention in an injectable collagen matrix using bifunctional peptides.

    PubMed

    Hamilton, Paul T; Jansen, Michelle S; Ganesan, Sathya; Benson, R Edward; Hyde-Deruyscher, Robin; Beyer, Wayne F; Gile, Joseph C; Nair, Shrikumar A; Hodges, Jonathan A; Grøn, Hanne

    2013-01-01

    To promote healing of many orthopedic injuries, tissue engineering approaches are being developed that combine growth factors such as Bone Morphogenetic Proteins (BMP) with biomaterial carriers. Although these technologies have shown great promise, they still face limitations. We describe a generalized approach to create target-specific modular peptides that bind growth factors to implantable biomaterials. These bifunctional peptide coatings provide a novel way to modulate biology on the surface of an implant. Using phage display techniques, we have identified peptides that bind with high affinity to BMP-2. The peptides that bind to BMP-2 fall into two different sequence clusters. The first cluster of peptide sequences contains the motif W-X-X-F-X-X-L (where X can be any amino acid) and the second cluster contains the motif F-P-L-K-G. We have synthesized bifunctional peptide linkers that contain BMP-2 and collagen-binding domains. Using a rat ectopic bone formation model, we have injected rhBMP-2 into a collagen matrix with or without a bifunctional BMP-2: collagen peptide (BC-1). The presence of BC-1 significantly increased osteogenic cellular activity, the area of bone formed, and bone maturity at the site of injection. Our results suggest that bifunctional peptides that can simultaneously bind to a growth factor and an implantable biomaterial can be used to control the delivery and release of growth factors at the site of implantation.

  12. Bifunctional N-heterocyclic carbene-catalyzed highly enantioselective synthesis of spirocyclic oxindolo-β-lactams.

    PubMed

    Zhang, Han-Ming; Gao, Zhong-Hua; Ye, Song

    2014-06-06

    The N-heterocyclic carbene-catalyzed Staudinger reaction of ketenes with isatin-derived ketimines was investigated. The bifunctional NHCs with a free hydroxyl group were demonstrated as efficient catalysts for the reaction, giving the corresponding spirocyclic oxindolo-β-lactams in high yields with excellent diastereo- and enantioselectivities.

  13. Ionic Polymer Microspheres Bearing a Co(III) -Salen Moiety as a Bifunctional Heterogeneous Catalyst for the Efficient Cycloaddition of CO2 and Epoxides.

    PubMed

    Leng, Yan; Lu, Dan; Zhang, Chenjun; Jiang, Pingping; Zhang, Weijie; Wang, Jun

    2016-06-06

    We report a unique strategy to obtain the bifunctional heterogeneous catalyst TBB-Bpy@Salen-Co (TBB=1,2,4,5-tetrakis(bromomethyl)benzene, Bpy=4,4'-bipyridine, Salen-Co=N,N'-bis({4-dimethylamino}salicylidene)ethylenediamino cobalt(III) acetate) by combining a cross-linked ionic polymer with a Co(III) -salen Schiff base. The catalyst showed extra high activity for CO2 fixation under mild, solvent-free reaction conditions with no requirement for a co-catalyst. The synthesized catalyst possessed distinctive spherical structural features, abundant halogen Br(-) anions with good leaving group ability, and accessible Lewis acidic Co metal centers. These unique features, together with the synergistic role of the Co and Br(-) functional sites, allowed TBB-Bpy@Salen-Co to exhibit enhanced catalytic conversion of CO2 into cyclic carbonates relative to the corresponding monofunctional analogues. This catalyst can be easily recovered and recycled five times without significant leaching of Co or loss of activity. Moreover, based on our experimental results and previous work, a synergistic cycloaddition reaction mechanism was proposed.

  14. Surface functionalization of PLGA nanoparticles by non-covalent insertion of a homo-bifunctional spacer for active targeting in cancer therapy

    NASA Astrophysics Data System (ADS)

    Thamake, S. I.; Raut, S. L.; Ranjan, A. P.; Gryczynski, Z.; Vishwanatha, J. K.

    2011-01-01

    This work reports the surface functionalization of polymeric PLGA nanoparticles by non-covalent insertion of a homo-bifunctional chemical crosslinker, bis(sulfosuccinimidyl) suberate (BS3) for targeted cancer therapy. We dissolved BS3 in aqueous solution of PVA during formulation of nanoparticles by a modified solid/oil/water emulsion solvent evaporation method. The non-covalent insertion of BS3 was confirmed by Fourier transform infrared (FTIR) spectroscopy. Curcumin and annexin A2 were used as a model drug and a cell specific target, respectively. Nanoparticles were characterized for particle size, zeta potential and surface morphology. The qualitative assessment of antibody attachment was performed by transmission electron microscopy (TEM) as well as confocal microscopy. The optimized formulation showed antibody attachment of 86%. However, antibody attachment was abolished upon blocking the functional groups of BS3. The availability of functional antibodies was evaluated by the presence of a light chain fraction after gel electrophoresis. We further evaluated the in vitro release kinetics of curcumin from antibody coated and uncoated nanoparticles. The release of curcumin is enhanced upon antibody attachment and followed an anomalous release pattern. We also observed that the cellular uptake of nanoparticles was significantly higher in annexin A2 positive cells than in negative cells. Therefore, these results demonstrate the potential use of this method for functionalization as well as to deliver chemotherapeutic agents for treating cancer.

  15. Cross-linking Chemistry of Squid Beak*

    PubMed Central

    Miserez, Ali; Rubin, Daniel; Waite, J. Herbert

    2010-01-01

    In stark contrast to most aggressive predators, Dosidicus gigas (jumbo squids) do not use minerals in their powerful mouthparts known as beaks. Their beaks instead consist of a highly sclerotized chitinous composite with incremental hydration from the tip to the base. We previously reported l-3,4-dihydroxyphenylalanine (dopa)-histidine (dopa-His) as an important covalent cross-link providing mechanical strengthening to the beak material. Here, we present a more complete characterization of the sclerotization chemistry and describe additional cross-links from D. gigas beak. All cross-links presented in this report share common building blocks, a family of di-, tri-, and tetra-histidine-catecholic adducts, that were separated by affinity chromatography and high performance liquid chromatography (HPLC) and identified by tandem mass spectroscopy and proton nuclear magnetic resonance (1H NMR). The data provide additional insights into the unusually high cross-link density found in mature beaks. Furthermore, we propose both a low molecular weight catechol, and peptidyl-dopa, to be sclerotization agents of squid beak. This appears to represent a new strategy for forming hard tissue in animals. The interplay between covalent cross-linking and dehydration on the graded properties of the beaks is discussed. PMID:20870720

  16. Cross-linking chemistry of squid beak.

    PubMed

    Miserez, Ali; Rubin, Daniel; Waite, J Herbert

    2010-12-03

    In stark contrast to most aggressive predators, Dosidicus gigas (jumbo squids) do not use minerals in their powerful mouthparts known as beaks. Their beaks instead consist of a highly sclerotized chitinous composite with incremental hydration from the tip to the base. We previously reported l-3,4-dihydroxyphenylalanine (dopa)-histidine (dopa-His) as an important covalent cross-link providing mechanical strengthening to the beak material. Here, we present a more complete characterization of the sclerotization chemistry and describe additional cross-links from D. gigas beak. All cross-links presented in this report share common building blocks, a family of di-, tri-, and tetra-histidine-catecholic adducts, that were separated by affinity chromatography and high performance liquid chromatography (HPLC) and identified by tandem mass spectroscopy and proton nuclear magnetic resonance ((1)H NMR). The data provide additional insights into the unusually high cross-link density found in mature beaks. Furthermore, we propose both a low molecular weight catechol, and peptidyl-dopa, to be sclerotization agents of squid beak. This appears to represent a new strategy for forming hard tissue in animals. The interplay between covalent cross-linking and dehydration on the graded properties of the beaks is discussed.

  17. Crosslinked polyethylene foams, via EB radiation

    NASA Astrophysics Data System (ADS)

    Cardoso, E. C. L.; Lugão, A. B.; Andrade E. Silva, L. G.

    1998-06-01

    Polyethylene foams, produced by radio-induced crosslinking, show a smooth and homogeneous surface, when compared to chemical crosslinking method using peroxide as crosslinking agent. This process fosters excellent adhesive and printability properties. Besides that, closed cells, intrinsic to theses foams, imparts opitmum mechanical, shocks and insulation resistance, indicating these foams to some markets segments as: automotive and transport; buoyancy, flotation and marine: building and insulation: packaging: domestic sports and leisure goods. We were in search of an ideal foam, by adding 5 to 15% of blowing agent in LDPE. A series of preliminary trials defined 203° C as the right blowing agent decomposition temperature. At a 22.7 kGy/dose ratio, the lowest dose for providing an efficient foam was 30 kGy, for a formulation comprising 10% of azodicarbonamide in LDPE, within a 10 minutes foaming time.

  18. Collagen crosslinks in chondromalacia of the patella.

    PubMed

    Väätäinen, U; Kiviranta, I; Jaroma, H; Arokosi, J; Tammi, M; Kovanen, V

    1998-02-01

    The aim of the study was to determine collagen concentration and collagen crosslinks in cartilage samples from chondromalacia of the patella. To study the extracellular matrix alterations associated to chondromalacia, we determined the concentration of collagen (hydroxyproline) and its hydroxylysylpyridinoline and lysylpyridinoline crosslinks from chondromalacia foci of the patellae in 12 patients and 7 controls from apparently normal cadavers. The structure of the collagen network in 8 samples of grades II-IV chondromalacia was examined under polarized light microscopy. The full-thickness cartilage samples taken with a surgical knife from chondromalacia lesions did not show changes in collagen, hydroxylysylpyridinoline and lysylpyridinoline concentration as compared with the controls. Polarized light microscopy showed decreased birefringence in the superficial cartilage of chondromalacia lesions, indicating disorganization or disappearance of collagen fibers in this zone. It is concluded that the collagen network shows gradual disorganization with the severity of chondromalacia lesion of the patella without changes in the concentration or crosslinks of collagen.

  19. Crosslinking in viral capsids via tiling theory.

    PubMed

    Twarock, R; Hendrix, R W

    2006-06-07

    A vital part of a virus is its protein shell, called the viral capsid, that encapsulates and hence protects the viral genome. It has been shown in Twarock [2004. A tiling approach to vius capsids assembly explaining a structural puzzle in virology. J. Theor. Biol. 226, 477-482] that the surface structures of viruses with icosahedrally symmetric capsids can be modelled in terms of tilings that encode the locations of the protein subunits. This theory is extended here to multi-level tilings in order to model crosslinking structures. The new framework is demonstrated for the case of bacteriophage HK97, and it is shown, how the theory can be used in general to decide if crosslinking, and what type of crosslinking, is compatible from a mathematical point of view with the geometrical surface structure of a virus.

  20. Biodegradable chitosan nanogels crosslinked with genipin.

    PubMed

    Arteche Pujana, Maite; Pérez-Álvarez, Leyre; Cesteros Iturbe, Luis Carlos; Katime, Issa

    2013-05-15

    Chitosan nanoparticles crosslinked with genipin were prepared by reverse microemulsion that allowed to obtain highly monodisperse (3-20 nm by TEM) nanogels. The incorporation of genipin into chitosan was confirmed and quantitatively evaluated by UV-vis and (1)H NMR. Loosely crosslinked chitosan networks showed higher water solubility at neutral pHs than pure chitosan. The hydrodynamic diameter of the genipin-chitosan nanogels ranged from 270 to 390 nm and no remarkable differences were found when the crosslinking degree was varied. The hydrodynamic diameters of the nanoparticles increased slightly at acidic pH and the protonation of ionizable amino groups with the pH was confirmed by the zeta potential measurements. The biocompatible and biodegradable nature, as well as the colloidal and monodisperse particle size of the prepared nanogels, make them attractive candidates for a large variety of biomedical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Development of a Crosslink Channel Simulator

    NASA Technical Reports Server (NTRS)

    Hunt, Chris; Smith, Carl; Burns, Rich

    2004-01-01

    Distributed Spacecraft missions are an integral part of current and future plans for NASA and other space agencies. Many of these multi-vehicle missions involve utilizing the array of spacecraft as a single, instrument requiring communication via crosslinks to achieve mission goals. NASA s Goddard Space Flight Center (GSFC) is developing the Formation Flying Test Bed (FFTB) to provide a hardware-in-the-loop simulation environment to support mission concept development and system trades with a primary focus on Guidance, Navigation, and Control (GN&C) challenges associated with spacecraft flying. The goal of the FFTB is to reduce mission risk by assisting in mission planning and analysis, provide a technology development platform that allows algorithms to be developed for mission functions such as precision formation navigation and control and time synchronization. The FFTB will provide a medium in which the various crosslink transponders being used in multi-vehicle missions can be integrated for development and test; an integral part of the FFTB is the Crosslink Channel Simulator (CCS). The CCS is placed into the communications channel between the crosslinks under test, and is used to simulate on-mission effects to the communications channel such as vehicle maneuvers, relative vehicle motion, or antenna misalignment. The CCS is based on the Starlight software programmable platform developed at General Dynamics Decision Systems and provides the CCS with the ability to be modified on the fly to adapt to new crosslink formats or mission parameters. This paper briefly describes the Formation Flying Test Bed and its potential uses. It then provides details on the current and future development of the Crosslink Channel Simulator and its capabilities.

  2. Crosslink density, oxidation and chain scission in retrieved, highly cross-linked UHMWPE tibial bearings.

    PubMed

    Reinitz, Steven D; Currier, Barbara H; Levine, Rayna A; Van Citters, Douglas W

    2014-05-01

    Irradiated, thermally stabilized, highly cross-linked UHMWPE bearings have demonstrated superior wear performance and improved in vitro oxidation resistance compared with terminally gamma-sterilized bearings, yet retrieval analysis reveals unanticipated in vivo oxidation in these materials despite fewer or no measurable free radicals. There has been little evidence to date that the oxidation mechanism in thermally stabilized materials is the same as that in conventional materials, and so it is unknown whether oxidation in these materials is leading to chain scission and a degradation of mechanical properties, molecular weight, and crosslink density. The aim of this study was to determine whether measured in vivo oxidation in retrieved, highly cross-linked tibial bearings corresponds with a decreasing crosslink density. Analysis of three tibial bearing materials revealed that crosslink density decreased following in vivo duration, and that the change in crosslink density was strongly correlated with oxidation. The results suggest that oxidation in highly cross-linked materials is causing chain scissions that may, in time, impact the material properties. If in vivo oxidation continues over longer durations, there is potential for a clinically significant degradation of mechanical properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Microrheology of highly crosslinked microtubule networks is dominated by force-induced crosslinker unbinding

    PubMed Central

    Yang, Yali; Bai, Mo; Klug, William S.; Levine, Alex J.

    2012-01-01

    We determine the time- and force-dependent viscoelastic responses of reconstituted networks of microtubules that have been strongly crosslinked by biotin-streptavidin bonds. To measure the microscale viscoelasticity of such networks, we use a magnetic tweezers device to apply localized forces. At short time scales, the networks respond nonlinearly to applied force, with stiffening at small forces, followed by a reduction in the stiffening response at high forces, which we attribute to the force-induced unbinding of crosslinks. At long time scales, force-induced bond unbinding leads to local network rearrangement and significant bead creep. Interestingly, the network retains its elastic modulus even under conditions of significant plastic flow, suggesting that crosslinker breakage is balanced by the formation of new bonds. To better understand this effect, we developed a finite element model of such a stiff filament network with labile crosslinkers obeying force-dependent Bell model unbinding dynamics. The coexistence of dissipation, due to bond breakage, and the elastic recovery of the network is possible because each filament has many crosslinkers. Recovery can occur as long as a sufficient number of the original crosslinkers are preserved under the loading period. When these remaining original crosslinkers are broken, plastic flow results. PMID:23577042

  4. EB—crosslinking of elastomers, how does it compare with radiation crosslinking of other polymers?

    NASA Astrophysics Data System (ADS)

    Zagórski, Z. P.

    2004-09-01

    Electron beam crosslinking of polyethylene (PE) is a well-established technology, applied commercially for decades. After successes with PE, our efforts have been directed towards the crosslinking of elastomers. As the representative elastomer, hydrogenated acrylonitrile-butadiene rubbers (HNBR) was chosen. It is the high technology material, rather expensive, and therefore excellent object of successful commercial radiation processing. Radiation chemistry of crosslinking of any polymer is governed by similar rules. Most important are steric effects that can prevent efficient crosslinking, second next are additives present in irradiated commercial material. Additive's role is visible in the function of increasing doses, on radiation yield of hydrogen, and the yield of crosslinking. Basics of mechanisms, common to all condensed phases, and therefore to different polymers, are interpreted as phenomena of single ionization spurs (80% of energy deposited) and multi-ionization spurs. Small spurs generate crosslinks of the X type, formed between neighboring macromolecules, whereas multi-ionization spurs, energy rich, cause chain scission. Some fragments of the chains form crosslinks, this time of the Y type, by reacting with their active end with undamaged chains present in the neighborhood. Similarity of mechanisms in PE and HNBR is illustrated by the diagram in Charlesby—Pinner coordinates.

  5. Sterile infiltrates after cross-linking.

    PubMed

    García de Oteyza, G; Álvarez de Toledo, J

    2017-09-01

    A 20 year-old woman presented with an asymmetric bilateral keratoconus. Cross-linking of the right eye was performed due of its topographic and pachymetric conditions. Three days after the procedure, the patient presented with some corneal infiltrates that where classified as sterile. Cross-linking is known for its efficacy and safety. Nevertheless, there can be complications. Sterile infiltrates have already been described, although their aetiology is still not clear. Copyright © 2017 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Cross-Linking Studies of Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth; Pusey, Marc

    2000-01-01

    Tetragonal chicken egg white crystals consist of 4(sub 3) helices running in alternating directions, the helix rows having a two fold symmetry with each other. The unit cell consists of one complete tetrameric turn from each of two adjacent helices (an octamer). PBC analysis indicates that the helix intermolecular bonds are the strongest in the crystal, therefore likely formed first. AFM analysis of the (110) surface shows only complete helices, no half steps or bisected helices being found, while AFM line scans to measure the growth step increments show that they are multiples of the 4(sub 3) helix tetramer dimensions. This supports our thesis that the growth units are in fact multiples of the four molecule 4(sub 3) helix unit, the "average" growth unit size for the (110) face being an octamer (two turns about the helix) and the (101) growth unit averaging about the size of a hexamer. In an effort to better understand the species involved in the crystal nucleation and growth process, we have initiated an experimental program to study the species formed in solution compared to what is found in the crystal through covalent cross-linking studies. These experiments use the heterobifunctional cross-linking agent aminoethyl-4-azidonitroanaline (AEANA). An aliphatic amine at one end is covalently attached to the protein by a carbodiimide-mediated reaction, and a photo reactive group at the other can be used to initiate crosslinking. Modifications to the parent structure can be used to alter the distance between the two reactive groups and thus the cross-linking agents "reach". In practice, the cross-linking agent is first coupled to the asp101 side chain through the amine group. Asp101 lies within the active site cleft, and previous work with fluorescent probes had shown that derivatives at this site still crystallize in the tetragonal space group. This was also found to be the case with the AEANA derivative, which gave red tetragonal crystals. The protein now has a

  7. Cross-Linking Studies of Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth; Pusey, Marc

    2000-01-01

    Tetragonal chicken egg white crystals consist of 4(sub 3) helices running in alternating directions, the helix rows having a two fold symmetry with each other. The unit cell consists of one complete tetrameric turn from each of two adjacent helices (an octamer). PBC analysis indicates that the helix intermolecular bonds are the strongest in the crystal, therefore likely formed first. AFM analysis of the (110) surface shows only complete helices, no half steps or bisected helices being found, while AFM line scans to measure the growth step increments show that they are multiples of the 4(sub 3) helix tetramer dimensions. This supports our thesis that the growth units are in fact multiples of the four molecule 4(sub 3) helix unit, the "average" growth unit size for the (110) face being an octamer (two turns about the helix) and the (101) growth unit averaging about the size of a hexamer. In an effort to better understand the species involved in the crystal nucleation and growth process, we have initiated an experimental program to study the species formed in solution compared to what is found in the crystal through covalent cross-linking studies. These experiments use the heterobifunctional cross-linking agent aminoethyl-4-azidonitroanaline (AEANA). An aliphatic amine at one end is covalently attached to the protein by a carbodiimide-mediated reaction, and a photo reactive group at the other can be used to initiate crosslinking. Modifications to the parent structure can be used to alter the distance between the two reactive groups and thus the cross-linking agents "reach". In practice, the cross-linking agent is first coupled to the asp101 side chain through the amine group. Asp101 lies within the active site cleft, and previous work with fluorescent probes had shown that derivatives at this site still crystallize in the tetragonal space group. This was also found to be the case with the AEANA derivative, which gave red tetragonal crystals. The protein now has a

  8. Bifunctional phosphine-catalyzed cross-Rauhut-Currier/Michael/aldol condensation triple domino reaction: synthesis of functionalized cyclohexenes.

    PubMed

    Xie, Peizhong; Huang, You; Lai, Wenqing; Meng, Xiangtai; Chen, Ruyu

    2011-10-07

    A novel bifunctional phosphine-catalyzed reaction was developed. Cross-Rauhut-Currier, Michael and aldol reactions were successfully combined into a domino process. This method offers a powerful approach to the construction of highly substituted cyclohexene skeletons.

  9. Energetic methods to study bifunctional biotin operon repressor.

    PubMed

    Beckett, D

    1998-01-01

    measurements. The results of quantitative studies of the biotin regulatory system can be interpreted in the context of the biological function of the system. The biotin holoenzyme ligases are a class of enzymes found across the evolutionary spectrum. Only a subset of these enzymes, including BirA, also function as transcriptional repressors. The tight binding of the allosteric effector may be understood in light of the bifunctional nature of the BirA-bio-5'-AMP complex. It is possible that the unusually high thermodynamic and kinetic stability of the complex ensures that the most probable state of the protein in vivo is the adenylate-bound form. This complex, not the unliganded protein, is active in both enzymatic transfer of biotin and site-specific DNA binding. This ensures that on depletion of the intracellular pool of apoBCCP, BirA-bio-5'-AMP accumulates and binds to bioO to repress transcription of the biotin biosynthesis operon. The intracellular demand for and synthesis of biotin are, consequently, tightly coupled in the system. The dimerization that accompanies adenylate binding to BirA appears to be significant for site-specific binding of the protein to bioO. Functionally, the simultaneous binding of the two monomers to the two operator half-sites, regardless of the kinetic mechanism by which it occurs, ensures coordinate regulation of transcription initiation from both biotin operon promoters. The multifaceted approach utilized in studies of the biotin regulatory system can serve as a model for studies of any complex transcriptional regulatory system. It is critical in elucidating the functional energetics of any of these systems that the assembly first be dissected into the constituent interactions and that each of these interactions be studied in isolation. This is not only critical for understanding the physicochemical properties of each individual contributing interaction, but is also a necessary precursor to studies of thermodynamic linkage in the system. (AB

  10. A Metal-Amino Acid Complex-Derived Bifunctional Oxygen Electrocatalyst for Rechargeable Zinc-Air Batteries.

    PubMed

    Ding, Yanjun; Niu, Yuchen; Yang, Jia; Ma, Liang; Liu, Jianguo; Xiong, Yujie; Xu, Hangxun

    2016-10-01

    Bifunctional oxygen electrocatalyst: A metal-amino acid complex is developed to prepare high-performance mesoporous carbon electrocatalyst for both oxygen reduction and oxygen evolution reactions. Such prepared catalyst can be used to assemble rechargeable zinc-air batteries with excellent durability. This work represents a new route toward low-cost, highly active, and durable bifunctional electrocatalysts for cutting-edge energy conversion devices.

  11. Thermally crosslinked polymeric compositions and methods of making the same

    DOEpatents

    Koros, William John; Kratochvil, Adam Michal

    2014-03-04

    The various embodiments of the present disclosure relate generally to thermally crosslinked polymeric compositions and methods of making thermally crosslinked polymeric compositions. An embodiment of the present invention comprises a composition comprising: a first polymer comprising a first repeat unit, the first repeat unit comprising a carboxyl group, wherein the first polymer crosslinks to a second polymer formed from a second repeat unit, and wherein the first polymer crosslinks to the second polymer without formation of an ester group.

  12. Pyrene chromophores for the photoreversal of psoralen interstrand crosslinks.

    PubMed

    Stadler, Jens M; Stafforst, Thorsten

    2014-07-28

    Applying psoralen interstrand crosslinks for the photoactivation of nucleic acids is a new concept. To find chromophores that can efficiently stimulate crosslink repair we screened several pyrenes and appended them to peptide nucleic acids for their site-selective addressing. Even though pyrenes conjugated to uracil revealed desirable spectroscopic properties they were not effective in crosslink reversal. In contrast, bare pyrenes are well suitable for crosslink repair with 350 nm light showing an uncaging efficiency similar to classical photocaging groups.

  13. Cross-linked structure of network evolution

    SciTech Connect

    Bassett, Danielle S.; Wymbs, Nicholas F.; Grafton, Scott T.; Porter, Mason A.; Mucha, Peter J.

    2014-03-15

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks.

  14. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, W.P. Jr.; Apen, P.G.; Mitchell, M.A.

    1998-01-20

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes. 1 fig.

  15. Hydrogels with covalent and noncovalent crosslinks

    NASA Technical Reports Server (NTRS)

    Kilck, Kristi L. (Inventor); Yamaguchi, Nori (Inventor)

    2013-01-01

    A method for targeted delivery of therapeutic compounds from hydrogels is presented. The method involves administering to a cell a hydrogel in which a therapeutic compound is noncovalently bound to heparin. The hydrogel may contain covalent and non-covalent crosslinks.

  16. Cross-linked structure of network evolution

    NASA Astrophysics Data System (ADS)

    Bassett, Danielle S.; Wymbs, Nicholas F.; Porter, Mason A.; Mucha, Peter J.; Grafton, Scott T.

    2014-03-01

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks.

  17. Intrastromal crosslinking in post-LASIK ectasia.

    PubMed

    Moscovici, Bernardo Kaplan; Campos, Mauro

    2014-01-01

    We describe a case of early post-LASIK ectasia detected in the first 6 months after surgery. The patient was treated by means of intrastromal corneal crosslinking under the flap, without de-epithelialization, which resulted in a positive outcome. At the time of writing, 2 years after the procedure, the patient remained free of progression.

  18. Age-related crosslink in skin collagen

    SciTech Connect

    Yamauchi, M.; Mechanic, G.

    1986-05-01

    A stable crosslinking amino acid was isolated from mature bovine skin collagen and its structure was identified as histidinohydroxylysinonorleucine (HHL) using fast atom bombardment mass spectrometry and /sup 1/H, /sup 13/C-NMR. This newly identified crosslink has a linkage between C-2 histidine and C-6 of lysine in the latter's portion of hydroxylysinonorleucine. Quantitative studies using various aged samples of cow and human skin collagen indicated that this acid-heat stable nonreducible compound was the major age-related crosslink. In case of cow skin collagen, for example, during early embryonic development (3 and 5 month old embryos) the content of HHL stayed less than 0.01 residue/mole of collagen, however from the middle of gestation period (7 month old embryo) through the maturation stage it showed rapid increase with age and reached approximately 0.5 residues/mole of collagen in the 3 year old animal. Small increments (up to 0.65 res/mole of collagen) were observed in the 9 year old cow. The amounts of the crosslink unlike pyridinoline do not decrease with aging. Similar patterns were observed in human skin collagen.

  19. Actin crosslinkers: repairing the sense of touch.

    PubMed

    Sun, Sean X; Walcott, Sam

    2010-10-26

    Cells use actin bundles infused with myosin to exert contractile forces on the extracellular environment. This active tension is essential for cellular mechanosensation. Now, the role of actin crosslinkers in stabilizing and repairing the actin bundles is coming into clearer view.

  20. The effect of cross-link distributions in axially-ordered, cross-linked networks

    NASA Astrophysics Data System (ADS)

    Bennett, C. Brad; Kruczek, James; Rabson, D. A.; Matthews, W. Garrett; Pandit, Sagar A.

    2013-07-01

    Cross-linking between the constituent chains of biopolymers has a marked effect on their materials’ properties. In certain of these materials, such as fibrillar collagen, increases in cross-linking lead to an increase in the melting temperature. Fibrillar collagen is an axially-ordered network of cross-linked polymer chains exhibiting a broadened denaturation transition, which has been explained in terms of the successive denaturation with temperature of multiple species. We model axially-ordered, cross-linked materials as stiff chains with distinct arrangements of cross-link-forming sites. Simulations suggest that systems composed of chains with identical arrangements of cross-link-forming sites exhibit critical behavior. In contrast, systems composed of non-identical chains undergo a crossover. This model suggests that the arrangement of cross-link-forming sites may contribute to the broadening of the denaturation transition in fibrillar collagen.

  1. Kojak: Efficient analysis of chemically cross-linked protein complexes

    PubMed Central

    Hoopmann, Michael R.; Zelter, Alex; Johnson, Richard S.; Riffle, Michael; MacCoss, Michael J.; Davis, Trisha N.; Moritz, Robert L.

    2015-01-01

    Protein chemical cross-linking and mass spectrometry enable the analysis of protein-protein interactions and protein topologies, however complicated cross-linked peptide spectra require specialized algorithms to identify interacting sites. The Kojak cross-linking software application is a new, efficient approach to identify cross-linked peptides, enabling large-scale analysis of protein-protein interactions by chemical cross-linking techniques. The algorithm integrates spectral processing and scoring schemes adopted from traditional database search algorithms, and can identify cross-linked peptides using many different chemical cross-linkers, with or without heavy isotope labels. Kojak was used to analyze both novel and existing datasets, and was compared with existing cross-linking algorithms. The algorithm provided increased cross-link identifications over existing algorithms, and equally importantly, the results in a fraction of computational time. The Kojak algorithm is open-source, cross-platform, and freely available. This software provides both existing and new cross-linking researchers alike an effective way to derive additional cross-link identifications from new or existing datasets. For new users, it provides a simple analytical resource resulting in more cross-link identifications than other methods. PMID:25812159

  2. Peroxide cross-linked UHMWPE blended with vitamin E.

    PubMed

    Oral, Ebru; Doshi, Brinda N; Gul, Rizwan M; Neils, Andrew L; Kayandan, Sanem; Muratoglu, Orhun K

    2016-04-15

    Radiation crosslinked ultrahigh molecular weight polyethylene (UHMWPE) is the bearing surface material most commonly used in total joint arthroplasty because of its excellent wear resistance. Crosslinking agents such as peroxides can also effectively increase wear resistance but peroxide crosslinked UHMWPE has low oxidative stability. We hypothesized that the addition of an antioxidant to peroxide crosslinked UHMWPE could improve its oxidation resistance and result in mechanical, tribological, and oxidative properties equivalent to currently utilized radiation crosslinked UHMWPEs. Various vitamin E (0.1-1.0 wt % and peroxide concentration (0.5-1.5 wt %) combinations were studied to investigate changes in crosslink density, wear rate, mechanical properties, and oxidative stability in comparison to radiation crosslinked UHMWPE. Peroxide crosslinking was more efficient as compared to radiation crosslinking in the presence of vitamin E with the former resulting in lower wear rate with vitamin E concentrations above 0.3 wt %. The tensile mechanical properties were comparable to and the impact strength was higher than those of the clinically relevant radiation crosslinked controls. We also determined that gamma sterilization of peroxide crosslinked vitamin E blends improved wear resistance further. In summary, peroxide crosslinking of vitamin E-blended UHMWPE may provide a feasible and economical alternative to radiation for achieving clinically relevant properties for total joint implants using UHMWPE. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016.

  3. A Single Molecular Diels-Alder Crosslinker for Achieving Recyclable Cross-Linked Polymers.

    PubMed

    Chen, Shengli; Wang, Fenfen; Peng, Yongjin; Chen, Tiehong; Wu, Qiang; Sun, Pingchuan

    2015-09-01

    A triol-functional crosslinker combining the thermoreversible properties of Diels-Alder (DA) adducts in one molecule is designed, synthesized, and used as an ideal substitute of a traditional crosslinker to prepare thermal recyclable cross-linked polyurethanes with excellent mechanical properties and recyclability in a very simple and efficient way. The recycle property of these materials achieved by the DA/retro-DA reaction at a suitable temperature is verified by differential scanning calorimetry and in situ variable temperature solid-state NMR experiments during the cyclic heating and cooling processes. The thermal recyclability and remending ability of the bulk polyurethanes is demonstrated by three polymer processing methods, including hot-press molding, injection molding, and solution casting. It is notable that all the recycled cross-linked polymers display nearly invariable elongation/stress at break compared to the as-synthesized samples. Further end-group functionalization of this single molecular DA crosslinker provides the potential in preparing a wide range of recyclable cross-linked polymers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Mechanical Properties of DNA-Crosslinked Polyacrylamide Hydrogels with Increasing Crosslinker Density.

    PubMed

    Previtera, Michelle L; Chippada, Uday; Schloss, Rene S; Yurke, Bernard; Langrana, Noshir A

    2012-10-01

    DNA-cross-linked polyacrylamide hydrogels (DNA gels) are dynamic mechanical substrates. The addition of DNA oligomers can either increase or decrease the crosslinker density to modulate mechanical properties. These DNA-responsive gels show promise as substrates for cell culture and tissue-engineering applications, since the gels allow time-dependent mechanical modulation. Previously, we reported that fibroblasts plated on DNA gels responded to modulation in elasticity via an increase or decrease in crosslinker density. To better characterize fibroblast mechanical signals, changes in stress and elastic modulus of DNA gels were measured over time as crosslinker density altered. In a previous study, we observed that as crosslinker density decreased, stress was generated, and elasticity changed over time; however, we had not evaluated stress and elastic modulus measurements of DNA gels as crosslinker density increased. Here, we completed this set of fibroblast studies by reporting stress and elastic modulus measurements over time as the crosslinker density increased. We found that the stress generated and the elastic modulus alterations were correlated. Hence, it seemed impossible to separate the effect of stress from the effect of modulus changes for fibroblasts plated on DNA gels. Yet, previous results and controls revealed that stress contributed to fibroblast behavior.

  5. Increasing round trip efficiency of hybrid Li-air battery with bifunctional catalysts

    SciTech Connect

    Huang, K; Li, YF; Xing, YC

    2013-07-30

    Previously it was shown that Pt as cathode catalyst ha's a large overpotential during charge in rechargeable hybrid Li-air battery with sulfuric acid catholyte. This article demonstrates that a bifunctional catalyst composed of Pt and IrO2 supported on carbon nanotubes can address this problem. The specially designed and synthesized bifunctional catalyst showed significant overpotential reduction and achieved a round trip energy efficiency of 81% after 10 cycles, higher than many achieved in aprotic Li-O-2 batteries. The hybrid Li-air battery was discharged and recharged for 20 cycles at 0.2 mA/cm(2), showing a fairly stable cell performance. A specific capacity of 306 mAh/g and a specific energy of 1110 Wh/kg were obtained for the hybrid Li-air battery in terms of acid weight. (c) 2013 Elsevier Ltd. All rights reserved.

  6. Tethering metal ions to photocatalyst particulate surfaces by bifunctional molecular linkers for efficient hydrogen evolution.

    PubMed

    Yu, Weili; Isimjan, Tayirjan; Del Gobbo, Silvano; Anjum, Dalaver H; Abdel-Azeim, Safwat; Cavallo, Luigi; Garcia-Esparza, Angel T; Domen, Kazunari; Xu, Wei; Takanabe, Kazuhiro

    2014-09-01

    A simple and versatile method for the preparation of photocatalyst particulates modified with effective cocatalysts is presented; the method involves the sequential soaking of photocatalyst particulates in solutions containing bifunctional organic linkers and metal ions. The modification of the particulate surfaces is a universal and reproducible method because the molecular linkers utilize strong covalent bonds, which in turn result in modified monolayer with a small but controlled quantity of metals. The photocatalysis results indicated that the CdS with likely photochemically reduced Pd and Ni, which were initially immobilized via ethanedithiol (EDT) as a linker, were highly efficient for photocatalytic hydrogen evolution from Na2S-Na2SO3-containing aqueous solutions. The method developed in this study opens a new synthesis route for the preparation of effective photocatalysts with various combinations of bifunctional linkers, metals, and photocatalyst particulate materials.

  7. Bifunctional nanoarrays for probing the immune response at the single-molecule level.

    PubMed

    Cai, Haogang; Depoil, David; Palma, Matteo; Sheetz, Michael P; Dustin, Michael L; Wind, Shalom J

    2013-11-01

    Bifunctional nanoarrays were created to simulate the immunological synapse and probe the T-cell immune response at the single-molecule level. Sub-5 nm AuPd nanodot arrays were fabricated using both e-beam and nanoimprint lithography. The nanoarrays were then functionalized by two costimulatory molecules: antibody UCHT1 Fab, which binds to the T-cell receptor (TCR) and activates the immune response, bound to metallic nanodots; and intercellular adhesion molecule-1, which enhances cell adhesion, on the surrounding area. Initial T-cell experiments show successful attachment and activation on the bifunctional nanoarrays. This nanoscale platform for single-molecule control of TCR in living T-cells provides a new approach to explore how its geometric arrangement affects T-cell activation and behavior, with potential applications in immunotherapy. This platform also serves as a general model for single-molecule nanoarrays where more than one molecular species is required.

  8. Bifunctional metamaterials with simultaneous and independent manipulation of thermal and electric fields.

    PubMed

    Lan, Chuwen; Bi, Ke; Fu, Xiaojian; Li, Bo; Zhou, Ji

    2016-10-03

    Metamaterials offer a powerful way to manipulate a variety of physical fields ranging from wave fields (electromagnetic field, acoustic field, elastic wave, etc.), static fields (static magnetic field, static electric field) to diffusive fields (thermal field, diffusive mass). However, the relevant reports and studies are usually limited to a single physical field or functionality. In this study, we proposed and experimentally demonstrated a bifunctional metamaterial which could manipulate thermal and electric fields simultaneously and independently. Specifically, a composite with independently controllable thermal and electric conductivity was introduced, on the basis of which a bifunctional device capable of shielding thermal flux and concentrating electric current simultaneously was designed, fabricated and characterized. This work provides an encouraging example of metamaterials transcending their natural limitations, which offers a promising future in building a broad platform for the manipulation of multi-physics fields.

  9. Synthesis, conjugation, and radiolabeling of a novel bifunctional chelating agent for (225)Ac radioimmunotherapy applications.

    PubMed

    Chappell, L L; Deal, K A; Dadachova, E; Brechbiel, M W

    2000-01-01

    225Ac (t(1/2) = 10 days) is an alternative alpha-emitter that has been proposed for radioimmunotherapy (RIT) due to its many favorable properties, such as half-life and mode of decay. The factor limiting use of (225)Ac in RIT is the lack of an acceptably stable chelate for in vivo applications. Herein is described the first reported bifunctional chelate for (225)Ac that has been evaluated for stability for in vivo applications. The detailed synthesis of a bifunctional chelating agent 2-(4-isothiocyanatobenzyl)-1,4,7,10,13, 16-hexaazacyclohexadecane- 1,4,7,10,13,16-hexaacetic acid (HEHA-NCS) is reported. This ligand was conjugated to three monoclonal antibodies, CC49, T101, and BL-3 with chelate-to-protein ratios between 1.4 and 2. The three conjugates were radiolabeled with (225)Ac, and serum stability study of the [(225)Ac]BL-3-HEHA conjugate was performed.

  10. Radiometals (non-Tc, non-Re) and Bifunctional Labeling Chemistry

    NASA Astrophysics Data System (ADS)

    Fani, M.; Good, S.; Maecke, H. R.

    Radiometals are of increased current interest because of the growing use of targeted radiotherapy for tumors and the development of generators that produce positron-emitting radiometals. In addition, biomedical cyclotrons allow the cheap production of some relevant radiometals. The design of the corresponding radiopharmaceuticals includes the synthesis of bifunctional chelators, which carry a functional unit for the immobilization of the radiometal and a functional group for the covalent attachment to a vector molecule. Radiometals of interest for therapeutic applications are some lanthanides, 67Cu, and 90Y. For diagnostic applications 61Cu, 62Cu, 64Cu, 89Zr, and 68Ga are currently used and corresponding radiopharmaceuticals are being designed. In this chapter, some properties and the synthesis of bifunctional chelators including metal ion selectivity and special aspects of coupling chemistry are being described.

  11. Design and applications of bifunctional small molecules: Why two heads are better than one

    PubMed Central

    Corson, Timothy W.; Aberle, Nicholas; Crews, Craig M.

    2009-01-01

    Induction of protein-protein interactions is a daunting challenge, but recent studies show promise for small molecules that specifically bring two or more protein molecules together for enhanced or novel biological effect. The first such bifunctional molecules were the rapamycin- and FK506-based “Chemical Inducers of Dimerization”, but the field has since expanded with new molecules and new applications in chemical genetics and cell biology. Examples include coumermycin-mediated gyrase B dimerization, proteolysis targeting chimeric molecules (PROTACS), drug hybrids, and strategies for exploiting multivalency in toxin binding and antibody recruitment. This review discusses these and other advances in the design and use of bifunctional small molecules, and potential strategies for future systems. PMID:19112665

  12. Engineered bifunctional proteins and stem cells: next generation of targeted cancer therapeutics.

    PubMed

    Choi, Sung Hugh; Shah, Khalid

    2016-09-01

    Redundant survival signaling pathways and their crosstalk within tumor and/or between tumor and their microenvironment are key impediments to developing effective targeted therapies for cancer. Therefore developing therapeutics that target multiple receptor signaling pathways in tumors and utilizing efficient platforms to deliver such therapeutics are critical to the success of future targeted therapies. During the past two decades, a number of bifunctional multi-targeting antibodies, fusion proteins, and oncolytic viruses have been developed and various stem cell types have been engineered to efficiently deliver them to tumors. In this review, we discuss the design and efficacy of therapeutics targeting multiple pathways in tumors and the therapeutic potential of therapeutic stem cells engineered with bifunctional agents.

  13. Crosslinkable low bandgap polymers for organic solar cells

    NASA Astrophysics Data System (ADS)

    Strohriegl, Peter; Saller, Christina; Knauer, Philipp; Köhler, Anna; Hahn, Tobias; Fischer, Florian; Kahle, Frank-Julian

    2016-09-01

    We present a number of polyfluorene based conjugated polymers with crosslinkable acrylate and oxetane units. These polymers can be crosslinked by free radical polymerization in the case of acrylates and by cationic ring opening polymerization for oxetanes. Upon polymerization densely crosslinked networks are formed which are completely insoluble. We show that the diffusion coefficient of C60 in polyfluorene is reduced by a factor of 1000 by crosslinking. MIS-CELIV measurements are used to monitor changes in the charge carrier mobility upon crosslinking. It shows that using appropriate conditions, e.g. low initiator concentrations or thermal crosslinking, the charge carrier mobility is not reduced by crosslinking. Solution processed three layer organic solar cells were realized with a crosslinkable fluorene based copolymer containing acrylate groups. The efficiency is increased from 1.4% for the reference to 1.8% in the three layer cell with a crosslinked exciton blocking layer. A critical issue of BHJ cells is the instability of the morphology of the polymer:fullerene blend over long operation times at elevated temperature. We present a crosslinkable derivative of the low bandgap polymer PFDTBT which contains oxetane units. BHJ cells with the crosslinked PFDTBT derivative and PCBM were tested in accelerated aging experiments at 100 °C for times up to 100 h. Stabilization was clearly observed in crosslinked BHJ cells compared to the non-crosslinked reference. We show for the first time that oxetane containing polymers can be thermally crosslinked without any added initiator. Initiator free crosslinking is particularly attractive as it avoids the formation of decomposition products, and thus potential electron traps and quenching sites from the initiator.

  14. 3D Ordered Mesoporous Bifunctional Oxygen Catalyst for Electrically Rechargeable Zinc-Air Batteries.

    PubMed

    Park, Moon Gyu; Lee, Dong Un; Seo, Min Ho; Cano, Zachary Paul; Chen, Zhongwei

    2016-05-01

    To enhance energy efficiency and durability, a highly active and durable 3D ordered mesoporous cobalt oxide framework has been developed for rechargeable zinc-air batteries. The bifunctional air electrode consisting of 3DOM Co3 O4 having high active surface area and robust structure, results in superior charge and discharge battery voltages, and durable performance for electrically rechargeable zinc-air batteries.

  15. Phase-Transfer Catalysis via a Proton Sponge: A Bifunctional Role for Biscyclopropenimine.

    PubMed

    Belding, Lee; Stoyanov, Peter; Dudding, Travis

    2016-01-15

    The use of a bis(diisopropylamino)cyclopropenimine-substituted bis-protonated proton sponge as a bifunctional phase-transfer catalyst is reported. Experimental studies and DFT calculations suggest it operates simultaneously as a hydrogen bond donor and a phase-transfer catalyst, facilitating the movement of charged intermediates from the interface to the organic phase via favorable partitioning of hydrophilic/hydrophobic surface areas, resulting in high catalytic activity.

  16. Synthesis of acid-base bifunctional mesoporous materials by oxidation and thermolysis

    SciTech Connect

    Yu, Xiaofang; Zou, Yongcun; Wu, Shujie; Liu, Heng; Guan, Jingqi; Kan, Qiubin

    2011-06-15

    Graphical abstract: A novel and efficient method has been developed for the synthesis of acid-base bifunctional catalyst. The obtained sample of SO{sub 3}H-MCM-41-NH{sub 2} containing amine and sulfonic acids exhibits excellent catalytic activity in aldol condensation reaction. Research highlights: {yields} Synthesize acid-base bifunctional mesoporous materials SO{sub 3}H-MCM-41-NH{sub 2}. {yields} Oxidation and then thermolysis to generate acidic site and basic site. {yields} Exhibit good catalytic performance in aldol condensation reaction between acetone and various aldehydes. -- Abstract: A novel and efficient method has been developed for the synthesis of acid-base bifunctional catalyst SO{sub 3}H-MCM-41-NH{sub 2}. This method was achieved by co-condensation of tetraethylorthosilicate (TEOS), 3-mercaptopropyltrimethoxysilane (MPTMS) and (3-triethoxysilylpropyl) carbamicacid-1-methylcyclohexylester (3TAME) in the presence of cetyltrimethylammonium bromide (CTAB), followed by oxidation and then thermolysis to generate acidic site and basic site. X-ray diffraction (XRD) and transmission electron micrographs (TEM) show that the resultant materials keep mesoporous structure. Thermogravimetric analysis (TGA), X-ray photoelectron spectra (XPS), back titration, solid-state {sup 13}C CP/MAS NMR and solid-state {sup 29}Si MAS NMR confirm that the organosiloxanes were condensed as a part of the silica framework. The bifunctional sample (SO{sub 3}H-MCM-41-NH{sub 2}) containing amine and sulfonic acids exhibits excellent acid-basic properties, which make it possess high activity in aldol condensation reaction between acetone and various aldehydes.

  17. Design and Testing of Bi-functional, P-loop Targeted MDM2 Inhibitors

    DTIC Science & Technology

    2008-03-01

    based on the discovery that nucleotides can bind to the P-loop of MDM2 and cause its relocalization to the nucleolus. Such bifunctional compounds will be...developed a high-throughput docking assay based on Mdm2’s RING domain structure and (4) developed a high-throughput compatible luciferase- based ...target. Based on previous mutational studies on the RING domain (Poyurovsky et al. 2003.) and molecular dynamics simulations we predicted the ATP

  18. Bifunctional ruthenium(II) hydride complexes with pendant strong Lewis acid moieties: structure, dynamics, and cooperativity.

    PubMed

    Ostapowicz, Thomas G; Merkens, Carina; Hölscher, Markus; Klankermayer, Jürgen; Leitner, Walter

    2013-02-13

    The synthesis of a novel class of bifunctional ruthenium hydride complexes incorporating Lewis acidic BR(2) moieties is reported. Determination of the molecular structures in the solid state and in solution provided evidence for tunable interaction between the two functionalities. Cooperative effects on the reactivity of the complexes were demonstrated including the activation of small Lewis basic molecules by reversible anchoring at the boron center.

  19. Kinetic and inhibition studies on substrate channelling in the bifunctional enzyme catalysing C-terminal amidation.

    PubMed Central

    Moore, A B; May, S W

    1999-01-01

    A series of experiments has been conducted to investigate the possibility that substrate channelling might occur in the bifunctional forms of enzymes carrying out C-terminal amidation, a post-translational modification essential to the biological activity of many neuropeptides. C-terminal amidation entails sequential action by peptidylglycine mono-oxygenase (PAM, EC 1.14.17.3) and peptidylamidoglycolate lyase (PGL, EC 4.3.2.5), with the mono-oxygenase catalysing conversion of a glycine-extended pro-peptide into the corresponding alpha-hydroxyglycine derivative, which is then converted by the lyase into amidated peptide plus glyoxylate. Since the mono-oxygenase and lyase reactions exhibit tandem reaction stereospecificities, channelling of the alpha-hydroxy intermediate might occur, as is the case for some other multifunctional enzymes. Selective inhibition of the mono-oxygenase domain by competitive ester inhibitors, as well as mechanism-based mono-oxygenase inactivation by the novel olefinic inhibitor 5-acetamido-4-oxo-6-phenylhex-2-enoate (N-acetylphenylalanyl acrylate), has little to no effect on the kinetic parameters of the lyase domain of the AE from Xenopus laevis. Similarly, inhibition of the lyase domain by the potent dioxo inhibitor 2,4-dioxo-5-acetamido-6-phenylhexanoate has little effect on the activity of the monooxygenase domain in the bifunctional enzyme. A series of experiments on intermediate accumulation and conversion were also carried out, along with kinetic investigations of the reactivities of the monofunctional and bifunctional forms of PAM and PGL towards substrates and inhibitors. Taken together, the results demonstrate the kinetic independence of the mono-oxygenase and lyase domains, and provide no evidence for substrate channelling between these domains in the bifunctional amidating enzyme. PMID:10377242

  20. Grafting of bifunctional phosphonic and carboxylic acids on Phynox: Impact of induction heating

    NASA Astrophysics Data System (ADS)

    Devillers, S.; Lanners, L.; Delhalle, J.; Mekhalif, Z.

    2011-05-01

    Phynox, a cobalt-chromium alloy, exhibits interesting mechanical properties making it a valuable material for a number of applications. However, its applications (especially biomedical ones) often require specific surface properties that can be imparted via suitable surface functionalizations. Based on Faraday's law of induction, induction heating is a widely used method to heat metallic substrates directly and contactless. The aim of this work is to compare the influence of induction heating and a conventional heating method on the functionalization of Phynox surfaces with bifunctional (6-phosphonohexanoic and 11-phosphoundecanoic acids) monolayers in order to create a platform for a large variety of post-grafting chemical reactions, e.g. with alcohols and amines, to modify and control the surface properties. In a first part, we assess the influence of the heating method on the interaction between the two terminal moieties of the 6-phosphonohexanoic and 11-phosphoundecanoic acids and the Phynox surface by studying the grafting of n-dodecylphosphonic acid and n-dodecanoic acid separately. The suitability of such bifunctional molecules for post-grafting chemical reactions has then been assessed by studying the post-grafting of a fluorinated alcohol by the Steglich esterification reaction between the carboxylic end of the grafted bifunctional molecules and the alcohol function of the post-grafted molecule. It has been shown that induction heating can lead to a much more selective adsorption of bifunctional molecules on the surface of Phynox, leaving a higher amount of free carboxylic acid functions to react during the second modification step.

  1. L-Proline Derived Bifunctional Organocatalysts: Enantioselective Michael Addition of Dithiomalonates to trans-β-Nitroolefins.

    PubMed

    Jin, Hui; Kim, Seung Tae; Hwang, Geum-Sook; Ryu, Do Hyun

    2016-04-15

    A series of novel L-proline derived tertiary amine bifunctional organocatalysts 9 are reported, which were applied to the asymmetric Michael addition of dithiomalonates 2 to trans-β-nitroolefins 1. The reaction proceeded in high yields (up to 99%) with high enantioselectivities (up to 97% ee). The synthetic utility of this methodology was demonstrated in the short synthesis of (R)-phenibut in high yield.

  2. Enantioselective, organocatalytic reduction of ketones using bifunctional thiourea-amine catalysts.

    PubMed

    Li, De Run; He, Anyu; Falck, J R

    2010-04-16

    Prochiral ketones are reduced to enantioenriched, secondary alcohols using catecholborane and a family of air-stable, bifunctional thiourea-amine organocatalysts. Asymmetric induction is proposed to arise from the in situ complexation between the borane and chiral thiourea-amine organocatalyst resulting in a stereochemically biased boronate-amine complex. The hydride in the complex is endowed with enhanced nucleophilicity while the thiourea concomitantly embraces and activates the carbonyl.

  3. Enantioselective, Organocatalytic Reduction of Ketones using Bifunctional Thiourea-Amine Catalysts

    PubMed Central

    Li, De Run; He, Anyu; Falck, J. R.

    2010-01-01

    Prochiral ketones are reduced to enantioenriched, secondary alcohols using catecholborane and a family of air-stable, bifunctional thiourea-amine organocatalysts. Asymmetric induction is proposed to arise from the in situ complexation between the borane and chiral thiourea-amine organocatalyst resulting in a stereochemically biased boronate-amine complex. The hydride in the complex is endowed with enhanced nucleophilicity while the thiourea concomitantly embraces and activates the carbonyl. PMID:20334398

  4. To Cross-Link or Not to Cross-Link? Cross-Linking Associated Foreign Body Response of Collagen-Based Devices

    PubMed Central

    Delgado, Luis M.; Bayon, Yves; Pandit, Abhay

    2015-01-01

    Collagen-based devices, in various physical conformations, are extensively used for tissue engineering and regenerative medicine applications. Given that the natural cross-linking pathway of collagen does not occur in vitro, chemical, physical, and biological cross-linking methods have been assessed over the years to control mechanical stability, degradation rate, and immunogenicity of the device upon implantation. Although in vitro data demonstrate that mechanical properties and degradation rate can be accurately controlled as a function of the cross-linking method utilized, preclinical and clinical data indicate that cross-linking methods employed may have adverse effects on host response, especially when potent cross-linking methods are employed. Experimental data suggest that more suitable cross-linking methods should be developed to achieve a balance between stability and functional remodeling. PMID:25517923

  5. Gelation of Copolymers Photo-crosslinked by Pendant Benzophenones

    NASA Astrophysics Data System (ADS)

    Christensen, Scott; Hayward, Ryan C.

    2011-03-01

    Copolymers containing pendant benzophenone (BP) groups provide a simple and powerful route to crosslinkable polymer films. While the solution state photo-chemistry of BP is well established, and crosslinking of polymers blended with BP has been studied in detail, the process of crosslinking by covalently attached BP has received comparatively little attention. We have prepared copolymers of BP with several different monomers, and studied gelation as a function of BP content and degree of photochemical conversion. We seek to understand the influence of polymer chemistry on crosslinking efficiency, to guide choices of materials for photo- crosslinkable polymer films and to provide a route for tailoring morphology in polymer blends.

  6. Gelation of Copolymers Photo-crosslinked by Pendent Benzophenones

    NASA Astrophysics Data System (ADS)

    Christensen, Scott; Hayward, Ryan C.

    2012-02-01

    Copolymers containing pendent benzophenone (BP) groups provide a simple and powerful route to crosslinkable polymer films. While the solution state photo-chemistry of BP is well established, and crosslinking of polymers blended with BP has been studied in detail, the process of crosslinking by covalently attached BP has received comparatively little attention. We have prepared copolymers of BP with several different monomers, and studied gelation as a function of BP content and degree of photochemical conversion. Understanding the influence of polymer chemistry on crosslinking efficiency allows the appropriate choice of materials for nanostructured photo-crosslinkable polymer films and reactive polymer blends.

  7. Investigation of crosslinking behaviour of silane grafted polyethylene through rheology

    NASA Astrophysics Data System (ADS)

    Obr, Ales; Zatloukal, Martin

    2013-04-01

    In this work the crosslinking behaviour of two silane-grafted polyethylenes was investigated with respect to time and temperature by using dynamic rheological measurements. It has been found that inhomogeneous character of the crosslinking reaction takes place in both tested samples. By utilization of G'-G" crossover method, it has been found that the sample with initially distinct crosslinking state and short critical crosslinking reaction time has high tendency to create small gels during production of hot water pipes. It has also been revealed that the temperature dependence of the critical time, at which the crosslinking speed is the highest, shows an Arrhenius-type behaviour.

  8. UV written waveguides using crosslinkable PMMA-based copolymers

    NASA Astrophysics Data System (ADS)

    Koo, Jae-Sun; Smith, Peter G. R.; Williams, Richard B.; Riziotis, Christos; Grossel, Martin C.

    2003-09-01

    Crosslinkable copolymers poly(methylmethacrylate/2-methacryloylethylmethacrylate) (P(MMA/MAOEMA)) were developed for waveguide applications. P(MMA/MAOEMA) can crosslink under either UV exposure or heating. The UV-induced refractive index change in unreacted P(MMA/MAOEMA) is found to depend on the fluence. UV exposure of thermally crosslinked P(MMA/MAOEMA) can induce further structure change and thus index change, and therefore, was found to be useful for creating the core layers in optical waveguides. The photosensitivity of the thermally crosslinked polymers is sufficient for the fabrication of low loss (<1 dB/cm) channel waveguides in the thermally crosslinked copolymer system.

  9. The phylogenetic origin of the bifunctional tyrosine-pathway protein in the enteric lineage of bacteria.

    PubMed

    Ahmad, S; Jensen, R A

    1988-05-01

    Because bifunctional enzymes are distinctive and highly conserved products of relatively infrequent gene-fusion events, they are particularly useful markers to identify clusters of organisms at different hierarchical levels of a phylogenetic tree. Within the subdivision of gram-negative bacteria known as superfamily B, there are two distinctive types of tyrosine-pathway dehydrogenases: (1) a broad-specificity dehydrogenase (recently termed cyclohexadienyl dehydrogenase [CDH]) that can utilize either prephenate or L-arogenate as alternative substrates and (2) a bifunctional CDH that also posseses chorismate mutase activity. (T-proteins). The bifunctional T-protein, thought to be encoded by fused ancestral genes for chorismate mutase and CDH, was found to be present in enteric bacteria (Escherichia, Shigella, Salmonella, Citrobacter, Klebsiella, Erwinia, Serratia, Morganella, Cedecea, Kluyvera, Hafnia, Edwardsiella, Yersinia, and Proteus) and in Aeromonas and Alteromonas. Outside of the latter "enteric lineage," the T-protein is absent in other major superfamily-B genera, such as Pseudomonas (rRNA homology group I), Xanthomonas, Acinetobacter, and Oceanospirillum. Hence, the T-protein must have evolved after the divergence of the enteric and Oceanospirillum lineages. 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase-phe, an early-pathway isozyme sensitive to feedback inhibition by L-phenylalanine, has been found in each member of the enteric lineage examined. The absence of both the T-protein and DAHP synthase-phe elsewhere in superfamily B indicates the emergence of these character states at approximately the same evolutionary time.

  10. Development of Cobalt Hydroxide as a Bifunctional Catalyst for Oxygen Electrocatalysis in Alkaline Solution.

    PubMed

    Zhan, Yi; Du, Guojun; Yang, Shiliu; Xu, Chaohe; Lu, Meihua; Liu, Zhaolin; Lee, Jim Yang

    2015-06-17

    Co(OH)2 in the form of hexagonal nanoplates synthesized by a simple hydrothermal reaction has shown even greater activity than cobalt oxides (CoO and Co3O4) in oxygen reduction and oxygen evolution reactions (ORR and OER) under alkaline conditions. The bifunctionality for oxygen electrocatalysis as shown by the OER-ORR potential difference (ΔE) could be reduced to as low as 0.87 V, comparable to the state-of-the-art non-noble bifunctional catalysts, when the Co(OH)2 nanoplates were compounded with nitrogen-doped reduced graphene oxide (N-rGO). The good performance was attributed to the nanosizing of Co(OH)2 and the synergistic interaction between Co(OH)2 and N-rGO. A zinc-air cell assembled with a Co(OH)2-air electrode also showed a performance comparable to that of the state-of-the-art zinc-air cells. The combination of bifunctional activity and operational stability establishes Co(OH)2 as an effective low-cost alternative to the platinum group metal catalysts.

  11. Bifunctional Catalysts for Upgrading of Biomass-Derived Oxygenates: A Review

    SciTech Connect

    Robinson, Allison M.; Hensley, Jesse E.; Medlin, J. Will

    2016-08-05

    Deoxygenation is an important reaction in the conversion of biomass-derived oxygenates to fuels and chemicals. A key route for biomass refining involves the production of pyrolysis oil through rapid heating of the raw biomass feedstock. Pyrolysis oil as produced is highly oxygenated, so the feasibility of this approach depends in large part on the ability to selectively deoxygenate pyrolysis oil components to create a stream of high-value finished products. Identification of catalytic materials that are active and selective for deoxygenation of pyrolysis oil components has therefore represented a major research area. One catalyst is rarely capable of performing the different types of elementary reaction steps required to deoxygenate biomass-derived compounds. For this reason, considerable attention has been placed on bifunctional catalysts, where two different active materials are used to provide catalytic sites for diverse reaction steps. Here, we review recent trends in the development of catalysts, with a focus on catalysts for which a bifunctional effect has been proposed. We summarize recent studies of hydrodeoxygenation (HDO) of pyrolysis oil and model compounds for a range of materials, including supported metal and bimetallic catalysts as well as transition-metal oxides, sulfides, carbides, nitrides, and phosphides. Particular emphasis is placed on how catalyst structure can be related to performance via molecular-level mechanisms. These studies demonstrate the importance of catalyst bifunctionality, with each class of materials requiring hydrogenation and C-O scission sites to perform HDO at reasonable rates.

  12. Comparison of Dynamical Behaviors Between Monofunctional and Bifunctional Two-Component Signaling Modules

    NASA Astrophysics Data System (ADS)

    Yang, Xiyan; Wu, Yahao; Yuan, Zhanjiang

    2015-06-01

    Two-component signaling modules exist extensively in bacteria and microbes. These modules can be, based on their distinct network structures, divided into two types: the monofunctional system (denoted by MFS) where the sensor kinase (SK) modulates only phosphorylation of the response regulator (RR), and the bifunctional system (denoted by BFS) where the SK catalyzes both phosphorylation and dephosphorylation of the RR. Here, we analyze dynamical behaviors of these two systems based on stability theory, focusing on differences between them. The analysis of the deterministic behavior indicates that there is no difference between the two modules, that is, each system has the unique stable steady state. However, there are significant differences in stochastic behavior between them. Specifically, if the mean phosphorylated SK level is kept the same for the two modules, then the variance and the Fano factor for the phosphorylated RR in the BFS are always no less than those in the MFS, indicating that bifunctionality always enhances fluctuations. The correlation between the phosphorylated SK and the phosphorylated RR in the BFS is always positive mainly due to competition between system components, but this correlation in the MFS may be positive, almost zero, or negative, depending on the ratio between two rate constants. Our overall analysis indicates that differences between dynamical behaviors of monofunctional and bifunctional signaling modules are mainly in the stochastic rather than deterministic aspect.

  13. Bifunctional catalysts for upgrading of biomass-derived oxygenates: A review

    DOE PAGES

    Robinson, Allison M.; Hensley, Jesse E.; Medlin, J. Will

    2016-06-21

    Deoxygenation is an important reaction in the conversion of biomass-derived oxygenates to fuels and chemicals. A key route for biomass refining involves the production of pyrolysis oil through rapid heating of the raw biomass feedstock. Pyrolysis oil as produced is highly oxygenated, so the feasibility of this approach depends in large part on the ability to selectively deoxygenate pyrolysis oil components to create a stream of high-value finished products. Identification of catalytic materials that are active and selective for deoxygenation of pyrolysis oil components has therefore represented a major research area. One catalyst is rarely capable of performing the differentmore » types of elementary reaction steps required to deoxygenate biomass-derived compounds. For this reason, considerable attention has been placed on bifunctional catalysts, where two different active materials are used to provide catalytic sites for diverse reaction steps. Here, we review recent trends in the development of catalysts, with a focus on catalysts for which a bifunctional effect has been proposed. We summarize recent studies of hydrodeoxygenation (HDO) of pyrolysis oil and model compounds for a range of materials, including supported metal and bimetallic catalysts as well as transition-metal oxides, sulfides, carbides, nitrides, and phosphides. Particular emphasis is placed on how catalyst structure can be related to performance via molecular-level mechanisms. Finally, these studies demonstrate the importance of catalyst bifunctionality, with each class of materials requiring hydrogenation and C-O scission sites to perform HDO at reasonable rates.« less

  14. A Processive Carbohydrate Polymerase That Mediates Bifunctional Catalysis Using a Single Active Site

    PubMed Central

    May, John F.; Levengood, Matthew R.; Splain, Rebecca A.; Brown, Christopher D.; Kiessling, Laura L.

    2012-01-01

    Even in the absence of a template, glycosyltransferases can catalyze the synthesis of carbohydrate polymers of specific sequence. The paradigm has been that one enzyme catalyzes the formation of one type of glycosidic linkage, yet certain glycosyltransferases generate polysaccharide sequences composed of two distinct linkage types. In principle, bifunctional glycosyltransferases can possess separate active sites for each catalytic activity or one active site with dual activities. We encountered the fundamental question of one or two distinct active sites in our investigation of the galactosyltransferase GlfT2. GlfT2 catalyzes the formation of mycobacterial galactan, a critical cell-wall polymer composed of galactofuranose residues connected with alternating, regioisomeric linkages. We found that GlfT2 mediates galactan polymerization using only one active site that manifests dual regioselectivity. Structural modeling of the bifunctional glycosyltransferases hyaluronan synthase and cellulose synthase suggests that these enzymes also generate multiple glycosidic linkages using a single active site. These results highlight the versatility of glycosyltransferases for generating polysaccharides of specific sequence. We postulate that a hallmark of processive elongation of a carbohydrate polymer by a bifunctional enzyme is that one active site can give rise to two separate types of glycosidic bonds. PMID:22217153

  15. Enhanced Bifunctional Oxygen Catalysis in Strained LaNiO3 Perovskites

    DOE PAGES

    Petrie, Jonathan R.; Cooper, Valentino R.; Freeland, John W.; ...

    2016-02-11

    Strain is known to greatly influence low-temperature oxygen electrocatalysis on noble metal films, leading to significant enhancements in bifunctional activity essential for fuel cells and metal-air batteries. Still, its catalytic impact on transition-metal oxide thin films, such as perovskites, is not widely understood. Here, we epitaxially strain the conducting perovskite LaNiO3 to systematically determine its influence on both the oxygen reduction and oxygen evolution reaction. Uniquely, we found that compressive strain could significantly enhance both reactions, yielding a bifunctional catalyst that surpasses the performance of noble metals such as Pt. We attribute the improved bifunctionality to strain-induced splitting of themore » eg orbitals, which can customize orbital asymmetry at the surface. Lastly, analogous to strain-induced shifts in the d-band center of noble metals relative to the Fermi level, such splitting can dramatically affect catalytic activity in this perovskite and other potentially more active oxides.« less

  16. Redirecting NK cells mediated tumor cell lysis by a new recombinant bifunctional protein

    PubMed Central

    Germain, Claire; Campigna, Emmanuelle; Salhi, Imed; Morisseau, Sébastien; Navarro-Teulon, Isabelle; Mach, Jean-Pierre; Pèlegrin, André; Robert, Bruno

    2008-01-01

    Natural killer (NK) cells are at the crossroad between innate and adaptive immunity and play a major role in cancer immunosurveillance. NK cell stimulation depends on a balance between inhibitory and activating receptors, such as the stimulatory lectinlike receptor NKG2D. To redirect NK cells against tumor cells we designed bifunctional proteins able to specifically bind tumor cells and to induce their lysis by NK cells, after NKG2D engagement. To this aim, we used the “knob into hole” heterodimerization strategy, in which “knob” and “hole” variants were generated by directed mutagenesis within the CH3 domain of human IgG1 Fc fragments fused to an anti-CEA or anti-HER2 scFv or to the H60 murine ligand of NKG2D, respectively. We demonstrated the capacity of the bifunctional proteins produced to specifically coat tumor cells surface with H60 ligand. Most importantly, we demonstrated that these bifunctional proteins were able to induce an NKG2D-dependent and antibody-specific tumor cell lysis by murine NK cells. Overall, the results show the possibility to redirect NK cytotoxicity to tumor cells by a new format of recombinant bispecific antibody, opening the way of potential NK cell-based cancer immunotherapies by specific activation of the NKG2D receptor at the tumor site. PMID:18790793

  17. (S)-5-(p-Nitrobenzyl)-PCTA, a Promising Bifunctional Ligand with Advantageous Metal Ion Complexation Kinetics

    PubMed Central

    Tircsó, Gyula; Benyó, Enikő Tircsóné; Suh, Eul Hyun; Jurek, Paul; Kiefer, Garry E.; Sherry, A. Dean; Kovács, Zoltán

    2009-01-01

    A bifunctional version of PCTA (3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-3,6,9,-triacetic acid) that exhibits fast complexation kinetics with the trivalent lanthanide(III) ions was synthesized in reasonable yields starting from N, N′, N″-tristosyl-(S)-2-(p-nitrobenzyl)-diethylenetriamine. pH-potentiometric studies showed that the basicities of p-nitrobenzyl-PCTA and the parent ligand PCTA were similar. The stability of M(NO2-Bn-PCTA) (M = Mg2+, Ca2+, Cu2+, Zn2+) complexes was similar to that of the corresponding PCTA complexes while the stability of Ln3+ complexes of the bifunctional ligand is somewhat lower than that of PCTA chelates. The rate of complex formation of Ln(NO2-Bn-PCTA) complexes was found to be quite similar to that of PCTA, a ligand known to exhibit the fastest formation rates among all lanthanide macrocyclic ligand complexes studied to date. The acid catalyzed decomplexation kinetic studies of the selected Ln(NO2-Bn-PCTA) complexes showed that the kinetic inertness of the complexes was comparable to that of Ln(DOTA) chelates making the bifunctional ligand NO2-Bn-PCTA suitable for labeling biological vectors with radioisotopes for nuclear medicine applications. PMID:19220012

  18. Bifunctional bridging linker-assisted synthesis and characterization of TiO2/Au nanocomposites

    NASA Astrophysics Data System (ADS)

    Žunič, Vojka; Kurtjak, Mario; Suvorov, Danilo

    2016-11-01

    Using a simple organic bifunctional bridging linker, titanium dioxide (TiO2) nanoparticles were coupled with the Au nanoparticles to form TiO2/Au nanocomposites with a variety of Au loadings. This organic bifunctional linker, meso-2,3-dimercaptosuccinic acid, contains two types of functional groups: (i) the carboxyl group, which enables binding to the TiO2, and (ii) the thiol group, which enables binding to the Au. In addition, the organic bifunctional linker acts as a stabilizing agent to prevent the agglomeration and growth of the Au particles, resulting in the formation of highly dispersed Au nanoparticles. To form the TiO2/Au nanocomposites in a simple way, we deliberately applied a synthetic method that simultaneously ensures: (i) the capping of the Au nanoparticles and (ii) the binding of different amounts of Au to the TiO2. The TiO2/Au nanocomposites formed with this method show enhanced UV and Vis photocatalytic activities when compared to the pure TiO2 nanopowders.

  19. Bifunctional Transition Metal Hydroxysulfides: Room-Temperature Sulfurization and Their Applications in Zn-Air Batteries.

    PubMed

    Wang, Hao-Fan; Tang, Cheng; Wang, Bin; Li, Bo-Quan; Zhang, Qiang

    2017-07-17

    Bifunctional electrocatalysis for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) constitutes the bottleneck of various sustainable energy devices and systems like rechargeable metal-air batteries. Emerging catalyst materials are strongly requested toward superior electrocatalytic activities and practical applications. In this study, transition metal hydroxysulfides are presented as bifunctional OER/ORR electrocatalysts for Zn-air batteries. By simply immersing Co-based hydroxide precursor into solution with high-concentration S(2-) , transition metal hydroxides convert to hydroxysulfides with excellent morphology preservation at room temperature. The as-obtained Co-based metal hydroxysulfides are with high intrinsic reactivity and electrical conductivity. The electron structure of the active sites is adjusted by anion modulation. The potential for 10 mA cm(-2) OER current density is 1.588 V versus reversible hydrogen electrode (RHE), and the ORR half-wave potential is 0.721 V versus RHE, with a potential gap of 0.867 V for bifunctional oxygen electrocatalysis. The Co3 FeS1.5 (OH)6 hydroxysulfides are employed in the air electrode for a rechargeable Zn-air battery with a small overpotential of 0.86 V at 20.0 mA cm(-2) , a high specific capacity of 898 mAh g(-1) , and a long cycling life, which is much better than Pt and Ir-based electrocatalyst in Zn-air batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Bifunctional chelators in the design and application of radiopharmaceuticals for oncological diseases.

    PubMed

    Sarko, D; Eisenhut, M; Haberkorn, U; Mier, W

    2012-01-01

    Radiopharmaceuticals constitute diagnostic and therapeutic tools for both clinical and preclinical applications. They are a blend of a tracer moiety that mediates a site specific accumulation and an effector: a radioisotope whose decay enables either molecular imaging or exhibits cytotoxic effects. Radioactive halogens and lanthanides are the most commonly used isotopes for radiopharmaceuticals. Due to their ready availability and the facile labeling metallic radionuclides offer ideal characteristics for applications in nuclear medicine. A stable link between the radionuclide and the carrier molecule is the primary prerequisite for in vivo applications. The radionuclide is selected according to its physical and chemical properties i.e. half-life, the type of decay, the energy emitted and its availability. Bifunctional chelating agents are used to stably link the radiometal to the carrier moiety of the radiopharmaceutical. The design of the bifunctional chelator has to consider the impact of the radiometal chelate on the biological properties of the target-specific pharmaceutical. Here, with an emphasis on oncology, we review applications of radiopharmaceuticals that contain bifunctional chelators, while highlighting successes and identifying the key challenges that need to be addressed for the successful translation of target binding molecules into tracers for molecular imaging and endoradiotherapy.

  1. (S)-5-(p-nitrobenzyl)-PCTA, a promising bifunctional ligand with advantageous metal ion complexation kinetics.

    PubMed

    Tircsó, Gyula; Benyó, Eniko Tircsóné; Suh, Eul Hyun; Jurek, Paul; Kiefer, Garry E; Sherry, A Dean; Kovács, Zoltán

    2009-03-18

    A bifunctional version of PCTA (3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-3,6,9,-triacetic acid) that exhibits fast complexation kinetics with the trivalent lanthanide(III) ions was synthesized in reasonable yields starting from N,N',N''-tristosyl-(S)-2-(p-nitrobenzyl)-diethylenetriamine. pH-potentiometric studies showed that the basicities of p-nitrobenzyl-PCTA and the parent ligand PCTA were similar. The stability of M(NO(2)-Bn-PCTA) (M = Mg(2+), Ca(2+), Cu(2+), Zn(2+)) complexes was similar to that of the corresponding PCTA complexes, while the stability of Ln(3+) complexes of the bifunctional ligand is somewhat lower than that of PCTA chelates. The rate of complex formation of Ln(NO(2)-Bn-PCTA) complexes was found to be quite similar to that of PCTA, a ligand known to exhibit the fastest formation rates among all lanthanide macrocyclic ligand complexes studied to date. The acid-catalyzed decomplexation kinetic studies of the selected Ln(NO(2)-Bn-PCTA) complexes showed that the kinetic inertness of the complexes was comparable to that of Ln(DOTA) chelates making the bifunctional ligand NO(2)-Bn-PCTA suitable for labeling biological vectors with radioisotopes for nuclear medicine applications.

  2. Enhanced Bifunctional Oxygen Catalysis in Strained LaNiO3 Perovskites

    SciTech Connect

    Petrie, Jonathan R.; Cooper, Valentino R.; Freeland, John W.; Meyer, Tricia L.; Zhang, Zhiyong; Lutterman, Daniel A.; Lee, Ho Nyung

    2016-02-11

    Strain is known to greatly influence low-temperature oxygen electrocatalysis on noble metal films, leading to significant enhancements in bifunctional activity essential for fuel cells and metal-air batteries. Still, its catalytic impact on transition-metal oxide thin films, such as perovskites, is not widely understood. Here, we epitaxially strain the conducting perovskite LaNiO3 to systematically determine its influence on both the oxygen reduction and oxygen evolution reaction. Uniquely, we found that compressive strain could significantly enhance both reactions, yielding a bifunctional catalyst that surpasses the performance of noble metals such as Pt. We attribute the improved bifunctionality to strain-induced splitting of the eg orbitals, which can customize orbital asymmetry at the surface. Lastly, analogous to strain-induced shifts in the d-band center of noble metals relative to the Fermi level, such splitting can dramatically affect catalytic activity in this perovskite and other potentially more active oxides.

  3. Characterization of crosslinked artificial protein films

    NASA Astrophysics Data System (ADS)

    Nowatzki, Paul

    Genetically engineered artificial proteins are promising candidates for new biomaterials because their amino acid sequences can be precisely controlled. This work describes the characterization of crosslinked films of biomimetic artificial extracellular matrix (aECM) proteins with hybrid functions designed to meet materials needs in applications such as small diameter vascular grafts and corneal tissue implants. Elastin-derived polypeptides give the proteins flexibility, while RGD and CS5 peptide domains from fibronectin serve to adhere cells. Techniques were sought to crosslink aECM proteins in ways that resulted in tunable mechanical properties. Hexamethylene diisocyanate was used to crosslink aECM proteins into uniform, transparent, highly-extensible hydrogel films with low water contents characteristic of native elastin. Their elastic moduli, 0.1--1.1 MPa, depended on crosslinker concentration and aECM protein length, and spanned the observed range of elastin fibers. The suitability of biomaterials implants depends strongly on their susceptibility to proteolytic degradation in vivo. It was shown that small sequence changes in the elastin-like portion of aECM proteins were sufficient to decrease their rate of degradation by elastase sevenfold, illustrating a simple method to tune the protease sensitivity of designed proteins. The effects were seen in both soluble proteins and crosslinked films analyzed by measuring their decrease in elastic modulus during degradation. An aECM protein was examined for its effectiveness as a corneal onlay, i.e., a permanent contact lens. The protein was crosslinked into transparent, elastic, water-rich lenses and was implanted into rabbit corneas. The onlays were stable and well-tolerated, and full re-epithelialization occurred within 4-7 days. Histological examination revealed normal regenerating epithelial cell morphology on the anterior surface, good interfaces between the onlay and surrounding tissue, and only minimal

  4. Thioredoxin Cross-Linking by Nitrogen Mustard in Lung Epithelial Cells: Formation of Multimeric Thioredoxin/Thioredoxin Reductase Complexes and Inhibition of Disulfide Reduction.

    PubMed

    Jan, Yi-Hua; Heck, Diane E; Casillas, Robert P; Laskin, Debra L; Laskin, Jeffrey D

    2015-11-16

    The thioredoxin (Trx) system, which consists of Trx and thioredoxin reductase (TrxR), is a major cellular disulfide reduction system important in antioxidant defense. TrxR is a target of mechlorethamine (methylbis(2-chloroethyl)amine; HN2), a bifunctional alkylating agent that covalently binds to selenocysteine/cysteine residues in the redox centers of the enzyme, leading to inactivation and toxicity. Mammalian Trx contains two catalytic cysteines; herein, we determined if HN2 also targets Trx. HN2 caused a time- and concentration-dependent inhibition of purified Trx and Trx in A549 lung epithelial cells. Three Trx cross-linked protein complexes were identified in both cytosolic and nuclear fractions of HN2-treated cells. LC-MS/MS of these complexes identified both Trx and TrxR, indicating that HN2 cross-linked TrxR and Trx. This is supported by our findings of a significant decrease of Trx/TrxR complexes in cytosolic TrxR knockdown cells after HN2 treatment. Using purified recombinant enzymes, the formation of protein cross-links and enzyme inhibition were found to be redox status-dependent; reduced Trx was more sensitive to HN2 inactivation than the oxidized enzyme, and Trx/TrxR cross-links were only observed using reduced enzyme. These data suggest that HN2 directly targets catalytic cysteine residues in Trx resulting in enzyme inactivation and protein complex formation. LC-MS/MS confirmed that HN2 directly alkylated cysteine residues on Trx, including Cys32 and Cys35 in the redox center of the enzyme. Inhibition of the Trx system by HN2 can disrupt cellular thiol-disulfide balance, contributing to vesicant-induced lung toxicity.

  5. A new injectable biphasic hydrogel based on partially hydrolyzed polyacrylamide and nano hydroxyapatite, crosslinked with chromium acetate, as scaffold for cartilage regeneration

    NASA Astrophysics Data System (ADS)

    Koushki, N.; Tavassoli, H.; Katbab, A. A.; Katbab, P.; Bonakdar, S.

    2015-05-01

    Polymer scaffolds are applied in the field of tissue engineering as three dimensional structures to organize cells and present stimuli to direct generation of a desired damaged tissue. In situ gelling scaffolds have attracted great attentions, as they are structurally similar to the extra cellular matrix (ECM). In the present work, attempts have been made to design and fabricate a new injectable and crosslinkable biphasic hydrogel based on partially hydrolyzed polyacrylamide (HPAM), chromium acetate as crosslink agent and nanocrystalline hydroxyapatite (nHAp) as reinforcing and bioactive agent for repair and regeneration of damaged cartilage. The distinct characteristic of HPAM is the presence of carboxylate anion groups on its backbone which allows to engineer the structure of the hydrogel for the desired bioactivity with appropriate cells differentiation towards both soft and hard (bone) tissues. The synthesized hydrogel exhibited bifunctional behavior which was derived by its biphasic structure in which one phase was loaded with nano hydroxyapatite to provide integration capability by subchondral bones and fix the hydrogel at cartilage defect without a need for suturing. The other phase differentiates the rabbit adipogenic mesenchymal stem cells (MSCs) towards soft tissue. Rheomechanical spectrometry (RMS) was employed to study the kinetic of the gelation including induction time and rate, as well as to measure the ultimate elastic modulus of the optimum crosslinked hydrogel. Surface tension measurement was also performed to tailor the surface characteristics of the gels. In vitro culturing of the cells inside the crosslinked hydrogel revealed high viability and high differentiation of the encapsulated rabbit stem cells, providing that the chromium acetate level was kept below 0.2 wt%. Based on the obtained results, the designed and fabricated biphasic hydrogel exhibited high potential as carrier for the stem cells for cartilage tissue engineering application

  6. Desmosine-Inspired Cross-Linkers for Hyaluronan Hydrogels

    NASA Astrophysics Data System (ADS)

    Hagel, Valentin; Mateescu, Markus; Southan, Alexander; Wegner, Seraphine V.; Nuss, Isabell; Haraszti, Tamás; Kleinhans, Claudia; Schuh, Christian; Spatz, Joachim P.; Kluger, Petra J.; Bach, Monika; Tussetschläger, Stefan; Tovar, Günter E. M.; Laschat, Sabine; Boehm, Heike

    2013-06-01

    We designed bioinspired cross-linkers based on desmosine, the cross-linker in natural elastin, to prepare hydrogels with thiolated hyaluronic acid. These short, rigid cross-linkers are based on pyridinium salts (as in desmosine) and can connect two polymer backbones. Generally, the obtained semi-synthetic hydrogels are form-stable, can withstand repeated stress, have a large linear-elastic range, and show strain stiffening behavior typical for biopolymer networks. In addition, it is possible to introduce a positive charge to the core of the cross-linker without affecting the gelation efficiency, or consequently the network connectivity. However, the mechanical properties strongly depend on the charge of the cross-linker. The properties of the presented hydrogels can thus be tuned in a range important for engineering of soft tissues by controlling the cross-linking density and the charge of the cross-linker.

  7. Application of poly(lactic acid) modified by radiation crosslinking

    NASA Astrophysics Data System (ADS)

    Nagasawa, Naotsugu; Kaneda, Ayako; Kanazawa, Shinichi; Yagi, Toshiaki; Mitomo, Hiroshi; Yoshii, Fumio; Tamada, Masao

    2005-07-01

    Poly(L-lactic acid), PLLA was irradiated using electron beam (EB) in the presence of polyfunctional monomers (PFM) as crosslinking agent. Among the PFMs, triallyl isocyanurate (TAIC) at 3% concentration was found to be the most effective for crosslinking of PLLA by irradiation technique. The crosslinked PLLA obtained has heat resistance higher than 200 °C. From this fact, the crosslinked PLLA is applied on heat-shrinkable tube, cup and plate. The shrinkable tube has several advantages such as high heat resistance and transparency. In addition, the unirradiated cup deformed and changed to milky-like transparency but the crosslinked one retained its original shape and transparency after boiling water was poured into the cups. The heat resistance is attributed to the protection of crystallization of crosslinking structure. It is therefore proven that crosslinking technology is beneficial to expanding the application of PLLA.

  8. Synthesis and comparative biological evaluation of bifunctional ligands for radiotherapy applications of (90)Y and (177)Lu.

    PubMed

    Chong, Hyun-Soon; Sun, Xiang; Chen, Yunwei; Sin, Inseok; Kang, Chi Soo; Lewis, Michael R; Liu, Dijie; Ruthengael, Varyanna C; Zhong, Yongliang; Wu, Ningjie; Song, Hyun A

    2015-03-01

    Zevalin® is an antibody-drug conjugate radiolabeled with a cytotoxic radioisotope ((90)Y) that was approved for radioimmunotherapy (RIT) of B-cell non-Hodgkin's lymphoma. A bifunctional ligand that displays favorable complexation kinetics and in vivo stability is required for effective RIT. New bifunctional ligands 3p-C-DE4TA and 3p-C-NE3TA for potential use in RIT were efficiently prepared by the synthetic route based on regiospecific ring opening of aziridinium ions with prealkylated triaza- or tetraaza-backboned macrocycles. The new bifunctional ligands 3p-C-DE4TA and 3p-C-NE3TA along with the known bimodal ligands 3p-C-NETA and 3p-C-DEPA were comparatively evaluated for potential use in targeted radiotherapy using β-emitting radionuclides (90)Y and (177)Lu. The bifunctional ligands were evaluated for radiolabeling kinetics with (90)Y and (177)Lu, and the corresponding (90)Y or (177)Lu-radiolabeled complexes were studied for in vitro stability in human serum and in vivo biodistribution in mice. The results of the comparative complexation kinetic and stability studies indicate that size of macrocyclic cavity, ligand denticity, and bimodality of donor groups have a substantial impact on complexation of the bifunctional ligands with the radiolanthanides. The new promising bifunctional chelates in the DE4TA and NE3TA series were rapid in binding (90)Y and (177)Lu, and the corresponding (90)Y- and (177)Lu-radiolabeled complexes remained inert in human serum or in mice. The in vitro and in vivo data show that 3p-C-DE4TA and 3p-C-NE3TA are promising bifunctional ligands for targeted radiotherapy applications of (90)Y and (177)Lu. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Synthesis and Comparative Biological Evalution of Bifunctional Ligands for Radiotherapy Applications of 90Y and 177Lu

    PubMed Central

    Chong, Hyun-Soon; Sun, Xiang; Chen, Yunwei; Sin, Inseok; Kang, Chi Soo; Lewis, Michael R.; Liu, Dijie; Ruthengael, Varyanna C.; Zhong, Yongliang; Wu, Ningjie; Song, Hyun A

    2015-01-01

    Zevalin® is an antibody-drug conjugate radiolabeled with a cytotoxic radioisotope (90Y) that was approved for radioimmunotherapy (RIT) of B-cell non-Hodgkin’s lymphoma. A bifunctional ligand that displays favorable complexation kinetics and in vivo stability is required for effective RIT. New bifunctional ligands 3p-C-DE4TA and 3p-C-NE3TA for potential use in RIT were efficiently prepared by the synthetic route based on regiospecific ring opening of aziridinium ions with prealkylated triaza- or tetraaza-backboned macrocycles. The new bifunctional ligands 3p-C-DE4TA and 3p-C-NE3TA along with the known bimodal ligands 3p-C-NETA and 3p-C-DEPA were comparatively evaluated for potential use in targeted radiotherapy using β-emitting radionuclides 90Y and 177Lu. The bifunctional ligands were evaluated for radiolabeling kinetics with 90Y and 177Lu, and the corresponding 90Y or 177Lu-radiolabeled complexes were studied for in vitro stability in human serum and in vivo biodistribution in mice. The results of the comparative complexation kinetic and stability studies indicate that size of macrocyclic cavity, ligand denticity, and bimodality of donor groups have a substantial impact on complexation of the bifunctional ligands with the radiolanthanides. The new promising bifunctional chelates in the DE4TA and NE3TA series were rapid in binding 90Y and 177Lu, and the corresponding 90Y- and 177Lu-radiolabeled complexes remained inert in human serum or in mice. The in vitro and in vivo data show that 3p-C-DE4TA and 3p-C-NE3TA are promising bifunctional ligands for targeted radiotherapy applications of 90Y and 177Lu. PMID:25648683

  10. Mesoscopic Simulations of Crosslinked Polymer Networks

    NASA Astrophysics Data System (ADS)

    Megariotis, Grigorios; Vogiatzis, Georgios G.; Schneider, Ludwig; Müller, Marcus; Theodorou, Doros N.

    2016-08-01

    A new methodology and the corresponding C++ code for mesoscopic simulations of elastomers are presented. The test system, crosslinked ds-1’4-polyisoprene’ is simulated with a Brownian Dynamics/kinetic Monte Carlo algorithm as a dense liquid of soft, coarse-grained beads, each representing 5-10 Kuhn segments. From the thermodynamic point of view, the system is described by a Helmholtz free-energy containing contributions from entropic springs between successive beads along a chain, slip-springs representing entanglements between beads on different chains, and non-bonded interactions. The methodology is employed for the calculation of the stress relaxation function from simulations of several microseconds at equilibrium, as well as for the prediction of stress-strain curves of crosslinked polymer networks under deformation.

  11. Synthesis and Characterization of Ionically Crosslinked Elastomers

    DTIC Science & Technology

    2016-01-01

    was that organic ion pairs represent an underutilized  non‐ covalent  dynamic  bond  that is useful for the development of responsive polymers. To test...of the crosslinked  network prepared with this agent is shown in Figure 1b. Here network junctions consist of one strand  covalently   bonded  to the...replacement of ion‐pair in a tri‐functional crosslink with a  covalent   bond  and the formation  of a graft connected to the main chain by an ion‐pair. Therefore

  12. Physical crosslinkings of edible collagen casing.

    PubMed

    Wang, Wenhang; Zhang, Yi; Ye, Ran; Ni, Yonghao

    2015-11-01

    Although edible collagen casing has been commercially used in meat industry, the safety and effectiveness of collagen cross-linking with minimally invasive treatments are still big concerns for manufacturers. In this study, ultraviolet irradiation (UV) and dehydrothermal treatment (DHT) were used to improve the properties of casing. UV, DHT, and their combination (UV+DHT) significantly increased tensile strength and decreased elongation at break of casing, in which DHT showed the best performance. Swelling of casing was also partially inhibited by the treatments. Furthermore, UV and DHT slightly improved thermal stability of the casings. In addition, X-ray diffraction patterns showed the treatments caused different extents of denaturation of collagen. No obvious effects in thickness and light transparency except for surface roughness were observed in the treated casings. The physical treatments could potentially be used as safe and effective alternatives to chemical cross-linking for the production of collage casing.

  13. Physical properties of crosslinked hyaluronic acid hydrogels.

    PubMed

    Collins, Maurice N; Birkinshaw, Colin

    2008-11-01

    In order to improve the mechanical properties and control the degradation rate of hyaluronic acid (HA) an investigation of the structural and mechanical properties of the hydrogels crosslinked using divinyl sulfone (DVS), glutaraldehyde (GTA) and freeze-thawing, or autocrosslinking has been carried out. The thermal and mechanical properties of the gels were characterised by differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA) and compression tests. The solution degradation products of each system have been analysed using size exclusion chromatography (SEC) and the Zimm-Stockmayer theory applied. Autocrosslinked gels swell the most quickly, whereas the GTA crosslinked gels swell most slowly. The stability of the autocrosslinked gels improves with a reduction in solution pH, but is still poor. GTA and DVS crosslinked gels are robust and elastic when water swollen, with glass transition values around 20 degrees C. SEC results show that the water soluble degradation products of the gels show a reduction in the radius of gyration at any particular molecular weight and this is interpreted as indicating increased hydrophobicity arising from chemical modification.

  14. Epoxy Crosslinked Silica Aerogels (X-Aerogels)

    NASA Technical Reports Server (NTRS)

    fabrizio, Eve; Ilhan, Faysal; Meador, Mary Ann; Johnston, Chris; Leventis, Nicholas

    2004-01-01

    NASA is interested in the development of strong lightweight materials for the dual role of thermal insulator and structural component for space vehicles; freeing more weight for useful payloads. Aerogels are very-low density materials (0.010 to 0.5 g/cc) that, due to high porosity (meso- and microporosity), can be, depending on the chemical nature of the network, ideal thermal insulators (thermal conductivity approx. 15 mW/mK). However, aerogels are extremely fragile. For practical application of aerogels, one must increase strength without compromising the physical properties attributed to low density. This has been achieved by templated growth of an epoxy polymer layer that crosslinks the "pearl necklace" network of nanoparticles: the framework of a typical silica aerogel. The requirement for conformal accumulation of the epoxy crosslinker is reaction both with the surface of silica and with itself. After cross-linking, the strength of a typical aerogel monolith increases by a factor of 200, in the expense of only a 2-fold increase in density. Strength is increased further by coupling residual unreacted epoxides with diamine.

  15. Epoxy Crosslinked Silica Aerogels (X-Aerogels)

    NASA Technical Reports Server (NTRS)

    fabrizio, Eve; Ilhan, Faysal; Meador, Mary Ann; Johnston, Chris; Leventis, Nicholas

    2004-01-01

    NASA is interested in the development of strong lightweight materials for the dual role of thermal insulator and structural component for space vehicles; freeing more weight for useful payloads. Aerogels are very-low density materials (0.010 to 0.5 g/cc) that, due to high porosity (meso- and microporosity), can be, depending on the chemical nature of the network, ideal thermal insulators (thermal conductivity approx. 15 mW/mK). However, aerogels are extremely fragile. For practical application of aerogels, one must increase strength without compromising the physical properties attributed to low density. This has been achieved by templated growth of an epoxy polymer layer that crosslinks the "pearl necklace" network of nanoparticles: the framework of a typical silica aerogel. The requirement for conformal accumulation of the epoxy crosslinker is reaction both with the surface of silica and with itself. After cross-linking, the strength of a typical aerogel monolith increases by a factor of 200, in the expense of only a 2-fold increase in density. Strength is increased further by coupling residual unreacted epoxides with diamine.

  16. Crosslinked anion exchange membranes with primary diamine-based crosslinkers for vanadium redox flow battery application

    NASA Astrophysics Data System (ADS)

    Cha, Min Suc; Jeong, Hwan Yeop; Shin, Hee Young; Hong, Soo Hyun; Kim, Tae-Ho; Oh, Seong-Geun; Lee, Jang Yong; Hong, Young Taik

    2017-09-01

    A series of polysulfone-based crosslinked anion exchange membranes (AEMs) with primary diamine-based crosslinkers has been prepared via simple a crosslinking process as low-cost and durable membranes for vanadium redox flow batteries (VRFBs). Chloromethylated polysulfone is used as a precursor polymer for crosslinked AEMs (CAPSU-x) with different degrees of crosslinking. Among the developed AEMs, CAPSU-2.5 shows outstanding dimensional stability and anion (Cl-, SO42-, and OH-) conductivity. Moreover, CAPSU-2.5 exhibits much lower vanadium ion permeability (2.72 × 10-8 cm2 min-1) than Nafion 115 (2.88 × 10-6 cm2 min-1), which results in an excellent coulombic efficiency of 100%. The chemical and operational stabilities of the membranes have been investigated via ex situ soaking tests in 0.1 M VO2+ solution and in situ operation tests for 100 cycles, respectively. The excellent chemical, physical, and electrochemical properties of the CAPSU-2.5 membrane make it suitable for use in VRFBs.

  17. Diepoxybutane induces the formation of DNA-DNA rather than DNA-protein cross-links, and single-strand breaks and alkali-labile sites in human hepatocyte L02 cells.

    PubMed

    Wen, Ying; Zhang, Pan-Pan; An, Jing; Yu, Ying-Xin; Wu, Ming-Hong; Sheng, Guo-Ying; Fu, Jia-Mo; Zhang, Xin-Yu

    2011-11-01

    1,3-Butadiene (BD) is an air pollutant and a known carcinogen. 1,2,3,4-Diepoxybutane (DEB), one of the major in vivo metabolites of BD, is considered the ultimate culprit of BD mutagenicity/carcinogenicity. DEB is a bifunctional alkylating agent, being capable of inducing the formation of monoalkylated DNA adducts and DNA cross-links, including DNA-DNA and DNA-protein cross-links (DPC). In the present study, we investigated DEB-caused DNA cross-links and breaks in human hepatocyte L02 cells using comet assay. With alkaline comet assay, it was observed that DNA migration increased with the increase of DEB concentration at lower concentrations (10-200μM); however, at higher concentrations (200-1000μM), DNA migration decreased with the increase of DEB concentration. This result indicated the presence of cross-links at >200μM, which was confirmed by the co-treatment experiments using the second genotoxic agents, tert-butyl hydroperoxide and methyl methanesulfonate. At 200μM, which appeared as a threshold, the DNA migration-retarding effect of cross-links was just observable by the co-treatment experiments. At <200μM, the effect of cross-links was too weak to be detected. The DEB-induced cross-links were determined to be DNA-DNA ones rather than DPC through incubating the liberated DNA with proteinase K prior to unwinding and electrophoresis. However, at the highest DEB concentration tested (1000μM), a small proportion of DPC could be formed. In addition, the experiments using neutral and weakly alkaline comet assays showed that DEB did not cause double-strand breaks, but did induce single-strand breaks (SSB) and alkali-labile sites (ALS). Since SSB and ALS are repaired more rapidly than cross-links, the results suggested that DNA-DNA cross-links, rather than DPC, were probably responsible for mutagenicity/carcinogenicity of DEB.

  18. Glycosylation and Cross-linking in Bone Type I Collagen*

    PubMed Central

    Terajima, Masahiko; Perdivara, Irina; Sricholpech, Marnisa; Deguchi, Yoshizumi; Pleshko, Nancy; Tomer, Kenneth B.; Yamauchi, Mitsuo

    2014-01-01

    Fibrillar type I collagen is the major organic component in bone, providing a stable template for mineralization. During collagen biosynthesis, specific hydroxylysine residues become glycosylated in the form of galactosyl- and glucosylgalactosyl-hydroxylysine. Furthermore, key glycosylated hydroxylysine residues, α1/2-87, are involved in covalent intermolecular cross-linking. Although cross-linking is crucial for the stability and mineralization of collagen, the biological function of glycosylation in cross-linking is not well understood. In this study, we quantitatively characterized glycosylation of non-cross-linked and cross-linked peptides by biochemical and nanoscale liquid chromatography-high resolution tandem mass spectrometric analyses. The results showed that glycosylation of non-cross-linked hydroxylysine is different from that involved in cross-linking. Among the cross-linked species involving α1/2-87, divalent cross-links were glycosylated with both mono- and disaccharides, whereas the mature, trivalent cross-links were primarily monoglycosylated. Markedly diminished diglycosylation in trivalent cross-links at this locus was also confirmed in type II collagen. The data, together with our recent report (Sricholpech, M., Perdivara, I., Yokoyama, M., Nagaoka, H., Terajima, M., Tomer, K. B., and Yamauchi, M. (2012) Lysyl hydroxylase 3-mediated glucosylation in type I collagen: molecular loci and biological significance. J. Biol. Chem. 287, 22998–23009), indicate that the extent and pattern of glycosylation may regulate cross-link maturation in fibrillar collagen. PMID:24958722

  19. Cross-Link Guided Molecular Modeling with ROSETTA

    PubMed Central

    Leitner, Alexander; Rosenberger, George; Aebersold, Ruedi; Malmström, Lars

    2013-01-01

    Chemical cross-links identified by mass spectrometry generate distance restraints that reveal low-resolution structural information on proteins and protein complexes. The technology to reliably generate such data has become mature and robust enough to shift the focus to the question of how these distance restraints can be best integrated into molecular modeling calculations. Here, we introduce three workflows for incorporating distance restraints generated by chemical cross-linking and mass spectrometry into ROSETTA protocols for comparative and de novo modeling and protein-protein docking. We demonstrate that the cross-link validation and visualization software Xwalk facilitates successful cross-link data integration. Besides the protocols we introduce XLdb, a database of chemical cross-links from 14 different publications with 506 intra-protein and 62 inter-protein cross-links, where each cross-link can be mapped on an experimental structure from the Protein Data Bank. Finally, we demonstrate on a protein-protein docking reference data set the impact of virtual cross-links on protein docking calculations and show that an inter-protein cross-link can reduce on average the RMSD of a docking prediction by 5.0 Å. The methods and results presented here provide guidelines for the effective integration of chemical cross-link data in molecular modeling calculations and should advance the structural analysis of particularly large and transient protein complexes via hybrid structural biology methods. PMID:24069194

  20. Unusual non-bifunctional mechanism for Co-PNP complex catalyzed transfer hydrogenation governed by the electronic configuration of metal center.

    PubMed

    Hou, Cheng; Jiang, Jingxing; Li, Yinwu; Zhang, Zhihan; Zhao, Cunyuan; Ke, Zhuofeng

    2015-10-07

    The mimic of hydrogenases has unleashed a myriad of bifunctional catalysts, which are widely used in the catalytic hydrogenation of polar multiple bonds. With respect to ancillary ligands, the bifunctional mechanism is generally considered to proceed via the metal-ligand cooperation transition state. Inspired by the interesting study conducted by Hanson et al. (Chem Commun., 2013, 49, 10151), we present a computational study of a distinctive example, where a Co(II)-PNP catalyst with an ancillary ligand exhibits efficient transfer hydrogenation through a non-bifunctional mechanism. Both the bifunctional and non-bifunctional mechanisms are discussed. The calculated results, which are based on a full model of the catalyst, suggest that the inner-sphere non-bifunctional mechanism is more favorable (by ∼11 kcal mol(-1)) than the outer-sphere bifunctional mechanism, which is in agreement with the experimental observations. The origin of this mechanistic preference of the Co(II)-PNP catalyst can be attributed to its preference for the square planar geometry. A traditional bifunctional mechanism is less plausible for Co(II)-PNP due to the high distortion energy caused by the change in electronic configuration with the varied ligand field. Considering previous studies that focus on the development of ligands more often, this computational study indicates that the catalytic hydrogenation mechanism is controlled not only by the structure of the ligand but also by the electronic configuration of the metal center.

  1. Vascular gene transfer from metallic stent surfaces using adenoviral vectors tethered through hydrolysable cross-linkers.

    PubMed

    Fishbein, Ilia; Forbes, Scott P; Adamo, Richard F; Chorny, Michael; Levy, Robert J; Alferiev, Ivan S

    2014-08-12

    In-stent restenosis presents a major complication of stent-based revascularization procedures widely used to re-establish blood flow through critically narrowed segments of coronary and peripheral arteries. Endovascular stents capable of tunable release of genes with anti-restenotic activity may present an alternative strategy to presently used drug-eluting stents. In order to attain clinical translation, gene-eluting stents must exhibit predictable kinetics of stent-immobilized gene vector release and site-specific transduction of vasculature, while avoiding an excessive inflammatory response typically associated with the polymer coatings used for physical entrapment of the vector. This paper describes a detailed methodology for coatless tethering of adenoviral gene vectors to stents based on a reversible binding of the adenoviral particles to polyallylamine bisphosphonate (PABT)-modified stainless steel surface via hydrolysable cross-linkers (HC). A family of bifunctional (amine- and thiol-reactive) HC with an average t1/2 of the in-chain ester hydrolysis ranging between 5 and 50 days were used to link the vector with the stent. The vector immobilization procedure is typically carried out within 9 hr and consists of several steps: 1) incubation of the metal samples in an aqueous solution of PABT (4 hr); 2) deprotection of thiol groups installed in PABT with tris(2-carboxyethyl) phosphine (20 min); 3) expansion of thiol reactive capacity of the metal surface by reacting the samples with polyethyleneimine derivatized with pyridyldithio (PDT) groups (2 hr); 4) conversion of PDT groups to thiols with dithiothreitol (10 min); 5) modification of adenoviruses with HC (1 hr); 6) purification of modified adenoviral particles by size-exclusion column chromatography (15 min) and 7) immobilization of thiol-reactive adenoviral particles on the thiolated steel surface (1 hr). This technique has wide potential applicability beyond stents, by facilitating surface engineering of

  2. Oxidatively Generated Guanine(C8)-Thymine(N3) Intrastrand Cross-links in Double-stranded DNA Are Repaired by Base Excision Repair Pathways.

    PubMed

    Talhaoui, Ibtissam; Shafirovich, Vladimir; Liu, Zhi; Saint-Pierre, Christine; Akishev, Zhiger; Matkarimov, Bakhyt T; Gasparutto, Didier; Geacintov, Nicholas E; Saparbaev, Murat

    2015-06-05

    Oxidatively generated guanine radical cations in DNA can undergo various nucleophilic reactions including the formation of C8-guanine cross-links with adjacent or nearby N3-thymines in DNA in the presence of O2. The G*[C8-N3]T* lesions have been identified in the DNA of human cells exposed to oxidative stress, and are most likely genotoxic if not removed by cellular defense mechanisms. It has been shown that the G*[C8-N3]T* lesions are substrates of nucleotide excision repair in human cell extracts. Cleavage at the sites of the lesions was also observed but not further investigated (Ding et al. (2012) Nucleic Acids Res. 40, 2506-2517). Using a panel of eukaryotic and prokaryotic bifunctional DNA glycosylases/lyases (NEIL1, Nei, Fpg, Nth, and NTH1) and apurinic/apyrimidinic (AP) endonucleases (Apn1, APE1, and Nfo), the analysis of cleavage fragments by PAGE and MALDI-TOF/MS show that the G*[C8-N3]T* lesions in 17-mer duplexes are incised on either side of G*, that none of the recovered cleavage fragments contain G*, and that T* is converted to a normal T in the 3'-fragment cleavage products. The abilities of the DNA glycosylases to incise the DNA strand adjacent to G*, while this base is initially cross-linked with T*, is a surprising observation and an indication of the versatility of these base excision repair proteins.

  3. Crosslinking of microsomal proteins identifies P-9000, a protein that is co-transported with phaseolin and phytohemagglutinin in bean cotyledons.

    PubMed

    Tanchak, M A; Chrispeels, M J

    1989-11-01

    Developing cotyledons of the common bean, Phaseolus vulgaris L., transport within their secretory system (endoplasmic reticulum and Golgi apparatus) the abundant vacuolar proteins, phaseolin and phytohemagglutinin. To identify proteins that may play a role in vacuolar targeting, we treated cotyledon microsomal fractions with a bifunctional crosslinking reagent, dithiobis(succinimidyl propionate), isolated protein complexes with antibodies to phaseolin and phytohemagglutinin, and analysed the polypeptides by sodium dodecylsulfate polyacrylamide gel electrophoresis. This allowed us to identify a protein of Mr=9000 (P-9000) that was crosslinked to both phaseolin and phytohemagglutinin. P-900 is abundantly present in the endoplasmic reticulum. The aminoterminus of P-9000 shows extensive sequence identity with the amino-terminus of PA1 (Mr=11 000), a cysteine-rich albumin whose processing products accumulate in the vacuoles of pea (Pisum sativum L.) cotyledons. Like PA1, P-9000 is synthesized as a pre-proprotein that is posttranslationally processed into smaller polypeptides. The possible functions of P-9000 are discussed.

  4. Photocontrolled Cargo Release from Dual Cross-Linked Polymer Particles.

    PubMed

    Tan, Shereen; Cui, Jiwei; Fu, Qiang; Nam, Eunhyung; Ladewig, Katharina; Ren, Jing M; Wong, Edgar H H; Caruso, Frank; Blencowe, Anton; Qiao, Greg G

    2016-03-09

    Burst release of a payload from polymeric particles upon photoirradiation was engineered by altering the cross-linking density. This was achieved via a dual cross-linking concept whereby noncovalent cross-linking was provided by cyclodextrin host-guest interactions, and irreversible covalent cross-linking was mediated by continuous assembly of polymers (CAP). The dual cross-linked particles (DCPs) were efficiently infiltrated (∼80-93%) by the biomacromolecule dextran (molecular weight up to 500 kDa) to provide high loadings (70-75%). Upon short exposure (5 s) to UV light, the noncovalent cross-links were disrupted resulting in increased permeability and burst release of the cargo (50 mol % within 1 s) as visualized by time-lapse fluorescence microscopy. As sunlight contains UV light at low intensities, the particles can potentially be incorporated into systems used in agriculture, environmental control, and food packaging, whereby sunlight could control the release of nutrients and antimicrobial agents.

  5. Organization of Subunits in the Membrane Domain of the Bovine F-ATPase Revealed by Covalent Cross-linking*

    PubMed Central

    Lee, Jennifer; Ding, ShuJing; Walpole, Thomas B.; Holding, Andrew N.; Montgomery, Martin G.; Fearnley, Ian M.; Walker, John E.

    2015-01-01

    The F-ATPase in bovine mitochondria is a membrane-bound complex of about 30 subunits of 18 different kinds. Currently, ∼85% of its structure is known. The enzyme has a membrane extrinsic catalytic domain, and a membrane intrinsic domain where the turning of the enzyme's rotor is generated from the transmembrane proton-motive force. The domains are linked by central and peripheral stalks. The central stalk and a hydrophobic ring of c-subunits in the membrane domain constitute the enzyme's rotor. The external surface of the catalytic domain and membrane subunit a are linked by the peripheral stalk, holding them static relative to the rotor. The membrane domain contains six additional subunits named ATP8, e, f, g, DAPIT (diabetes-associated protein in insulin-sensitive tissues), and 6.8PL (6.8-kDa proteolipid), each with a single predicted transmembrane α-helix, but their orientation and topography are unknown. Mutations in ATP8 uncouple the enzyme and interfere with its assembly, but its roles and the roles of the other five subunits are largely unknown. We have reacted accessible amino groups in the enzyme with bifunctional cross-linking agents and identified the linked residues. Cross-links involving the supernumerary subunits, where the structures are not known, show that the C terminus of ATP8 extends ∼70 Å from the membrane into the peripheral stalk and that the N termini of the other supernumerary subunits are on the same side of the membrane, probably in the mitochondrial matrix. These experiments contribute significantly toward building up a complete structural picture of the F-ATPase. PMID:25851905

  6. Nanostructured Perovskite LaCo1-xMnxO3 as Bifunctional Catalysts for Rechargeable Metal-Air Batteries

    NASA Astrophysics Data System (ADS)

    Ge, Xiaoming; Li, Bing; Wuu, Delvin; Sumboja, Afriyanti; An, Tao; Hor, T. S. Andy; Zong, Yun; Liu, Zhaolin

    2015-09-01

    Bifunctional catalyst that is active for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is one of the most important components of rechargeable metal-air batteries. Nanostructured perovskite bifunctional catalysts comprising La, Co and Mn(LaCo1-xMnxO3, LCMO) are synthesized by hydrothermal methods. The morphology, structure and electrochemical activity of the perovskite bifunctional catalysts are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and rotating disk electrode (RDE) techniques. Nanorod, nanodisc and nanoparticle are typical morphologies of LCMO. The electrocatalytic activity of LCMO is significantly improved by the addition of conductive materials such as carbon nanotube. To demonstrate the practical utilization, LCMO in the composition of LaCo0.8Mn0.2O3(LCMO82) is used as air cathode catalysts for rechargeable zinc-air batteries. The battery prototype can sustain 470 h or 40 discharge-charge cycles equivalent.

  7. Crosslinking of DNA and proteins induced by protein hydroperoxides.

    PubMed Central

    Gebicki, S; Gebicki, J M

    1999-01-01

    Exposure of DNA to several proteins peroxidized by radiation-generated hydroxyl free radicals resulted in formation of crosslinks between the macromolecules, detected by retardation and broadening of DNA bands in agarose gels. This technique proved suitable for the study of crosslinking of DNA with peroxidized BSA, insulin, apotransferrin and alpha casein, but not with several other proteins, including histones. The crosslinking depended on the presence of intact hydroperoxide groups on the protein, on their number, and on the duration of the interaction with DNA. All DNA samples tested, pBR322, pGEM, lambda/HindIII and pUC18, formed crosslinks with the peroxidized BSA. Sodium chloride and formate prevented the crosslinking if present during incubation of the peroxidized protein and DNA, but had no effect once the crosslinks had formed. The gel shift of the crosslinked DNA was reversed by proteolysis, indicating that the DNA mobility change was due to attachment of protein and that the crosslinking did not induce DNA strand breaks. The metal chelators Desferal and neocuproine reduced the extent of the crosslinking, but did not prevent it. Scavengers of free radicals did not inhibit the crosslink formation. The DNA-protein complex was not disrupted by vigorous agitation, by filtration or by non-ionic detergents. These observations show that the crosslinking of DNA with proteins mediated by protein hydroperoxides is spontaneous and probably covalent, and that it may be assisted by transition metals. It is suggested that formation of such crosslinks in living organisms could account for some of the well-documented forms of biological damage induced by reactive oxygen species-induced oxidative stress. PMID:10051432

  8. Diepoxybutane cross-links DNA at 5'-GNC sequences.

    PubMed

    Millard, J T; White, M M

    1993-03-02

    Epoxides are cancer-causing agents chemically analogous to the nitrogen mustards, a family of powerful antitumor drugs. We found that the DNA interstrand cross-linking sequence preference of diepoxybutane is the same as that of the mustard mechlorethamine: 5'-GNC. Therefore, the genomic site of cross-linking alone cannot explain why some interstrand cross-linkers act as antitumor agents whereas others are deadly toxins.

  9. Development of Improved Crosslinking Monomers for Molecularly Imprinted Materials

    DTIC Science & Technology

    2002-04-05

    Molecular imprinting involves the self-assembled complexation of a substrate to functional monomers to form a pre- polymer complex which is "locked-in" to...on the design of crosslinking monomers for molecular imprinting , we have developed new classes of crosslinked polymers to optimize the performance of...of the design, synthesis, polymerization and performance of these new crosslinking monomers for molecularly imprinted polymers will be reported

  10. Phase stability of weakly crosslinked interpenerating polymer networks

    NASA Technical Reports Server (NTRS)

    Binder, K.; Frisch, H. L.

    1984-01-01

    A phenomenological theory is formulated for chemically quenched binary interpenetrating polymer networks (IPNs), considering both simultaneously crosslinked networks and sequentially crosslinked networks, as well as pseudointerpenetrating networks (where only one component is crosslinked and the other is a linear polymer). The construction of free energy functionals for homogeneous weakly crosslinked IPNs and pseudo-IPNs and their spinodal curves and critical points of unmixing is described. These free energy functionals are augmented with gradient energy terms in order to consider effects due to spatially varying small inhomogeneities in the network chain concentration. The dynamic response and the initial spinodal decomposition of IPNs are discussed.

  11. Hyper-crosslinked resins filled with multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Castaldo, R.; Ambrogi, V.; Avolio, R.; Cocca, C.; Errico, M. E.; Gentile, G.; Avella, M.; Carfagna, C.

    2016-05-01

    Hyper-crosslinked styrenic resins are tipically prepared by suspension polymerization of a gel-type precursor and successive crosslinking by Friedel-Crafts reaction. This kind of polymers displays high specific surface area and excellent sorption properties. Hyper-crosslinked resins and nanocomposites containing multiwalled carbon nanotubes (MWCNT) were prepared in this study. Structure and properties of hyper-crosslinked resins containing MWCNT were investigated. Moreover, a new synthetic process of the nanocomposites was developed, based on the bulk polymerization of the precursor resin. The effect of the synthetic procedure and the addition of nanofillers on the material specific surface area, porosity and adsorption properties were explored.

  12. Crosslinking of aromatic polyamides via pendant propargyl groups

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.; Barrick, J. D.; Campbell, F. J.

    1980-01-01

    Methods for crosslinking N-methyl substituted aromatic polyamides were investigated in an effort to improve the applicability of these polymers as matrix resins for Kavlar trademark fiber composites. High molecular weight polymers were prepared from isophthaloyl dichloride and 4,4'- bis(methylamino)diphenylmethane with varying proportions of the N,N'bispropargyl diamine incorporated as a crosslinking agent. The propargylcontaining diamines were crosslinked thermally and characterized by infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Attempts were also made to crosslink polyamide films by exposure to ultraviolet light, electron beam, and gamma radiation.

  13. Chitosan membranes for tissue engineering: comparison of different crosslinkers.

    PubMed

    Ruini, F; Tonda-Turo, C; Chiono, V; Ciardelli, G

    2015-11-03

    Chitosan (CS), a derivative of the naturally occurring biopolymer chitin, is an attractive material for biomedical applications thanks to its biocompatibility, biodegradability, antibacterial properties and ability to enhance cell adhesion and growth compared to other biopolymers. However, the physical and mechanical stability of CS based materials in aqueous solutions is limited and crosslinking agents are required to increase CS performances in a biological environment. In this work, the effect of three highly-biocompatible crosslinkers as genipin (GP), γ-glycidoxypropyltrimethoxysilane (GPTMS), dibasic sodium phosphate (DSP) and a combination of GPTMS and DSP (GPTMS_DSP) on CS physicochemical, thermal, morphological, mechanical properties, swelling and degradation behavior was investigated. Infrared spectroscopy and thermogravimetric analyses confirmed the chemical reaction between CS and the different crosslinkers. CS wettability was enhanced when CS was DSP ionically crosslinked showing contact angle values of about 65° and exhibiting a higher swelling behavior compared to covalently crosslinked films. Moreover, all the crosslinking methods analyzed improved the stability of CS in aqueous media, showed model molecule permeation in time and increased the mechanical properties when compared with non-crosslinked films. The possibility to tailor the final properties of CS scaffolds through crosslinking is a key strategy in applying CS in different biomedical and tissue engineering applications. The obtained results reveal that the optimization of the crosslinking mechanism provides CS membrane properties required in different biomedical applications.

  14. A PI 4. 6 peroxidase that specifically crosslinks extensin precursors

    SciTech Connect

    Upham, B.L; Alizadeh, H.; Ryan, K.J.; Lamport, D.T.A. )

    1991-05-01

    The primary cell wall is a microcomposite of cellulose, pectin, hemicellulose and protein. The warp-weft model of the primary cell wall hypothesize that extensin monomers are intermolecularly crosslinked orthogonal to the cellulose microfibril thus mechanically coupling the major load-bearing polymer: cellulose. Media of tomato cell cultures contains heat labile, peroxide dependent crosslinking activity, as determined by the rate of decrease in monomer concentration analyzed via Superose-6. Isoelectric focusing of tomato cell culture media indicated crosslinking was predominantly in the acidic peroxidase fraction (pI4.6). This peroxidase was partially purified by ultracentrifugation, DEAE-Trisacryl and HPLC-DEAE chromatography techniques resulting in a 90 fold purification and 45% yield. A second acidic peroxidase eluted from the HPLC-DEAE column had 25% of the crosslinking activity of the pI 4.6 peroxidase. Purified basic peroxidase had only 0.7% of the activity of the pI 4.6 peroxidase. The specific activity of the pI 4.6 peroxidase was 5,473 mg extensin crosslinked/min/mg peroxidase. The pI 4.6 peroxidase crosslinked the following extensins: tomato I and II, carrot, Ginkgo II and did not crosslink Ginkgo I, Douglas Fir, Maize, Asparagus I and II, and sugarbeet extensins as well as bovine serum albumin. Comparison of motifs common to extensins that are crosslinked by the pI 4.6 peroxidase may help identify the crosslink domain(s) of extension.

  15. Corneal collagen cross-linking: ectasia and beyond.

    PubMed

    Suri, Kunal; Hammersmith, Kristin M; Nagra, Parveen K

    2012-07-01

    Corneal collagen cross-linking has recently emerged as a novel approach for management of ectasia. This article reviews the literature published in the past 3 years about the expanding spectrum of cross-linking as a therapeutic modality and its complications. Recent studies have confirmed the beneficial effects of cross-linking in stabilization and to a lesser extent, regression of keratoconus and postrefractive surgery ectasia. Other applications include cross-linking as a combined procedure with intracorneal ring segments, and photorefractive keratectomy for ectasia, corneal edema, and infectious keratitis. Animal studies of chemical cross-linking of sclera as a potential treatment for progressive myopia have also been performed. Various modifications of the technique to increase the safety profile of cross-linking have been reported, including the use of hypoosmolar riboflavin, transepithelial cross-linking, customized epithelial debridement, and higher fluence shorter duration ultraviolet A light exposure. Reported complications include keratitis, corneal haze, endothelial cell loss and failure of treatment. Cross-linking has been shown to be an effective modality for corneal ectasia, the regression being less in patients with postrefractive ectasia than keratoconus. In a few studies, it has been found to be effective in symptomatic improvement of bullous keratopathy, and infectious keratitis but further studies are required. Cross-linking with epithelial debridement is found to be most effective but various modifications are being investigated for an improved, and better safety outcome.

  16. Combining conformational sampling and selection to identify the binding mode of zinc-bound amyloid peptides with bifunctional molecules

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Gao, Ke; Bao, Chunyu; Wang, Xicheng

    2012-08-01

    The pathogenesis of Alzheimer's disease (AD) has been suggested to be related with the aggregation of amyloid β (Aβ) peptides. Metal ions (e.g. Cu, Fe, and Zn) are supposed to induce the aggregation of Aβ. Recent development of bifunctional molecules that are capable of interacting with Aβ and chelating biometal ions provides promising therapeutics to AD. However, the molecular mechanism for how Aβ, metal ions, and bifunctional molecules interact with each other is still elusive. In this study, the binding mode of Zn2+-bound Aβ with bifunctional molecules was investigated by the combination of conformational sampling of full-length Aβ peptides using replica exchange molecular dynamics simulations (REMD) and conformational selection using molecular docking and classical MD simulations. We demonstrate that Zn2+-bound Aβ(1-40) and Aβ(1-42) exhibit different conformational ensemble. Both Aβ peptides can adopt various conformations to recognize typical bifunctional molecules with different binding affinities. The bifunctional molecules exhibit their dual functions by first preferentially interfering with hydrophobic residues 17-21 and/or 30-35 of Zn2+-bound Aβ. Additional interactions with residues surrounding Zn2+ could possibly disrupt interactions between Zn2+ and Aβ, which then facilitate these small molecules to chelate Zn2+. The binding free energy calculations further demonstrate that the association of Aβ with bifunctional molecules is driven by enthalpy. Our results provide a feasible approach to understand the recognition mechanism of disordered proteins with small molecules, which could be helpful to the design of novel AD drugs.

  17. Synthesis and Characterization of Ionically Crosslinked Elastomers

    DTIC Science & Technology

    2015-05-12

    represent an underutilized non‐ covalent ,  dynamic  bond  that is useful for the development of responsive polymers. To test this hypothesis  ionically...response of polymers crosslinked by organic ion pairs, where both the cation and anion are covalently bound to the polymer chain. Two main routes of...Box 12211 Research Triangle Park, NC 27709-2211 Elastomer, Ionomer, Polymer, Ionic Bonds REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT

  18. Cross-linked carbon nanotube heat spreader

    NASA Astrophysics Data System (ADS)

    Konesky, Gregory

    2014-09-01

    Isolated individual carbon nanotubes (CNTs) have shown exceptional thermal conductivity along their axis, but have poor thermal transfer between adjacent CNTs. Thick bundles of aligned CNTs have been used as heat pipes, but the thermal input and output areas are the same, providing no heat spreading effect. Energetic argon ion beams are used to join, or cross-link overlapping CNTs in a thick film to form an interpenetrating network with an isotropic thermal conductivity of 2150 W/m-K. Such thick films may be used as heat spreaders to enlarge the thermal footprint of various electronic and semiconductor devices, laser diodes and CPU chips, for example, to enhance cooling.

  19. Bifunctional heterogeneous catalysts from oil palm empty fruit bunches ash and alum for biodiesel synthesis simultaneously

    NASA Astrophysics Data System (ADS)

    Astar, Ismail; Usman, Thamrin; Wahyuni, Nelly; Rudiyansyah, Alimuddin, Andi Hairil

    2017-03-01

    Free fatty acids (FFA) contained in crude palm oil (CPO) and sludge oil has been used as the base material of biodiesel with the aid of a catalyst in the transesterification and esterification reactions. This study aims to synthesize and characterize bifunctional catalysts were synthesized from the ashes of palm empty fruit bunches (EFB) and alum based on the analysis of XRD, XRF and acidity test. Bifunctional catalyst obtained was used as a catalyst to production of biodiesel with different levels of FFA. The optimum ratio alum added was 0.2 mol at 3 hours of reaction time and 3% of catalyst by the FFA samples were used 67,40%. The catalyst with optimum alum mole variations subsequently used on samples with varying levels of FFA, namely 1.29%, 4.98%, 29.21%, 67.40% and 74.47%. Optimum conversion of methyl ester in the esterification reaction occurs in the sample with 67.40% FFA content, which reached 86.17%, while the conversion of methyl ester transesterification process optimum amounted to 45.70% in the samples with 4.98% FFA content. Methyl ester produced has a refractive index of 1.448 (29.8 ° C), density of 0.883 g / mL (25 °C) and a viscosity of 8.933 cSt (25 ° C). The results of GC-MS analysis showed that the main composition of methyl ester result of esterification of sludge oil methyl palmitate (36.84%), while the CPO transesterification shows the main composition of methyl ester is methyl oleic (38.87%). Based on the research results, the catalyst synthesized from alum and EFB ash can be used as a Bifunctional catalysts for biodiesel synthesis.

  20. A bifunctional locus (BIO3-BIO1) required for biotin biosynthesis in Arabidopsis.

    PubMed

    Muralla, Rosanna; Chen, Elve; Sweeney, Colleen; Gray, Jennifer A; Dickerman, Allan; Nikolau, Basil J; Meinke, David

    2008-01-01

    We identify here the Arabidopsis (Arabidopsis thaliana) gene encoding the third enzyme in the biotin biosynthetic pathway, dethiobiotin synthetase (BIO3; At5g57600). This gene is positioned immediately upstream of BIO1, which is known to be associated with the second reaction in the pathway. Reverse genetic analysis demonstrates that bio3 insertion mutants have a similar phenotype to the bio1 and bio2 auxotrophs identified using forward genetic screens for arrested embryos rescued on enriched nutrient medium. Unexpectedly, bio3 and bio1 mutants define a single genetic complementation group. Reverse transcription-polymerase chain reaction analysis demonstrates that separate BIO3 and BIO1 transcripts and two different types of chimeric BIO3-BIO1 transcripts are produced. Consistent with genetic data, one of the fused transcripts is monocistronic and encodes a bifunctional fusion protein. A splice variant is bicistronic, with distinct but overlapping reading frames. The dual functionality of the monocistronic transcript was confirmed by complementing the orthologous auxotrophs of Escherichia coli (bioD and bioA). BIO3-BIO1 transcripts from other plants provide further evidence for differential splicing, existence of a fusion protein, and localization of both enzymatic reactions to mitochondria. In contrast to most biosynthetic enzymes in eukaryotes, which are encoded by genes dispersed throughout the genome, biotin biosynthesis in Arabidopsis provides an intriguing example of a bifunctional locus that catalyzes two sequential reactions in the same metabolic pathway. This complex locus exhibits several unusual features that distinguish it from biotin operons in bacteria and from other genes known to encode bifunctional enzymes in plants.

  1. Volume change of double cross-linked poly(aspartic acid) hydrogels induced by cleavage of one of the crosslinks.

    PubMed

    Zrinyi, Miklos; Gyenes, Tamas; Juriga, David; Kim, Ji-Heung

    2013-02-01

    In the present paper we report for the first time the development of redox-responsive biocompatible polymer gels. Double cross-linked poly(aspartic acid) hydrogels were prepared using two different cross-linking agents simultaneously. One of the cross-linkers was diaminobutane (DAB), the other cystamine (CYS). The relative amounts of DAB and CYS molecules were varied over a wide range while the total amount of cross-linker molecules (DAB+CYS) was kept constant. DAB provides stable cross-links, whereas CYS contains disulfide bonds, which can be broken by reduction. The cleavage of disulfide cross-links results in enhanced swelling and a significant decrease in the elastic modulus of the gels. These novel types of stimuli-responsive gels are promising candidates for new swelling controlled release matrices. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Biocompatible thermoresponsive PEGMA nanoparticles crosslinked with cleavable disulfide-based crosslinker for dual drug release.

    PubMed

    Ulasan, Mehmet; Yavuz, Emine; Bagriacik, Emin Umit; Cengeloglu, Yunus; Yavuz, Mustafa Selman

    2015-01-01

    Smart materials have been attracting much attention because of their stimuli responsive nature. We have synthesized biocompatible thermoresponsive crosslinked poly(ethylene glycol) methyl ether methacrylate (PEGMA)-co-vinyl pyrrolidone nanoparticles (PEGMA NPs) using disulfide-based crosslinker by surfactant-free emulsion polymerization method. Particle characterization studies were carried out by dynamic light scattering, and scanning electron microscopy. Polymerization kinetics, effect of crosslinker and initiator concentrations on both average hydrodynamic diameter and polydispersity index were investigated. Hydrodynamic diameters of thermoresponsive PEGMA NPs were decreased from 210 nm to 90 nm upon heating over the lowest critical solution temperature (LCST). Disulfide crosslinked PEGMA NPs were demonstrated as a dual delivery system. Rhodamine B, a model of small-sized drug molecule, and poly(ethylene glycol) (PEG)-alizarin yellow, a model of large drug molecule, were loaded into PEGMA NPs where LCST of these NPs was tuned to 37°C, the body temperature. The rhodamine B was released from PEGMA NPs upon heating to 39°C. Then, PEG-alizarin content was released by subsequent degradation of nanoparticles using dithiothreitol (DTT), which reduces disulfide bonds to thiols. Furthermore, cytotoxicity studies of PEGMA NPs were carried out in 3T3 cells, which resulted in no toxic effect on the cells.

  3. Cyclic di-GMP mediates a histidine kinase/phosphatase switch by noncovalent domain cross-linking

    PubMed Central

    Dubey, Badri N.; Lori, Christian; Ozaki, Shogo; Fucile, Geoffrey; Plaza-Menacho, Ivan; Jenal, Urs; Schirmer, Tilman

    2016-01-01

    Histidine kinases are key components of regulatory networks in bacteria. Although many of these enzymes are bifunctional, mediating both phosphorylation and dephosphorylation of downstream targets, the molecular details of this central regulatory switch are unclear. We showed recently that the universal second messenger cyclic di–guanosine monophosphate (c-di-GMP) drives Caulobacter crescentus cell cycle progression by forcing the cell cycle kinase CckA from its default kinase into phosphatase mode. We use a combination of structure determination, modeling, and functional analysis to demonstrate that c-di-GMP reciprocally regulates the two antagonistic CckA activities through noncovalent cross-linking of the catalytic domain with the dimerization histidine phosphotransfer (DHp) domain. We demonstrate that both c-di-GMP and ADP (adenosine diphosphate) promote phosphatase activity and propose that c-di-GMP stabilizes the ADP-bound quaternary structure, which allows the receiver domain to access the dimeric DHp stem for dephosphorylation. In silico analyses predict that c-di-GMP control is widespread among bacterial histidine kinases, arguing that it can replace or modulate canonical transmembrane signaling. PMID:27652341

  4. Self-crosslinking for dimensionally stable and solvent-resistant quaternary phosphonium based hydroxide exchange membranes

    SciTech Connect

    Gu, S; Cai, R; Yan, YS

    2011-01-01

    A simple self-crosslinking strategy, without the needs of a separate crosslinker or a catalyst, is reported here. The crosslinking drastically lowers the water swelling ratio (e.g., 5-10 folds reduction) and provides excellent solvent-resistance. The self-crosslinked membrane (DCL: 5.3%) shows the highest IEC-normalized hydroxide conductivity among all crosslinked HEMs reported.

  5. A Proton-Switchable Bifunctional Ruthenium Complex That Catalyzes Nitrile Hydroboration.

    PubMed

    Geri, Jacob B; Szymczak, Nathaniel K

    2015-10-14

    A new bifunctional pincer ligand framework bearing pendent proton-responsive hydroxyl groups was prepared and metalated with Ru(II) and subsequently isolated in four discrete protonation states. Stoichiometric reactions with H2 and HBPin showed facile E-H (E = H or BPin) activation across a Ru(II)-O bond, providing access to unusual Ru-H species with strong interactions with neighboring proton and boron atoms. These complexes were found to promote the catalytic hydroboration of ketones and nitriles under mild conditions, and the activity was highly dependent on the ligand's protonation state. Mechanistic experiments revealed a crucial role of the pendent hydroxyl groups for catalytic activity.

  6. Bifunctional phase-transfer catalysis in the asymmetric synthesis of biologically active isoindolinones.

    PubMed

    Di Mola, Antonia; Tiffner, Maximilian; Scorzelli, Francesco; Palombi, Laura; Filosa, Rosanna; De Caprariis, Paolo; Waser, Mario; Massa, Antonio

    2015-01-01

    New bifunctional chiral ammonium salts were investigated in an asymmetric cascade synthesis of a key building block for a variety of biologically relevant isoindolinones. With this chiral compound in hand, the development of further transformations allowed for the synthesis of diverse derivatives of high pharmaceutical value, such as the Belliotti (S)-PD172938 and arylated analogues with hypnotic sedative activity, obtained in good overall total yield (50%) and high enantiomeric purity (95% ee). The synthetic routes developed herein are particularly convenient in comparison with the current methods available in literature and are particularly promising for large scale applications.

  7. Preparation and protein conjugation of a divinyl sulphone derivatized bifunctional chelating agent.

    PubMed

    Somayaji, V V; Naicker, S S; Sykes, T R; Guay, V; Noujaim, A A

    1996-12-01

    A new bifunctional chelating agent with a novel linking arm, 2-[p-¿N-benzyl-N-(2-vinylsulfoethyl)¿- (aminobenzyl)¿-1,3-propane-diamine-N,N,N',N'-tetraacetic acid (VS-PDTA) was synthesized and was conjugated to protein for the purpose of attaching radiometals to monoclonal antibodies (MAbs). The effect of various parameters such as ligand concentration, protein concentration, pH, temperature and reaction period on the conjugation have been examined using chromatographic (SE and TLC) analysis after labeling with 111In. The parameters and chemical variables studied have significant effects on the efficiency and rate of protein conjugation.

  8. Recovery of uranium from acid media by macroporous bifunctional phosphinic acid resin

    SciTech Connect

    Sabharwal, K.N.; Srinivasan, T.G.; Rao, P.R.V.; Nandy, K.K.

    1996-11-01

    The extraction of uranium from various acid media such as nitric acid, sulphuric acid, hydrochloric acid, phosphoric acid and perchloric acid by a macroporous bifunctional phosphinic acid resin (MPBPA) has been studied. The distribution coefficients for the extraction of uranium by the MPBPA resin are compared with the corresponding values reported in literature for the conventional sulphonic acid resin. The results clearly indicate the suitability of the MPBPA resin to recover uranium from different types of acid solutions of widely ranging acidities. 17 refs., 6 figs., 5 tabs.

  9. An efficient bifunctional electrocatalyst for water splitting based on cobalt phosphide.

    PubMed

    Yang, Libin; Qi, Honglan; Zhang, Chengxiao; Sun, Xuping

    2016-06-10

    The development of highly efficient electrocatalysts for water splitting is critical for various renewable-energy technologies. In this letter, we demonstrate a cobalt phosphide nanowire array grown on a Ti mesh (CoP/TM) behaving as a bifunctional electrocatalyst for water splitting. The CoP/TM electrode delivers 10 mA cm(-2) at an overpotential of 72 mV for the hydrogen evolution reaction (HER) and 310 mV for the oxygen evolution reaction (OER) in 1.0 M KOH. Furthermore, its corresponding two-electrode alkaline electrolyzer displays 10 mA cm(-2) at 1.64 V.

  10. Maleimido-functionalized NOTA derivatives as bifunctional chelators for site-specific radiolabeling.

    PubMed

    Förster, Christian; Schubert, Maik; Pietzsch, Hans-Jürgen; Steinbach, Jörg

    2011-06-22

    Two basic and simple synthetic routes for mono- and bis-maleimide bearing 1,4,7-triazacyclononane-N,N',N''-triacetic acid (NOTA) chelators as new bifunctional chelators are described. The syntheses are characterized by their simplicity and short reaction times, as well as practical purification methods and acceptable to very good chemical yields. The usefulness of these two synthetic pathways is demonstrated by the preparation of a set of mono- and bis-maleimide functionalized NOTA derivatives. In conclusion, these two methods can easily be expanded to the syntheses of further tailored maleimide-NOTA chelators for diverse applications.

  11. Bifunctional phase-transfer catalysis in the asymmetric synthesis of biologically active isoindolinones

    PubMed Central

    Di Mola, Antonia; Tiffner, Maximilian; Scorzelli, Francesco; Palombi, Laura; Filosa, Rosanna; De Caprariis, Paolo

    2015-01-01

    Summary New bifunctional chiral ammonium salts were investigated in an asymmetric cascade synthesis of a key building block for a variety of biologically relevant isoindolinones. With this chiral compound in hand, the development of further transformations allowed for the synthesis of diverse derivatives of high pharmaceutical value, such as the Belliotti (S)-PD172938 and arylated analogues with hypnotic sedative activity, obtained in good overall total yield (50%) and high enantiomeric purity (95% ee). The synthetic routes developed herein are particularly convenient in comparison with the current methods available in literature and are particularly promising for large scale applications. PMID:26734105

  12. Preparation of bifunctional isocyanate hydroxamate linkers: Synthesis of carbamate and urea tethered polyhydroxamic acid chelators

    PubMed Central

    Fernando, Rasika; Shirley, Jonathan M.; Torres, Emilio; Jacobs, Hollie K.; Gopalan, Aravamudan S.

    2012-01-01

    Two novel bifunctional N-methylhydroxamate-isocyanate linkers 20 and 21 were prepared in good yield and high purity from the corresponding amine salts using a biphasic reaction with phosgene. The facile ring opening reaction of N-Boc lactams using the anion of O-benzylhydroxylamine gave the protected amino hydroxamates 6a and 6c in good yields. The selective methylation of the hydroxamate nitrogen in the presence of the N-Boc group in these intermediates could be readily accomplished. The utility of the linkers was clearly demonstrated by the synthesis of the carbamate-tethered trishydroxamic acid 27 and the urea-tethered 29 PMID:23162172

  13. Controlled Covalent Functionalization of Thermally Reduced Graphene Oxide To Generate Defined Bifunctional 2D Nanomaterials

    PubMed Central

    Faghani, Abbas; Donskyi, Ievgen S.; Fardin Gholami, Mohammad; Ziem, Benjamin; Lippitz, Andreas; Unger, Wolfgang E. S.; Böttcher, Christoph; Rabe, Jürgen P.

    2017-01-01

    Abstract A controlled, reproducible, gram‐scale method is reported for the covalent functionalization of graphene sheets by a one‐pot nitrene [2+1] cycloaddition reaction under mild conditions. The reaction between commercially available 2,4,6‐trichloro‐1,3,5‐triazine and sodium azide with thermally reduced graphene oxide (TRGO) results in defined dichlorotriazine‐functionalized sheets. The different reactivities of the chlorine substituents on the functionalized graphene allow stepwise post‐modification by manipulating the temperature. This new method provides unique access to defined bifunctional 2D nanomaterials, as exemplified by chiral surfaces and multifunctional hybrid architectures. PMID:28165179

  14. Bifunctional Organic Polymeric Catalysts with a Tunable Acid-Base Distance and Framework Flexibility

    PubMed Central

    Chen, Huanhui; Wang, Yanan; Wang, Qunlong; Li, Junhui; Yang, Shiqi; Zhu, Zhirong

    2014-01-01

    Acid-base bifunctional organic polymeric catalysts were synthesized with tunable structures. we demonstrated two synthesis approaches for structural fine-tune. In the first case, the framework flexibility was tuned by changing the ratio of rigid blocks to flexible blocks within the polymer framework. In the second case, we precisely adjusted the acid-base distance by distributing basic monomers to be adjacent to acidic monomers, and by changing the chain length of acidic monomers. In a standard test reaction for the aldol condensation of 4-nitrobenzaldehyde with acetone, the catalysts showed good reusability upon recycling and maintained relatively high conversion percentage. PMID:25267260

  15. An efficient bifunctional electrocatalyst for water splitting based on cobalt phosphide

    NASA Astrophysics Data System (ADS)

    Yang, Libin; Qi, Honglan; Zhang, Chengxiao; Sun, Xuping

    2016-06-01

    The development of highly efficient electrocatalysts for water splitting is critical for various renewable-energy technologies. In this letter, we demonstrate a cobalt phosphide nanowire array grown on a Ti mesh (CoP/TM) behaving as a bifunctional electrocatalyst for water splitting. The CoP/TM electrode delivers 10 mA cm-2 at an overpotential of 72 mV for the hydrogen evolution reaction (HER) and 310 mV for the oxygen evolution reaction (OER) in 1.0 M KOH. Furthermore, its corresponding two-electrode alkaline electrolyzer displays 10 mA cm-2 at 1.64 V.

  16. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    SciTech Connect

    Ramasamy, Karthikeyan K.; Gray, Michel J.; Job, Heather M.; Smith, Colin D.; Wang, Yong

    2016-04-10

    tA highly versatile ethanol conversion process to selectively generate high value compounds is pre-sented here. By changing the reaction temperature, ethanol can be selectively converted to >C2alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3cata-lyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensationor the acetone formation is the path taken in changing the product composition. This article containsthe catalytic activity comparison between the mono-functional and physical mixture counterpart to thehydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  17. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    DOE PAGES

    Ramasamy, Karthikeyan K.; Gray, Michel; Job, Heather; ...

    2016-02-03

    Here, a highly versatile ethanol conversion process to selectively generate high value compounds is presented here. By changing the reaction temperature, ethanol can be selectively converted to >C2 alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3 catalyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensation or the acetone formation is the path taken in changing the product composition. This article contains the catalytic activity comparison between the mono-functional and physical mixture counterpart to the hydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  18. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    SciTech Connect

    Ramasamy, Karthikeyan K.; Gray, Michel; Job, Heather; Smith, Colin; Wang, Yong

    2016-02-03

    Here, a highly versatile ethanol conversion process to selectively generate high value compounds is presented here. By changing the reaction temperature, ethanol can be selectively converted to >C2 alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3 catalyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensation or the acetone formation is the path taken in changing the product composition. This article contains the catalytic activity comparison between the mono-functional and physical mixture counterpart to the hydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  19. Bifunctional Organic Polymeric Catalysts with a Tunable Acid-Base Distance and Framework Flexibility

    NASA Astrophysics Data System (ADS)

    Chen, Huanhui; Wang, Yanan; Wang, Qunlong; Li, Junhui; Yang, Shiqi; Zhu, Zhirong

    2014-09-01

    Acid-base bifunctional organic polymeric catalysts were synthesized with tunable structures. we demonstrated two synthesis approaches for structural fine-tune. In the first case, the framework flexibility was tuned by changing the ratio of rigid blocks to flexible blocks within the polymer framework. In the second case, we precisely adjusted the acid-base distance by distributing basic monomers to be adjacent to acidic monomers, and by changing the chain length of acidic monomers. In a standard test reaction for the aldol condensation of 4-nitrobenzaldehyde with acetone, the catalysts showed good reusability upon recycling and maintained relatively high conversion percentage.

  20. A novel bifunctional mitochondria-targeted anticancer agent with high selectivity for cancer cells

    PubMed Central

    He, Huan; Li, Dong-Wei; Yang, Li-Yun; Fu, Li; Zhu, Xun-Jin; Wong, Wai-Kwok; Jiang, Feng-Lei; Liu, Yi

    2015-01-01

    Mitochondria have recently emerged as novel targets for cancer therapy due to its important roles in fundamental cellular function. Discovery of new chemotherapeutic agents that allow for simultaneous treatment and visualization of cancer is urgent. Herein, we demonstrate a novel bifunctional mitochondria-targeted anticancer agent (FPB), exhibiting both imaging capability and anticancer activity. It can selectively accumulate in mitochondria and induce cell apoptosis. Notably, it results in much higher toxicity toward cancer cells owing to much higher uptake by cancer cells. These features make it highly attractive in cancer imaging and treatment. PMID:26337336

  1. Au@Cu(II)-MOF: Highly Efficient Bifunctional Heterogeneous Catalyst for Successive Oxidation-Condensation Reactions.

    PubMed

    Wang, Jing-Si; Jin, Fa-Zheng; Ma, Hui-Chao; Li, Xiao-Bo; Liu, Ming-Yang; Kan, Jing-Lan; Chen, Gong-Jun; Dong, Yu-Bin

    2016-07-05

    A new composite Au@Cu(II)-MOF catalyst has been synthesized via solution impregnation and full characterized by HRTEM, SEM-EDS, XRD, gas adsorption-desorption, XPS, and ICP analysis. It has been shown here that the Cu(II)-framework can be a useful platform to stabilize and support gold nanoparticles (Au NPs). The obtained Au@Cu(II)-MOF exhibits a bifunctional catalytic behavior and is able to promote selective aerobic benzyl alcohol oxidation-Knoevenagel condensation in a stepwise way.

  2. MoO3 nanoparticle anchored graphene as bifunctional agent for water purification

    NASA Astrophysics Data System (ADS)

    Lahan, Homen; Roy, Raju; Namsa, Nima D.; Das, Shyamal K.

    2016-10-01

    We report here a facile one step hydrothermal method to anchor MoO3 nanoparticles in graphene. The bifunctionality of graphene-MoO3 nanoparticles is demonstrated via dye adsorption and antibacterial activities. The nanocomposite showed excellent adsorption of methylene blue, a cationic dye, from water compared to pristine MoO3 and graphene. However, it showed negligible adsorption of methyl orange, an anionic dye. Again, the graphene-MoO3 nanoparticles exhibited bacteriostatic property against both Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria.

  3. Asymmetric Synthesis of Rauhut-Currier type Products by a Regioselective Mukaiyama Reaction under Bifunctional Catalysis.

    PubMed

    Frias, María; Mas-Ballesté, Rubén; Arias, Saira; Alvarado, Cuauhtemoc; Alemán, José

    2017-01-18

    The reactivity and the regioselective functionalization of silyl-diene enol ethers under a bifunctional organocatalyst provokes a dramatic change in the regioselectivity, from the 1,5- to the 1,3-functionalization. This variation makes possible the 1,3-addition of silyl-dienol ethers to nitroalkenes, giving access to the synthesis of tri- and tetrasubstituted double bonds in Rauhut-Currier type products. The process takes place under smooth conditions, nonanionic conditions, and with a high enantiomeric excess. A rational mechanistic pathway is presented based on DFT and mechanistic experiments.

  4. The bifunctional catalytic role of water clusters in the formation of acid rain.

    PubMed

    Romero-Montalvo, Eduardo; Guevara-Vela, José Manuel; Vallejo Narváez, Wilmer Esteban; Costales, Aurora; Pendás, Ángel Martín; Hernández-Rodríguez, Marcos; Rocha-Rinza, Tomás

    2017-03-23

    State-of-the-art chemical bonding analyses show that water clusters have a bifunctional catalytic role in the formation of H2SO4 in acid rain. The embedded H2O monomers mitigate the change in the chemical bonding scenario of the rate-limiting step, reducing thereby the corresponding activation energy in accordance with Hammond's postulate. We expect that the insights given herein will prove useful in the elucidation of the catalytic mechanisms of water in inorganic and organic aqueous chemistry.

  5. Clickable tyrosine binding bifunctional linkers for preparation of DNA-protein conjugates.

    PubMed

    Bauer, Dennis M; Ahmed, Ishtiaq; Vigovskaya, Antonina; Fruk, Ljiljana

    2013-06-19

    We have prepared bifunctional linkers containing clickable functional groups that enable preparation of protein-DNA conjugates through binding onto tyrosine residues. Mild conjugation strategy was demonstrated using two proteins, streptavidin(STV) and myoglobin (Mb) and it resulted in conjugates with preserved functionality of both the proteins and DNA strands. Furthermore, we show that protein-DNA conjugates can be successfully immobilized onto solid surface containing complementary DNA strands and the enzymatic activity of Mb-DNA conjugates is even higher than that of corresponding conjugates prepared through Lys binding.

  6. Supported bifunctional thioureas as recoverable and reusable catalysts for enantioselective nitro-Michael reactions

    PubMed Central

    Ceballos, Miriam; Maestro, Alicia; Sanz, Isabel

    2016-01-01

    Summary The catalytic activity of different supported bifunctional thioureas on sulfonylpolystyrene resins has been studied in the nitro-Michael addition of different nucleophiles to trans-β-nitrostyrene derivatives. The activity of the catalysts depends on the length of the tether linking the chiral thiourea to the polymer. The best results were obtained with the thiourea derived from (L)-valine and 1,6-hexanediamine. The catalysts can be used in only 2 mol % loading, and reused for at least four cycles in neat conditions. The ball milling promoted additions also worked very well. PMID:27340453

  7. Supported bifunctional thioureas as recoverable and reusable catalysts for enantioselective nitro-Michael reactions.

    PubMed

    Andrés, José M; Ceballos, Miriam; Maestro, Alicia; Sanz, Isabel; Pedrosa, Rafael

    2016-01-01

    The catalytic activity of different supported bifunctional thioureas on sulfonylpolystyrene resins has been studied in the nitro-Michael addition of different nucleophiles to trans-β-nitrostyrene derivatives. The activity of the catalysts depends on the length of the tether linking the chiral thiourea to the polymer. The best results were obtained with the thiourea derived from (L)-valine and 1,6-hexanediamine. The catalysts can be used in only 2 mol % loading, and reused for at least four cycles in neat conditions. The ball milling promoted additions also worked very well.

  8. Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions

    NASA Astrophysics Data System (ADS)

    Su, Yunhe; Zhu, Yihua; Jiang, Hongliang; Shen, Jianhua; Yang, Xiaoling; Zou, Wenjian; Chen, Jianding; Li, Chunzhong

    2014-11-01

    Cobalt based catalysts are promising bifunctional electrocatalysts for both oxygen reduction and oxygen evolution reactions (ORR and OER) in unitized regenerative fuel cells (URFCs) operating with alkaline electrolytes. Here we report a hybrid composite of cobalt nanoparticles embedded in nitrogen-doped carbon (Co/N-C) via a solvothermal carbonization strategy. With the synergistic effect arising from the N-doped carbon and cobalt nanoparticles in the composite, the Co/N-C hybrid catalyst exhibits highly efficient bifunctional catalytic activity and excellent stability toward both ORR and OER. The ΔE (oxygen electrode activity parameter for judging the overall electrocatalytic activity of a bifunctional electrocatalyst) value for Co/N-C is 0.859 V, which is smaller than those of Pt/C and most of the non-precious metal catalysts in previous studies. Furthermore, the Co/N-C composite also shows better bifunctional catalytic activity than its oxidative counterparts, which could be attributed to the high specific surface area and the efficient charge transfer ability of the composite, as well as the good synergistic effect between N-doped carbon and the Co nanoparticles in the Co/N-C composite.Cobalt based catalysts are promising bifunctional electrocatalysts for both oxygen reduction and oxygen evolution reactions (ORR and OER) in unitized regenerative fuel cells (URFCs) operating with alkaline electrolytes. Here we report a hybrid composite of cobalt nanoparticles embedded in nitrogen-doped carbon (Co/N-C) via a solvothermal carbonization strategy. With the synergistic effect arising from the N-doped carbon and cobalt nanoparticles in the composite, the Co/N-C hybrid catalyst exhibits highly efficient bifunctional catalytic activity and excellent stability toward both ORR and OER. The ΔE (oxygen electrode activity parameter for judging the overall electrocatalytic activity of a bifunctional electrocatalyst) value for Co/N-C is 0.859 V, which is smaller than those

  9. Neurodegeneration in D-bifunctional protein deficiency: diagnostic clues and natural history using serial magnetic resonance imaging.

    PubMed

    Khan, Aneal; Wei, Xing-Chang; Snyder, Floyd F; Mah, Jean K; Waterham, Hans; Wanders, Ronald J A

    2010-12-01

    We report serial neurodegenerative changes on neuroimaging in a rare peroxisomal disease called D-bifunctional protein deficiency. The pattern of posterior to anterior demyelination with white matter disease resembles X-linked adrenoleukodystrophy. We feel this case is important to (1) highlight that D-bifunctional protein deficiency should be considered in cases where the neuroimaging resembles X-linked adrenoleukodystrophy, (2) to show different stages of progression to help identify this disease using neuroimaging in children, and (3) to show that neuroimaging suggesting a leukodystrophy can warrant peroxisomal beta-oxidation studies in skin fibroblasts even when plasma very long chain fatty acids are normal.

  10. Protein Interactions Captured by Chemical Cross-linking: Simple Cross-linking Screen Using Sulfo-MBS.

    PubMed

    Nadeau, Owen W; Carlson, Gerald M

    2007-04-01

    INTRODUCTIONThis protocol describes a method for chemical cross-linking of proteins using sulfo-MBS (m-maleimidobenzoyl-N-hydroxysulfo-succinimide ester). Optimal conditions for cross-linking can be determined rapidly for a fixed concentration of a protein complex by varying the time of cross-linking, pH of the reaction, and concentration of sulfo-MBS. Typically, these screens require only small amounts of target proteins and can be carried out in less than a day.

  11. Mitigating crosslinking reactions through preconversion strategies

    SciTech Connect

    Not Available

    1992-03-01

    The ultimate goal of this research is to develop preconversion techniques that will mitigate crosslinking reactions and thereby substantially increase liquid yields during subsequent liquefaction. The immediate objective is to explore the effect of several pretreatments on the evolution of oxygen functions, crosslinking, and conversion in laboratory studies. The pretreatments to be explored include several that hold promise for effecting deoxygenation or other reduction, for example, treatment with CO/water/base and hydroquinones, either alone or in conjunction. The effects of these pretreatments on functional group distribution, macromoleculer structure, and liquefaction will be compared with those that have shown promise in the past for improved conversions, such as simple hydrothermal pretreatment, mild hydrogenation with dispersed catalysts, and demineralization. A second objective is to develop suitable test procedures for assessing the effect of the pretreatment on subsequent liquefaction and achieve also an understanding the chemical origin of the effect. These test procedures will include the use of proton magnetic resonance thermal analysis (PMRTA) for determining the effect of pretreatment on fluidity as liquefaction conditions (temperature, pressure) are approached. They will also involve the use of simpler and more pertinent laboratory measures of volatile product yields following the batch liquefactions that will be run to test the susceptibility of pretreated coals to subsequent liquefaction.

  12. Corneal collagen cross-linking: A review

    PubMed Central

    O’Brart, David P.S.

    2014-01-01

    The aim was to review the published literature on corneal collagen cross-linking. The emphasis was on the seminal publications, systemic reviews, meta-analyses and randomized controlled trials. Where such an evidence did not exist, selective large series cohort studies, case controlled studies and case series with follow-up preferably greater than 12 months were included. Riboflavin/Ultraviolet A (UVA) corneal collagen cross-linking appears to be the first treatment modality to halt the progression of keratoconus and other corneal ectatic disorders with improvement in visual, keratometric and topographic parameters documented by most investigators. Its precise mechanism of action at a molecular level is as yet not fully determined. Follow-up is limited to 4–6 years at present but suggests continued stability and improvement in corneal shape with time. Most published data are with epithelium-off techniques. Epithelium-on studies suggest some efficacy but less than with the epithelium-off procedures and long-term data are not currently available. The use of Riboflavin/UVA CXL for the management of infectious and non-infectious keratitis appears very promising. Its use in the management of bullous keratopathy is equivocal. Investigation of other methodologies for CXL are under investigation. PMID:25000866

  13. Physical Aspects of Photodynamic Corneal Collagen Crosslinking

    NASA Astrophysics Data System (ADS)

    Kornfield, Julia

    2012-02-01

    Healthy vision depends on the stability of the shape of the cornea, which provides most of the lens power of the optical system of the eye. Diseases in which the cornea progressively undergoes irregular deformation over time (e.g., keratoconus) can be treated clinically by inducing additional protein-protein crosslinks using a photosensitizing drug and a tailored dose of light. Unfortunately, the treatment moving through clinical trials is toxic to cells in and on the cornea. A path to a safer treatment is offered by the nanostructure of the corneal stroma---reminiscent of a HEX phase in block copolymers with 30nm diameter collagen cylinders spaced 60nm center-to-center in a hydrogel matrix of proteoglycans and water. We show that using a photosensitizing drug that sequesters itself in the collagen fibrils can minimize the toxicity of therapeutic protein-protein cross-linking. Photorheology and transport measurements are used to quantify the parameters of a simple physical model that is useful for optimizing clinical protocols.

  14. Chicken corneocyte cross-linked proteome.

    PubMed

    Rice, Robert H; Winters, Brett R; Durbin-Johnson, Blythe P; Rocke, David M

    2013-02-01

    Shotgun proteomic analysis was performed of epidermal scale, feather, beak and claw from the domestic chicken. To this end, the samples were separated first into solubilized and particulate fractions, the latter enriched in isopeptide cross-linking, by exhaustive extraction in sodium dodecyl sulfate under reducing conditions. Among the 205 proteins identified were 17 keratins (types α and β), 51 involved in protein synthesis, 8 junctional, 8 histone, 5 heat shock, and 5 14-3-3 proteins. Considerable overlap among the beak, claw, feather, and scale samples was observed in protein profiles, but those from beak and claw were the most similar. Scale and feather profiles were the most distinctive, each exhibiting specific proteins. Less than 20% of the proteins were found only in the detergent-solubilized fraction, while 34-57% were found only in the particulate fraction, depending on the source, and the rest in both fractions. The results provide the first comprehensive analysis of the content of these cornified structures, reveal the efficient use of available proteins in conferring mechanical and chemical stability to them, and emphasize the importance of isopeptide cross-linking in avian epithelial cornification.

  15. Corneal collagen cross-linking: a review.

    PubMed

    O'Brart, David P S

    2014-01-01

    The aim was to review the published literature on corneal collagen cross-linking. The emphasis was on the seminal publications, systemic reviews, meta-analyses and randomized controlled trials. Where such an evidence did not exist, selective large series cohort studies, case controlled studies and case series with follow-up preferably greater than 12 months were included. Riboflavin/Ultraviolet A (UVA) corneal collagen cross-linking appears to be the first treatment modality to halt the progression of keratoconus and other corneal ectatic disorders with improvement in visual, keratometric and topographic parameters documented by most investigators. Its precise mechanism of action at a molecular level is as yet not fully determined. Follow-up is limited to 4-6 years at present but suggests continued stability and improvement in corneal shape with time. Most published data are with epithelium-off techniques. Epithelium-on studies suggest some efficacy but less than with the epithelium-off procedures and long-term data are not currently available. The use of Riboflavin/UVA CXL for the management of infectious and non-infectious keratitis appears very promising. Its use in the management of bullous keratopathy is equivocal. Investigation of other methodologies for CXL are under investigation. Copyright © 2013 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  16. Polymer Microstructures through Two-Photon Crosslinking.

    PubMed

    Schwärzle, David; Hou, Xiaoqang; Prucker, Oswald; Rühe, Jürgen

    2017-08-18

    Two-photon crosslinking of polymers (2PC) is proposed as a novel method for the fabrication of freestanding microstructures via two-photon lithography. During this process in the confocal volume, two-photon absorption leads to (formal) C,H-insertion reactions, and consequently to a strictly localized crosslinking of the polymer. To achieve this, the polymer is coated as a solvent-free (glassy) film onto an appropriate substrate, and the desired microstructure is written by 2PC into this glass. In all regions outside of the focal volume where no two-photon process occurs, the polymer remains uncrosslinked and can be washed away during a developing process. Using a self-assembled monolayer containing the same photoreactive group allows covalent attachment of the forming freestanding structures to the substrate, and thus guarantees an improved stability of these structures against shear-induced detachment. As the two photon process is carried out in the glassy state, in a simple way, multilayer structures can be used to write structures having a varying chemical composition perpendicular to the surface. As an example, the 2PC process is used to build a structure from both protein-repellent and protein-adsorbing polymers so that the resulting 3D structure exhibits spatially controlled protein adsorption. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Corneal Collagen Cross-Linking Outcomes: Review

    PubMed Central

    Jankov II, Mirko R; Jovanovic, Vesna; Delevic, Sladjana; Coskunseven, Efekan

    2011-01-01

    Keratoconus is a condition characterized by biomechanical instability of the cornea, presenting in a progressive, asymmetric and bilateral way. Corneal collagen cross-linking with riboflavin and UVA (CXL) is a new technique of corneal tissue strengthening that combines the use of riboflavin as a photo sensitizer and UVA irradiation. The studies showed that CXL was effective in halting the progression of keratoconus over a period of up to four years. The published studies also revealed a reduction of max K readings by more than 2 D, while the postoperative SEQ was reduced by an average of more than 1 D, and refractive cylinder decreased by about 1 D. No eyes lost any line of BCDVA. Moreover, there was no significant decrease in endothelial cell density. It was also found that CXL treatment was effective with reducing corneal and total wavefront aberrations. Corneal cross-linking has also led to an arrest and/or even a partial reversal of keratectasia in the treatment of iatrogenic ectasia after excimer laser ablation. A primary intervention such as CXL should be considered to potentially increase the biomechanical stability of the corneal tissue and postpone the need of lamellar or penetrating keratoplasty. PMID:21448301

  18. Large Scale Chemical Cross-linking Mass Spectrometry Perspectives

    PubMed Central

    Zybailov, Boris L.; Glazko, Galina V.; Jaiswal, Mihir; Raney, Kevin D.

    2014-01-01

    The spectacular heterogeneity of a complex protein mixture from biological samples becomes even more difficult to tackle when one’s attention is shifted towards different protein complex topologies, transient interactions, or localization of PPIs. Meticulous protein-by-protein affinity pull-downs and yeast-two-hybrid screens are the two approaches currently used to decipher proteome-wide interaction networks. Another method is to employ chemical cross-linking, which gives not only identities of interactors, but could also provide information on the sites of interactions and interaction interfaces. Despite significant advances in mass spectrometry instrumentation over the last decade, mapping Protein-Protein Interactions (PPIs) using chemical cross-linking remains time consuming and requires substantial expertise, even in the simplest of systems. While robust methodologies and software exist for the analysis of binary PPIs and also for the single protein structure refinement using cross-linking-derived constraints, undertaking a proteome-wide cross-linking study is highly complex. Difficulties include i) identifying cross-linkers of the right length and selectivity that could capture interactions of interest; ii) enrichment of the cross-linked species; iii) identification and validation of the cross-linked peptides and cross-linked sites. In this review we examine existing literature aimed at the large-scale protein cross-linking and discuss possible paths for improvement. We also discuss short-length cross-linkers of broad specificity such as formaldehyde and diazirine-based photo-cross-linkers. These cross-linkers could potentially capture many types of interactions, without strict requirement for a particular amino-acid to be present at a given protein-protein interface. How these shortlength, broad specificity cross-linkers be applied to proteome-wide studies? We will suggest specific advances in methodology, instrumentation and software that are needed to

  19. Characterisation of the DNA sequence specificity, cellular toxicity and cross-linking properties of novel bispyridine-based dinuclear platinum complexes.

    PubMed

    Johnson, Ben W; Murray, Vincent; Temple, Mark D

    2016-05-25

    The anti-tumour activity of cisplatin is thought to be a result of its capacity to form DNA adducts which prevent cellular processes such as DNA replication and transcription. These DNA adducts can effectively induce cancer cell death, however, there are a range of clinical side effects and drug resistance issues associated with its use. In this study, the biological properties of three novel dinuclear platinum-based compounds (that contain alkane bridging linkers of eight, ten and twelve carbon atoms in length) were characterised to assess their potential as anticancer agents. The properties of these compounds were determined using a DNA template containing seven tandem telomeric repeat sequences. A linear amplification reaction was used in combination with capillary electrophoresis to quantify the sequence specificity of DNA adducts formed by these compounds at base pair resolution. The DNA cross-linking ability of these compounds was assessed using denaturing agarose gel electrophoresis and cytotoxicity was determined in HeLa cells using a colorimetric cell viability assay. The dinuclear compounds were found to preferentially form DNA adducts at guanine bases and they exhibited different damage intensity profiles at the telomeric repeat sequences compared to that of cisplatin. The dinuclear compounds were found to exhibit a low level of cytotoxicity relative to cisplatin and their cytotoxicity increased as the linker length increased. Conversely, the interstrand cross-linking efficiency of the dinuclear compounds increased as the linker length decreased and the compound with the shortest alkane linker was six-fold more effective than cisplatin. Since the bifunctional compounds exhibit variation in sequence specificity of adduct formation and a greater ability to cross-link DNA relative to cisplatin they warrant further investigation towards the goal of developing new cancer chemotherapeutic agents.

  20. Novel detection by magnetic microcapsules in the human gastrointestinal tract of cross-linking agents and diet-dependent reactive oxygen species.

    PubMed

    Bingham, S A; Ellul, A; Cummings, J H; O'Neill, I

    1992-04-01

    Semi-permeable magnetic microcapsules previously shown able to trap gastrointestinal carcinogens and containing polyethyleneimine (PEI) were covalently labelled with [14CH3], and administered for the first time to humans (six healthy volunteers, 1.3 microCi/dose) in gelatin capsules together with radio-opaque gut transit markers (ROM), in order both to seek human endogenous cross-linking or bifunctional alkylating agents and assess gut transit features. No ill-effects were reported. Faecal ROM and 14C excretions were well correlated (r = 0.96), and net 14C recovery in faeces was 83-96%. Microcapsules were separated magnetically from faeces and 29-81% of specific labelling of microcapsules (nCi/10(6)) was found to have been removed during GI transit. Label cleavage out of these microcapsules was also found following in vitro anaerobic incubation with faecal slurries from two volunteers. On treatment with H2O2, label was removed selectively from the Fe-containing core in a dose-dependent manner. Therefore, label cleavage in vivo (not observed in rats consuming chow but found notably on consumption of low-fibre and/or high-beef human diets) is likely to arise from low mol. wt substances that give Fenton reaction producing hydroxyl radicals and oxidative demethylation. After GI transit, extensive core to membrane cross-linking in the microcapsules was found and was inversely related to faecal output. Cross-linking also was obtained to a greater extent during in vitro anaerobic incubation with faecal slurries. The GI mucosa would also be exposed to both types of agents, and several features of this microcapsule monitoring are in accord with putative risk-modulating effects. This first use of microcapsules for biomonitoring of the human GI tract thus seemed to be without hazard, and revealed extensive levels of agents likely to cause DNA damage.

  1. Multi-Scale Modeling of Cross-Linked Nanotube Materials

    NASA Technical Reports Server (NTRS)

    Frankland, S. J. V.; Odegard, G. M.; Herzog, M. N.; Gates, T. S.; Fay, C. C.

    2005-01-01

    The effect of cross-linking single-walled carbon nanotubes on the Young's modulus of a nanotube-reinforced composite is modeled with a multi-scale method. The Young's modulus is predicted as a function of nanotube volume fraction and cross-link density. In this method, the constitutive properties of molecular representative volume elements are determined using molecular dynamics simulation and equivalent-continuum modeling. The Young's modulus is subsequently calculated for cross-linked nanotubes in a matrix which consists of the unreacted cross-linking agent. Two different cross-linking agents are used in this study, one that is short and rigid (Molecule A), and one that is long and flexible (Molecule B). Direct comparisons between the predicted elastic constants are made for the models in which the nanotubes are either covalently bonded or not chemically bonded to the cross-linking agent. At a nanotube volume fraction of 10%, the Young's modulus of Material A is not affected by nanotube crosslinking, while the Young's modulus of Material B is reduced by 64% when the nanotubes are cross-linked relative to the non-cross-linked material with the same matrix.

  2. Highly crosslinked silicon polymers for gas chromatography columns

    NASA Technical Reports Server (NTRS)

    Shen, Thomas C. (Inventor)

    1994-01-01

    A new highly crosslinked silicone polymer particle for gas chromatography application and a process for synthesizing such copolymer are described. The new copolymer comprises vinyltriethoxysilane and octadecyltrichlorosilane. The copolymer has a high degree of crosslinking and a cool balance of polar to nonpolar sites in the porous silicon polymer assuring fast separation of compounds of variable polarity.

  3. Multi-Scale Modeling of Cross-Linked Nanotube Materials

    NASA Technical Reports Server (NTRS)

    Frankland, S. J. V.; Odegard, G. M.; Herzog, M. N.; Gates, T. S.; Fay, C. C.

    2005-01-01

    The effect of cross-linking single-walled carbon nanotubes on the Young's modulus of a nanotube-reinforced composite is modeled with a multi-scale method. The Young's modulus is predicted as a function of nanotube volume fraction and cross-link density. In this method, the constitutive properties of molecular representative volume elements are determined using molecular dynamics simulation and equivalent-continuum modeling. The Young's modulus is subsequently calculated for cross-linked nanotubes in a matrix which consists of the unreacted cross-linking agent. Two different cross-linking agents are used in this study, one that is short and rigid (Molecule A), and one that is long and flexible (Molecule B). Direct comparisons between the predicted elastic constants are made for the models in which the nanotubes are either covalently bonded or not chemically bonded to the cross-linking agent. At a nanotube volume fraction of 10%, the Young's modulus of Material A is not affected by nanotube crosslinking, while the Young's modulus of Material B is reduced by 64% when the nanotubes are cross-linked relative to the non-cross-linked material with the same matrix.

  4. Hydrogels Prepared from Cross-Linked Nanofibrillated Cellulose

    Treesearch

    Sandeep S. Nair; J.Y. Zhu; Yulin Deng; Arthur J. Ragauskas

    2014-01-01

    Nanocomposite hydrogels were developed by cross-linking nanofibrillated cellulose with poly(methyl vinyl ether-co-maleic acid) and polyethylene glycol. The cross-linked hydrogels showed enhanced water absorption and gel content with the addition of nanocellulose. In addition, the thermal stability, mechanical strength, and modulus increased with an increase in the...

  5. Fabrication of homobifunctional crosslinker stabilized collagen for biomedical application.

    PubMed

    Lakra, Rachita; Kiran, Manikantan Syamala; Sai, Korrapati Purna

    2015-11-27

    Collagen biopolymer has found widespread application in the field of tissue engineering owing to its excellent tissue compatibility and negligible immunogenicity. Mechanical strength and enzymatic degradation of the collagen necessitates the physical and chemical strength enhancement. One such attempt deals with the understanding of crosslinking behaviour of EGS (ethylene glycol-bis (succinic acid N-hydroxysuccinimide ester)) with collagen to improve the physico-chemical properties. The incorporation of a crosslinker during fibril formation enhanced the thermal and mechanical stability of collagen. EGS crosslinked collagen films exhibited higher denaturation temperature (T d) and the residue left after thermogravimetric analysis was about 16 ± 5.2%. Mechanical properties determined by uniaxial tensile tests showed a threefold increase in tensile strength and Young's modulus at higher concentration (100 μM). Water uptake capacity reduced up to a moderate extent upon crosslinking which is essential for the transport of nutrients to the cells. Cell viability was found to be 100% upon treatment with 100 μM EGS whereas only 30% viability could be observed with glutaraldehyde. Rheological studies of crosslinked collagen showed an increase in shear stress and shear viscosity at 37 °C. Crosslinking with EGS resulted in the formation of a uniform fibrillar network. Trinitrobenzene sulfonate (TNBS) assay confirmed that EGS crosslinked collagen by forming a covalent interaction with ε-amino acids of collagen. The homobifunctional crosslinker used in this study enhanced the effectiveness of collagen as a biomaterial for biomedical application.

  6. Post-Polymerization Crosslinked Polyurethane Shape-Memory Polymers.

    PubMed

    Hearon, K; Gall, K; Ware, T; Maitland, D J; Bearinger, J P; Wilson, T S

    2011-07-01

    Novel urethane shape-memory polymers (SMPs) of significant industrial relevance have been synthesized and characterized. Chemically crosslinked SMPs have traditionally been made in a one-step polymerization of monomers and crosslinking agents. However, these new post-polymerization crosslinked SMPs can be processed into complex shapes by thermoplastic manufacturing methods and later crosslinked by heat exposure or by electron beam irradiation. Several series of linear, olefinic urethane polymers were made from 2-butene-1,4-diol, other saturated diols, and various aliphatic diisocyanates. These thermoplastics were melt-processed into desired geometries and thermally crosslinked at 200°C or radiation crosslinked at 50 kGy. The SMPs were characterized by solvent swelling and extraction, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), tensile testing, and qualitative shape-recovery analysis. Swelling and DMA results provided concrete evidence of chemical crosslinking, and further characterization revealed that the urethanes had outstanding mechanical properties. Key properties include tailorable transitions between 25 and 80°C, tailorable rubbery moduli between 0.2 and 4.2 MPa, recoverable strains approaching 100%, failure strains of over 500% at T(g), and qualitative shape-recovery times of less than 12 seconds at body temperature (37°C). Because of its outstanding thermo-mechanical properties, one polyurethane was selected for implementation in the design of a complex medical device. These post-polymerization crosslinked urethane SMPs are an industrially relevant class of highly processable shape-memory materials.

  7. Post-Polymerization Crosslinked Polyurethane Shape-Memory Polymers

    PubMed Central

    Hearon, K.; Gall, K.; Ware, T.; Maitland, D. J.; Bearinger, J. P.; Wilson, T. S.

    2011-01-01

    Novel urethane shape-memory polymers (SMPs) of significant industrial relevance have been synthesized and characterized. Chemically crosslinked SMPs have traditionally been made in a one-step polymerization of monomers and crosslinking agents. However, these new post-polymerization crosslinked SMPs can be processed into complex shapes by thermoplastic manufacturing methods and later crosslinked by heat exposure or by electron beam irradiation. Several series of linear, olefinic urethane polymers were made from 2-butene-1,4-diol, other saturated diols, and various aliphatic diisocyanates. These thermoplastics were melt-processed into desired geometries and thermally crosslinked at 200°C or radiation crosslinked at 50 kGy. The SMPs were characterized by solvent swelling and extraction, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), tensile testing, and qualitative shape-recovery analysis. Swelling and DMA results provided concrete evidence of chemical crosslinking, and further characterization revealed that the urethanes had outstanding mechanical properties. Key properties include tailorable transitions between 25 and 80°C, tailorable rubbery moduli between 0.2 and 4.2 MPa, recoverable strains approaching 100%, failure strains of over 500% at Tg, and qualitative shape-recovery times of less than 12 seconds at body temperature (37°C). Because of its outstanding thermo-mechanical properties, one polyurethane was selected for implementation in the design of a complex medical device. These post-polymerization crosslinked urethane SMPs are an industrially relevant class of highly processable shape-memory materials. PMID:21572577

  8. Orderly Layered Zr-Benzylphosphonate Nanohybrids for Efficient Acid-Base-Mediated Bifunctional/Cascade Catalysis.

    PubMed

    Li, Hu; Fang, Zhen; He, Jian; Yang, Song

    2017-02-22

    The development of functional metal-organic materials that are robust and active for bifunctional/cascade catalysis is of great significance. Herein, a series of mesoporous and orderly layered nanohybrids were synthesized for the first time through simple and template-free assembly of ortho-, meta-, or para-xylylenediphosphonates (o-, p-, or m-PhP) containing zirconium. It was found that m-PhPZr nanoparticles (20-50 nm) with mesopores centered at 7.9 nm and high Lewis acid-base site ratio (1:0.7) showed excellent performance under mild conditions (as low as 82 °C) in transfer hydrogenation of carbonyl compounds, including bioaldehydes and alcohols, with near quantitative yields and little Zr leaching. Isotopic labeling studies indicated the occurrence of direct hydrogen transfer rather than metal hydride route by bifunctional catalysis. Lewis acidic (Zr) and basic (PO3 ) centers of the heterogeneous catalyst were further revealed to play a synergistic role in one-pot cascade transformations, for example, of ethyl levulinate to γ-valerolactone and glucose to 5-hydroxymethylfurfural. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A bifunctional spin label reports the structural topology of phospholamban in magnetically-aligned bicelles

    NASA Astrophysics Data System (ADS)

    McCaffrey, Jesse E.; James, Zachary M.; Svensson, Bengt; Binder, Benjamin P.; Thomas, David D.

    2016-01-01

    We have applied a bifunctional spin label and EPR spectroscopy to determine membrane protein structural topology in magnetically-aligned bicelles, using monomeric phospholamban (PLB) as a model system. Bicelles are a powerful tool for studying membrane proteins by NMR and EPR spectroscopies, where magnetic alignment yields topological constraints by resolving the anisotropic spectral properties of nuclear and electron spins. However, EPR bicelle studies are often hindered by the rotational mobility of monofunctional Cys-linked spin labels, which obscures their orientation relative to the protein backbone. The rigid and stereospecific TOAC label provides high orientational sensitivity but must be introduced via solid-phase peptide synthesis, precluding its use in large proteins. Here we show that a bifunctional methanethiosulfonate spin label attaches rigidly and stereospecifically to Cys residues at i and i + 4 positions along PLB's transmembrane helix, thus providing orientational resolution similar to that of TOAC, while being applicable to larger membrane proteins for which synthesis is impractical. Computational modeling and comparison with NMR data shows that these EPR experiments provide accurate information about helix tilt relative to the membrane normal, thus establishing a robust method for determining structural topology in large membrane proteins with a substantial advantage in sensitivity over NMR.

  10. Bifunctional Ag/C3N4.5 composite nanobelts for photocatalysis and antibacterium

    NASA Astrophysics Data System (ADS)

    Lei, Renbo; Jian, Jikang; Zhang, Zhihua; Song, Bo; Wu, Rong

    2016-09-01

    Multiple functions can be achieved in carbon nitride-based composite nanomaterials by tuning their components and structures. Here, we report on a large-scale synthesis of novel bifunctional Ag/C3N4.5 composite nanobelts (CNBs) with efficient photocatalytic and antibacterial activity. The Ag/C3N4.5 CNBs were synthesized in high yield by a two-step route including a homogeneous precipitation process and a subsequent calcination treatment. The structural, morphological, compositional, and spectroscopic characterizations revealed that the Ag/C3N4.5 CNBs are composed of N-deficient melem ultrathin nanobelts and crystalline Ag nanoparticles attached to the surface of the nanobelts with good contact. The band gap of the Ag/C3N4.5 CNBs is determined to be about 3.04 eV. The efficient photocatalytic and antibacterial activities of the composite nanomaterials are verified by testing the degradation of Rhodamine B (RhB) and the inhibition zone to bacterium E. coli. The work provides a facile route to bifunctional carbon nitride-based composites with potential applications in the fields of the environment and biology.

  11. Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces

    PubMed Central

    Choi, Chang-Ho; David, Michele; Gao, Zhongwei; Chang, Alvin; Allen, Marshall; Wang, Hailei; Chang, Chih-hung

    2016-01-01

    Bubble nucleation control, growth and departure dynamics is important in understanding boiling phenomena and enhancing nucleate boiling heat transfer performance. We report a novel bi-functional heterogeneous surface structure that is capable of tuning bubble nucleation, growth and departure dynamics. For the fabrication of the surface, hydrophobic polymer dot arrays are first printed on a substrate, followed by hydrophilic ZnO nanostructure deposition via microreactor-assisted nanomaterial deposition (MAND) processing. Wettability contrast between the hydrophobic polymer dot arrays and aqueous ZnO solution allows for the fabrication of heterogeneous surfaces with distinct wettability regions. Heterogeneous surfaces with various configurations were fabricated and their bubble dynamics were examined at elevated heat flux, revealing various nucleate boiling phenomena. In particular, aligned and patterned bubbles with a tunable departure frequency and diameter were demonstrated in a boiling experiment for the first time. Taking advantage of our fabrication method, a 6 inch wafer size heterogeneous surface was prepared. Pool boiling experiments were also performed to demonstrate a heat flux enhancement up to 3X at the same surface superheat using bi-functional surfaces, compared to a bare stainless steel surface. PMID:27034255

  12. A Cost-Efficient Bifunctional Ultrathin Nanosheets Array for Electrochemical Overall Water Splitting.

    PubMed

    Zhang, Ying; Shao, Qi; Pi, Yecan; Guo, Jun; Huang, Xiaoqing

    2017-07-01

    The design of cost-efficient earth-abundant catalysts with superior performance for the electrochemical water splitting is highly desirable. Herein, a general strategy for fabricating superior bifunctional water splitting electrodes is reported, where cost-efficient earth-abundant ultrathin Ni-based nanosheets arrays are directly grown on nickel foam (NF). The newly created Ni-based nanosheets@NF exhibit unique features of ultrathin building block, 3D hierarchical structure, and alloy effect with the optimized Ni5 Fe layered double hydroxide@NF (Ni5 Fe LDH@NF) exhibiting low overpotentials of 210 and 133 mV toward both oxygen evolution reaction and hydrogen evolution reaction at 10 mA cm(-2) in alkaline condition, respectively. More significantly, when applying as the bifunctional overall water splitting electrocatalyst, the Ni5 Fe LDH@NF shows an appealing potential of 1.59 V at 10 mA cm(-2) and also superior durability at the very high current density of 50 mA cm(-2) . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Strongly Coupled Molybdenum Carbide on Carbon Sheets as a Bifunctional Electrocatalyst for Overall Water Splitting.

    PubMed

    Wang, Hao; Cao, Yingjie; Sun, Cheng; Zou, Guifu; Huang, Jianwen; Kuai, Xiaoxiao; Zhao, Jianqing; Gao, Lijun

    2017-09-22

    High-performance and affordable electrocatalysts from earth-abundant elements are desirably pursued for water splitting involving hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Here, a bifunctional electrocatalyst of highly crystalline Mo2 C nanoparticles supported on carbon sheets (Mo2 C/CS) was designed toward overall water splitting. Owing to the highly active catalytic nature of Mo2 C nanoparticles, the high surface area of carbon sheets and efficient charge transfer in the strongly coupled composite, the designed catalysts show excellent bifunctional behavior with an onset potential of -60 mV for HER and an overpotential of 320 mV to achieve a current density of 10 mA cm(-2) for OER in 1 m KOH while maintaining robust stability. Moreover, the electrolysis cell using the catalyst only requires a low cell voltage of 1.73 V to achieve a current density of 10 mA cm(-2) and maintains the activity for more than 100 h when employing the Mo2 C/CS catalyst as both anode and cathode electrodes. Such high performance makes Mo2 C/CS a promising electrocatalyst for practical hydrogen production from water splitting. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. New bifunctional metalloproteinase inhibitors: an integrated approach towards biological improvements and cancer therapy.

    PubMed

    Marques, Sérgio M; Abate, Claudia C; Chaves, Sílvia; Marques, Fernanda; Santos, Isabel; Nuti, Elisa; Rossello, Armando; Santos, M Amélia

    2013-10-01

    The key role of some matrix metalloproteinases (MMPs) on several pathological processes, including carcinogenesis and tumor growth, makes the development of MMP inhibitors (MMPIs) an attractive approach for cancer therapy. We present herein an integrated approach for the development of a new series of inhibitors of MMP2 and MMP14, two enzymes over-expressed by human ovarian cancer. As a first step, a new series of single model compounds bearing different zinc-binding groups (ZBGs), such as carboxylic, hydroxamic acid, hydrazide and sulfonylhydrazide groups, were studied and revealed reasonably good capacity for the Zn(II) chelation in solution and for the MMP inhibition. Aimed at further reinforcing the biological activity of these MMPIs as anti-cancer agents, a selection of those models was extra-functionalized with benzothiazole (BTA), a group with recognized antitumor activity. Analysis of the results obtained for these bifunctional compounds, in particular the inhibitory activity against MMP2 and MMP14 as well as the anti-proliferative activity on the A2780 ovarian cancer cell line, allowed to understand the activity dependence on the type of ZBG, as well as the relevance of the BTA moiety. Overall, the evidenced BTA-associated activity improvements on enzyme inhibition and cell antiproliferactivity, combined with the hydrolytic stability revealed by the hydrazide group, suggest that these new bifunctional BTA-hydrazide derivatives should be taken in consideration for the development of new generations of MMPIs with anti-cancer activity.

  15. The development and application of bi-functional clay inhibitor of CYY-2

    NASA Astrophysics Data System (ADS)

    Li, Yongbin; Li, Fengqun; Yu, Jiliang; Han, Changsheng; Gong, Hui; Wang, Jing; Wu, Yingde; Wang, Rui

    2017-04-01

    with the constant discovery and gradual development of low-permeability and water-sensitivity formation, reservoir protection is especially important for improving water-injection development efficiency and enhancing working level of low-permeability reservoir, which will be a critical sector in enhancing development quality of low-permeability and water-sensitivity reservoir. Combined with the understanding of clay mineral expansion theory, starting from hydratability, polarity and oxidability of adopted materials, one type of bi-functional clay inhibitor, CYY-2, is developed which has the function of swelling prevention and swelling shrinkage, and property evaluation is carried out by adopting different methods and measures. Test results indicated that: by using this bi-functional clay inhibitor, the swelling prevention rate of magcogel and natural core powder could reach to 91.7% and 89.8%, swelling shrinkage of which could reach to 61.3% and 81.5%; in the natural flowing experiment, core damage ratio was declined from 86.3% to 12.8%, and the core permeability could be raised by 3 times averagely; in the field experiment of 5 wells, effective rate of 80%, the well effect, is reached. With the extension of injection time of injecting wells, injection pressure rose constantly, injection allocation request was not finished, which influenced the overall reservoir development effect. So reservoir protection is important to deal with the above problems.

  16. NiO/CoN Porous Nanowires as Efficient Bifunctional Catalysts for Zn-Air Batteries.

    PubMed

    Yin, Jie; Li, Yuxuan; Lv, Fan; Fan, Qiaohui; Zhao, Yong-Qing; Zhang, Qiaolan; Wang, Wei; Cheng, Fangyi; Xi, Pinxian; Guo, Shaojun

    2017-02-28

    The development of highly efficient bifunctional catalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is crucial for improving the efficiency of the Zn-air battery. Herein, we report porous NiO/CoN interface nanowire arrays (PINWs) with both oxygen vacancies and a strongly interconnected nanointerface between NiO and CoN domains for promoting the electrocatalytic performance and stability for OER and ORR. Extended X-ray absorption fine structure spectroscopy, electron spin resonance, and high-resolution transmission electron microscopy investigations demonstrate that the decrease of the coordination number for cobalt, the enhanced oxygen vacancies on the NiO/CoN nanointerface, and strongly coupled nanointerface between NiO and CoN domains are responsible for the good bifunctional electrocatalytic performance of NiO/CoN PINWs. The primary Zn-air batteries, using NiO/CoN PINWs as an air-cathode, display an open-circuit potential of 1.46 V, a high power density of 79.6 mW cm(-2), and an energy density of 945 Wh kg(-1). The three-series solid batteries fabricated by NiO/CoN PINWs can support a timer to work for more than 12 h. This work demonstrates the importance of interface coupling and oxygen vacancies in the development of high-performance Zn-air batteries.

  17. Novel 16-substituted bifunctional derivatives of huperzine B: multifunctional cholinesterase inhibitors.

    PubMed

    Shi, Yu-fang; Zhang, Hai-yan; Wang, Wei; Fu, Yan; Xia, Yu; Tang, Xi-can; Bai, Dong-lu; He, Xu-chang

    2009-08-01

    To design novel bifunctional derivatives of huperzine B (HupB) based on the concept of dual binding site of acetylcholinesterase (AChE) and evaluate their pharmacological activities for seeking new drug candidates against Alzheimer's disease (AD). Novel 16-substituted bifunctional derivatives of HupB were synthesized through chemical reactions. The inhibitory activities of the derivatives toward AChE and butyrylcholinesterase (BuChE) were determined in vitro by modified Ellman's method. Cell viability was quantified by the reduction of MTT. A new preparative method was developed for the generation of 16-substituted derivatives of HupB, and pharmacological trials indicated that the derivatives were multifunctional cholinesterase inhibitors targeting both AChE and BuChE. Among the derivatives tested, 9c, 9e, 9f, and 9i were 480 to 1360 times more potent as AChE inhibitors and 370 to 1560 times more potent as BuChE inhibitors than the parent HupB. Further preliminary pharmacological trials of derivatives 9c and 9i were performed, including examining the mechanism of AChE inhibition, the substrate kinetics of the enzyme inhibition, and protection against hydrogen peroxide (H2O2)-induced cytotoxicity in PC12 cells. Preliminary pharmacological evaluation indicated that 16-substituted derivatives of HupB, particularly 9c and 9i, would be potentially valuable new drug candidates for AD therapy, and further exploration is needed to evaluate their pharmacological and clinical efficacies.

  18. Bifunctional silica nanospheres with 3-aminopropyl and phenyl groups. Synthesis approach and prospects of their applications

    NASA Astrophysics Data System (ADS)

    Kotsyuda, Sofiya S.; Tomina, Veronika V.; Zub, Yuriy L.; Furtat, Iryna M.; Lebed, Anastasia P.; Vaclavikova, Miroslava; Melnyk, Inna V.

    2017-10-01

    Spherical silica particles with bifunctional (tbnd Si(CH2)3NH2/tbnd SiC6H5) surface layers were synthesized by the Stöber method using ternary alkoxysilanes systems. The influence of the synthesis conditions, such as temperature and stirring time on the process of nanoparticles formation was studied. The presence of introduced functional groups was confirmed by FTIR. The composition of the surface layers examined by elemental analysis and acid-base titration was shown to be independent from the synthesis temperature. However, the size of the obtained particles depends on the synthesis temperature and, according to photon cross-correlation spectroscopy, can be varied from 50 to 846 nm. The variation of electric charges of N-functional groups was disclosed in obtained nanospheres and attributed to different surface location of these groups and their surrounding with other groups. The sorption of Cu(II) ions by functionalized silicas depends on the concentration of amino groups, which correlates with the isoelectric point values (determined to vary from 8.26 to 9.21). Bifunctional nanoparticles adsorb 99.0 mg/g of methylene blue, compared with 48.0 mg/g by silica sample with only amino groups. The nanospheres, both with and without adsorbed Cu2+, demonstrate reasonable antibacterial activity against S. aureus ATCC 25923, depending on particle concentration in water suspension.

  19. The bifunctional pyruvate decarboxylase/pyruvate ferredoxin oxidoreductase from Thermococcus guaymasensis.

    PubMed

    Eram, Mohammad S; Oduaran, Erica; Ma, Kesen

    2014-01-01

    The hyperthermophilic archaeon Thermococcus guaymasensis produces ethanol as a metabolic end product, and an alcohol dehydrogenase (ADH) catalyzing the reduction of acetaldehyde to ethanol has been purified and characterized. However, the enzyme catalyzing the formation of acetaldehyde has not been identified. In this study an enzyme catalyzing the production of acetaldehyde from pyruvate was purified and characterized from T. guaymasensis under strictly anaerobic conditions. The enzyme had both pyruvate decarboxylase (PDC) and pyruvate ferredoxin oxidoreductase (POR) activities. It was oxygen sensitive, and the optimal temperatures were 85°C and >95°C for the PDC and POR activities, respectively. The purified enzyme had activities of 3.8 ± 0.22 U mg(-1) and 20.2 ± 1.8 U mg(-1), with optimal pH-values of 9.5 and 8.4 for each activity, respectively. Coenzyme A was essential for both activities, although it did not serve as a substrate for the former. Enzyme kinetic parameters were determined separately for each activity. The purified enzyme was a heterotetramer. The sequences of the genes encoding the subunits of the bifunctional PDC/POR were determined. It is predicted that all hyperthermophilic β -keto acids ferredoxin oxidoreductases are bifunctional, catalyzing the activities of nonoxidative and oxidative decarboxylation of the corresponding β -keto acids.

  20. Carbon Nitrogen Nanotubes as Efficient Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions.

    PubMed

    Yadav, Ram Manohar; Wu, Jingjie; Kochandra, Raji; Ma, Lulu; Tiwary, Chandra Sekhar; Ge, Liehui; Ye, Gonglan; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M

    2015-06-10

    Oxygen reduction and evolution reactions are essential for broad range of renewable energy technologies such as fuel cells, metal-air batteries and hydrogen production through water splitting, therefore, tremendous effort has been taken to develop excellent catalysts for these reactions. However, the development of cost-effective and efficient bifunctional catalysts for both reactions still remained a grand challenge. Herein, we report the electrocatalytic investigations of bamboo-shaped carbon nitrogen nanotubes (CNNTs) having different diameter distribution synthesized by liquid chemical vapor deposition technique using different nitrogen containing precursors. These CNNTs are found to be efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. The electrocatalytic activity strongly depends on the nanotube diameter as well as nitrogen functionality type. The higher diameter CNNTs are more favorable for these reactions. The increase in nanotube diameter itself enhances the catalytic activity by lowering the oxygen adsorption energy, better conductivity, and further facilitates the reaction by increasing the percentage of catalytically active nitrogen moieties in CNNTs.

  1. Bifunctional Ag/C3N4.5 composite nanobelts for photocatalysis and antibacterium.

    PubMed

    Lei, Renbo; Jian, Jikang; Zhang, Zhihua; Song, Bo; Wu, Rong

    2016-09-30

    Multiple functions can be achieved in carbon nitride-based composite nanomaterials by tuning their components and structures. Here, we report on a large-scale synthesis of novel bifunctional Ag/C3N4.5 composite nanobelts (CNBs) with efficient photocatalytic and antibacterial activity. The Ag/C3N4.5 CNBs were synthesized in high yield by a two-step route including a homogeneous precipitation process and a subsequent calcination treatment. The structural, morphological, compositional, and spectroscopic characterizations revealed that the Ag/C3N4.5 CNBs are composed of N-deficient melem ultrathin nanobelts and crystalline Ag nanoparticles attached to the surface of the nanobelts with good contact. The band gap of the Ag/C3N4.5 CNBs is determined to be about 3.04 eV. The efficient photocatalytic and antibacterial activities of the composite nanomaterials are verified by testing the degradation of Rhodamine B (RhB) and the inhibition zone to bacterium E. coli. The work provides a facile route to bifunctional carbon nitride-based composites with potential applications in the fields of the environment and biology.

  2. Cell Growth on ("Janus") Density Gradients of Bifunctional Zeolite L Crystals.

    PubMed

    Kehr, Nermin Seda; Motealleh, Andisheh; Schäfer, Andreas H

    2016-12-28

    Nanoparticle density gradients on surfaces have attracted interest as two-dimensional material surfaces that can mimic the complex nano-/microstructure of the native extracellular matrix, including its chemical and physical gradients, and can therefore be used to systematically study cell-material interactions. In this respect, we report the preparation of density gradients made of bifunctional zeolite L crystals on glass surfaces and the effects of the density gradient and biopolymer functionalization of zeolite L crystals on cell adhesion. We also describe how we created "Janus" density gradient surfaces by gradually depositing two different types of zeolite L crystals that were functionalized and loaded with different chemical groups and guest molecules onto the two distinct sides of the same glass substrate. Our results show that more cells adhered on the density gradient of biopolymer-coated zeolites than on uncoated ones. The number of adhered cells increased up to a certain surface coverage of the glass by the zeolite L crystals, but then it decreased beyond the zeolite density at which a higher surface coverage decreased fibroblast cell adhesion and spreading. Additionally, cell experiments showed that cells gradually internalized the guest-molecule-loaded zeolite L crystals from the underlying density gradient containing bifunctional zeolite L crystals.

  3. A modular, bifunctional RNA that integrates itself into a target RNA

    PubMed Central

    Kumar, Roshan M.; Joyce, Gerald F.

    2003-01-01

    Nature often combines independent functional domains to achieve complex function, but this approach has not been extensively explored with artificial enzymes. Here, a group I ribozyme, which can act as an endoribonuclease, was partnered with the R3C ribozyme, which catalyzes the ligation of RNA molecules. The conjoined ribozymes have the potential to perform successive RNA cleavage and joining reactions, resulting in their mutual integration into a target RNA substrate. When simply joined together, however, the ribozymes were unable to achieve this outcome because of inefficient transfer of the substrate between the two catalytic subunits. In vitro evolution was used to optimize the behavior of the conjoined ribozymes, resulting in bifunctional molecules with substantially improved integration activity. The ligase subunit of these molecules was unchanged, whereas the group I subunit acquired several mutations, mostly in peripheral regions. The generation and study of this bifunctional assembly helps shed light on the evolution of modular enzymes and the obstacles that must be overcome in bringing together independent functional domains. These molecules also may be useful as tools for the insertional mutagenesis of target mRNAs. PMID:12913125

  4. Synthesis and characterization of ZnS@Fe3O4 fluorescent-magnetic bifunctional nanospheres

    NASA Astrophysics Data System (ADS)

    Koc, Kenan; Karakus, Baris; Rajar, Kausar; Alveroglu, Esra

    2017-10-01

    Herein, we synthesized and characterized fluorescent and super paramagnetic ZnS@Fe3O4 nanospheres. First, (3-mercaptopropyl) trimethoxysilane (MPS) capped ZnS quantum dots (QDs) and SiO2 coated Fe3O4 nanoparticles were synthesized separately by using solution growth and co-precipitation techniques. After synthesis and characterization of these two nanoparticles, they were conglutinated together in a nano sized sphere. The QDs were attached to the surface of the Fe3O4 nanoparticles by Sisbnd Osbnd Si bonds and so Sisbnd Osbnd Si bonds created a SiO2 network around the nanoparticles during the formation of the ZnS@Fe3O4 nanospheres. The synthesized MPS capped ZnS fluorescent QDs, SiO2 coated magnetite super paramagnetic nanoparticles and ZnS@Fe3O4 fluorescent-magnetic bifunctional nanospheres were characterized by using UV-Vis Absorption Spectroscopy, Fluorescence Spectroscopy, X-ray analysis, Vibrating Sample Magnetometer analysis, Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy, Scanning Electron Microscope and Energy-dispersive X-ray spectroscopy. ZnS@Fe3O4 bifunctional nanospheres were shown to retain the magnetic properties of magnetite, while exhibiting the luminescent optical properties of ZnS nanoparticles. The combination of fluorescent and magnetic behaviors of nano composites make them useful for potential applications in the field of bio-medical and environmental.

  5. Space-Confined Earth-Abundant Bifunctional Electrocatalyst for High-Efficiency Water Splitting.

    PubMed

    Tang, Yanqun; Fang, Xiaoyu; Zhang, Xin; Fernandes, Gina; Yan, Yong; Yan, Dongpeng; Xiang, Xu; He, Jing

    2017-10-12

    Hydrogen generation from water splitting could be an alternative way to meet increasing energy demands while also balancing the impact of energy being supplied by fossil-based fuels. The efficacy of water splitting strongly depends on the performance of electrocatalysts. Herein, we report a unique space-confined earth-abundant electrocatalyst having the bifunctionality of simultaneous hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), leading to high-efficiency water splitting. Outperforming Pt/C or RuO2 catalysts, this mesoscopic, space-confined, bifunctional configuration is constructed from a monolithic zeolitic imidazolate framework@layered double hydroxide (ZIF@LDH) precursor on Ni foam. Such a confinement leads to a high dispersion of ultrafine Co3O4 nanoparticles within the N-doped carbon matrix by temperature-dependent calcination of the ZIF@LDH. We demonstrate that the OER has an overpotential of 318 mV at a current density of 10 mA cm(-2), while that of HER is -106 mV @ -10 mA cm(-2). The voltage applied to a two-electrode cell for overall water splitting is 1.59 V to achieve a stable current density of 10 mA cm(-2) while using the monolithic catalyst as both the anode and the cathode. It is anticipated that our space-confined method, which focuses on earth-abundant elements with structural integrity, may provide a novel and economically sound strategy for practical energy conversion applications.

  6. Highly Efficient and Robust Nickel Phosphides as Bifunctional Electrocatalysts for Overall Water-Splitting.

    PubMed

    Li, Jiayuan; Li, Jing; Zhou, Xuemei; Xia, Zhaoming; Gao, Wei; Ma, Yuanyuan; Qu, Yongquan

    2016-05-04

    To search for the efficient non-noble metal based and/or earth-abundant electrocatalysts for overall water-splitting is critical to promote the clean-energy technologies for hydrogen economy. Herein, we report nickel phosphide (NixPy) catalysts with the controllable phases as the efficient bifunctional catalysts for water electrolysis. The phases of NixPy were determined by the temperatures of the solid-phase reaction between the ultrathin Ni(OH)2 plates and NaH2PO2·H2O. The NixPy with the richest Ni5P4 phase synthesized at 325 °C (NixPy-325) delivered efficient and robust catalytic performance for hydrogen evolution reaction (HER) in the electrolytes with a wide pH range. The NixPy-325 catalysts also exhibited a remarkable performance for oxygen evolution reaction (OER) in a strong alkaline electrolyte (1.0 M KOH) due to the formation of surface NiOOH species. Furthermore, the bifunctional NixPy-325 catalysts enabled a highly performed overall water-splitting with ∼100% Faradaic efficiency in 1.0 M KOH electrolyte, in which a low applied external potential of 1.57 V led to a stabilized catalytic current density of 10 mA/cm(2) over 60 h.

  7. Conversion of cellulose into isosorbide over bifunctional ruthenium nanoparticles supported on niobium phosphate.

    PubMed

    Sun, Peng; Long, Xiangdong; He, Hao; Xia, Chungu; Li, Fuwei

    2013-11-01

    Considerable effort has been applied to the development of new processes and catalysts for cellulose conversion to valuable platform chemicals. Isosorbide is among the most interesting products as it can be applied as a monomer and building block for the future replacement of fossil resource-based products. A sustainable method of isosorbide production from cellulose is presented in this work. The strategy relies on a bifunctional Ru catalyst supported on mesoporous niobium phosphate in a H2 atmosphere under pressure without further addition of any soluble acid. Over 50 % yield of isosorbide with almost 100 % cellulose conversion can be obtained in 1 h. The large surface area, pore size, and strong acidity of mesoporous niobium phosphate promote the hydrolysis of cellulose and dehydration of sorbitol; additionally, the appropriate size of the supported Ru nanoparticles avoids unnecessary hydrogenolysis of sorbitol. Under a cellulose/catalyst mass ratio of 43.3, the present bifunctional catalyst could be stably used up to six times, with its mesoporous structure well preserved and without detectable Ru leaching into the reaction solution.

  8. A bifunctional spin label reports the structural topology of phospholamban in magnetically-aligned bicelles.

    PubMed

    McCaffrey, Jesse E; James, Zachary M; Svensson, Bengt; Binder, Benjamin P; Thomas, David D

    2016-01-01

    We have applied a bifunctional spin label and EPR spectroscopy to determine membrane protein structural topology in magnetically-aligned bicelles, using monomeric phospholamban (PLB) as a model system. Bicelles are a powerful tool for studying membrane proteins by NMR and EPR spectroscopies, where magnetic alignment yields topological constraints by resolving the anisotropic spectral properties of nuclear and electron spins. However, EPR bicelle studies are often hindered by the rotational mobility of monofunctional Cys-linked spin labels, which obscures their orientation relative to the protein backbone. The rigid and stereospecific TOAC label provides high orientational sensitivity but must be introduced via solid-phase peptide synthesis, precluding its use in large proteins. Here we show that a bifunctional methanethiosulfonate spin label attaches rigidly and stereospecifically to Cys residues at i and i+4 positions along PLB's transmembrane helix, thus providing orientational resolution similar to that of TOAC, while being applicable to larger membrane proteins for which synthesis is impractical. Computational modeling and comparison with NMR data shows that these EPR experiments provide accurate information about helix tilt relative to the membrane normal, thus establishing a robust method for determining structural topology in large membrane proteins with a substantial advantage in sensitivity over NMR.

  9. Pushing the Theoretical Limit of Li-CFx Batteries: A Tale of Bi-functional Electrolyte

    SciTech Connect

    Rangasamy, Ezhiylmurugan; Li, Juchuan; Sahu, Gayatri; Dudney, Nancy J; Liang, Chengdu

    2014-01-01

    In a typical battery, electrodes deliver capacities less or equal the theoretical maxima of the electrode materials.1 The inert electrolyte functions solely as the ionic conductor without contribution to the cell capacity because of its distinct mono-function in the concept of conventional batteries. Here we demonstrate that the most energy-dense Li-CFx battery2 delivers a capacity exceeding the theoretical maximum of CFx with a solid electrolyte of Li3PS4 (LPS) that has dual functions: as the inert electrolyte at the anode and the active component at the cathode. Such a bi-functional electrolyte reconciles both inert and active characteristics through a synergistic discharge mechanism of CFx and LPS. Li3PS4 is known as an inactive solid electrolyte with a broad electrochemical window over 5 V.3 The synergy at the cathode is through LiF, the discharge product of CFx, which activates the electrochemical discharge of LPS at a close electrochemical potential of CFx. Therefore, the solid-state Li-CFx batteries output 126.6% energy beyond their theoretic limits without compromising the stability of the cell voltage. The extra energy comes from the electrochemical discharge of LPS, the inert electrolyte. This bi-functional electrolyte revolutionizes the concept of conventional batteries and opens a new avenue for the design of batteries with an unprecedentedly high energy density.

  10. Determining the Origin of Half-bandgap-voltage Electroluminescence in Bifunctional Rubrene/C60 Devices

    NASA Astrophysics Data System (ADS)

    Chen, Qiusong; Jia, Weiyao; Chen, Lixiang; Yuan, De; Zou, Yue; Xiong, Zuhong

    2016-05-01

    Lowering the driving voltage of organic light-emitting diodes (OLEDs) is an important approach to reduce their energy consumption. We have fabricated a series of bifunctional devices (OLEDs and photovoltaics) using rubrene and fullerene (C60) as the active layer, in which the electroluminescence threshold voltage(~1.1 V) was half the value of the bandgap of rubrene. Magneto-electroluminescence (MEL) response of planner heterojunction diodes exhibited a small increase in response to a low magnetic field strength (<20 mT) however, a very large decay was observed at a high magnetic field strength (>20 mT). When a hole-transport layer with a low mobility was included in these devices, the MEL response reversed in shape, and simultaneously, the EL threshold voltage became larger than the bandgap voltage. When bulk heterojunction device was examined, the amplitude of MEL curves presented an anomalous voltage-dependence. Following an analysis of the MEL responses of these devices, we proposed that the EL of half-bandgap-voltage device originated from bimolecular triplet-triplet annihilation in the rubrene film, rather than from singlet excitons that formed via an interface auger recombination. This work provides critical insight into the mechanisms of OLED emission and will help advance the applications of bifunctional devices.

  11. Peroxisomal D-bifunctional protein deficiency: First case reports from Slovakia.

    PubMed

    Konkoľová, J; Petrovič, R; Chandoga, J; Repiský, M; Zelinková, H; Kršiaková, J; Kolníková, M; Kantarská, D; Šutovský, S; Böhmer, D

    2015-08-15

    D-bifunctional protein deficiency (#OMIM 261515) is a rare autosomal recessive hereditary metabolic disorder causing severe clinical and biochemical abnormalities that are usually fatal in the course of the first years of life. This disease is classified as single enzyme peroxisomal disorder affecting the β-oxidation pathway in this compartment. In this paper we present a full overview of the clinical presentation, magnetic resonance imaging, biochemical and molecular data of two Slovak D-bifunctional protein deficient patients. In the clinical presentation of both patients severe generalized hypotonia, depression of neonatal reflexes, craniofacial dysmorphism and seizures dominated starting from the second day of life. In both patients, who died up to two years of life, we found elevated plasma levels of very long chain fatty acids and we identified the presence of causative mutations in the HSD17B4 gene. In the first case, we found the homozygous mutation c.46G>A, which is responsible for a defect in the dehydrogenase domain. In the second patient, the heterozygous mutations c.1369A>G and c.1516C>T were present and functionally they are related to the hydratase domain of the protein. This combination of mutations in the second patient is very rare and has not been reported until now. The presence of mutations was examined in all family members, and the resulting data were successfully utilized for prenatal diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Peroxisomal bifunctional protein deficiency revisited: resolution of its true enzymatic and molecular basis.

    PubMed Central

    van Grunsven, E G; van Berkel, E; Mooijer, P A; Watkins, P A; Moser, H W; Suzuki, Y; Jiang, L L; Hashimoto, T; Hoefler, G; Adamski, J; Wanders, R J

    1999-01-01

    In the past few years, many patients have been described who have a defect of unknown origin in the peroxisomal beta-oxidation pathway. Complementation analysis has been done by various groups to establish the extent of the genetic heterogeneity among the patients. These studies were based on the use of two established cell lines, one with a deficiency of acyl-CoA oxidase and one with a deficiency of l-bifunctional protein (l-BP), and they showed that most patients belong to the l-BP-deficient group. However, molecular analysis of the cDNA encoding l-BP in patients failed to show any mutations. The recent identification of a new d-specific bifunctional protein (d-BP) prompted us to reinvestigate the original patient with presumed l-BP deficiency. In a collaborative effort, we have now found that the true defect in this patient is at the level of the d-BP and not at the level of the l-BP. Our results suggest that most, if not all, patients whose condition has been diagnosed as l-BP are, in fact, d-BP deficient. We tested this hypothesis in nine patients whose condition was diagnosed as l-BP deficiency on the basis of complementation analysis and found clear-cut mutations in the d-BP cDNA from all patients. PMID:9915948

  13. The Bifunctional Pyruvate Decarboxylase/Pyruvate Ferredoxin Oxidoreductase from Thermococcus guaymasensis

    PubMed Central

    2014-01-01

    The hyperthermophilic archaeon Thermococcus guaymasensis produces ethanol as a metabolic end product, and an alcohol dehydrogenase (ADH) catalyzing the reduction of acetaldehyde to ethanol has been purified and characterized. However, the enzyme catalyzing the formation of acetaldehyde has not been identified. In this study an enzyme catalyzing the production of acetaldehyde from pyruvate was purified and characterized from T. guaymasensis under strictly anaerobic conditions. The enzyme had both pyruvate decarboxylase (PDC) and pyruvate ferredoxin oxidoreductase (POR) activities. It was oxygen sensitive, and the optimal temperatures were 85°C and >95°C for the PDC and POR activities, respectively. The purified enzyme had activities of 3.8 ± 0.22 U mg−1 and 20.2 ± 1.8 U mg−1, with optimal pH-values of 9.5 and 8.4 for each activity, respectively. Coenzyme A was essential for both activities, although it did not serve as a substrate for the former. Enzyme kinetic parameters were determined separately for each activity. The purified enzyme was a heterotetramer. The sequences of the genes encoding the subunits of the bifunctional PDC/POR were determined. It is predicted that all hyperthermophilic β-keto acids ferredoxin oxidoreductases are bifunctional, catalyzing the activities of nonoxidative and oxidative decarboxylation of the corresponding β-keto acids. PMID:24982594

  14. Identification and functional analysis of bifunctional ent-kaurene synthase from the moss Physcomitrella patens.

    PubMed

    Hayashi, Ken-Ichiro; Kawaide, Hiroshi; Notomi, Miho; Sakigi, Yuka; Matsuo, Akihiko; Nozaki, Hiroshi

    2006-11-13

    ent-Kaurene is the key intermediate in biosynthesis of gibberellins (GAs), plant hormones. In higher plants, ent-kaurene is synthesized successively by copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS) from geranylgeranyl diphosphate (GGDP). On the other hand, fungal ent-kaurene synthases are bifunctional cyclases with both CPS and KS activity in a single polypeptide. The moss Physcomitrella patens is a model organism for the study of genetics and development in an early land plant. We identified ent-kaurene synthase (PpCPS/KS) from P. patens and analyzed its function. PpCPS/KS cDNA encodes a 101-kDa polypeptide, and shows high similarity with CPSs and abietadiene synthase from higher plants. PpCPS/KS is a bifunctional cyclase and, like fungal CPS/KS, directly synthesizes the ent-kaurene skeleton from GGDP. PpCPS/KS has two aspartate-rich DVDD and DDYFD motifs observed in CPS and KS, respectively. The mutational analysis of two conserved motifs in PpCPS/KS indicated that the DVDD motif is responsible for CPS activity (GGDP to CDP) and the DDYFD motif for KS activity (CDP to ent-kaurene and ent-16alpha-hydroxykaurene).

  15. Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces.

    PubMed

    Choi, Chang-Ho; David, Michele; Gao, Zhongwei; Chang, Alvin; Allen, Marshall; Wang, Hailei; Chang, Chih-hung

    2016-04-01

    Bubble nucleation control, growth and departure dynamics is important in understanding boiling phenomena and enhancing nucleate boiling heat transfer performance. We report a novel bi-functional heterogeneous surface structure that is capable of tuning bubble nucleation, growth and departure dynamics. For the fabrication of the surface, hydrophobic polymer dot arrays are first printed on a substrate, followed by hydrophilic ZnO nanostructure deposition via microreactor-assisted nanomaterial deposition (MAND) processing. Wettability contrast between the hydrophobic polymer dot arrays and aqueous ZnO solution allows for the fabrication of heterogeneous surfaces with distinct wettability regions. Heterogeneous surfaces with various configurations were fabricated and their bubble dynamics were examined at elevated heat flux, revealing various nucleate boiling phenomena. In particular, aligned and patterned bubbles with a tunable departure frequency and diameter were demonstrated in a boiling experiment for the first time. Taking advantage of our fabrication method, a 6 inch wafer size heterogeneous surface was prepared. Pool boiling experiments were also performed to demonstrate a heat flux enhancement up to 3X at the same surface superheat using bi-functional surfaces, compared to a bare stainless steel surface.

  16. Rational Design and Generation of a Bimodal Bifunctional Ligand for Antibody-Targeted Radiation Cancer Therapy

    PubMed Central

    Chong, Hyun-Soon; Ma, Xiang; Le, Thien; Kwamena, Baidoo; Milenic, Diane E.; Brady, Erik D.; Song, Hyun A.; Brechbiel, Martin W.

    2008-01-01

    An antibody-targeted radiation therapy (radioimmunotherapy, RIT) employs a bifunctional ligand that can effectively hold a cytotoxic metal with clinically acceptable complexation kinetics and stability while being attached to a tumor-specific antibody. Clinical exploration of the therapeutic potential of RIT has been challenged by the absence of adequate ligand, a critical component for enhancing the efficacy of the cancer therapy. To address this deficiency, the bifunctional ligand C-NETA in a unique structural class possessing both a macrocyclic cavity and a flexible acyclic moiety was designed. The practical, reproducible, and readily scalable synthetic route to C-NETA was developed, and its potential as the chelator of 212Bi, 213Bi, and 177Lu for RIT was evaluated in vitro and in vivo. C-NETA rapidly binds both Lu(III) and Bi(III), and the respective metal complexes remain extremely stable in serum for 14 days. 177Lu—C-NETA and 205/6Bi—C-NETA possess an excellent or acceptable in vivo biodistribution profile. PMID:18062661

  17. Bifunctional chimeric fusion proteins engineered for DNA delivery: Optimization of the protein to DNA ratio

    PubMed Central

    Gao, Shan; Simon, Melissa J.; Morrison, Barclay; Banta, Scott

    2009-01-01

    Background Cell penetrating peptides (CPPs) have been used to deliver nucleotide-based therapeutics to cells, but this approach has produced mixed results. Ionic interactions and covalent bonds between the CPPs and the cargos may inhibit the effectiveness of the CPPs or interfere with the bioactivity of the cargos. Methods We have created a bifunctional chimeric protein that binds DNA using the p50 domain of the NF-κB transcription factor and is functionalized for delivery with the TAT CPP. The green fluorescent protein (GFP) has been incorporated for tracking delivery. The new chimeric protein, p50-GFP-TAT, was compared to p50-GFP, GFP-TAT and GFP as controls for the ability to transduce PC12 cells with and without oligonucleotide cargos. Results The p50-GFP-TAT construct can deliver 30bp and 293bp oligonucleotides to PC12 cells with an optimal ratio of 1.89 protein molecules per base pair of DNA length. This correlation was validated through the delivery of a fluorescent protein transgene encoded in a plasmid to PC12 cells. Conclusion Self-assembling CPP-based bifunctional fusion proteins can be engineered for the non-viral delivery of nucleotide-based cargos to mammalian cells. General significance This work represents an important step forward in the rational design of protein-based systems for the delivery of macromolecular cargos. PMID:19402206

  18. Hydrophobic starch nanocrystals preparations through crosslinking modification using citric acid.

    PubMed

    Zhou, Jiang; Tong, Jin; Su, Xingguang; Ren, Lili

    2016-10-01

    Biodegradable starch nanocrystals prepared by an acid treatment process were modified through crosslinking modification using citric acid as reactant by a dry reaction method. The occurrence of crosslinking modification was evaluated by Fourier transform infrared spectroscopy and swelling degree. X-ray diffraction, wettability tests and contact angle measurements were used to characterize the modified starch nanocrystals. It was found that the crosslinked starch nanocrystals displayed a higher affinity for low polar solvents such as dichloromethane. The surface of starch nanocrystals became more roughness after crosslinking modification with citric acid and the size decreased as revealed by scanning electron microscopy and dynamic light scattering results. XRD analysis showed that the crystalline structure of starch nanocrystals was basically not changed after the crosslinking modification with shorter heating time. The resulting hydrophobic starch nanocrystals are versatile precursors to the development of nanocomposites. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Cross-linked polyvinyl alcohol films as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1982-01-01

    Cross-linking methods were investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. The pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide - zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.

  20. Elastic response of filamentous networks with compliant crosslinks.

    PubMed

    Sharma, A; Sheinman, M; Heidemann, K M; MacKintosh, F C

    2013-11-01

    Experiments have shown that elasticity of disordered filamentous networks with compliant crosslinks is very different from networks with rigid crosslinks. Here, we model and analyze filamentous networks as a collection of randomly oriented rigid filaments connected to each other by flexible crosslinks that are modeled as wormlike chains. For relatively large extensions we allow for enthalpic stretching of crosslink backbones. We show that for sufficiently high crosslink density, the network linear elastic response is affine on the scale of the filaments' length. The nonlinear regime can become highly nonaffine and is characterized by a divergence of the elastic modulus at finite strain. In contrast to the prior predictions, we do not find an asymptotic regime in which the differential elastic modulus scales linearly with the stress, although an approximate linear dependence can be seen in a transition from entropic to enthalpic regimes. We discuss our results in light of recent experiments.

  1. Cross-linked polyvinyl alcohol and method of making same

    NASA Technical Reports Server (NTRS)

    Hsu, L. C.; Sheibley, D. W.; Philipp, W. H. (Inventor)

    1981-01-01

    A film-forming polyvinyl alcohol polymer is mixed with a polyaldehyde-polysaccharide cross-linking agent having at least two monosaccharide units and a plurality of aldehyde groups per molecule, perferably an average of at least one aldehyde group per monosaccharide units. The cross-linking agent, such as a polydialdehyde starch, is used in an amount of about 2.5 to 20% of the theoretical amount required to cross-link all of the available hydroxyl groups of the polyvinyl alcohol polymer. Reaction between the polymer and cross-linking agent is effected in aqueous acidic solution to produce the cross-linked polymer. The polymer product has low electrical resistivity and other properties rendering it suitable for making separators for alkaline batteries.

  2. Cross-linked polyvinyl alcohol films as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1983-01-01

    Cross-linking methods have been investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. Then pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide-zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.

  3. Fabrication of polytetrafluoroethylene/carbon fiber composites using radiation crosslinking

    NASA Astrophysics Data System (ADS)

    Oshima, Akihiro; Udagawa, Akira; Tanaka, Shigeru

    2001-07-01

    A fabrication method for fiber-reinforced plastic (FRP) composites based on carbon fibers and polytetrafluoroethylene (PTFE) which was crosslinked by electron beam (EB) irradiation under specific conditions was studied. Though the fabricated composite showed high mechanical properties compared with a ready-made PTFE composite (non-crosslinked PTFE with 5˜20 wt% filler), mechanical properties of laminated panels were a bit poor compared with those of usual FRP. It was found that the toughness of the PTFE matrix is poor in the composite. On the other hand, the one-ply sheet of carbon fibers and crosslinked PTFE composite showed good mechanical properties for sheet-shape materials. The wettability of the obtained crosslinked PTFE composite is hardly changed by crosslinking and reinforcement.

  4. Xwalk: computing and visualizing distances in cross-linking experiments.

    PubMed

    Kahraman, Abdullah; Malmström, Lars; Aebersold, Ruedi

    2011-08-01

    Chemical cross-linking of proteins or protein complexes and the mass spectrometry-based localization of the cross-linked amino acids in peptide sequences is a powerful method for generating distance restraints on the substrate's topology. Here, we introduce the algorithm Xwalk for predicting and validating these cross-links on existing protein structures. Xwalk calculates and displays non-linear distances between chemically cross-linked amino acids on protein surfaces, while mimicking the flexibility and non-linearity of cross-linker molecules. It returns a 'solvent accessible surface distance', which corresponds to the length of the shortest path between two amino acids, where the path leads through solvent occupied space without penetrating the protein surface. Xwalk is freely available as a web server or stand-alone JAVA application at http://www.xwalk.org.

  5. Crosslinking-property relationships in PMR polyimide composites. I

    NASA Technical Reports Server (NTRS)

    Pater, R. H.; Whitley, K.; Morgan, C.; Chang, A.

    1987-01-01

    The thermooxidatively-induced crosslinking/ physical and mechanical property relationships of graphite fiber-reinforced PMR polyimide-matrix composites were studied during isothermal exposure of the composite specimens at 288 C in air for periods of up to 5000 hr. The crosslinking densities due to this treatment were estimated on the basis of the kinetic theory of rubber elasticity and shifts in the glass transition temperature T(g). Several linear relationships are noted between crosslink density and physical and mechanical properties: T(g), initial weight loss, and elevated temperature interlaminar shear strength increase with crosslink density, while initial moisture absorption decreases. After achieving the highest crosslink density, several of the composite properties begin to decrease from their maximum values.

  6. Matrix Crosslinking Forces Tumor Progression by Enhancing Integrin signaling

    PubMed Central

    Levental, Kandice R.; Yu, Hongmei; Kass, Laura; Lakins, Johnathon N.; Egeblad, Mikala; Erler, Janine T.; Fong, Sheri F.T.; Csiszar, Katalin; Giaccia, Amato; Weninger, Wolfgang; Yamauchi, Mitsuo; Gasser, David L.; Weaver, Valerie M.

    2009-01-01

    Summary Tumors are characterized by extracellular matrix (ECM) remodeling and stiffening. The importance of ECM remodeling to cancer is appreciated; the relevance of stiffening is less clear. We found that breast tumorigenesis is accompanied by collagen crosslinking, ECM stiffening and increased focal adhesions. Inducing collagen crosslinking stiffened the ECM, promoted focal adhesions, enhanced PI3 Kinase (PI3K) activity, and induced the invasion of an oncogene-initiated epithelium. Inhibiting integrin signaling repressed the invasion of a premalignant epithelium into a stiffened, crosslinked ECM, and forced integrin clustering promoted focal adhesions, enhanced PI3K signaling and induced the invasion of a premalignant epithelium. Consistently, reducing lysyl oxidase-mediated collagen crosslinking prevented MMTV-Neu-induced fibrosis, decreased focal adhesions and PI3K activity, impeded malignancy and lowered tumor incidence. These data show how collagen crosslinking can modulate tissue fibrosis and stiffness to force focal adhesions, growth factor signaling and breast malignancy. PMID:19931152

  7. Effects of Counterface Roughness and Conformity on the Tribological Performance of Crosslinked and Non-crosslinked Medical-Grade Ultra-High Molecular Weight Polyethylene

    DTIC Science & Technology

    2002-04-01

    Tribological Performance of Crosslinked and Non-crosslinked Medical-Grade Ultra-High Molecular Weight Polyethylene DISTRIBUTION: Approved for public...Conformity on the Tribological Performance of Crosslinked and Non-crosslinked Medical-Grade Ultra-High Molecular Weight Polyethylene A. D. Chawan,’ A...Berkeley, CA 94720 ABSTRACT The tribological behavior of crosslinked ultra-high molecular weight polyethylene (UHMWPE) was compared to that of non

  8. Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions.

    PubMed

    Su, Yunhe; Zhu, Yihua; Jiang, Hongliang; Shen, Jianhua; Yang, Xiaoling; Zou, Wenjian; Chen, Jianding; Li, Chunzhong

    2014-12-21

    Cobalt based catalysts are promising bifunctional electrocatalysts for both oxygen reduction and oxygen evolution reactions (ORR and OER) in unitized regenerative fuel cells (URFCs) operating with alkaline electrolytes. Here we report a hybrid composite of cobalt nanoparticles embedded in nitrogen-doped carbon (Co/N-C) via a solvothermal carbonization strategy. With the synergistic effect arising from the N-doped carbon and cobalt nanoparticles in the composite, the Co/N-C hybrid catalyst exhibits highly efficient bifunctional catalytic activity and excellent stability toward both ORR and OER. The ΔE (oxygen electrode activity parameter for judging the overall electrocatalytic activity of a bifunctional electrocatalyst) value for Co/N-C is 0.859 V, which is smaller than those of Pt/C and most of the non-precious metal catalysts in previous studies. Furthermore, the Co/N-C composite also shows better bifunctional catalytic activity than its oxidative counterparts, which could be attributed to the high specific surface area and the efficient charge transfer ability of the composite, as well as the good synergistic effect between N-doped carbon and the Co nanoparticles in the Co/N-C composite.

  9. Long-Term Persistence of Bi-functionality Contributes to the Robustness of Microbial Life through Exaptation

    PubMed Central

    Sterner, Reinhard; Merkl, Rainer

    2016-01-01

    Modern enzymes are highly optimized biocatalysts that process their substrates with extreme efficiency. Many enzymes catalyze more than one reaction; however, the persistence of such ambiguities, their consequences and evolutionary causes are largely unknown. As a paradigmatic case, we study the history of bi-functionality for a time span of approximately two billion years for the sugar isomerase HisA from histidine biosynthesis. To look back in time, we computationally reconstructed and experimentally characterized three HisA predecessors. We show that these ancient enzymes catalyze not only the HisA reaction but also the isomerization of a similar substrate, which is commonly processed by the isomerase TrpF in tryptophan biosynthesis. Moreover, we found that three modern-day HisA enzymes from Proteobacteria and Thermotogae also possess low TrpF activity. We conclude that this bi-functionality was conserved for at least two billion years, most likely without any evolutionary pressure. Although not actively selected for, this trait can become advantageous in the case of a gene loss. Such exaptation is exemplified by the Actinobacteria that have lost the trpF gene but possess the bi-functional HisA homolog PriA, which adopts the roles of both HisA and TrpF. Our findings demonstrate that bi-functionality can perpetuate in the absence of selection for very long time-spans. PMID:26824644

  10. A dramatic synergistic effect of a flexible achiral linker on a rigid chiral cis-1,2-diamine bifunctional organocatalyst.

    PubMed

    Matsunaga, Hirofumi; Tajima, Daisuke; Kawauchi, Tetsuro; Yasuyama, Takuro; Ando, Shin; Ishizuka, Tadao

    2017-04-05

    The combination of a "rigid" chiral bicyclic cis-1,2-diamine skeleton with steric bulkiness and a "flexible" achiral linker was newly designed as a bifunctional organocatalyst framework and it showed excellent catalytic activity of up to 0.05 mol%, accompanied by the reversal of enantioselection depending on the position of the linker, in an amine-thiourea organocatalyzed asymmetric Michael reaction.

  11. Self-Supported 3D PdCu Alloy Nanosheets as a Bifunctional Catalyst for Electrochemical Reforming of Ethanol.

    PubMed

    Zhao, Xiaojing; Dai, Lei; Qin, Qing; Pei, Fei; Hu, Chengyi; Zheng, Nanfeng

    2017-03-01

    3D PdCu alloy nanosheets exhibit enhanced electrocatalytic activity toward hydrogen evolution reaction and ethanol oxidation reaction in alkaline media. Simultaneous hydrogen and acetate production via a solar-powered cell for ethanol reforming has been fabricated using the nanosheets as bifunctional electrocatalysts. The device is promising for the production of both hydrogen and value-added chemicals using renewable energy.

  12. Dual actions of a novel bifunctional compound to lower glucose in mice with diet-induced insulin resistance.

    PubMed

    Chen, Katherine; Jih, Alice; Kavaler, Sarah T; Lagakos, William S; Oh, Dayoung; Watkins, Steven M; Kim, Jane J

    2015-08-01

    Docosahexaenoic acid (DHA 22:6n-3) and salicylate are both known to exert anti-inflammatory effects. This study investigated the effects of a novel bifunctional drug compound consisting of DHA and salicylate linked together by a small molecule that is stable in plasma but hydrolyzed in the cytoplasm. The components of the bifunctional compound acted synergistically to reduce inflammation mediated via nuclear factor κB in cultured macrophages. Notably, oral administration of the bifunctional compound acted in two distinct ways to mitigate hyperglycemia in high-fat diet-induced insulin resistance. In mice with diet-induced obesity, the compound lowered blood glucose by reducing hepatic insulin resistance. It also had an immediate glucose-lowering effect that was secondary to enhanced glucagon-like peptide-1 (GLP-1) secretion and abrogated by the administration of exendin(9-39), a GLP-1 receptor antagonist. These results suggest that the bifunctional compound could be an effective treatment for individuals with type 2 diabetes and insulin resistance. This strategy could also be employed in other disease conditions characterized by chronic inflammation.

  13. Long-Term Persistence of Bi-functionality Contributes to the Robustness of Microbial Life through Exaptation.

    PubMed

    Plach, Maximilian G; Reisinger, Bernd; Sterner, Reinhard; Merkl, Rainer

    2016-01-01

    Modern enzymes are highly optimized biocatalysts that process their substrates with extreme efficiency. Many enzymes catalyze more than one reaction; however, the persistence of such ambiguities, their consequences and evolutionary causes are largely unknown. As a paradigmatic case, we study the history of bi-functionality for a time span of approximately two billion years for the sugar isomerase HisA from histidine biosynthesis. To look back in time, we computationally reconstructed and experimentally characterized three HisA predecessors. We show that these ancient enzymes catalyze not only the HisA reaction but also the isomerization of a similar substrate, which is commonly processed by the isomerase TrpF in tryptophan biosynthesis. Moreover, we found that three modern-day HisA enzymes from Proteobacteria and Thermotogae also possess low TrpF activity. We conclude that this bi-functionality was conserved for at least two billion years, most likely without any evolutionary pressure. Although not actively selected for, this trait can become advantageous in the case of a gene loss. Such exaptation is exemplified by the Actinobacteria that have lost the trpF gene but possess the bi-functional HisA homolog PriA, which adopts the roles of both HisA and TrpF. Our findings demonstrate that bi-functionality can perpetuate in the absence of selection for very long time-spans.

  14. Enantioselective Friedel-Crafts reactions between phenols and N-tosylaldimines catalyzed by a leucine-derived bifunctional catalyst.

    PubMed

    Li, Guo-Xing; Qu, Jin

    2012-06-04

    Enantioselective Friedel-Crafts reactions between phenols and N-tosylaldimines were developed using a bifunctional catalyst readily prepared from L-leucine. The chiral benzylic amine products were obtained in high yields (up to 96% yield) and good to high enantiomeric excesses (up to 95% ee).

  15. Pyrrolidinyl-sulfamide derivatives as a new class of bifunctional organocatalysts for direct asymmetric Michael addition of cyclohexanone to nitroalkenes.

    PubMed

    Chen, Jia-Rong; Fu, Liang; Zou, You-Quan; Chang, Ning-Jie; Rong, Jian; Xiao, Wen-Jing

    2011-07-21

    A series of chiral pyrrolidinyl-sulfamide derivatives have been identified as efficient bifunctional organocatalysts for the direct Michael addition of cyclohexanone to a wide range of nitroalkenes. The desired Michael adducts were obtained in high chemical yields and excellent stereoselectivities (up to 99/1 dr and 95% ee).

  16. Asymmetric Michael addition of ketones to alkylidene malonates and allylidene malonates via enamine-metal Lewis acid bifunctional catalysis.

    PubMed

    Liu, Lu; Sarkisian, Ryan; Xu, Zhenghu; Wang, Hong

    2012-09-07

    Novel enamine-metal Lewis acid bifunctional catalysts were successfully applied to the asymmetric Michael addition of ketones to alkylidene malonates, offering excellent stereoselectivity (up to >99% ee and >99:1 dr). The asymmetric Michael addition of ketones to allylidene malonates was also achieved.

  17. Dual actions of a novel bifunctional compound to lower glucose in mice with diet-induced insulin resistance

    PubMed Central

    Chen, Katherine; Jih, Alice; Kavaler, Sarah T.; Lagakos, William S.; Oh, Dayoung; Watkins, Steven M.

    2015-01-01

    Docosahexaenoic acid (DHA 22:6n-3) and salicylate are both known to exert anti-inflammatory effects. This study investigated the effects of a novel bifunctional drug compound consisting of DHA and salicylate linked together by a small molecule that is stable in plasma but hydrolyzed in the cytoplasm. The components of the bifunctional compound acted synergistically to reduce inflammation mediated via nuclear factor κB in cultured macrophages. Notably, oral administration of the bifunctional compound acted in two distinct ways to mitigate hyperglycemia in high-fat diet-induced insulin resistance. In mice with diet-induced obesity, the compound lowered blood glucose by reducing hepatic insulin resistance. It also had an immediate glucose-lowering effect that was secondary to enhanced glucagon-like peptide-1 (GLP-1) secretion and abrogated by the administration of exendin(9–39), a GLP-1 receptor antagonist. These results suggest that the bifunctional compound could be an effective treatment for individuals with type 2 diabetes and insulin resistance. This strategy could also be employed in other disease conditions characterized by chronic inflammation. PMID:26058862

  18. Dynamic assembly of a zinc-templated bifunctional organocatalyst in the presence of water for the asymmetric aldol reaction.

    PubMed

    Serra-Pont, Anna; Alfonso, Ignacio; Jimeno, Ciril; Solà, Jordi

    2015-12-21

    A bifunctional organocatalytic system consisting of simple pyridine ligands containing separate catalytic functionalities was assembled using ZnCl2. This novel metal-templated catalyst furnished high yields and stereoselectivities towards the aldol reaction. The addition of controlled amounts of water turned out to be crucial to dissolve the system and achieve optimal results.

  19. Adsorptive removal of Congo red from aqueous solutions using crosslinked chitosan and crosslinked chitosan immobilized bentonite.

    PubMed

    Huang, Ruihua; Zhang, Lujie; Hu, Pan; Wang, Jing

    2016-05-01

    Batch experiments were executed to investigate the removal of Congo red (CR) from aqueous solutions using the crosslinked chitosan (CCS) and crosslinked chitosan immobilized bentonite (CCS/BT composite). The CCS and CCS/BT composite were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) techniques. The removal of CR was examined as a function of pH value of CR solution, contact time, and inorganic sodium salt and ionic strength. The equilibrium data of CCS and CCS/BT composite agreed well with the Langmuir model. The adsorption capacities of CCS and CCS/BT composite at 298K and natural pH value were 405 and 500 mg/g, respectively. The kinetic data correlated well with the pseudo-second-order model. The adsorption of CR onto the CCS was mainly controlled by chemisorption while the adsorption of CR onto the CCS/BT composite was controlled by chemisorption and the electrostatic attraction.

  20. Review stapling peptides using cysteine crosslinking.

    PubMed

    Fairlie, David P; Dantas de Araujo, Aline

    2016-11-01

    Stapled peptides are an emerging class of cyclic peptide molecules with enhanced biophysical properties such as conformational and proteolytic stability, cellular uptake and elevated binding affinity and specificity for their biological targets. Among the limited number of chemistries available for their synthesis, the cysteine-based stapling strategy has received considerable development in the last few years driven by facile access from cysteine-functionalized peptide precursors. Here we present some recent advances in peptide and protein stapling where the side-chains of cysteine residues are covalently connected with a range of different crosslinkers affording bisthioether macrocyclic peptides of varying topology and biophysical properties. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 843-852, 2016.

  1. Corneal cross-linking treatment of keratoconus

    PubMed Central

    Farjadnia, Mahgol; Naderan, Mohammad

    2015-01-01

    Keratoconus as the most common cause of ectasia is one of the leading cause of corneal transplants worldwide. The current available therapies do not modify the underlying pathogenesis of the disease, and none of the available approaches but corneal transplant hinder the ongoing ectasia. Several studies document Crosslink defect between collagen fibrils in the pathogenesis of keratoconus. Collagen cross link is a relatively new approach that with the application of the riboflavin and ultraviolet A, new covalent bands reform. Subjective and objective results following this method seem to be promising. Endothelial damage besides other deep structural injury, which is the major concern of this technique have not yet been reported, when applying the standard method. PMID:26622134

  2. Mechanisms of DNA-protein crosslink repair.

    PubMed

    Stingele, Julian; Bellelli, Roberto; Boulton, Simon J

    2017-09-01

    Covalent DNA-protein crosslinks (DPCs, also known as protein adducts) of topoisomerases and other proteins with DNA are highly toxic DNA lesions. Of note, chemical agents that induce DPCs include widely used classes of chemotherapeutics. Their bulkiness blocks virtually every chromatin-based process and makes them intractable for repair by canonical repair pathways. Distinct DPC repair pathways employ unique points of attack and are crucial for the maintenance of genome stability. Tyrosyl-DNA phosphodiesterases (TDPs) directly hydrolyse the covalent linkage between protein and DNA. The MRE11-RAD50-NBS1 (MRN) nuclease complex targets the DNA component of DPCs, excising the fragment affected by the lesion, whereas proteases of the spartan (SPRTN)/weak suppressor of SMT3 protein 1 (Wss1) family target the protein component. Loss of these pathways renders cells sensitive to DPC-inducing chemotherapeutics, and DPC repair pathways are thus attractive targets for combination cancer therapy.

  3. DNA-Protein Crosslink Proteolysis Repair.

    PubMed

    Vaz, Bruno; Popovic, Marta; Ramadan, Kristijan

    2017-06-01

    Proteins that are covalently bound to DNA constitute a specific type of DNA lesion known as DNA-protein crosslinks (DPCs). DPCs represent physical obstacles to the progression of DNA replication. If not repaired, DPCs cause stalling of DNA replication forks that consequently leads to DNA double-strand breaks, the most cytotoxic DNA lesion. Although DPCs are common DNA lesions, the mechanism of DPC repair was unclear until now. Recent work unveiled that DPC repair is orchestrated by proteolysis performed by two distinct metalloproteases, SPARTAN in metazoans and Wss1 in yeast. This review summarizes recent discoveries on two proteases in DNA replication-coupled DPC repair and establishes DPC proteolysis repair as a separate DNA repair pathway for genome stability and protection from accelerated aging and cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Crosslinked polyimide electro-optic materials

    NASA Astrophysics Data System (ADS)

    Kowalczyk, T. C.; Kosc, T. Z.; Singer, K. D.; Beuhler, A. J.; Wargowski, D. A.; Cahill, P. A.; Seager, C. H.; Meinhardt, M. B.; Ermer, S.

    1995-11-01

    We report studies of the optical and electro-optic properties of guest-host polymeric nonlinear optical materials based on aromatic, fluorinated, fully imidized, organic soluble, thermally, and photochemically crosslinkable, guest-host polyimides. We have introduced temperature stable nonlinear optical chromophores into these polyimides and studied optical losses, electric field poling, electro-optic properties, and orientational stability. We measured electro-optic coefficients of 5.5 and 12.0 pm/V for ((2,6-Bis(2-(3-(9-(ethyl)carbazolyl))ethenyl)4H-pyran-4-ylidene)propanedinitrile (4-(Dicyanomethylene)-2-methyl-6-(p -dimethylaminostyryl)-4H-pyran) DCM-doped guest-host systems at 800 nm using a poling field of 1.3 MV/cm. Poling induced nonlinearities in single-layer films were in agreement with the oriented gas model, but were lower in three-layer films due to voltage division across the layers.

  5. Microtubule Actin Cross-Linking Factor (Macf)

    PubMed Central

    Leung, Conrad L.; Sun, Dongming; Zheng, Min; Knowles, David R.; Liem, Ronald K.H.

    1999-01-01

    We cloned and characterized a full-length cDNA of mouse actin cross-linking family 7 (mACF7) by sequential rapid amplification of cDNA ends–PCR. The completed mACF7 cDNA is 17 kb and codes for a 608-kD protein. The closest relative of mACF7 is the Drosophila protein Kakapo, which shares similar architecture with mACF7. mACF7 contains a putative actin-binding domain and a plakin-like domain that are highly homologous to dystonin (BPAG1-n) at its NH2 terminus. However, unlike dystonin, mACF7 does not contain a coiled–coil rod domain; instead, the rod domain of mACF7 is made up of 23 dystrophin-like spectrin repeats. At its COOH terminus, mACF7 contains two putative EF-hand calcium-binding motifs and a segment homologous to the growth arrest–specific protein, Gas2. In this paper, we demonstrate that the NH2-terminal actin-binding domain of mACF7 is functional both in vivo and in vitro. More importantly, we found that the COOH-terminal domain of mACF7 interacts with and stabilizes microtubules. In transfected cells full-length mACF7 can associate not only with actin but also with microtubules. Hence, we suggest a modified name: MACF (microtubule actin cross-linking factor). The properties of MACF are consistent with the observation that mutations in kakapo cause disorganization of microtubules in epidermal muscle attachment cells and some sensory neurons. PMID:10601340

  6. Using intra-microgel crosslinking to control the mechanical properties of doubly crosslinked microgels.

    PubMed

    Cui, Zhengxing; Wang, Wenkai; Obeng, Melody; Chen, Mu; Wu, Shanglin; Kinloch, Ian; Saunders, Brian R

    2016-08-17

    Microgels (MGs) are crosslinked polymer particles that swell when the pH approaches the pKa of the constituent polymer. Our earlier work showed that concentrated MG dispersions can be covalently interlinked to form macroscopic hydrogels, which are termed doubly crosslinked microgels (DX MGs). Here, we study for the first time the effects of intra-MG crosslinking on the swelling of the MGs and the mechanical properties of the DX MGs. The MGs were synthesised by emulsion copolymerisation of ethyl acrylate (EA) or methacrylic acid (MAA) and divinylbenzene (DVB). The latter was a crosslinking monomer. For comparison, MGs were prepared where DVB was replaced by either 1,4-butanediol diacrylate (BDDA) or a 1 : 1 mixture of both DVB and BDDA. The MG swelling behaviours were studied by dynamic light scattering; whereas, the DX MG mechanical properties were studied by dynamic rheology and uniaxial compression measurements. Inclusion of DVB within the MGs resulted in both highly swelling MGs and highly ductile DX MGs. The average strain-at-break value for the DVB-containing DX MGs was 76% which represents the highest value yet reported for a DX MG prepared using commercially available monomers. It was also shown that good tuneability of the DX MG properties could be obtained simply by controlling the DVB and BDDA contents within the MG particles. Analysis of the swelling and compression data enabled relationships between the volume-swelling ratio of the MGs and either the modulus or strain-at-break values for the DX MGs. These relationships also applied to a DVB-free system prepared with a low BDDA content. An interesting conclusion from this study is that the DX MGs can be thought of mechanically as macroscopic MG particles. The results of this study provide design tools for improving DX MG ductility and hence increasing the range of potential applications for this new class of hydrogel.

  7. Photo-Crosslinked Poly(ε-caprolactone fumarate) Networks: Roles of Crystallinity and Crosslinking Density in Determining Mechanical Properties

    PubMed Central

    Wang, Shanfeng; Yaszemski, Michael J.; Gruetzmacher, James A.; Lu, Lichun

    2010-01-01

    We present a material design strategy of combining crystallinity and crosslinking to control the mechanical properties of polymeric biomaterials. Three polycaprolactone fumarates (PCLF530, PCLF1250, and PCLF2000) synthesized from the precursor polycaprolactone (PCL) diols with nominal molecular weights of 530, 1250, and 2000 g.mol-1, respectively, were employed to fabricate polymer networks via photo-crosslinking process. Five different amounts of photo-crosslinking initiator were applied during fabrication in order to understand the role of photoinitiator in modulating the crosslinking characteristics and physical properties of PCLF networks. Thermal properties such as glass transition temperature (Tg), melting temperature (Tm), and degradation temperature (Td) of photo-crosslinked PCLFs were examined and correlated with their rheological and mechanical properties. PMID:20936057

  8. Reciprocal Regulation as a Source of Ultrasensitivity in Two-Component Systems with a Bifunctional Sensor Kinase

    PubMed Central

    Straube, Ronny

    2014-01-01

    Two-component signal transduction systems, where the phosphorylation state of a regulator protein is modulated by a sensor kinase, are common in bacteria and other microbes. In many of these systems, the sensor kinase is bifunctional catalyzing both, the phosphorylation and the dephosphorylation of the regulator protein in response to input signals. Previous studies have shown that systems with a bifunctional enzyme can adjust the phosphorylation level of the regulator protein independently of the total protein concentrations – a property known as concentration robustness. Here, I argue that two-component systems with a bifunctional enzyme may also exhibit ultrasensitivity if the input signal reciprocally affects multiple activities of the sensor kinase. To this end, I consider the case where an allosteric effector inhibits autophosphorylation and, concomitantly, activates the enzyme's phosphatase activity, as observed experimentally in the PhoQ/PhoP and NRII/NRI systems. A theoretical analysis reveals two operating regimes under steady state conditions depending on the effector affinity: If the affinity is low the system produces a graded response with respect to input signals and exhibits stimulus-dependent concentration robustness – consistent with previous experiments. In contrast, a high-affinity effector may generate ultrasensitivity by a similar mechanism as phosphorylation-dephosphorylation cycles with distinct converter enzymes. The occurrence of ultrasensitivity requires saturation of the sensor kinase's phosphatase activity, but is restricted to low effector concentrations, which suggests that this mode of operation might be employed for the detection and amplification of low abundant input signals. Interestingly, the same mechanism also applies to covalent modification cycles with a bifunctional converter enzyme, which suggests that reciprocal regulation, as a mechanism to generate ultrasensitivity, is not restricted to two-component systems, but

  9. Bifunctional μ/δ opioid peptides: variation of the type and length of the linker connecting the two components.

    PubMed

    Ding, Jinguo; Lemieux, Carole; Chung, Nga N; Schiller, Peter W

    2012-02-01

    On the basis of evidence that opioid compounds with a mixed μ agonist/δ antagonist profile may produce an antinociceptive effect with low propensity to induce side effects, bifunctional opioid peptides containing the μ agonist H-Dmt-d-Arg-Phe-Lys-NH(2) ([Dmt(1) ]DALDA; Dmt = 2',6'-dimethyltyrosine) connected tail-to-tail via various α,ω-diaminoalkyl- or diaminocyclohexane linkers to the δ antagonists H-Tyr-TicΨ[CH(2) -NH]Cha-Phe-OH (TICP[Ψ]; Cha = cyclohexylalanine, Tic = 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid), H-Dmt-Tic-OH or H-Bcp-Tic-OH (Bcp = 4'-[N-((4'-phenyl)phenethyl)carboxamido]phenylalanine) were synthesized and pharmacologically characterized in vitro. Bifunctional [Dmt(1) ]DALDA→NH-(CH(2) )(n) -NH←TICP[Ψ] compounds (n = -12) showed decreasing μ and δ receptor binding affinities with increasing linker length. As expected, several of the bifunctional peptides were μ agonist/δ antagonists with low nanomolar μ and δ receptor binding affinities. However, compounds with unexpected opioid activity profiles, including a μ partial agonist/δ partial agonist, μ antagonist/δ antagonists and μ agonist/δ agonists, were also identified. These results indicate that the binding affinities and intrinsic efficacies of these bifunctional compounds at both receptors depend on the length and type of the linker connecting the μ and δ components. An important recommendation emerging from this study is that the in vitro activity profiles of bifunctional compounds containing an agonist and an antagonist component connected via a linker need to be determined prior to their pharmacological evaluation in vivo.

  10. Reciprocal regulation as a source of ultrasensitivity in two-component systems with a bifunctional sensor kinase.

    PubMed

    Straube, Ronny

    2014-05-01

    Two-component signal transduction systems, where the phosphorylation state of a regulator protein is modulated by a sensor kinase, are common in bacteria and other microbes. In many of these systems, the sensor kinase is bifunctional catalyzing both, the phosphorylation and the dephosphorylation of the regulator protein in response to input signals. Previous studies have shown that systems with a bifunctional enzyme can adjust the phosphorylation level of the regulator protein independently of the total protein concentrations--a property known as concentration robustness. Here, I argue that two-component systems with a bifunctional enzyme may also exhibit ultrasensitivity if the input signal reciprocally affects multiple activities of the sensor kinase. To this end, I consider the case where an allosteric effector inhibits autophosphorylation and, concomitantly, activates the enzyme's phosphatase activity, as observed experimentally in the PhoQ/PhoP and NRII/NRI systems. A theoretical analysis reveals two operating regimes under steady state conditions depending on the effector affinity: If the affinity is low the system produces a graded response with respect to input signals and exhibits stimulus-dependent concentration robustness--consistent with previous experiments. In contrast, a high-affinity effector may generate ultrasensitivity by a similar mechanism as phosphorylation-dephosphorylation cycles with distinct converter enzymes. The occurrence of ultrasensitivity requires saturation of the sensor kinase's phosphatase activity, but is restricted to low effector concentrations, which suggests that this mode of operation might be employed for the detection and amplification of low abundant input signals. Interestingly, the same mechanism also applies to covalent modification cycles with a bifunctional converter enzyme, which suggests that reciprocal regulation, as a mechanism to generate ultrasensitivity, is not restricted to two-component systems, but may

  11. Quaternary diamines as mass spectrometry cleavable crosslinkers for protein interactions.

    PubMed

    Clifford-Nunn, Billy; Showalter, H D Hollis; Andrews, Philip C

    2012-02-01

    Mapping protein interactions and their dynamics is crucial to defining physiologic states, building effective models for understanding cell function, and to allow more effective targeting of new drugs. Crosslinking studies can estimate the proximity of proteins, determine sites of protein-protein interactions, and have the potential to provide a snapshot of dynamic interactions by covalently locking them in place for analysis. Several major challenges are associated with the use of crosslinkers in mass spectrometry, particularly in complex mixtures. We describe the synthesis and characterization of a MS-cleavable crosslinker containing cyclic amines, which address some of these challenges. The DC4 crosslinker contains two intrinsic positive charges, which allow crosslinked peptides to fragment into their component peptides by collision-induced dissociation (CID) or in-source decay. Initial fragmentation events result in cleavage on either side of the positive charges so crosslinked peptides are identified as pairs of ions separated by defined masses. The structures of the component peptides can then be robustly determined by MS(3) because their fragmentation products rearrange to generate a mobile proton. The DC4 crosslinking reagent is stable to storage, highly reactive, highly soluble (1 M solutions), quite labile to CID, and MS(3) results in productive backbone fragmentation.

  12. Quaternary Diamines as Mass Spectrometry Cleavable Crosslinkers for Protein Interactions

    NASA Astrophysics Data System (ADS)

    Clifford-Nunn, Billy; Showalter, H. D. Hollis; Andrews, Philip C.

    2012-02-01

    Mapping protein interactions and their dynamics is crucial to defining physiologic states, building effective models for understanding cell function, and to allow more effective targeting of new drugs. Crosslinking studies can estimate the proximity of proteins, determine sites of protein-protein interactions, and have the potential to provide a snapshot of dynamic interactions by covalently locking them in place for analysis. Several major challenges are associated with the use of crosslinkers in mass spectrometry, particularly in complex mixtures. We describe the synthesis and characterization of a MS-cleavable crosslinker containing cyclic amines, which address some of these challenges. The DC4 crosslinker contains two intrinsic positive charges, which allow crosslinked peptides to fragment into their component peptides by collision-induced dissociation (CID) or in-source decay. Initial fragmentation events result in cleavage on either side of the positive charges so crosslinked peptides are identified as pairs of ions separated by defined masses. The structures of the component peptides can then be robustly determined by MS3 because their fragmentation products rearrange to generate a mobile proton. The DC4 crosslinking reagent is stable to storage, highly reactive, highly soluble (1 M solutions), quite labile to CID, and MS3 results in productive backbone fragmentation.

  13. Quaternary Diamines as Mass Spectrometry Cleavable Crosslinkers for Protein Interactions

    PubMed Central

    Clifford-Nunn, Billy; Showalter, H. D. Hollis; Andrews, Philip C.

    2013-01-01

    Mapping protein interactions and their dynamics is crucial to defining physiologic states, building effective models for understanding cell function, and to allow more effective targeting of new drugs. Crosslinking studies can estimate the proximity of proteins, determine sites of protein–protein interactions, and have the potential to provide a snapshot of dynamic interactions by covalently locking them in place for analysis. Several major challenges are associated with the use of crosslinkers in mass spectrometry, particularly in complex mixtures. We describe the synthesis and characterization of a MS-cleavable crosslinker containing cyclic amines, which address some of these challenges. The DC4 crosslinker contains two intrinsic positive charges, which allow crosslinked peptides to fragment into their component peptides by collision-induced dissociation (CID) or in-source decay. Initial fragmentation events result in cleavage on either side of the positive charges so crosslinked peptides are identified as pairs of ions separated by defined masses. The structures of the component peptides can then be robustly determined by MS3 because their fragmentation products rearrange to generate a mobile proton. The DC4 crosslinking reagent is stable to storage, highly reactive, highly soluble (1 M solutions), quite labile to CID, and MS3 results in productive backbone fragmentation. PMID:22131227

  14. Preparation of hydrophilic polyhydroxyalkyl glutamine crosslinked films and its biodegradability.

    PubMed

    Pan, Shi-Rong; Wang, Qin-Mei; Yi, Wu

    2007-09-01

    Polybenzyl glutamate (PBLG) or polymethyl glutamate (PMLG) films have been aminolyzed with amino alcohol and crosslinked with aliphatic diamine at 60 degrees C for 48 h simultaneously which led to the formation of crosslinked films of polyhydroxyalkyl glutamine (PHAG). ATR-IR indicates that for the aminolysis of PBLG with 2-amino-1-ethanol or 3-amino-1-propanol, benzyl glutamate almost completely turned to hydroxyalkyl glutamine, however for the aminolysis of PMLG with 5-amino-1-pentanol, methyl glutamate partially turned to hydroxypentanyl glutamine. The water-swelling test shows that water-swelling ratio Q of PHAG films from amino alcohol with longer carbon chain was smaller, the PHAG films crosslinked by 1,2-diamino ethane have the higher water-swelling ratio Q, but the PHAG films crosslinked by 1,8-diamino octane have the lower water swelling ratio Q; and PHAG films with a greater amount of crosslinking agents have high crosslinking density or the low water swelling-ratio Q for same amino alcohol and diamine. It is obvious from in vitro enzymatic hydrolysis test that specimens with smaller swelling ratio Q displayed larger T(1/2), time for half weight digestion of PHAG film, that is, less biodegradability. Therefore, biodegradability of the crosslinked PHAG films can be controlled by changing amino alcohol and diamine.

  15. Immunochemical studies of early alpha chain crosslinking in human fibrin

    SciTech Connect

    Sobel, J.H.

    1987-01-01

    Immunochemical studies were conducted to characterize the earliest covalent ..cap alpha.. chain associations catalyzed by Factor XIII/sub a/ during in vitro fibrin formation. Preparations of purified fibrinogen and Factor XIII were incubated under crosslinking conditions for increasing periods of time and the resulting fibrins subjected to immunoblotting using the characterized monoclonal antibodies, F-103 (anti-A..cap alpha.. number259-276) and F-102 /anti-A..cap alpha.. number540-554). Data obtained for the incorporation of monomeric ..cap alpha.. chains into higher molecular weight immunoreactive species indicate that ..cap alpha.. chain crosslinking begins within the first ten minutes of clotting. Early crosslinked ..cap alpha.. chain species that formed within thirty minutes of in vitro crosslinking were isolated from preparations of reduced, /sup 3/H-S-carboxymethylated fibrin by Sepharose CL-4B gel filtration. Cyanogen bromide treatment of this material resulted in the release of crosslinked and non-crosslinked fragments which could be separated from one another by Sephadex G-150 gel filtration. Derivatives of interest were identified in the column effluent by immunoblotting with F-103 and F-102 and by radioimmunoassays in which polyclonal antisera that detect the known (A) ..cap alpha.. chain crosslinking regions, number241-476 (CNRr VIII) and number518-584 (CNBr X), were employed.

  16. A constitutive model of nanocomposite hydrogels with nanoparticle crosslinkers

    NASA Astrophysics Data System (ADS)

    Wang, Qiming; Gao, Zheming

    2016-09-01

    Nanocomposite hydrogels with only nanoparticle crosslinkers exhibit extraordinarily higher stretchability and toughness than the conventional organically crosslinked hydrogels, thus showing great potential in the applications of artificial muscles and cartilages. Despite their potential, the microscopic mechanics details underlying their mechanical performance have remained largely elusive. Here, we develop a constitutive model of the nanoparticle hydrogels to elucidate the microscopic mechanics behaviors, including the microarchitecture and evolution of the nanoparticle crosslinked polymer chains during the mechanical deformation. The constitutive model enables us to understand the Mullins effect of the nanocomposite hydrogels, and the effects of nanoparticle concentrations and sizes on their cyclic stress-strain behaviors. The theory is quantitatively validated by the tensile tests on a nanocomposite hydrogel with nanosilica crosslinkers. The theory can also be extended to explain the mechanical behaviors of existing hydrogels with nanoclay crosslinkers, and the necking instability of the composite hydrogels with both nanoparticle crosslinkers and organic crosslinkers. We expect that this constitutive model can be further exploited to reveal mechanics behaviors of novel particle-polymer chain interactions, and to design unprecedented hydrogels with both high stretchability and toughness.

  17. Characterization of the crosslinking reaction in high performance phenolic resins

    NASA Astrophysics Data System (ADS)

    Patel, Jigneshkumar; Zou, Guo Xiang; Hsu, Shaw Ling; university of massachusetts/Polymer science; Engineering Team

    In this study, a combination of thermal analysis, infrared spectroscopy (near and mid) in conjunction with low field NMR, was used to characterize the crosslinking reaction involving phenol formaldehyde resin and a crosslinking agent, Hexamethylenetetramine (HMTA). The strong hydrogen bonds in the resin and the completely crystalline HMTA (Tm = 280 °C) severely hamper the crosslinking process. Yet the addition of a small amount of plasticizer can induce a highly efficient crosslinking reaction to achieve the desired mechanical properties needed in a number of high performance organic-inorganic composites. The infrared spectroscopy clarifies the dissolution process of the crystalline crosslinker and the specific interactions needed to achieve miscibility of the reactants. The thermal analysis enabled us to follow the changing mobility of the system as a function of temperature. The low field NMR with the T1 inverse recovery technique allowed us to monitor the crosslinking process directly. For the first time, it is now possible to identify the functionality of the plasticizer and correlate the crosslinked structure achieved to the macroscopic performance needed for high performance organic-inorganic composites.

  18. Oxygen electrode bifunctional electrocatalyst NiCo2O4 spinel

    NASA Technical Reports Server (NTRS)

    Fielder, William L.; Singer, Joseph

    1988-01-01

    A significant increase in energy density may be possible if a two-unit alkaline regenerative H2-O2 fuel cell is replaced with a single-unit system that uses passive means for H2O transfer and thermal control. For this single-unit system, new electrocatalysts for the O2 electrode will be required which are not only bifunctionally active but also chemically and electrochemically stable between the voltage range of about 0.7 and 1.5 V. NiCo2O4 spinel is reported to have certain characteristics that make it useful for a study of electrode fabrication techniques. High surface area NiCo2O4 powder was fabricated into unsupported, bifunctional, PTFE-bonded, porous gas fuel cell electrodes by commercial sources using varying PTFE contents and sintering temperatures. The object of this study is to measure the bifunctional activities of these electrodes and to observe what performance differences might result from different commercial electrode fabricators. O2 evolution and O2 reduction data were obtained at 80 C (31 percent KOH). An irreversible reaction (i.e., aging) occurred during O2 evolution at potentials greater than about 1.5 V. Anodic Tafel slopes of 0.06 and 0.12 V/decade were obtained for the aged electrodes. Within the range of 15 to 25 percent, the PTFE content was not a critical parameter for optimizing the electrode for O2 evolution activity. Sintering temperatures between 300 and 340 C may be adequate but heating at 275 C may not be sufficient to properly sinter the PTFE-NiCo2O4 mixture. Electrode disintegration was observed during O2 reduction. Transport of O2 to the NiCo2O4 surface became prohibitive at greater than about -0.02 A/sq cm. Cathodic Tafel slopes of -0.6 and -0.12 V/decade were assumed for the O2 reduction process. A PTFE content of 25 percent (or greater) appears to be preferable for sintering the PTFE-NiCo2O4 mixture.

  19. Oxygen electrode bifunctional electrocatalyst NiCo2O4 spinel

    NASA Astrophysics Data System (ADS)

    Fielder, William L.; Singer, Joseph

    1988-09-01

    A significant increase in energy density may be possible if a two-unit alkaline regenerative H2-O2 fuel cell is replaced with a single-unit system that uses passive means for H2O transfer and thermal control. For this single-unit system, new electrocatalysts for the O2 electrode will be required which are not only bifunctionally active but also chemically and electrochemically stable between the voltage range of about 0.7 and 1.5 V. NiCo2O4 spinel is reported to have certain characteristics that make it useful for a study of electrode fabrication techniques. High surface area NiCo2O4 powder was fabricated into unsupported, bifunctional, PTFE-bonded, porous gas fuel cell electrodes by commercial sources using varying PTFE contents and sintering temperatures. The object of this study is to measure the bifunctional activities of these electrodes and to observe what performance differences might result from different commercial electrode fabricators. O2 evolution and O2 reduction data were obtained at 80 C (31 percent KOH). An irreversible reaction (i.e., aging) occurred during O2 evolution at potentials greater than about 1.5 V. Anodic Tafel slopes of 0.06 and 0.12 V/decade were obtained for the aged electrodes. Within the range of 15 to 25 percent, the PTFE content was not a critical parameter for optimizing the electrode for O2 evolution activity. Sintering temperatures between 300 and 340 C may be adequate but heating at 275 C may not be sufficient to properly sinter the PTFE-NiCo2O4 mixture. Electrode disintegration was observed during O2 reduction. Transport of O2 to the NiCo2O4 surface became prohibitive at greater than about -0.02 A/sq cm. Cathodic Tafel slopes of -0.6 and -0.12 V/decade were assumed for the O2 reduction process. A PTFE content of 25 percent (or greater) appears to be preferable for sintering the PTFE-NiCo2O4 mixture.

  20. Molecular Structures of Isolevuglandin-Protein Cross-Links.

    PubMed

    Bi, Wenzhao; Jang, Geeng-Fu; Zhang, Lei; Crabb, John W; Laird, James; Linetsky, Mikhail; Salomon, Robert G

    2016-10-17

    Isolevuglandins (isoLGs) are stereo and structurally isomeric γ-ketoaldehydes produced through free radical-induced oxidation of arachidonates. Some isoLG isomers are also generated through enzymatic cyclooxygenation. Post-translational modification of proteins by isoLGs is associated with loss-of-function, cross-linking and aggregation. We now report that a low level of modification by one or two molecules of isoLG has a profound effect on the activity of a multi subunit protease, calpain-1. Modification of one or two key lysyl residues apparently suffices to abolish catalytic activity. Covalent modification of calpain-1 led to intersubunit cross-linking. Hetero- and homo-oligomers of the catalytic and regulatory subunits of calpain-1 were detected by SDS-PAGE with Western blotting. N-Acetyl-glycyl-lysine methyl ester and β-amyloid(11-17) peptide EVHHQKL were used as models for characterizing the cross-linking of protein lysyl residues resulting from adduction of iso[4]LGE2. Aminal, bispyrrole, and trispyrrole cross-links of these two peptides were identified and fully characterized by mass spectrometry. Aminal and bispyrrole dimers were both detected. Furthermore, a complex mixture of derivatives of the bispyrrole cross-link containing one or more additional atoms of oxygen was found. Interesting differences are evident in the predominant cross-link type generated in the reaction of iso[4]LGE2 with these peptides. More aminal cross-links versus bispyrrole are formed during the reaction of the dipeptide with iso[4]LGE2. In contrast, more bispyrrole versus aminal cross-links are formed during the reaction of EVHHQKL with iso[4]LGE2. It is tempting to speculate that the EVHHQKL peptide-pyrrole modification forms noncovalent aggregates that favor the production of covalent bispyrrole cross-links because β-amyloid(11-17) tends to spontaneously oligomerize.

  1. Methionine acts as a "magnet" in photoaffinity crosslinking experiments.

    PubMed

    Wittelsberger, Angela; Thomas, Beena E; Mierke, Dale F; Rosenblatt, Michael

    2006-03-20

    Photoaffinity crosslinking has been utilized to probe the nature of the ligand-receptor interface for a number of G protein-coupled receptor systems. Often the photoreactive benzophenone moiety incorporated in the ligand is found to react with a methionine in the receptor. We introduced methionines one-at-a-time into the region 163-176 of the parathyroid hormone receptor, and find that crosslinking occurs to the side-chain of methionine over a range of 11 amino acids. We call this the "Magnet Effect" of methionine. Hence, crosslinking contact points can be significantly shifted by the presence of methionine in a receptor domain.

  2. Crosslinked crystalline polymer and methods for cooling and heating

    DOEpatents

    Salyer, Ival O.; Botham, Ruth A.; Ball, III, George L.

    1980-01-01

    The invention relates to crystalline polyethylene pieces having optimum crosslinking for use in storage and recovery of heat, and it further relates to methods for storage and recovery of heat using crystalline polymer pieces having optimum crosslinking for these uses. Crystalline polymer pieces are described which retain at least 70% of the heat of fusion of the uncrosslinked crystalline polymer and yet are sufficiently crosslinked for the pieces not to stick together upon being cycled above and below the melting point of said polymer, preferably at least 80% of the heat of fusion with no substantial sticking together.

  3. A mesoscopic network model for permanent set in crosslinked elastomers

    SciTech Connect

    Weisgraber, T H; Gee, R H; Maiti, A; Clague, D S; Chinn, S; Maxwell, R S

    2009-01-29

    A mesoscopic computational model for polymer networks and composites is developed as a coarse-grained representation of the composite microstructure. Unlike more complex molecular dynamics simulations, the model only considers the effects of crosslinks on mechanical behavior. The elastic modulus, which depends only on the crosslink density and parameters in the bond potential, is consistent with rubber elasticity theory, and the network response satisfies the independent network hypothesis of Tobolsky. The model, when applied to a commercial filled silicone elastomer, quantitatively reproduces the experimental permanent set and stress-strain response due to changes in the crosslinked network from irradiation.

  4. Nitrile crosslinked polyphenyl-quinoxaline/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Alston, W. B.

    1976-01-01

    Studies were performed to reduce the 600 F thermoplasticity of polyphenylquinoxaline (PPQ) matrix resins by introducing crosslinking by the reaction of terminal nitrile groups. Seven solvents and solvent mixtures were studied as the crosslinking catalysts and used to fabricate crosslinked PPQ/HMS graphite fiber composites. The room temperature and 600 F composite mechanical properties after short time and prolonged 600 F air exposure and the 600 F composite weight loss were determined and compared to those properties of high molecular weight, linear PPQ/HMS graphite fiber composites.

  5. Chemical Crosslinking: Role in Protein and Peptide Science.

    PubMed

    Arora, Bharti; Tandon, Rashmi; Attri, Pankaj; Bhatia, Rohit

    2017-01-01

    Chemical crosslinking refers to intermolecular or intramolecular joining of two or more molecules by a covalent bond. The reagents that are used for the purpose are referred to as 'crosslinking reagents' or 'crosslinkers'. Based on factors like reactivity and spacer length these are classified into different types, each having its own specific function and application. In recent times, chemical crosslinking has emerged as an efficient tool for the study of biomolecules like proteins. It finds its application in various studies including the attachment of proteins to a solid support for the study of membrane receptors, protein-protein complexes, protein-DNA complexes, and others. When coupled with techniques like mass spectroscopy, it has been used not only for the determination of three dimensional structures of proteins but also for the study of protein-protein interactions and determination of interesting sites. This combination of mass spectrometry techniques and bioinformatics, added yet another dimension to our present day understanding of protein chemistry. Thus, chemical crosslinking has multitude uses that it can be put to. We undertook a systematic search of bibliographic databases and search engine such as Google Scholar, Scifinder, Scopus, Mendeley etc for review of research literature. We excluded research paper which only reported synthesis of crosslinker molecules and did not involve any mass spectrometry studies. Sixty-four papers were included in the review. The majority of references were taken from last ten years as there has been an immense progress in this area in the recent years. Eleven classical papers in this field were included which talk about basic of this methodology. Thirty-two papers discussed about various types of organic groups used for designing chemical cross-linkers and various methodologies which were used to enhance the crosslinking efficiency. These papers also highlight various strategies used to enhance detection of cross-linked

  6. Cross-Linked Nanotube Materials with Variable Stiffness Tethers

    NASA Technical Reports Server (NTRS)

    Frankland, Sarah-Jane V.; Odegard, Gregory M.; Herzog, Matthew N.; Gates, Thomas S.; Fay, Catherine C.

    2004-01-01

    The constitutive properties of a cross-linked single-walled carbon nanotube material are predicted with a multi-scale model. The material is modeled as a transversely isotropic solid using concepts from equivalent-continuum modeling. The elastic constants are determined using molecular dynamics simulation. Some parameters of the molecular force field are determined specifically for the cross-linker from ab initio calculations. A demonstration of how the cross-linked nanotubes may affect the properties of a nanotube/polyimide composite is included using a micromechanical analysis.

  7. Crosslinked blends and coextruded films by electron beam

    NASA Astrophysics Data System (ADS)

    Vallat, M. F.; Marouani, S.; Perraud, S.; Mendoza Patlan, N.

    2005-07-01

    Morphology, thermal and mechanical properties of polymer blends and coextruded films of hydrogenated copolymer of butadiene and acrylonitrile (HNBR) and polyethylene-co-octene (PE-co-O) are considered before and after electron beam crosslinking. It is known that the properties are depending not only on the crosslinks in the bulk of the polymers but also on that created in the interfacial domain. It is however very difficult to have direct evidence of the interfacial crosslinks. Moreover the two polymers are not compatible and the addition of an ethylene vinyl acetate copolymer as a potential polymer compatibiliser is considered.

  8. Enhancement of (stereo)selectivity in dynamic kinetic resolution using a core-shell nanozeolite@enzyme as a bi-functional catalyst.

    PubMed

    Wang, Wanlu; Li, Xiang; Wang, Zhoujun; Tang, Yi; Zhang, Yahong

    2014-08-28

    A core-shell nanozeolite@enzyme bi-functional catalyst is constructed, which greatly improves selectivity and stereoselectivity of products in dynamic kinetic resolution of aromatic secondary alcohols compared with mixed catalysts, especially those involving small acyl donors.

  9. Cage-like bifunctional chelators, copper-64 radiopharmaceuticals and PET imaging using the same

    DOEpatents

    Conti, Peter S.; Cai, Hancheng; Li, Zibo; Liu, Shuanglong

    2016-08-02

    Disclosed is a class of versatile Sarcophagine based bifunctional chelators (BFCs) containing a hexa-aza cage for labeling with metals having either imaging, therapeutic or contrast applications radiolabeling and one or more linkers (A) and (B). The compounds have the general formula ##STR00001## where A is a functional group selected from group consisting of an amine, a carboxylic acid, an ester, a carbonyl, a thiol, an azide and an alkene, and B is a functional group selected from the group consisting of hydrogen, an amine, a carboxylic acid, and ester, a carbonyl, a thiol, an azide and an alkene. Also disclosed are conjugate of the BFC and a targeting moiety, which may be a peptide or antibody. Also disclosed are metal complexes of the BFC/targeting moiety conjugates that are useful as radiopharmaceuticals, imaging agents or contrast agents.

  10. Quantification of noise in bifunctionality-induced post-translational modification

    NASA Astrophysics Data System (ADS)

    Maity, Alok Kumar; Bandyopadhyay, Arnab; Chattopadhyay, Sudip; Chaudhuri, Jyotipratim Ray; Metzler, Ralf; Chaudhury, Pinaki; Banik, Suman K.

    2013-09-01

    We present a generic analytical scheme for the quantification of fluctuations due to bifunctionality-induced signal transduction within the members of a bacterial two-component system. The proposed model takes into account post-translational modifications in terms of elementary phosphotransfer kinetics. Sources of fluctuations due to autophosphorylation, kinase, and phosphatase activity of the sensor kinase have been considered in the model via Langevin equations, which are then solved within the framework of linear noise approximation. The resultant analytical expression of phosphorylated response regulators are then used to quantify the noise profile of biologically motivated single and branched pathways. Enhancement and reduction of noise in terms of extra phosphate outflux and influx, respectively, have been analyzed for the branched system. Furthermore, the role of fluctuations of the network output in the regulation of a promoter with random activation-deactivation dynamics has been analyzed.

  11. Preparation of bifunctional mesoporous silica nanoparticles by orthogonal click reactions and their application in cooperative catalysis.

    PubMed

    Dickschat, Arne T; Behrends, Frederik; Bühner, Martin; Ren, Jinjun; Weiss, Mark; Eckert, Hellmut; Studer, Armido

    2012-12-21

    The synthesis of bifunctional mesoporous silica nanoparticles is described. Two chemically orthogonal functionalities are incorporated into mesoporous silica by co-condensation of tetraethoxysilane with two orthogonally functionalized triethoxyalkylsilanes. Post-functionalization is achieved by orthogonal surface chemistry. A thiol-ene reaction, Cu-catalyzed 1,3-dipolar alkyne/azide cycloaddition, and a radical nitroxide exchange reaction are used as orthogonal processes to install two functionalities at the surface that differ in reactivity. Preparation of mesoporous silica nanoparticles bearing acidic and basic sites by this approach is discussed. Particles are analyzed by solid state NMR spectroscopy, elemental analysis, infrared-spectroscopy, and scanning electron microscopy. As a first application, these particles are successfully used as cooperative catalysts in the Henry reaction.

  12. Mono- and bi-functional arenethiols as surfactants for gold nanoparticles: synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Vitale, Floriana; Fratoddi, Ilaria; Battocchio, Chiara; Piscopiello, Emanuela; Tapfer, Leander; Russo, Maria Vittoria; Polzonetti, Giovanni; Giannini, Cinzia

    2011-12-01

    Stable gold nanoparticles stabilized by different mono and bi-functional arenethiols, namely, benzylthiol and 1,4-benzenedimethanethiol, have been prepared by using a modified Brust's two-phase synthesis. The size, shape, and crystalline structure of the gold nanoparticles have been determined by high-resolution electron microscopy and full-pattern X-ray powder diffraction analyses. Nanocrystals diameters have been tuned in the range 2 ÷ 9 nm by a proper variation of Au/S molar ratio. The chemical composition of gold nanoparticles and their interaction with thiols have been investigated by X-ray photoelectron spectroscopy. In particular, the formation of networks has been observed with interconnected gold nanoparticles containing 1,4-benzenedimethanethiol as ligand.

  13. Organocatalyzed asymmetric Michael addition by an efficient bifunctional carbohydrate-thiourea hybrid with mechanistic DFT analysis.

    PubMed

    Azad, Chandra S; Khan, Imran A; Narula, Anudeep K

    2016-12-28

    A series of thiourea based bifunctional organocatalysts having d-glucose as a core scaffold were synthesized and examined as catalysts for the asymmetric Michael addition reaction of aryl/alkyl trans-β-nitrostyrenes over cyclohexanone and other Michael donors having active methylene. Excellent enantioselectivities (<95%), diastereoselectivities (<99%), and yields (<99%) were attained under solvent free conditions using 10 mol% of 1d0. The obtained results were explained through DFT calculations using the B3LYP/6-311G(d,p)//B3LYP/6-31G(d) basic set. The QM/MM calculations revealed the role of cyclohexanone as a solvent as well as reactant in the rate determining step imparting 31.91 kcal mol(-1) of energy towards the product formation.

  14. Mechanistic Insights into the Mode of Action of Bifunctional Pyrrolidine-Squaramide-Derived Organocatalysts.

    PubMed

    Roca-López, David; Uria, Uxue; Reyes, Efraim; Carrillo, Luisa; Jørgensen, Karl Anker; Vicario, Jose L; Merino, Pedro

    2016-01-18

    The catalytic modes of action of three squaramide-derived bifunctional organocatalysts have been investigated using DFT methods. The [5+2] cycloaddition between oxidopyrylium ylides and enals was used as the model reaction. Two primary modes were possible for the different catalysts studied. The preference for one mode over the other was due to the possibility of additional favorable π-π interactions between the hydrogen-bond activated pyrylium ylide and an electron-deficient aromatic ring bonded to the squaramide NH group. The model can be extended to other reactions catalyzed by the same catalysts, such as formal [2+2] cycloadditions between nitroalkenes and α,β-unsaturated aldehydes. The computational results were in excellent concurrence with the available experimental reports on the observed total enantioselectivity and differences in diastereoselectivity depending on the substrate and the reaction.

  15. Bifunctional Nanoparticle-SILP Catalysts (NPs@SILP) for the Selective Deoxygenation of Biomass Substrates

    SciTech Connect

    Luska, Kylie L.; Julis, Jennifer; Stavitski, Eli; Zakharov, Dmitri N.; Adams, Alina; Leitner, Walter

    2014-08-27

    We immobilized ruthenium nanoparticles onto an acidic supported ionic liquid phase (RuNPs@SILP) in the development of bifunctional catalysts for the selective deoxygenation of biomass substrates. RuNPs@SILPs possessed high catalytic activities, selectivities and recyclabilities in the hydrogenolytic deoxygenation and ring opening of C8- and C9-substrates derived from furfural or 5-hydroxymethylfurfural and acetone. When we tailor the acidity of the SILP through the ionic liquid loading provided a molecular parameter by which the catalytic activity and selectivity of the RuNPs@SILPs were controlled to provide a flexible catalyst system toward the formation of different classes of value-added products: cyclic ethers, primary alcohols or aliphatic ethers.

  16. The fabrication of a bifunctional oxygen electrode without carbon components for alkaline secondary batteries

    NASA Astrophysics Data System (ADS)

    Price, Stephen W. T.; Thompson, Stephen J.; Li, Xiaohong; Gorman, Scott F.; Pletcher, Derek; Russell, Andrea E.; Walsh, Frank C.; Wills, Richard G. A.

    2014-08-01

    The fabrication of a gas diffusion electrode (GDE) without carbon components is described. It is therefore suitable for use as a bifunctional oxygen electrode in alkaline secondary batteries. The electrode is fabricated in two stages (a) the formation of a PTFE-bonded nickel powder layer on a nickel foam substrate and (b) the deposition of a NiCo2O4 spinel electrocatalyst layer by dip coating in a nitrate solution and thermal decomposition. The influence of modifications to the procedure on the performance of the GDEs in 8 M NaOH at 333 K is described. The GDEs can support current densities up to 100 mA cm-2 with state-of-the-art overpotentials for both oxygen evolution and oxygen reduction. Stable performance during >50 successive, 1 h oxygen reduction/evolution cycles at a current density of 50 mA cm-2 has been achieved.

  17. A Bifunctional Electrocatalyst for Oxygen Evolution and Oxygen Reduction Reactions in Water

    PubMed Central

    Faschinger, Felix; Chattopadhyay, Samir; Bhakta, Snehadri; Mondal, Biswajit; Elemans, Johannes A. A. W.; Müllegger, Stefan; Tebi, Stefano; Koch, Reinhold; Klappenberger, Florian; Paszkiewicz, Mateusz; Barth, Johannes V.; Rauls, Eva; Aldahhak, Hazem; Schmidt, Wolf Gero

    2016-01-01

    Abstract Oxygen reduction and water oxidation are two key processes in fuel cell applications. The oxidation of water to dioxygen is a 4 H+/4 e− process, while oxygen can be fully reduced to water by a 4 e−/4 H+ process or partially reduced by fewer electrons to reactive oxygen species such as H2O2 and O2 −. We demonstrate that a novel manganese corrole complex behaves as a bifunctional catalyst for both the electrocatalytic generation of dioxygen as well as the reduction of dioxygen in aqueous media. Furthermore, our combined kinetic, spectroscopic, and electrochemical study of manganese corroles adsorbed on different electrode materials (down to a submolecular level) reveals mechanistic details of the oxygen evolution and reduction processes. PMID:26773287

  18. A Bifunctional Electrocatalyst for Oxygen Evolution and Oxygen Reduction Reactions in Water

    PubMed Central

    Faschinger, Felix; Chattopadhyay, Samir; Bhakta, Snehadri; Mondal, Biswajit; Elemans, Johannes A. A. W.; Müllegger, Stefan; Tebi, Stefano; Koch, Reinhold; Klappenberger, Florian; Paszkiewicz, Mateusz; Barth, Johannes V.; Rauls, Eva; Aldahhak, Hazem; Schmidt, Wolf Gero

    2016-01-01

    Abstract Oxygen reduction and water oxidation are two key processes in fuel cell applications. The oxidation of water to dioxygen is a 4 H+/4 e− process, while oxygen can be fully reduced to water by a 4 e−/4 H+ process or partially reduced by fewer electrons to reactive oxygen species such as H2O2 and O2 −. We demonstrate that a novel manganese corrole complex behaves as a bifunctional catalyst for both the electrocatalytic generation of dioxygen as well as the reduction of dioxygen in aqueous media. Furthermore, our combined kinetic, spectroscopic, and electrochemical study of manganese corroles adsorbed on different electrode materials (down to a submolecular level) reveals mechanistic details of the oxygen evolution and reduction processes. PMID:27478281

  19. Dyes as bifunctional markers of DNA hybridization on surfaces and mutation detection.

    PubMed

    García-Mendiola, Tania; Cerro, María Ramos; López-Moreno, José María; Pariente, Félix; Lorenzo, Encarnación

    2016-10-01

    The interaction of small molecules with DNA has found diagnostic and therapeutic applications. In this work, we propose the use of two different dyes, in particular Azure A and Safranine, as bifunctional markers of on-surface DNA hybridization and potent tools for screening of specific gene mutations directly in real DNA PCR amplicons extracted from blood cells. By combining spectroscopic and electrochemical methods we demonstrate that both dyes can interact with single and double stranded DNA to a different extent, allowing reliable hybridization detection. From these data, we have also elucidated the nature of the interaction. We conclude that the binding mode is fundamentally intercalative with an electrostatic component. The dye fluorescence allows their use as nucleic acid stains for the detection of on-surfaces DNA hybridization. Its redox activity is exploited in the development of selective electrochemical DNA biosensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. SCO5745, a Bifunctional RNase J Ortholog, Affects Antibiotic Production in Streptomyces coelicolor

    PubMed Central

    Bralley, Patricia; Aseem, Madiha

    2014-01-01

    The bacterial RNases J are considered bifunctional RNases possessing both endo- and exonucleolytic activities. We have isolated an RNase J ortholog from Streptomyces coelicolor encoded by the gene sco5745. We overexpressed a decahistidine-tagged version of SCO5745 and purified the overexpressed protein by immobilized metal ion affinity chromatography. We demonstrated the presence of both 5′-to-3′ exonucleolytic and endonucleolytic activities on the Bacillus subtilis thrS transcript. Exonucleoytic activity predominated with 5′ monophosphorylated thrS, while endonucleolytic activity predominated with 5′ triphosphorylated thrS. While sco5745 is the only RNase J allele in S. coelicolor, the gene is not essential. Its disruption resulted in delayed production of the antibiotic actinorhodin, overproduction of undecylprodigiosin, and diminished production of the calcium-dependent antibiotic, in comparison with the parental strain. PMID:24415725

  1. Enhancing Electrocatalytic Performance of Bifunctional Cobalt-Manganese-Oxynitride Nanocatalysts on Graphene.

    PubMed

    Li, Yang; Kuttiyiel, Kurian A; Wu, Lijun; Zhu, Yimei; Fujita, Etsuko; Adzic, Radoslav R; Sasaki, Kotaro

    2017-01-10

    We report the synthesis and characterization of graphenesupported cobalt-manganese-oxynitride nanocatalysts (CoMnON/G) as bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). A nitriding treatment of spinel compound CoMnO increased the ORR activity considerably, and the most active material catalyzed the ORR with only a 30 mV half-wave potential difference from the commercial carbon-supported platinum (Pt/C) in alkaline media. In addition to high activity, the catalyst also exhibited an intrinsic stability that outperformed Pt/C. An appropriately designed nitridation thus facilitates new directions for developing active and durable non-precious-metal oxynitride electocatalysts.

  2. A Cascade-Reaction Nanoreactor Composed of a Bifunctional Molecularly Imprinted Polymer that Contains Pt Nanoparticles.

    PubMed

    Wang, Jiao; Zhu, Maiyong; Shen, Xiaojuan; Li, Songjun

    2015-05-11

    This study was aimed at addressing the present challenge of cascade reactions, namely, how to furnish the catalysts with desired and hierarchical catalytic ability. This issue was addressed by constructing a cascade-reaction nanoreactor made of a bifunctional molecularly imprinted polymer containing acidic catalytic sites and Pt nanoparticles. The acidic catalytic sites within the imprinted polymer allowed one specified reaction, whereas the encapsulated Pt nanoparticles were responsible for another coupled reaction. To that end, the unique imprinted polymer was fabricated by using two well-coupled templates, that is, 4-nitrophenyl acetate and 4-nitrophenol. The catalytic hydrolysis of the former compound at the acidic catalytic sites led to the formation of the latter compound, which was further reduced by the encapsulated Pt nanoparticles to 4-aminophenol. Therefore, this nanoreactor demonstrated a catalytic-cascade ability. This protocol opens up the opportunity to develop functional catalysts for complicated chemical processes.

  3. Bifunctional nanoparticles for SERS monitoring and magnetic intervention of assembly and enzyme cutting of DNAs

    SciTech Connect

    Lin, Liqin; Crew, Elizabeth; Yan, Hong; Shan, Shiyao; Skeete, Zakiya; Mott, Derrick; Krentsel, Tatiana; Yin, Jun; Chernova, Natasha A.; Luo, Jin; Engelhard, Mark H.; Wang, Chong M.; Li, Qingbiao; Zhong, Chuan-Jian

    2013-07-27

    The ability to detect and intervene in DNA assembly, disassembly, and enzyme cutting processes in a solution phase requires effective signal transduction and stimulus response. This report demonstrates a novel bifunctional strategy for the creation of this ability using gold- and silver-coated MnZn ferrite nanoparticles (MZF@Au or MZF@Ag) that impart magnetic and surfaceenhanced Raman scattering (SERS) functionalities to these processes. The double-stranded DNA linkage of labeled gold nanoparticles with MZF@Au (or MZF@Ag) produces interparticle "hot-spots" for real-time SERS monitoring of the DNA assembly, disassembly, or enzyme cutting processes, during which the magnetic component provides an effective means for intervention in the solution. The unique combination of the nanoprobes functionalities serves a new paradigm for the design of functional nanoprobes in biomolecular recognition and intervention.

  4. Bifunctional hairy silica nanoparticles as high-performance additives for lubricant

    PubMed Central

    Sui, Tianyi; Song, Baoyu; Wen, Yu-ho; Zhang, Feng

    2016-01-01

    Bifunctional hairy silica nanoparticles (BHSNs), which are silica nanoparticles covered with alkyl and amino organic chains, were prepared as high-performance additives for lubricants. Compared with hairy silica nanoparticles covered by a single type of organic chain, binary hairy silica nanoparticles exhibit the advantages of both types of organic chains, which exhibit excellent compatibility with lubricants and adsorbability to metal surfaces. Nanoparticles with different ratios of amino and alkyl ligands were investigated. In comparison to an untreated lubricant, BHSNs reduce the friction coefficient and wear scar diameter by 40% and 60%, respectively. The wear mechanism of BHSNs was investigated, and the protective and filling effect of the nanoparticles improved because of collaboration of amino and alkyl ligands. PMID:26936117

  5. Synthesis of bifunctional receptor for fluoride and cadmium based on calix[4]arene with thiourea moieties

    NASA Astrophysics Data System (ADS)

    Quiroga-Campano, C.; Gómez-Machuca, H.; Moris, S.; Jara, P.; De la Fuente, J. R.; Pessoa-Mahana, H.; Jullian, C.; Saitz, C.

    2017-08-01

    A new calix[4]arene thiourea derivative bearing a benzothiazolyl moiety (L) was synthetized and characterized by single crystal X-ray, NMR and ESI-TOF. The binding ability of the bifunctional receptor towards several ions was investigated in acetonitrile by means of UV-Visible and NMR spectroscopy. The UV-Vis studies of receptor L demonstrated a stoichiometry of 1:1 for all ions studied. Also, recognize selectively F- and Cd2+ with a detection limit of 97 and 37 μM, respectively. Also, 1H NMR titration of receptor L indicated that both thiourea bridge and phenolic hydroxyl functional groups played a critical role in the binding of F- and Cd2+ ions. 1H NMR spectrum showed that receptor L has a flattened-cone conformation in solution that changes to a cone conformation in the presence of fluoride while cadmium maintained the initial conformation.

  6. Bifunctional Catalyst Promotes Highly Enantioselective Bromolactonizations to Generate Stereogenic C–Br Bonds

    PubMed Central

    Paull, Daniel H.; Fang, Chao; Donald, James R.; Pansick, Andrew D.; Martin, Stephen F.

    2012-01-01

    A novel bifunctional catalyst derived from BINOL has been developed that promotes the highly enantioselective bromolactonizations of a number of structurally distinct unsaturated acids. Like some known catalysts, this catalyst promotes highly enantioselective bromolactonizations of 4- and 5-aryl-4-pentenoic acids, but it also catalyzes the highly enantioselective bromolactonizations of 5-alkyl-4(Z)-pentenoic acids. These reactions represent the first catalytic bromolactonizations of alkyl-substituted olefinic acids that proceed via 5-exo mode cyclizations to give lactones in which new carbon–bromine bonds are formed at a stereogenic center with high enantioselectivity. We also disclose the first catalytic desymmetrization of a prochiral dienoic acid by enantioselective bromolactonization. PMID:22726214

  7. Enhancing Electrocatalytic Performance of Bifunctional Cobalt–Manganese-Oxynitride Nanocatalysts on Graphene

    SciTech Connect

    Li, Yang; Kuttiyiel, Kurian A.; Wu, Lijun; Zhu, Yimei; Fujita, Etsuko; Adzic, Radoslav R.; Sasaki, Kotaro

    2016-11-21

    In this paper, we report the synthesis and characterization of graphenesupported cobalt–manganese-oxynitride nanocatalysts (CoMnON/G) as bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). A nitriding treatment of spinel compound CoMnO increased the ORR activity considerably, and the most active material catalyzed the ORR with only a 30 mV half-wave potential difference from the commercial carbon-supported platinum (Pt/C) in alkaline media. In addition to high activity, the catalyst also exhibited an intrinsic stability that outperformed Pt/C. Finally, an appropriately designed nitridation thus facilitates new directions for developing active and durable non-precious-metal oxynitride electocatalysts.

  8. Bi-Functional Biobased Packing of the Cassava Starch, Glycerol, Licuri Nanocellulose and Red Propolis

    PubMed Central

    Costa, Samantha Serra; Druzian, Janice Izabel; Machado, Bruna Aparecida Souza; de Souza, Carolina Oliveira; Guimarães, Alaíse Gil

    2014-01-01

    The aim of this study was to characterize and determine the bi-functional efficacy of active packaging films produced with starch (4%) and glycerol (1.0%), reinforced with cellulose nanocrystals (0–1%) and activated with alcoholic extracts of red propolis (0.4 to 1.0%). The cellulose nanocrystals used in this study were extracted from licuri leaves. The films were characterized using moisture, water-activity analyses and water vapor-permeability tests and were tested regarding their total phenolic compounds and mechanical properties. The antimicrobial and antioxidant efficacy of the films were evaluated by monitoring the use of the active films for packaging cheese curds and butter, respectively. The cellulose nanocrystals increased the mechanical strength of the films and reduced the water permeability and water activity. The active film had an antimicrobial effect on coagulase-positive staphylococci in cheese curds and reduced the oxidation of butter during storage. PMID:25383783

  9. Bifunctional Brønsted Base Catalyzes Direct Asymmetric Aldol Reaction of α-Keto Amides.

    PubMed

    Echave, Haizea; López, Rosa; Palomo, Claudio

    2016-03-01

    The first enantioselective direct cross-aldol reaction of α-keto amides with aldehydes, mediated by a bifunctional ureidopeptide-based Brønsted base catalyst, is described. The appropriate combination of a tertiary amine base and an aminal, and urea hydrogen-bond donor groups in the catalyst structure promoted the exclusive generation of the α-keto amide enolate which reacted with either non-enolizable or enolizable aldehydes to produce highly enantioenriched polyoxygenated aldol adducts without side-products resulting from dehydration, α-keto amide self-condensation, aldehyde enolization, and isotetronic acid formation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Rare earth modified silica-aluminas as supports for bifunctional catalysis

    SciTech Connect

    Soled, S.L.; McVicker, G.; Miseo, S.

    1996-12-31

    We have explored rare earth oxide-modified amorphous silica-aluminas as {open_quotes}permanent{close_quotes} intermediate strength acids used as supports for bifunctional catalysts. The addition of well dispersed weakly basic rare earth oxides {open_quotes}titrates{close_quotes} the stronger acid sites of amorphous silica-alumina and lowers the acid strength to the level shown by halided aluminas. Physical and chemical probes, as well as model olefin and paraffin isomerization reactions show that acid strength can be adjusted close to that of chlorided and fluorided aluminas. Metal activity is inhibited relative to halided alumina catalysts, which limits the direct metal-catalyzed dehydrocyclization reactions during paraffin reforming but does not interfere with hydroisomerization reactions.

  11. Aldo-X Bifunctional Building Blocks for the Synthesis of Heterocycles.

    PubMed

    Ravichandiran, Palanisamy; Lai, Bingbing; Gu, Yanlong

    2017-02-01

    Compounds containing oxygen, nitrogen, or sulfur atoms inside the rings are attracting much attention and interest due to their biological importance. In recent years, several methods for the synthesis of such molecules have been reported by using aldo-X bifunctional building blocks (AXB3 s) as substrates; these are a wide class of organic molecules that contain at least two reactive sites, among them, one aldehyde, acetal, or semiacetal group was involved. Because of the multiple reactivities, AXB3 s are widely used in the one-pot synthesis of biologically important heterocycles. This review summarizes the synthesis of important heterocycles by using AXB3 s as pivotal components in establishing multicomponent reactions, tandem reactions, and so forth. In many cases, the established reaction systems with AXB3 s were characterized by some green properties, such as easy access to the substrate, mild and environmentally benign conditions, and wide scope of the substrate.

  12. Bi-functional biobased packing of the cassava starch, glycerol, licuri nanocellulose and red propolis.

    PubMed

    Costa, Samantha Serra; Druzian, Janice Izabel; Machado, Bruna Aparecida Souza; de Souza, Carolina Oliveira; Guimarães, Alaíse Gil

    2014-01-01

    The aim of this study was to characterize and determine the bi-functional efficacy of active packaging films produced with starch (4%) and glycerol (1.0%), reinforced with cellulose nanocrystals (0-1%) and activated with alcoholic extracts of red propolis (0.4 to 1.0%). The cellulose nanocrystals used in this study were extracted from licuri leaves. The films were characterized using moisture, water-activity analyses and water vapor-permeability tests and were tested regarding their total phenolic compounds and mechanical properties. The antimicrobial and antioxidant efficacy of the films were evaluated by monitoring the use of the active films for packaging cheese curds and butter, respectively. The cellulose nanocrystals increased the mechanical strength of the films and reduced the water permeability and water activity. The active film had an antimicrobial effect on coagulase-positive staphylococci in cheese curds and reduced the oxidation of butter during storage.

  13. Bifunctional hairy silica nanoparticles as high-performance additives for lubricant

    NASA Astrophysics Data System (ADS)

    Sui, Tianyi; Song, Baoyu; Wen, Yu-Ho; Zhang, Feng

    2016-03-01

    Bifunctional hairy silica nanoparticles (BHSNs), which are silica nanoparticles covered with alkyl and amino organic chains, were prepared as high-performance additives for lubricants. Compared with hairy silica nanoparticles covered by a single type of organic chain, binary hairy silica nanoparticles exhibit the advantages of both types of organic chains, which exhibit excellent compatibility with lubricants and adsorbability to metal surfaces. Nanoparticles with different ratios of amino and alkyl ligands were investigated. In comparison to an untreated lubricant, BHSNs reduce the friction coefficient and wear scar diameter by 40% and 60%, respectively. The wear mechanism of BHSNs was investigated, and the protective and filling effect of the nanoparticles improved because of collaboration of amino and alkyl ligands.

  14. Polarization holograms in a bifunctional amorphous polymer exhibiting equal values of photoinduced linear and circular birefringences.

    PubMed

    Provenzano, Clementina; Pagliusi, Pasquale; Cipparrone, Gabriella; Royes, Jorge; Piñol, Milagros; Oriol, Luis

    2014-10-09

    Light-controlled molecular alignment is a flexible and useful strategy introducing novelty in the fields of mechanics, self-organized structuring, mass transport, optics, and photonics and addressing the development of smart optical devices. Azobenzene-containing polymers are well-known photocontrollable materials with large and reversible photoinduced optical anisotropies. The vectorial holography applied to these materials enables peculiar optical devices whose properties strongly depend on the relative values of the photoinduced birefringences. Here is reported a polarization holographic recording based on the interference of two waves with orthogonal linear polarization on a bifunctional amorphous polymer that, exceptionally, exhibits equal values of linear and circular birefringence. The peculiar photoresponse of the material coupled with the holographic technique demonstrates an optical device capable of decomposing the light into a set of orthogonally polarized linear components. The holographic structures are theoretically described by the Jones matrices method and experimentally investigated.

  15. Improving battery safety by early detection of internal shorting with a bifunctional separator

    NASA Astrophysics Data System (ADS)

    Wu, Hui; Zhuo, Denys; Kong, Desheng; Cui, Yi

    2014-10-01

    Lithium-based rechargeable batteries have been widely used in portable electronics and show great promise for emerging applications in transportation and wind-solar-grid energy storage, although their safety remains a practical concern. Failures in the form of fire and explosion can be initiated by internal short circuits associated with lithium dendrite formation during cycling. Here we report a new strategy for improving safety by designing a smart battery that allows internal battery health to be monitored in situ. Specifically, we achieve early detection of lithium dendrites inside batteries through a bifunctional separator, which offers a third sensing terminal in addition to the cathode and anode. The sensing terminal provides unique signals in the form of a pronounced voltage change, indicating imminent penetration of dendrites through the separator. This detection mechanism is highly sensitive, accurate and activated well in advance of shorting and can be applied to many types of batteries for improved safety.

  16. Octameric structure of the human bifunctional enzyme PAICS in purine biosynthesis.

    PubMed

    Li, Shu-Xing; Tong, Yong-Ping; Xie, Xiao-Cong; Wang, Qi-Hai; Zhou, Hui-Na; Han, Yi; Zhang, Zhan-Yu; Gao, Wei; Li, Sheng-Guang; Zhang, Xuejun C; Bi, Ru-Chang

    2007-03-09

    Phosphoribosylaminoimidazole carboxylase/phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS) is an important bifunctional enzyme in de novo purine biosynthesis in vertebrate with both 5-aminoimidazole ribonucleotide carboxylase (AIRc) and 4-(N-succinylcarboxamide)-5-aminoimidazole ribonucleotide synthetase (SAICARs) activities. It becomes an attractive target for rational anticancer drug design, since rapidly dividing cancer cells rely heavily on the purine de novo pathway for synthesis of adenine and guanine, whereas normal cells favor the salvage pathway. Here, we report the crystal structure of human PAICS, the first in the entire PAICS family, at 2.8 A resolution. It revealed that eight PAICS subunits, each composed of distinct AIRc and SAICARs domains, assemble a compact homo-octamer with an octameric-carboxylase core and four symmetric periphery dimers formed by synthetase domains. Based on structural comparison and functional complementation analyses, the active sites of SAICARs and AIRc were identified, including a putative substrate CO(2)-binding site. Furthermore, four symmetry-related, separate tunnel systems in the PAICS octamer were found that connect the active sites of AIRc and SAICARs. This study illustrated the octameric nature of the bifunctional enzyme. Each carboxylase active site is formed by structural elements from three AIRc domains, demonstrating that the octamer structure is essential for the carboxylation activity. Furthermore, the existence of the tunnel system implies a mechanism of intermediate channeling and suggests that the quaternary structure arrangement is crucial for effectively executing the sequential reactions. In addition, this study provides essential structural information for designing PAICS-specific inhibitors for use in cancer chemotherapy.

  17. Crystal structure of the bifunctional ATP sulfurylase-APS kinase from the chemolithotrophic thermophile Aquifex aeolicus.

    PubMed

    Yu, Zhihao; Lansdon, Eric B; Segel, Irwin H; Fisher, Andrew J

    2007-01-19

    The thermophilic chemolithotroph, Aquifex aeolicus, expresses a gene product that exhibits both ATP sulfurylase and adenosine-5'-phosphosulfate (APS) kinase activities. These enzymes are usually segregated on two separate proteins in most bacteria, fungi, and plants. The domain arrangement in the Aquifex enzyme is reminiscent of the fungal ATP sulfurylase, which contains a C-terminal domain that is homologous to APS kinase yet displays no kinase activity. Rather, in the fungal enzyme, the motif serves as a sulfurylase regulatory domain that binds the allosteric effector 3'-phosphoadenosine-5'-phosphosulfate (PAPS), the product of true APS kinase. Therefore, the Aquifex enzyme may represent an ancestral homolog of a primitive bifunctional enzyme, from which the fungal ATP sulfurylase may have evolved. In heterotrophic sulfur-assimilating organisms such as fungi, ATP sulfurylase catalyzes the first committed step in sulfate assimilation to produce APS, which is subsequently metabolized to generate all sulfur-containing biomolecules. In contrast, ATP sulfurylase in sulfur chemolithotrophs catalyzes the reverse reaction to produce ATP and sulfate from APS and pyrophosphate. Here, the 2.3 A resolution X-ray crystal structure of Aquifex ATP sulfurylase-APS kinase bifunctional enzyme is presented. The protein dimerizes through its APS kinase domain and contains ADP bound in all four active sites. Comparison of the Aquifex ATP sulfurylase active site with those from sulfate assimilators reveals similar dispositions of the bound nucleotide and nearby residues. This suggests that minor perturbations are responsible for optimizing the kinetic properties for the physiologically relevant direction. The APS kinase active-site lid adopts two distinct conformations, where one conformation is distorted by crystal contacts. Additionally, a disulfide bond is observed in one ATP-binding P-loop of the APS kinase active site. This linkage accounts for the low kinase activity of the

  18. Arabidopsis RIBA Proteins: Two out of Three Isoforms Have Lost Their Bifunctional Activity in Riboflavin Biosynthesis

    PubMed Central

    Hiltunen, Hanna-Maija; Illarionov, Boris; Hedtke, Boris; Fischer, Markus; Grimm, Bernhard

    2012-01-01

    Riboflavin serves as a precursor for flavocoenzymes (FMN and FAD) and is essential for all living organisms. The two committed enzymatic steps of riboflavin biosynthesis are performed in plants by bifunctional RIBA enzymes comprised of GTP cyclohydrolase II (GCHII) and 3,4-dihydroxy-2-butanone-4-phosphate synthase (DHBPS). Angiosperms share a small RIBA gene family consisting of three members. A reduction of AtRIBA1 expression in the Arabidopsis rfd1mutant and in RIBA1 antisense lines is not complemented by the simultaneously expressed isoforms AtRIBA2 and AtRIBA3. The intensity of the bleaching leaf phenotype of RIBA1 deficient plants correlates with the inactivation of AtRIBA1 expression, while no significant effects on the mRNA abundance of AtRIBA2 and AtRIBA3 were observed. We examined reasons why both isoforms fail to sufficiently compensate for a lack of RIBA1 expression. All three RIBA isoforms are shown to be translocated into chloroplasts as GFP fusion proteins. Interestingly, both AtRIBA2 and AtRIBA3 have amino acid exchanges in conserved peptides domains that have been found to be essential for the two enzymatic functions. In vitro activity assays of GCHII and DHBPS with all of the three purified recombinant AtRIBA proteins and complementation of E. coli ribA and ribB mutants lacking DHBPS and GCHII expression, respectively, confirmed the loss of bifunctionality for AtRIBA2 and AtRIBA3. Phylogenetic analyses imply that the monofunctional, bipartite RIBA3 proteins, which have lost DHBPS activity, evolved early in tracheophyte evolution. PMID:23203051

  19. VTC4 is a bifunctional enzyme that affects myoinositol and ascorbate biosynthesis in plants.

    PubMed

    Torabinejad, Javad; Donahue, Janet L; Gunesekera, Bhadra N; Allen-Daniels, Matthew J; Gillaspy, Glenda E

    2009-06-01

    Myoinositol synthesis and catabolism are crucial in many multiceullar eukaryotes for the production of phosphatidylinositol signaling molecules, glycerophosphoinositide membrane anchors, cell wall pectic noncellulosic polysaccharides, and several other molecules including ascorbate. Myoinositol monophosphatase (IMP) is a major enzyme required for the synthesis of myoinositol and the breakdown of myoinositol (1,4,5)trisphosphate, a potent second messenger involved in many biological activities. It has been shown that the VTC4 enzyme from kiwifruit (Actinidia deliciosa) has similarity to IMP and can hydrolyze l-galactose 1-phosphate (l-Gal 1-P), suggesting that this enzyme may be bifunctional and linked with two potential pathways of plant ascorbate synthesis. We describe here the kinetic comparison of the Arabidopsis (Arabidopsis thaliana) recombinant VTC4 with d-myoinositol 3-phosphate (d-Ins 3-P) and l-Gal 1-P. Purified VTC4 has only a small difference in the V(max)/K(m) for l-Gal 1-P as compared with d-Ins 3-P and can utilize other related substrates. Inhibition by either Ca(2+) or Li(+), known to disrupt cell signaling, was the same with both l-Gal 1-P and d-Ins 3-P. To determine whether the VTC4 gene impacts myoinositol synthesis in Arabidopsis, we isolated T-DNA knockout lines of VTC4 that exhibit small perturbations in abscisic acid, salt, and cold responses. Analysis of metabolite levels in vtc4 mutants showed that less myoinositol and ascorbate accumulate in these mutants. Therefore, VTC4 is a bifunctional enzyme that impacts both myoinositol and ascorbate synthesis pathways.

  20. MANOTA: a promising bifunctional chelating agent for copper-64 immunoPET.

    PubMed

    Moreau, M; Poty, S; Vrigneaud, J-M; Walker, P; Guillemin, M; Raguin, O; Oudot, A; Bernhard, C; Goze, C; Boschetti, F; Collin, B; Brunotte, F; Denat, F

    2017-09-01

    Improved bifunctional chelating agents (BFC) are required for copper-64 radiolabelling of monoclonal antibodies (mAbs) under mild conditions to yield stable, target-specific imaging agents. Four different bifunctional chelating agents (BFC) were evaluated for Fab (Fragment antigen binding) conjugation and radiolabelling with copper-64. Two DOTA- (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) and two NOTA- (1,4,7-triazacyclononane-1,4,7-triacetic acid) derivatives bearing a p-benzyl-isothiocyanate group were conjugated to Fab-trastuzumab - which targets the HER2/neu receptor - and the average number of chelators attached ranged from 2.4 to 4.3 macrocycles per Fab. Labelling of the immunoconjugate with copper-64 was achieved in high radiochemical yields after 45 min at 37 °C, and the radiochemical purity of each (64)Cu-BFC-Fab-trastuzumab reached 97% after purification. The affinity of each (64)Cu-BFC-Fab-trastuzumab ranged between 10 and 50 nM as evaluated by in vitro saturation assays using the HCC1954 breast cancer cell line. PET-MR imaging and biodistribution studies were performed in mice bearing breast cancer BT-474 xenografts. BT-474 tumours were clearly visualized on PET images at 4 and 24 hours post-injection. The tumour uptake of (64)Cu-BFC-Fab-trastuzumab reached 8.9 to 12.8% ID g(-1) 24 hours post-injection and significant differences in non-specific liver uptake were observed depending on the BFC conjugated, the lowest being observed with MANOTA. These results show that MANOTA is a valuable tool for copper-64 radiolabelling.

  1. Novel 16-substituted bifunctional derivatives of huperzine B: multifunctional cholinesterase inhibitors

    PubMed Central

    Shi, Yu-fang; Zhang, Hai-yan; Wang, Wei; Fu, Yan; Xia, Yu; Tang, Xi-can; Bai, Dong-lu; He, Xu-chang

    2009-01-01

    Aim: To design novel bifunctional derivatives of huperzine B (HupB) based on the concept of dual binding site of acetylcholinesterase (AChE) and evaluate their pharmacological activities for seeking new drug candidates against Alzheimer's disease (AD). Methods: Novel 16-substituted bifunctional derivatives of HupB were synthesized through chemical reactions. The inhibitory activities of the derivatives toward AChE and butyrylcholinesterase (BuChE) were determined in vitro by modified Ellman's method. Cell viability was quantified by the reduction of MTT. Results: A new preparative method was developed for the generation of 16-substituted derivatives of HupB, and pharmacological trials indicated that the derivatives were multifunctional cholinesterase inhibitors targeting both AChE and BuChE. Among the derivatives tested, 9c, 9e, 9f, and 9i were 480 to 1360 times more potent as AChE inhibitors and 370 to 1560 times more potent as BuChE inhibitors than the parent HupB. Further preliminary pharmacological trials of derivatives 9c and 9i were performed, including examining the mechanism of AChE inhibition, the substrate kinetics of the enzyme inhibition, and protection against hydrogen peroxide (H2O2)-induced cytotoxicity in PC12 cells. Conclusion: Preliminary pharmacological evaluation indicated that 16-substituted derivatives of HupB, particularly 9c and 9i, would be potentially valuable new drug candidates for AD therapy, and further exploration is needed to evaluate their pharmacological and clinical efficacies. PMID:19578388

  2. p-SCN-Bn-HOPO: A Superior Bifunctional Chelator for (89)Zr ImmunoPET.

    PubMed

    Deri, Melissa A; Ponnala, Shashikanth; Kozlowski, Paul; Burton-Pye, Benjamin P; Cicek, Huseyin T; Hu, Chunhua; Lewis, Jason S; Francesconi, Lynn C

    2015-12-16

    Zirconium-89 has an ideal half-life for use in antibody-based PET imaging; however, when used with the chelator DFO, there is an accumulation of radioactivity in the bone, suggesting that the (89)Zr(4+) cation is being released in vivo. Therefore, a more robust chelator for (89)Zr could reduce the in vivo release and the dose to nontarget tissues. Evaluation of the ligand 3,4,3-(LI-1,2-HOPO) demonstrated efficient binding of (89)Zr(4+) and high stability; therefore, we developed a bifunctional derivative, p-SCN-Bn-HOPO, for conjugation to an antibody. A Zr-HOPO crystal structure was obtained showing that the Zr is fully coordinated by the octadentate HOPO ligand, as expected, forming a stable complex. p-SCN-Bn-HOPO was synthesized through a novel pathway. Both p-SCN-Bn-HOPO and p-SCN-Bn-DFO were conjugated to trastuzumab and radiolabeled with (89)Zr. Both complexes labeled efficiently and achieved specific activities of approximately 2 mCi/mg. PET imaging studies in nude mice with BT474 tumors (n = 4) showed good tumor uptake for both compounds, but with a marked decrease in bone uptake for the (89)Zr-HOPO-trastuzumab images. Biodistribution data confirmed the lower bone activity, measuring 17.0%ID/g in the bone at 336 h for (89)Zr-DFO-trastuzumab while (89)Zr-HOPO-trastuzumab only had 2.4%ID/g. We successfully synthesized p-SCN-Bn-HOPO, a bifunctional derivative of 3,4,3-(LI-1,2-HOPO) as a potential chelator for (89)Zr. In vivo studies demonstrate the successful use of (89)Zr-HOPO-trastuzumab to image BT474 breast cancer with low background, good tumor to organ contrast, and, importantly, very low bone uptake. The reduced bone uptake seen with (89)Zr-HOPO-trastuzumab suggests superior stability of the (89)Zr-HOPO complex.

  3. MICA/IL-12: A novel bifunctional protein for killer cell activation.

    PubMed

    Tietje, Ashlee; Yang, Xi; Yu, Xianzhong; Wei, Yanzhang

    2017-03-01

    Natural killer (NK) cells have the potential to be effective killers of tumor cells. They are governed by inhibitory and activating receptors such as NKG2D, whose ligands are normally upregulated in cells that are stressed, like cancer cells. Advanced cancer cells, however, have ways to reduce the expression of these ligands, leaving them less detectable by NK cells. Along with these receptors, NK cells also require activating cytokines, such as IL-12. A previous study in our laboratory showed that a fusion protein of the extracellular domain of mouse UL-16 binding protein-like transcript 1 (MULT1E) and mouse interleukin 12 (IL-12) can effectively activate mouse NK cells by in vitro assays and in vivo in animal tumor models. The aim of the present study was to expand the concept of developing a novel bifunctional fusion protein for enhanced NK cell activation to human killer cells. The proposed protein combines the extracellular domain of a human NKG2D ligand, MHC class I polypeptide-related sequence A (MICA) and IL-12. It is hypothesized that when expressed by tumor cells, the protein will activate human NK and other killer cells using the NKG2D receptor, and deliver IL-12 to the NK cells where it can interact with the IL-12R and enhance cytotoxicity. The fusion protein, when expressed by engineered tumor cells, indeed activated NK92 cells as measured by an increase in interferon-γ (IFN-γ) production and an increase in cytotoxicity of tumor cells. The fusion protein was also able to increase the proliferation of human peripheral blood mononuclear cells (PBMCs) and augment their production of IFN-γ. This study along with the data from the previous mouse studies suggest that the MICA/IL-12 bifunctional fusion protein represents an effective activator of killer cells for cancer treatment.

  4. Electrospinning fabrication and characterization of magnetic-upconversion fluorescent bifunctional core-shell nanofibers

    NASA Astrophysics Data System (ADS)

    Ma, Qianli; Wang, Jinxian; Dong, Xiangting; Yu, Wensheng; Liu, Guixia

    2014-02-01

    Novel magnetic-upconversion fluorescent bifunctional core-shell nanofibers have been successfully fabricated by coaxial electrospinning technology. NaYF4:Yb3+,Er3+ and Fe3O4 nanoparticles (Nps) were incorporated into polyvinylpyrrolidone (PVP) and electrospun into core-shell nanofibers with Fe3O4/PVP as core and NaYF4:Yb3+,Er3+/PVP as the shell. The morphology and properties of the final products were investigated in detail by X-ray diffractometry, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometer, and fluorescence spectroscopy. The core contained magnetic Nps was ca. 100 nm in diameter, and the shell scattered with NaYF4:Yb3+, Er3+ Nps was ca. 80 nm in thickness. Fluorescence emission peaks of Er3+ in the [Fe3O4/PVP]@[NaYF4:Yb3+,Er3+/PVP] core-shell nanofibers were observed. Compared with Fe3O4/NaYF4:Yb3+,Er3+/PVP composite nanofibers, the luminescent intensity of the [Fe3O4/PVP]@[NaYF4:Yb3+,Er3+/PVP] core-shell nanofibers was much higher, because the Fe3O4 Nps were only distributed in the core of the core-shell nanofibers, thus the manufactured core-shell nanofibers possessed excellent magnetic properties. The new type magnetic-upconversion fluorescent bifunctional [Fe3O4/PVP]@[NaYF4:Yb3+,Er3+/PVP] core-shell nanofibers have many potential applications in display device, nanorobots, protein determination, and target delivery of drug owing to their excellent magnetism and fluorescence.

  5. Mitigation of nitrogen mustard mediated skin injury by a novel indomethacin bifunctional prodrug.

    PubMed

    Composto, Gabriella M; Laskin, Jeffrey D; Laskin, Debra L; Gerecke, Donald R; Casillas, Robert P; Heindel, Ned D; Joseph, Laurie B; Heck, Diane E

    2016-06-01

    Nitrogen mustard (NM) is a bifunctional alkylating agent that is highly reactive in the skin causing extensive tissue damage and blistering. In the present studies, a modified cutaneous murine patch model was developed to characterize NM-induced injury and to evaluate the efficacy of an indomethacin pro-drug in mitigating toxicity. NM (20μmol) or vehicle control was applied onto 6mm glass microfiber filters affixed to the shaved dorsal skin of CD-1 mice for 6min. This resulted in absorption of approximately 4μmol of NM. NM caused localized skin damage within 1 d, progressing to an eschar within 2-3 d, followed by wound healing after 4-5 d. NM-induced injury was associated with increases in skin thickness, inflammatory cell infiltration, reduced numbers of sebocytes, basal keratinocyte double stranded DNA breaks, as measured by phospho-histone 2A.X expression, mast cell degranulation and increases in inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Wound healing was characterized by epidermal hyperplasia and marked increases in basal cells expressing proliferating cell nuclear antigen. A novel indomethacin-anticholinergic prodrug (4338) designed to target cyclooxygenases and acetylcholinesterase (AChE), was found to markedly suppress NM toxicity, decreasing wound thickness and eschar formation. The prodrug also inhibited mast cell degranulation, suppressed keratinocyte expression of iNOS and COX-2, as well as markers of epidermal proliferation. These findings indicate that a novel bifunctional pro-drug is effective in limiting NM mediated dermal injury. Moreover, our newly developed cutaneous patch model is a sensitive and reproducible method to assess the mechanism of action of countermeasures. Copyright © 2016. Published by Elsevier Inc.

  6. Purification and characterization of a bifunctional alginate lyase from Pseudoalteromonas sp. SM0524.

    PubMed

    Li, Jian-Wei; Dong, Sheng; Song, Jie; Li, Chun-Bo; Chen, Xiu-Lan; Xie, Bin-Bin; Zhang, Yu-Zhong

    2011-01-21

    An alginate lyase-producing bacterial strain, Pseudoalteromonas sp. SM0524, was screened from marine rotten kelp. In an optimized condition, the production of alginate lyase from Pseudoalteromonas sp. SM0524 reached 62.6 U/mL, suggesting that strain SM0524 is a good producer of alginate lyases. The bifunctional alginate lyase aly-SJ02 secreted by strain SM0524 was purified. Aly-SJ02 had an apparent molecular mass of 32 kDa. The optimal temperature and pH of aly-SJ02 toward sodium alginate was 50 °C and 8.5, respectively. The half life period of aly-SJ02 was 41 min at 40 °C and 20 min at 50 °C. Aly-SJ02 was most stable at pH 8.0. N-terminal sequence analysis suggested that aly-SJ02 may be an alginate lyase of polysaccharide lyase family 18. Aly-SJ02 showed activities toward both polyG (α-l-guluronic acid) and polyM (β-D-mannuronic acid), indicating that it is a bifunctional alginate lyase. Aly-SJ02 had lower K(m) toward polyG than toward polyM and sodium alginate. Thin layer chromatography and ESI-MS analyses showed that aly-SJ02 mainly released dimers and trimers from polyM and alginate, and trimers and tetramers from polyG, which suggests that aly-SJ02 may be a good tool to produce dimers and trimers from alginate.

  7. Development of a bifunctional filter for prion protein and leukoreduction of red blood cell components.

    PubMed

    Yokomizo, Tomo; Kai, Takako; Miura, Morikazu; Ohto, Hitoshi

    2015-02-01

    Leukofiltration of blood components is currently implemented worldwide as a precautionary measure against white blood cell-associated adverse effects and the potential transmission of variant Creutzfeldt-Jakob disease (vCJD). A newly developed bifunctional filter (Sepacell Prima, Asahi Kasei Medical) was assessed for prion removal, leukoreduction (LR), and whether the filter significantly affected red blood cells (RBCs). Sepacell Prima's postfiltration effects on RBCs, including hemolysis, complement activation, and RBC chemistry, were compared with those of a conventional LR filter (Sepacell Pure RC). Prion removal was measured by Western blot after spiking RBCs with microsomal fractions derived from scrapie-infected hamster brain homogenate. Serially diluted exogenous prion solutions (0.05 mL), with or without filtration, were injected intracerebrally into Golden Syrian hamsters. LR efficiency of 4.44 log with the Sepacell Prima was comparable to 4.11 log with the conventional LR filter. There were no significant differences between the two filters in hemoglobin loss, hemolysis, complement activation, and RBC biomarkers. In vitro reduction of exogenously spiked prions by the filter exceeded 3 log. The titer, 6.63 (log ID50 /mL), of prefiltration infectivity of healthy hamsters was reduced to 2.52 (log ID50 /mL) after filtration. The reduction factor was calculated as 4.20 (log ID50 ). With confirmed removal efficacy for exogenous prion protein, this new bifunctional prion and LR filter should reduce the residual risk of vCJD transmission through blood transfusion without adding complexity to component processing. © 2014 AABB.

  8. Dimerization and Bifunctionality Confer Robustness to the Isocitrate Dehydrogenase Regulatory System in Escherichia coli*

    PubMed Central

    Dexter, Joseph P.; Gunawardena, Jeremy

    2013-01-01

    An important goal of systems biology is to develop quantitative models that explain how specific molecular features give rise to systems-level properties. Metabolic and regulatory pathways that contain multifunctional proteins are especially interesting to study from this perspective because they have frequently been observed to exhibit robustness: the ability for a system to perform its proper function even as levels of its components change. In this study, we use extensive biochemical data and algebraic modeling to develop and analyze a model that shows how robust behavior arises in the isocitrate dehydrogenase (IDH) regulatory system of Escherichia coli, which was shown in 1985 to experimentally exhibit robustness. E. coli IDH is regulated by reversible phosphorylation catalyzed by the bifunctional isocitrate dehydrogenase kinase/phosphatase (IDHKP), and the level of IDH activity determines whether carbon flux is directed through the glyoxylate bypass (for growth on two-carbon substrates) or the full tricarboxylic acid cycle. Our model, which incorporates recent structural data on IDHKP, identifies several specific biochemical features of the system (including homodimerization of IDH and bifunctionality of IDHKP) that provide a potential explanation for robustness. Using algebraic techniques, we derive an invariant that summarizes the steady-state relationship between the phospho-forms of IDH. We use the invariant in combination with kinetic data on IDHKP to calculate IDH activity at a range of total IDH levels and find that our model predicts robustness. Our work unifies much of the known biochemistry of the IDH regulatory system into a single quantitative framework and highlights the importance of constructing biochemically realistic models in systems biology. PMID:23192354

  9. Synthesis and Evaluation of New Generation Cross-Bridged Bifunctional Chelator for (64)Cu Radiotracers.

    PubMed

    Dale, Ajit V; An, Gwang Il; Pandya, Darpan N; Ha, Yeong Su; Bhatt, Nikunj; Soni, Nisarg; Lee, Hochun; Ahn, Heesu; Sarkar, Swarbhanu; Lee, Woonghee; Huynh, Phuong Tu; Kim, Jung Young; Gwon, Mi-Ri; Kim, Sung Hong; Park, Jae Gyu; Yoon, Young-Ran; Yoo, Jeongsoo

    2015-09-08

    Bifunctional chelators have been successfully used to construct (64)Cu-labeled radiopharmaceuticals. Previously reported chelators with cross-bridged cyclam backbones have various essential features such as high stability of the copper(II) complex, high efficiency of radiolabeling at room temperature, and good biological inertness of the radiolabeled complex, along with rapid body clearance. Here, we report a new generation propylene-cross-bridged chelator with hybrid acetate/phosphonate pendant groups (PCB-TE1A1P) developed with the aim of combining these key properties in a single chelator. The PCB-TE1A1P was synthesized from cyclam with good overall yield. The Cu(II) complex of our chelator showed good robustness in kinetic stability evaluation experiments, such as acidic decomplexation and cyclic voltammetry studies. The Cu(II) complex of PCB-TE1A1P remained intact under highly acidic conditions (12 M HCl, 90 °C) for 8 d and showed quasi-reversible reduction/oxidation peaks at -0.77 V in electrochemical studies. PCB-TE1A1P was successfully radiolabeled with (64)Cu ions in an acetate buffer at 60 °C within 60 min. The electrophoresis study revealed that the (64)Cu-PCB-TE1A1P complex has net negative charge in aqueous solution. The biodistribution and in vivo stability study profiles of (64)Cu-PCB-TE1A1P indicated that the radioactive complex was stable under physiological conditions and cleared rapidly from the body. A whole body positron emission tomography (PET) imaging study further confirmed high in vivo stability and fast clearance of the complex in mouse models. In conclusion, PCB-TE1A1P has good potential as a bifunctional chelator for (64)Cu-based radiopharmaceuticals, especially those involving peptides.

  10. Boosting Bifunctional Oxygen Electrolysis for N-Doped Carbon via Bimetal Addition.

    PubMed

    Wang, Jian; Ciucci, Francesco

    2017-02-15

    The addition of transition metals, even in a trace amount, into heteroatom-doped carbon (M-N/C) is intensively investigated to further enhance oxygen reduction reaction (ORR) activity. However, the influence of metal decoration on the electrolysis of the reverse reaction of ORR, that is, oxygen evolution reaction (OER), is seldom reported. Moreover, further improving the bifunctional activity and corrosion tolerance for carbon-based materials remains a big challenge, especially in OER potential regions. Here, bimetal-decorated, pyridinic N-dominated large-size carbon tubes (MM'-N/C) are proposed for the first time as highly efficient and durable ORR and OER catalysts. FeFe-N/C, CoCo-N/C, NiNi-N/C, MnMn-N/C, FeCo-N/C, NiFe-N/C, FeMn-N/C, CoNi-N/C, MnCo-N/C, and NiMn-N/C are systematically investigated in terms of their structure, composition, morphology, surface area, and active site densities. In contrast to conventional monometal and N-decorated carbon, small amounts of bimetal (≈2 at%) added during the one-step template-free synthesis contribute to increased pyridinic N content, much longer and more robust carbon tubes, reduced metal particle size, and stronger coupling between the encapsulated metals and carbon support. The synergy of those factors accounts for the dramatically improved ORR and OER activity and stability. By comparison, NiFe-N/C and MnCo-N/C stand out and achieve superior bifunctional oxygen catalytic performance, exceeding most of state-of-the-art catalysts.

  11. Paenibacillus sp. Strain E18 Bifunctional Xylanase-Glucanase with a Single Catalytic Domain▿

    PubMed Central

    Shi, Pengjun; Tian, Jian; Yuan, Tiezheng; Liu, Xin; Huang, Huoqing; Bai, Yingguo; Yang, Peilong; Chen, Xiaoyan; Wu, Ningfeng; Yao, Bin

    2010-01-01

    Xylanases are utilized in a variety of industries for the breakdown of plant materials. Most native and engineered bifunctional/multifunctional xylanases have separate catalytic domains within the same polypeptide chain. Here we report a new bifunctional xylanase (XynBE18) produced by Paenibacillus sp. E18 with xylanase and β-1,3-1,4-glucanase activities derived from the same active center by substrate competition assays and site-directed mutagenesis of xylanase catalytic Glu residues (E129A and E236A). The gene consists of 981 bp, encodes 327 amino acids, and comprises only one catalytic domain that is highly homologous to the glycoside hydrolase family 10 xylanase catalytic domain. Recombinant XynBE18 purified from Escherichia coli BL21(DE3) showed specificity toward oat spelt xylan and birchwood xylan and β-1,3-1,4-glucan (barley β-glucan and lichenin). Homology modeling and molecular dynamic simulation were used to explore structure differences between XynBE18 and the monofunctional xylanase XynE2, which has enzymatic properties similar to those of XynBE18 but does not hydrolyze β-1,3-1,4-glucan. The cleft containing the active site of XynBE18 is larger than that of XynE2, suggesting that XynBE18 is able to bind larger substrates such as barley β-glucan and lichenin. Further molecular docking studies revealed that XynBE18 can accommodate xylan and β-1,3-1,4-glucan, but XynE2 is only accessible to xylan. These results indicate a previously unidentified structure-function relationship for substrate specificities among family 10 xylanases. PMID:20382811

  12. A novel bifunctional metabolizable linker for the conjugation of antibodies with radionuclides

    SciTech Connect

    Arano, Y.; Matsushima, H.; Tagawa, M.; Koizumi, M.; Endo, K.; Konishi, J.; Yokoyama, A. )

    1991-03-01

    A novel heterogeneous bifunctional reagent containing an ester bond, N-((4-(2-maleimidoethoxy)-succinyl)oxy)succinimide (MESS), was designed and synthesized for the conjugation of antibodies with the gallium-67 (67Ga) chelate of succinyldeferoxamine (SDF) via the ester bond. MESS was synthesized by the acylation of N-(2-hydroxyethyl)maleimide with succinic anhydride, followed by the activation of the resulting carboxylic acid to a succinimido ester. MESS possesses a maleimide group for protein conjugation and an active ester group for deferoxamine (DFO) coupling, and the two functional groups are linked via ester bonding. Conjugation of 67Ga-SDF with nonspecific human IgG was performed by reacting freshly thiolated IgG with the reaction product of MESS and DFO, followed by 67Ga labeling of the resulting conjugate using GaCl3 (67Ga-DFO-MESS-IgG). For comparison, 67Ga-DFO conjugated nonspecific human IgG with a nonmetabolizable linkage was synthesized under the same conjugation conditions as those for 67Ga-DFO-MESS-IgG, using a nonmetabolizable heterogenous bifunctional reagent (N-((6-maleimidocaproyl)oxy)succinimide, EMCS) instead of MESS (67Ga-DFO-EMCS-IgG). HPLC size-exclusion chromatography of both preparations showed a single radioactivity and UV peak corresponding to the intact IgG. Generation of 67Ga-SDF from the 67Ga-DFO-MESS-IgG was demonstrated by reverse-phase HPLC analysis and cellulose acetate electrophoresis after the incubation of 67Ga-DFO-MESS-IgG in a buffered solution containing carboxyesterase. After injection of 67Ga-DFO-MESS-IgG into mice, faster radioactivity clearance from the blood and less radioactivity accumulation in the liver, kidney, and spleen was noted than when 67Ga-DFO-EMCS-IgG was injected.

  13. Electrochemical formation of transparent nanostructured TiO2 film as an effective bifunctional layer for dye-sensitized solar cells.

    PubMed

    Wu, Mao-Sung; Tsai, Chen-Hsiu; Wei, Tzu-Chien

    2011-03-14

    A bifunctional TiO(2) layer having an inner compact layer and an outer anchoring layer coated on fluorine-doped tin oxide (FTO) glass could reduce the charge recombination and interfacial contact resistance between FTO and the main TiO(2) layer; photoelectron conversion efficiency of cell was increased from 7.31 to 8.04% by incorporating the bifunctional layer.

  14. Evaluating Dimethyldiethoxysilane for use in Polyurethane Crosslinked Silica Aerogels

    NASA Technical Reports Server (NTRS)

    Randall, Jason P.; Meador, Mary Ann B.; Jana, Sadhan C.

    2008-01-01

    Silica aerogels are highly porous materials which exhibit exceptionally low density and thermal conductivity. Their "pearl necklace" nanostructure, however, is inherently weak; most silica aerogels are brittle and fragile. The strength of aerogels can be improved by employing an additional crosslinking step using isocyanates. In this work, dimethyldiethoxysilane (DMDES) is evaluated for use in the silane backbone of polyurethane crosslinked aerogels. Approximately half of the resulting aerogels exhibited a core/shell morphology of hard crosslinked aerogel surrounding a softer, uncrosslinked center. Solid state NMR and scanning electron microscopy results indicate the DMDES incorporated itself as a conformal coating around the outside of the secondary silica particles, in much the same manner as isocyanate crosslinking. Response surface curves were generated from compression data, indicating levels of reinforcement comparable to that in previous literature, despite the core/shell morphology.

  15. Syntheses of crosslinked latex nanoparticles using differential microemulsion polymerization

    NASA Astrophysics Data System (ADS)

    Hassmoro, N. F.; Rusop, M.; Abdullah, S.

    2013-06-01

    The differential microemulsion polymerization was used to synthesize latex nanoparticles. In this paper, 1, 3-butylene glycol dimethacrylate (1, 3-BGDMA) was used as a crosslinker respectively 1-5 weight% of monomer total. Butyl acrylate (BA), butyl methacrylate (BMA), and methacrylic acid (MAA) was used as the monomer. The thin film of latex nanoparticles were prepared by using spin coating method and have been dried at 100°C for 5 minutes. The amount of the crosslinker added in the polymerization was optimized and we found that the particle sizes fall in the range of 30-60 nm. The structural morphology of the uncrosslinked latex represented the most homogeneous image compared to the crosslinked latex. The effect of the amount of crosslinker on the particle sizes investigated by the Zeta-sizer Nano series while Atomic Force microscopy (AFM) was used to study the structural properties of latex nanoparticles.

  16. Kinetics of imidization and crosslinking in PMR-polyimide resin

    NASA Technical Reports Server (NTRS)

    Lauver, R. W.

    1977-01-01

    Infrared spectroscopy and differential scanning calorimetry were employed to study the imidization and crosslinking kinetics of norbornenyl-capped, addition-type polyimide resins (designated PMR for polymerization of monomer reactants). The spectral and thermal analyses were performed on resin specimens which had been isothermally aged at temperatures appropriate for imidization (120 to 204 C) and crosslinking (275 to 325 C). Imidization occurs rapidly (approximately 0.01/min) at short times, while at times longer than approximately 0.5 hour, the rate decreases significantly (approximately 0.0001/min). The crosslinking reaction exhibits first order kinetics during the initial portion of the reaction and its rate appears to be limited by the reversion of the norbornenyl Diels-Alder adduct. The total heat evolved per mole of endcap during crosslinking shows an inverse dependence on the molecular weight of the imide prepolymers. This reflects the effect of endcap dilution and decreased mobility of the larger oligomers.

  17. Crosslink-induced shrinkage of grafted Gaussian chains

    NASA Astrophysics Data System (ADS)

    Benetatos, Panayotis

    2014-04-01

    The statistical mechanics of polymers grafted on surfaces has been the subject of intense research activity because of many potential applications. In this paper, we analytically investigate the conformational changes caused by a single crosslink on two ideal (Gaussian) chains grafted onto a rigid planar surface. Both the crosslink and the surface reduce the number of allowed configurations. In the absence of the hard substrate, the sole effect of the crosslink is a reduction in the effective Kuhn length of a tethered chain. The crosslink-induced shrinkage (collapse) of the grafted chains (mushrooms) turns out to be a reduction in the variance of the distribution of the height of the chain rather than a reduction of the height itself.

  18. Gelation threshold of cross-linked polymer brushes.

    PubMed

    Hoffmann, Max; Lang, Michael; Sommer, Jens-Uwe

    2011-02-01

    The cross-linking of polymer brushes is studied using the bond-fluctuation model. By mapping the cross-linking process into a two-dimensional (2D) percolation problem within the lattice of grafting points, we investigate the gelation transition in detail. We show that the particular properties of cross-linked polymer brushes can be reduced to the distribution of bonds which are formed between the grafted chains, and we propose scaling arguments to relate the gelation threshold to the chain length and the grafting density. The gelation threshold is lower than the percolation threshold for 2D bond percolation because of the longer range and broad distribution of bonds formed by the cross-linking process. We term this type of percolation problem star percolation. We observe a broad crossover from mean-field to critical percolation behavior by analyzing the cluster size distribution near the gelation threshold.

  19. Photoreactivities and thermal properties of psoralen cross-links

    SciTech Connect

    Yeung, A.T.; Jones, B.K.; Chu, C.T.

    1988-05-03

    The authors have studied the photoreaction of 8-methoxypsoralen (8-MOP), 4,5',8-trimethylpsoralen (TMP), and 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen (HMT) with a pair of 18-base-long oligonucleotides in which a 14-base region is complementary. Only one 5'TpA site, favored for both monoadduct and cross-link formation with psoralen, is present in this oligonucleotide pair. They have used this model system to demonstrate, for the first time, strand specificity in the photoreaction of psoralen with DNA. They found that the two types of cross-links which form at this site have large differences in thermal stabilities. In addition, the denaturation of each cross-links isomer duplex occurred in at least three stages, which can be visualized as three bands in thermal equilibrium under the conditions of a denaturing polyacrylamide gel. This novel observation suggests that there are several domains differing in thermal stability in a psoralen cross-link.

  20. A Demonstration of Polymer Crosslinking and Gel Formation Without Heating

    ERIC Educational Resources Information Center

    Ross, Joseph H.

    1977-01-01

    Describes an undergraduate experiment in which Gantrez AN polymer chains are crosslinked at the anhydride groups by the addition of the hydroxyl groups of triethanolamine, which also acts as a basic catalyst. (MLH)