Sample records for argemone mexicana tissues

  1. Yellow colored blooms of Argemone mexicana and Turnera ulmifolia mediated synthesis of silver nanoparticles and study of their antibacterial and antioxidant activity

    NASA Astrophysics Data System (ADS)

    Chandrasekhar, N.; Vinay, S. P.

    2017-11-01

    In the present work, AgNPs were prepared using a simple bio-reduction method. This is ecologically welcoming and cost-effective method. Yellow colored blooms concentrate of Argemone mexicana and Turnera ulmifolia are used as bio reducing agents in the study. The formation of silver nanoparticles was confirmed by UV-Vis spectrophotometer and characterization of the nanoparticles was done by FTIR, SEM, XRD and EDX. The Antibacterial action of silver nanoparticles was tested against Staphylococus aureus, Pseudomonas aeruginosa, Escherichia coli and Klebsiella aerogenes. The phytochemical analysis of the blooms concentrate has shown the existence of saponins, alkaloids, amino acids, phenols, tannins, terpenoids, flavonoids and cardiac glycosides. In vitro anti-oxidant action of both A. mexicana and T. ulmifolia AgNPs were studied by DPPH assay and reducing power assay.

  2. Investigation of adsorption of Rhodamine B onto a natural adsorbent Argemone mexicana.

    PubMed

    Khamparia, Shraddha; Jaspal, Dipika

    2016-12-01

    The present study aims at exploring the potential of the seeds of a tropical weed, Argemone mexicana (AM), for the removal of a toxic xanthene textile dye, Rhodamine B (RHB), from waste water. Impact of pH, adsorbent dosage, particle size, contact time and dye concentration have been assessed during adsorption. The weed has been well characterized by several latest techniques thereby providing an indepth information of the mechanism during adsorption. About 80% removal has been attained with 0.06 g of adsorbent over the studied system. Thermodynamic and kinetic studies, followed by second order kinetic model, directed towards the endothermic nature of adsorption. The results obtained from batch experiments were modelled using Langmuir and Freundlich isotherm and were analysed on the basis of R 2 and six error functions for selection of appropriate model. Langmuir isotherm was found to be best fitted to the experimental data with high values of R 2 and lower values of error functions. Adsorption study revealed the affinity of AM seeds for the dye ions present in waste water, introducing a novel adsorbent in field of waste water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Reverse pharmacology for developing an anti-malarial phytomedicine. The example of Argemone mexicana

    PubMed Central

    Simoes-Pires, Claudia; Hostettmann, Kurt; Haouala, Amina; Cuendet, Muriel; Falquet, Jacques; Graz, Bertrand; Christen, Philippe

    2014-01-01

    Classical pharmacology has been the basis for the discovery of new chemical entities with therapeutic effects for decades. In natural product research, compounds are generally tested in vivo only after full in vitro characterization. However drug screening using this methodology is expensive, time-consuming and very often inefficient. Reverse pharmacology, also called bedside-to-bench, is a research approach based on the traditional knowledge and relates to reversing the classical laboratory to clinic pathway to a clinic to laboratory practice. It is a trans-disciplinary approach focused on traditional knowledge, experimental observations and clinical experiences. This paper is an overview of the reverse pharmacology approach applied to the decoction of Argemone mexicana, used as an antimalarial traditional medicine in Mali. A. mexicana appeared as the most effective traditional medicine for the treatment of uncomplicated falciparum malaria in Mali, and the clinical efficacy of the decoction was comparable to artesunate–amodiaquine as previously published. Four stages of the reverse pharmacology process will be described here with a special emphasis on the results for stage 4. Briefly, allocryptopine, protopine and berberine were isolated through bioguided fractionation, and had their identity confirmed by spectroscopic analysis. The three alkaloids showed antiparasitic activity in vitro, of which allocryptopine and protopine were selective towards Plasmodiumfalciparum. Furthermore, the amount of the three active alkaloids in the decoction was determined by quantitative NMR, and preliminary in vivo assays were conducted. On the basis of these results, the reverse pharmacology approach is discussed and further pharmacokinetic studies appear to be necessary in order to determine whether these alkaloids can be considered as phytochemical markers for quality control and standardization of an improved traditional medicine made with this plant. PMID:25516845

  4. Reverse pharmacology for developing an anti-malarial phytomedicine. The example of Argemone mexicana.

    PubMed

    Simoes-Pires, Claudia; Hostettmann, Kurt; Haouala, Amina; Cuendet, Muriel; Falquet, Jacques; Graz, Bertrand; Christen, Philippe

    2014-12-01

    Classical pharmacology has been the basis for the discovery of new chemical entities with therapeutic effects for decades. In natural product research, compounds are generally tested in vivo only after full in vitro characterization. However drug screening using this methodology is expensive, time-consuming and very often inefficient. Reverse pharmacology, also called bedside-to-bench, is a research approach based on the traditional knowledge and relates to reversing the classical laboratory to clinic pathway to a clinic to laboratory practice. It is a trans-disciplinary approach focused on traditional knowledge, experimental observations and clinical experiences. This paper is an overview of the reverse pharmacology approach applied to the decoction of Argemone mexicana, used as an antimalarial traditional medicine in Mali. A. mexicana appeared as the most effective traditional medicine for the treatment of uncomplicated falciparum malaria in Mali, and the clinical efficacy of the decoction was comparable to artesunate-amodiaquine as previously published. Four stages of the reverse pharmacology process will be described here with a special emphasis on the results for stage 4. Briefly, allocryptopine, protopine and berberine were isolated through bioguided fractionation, and had their identity confirmed by spectroscopic analysis. The three alkaloids showed antiparasitic activity in vitro, of which allocryptopine and protopine were selective towards Plasmodium falciparum. Furthermore, the amount of the three active alkaloids in the decoction was determined by quantitative NMR, and preliminary in vivo assays were conducted. On the basis of these results, the reverse pharmacology approach is discussed and further pharmacokinetic studies appear to be necessary in order to determine whether these alkaloids can be considered as phytochemical markers for quality control and standardization of an improved traditional medicine made with this plant.

  5. Evaluation of in vitro aldose reductase inhibitory potential of alkaloidal fractions of Piper nigrum, Murraya koenigii, Argemone mexicana, and Nelumbo nucifera.

    PubMed

    Gupta, Sakshi; Singh, Nirmal; Jaggi, Amteshwar Singh

    2014-05-01

    Aldose reductase is primarily involved in development of long-term diabetic complications due to increased polyol pathway activity. The synthetic aldose reductase inhibitors are not very successful clinically. Therefore, the natural sources may be exploited for safer and effective aldose reductase inhibitors. In the present study, the aldose reductase inhibitory potential of hydroalcoholic and alkaloidal extracts of Piper nigrum, Murraya koenigii, Argemone mexicana, and Nelumbo nucifera was evaluated. The hydroalcoholic and alkaloidal extracts of the selected plants were prepared. The different concentrations of hydroalcoholic and alkaloidal extracts of these plants were evaluated for their goat lens aldose reductase inhibitory activity using dl-glyceraldehyde as substrate. The aldose reductase inhibitory potential of extracts was assessed in terms of their IC50 value. Amongst the hydroalcoholic extracts, the highest aldose reductase inhibitory activity was shown by P. nigrum (IC50 value 35.64±2.7 μg/mL) followed by M. koenigii (IC50 value 45.67±2.57 μg/mL), A. mexicana (IC50 value 56.66±1.30 μg/mL), and N. nucifera (IC50 value 59.78±1.32 μg/mL). Among the alkaloidal extracts, highest inhibitory activity was shown by A. mexicana (IC50 value 25.67±1.25 μg/mL), followed by N. nucifera (IC50 value 28.82±1.85 μg/mL), P. nigrum (IC50 value 30.21±1.63 μg/mL), and M. koenigii (IC50 value 35.66±1.64 μg/mL). It may be concluded that the alkaloidal extracts of these plants possess potent aldose reductase inhibitory activity and may be therapeutically exploited in diabetes-related complications associated with increased activity of aldose reductase.

  6. Argemone mexicana decoction versus artesunate-amodiaquine for the management of malaria in Mali: policy and public-health implications.

    PubMed

    Graz, Bertrand; Willcox, Merlin L; Diakite, Chiaka; Falquet, Jacques; Dackuo, Florent; Sidibe, Oumar; Giani, Sergio; Diallo, Drissa

    2010-01-01

    A classic way of delaying drug resistance is to use an alternative when possible. We tested the malaria treatment Argemone mexicana decoction (AM), a validated self-prepared traditional medicine made with one widely available plant and safe across wide dose variations. In an attempt to reflect the real situation in the home-based management of malaria in a remote Malian village, 301 patients with presumed uncomplicated malaria (median age 5 years) were randomly assigned to receive AM or artesunate-amodiaquine [artemisinin combination therapy (ACT)] as first-line treatment. Both treatments were well tolerated. Over 28 days, second-line treatment was not required for 89% (95% CI 84.1-93.2) of patients on AM, versus 95% (95% CI 88.8-98.3) on ACT. Deterioration to severe malaria was 1.9% in both groups in children aged 5 years) and 0% had coma/convulsions. AM, now government-approved in Mali, could be tested as a first-line complement to standard modern drugs in high-transmission areas, in order to reduce the drug pressure for development of resistance to ACT, in the management of malaria. In view of the low rate of severe malaria and good tolerability, AM may also constitute a first-aid treatment when access to other antimalarials is delayed.

  7. Application of hydrostatic CCC-TLC-HPLC-ESI-TOF-MS for the bioguided fractionation of anticholinesterase alkaloids from Argemone mexicana L. roots.

    PubMed

    Kukula-Koch, Wirginia; Mroczek, Tomasz

    2015-03-01

    A rapid hydrostatic counter-current chromatography-thin-layer chromatography-electrospray-ionization time-of-flight mass spectrometry (CCC-TLC-ESI-TOF-MS) technique was established for use in seeking potent anti-Alzheimer's drugs among the acethylcholinesterase inhibitors in Argemone mexicana L. underground parts, with no need to isolate components in pure form. The dichloromethane extract from the roots of Mexican prickly poppy that was most rich in secondary metabolites was subjected to hydrostatic-CCC-based fractionation in descending mode, using a biphasic system composed of petroleum ether-ethyl acetate-methanol-water at the ratio of 1.5:3:2.1:2 (v/v). The obtained fractions were analyzed in a TLC-based AChE-inhibition "Fast Blue B" test. All active components in the fractions, including berberine, protopine, chelerithrine, sanguinarine, coptisine, palmatine, magnoflorine, and galanthamine, were identified in a direct TLC-HPLC-ESI-TOF-MS assay with high accuracy. This is the first time galanthamine has been reported in the extract of Mexican prickly poppy and the first time it has been identified in any member of the Papaveraceae family, in the significant quantity of 0.77%.

  8. In vitro assessment of Argemone mexicana, Taraxacum officinale, Ruta chalepensis and Tagetes filifolia against Haemonchus contortus nematode eggs and infective (L3) larvae.

    PubMed

    Jasso Díaz, Gabriela; Hernández, Glafiro Torres; Zamilpa, Alejandro; Becerril Pérez, Carlos Miguel; Ramírez Bribiesca, J Efrén; Hernández Mendo, Omar; Sánchez Arroyo, Hussein; González Cortazar, Manasés; Mendoza de Gives, Pedro

    2017-08-01

    Argemone mexicana, Taraxacum officinale, Ruta chalepensis and Tagetes filifolia are plants with deworming potential. The purpose of this study was to evaluate methanolic extracts of aerial parts of these plants against Haemonchus contortus eggs and infective larvae (L3) and identify compounds responsible for the anthelmintic activity. In vitro probes were performed to identify the anthelmintic activity of plant extracts: egg hatching inhibition (EHI) and larvae mortality. Open column Chromatography was used to bio-guided fractionation of the extract, which shows the best anthelmintic effect. The lethal concentration to inhibit 50% of H. contortus egg hatching or larvae mortality (LC 50 ) was calculated using a Probit analysis. Bio-guided procedure led to the recognition of an active fraction (TF11) mainly composed by 1) quercetagitrin, 2) methyl chlorogenate and chlorogenic acid. Quercetagitrin (1) and methyl chlorogenate (2) did not show an important EHI activity (3-14%) (p < 0.05); however, chlorogenic acid (3) showed 100% of EHI (LC 50 248 μg/mL) (p < 0.05). Chlorogenic acid is responsible of the ovicidal activity and it seems that, this compound is reported for the first time with anthelmintic activity against a parasite of importance in sheep industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Effect of Argemone mexicana active principles on inhibiting viral multiplication and stimulating immune system in Pacific white leg shrimp Litopenaeus vannamei against white spot syndrome virus.

    PubMed

    Palanikumar, Pandi; Daffni Benitta, Dani Joel; Lelin, Chinnadurai; Thirumalaikumar, Eswaramoorthy; Michaelbabu, Mariavincent; Citarasu, Thavasimuthu

    2018-04-01

    Argemone mexicana called as Mexican prickly poppy is a species of poppy found in Mexico and now widely naturalized in many parts of the world with broad range of bioactivities including anthelmintic, cures lepsory, skin-diseases, inflammations and bilious fevers. Plant parts of A. mexicana were serially extracted with hexane, ethyl acetate, methanol and performed antiviral and immunostimulant screening against WSSV and Vibrio harveyi respectively. The control groups succumbed to death 100% within three days, whereas the mortality was significantly (P < 0.5) reduced to 17.43 and 7.11 in the ethyl acetate extracts of stem and root treated shrimp group respectively. The same trend was reflected in the immunostimulant screening also. Different diets were prepared by the concentrations of 100 (AD-1), 200 (AD-2), 300 (AD-3) and 400 (AD-4) mg kg -1 using A. mexicana stem and root ethyl acetate extracts and fed to Pacific white leg shrimp Litopenaeus vannamei weighed about 9.0 ± 0.5 g for 30 days. The control groups fed with the normal diets devoid of A. mexicana extracts. The antiviral screening results revealed that, the ethyl acetate extract of the stem and root were effectively suppressed the WSSV and it reflected in the lowest cumulative mortality of treated shrimps. After termination of feeding trials, group of shrimps from control and each experimental group were challenged with virulent WSSV by intramuscular (IM) injection and studied cumulative mortality, molecular diagnosis by quantitative real time PCR (qRT-PCR), biochemical, haematological and immunological parameters. Control group succumbed to 100% death within four days, whereas the survival was significantly (P < 0.001) increased to 30, 45, 75 and 79% in AD1, AD-2, AD-4 and AD-5 diets fed shrimp groups respectively. qRT PCR results with positive correlation analysis revealed that, the WSSV copies were gradually decreased when increasing the A. mexicana extracts in the diets. The highest

  10. Spasmogenic and spasmolytic activities of Agastache mexicana ssp. mexicana and A. mexicana ssp. xolocotziana methanolic extracts on the guinea pig ileum.

    PubMed

    Ventura-Martínez, Rosa; Rodríguez, Rodolfo; González-Trujano, María Eva; Ángeles-López, Guadalupe E; Déciga-Campos, Myrna; Gómez, Claudia

    2017-01-20

    Agastache mexicana has been used in traditional medicine for relief of abdominal pain and treatment of other diseases. Two subspecies have been identified: A. mexicana ssp. mexicana (AMM) and A. mexicana ssp. xolocotziana (AMX) and both are used traditionally without distinction or in combination. To determine the effect of methanol extracts of A. mexicana ssp. mexicana and A. mexicana ssp. xolocotziana on gut motility and their possible mechanism of action. The effect of AMM and AMX methanol extracts were tested on the spontaneous activity in the isolated guinea pig ileum and on tissues pre-contracted with KCl, electrical field stimulation (EFS) or ACh. In addition, the possible mechanism of action of each subspecies on gut motility was analyzed in the presence of hexametonium, indomethacin, L-NAME, verapamil, atropine or pyrylamine. A comparative chromatographic profile of these extracts was also done to indicate the most abundant flavonoids presents in methanol extracts of both subspecies. AMM, but not AMX, induced a contractile effect in the guinea pig ileum. This spasmogenic effect was partially inhibited by atropine, antagonist of muscarinic receptors; and pyrilamine, antagonist of H 1 receptors. In contrast, AMX, but not AMM, diminished the contractions induced by KCl, EFS or ACh. The spasmolytic activity of AMX was partially inhibited by hexamethonium, ganglionic blocker; and indomethacin, inhibitor of the synthesis of prostaglandins; but not by L-NAME, inhibitor of nitric oxide synthase. In addition, AMX diminished the maximal contraction induced by CaCl 2 in a calcium-free medium. Chromatographic analyses of these methanol extracts showed the presence of acacetin and tilanin in both. These results suggest that in folk medicine only AMX should be used as spasmolytic, and not in combination with AMM as traditionally occurs, due to the spasmogenic effects of the latter. In addition, activation of nicotinic receptors, prostaglandins and calcium channels, but

  11. Leishmania (L.) mexicana Infected Bats in Mexico: Novel Potential Reservoirs

    PubMed Central

    Berzunza-Cruz, Miriam; Rodríguez-Moreno, Ángel; Gutiérrez-Granados, Gabriel; González-Salazar, Constantino; Stephens, Christopher R.; Hidalgo-Mihart, Mircea; Marina, Carlos F.; Rebollar-Téllez, Eduardo A.; Bailón-Martínez, Dulce; Balcells, Cristina Domingo; Ibarra-Cerdeña, Carlos N.; Sánchez-Cordero, Víctor; Becker, Ingeborg

    2015-01-01

    Leishmania (Leishmania) mexicana causes cutaneous leishmaniasis, an endemic zoonosis affecting a growing number of patients in the southeastern states of Mexico. Some foci are found in shade-grown cocoa and coffee plantations, or near perennial forests that provide rich breeding grounds for the sand fly vectors, but also harbor a variety of bat species that live off the abundant fruits provided by these shade-giving trees. The close proximity between sand flies and bats makes their interaction feasible, yet bats infected with Leishmania (L.) mexicana have not been reported. Here we analyzed 420 bats from six states of Mexico that had reported patients with leishmaniasis. Tissues of bats, including skin, heart, liver and/or spleen were screened by PCR for Leishmania (L.) mexicana DNA. We found that 41 bats (9.77%), belonging to 13 species, showed positive PCR results in various tissues. The infected tissues showed no evidence of macroscopic lesions. Of the infected bats, 12 species were frugivorous, insectivorous or nectarivorous, and only one species was sanguivorous (Desmodus rotundus), and most of them belonged to the family Phyllostomidae. The eco-region where most of the infected bats were caught is the Gulf Coastal Plain of Chiapas and Tabasco. Through experimental infections of two Tadarida brasiliensis bats in captivity, we show that this species can harbor viable, infective Leishmania (L.) mexicana parasites that are capable of infecting BALB/c mice. We conclude that various species of bats belonging to the family Phyllostomidae are possible reservoir hosts for Leishmania (L.) mexicana, if it can be shown that such bats are infective for the sand fly vector. Further studies are needed to determine how these bats become infected, how long the parasite remains viable inside these potential hosts and whether they are infective to sand flies to fully evaluate their impact on disease epidemiology. PMID:25629729

  12. Leishmania (L.) mexicana infected bats in Mexico: novel potential reservoirs.

    PubMed

    Berzunza-Cruz, Miriam; Rodríguez-Moreno, Ángel; Gutiérrez-Granados, Gabriel; González-Salazar, Constantino; Stephens, Christopher R; Hidalgo-Mihart, Mircea; Marina, Carlos F; Rebollar-Téllez, Eduardo A; Bailón-Martínez, Dulce; Balcells, Cristina Domingo; Ibarra-Cerdeña, Carlos N; Sánchez-Cordero, Víctor; Becker, Ingeborg

    2015-01-01

    Leishmania (Leishmania) mexicana causes cutaneous leishmaniasis, an endemic zoonosis affecting a growing number of patients in the southeastern states of Mexico. Some foci are found in shade-grown cocoa and coffee plantations, or near perennial forests that provide rich breeding grounds for the sand fly vectors, but also harbor a variety of bat species that live off the abundant fruits provided by these shade-giving trees. The close proximity between sand flies and bats makes their interaction feasible, yet bats infected with Leishmania (L.) mexicana have not been reported. Here we analyzed 420 bats from six states of Mexico that had reported patients with leishmaniasis. Tissues of bats, including skin, heart, liver and/or spleen were screened by PCR for Leishmania (L.) mexicana DNA. We found that 41 bats (9.77%), belonging to 13 species, showed positive PCR results in various tissues. The infected tissues showed no evidence of macroscopic lesions. Of the infected bats, 12 species were frugivorous, insectivorous or nectarivorous, and only one species was sanguivorous (Desmodus rotundus), and most of them belonged to the family Phyllostomidae. The eco-region where most of the infected bats were caught is the Gulf Coastal Plain of Chiapas and Tabasco. Through experimental infections of two Tadarida brasiliensis bats in captivity, we show that this species can harbor viable, infective Leishmania (L.) mexicana parasites that are capable of infecting BALB/c mice. We conclude that various species of bats belonging to the family Phyllostomidae are possible reservoir hosts for Leishmania (L.) mexicana, if it can be shown that such bats are infective for the sand fly vector. Further studies are needed to determine how these bats become infected, how long the parasite remains viable inside these potential hosts and whether they are infective to sand flies to fully evaluate their impact on disease epidemiology.

  13. Contributions of Zea mays subspecies mexicana haplotypes to modern maize.

    PubMed

    Yang, Ning; Xu, Xi-Wen; Wang, Rui-Ru; Peng, Wen-Lei; Cai, Lichun; Song, Jia-Ming; Li, Wenqiang; Luo, Xin; Niu, Luyao; Wang, Yuebin; Jin, Min; Chen, Lu; Luo, Jingyun; Deng, Min; Wang, Long; Pan, Qingchun; Liu, Feng; Jackson, David; Yang, Xiaohong; Chen, Ling-Ling; Yan, Jianbing

    2017-11-30

    Maize was domesticated from lowland teosinte (Zea mays ssp. parviglumis), but the contribution of highland teosinte (Zea mays ssp. mexicana, hereafter mexicana) to modern maize is not clear. Here, two genomes for Mo17 (a modern maize inbred) and mexicana are assembled using a meta-assembly strategy after sequencing of 10 lines derived from a maize-teosinte cross. Comparative analyses reveal a high level of diversity between Mo17, B73, and mexicana, including three Mb-size structural rearrangements. The maize spontaneous mutation rate is estimated to be 2.17 × 10 -8 ~3.87 × 10 -8 per site per generation with a nonrandom distribution across the genome. A higher deleterious mutation rate is observed in the pericentromeric regions, and might be caused by differences in recombination frequency. Over 10% of the maize genome shows evidence of introgression from the mexicana genome, suggesting that mexicana contributed to maize adaptation and improvement. Our data offer a rich resource for constructing the pan-genome of Zea mays and genetic improvement of modern maize varieties.

  14. Cholinesterase and Prolyl Oligopeptidase Inhibitory Activities of Alkaloids from Argemone platyceras (Papaveraceae).

    PubMed

    Siatka, Tomáš; Adamcová, Markéta; Opletal, Lubomír; Cahlíková, Lucie; Jun, Daniel; Hrabinová, Martina; Kuneš, Jiří; Chlebek, Jakub

    2017-07-14

    Alzheimer's disease is an age-related, neurodegenerative disorder, characterized by cognitive impairment and restrictions in activities of daily living. This disease is the most common form of dementia with complex multifactorial pathological mechanisms. Many therapeutic approaches have been proposed. Among them, inhibition of acetylcholinesterase, butyrylcholinesterase, and prolyl oligopeptidase can be beneficial targets in the treatment of Alzheimer's disease. Roots, along with aerial parts of Argemone platyceras , were extracted with ethanol and fractionated on an alumina column using light petrol, chloroform and ethanol. Subsequently, repeated preparative thin-layer chromatography led to the isolation of (+)-laudanosine, protopine, (-)-argemonine, allocryptopine, (-)-platycerine, (-)-munitagine, and (-)-norargemonine belonging to pavine, protopine and benzyltetrahydroisoquinoline structural types. Chemical structures of the isolated alkaloids were elucidated by optical rotation, spectroscopic and spectrometric analysis (NMR, MS), and comparison with literature data. (+)-Laudanosine was isolated from A. platyceras for the first time. Isolated compounds were tested for human blood acetylcholinesterase, human plasma butyrylcholinesterase and recombinant prolyl oligopeptidase inhibitory activity. The alkaloids inhibited the enzymes in a dose-dependent manner. The most active compound (-)-munitagine, a pavine alkaloid, inhibited both acetylcholinesterase and prolyl oligopeptidase with IC 50 values of 62.3 ± 5.8 µM and 277.0 ± 31.3 µM, respectively.

  15. Ovarian structure and oogenesis of the extremophile viviparous teleost Poecilia mexicana (Poeciliidae) from an active sulfur spring cave in Southern Mexico.

    PubMed

    Torres-Martínez, Aarón; Hernández-Franyutti, Arlette; Uribe, Mari Carmen; Contreras-Sánchez, Wilfrido Miguel

    2017-12-01

    The structure of the ovary and oogenesis of Poecilia mexicana from an active sulfur spring cave is documented. Poecilia mexicana is the only poeciliid adapted to a subterranean environment with high hydrogen sulfide levels and extreme hypoxic conditions. Twenty females were captured throughout one year at Cueva del Azufre, located in the State of Tabasco in Southern Mexico. Ovaries were processed with histological techniques. P. mexicana has a single, ovoid ovary with ovigerous lamella that project to the ovarian lumen. The ovarian wall presents abundant loose connective tissue, numerous melanomacrophage centers and large blood vessels, possibly associated with hypoxic conditions. The germinal epithelium bordering the ovarian lumen contains somatic and germ cells forming cell nests projecting into the stroma. P. mexicana stores sperm in ovarian folds associated with follicles at different developmental phases. Oogenesis in P. mexicana consisted of the following stages: (i) oogonial proliferation, (ii) chromatin nucleolus, (iii) primary growth, subdivided into: (a) one nucleolus, (b) multiple nucleoli, (c) droplet oils-cortical alveoli steps; (iv) secondary growth, subdivided in: (a) early secondary growth, (b) late secondary growth, and (c) full grown. Follicular atresia was present in all stages of follicular development; it was characterized by oocyte degeneration, where follicle cells hypertrophy and differentiate in phagocytes. The ovary and oogenesis are similar to these seen in other poeciliids, but we found frequent atretic follicles, melanomacrophage centers, reduced fecundity and increased of offspring size. © 2017 Wiley Periodicals, Inc.

  16. In vitro activity of Tridax procumbens against promastigotes of Leishmania mexicana.

    PubMed

    Martín-Quintal, Zhelmy; Moo-Puc, Rosa; González-Salazar, Francisco; Chan-Bacab, Manuel J; Torres-Tapia, Luis W; Peraza-Sánchez, Sergio R

    2009-04-21

    Tridax procumbens is an active herb against leishmaniasis. Leishmaniasis is a group of diseases caused by Leishmania protozoa. We investigated the antileishmanial activity of Tridax procumbens extracts and a pure compound against promastigotes of Leishmania mexicana, the causative agent of cutaneous leishmaniasis in the New World. Extracts and (3S)-16,17-didehydrofalcarinol (1) were obtained by chromatographic methods from Tridax procumbens, and the latter identified by spectroscopic analysis. The effect of these extracts and 1 on the growth inhibition of promastigotes of Leishmania mexicana was evaluated. In order to test the safety of extracts and 1, mammalian cells were treated with them, and cell viability was assessed using trypan blue and MTT. We demonstrated that extracts of Tridax procumbens and 1 showed a pronounced activity against Leishmania mexicana. The methanol extract inhibited promastigotes growth of Leishmania mexicana with a 50% inhibitory concentration (IC(50)) of 3 microg/ml, while oxylipin 1 exhibited the highest inhibition at IC(50)=0.478 microg/ml. In this study we report the biological activity of extracts and (3S)-16,17-didehydrofalcarinol (1), obtained from Tridax procumbens, on the promastigote form of Leishmania mexicana, with no effect upon mammalian cells.

  17. Disease Severity in Patients Infected with Leishmania mexicana Relates to IL-1β

    PubMed Central

    Fernández-Figueroa, Edith A.; Rangel-Escareño, Claudia; Espinosa-Mateos, Valeria; Carrillo-Sánchez, Karol; Salaiza-Suazo, Norma; Carrada-Figueroa, Georgina; March-Mifsut, Santiago; Becker, Ingeborg

    2012-01-01

    Leishmania mexicana can cause both localized (LCL) and diffuse (DCL) cutaneous leishmaniasis, yet little is known about factors regulating disease severity in these patients. We analyzed if the disease was associated with single nucleotide polymorphisms (SNPs) in IL-1β (−511), CXCL8 (−251) and/or the inhibitor IL-1RA (+2018) in 58 Mexican mestizo patients with LCL, 6 with DCL and 123 control cases. Additionally, we analyzed the in vitro production of IL-1β by monocytes, the expression of this cytokine in sera of these patients, as well as the tissue distribution of IL-1β and the number of parasites in lesions of LCL and DCL patients. Our results show a significant difference in the distribution of IL-1β (−511 C/T) genotypes between patients and controls (heterozygous OR), with respect to the reference group CC, which was estimated with a value of 3.23, 95% CI = (1.2, 8.7) and p-value = 0.0167), indicating that IL-1β (−511 C/T) represents a variable influencing the risk to develop the disease in patients infected with Leishmania mexicana. Additionally, an increased in vitro production of IL-1β by monocytes and an increased serum expression of the cytokine correlated with the severity of the disease, since it was significantly higher in DCL patients heavily infected with Leishmania mexicana. The distribution of IL-1β in lesions also varied according to the number of parasites harbored in the tissues: in heavily infected LCL patients and in all DCL patients, the cytokine was scattered diffusely throughout the lesion. In contrast, in LCL patients with lower numbers of parasites in the lesions, IL-1β was confined to the cells. These data suggest that IL-1β possibly is a key player determining the severity of the disease in DCL patients. The analysis of polymorphisms in CXCL8 and IL-1RA showed no differences between patients with different disease severities or between patients and controls. PMID:22629474

  18. What is Sambucus mexicana (Adoxaceae)?

    USDA-ARS?s Scientific Manuscript database

    Inconsistent application of the name Sambucus mexicana Presl ex DC. has resulted in confusion in the literature and in herbaria, so Presl’s original material (a Haenke collection, made on the Malaspina Expedition) was located and characterized. It matches plants from the area around Monterey, Califo...

  19. Leishmaniasis in Texas: Isolation of Leishmania mexicana from Neotoma Micropus

    DTIC Science & Technology

    1990-01-01

    leishmaniasis cases in Texas, 2) Lutzomyia anthophora, a sand fly which has transmitted Leishmania mexicana under laboratory conditions (Endris et al., 1984...Addis, 1945). Other vertebrates such as opossums, hispid cotton rats, and armadillos and other sand flies such as Lutzomyia diabolica and Lutzomyia texana...Leishmania mexicana by a North American sand fly, Lutzomyia anthophora (Diptera: Psychodidae). Journal of Medical Entomology 24: 243- 247. GRIMALDI, G. Jr

  20. Leishmania mexicana Gp63 cDNA Using Gene Gun Induced Higher Immunity to L. mexicana Infection Compared to Soluble Leishmania Antigen in BALB/C

    PubMed Central

    Rezvan, H; Rees, R; Ali, SA

    2011-01-01

    Background Leishmaniasis is a worldwide disease prevalent in tropical and sub tropical countries. Many attempts have been made and different strategies have been approached to develop a potent vaccine against Leishmania. DNA immunisation is a method, which is shown to be effective in Leishmania vaccination. Leishmania Soluble Antigen (SLA) has also recently been used Leishmania vaccination. Methods The immunity generated by SLA and L. mexicana gp63 cDNA was compared in groups of 6 mice, which were statistically analysed by student t- test with the P-value of 0.05. SLA was administered by two different methods; intramuscular injection and injection of dendritic cells (DCs) loaded with SLA. L. mexicana gp63 cDNA was administered by the gene gun. Results Immunisation of BALB/c mice with L. mexicana gp63 resulted in high levels of Th1-type immune response and cytotoxic T lymphocytes (CTL) activity, which were accompanied with protection induced by the immunisation against L. mexicana infection. In contrast, administration of SLA, produced a mixed Th1/Th2-type immune responses as well as a high level of CTL activity but did not protect mice from the infection. Conclusion The results indicate higher protection by DNA immunisation using L. mexicana gp63 cDNA compared to SLA, which is accompanied by a high level of Th1 immune response. However, the CTL activity does not necessarily correlate with the protection induced by the vaccine. Also, gene gun immunisation is a potential approach in Leishmania vaccination. These findings would be helpful in opening new windows in Leishmania vaccine research. PMID:22347315

  1. Recurrence of Mexican long-tongued bats (Choeronycteris mexicana) at historical sites in Arizona and New Mexico

    USGS Publications Warehouse

    Cryan, P.M.; Bogan, M.A.

    2003-01-01

    The Mexican long-tongued bat (Choeronycteris mexicana) is a nectar-eating species that seasonally inhabits the southwestern United States. Since 1906, fewer than 1500 individuals of C. mexicana have been documented throughout the range of the species. We conducted a field survey in Arizona and New Mexico during summer 1999 to check historically occupied areas for recurrence of C. mexicana. We observed C. mexicana occupying a majority (75%, n = 18) of visited sites. Multiple individuals were observed at many sites, including young-of-year. Choeronycteris mexicana roosted in lighted areas close to entrances within mine adits, abandoned buildings, wide rock crevices, and caves. All occupied sites were in Madrean evergreen woodlands or semidesert grasslands where species of Agave were present. Most sites were located near a water source and, with the exception of a single site, near areas of riparian vegetation. Sites at which we did not encounter C. mexicana were frequently disturbed, difficult to search, or historically occupied by single individuals. Based on the relatively high rate of bat recurrence, we do not believe that populations of C. mexicana in the region have declined dramatically over the past several decades.

  2. Mechanism of action of relaxant effect of Agastache mexicana ssp.mexicana essential oil in guinea-pig trachea smooth muscle.

    PubMed

    Navarrete, Andrés; Ávila-Rosas, Natalia; Majín-León, Mateo; Balderas-López, José Luis; Alfaro-Romero, Alejandro; Tavares-Carvalho, José Carlos

    2017-12-01

    Agastache mexicana ssp. mexicana (Kunth) Lint & Epling (Lamiaceae), popularly known as 'toronjil morado', is used in Mexican traditional medicine for the treatment of several diseases such as hypertension, anxiety and respiratory disorders. This study investigates the relaxant action mechanism of A. mexicana ssp. mexicana essential oil (AMEO) in guinea-pig isolated trachea model. AMEO was analyzed by GC/MS. The relaxant effect of AMEO (5-50 μg/mL) was tested in guinea-pig trachea pre-contracted with carbachol (3 × 10  -   6  M) or histamine (3 × 10  -   5  M) in the presence or absence of glibenclamide (10  -   5  M), propranolol (3 × 10  -   6  M) or 2',5'-dideoxyadenosine (10  -   5  M). The antagonist effect of AMEO (10-300 μg/mL) against contractions elicited by carbachol (10  -   15 -10  -   3  M), histamine (10  -   15 -10  -   3  M) or calcium (10-300 μg/mL) was evaluated. Essential oil composition was estragole, d-limonene and linalyl anthranilate. AMEO relaxed the carbachol (EC 50  =   18.25 ± 1.03 μg/mL) and histamine (EC 50  =   13.3 ± 1.02 μg/mL)-induced contractions. The relaxant effect of AMEO was not modified by the presence of propranolol, glibenclamide or 2',5'-dideoxyadenosine, suggesting that effect of AMEO is not related to β 2 -adrenergic receptors, ATP-sensitive potassium channels or adenylate cyclase activation. AMEO was more potent to antagonize histamine (pA 2 ' = -1.507 ± 0.122) than carbachol (pA 2 ' = -2.180 ± 0.357). Also, AMEO antagonized the calcium chloride-induced contractions. The results suggest that relaxant effect of AMEO might be due to blockade of calcium influx in guinea-pig trachea smooth muscle. It is possible that estragole and d-limonene could contribute majority in the relaxant effect of AMEO.

  3. In vitro evaluation of medicinal plant extracts against Pestalotiopsis mangiferae.

    PubMed

    Rai, M K

    1996-01-01

    A serious leaf-spot disease of Mangifera indica was noted during the last 10 years in Satpura plateau of India. On the basis of characteristic symptoms and cultural characters, the pathogen was identified as Pestalotiopsis mangiferae which is hitherto not reported from Satpura plateau of India. Screening of 17-medicinal plants against the test pathogen revealed 14 antimycotic whereas 3-plants, viz., Argemone mexicana, Caesalpinia bonducella, and Casia fistula acclerated the growth of the pathogen. The maximum activity was shown by Eucalyptus globulus (88%) and Catharanthus roseus (88%) followed by Ocimum sanctum (85.50%), Azadirachta indica (84.66%), Ricinus communis (75%) and Lawsonia inermis (74.33%) while the minimum activity was exhibited by Jatropha curcas (10%).

  4. Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate.

    PubMed

    Xiong, Jiu-Qiang; Kurade, Mayur B; Abou-Shanab, Reda A I; Ji, Min-Kyu; Choi, Jaeyoung; Kim, Jong Oh; Jeon, Byong-Hun

    2016-04-01

    This study evaluated the toxicity and cellular stresses of carbamazepine (CBZ) on Chlamydomonas mexicana and Scenedesmus obliquus, and its biodegradation by both microalgal species. The growth of both microalgal species decreased with increase of CBZ concentration. The growth of S. obliquus was significantly inhibited (97%) at 200 mg CBZ L(-1), as compared to the control after 10days; whereas, C. mexicana showed 30% inhibition at the same experimental conditions. Biochemical characteristics including total chlorophyll, carotenoid contents and enzyme activities (SOD and CAT) for both species were affected by CBZ at relatively high concentration. C. mexicana and S. obliquus could achieve a maximum of 35% and 28% biodegradation of CBZ, respectively. Two metabolites (10,11-dihydro-10,11-expoxycarbamazepine and n-hydroxy-CBZ) were identified by UPLC-MS, as a result of CBZ biodegradation by C. mexicana. This study demonstrated that C. mexicana was more tolerant to CBZ and could be used for treatment of CBZ contaminated wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Photoacoustic monitoring of life cycles of Leishmania Mexicana

    NASA Astrophysics Data System (ADS)

    Arguello, C.; Acosta-Avalos, D.; Alvarado-Gil, J. J.; Vargas, H.

    1999-03-01

    Photoacoustic spectroscopy is used to monitor in situ, the difference between the two forms of the protozoan Leishmania Mexicana. Differences are the result of changes in the respiratory chain and could be attributed, according to our results, to the presence of cytochrome b in promastigotes and cytochrome c in amastigotes.

  6. Mg/Ca temperature calibration for the benthic foraminifers Bulimina inflata and Bulimina mexicana

    NASA Astrophysics Data System (ADS)

    Grunert, Patrick; Rosenthal, Yair; Jorissen, Frans; Holbourn, Ann

    2016-04-01

    Bulimina inflata Seguenza 1862 and Bulimina mexicana Cushman 1922 are cosmopolitan, shallow infaunal benthic foraminifers which are common in the fossil record throughout the Neogene and Quaternary. The closely related species share a similar costate shell morphology that differs in the presence or absence of an apical spine. In the present study, we evaluate the temperature dependency of Mg/Ca ratios of these species from an extensive set of core-top samples from the Atlantic and Pacific oceans. The results show no significant offset in Mg/Ca values between B. inflata, B. mexicana, and two other costate morphospecies when present in the same sample. The apparent lack of significant inter-specific/inter-morphotype differences amongst the analysed costate buliminds allows for the combined use of their data-sets for our core-top calibration. Over a bottom-water temperature range of 3-14°C, the Bulimina inflata/mexicana group shows a sensitivity of ˜0.12 mmol/mol/°C which is comparable to the epifaunal Cibicidoides pachyderma and higher than for the shallow infaunal Uvigerina spp., the most commonly used taxa in Mg/Ca-based palaeotemperature reconstruction. B. inflata and B. mexicana might thus be a valuable alternative in mesotrophic settings where many of the commonly used species are diminished or absent, and particularly useful in hypoxic settings where costate buliminds may dominate foraminiferal assemblages. This study was financially supported by the Max-Kade-Foundation and contributes to project P25831-N29 of the Austrian Science Fund (FWF).

  7. Study of decolorisation of binary dye mixture by response surface methodology.

    PubMed

    Khamparia, Shraddha; Jaspal, Dipika

    2017-10-01

    Decolorisation of a complex mixture of two different classes of textile dyes Direct Red 81 (DR81) and Rhodamine B (RHB), simulating one of the most important condition in real textile effluent was investigated onto deoiled Argemone Mexicana seeds (A. Mexicana). The adsorption behaviour of DR81 and RHB dyes was simultaneously analyzed in the mixture using derivative spectrophotometric method. Central composite design (CCD) was employed for designing the experiments for this complex binary mixture where significance of important parameters and possible interactions were analyzed by response surface methodology (RSM). Maximum adsorption of DR81 and RHB by A. Mexicana was obtained at 53 °C after 63.33 min with 0.1 g of adsorbent and 8 × 10 -6  M DR81, 12 × 10 -6  M RHB with composite desirability of 0.99. The predicted values for percentage removal of dyes from the mixture were in good agreement with the experimental values with R 2 > 96% for both the dyes. CCD superimposed RSM confirmed that presence of different dyes in a solution created a competition for the adsorbent sites and hence interaction of dyes was one of the most important factor to be studied to simulate the real effluent. The adsorbent showed remarkable adsorption capacities for both the dyes in the mixture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. In vivo and in vitro control of Leishmania mexicana due to garlic-induced NO production.

    PubMed

    Gamboa-León, M R; Aranda-González, I; Mut-Martín, M; García-Miss, M R; Dumonteil, E

    2007-11-01

    Leishmania mexicana is the main causal agent of cutaneous leishmaniasis in the Yucatán peninsula in Mexico. Control of this disease is associated with a Th1-type immune response and garlic extract has been reported as a Th1 immunomodulator in BALB/c mice infected with Leishmania major. In this study, we investigated the effect of garlic extracts on L. mexicana infection in vivo and in vitro. Garlic extract reduced footpad lesions in L. mexicana-infected BALB/c mice by inducing IFN-gamma production from T cells. In vitro, garlic extract reduced macrophage infection through induction of nitric oxide (NO) production. Garlic extract may thus act on both T cells and macrophages to stimulate IFN-gamma production and NO synthesis for parasite killing. A 10- to 14-kDa fraction was identified as responsible for the in vitro effect of the whole extract and may lead to the identification of novel immunomodulating drugs and therapeutic alternatives for the treatment of leishmaniasis.

  9. Prosexual Effect of Chrysactinia mexicana A. Gray (Asteraceae), False Damiana, in a Model of Male Sexual Behavior

    PubMed Central

    Estrada-Reyes, R.; Ferreyra-Cruz, O. A.

    2016-01-01

    Chrysactinia mexicana A. Gray (Asteraceae) and Turnera diffusa Willd (Turneraceae) are employed in traditional medicine as aphrodisiacs; however, there is no scientific evidence supporting the prosexual properties of C. mexicana. The aim of this study was to determine whether an aqueous extract of C. mexicana (Cm) stimulates rat male sexual behavior in the sexual exhaustion paradigm. Sexually exhausted (SExh) male rats were treated with Cm (80, 160, and 320 mg/kg), an aqueous extract of T. diffusa (Td), or yohimbine. The sexual exhaustion state in the control group was characterized by a low percentage of males exhibiting mounts, intromissions, and ejaculations and no males demonstrating mating behavior after ejaculation. Cm (320 mg/kg), Td, or yohimbine significantly increased the proportion of SExh rats that ejaculated and resumed copulation after ejaculation. In males that exhibited reversal of sexual exhaustion, Cm (320 mg/kg) improved sexual performance by reducing the number of intromissions and shrinking ejaculation latency. The effects of treatments on sexual behavior were not related with alterations in general locomotion. In conclusion, the prosexual effects of Cm, as well as those of Td, are established at a central level, which supports the traditional use of C. mexicana for stimulating sexual activity. PMID:27656650

  10. Prosexual Effect of Chrysactinia mexicana A. Gray (Asteraceae), False Damiana, in a Model of Male Sexual Behavior.

    PubMed

    Estrada-Reyes, R; Ferreyra-Cruz, O A; Jiménez-Rubio, G; Hernández-Hernández, O T; Martínez-Mota, L

    Chrysactinia mexicana A. Gray (Asteraceae) and Turnera diffusa Willd (Turneraceae) are employed in traditional medicine as aphrodisiacs; however, there is no scientific evidence supporting the prosexual properties of C. mexicana . The aim of this study was to determine whether an aqueous extract of C. mexicana (Cm) stimulates rat male sexual behavior in the sexual exhaustion paradigm. Sexually exhausted (SExh) male rats were treated with Cm (80, 160, and 320 mg/kg), an aqueous extract of T. diffusa (Td), or yohimbine. The sexual exhaustion state in the control group was characterized by a low percentage of males exhibiting mounts, intromissions, and ejaculations and no males demonstrating mating behavior after ejaculation. Cm (320 mg/kg), Td, or yohimbine significantly increased the proportion of SExh rats that ejaculated and resumed copulation after ejaculation. In males that exhibited reversal of sexual exhaustion, Cm (320 mg/kg) improved sexual performance by reducing the number of intromissions and shrinking ejaculation latency. The effects of treatments on sexual behavior were not related with alterations in general locomotion. In conclusion, the prosexual effects of Cm, as well as those of Td, are established at a central level, which supports the traditional use of C. mexicana for stimulating sexual activity.

  11. Spectroscopic study of antileishmanial drug incubated in the promastigotes of Leishmania mexicana

    NASA Astrophysics Data System (ADS)

    Hung, J.; Castillo, J.; Jiménez, G.; Hasegawa, M.; Rodriguez, M.

    2003-11-01

    In this work we present spectroscopic study of Boldine (aporphine alkaloid) that possesses important biological activities, in particular, in interaction with the promastigotes of Leishmania mexicana. The results show the applicability of autofluorescence of this drug to determinate the possible mechanism of its biological action. The blue shift and hyperchromic effect in the emission spectrum of the drug in interaction with the parasite cells indicate an energy transference process between them. The morphological change of cell shape of the promastigotes treated with the drug is observed using confocal microscopy. This morphological cell-shape transformation evidences an important interaction between the drug studied and some protein of the parasite cell. Here we describe for the first time the fluorescence properties of the Boldine in the promastigotes of L. mexicana.

  12. Temperature-Induced Protein Secretion by Leishmania mexicana Modulates Macrophage Signalling and Function

    PubMed Central

    Hassani, Kasra; Antoniak, Elisabeth; Jardim, Armando; Olivier, Martin

    2011-01-01

    Protozoan parasites of genus Leishmania are the causative agents of leishmaniasis. These digenetic microorganisms undergo a marked environmental temperature shift (TS) during transmission from the sandfly vector (ambient temperature, 25–26°C) to the mammalian host (37°C). We have observed that this TS induces a rapid and dramatic increase in protein release from Leishmania mexicana (cutaneous leishmaniasis) within 4 h. Proteomic identification of the TS-induced secreted proteins revealed 72 proteins, the majority of which lack a signal peptide and are thus thought to be secreted via nonconventional mechanisms. Interestingly, this protein release is accompanied by alterations in parasite morphology including an augmentation in the budding of exovesicles from its surface. Here we show that the exoproteome of L. mexicana upon TS induces cleavage and activation of the host protein tyrosine phosphatases, specifically SHP-1 and PTP1-B, in a murine bone-marrow-derived macrophage cell line. Furthermore, translocation of prominent inflammatory transcription factors, namely NF-κB and AP-1 is altered. The exoproteome also caused inhibition of nitric oxide production, a crucial leishmanicidal function of the macrophage. Overall, our results provide strong evidence that within early moments of interaction with the mammalian host, L. mexicana rapidly releases proteins and exovesicles that modulate signalling and function of the macrophage. These modulations can result in attenuation of the inflammatory response and deactivation of the macrophage aiding the parasite in the establishment of infection. PMID:21559274

  13. Protective effect of topical application of α-tocopherol and/or N-acetyl cysteine on argemone oil/alkaloid-induced skin tumorigenesis in mice.

    PubMed

    Pal, Anu; Alam, Shamshad; Singhal, Jaya; Kumar, Rahul; Ansari, Kausar M; Das, Mukul

    2013-01-01

    Since bioantioxidants in plasma of Epidemic Dropsy patients [a condition caused by consumption of adulterated mustard oil with argemone oil (AO)] were found to be significantly decreased, the beneficial effect of N-acetyl cysteine (NAC) and α-tocopherol (TOCO) against AO- or sanguinarine (SANG)-induced tumorigenicity was undertaken in mice. Topical application of TOCO and NAC either alone or in combination showed significant protection against AO/TPA- and SANG/TPA-induced skin tumorigenicity. Histopathological findings suggest that papillomatous growth in AO/TPA- and SANG/TPA-treated animals were substantially protected following topical application of TOCO or NAC. Further, treatment of TOCO and NAC either alone or in combination to AO/TPA- or SANG/TPA-induced mice significantly decreased lipid peroxidation, along with significant revival in glutathione (GSH) content and activities of tyrosinase, histidase, catalase, SOD, GSH peroxidase, and GSH reductase in skin. In vitro studies showed that TOCO and/or NAC significantly decreased the AO and SANG induced cell proliferation and activation of ERK, p38, JNK MAPKs and NF-κB signaling in HaCaT cells. In summary, TOCO and NAC may be useful in preventing the tumorigenic response of AO and SANG probably by acting as scavenger of free radicals and inhibiting MAPKs and NF-κB signaling.

  14. Association of Lutzomyia columbiana (Diptera: Psychodidae) with a leishmaniasis focus in Colombia due to species of the Leishmania mexicana complex.

    PubMed

    Montoya-Lerma, J; Cadena, H; Segura, I; Travi, B L

    1999-01-01

    In Colombia, Leishmania mexicana has a scattered geographical distribution and no sand fly vectors have been associated with its transmission. During the present study, the anthropophilic sand fly Lutzomyia columbiana was found to be the only species collected using diverse methods, in a small focus of Le. mexicana in the municipality of Samaniego, SW Colombia. Ecological data indicate that this sand fly species is present in both peri and intradomestic habitats, where it readily bites man. Further evidence comes from experimental infections of wild-caught Lu. columbiana with Le. mexicana after feeding on infected hamsters. Based on these results, it is suggested that this sand fly is the most likely vector in the study area, suggesting the existence of a previously unknown sand fly-parasite association.

  15. [Skin and tissue bank: Operational model for the recovery and preservation of tissues and skin allografts].

    PubMed

    Martínez-Flores, Francisco; Sandoval-Zamora, Hugo; Machuca-Rodriguez, Catalina; Barrera-López, Araceli; García-Cavazos, Ricardo; Madinaveitia-Villanueva, Juan Antonio

    2016-01-01

    Tissue storage is a medical process that is in the regulation and homogenisation phase in the scientific world. The international standards require the need to ensure safety and efficacy of human allografts such as skin and other tissues. The activities of skin and tissues banks currently involve their recovery, processing, storage and distribution, which are positively correlated with technological and scientific advances present in current biomedical sciences. A description is presented of the operational model of Skin and Tissue Bank at INR as successful case for procurement, recovery and preservation of skin and tissues for therapeutic uses, with high safety and biological quality. The essential and standard guidelines are presented as keystones for a tissue recovery program based on scientific evidence, and within an ethical and legal framework, as well as to propose a model for complete overview of the donation of tissues and organ programs in Mexico. Finally, it concludes with essential proposals for improving the efficacy of transplantation of organs and tissue programs. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  16. [Cutaneous leishmaniasis caused by Leishmania mexicana in Durango, Mexico: first clinical case report].

    PubMed

    Pérez-Vega, Jorge Humberto; López-Moreno, Carmina Yanett; López-Valenzuela, José Angel; Rendón-Maldonado, José Guadalupe; López-Moreno, Héctor Samuel

    2009-01-01

    Leishmanisis is a parasitic diseases caused by intracellular protozoan of Leishmania genus. These parasites are transmitted by the bite of phlebotomine flies. Leishmanises are classified in different clinic variants: cutaneous localized or diffuse, mucocutaneous and visceral. In Mexico, the leishmanisis are distributed in several states, however Durango was considered free of leishmaniasis. A 9 year old male patient with an ulcerated pruriginous node of circular shape, 13 x 18 mm diameter, localized in the back of the right arm with 6 months progression. The patient was a permanent resident of Durango, Mexico. Histopathology evidenced macrophages infected with amastigotes. The PCR-RFLP result was consistent with Leishmania mexicana. Treatment with glucantime was satisfactory. Here we report the first clinical case of leishmanisis cutaneous localized caused by Leishmania mexicana from Durango, Mexico in a 9 years old male, confirming the increasing propagation of this protozoan parasite in Mexico.

  17. Ecology of phlebotomine sandflies and putative reservoir hosts of leishmaniasis in a border area in Northeastern Mexico: implications for the risk of transmission of Leishmania mexicana in Mexico and the USA

    PubMed Central

    Rodríguez-Rojas, Jorge J.; Rodríguez-Moreno, Ángel; Berzunza-Cruz, Miriam; Gutiérrez-Granados, Gabriel; Becker, Ingeborg; Sánchez-Cordero, Victor; Stephens, Christopher R.; Fernández-Salas, Ildefonso; Rebollar-Téllez, Eduardo A.

    2017-01-01

    Leishmaniases are a group of important diseases transmitted to humans through the bite of sandfly vectors. Several forms of leishmaniases are endemic in Mexico and especially in the Southeast region. In the Northeastern region, however, there have only been isolated reports of cases and scanty records of sandfly vectors. The main objective of this study was to analyze the diversity of sandflies and potential reservoir hosts of Leishmania spp. in the states of Nuevo León and Tamaulipas. Species richness and abundances of sandflies and rodents were recorded. A fraction of the caught sandflies was analyzed by PCR to detect Leishmania spp. Tissues from captured rodents were also screened for infection. Ecological Niche Models (ENMs) were computed for species of rodent and their association with crop-growing areas. We found 13 species of sandflies, several of which are first records for this region. Medically important species such as Lutzomyia anthophora, Lutzomyia diabolica, Lutzomyia cruciata, and Lutzomyia shannoni were documented. Leishmania spp. infection was not detected in sandflies. Nine species of rodents were recorded, and Leishmania (Leishmania) mexicana infection was found in four species of Peromyscus and Sigmodon. ENMs showed that potential distribution of rodent pest species overlaps with allocated crop areas. This shows that Leishmania (L.) mexicana infection is present in the Northeastern region of Mexico, and that previously unrecorded sandfly species occur in the same areas. These findings suggest a potential risk of transmission of Leishmania (L.) mexicana. PMID:28825400

  18. Associations Between Macroinvertebrates and Paralemanea mexicana, an Endemic Freshwater Red Alga from a Mountain River in Central Mexico.

    PubMed

    Caro-Borrero, A; Carmona-Jiménez, J

    2016-12-01

    Macrophytes are common inhabitants of lotic environments and, depending on their morphological traits, possess adaptations that provide shelter to aquatic invertebrates against strong river flow and predators. They may also be used as a food source by macroinvertebrates. The main goal of this study was to determine the relationship between the red alga Paralemanea mexicana and its role as a shelter and/or food source for lotic macroinvertebrates. We also conducted research on the role of microhabitat and morphological variations of the alga in determining macroinvertebrate taxon abundance, diversity, and functional group composition in a high-current velocity river. Results showed that changes in cover and morphology of P. mexicana were mostly correlated with river current velocity, irradiance, and seasonal variation. In turn, these were related to changes in abundance and diversity of the associated macroinvertebrate community. In addition, six macroinvertebrate functional feeding groups were evaluated for associations with the red alga: filtering and gathering collectors, piercers, scrapers, herbivore shredders, and predators. The results showed that the Trichoptera Hydroptilidae genera Ochrotrichia and Metrichia use P. mexicana as a food source and case-building material. The Trichoptera Glossosomatidae Mortoniella uses the alga as a substrate. The biotic interactions between P. mexicana and associated macroinvertebrates reveal the importance of macrophytes as purveyors of substrate, as food and shelter for macroinvertebrates, and also as promoters of macroinvertebrate community diversity. In addition, it was shown that macroinvertebrate herbivory likely facilitates vegetative propagation of the red alga through increased release and germination of carpospores and new gametophytes.

  19. The california poppy (eschscholtzia mexicana) as a copper indicator plant - a new example

    USGS Publications Warehouse

    Chaffee, M.A.; Gale, C.W.

    1976-01-01

    The abundance and distribution of the California poppy (Eschscholtzia mexicana) correlates closely with the copper-rich outcrop of a small porphyry-type deposit in Arizona. Chemical factors are probably more important than physical factors in determining why this species is sometimes found as a copper indicator plant. ?? 1976.

  20. Seeking a "Mexicana"/"Mestiza" Ethic of Care: Rosa's "Revolución" of Carrying Alongside

    ERIC Educational Resources Information Center

    Sosa-Provencio, Mia Angélica

    2017-01-01

    This Chicana Critical Feminist "Testimonio" reveals a Mexican/Mexican-American Ethic of Care particular to the needs and strengths of "Mexicana/o" students and "Testimonios" of struggle, survival informing one Mexican/Mexican-American female educator of predominantly Mexican/Mexican-American students. This work,…

  1. RNA-seq Analysis of Cold and Drought Responsive Transcriptomes of Zea mays ssp. mexicana L.

    PubMed

    Lu, Xiang; Zhou, Xuan; Cao, Yu; Zhou, Meixue; McNeil, David; Liang, Shan; Yang, Chengwei

    2017-01-01

    The annual Zea mays ssp. mexicana L. is a member of teosinte, a wild relative of the Zea mays spp. mays L. This subspecies has strong growth and regeneration ability, high tiller numbers, high protein and lysine content as well as resistance to many fungal diseases, and it can be effectively used in maize improvement. In this study, we reported a Zea mays ssp. mexicana L. transcriptome by merging data from untreated control (CK), cold (4°C) and drought (PEG2000, 20%) treated plant samples. A total of 251,145 transcripts (N50 = 1,269 bp) and 184,280 unigenes (N50 = 923 bp) were predicted, which code for homologs of near 47% of the published maize proteome. Under cold conditions, 2,232 and 817 genes were up-regulated and down-regulated, respectively, while fewer genes were up-regulated (532) and down-regulated (82) under drought stress, indicating that Zea mays ssp. mexicana L. is more sensitive to the applied cold rather than to the applied drought stresses. Functional enrichment analyses identified many common or specific biological processes and gene sets in response to drought and cold stresses. The ABA dependent pathway, trehalose synthetic pathway and the ICE1-CBF pathway were up-regulated by both stresses. GA associated genes have been shown to differentially regulate the responses to cold in close subspecies in Zea mays . These findings and the identified functional genes can provide useful clues for improving abiotic stress tolerance of maize.

  2. RNA-seq Analysis of Cold and Drought Responsive Transcriptomes of Zea mays ssp. mexicana L.

    PubMed Central

    Lu, Xiang; Zhou, Xuan; Cao, Yu; Zhou, Meixue; McNeil, David; Liang, Shan; Yang, Chengwei

    2017-01-01

    The annual Zea mays ssp. mexicana L. is a member of teosinte, a wild relative of the Zea mays spp. mays L. This subspecies has strong growth and regeneration ability, high tiller numbers, high protein and lysine content as well as resistance to many fungal diseases, and it can be effectively used in maize improvement. In this study, we reported a Zea mays ssp. mexicana L. transcriptome by merging data from untreated control (CK), cold (4°C) and drought (PEG2000, 20%) treated plant samples. A total of 251,145 transcripts (N50 = 1,269 bp) and 184,280 unigenes (N50 = 923 bp) were predicted, which code for homologs of near 47% of the published maize proteome. Under cold conditions, 2,232 and 817 genes were up-regulated and down-regulated, respectively, while fewer genes were up-regulated (532) and down-regulated (82) under drought stress, indicating that Zea mays ssp. mexicana L. is more sensitive to the applied cold rather than to the applied drought stresses. Functional enrichment analyses identified many common or specific biological processes and gene sets in response to drought and cold stresses. The ABA dependent pathway, trehalose synthetic pathway and the ICE1-CBF pathway were up-regulated by both stresses. GA associated genes have been shown to differentially regulate the responses to cold in close subspecies in Zea mays. These findings and the identified functional genes can provide useful clues for improving abiotic stress tolerance of maize. PMID:28223998

  3. Organochlorine Pesticides in Honey and Pollen Samples from Managed Colonies of the Honey Bee Apis mellifera Linnaeus and the Stingless Bee Scaptotrigona mexicana Guérin from Southern, Mexico.

    PubMed

    Ruiz-Toledo, Jovani; Vandame, Rémy; Castro-Chan, Ricardo Alberto; Penilla-Navarro, Rosa Patricia; Gómez, Jaime; Sánchez, Daniel

    2018-05-10

    In this paper, we show the results of investigating the presence of organochlorine pesticides in honey and pollen samples from managed colonies of the honey bee, Apis mellifera L. and of the stingless bee Scaptotrigona mexicana Guérin. Three colonies of each species were moved into each of two sites. Three samples of pollen and three samples of honey were collected from each colony: the first collection occurred at the beginning of the study and the following ones at every six months during a year. Thus the total number of samples collected was 36 for honey (18 for A. mellifera and 18 for S. mexicana ) and 36 for pollen (18 for A. mellifera and 18 for S. mexicana ). We found that 88.44% and 93.33% of honey samples, and 22.22% and 100% of pollen samples of S. mexicana and A. mellifera , respectively, resulted positive to at least one organochlorine. The most abundant pesticides were Heptaclor (44% of the samples), γ-HCH (36%), DDT (19%), Endrin (18%) and DDE (11%). Despite the short foraging range of S. mexicana , the number of pesticides quantified in the honey samples was similar to that of A. mellifera . Paradoxically we found a small number of organochlorines in pollen samples of S. mexicana in comparison to A. mellifera , perhaps indicating a low abundance of pollen sources within the foraging range of this species.

  4. In vitro antifungal activity of coumarin extracted from Loeselia mexicana Brand.

    PubMed

    Navarro-García, Victor M; Rojas, Gabriela; Avilés, Margarita; Fuentes, Macrina; Zepeda, Gerardo

    2011-09-01

    The bis-coumarin daphnoretin and its monomeric precursors scopoletin and umbelliferone were isolated for the first time from the aerial part of Loeselia mexicana Brand (a vegetal species used in Mexican traditional medicine) using chromatographic techniques. The structures of these compounds were determined by (1) H and (13) C NMR analyses. These coumarins were evaluated for in vitro antifungal activity. The three compounds tested showed significant antifungal activity. © 2011 Blackwell Verlag GmbH.

  5. Gluconeogenesis in Leishmania mexicana

    PubMed Central

    Rodriguez-Contreras, Dayana; Hamilton, Nicklas

    2014-01-01

    Gluconeogenesis is an active pathway in Leishmania amastigotes and is essential for their survival within the mammalian cells. However, our knowledge about this pathway in trypanosomatids is very limited. We investigated the role of glycerol kinase (GK), phosphoenolpyruvate carboxykinase (PEPCK), and pyruvate phosphate dikinase (PPDK) in gluconeogenesis by generating the respective Leishmania mexicana Δgk, Δpepck, and Δppdk null mutants. Our results demonstrated that indeed GK, PEPCK, and PPDK are key players in the gluconeogenesis pathway in Leishmania, although stage-specific differences in their contribution to this pathway were found. GK participates in the entry of glycerol in promastigotes and amastigotes; PEPCK participates in the entry of aspartate in promastigotes, and PPDK is involved in the entry of alanine in amastigotes. Furthermore, the majority of alanine enters into the pathway via decarboxylation of pyruvate in promastigotes, whereas pathway redundancy is suggested for the entry of aspartate in amastigotes. Interestingly, we also found that l-lactate, an abundant glucogenic precursor in mammals, was used by Leishmania amastigotes to synthesize mannogen, entering the pathway through PPDK. On the basis of these new results, we propose a revision in the current model of gluconeogenesis in Leishmania, emphasizing the differences between amastigotes and promastigotes. This work underlines the importance of studying the trypanosomatid intracellular life cycle stages to gain a better understanding of the pathologies caused in humans. PMID:25288791

  6. Past, Present and Future: Forty Years of Revista Mexicana de Astronomia y Astrofisica

    NASA Astrophysics Data System (ADS)

    Allen, Christine; Torres-Peimbert, Silvia

    2015-08-01

    We cast a retrospective view on 40 years of publishing the Revista Mexicana de Astronomía y Astrofísica, founded in 1974. The journal is peer-reviewed, has appeared regularly since its foundation, and continues to attract original research papers, mostly by Mexican and Latin American authors. We share some musings about the future of our journal, in view of recent developments in the scientific publishing field.

  7. Inner ear morphology in the Atlantic molly Poecilia mexicana--first detailed microanatomical study of the inner ear of a cyprinodontiform species.

    PubMed

    Schulz-Mirbach, Tanja; Hess, Martin; Plath, Martin

    2011-01-01

    Fishes show an amazing diversity in hearing abilities, inner ear structures, and otolith morphology. Inner ear morphology, however, has not yet been investigated in detail in any member of the diverse order Cyprinodontiformes. We, therefore, studied the inner ear of the cyprinodontiform freshwater fish Poecilia mexicana by analyzing the position of otoliths in situ, investigating the 3D structure of sensory epithelia, and examining the orientation patterns of ciliary bundles of the sensory hair cells, while combining μ-CT analyses, scanning electron microscopy, and immunocytochemical methods. P. mexicana occurs in different ecotypes, enabling us to study the intra-specific variability (on a qualitative basis) of fish from regular surface streams, and the Cueva del Azufre, a sulfidic cave in southern Mexico. The inner ear of Poecilia mexicana displays a combination of several remarkable features. The utricle is connected rostrally instead of dorso-rostrally to the saccule, and the macula sacculi, therefore, is very close to the utricle. Moreover, the macula sacculi possesses dorsal and ventral bulges. The two studied ecotypes of P. mexicana showed variation mainly in the shape and curvature of the macula lagenae, in the curvature of the macula sacculi, and in the thickness of the otolithic membrane. Our study for the first time provides detailed insights into the auditory periphery of a cyprinodontiform inner ear and thus serves a basis--especially with regard to the application of 3D techniques--for further research on structure-function relationships of inner ears within the species-rich order Cyprinodontiformes. We suggest that other poeciliid taxa, or even other non-poeciliid cyprinodontiforms, may display similar inner ear morphologies as described here.

  8. Sand flies naturally infected by Leishmania (L.) mexicana in the peri-urban area of Chetumal city, Quintana Roo, México.

    PubMed

    Sánchez-García, Laura; Berzunza-Cruz, Miriam; Becker-Fauser, Ingeborg; Rebollar-Téllez, Eduardo A

    2010-06-01

    The surveillance of prevalent Leishmania sand fly vectors is an important issue for epidemiological studies in populated areas where leishmaniasis is endemic. In this study, we collected sand flies from a peri-urban area in the southeast of Mexico. Natural infection with Leishmania (L.) mexicana was studied by PCR using a Leishmania internal transcribed spacer of the ribosomal RNA gene for amplification. Infected Lutzomyia olmeca olmeca, Lu. shannoni and Lu. cruciata sand flies were collected mainly during the high transmission season (November to March), coinciding with the highest sand fly densities. Additionally, positive specimens of Lu. olmeca olmeca were also captured during July and August. The infected sand flies were from primary forest (subperennial forest) and secondary forest (18-25 years old and 10-15 years old respectively). Sand flies collected with Disney and Shannon traps were the ones found to be infected with L. (L.) mexicana. We conclude that the high-risk period in which L. (L.) mexicana is transmitted in the peri-urban area of Chetumal City is from July to March and that transmission is associated with both the subperennial forest and the secondary forest. 2010 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.

  9. Diagnosis and treatment of gastroesophageal reflux disease: recommendations of the Asociación Mexicana de Gastroenterología.

    PubMed

    Huerta-Iga, F; Bielsa-Fernández, M V; Remes-Troche, J M; Valdovinos-Díaz, M A; Tamayo-de la Cuesta, J L

    Emerging concepts in the pathophysiology of gastroesophageal reflux disease (GERD) and the constant technologic advances in the diagnosis and treatment of this clinical condition make it necessary to frequently review and update the clinical guidelines, recommendations, and official statements from the leading academic groups worldwide. The Asociación Mexicana de Gastroenterología (AMG), aware of this responsibility, brought together national experts in this field to analyze the most recent scientific evidence and formulate a series of practical recommendations to guide and facilitate the diagnostic process and efficacious treatment of these patients. The document includes algorithms, figures, and tables for convenient consultation, along with opinions on GERD management in sensitive populations, such as pregnant women and older adults. Copyright © 2016 Asociación Mexicana de Gastroenterología. Publicado por Masson Doyma México S.A. All rights reserved.

  10. A novel Zea mays ssp. mexicana L. MYC-type ICE-like transcription factor gene ZmmICE1, enhances freezing tolerance in transgenic Arabidopsis thaliana.

    PubMed

    Lu, Xiang; Yang, Lei; Yu, Mengyuan; Lai, Jianbin; Wang, Chao; McNeil, David; Zhou, Meixue; Yang, Chengwei

    2017-04-01

    The annual Zea mays ssp. mexicana L., a member of the teosinte group, is a close wild relative of maize and thus can be effectively used in maize improvement. In this study, an ICE-like gene, ZmmICE1, was isolated from a cDNA library of RNA-Seq from cold-treated seedling tissues of Zea mays ssp. mexicana L. The deduced protein of ZmmICE1 contains a highly conserved basic helix-loop-helix (bHLH) domain and C-terminal region of ICE-like proteins. The ZmmICE1 protein localizes to the nucleus and shows sumoylation when expressed in an Escherichia coli reconstitution system. In addition, yeast one hybrid assays indicated that ZmmICE1 has transactivation activities. Moreover, ectopic expression of ZmmICE1 in the Arabidopsis ice1-2 mutant increased freezing tolerance. The ZmmICE1 overexpressed plants showed lower electrolyte leakage (EL), reduced contents of malondialdehyde (MDA). The expression of downstream cold related genes of Arabidopsis C-repeat-binding factors (AtCBF1, AtCBF2 and AtCBF3), cold-responsive genes (AtCOR15A and AtCOR47), kinesin-1 member gene (AtKIN1) and responsive to desiccation gene (AtRD29A) was significantly induced when compared with wild type under low temperature treatment. Taken together, these results indicated that ZmmICE1 is the homolog of Arabidopsis inducer of CBF expression genes (AtICE1/2) and plays an important role in the regulation of freezing stress response. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Color and shape discrimination in the stingless bee Scaptotrigona mexicana Guérin (Hymenoptera, Apidae).

    PubMed

    Sánchez, D; Vandame, R

    2012-06-01

    To increase our understanding in bee vision ecology, we investigated the color and shape discrimination performance of the stingless bee Scaptotrigona mexicana Guérin. Our main goal was to describe the choice behavior of experienced foragers over time, trying to understand to what extent color and shape stimuli (separately tested) aid them to choose the rewarding option, in the presence of distracting, unrewarding stimuli. Single foragers were trained to collect sucrose solution from a target plate. Afterwards, one distracting, unrewarding plate was placed besides the target plate and eight choices were recorded. Our results showed that both color and shape stimuli assisted efficiently the trained foragers in locating the target plate. However, foragers chose significantly more often the target plate in the color experiments than in the shape experiments. In conclusion, in our experimental setup, color was of better assistance to the foragers of S. mexicana than shape to choose their rewards. This is the first study in which it is demonstrated that the choice performance over time in a stingless bee depends upon the characteristics of the resource, such as shape and color.

  12. Argemone oil, an edible oil adulterant, induces systemic immunosuppression in Balb/c mice in an oral 28 days repeated dose toxicity study.

    PubMed

    Mandal, Payal; Tewari, Prachi; Kumar, Sachin; Yadav, Sarika; Ayanur, Anjaneya; Chaturvedi, Rajnish K; Das, Mukul; Tripathi, Anurag

    2018-05-01

    Consumption of edible oils contaminated with Argemone oil (AO) leads to a clinical condition called "Epidemic dropsy". Earlier studies have reported that metabolism and oxidative stress primarily contributes to AO toxicity, however, the involvement of immune system has not been assessed so far. Therefore, the present study was undertaken to systematically assess the effect of AO exposure on the function of immune system in Balb/c mice. The repeated exposure of AO for 28 days caused prominent regression of spleen and thymus; severe inflammatory changes in spleen depicted by the loss of distinct follicles, increased megakaryocyte infiltration, and enhanced expression levels of inflammatory markers (iNOS & COX-2). At the functional level, AO exposure significantly abrogated the mixed lymphocyte reaction and mitogen-stimulated lymphoproliferative activity of T and B cells, which is reflective of profound lymphocyte dysfunction upon antigen exposure. In concordance with the loss in functional activity of lymphocytes in AO exposed animals, it was found the AO altered the relative percentage of CD3 + , CD4 + , and CD28  +  T cells. Further, there was a marked decrease in the relative distribution of cells with prominent MHC I and CD1d expression in AO exposed splenocytes. Moreover, reduced levels of immune stimulatory cytokines (TNF-α, IFN-γ, IL-2, IL-4, and IL-6), and increased levels of immunosuppressive cytokine IL-10 were detected in the serum of AO treated mice. Along with T and B cells, AO exposure also affected the phenotype and activation status of macrophages suggesting the inclination towards "alternative activation of macrophages". Altogether, these functional changes in the immune cells are contributing factors in AO induced immunosuppression. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Specific immunization of mice against Leishmania mexicana amazonensis using solubilized promastigotes

    NASA Technical Reports Server (NTRS)

    Barral-Netto, M.; Sadigursky, M.; Reed, S. G.; Sonnenfeld, G.

    1987-01-01

    In this work, it was demonstrated that mice (BALB/c strain) highly susceptible to Leishmania mexicana amazonensis can be protected against infection by this parasite by being preimmunized with whole solubilized (in a buffer that contained EDTA, NP-40, and SDS) promastigotes; the use of adjuvant or intact inactivated parasite cells is shown to be not necessary. The best immunization schedule consisted of three intravenous injections of 5 x 10 to the 7th parasite equivalents, administered one to eight weeks before infection. Immunized mice exhibited a marked inhibition of primary lesion development, reduced numbers of parasites in the spleen, and reduced death rate.

  14. Genetic diversity, mating system, and conservation of a Mexican subalpine relict, Picea mexicana Martínez

    Treesearch

    F. Thomas Ledig; Paul D. Hodgskiss; Virginia Jacob-Cervantes

    2002-01-01

    Mexican spruce (Picea mexicana Martínez), an endangered species of the highest sky islands in México’s Sierra Madre Oriental and Sierra Madre Occidental, is threatened by fire, grazing, and global warming. Its conservation depends on whether it also is threatened by inbreeding and loss of genic diversity. We used 18 isozyme markers in 12 enzyme...

  15. Toxic hydrogen sulphide and dark caves: pronounced male life-history divergence among locally adapted Poecilia mexicana (Poeciliidae).

    PubMed

    Riesch, R; Plath, M; Schlupp, I

    2011-03-01

    Chronic environmental stress is known to induce evolutionary change. Here, we assessed male life-history trait divergence in the neotropical fish Poecilia mexicana from a system that has been described to undergo incipient ecological speciation in adjacent, but reproductively isolated toxic/nontoxic and surface/cave habitats. Examining both field-caught and common garden-reared specimens, we investigated the extent of differentiation and plasticity of life-history strategies employed by male P. mexicana. We found strong site-specific life-history divergence in traits such as fat content, standard length and gonadosomatic index. The majority of site-specific life-history differences were also expressed under common garden-rearing conditions. We propose that apparent conservatism of male life histories is the result of other (genetically based) changes in physiology and behaviour between populations. Together with the results from previous studies, this is strong evidence for local adaptation as a result of ecologically based divergent selection. © 2010 The Authors. Journal of Evolutionary Biology © 2010 European Society For Evolutionary Biology.

  16. Tourism values for Mexican free-tailed bat (Tadarida brasiliensis mexicana) viewing

    USGS Publications Warehouse

    Bagstad, Kenneth J.; Widerholdt, Ruscena

    2013-01-01

    Migratory species provide diverse ecosystem services to people, but these values have seldom been estimated rangewide for a single species. In this article, we summarize visitation and consumer surplus for recreational visitors to viewing sites for the Mexican free-tailed bat (Tadarida brasiliensis mexicana) throughout the Southwestern United States. Public bat viewing opportunities are available at 17 of 25 major roosts across six states; on an annual basis, we estimate that over 242,000 visitors view bats, gaining over $6.5 million in consumer surplus. A better understanding of spatial mismatches between the areas where bats provide value to people and areas most critical for maintaining migratory populations can better inform conservation planning, including economic incentive systems for conservation.

  17. Outbreeding and lack of temporal genetic structure in a drone congregation of the neotropical stingless bee Scaptotrigona mexicana.

    PubMed

    Mueller, Matthias Y; Moritz, Robin Fa; Kraus, F Bernhard

    2012-06-01

    Drone aggregations are a widespread phenomenon in many stingless bee species (Meliponini), but the ultimate and proximate causes for their formation are still not well understood. One adaptive explanation for this phenomenon is the avoidance of inbreeding, which is especially detrimental for stingless bees due to the combined effects of the complementary sex-determining system and the small effective population size caused by eusociality and monandry. We analyzed the temporal genetic dynamics of a drone aggregation of the stingless bee Scaptotrigona mexicana with microsatellite markers over a time window of four weeks. We estimated the drones of the aggregation to originate from a total of 55 colonies using sibship re-construction. There was no detectable temporal genetic differentiation or sub-structuring in the aggregation. Most important, we could exclude all colonies in close proximity of the aggregation as origin of the drones in the aggregation, implicating that they originate from more distant colonies. We conclude that the diverse genetic composition and the distant origin of the drones of the S. mexicana drone congregation provides an effective mechanism to avoid mating among close relatives.

  18. Vegetation patches improve the establishment of Salvia mexicana seedlings by modifying microclimatic conditions

    NASA Astrophysics Data System (ADS)

    Mendoza-Hernández, Pedro E.; Rosete-Rodríguez, Alejandra; Sánchez-Coronado, María E.; Orozco, Susana; Pedrero-López, Luis; Méndez, Ignacio; Orozco-Segovia, Alma

    2014-07-01

    Human disturbance has disrupted the dynamics of plant communities. To restore these dynamics, we could take advantage of the microclimatic conditions generated by remaining patches of vegetation and plastic mulch. These microclimatic conditions might have great importance in restoring disturbed lava fields located south of Mexico City, where the rock is exposed and the soil is shallow. We evaluated the effects of both the shade projected by vegetation patches and plastic mulch on the mean monthly soil surface temperature ( T ss) and photosynthetic photon flux density (PPFD) and on the survival and growth of Salvia mexicana throughout the year. This species was used as a phytometer of microsite quality. Shade reduced the T ss to a greater extent than mulch did. Both survival and growth were enhanced by shade and mulch, and the PPFD was related with seedling growth. During the dry season, plant biomass was lost, and there was a negative effect of PPFD on plant growth. At micro-meteorological scales, the use of shade projected by patches of vegetation and mulch significantly reduced the mortality of S. mexicana and enhanced its growth. Survival and growth of this plant depended on the environmental quality of microsites on a small scale, which was determined by the environmental heterogeneity of the patches and the landscape. For plant restoration, microsite quality must be evaluated on small scales, but on a large scale it may be enough to take advantage of landscape shade dynamics and the use of mulch to increase plant survival and growth.

  19. Vegetation patches improve the establishment of Salvia mexicana seedlings by modifying microclimatic conditions.

    PubMed

    Mendoza-Hernández, Pedro E; Rosete-Rodríguez, Alejandra; Sánchez-Coronado, María E; Orozco, Susana; Pedrero-López, Luis; Méndez, Ignacio; Orozco-Segovia, Alma

    2014-07-01

    Human disturbance has disrupted the dynamics of plant communities. To restore these dynamics, we could take advantage of the microclimatic conditions generated by remaining patches of vegetation and plastic mulch. These microclimatic conditions might have great importance in restoring disturbed lava fields located south of Mexico City, where the rock is exposed and the soil is shallow. We evaluated the effects of both the shade projected by vegetation patches and plastic mulch on the mean monthly soil surface temperature (Tss) and photosynthetic photon flux density (PPFD) and on the survival and growth of Salvia mexicana throughout the year. This species was used as a phytometer of microsite quality. Shade reduced the T ss to a greater extent than mulch did. Both survival and growth were enhanced by shade and mulch, and the PPFD was related with seedling growth. During the dry season, plant biomass was lost, and there was a negative effect of PPFD on plant growth. At micro-meteorological scales, the use of shade projected by patches of vegetation and mulch significantly reduced the mortality of S. mexicana and enhanced its growth. Survival and growth of this plant depended on the environmental quality of microsites on a small scale, which was determined by the environmental heterogeneity of the patches and the landscape. For plant restoration, microsite quality must be evaluated on small scales, but on a large scale it may be enough to take advantage of landscape shade dynamics and the use of mulch to increase plant survival and growth.

  20. Medicinal Plants from North and Central America and the Caribbean Considered Toxic for Humans: The Other Side of the Coin

    PubMed Central

    Ruiz-Padilla, Alan Joel; Campos-Xolalpa, Nimsi; Carranza-Alvarez, Candy; Maldonado-Miranda, Juan Jose

    2017-01-01

    The consumption of medicinal plants has notably increased over the past two decades. People consider herbal products as safe because of their natural origin, without taking into consideration whether these plants contain a toxic principle. This represents a serious health problem. A bibliographic search was carried out using published scientific material on native plants from Mexico, Central America, and the Caribbean, which describe the ethnobotanical and toxicological information of medicinal plants empirically considered to be toxic. A total of 216 medicinal plants belonging to 77 families have been reported as toxic. Of these plants, 76 had been studied, and 140 plants lacked studies regarding their toxicological effects. The toxicity of 16 plants species has been reported in clinical cases, particularly in children. From these plants, deaths have been reported with the consumption of Chenopodium ambrosioides, Argemone mexicana, and Thevetia peruviana. In most of the cases, the principle of the plant responsible for the toxicity is unknown. There is limited information about the toxicity of medicinal plants used in Mexico, Central America, and the Caribbean. More toxicological studies are necessary to contribute information about the safe use of the medicinal plants cited in this review. PMID:29234446

  1. Antimicrobial activity of essential oils of Physalis angulata. L.

    PubMed

    Osho, A; Adetunji, T; Fayemi, S O; Moronkola, D O

    2010-01-01

    The need for a reduction in drug resistance led to the investigation of Argemone Mexicana L. as an agent against Bacillus subtilis, Klebsiella pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, Candida stellatoidea and Candida torulopsis, using well diffusion and minimum inhibitory concentrations methods. The sensitivity of Bacillus Subtilis, Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus to the essential oils of both the aerial and root parts were determined. Pseudomonas aeruginosa was resistant to the essential oil from both the aerial and root part of the plant. C. torulopsis, C. stellatoidea and C. albicans were susceptible to the essential oils from the aerial and root part of the plant. The minimum inhibitory concentrations ranging between 3.75 mg/ml and 4.0 mg/ml were recorded for Bacillus subtilis, Klebsiella pneumoniae by the aerial and the root extracts, but P. aeruginosa and S. aureus were not susceptible to the aerial and root extracts. The observed inhibition of selected bacteria and fungi by oils of Physalis angulata makes it a promising antimicrobial agent. This study justifies its uses for treatment of sores, cuts, intestinal and digestive problems and some skin-diseases often reported in folkloric medicine.

  2. Library of Norcoclaurine Synthases and Their Immobilization for Biocatalytic Transformations.

    PubMed

    Lechner, Horst; Soriano, Pablo; Poschner, Roman; Hailes, Helen C; Ward, John M; Kroutil, Wolfgang

    2018-03-01

    Norcoclaurine synthases (NCS), catalyzing a Pictet-Spengler reaction in plants as one of the first enzymes in the biosynthetic benzylisoquinoline pathway, are investigated for biocatalytic transformations. The library of NCS available is extended by two novel NCSs from Argemone mexicana (AmNCS1, AmNCS2) and one new NCS from Corydalis saxicola (CsNCS); furthermore, it is shown that the NCS from Papaver bracteatum (PbNCS) is a highly productive catalyst leading to the isoquinoline product with up to >99% e.e. Under certain conditions lyophilized whole Escherichia coli cells containing the various overexpressed NCS turned out to be suitable catalysts. The reaction using dopamine as substrate bears several challenges such as the spontaneous non-stereoselective background reaction and side reactions. The PbNCS enzyme is successfully immobilized on various carriers whereby EziG3 proved to be the best suited for biotransformations. Dopamine showed limited stability in solution resulting in the coating of the catalyst over time, which could be solved by the addition of ascorbic acid (e.g., 1 mg ml -1 ) as antioxidant. © 2017 The Authors. Biotechnology Journal Published by Wiley-VCH Verlag GmbH &Co. KGaA.

  3. Experience, but not distance, influences the recruitment precision in the stingless bee Scaptotrigona mexicana

    NASA Astrophysics Data System (ADS)

    Sánchez, Daniel; Kraus, F. Bernhard; Hernández, Manuel De Jesús; Vandame, Rémy

    2007-07-01

    Recruitment precision, i.e. the proportion of recruits that reach an advertised food source, is a crucial adaptation of social bees to their environment. Studies with honeybees showed that recruitment precision is not a fixed feature, but it may be enhanced by factors like experience and distance. However, little is known regarding the recruitment precision of stingless bees. Hence, in this study, we examined the effects of experience and spatial distance on the precision of the food communication system of the stingless bee Scaptotrigona mexicana. We conducted the experiments by training bees to a three-dimensional artificial patch at several distances from the colony. We recorded the choices of individual recruited foragers, either being newcomers (foragers without experience with the advertised food source) or experienced (foragers that had previously visited the feeder). We found that the average precision of newcomers (95.6 ± 2.61%) was significantly higher than that of experienced bees (80.2 ± 1.12%). While this might seem counter-intuitive on first sight, this “loss” of precision can be explained by the tendency of experienced recruits to explore nearby areas to find new rewarding food sources after they had initially learned the exact location of the food source. Increasing the distance from the colony had no significant effect on the precision of the foraging bees. Thus, our data show that experience, but not the distance of the food source, affected the patch precision of S. mexicana foragers.

  4. The Mexican Seismic Network (Red Sísmica Mexicana)

    NASA Astrophysics Data System (ADS)

    Valdes-Gonzales, C. M.; Arreola-Manzano, J.; Castelan-Pescina, G.; Alonso-Rivera, P.; Saldivar-Rangel, M. A.; Rodriguez-Arteaga, O. O.; Lopez-Lena-Villasana, R.

    2014-12-01

    The Mexican Seismic Network (Red Sísmica Mexicana) was created to give sufficient information and opportune to make decisions in order to mitigate seismic and tsunami risk. This was a Mexican government initiative headed by CENAPRED (National Disaster Prevention Center) who made an effort to integrated academic institutions and civil agencies to work together through a collaboration agreement. This network is supported by Universidad National Autónoma de México (UNAM) and its seismic networks (Broad Band and Strong Motion), the Centro de Instrumentación y Registro Sismico (CIRES) with its Earthquake Early Warning System that covers the Guerrero Gap and Oaxaca earthquakes, The Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE) with the support of its expertise in tsunami observation and the Secretaria de Marina (SEMAR) to monitor the sea level and operate the Mexican Tsunami Warning Center. The institutions involved in this scope have the compromise to interchange and share the data and advice to the Civil Protection authorities.

  5. Growth and enzymatic activity of Leucoagaricus gongylophorus, a mutualistic fungus isolated from the leaf-cutting ant Atta mexicana, on cellulose and lignocellulosic biomass.

    PubMed

    Vigueras, G; Paredes-Hernández, D; Revah, S; Valenzuela, J; Olivares-Hernández, R; Le Borgne, S

    2017-08-01

    A mutualistic fungus of the leaf-cutting ant Atta mexicana was isolated and identified as Leucoagaricus gongylophorus. This isolate had a close phylogenetic relationship with L. gongylophorus fungi cultivated by other leaf-cutting ants as determined by ITS sequencing. A subcolony started with ~500 A. mexicana workers could process 2 g day -1 of plant material and generate a 135 cm 3 fungus garden in 160 days. The presence of gongylidia structures of ~35 μm was observed on the tip of the hyphae. The fungus could grow without ants on semi-solid cultures with α-cellulose and microcrystalline cellulose and in solid-state cultures with grass and sugarcane bagasse, as sole sources of carbon. The maximum CO 2 production rate on grass (V max  = 17·5 mg CO 2  L g -1  day -1 ) was three times higher than on sugarcane bagasse (V max  = 6·6 mg CO 2  L g -1 day -1 ). Recoveries of 32·9 mg glucose  g biomass -1 and 12·3 mg glucose  g biomass -1 were obtained from the fungal biomass and the fungus garden, respectively. Endoglucanase activity was detected on carboxymethylcellulose agar plates. This is the first study reporting the growth of L. gongylophorus from A. mexicana on cellulose and plant material. According to the best of our knowledge, this is the first report about the growth of Leucoagaricus gongylophorus, isolated from the colony of the ant Atta mexicana, on semisolid medium with cellulose and solid-state cultures with lignocellulosic materials. The maximum CO 2 production rate on grass was three times higher than on sugarcane bagasse. Endoglucanase activity was detected and it was possible to recover glucose from the fungal gongylidia. The cellulolytic activity could be used to process lignocellulosic residues and obtain sugar or valuable products, but more work is needed in this direction. © 2017 The Society for Applied Microbiology.

  6. Germacranolide-type sesquiterpene lactones from Smallanthus sonchifolius with promising activity against Leishmania mexicana and Trypanosoma cruzi.

    PubMed

    Ulloa, Jerónimo L; Spina, Renata; Casasco, Agustina; Petray, Patricia B; Martino, Virginia; Sosa, Miguel A; Frank, Fernanda M; Muschietti, Liliana V

    2017-11-13

    Leishmaniasis and Chagas disease are life-threatening illnesses caused by the protozoan parasites Leishmania spp. and Trypanosoma cruzi, respectively. They are known as "neglected diseases" due to the lack of effective drug treatments and the scarcity of research work devoted to them. Therefore, the development of novel and effective drugs is an important and urgent need. Natural products are an important source of bioactive molecules for the development of new drugs. In this study, we evaluated the activity of enhydrin, uvedalin and polymatin B, three sesquiterpene lactones (STLs) isolated from Smallanthus sonchifolius, on Leishmania mexicana (MNYC/BZ/62/M) and Trypanosoma cruzi (Dm28c). In addition, the in vivo trypanocidal activity of enhydrin and uvedalin and the effects of these STLs on parasites' ultrastructure were evaluated. The inhibitory effect of the three STLs on the growth of L. mexicana amastigotes and promastigotes as well as T. cruzi epimastigotes was evaluated in vitro. The changes produced by the STLs on the ultrastructure of parasites were examined by transmission electron microscopy (TEM). Enhydrin and uvedalin were also studied in a murine model of acute T. cruzi infection (RA strain). Serum activities of the hepatic enzymes alanine aminotransferase, aspartate aminotransferase and lactate dehydrogenase were used as biochemical markers of hepatotoxicity. The three compounds exhibited leishmanicidal activity on both parasite forms with IC 50 values of 0.42-0.54 μg/ml for promastigotes and 0.85-1.64 μg/ml for intracellular amastigotes. Similar results were observed on T. cruzi epimastigotes (IC 50 0.35-0.60 μg/ml). The TEM evaluation showed marked ultrastructural alterations, such as an intense vacuolization and mitochondrial swelling in both L. mexicana promastigotes and T. cruzi epimastigotes exposed to the STLs. In the in vivo study, enhydrin and uvedalin displayed a significant decrease in circulating parasites (50-71%) and no signs of

  7. Outbreeding and lack of temporal genetic structure in a drone congregation of the neotropical stingless bee Scaptotrigona mexicana

    PubMed Central

    Mueller, Matthias Y; Moritz, Robin FA; Kraus, F Bernhard

    2012-01-01

    Drone aggregations are a widespread phenomenon in many stingless bee species (Meliponini), but the ultimate and proximate causes for their formation are still not well understood. One adaptive explanation for this phenomenon is the avoidance of inbreeding, which is especially detrimental for stingless bees due to the combined effects of the complementary sex-determining system and the small effective population size caused by eusociality and monandry. We analyzed the temporal genetic dynamics of a drone aggregation of the stingless bee Scaptotrigona mexicana with microsatellite markers over a time window of four weeks. We estimated the drones of the aggregation to originate from a total of 55 colonies using sibship re-construction. There was no detectable temporal genetic differentiation or sub-structuring in the aggregation. Most important, we could exclude all colonies in close proximity of the aggregation as origin of the drones in the aggregation, implicating that they originate from more distant colonies. We conclude that the diverse genetic composition and the distant origin of the drones of the S. mexicana drone congregation provides an effective mechanism to avoid mating among close relatives. PMID:22833802

  8. Two Lactarius species associated with a relict Fagus grandifolia var. mexicana population in a Mexican montane cloud forest.

    PubMed

    Montoya, L; Haug, I; Bandala, V M

    2010-01-01

    Ectomycorrhizal (EM) fleshy fungi are being monitored in a population of Fagus grandifolia var. mexicana persisting in a montane cloud forest refuge on a volcano in a subtropical region of central Veracruz (eastern Mexico). The population of Fagus studied represents one of the 10 recognized forest fragments still housing this tree genus in Mexico. This is the first attempt to document EM fungi associated with this tree species in Mexico. We present evidence of the ectomycorrhizal symbiosis for Lactarius badiopallescens and L. cinereus with this endemic tree. Species identification of Lactarius on Fagus grandifolia var. mexicana was based on the comparison of DNAsequences (ITS rDNA) of spatiotemporally co-occurring basidiomes and EM root tips. The host of the EM tips was identified by comparison of the large subunit of the ribulose-bisphosphate carboxylase gene (rbcL). The occurrence of Lactarius badiopallescens and L. cinereus populations in the area of study represent the southernmost record known to date of these two species in North America and are new for the Neotropical Lactarius mycota. Descriptions coupled with illustrations of macro- and micromorphological features of basidiomes as well as photographs of ectomycorrhizas are presented.

  9. A new species and a new record of Laccaria (Fungi, Basidiomycota) found in a relict forest of the endangered Fagus grandifolia var. mexicana

    PubMed Central

    Ramos, Antero; Bandala, Victor M.; Montoya, Leticia

    2017-01-01

    Abstract Two species of Laccaria discovered in relicts of Fagus grandifolia var. mexicana forests in eastern Mexico are described based on the macro- and micromorphological features, and their identity supported by molecular analysis of the internal transcribed spacer (ITS) and large subunit (LSU) of the ribosomal RNA gene. The phylogeny obtained here showed that one of the Mexican species is nested in an exclusive clade which in combination with its striking morphological features, infers that it represents a new species, while the other species is placed as a member in the Laccaria trichodermophora clade. This is the first report in Mexico of Laccaria with Fagus grandifolia var. mexicana trees, with which the reported species may form ectomycorrhizal association. Descriptions are accompanied with illustrations of macro- and micromorphological characters and a discussion of related taxa are presented. PMID:29559819

  10. Comparative assessment of a DNA and protein Leishmania donovani gamma glutamyl cysteine synthetase vaccine to cross-protect against murine cutaneous leishmaniasis caused by L. major or L. mexicana infection.

    PubMed

    Campbell, S A; Alawa, J; Doro, B; Henriquez, F L; Roberts, C W; Nok, A; Alawa, C B I; Alsaadi, M; Mullen, A B; Carter, K C

    2012-02-08

    Leishmaniasis is a major health problem and it is estimated that 12 million people are currently infected. A vaccine which could cross-protect people against different Leishmania spp. would facilitate control of this disease as more than one species of Leishmania may be present. In this study the ability of a DNA vaccine, using the full gene sequence for L. donovani gamma glutamyl cysteine synthetase (γGCS) incorporated in the pVAX vector (pVAXγGCS), and a protein vaccine, using the corresponding recombinant L. donovani γGCS protein (LdγGCS), to protect against L. major or L. mexicana infection was evaluated. DNA vaccination gave transient protection against L. major and no protection against L. mexicana despite significantly enhancing specific antibody titres in vaccinated infected mice compared to infected controls. Vaccination with the LdγGCS protected against both species but only if the protein was incorporated into non-ionic surfactant vesicles for L. mexicana. The results of this study indicate that a L. donovani γGCS vaccine could be used to vaccinate against more than one Leishmania species but only if the recombinant protein is used. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Effect of GF-120 (Spinosad) Aerial Sprays on Colonies of the Stingless Bee Scaptotrigona mexicana (Hymenoptera: Apidae) and the Honey Bee (Hymenoptera: Apidae).

    PubMed

    Gómez-Escobar, Enoc; Liedo, Pablo; Montoya, Pablo; Méndez-Villarreal, Agustín; Guzmán, Miguel; Vandame, Rémy; Sánchez, Daniel

    2018-06-02

    Despite their relevant contribution to the conservation of tropical ecosystems and crop productivity through pollination, the stingless bees (Apidae: Meliponini) can be considered a group of neglected species in the assessment of pesticides upon nontarget organisms. In this article, we evaluated the effect of aerial sprays of the spinosad-based fruit fly toxic bait GF-120 upon colonies of the stingless bee Scaptotrigona mexicana Guérin (Hymenoptera: Apidae), an economically important and abundant species in some landscapes of Mexico, located in mango orchards. Colonies of the honey bee Apis mellifera L. (Hymenoptera: Apidae) were used for comparison. Eight colonies (four of A. mellifera and four of S. mexicana) were moved into each of two mango orchards, one was used as a control, with no insecticide application, and other received five weekly aerial sprays of GF-120. Foraging activity and strength of colonies of both species were measured nine times over the fruiting season, previous, during and after insecticide application. We did not find a significant difference in foraging activity and strength between exposed and control colonies of A. mellifera during the observation period. However, colonies of S. mexicana seemed to be affected by the exposure, as revealed by a reduction in colony strength. However, 1 yr later, with no insecticide applications, the colonies of both species were evaluated and found to be in good conditions. Our results showed that weekly aerial sprays of GF-120 are unlikely to generate acute poisoning in both species, even if in acute toxicity tests this product has been found to be highly active.

  12. Gene disruptions indicate an essential function for the LmmCRK1 cdc2-related kinase of Leishmania mexicana.

    PubMed

    Mottram, J C; McCready, B P; Brown, K G; Grant, K M

    1996-11-01

    The generation of homozygous null mutants for the crk1 Cdc2-Related Kinase of Leishmania mexicana was attempted using targeted gene disruption. Promastigote mutants heterozygous for crk1 were readily isolated with a hyg-targeting fragment, but attempts to create null mutants by second-round transfections with a bie-targeting fragment yielded two classes of mutant, neither of which was null. First, the transfected fragment formed an episome; second, the cloned transfectants were found to contain wild-type crk1 alleles as well as hyg and ble integrations. DNA-content analysis revealed that these mutants were triploid or tetraploid. Plasticity in chromosome number following targeting has been proposed as a means by which Leishmania avoids deletion of essential genes. These data support this theory and implicate crk1 as an essential gene, validating CRK1 as a potential drug target. L mexicana transfected with a Trypanosoma brucel homologue, tbcrk1, was shown to be viable in an immcrk1 null background, thus showing complementation of function between these trypanosomatid genes. The expression of crk1 was further manipulated by engineering a six-histidine tag at the C-terminus of the kinase, allowing purification of the active complex by affinity selection on Nl(2+)-nitriloacetic acid (NTA) agarose.

  13. Regulated Degradation of an Endoplasmic Reticulum Membrane Protein in a Tubular Lysosome in Leishmania mexicana

    PubMed Central

    Mullin, Kylie A.; Foth, Bernardo J.; Ilgoutz, Steven C.; Callaghan, Judy M.; Zawadzki, Jody L.; McFadden, Geoffrey I.; McConville, Malcolm J.

    2001-01-01

    The cell surface of the human parasite Leishmania mexicana is coated with glycosylphosphatidylinositol (GPI)-anchored macromolecules and free GPI glycolipids. We have investigated the intracellular trafficking of green fluorescent protein- and hemagglutinin-tagged forms of dolichol-phosphate-mannose synthase (DPMS), a key enzyme in GPI biosynthesis in L. mexicana promastigotes. These functionally active chimeras are found in the same subcompartment of the endoplasmic reticulum (ER) as endogenous DPMS but are degraded as logarithmically growing promastigotes reach stationary phase, coincident with the down-regulation of endogenous DPMS activity and GPI biosynthesis in these cells. We provide evidence that these chimeras are constitutively transported to and degraded in a novel multivesicular tubule (MVT) lysosome. This organelle is a terminal lysosome, which is labeled with the endocytic marker FM 4-64, contains lysosomal cysteine and serine proteases and is disrupted by lysomorphotropic agents. Electron microscopy and subcellular fractionation studies suggest that the DPMS chimeras are transported from the ER to the lumen of the MVT via the Golgi apparatus and a population of 200-nm multivesicular bodies. In contrast, soluble ER proteins are not detectably transported to the MVT lysosome in either log or stationary phase promastigotes. Finally, the increased degradation of the DPMS chimeras in stationary phase promastigotes coincides with an increase in the lytic capacity of the MVT lysosome and changes in the morphology of this organelle. We conclude that lysosomal degradation of DPMS may be important in regulating the cellular levels of this enzyme and the stage-dependent biosynthesis of the major surface glycolipids of these parasites. PMID:11514622

  14. High precision during food recruitment of experienced (reactivated) foragers in the stingless bee Scaptotrigona mexicana (Apidae, Meliponini)

    NASA Astrophysics Data System (ADS)

    Sánchez, Daniel; Nieh, James C.; Hénaut, Yann; Cruz, Leopoldo; Vandame, Rémy

    Several studies have examined the existence of recruitment communication mechanisms in stingless bees. However, the spatial accuracy of location-specific recruitment has not been examined. Moreover, the location-specific recruitment of reactivated foragers, i.e., foragers that have previously experienced the same food source at a different location and time, has not been explicitly examined. However, such foragers may also play a significant role in colony foraging, particularly in small colonies. Here we report that reactivated Scaptotrigona mexicana foragers can recruit with high precision to a specific food location. The recruitment precision of reactivated foragers was evaluated by placing control feeders to the left and the right of the training feeder (direction-precision tests) and between the nest and the training feeder and beyond it (distance-precision tests). Reactivated foragers arrived at the correct location with high precision: 98.44% arrived at the training feeder in the direction trials (five-feeder fan-shaped array, accuracy of at least +/-6° of azimuth at 50 m from the nest), and 88.62% arrived at the training feeder in the distance trials (five-feeder linear array, accuracy of at least +/-5 m or +/-10% at 50 m from the nest). Thus, S. mexicana reactivated foragers can find the indicated food source at a specific distance and direction with high precision, higher than that shown by honeybees, Apis mellifera, which do not communicate food location at such close distances to the nest.

  15. The role of Revista Mexicana de Astronomía y Astrofísica Serie de Conferencias in the world of astronomy

    NASA Astrophysics Data System (ADS)

    Torres-Peimbert, Silvia; Allen, Christine

    2015-08-01

    Forty years ago Revista Mexicana de Astronomía y Astrofísica decided to include the proceedings of astronomical meetings in Mexico and Latin America. In 1995 it became necessary to found the Serie de Conferencias to better differentiate proceedings from refereed papers.So far there have been 58 astronomical meetings published and there are several more in store for the coming years

  16. Effects of extreme habitat conditions on otolith morphology: a case study on extremophile live bearing fishes (Poecilia mexicana, P. sulphuraria).

    PubMed

    Schulz-Mirbach, Tanja; Riesch, Rüdiger; García de León, Francisco J; Plath, Martin

    2011-12-01

    Our study was designed to evaluate if, and to what extent, restrictive environmental conditions affect otolith morphology. As a model, we chose two extremophile livebearing fishes: (i) Poecilia mexicana, a widespread species in various Mexican freshwater habitats, with locally adapted populations thriving in habitats characterized by the presence of one (or both) of the natural stressors hydrogen sulphide and darkness, and (ii) the closely related Poecilia sulphuraria living in a highly sulphidic habitat (Baños del Azufre). All three otolith types (lapilli, sagittae, and asterisci) of P. mexicana showed a decrease in size ranging from the non-sulphidic cave habitat (Cueva Luna Azufre), to non-sulphidic surface habitats, to the sulphidic cave (Cueva del Azufre), to sulphidic surface habitats (El Azufre), to P. sulphuraria. Although we found a distinct differentiation between ecotypes with respect to their otolith morphology, no clear-cut pattern of trait evolution along the two ecological gradients was discernible. Otoliths from extremophiles captured in the wild revealed only slight similarities to aberrant otoliths found in captive-bred fish. We therefore hypothesize that extremophile fishes have developed coping mechanisms enabling them to avoid aberrant otolith growth - an otherwise common phenomenon in fishes reared under stressful conditions. Copyright © 2011 Elsevier GmbH. All rights reserved.

  17. Leishmania mexicana: promastigotes and amastigotes secrete protein phosphatases and this correlates with the production of inflammatory cytokines in macrophages.

    PubMed

    Escalona-Montaño, A R; Ortiz-Lozano, D M; Rojas-Bernabé, A; Wilkins-Rodriguez, A A; Torres-Guerrero, H; Mondragón-Flores, R; Mondragón-Gonzalez, R; Becker, I; Gutiérrez-Kobeh, L; Aguirre-Garcia, M M

    2016-09-01

    Phosphatase activity of Leishmania spp. has been shown to deregulate the signalling pathways of the host cell. We here show that Leishmania mexicana promastigotes and amastigotes secrete proteins with phosphatase activity to the culture medium, which was higher in the Promastigote Secretion Medium (PSM) as compared with the Amastigote Secretion Medium (ASM) and was not due to cell lysis, since parasite viability was not affected by the secretion process. The biochemical characterization showed that the phosphatase activity present in PSM was higher in dephosphorylating the peptide END (pY) INASL as compared with the peptide RRA (pT)VA. In contrast, the phosphatase activity in ASM showed little dephosphorylating capacity for both peptides. Inhibition assays demonstrated that the phosphatase activity of both PSM and ASM was sensible only to protein tyrosine phosphatases inhibitors. An antibody against a protein phosphatase 2C (PP2C) of Leishmania major cross-reacted with a 44·9 kDa molecule in different cellular fractions of L. mexicana promastigotes and amastigotes, however, in PSM and ASM, the antibody recognized a protein about 70 kDa. By electron microscopy, the PP2C was localized in the flagellar pocket of amastigotes. PSM and ASM induced the production of tumor necrosis factor alpha, IL-1β, IL-12p70 and IL-10 in human macrophages.

  18. Central nervous system effects and chemical composition of two subspecies of Agastache mexicana; an ethnomedicine of Mexico.

    PubMed

    Estrada-Reyes, Rosa; López-Rubalcava, C; Ferreyra-Cruz, Octavio Alberto; Dorantes-Barrón, Ana María; Heinze, G; Moreno Aguilar, Julia; Martínez-Vázquez, Mariano

    2014-04-11

    Agastache mexicana subspecies mexicana (Amm) and xolocotziana (Amx) are used in Mexican traditional medicine to relief cultural affiliation syndromes known as "susto" or "espanto", for "nervous" condition, and as a sleep aid. Despite its intensive use, neuropharmacological studies are scarce, and the chemical composition of the aqueous extracts has not been described. Aims of the study are: (1) To analyze the chemical composition of aqueous extracts from aerial parts of Amm and Amx. (2) To evaluate the anxiolytic-like, sedative, antidepressant-like effects. (3) Analyze the general toxic effects of different doses. Anxiolytic-like and sedative effects were measured in the avoidance exploratory behavior, burying behavior and the hole-board tests. The antidepressant-like actions were studied in the forced swimming and tail suspension tests. Finally, general activity and motor coordination disturbances were evaluated in the open field, inverted screen and rota-rod tests. The acute toxicity of Amm and Amx was determined by calculating their LD50 (mean lethal dose). The chemical analyses were performed employing chromatographic, photometric and HPLC-ESI-MS techniques. Low doses of Amm and Amx (0.1σ1.0mg/kg) induced anxiolytic-like actions; while higher doses (over 10mg/kg) induced sedation and reduced the locomotor activity, exerting a general inhibition in the central nervous system (CNS). Results support the use of Amm and Amx in traditional medicine as tranquilizers and sleep inducers. Additionally, this paper contributes to the knowledge of the chemical composition of the aqueous extracts of these plants. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. PPAR Activation Induces M1 Macrophage Polarization via cPLA2-COX-2 Inhibition, Activating ROS Production against Leishmania mexicana

    PubMed Central

    Díaz-Gandarilla, J. A.; Osorio-Trujillo, C.; Hernández-Ramírez, V. I.; Talamás-Rohana, P.

    2013-01-01

    Defence against Leishmania depends upon Th1 inflammatory response and, a major problem in susceptible models, is the turnoff of the leishmanicidal activity of macrophages with IL-10, IL-4, and COX-2 upregulation, as well as immunosuppressive PGE2, all together inhibiting the respiratory burst. Peroxisome proliferator-activated receptors (PPAR) activation is responsible for macrophages polarization on Leishmania susceptible models where microbicide functions are deactivated. In this paper, we demonstrated that, at least for L. mexicana, PPAR activation, mainly PPARγ, induced macrophage activation through their polarization towards M1 profile with the increase of microbicide activity against intracellular pathogen L. mexicana. PPAR activation induced IL-10 downregulation, whereas the production of proinflammatory cytokines such as TNF-α, IL-1β, and IL-6 remained high. Moreover, PPAR agonists treatment induced the deactivation of cPLA2-COX-2-prostaglandins pathway together with an increase in TLR4 expression, all of whose criteria meet the M1 macrophage profile. Finally, parasite burden, in treated macrophages, was lower than that in infected nontreated macrophages, most probably associated with the increase of respiratory burst in these treated cells. Based on the above data, we conclude that PPAR agonists used in this work induces M1 macrophages polarization via inhibition of cPLA2 and the increase of aggressive microbicidal activity via reactive oxygen species (ROS) production. PMID:23555077

  20. Chemical compositions and antimicrobial and antioxidant activities of the essential oils from Magnolia grandiflora, Chrysactinia mexicana, and Schinus molle found in northeast Mexico.

    PubMed

    Guerra-Boone, Laura; Alvarez-Román, Rocío; Salazar-Aranda, Ricardo; Torres-Cirio, Anabel; Rivas-Galindo, Verónica Mayela; Waksman de Torres, Noemí; González González, Gloria María; Pérez-López, Luis Alejandro

    2013-01-01

    The essential oils from Magnolia grandiflora and Chrysactinia mexicana leaves, and from Schinus molle leaves and fruit, were characterized by gas chromatography/flame-ionization detection and gas chromatography/mass spectrometry. Twenty-eight compounds from M. grandiflora leaves were identified (representing 93.6% of the total area of the gas chromatogram), with the major component being bornyl acetate (20.9%). Colorless and yellow oils were obtained from the C. mexicana leaves with 18 (86.7%) and 11 (100%) compounds identified, respectively. In both fractions, the principal component was sylvestrene (36.8% and 41.1%, respectively). The essential oils ofS. molle leaves and fruit were each separated into colorless and yellow fractions, in which 14 (98.2) and 20 (99.8%) compounds were identified. The main component was alpha-phellandrene in all fractions (between 32.8% and 45.0%). The M. grandiflora oil displayed antifungal activity against five dermatophyte strains. The oils from S. molle and M. grandiflora leaves had antimicrobial activity against Staphylococcus aureus and Streptococcus pyogenes, which cause skin infections that potentially may lead to sepsis. However, the antioxidant activities of all oils were small (half maximal effective concentration values >250 microg/mL).

  1. A new species of Lactarius (subgenus Gerardii) from two relict Fagus grandifolia var. mexicana populations in Mexican montane cloud forests.

    PubMed

    Montoya, Leticia; Bandala, Victor Manuel; Haug, Ingeborg; Stubbe, Dirk

    2012-01-01

    A new milkcap species, Lactarius fuscomarginatus, was found in the subtropical region of central Veracruz (eastern Mexico) associated with two relict populations of Fagus grandifolia var. mexicana. The species is characterized macroscopically by its dark pileus and stipe and by its distant and whitish lamellae with blackish to blackish brown edges. A molecular phylogenetic analyses based on ITS and LSU nucDNA sequences confirms the delimitation of this new taxon and places L. fuscomarginatus in subgenus Gerardii. A detailed morphological comparison is given with similar species.

  2. Transfer of phagocytosed particles to the parasitophorous vacuole of Leishmania mexicana is a transient phenomenon preceding the acquisition of annexin I by the phagosome.

    PubMed

    Collins, H L; Schaible, U E; Ernst, J D; Russell, D G

    1997-01-01

    The eukaryotic intracellular pathogen Leishmania mexicana resides inside macrophages contained within a membrane bound parasitophorous vacuole which, as it matures, acquires the characteristics of a late endosomal compartment. This study reports the selectivity of fusion of this compartment with other particle containing vacuoles. Phagosomes containing zymosan or live Listeria monocytogenes rapidly fused with L. mexicana parasitophorous vacuoles, while those containing latex beads or heat killed L. monocytogenes failed to do so. Fusigenicity of phagosomes was not primarily dependent on the receptor utilized for ingestion, as opsonization with defined ligands could not overcome the exclusion of either latex beads or heat killed organisms. However modulation of intracellular pH by pharmacological agents such as chloroquine and ammonium chloride increased delivery of live Listeria and also induced transfer of previously excluded particles. The absence of fusion correlated with the acquisition of annexin I, a putative lysosomal targeting, molecule, on the phagosome membrane. We propose that the acquisition of cellular membrane constituents such as annexin I during phagosome maturation can ultimately direct the fusion pathway of the vesicles formed and have described a model system to further document changes in vesicle fusigenicity within cells.

  3. Morphological and molecular identification of the ectomycorrhizal association of Lactarius fumosibrunneus and Fagus grandifolia var. mexicana trees in eastern Mexico.

    PubMed

    Garay-Serrano, Edith; Bandala, Victor Manuel; Montoya, Leticia

    2012-11-01

    A population of Fagus grandifolia var. mexicana (covering ca. 4.7 ha) is established in a montane cloud forest refuge at Acatlan Volcano in eastern Mexico (Veracruz State), and it represents one of only ten populations of this species known to occur in the country (each stand covers ca. 2-35 ha in extension) and one of the southernmost in the continent. Sporocarps of several ectomycorrhizal macrofungi have been observed in the area, and among them, individuals of the genus Lactarius are common in the forest. However, the morphological and molecular characterization of ectomycorrhizae is still in development. Currently, two species of Lactarius have been previously documented in the area. Through the phylogenetic analysis of the internal transcribed spacer (ITS) region from basidiomes and ectomycorrhizae, we identified the Lactarius fumosibrunneus ectomycorrhiza. The host, F. grandifolia var. mexicana, was determined comparing the amplified ITS sequence from ectomycorrhizal root tips in the GenBank database with Basic Local Alignment Search Tool. The mycorrhizal system of L. fumosibrunneus is monopodial-pyramidal, characterized by its shiny, white to silver and pruinose surface, secreting a white latex when damaged, composed of three plectenchymatous mantle layers, with diverticulated terminal elements at the outer mantle. It lacks emanating hyphae, rhizomorphs, and sclerotia. A detailed morphological and anatomical description, illustrations, and photographs of the ectomycorrhiza are presented. The comparison of L. fumosibrunneus and other Lactarius belonging to subgenus Plinthogalus is presented.

  4. Purification, structural characterization and anticoagulant properties of fucosylated chondroitin sulfate isolated from Holothuria mexicana.

    PubMed

    Mou, Jiaojiao; Wang, Cong; Li, Wenjing; Yang, Jie

    2017-05-01

    A novel fucosylated chondroitin sulfate (HmG) was isolated from sea cucumber Holothuria mexicana, the structure of which was characterized by monosaccharide composition, disaccharide composition, IR, 1 H and 13 C NMR spectrum, additionally with two dimensional NMR spectrum of degraded HmG (DHmG). The backbone of HmG was identified as chondroitin 6-O sulfate, while the major O-4 sulfated fucose branches linked to O-3 position of glucuronic acid in almost every disaccharide unit. The anticoagulant activities of HmG and DHmG were assessed and compared with heparin and low molecular weight heparin. The results indicated that HmG and DHmG both could significantly prolong the activated partial thrombo-plastin time, and the properties were well related to its molecular weight. DHmG showed similar anticoagulant properties to low molecular weight heparin with less bleeding risks, making it a safer anticoagulant drug. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. In vitro activity of synthetic tetrahydroindeno[2,1-c]quinolines on Leishmania mexicana.

    PubMed

    Hernández-Chinea, Concepción; Carbajo, Erika; Sojo, Felipe; Arvelo, Francisco; Kouznetsov, Vladimir V; Romero-Bohórquez, Arnold R; Romero, Pedro J

    2015-12-01

    New synthetic compounds based on tetrahydroindenoquinoline structure were evaluated for their in vitro antileishmanial activities. The seven compounds assayed have antiproliferative activities against promastigotes of Leishmania mexicana. Compound 1 and 3 were the most active (IC50 1.0 μg/ml) and showed high selectivity towards the parasite. These compounds were selected to evaluate their effect on promastigote morphology and mitochondrial transmembrane potential as well as on the amastigote capability to survive into macrophages J774 cell line. Whereas compound 1 affected the promastigote cell cycle, compound 3 induced morphological changes and the total collapse of the mitochondrial transmembrane potential, a hallmark of apoptosis. Both compounds also affected the amastigote form of the parasite, decreasing their survival rate in J774 macrophages. Due to the greatest selectivity index, the apparent effect as apoptotic inducer and its sustained inhibition on intracellular amastigote replication, compound 3 is the best candidate to be tested in vivo. This compound is worth considering for the development of new antileishmanial drugs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Diversity among Tacaribe serocomplex viruses (family Arenaviridae) naturally associated with the Mexican woodrat (Neotoma mexicana)

    PubMed Central

    Cajimat, Maria N. B.; Milazzo, Mary Louise; Borchert, Jeff N.; Abbott, Ken D.; Bradley, Robert D.; Fulhorst, Charles F.

    2008-01-01

    The results of analyses of glycoprotein precursor and nucleocapsid protein gene sequences indicated that an arenavirus isolated from a Mexican woodrat (Neotoma mexicana) captured in Arizona is a strain of a novel species (proposed name Skinner Tank virus) and that arenaviruses isolated from Mexican woodrats captured in Colorado, New Mexico, and Utah are strains of Whitewater Arroyo virus or species phylogenetically closely related to Whitewater Arroyo virus. Pairwise comparisons of glycoprotein precursor sequences and nucleocapsid protein sequences revealed a high level of divergence among the viruses isolated from the Mexican woodrats captured in Colorado, New Mexico, and Utah and the Whitewater Arroyo virus prototype strain AV 9310135, which originally was isolated from a white-throated woodrat (Neotoma albigula) captured in New Mexico. Conceptually, the viruses from Colorado, New Mexico, and Utah and strain AV 9310135 could be grouped together in a species complex in the family Arenaviridae, genus Arenavirus. PMID:18304671

  7. Molecular Characterization, Expression and in vivo Analysis of LmexCht1: the Chitinase of the Human Pathogen, Leishmania mexicana

    PubMed Central

    Joshi, Manju B.; Rogers, Matthew E.; Shakarian, Alison M.; Yamage, Mat; Al-Harthi, Saeed A.; Bates, Paul A.; Dwyer, Dennis M.

    2010-01-01

    SUMMARY Chitinases have been implicated to be of importance in the life cycle development and transmission of a variety of parasitic organisms. Using a molecular approach, we identified and characterized the structure of a single copy LmexCht1-chitinase gene from the primitive trypanosomatid pathogen of humans, Leishmania mexicana. The LmexCht1 encodes an ~50 kDa protein, with well-conserved substrate-binding and catalytic domains characteristic of members of the Chitinase-18 protein family. Further, we showed that LmexCht1 mRNA is constitutively expressed by both the insect vector (i.e. promastigote) and mammalian (i.e. amastigote) life cycle developmental forms of this protozoan parasite. Interestingly, however, amastigotes were found to secrete/release ~ >2-4 fold higher levels of chitinase activity during their growth in vitro than promastigotes. Moreover, a homologous episomal-expression system was devised and used to express an epitope–tagged LmexCht1 chimeric construct in these parasites. Expression of the LmexCht1 chimera was verified in these transfectants by RT-PCR, Western blots and indirect immunofluorescence analyses. Further, results of coupled-immunoprecipitation/ enzyme activity experiments demonstrated that the LmexCht1 chimeric protein was secreted/released by these transfected L. mexicana parasites and that it possessed functional chitinase enzyme activity. Such transfectants were also evaluated for their infectivity both in human macrophages in vitro and in two different strains of mice. Results of those experiments demonstrated that the LmexCht1 transfectants survived significantly better in human macrophages and also produced significantly larger lesions in mice than control parasites. Taken together, our results indicate that the LmexCht1-chimera afforded a definitive survival advantage to the parasite within these mammalian hosts. Thus, the LmexCht1 could potentially represent a new virulence determinant in the mammalian phase of this

  8. Leishmania mexicana differentiation involves a selective plasma membrane autophagic-like process.

    PubMed

    Dagger, Francehuli; Bengio, Camila; Martinez, Angel; Ayesta, Carlos

    2017-11-23

    Parasites of the Leishmania genus, which are the causative agents of leishmaniasis, display a complex life cycle, from a flagellated form (promastigotes) residing in the midgut of the phlebotomine vector to a non-flagellated form (amastigote) invading the mammalian host. The cellular process for the conversion between these forms is an interesting biological phenomenon involving modulation of the plasma membrane. In this study, we describe a selective autophagic-like process during the in vitro differentiation of Leishmania mexicana promastigote to amastigote-like cells. This process is responsible for size reduction and shape change of the promastigote (15-20 μm long) to the rounded amastigote-like form (4-5 μm long), identical to the one that infects host macrophages. This autophagic-like process is characterized by a profound folding of the plasma membrane and the presence of abundant cytoplasmic lipid droplets that may be the product of changes in the lipid metabolism. The key feature for the differentiation process at either pH 7.0 or pH 5.5 is the shift in temperature from 25 to 35 °C. Flagella shortening during the differentiation process appears as the product of continuous flagellar microtubular disassembly that is also accompanied by changes in mitochondrion localization. Drugs directed at blocking the parasite autophagic-like process could be important as new strategies to fight the disease.

  9. Forty-two years of Revista Mexicana de Astronomía y Astrofísica: Some history and musings on the future

    NASA Astrophysics Data System (ADS)

    Allen, C.; Torres-Peimbert, S.

    2017-07-01

    After 42 years of continuously publishing the Revista Mexicana de Astronomía y Astrofísica, we cast a short retrospective view on its history and we share our plans for the future. RMxAA was founded in 1974. Founding editors were P. Pishmish, E. Mendoza and S. Torres-Peimbert. RMxAA has published original research papers in all areas of astronomy, astrophysics and related fields. Until 1994 RMxAA also published the proceedings of astronomical conferences held in México and Latin America. Since 1995 a Series devoted exclusively to such proceedings was founded, RMxAC, Revista Mexicana de Astronomía y Astrofísica (Serie de Conferencias). All papers submitted to RMxAA are sent to internationally recognized experts to be strictly refereed. RMxAA is included in Current Contents, Science Citation Index and other relevant international indexes. Both publications are fully integrated into the ADS. Their contents have always been freely available to the general public. All this ensures a wide international visibility, comparable to that of the best astronomical journals. The impact factor of RMxAA has varied over the years, mostly as a consequence of small number statistics. The average impact factor is about 2.4, far larger than that of all but a few Latin American scientific journals. The editorial independence of RMxAA, the fact that there are no page charges for authors, and that the printed version is distributed free of charge to astronomical libraries all over the world motivate us to look forward with optimism to many more years of publication. In view of recent developments in the scientific publishing field, we have applied to obtain the DOI for the published papers, and are in the process of becoming an all-electronic publication.

  10. Sporothrix brasiliensis, S. globosa, and S. mexicana, Three New Sporothrix Species of Clinical Interest▿

    PubMed Central

    Marimon, Rita; Cano, Josep; Gené, Josepa; Sutton, Deanna A.; Kawasaki, Masako; Guarro, Josep

    2007-01-01

    Sporothrix schenckii is the species responsible for sporotrichosis, a fungal infection caused by the traumatic implantation of this dimorphic fungus. Recent molecular studies have demonstrated that this species constitutes a complex of numerous phylogenetic species. Since the delineation of such species could be of extreme importance from a clinical point of view, we have studied a total of 127 isolates, most of which were received as S. schenckii, including the available type strains of species currently considered synonyms, and also some close morphological species. We have phenotypically characterized all these isolates using different culture media, growth rates at different temperatures, and numerous nutritional tests and compared their calmodulin gene sequences. The molecular analysis revealed that Sporothrix albicans, S. inflata, and S. schenckii var. luriei are species that are clearly different from S. schenckii. The combination of these phenetic and genetic approaches allowed us to propose the new species Sporothrix brasiliensis, S. globosa, and S. mexicana. The key phenotypic features for recognizing these species are the morphology of the sessile pigmented conidia, growth at 30, 35, and 37°C, and the assimilation of sucrose, raffinose, and ribitol. PMID:17687013

  11. Isopropyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives induce regulated necrosis-like cell death on Leishmania (Leishmania) mexicana.

    PubMed

    Chacón-Vargas, Karla Fabiola; Andrade-Ochoa, Sergio; Nogueda-Torres, Benjamín; Juárez-Ramírez, Dulce Carolina; Lara-Ramírez, Edgar E; Mondragón-Flores, Ricardo; Monge, Antonio; Rivera, Gildardo; Sánchez-Torres, Luvia Enid

    2018-01-01

    Leishmaniasis is a neglected tropical disease caused by the parasite of the genus Leishmania. About 13 million people are infected worldwide, and it is estimated that 350 million are at risk of infection. Clinical manifestations depend on the parasite species and factors related to the host such as the immune system, nutrition, housing, and financial resources. Available treatments have severe side effects; therefore, research currently focuses on finding more active and less toxic compounds. Quinoxalines have been described as promising alternatives. In this context, 17 isopropyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives were evaluated as potential leishmanicidal agents. Their effect on the cell metabolism of Leishmania mexicana promastigotes and their cytotoxic effects on the J774.A1 cell line and on erythrocytes were evaluated, and their selectivity index was calculated. Compounds T-069 (IC 50  = 1.49 μg/mL), T-070 (IC 50  = 1.71 μg/mL), T-072 (IC 50  = 6.62 μg/mL), T-073 (IC 50  = 1.25 μg/mL), T-085 (IC 50  = 0.74 μg/mL), and T-116 (IC 50  = 0.88 μg/mL) were the most active against L. mexicana promastigotes and their mechanism of action was characterized by flow cytometry and microscopy. Compound T-073, the most selective quinoxaline derivative, induced cell membrane damage, phosphatidylserine exposition, reactive oxygen species production, disruption of the mitochondrion membrane potential, and DNA fragmentation, all in a dose-dependent manner, indicating the induction of regulated necrosis. Light and transmission electron microscopy showed the drastic morphological changes induced and the mitochondrion as the most sensitive organelle in response to T-073. This study describes the mechanism by which active isopropyl quinoxaline-7-carboxylate 1,4-di-N-oxide quinoxalines affect the parasite.

  12. Microhabitat use, population densities, and size distributions of sulfur cave-dwelling Poecilia mexicana

    PubMed Central

    Bierbach, David; Riesch, Rüdiger; Schießl, Angela; Wigh, Adriana; Arias-Rodriguez, Lenin; Indy, Jeane Rimber; Klaus, Sebastian; Zimmer, Claudia; Plath, Martin

    2014-01-01

    The Cueva del Azufre in Tabasco, Mexico, is a nutrient-rich cave and its inhabitants need to cope with high levels of dissolved hydrogen sulfide and extreme hypoxia. One of the successful colonizers of this cave is the poeciliid fish Poecilia mexicana, which has received considerable attention as a model organism to examine evolutionary adaptations to extreme environmental conditions. Nonetheless, basic ecological data on the endemic cave molly population are still missing; here we aim to provide data on population densities, size class compositions and use of different microhabitats. We found high overall densities in the cave and highest densities at the middle part of the cave with more than 200 individuals per square meter. These sites have lower H2S concentrations compared to the inner parts where most large sulfide sources are located, but they are annually exposed to a religious harvesting ceremony of local Zoque people called La Pesca. We found a marked shift in size/age compositions towards an overabundance of smaller, juvenile fish at those sites. We discuss these findings in relation to several environmental gradients within the cave (i.e., differences in toxicity and lighting conditions), but we also tentatively argue that the annual fish harvest during a religious ceremony (La Pesca) locally diminishes competition (and possibly, cannibalism by large adults), which is followed by a phase of overcompensation of fish densities. PMID:25083351

  13. Microhabitat use, population densities, and size distributions of sulfur cave-dwelling Poecilia mexicana.

    PubMed

    Jourdan, Jonas; Bierbach, David; Riesch, Rüdiger; Schießl, Angela; Wigh, Adriana; Arias-Rodriguez, Lenin; Indy, Jeane Rimber; Klaus, Sebastian; Zimmer, Claudia; Plath, Martin

    2014-01-01

    The Cueva del Azufre in Tabasco, Mexico, is a nutrient-rich cave and its inhabitants need to cope with high levels of dissolved hydrogen sulfide and extreme hypoxia. One of the successful colonizers of this cave is the poeciliid fish Poecilia mexicana, which has received considerable attention as a model organism to examine evolutionary adaptations to extreme environmental conditions. Nonetheless, basic ecological data on the endemic cave molly population are still missing; here we aim to provide data on population densities, size class compositions and use of different microhabitats. We found high overall densities in the cave and highest densities at the middle part of the cave with more than 200 individuals per square meter. These sites have lower H2S concentrations compared to the inner parts where most large sulfide sources are located, but they are annually exposed to a religious harvesting ceremony of local Zoque people called La Pesca. We found a marked shift in size/age compositions towards an overabundance of smaller, juvenile fish at those sites. We discuss these findings in relation to several environmental gradients within the cave (i.e., differences in toxicity and lighting conditions), but we also tentatively argue that the annual fish harvest during a religious ceremony (La Pesca) locally diminishes competition (and possibly, cannibalism by large adults), which is followed by a phase of overcompensation of fish densities.

  14. Validated liquid chromatographic method and analysis of content of tilianin on several extracts obtained from Agastache mexicana and its correlation with vasorelaxant effect.

    PubMed

    Hernández-Abreu, Oswaldo; Durán-Gómez, Liliana; Best-Brown, Roberto; Villalobos-Molina, Rafael; Rivera-Leyva, Julio; Estrada-Soto, Samuel

    2011-11-18

    To optimize the obtention of tilianin, an antihypertensive flavonoid isolated from Agastache mexicana (Lamiaceae), a medicinal plant used in Mexico for the treatment of hypertension. Also, a validated HPLC method to quantify tilianin from different extracts, obtained by several extraction methods, was developed. The aerial parts of Agastache mexicana were dried at different temperatures (22, 40, 50, 90, 100 and 180°C) and the dry material was extracted with methanol by maceration to compare the content of the active constituent tilianin in the samples. Furthermore, EtOH:H(2)O (7:3), infusion and decoction extracts were prepared from air-dried samples at room temperature to compare the content and composition of the different extraction methods. Moreover, an ex vivo vasorelaxant test on endothelium-intact aortic rat rings was conducted, in order to correlate the presence of tilianin with the activity of each extract. Higher concentration and amounts of tilianin were determined from chromatograms in the obtained methanolic extracts from plant material dried at 90, 50, 40 and 22°C, followed by 100°C; however, lower concentrations were observed in dried at 180°C and EtOH:H(2)O (7:3). It is worth to notice that methanolic extracts with higher amount of tilianin were the most potent vasorelaxant extracts, even though these extracts were less potent than carbachol, a positive control used. Finally, decoction, infusion and EtOH:H(2)O (7:3) extracts did not show any vasorelaxant effect. Results suggest that extracts with higher concentration of tilianin possess the best vasorelaxant activity, which allowed us to have a HPLC method for future quality control for this medicinal plant. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Inhibitory activities of selected Sudanese medicinal plants on Porphyromonas gingivalis and matrix metalloproteinase-9 and isolation of bioactive compounds from Combretum hartmannianum (Schweinf) bark.

    PubMed

    Mohieldin, Ebtihal Abdalla M; Muddathir, Ali Mahmoud; Mitsunaga, Tohru

    2017-04-20

    Periodontal diseases are one of the major health problems and among the most important preventable global infectious diseases. Porphyromonas gingivalis is an anaerobic Gram-negative bacterium which has been strongly implicated in the etiology of periodontitis. Additionally, matrix metalloproteinases-9 (MMP-9) is an important factor contributing to periodontal tissue destruction by a variety of mechanisms. The purpose of this study was to evaluate the selected Sudanese medicinal plants against P. gingivalis bacteria and their inhibitory activities on MMP-9. Sixty two methanolic and 50% ethanolic extracts from 24 plants species were tested for antibacterial activity against P. gingivalis using microplate dilution assay method to determine the minimum inhibitory concentration (MIC). The inhibitory activity of seven methanol extracts selected from the 62 extracts against MMP-9 was determined by Colorimetric Drug Discovery Kit. In search of bioactive lead compounds, Combretum hartmannianum bark which was found to be within the most active plant extracts was subjected to various chromatographic (medium pressure liquid chromatography, column chromatography on a Sephadex LH-20, preparative high performance liquid chromatography) and spectroscopic methods (liquid chromatography-mass spectrometry, Nuclear Magnetic Resonance (NMR)) to isolate and characterize flavogalonic acid dilactone and terchebulin as bioactive compounds. About 80% of the crude extracts provided a MIC value ≤4 mg/ml against bacteria. The extracts which revealed the highest potency were: methanolic extracts of Terminalia laxiflora (wood; MIC = 0.25 mg/ml) followed by Acacia totrtilis (bark), Ambrosia maritima (aerial part), Argemone mexicana (seed), C. hartmannianum (bark), Terminalia brownii (wood) and 50% ethanolic extract of T. brownii (bark) with MIC values of 0.5 mg/ml. T. laxiflora (wood) and C. hartmannianum (bark) which belong to combretaceae family showed an inhibitory activity over 50% at

  16. Sex-specific local life-history adaptation in surface- and cave-dwelling Atlantic mollies (Poecilia mexicana).

    PubMed

    Riesch, Rüdiger; Reznick, David N; Plath, Martin; Schlupp, Ingo

    2016-03-10

    Cavefishes have long been used as model organisms showcasing adaptive diversification, but does adaptation to caves also facilitate the evolution of reproductive isolation from surface ancestors? We raised offspring of wild-caught surface- and cave-dwelling ecotypes of the neotropical fish Poecilia mexicana to sexual maturity in a 12-month common garden experiment. Fish were raised under one of two food regimes (high vs. low), and this was crossed with differences in lighting conditions (permanent darkness vs. 12:12 h light:dark cycle) in a 2 × 2 factorial design, allowing us to elucidate potential patterns of local adaptation in life histories. Our results reveal a pattern of sex-specific local life-history adaptation: Surface molly females had the highest fitness in the treatment best resembling their habitat of origin (high food and a light:dark cycle), and suffered from almost complete reproductive failure in darkness, while cave molly females were not similarly affected in any treatment. Males of both ecotypes, on the other hand, showed only weak evidence for local adaptation. Nonetheless, local life-history adaptation in females likely contributes to ecological diversification in this system and other cave animals, further supporting the role of local adaptation due to strong divergent selection as a major force in ecological speciation.

  17. Sex-specific local life-history adaptation in surface- and cave-dwelling Atlantic mollies (Poecilia mexicana)

    PubMed Central

    Riesch, Rüdiger; Reznick, David N.; Plath, Martin; Schlupp, Ingo

    2016-01-01

    Cavefishes have long been used as model organisms showcasing adaptive diversification, but does adaptation to caves also facilitate the evolution of reproductive isolation from surface ancestors? We raised offspring of wild-caught surface- and cave-dwelling ecotypes of the neotropical fish Poecilia mexicana to sexual maturity in a 12-month common garden experiment. Fish were raised under one of two food regimes (high vs. low), and this was crossed with differences in lighting conditions (permanent darkness vs. 12:12 h light:dark cycle) in a 2 × 2 factorial design, allowing us to elucidate potential patterns of local adaptation in life histories. Our results reveal a pattern of sex-specific local life-history adaptation: Surface molly females had the highest fitness in the treatment best resembling their habitat of origin (high food and a light:dark cycle), and suffered from almost complete reproductive failure in darkness, while cave molly females were not similarly affected in any treatment. Males of both ecotypes, on the other hand, showed only weak evidence for local adaptation. Nonetheless, local life-history adaptation in females likely contributes to ecological diversification in this system and other cave animals, further supporting the role of local adaptation due to strong divergent selection as a major force in ecological speciation. PMID:26960566

  18. Acarine infracommunities associated with the Mexican free-tailed bat, Tadarida brasiliensis mexicana (Chiroptera: Molossidae) in arid regions of Mexico.

    PubMed

    Guzmán-Cornejo, C; García-Prieto, L; Morales-Malacara, J B; Pérez-Ponce De León, G

    2003-11-01

    The Mexican free-tailed bat, Tadarida brasiliensis mexicana, is one of the most widely distributed bats, and its range includes the whole Mexican territory. Ectoparasites of this bat have been the subject of isolated reports, but no studies of its community ecology have been conducted. The acarine infracommunities associated with this bat were analyzed, comparing bat populations from three arid regions of Mexico: an abandoned factory in Nombre de Dios, Durango; a cave in Santiago, Nuevo León; and a church in Concepción del Oro, Zacatecas. The acarine infracommunity in Nuevo Le6n's bats exhibited the highest levels of diversity as reflected by a higher richness, a lower dominance, and a moderate and relatively homogeneous abundance in this locality in relation to the other two. This pattern is influenced by stable cave conditions relative to artificial habitats. Notwithstanding, further studies are required to determine whether or not different habitat conditions are a primary factor in the process of structuring the acari infracommunities.

  19. Cheminformatic models based on machine learning for pyruvate kinase inhibitors of Leishmania mexicana.

    PubMed

    Jamal, Salma; Scaria, Vinod

    2013-11-19

    Leishmaniasis is a neglected tropical disease which affects approx. 12 million individuals worldwide and caused by parasite Leishmania. The current drugs used in the treatment of Leishmaniasis are highly toxic and has seen widespread emergence of drug resistant strains which necessitates the need for the development of new therapeutic options. The high throughput screen data available has made it possible to generate computational predictive models which have the ability to assess the active scaffolds in a chemical library followed by its ADME/toxicity properties in the biological trials. In the present study, we have used publicly available, high-throughput screen datasets of chemical moieties which have been adjudged to target the pyruvate kinase enzyme of L. mexicana (LmPK). The machine learning approach was used to create computational models capable of predicting the biological activity of novel antileishmanial compounds. Further, we evaluated the molecules using the substructure based approach to identify the common substructures contributing to their activity. We generated computational models based on machine learning methods and evaluated the performance of these models based on various statistical figures of merit. Random forest based approach was determined to be the most sensitive, better accuracy as well as ROC. We further added a substructure based approach to analyze the molecules to identify potentially enriched substructures in the active dataset. We believe that the models developed in the present study would lead to reduction in cost and length of clinical studies and hence newer drugs would appear faster in the market providing better healthcare options to the patients.

  20. Gluconeogenesis in Leishmania mexicana: contribution of glycerol kinase, phosphoenolpyruvate carboxykinase, and pyruvate phosphate dikinase.

    PubMed

    Rodriguez-Contreras, Dayana; Hamilton, Nicklas

    2014-11-21

    Gluconeogenesis is an active pathway in Leishmania amastigotes and is essential for their survival within the mammalian cells. However, our knowledge about this pathway in trypanosomatids is very limited. We investigated the role of glycerol kinase (GK), phosphoenolpyruvate carboxykinase (PEPCK), and pyruvate phosphate dikinase (PPDK) in gluconeogenesis by generating the respective Leishmania mexicana Δgk, Δpepck, and Δppdk null mutants. Our results demonstrated that indeed GK, PEPCK, and PPDK are key players in the gluconeogenesis pathway in Leishmania, although stage-specific differences in their contribution to this pathway were found. GK participates in the entry of glycerol in promastigotes and amastigotes; PEPCK participates in the entry of aspartate in promastigotes, and PPDK is involved in the entry of alanine in amastigotes. Furthermore, the majority of alanine enters into the pathway via decarboxylation of pyruvate in promastigotes, whereas pathway redundancy is suggested for the entry of aspartate in amastigotes. Interestingly, we also found that l-lactate, an abundant glucogenic precursor in mammals, was used by Leishmania amastigotes to synthesize mannogen, entering the pathway through PPDK. On the basis of these new results, we propose a revision in the current model of gluconeogenesis in Leishmania, emphasizing the differences between amastigotes and promastigotes. This work underlines the importance of studying the trypanosomatid intracellular life cycle stages to gain a better understanding of the pathologies caused in humans. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Toxic hydrogen sulfide and dark caves: life-history adaptations in a livebearing fish (Poecilia mexicana, Poeciliidae).

    PubMed

    Riesch, Rüdiger; Plath, Martin; Schlupp, Ingo

    2010-05-01

    Life-history traits are very sensitive to extreme environmental conditions, because resources that need to be invested in somatic maintenance cannot be invested in reproduction. Here we examined female life-history traits in the Mexican livebearing fish Poecilia mexicana from a variety of benign surface habitats, a creek with naturally occurring toxic hydrogen sulfide (H2S), a sulfidic cave, and a non-sulfidic cave. Previous studies revealed pronounced genetic and morphological divergence over very small geographic scales in this system despite the absence of physical barriers, suggesting that local adaptation to different combinations of two selection factors, toxicity (H2S) and darkness, is accompanied by very low rates of gene flow. Hence, we investigated life-history divergence between these populations in response to the selective pressures of darkness and/or toxicity. Our main results show that toxicity and darkness both select for (or impose constraints on) the same female trait dynamics: reduced fecundity and increased offspring size. Since reduced fecundity in the sulfur cave population was previously shown to be heritable, we discuss how divergent life-history evolution may promote further ecological divergence: for example, reduced fecundity and increased offspring autonomy are clearly beneficial in extreme environments, but fish with these traits are outcompeted in benign habitats.

  2. Agemone mexicana flavanones; apposite inverse agonists of the β2-adrenergic receptor in asthma treatment.

    PubMed

    Eniafe, Gabriel O; Metibemu, Damilohun S; Omotuyi, Olaposi I; Ogunleye, Adewale J; Inyang, Olumide K; Adelakun, Niyi S; Adeniran, Yakubu O; Adewumi, Bamidele; Enejoh, Ojochenemi A; Osunmuyiwa, Joseph O; Shodehinde, Sidiqat A; Oyeneyin, Oluwatoba E

    2018-01-01

    Asthma is an inflammatory disease of the airway that poses a major threat to human health. With increase industrialization in the developed and developing countries, the incidence of asthma is on the rise. The β2-adrenergic receptor is an important target in designing anti-asthmatic drugs. The synthetic agonists of the β2-adrenergic receptor used over the years proved effective, but with indispensable side effects, thereby limiting their therapeutic use on a long-term scale. Inverse agonists of this receptor, although initially contraindicated, had been reported to have long-term beneficial effects. Phytochemicals from Agemone mexicana were screened against the human β2-adrenergic receptor in the agonist, inverse agonist, covalent agonist, and the antagonist conformations. Molecular docking of the phyto-constituents showed that the plant constituents bind better to the inverse agonist bound conformation of the protein, and revealed two flavanones; eriodictyol and hesperitin, with lower free energy (ΔG) values and higher affinities to the inverse agonist bound receptor than the co-crystallized ligand. Eriodictyol and hesperitin bind with the glide score of -10.684 and - 9.958 kcal/mol respectively, while the standard compound ICI-118551, binds with glide score of -9.503 kcal/mol. Further interaction profiling at the protein orthosteric site and ADME/Tox screening confirmed the drug-like properties of these compounds.

  3. Toxic hydrogen sulfide and dark caves: phenotypic and genetic divergence across two abiotic environmental gradients in Poecilia mexicana.

    PubMed

    Tobler, Michael; Dewitt, Thomas J; Schlupp, Ingo; García de León, Francisco J; Herrmann, Roger; Feulner, Philine G D; Tiedemann, Ralph; Plath, Martin

    2008-10-01

    Divergent natural selection drives evolutionary diversification. It creates phenotypic diversity by favoring developmental plasticity within populations or genetic differentiation and local adaptation among populations. We investigated phenotypic and genetic divergence in the livebearing fish Poecilia mexicana along two abiotic environmental gradients. These fish typically inhabit nonsulfidic surface rivers, but also colonized sulfidic and cave habitats. We assessed phenotypic variation among a factorial combination of habitat types using geometric and traditional morphometrics, and genetic divergence using quantitative and molecular genetic analyses. Fish in caves (sulfidic or not) exhibited reduced eyes and slender bodies. Fish from sulfidic habitats (surface or cave) exhibited larger heads and longer gill filaments. Common-garden rearing suggested that these morphological differences are partly heritable. Population genetic analyses using microsatellites as well as cytochrome b gene sequences indicate high population differentiation over small spatial scale and very low rates of gene flow, especially among different habitat types. This suggests that divergent environmental conditions constitute barriers to gene flow. Strong molecular divergence over short distances as well as phenotypic and quantitative genetic divergence across habitats in directions classic to fish ecomorphology suggest that divergent selection is structuring phenotypic variation in this system.

  4. A Study on Intraspecific Resource Partitioning in the Stingless bee Scaptotrigona mexicana Guérin (Apidae, Meliponini) Using Behavioral and Molecular Techniques.

    PubMed

    Sánchez, D; Solórzano-Gordillo, E; Vandame, R

    2016-10-01

    As a general rule, within an ecological guild, there is one species that is dominant and is commonly the most abundant. The aim of this work was to investigate if such pattern occurs intraspecifically, among colonies of the stingless bee Scaptotrigona mexicana Guérin. Through behavioral and molecular techniques, we found preliminary evidence that apparently colonies of this species do not monopolize resources, instead they seem to share food; however, some colonies had more foragers in a food patch or in a feeder, so some type of exclusion could be at work, though we could not determine the final output of such interaction, i.e., if underrepresented colonies were eventually excluded, developed slower or were overrepresented in other food patches. Our results give evidence that resource partitioning within this species occurs peacefully; however, further studies are necessary to determine if threatening behavior or aggressions appear when resources are scarce and competition becomes harsher.

  5. Female Choice Undermines the Emergence of Strong Sexual Isolation between Locally Adapted Populations of Atlantic Mollies (Poecilia mexicana)

    PubMed Central

    Zimmer, Claudia; Bierbach, David; Arias-Rodriguez, Lenin; Plath, Martin

    2018-01-01

    Divergent selection between ecologically dissimilar habitats promotes local adaptation, which can lead to reproductive isolation (RI). Populations in the Poecilia mexicana species complex have independently adapted to toxic hydrogen sulfide and show varying degrees of RI. Here, we examined the variation in the mate choice component of prezygotic RI. Mate choice tests across drainages (with stimulus males from another drainage) suggest that specific features of the males coupled with a general female preference for yellow color patterns explain the observed variation. Analyses of male body coloration identified the intensity of yellow fin coloration as a strong candidate to explain this pattern, and common-garden rearing suggested heritable population differences. Male sexual ornamentation apparently evolved differently across sulfide-adapted populations, for example because of differences in natural counterselection via predation. The ubiquitous preference for yellow color ornaments in poeciliid females likely undermines the emergence of strong RI, as female discrimination in favor of own males becomes weaker when yellow fin coloration in the respective sulfide ecotype increases. Our study illustrates the complexity of the (partly non-parallel) pathways to divergence among replicated ecological gradients. We suggest that future work should identify the genomic loci involved in the pattern reported here, making use of the increasing genomic and transcriptomic datasets available for our study system. PMID:29724050

  6. Complexities of gene expression patterns in natural populations of an extremophile fish (Poecilia mexicana, Poeciliidae)

    PubMed Central

    Passow, Courtney N.; Brown, Anthony P.; Arias-Rodriguez, Lenin; Yee, Muh-Ching; Sockell, Alexandra; Schartl, Manfred; Warren, Wesley C.; Bustamante, Carlos; Kelley, Joanna L.; Tobler, Michael

    2017-01-01

    Variation in gene expression can provide insights into organismal responses to environmental stress and physiological mechanisms mediating adaptation to habitats with contrasting environmental conditions. We performed an RNA-sequencing experiment to quantify gene expression patterns in fish adapted to habitats with different combinations of environmental stressors, including the presence of toxic hydrogen sulphide (H2S) and the absence of light in caves. We specifically asked how gene expression varies among populations living in different habitats, whether population differences were consistent among organs, and whether there is evidence for shared expression responses in populations exposed to the same stressors. We analysed organ-specific transcriptome-wide data from four ecotypes of Poecilia mexicana (nonsulphidic surface, sulphidic surface, nonsulphidic cave and sulphidic cave). The majority of variation in gene expression was correlated with organ type, and the presence of specific environmental stressors elicited unique expression differences among organs. Shared patterns of gene expression between populations exposed to the same environmental stressors increased with levels of organismal organization (from transcript to gene to physiological pathway). In addition, shared patterns of gene expression were more common between populations from sulphidic than populations from cave habitats, potentially indicating that physiochemical stressors with clear biochemical consequences can constrain the diversity of adaptive solutions that mitigate their adverse effects. Overall, our analyses provided insights into transcriptional variation in a unique system, in which adaptation to H2S and darkness coincide. Functional annotations of differentially expressed genes provide a springboard for investigating physiological mechanisms putatively underlying adaptation to extreme environments. PMID:28598519

  7. Ensemble-based ADME-Tox profiling and virtual screening for the discovery of new inhibitors of the Leishmania mexicana cysteine protease CPB2.8ΔCTE.

    PubMed

    Scala, Angela; Rescifina, Antonio; Micale, Nicola; Piperno, Anna; Schirmeister, Tanja; Maes, Louis; Grassi, Giovanni

    2018-02-01

    In an effort to identify novel molecular warheads able to inhibit Leishmania mexicana cysteine protease CPB2.8ΔCTE, fused benzo[b]thiophenes and β,β'-triketones emerged as covalent inhibitors binding the active site cysteine residue. Enzymatic screening showed a moderate-to-excellent activity (12%-90% inhibition of the target enzyme at 20 μm). The most promising compounds were selected for further profiling including in vitro cell-based assays and docking studies. Computational data suggest that benzo[b]thiophenes act immediately as non-covalent inhibitors and then as irreversible covalent inhibitors, whereas a reversible covalent mechanism emerged for the 1,3,3'-triketones with a Y-topology. Based on the predicted physicochemical and ADME-Tox properties, compound 2b has been identified as a new drug-like, non-mutagen, non-carcinogen, and non-neurotoxic lead candidate. © 2017 John Wiley & Sons A/S.

  8. Variation in ectomycorrhizal fungal communities associated with Oreomunnea mexicana (Juglandaceae) in a Neotropical montane forest.

    PubMed

    Corrales, Adriana; Arnold, A Elizabeth; Ferrer, Astrid; Turner, Benjamin L; Dalling, James W

    2016-01-01

    Neotropical montane forests are often dominated by ectomycorrhizal (EM) tree species, yet the diversity of their EM fungal communities remains poorly explored. In lower montane forests in western Panama, the EM tree species Oreomunnea mexicana (Juglandaceae) forms locally dense populations in forest otherwise characterized by trees that form arbuscular mycorrhizal (AM) associations. The objective of this study was to compare the composition of EM fungal communities associated with Oreomunnea adults, saplings, and seedlings across sites differing in soil fertility and the amount and seasonality of rainfall. Analysis of fungal nrITS DNA (nuclear ribosomal internal transcribed spacers) revealed 115 EM fungi taxa from 234 EM root tips collected from adults, saplings, and seedlings in four sites. EM fungal communities were equally species-rich and diverse across Oreomunnea developmental stages and sites, regardless of soil conditions or rainfall patterns. However, ordination analysis revealed high compositional turnover between low and high fertility/rainfall sites located ca. 6 km apart. The EM fungal community was dominated by Russula (ca. 36 taxa). Cortinarius, represented by 14 species and previously reported to extract nitrogen from organic sources under low nitrogen availability, was found only in low fertility/high rainfall sites. Phylogenetic diversity analyses of Russula revealed greater evolutionary distance among taxa found on sites with contrasting fertility and rainfall than was expected by chance, suggesting that environmental differences among sites may be important in structuring EM fungal communities. More research is needed to evaluate whether EM fungal taxa associated with Oreomunnea form mycorrhizal networks that might account for local dominance of this tree species in otherwise diverse forest communities.

  9. Anticonvulsant and Antioxidant Effects of Tilia americana var. mexicana and Flavonoids Constituents in the Pentylenetetrazole-Induced Seizures

    PubMed Central

    Cárdenas-Rodríguez, Noemí; González-Trujano, María Eva; Aguirre-Hernández, Eva; Ruíz-García, Matilde; Sampieri, Aristides; Coballase-Urrutia, Elvia; Carmona-Aparicio, Liliana

    2014-01-01

    Tilia genus is commonly used around the world for its central nervous system properties; it is prepared as tea and used as tranquilizing, anticonvulsant, and analgesic. In this study, anticonvulsant activity of the Tilia americana var. mexicana inflorescences and leaves was investigated by evaluating organic and aqueous extracts (100, 300, and 600 mg/kg, i.p.) and some flavonoids in the pentylenetetrazole-induced seizures in mice. Moreover, antioxidant effect of these extracts and flavonoids was examined in an in vitro study by using spectrophotometric technique. Significant activity was observed in the methanol extract from inflorescences. An HPLC analysis of the methanol extract from inflorescences and leaves of Tilia allowed demonstrating the respective presence of some partial responsible flavonoid constituents: quercetin (20.09 ± 1.20 μg/mg and 3.39 ± 0.10 μg/mg), rutin (3.52 ± 0.21 μg/mg and 8.94 ± 0.45 μg/mg), and isoquercitrin (1.74 ± 0.01 μg/mg and 1.24 ± 0.13 μg/mg). In addition, significant but different antioxidant properties were obtained among the flavonoids and the extracts investigated. Our results provide evidence of the anticonvulsant activity of Tilia reinforcing its utility for central nervous system diseases whose mechanism of action might involve partial antioxidant effects due to the presence of flavonoids. PMID:25197430

  10. Assessing the importance of four sandfly species (Diptera: Psychodidae) as vectors of Leishmania mexicana in Campeche, Mexico.

    PubMed

    Pech-May, A; Peraza-Herrera, G; Moo-Llanes, D A; Escobedo-Ortegón, J; Berzunza-Cruz, M; Becker-Fauser, I; Montes DE Oca-Aguilar, A C; Rebollar-Téllez, E A

    2016-09-01

    Localized cutaneous leishmaniasis represents a public health problem in many areas of Mexico, especially in the Yucatan Peninsula. An understanding of vector ecology and bionomics is of great importance in evaluations of the transmission dynamics of Leishmania parasites. A field study was conducted in the county of Calakmul, state of Campeche, during the period from November 2006 to March 2007. Phlebotomine sandfly vectors were sampled using Centers for Disease Control light traps, baited Disney traps and Shannon traps. A total of 3374 specimens were captured in the two villages of Once de Mayo (93.8%) and Arroyo Negro (6.1%). In Once de Mayo, the most abundant species were Psathyromyia shannoni, Lutzomyia cruciata, Bichromomyia olmeca olmeca and Psychodopygus panamensis (all: Diptera: Psychodidae). The Shannon trap was by far the most efficient method of collection. The infection rate, as determined by Leishmania mexicana-specific polymerase chain reaction, was 0.3% in Once de Mayo and infected sandflies included Psy. panamensis, B. o. olmeca and Psa. shannoni. There were significant differences in human biting rates across sandfly species and month of sampling. Ecological niche modelling analyses showed an overall overlap of 39.1% for the four species in the whole state of Campeche. In addition, the finding of nine vector-reservoir pairs indicates a potential interaction. The roles of the various sandfly vectors in Calakmul are discussed. © 2016 The Royal Entomological Society.

  11. Is there a relationship between fledge age and nest temperature in Western Bluebirds (Sialia mexicana)?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Emily Marie; Thompson, Brent E.; Hathcock, Charles Dean

    Extensive research has been done on temperature during bird incubation periods, but little has been done during nestling development, and to our knowledge, no studies have been done on Western Bluebird (Sialia mexicana) nestling development. In this study, dataloggers were used to monitor nest temperatures during the nestling development phase of Western Bluebirds to determine if there was a relationship between fledge age and temperature. The study was conducted in an existing nestbox network at Los Alamos National Laboratory and the surrounding area in north-central New Mexico. Based on the age of the nestlings at fledging, the nestboxes (n=65) weremore » split into three groups: early (16 and 17 days old, n=13), average (fledged at or between 18 and 20 days old, n=32), and late (21 days or older, n=20). The temperatures of the early and average (n=45) groups were not significantly different (p=0.32, W=3831000). There was a significant difference in the temperatures between the early and late groups (p=0.000, W=2965600). The early and average groups were then combined, tested against the late group, and were found to be significantly different (p=0.000, W=11315000). Analysis showed a difference within the first seven days post-hatch of 1.42°C between the early/average and late groupings. The results suggest that warmer nest temperatures during the nestling stage may influence the fledge date and may lead to faster fledging. There may be numerous explanations for this, such as a correlation with nestling development, and higher temperatures may allow for faster development. Brood size was non-significant and was not factored into the analysis. Future work should be directed in this area.« less

  12. In vivo tissue engineering of musculoskeletal tissues.

    PubMed

    McCullen, Seth D; Chow, Andre G Y; Stevens, Molly M

    2011-10-01

    Tissue engineering of musculoskeletal tissues often involves the in vitro manipulation and culture of progenitor cells, growth factors and biomaterial scaffolds. Though in vitro tissue engineering has greatly increased our understanding of cellular behavior and cell-material interactions, this methodology is often unable to recreate tissue with the hierarchical organization and vascularization found within native tissues. Accordingly, investigators have focused on alternative in vivo tissue engineering strategies, whereby the traditional triad (cells, growth factors, scaffolds) or a combination thereof are directly implanted at the damaged tissue site or within ectopic sites capable of supporting neo-tissue formation. In vivo tissue engineering may offer a preferential route for regeneration of musculoskeletal and other tissues with distinct advantages over in vitro methods based on the specific location of endogenous cultivation, recruitment of autologous cells, and patient-specific regenerated tissues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Tissue engineering in periodontal tissue.

    PubMed

    Iwata, Takanori; Yamato, Masayuki; Ishikawa, Isao; Ando, Tomohiro; Okano, Teruo

    2014-01-01

    Periodontitis, a recognized disease worldwide, is bacterial infection-induced inflammation of the periodontal tissues that results in loss of alveolar bone. Once it occurs, damaged tissue cannot be restored to its original form, even if decontaminating treatments are performed. For more than half a century, studies have been conducted to investigate true periodontal regeneration. Periodontal regeneration is the complete reconstruction of the damaged attachment apparatus, which contains both hard tissue (alveolar bone and cementum) and soft tissue (periodontal ligament). Several treatments, including bone grafts, guided tissue regeneration with physical barriers for epithelial cells, and growth factors have been approved for clinical use; however, their indications and outcomes are limited. To overcome these limitations, the concept of "tissue engineering" was introduced. Combination treatment using cells, growth factors, and scaffolds, has been studied in experimental animal models, and some studies have been translated into clinical trials. In this review, we focus on recent progressive tissue engineering studies and discuss future perspectives on periodontal regeneration. Copyright © 2013 Wiley Periodicals, Inc.

  14. Dynamic extrafloral nectar production: the timing of leaf damage affects the defensive response in Senna mexicana var. chapmanii (Fabaceae).

    PubMed

    Jones, Ian M; Koptur, Suzanne

    2015-01-01

    • Extrafloral nectar (EFN) mediates food for protection mutualisms between plants and defensive insects. Understanding sources of variation in EFN production is important because such variations may affect the number and identity of visitors and the effectiveness of plant defense. We investigated the influence of plant developmental stage, time of day, leaf age, and leaf damage on EFN production in Senna mexicana var. chapmanii. The observed patterns of variation in EFN production were compared with those predicted by optimal defense theory.• Greenhouse experiments with potted plants were conducted to determine how plant age, time of day, and leaf damage affected EFN production. A subsequent field study was conducted to determine how leaf damage, and the resulting increase in EFN production, affected ant visitation in S. chapmanii.• More nectar was produced at night and by older plants. Leaf damage resulted in increased EFN production, and the magnitude of the response was greater in plants damaged in the morning than those damaged at night. Damage to young leaves elicited a stronger defensive response than damage to older leaves, in line with optimal defense theory. Damage to the leaves of S. chapmanii also resulted in significantly higher ant visitation in the field.• Extrafloral nectar is an inducible defense in S. chapmanii. Developmental variations in its production support the growth differentiation balance hypothesis, while within-plant variations and damage responses support optimal defense theory. © 2015 Botanical Society of America, Inc.

  15. DIABETES MELLITUS COMO FACTOR DE RIESGO DE DEMENCIA EN LA POBLACIÓN ADULTA MAYOR MEXICANA

    PubMed Central

    Silvia, Mejía-Arango; Clemente, y Zúñiga-Gil

    2012-01-01

    Introduccion La diabetes mellitus y las demencias constituyen dos problemas crecientes de salud entre la población adulta mayor del mundo y en particular de los paises en desarrollo. Hacen falta estudios longitudinales sobre el papel de la diabetes como factor de riesgo para demencia. Objetivo Determinar el riesgo de demencia en sujetos Mexicanos con diabetes mellitus tipo 2. Materiales y Metodos Los sujetos diabéticos libres de demencia pertenecientes al Estudio Nacional de Salud y Envejecimiento en México fueron evaluados a los dos años de la línea de base. Se estudió el papel de los factores sociodemográficos, de otras comorbilidades y del tipo de tratamiento en la conversión a demencia. Resultados Durante la línea de base 749 sujetos (13.8%) tuvieron diabetes. El riesgo de desarrollar demencia en estos individuos fue el doble (RR, 2.08 IC 95%, 1.59–2.73). Se encontró un riesgo mayor en individuos de 80 años y más (RR 2.44 IC 95%, 1.46–4.08), en los hombres (RR, 2.25 IC 95%, 1.46–3.49) y en sujetos con nivel educativo menor de 7 años. El estar bajo tratamiento con insulina incrementó el riesgo de demencia (RR, 2.83, IC 95%, 1.58–5.06). Las otras comorbilidades que aumentaron el riesgo de demencia en los pacientes diabéticos fueron la hipertensión (RR, 2.75, IC 95%, 1.86–4.06) y la depresión (RR, 3.78, 95% IC 2.37–6.04). Conclusión Los sujetos con diabetes mellitus tienen un riesgo mayor de desarrollar demencia, La baja escolaridad y otras comorbilidades altamente prevalentes en la población Mexicana contribuyen a la asociación diabetes-demencia. PMID:21948010

  16. Gradient Evolution of Body Colouration in Surface- and Cave-Dwelling Poecilia mexicana and the Role of Phenotype-Assortative Female Mate Choice

    PubMed Central

    Penshorn, Marina; Hamfler, Sybille; Herbert, Denise B.; Appel, Jessica; Meyer, Philipp; Slattery, Patrick; Charaf, Sarah; Wolf, Raoul; Völker, Johannes; Berger, Elisabeth A. M.; Dröge, Janis; Riesch, Rüdiger; Arias-Rodriguez, Lenin; Indy, Jeanne R.; Plath, Martin

    2013-01-01

    Ecological speciation assumes reproductive isolation to be the product of ecologically based divergent selection. Beside natural selection, sexual selection via phenotype-assortative mating is thought to promote reproductive isolation. Using the neotropical fish Poecilia mexicana from a system that has been described to undergo incipient ecological speciation in adjacent, but ecologically divergent habitats characterized by the presence or absence of toxic H2S and darkness in cave habitats, we demonstrate a gradual change in male body colouration along the gradient of light/darkness, including a reduction of ornaments that are under both inter- and intrasexual selection in surface populations. In dichotomous choice tests using video-animated stimuli, we found surface females to prefer males from their own population over the cave phenotype. However, female cave fish, observed on site via infrared techniques, preferred to associate with surface males rather than size-matched cave males, likely reflecting the female preference for better-nourished (in this case: surface) males. Hence, divergent selection on body colouration indeed translates into phenotype-assortative mating in the surface ecotype, by selecting against potential migrant males. Female cave fish, by contrast, do not have a preference for the resident male phenotype, identifying natural selection against migrants imposed by the cave environment as the major driver of the observed reproductive isolation. PMID:24175282

  17. Comparative Life Cycle Transcriptomics Revises Leishmania mexicana Genome Annotation and Links a Chromosome Duplication with Parasitism of Vertebrates

    PubMed Central

    Fiebig, Michael; Kelly, Steven; Gluenz, Eva

    2015-01-01

    Leishmania spp. are protozoan parasites that have two principal life cycle stages: the motile promastigote forms that live in the alimentary tract of the sandfly and the amastigote forms, which are adapted to survive and replicate in the harsh conditions of the phagolysosome of mammalian macrophages. Here, we used Illumina sequencing of poly-A selected RNA to characterise and compare the transcriptomes of L. mexicana promastigotes, axenic amastigotes and intracellular amastigotes. These data allowed the production of the first transcriptome evidence-based annotation of gene models for this species, including genome-wide mapping of trans-splice sites and poly-A addition sites. The revised genome annotation encompassed 9,169 protein-coding genes including 936 novel genes as well as modifications to previously existing gene models. Comparative analysis of gene expression across promastigote and amastigote forms revealed that 3,832 genes are differentially expressed between promastigotes and intracellular amastigotes. A large proportion of genes that were downregulated during differentiation to amastigotes were associated with the function of the motile flagellum. In contrast, those genes that were upregulated included cell surface proteins, transporters, peptidases and many uncharacterized genes, including 293 of the 936 novel genes. Genome-wide distribution analysis of the differentially expressed genes revealed that the tetraploid chromosome 30 is highly enriched for genes that were upregulated in amastigotes, providing the first evidence of a link between this whole chromosome duplication event and adaptation to the vertebrate host in this group. Peptide evidence for 42 proteins encoded by novel transcripts supports the idea of an as yet uncharacterised set of small proteins in Leishmania spp. with possible implications for host-pathogen interactions. PMID:26452044

  18. Biomimetic 3D tissue printing for soft tissue regeneration.

    PubMed

    Pati, Falguni; Ha, Dong-Heon; Jang, Jinah; Han, Hyun Ho; Rhie, Jong-Won; Cho, Dong-Woo

    2015-09-01

    Engineered adipose tissue constructs that are capable of reconstructing soft tissue with adequate volume would be worthwhile in plastic and reconstructive surgery. Tissue printing offers the possibility of fabricating anatomically relevant tissue constructs by delivering suitable matrix materials and living cells. Here, we devise a biomimetic approach for printing adipose tissue constructs employing decellularized adipose tissue (DAT) matrix bioink encapsulating human adipose tissue-derived mesenchymal stem cells (hASCs). We designed and printed precisely-defined and flexible dome-shaped structures with engineered porosity using DAT bioink that facilitated high cell viability over 2 weeks and induced expression of standard adipogenic genes without any supplemented adipogenic factors. The printed DAT constructs expressed adipogenic genes more intensely than did non-printed DAT gel. To evaluate the efficacy of our printed tissue constructs for adipose tissue regeneration, we implanted them subcutaneously in mice. The constructs did not induce chronic inflammation or cytotoxicity postimplantation, but supported positive tissue infiltration, constructive tissue remodeling, and adipose tissue formation. This study demonstrates that direct printing of spatially on-demand customized tissue analogs is a promising approach to soft tissue regeneration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Tissue types (image)

    MedlinePlus

    ... are 4 basic types of tissue: connective tissue, epithelial tissue, muscle tissue, and nervous tissue. Connective tissue supports ... binds them together (bone, blood, and lymph tissues). Epithelial tissue provides a covering (skin, the linings of the ...

  20. Tracheal relaxation of five medicinal plants used in Mexico for the treatment of several diseases.

    PubMed

    Sánchez-Recillas, Amanda; Mantecón-Reyes, Paul; Castillo-España, Patricia; Villalobos-Molina, Rafael; Ibarra-Barajas, Maximiliano; Estrada-Soto, Samuel

    2014-03-01

    To assess the relaxant effect of several organic extracts obtained from Agastache mexicana (A. mexicana), Cochlospermum vitifolium (C. vitifolium), Cordia morelosana (C. morelosana), Lepechinia caulescens (L. caulescens) and Talauma mexicana (T. mexicana) used in Mexican traditional medicine for the treatment of several diseases. Extracts were obtained by maceration at room temperature using hexane, dichloromethane and methanol for each plant material. The organic extracts were evaluated ex vivo to determine their relaxant activity on the contractions induced by carbachol (cholinergic receptor agonist, 1 μ mol/L) in isolated rat tracheal rings. A total of 15 extracts were evaluated (three for each species). All test samples showed significant relaxant effect, in a concentration-dependent manner, on the contractions induced by 1 μ mol/L carbachol, with exception of extracts from C. morelosana. Active extracts were less potent than theophylline [phosphodiesterase inhibitor, EC50: (28.79±0.82) μg/mL] that was used as positive control. Concentration-response curves revealed that the extracts with more significant effects were dichloromethanic extracts of T. mexicana [Emax: (103.03±3.32)% and EC50: (159.39±3.72) μg/mL) and C. vitifolium [Emax: (106.58±2.42)% and EC50: (219.54±7.61) μg/mL]. Finally, hexanic and dichloromethanic extracts from A. mexicana were fully effective but less potent than T. mexicana and C. vitifolium. Less polar extracts obtained from A. mexicana, T. mexicana and C. vitifolium exhibited greater relaxant effect on tracheal rat rings, which allows us to suggest them as sources for the isolation of bioactive molecules with potential therapeutic value in the treatment of asthma. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  1. Quantity over quality: light intensity, but not red/far-red ratio, affects extrafloral nectar production in Senna mexicana var. chapmanii.

    PubMed

    Jones, Ian M; Koptur, Suzanne

    2015-09-01

    Extrafloral nectar (EFN) mediates food-for-protection mutualisms between plants and insects and provides plants with a form of indirect defense against herbivory. Understanding sources of variation in EFN production is important because such variations affect the number and identity of insect visitors and the effectiveness of plant defense. Light represents a potentially crucial tool for regulating resource allocation to defense, as it not only contributes energy but may help plants to anticipate future conditions. Low red/far-red (R/FR) light ratios can act as a signal of the proximity of competing plants. Exposure to such light ratios has been shown to promote competitive behaviors that coincide with reduced resource allocation to direct chemical defenses. Little is known, however, about how such informational light signals might affect indirect defenses such as EFN, and the interactions that they mediate. Through controlled glasshouse experiments, we investigated the effects of light intensity, and R/FR light ratios, on EFN production in Senna mexicana var. chapmanii. Plants in light-limited conditions produced significantly less EFN, and leaf damage elicited increased EFN production regardless of light conditions. Ratios of R/FR light, however, did not appear to affect EFN production in either damaged or undamaged plants. Understanding the effects of light on indirect defenses is of particular importance for plants in the threatened pine rockland habitats of south Florida, where light conditions are changing in predictable ways following extensive fragmentation and subsequent mismanagement. Around 27% of species in these habitats produce EFN and may rely on insect communities for defense.

  2. Tissue engineering of reproductive tissues and organs.

    PubMed

    Atala, Anthony

    2012-07-01

    Regenerative medicine and tissue engineering technology may soon offer new hope for patients with serious injuries and end-stage reproductive organ failure. Scientists are now applying the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that can restore and maintain normal function in diseased and injured reproductive tissues. In addition, the stem cell field is advancing, and new discoveries in this field will lead to new therapeutic strategies. For example, newly discovered types of stem cells have been retrieved from uterine tissues such as amniotic fluid and placental stem cells. The process of therapeutic cloning and the creation of induced pluripotent cells provide still other potential sources of stem cells for cell-based tissue engineering applications. Although stem cells are still in the research phase, some therapies arising from tissue engineering endeavors that make use of autologous adult cells have already entered the clinic. This article discusses these tissue engineering strategies for various organs in the male and female reproductive tract. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  3. Photochemical tissue bonding

    DOEpatents

    Redmond, Robert W [Brookline, MA; Kochevar, Irene E [Charlestown, MA

    2012-01-10

    Photochemical tissue bonding methods include the application of a photosensitizer to a tissue and/or tissue graft, followed by irradiation with electromagnetic energy to produce a tissue seal. The methods are useful for tissue adhesion, such as in wound closure, tissue grafting, skin grafting, musculoskeletal tissue repair, ligament or tendon repair and corneal repair.

  4. Survival in an extreme habitat: the roles of behaviour and energy limitation

    NASA Astrophysics Data System (ADS)

    Plath, Martin; Tobler, Michael; Riesch, Rüdiger; García de León, Francisco J.; Giere, Olav; Schlupp, Ingo

    2007-12-01

    Extreme habitats challenge animals with highly adverse conditions, like extreme temperatures or toxic substances. In this paper, we report of a fish ( Poecilia mexicana) inhabiting a limestone cave in Mexico. Several springs inside the cave are rich in toxic H2S. We demonstrate that a behavioural adaptation, aquatic surface respiration (ASR), allows for the survival of P. mexicana in this extreme, sulphidic habitat. Without the possibility to perform ASR, the survival rate of P. mexicana was low even at comparatively low H2S concentrations. Furthermore, we show that food limitation affects the survival of P. mexicana pointing to energetically costly physiological adaptations to detoxify H2S.

  5. In Vitro Tissue Differentiation using Dynamics of Tissue Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Chiang; Phillips, Paul J.

    2002-03-01

    Dynamics of tissue mechanical properties of various human tissue types were studied at macroscopic as well as microscopic level in vitro. This study was conducted to enable the development of a feedback system based on dynamics of tissue mechanical properties for intraoperative guidance for tumor treatment (e.g., RF ablation of liver tumor) and noninvasive tumor localization. Human liver tissues, including normal, cancerous, and cirrhotic tissues, were obtained from patients receiving liver transplant or tumor resection at Vanderbilt University Medical Center with the approval of the Vanderbilt Institutional Review Board. Tissue samples, once resected from the patients, were snap-frozen using liquid nitrogen and stored at -70 oC. Measurements of the mechanical properties of these tissue samples were conducted at the University of Tennessee at Knoxville. Dynamics of tissue mechanical properties were measured from both native and thermally coagulated tissue samples at macroscopic and microscopic level. Preliminary results suggest the dynamics of mechanical properties of normal liver tissues are very different from those of cancerous liver tissues. The correlation between the dynamics of mechanical properties at macroscopic level and those at microscopic level is currently under investigation.

  6. Genetic structure and divergence in populations of Lutzomyia cruciata, a phlebotomine sand fly (Diptera: Psychodidae) vector of Leishmania mexicana in southeastern Mexico.

    PubMed

    Pech-May, Angélica; Marina, Carlos F; Vázquez-Domínguez, Ella; Berzunza-Cruz, Miriam; Rebollar-Téllez, Eduardo A; Narváez-Zapata, José A; Moo-Llanes, David; Ibáñez-Bernal, Sergio; Ramsey, Janine M; Becker, Ingeborg

    2013-06-01

    The low dispersal capacity of sand flies could lead to population isolation due to geographic barriers, climate variation, or to population fragmentation associated with specific local habitats due to landscape modification. The phlebotomine sand fly Lutzomyia cruciata has a wide distribution throughout Mexico and is a vector of Leishmania mexicana in the southeast. The aim of this study was to evaluate the genetic diversity, structure, and divergence within and among populations of Lu. cruciata in the state of Chiapas, and to infer the intra-specific phylogeny using the 3' end of the mitochondrial cytochrome b gene. We analyzed 62 sequences from four Lu. cruciata populations and found 26 haplotypes, high genetic differentiation and restricted gene flow among populations (Fst=0.416, Nm=0.701, p<0.001). The highest diversity values were recorded in populations from Loma Bonita and Guadalupe Miramar. Three lineages (100% bootstrap and 7% overall divergence) were identified using a maximum likelihood phylogenetic analysis which showed high genetic divergence (17.2-22.7%). A minimum spanning haplotype network also supported separation into three lineages. Genetic structure and divergence within and among Lu. cruciata populations are hence affected by geographic heterogeneity and evolutionary background. Data obtained in the present study suggest that Lu. cruciata in the state of Chiapas consists of at least three lineages. Such findings may have implications for vector capacity and hence for vector control strategies. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. A novel albumin-based tissue scaffold for autogenic tissue engineering applications.

    PubMed

    Li, Pei-Shan; Lee, I-Liang; Yu, Wei-Lin; Sun, Jui-Sheng; Jane, Wann-Neng; Shen, Hsin-Hsin

    2014-07-18

    Tissue scaffolds provide a framework for living tissue regeneration. However, traditional tissue scaffolds are exogenous, composed of metals, ceramics, polymers, and animal tissues, and have a defined biocompatibility and application. This study presents a new method for obtaining a tissue scaffold from blood albumin, the major protein in mammalian blood. Human, bovine, and porcine albumin was polymerised into albumin polymers by microbial transglutaminase and was then cast by freeze-drying-based moulding to form albumin tissue scaffolds. Scanning electron microscopy and material testing analyses revealed that the albumin tissue scaffold possesses an extremely porous structure, moderate mechanical strength, and resilience. Using a culture of human mesenchymal stem cells (MSCs) as a model, we showed that MSCs can be seeded and grown in the albumin tissue scaffold. Furthermore, the albumin tissue scaffold can support the long-term osteogenic differentiation of MSCs. These results show that the albumin tissue scaffold exhibits favourable material properties and good compatibility with cells. We propose that this novel tissue scaffold can satisfy essential needs in tissue engineering as a general-purpose substrate. The use of this scaffold could lead to the development of new methods of artificial fabrication of autogenic tissue substitutes.

  8. Local adaptation and pronounced genetic differentiation in an extremophile fish, Poecilia mexicana, inhabiting a Mexican cave with toxic hydrogen sulphide.

    PubMed

    Plath, M; Hauswaldt, J S; Moll, K; Tobler, M; García De León, F J; Schlupp, I; Tiedemann, R

    2007-03-01

    We investigated genetic differentiation and migration patterns in a small livebearing fish, Poecilia mexicana, inhabiting a sulfidic Mexican limestone cave (Cueva del Azufre). We examined fish from three different cave chambers, the sulfidic surface creek draining the cave (El Azufre) and a nearby surface creek without the toxic hydrogen sulphide (Arroyo Cristal). Using microsatellite analysis of 10 unlinked loci, we found pronounced genetic differentiation among the three major habitats: Arroyo Cristal, El Azufre and the cave. Genetic differentiation was also found within the cave between different pools. An estimation of first-generation migrants suggests that (i) migration is unidirectional, out of the cave, and (ii) migration among different cave chambers occurs to some extent. We investigated if the pattern of genetic differentiation is also reflected in a morphological trait, eye size. Relatively large eyes were found in surface habitats, small eyes in the anterior cave chambers, and the smallest eyes were detected in the innermost cave chamber (XIII). This pattern shows some congruence with a previously proposed morphocline in eye size. However, our data do not support the proposed mechanism for this morphocline, namely that it would be maintained by migration from both directions into the middle cave chambers. This would have led to an increased variance in eye size in the middle cave chambers, which we did not find. Restricted gene flow between the cave and the surface can be explained by local adaptations to extreme environmental conditions, namely H2S and absence of light. Within the cave system, habitat properties are patchy, and genetic differentiation between cave chambers despite migration could indicate local adaptation at an even smaller scale.

  9. Engineering complex tissues.

    PubMed

    Atala, Anthony; Kasper, F Kurtis; Mikos, Antonios G

    2012-11-14

    Tissue engineering has emerged at the intersection of numerous disciplines to meet a global clinical need for technologies to promote the regeneration of functional living tissues and organs. The complexity of many tissues and organs, coupled with confounding factors that may be associated with the injury or disease underlying the need for repair, is a challenge to traditional engineering approaches. Biomaterials, cells, and other factors are needed to design these constructs, but not all tissues are created equal. Flat tissues (skin); tubular structures (urethra); hollow, nontubular, viscus organs (vagina); and complex solid organs (liver) all present unique challenges in tissue engineering. This review highlights advances in tissue engineering technologies to enable regeneration of complex tissues and organs and to discuss how such innovative, engineered tissues can affect the clinic.

  10. Managing tissue bank access to the OR for tissue recovery.

    PubMed

    Trim, Robert S

    2011-08-01

    Hospitals often have tissue recovery service agreements with regional tissue banks to facilitate the donation process. The agreements that outline the tissue bank-hospital relationship frequently allow tissue bank personnel to perform tissue recovery procedures in the referring hospital's OR and may or may not specify any preparatory orientation or any written protocols for tissue bank staff members to follow. This creates the potential for unintentional breaches of protocol that can affect operation of equipment or result in contamination that may put surgical patients and staff members at risk. The OR manager is responsible for establishing appropriate orientation plans for tissue bank employees to ensure they understand and adhere to the hospital's protocols. Copyright © 2011 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  11. Tissue allograft coding and traceability in USM Tissue Bank, Malaysia.

    PubMed

    Sheikh Ab Hamid, Suzina; Abd Rahman, Muhamad Nor Firdaus

    2010-11-01

    In Malaysia, tissue banking activities began in Universiti Sains Malaysia (USM) Tissue Bank in early 1990s. Since then a few other bone banks have been set up in other government hospitals and institutions. However, these banks are not governed by the national authority. In addition there is no requirement set by the national regulatory authority on coding and traceability for donated human tissues for transplantation. Hence, USM Tissue Bank has taken the initiatives to adopt a system that enables the traceability of tissues between the donor, the processed tissue and the recipient based on other international standards for tissue banks. The traceability trail has been effective and the bank is certified compliance to the international standard ISO 9001:2008.

  12. Tissue regeneration during tissue expansion and choosing an expander

    PubMed Central

    Agrawal, K.; Agrawal, S.

    2012-01-01

    This paper reviews the various aspects of tissue regeneration during the process of tissue expansion. “Creep” and mechanical and biological “stretch” are responsible for expansion. During expansion, the epidermis thickens, the dermis thins out, vascularity improves, significant angiogenesis occurs, hair telogen phase becomes shorter and the peripheral nerves, vessels and muscle fibres lengthen. Expansion is associated with molecular changes in the tissue. Almost all these biological changes are reversible after the removal of the expander.This study is also aimed at reviewing the difficulty in deciding the volume and dimension of the expander for a defect. Basic mathematical formulae and the computer programmes for calculating the dimension of tissue expanders, although available in the literature, are not popular. A user-friendly computer programme based on the easily available Microsoft Excel spread sheet has been introduced. When we feed the area of defect and base dimension of the donor area or tissue expander, this programme calculates the volume and height of the expander. The shape of the expander is decided clinically based on the availability of the donor area and the designing of the future tissue movement. Today, tissue expansion is better understood biologically and mechanically. Clinical judgement remains indispensable in choosing the size and shape of the tissue expander. PMID:22754146

  13. Cell sheet-based tissue engineering for fabricating 3-dimensional heart tissues.

    PubMed

    Shimizu, Tatsuya

    2014-01-01

    In addition to stem cell biology, tissue engineering is an essential research field for regenerative medicine. In contrast to cell injection, bioengineered tissue transplantation minimizes cell loss and has the potential to repair tissue defects. A popular approach is scaffold-based tissue engineering, which utilizes a biodegradable polymer scaffold for seeding cells; however, new techniques of cell sheet-based tissue engineering have been developed. Cell sheets are harvested from temperature-responsive culture dishes by simply lowering the temperature. Monolayer or stacked cell sheets are transplantable directly onto damaged tissues and cell sheet transplantation has already been clinically applied. Cardiac cell sheet stacking produces pulsatile heart tissue; however, lack of vasculature limits the viable tissue thickness to 3 layers. Multistep transplantation of triple-layer cardiac cell sheets cocultured with endothelial cells has been used to form thick vascularized cardiac tissue in vivo. Furthermore, in vitro functional blood vessel formation within 3-dimensional (3D) tissues has been realized by successfully imitating in vivo conditions. Triple-layer cardiac cell sheets containing endothelial cells were layered on vascular beds and the constructs were media-perfused using novel bioreactor systems. Interestingly, cocultured endothelial cells migrate into the vascular beds and form perfusable blood vessels. An in vitro multistep procedure has also enabled the fabrication of thick, vascularized heart tissues. Cell sheet-based tissue engineering has revealed great potential to fabricate 3D cardiac tissues and should contribute to future treatment of severe heart diseases and human tissue model production.

  14. Adipose Tissue-Derived Pericytes for Cartilage Tissue Engineering.

    PubMed

    Zhang, Jinxin; Du, Chunyan; Guo, Weimin; Li, Pan; Liu, Shuyun; Yuan, Zhiguo; Yang, Jianhua; Sun, Xun; Yin, Heyong; Guo, Quanyi; Zhou, Chenfu

    2017-01-01

    Mesenchymal stem cells (MSCs) represent a promising alternative source for cartilage tissue engineering. However, MSC culture is labor-intensive, so these cells cannot be applied immediately to regenerate cartilage for clinical purposes. Risks during the ex vivo expansion of MSCs, such as infection and immunogenicity, can be a bottleneck in their use in clinical tissue engineering. As a novel stem cell source, pericytes are generally considered to be the origin of MSCs. Pericytes do not have to undergo time-consuming ex vivo expansion because they are uncultured cells. Adipose tissue is another optimal stem cell reservoir. Because adipose tissue is well vascularized, a considerable number of pericytes are located around blood vessels in this accessible and dispensable tissue, and autologous pericytes can be applied immediately for cartilage regeneration. Thus, we suggest that adipose tissue-derived pericytes are promising seed cells for cartilage regeneration. Many studies have been performed to develop isolation methods for the adipose tissuederived stromal vascular fraction (AT-SVF) using lipoaspiration and sorting pericytes from AT-SVF. These methods are useful for sorting a large number of viable pericytes for clinical therapy after being combined with automatic isolation using an SVF device and automatic magnetic-activated cell sorting. These tools should help to develop one-step surgery for repairing cartilage damage. However, the use of adipose tissue-derived pericytes as a cell source for cartilage tissue engineering has not drawn sufficient attention and preclinical studies are needed to improve cell purity, to increase sorting efficiency, and to assess safety issues of clinical applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Laser-induced tissue fluorescence in radiofrequency tissue-fusion characterization.

    PubMed

    Su, Lei; Fonseca, Martina B; Arya, Shobhit; Kudo, Hiromi; Goldin, Robert; Hanna, George B; Elson, Daniel S

    2014-01-01

    Heat-induced tissue fusion is an important procedure in modern surgery and can greatly reduce trauma, complications, and mortality during minimally invasive surgical blood vessel anastomosis, but it may also have further benefits if applied to other tissue types such as small and large intestine anastomoses. We present a tissue-fusion characterization technology using laser-induced fluorescence spectroscopy, which provides further insight into tissue constituent variations at the molecular level. In particular, an increase of fluorescence intensity in 450- to 550-nm range for 375- and 405-nm excitation suggests that the collagen cross-linking in fused tissues increased. Our experimental and statistical analyses showed that, by using fluorescence spectral data, good fusion could be differentiated from other cases with an accuracy of more than 95%. This suggests that the fluorescence spectroscopy could be potentially used as a feedback control method in online tissue-fusion monitoring.

  16. The Genomic Signature of Crop-Wild Introgression in Maize

    PubMed Central

    Hufford, Matthew B.; Lubinksy, Pesach; Pyhäjärvi, Tanja; Devengenzo, Michael T.; Ellstrand, Norman C.; Ross-Ibarra, Jeffrey

    2013-01-01

    The evolutionary significance of hybridization and subsequent introgression has long been appreciated, but evaluation of the genome-wide effects of these phenomena has only recently become possible. Crop-wild study systems represent ideal opportunities to examine evolution through hybridization. For example, maize and the conspecific wild teosinte Zea mays ssp. mexicana (hereafter, mexicana) are known to hybridize in the fields of highland Mexico. Despite widespread evidence of gene flow, maize and mexicana maintain distinct morphologies and have done so in sympatry for thousands of years. Neither the genomic extent nor the evolutionary importance of introgression between these taxa is understood. In this study we assessed patterns of genome-wide introgression based on 39,029 single nucleotide polymorphisms genotyped in 189 individuals from nine sympatric maize-mexicana populations and reference allopatric populations. While portions of the maize and mexicana genomes appeared resistant to introgression (notably near known cross-incompatibility and domestication loci), we detected widespread evidence for introgression in both directions of gene flow. Through further characterization of these genomic regions and preliminary growth chamber experiments, we found evidence suggestive of the incorporation of adaptive mexicana alleles into maize during its expansion to the highlands of central Mexico. In contrast, very little evidence was found for adaptive introgression from maize to mexicana. The methods we have applied here can be replicated widely, and such analyses have the potential to greatly inform our understanding of evolution through introgressive hybridization. Crop species, due to their exceptional genomic resources and frequent histories of spread into sympatry with relatives, should be particularly influential in these studies. PMID:23671421

  17. Engineering Complex Tissues

    PubMed Central

    MIKOS, ANTONIOS G.; HERRING, SUSAN W.; OCHAREON, PANNEE; ELISSEEFF, JENNIFER; LU, HELEN H.; KANDEL, RITA; SCHOEN, FREDERICK J.; TONER, MEHMET; MOONEY, DAVID; ATALA, ANTHONY; VAN DYKE, MARK E.; KAPLAN, DAVID; VUNJAK-NOVAKOVIC, GORDANA

    2010-01-01

    This article summarizes the views expressed at the third session of the workshop “Tissue Engineering—The Next Generation,” which was devoted to the engineering of complex tissue structures. Antonios Mikos described the engineering of complex oral and craniofacial tissues as a “guided interplay” between biomaterial scaffolds, growth factors, and local cell populations toward the restoration of the original architecture and function of complex tissues. Susan Herring, reviewing osteogenesis and vasculogenesis, explained that the vascular arrangement precedes and dictates the architecture of the new bone, and proposed that engineering of osseous tissues might benefit from preconstruction of an appropriate vasculature. Jennifer Elisseeff explored the formation of complex tissue structures based on the example of stratified cartilage engineered using stem cells and hydrogels. Helen Lu discussed engineering of tissue interfaces, a problem critical for biological fixation of tendons and ligaments, and the development of a new generation of fixation devices. Rita Kandel discussed the challenges related to the re-creation of the cartilage-bone interface, in the context of tissue engineered joint repair. Frederick Schoen emphasized, in the context of heart valve engineering, the need for including the requirements derived from “adult biology” of tissue remodeling and establishing reliable early predictors of success or failure of tissue engineered implants. Mehmet Toner presented a review of biopreservation techniques and stressed that a new breakthrough in this field may be necessary to meet all the needs of tissue engineering. David Mooney described systems providing temporal and spatial regulation of growth factor availability, which may find utility in virtually all tissue engineering and regeneration applications, including directed in vitro and in vivo vascularization of tissues. Anthony Atala offered a clinician’s perspective for functional tissue

  18. Nanostructured Biomaterials for Tissue Engineered Bone Tissue Reconstruction

    PubMed Central

    Chiara, Gardin; Letizia, Ferroni; Lorenzo, Favero; Edoardo, Stellini; Diego, Stomaci; Stefano, Sivolella; Eriberto, Bressan; Barbara, Zavan

    2012-01-01

    Bone tissue engineering strategies are emerging as attractive alternatives to autografts and allografts in bone tissue reconstruction, in particular thanks to their association with nanotechnologies. Nanostructured biomaterials, indeed, mimic the extracellular matrix (ECM) of the natural bone, creating an artificial microenvironment that promotes cell adhesion, proliferation and differentiation. At the same time, the possibility to easily isolate mesenchymal stem cells (MSCs) from different adult tissues together with their multi-lineage differentiation potential makes them an interesting tool in the field of bone tissue engineering. This review gives an overview of the most promising nanostructured biomaterials, used alone or in combination with MSCs, which could in future be employed as bone substitutes. Recent works indicate that composite scaffolds made of ceramics/metals or ceramics/polymers are undoubtedly more effective than the single counterparts in terms of osteoconductivity, osteogenicity and osteoinductivity. A better understanding of the interactions between MSCs and nanostructured biomaterials will surely contribute to the progress of bone tissue engineering. PMID:22312283

  19. Measuring tissue oxygenation

    NASA Technical Reports Server (NTRS)

    Soyemi, Olusola O. (Inventor); Soller, Babs R. (Inventor); Yang, Ye (Inventor)

    2009-01-01

    Methods and systems for calculating tissue oxygenation, e.g., oxygen saturation, in a target tissue are disclosed. In some embodiments, the methods include: (a) directing incident radiation to a target tissue and determining reflectance spectra of the target tissue by measuring intensities of reflected radiation from the target tissue at a plurality of radiation wavelengths; (b) correcting the measured intensities of the reflectance spectra to reduce contributions thereto from skin and fat layers through which the incident radiation propagates; (c) determining oxygen saturation in the target tissue based on the corrected reflectance spectra; and (d) outputting the determined value of oxygen saturation.

  20. Effects of tissue mechanical properties on susceptibility to histotripsy-induced tissue damage

    NASA Astrophysics Data System (ADS)

    Vlaisavljevich, Eli; Kim, Yohan; Owens, Gabe; Roberts, William; Cain, Charles; Xu, Zhen

    2014-01-01

    Histotripsy is a non-invasive tissue ablation method capable of fractionating tissue by controlling acoustic cavitation. To determine the fractionation susceptibility of various tissues, we investigated histotripsy-induced damage on tissue phantoms and ex vivo tissues with different mechanical strengths. A histotripsy bubble cloud was formed at tissue phantom surfaces using 5-cycle long ultrasound pulses with peak negative pressure of 18 MPa and PRFs of 10, 100, and 1000 Hz. Results showed significantly smaller lesions were generated in tissue phantoms of higher mechanical strength. Histotripsy was also applied to 43 different ex vivo porcine tissues with a wide range of mechanical properties. Gross morphology demonstrated stronger tissues with higher ultimate stress, higher density, and lower water content were more resistant to histotripsy damage in comparison to weaker tissues. Based on these results, a self-limiting vessel-sparing treatment strategy was developed in an attempt to preserve major vessels while fractionating the surrounding target tissue. This strategy was tested in porcine liver in vivo. After treatment, major hepatic blood vessels and bile ducts remained intact within a completely fractionated liver volume. These results identify varying susceptibilities of tissues to histotripsy therapy and provide a rational basis to optimize histotripsy parameters for treatment of specific tissues.

  1. 2'-Deoxyribosyltransferase from Leishmania mexicana, an efficient biocatalyst for one-pot, one-step synthesis of nucleosides from poorly soluble purine bases.

    PubMed

    Crespo, N; Sánchez-Murcia, P A; Gago, F; Cejudo-Sanches, J; Galmes, M A; Fernández-Lucas, Jesús; Mancheño, José Miguel

    2017-10-01

    Processes catalyzed by enzymes offer numerous advantages over chemical methods although in many occasions the stability of the biocatalysts becomes a serious concern. Traditionally, synthesis of nucleosides using poorly water-soluble purine bases, such as guanine, xanthine, or hypoxanthine, requires alkaline pH and/or high temperatures in order to solubilize the substrate. In this work, we demonstrate that the 2'-deoxyribosyltransferase from Leishmania mexicana (LmPDT) exhibits an unusually high activity and stability under alkaline conditions (pH 8-10) across a broad range of temperatures (30-70 °C) and ionic strengths (0-500 mM NaCl). Conversely, analysis of the crystal structure of LmPDT together with comparisons with hexameric, bacterial homologues revealed the importance of the relationships between the oligomeric state and the active site architecture within this family of enzymes. Moreover, molecular dynamics and docking approaches provided structural insights into the substrate-binding mode. Biochemical characterization of LmPDT identifies the enzyme as a type I NDT (PDT), exhibiting excellent activity, with specific activity values 100- and 4000-fold higher than the ones reported for other PDTs. Interestingly, LmPDT remained stable during 36 h at different pH values at 40 °C. In order to explore the potential of LmPDT as an industrial biocatalyst, enzymatic production of several natural and non-natural therapeutic nucleosides, such as vidarabine (ara A), didanosine (ddI), ddG, or 2'-fluoro-2'-deoxyguanosine, was carried out using poorly water-soluble purines. Noteworthy, this is the first time that the enzymatic synthesis of 2'-fluoro-2'-deoxyguanosine, ara G, and ara H by a 2'-deoxyribosyltransferase is reported.

  2. TISSUE-Tregs

    PubMed Central

    Panduro, Marisella; Benoist, Christophe; Mathis, Diane

    2016-01-01

    The immune system is responsible for defending an organism against the myriad of microbial invaders it constantly confronts. It has become increasingly clear that the immune system has a second major function: the maintenance of organismal homeostasis. Foxp3+CD4+ regulatory T cells (Tregs) are important contributors to both of these critical activities, defense being the primary purview of Tregs circulating through lymphoid organs, and homeostasis ensured mainly by their counterparts residing in parenchymal tissues. This review focuses on so-called tissue Tregs. We first survey existing information on the phenotype, function, sustaining factors, and human equivalents of the three best-characterized tissue-Treg populations—those operating in visceral adipose tissue, skeletal muscle, and the colonic lamina propria. We then attempt to distill general principles from this body of work—as concerns the provenance, local adaptation, molecular sustenance, and targets of action of tissue Tregs, in particular. PMID:27168246

  3. Tissue-specific mRNA expression profiling in grape berry tissues

    PubMed Central

    Grimplet, Jerome; Deluc, Laurent G; Tillett, Richard L; Wheatley, Matthew D; Schlauch, Karen A; Cramer, Grant R; Cushman, John C

    2007-01-01

    Background Berries of grape (Vitis vinifera) contain three major tissue types (skin, pulp and seed) all of which contribute to the aroma, color, and flavor characters of wine. The pericarp, which is composed of the exocarp (skin) and mesocarp (pulp), not only functions to protect and feed the developing seed, but also to assist in the dispersal of the mature seed by avian and mammalian vectors. The skin provides volatile and nonvolatile aroma and color compounds, the pulp contributes organic acids and sugars, and the seeds provide condensed tannins, all of which are important to the formation of organoleptic characteristics of wine. In order to understand the transcriptional network responsible for controlling tissue-specific mRNA expression patterns, mRNA expression profiling was conducted on each tissue of mature berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0. In order to monitor the influence of water-deficit stress on tissue-specific expression patterns, mRNA expression profiles were also compared from mature berries harvested from vines subjected to well-watered or water-deficit conditions. Results Overall, berry tissues were found to express approximately 76% of genes represented on the Vitis microarray. Approximately 60% of these genes exhibited significant differential expression in one or more of the three major tissue types with more than 28% of genes showing pronounced (2-fold or greater) differences in mRNA expression. The largest difference in tissue-specific expression was observed between the seed and pulp/skin. Exocarp tissue, which is involved in pathogen defense and pigment production, showed higher mRNA abundance relative to other berry tissues for genes involved with flavonoid biosynthesis, pathogen resistance, and cell wall modification. Mesocarp tissue, which is considered a nutritive tissue, exhibited a higher mRNA abundance of genes involved in cell wall function and

  4. Tissue mimicking simulations for temporal enhanced ultrasound-based tissue typing

    NASA Astrophysics Data System (ADS)

    Bayat, Sharareh; Imani, Farhad; Gerardo, Carlos D.; Nir, Guy; Azizi, Shekoofeh; Yan, Pingkun; Tahmasebi, Amir; Wilson, Storey; Iczkowski, Kenneth A.; Lucia, M. Scott; Goldenberg, Larry; Salcudean, Septimiu E.; Mousavi, Parvin; Abolmaesumi, Purang

    2017-03-01

    Temporal enhanced ultrasound (TeUS) is an imaging approach where a sequence of temporal ultrasound data is acquired and analyzed for tissue typing. Previously, in a series of in vivo and ex vivo studies we have demonstrated that, this approach is effective for detecting prostate and breast cancers. Evidences derived from our experiments suggest that both ultrasound-signal related factors such as induced heat and tissue-related factors such as the distribution and micro-vibration of scatterers lead to tissue typing information in TeUS. In this work, we simulate mechanical micro-vibrations of scatterers in tissue-mimicking phantoms that have various scatterer densities reflecting benign and cancerous tissue structures. Finite element modeling (FEM) is used for this purpose where the vertexes are scatterers representing cell nuclei. The initial positions of scatterers are determined by the distribution of nuclei segmented from actual digital histology scans of prostate cancer patients. Subsequently, we generate ultrasound images of the simulated tissue structure using the Field II package resulting in a temporal enhanced ultrasound. We demonstrate that the micro-vibrations of scatterers are captured by temporal ultrasound data and this information can be exploited for tissue typing.

  5. Monitoring of tissue optical properties during thermal coagulation of ex vivo tissues.

    PubMed

    Nagarajan, Vivek Krishna; Yu, Bing

    2016-09-01

    Real-time monitoring of tissue status during thermal ablation of tumors is critical to ensure complete destruction of tumor mass, while avoiding tissue charring and excessive damage to normal tissues. Currently, magnetic resonance thermometry (MRT), along with magnetic resonance imaging (MRI), is the most commonly used technique for monitoring and assessing thermal ablation process in soft tissues. MRT/MRI is very expensive, bulky, and often subject to motion artifacts. On the other hand, light propagation within tissue is sensitive to changes in tissue microstructure and physiology which could be used to directly quantify the extent of tissue damage. Furthermore, optical monitoring can be a portable, and cost-effective alternative for monitoring a thermal ablation process. The main objective of this study, is to establish a correlation between changes in tissue optical properties and the status of tissue coagulation/damage during heating of ex vivo tissues. A portable diffuse reflectance spectroscopy system and a side-firing fiber-optic probe were developed to study the absorption (μa (λ)), and reduced scattering coefficients (μ's (λ)) of native and coagulated ex vivo porcine, and chicken breast tissues. In the first experiment, both porcine and chicken breast tissues were heated at discrete temperature points between 24 and 140°C for 2 minutes. Diffuse reflectance spectra (430-630 nm) of native and coagulated tissues were recorded prior to, and post heating. In a second experiment, porcine tissue samples were heated at 70°C and diffuse reflectance spectra were recorded continuously during heating. The μa (λ) and μ's (λ) of the tissues were extracted from the measured diffuse reflectance spectra using an inverse Monte-Carlo model of diffuse reflectance. Tissue heating was stopped when the wavelength-averaged scattering plateaued. The wavelength-averaged optical properties, <μ's (λ)> and <μa (λ)>, for native porcine tissues (n = 66) at room

  6. Revitalization of biostatic tissue allografts: new perspectives in tissue transplantology.

    PubMed

    Olender, E; Uhrynowska-Tyszkiewicz, I; Kaminski, A

    2011-10-01

    Biostatic (nonvital) tissue allografts have been used for temporary replacement as well as to trigger, stimulate, and ensure space for the regeneration of a recipient's own tissues. Examples of biostatic allografts routinely used in clinic are bone, tendons, skin, and amniotic membrane. A characteristic feature of biostatic allografts is the lack of living cells. In the recipient's body, biostatic allografts function as scaffolds as well as sources of growth, differentiation, and chemotactic factors. After implantation, recipient cells migrate onto the graft, colonize it, and initiate synthesis of extracellular matrix, thereby regenerating the structure of the lost or damaged tissue. The allograft gradually degrades before being remodeled and substituted by the recipient's new tissue. However, this process is not always effective due to a lack of reaction by recipient cells. New concepts have proposed seeding recipient cells onto the allograft prior to implantation, that is, biostatic allografts that are revitalized ex vivo. The aim of this presentation was to review scientific publications to provide essential information on the revitalization of biostatic allografts, as a rising trend in tissue transplantology. Biostatic allografts show the following advantages: they are human-derived, nontoxic, biocompatible, and, in some cases, already display the desired shape. The process of introducing cells into the biostatic graft is described as "revitalization." The cells used in the process are recipient autologous elements that are either differentiated or progenitor elements. Cells are seeded onto the graft directly after retrieval or after propagation in culture. Revitalized biostatic allografts can be used orthotopically for the regeneration of the same tissue they have been retrieved from or heterotopically wherein the graft retrieved from a different tissue is used as a carrier for cells typical for the tissue to be regenerated. Examples of orthotopic use include

  7. Ontology-based, Tissue MicroArray oriented, image centered tissue bank

    PubMed Central

    Viti, Federica; Merelli, Ivan; Caprera, Andrea; Lazzari, Barbara; Stella, Alessandra; Milanesi, Luciano

    2008-01-01

    Background Tissue MicroArray technique is becoming increasingly important in pathology for the validation of experimental data from transcriptomic analysis. This approach produces many images which need to be properly managed, if possible with an infrastructure able to support tissue sharing between institutes. Moreover, the available frameworks oriented to Tissue MicroArray provide good storage for clinical patient, sample treatment and block construction information, but their utility is limited by the lack of data integration with biomolecular information. Results In this work we propose a Tissue MicroArray web oriented system to support researchers in managing bio-samples and, through the use of ontologies, enables tissue sharing aimed at the design of Tissue MicroArray experiments and results evaluation. Indeed, our system provides ontological description both for pre-analysis tissue images and for post-process analysis image results, which is crucial for information exchange. Moreover, working on well-defined terms it is then possible to query web resources for literature articles to integrate both pathology and bioinformatics data. Conclusions Using this system, users associate an ontology-based description to each image uploaded into the database and also integrate results with the ontological description of biosequences identified in every tissue. Moreover, it is possible to integrate the ontological description provided by the user with a full compliant gene ontology definition, enabling statistical studies about correlation between the analyzed pathology and the most commonly related biological processes. PMID:18460177

  8. Multiplexed lasing in tissues

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Cheng; Chen, Qiushu; Fan, Xudong

    2017-02-01

    Biolasers are an emerging technology for next generation biochemical detection and clinical applications. Progress has recently been made to achieve lasing from biomolecules and single living cells. Tissues, which consist of cells embedded in extracellular matrix, mimic more closely the actual complex biological environment in a living body and therefore are of more practical significance. Here, we developed a highly versatile tissue laser platform, in which tissues stained with fluorophores are sandwiched in a high-Q Fabry-Pérot microcavity. Distinct lasing emissions from muscle and adipose tissues stained respectively with fluorescein isothiocyanate (FITC) and boron-dipyrromethene (BODIPY), and hybrid muscle/adipose tissue with dual-staining were achieved with a threshold of only 10 μJ/mm2. Additionally, we investigated how tissue structure/geometry, tissue thickness, and staining dye concentration affect the tissue laser. It is further found that, despite large fluorescence spectral overlap between FITC and BODIPY in tissues, their lasing emissions could be clearly distinguished and controlled due to their narrow lasing bands and different lasing thresholds, thus enabling highly multiplexed detection. Our tissue laser platform can be broadly applicable to various types of tissues/diseases. It provides a new tool for a wide range of biological and biomedical applications, such as diagnostics/screening of tissues and identification/monitoring of biological transformations in tissue engineering.

  9. Development of tissue bank.

    PubMed

    Narayan, R P

    2012-05-01

    The history of tissue banking is as old as the use of skin grafting for resurfacing of burn wounds. Beneficial effects of tissue grafts led to wide spread use of auto and allograft for management of varied clinical conditions like skin wounds, bone defects following trauma or tumor ablation. Availability of adequate amount of tissues at the time of requirement was the biggest challenge that forced clinicians to find out techniques to preserve the living tissue for prolonged period of time for later use and thus the foundation of tissue banking was started in early twentieth century. Harvesting, processing, storage and transportation of human tissues for clinical use is the major activity of tissue banks. Low temperature storage of processed tissue is the best preservation technique at present. Tissue banking organization is a very complex system and needs high technical expertise and skilled personnel for proper functioning in a dedicated facility. A small lapse/deviation from the established protocol leads to loss of precious tissues and or harm to recipients as well as the risk of transmission of deadly diseases and tumors. Strict tissue transplant acts and stringent regulations help to streamline the whole process of tissue banking safe for recipients and to community as whole.

  10. Tissue oxygen measurement system

    NASA Technical Reports Server (NTRS)

    Soller, Babs R. (Inventor)

    2004-01-01

    A device and method in accordance with the invention for determining the oxygen partial pressure (PO.sub.2) of a tissue by irradiating the tissue with optical radiation such that the light is emitted from the tissue, and by collecting the reflected or transmitted light from the tissue to form an optical spectrum. A spectral processor determines the PO.sub.2 level in tissue by processing this spectrum with a previously-constructed spectral calibration model. The tissue may, for example, be disposed underneath a covering tissue, such as skin, of a patient, and the tissue illuminated and light collected through the skin. Alternatively, direct tissue illumination and collection may be effected with a hand-held or endoscopic probe. A preferred system also determines pH from the same spectrum, and the processor may determine critical conditions and issue warnings based on parameter values.

  11. Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces.

    PubMed

    Boys, Alexander J; McCorry, Mary Clare; Rodeo, Scott; Bonassar, Lawrence J; Estroff, Lara A

    2017-09-01

    Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors.

  12. Ethical tissue: a not-for-profit model for human tissue supply.

    PubMed

    Adams, Kevin; Martin, Sandie

    2011-02-01

    Following legislative changes in 2004 and the establishment of the Human Tissue Authority, access to human tissues for biomedical research became a more onerous and tightly regulated process. Ethical Tissue was established to meet the growing demand for human tissues, using a process that provided ease of access by researchers whilst maintaining the highest ethical and regulatory standards. The establishment of a licensed research tissue bank entailed several key criteria covering ethical, legal, financial and logistical issues being met. A wide range of stakeholders, including the HTA, University of Bradford, flagged LREC, hospital trusts and clinical groups were also integral to the process.

  13. Mg/Ca-temperature calibration for costate Bulimina species (B. costata, B. inflata, B. mexicana): A paleothermometer for hypoxic environments

    NASA Astrophysics Data System (ADS)

    Grunert, Patrick; Rosenthal, Yair; Jorissen, Frans; Holbourn, Ann; Zhou, Xiaoli; Piller, Werner E.

    2018-01-01

    Costate species of Bulimina are cosmopolitan, infaunal benthic foraminifers which are common in the fossil record since the Paleogene. In the present study, we evaluate the temperature dependency of Mg/Ca ratios in Bulimina inflata, B. mexicana and B. costata from an extensive set of core-top samples from the Atlantic, Pacific and Indian Oceans. The results show no significant offset in Mg/Ca values between costate morphospecies when present in the same sample. The apparent lack of significant inter-specific/inter-morphotype differences amongst the analyzed costate buliminids allows for the combined use of their data-sets for our core-top calibration. Over a bottom-water temperature (BWT) range of 3-13 °C, the Bulimina species show a sensitivity of ∼0.12 mmol/mol/°C which is comparable to that of epifaunal Cibicidoides species and higher than that of the shallow infaunal Uvigerina spp., the most commonly used taxon in Mg/Ca-based palaeotemperature reconstruction. The reliability and accuracy of the new Mg/Ca-temperature calibration is corroborated in the fossil record by a case study in the Timor Sea which demonstrates the presence of southern-sourced waters at intermediate depths for the past 26,000 years. Costate species of Bulimina might thus provide a valuable alternative for BWT reconstruction in mesotrophic to eutrophic settings where many of the commonly used (more oligotrophic) species are rare or absent, and be particularly useful in hypoxic settings such as permanent upwelling zones where costate buliminids often dominate foraminiferal assemblages. The evaluation further reveals a mean positive offset of ∼0.2 mmol/mol of the Atlantic data-set over the Indo-Pacific data-set which contributes to the scatter in our calibration. Although an explanation for this offset is not straightforward and further research is necessary, we hypothesize that different levels of export production and carbonate ion concentrations in pore waters are likely reasons.

  14. Engineering Orthopedic Tissue Interfaces

    PubMed Central

    Yang, Peter J.

    2009-01-01

    While a wide variety of approaches to engineering orthopedic tissues have been proposed, less attention has been paid to the interfaces, the specialized areas that connect two tissues of different biochemical and mechanical properties. The interface tissue plays an important role in transitioning mechanical load between disparate tissues. Thus, the relatively new field of interfacial tissue engineering presents new challenges—to not only consider the regeneration of individual orthopedic tissues, but also to design the biochemical and cellular composition of the linking tissue. Approaches to interfacial tissue engineering may be distinguished based on if the goal is to recreate the interface itself, or generate an entire integrated tissue unit (such as an osteochondral plug). As background for future efforts in engineering orthopedic interfaces, a brief review of the biology and mechanics of each interface (cartilage–bone, ligament–bone, meniscus–bone, and muscle–tendon) is presented, followed by an overview of the state-of-the-art in engineering each tissue, including advances and challenges specific to regenerating the interfaces. PMID:19231983

  15. Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces

    PubMed Central

    Boys, Alexander J.; McCorry, Mary Clare; Rodeo, Scott; Bonassar, Lawrence J.; Estroff, Lara A.

    2017-01-01

    Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors. PMID:29333332

  16. Next-gen tissue: preservation of molecular and morphological fidelity in prostate tissue.

    PubMed

    Gillard, Marc; Tom, Westin R; Antic, Tatjana; Paner, Gladell P; Lingen, Mark W; VanderWeele, David J

    2015-01-01

    Personalization of cancer therapy requires molecular evaluation of tumor tissue. Traditional tissue preservation involves formalin fixation, which degrades the quality of nucleic acids. Strategies to bank frozen prostate tissue can interfere with diagnostic studies. PAXgene is an alternative fixative that preserves protein and nucleic acid quality. Portions of prostates obtained from autopsy specimens were fixed in either 10% buffered formalin or PAXgene, and processed and embedded in paraffin. Additional sections were immediately embedded in OCT and frozen. DNA and RNA were extracted from the formalin-fixed, PAXgene-fixed, or frozen tissue. Quantitative PCR was used to compare the quality of DNA and RNA obtained from all three tissue types. In addition, 5 μm sections were cut from specimens devoid of cancer and from prostate cancer specimens obtained at prostatectomy and fixed in PAXgene. They were either stained with hematoxylin and eosin or interrogated with antibodies for p63, PSA and p504. Comparable tissue morphology was observed in both the formalin and PAXgene-fixed specimens. Similarly, immunohistochemical expression of the P63, PSA and P504 proteins was comparable between formalin and PAXgene fixation techniques. DNA from the PAXgene-fixed tissue was of similar quality to that from frozen tissue. RNA was also amplified with up to 8-fold greater efficiency in the PAXgene fixed tissue compared to the formalin-fixed tissue. Prostate specimens fixed with PAXgene have preserved histologic morphology, stain appropriately, and have preserved quality of nucleic acids. PAXgene fixation facilitates the use of prostatectomy tissue for molecular biology techniques such as next-generation sequencing.

  17. Brown adipose tissue

    PubMed Central

    Townsend, Kristy; Tseng, Yu-Hua

    2012-01-01

    Obesity is currently a global pandemic, and is associated with increased mortality and co-morbidities including many metabolic diseases. Obesity is characterized by an increase in adipose mass due to increased energy intake, decreased energy expenditure, or both. While white adipose tissue is specialized for energy storage, brown adipose tissue has a high concentration of mitochondria and uniquely expresses uncoupling protein 1, enabling it to be specialized for energy expenditure and thermogenesis. Although brown fat was once considered only necessary in babies, recent morphological and imaging studies have provided evidence that, contrary to prior belief, this tissue is present and active in adult humans. In recent years, the topic of brown adipose tissue has been reinvigorated with many new studies regarding brown adipose tissue differentiation, function and therapeutic promise. This review summarizes the recent advances, discusses the emerging questions and offers perspective on the potential therapeutic applications targeting this tissue. PMID:23700507

  18. Tissue repair

    PubMed Central

    2010-01-01

    As living beings that encounter every kind of traumatic event from paper cut to myocardial infarction, we must possess ways to heal damaged tissues. While some animals are able to regrow complete body parts following injury (such as the earthworm who grows a new head following bisection), humans are sadly incapable of such feats. Our means of recovery following tissue damage consists largely of repair rather than pure regeneration. Thousands of times in our lives, a meticulously scripted but unseen wound healing drama plays, with cells serving as actors, extracellular matrix as the setting and growth factors as the means of communication. This article briefly reviews the cells involved in tissue repair, their signaling and proliferation mechanisms and the function of the extracellular matrix, then presents the actors and script for the three acts of the tissue repair drama. PMID:21220961

  19. Dynamic impact indentation of hydrated biological tissues and tissue surrogate gels

    NASA Astrophysics Data System (ADS)

    Ilke Kalcioglu, Z.; Qu, Meng; Strawhecker, Kenneth E.; Shazly, Tarek; Edelman, Elazer; VanLandingham, Mark R.; Smith, James F.; Van Vliet, Krystyn J.

    2011-03-01

    For both materials engineering research and applied biomedicine, a growing need exists to quantify mechanical behaviour of tissues under defined hydration and loading conditions. In particular, characterisation under dynamic contact-loading conditions can enable quantitative predictions of deformation due to high rate 'impact' events typical of industrial accidents and ballistic insults. The impact indentation responses were examined of both hydrated tissues and candidate tissue surrogate materials. The goals of this work were to determine the mechanical response of fully hydrated soft tissues under defined dynamic loading conditions, and to identify design principles by which synthetic, air-stable polymers could mimic those responses. Soft tissues from two organs (liver and heart), a commercially available tissue surrogate gel (Perma-Gel™) and three styrenic block copolymer gels were investigated. Impact indentation enabled quantification of resistance to penetration and energy dissipative constants under the rates and energy densities of interest for tissue surrogate applications. These analyses indicated that the energy dissipation capacity under dynamic impact increased with increasing diblock concentration in the styrenic gels. Under the impact rates employed (2 mm/s to 20 mm/s, corresponding to approximate strain energy densities from 0.4 kJ/m3 to 20 kJ/m3), the energy dissipation capacities of fully hydrated soft tissues were ultimately well matched by a 50/50 triblock/diblock composition that is stable in ambient environments. More generally, the methodologies detailed here facilitate further optimisation of impact energy dissipation capacity of polymer-based tissue surrogate materials, either in air or in fluids.

  20. Raman spectroscopic evidence of tissue restructuring in heat-induced tissue fusion.

    PubMed

    Su, Lei; Cloyd, Kristy L; Arya, Shobhit; Hedegaard, Martin A B; Steele, Joseph A M; Elson, Daniel S; Stevens, Molly M; Hanna, George B

    2014-09-01

    Heat-induced tissue fusion via radio-frequency (RF) energy has gained wide acceptance clinically and here we present the first optical-Raman-spectroscopy study on tissue fusion samples in vitro. This study provides direct insights into tissue constituent and structural changes on the molecular level, exposing spectroscopic evidence for the loss of distinct collagen fibre rich tissue layers as well as the denaturing and restructuring of collagen crosslinks post RF fusion. These findings open the door for more advanced optical feedback-control methods and characterization during heat-induced tissue fusion, which will lead to new clinical applications of this promising technology. Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A study of a tissue equivalent gelatine based tissue substitute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spence, J.L.

    1992-11-01

    A study of several tissue substitutes for use as volumetric dosimeters was performed. The tissue substitutes studied included tissue substitutes from previous studies and from ICRU 44. The substitutes were evaluated for an overall match to Reference Man which was used as a basis for this study. The evaluation was based on the electron stopping power, the mass attenuation coefficient, the electron density, and the specific gravity. The tissue substitute chosen also had to be capable of changing from a liquid into a solid form to maintain an even distribution of thermoluminesent dosimetry (TLD) powder and then back to amore » liquid for recovery of the TLD powder without adversely effecting the TLD powder. The gelatine mixture provided the closest match to the data from Reference Man tissue. The gelatine mixture was put through a series of test to determine it's usefulness as a reliable tissue substitute. The TLD powder was cast in the gelatine mixture and recovered to determine if the TLD powder was adversely effected. The distribution of the TLD powder after being cast into the gelatin mixture was tested in insure an even was maintained.« less

  2. A study of a tissue equivalent gelatine based tissue substitute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spence, Jody L.

    1992-11-01

    A study of several tissue substitutes for use as volumetric dosimeters was performed. The tissue substitutes studied included tissue substitutes from previous studies and from ICRU 44. The substitutes were evaluated for an overall match to Reference Man which was used as a basis for this study. The evaluation was based on the electron stopping power, the mass attenuation coefficient, the electron density, and the specific gravity. The tissue substitute chosen also had to be capable of changing from a liquid into a solid form to maintain an even distribution of thermoluminesent dosimetry (TLD) powder and then back to amore » liquid for recovery of the TLD powder without adversely effecting the TLD powder. The gelatine mixture provided the closest match to the data from Reference Man tissue. The gelatine mixture was put through a series of test to determine it`s usefulness as a reliable tissue substitute. The TLD powder was cast in the gelatine mixture and recovered to determine if the TLD powder was adversely effected. The distribution of the TLD powder after being cast into the gelatin mixture was tested in insure an even was maintained.« less

  3. Alternative Polyadenylation Directs Tissue-Specific miRNA Targeting in Caenorhabditis elegans Somatic Tissues

    PubMed Central

    Blazie, Stephen M.; Geissel, Heather C.; Wilky, Henry; Joshi, Rajan; Newbern, Jason; Mangone, Marco

    2017-01-01

    mRNA expression dynamics promote and maintain the identity of somatic tissues in living organisms; however, their impact in post-transcriptional gene regulation in these processes is not fully understood. Here, we applied the PAT-Seq approach to systematically isolate, sequence, and map tissue-specific mRNA from five highly studied Caenorhabditis elegans somatic tissues: GABAergic and NMDA neurons, arcade and intestinal valve cells, seam cells, and hypodermal tissues, and studied their mRNA expression dynamics. The integration of these datasets with previously profiled transcriptomes of intestine, pharynx, and body muscle tissues, precisely assigns tissue-specific expression dynamics for 60% of all annotated C. elegans protein-coding genes, providing an important resource for the scientific community. The mapping of 15,956 unique high-quality tissue-specific polyA sites in all eight somatic tissues reveals extensive tissue-specific 3′untranslated region (3′UTR) isoform switching through alternative polyadenylation (APA) . Almost all ubiquitously transcribed genes use APA and harbor miRNA targets in their 3′UTRs, which are commonly lost in a tissue-specific manner, suggesting widespread usage of post-transcriptional gene regulation modulated through APA to fine tune tissue-specific protein expression. Within this pool, the human disease gene C. elegans orthologs rack-1 and tct-1 use APA to switch to shorter 3′UTR isoforms in order to evade miRNA regulation in the body muscle tissue, resulting in increased protein expression needed for proper body muscle function. Our results highlight a major positive regulatory role for APA, allowing genes to counteract miRNA regulation on a tissue-specific basis. PMID:28348061

  4. Alternative Polyadenylation Directs Tissue-Specific miRNA Targeting in Caenorhabditis elegans Somatic Tissues.

    PubMed

    Blazie, Stephen M; Geissel, Heather C; Wilky, Henry; Joshi, Rajan; Newbern, Jason; Mangone, Marco

    2017-06-01

    mRNA expression dynamics promote and maintain the identity of somatic tissues in living organisms; however, their impact in post-transcriptional gene regulation in these processes is not fully understood. Here, we applied the PAT-Seq approach to systematically isolate, sequence, and map tissue-specific mRNA from five highly studied Caenorhabditis elegans somatic tissues: GABAergic and NMDA neurons, arcade and intestinal valve cells, seam cells, and hypodermal tissues, and studied their mRNA expression dynamics. The integration of these datasets with previously profiled transcriptomes of intestine, pharynx, and body muscle tissues, precisely assigns tissue-specific expression dynamics for 60% of all annotated C. elegans protein-coding genes, providing an important resource for the scientific community. The mapping of 15,956 unique high-quality tissue-specific polyA sites in all eight somatic tissues reveals extensive tissue-specific 3'untranslated region (3'UTR) isoform switching through alternative polyadenylation (APA) . Almost all ubiquitously transcribed genes use APA and harbor miRNA targets in their 3'UTRs, which are commonly lost in a tissue-specific manner, suggesting widespread usage of post-transcriptional gene regulation modulated through APA to fine tune tissue-specific protein expression. Within this pool, the human disease gene C. elegans orthologs rack-1 and tct-1 use APA to switch to shorter 3'UTR isoforms in order to evade miRNA regulation in the body muscle tissue, resulting in increased protein expression needed for proper body muscle function. Our results highlight a major positive regulatory role for APA, allowing genes to counteract miRNA regulation on a tissue-specific basis. Copyright © 2017 Blazie et al.

  5. Tissue banking in australia.

    PubMed

    Ireland, Lynette; McKelvie, Helen

    2003-01-01

    The legal structure for the regulation of tissue banking has existed for many years. In Australia, the donation of human tissue is regulated by legislation in each of the eight States and Territories. These substantially uniform Acts were passed in the late 1970's and early 1980's, based on model legislation and underpinned by the concept of consensual giving. However, it was not until the early 1990's that tissue banking came under the notice of regulatory authorities. Since then the Australian Government has moved quickly to oversee the tissue banking sector in Australia. Banked human tissue has been deemed to be a therapeutic good under the Therapeutic Goods Act 1989, and tissue banks are required to be licensed by the Therapeutic Goods Administration and are audited for compliance with the Code of Good Manufacturing Practice- Human Blood and Tissues. In addition, tissue banks must comply with a myriad of other standards, guidelines and recommendations.

  6. Tissue engineering for clinical applications.

    PubMed

    Bhatia, Sujata K

    2010-12-01

    Tissue engineering is increasingly being recognized as a beneficial means for lessening the global disease burden. One strategy of tissue engineering is to replace lost tissues or organs with polymeric scaffolds that contain specialized populations of living cells, with the goal of regenerating tissues to restore normal function. Typical constructs for tissue engineering employ biocompatible and degradable polymers, along with organ-specific and tissue-specific cells. Once implanted, the construct guides the growth and development of new tissues; the polymer scaffold degrades away to be replaced by healthy functioning tissue. The ideal biomaterial for tissue engineering not only defends against disease and supports weakened tissues or organs, it also provides the elements required for healing and repair, stimulates the body's intrinsic immunological and regenerative capacities, and seamlessly interacts with the living body. Tissue engineering has been investigated for virtually every organ system in the human body. This review describes the potential of tissue engineering to alleviate disease, as well as the latest advances in tissue regeneration. The discussion focuses on three specific clinical applications of tissue engineering: cardiac tissue regeneration for treatment of heart failure; nerve regeneration for treatment of stroke; and lung regeneration for treatment of chronic obstructive pulmonary disease. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A new endemic species of Willowsia from Florida (USA) and descriptive notes on all New World Willowsia (Collembola: Entomobryidae).

    PubMed

    Katz, Aron D

    2017-11-20

    Four species of Willowsia have been reported from the Americas (W. buski, W. jacobsoni, W. mexicana, and W. nigromaculata), and to date, W. mexicana is the only member of the genus endemic to the New World. Here, Willowsia pyrrhopygia sp. nov. from Florida is described. Like W. mexicana, this new species has a native New World distribution and uninterrupted rib scale type, but can be separated by color pattern and chaetotaxy. Dorsal head chaetotaxy and other descriptive notes are provided to compliment to descriptions for W. buski, W. jacobsoni, W. mexicana, and W. nigromaculata. Comparative morphological analysis also reveals two unique character states among Entomobryinae-the outer maxillary lobe with two (not three) sublobal hairs and the absence of labial triangle seta r-shared only by endemic New World Willowsia and Americabrya, providing preliminary support for their independent evolution from a common New World ancestor.

  8. Seroprevalence of human T lymphtropic virus (HTLV) among tissue donors in Iranian tissue bank.

    PubMed

    Arjmand, Babak; Aghayan, Seyed Hamidreza; Goodarzi, Parisa; Farzanehkhah, Mohammad; Mortazavi, Seyed Mohamadjavad; Niknam, Mohamad Hossein; Jafarian, Ali; Arjmand, Farzin; Jebelly far, Soheyla

    2009-08-01

    Iranian Tissue Bank prepares a wide range of human tissue homografts such as; heart valve, bone, skin, amniotic membrane and other tissues for different clinical applications. The purpose of this study was to determine the seroprevalence of HTLV in tissue donors. About 1,548 tissue donors were studied during a 5-years period by ELISA assays. HTLV(1,2)-antibodies were tested for all of donors with other tests upon American Association of Tissue Banks (AATB) standards. About 25 (1.61%) out of 1,548 tissue donors were HTLV positive that 17 donors were male and 8 were female (female/male ratio was approximately 47%). Regarding to the prevalence of HTLV among tissue donors and importance of cell and tissue safety and quality assurance, we recommend that all blood, cell and tissue banks should be involved both routine serological methods and other complementary tests such as polymerase chain reaction (PCR) for diagnosis of HTLV.

  9. Breast tissue engineering.

    PubMed

    Patrick, Charles W

    2004-01-01

    Tissue engineering has the potential to redefine rehabilitation for the breast cancer patient by providing a translatable strategy that restores the postmastectomy breast mound while concomitantly obviating limitations realized with contemporary reconstructive surgery procedures. The engineering design goal is to provide a sufficient volume of viable fat tissue based on a patient's own cells such that deficits in breast volume can be abrogated. To be sure, adipose tissue engineering is in its infancy, but tremendous strides have been made. Numerous studies attest to the feasibility of adipose tissue engineering. The field is now poised to challenge barriers to clinical translation that are germane to most tissue engineering applications, namely scale-up, large animal model development, and vascularization. The innovative and rapid progress of adipose engineering to date, as well as opportunities for its future growth, is presented.

  10. 3D Printer Generated Tissue iMolds for Cleared Tissue Using Single- and Multi-Photon Microscopy for Deep Tissue Evaluation.

    PubMed

    Miller, Sean J; Rothstein, Jeffrey D

    2017-01-01

    Pathological analyses and methodology has recently undergone a dramatic revolution. With the creation of tissue clearing methods such as CLARITY and CUBIC, groups can now achieve complete transparency in tissue samples in nano-porous hydrogels. Cleared tissue is then imagined in a semi-aqueous medium that matches the refractive index of the objective being used. However, one major challenge is the ability to control tissue movement during imaging and to relocate precise locations post sequential clearing and re-staining. Using 3D printers, we designed tissue molds that fit precisely around the specimen being imaged. First, images are taken of the specimen, followed by importing and design of a structural mold, then printed with affordable plastics by a 3D printer. With our novel design, we have innovated tissue molds called innovative molds (iMolds) that can be generated in any laboratory and are customized for any organ, tissue, or bone matter being imaged. Furthermore, the inexpensive and reusable tissue molds are made compatible for any microscope such as single and multi-photon confocal with varying stage dimensions. Excitingly, iMolds can also be generated to hold multiple organs in one mold, making reconstruction and imaging much easier. Taken together, with iMolds it is now possible to image cleared tissue in clearing medium while limiting movement and being able to relocate precise anatomical and cellular locations on sequential imaging events in any basic laboratory. This system provides great potential for screening widespread effects of therapeutics and disease across entire organ systems.

  11. [Morphology of collagen matrices for tissue engineering (biocompatibility, biodegradation, tissue response)].

    PubMed

    Shekhter, A B; Guller, A E; Istranov, L P; Istranova, E V; Butnaru, D V; Vinarov, A Z; Zakharkina, O L; Kurkov, A V; Kantimerov, D F; Antonov, E N; Marisov, L V; Glybochko, P V

    2015-01-01

    to perform a comparative morphological study of biocompatibility, biodegradation, and tissue response to implantation of collagen matrices (scaffolds) for tissue engineering in urology and other areas of medicine. Nine matrix types, such as porous materials reconstructed from collagen solution; a collagen sponge-vicryl mesh composite; decellularized and freeze-dried bovine, equine, and fish dermis; small intestinal submucosa, decellularized bovine dura mater; and decellularized human femoral artery, were implanted subcutaneously in 225 rats. The tissues at the implantation site were investigated for a period of 5 to 90 days. Classical histology and nonlinear optical microscopy (NLOM) were applied. The investigations showed no rejection of all the collagen materials. The period of matrix bioresorption varied from 10 days for collagen sponges to 2 months for decellularized and freeze-dried vessels and vicryl meshes. Collagen was prone to macrophage resorption and enzymatic lysis, being replaced by granulation tissue and then fibrous tissue, followed by its involution. NLOM allowed the investigators to study the number, density, interposition, and spatial organization of collagen structures in the matrices and adjacent tissues, and their change over time during implantation. The performed investigation could recommend three matrices: hybrid collagen/vicryl composite; decellularized bovine dermis; and decellularized porcine small intestinal submucosa, which are most adequate for tissue engineering in urology. These and other collagen matrices may be used in different areas of regenerative medicine.

  12. SURROGATE TISSUE ANALYSIS: MONITORING TOXICANT EXPOSURE AND HEALTH STATUS OF INACCESSIBLE TISSUES THROUGH THE ANALYSIS OF ACCESSIBLE TISSUES AND CELLS

    EPA Science Inventory

    Surrogate Tissue Analysis: Monitoring Toxicant Exposure And Health Status Of Inaccessible Tissues Through The Analysis Of Accessible Tissues And Cells*
    John C. Rockett1, Michael E. Burczynski 2, Albert J. Fornace, Jr.3, Paul.C. Herrmann4, Stephen A. Krawetz5, and David J. Dix1...

  13. Macro- to microscale strain transfer in fibrous tissues is heterogeneous and tissue-specific.

    PubMed

    Han, Woojin M; Heo, Su-Jin; Driscoll, Tristan P; Smith, Lachlan J; Mauck, Robert L; Elliott, Dawn M

    2013-08-06

    Mechanical deformation applied at the joint or tissue level is transmitted through the macroscale extracellular matrix to the microscale local matrix, where it is transduced to cells within these tissues and modulates tissue growth, maintenance, and repair. The objective of this study was to investigate how applied tissue strain is transferred through the local matrix to the cell and nucleus in meniscus, tendon, and the annulus fibrosus, as well as in stem cell-seeded scaffolds engineered to reproduce the organized microstructure of these native tissues. To carry out this study, we developed a custom confocal microscope-mounted tensile testing device and simultaneously monitored strain across multiple length scales. Results showed that mean strain was heterogeneous and significantly attenuated, but coordinated, at the local matrix level in native tissues (35-70% strain attenuation). Conversely, freshly seeded scaffolds exhibited very direct and uniform strain transfer from the tissue to the local matrix level (15-25% strain attenuation). In addition, strain transfer from local matrix to cells and nuclei was dependent on fiber orientation and tissue type. Histological analysis suggested that different domains exist within these fibrous tissues, with most of the tissue being fibrous, characterized by an aligned collagen structure and elongated cells, and other regions being proteoglycan (PG)-rich, characterized by a dense accumulation of PGs and rounder cells. In meniscus, the observed heterogeneity in strain transfer correlated strongly with cellular morphology, where rounder cells located in PG-rich microdomains were shielded from deformation, while elongated cells in fibrous microdomains deformed readily. Collectively, these findings suggest that different tissues utilize distinct strain-attenuating mechanisms according to their unique structure and cellular phenotype, and these differences likely alter the local biologic response of such tissues and constructs in

  14. Soft tissue engineering with micronized-gingival connective tissues.

    PubMed

    Noda, Sawako; Sumita, Yoshinori; Ohba, Seigo; Yamamoto, Hideyuki; Asahina, Izumi

    2018-01-01

    The free gingival graft (FGG) and connective tissue graft (CTG) are currently considered to be the gold standards for keratinized gingival tissue reconstruction and augmentation. However, these procedures have some disadvantages in harvesting large grafts, such as donor-site morbidity as well as insufficient gingival width and thickness at the recipient site post-treatment. To solve these problems, we focused on an alternative strategy using micronized tissue transplantation (micro-graft). In this study, we first investigated whether transplantation of micronized gingival connective tissues (MGCTs) promotes skin wound healing. MGCTs (≤100 µm) were obtained by mincing a small piece (8 mm 3 ) of porcine keratinized gingiva using the RIGENERA system. The MGCTs were then transplanted to a full skin defect (5 mm in diameter) on the dorsal surface of immunodeficient mice after seeding to an atelocollagen matrix. Transplantations of atelocollagen matrixes with and without micronized dermis were employed as experimental controls. The results indicated that MGCTs markedly promote the vascularization and epithelialization of the defect area 14 days after transplantation compared to the experimental controls. After 21 days, complete wound closure with low contraction was obtained only in the MGCT grafts. Tracking analysis of transplanted MGCTs revealed that some mesenchymal cells derived from MGCTs can survive during healing and may function to assist in wound healing. We propose here that micro-grafting with MGCTs represents an alternative strategy for keratinized tissue reconstruction that is characterized by low morbidity and ready availability. © 2017 Wiley Periodicals, Inc.

  15. Mixed Connective Tissue Disease

    MedlinePlus

    Mixed connective tissue disease Overview Mixed connective tissue disease has signs and symptoms of a combination of disorders — primarily lupus, scleroderma and polymyositis. For this reason, mixed connective tissue disease ...

  16. Ethics of fetal tissue transplantation.

    PubMed Central

    Sanders, L M; Giudice, L; Raffin, T A

    1993-01-01

    Now that the Clinton Administration has overturned the ban on federal funding for fetal tissue transplantation, old ethical issues renew their relevance and new ethical issues arise. Is fetal tissue transplantation necessary and beneficial? Are fetal rights violated by the use of fetal tissue in research? Is there a moral danger that the potential of fetal tissue donation will encourage elective abortions? Should pregnant women be allowed to designate specific fetal transplant recipients? What criteria should be used to select fetal tissue transplants? Whose consent should be required for the use of fetal tissue for transplantation? We review the current state of clinical research with fetal tissue transplantation, the legal history of fetal tissue research, the major arguments against the use of fetal tissue for transplantation, and the new postmoratorium ethical dilemmas. We include recommendations for guidelines to govern the medical treatment of fetal tissue in transplantation. Images PMID:8236984

  17. The use of animal tissues alongside human tissue: Cultural and ethical considerations.

    PubMed

    Kaw, Anu; Jones, D Gareth; Zhang, Ming

    2016-01-01

    Teaching and research facilities often use cadaveric material alongside animal tissues, although there appear to be differences in the way we handle, treat, and dispose of human cadaveric material compared to animal tissue. This study sought to analyze cultural and ethical considerations and provides policy recommendations on the use of animal tissues alongside human tissue. The status of human and animal remains and the respect because of human and animal tissues were compared and analyzed from ethical, legal, and cultural perspectives. The use of animal organs and tissues is carried out within the context of understanding human anatomy and function. Consequently, the interests of human donors are to be pre-eminent in any policies that are enunciated, so that if any donors find the presence of animal remains unacceptable, the latter should not be employed. The major differences appear to lie in differences in our perceptions of their respective intrinsic and instrumental values. Animals are considered to have lesser intrinsic value and greater instrumental value than humans. These differences stem from the role played by culture and ethical considerations, and are manifested in the resulting legal frameworks. In light of this discussion, six policy recommendations are proposed, encompassing the nature of consent, respect for animal tissues as well as human remains, and appropriate separation of both sets of tissues in preparation and display. © 2015 Wiley Periodicals, Inc.

  18. Soy consumption and histopathologic markers in breast tissue using tissue microarrays.

    PubMed

    Maskarinec, Gertraud; Erber, Eva; Verheus, Martijn; Hernandez, Brenda Y; Killeen, Jeffrey; Cashin, Suzanne; Cline, J Mark

    2009-01-01

    This study examined the relation of soy intake with hormonal and proliferation markers in benign and malignant breast tissue using tissue microarrays (TMAs). TMAs with up to 4 malignant and 4 benign tissue samples for 268 breast cancer cases were constructed. Soy intake in early life and in adulthood was assessed by questionnaire. The TMAs were stained for estrogen receptor (ER) alpha, ERbeta, progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2/neu), proliferating cell nuclear antigen (PCNA), and Ki-67 using standard immunohistochemical methods. Logistic regression was applied for statistical analysis. A higher percentage of women showed positive marker expression in malignant than in benign tissue. With one exception, HER2/neu, no significant associations between soy intake and pathologic markers were observed. Early life soy intake was associated with lower HER2/neu and PCNA staining of malignant tissue. In benign tissue, early life soy intake showed higher ER and PR expression, but no difference in proliferation markers. The results of this investigation provide some assurance that soy intake does not adversely affect markers of proliferation. TMAs were shown to be a useful tool for epidemiologic research.

  19. Indirect tissue electrophoresis: a new method for analyzing solid tissue protein.

    PubMed

    Smith, A C

    1988-01-01

    1. The eye lens core (nucleus) has been a valuable source of molecular biologic information. 2. In these studies, lens nuclei are usually homogenized so that any protein information related to anatomical subdivisions, or layers, of the nucleus is lost. 3. The present report is of a new method, indirect tissue electrophoresis (ITE), which, when applied to fish lens nuclei, permitted (a) automatic correlation of protein information with anatomic layer, (b) production of large, clear electrophoretic patterns even from small tissue samples and (c) detection of more proteins than in liquid extracts of homogenized tissues. 4. ITE seems potentially applicable to a variety of solid tissues.

  20. Tissue engineering in dentistry.

    PubMed

    Abou Neel, Ensanya Ali; Chrzanowski, Wojciech; Salih, Vehid M; Kim, Hae-Won; Knowles, Jonathan C

    2014-08-01

    of this review is to inform practitioners with the most updated information on tissue engineering and its potential applications in dentistry. The authors used "PUBMED" to find relevant literature written in English and published from the beginning of tissue engineering until today. A combination of keywords was used as the search terms e.g., "tissue engineering", "approaches", "strategies" "dentistry", "dental stem cells", "dentino-pulp complex", "guided tissue regeneration", "whole tooth", "TMJ", "condyle", "salivary glands", and "oral mucosa". Abstracts and full text articles were used to identify causes of craniofacial tissue loss, different approaches for craniofacial reconstructions, how the tissue engineering emerges, different strategies of tissue engineering, biomaterials employed for this purpose, the major attempts to engineer different dental structures, finally challenges and future of tissue engineering in dentistry. Only those articles that dealt with the tissue engineering in dentistry were selected. There have been a recent surge in guided tissue engineering methods to manage periodontal diseases beyond the traditional approaches. However, the predictable reconstruction of the innate organisation and function of whole teeth as well as their periodontal structures remains challenging. Despite some limited progress and minor successes, there remain distinct and important challenges in the development of reproducible and clinically safe approaches for oral tissue repair and regeneration. Clearly, there is a convincing body of evidence which confirms the need for this type of treatment, and public health data worldwide indicates a more than adequate patient resource. The future of these therapies involving more biological approaches and the use of dental tissue stem cells is promising and advancing. Also there may be a significant interest of their application and wider potential to treat disorders beyond the craniofacial region. Considering the

  1. Molecular and physiological mechanisms regulating tissue reunion in incised plant tissues.

    PubMed

    Asahina, Masashi; Satoh, Shinobu

    2015-05-01

    Interactions among the functionally specialized organs of higher plants ensure that the plant body develops and functions properly in response to changing environmental conditions. When an incision or grafting procedure interrupts the original organ or tissue connection, cell division is induced and tissue reunion occurs to restore physiological connections. Such activities have long been observed in grafting techniques, which are advantageous not only for agriculture and horticulture but also for basic research. To understand how this healing process is controlled and how this process is initiated and regulated at the molecular level, physiological and molecular analyses of tissue reunion have been performed using incised hypocotyls of cucumber (Cucumis sativus) and tomato (Solanum lycopersicum) and incised flowering stems of Arabidopsis thaliana. Our results suggest that leaf gibberellin and microelements from the roots are required for tissue reunion in the cortex of the cucumber and tomato incised hypocotyls. In addition, the wound-inducible hormones ethylene and jasmonic acid contribute to the regulation of the tissue reunion process in the upper and lower parts, respectively, of incised Arabidopsis stems. Ethylene and jasmonic acid modulate the expression of ANAC071 and RAP2.6L, respectively, and auxin signaling via ARF6/8 is essential for the expression of these transcription factors. In this report, we discuss recent findings regarding molecular and physiological mechanisms of the graft union and the tissue reunion process in wounded tissues of plants.

  2. Decellularized Tissue and Cell-Derived Extracellular Matrices as Scaffolds for Orthopaedic Tissue Engineering

    PubMed Central

    Cheng, Christina W.; Solorio, Loran D.; Alsberg, Eben

    2014-01-01

    The reconstruction of musculoskeletal defects is a constant challenge for orthopaedic surgeons. Musculoskeletal injuries such as fractures, chondral lesions, infections and tumor debulking can often lead to large tissue voids requiring reconstruction with tissue grafts. Autografts are currently the gold standard in orthopaedic tissue reconstruction; however, there is a limit to the amount of tissue that can be harvested before compromising the donor site. Tissue engineering strategies using allogeneic or xenogeneic decellularized bone, cartilage, skeletal muscle, tendon and ligament have emerged as promising potential alternative treatment. The extracellular matrix provides a natural scaffold for cell attachment, proliferation and differentiation. Decellularization of in vitro cell-derived matrices can also enable the generation of autologous constructs from tissue specific cells or progenitor cells. Although decellularized bone tissue is widely used clinically in orthopaedic applications, the exciting potential of decellularized cartilage, skeletal muscle, tendon and ligament cell-derived matrices has only recently begun to be explored for ultimate translation to the orthopaedic clinic. PMID:24417915

  3. Undifferentiated Connective Tissue Disease

    MedlinePlus

    ... Home Conditions Undifferentiated Connective Tissue Disease (UCTD) Undifferentiated Connective Tissue Disease (UCTD) Make an Appointment Find a Doctor ... by Barbara Goldstein, MD (February 01, 2016) Undifferentiated connective tissue disease (UCTD) is a systemic autoimmune disease. This ...

  4. Growing Tissues in Real and Simulated Microgravity: New Methods for Tissue Engineering

    PubMed Central

    Wehland, Markus; Pietsch, Jessica; Aleshcheva, Ganna; Wise, Petra; van Loon, Jack; Ulbrich, Claudia; Magnusson, Nils E.; Infanger, Manfred; Bauer, Johann

    2014-01-01

    Tissue engineering in simulated (s-) and real microgravity (r-μg) is currently a topic in Space medicine contributing to biomedical sciences and their applications on Earth. The principal aim of this review is to highlight the advances and accomplishments in the field of tissue engineering that could be achieved by culturing cells in Space or by devices created to simulate microgravity on Earth. Understanding the biology of three-dimensional (3D) multicellular structures is very important for a more complete appreciation of in vivo tissue function and advancing in vitro tissue engineering efforts. Various cells exposed to r-μg in Space or to s-μg created by a random positioning machine, a 2D-clinostat, or a rotating wall vessel bioreactor grew in the form of 3D tissues. Hence, these methods represent a new strategy for tissue engineering of a variety of tissues, such as regenerated cartilage, artificial vessel constructs, and other organ tissues as well as multicellular cancer spheroids. These aggregates are used to study molecular mechanisms involved in angiogenesis, cancer development, and biology and for pharmacological testing of, for example, chemotherapeutic drugs or inhibitors of neoangiogenesis. Moreover, they are useful for studying multicellular responses in toxicology and radiation biology, or for performing coculture experiments. The future will show whether these tissue-engineered constructs can be used for medical transplantations. Unveiling the mechanisms of microgravity-dependent molecular and cellular changes is an up-to-date requirement for improving Space medicine and developing new treatment strategies that can be translated to in vivo models while reducing the use of laboratory animals. PMID:24597549

  5. Growing tissues in real and simulated microgravity: new methods for tissue engineering.

    PubMed

    Grimm, Daniela; Wehland, Markus; Pietsch, Jessica; Aleshcheva, Ganna; Wise, Petra; van Loon, Jack; Ulbrich, Claudia; Magnusson, Nils E; Infanger, Manfred; Bauer, Johann

    2014-12-01

    Tissue engineering in simulated (s-) and real microgravity (r-μg) is currently a topic in Space medicine contributing to biomedical sciences and their applications on Earth. The principal aim of this review is to highlight the advances and accomplishments in the field of tissue engineering that could be achieved by culturing cells in Space or by devices created to simulate microgravity on Earth. Understanding the biology of three-dimensional (3D) multicellular structures is very important for a more complete appreciation of in vivo tissue function and advancing in vitro tissue engineering efforts. Various cells exposed to r-μg in Space or to s-μg created by a random positioning machine, a 2D-clinostat, or a rotating wall vessel bioreactor grew in the form of 3D tissues. Hence, these methods represent a new strategy for tissue engineering of a variety of tissues, such as regenerated cartilage, artificial vessel constructs, and other organ tissues as well as multicellular cancer spheroids. These aggregates are used to study molecular mechanisms involved in angiogenesis, cancer development, and biology and for pharmacological testing of, for example, chemotherapeutic drugs or inhibitors of neoangiogenesis. Moreover, they are useful for studying multicellular responses in toxicology and radiation biology, or for performing coculture experiments. The future will show whether these tissue-engineered constructs can be used for medical transplantations. Unveiling the mechanisms of microgravity-dependent molecular and cellular changes is an up-to-date requirement for improving Space medicine and developing new treatment strategies that can be translated to in vivo models while reducing the use of laboratory animals.

  6. Extraction and Assembly of Tissue-Derived Gels for Cell Culture and Tissue Engineering

    PubMed Central

    Uriel, Shiri; Labay, Edwardine; Francis-Sedlak, Megan; Moya, Monica L.; Weichselbaum, Ralph R.; Ervin, Natalia; Cankova, Zdravka

    2009-01-01

    Interactions with the extracellular matrix (ECM) play an important role in regulating cell function. Cells cultured in, or on, three-dimensional ECM recapitulate similar features to those found in vivo that are not present in traditional two-dimensional culture. In addition, both natural and synthetic materials containing ECM components have shown promise in a number of tissue engineering applications. Current materials available for cell culture and tissue engineering do not adequately reflect the diversity of ECM composition between tissues. In this paper, a method is presented for extracting solutions of proteins and glycoproteins from soft tissues and inducing assembly of these proteins into gels. The extracts contain ECM proteins specific to the tissue source with low levels of intracellular molecules. Gels formed from the tissue-derived extracts have nanostructure similar to ECM in vivo and can be used to culture cells as both a thin substrate coating and a thick gel. This technique could be used to assemble hydrogels with varying composition depending upon the tissue source, hydrogels for three-dimensional culture, as scaffolds for tissue engineering therapies, and to study cell–matrix interactions. PMID:19115821

  7. Brown adipose tissue macrophages control tissue innervation and homeostatic energy expenditure

    PubMed Central

    Cortese, Nina; Haimon, Zhana; Sar Shalom, Hadas; Kuperman, Yael; Kalchenko, Vyacheslav; Brandis, Alexander; David, Eyal; Segal-Hayoun, Yifat; Chappell-Maor, Louise; Yaron, Avraham; Jung, Steffen

    2017-01-01

    Tissue macrophages provide immune defense and contribute to establishment and maintenance of tissue homeostasis. Here we used constitutive and inducible mutagenesis to delete the nuclear transcription regulator methyl-CpG binding protein 2 (Mecp2) in defined tissue macrophages. Animals lacking the Rett syndrome-associated gene in macrophages did not show signs of neurodevelopmental disorder, but displayed spontaneous obesity, which could be linked to impaired brown adipose tissue (BAT) function. Specifically, mutagenesis of a BAT-resident CX3CR1+ macrophage subpopulation compromised homeostatic, though not acute cold-induced thermogenesis. Mechanistically, BAT malfunction of pre-obese mice harboring mutant macrophages was associated with decreased sympathetic innervation and local norepinephrine titers, resulting in reduced adipocyte expression of thermogenic factors. Mutant macrophages over-expressed PlexinA4, which might contribute to the phenotype by repulsion of Sema6A-expressing sympathetic axons. Collectively, we report a previously unappreciated homeostatic role of macrophages in the control of tissue innervation, disruption of which in BAT results in metabolic imbalance. PMID:28459435

  8. Cell Sheet-Based Tissue Engineering for Organizing Anisotropic Tissue Constructs Produced Using Microfabricated Thermoresponsive Substrates.

    PubMed

    Takahashi, Hironobu; Okano, Teruo

    2015-11-18

    In some native tissues, appropriate microstructures, including orientation of the cell/extracellular matrix, provide specific mechanical and biological functions. For example, skeletal muscle is made of oriented myofibers that is responsible for the mechanical function. Native artery and myocardial tissues are organized three-dimensionally by stacking sheet-like tissues of aligned cells. Therefore, to construct any kind of complex tissue, the microstructures of cells such as myotubes, smooth muscle cells, and cardiomyocytes also need to be organized three-dimensionally just as in the native tissues of the body. Cell sheet-based tissue engineering allows the production of scaffold-free engineered tissues through a layer-by-layer construction technique. Recently, using microfabricated thermoresponsive substrates, aligned cells are being harvested as single continuous cell sheets. The cell sheets act as anisotropic tissue units to build three-dimensional tissue constructs with the appropriate anisotropy. This cell sheet-based technology is straightforward and has the potential to engineer a wide variety of complex tissues. In addition, due to the scaffold-free cell-dense environment, the physical and biological cell-cell interactions of these cell sheet constructs exhibit unique cell behaviors. These advantages will provide important clues to enable the production of well-organized tissues that closely mimic the structure and function of native tissues, required for the future of tissue engineering. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Necrotizing soft tissue infection

    MedlinePlus

    Necrotizing fasciitis; Fasciitis - necrotizing; Flesh-eating bacteria; Soft tissue gangrene; Gangrene - soft tissue ... Many different types of bacteria can cause this infection. A very severe and usually deadly form of necrotizing soft tissue infection is due to the ...

  10. Tissue identification by ultrasound

    NASA Technical Reports Server (NTRS)

    Lecroissette, D. H.; Heyser, R. C.; Gammell, P. M.; Wilson, R. L.

    1978-01-01

    The ultrasonic properties of animal and human soft tissue were measured over the frequency range of 1.5 to 10.0 MHz. The method employed a swept-frequency, coherent technique known as time delay spectrometry. Measurements of attenuation versus frequency on liver, backfat, kidney, pancreas, spleen, breast, and other tissue were made. Considerable attention was paid to tissue handling and in determining the effects of fixing on the attenuation of ultrasound in the tissue.

  11. The effects of tissue processing on markers for T and B cells from solid tissues.

    PubMed

    Millard, P R; Rabin, B S; Whiteside, T L; Hubbard, J D

    1977-03-01

    Suspensions of lymphoid cells from tissues have been used for the determination of the quantitative relationship between the T and B cell populations. The distribution of the lymphocytes within a given tissue, however, cannot be demonstrated once such a suspension has been prepared. Various methods of characterizing lymphocytes within tissues were evaluated. The method of tissue preparation can alter the capability of detecting the lymphocyte markers. Fluorescein-labeled anti-immunoglobulin sera reacted equally well with lymphocytes in tissue regardless of the method of tissue preparation. Complement-coated sheep erythrocytes were less effective in detecting lymphocyte markers in tissue sections than in cell suspensions. Quantitative assays of lymphocytes could be done in suspensions only. Unaltered sheep erythrocytes did not bind to T lymphocytes in tissue. T lymphocytes could be identified in tissue sections, however, by the use of anti-human T cell serum.

  12. Automated 3D bioassembly of micro-tissues for biofabrication of hybrid tissue engineered constructs.

    PubMed

    Mekhileri, N V; Lim, K S; Brown, G C J; Mutreja, I; Schon, B S; Hooper, G J; Woodfield, T B F

    2018-01-12

    Bottom-up biofabrication approaches combining micro-tissue fabrication techniques with extrusion-based 3D printing of thermoplastic polymer scaffolds are emerging strategies in tissue engineering. These biofabrication strategies support native self-assembly mechanisms observed in developmental stages of tissue or organoid growth as well as promoting cell-cell interactions and cell differentiation capacity. Few technologies have been developed to automate the precise assembly of micro-tissues or tissue modules into structural scaffolds. We describe an automated 3D bioassembly platform capable of fabricating simple hybrid constructs via a two-step bottom-up bioassembly strategy, as well as complex hybrid hierarchical constructs via a multistep bottom-up bioassembly strategy. The bioassembly system consisted of a fluidic-based singularisation and injection module incorporated into a commercial 3D bioprinter. The singularisation module delivers individual micro-tissues to an injection module, for insertion into precise locations within a 3D plotted scaffold. To demonstrate applicability for cartilage tissue engineering, human chondrocytes were isolated and micro-tissues of 1 mm diameter were generated utilising a high throughput 96-well plate format. Micro-tissues were singularised with an efficiency of 96.0 ± 5.1%. There was no significant difference in size, shape or viability of micro-tissues before and after automated singularisation and injection. A layer-by-layer approach or aforementioned bottom-up bioassembly strategy was employed to fabricate a bilayered construct by alternatively 3D plotting a thermoplastic (PEGT/PBT) polymer scaffold and inserting pre-differentiated chondrogenic micro-tissues or cell-laden gelatin-based (GelMA) hydrogel micro-spheres, both formed via high-throughput fabrication techniques. No significant difference in viability between the construct assembled utilising the automated bioassembly system and manually assembled construct was

  13. Dynamic biochemical tissue analysis detects functional L-selectin ligands on colon cancer tissues

    PubMed Central

    Carlson, Grady E.; Martin, Eric W.; Shirure, Venktesh S.; Malgor, Ramiro; Resto, Vicente A.; Goetz, Douglas J.; Burdick, Monica M.

    2017-01-01

    A growing body of evidence suggests that L-selectin ligands presented on circulating tumor cells facilitate metastasis by binding L-selectin presented on leukocytes. Commonly used methods for detecting L-selectin ligands on tissues, e.g., immunostaining, are performed under static, no-flow conditions. However, such analysis does not assay for functional L-selectin ligands, specifically those ligands that promote adhesion under shear flow conditions. Recently our lab developed a method, termed dynamic biochemical tissue analysis (DBTA), to detect functional selectin ligands in situ by probing tissues with L-selectin-coated microspheres under hemodynamic flow conditions. In this investigation, DBTA was used to probe human colon tissues for L-selectin ligand activity. The detection of L-selectin ligands using DBTA was highly specific. Furthermore, DBTA reproducibly detected functional L-selectin ligands on diseased, e.g., cancerous or inflamed, tissues but not on noncancerous tissues. In addition, DBTA revealed a heterogeneous distribution of functional L-selectin ligands on colon cancer tissues. Most notably, detection of L-selectin ligands by immunostaining using HECA-452 antibody only partially correlated with functional L-selectin ligands detected by DBTA. In summation, the results of this study demonstrate that DBTA detects functional selectin ligands to provide a unique characterization of pathological tissue. PMID:28282455

  14. Dynamic biochemical tissue analysis detects functional L-selectin ligands on colon cancer tissues.

    PubMed

    Carlson, Grady E; Martin, Eric W; Shirure, Venktesh S; Malgor, Ramiro; Resto, Vicente A; Goetz, Douglas J; Burdick, Monica M

    2017-01-01

    A growing body of evidence suggests that L-selectin ligands presented on circulating tumor cells facilitate metastasis by binding L-selectin presented on leukocytes. Commonly used methods for detecting L-selectin ligands on tissues, e.g., immunostaining, are performed under static, no-flow conditions. However, such analysis does not assay for functional L-selectin ligands, specifically those ligands that promote adhesion under shear flow conditions. Recently our lab developed a method, termed dynamic biochemical tissue analysis (DBTA), to detect functional selectin ligands in situ by probing tissues with L-selectin-coated microspheres under hemodynamic flow conditions. In this investigation, DBTA was used to probe human colon tissues for L-selectin ligand activity. The detection of L-selectin ligands using DBTA was highly specific. Furthermore, DBTA reproducibly detected functional L-selectin ligands on diseased, e.g., cancerous or inflamed, tissues but not on noncancerous tissues. In addition, DBTA revealed a heterogeneous distribution of functional L-selectin ligands on colon cancer tissues. Most notably, detection of L-selectin ligands by immunostaining using HECA-452 antibody only partially correlated with functional L-selectin ligands detected by DBTA. In summation, the results of this study demonstrate that DBTA detects functional selectin ligands to provide a unique characterization of pathological tissue.

  15. Bioengineered silk scaffolds in 3D tissue modeling with focus on mammary tissues.

    PubMed

    Maghdouri-White, Yas; Bowlin, Gary L; Lemmon, Christopher A; Dréau, Didier

    2016-02-01

    In vitro generation of three-dimensional (3D) biological tissues and organ-like structures is a promising strategy to study and closely model complex aspects of the molecular, cellular, and physiological interactions of tissue. In particular, in vitro 3D tissue modeling holds promises to further our understanding of breast development. Indeed, biologically relevant 3D structures that combine mammary cells and engineered matrices have improved our knowledge of mammary tissue growth, organization, and differentiation. Several polymeric biomaterials have been used as scaffolds to engineer 3D mammary tissues. Among those, silk fibroin-based biomaterials have many biologically relevant properties and have been successfully used in multiple medical applications. Here, we review the recent advances in engineered scaffolds with an emphasis on breast-like tissue generation and the benefits of modified silk-based scaffolds. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Quantitative frequency-domain fluorescence spectroscopy in tissues and tissue-like media

    NASA Astrophysics Data System (ADS)

    Cerussi, Albert Edward

    1999-09-01

    In the never-ending quest for improved medical technology at lower cost, modern near-infrared optical spectroscopy offers the possibility of inexpensive technology for quantitative and non-invasive diagnoses. Hemoglobin is the dominant chromophore in the 700-900 nm spectral region and as such it allows for the optical assessment of hemoglobin concentration and tissue oxygenation by absorption spectroscopy. However, there are many other important physiologically relevant compounds or physiological states that cannot be effectively sensed via optical methods because of poor optical contrast. In such cases, contrast enhancements are required. Fluorescence spectroscopy is an attractive component of optical tissue spectroscopy. Exogenous fluorophores, as well as some endogenous ones, may furnish the desperately needed sensitivity and specificity that is lacking in near-infrared optical tissue spectroscopy. The main focus of this thesis was to investigate the generation and propagation of fluorescence photons inside tissues and tissue-like media (i.e., scattering dominated media). The standard concepts of fluorescence spectroscopy have been incorporated into a diffusion-based picture that is sometimes referred to as photon migration. The novelty of this work lies in the successful quantitative recovery of fluorescence lifetimes, absolute fluorescence quantum yields, fluorophore concentrations, emission spectra, and both scattering and absorption coefficients at the emission wavelength from a tissue-like medium. All of these parameters are sensitive to the fluorophore local environment and hence are indicators of the tissue's physiological state. One application demonstrating the capabilities of frequency-domain lifetime spectroscopy in tissue-like media is a study of the binding of ethidium bromide to bovine leukocytes in fresh milk. Ethidium bromide is a fluorescent dye that is commonly used to label DNA, and hence visualize chromosomes in cells. The lifetime of

  17. Quantitative characterization of viscoelastic behavior in tissue-mimicking phantoms and ex vivo animal tissues.

    PubMed

    Maccabi, Ashkan; Shin, Andrew; Namiri, Nikan K; Bajwa, Neha; St John, Maie; Taylor, Zachary D; Grundfest, Warren; Saddik, George N

    2018-01-01

    Viscoelasticity of soft tissue is often related to pathology, and therefore, has become an important diagnostic indicator in the clinical assessment of suspect tissue. Surgeons, particularly within head and neck subsites, typically use palpation techniques for intra-operative tumor detection. This detection method, however, is highly subjective and often fails to detect small or deep abnormalities. Vibroacoustography (VA) and similar methods have previously been used to distinguish tissue with high-contrast, but a firm understanding of the main contrast mechanism has yet to be verified. The contributions of tissue mechanical properties in VA images have been difficult to verify given the limited literature on viscoelastic properties of various normal and diseased tissue. This paper aims to investigate viscoelasticity theory and present a detailed description of viscoelastic experimental results obtained in tissue-mimicking phantoms (TMPs) and ex vivo tissues to verify the main contrast mechanism in VA and similar imaging modalities. A spherical-tip micro-indentation technique was employed with the Hertzian model to acquire absolute, quantitative, point measurements of the elastic modulus (E), long term shear modulus (η), and time constant (τ) in homogeneous TMPs and ex vivo tissue in rat liver and porcine liver and gallbladder. Viscoelastic differences observed between porcine liver and gallbladder tissue suggest that imaging modalities which utilize the mechanical properties of tissue as a primary contrast mechanism can potentially be used to quantitatively differentiate between proximate organs in a clinical setting. These results may facilitate more accurate tissue modeling and add information not currently available to the field of systems characterization and biomedical research.

  18. Quantitative characterization of viscoelastic behavior in tissue-mimicking phantoms and ex vivo animal tissues

    PubMed Central

    Shin, Andrew; Namiri, Nikan K.; Bajwa, Neha; St. John, Maie; Taylor, Zachary D.; Grundfest, Warren; Saddik, George N.

    2018-01-01

    Viscoelasticity of soft tissue is often related to pathology, and therefore, has become an important diagnostic indicator in the clinical assessment of suspect tissue. Surgeons, particularly within head and neck subsites, typically use palpation techniques for intra-operative tumor detection. This detection method, however, is highly subjective and often fails to detect small or deep abnormalities. Vibroacoustography (VA) and similar methods have previously been used to distinguish tissue with high-contrast, but a firm understanding of the main contrast mechanism has yet to be verified. The contributions of tissue mechanical properties in VA images have been difficult to verify given the limited literature on viscoelastic properties of various normal and diseased tissue. This paper aims to investigate viscoelasticity theory and present a detailed description of viscoelastic experimental results obtained in tissue-mimicking phantoms (TMPs) and ex vivo tissues to verify the main contrast mechanism in VA and similar imaging modalities. A spherical-tip micro-indentation technique was employed with the Hertzian model to acquire absolute, quantitative, point measurements of the elastic modulus (E), long term shear modulus (η), and time constant (τ) in homogeneous TMPs and ex vivo tissue in rat liver and porcine liver and gallbladder. Viscoelastic differences observed between porcine liver and gallbladder tissue suggest that imaging modalities which utilize the mechanical properties of tissue as a primary contrast mechanism can potentially be used to quantitatively differentiate between proximate organs in a clinical setting. These results may facilitate more accurate tissue modeling and add information not currently available to the field of systems characterization and biomedical research. PMID:29373598

  19. Tissue Issues

    ERIC Educational Resources Information Center

    Metz, James

    2016-01-01

    Every day, 27,000 trees are used to make bathroom tissue. Americans use an average of 23.6 rolls per person per year, and more than 7 billion rolls of toilet paper are sold yearly in the United States alone. Perhaps the amount of bathroom tissue used can be reduced by changing the dimensions of the paper or the core. This brief article presents…

  20. Negating Tissue Contracture Improves Volume Maintenance and Longevity of In Vivo Engineered Tissues.

    PubMed

    Lytle, Ian F; Kozlow, Jeffrey H; Zhang, Wen X; Buffington, Deborah A; Humes, H David; Brown, David L

    2015-10-01

    Engineering large, complex tissues in vivo requires robust vascularization to optimize survival, growth, and function. Previously, the authors used a "chamber" model that promotes intense angiogenesis in vivo as a platform for functional three-dimensional muscle and renal engineering. A silicone membrane used to define the structure and to contain the constructs is successful in the short term. However, over time, generated tissues contract and decrease in size in a manner similar to capsular contracture seen around many commonly used surgical implants. The authors hypothesized that modification of the chamber structure or internal surface would promote tissue adherence and maintain construct volume. Three chamber configurations were tested against volume maintenance. Previously studied, smooth silicone surfaces were compared to chambers modified for improved tissue adherence, with multiple transmembrane perforations or lined with a commercially available textured surface. Tissues were allowed to mature long term in a rat model, before analysis. On explantation, average tissue masses were 49, 102, and 122 mg; average volumes were 74, 158 and 176 μl; and average cross-sectional areas were 1.6, 6.7, and 8.7 mm for the smooth, perforated, and textured groups, respectively. Both perforated and textured designs demonstrated significantly greater measures than the smooth-surfaced constructs in all respects. By modifying the design of chambers supporting vascularized, three-dimensional, in vivo tissue engineering constructs, generated tissue mass, volume, and area can be maintained over a long time course. Successful progress in the scale-up of construct size should follow, leading to improved potential for development of increasingly complex engineered tissues.

  1. Rapid development of tissue bank achieved by International Atomic Energy Agency (IAEA) Tissue Banking Programme in China.

    PubMed

    Zhang, Yu-Min; Wang, Jian-Ru; Zhang, Nai-Li; Liu, Xiao-Ming; Zhou, Mo; Ma, Shao-Ying; Yang, Ting; Li, Bao-Xing

    2014-09-01

    Before 1986, the development of tissue banking in China has been slow and relatively uncoordinated. Under the support of International Atomic Energy Agency (IAEA), Tissue Banking in China experienced rapid development. In this period, China Institute for Radiation Protection tissue bank mastered systematic and modern tissue banking technique by IAEA training course and gradually developed the first regional tissue bank (Shanxi Provincial Tissue Bank, SPTB) to provide tissue allograft. Benefit from training course, SPTB promoted the development of tissue transplantation by ways of training, brochure, advertisement and meeting. Tissue allograft transplantation acquired recognition from clinic and supervision and administration from government. Quality system gradually is developing and perfecting. Tissue allograft transplantation and tissue bank are developing rapidly and healthy.

  2. Macrophages: development and tissue specialization.

    PubMed

    Varol, Chen; Mildner, Alexander; Jung, Steffen

    2015-01-01

    Macrophages are myeloid immune cells that are strategically positioned throughout the body tissues, where they ingest and degrade dead cells, debris, and foreign material and orchestrate inflammatory processes. Here we review two major recent paradigm shifts in our understanding of tissue macrophage biology. The first is the realization that most tissue-resident macrophages are established prenatally and maintained through adulthood by longevity and self-renewal. Their generation and maintenance are thus independent from ongoing hematopoiesis, although the cells can be complemented by adult monocyte-derived macrophages. Second, aside from being immune sentinels, tissue macrophages form integral components of their host tissue. This entails their specialization in response to local environmental cues to contribute to the development and specific function of their tissue of residence. Factors that govern tissue macrophage specialization are emerging. Moreover, tissue specialization is reflected in discrete gene expression profiles of macrophages, as well as epigenetic signatures reporting actual and potential enhancer usage.

  3. Tissue-electronics interfaces: from implantable devices to engineered tissues

    NASA Astrophysics Data System (ADS)

    Feiner, Ron; Dvir, Tal

    2018-01-01

    Biomedical electronic devices are interfaced with the human body to extract precise medical data and to interfere with tissue function by providing electrical stimuli. In this Review, we outline physiologically and pathologically relevant tissue properties and processes that are important for designing implantable electronic devices. We summarize design principles for flexible and stretchable electronics that adapt to the mechanics of soft tissues, such as those including conducting polymers, liquid metal alloys, metallic buckling and meandering architectures. We further discuss technologies for inserting devices into the body in a minimally invasive manner and for eliminating them without further intervention. Finally, we introduce the concept of integrating electronic devices with biomaterials and cells, and we envision how such technologies may lead to the development of bionic organs for regenerative medicine.

  4. DENTAL PULP TISSUE ENGINEERING

    PubMed Central

    Demarco, FF; Conde, MCM; Cavalcanti, B; Casagrande, L; Sakai, V; Nör, JE

    2013-01-01

    Dental pulp is a highly specialized mesenchymal tissue, which have a restrict regeneration capacity due to anatomical arrangement and post-mitotic nature of odontoblastic cells. Entire pulp amputation followed by pulp-space disinfection and filling with an artificial material cause loss of a significant amount of dentin leaving as life-lasting sequelae a non-vital and weakened tooth. However, regenerative endodontics is an emerging field of modern tissue engineering that demonstrated promising results using stem cells associated with scaffolds and responsive molecules. Thereby, this article will review the most recent endeavors to regenerate pulp tissue based on tissue engineering principles and providing insightful information to readers about the different aspects enrolled in tissue engineering. Here, we speculate that the search for the ideal combination of cells, scaffolds, and morphogenic factors for dental pulp tissue engineering may be extended over future years and result in significant advances in other areas of dental and craniofacial research. The finds collected in our review showed that we are now at a stage in which engineering a complex tissue, such as the dental pulp, is no longer an unachievable and the next decade will certainly be an exciting time for dental and craniofacial research. PMID:21519641

  5. A Tissue Engineered Model of Aging: Interdependence and Cooperative Effects in Failing Tissues.

    PubMed

    Acun, A; Vural, D C; Zorlutuna, P

    2017-07-11

    Aging remains a fundamental open problem in modern biology. Although there exist a number of theories on aging on the cellular scale, nearly nothing is known about how microscopic failures cascade to macroscopic failures of tissues, organs and ultimately the organism. The goal of this work is to bridge microscopic cell failure to macroscopic manifestations of aging. We use tissue engineered constructs to control the cellular-level damage and cell-cell distance in individual tissues to establish the role of complex interdependence and interactions between cells in aging tissues. We found that while microscopic mechanisms drive aging, the interdependency between cells plays a major role in tissue death, providing evidence on how cellular aging is connected to its higher systemic consequences.

  6. Biomaterials for tissue engineering applications.

    PubMed

    Keane, Timothy J; Badylak, Stephen F

    2014-06-01

    With advancements in biological and engineering sciences, the definition of an ideal biomaterial has evolved over the past 50 years from a substance that is inert to one that has select bioinductive properties and integrates well with adjacent host tissue. Biomaterials are a fundamental component of tissue engineering, which aims to replace diseased, damaged, or missing tissue with reconstructed functional tissue. Most biomaterials are less than satisfactory for pediatric patients because the scaffold must adapt to the growth and development of the surrounding tissues and organs over time. The pediatric community, therefore, provides a distinct challenge for the tissue engineering community. Copyright © 2014. Published by Elsevier Inc.

  7. Exosome-Like Vesicles Derived from Adipose Tissue Provide Biochemical Cues for Adipose Tissue Regeneration.

    PubMed

    Dai, Minjia; Yu, Mei; Zhang, Yan; Tian, Weidong

    2017-11-01

    There is an emerging need for soft tissue replacements in the field of reconstructive surgery for the treatment of congenital deformities, posttraumatic repair, and cancer rehabilitation. Previous studies have shown that the bioactive adipose tissue extract can induce adipogenesis without additional stem cells or growth factors. In this study, we innovatively investigated whether exosome-like vesicles derived from adipose tissue (ELV-AT) could direct stem cell differentiation and trigger adipose tissue regeneration. In vitro, ELV-AT can induce adipogenesis of adipose-derived stem cells and promote proliferation, migration, and angiogenic potential of the aorta endothelial cells. In vivo, ELV-AT were transplanted to a chamber on the back of nude mice and neoadipose tissues were formed. Our findings indicated that ELV-AT could be used as a cell-free therapeutic approach for adipose tissue regeneration.

  8. Chitin Scaffolds in Tissue Engineering

    PubMed Central

    Jayakumar, Rangasamy; Chennazhi, Krishna Prasad; Srinivasan, Sowmya; Nair, Shantikumar V.; Furuike, Tetsuya; Tamura, Hiroshi

    2011-01-01

    Tissue engineering/regeneration is based on the hypothesis that healthy stem/progenitor cells either recruited or delivered to an injured site, can eventually regenerate lost or damaged tissue. Most of the researchers working in tissue engineering and regenerative technology attempt to create tissue replacements by culturing cells onto synthetic porous three-dimensional polymeric scaffolds, which is currently regarded as an ideal approach to enhance functional tissue regeneration by creating and maintaining channels that facilitate progenitor cell migration, proliferation and differentiation. The requirements that must be satisfied by such scaffolds include providing a space with the proper size, shape and porosity for tissue development and permitting cells from the surrounding tissue to migrate into the matrix. Recently, chitin scaffolds have been widely used in tissue engineering due to their non-toxic, biodegradable and biocompatible nature. The advantage of chitin as a tissue engineering biomaterial lies in that it can be easily processed into gel and scaffold forms for a variety of biomedical applications. Moreover, chitin has been shown to enhance some biological activities such as immunological, antibacterial, drug delivery and have been shown to promote better healing at a faster rate and exhibit greater compatibility with humans. This review provides an overview of the current status of tissue engineering/regenerative medicine research using chitin scaffolds for bone, cartilage and wound healing applications. We also outline the key challenges in this field and the most likely directions for future development and we hope that this review will be helpful to the researchers working in the field of tissue engineering and regenerative medicine. PMID:21673928

  9. The significance of folic acid, tissue iron stores, and tissue viability in determining iron uptake from serum by thyroid tissue slices

    PubMed Central

    Buchanan, W. M.

    1971-01-01

    This paper describes an attempt to measure in vitro iron uptake from serum by human thyroid slices and to relate the uptake to tissue iron stores, folic acid status, and tissue viability. It is an extension of work previously reported (Buchanan, 1969). Thyroids were obtained from patients undergoing partial thyroidectomy for colloid goitre and serum from clinically normal healthy adults. The haemoglobin, serum iron, and folic acid levels of both thyroid and serum donors were measured and thyroids examined histologically for the presence of stainable iron. Viable and non-viable tissue slices were incubated in sera treated with radioactive iron so as to produce high and normal levels of transferrin saturation. Iron was taken up both from sera with normal and high transferrin saturation but the amount was, in almost all cases, greater from the more highly saturated. The uptake by non-viable tissue was appreciable but did not vary to any great extent from one serum to the next, and was attributed to simple diffusion of ionic iron into the tissue. There was, however, marked variation in uptake from different sera by viable tissue. It was concluded therefore that viability is a factor affecting the uptake. As the variation in uptake by viable tissue incubated in a single serum was significantly less than tissue incubated in a number of different sera it was further concluded that there was also a factor in the serum itself affecting iron uptake. The nature of the factor was not elucidated but neither folic acid nor levels of iron stores appeared to influence uptake because no correlation was found between iron uptake and iron stores or folic acid. Images PMID:5556118

  10. Decellularized skin/adipose tissue flap matrix for engineering vascularized composite soft tissue flaps.

    PubMed

    Zhang, Qixu; Johnson, Joshua A; Dunne, Lina W; Chen, Youbai; Iyyanki, Tejaswi; Wu, Yewen; Chang, Edward I; Branch-Brooks, Cynthia D; Robb, Geoffrey L; Butler, Charles E

    2016-04-15

    Using a perfusion decellularization protocol, we developed a decellularized skin/adipose tissue flap (DSAF) comprising extracellular matrix (ECM) and intact vasculature. Our DSAF had a dominant vascular pedicle, microcirculatory vascularity, and a sensory nerve network and retained three-dimensional (3D) nanofibrous structures well. DSAF, which was composed of collagen and laminin with well-preserved growth factors (e.g., vascular endothelial growth factor, basic fibroblast growth factor), was successfully repopulated with human adipose-derived stem cells (hASCs) and human umbilical vein endothelial cells (HUVECs), which integrated with DSAF and formed 3D aggregates and vessel-like structures in vitro. We used microsurgery techniques to re-anastomose the recellularized DSAF into nude rats. In vivo, the engineered flap construct underwent neovascularization and constructive remodeling, which was characterized by the predominant infiltration of M2 macrophages and significant adipose tissue formation at 3months postoperatively. Our results indicate that DSAF co-cultured with hASCs and HUVECs is a promising platform for vascularized soft tissue flap engineering. This platform is not limited by the flap size, as the entire construct can be immediately perfused by the recellularized vascular network following simple re-integration into the host using conventional microsurgical techniques. Significant soft tissue loss resulting from traumatic injury or tumor resection often requires surgical reconstruction using autologous soft tissue flaps. However, the limited availability of qualitative autologous flaps as well as the donor site morbidity significantly limits this approach. Engineered soft tissue flap grafts may offer a clinically relevant alternative to the autologous flap tissue. In this study, we engineered vascularized soft tissue free flap by using skin/adipose flap extracellular matrix scaffold (DSAF) in combination with multiple types of human cells. Following

  11. Comparative analysis of human tissue interactomes reveals factors leading to tissue-specific manifestation of hereditary diseases.

    PubMed

    Barshir, Ruth; Shwartz, Omer; Smoly, Ilan Y; Yeger-Lotem, Esti

    2014-06-01

    An open question in human genetics is what underlies the tissue-specific manifestation of hereditary diseases, which are caused by genomic aberrations that are present in cells across the human body. Here we analyzed this phenomenon for over 300 hereditary diseases by using comparative network analysis. We created an extensive resource of protein expression and interactions in 16 main human tissues, by integrating recent data of gene and protein expression across tissues with data of protein-protein interactions (PPIs). The resulting tissue interaction networks (interactomes) shared a large fraction of their proteins and PPIs, and only a small fraction of them were tissue-specific. Applying this resource to hereditary diseases, we first show that most of the disease-causing genes are widely expressed across tissues, yet, enigmatically, cause disease phenotypes in few tissues only. Upon testing for factors that could lead to tissue-specific vulnerability, we find that disease-causing genes tend to have elevated transcript levels and increased number of tissue-specific PPIs in their disease tissues compared to unaffected tissues. We demonstrate through several examples that these tissue-specific PPIs can highlight disease mechanisms, and thus, owing to their small number, provide a powerful filter for interrogating disease etiologies. As two thirds of the hereditary diseases are associated with these factors, comparative tissue analysis offers a meaningful and efficient framework for enhancing the understanding of the molecular basis of hereditary diseases.

  12. Hydrogel derived from decellularized porcine adipose tissue as a promising biomaterial for soft tissue augmentation.

    PubMed

    Tan, Qiu-Wen; Zhang, Yi; Luo, Jing-Cong; Zhang, Di; Xiong, Bin-Jun; Yang, Ji-Qiao; Xie, Hui-Qi; Lv, Qing

    2017-06-01

    Decellularized extracellular matrix (ECM) scaffolds from human adipose tissue, characterized by impressive adipogenic induction ability, are promising for soft tissue augmentation. However, scaffolds from autologous human adipose tissue are limited by the availability of tissue resources and the time necessary for scaffold fabrication. The objective of the current study was to investigate the adipogenic properties of hydrogels of decellularized porcine adipose tissue (HDPA). HDPA induced the adipogenic differentiation of human adipose-derived stem cells (ADSCs) in vitro, with significantly increased expression of adipogenic genes. Subcutaneous injection of HDPA in immunocompetent mice induced host-derived adipogenesis without cell seeding, and adipogenesis was significantly enhanced with ADSCs seeding. The newly formed adipocytes were frequently located on the basal side in the non-seeding group, but this trend was not observed in the ADSCs seeding group. Our results indicated that, similar to human adipose tissue, the ECM scaffold derived from porcine adipose tissue could provide an adipogenic microenvironment for adipose tissue regeneration and is a promising biomaterial for soft tissue augmentation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1756-1764, 2017. © 2017 Wiley Periodicals, Inc.

  13. Obtaining corneal tissue for keratoplasty.

    PubMed

    Navarro Martínez-Cantullera, A; Calatayud Pinuaga, M

    2016-10-01

    Cornea transplant is the most common tissue transplant in the world. In Spain, tissue donation activities depend upon transplant coordinator activities and the well-known Spanish model for organ and tissue donation. Tissue donor detection system and tissue donor evaluation is performed mainly by transplant coordinators using the Spanish model on donation. The evaluation of a potential tissue donor from detection until recovery is based on an exhaustive review of the medical and social history, physical examination, family interview to determine will of the deceased, and a laboratory screening test. Corneal acceptance criteria for transplantation have a wider spectrum than other tissues, as donors with active malignancies and infections are accepted for kearatoplasty in most tissue banks. Corneal evaluation during the whole process is performed to ensure the safety of the donor and the recipient, as well as an effective transplant. Last step before processing, corneal recovery, must be performed under standard operating procedures and in a correct environment. Copyright © 2016 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  14. A portrait of tissue phosphoprotein stability in the clinical tissue procurement process.

    PubMed

    Espina, Virginia; Edmiston, Kirsten H; Heiby, Michael; Pierobon, Mariaelena; Sciro, Manuela; Merritt, Barbara; Banks, Stacey; Deng, Jianghong; VanMeter, Amy J; Geho, David H; Pastore, Lucia; Sennesh, Joel; Petricoin, Emanuel F; Liotta, Lance A

    2008-10-01

    Little is known about the preanalytical fluctuations of phosphoproteins during tissue procurement for molecular profiling. This information is crucial to establish guidelines for the reliable measurement of these analytes. To develop phosphoprotein profiles of tissue subjected to the trauma of excision, we measured the fidelity of 53 signal pathway phosphoproteins over time in tissue specimens procured in a community clinical practice. This information provides strategies for potential surrogate markers of stability and the design of phosphoprotein preservative/fixation solutions. Eleven different specimen collection time course experiments revealed augmentation (+/-20% from the time 0 sample) of signal pathway phosphoprotein levels as well as decreases over time independent of tissue type, post-translational modification, and protein subcellular location (tissues included breast, colon, lung, ovary, and uterus (endometrium/myometrium) and metastatic melanoma). Comparison across tissue specimens showed an >20% decrease of protein kinase B (AKT) Ser-473 (p < 0.002) and myristoylated alanine-rich C-kinase substrate protein Ser-152/156 (p < 0.0001) within the first 90-min postexcision. Proteins in apoptotic (cleaved caspase-3 Asp-175 (p < 0.001)), proliferation/survival/hypoxia (IRS-1 Ser-612 (p < 0.0003), AMP-activated protein kinase beta Ser-108 (p < 0.005), ERK Thr-202/Tyr-204 (p < 0.003), and GSK3alphabeta Ser-21/9 (p < 0.01)), and transcription factor pathways (STAT1 Tyr-701 (p < 0.005) and cAMP response element-binding protein Ser-133 (p < 0.01)) showed >20% increases within 90-min postprocurement. Endothelial nitric-oxide synthase Ser-1177 did not change over the time period evaluated with breast or leiomyoma tissue. Treatment with phosphatase or kinase inhibitors alone revealed that tissue kinase pathways are active ex vivo. Combinations of kinase and phosphatase inhibitors appeared to stabilize proteins that exhibited increases in the presence of phosphatase

  15. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Tissue culture media for human ex vivo tissue and... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture processing applications. (a) Identification. Tissue culture media for human ex vivo tissue and cell culture...

  16. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Tissue culture media for human ex vivo tissue and... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture processing applications. (a) Identification. Tissue culture media for human ex vivo tissue and cell culture...

  17. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Tissue culture media for human ex vivo tissue and... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture processing applications. (a) Identification. Tissue culture media for human ex vivo tissue and cell culture...

  18. Scaffolds and tissue regeneration: An overview of the functional properties of selected organic tissues.

    PubMed

    Rebelo, Márcia A; Alves, Thais F R; de Lima, Renata; Oliveira, José M; Vila, Marta M D C; Balcão, Victor M; Severino, Patrícia; Chaud, Marco V

    2016-10-01

    Tissue engineering plays a significant role both in the re-establishment of functions and regeneration of organic tissues. Success in manufacturing projects for biological scaffolds, for the purpose of tissue regeneration, is conditioned by the selection of parameters such as the biomaterial, the device architecture, and the specificities of the cells making up the organic tissue to create, in vivo, a microenvironment that preserves and further enhances the proliferation of a specific cell phenotype. To support this approach, we have screened scientific publications that show biomedical applications of scaffolds, biomechanical, morphological, biochemical, and hemodynamic characteristics of the target organic tissues, and the possible interactions between different cell matrices and biological scaffolds. This review article provides an overview on the biomedical application of scaffolds and on the characteristics of the (bio)materials commonly used for manufacturing these biological devices used in tissue engineering, taking into consideration the cellular specificity of the target tissue. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1483-1494, 2016. © 2015 Wiley Periodicals, Inc.

  19. Obesity Decreases Perioperative Tissue Oxygenation

    PubMed Central

    Kabon, Barbara; Nagele, Angelika; Reddy, Dayakar; Eagon, Chris; Fleshman, James W.; Sessler, Daniel I.; Kurz, Andrea

    2005-01-01

    Background: Obesity is an important risk factor for surgical site infections. The incidence of surgical wound infections is directly related to tissue perfusion and oxygenation. Fat tissue mass expands without a concomitant increase in blood flow per cell, which might result in a relative hypoperfusion with decreased tissue oxygenation. Consequently, we tested the hypotheses that perioperative tissue oxygen tension is reduced in obese surgical patients. Furthermore, we compared the effect of supplemental oxygen administration on tissue oxygenation in obese and non-obese patients. Methods: Forty-six patients undergoing major abdominal surgery were assigned to one of two groups according to their body mass index (BMI): BMI < 30 kg/m2 (non-obese) and BMI ≥ 30 kg/m2 (obese). Intraoperative oxygen administration was adjusted to arterial oxygen tensions of ≈150 mmHg and ≈300 mmHg in random order. Anesthesia technique and perioperative fluid management were standardized. Subcutaneous tissue oxygen tension was measured with a polarographic electrode positioned within a subcutaneous tonometer in the lateral upper arm during surgery, in the recovery room, and on the first postoperative day. Postoperative tissue oxygen was also measured adjacent to the wound. Data were compared with unpaired two tailed t-tests and Wilcoxon rank-sum tests; P < 0.05 was considered statistically significant. Results: Intraoperative subcutaneous tissue oxygen tension was significantly less in the obese patients at baseline (36 vs. 57 mmHg, P = 0.002) and with supplemental oxygen administration (47 vs. 76 mmHg, P = 0.014). Immediate postoperative tissue oxygen tension was also significantly less in subcutaneous tissue of the upper arm (43 vs. 54 mmHg, P = 0.011) as well as near the incision (42 vs. 62 mmHg, P = 0.012) in obese patients. In contrast, tissue oxygen tension was comparable in each group on the first postoperative morning. Conclusion: Wound and tissue hypoxia were common in obese

  20. Nanocomposites for bone tissue regeneration.

    PubMed

    Sahoo, Nanda Gopal; Pan, Yong Zheng; Li, Lin; He, Chao Bin

    2013-04-01

    Natural bone tissue possesses a nanocomposite structure that provides appropriate physical and biological properties. For bone tissue regeneration, it is crucial for the biomaterial to mimic living bone tissue. Since no single type of material is able to mimic the composition, structure and properties of native bone, nanocomposites are the best choice for bone tissue regeneration as they can provide the appropriate matrix environment, integrate desirable biological properties, and provide controlled, sequential delivery of multiple growth factors for the different stages of bone tissue regeneration. This article reviews the composition, structure and properties of advanced nanocomposites for bone tissue regeneration. It covers aspects of interest such as the biomimetic synthesis of bone-like nanocomposites, guided bone regeneration from inert biomaterials and bioactive nanocomposites, and nanocomposite scaffolds for bone tissue regeneration. The design, fabrication, and in vitro and in vivo characterization of such nanocomposites are reviewed.

  1. Adipose tissue-organotypic culture system as a promising model for studying adipose tissue biology and regeneration

    PubMed Central

    Uchihashi, Kazuyoshi; Aoki, Shigehisa; Sonoda, Emiko; Yamasaki, Fumio; Piao, Meihua; Ootani, Akifumi; Yonemitsu, Nobuhisa; Sugihara, Hajime

    2009-01-01

    Adipose tissue consists of mature adipocytes, preadipocytes and mesenchymal stem cells (MSCs), but a culture system for analyzing their cell types within the tissue has not been established. We have recently developed “adipose tissue-organotypic culture system” that maintains unilocular structure, proliferative ability and functions of mature adipocytes for a long term, using three-dimensional collagen gel culture of the tissue fragments. In this system, both preadipocytes and MSCs regenerate actively at the peripheral zone of the fragments. Our method will open up a new way for studying both multiple cell types within adipose tissue and the cell-based mechanisms of obesity and metabolic syndrome. Thus, it seems to be a promising model for investigating adipose tissue biology and regeneration. In this article, we introduce adipose tissue-organotypic culture, and propose two theories regarding the mechanism of tissue regeneration that occurs specifically at peripheral zone of tissue fragments in vitro. PMID:19794899

  2. Collecting and Storing Tissue, Blood, and Bone Marrow Samples From Patients With Rhabdomyosarcoma or Other Soft Tissue Sarcoma

    ClinicalTrials.gov

    2017-12-11

    Adult Rhabdomyosarcoma; Childhood Desmoplastic Small Round Cell Tumor; Chordoma; Desmoid Tumor; Metastatic Childhood Soft Tissue Sarcoma; Nonmetastatic Childhood Soft Tissue Sarcoma; Previously Treated Childhood Rhabdomyosarcoma; Previously Untreated Childhood Rhabdomyosarcoma; Recurrent Adult Soft Tissue Sarcoma; Recurrent Childhood Rhabdomyosarcoma; Recurrent Childhood Soft Tissue Sarcoma; Stage I Adult Soft Tissue Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage IV Adult Soft Tissue Sarcoma

  3. Ultrasonic atomization of tissue and its role in tissue fractionation by high intensity focused ultrasound

    PubMed Central

    Simon, Julianna C.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Wang, Yak-Nam; Crum, Lawrence A.; Bailey, Michael R.

    2012-01-01

    Atomization and fountain formation is a well-known phenomenon that occurs when a focused ultrasound wave in liquid encounters an air interface. High intensity focused ultrasound (HIFU) has been shown to fractionate tissue into submicron-size fragments in a process termed boiling histotripsy, wherein the focused ultrasound wave superheats the tissue at the focus, producing a millimetre-size boiling or vapour bubble in several milliseconds. Yet the question of how this millimetre-size boiling bubble creates submicron-size tissue fragments remains. The hypothesis of this work is that tissue can behave as a liquid such that it forms a fountain and atomization within the vapour bubble produced in boiling histotripsy. We describe an experiment, in which a 2-MHz HIFU transducer (maximum in situ intensity of 24,000 W/cm2) was aligned with an air-tissue interface meant to simulate the boiling bubble. Atomization and fountain formation were observed with high-speed photography and resulted in tissue erosion. Histological examination of the atomized tissue showed whole and fragmented cells and nuclei. Air-liquid interfaces were also filmed. Our conclusion was that HIFU can fountain and atomize tissue. Although this process does not entirely mimic what was observed in liquids, it does explain many aspects of tissue fractionation in boiling histotripsy. PMID:23159812

  4. Eye-bank preparation of endothelial tissue.

    PubMed

    Boynton, Grace E; Woodward, Maria A

    2014-07-01

    Eye-bank preparation of endothelial tissue for keratoplasty continues to evolve. Although eye-bank personnel have become comfortable and competent at Descemet's stripping automated endothelial keratoplasty (DSAEK), tissue preparation and tissue transport, optimization of preparation methods continues. Surgeons and eye-bank personnel should be up to date on the research in the field. As surgeons transit to Descemet's membrane endothelial keratoplasty (DMEK), eye banks have risen to the challenge of preparing tissue. Eye banks are refining their DMEK preparation and transport techniques. This article covers refinements to DSAEK tissue preparation, innovations to prepare DMEK tissue, and nuances to improve donor cornea tissue quality. As eye bank-supplied corneal tissue is the main source of tissue for many corneal surgeons, it is critical to stay informed about tissue handling and preparation. Ultimately, the surgeon is responsible for the transplantation, so involvement of clinicians in eye-banking practices and advocacy for pursuing meaningful research in this area will benefit clinical patient outcomes.

  5. Eye-bank Preparation of Endothelial Tissue

    PubMed Central

    Boynton, Grace E.; Woodward, Maria A.

    2014-01-01

    Purpose of review Eyebank preparation of endothelial tissue for keratoplasty continues to evolve. While eye bank personnel have become comfortable and competent at Descemet Stripping Automated Endothelial Keratoplasty (DSAEK) tissue preparation and tissue transport, optimization of preparation methods continues. Surgeons and eye bank personnel should be up to date on the research in the field. As surgeons transition to Descemet Membrane Endothelial Keratoplasty (DMEK), eye banks have risen to the challenge of preparing tissue. Eye banks are refining their DMEK preparation and transport techniques Recent findings This article covers refinements to DSAEK tissue preparation, innovations to prepare DMEK tissue, and nuances to improve donor cornea tissue quality. Summary As eye bank supplied corneal tissue is the main source of tissue for many corneal surgeons, it is critical to stay informed about tissue handling and preparation. Ultimately the surgeon is responsible for the transplantation, so involvement of clinicians in eye banking practices and advocacy for pursuing meaningful research in this area will benefit clinical patient outcomes. PMID:24837574

  6. Tissue-like phantoms

    DOEpatents

    Frangioni, John V.; De Grand, Alec M.

    2007-10-30

    The invention is based, in part, on the discovery that by combining certain components one can generate a tissue-like phantom that mimics any desired tissue, is simple and inexpensive to prepare, and is stable over many weeks or months. In addition, new multi-modal imaging objects (e.g., beads) can be inserted into the phantoms to mimic tissue pathologies, such as cancer, or merely to serve as calibration standards. These objects can be imaged using one, two, or more (e.g., four) different imaging modalities (e.g., x-ray computed tomography (CT), positron emission tomography (PET), single photon emission computed tomography (SPECT), and near-infrared (NIR) fluorescence) simultaneously.

  7. Commercial considerations in tissue engineering

    PubMed Central

    Mansbridge, Jonathan

    2006-01-01

    Tissue engineering is a field with immense promise. Using the example of an early tissue-engineered skin implant, Dermagraft, factors involved in the successful commercial development of devices of this type are explored. Tissue engineering has to strike a balance between tissue culture, which is a resource-intensive activity, and business considerations that are concerned with minimizing cost and maximizing customer convenience. Bioreactor design takes place in a highly regulated environment, so factors to be incorporated into the concept include not only tissue culture considerations but also matters related to asepsis, scaleup, automation and ease of use by the final customer. Dermagraft is an allogeneic tissue. Stasis preservation, in this case cryopreservation, is essential in allogeneic tissue engineering, allowing sterility testing, inventory control and, in the case of Dermagraft, a cellular stress that may be important for hormesis following implantation. Although the use of allogeneic cells provides advantages in manufacturing under suitable conditions, it raises the spectre of immunological rejection. Such rejection has not been experienced with Dermagraft. Possible reasons for this and the vision of further application of allogeneic tissues are important considerations in future tissue-engineered cellular devices. This review illustrates approaches that indicate some of the criteria that may provide a basis for further developments. Marketing is a further requirement for success, which entails understanding of the mechanism of action of the procedure, and is illustrated for Dermagraft. The success of a tissue-engineered product is dependent on many interacting operations, some discussed here, each of which must be performed simultaneously and well. PMID:17005024

  8. Commercial considerations in tissue engineering.

    PubMed

    Mansbridge, Jonathan

    2006-10-01

    Tissue engineering is a field with immense promise. Using the example of an early tissue-engineered skin implant, Dermagraft, factors involved in the successful commercial development of devices of this type are explored. Tissue engineering has to strike a balance between tissue culture, which is a resource-intensive activity, and business considerations that are concerned with minimizing cost and maximizing customer convenience. Bioreactor design takes place in a highly regulated environment, so factors to be incorporated into the concept include not only tissue culture considerations but also matters related to asepsis, scaleup, automation and ease of use by the final customer. Dermagraft is an allogeneic tissue. Stasis preservation, in this case cryopreservation, is essential in allogeneic tissue engineering, allowing sterility testing, inventory control and, in the case of Dermagraft, a cellular stress that may be important for hormesis following implantation. Although the use of allogeneic cells provides advantages in manufacturing under suitable conditions, it raises the spectre of immunological rejection. Such rejection has not been experienced with Dermagraft. Possible reasons for this and the vision of further application of allogeneic tissues are important considerations in future tissue-engineered cellular devices. This review illustrates approaches that indicate some of the criteria that may provide a basis for further developments. Marketing is a further requirement for success, which entails understanding of the mechanism of action of the procedure, and is illustrated for Dermagraft. The success of a tissue-engineered product is dependent on many interacting operations, some discussed here, each of which must be performed simultaneously and well.

  9. Relationship between tissue tension and thermal diffusion to peripheral tissue using an energy device.

    PubMed

    Kondo, Akihiro; Nishizawa, Yuji; Ito, Masaaki; Saito, Norio; Fujii, Satoshi; Akamoto, Shintaro; Fujiwara, Masao; Okano, Keiichi; Suzuki, Yasuyuki

    2016-08-01

    The aim of the study was to assess the relationship between tissue tension and thermal diffusion to peripheral tissues using an electric scalpel, ultrasonically activated device, or a bipolar sealing system. The mesentery of pigs was excised with each energy device (ED) at three tissue tensions (0, 300, 600 g). The excision time and thermal diffusion area were monitored with thermography, measured for each ED, and then histologically examined. Correlations between tissue tension and thermal diffusion area were examined. The excision time was inversely correlated with tissue tension for all ED (electric scalpel, r = 0.718; ultrasonically activated device, r = 0.949; bipolar sealing system, r = 0.843), and tissue tension was inversely correlated with the thermal diffusion area with the electric scalpel (r = 0.718) and bipolar sealing system (r = 0.869). Histopathologically, limited deep thermal denaturation occurred at a tension of 600 g with all ED. We conclude that thermal damage can be avoided with adequate tissue tension when any ED is used. © 2016 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and John Wiley & Sons Australia, Ltd.

  10. Stokes-polarimetry imaging of tissue

    NASA Astrophysics Data System (ADS)

    Wu, Paul J.

    A novel Stokes-polarimetry imaging system and technique was developed to quantify fully the polarization properties of light remitted from tissue. The uniqueness of the system and technique is established in the incident polarization. Here, the diffuse illumination is varied and controlled with the intention to improve the visibility of tissue structures. Since light retains some polarization even after multiple-scattering events, the polarization of remitted light depends upon the interactions within the material. Differentiation between tissue structures is accomplished by two-dimensional mapping of the imaged area using metrics such as the degree of linear polarization, degree of circular polarization, ellipticity, and Stokes parameters. While Stokes-polarimetry imaging can be applied to a variety of tissues and conditions, this thesis focuses on tissue types associated with the disease endometriosis. The current standard in diagnosing endometriosis is visual laparoscopy with tissue biopsy. The documented correlation between laparoscopy inspection and histological confirmation of suspected lesions was at best 67%. Endometrial lesions vary greatly in their appearance and depth of infiltration. Although laparoscopy permits tissue to be assessed by color and texture, to advance beyond the state-of-the-art, a new imaging modality involving polarized light was investigated; in particular, Stokes-polarimetry imaging was used to determine the polarization signature of light that interacted with tissue. Basic science studies were conducted on rat tails embedded within turbid gelatin. The purpose of these experiments was to determine how identification of sub-surface structures could be improved. Experimental results indicate image contrast among various structures such as tendon, soft tissue and intervertebral discs. Stokes-polarimetry imaging experiments were performed on various tissues associated with endometriosis to obtain a baseline characterization for each

  11. Bioprinting for Neural Tissue Engineering.

    PubMed

    Knowlton, Stephanie; Anand, Shivesh; Shah, Twisha; Tasoglu, Savas

    2018-01-01

    Bioprinting is a method by which a cell-encapsulating bioink is patterned to create complex tissue architectures. Given the potential impact of this technology on neural research, we review the current state-of-the-art approaches for bioprinting neural tissues. While 2D neural cultures are ubiquitous for studying neural cells, 3D cultures can more accurately replicate the microenvironment of neural tissues. By bioprinting neuronal constructs, one can precisely control the microenvironment by specifically formulating the bioink for neural tissues, and by spatially patterning cell types and scaffold properties in three dimensions. We review a range of bioprinted neural tissue models and discuss how they can be used to observe how neurons behave, understand disease processes, develop new therapies and, ultimately, design replacement tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Soft tissue modelling with conical springs.

    PubMed

    Omar, Nadzeri; Zhong, Yongmin; Jazar, Reza N; Subic, Aleksandar; Smith, Julian; Shirinzadeh, Bijan

    2015-01-01

    This paper presents a new method for real-time modelling soft tissue deformation. It improves the traditional mass-spring model with conical springs to deal with nonlinear mechanical behaviours of soft tissues. A conical spring model is developed to predict soft tissue deformation with reference to deformation patterns. The model parameters are formulated according to tissue deformation patterns and the nonlinear behaviours of soft tissues are modelled with the stiffness variation of conical spring. Experimental results show that the proposed method can describe different tissue deformation patterns using one single equation and also exhibit the typical mechanical behaviours of soft tissues.

  13. DNA Yield From Tissue Samples in Surgical Pathology and Minimum Tissue Requirements for Molecular Testing.

    PubMed

    Austin, Melissa C; Smith, Christina; Pritchard, Colin C; Tait, Jonathan F

    2016-02-01

    Complex molecular assays are increasingly used to direct therapy and provide diagnostic and prognostic information but can require relatively large amounts of DNA. To provide data to pathologists to help them assess tissue adequacy and provide prospective guidance on the amount of tissue that should be procured. We used slide-based measurements to establish a relationship between processed tissue volume and DNA yield by A260 from 366 formalin-fixed, paraffin-embedded tissue samples submitted for the 3 most common molecular assays performed in our laboratory (EGFR, KRAS, and BRAF). We determined the average DNA yield per unit of tissue volume, and we used the distribution of DNA yields to calculate the minimum volume of tissue that should yield sufficient DNA 99% of the time. All samples with a volume greater than 8 mm(3) yielded at least 1 μg of DNA, and more than 80% of samples producing less than 1 μg were extracted from less than 4 mm(3) of tissue. Nine square millimeters of tissue should produce more than 1 μg of DNA 99% of the time. We conclude that 2 tissue cores, each 1 cm long and obtained with an 18-gauge needle, will almost always provide enough DNA for complex multigene assays, and our methodology may be readily extrapolated to individual institutional practice.

  14. Tissue mechanics and fibrosis.

    PubMed

    Wells, Rebecca G

    2013-07-01

    Mechanical forces are essential to the development and progression of fibrosis, and are likely to be as important as soluble factors. These forces regulate the phenotype and proliferation of myofibroblasts and other cells in damaged tissues, the activation of growth factors, the structure and mechanics of the matrix, and, potentially, tissue patterning. Better understanding of the variety and magnitude of forces, the characteristics of those forces in biological tissues, and their impact on fibrosis in multiple tissues is needed and may lead to identification of important new therapeutic targets. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Tissue engineering in endodontics.

    PubMed

    Saber, Shehab El-Din M

    2009-12-01

    Tissue engineering is the science of design and manufacture of new tissues to replace impaired or damaged ones. The key ingredients for tissue engineering are stem cells, the morphogens or growth factors that regulate their differentiation, and a scaffold of extracellular matrix that constitutes the microenvironment for their growth. Recently, there has been increasing interest in applying the concept of tissue engineering to endodontics. The aim of this study was to review the body of knowledge related to dental pulp stem cells, the most common growth factors, and the scaffolds used to control their differentiation, and a clinical technique for the management of immature non-vital teeth based on this novel concept.

  16. Studying Genes in Tissue Samples From Younger and Adolescent Patients With Soft Tissue Sarcomas

    ClinicalTrials.gov

    2016-05-13

    Childhood Alveolar Soft-part Sarcoma; Childhood Angiosarcoma; Childhood Desmoplastic Small Round Cell Tumor; Childhood Epithelioid Sarcoma; Childhood Fibrosarcoma; Childhood Leiomyosarcoma; Childhood Liposarcoma; Childhood Malignant Mesenchymoma; Childhood Neurofibrosarcoma; Childhood Synovial Sarcoma; Chordoma; Desmoid Tumor; Metastatic Childhood Soft Tissue Sarcoma; Nonmetastatic Childhood Soft Tissue Sarcoma; Recurrent Childhood Soft Tissue Sarcoma

  17. Multimodality Instrument for Tissue Characterization

    NASA Technical Reports Server (NTRS)

    Mah, Robert W. (Inventor); Andrews, Russell J. (Inventor)

    2000-01-01

    A system with multimodality instrument for tissue identification includes a computer-controlled motor driven heuristic probe with a multisensory tip is discussed. For neurosurgical applications, the instrument is mounted on a stereotactic frame for the probe to penetrate the brain in a precisely controlled fashion. The resistance of the brain tissue being penetrated is continually monitored by a miniaturized strain gauge attached to the probe tip. Other modality sensors may be mounted near the probe tip to provide real-time tissue characterizations and the ability to detect the proximity of blood vessels, thus eliminating errors normally associated with registration of pre-operative scans, tissue swelling, elastic tissue deformation, human judgement, etc., and rendering surgical procedures safer, more accurate, and efficient. A neural network, program adaptively learns the information on resistance and other characteristic features of normal brain tissue during the surgery and provides near real-time modeling. A fuzzy logic interface to the neural network program incorporates expert medical knowledge in the learning process. Identification of abnormal brain tissue is determined by the detection of change and comparison with previously learned models of abnormal brain tissues. The operation of the instrument is controlled through a user friendly graphical interface. Patient data is presented in a 3D stereographics display. Acoustic feedback of selected information may optionally be provided. Upon detection of the close proximity to blood vessels or abnormal brain tissue, the computer-controlled motor immediately stops probe penetration.

  18. Adipose tissue in myocardial infarction.

    PubMed

    Su, Leon; Siegel, John E; Fishbein, Michael C

    2004-01-01

    The histologic evolution of myocardial infarction (MI) has been studied in some detail. However, there is little mention of the presence of adipose tissue in healed MI(HMI). Ninety-one hearts explanted during 1997-2001 were examined to determine the extent of adipose tissue within HMI. The medical records, surgical pathology reports, and all histologic sections of the explanted heart, from patients undergoing heart transplantation for ischemic heart disease, were reviewed. Adipose tissue within the areas of HMI was quantified. The location of the HMI, the age and gender of the patient, age of HMI, and whether the patient was treated with coronary artery bypass surgery (CABG) were noted. Of the 91 hearts examined, 168 HMIs were identified; 141 (84%) contained some mature fat within the HMI. Adipose tissue increased with increasing age, in males, and in those patients who had CABG surgery. The amount of adipose tissue was not related to the location or age of the HMI. Adipose tissue is a prevalent histological finding in HMIs. The pathogenesis of adipose tissue is unknown, but may be influenced by current medical therapy for ischemic heart disease, thus explaining why adipose tissue in HMIs was not reported until 1997. The presence of fat supports the speculation that a regenerative cell, or multipotent stem cell, exists within the heart, and under the influence of microenvironmental or therapeutic factors can differentiate into fat, other mesenchymal tissues, and potentially even myocardium.

  19. Collagenous Extracellular Matrix Biomaterials for Tissue Engineering: Lessons from the Common Sea Urchin Tissue.

    PubMed

    Goh, Kheng Lim; Holmes, David F

    2017-04-25

    Scaffolds for tissue engineering application may be made from a collagenous extracellular matrix (ECM) of connective tissues because the ECM can mimic the functions of the target tissue. The primary sources of collagenous ECM material are calf skin and bone. However, these sources are associated with the risk of having bovine spongiform encephalopathy or transmissible spongiform encephalopathy. Alternative sources for collagenous ECM materials may be derived from livestock, e.g., pigs, and from marine animals, e.g., sea urchins. Collagenous ECM of the sea urchin possesses structural features and mechanical properties that are similar to those of mammalian ones. However, even more intriguing is that some tissues such as the ligamentous catch apparatus can exhibit mutability, namely rapid reversible changes in the tissue mechanical properties. These tissues are known as mutable collagenous tissues (MCTs). The mutability of these tissues has been the subject of on-going investigations, covering the biochemistry, structural biology and mechanical properties of the collagenous components. Recent studies point to a nerve-control system for regulating the ECM macromolecules that are involved in the sliding action of collagen fibrils in the MCT. This review discusses the key attributes of the structure and function of the ECM of the sea urchin ligaments that are related to the fibril-fibril sliding action-the focus is on the respective components within the hierarchical architecture of the tissue. In this context, structure refers to size, shape and separation distance of the ECM components while function is associated with mechanical properties e.g., strength and stiffness. For simplicity, the components that address the different length scale from the largest to the smallest are as follows: collagen fibres, collagen fibrils, interfibrillar matrix and collagen molecules. Application of recent theories of stress transfer and fracture mechanisms in fibre reinforced

  20. Collagenous Extracellular Matrix Biomaterials for Tissue Engineering: Lessons from the Common Sea Urchin Tissue

    PubMed Central

    Goh, Kheng Lim; Holmes, David F.

    2017-01-01

    Scaffolds for tissue engineering application may be made from a collagenous extracellular matrix (ECM) of connective tissues because the ECM can mimic the functions of the target tissue. The primary sources of collagenous ECM material are calf skin and bone. However, these sources are associated with the risk of having bovine spongiform encephalopathy or transmissible spongiform encephalopathy. Alternative sources for collagenous ECM materials may be derived from livestock, e.g., pigs, and from marine animals, e.g., sea urchins. Collagenous ECM of the sea urchin possesses structural features and mechanical properties that are similar to those of mammalian ones. However, even more intriguing is that some tissues such as the ligamentous catch apparatus can exhibit mutability, namely rapid reversible changes in the tissue mechanical properties. These tissues are known as mutable collagenous tissues (MCTs). The mutability of these tissues has been the subject of on-going investigations, covering the biochemistry, structural biology and mechanical properties of the collagenous components. Recent studies point to a nerve-control system for regulating the ECM macromolecules that are involved in the sliding action of collagen fibrils in the MCT. This review discusses the key attributes of the structure and function of the ECM of the sea urchin ligaments that are related to the fibril-fibril sliding action—the focus is on the respective components within the hierarchical architecture of the tissue. In this context, structure refers to size, shape and separation distance of the ECM components while function is associated with mechanical properties e.g., strength and stiffness. For simplicity, the components that address the different length scale from the largest to the smallest are as follows: collagen fibres, collagen fibrils, interfibrillar matrix and collagen molecules. Application of recent theories of stress transfer and fracture mechanisms in fibre reinforced

  1. [Muscles and connective tissue: histology].

    PubMed

    Delage, J-P

    2012-10-01

    Here, we give some comments about the DVD movies "Muscle Attitudes" from Endovivo productions, the movies up lighting some loss in the attention given to studies on the connective tissue, and especially them into muscles. The main characteristics of the different components in the intra-muscular connective tissue (perimysium, endomysium, epimysium) are shown here with special references to their ordered architecture and special references to their spatial distributions. This connective tissue is abundant into the muscles and is in continuity with the muscles in vicinity, with their tendons and their sheath, sticking the whole on skin. This connective tissue has also very abundant connections on the muscles fibres. It is then assumed that the connective tissue sticks every organs or cells of the locomotion system. Considering the elastic properties of the collagen fibres which are the most abundant component of connective tissue, it is possible to up light a panel of connective tissue associated functions such as the transmission of muscle contractions or the regulation of protein and energetic muscles metabolism. Copyright © 2012. Published by Elsevier SAS.

  2. Tissue Penetration of Antifungal Agents

    PubMed Central

    Felton, Timothy; Troke, Peter F.

    2014-01-01

    SUMMARY Understanding the tissue penetration of systemically administered antifungal agents is critical for a proper appreciation of their antifungal efficacy in animals and humans. Both the time course of an antifungal drug and its absolute concentrations within tissues may differ significantly from those observed in the bloodstream. In addition, tissue concentrations must also be interpreted within the context of the pathogenesis of the various invasive fungal infections, which differ significantly. There are major technical obstacles to the estimation of concentrations of antifungal agents in various tissue subcompartments, yet these agents, even those within the same class, may exhibit markedly different tissue distributions. This review explores these issues and provides a summary of tissue concentrations of 11 currently licensed systemic antifungal agents. It also explores the therapeutic implications of their distribution at various sites of infection. PMID:24396137

  3. 2010 Great Lakes Human Health Fish Tissue Study Fish Tissue Data Dictionary

    EPA Pesticide Factsheets

    The Office of Science and Technology (OST) is providing the fish tissue results from the 2010 Great Lakes Human Health Fish Tissue Study (GLHHFTS). This document includes the “data dictionary” for Mercury, PFC, PBDE and PCBs.

  4. Vascularization strategies for tissue engineers.

    PubMed

    Dew, Lindsey; MacNeil, Sheila; Chong, Chuh Khiun

    2015-01-01

    All tissue-engineered substitutes (with the exception of cornea and cartilage) require a vascular network to provide the nutrient and oxygen supply needed for their survival in vivo. Unfortunately the process of vascular ingrowth into an engineered tissue can take weeks to occur naturally and during this time the tissues become starved of essential nutrients, leading to tissue death. This review initially gives a brief overview of the processes and factors involved in the formation of new vasculature. It then summarizes the different approaches that are being applied or developed to overcome the issue of slow neovascularization in a range of tissue-engineered substitutes. Some potential future strategies are then discussed.

  5. Identification of tissue-specific targeting peptide

    NASA Astrophysics Data System (ADS)

    Jung, Eunkyoung; Lee, Nam Kyung; Kang, Sang-Kee; Choi, Seung-Hoon; Kim, Daejin; Park, Kisoo; Choi, Kihang; Choi, Yun-Jaie; Jung, Dong Hyun

    2012-11-01

    Using phage display technique, we identified tissue-targeting peptide sets that recognize specific tissues (bone-marrow dendritic cell, kidney, liver, lung, spleen and visceral adipose tissue). In order to rapidly evaluate tissue-specific targeting peptides, we performed machine learning studies for predicting the tissue-specific targeting activity of peptides on the basis of peptide sequence information using four machine learning models and isolated the groups of peptides capable of mediating selective targeting to specific tissues. As a representative liver-specific targeting sequence, the peptide "DKNLQLH" was selected by the sequence similarity analysis. This peptide has a high degree of homology with protein ligands which can interact with corresponding membrane counterparts. We anticipate that our models will be applicable to the prediction of tissue-specific targeting peptides which can recognize the endothelial markers of target tissues.

  6. Biomimetic strategies for engineering composite tissues.

    PubMed

    Lee, Nancy; Robinson, Jennifer; Lu, Helen

    2016-08-01

    The formation of multiple tissue types and their integration into composite tissue units presents a frontier challenge in regenerative engineering. Tissue-tissue synchrony is crucial in providing structural support for internal organs and enabling daily activities. This review highlights the state-of-the-art in composite tissue scaffold design, and explores how biomimicry can be strategically applied to avoid over-engineering the scaffold. Given the complexity of biological tissues, determining the most relevant parameters for recapitulating native structure-function relationships through strategic biomimicry will reduce the burden for clinical translation. It is anticipated that these exciting efforts in composite tissue engineering will enable integrative and functional repair of common soft tissue injuries and lay the foundation for total joint or limb regeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Recent progress in tissue optical clearing

    PubMed Central

    Zhu, Dan; Larin, Kirill V; Luo, Qingming; Tuchin, Valery V

    2013-01-01

    Tissue optical clearing technique provides a prospective solution for the application of advanced optical methods in life sciences. This paper gives a review of recent developments in tissue optical clearing techniques. The physical, molecular and physiological mechanisms of tissue optical clearing are overviewed and discussed. Various methods for enhancing penetration of optical-clearing agents into tissue, such as physical methods, chemical-penetration enhancers and combination of physical and chemical methods are introduced. Combining the tissue optical clearing technique with advanced microscopy image or labeling technique, applications for 3D microstructure of whole tissues such as brain and central nervous system with unprecedented resolution are demonstrated. Moreover, the difference in diffusion and/or clearing ability of selected agents in healthy versus pathological tissues can provide a highly sensitive indicator of the tissue health/pathology condition. Finally, recent advances in optical clearing of soft or hard tissue for in vivo imaging and phototherapy are introduced. PMID:24348874

  8. Patch esophagoplasty using an in-body-tissue-engineered collagenous connective tissue membrane.

    PubMed

    Okuyama, Hiroomi; Umeda, Satoshi; Takama, Yuichi; Terasawa, Takeshi; Nakayama, Yasuhide

    2018-02-01

    Although many approaches to esophageal replacement have been investigated, these efforts have thus far only met limited success. In-body-tissue-engineered connective tissue tubes have been reported to be effective as vascular replacement grafts. The aim of this study was to investigate the usefulness of an In-body-tissue-engineered collagenous connective tissue membrane, "Biosheet", as a novel esophageal scaffold in a beagle model. We prepared Biosheets by embedding specially designed molds into subcutaneous pouches in beagles. After 1-2months, the molds, which were filled with ingrown connective tissues, were harvested. Rectangular-shaped Biosheets (10×20mm) were then implanted to replace defects of the same size that had been created in the cervical esophagus of the beagle. An endoscopic evaluation was performed at 4 and 12weeks after implantation. The esophagus was harvested and subjected to a histological evaluation at 4 (n=2) and 12weeks (n=2) after implantation. The animal study protocols were approved by the National Cerebral and Cardiovascular Centre Research Institute Committee (No. 16048). The Biosheets showed sufficient strength and flexibility to replace the esophagus defect. All animals survived with full oral feeding during the study period. No anastomotic leakage was observed. An endoscopic study at 4 and 12weeks after implantation revealed that the anastomotic sites and the internal surface of the Biosheets were smooth, without stenosis. A histological analysis at 4weeks after implantation demonstrated that stratified squamous epithelium was regenerated on the internal surface of the Biosheets. A histological analysis at 12weeks after implantation showed the regeneration of muscle tissue in the implanted Biosheets. The long-term results of patch esophagoplasty using Biosheets showed regeneration of stratified squamous epithelium and muscular tissues in the implanted sheets. These results suggest that Biosheets may be useful as a novel esophageal

  9. Tissue simulating gel for medical research

    NASA Technical Reports Server (NTRS)

    Companion, John A. (Inventor)

    1989-01-01

    A tissue simulating gel and a method for preparing the tissue simulating gel are disclosed. The tissue simulating gel is prepared by a process using water, gelatin, ethylene gylcol, and a cross-linking agent. In order to closely approximate the characteristics of the type of tissue being simulated, other material has been added to change the electrical, sound conducting, and wave scattering properties of the tissue simulating gel. The result of the entire process is a formulation that will not melt at the elevated temperatures involved in hyperthermia medical research. Furthermore, the tissue simulating gel will not support mold or bacterial growth, is of a sufficient mechanical strength to maintain a desired shape without a supporting shell, and is non-hardening and non-drying. Substances were injected into the tissue simulating gel prior to the setting-up thereof just as they could be injected into actual tissue, and the tissue simulating gel is translucent so as to permit visual inspection of its interior. A polyurethane spray often used for coating circuit boards can be applied to the surface of the tissue simulating gel to give a texture similar to human skin, making the tissue simulating gel easier to handle and contributing to its longevity.

  10. Tissue simulating gel for medical research

    NASA Technical Reports Server (NTRS)

    Companion, John A. (Inventor)

    1991-01-01

    A tissue simulating gel and a method for preparing the tissue simulating gel are disclosed. The tissue simulating gel is prepared by a process using water, gelatin, ethylene glycol, and a cross-linking agent. In order to closely approximate the characteristics of the type of tissue being simulated, other material has been added to change the electrical, sound conducting, and wave scattering properties of the tissue simulating gel. The result of the entire process is a formulation that will not melt at the elevated temperatures involved in hyperthermia medical research. Furthermore, the tissue simulating gel will not support mold or bacterial growth, is of a sufficient mechanical strength to maintain a desired shape without a supporting shell, and is non-hardening and non-drying. Substances have been injected into the tissue simulating gel prior to the setting-up thereof just as they could be injected into actual tissue, and the tissue simulating gel is translucent so as to permit visual inspection of its interior. A polyurethane spray often used for coating circuit boards can be applied to the surface of the tissue simulating gel to give a texture similar to human skin, making the tissue simulating gel easier to handle and contributing to its longevity.

  11. The PAXgene® Tissue System Preserves Phosphoproteins in Human Tissue Specimens and Enables Comprehensive Protein Biomarker Research

    PubMed Central

    Gündisch, Sibylle; Schott, Christina; Wolff, Claudia; Tran, Kai; Beese, Christian; Viertler, Christian; Zatloukal, Kurt; Becker, Karl-Friedrich

    2013-01-01

    Precise quantitation of protein biomarkers in clinical tissue specimens is a prerequisite for accurate and effective diagnosis, prognosis, and personalized medicine. Although progress is being made, protein analysis from formalin-fixed and paraffin-embedded tissues is still challenging. In previous reports, we showed that the novel formalin-free tissue preservation technology, the PAXgene Tissue System, allows the extraction of intact and immunoreactive proteins from PAXgene-fixed and paraffin-embedded (PFPE) tissues. In the current study, we focused on the analysis of phosphoproteins and the applicability of two-dimensional gel electrophoresis (2D-PAGE) and enzyme-linked immunosorbent assay (ELISA) to the analysis of a variety of malignant and non-malignant human tissues. Using western blot analysis, we found that phosphoproteins are quantitatively preserved in PFPE tissues, and signal intensities are comparable to that in paired, frozen tissues. Furthermore, proteins extracted from PFPE samples are suitable for 2D-PAGE and can be quantified by ELISA specific for denatured proteins. In summary, the PAXgene Tissue System reliably preserves phosphoproteins in human tissue samples, even after prolonged fixation or stabilization times, and is compatible with methods for protein analysis such as 2D-PAGE and ELISA. We conclude that the PAXgene Tissue System has the potential to serve as a versatile tissue fixative for modern pathology. PMID:23555997

  12. Biochemistry and Chemotherapy of Malaria and Leishmaniasis

    DTIC Science & Technology

    1993-12-06

    sativum), elephant garlic (Allium scorodoprasum), onion (Allium cepa), and licorice ( Glycyrrhiza glabra). Cells of Leish- mania mexicana 227 and... Glycyrrhiza glabra) inhibited the growth of the leishmanial parasites, but were not toxic to HeLa cells. All of the extracts showed varying inhibitory...root) and Glycyrrhiza glabra (licorice). 10 * Materials & Methods Cultures of Parasitic Protozoa: Promastigotes of Leishmania mexicana Walter Reed

  13. Tissue Expander versus Tissue Expander and Latissimus Flap in Morbidly Obese Breast Reconstruction Patients

    PubMed Central

    Adams, Robert L.; Chandler, Robert G.; Parks, Joseph

    2015-01-01

    Background: Immediate postmastectomy breast reconstruction in morbidly obese patients represents a challenge because neither prosthetic nor abdominal-based options may be suitable. Methods: This study compared a previously published cohort of immediate prosthetic reconstruction of 346 patients (511 breasts) of whom 49 patients (67 breasts) were morbidly obese (defined as a body mass index > 35) with a morbidly obese patient population whose breasts were reconstructed immediately following postmastectomy with latissimus flap and tissue expander (21 patients and 22 breasts) in the same time period. The preoperative risk factors of mastectomy such as tobacco use, diabetes, and prior radiation and the postoperative complications of mastectomy such as skin necrosis, seroma, and prosthesis loss were examined. The explantation of the tissue expander provided a defined endpoint of reconstruction failure. Results: The average body mass index in the tissue expander/implant group and in the latissimus flap plus tissue expander/implant group was 40.9 and 40.1, respectively. The risk profile of diabetes and tobacco use was similar in both groups. Fifteen of the 67 breasts (22.3%) of the tissue expander/implant group and 15 of the 23 breasts (65.2%) of the latissimus flap group had received prior radiation. The prosthesis loss was 13 of 67 breasts (19.4%) that had tissue-expander–alone reconstruction and 1 of 22 (4.8%) in the latissimus group that had tissue expander reconstruction. Modification of donor-site incision and skin-island location in the latissimus group of patients can minimize scar deformity. Conclusion: The loss rate in immediate postmastectomy reconstruction in morbidly obese patients with latissimus flap plus tissue expander was substantially lower than the loss rate in those with breast reconstructed with tissue expander alone. PMID:25878934

  14. How to assess the plasma delivery of RONS into tissue fluid and tissue

    NASA Astrophysics Data System (ADS)

    Oh, Jun-Seok; Szili, Endre J.; Gaur, Nishtha; Hong, Sung-Ha; Furuta, Hiroshi; Kurita, Hirofumi; Mizuno, Akira; Hatta, Akimitsu; Short, Robert D.

    2016-08-01

    The efficacy of helium (He) and argon (Ar) plasma jets are being investigated for different healthcare applications including wound and cancer therapy, sterilisation and surface disinfections. Current research points to a potential link between the generation of reactive oxygen and nitrogen species (RONS) and outcomes in a range of biological and medical applications. As new data accrue, further strengthening this link, it becomes important to understand the controlled delivery of RONS into solutions, tissue fluids and tissues. This paper investigates the use of He and Ar plasma jets to deliver three RONS (hydrogen peroxide—H2O2, nitrite—\\text{NO}2- and nitrate—\\text{NO}3- ) and molecular oxygen (O2) directly into deionised (DI) water, or indirectly into DI water through an agarose target. The DI water is used in place of tissue fluid and the agarose target serves as a surrogate of tissue. Direct plasma jet treatments deliver more RONS and O2 than the through-agarose treatments for equivalent treatments times. The former only deliver RONS whilst the plasma jets are ignited; the latter continues to deliver RONS into the DI water long after the plasmas are extinguished. The He plasma jet is more effective at delivering H2O2 and \\text{NO}2- directly into DI water, but the Ar plasma jet is more effective at nitrating the DI water in both direct and through-agarose treatments. DI water directly treated with the plasma jets is deoxygenated, with the He plasma jet purging more O2 than the Ar plasma jet. This effect is known as ‘sparging’. In contrast, for through-agarose treatments both jets oxygenated the DI water. These results indicate that in the context of direct and indirect plasma jet treatments of real tissue fluids and tissue, the choice of process gas (He or Ar) could have a profound effect on the concentrations of RONS and O2. Irrespective of operating gas, sparging of tissue fluid (in an open wound) for long prolonged periods during direct plasma

  15. Discrimination of premalignant lesions and cancer tissues from normal gastric tissues using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Luo, Shuwen; Chen, Changshui; Mao, Hua; Jin, Shaoqin

    2013-06-01

    The feasibility of early detection of gastric cancer using near-infrared (NIR) Raman spectroscopy (RS) by distinguishing premalignant lesions (adenomatous polyp, n=27) and cancer tissues (adenocarcinoma, n=33) from normal gastric tissues (n=45) is evaluated. Significant differences in Raman spectra are observed among the normal, adenomatous polyp, and adenocarcinoma gastric tissues at 936, 1003, 1032, 1174, 1208, 1323, 1335, 1450, and 1655 cm-1. Diverse statistical methods are employed to develop effective diagnostic algorithms for classifying the Raman spectra of different types of ex vivo gastric tissues, including principal component analysis (PCA), linear discriminant analysis (LDA), and naive Bayesian classifier (NBC) techniques. Compared with PCA-LDA algorithms, PCA-NBC techniques together with leave-one-out, cross-validation method provide better discriminative results of normal, adenomatous polyp, and adenocarcinoma gastric tissues, resulting in superior sensitivities of 96.3%, 96.9%, and 96.9%, and specificities of 93%, 100%, and 95.2%, respectively. Therefore, NIR RS associated with multivariate statistical algorithms has the potential for early diagnosis of gastric premalignant lesions and cancer tissues in molecular level.

  16. Heavy metals in Franklin`s gull tissues: Age and tissue differences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, J.; Gochfeld, M.

    1999-04-01

    The authors examined the concentrations of lead, cadmium, chromium, mercury, manganese, and selenium in feathers, liver, kidney, heart, brain, and breast muscle of Franklin`s gulls (Larus pipixcan) nesting in northwestern Minnesota, USA, in 1994. Between 16% (chromium) and 71% (selenium, manganese) of the variation in metal concentrations was explained by tissue and age, except for selenium and arsenic, which were only explained by tissue. Of 35 possible differences (seven metals in five tissues), 24 significant age-related differences were found in Franklin`s gulls, with young generally having lower concentrations of metals in all of their tissues than adults. A notable exceptionmore » was the liver; young had significantly higher concentrations of selenium, chromium, manganese, and arsenic than did adults. Three notable findings were the following: young had significantly higher concentrations of selenium, chromium, manganese, and arsenic in their liver than did adults; young had 30 times as much chromium in the liver than adults; and adults had greatly elevated concentrations of cadmium in feathers, kidney, and liver.« less

  17. Soft Tissue Sarcoma—Health Professional Version

    Cancer.gov

    Soft tissue sarcomas are malignant tumors that arise in any of the mesodermal tissues of the extremities, trunk and retroperitoneum, or head and neck. Soft tissue sarcomas may be heterogeneous. Find evidence-based information on soft tissue sarcoma treatment and research.

  18. Tissue bioengineering and artificial organs.

    PubMed

    Llames, Sara; García, Eva; Otero Hernández, Jesús; Meana, Alvaro

    2012-01-01

    The scarcity of organs and tissues for transplant and the need of immunosuppressive drugs to avoid rejection constitute two reasons that justify organ and tissue production in the laboratory. Tissue engineering based tissues (TE) could allow to regenerate the whole organ from a fragment or even to produce several organs from an organ donor for grafting purposes. TE is based in: (1) the ex vivo expansion of cells, (2) the seeding of these expanded cells in tridimensional structures that mimic physiological conditions and, (3) grafting the prototype. In order to graft big structures it is necessary that the organ or tissue produced "ex vivo" bears a vascular tree to ensure the nutrition of its deep layers. At present, no technology has been developed to provide this vascular tree to TE derived products. Thus, these tissues must be thin enough to acquire nutrients during the first days by diffusion from surrounding tissues. This fact constitutes nowadays the greatest limitation of technologies for organ development in the laboratory.In this chapter, all these problems and their possible solutions are commented. Also, the present status of TE techniques in the regeneration of different organ systems is reviewed.

  19. Breast reconstruction - natural tissue

    MedlinePlus

    ... flap; TUG; Mastectomy - breast reconstruction with natural tissue; Breast cancer - breast reconstruction with natural tissue ... it harder to find a tumor if your breast cancer comes back. The advantage of breast reconstruction with ...

  20. Hydrostatic Pressure in Articular Cartilage Tissue Engineering: From Chondrocytes to Tissue Regeneration

    PubMed Central

    Elder, Benjamin D.

    2009-01-01

    Cartilage has a poor intrinsic healing response, and neither the innate healing response nor current clinical treatments can restore its function. Therefore, articular cartilage tissue engineering is a promising approach for the regeneration of damaged tissue. Because cartilage is exposed to mechanical forces during joint loading, many tissue engineering strategies use exogenous stimuli to enhance the biochemical or biomechanical properties of the engineered tissue. Hydrostatic pressure (HP) is emerging as arguably one of the most important mechanical stimuli for cartilage, although no optimal treatment has been established across all culture systems. Therefore, this review evaluates prior studies on articular cartilage involving the use of HP, with a particular emphasis on the treatments that appear promising for use in future studies. Additionally, this review addresses HP bioreactor design, chondroprotective effects of HP, the use of HP for chondrogenic differentiation, the effects of high pressures, and HP mechanotransduction. PMID:19196119

  1. Hydrostatic pressure in articular cartilage tissue engineering: from chondrocytes to tissue regeneration.

    PubMed

    Elder, Benjamin D; Athanasiou, Kyriacos A

    2009-03-01

    Cartilage has a poor intrinsic healing response, and neither the innate healing response nor current clinical treatments can restore its function. Therefore, articular cartilage tissue engineering is a promising approach for the regeneration of damaged tissue. Because cartilage is exposed to mechanical forces during joint loading, many tissue engineering strategies use exogenous stimuli to enhance the biochemical or biomechanical properties of the engineered tissue. Hydrostatic pressure (HP) is emerging as arguably one of the most important mechanical stimuli for cartilage, although no optimal treatment has been established across all culture systems. Therefore, this review evaluates prior studies on articular cartilage involving the use of HP, with a particular emphasis on the treatments that appear promising for use in future studies. Additionally, this review addresses HP bioreactor design, chondroprotective effects of HP, the use of HP for chondrogenic differentiation, the effects of high pressures, and HP mechanotransduction.

  2. Tissue preparation for immunocytochemistry.

    PubMed Central

    Williams, J H; Mepham, B L; Wright, D H

    1997-01-01

    AIMS: To investigate the effect of tissue preparation on immunostaining and to establish whether there is a standard tissue preparation schedule that allows optimal demonstration of all antigens. METHODS: Blocks of tonsil were subjected to variations to a standard fixation, processing, and section preparation schedule. The sections were stained with five antibodies-L26 (CD20), UCHL1 (CD45RO), CD3, vimentin, and anti-kappa light chain--using the streptavidinbiotin immunostaining technique. When further investigation was necessary, other tissues and antibodies were used and where weak immunostaining was obtained the use of microwave pretreatment to improve staining was tested. RESULTS: Several factors involved in fixation were found to affect immunoreactivity. These included the duration, pH, and type of fixative used. In tissue processing only temperature and the duration of the dehydration and wax infiltration steps affected immunoreactivity. Of all the factors investigated, the temperature and duration of the section drying had the greatest effect. In contrast, long term storage of cut sections before immunostaining had no effect on the reactivity of the antibodies tested. Antibodies were found to be affected by alterations to tissue preparation by varying degrees, UCHL1 and vimentin being the most susceptible to changes in fixation and L26 to changes in processing. Where weak staining occurred, microwave pretreatment was generally found to eliminate the problem. CONCLUSIONS: There is no standard tissue preparation schedule for the optimal demonstration of all antigens. Factors involved in all aspects of tissue preparation can affect immunoreactivity, so it is important that precise details of the preparation schedule are given when reporting immunocytochemical studies, rather than using the general term "routinely fixed and processed". Images PMID:9215127

  3. Active dynamics of tissue shear flow

    NASA Astrophysics Data System (ADS)

    Popović, Marko; Nandi, Amitabha; Merkel, Matthias; Etournay, Raphaël; Eaton, Suzanne; Jülicher, Frank; Salbreux, Guillaume

    2017-03-01

    We present a hydrodynamic theory to describe shear flows in developing epithelial tissues. We introduce hydrodynamic fields corresponding to state properties of constituent cells as well as a contribution to overall tissue shear flow due to rearrangements in cell network topology. We then construct a generic linear constitutive equation for the shear rate due to topological rearrangements and we investigate a novel rheological behaviour resulting from memory effects in the tissue. We identify two distinct active cellular processes: generation of active stress in the tissue, and actively driven topological rearrangements. We find that these two active processes can produce distinct cellular and tissue shape changes, depending on boundary conditions applied on the tissue. Our findings have consequences for the understanding of tissue morphogenesis during development.

  4. Depth-resolved fluorescence of biological tissue

    NASA Astrophysics Data System (ADS)

    Wu, Yicong; Xi, Peng; Cheung, Tak-Hong; Yim, So Fan; Yu, Mei-Yung; Qu, Jianan Y.

    2005-06-01

    The depth-resolved autofluorescence ofrabbit oral tissue, normal and dysplastic human ectocervical tissue within l20μm depth were investigated utilizing a confocal fluorescence spectroscopy with the excitations at 355nm and 457nm. From the topmost keratinizing layer of oral and ectocervical tissue, strong keratin fluorescence with the spectral characteristics similar to collagen was observed. The fluorescence signal from epithelial tissue between the keratinizing layer and stroma can be well resolved. Furthermore, NADH and FADfluorescence measured from the underlying non-keratinizing epithelial layer were strongly correlated to the tissue pathology. This study demonstrates that the depth-resolved fluorescence spectroscopy can reveal fine structural information on epithelial tissue and potentially provide more accurate diagnostic information for determining tissue pathology.

  5. The peterborough hospital human tissue bank.

    PubMed

    Womack, C; Gray, N; Aikens, J; Jack, A

    2000-01-01

    The Peterborough Hospital Human Tissue Bank, based in the Cellular Pathology Department of the District Hospital, has been successful in supplying commercial biomedical companies with human tissue for research purposes. Tissue is obtained from routine surgical specimens sent to the laboratory for diagnostic testing and from cadaveric donors examined in the hospital mortuary. All tissue is obtained legally and with the full informed consent of the patient, donor or relative, as appropriate. The mechanism of retrieving, storing and supplying human tissue is described. In publishing the activities of the tissue bank at Peterborough, we wish to encourage others to consider the availability of human tissue in their locality. We recommend a strict legal and ethical code, particularly in relation to fully informed consent. 2000 FRAME.

  6. Biomaterials for Tissue Engineering

    PubMed Central

    Lee, Esther J.; Kasper, F. Kurtis; Mikos, Antonios G.

    2013-01-01

    Biomaterials serve as an integral component of tissue engineering. They are designed to provide architectural framework reminiscent of native extracellular matrix in order to encourage cell growth and eventual tissue regeneration. Bone and cartilage represent two distinct tissues with varying compositional and mechanical properties. Despite these differences, both meet at the osteochondral interface. This article presents an overview of current biomaterials employed in bone and cartilage applications, discusses some design considerations, and alludes to future prospects within this field of research. PMID:23820768

  7. New Methods in Tissue Engineering

    PubMed Central

    Sheahan, Timothy P.; Rice, Charles M.; Bhatia, Sangeeta N.

    2015-01-01

    New insights in the study of virus and host biology in the context of viral infection are made possible by the development of model systems that faithfully recapitulate the in vivo viral life cycle. Standard tissue culture models lack critical emergent properties driven by cellular organization and in vivo–like function, whereas animal models suffer from limited susceptibility to relevant human viruses and make it difficult to perform detailed molecular manipulation and analysis. Tissue engineering techniques may enable virologists to create infection models that combine the facile manipulation and readouts of tissue culture with the virus-relevant complexity of animal models. Here, we review the state of the art in tissue engineering and describe how tissue engineering techniques may alleviate some common shortcomings of existing models of viral infection, with a particular emphasis on hepatotropic viruses. We then discuss possible future applications of tissue engineering to virology, including current challenges and potential solutions. PMID:25893203

  8. Rapid wall relaxation in elongating tissues.

    PubMed

    Matyssek, R; Maruyama, S; Boyer, J S

    1988-04-01

    Reported differences in the relaxation of cell walls in enlarging stem tissues of soybean (Glycine max [L.] Merr.) and pea (Pisum sativum L.) cause measurements of the yield threshold turgor, an important growth parameter, to be in doubt. Using the pressure probe and guillotine psychrometer, we investigated wall relaxation in these species by excising the elongating tissue in air to remove the water supply. We found that the rapid kinetics usually exhibited by soybean could be delayed and made similar to the slow kinetics previously reported for pea if slowly growing or mature tissue was left attached to the rapidly growing tissue when relaxation was initiated. The greater the amount of attached tissue, the slower the relaxation, suggesting that slowly growing tissue acted as a water source. Consistent with this concept was a lower water potential in the rapidly elongating tissue than in the slowly growing tissue. Previous reports of wall relaxation in pea included slowly growing tissue. If this tissue was removed from pea, relaxation became as rapid as usually exhibited by soybean. It is concluded that the true relaxation of cell walls to the yield threshold requires only a few minutes and that the yield threshold should be constant during so short a time, thus reflecting the yield threshold in the intact plant before excision. Under these conditions, the yield threshold was close to the turgor in the intact plant regardless of the species. The presence of slowly growing or mature tissue delays wall relaxation and should be avoided during such measurements. However, this delay can be used to advantage when turgor of intact growing tissues is being measured using excised tissues because turgor does not change for a considerable time after excision.

  9. Microfluidic hydrogels for tissue engineering.

    PubMed

    Huang, Guo You; Zhou, Li Hong; Zhang, Qian Cheng; Chen, Yong Mei; Sun, Wei; Xu, Feng; Lu, Tian Jian

    2011-03-01

    With advanced properties similar to the native extracellular matrix, hydrogels have found widespread applications in tissue engineering. Hydrogel-based cellular constructs have been successfully developed to engineer different tissues such as skin, cartilage and bladder. Whilst significant advances have been made, it is still challenging to fabricate large and complex functional tissues due mainly to the limited diffusion capability of hydrogels. The integration of microfluidic networks and hydrogels can greatly enhance mass transport in hydrogels and spatiotemporally control the chemical microenvironment of cells, mimicking the function of native microvessels. In this review, we present and discuss recent advances in the fabrication of microfluidic hydrogels from the viewpoint of tissue engineering. Further development of new hydrogels and microengineering technologies will have a great impact on tissue engineering.

  10. Multimodality instrument for tissue characterization

    NASA Technical Reports Server (NTRS)

    Mah, Robert W. (Inventor); Andrews, Russell J. (Inventor)

    2004-01-01

    A system with multimodality instrument for tissue identification includes a computer-controlled motor driven heuristic probe with a multisensory tip. For neurosurgical applications, the instrument is mounted on a stereotactic frame for the probe to penetrate the brain in a precisely controlled fashion. The resistance of the brain tissue being penetrated is continually monitored by a miniaturized strain gauge attached to the probe tip. Other modality sensors may be mounted near the probe tip to provide real-time tissue characterizations and the ability to detect the proximity of blood vessels, thus eliminating errors normally associated with registration of pre-operative scans, tissue swelling, elastic tissue deformation, human judgement, etc., and rendering surgical procedures safer, more accurate, and efficient. A neural network program adaptively learns the information on resistance and other characteristic features of normal brain tissue during the surgery and provides near real-time modeling. A fuzzy logic interface to the neural network program incorporates expert medical knowledge in the learning process. Identification of abnormal brain tissue is determined by the detection of change and comparison with previously learned models of abnormal brain tissues. The operation of the instrument is controlled through a user friendly graphical interface. Patient data is presented in a 3D stereographics display. Acoustic feedback of selected information may optionally be provided. Upon detection of the close proximity to blood vessels or abnormal brain tissue, the computer-controlled motor immediately stops probe penetration. The use of this system will make surgical procedures safer, more accurate, and more efficient. Other applications of this system include the detection, prognosis and treatment of breast cancer, prostate cancer, spinal diseases, and use in general exploratory surgery.

  11. Connective tissue ulcers.

    PubMed

    Dabiri, Ganary; Falanga, Vincent

    2013-11-01

    Connective tissue disorders (CTD), which are often also termed collagen vascular diseases, include a number of related inflammatory conditions. Some of these diseases include rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis (scleroderma), localized scleroderma (morphea variants localized to the skin), Sjogren's syndrome, dermatomyositis, polymyositis, and mixed connective tissue disease. In addition to the systemic manifestations of these diseases, there are a number of cutaneous features that make these conditions recognizable on physical exam. Lower extremity ulcers and digital ulcers are an infrequent but disabling complication of long-standing connective tissue disease. The exact frequency with which these ulcers occur is not known, and the cause of the ulcerations is often multifactorial. Moreover, a challenging component of CTD ulcerations is that there are still no established guidelines for their diagnosis and treatment. The morbidity associated with these ulcerations and their underlying conditions is very substantial. Indeed, these less common but intractable ulcers represent a major medical and economic problem for patients, physicians and nurses, and even well organized multidisciplinary wound healing centers. Copyright © 2013 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  12. Fibrovascular tissue in bilateral juxtafoveal telangiectasis.

    PubMed

    Park, D; Schatz, H; McDonald, H R; Johnson, R N

    1996-09-01

    To study the natural history and retinal findings associated with the intraretinal and subretinal fibrovascular tissues that develop in the late phases of bilateral juxtafoveal telangiectasis. The records of 10 patients (11 eyes) with bilateral juxtafoveal telangiectasis who developed these fibrovascular tissues were examined. Throughout the follow-up period (average 44 months), only 2 eyes (18%) lost 2 or more lines of vision; the final visual acuities were similar for the eyes both with and without fibrovascular tissues. Sixty-four percent of fibrovascular tissues showed little to no growth. Eyes with fibrovascular tissue commonly had retinal pigment epithelial hyperplasia (72%), draining retinal venules (82%), and retinal vascular distortion (64%). Fibrovascular tissues of bilateral juxtafoveal telangiectasis have little proliferative potential and minimal effects on visual acuity. Nevertheless, these fibrovascular tissues do remodel over time, leading to retinal vascular distortion. Given these benign findings, the role of laser photocoagulation treatment of these tissues is questionable.

  13. Biomimetic heterogenous elastic tissue development.

    PubMed

    Tsai, Kai Jen; Dixon, Simon; Hale, Luke Richard; Darbyshire, Arnold; Martin, Daniel; de Mel, Achala

    2017-01-01

    There is an unmet need for artificial tissue to address current limitations with donor organs and problems with donor site morbidity. Despite the success with sophisticated tissue engineering endeavours, which employ cells as building blocks, they are limited to dedicated labs suitable for cell culture, with associated high costs and long tissue maturation times before available for clinical use. Direct 3D printing presents rapid, bespoke, acellular solutions for skull and bone repair or replacement, and can potentially address the need for elastic tissue, which is a major constituent of smooth muscle, cartilage, ligaments and connective tissue that support organs. Thermoplastic polyurethanes are one of the most versatile elastomeric polymers. Their segmented block copolymeric nature, comprising of hard and soft segments allows for an almost limitless potential to control physical properties and mechanical behaviour. Here we show direct 3D printing of biocompatible thermoplastic polyurethanes with Fused Deposition Modelling, with a view to presenting cell independent in-situ tissue substitutes. This method can expeditiously and economically produce heterogenous, biomimetic elastic tissue substitutes with controlled porosity to potentially facilitate vascularisation. The flexibility of this application is shown here with tubular constructs as exemplars. We demonstrate how these 3D printed constructs can be post-processed to incorporate bioactive molecules. This efficacious strategy, when combined with the privileges of digital healthcare, can be used to produce bespoke elastic tissue substitutes in-situ, independent of extensive cell culture and may be developed as a point-of-care therapy approach.

  14. Functional Attachment of Soft Tissues to Bone: Development, Healing, and Tissue Engineering

    PubMed Central

    Lu, Helen H.; Thomopoulos, Stavros

    2014-01-01

    Connective tissues such as tendons or ligaments attach to bone across a multitissue interface with spatial gradients in composition, structure, and mechanical properties. These gradients minimize stress concentrations and mediate load transfer between the soft and hard tissues. Given the high incidence of tendon and ligament injuries and the lack of integrative solutions for their repair, interface regeneration remains a significant clinical challenge. This review begins with a description of the developmental processes and the resultant structure-function relationships that translate into the functional grading necessary for stress transfer between soft tissue and bone. It then discusses the interface healing response, with a focus on the influence of mechanical loading and the role of cell-cell interactions. The review continues with a description of current efforts in interface tissue engineering, highlighting key strategies for the regeneration of the soft tissue–to-bone interface, and concludes with a summary of challenges and future directions. PMID:23642244

  15. The comparison of thermal tissue injuries caused by ultrasonic scalpel and electrocautery use in rabbit tongue tissue

    PubMed Central

    Beriat, Guclu Kaan; Akmansu, Sefik Halit; Ezerarslan, Hande; Dogan, Cem; Han, Unsal; Saglam, Mehmet; Senel, Oytun Okan; Kocaturk, Sinan

    2012-01-01

    The aim of this study compares to the increase in tissue temperature and the thermal histological effects of ultrasonic scalpel, bipolar and unipolar electrosurgery incisions in the tongue tissue of rabbits. This study evaluates the histopathological changes related to thermal change and the maximum temperature values in the peripheral tissue brought about by the incisions carried out by the three methods in a comparative way. To assess thermal tissue damage induced by the three instruments, maximum tissue temperatures were measured during the surgical procedure and tongue tissue samples were examined histopathologically following the surgery. The mean maximum temperature values of the groups were 93.93±2.76 C° for the unipolar electrocautery group, whereas 85.07±5.95 C° for the bipolar electrocautery group, and 108.23±7.64 C° for the ultrasonic scalpel group. There was a statistically significant relationship between the increase in maximum temperature values and the separation among tissue layers, edema, congestion, necrosis, hemorrhage, destruction in blood vessel walls and fibrin accumulation, and between the existence of fibrin thrombus and tissue damage depth (p<0.05). It was concluded that the bipolar electrocautery use gives way to less temperature increase in the tissues and less thermal tissue damage in comparison to the other methods. PMID:22938541

  16. Tissues Use Resident Dendritic Cells and Macrophages to Maintain Homeostasis and to Regain Homeostasis upon Tissue Injury: The Immunoregulatory Role of Changing Tissue Environments

    PubMed Central

    Lech, Maciej; Gröbmayr, Regina; Weidenbusch, Marc; Anders, Hans-Joachim

    2012-01-01

    Most tissues harbor resident mononuclear phagocytes, that is, dendritic cells and macrophages. A classification that sufficiently covers their phenotypic heterogeneity and plasticity during homeostasis and disease does not yet exist because cell culture-based phenotypes often do not match those found in vivo. The plasticity of mononuclear phagocytes becomes obvious during dynamic or complex disease processes. Different data interpretation also originates from different conceptual perspectives. An immune-centric view assumes that a particular priming of phagocytes then causes a particular type of pathology in target tissues, conceptually similar to antigen-specific T-cell priming. A tissue-centric view assumes that changing tissue microenvironments shape the phenotypes of their resident and infiltrating mononuclear phagocytes to fulfill the tissue's need to maintain or regain homeostasis. Here we discuss the latter concept, for example, why different organs host different types of mononuclear phagocytes during homeostasis. We further discuss how injuries alter tissue environments and how this primes mononuclear phagocytes to enforce this particular environment, for example, to support host defense and pathogen clearance, to support the resolution of inflammation, to support epithelial and mesenchymal healing, and to support the resolution of fibrosis to the smallest possible scar. Thus, organ- and disease phase-specific microenvironments determine macrophage and dendritic cell heterogeneity in a temporal and spatial manner, which assures their support to maintain and regain homeostasis in whatever condition. Mononuclear phagocytes contributions to tissue pathologies relate to their central roles in orchestrating all stages of host defense and wound healing, which often become maladaptive processes, especially in sterile and/or diffuse tissue injuries. PMID:23251037

  17. 21 CFR 878.4010 - Tissue adhesive.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., is a device used for adhesion of internal tissues and vessels. (2) Classification. Class III... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tissue adhesive. 878.4010 Section 878.4010 Food... DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4010 Tissue adhesive. (a) Tissue...

  18. 21 CFR 878.4010 - Tissue adhesive.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., is a device used for adhesion of internal tissues and vessels. (2) Classification. Class III... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Tissue adhesive. 878.4010 Section 878.4010 Food... DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4010 Tissue adhesive. (a) Tissue...

  19. Trade in human tissue products.

    PubMed

    Tonti-Filippini, Nicholas; Zeps, Nikolajs

    2011-03-07

    Trade in human tissue in Australia is prohibited by state law, and in ethical guidelines by the National Health and Medical Research Council: National statement on ethical conduct in human research; Organ and tissue donation by living donors: guidelines for ethical practice for health professionals. However, trade in human tissue products is a common practice especially for: reconstructive orthopaedic or plastic surgery; novel human tissue products such as a replacement trachea created by using human mesenchymal stem cells; biomedical research using cell lines, DNA and protein provided through biobanks. Cost pressures on these have forced consideration of commercial models to sustain their operations. Both the existing and novel activities require a robust framework to enable commercial uses of human tissue products while maintaining community acceptability of such practices, but to date no such framework exists. In this article, we propose a model ethical framework for ethical governance which identifies specific ethical issues such as: privacy; unique value of a person's tissue; commodification of the body; equity and benefit to the community; perverse incentives; and "attenuation" as a potentially useful concept to help deal with the broad range of subjective views relevant to whether it is acceptable to commercialise certain human tissue products.

  20. Soft Tissue Sarcoma—Patient Version

    Cancer.gov

    Soft tissue sarcoma is a cancer that starts in soft tissues like muscle, tendons, fat, lymph vessels, blood vessels, and nerves. These cancers can develop anywhere in the body but are found mostly in the arms, legs, chest, and abdomen. Start here to find information on soft tissue sarcoma treatment and research.

  1. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... cell culture processing applications. 876.5885 Section 876.5885 Food and Drugs FOOD AND DRUG... DEVICES Therapeutic Devices § 876.5885 Tissue culture media for human ex vivo tissue and cell culture processing applications. (a) Identification. Tissue culture media for human ex vivo tissue and cell culture...

  2. NAFTA: A Partial Solution Not a Savior to Mexico’s Economic Woes

    DTIC Science & Technology

    2011-10-28

    Mexico .” Economia Mexicana. 15 January 2004. http://www.economiamexicana.cide.edu/num_anteriores/XIV-2/LILIANA_MEZA.pdf (accessed: 28 October 2011... Mexico .” Economia Mexicana. 15 January 2004. http://www.economiamexicana.cide.edu/num_anteriores/XIV-2/LILIANA_MEZA.pdf (accessed: 28 October 2011...Trade Agreement, NAFTA, Mexico Economy, Trade Liberalization 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a

  3. Challenges in Cardiac Tissue Engineering

    PubMed Central

    Tandon, Nina; Godier, Amandine; Maidhof, Robert; Marsano, Anna; Martens, Timothy P.; Radisic, Milica

    2010-01-01

    Cardiac tissue engineering aims to create functional tissue constructs that can reestablish the structure and function of injured myocardium. Engineered constructs can also serve as high-fidelity models for studies of cardiac development and disease. In a general case, the biological potential of the cell—the actual “tissue engineer”—is mobilized by providing highly controllable three-dimensional environments that can mediate cell differentiation and functional assembly. For cardiac regeneration, some of the key requirements that need to be met are the selection of a human cell source, establishment of cardiac tissue matrix, electromechanical cell coupling, robust and stable contractile function, and functional vascularization. We review here the potential and challenges of cardiac tissue engineering for developing therapies that could prevent or reverse heart failure. PMID:19698068

  4. Variation in glycogen concentrations within mantle and foot tissue in Amblema plicata plicata: Implications for tissue biopsy sampling

    USGS Publications Warehouse

    Naimo, T.J.; Monroe, E.M.

    1999-01-01

    With the development of techniques to non-lethally biopsy tissue from unionids, a new method is available to measure changes in biochemical, contaminant, and genetic constituents in this imperiled faunal group. However, before its widespread application, information on the variability of biochemical components within and among tissues needs to be evaluated. We measured glycogen concentrations in foot and mantle tissue in Amblema plicata plicata (Say, 1817) to determine if glycogen was evenly distributed within and between tissues and to determine which tissue might be more responsive to the stress associated with relocating mussels. Glycogen was measured in two groups of mussels: those sampled from their native environment (undisturbed mussels) and quickly frozen for analysis and those relocated into an artificial pond (relocated mussels) for 24 months before analysis. In both undisturbed and relocated mussels, glycogen concentrations were evenly distributed within foot, but not within mantle tissue. In mantle tissue, concentrations of glycogen varied about 2-fold among sections. In addition, glycogen varied significantly between tissues in undisturbed mussels, but not in relocated mussels. Twenty-four months after relocation, glycogen concentrations had declined by 80% in mantle tissue and by 56% in foot tissue relative to the undisturbed mussels. These data indicate that representative biopsy samples can be obtained from foot tissue, but not mantle tissue. We hypothesize that mantle tissue could be more responsive to the stress of relocation due to its high metabolic activity associated with shell formation.

  5. TISSUES 2.0: an integrative web resource on mammalian tissue expression

    PubMed Central

    Palasca, Oana; Santos, Alberto; Stolte, Christian; Gorodkin, Jan; Jensen, Lars Juhl

    2018-01-01

    Abstract Physiological and molecular similarities between organisms make it possible to translate findings from simpler experimental systems—model organisms—into more complex ones, such as human. This translation facilitates the understanding of biological processes under normal or disease conditions. Researchers aiming to identify the similarities and differences between organisms at the molecular level need resources collecting multi-organism tissue expression data. We have developed a database of gene–tissue associations in human, mouse, rat and pig by integrating multiple sources of evidence: transcriptomics covering all four species and proteomics (human only), manually curated and mined from the scientific literature. Through a scoring scheme, these associations are made comparable across all sources of evidence and across organisms. Furthermore, the scoring produces a confidence score assigned to each of the associations. The TISSUES database (version 2.0) is publicly accessible through a user-friendly web interface and as part of the STRING app for Cytoscape. In addition, we analyzed the agreement between datasets, across and within organisms, and identified that the agreement is mainly affected by the quality of the datasets rather than by the technologies used or organisms compared. Database URL: http://tissues.jensenlab.org/ PMID:29617745

  6. Evaluation of allograft contamination and decontamination at the Treviso Tissue Bank Foundation: A retrospective study of 11,129 tissues.

    PubMed

    Paolin, Adolfo; Trojan, Diletta; Petit, Pieter; Coato, Paola; Rigoli, Roberto

    2017-01-01

    Microbiological contamination of retrieved tissues has become a very important topic and a critical aspect in the safety of allografts. We have analysed contamination in 11,129 tissues with a longitudinal contamination profile for each individual tissue. More specifically, 10,035 musculoskeletal tissues and 1,094 cardiovascular tissues were retrieved from a total of 763 multi-tissue donors, of whom 105 were heart-beating donors as well as organ donors, while the remaining 658 were non-heart beating donors and tissue donors only. All tissues were decontaminated twice, the first time immediately after retrieval and the second time after processing. Each tissue was submitted to microbiological culture three times, i.e., upon retrieval (Time 1), after the first decontamination (Time 2) and after the second decontamination (Time 3). The contamination rate for musculoskeletal tissues was 52%, 16.2% and 0.5% at Time 1, 2 and 3, respectively. The contamination rate for cardiovascular tissues was 84%, 42% and 6%. More than one strain was simultaneously present in 10.8% of musculoskeletal tissues and 44.6% of cardiovascular tissues. Out of 8,560 non-heart-beating donor musculoskeletal tissues, 4,689 (54.8%), 1,383 (16.2%) and 42 (0.5%) were contaminated at Time 1, Time 2 and Time 3, respectively. Out of 1,475 heart-beating donor musculoskeletal tissues, 522 (35.4%) 113 (7.7%) and 2 (0.1%) tissues were found to be contaminated at Time 1, 2 and 3, respectively. Out of 984 non-heart beating donor cardiovascular tissues, 869 (88.3%), 449 (45.6%) and 69 (7%) proved positive at Time 1, 2 and 3 respectively, while 50 (45.5%) and 10 (9.1%) heart-beating donor cardiovascular tissues were contaminated at Time 1 and 2. No tissue was contaminated at Time 3. Based on our methods, the two-step decontamination approach is mandatory in order to drastically reduce the number of tissues found to be positive at the end of the process.

  7. Evaluation of allograft contamination and decontamination at the Treviso Tissue Bank Foundation: A retrospective study of 11,129 tissues

    PubMed Central

    Paolin, Adolfo; Trojan, Diletta; Petit, Pieter; Coato, Paola; Rigoli, Roberto

    2017-01-01

    Microbiological contamination of retrieved tissues has become a very important topic and a critical aspect in the safety of allografts. We have analysed contamination in 11,129 tissues with a longitudinal contamination profile for each individual tissue. More specifically, 10,035 musculoskeletal tissues and 1,094 cardiovascular tissues were retrieved from a total of 763 multi-tissue donors, of whom 105 were heart-beating donors as well as organ donors, while the remaining 658 were non-heart beating donors and tissue donors only. All tissues were decontaminated twice, the first time immediately after retrieval and the second time after processing. Each tissue was submitted to microbiological culture three times, i.e., upon retrieval (Time 1), after the first decontamination (Time 2) and after the second decontamination (Time 3). The contamination rate for musculoskeletal tissues was 52%, 16.2% and 0.5% at Time 1, 2 and 3, respectively. The contamination rate for cardiovascular tissues was 84%, 42% and 6%. More than one strain was simultaneously present in 10.8% of musculoskeletal tissues and 44.6% of cardiovascular tissues. Out of 8,560 non-heart-beating donor musculoskeletal tissues, 4,689 (54.8%), 1,383 (16.2%) and 42 (0.5%) were contaminated at Time 1, Time 2 and Time 3, respectively. Out of 1,475 heart-beating donor musculoskeletal tissues, 522 (35.4%) 113 (7.7%) and 2 (0.1%) tissues were found to be contaminated at Time 1, 2 and 3, respectively. Out of 984 non-heart beating donor cardiovascular tissues, 869 (88.3%), 449 (45.6%) and 69 (7%) proved positive at Time 1, 2 and 3 respectively, while 50 (45.5%) and 10 (9.1%) heart-beating donor cardiovascular tissues were contaminated at Time 1 and 2. No tissue was contaminated at Time 3. Based on our methods, the two-step decontamination approach is mandatory in order to drastically reduce the number of tissues found to be positive at the end of the process. PMID:28267776

  8. Radiation sterilization of tissue allografts: A review.

    PubMed

    Singh, Rita; Singh, Durgeshwer; Singh, Antaryami

    2016-04-28

    Tissue substitutes are required in a number of clinical conditions for treatment of injured and diseased tissues. Tissues like bone, skin, amniotic membrane and soft tissues obtained from human donor can be used for repair or reconstruction of the injured part of the body. Allograft tissues from human donor provide an excellent alternative to autografts. However, major concern with the use of allografts is the risk of infectious disease transmission. Therefore, tissue allografts should be sterilized to make them safe for clinical use. Gamma radiation has several advantages and is the most suitable method for sterilization of biological tissues. This review summarizes the use of gamma irradiation technology as an effective method for sterilization of biological tissues and ensuring safety of tissue allografts.

  9. Radiation sterilization of tissue allografts: A review

    PubMed Central

    Singh, Rita; Singh, Durgeshwer; Singh, Antaryami

    2016-01-01

    Tissue substitutes are required in a number of clinical conditions for treatment of injured and diseased tissues. Tissues like bone, skin, amniotic membrane and soft tissues obtained from human donor can be used for repair or reconstruction of the injured part of the body. Allograft tissues from human donor provide an excellent alternative to autografts. However, major concern with the use of allografts is the risk of infectious disease transmission. Therefore, tissue allografts should be sterilized to make them safe for clinical use. Gamma radiation has several advantages and is the most suitable method for sterilization of biological tissues. This review summarizes the use of gamma irradiation technology as an effective method for sterilization of biological tissues and ensuring safety of tissue allografts. PMID:27158422

  10. A search for natural bioactive compounds in Bolivia through a multidisciplinary approach. Part VI. Evaluation of the antimalarial activity of plants used by Isoceño-Guaraní Indians.

    PubMed

    Bourdy, G; Oporto, P; Gimenez, A; Deharo, E

    2004-08-01

    Seventy-seven plant extracts (corresponding to 62 different species) traditionally used by the Isoceño-Guaraní, a native community living in the Bolivian Chaco, were screened for antimalarial activity in vitro on Plasmodium falciparum chloroquine sensitive strain (F32), and on ferriprotoporphyrin (FP) IX biocrystallisation inhibition test (FBIT). Among these extracts, seven displayed strong in vitro antimalarial activity, and 25 were active in the FBIT test. Positive results on both tests were recorded for six extracts: Argemone subfusiformis aerial part, Aspidosperma quebracho-blanco bark, Castela coccinea leaves and bark, Solanum argentinum leaves and Vallesia glabra bark. Results are discussed in relation with Isoceño-Guaraní traditional medicine. Further studies to be undertaken in relation with these results are also highlighted.

  11. Collagen in Human Tissues: Structure, Function, and Biomedical Implications from a Tissue Engineering Perspective

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Preethi; Prabhakaran, Molamma P.; Sireesha, Merum; Ramakrishna, Seeram

    The extracellular matrix is a complex biological structure encoded with various proteins, among which the collagen family is the most significant and abundant of all, contributing 30-35% of the whole-body protein. "Collagen" is a generic term for proteins that forms a triple-helical structure with three polypeptide chains, and around 29 types of collagen have been identified up to now. Although most of the members of the collagen family form such supramolecular structures, extensive diversity exists between each type of collagen. The diversity is not only based on the molecular assembly and supramolecular structures of collagen types but is also observed within its tissue distribution, function, and pathology. Collagens possess complex hierarchical structures and are present in various forms such as collagen fibrils (1.5-3.5 nm wide), collagen fibers (50-70 nm wide), and collagen bundles (150-250 nm wide), with distinct properties characteristic of each tissue providing elasticity to skin, softness of the cartilage, stiffness of the bone and tendon, transparency of the cornea, opaqueness of the sclera, etc. There exists an exclusive relation between the structural features of collagen in human tissues (such as the collagen composition, collagen fibril length and diameter, collagen distribution, and collagen fiber orientation) and its tissue-specific mechanical properties. In bone, a transverse collagen fiber orientation prevails in regions of higher compressive stress whereas longitudinally oriented collagen fibers correlate to higher tensile stress. The immense versatility of collagen compels a thorough understanding of the collagen types and this review discusses the major types of collagen found in different human tissues, highlighting their tissue-specific uniqueness based on their structure and mechanical function. The changes in collagen during a specific tissue damage or injury are discussed further, focusing on the many tissue engineering applications for

  12. Epoxyeicosanoids promote organ and tissue regeneration.

    PubMed

    Panigrahy, Dipak; Kalish, Brian T; Huang, Sui; Bielenberg, Diane R; Le, Hau D; Yang, Jun; Edin, Matthew L; Lee, Craig R; Benny, Ofra; Mudge, Dayna K; Butterfield, Catherine E; Mammoto, Akiko; Mammoto, Tadanori; Inceoglu, Bora; Jenkins, Roger L; Simpson, Mary A; Akino, Tomoshige; Lih, Fred B; Tomer, Kenneth B; Ingber, Donald E; Hammock, Bruce D; Falck, John R; Manthati, Vijaya L; Kaipainen, Arja; D'Amore, Patricia A; Puder, Mark; Zeldin, Darryl C; Kieran, Mark W

    2013-08-13

    Epoxyeicosatrienoic acids (EETs), lipid mediators produced by cytochrome P450 epoxygenases, regulate inflammation, angiogenesis, and vascular tone. Despite pleiotropic effects on cells, the role of these epoxyeicosanoids in normal organ and tissue regeneration remains unknown. EETs are produced predominantly in the endothelium. Normal organ and tissue regeneration require an active paracrine role of the microvascular endothelium, which in turn depends on angiogenic growth factors. Thus, we hypothesize that endothelial cells stimulate organ and tissue regeneration via production of bioactive EETs. To determine whether endothelial-derived EETs affect physiologic tissue growth in vivo, we used genetic and pharmacological tools to manipulate endogenous EET levels. We show that endothelial-derived EETs play a critical role in accelerating tissue growth in vivo, including liver regeneration, kidney compensatory growth, lung compensatory growth, wound healing, corneal neovascularization, and retinal vascularization. Administration of synthetic EETs recapitulated these results, whereas lowering EET levels, either genetically or pharmacologically, delayed tissue regeneration, demonstrating that pharmacological modulation of EETs can affect normal organ and tissue growth. We also show that soluble epoxide hydrolase inhibitors, which elevate endogenous EET levels, promote liver and lung regeneration. Thus, our observations indicate a central role for EETs in organ and tissue regeneration and their contribution to tissue homeostasis.

  13. Biomechanics and mechanobiology in functional tissue engineering

    PubMed Central

    Guilak, Farshid; Butler, David L.; Goldstein, Steven A.; Baaijens, Frank P.T.

    2014-01-01

    The field of tissue engineering continues to expand and mature, and several products are now in clinical use, with numerous other preclinical and clinical studies underway. However, specific challenges still remain in the repair or regeneration of tissues that serve a predominantly biomechanical function. Furthermore, it is now clear that mechanobiological interactions between cells and scaffolds can critically influence cell behavior, even in tissues and organs that do not serve an overt biomechanical role. Over the past decade, the field of “functional tissue engineering” has grown as a subfield of tissue engineering to address the challenges and questions on the role of biomechanics and mechanobiology in tissue engineering. Originally posed as a set of principles and guidelines for engineering of load-bearing tissues, functional tissue engineering has grown to encompass several related areas that have proven to have important implications for tissue repair and regeneration. These topics include measurement and modeling of the in vivo biomechanical environment; quantitative analysis of the mechanical properties of native tissues, scaffolds, and repair tissues; development of rationale criteria for the design and assessment of engineered tissues; investigation of the effects biomechanical factors on native and repair tissues, in vivo and in vitro; and development and application of computational models of tissue growth and remodeling. Here we further expand this paradigm and provide examples of the numerous advances in the field over the past decade. Consideration of these principles in the design process will hopefully improve the safety, efficacy, and overall success of engineered tissue replacements. PMID:24818797

  14. Biomechanics and mechanobiology in functional tissue engineering.

    PubMed

    Guilak, Farshid; Butler, David L; Goldstein, Steven A; Baaijens, Frank P T

    2014-06-27

    The field of tissue engineering continues to expand and mature, and several products are now in clinical use, with numerous other preclinical and clinical studies underway. However, specific challenges still remain in the repair or regeneration of tissues that serve a predominantly biomechanical function. Furthermore, it is now clear that mechanobiological interactions between cells and scaffolds can critically influence cell behavior, even in tissues and organs that do not serve an overt biomechanical role. Over the past decade, the field of "functional tissue engineering" has grown as a subfield of tissue engineering to address the challenges and questions on the role of biomechanics and mechanobiology in tissue engineering. Originally posed as a set of principles and guidelines for engineering of load-bearing tissues, functional tissue engineering has grown to encompass several related areas that have proven to have important implications for tissue repair and regeneration. These topics include measurement and modeling of the in vivo biomechanical environment; quantitative analysis of the mechanical properties of native tissues, scaffolds, and repair tissues; development of rationale criteria for the design and assessment of engineered tissues; investigation of the effects biomechanical factors on native and repair tissues, in vivo and in vitro; and development and application of computational models of tissue growth and remodeling. Here we further expand this paradigm and provide examples of the numerous advances in the field over the past decade. Consideration of these principles in the design process will hopefully improve the safety, efficacy, and overall success of engineered tissue replacements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. The Expanding World of Tissue Engineering: The Building Blocks and New Applications of Tissue Engineered Constructs

    PubMed Central

    Zorlutuna, Pinar; Vrana, Nihal Engin; Khademhosseini, Ali

    2013-01-01

    The field of tissue engineering has been growing in the recent years as more products have made it to the market and as new uses for the engineered tissues have emerged, motivating many researchers to engage in this multidisciplinary field of research. Engineered tissues are now not only considered as end products for regenerative medicine, but also have emerged as enabling technologies for other fields of research ranging from drug discovery to biorobotics. This widespread use necessitates a variety of methodologies for production of tissue engineered constructs. In this review, these methods together with their non-clinical applications will be described. First, we will focus on novel materials used in tissue engineering scaffolds; such as recombinant proteins and synthetic, self assembling polypeptides. The recent advances in the modular tissue engineering area will be discussed. Then scaffold-free production methods, based on either cell sheets or cell aggregates will be described. Cell sources used in tissue engineering and new methods that provide improved control over cell behavior such as pathway engineering and biomimetic microenvironments for directing cell differentiation will be discussed. Finally, we will summarize the emerging uses of engineered constructs such as model tissues for drug discovery, cancer research and biorobotics applications. PMID:23268388

  16. Trends in tissue engineering research.

    PubMed

    Hacker, Michael C; Mikos, Antonios G

    2006-08-01

    For more than a decade, Tissue Engineering has been devoted to the reporting and discussion of scientific advances in the interdisciplinary field of tissue engineering. In this study, 779 original articles published in the journal since its inception were analyzed and classified according to different attributes, such as focus of research and tissue of interest, to reveal trends in tissue engineering research. In addition, the use of different biomaterials, scaffold architectures, surface and bulk modification agents, cells, differentiation factors, gene delivery vectors, and animal models was examined. The results of this survey show interesting trends over time and by continental origin.

  17. Microfabricated tissues for investigating traction forces involved in cell migration and tissue morphogenesis

    PubMed Central

    Nerger, Bryan A.; Siedlik, Michael J.; Nelson, Celeste M.

    2016-01-01

    Cell-generated forces drive an array of biological processes ranging from wound healing to tumor metastasis. Whereas experimental techniques such as traction force microscopy are capable of quantifying traction forces in multidimensional systems, the physical mechanisms by which these forces induce changes in tissue form remain to be elucidated. Understanding these mechanisms will ultimately require techniques that are capable of quantifying traction forces with high precision and accuracy in vivo or in systems that recapitulate in vivo conditions, such as microfabricated tissues and engineered substrata. To that end, here we review the fundamentals of traction forces, their quantification, and the use of microfabricated tissues designed to study these forces during cell migration and tissue morphogenesis. We emphasize the differences between traction forces in two- and three-dimensional systems, and highlight recently developed techniques for quantifying traction forces. PMID:28008471

  18. Hematopoietic stem cell origin of connective tissues.

    PubMed

    Ogawa, Makio; Larue, Amanda C; Watson, Patricia M; Watson, Dennis K

    2010-07-01

    Connective tissue consists of "connective tissue proper," which is further divided into loose and dense (fibrous) connective tissues and "specialized connective tissues." Specialized connective tissues consist of blood, adipose tissue, cartilage, and bone. In both loose and dense connective tissues, the principal cellular element is fibroblasts. It has been generally believed that all cellular elements of connective tissue, including fibroblasts, adipocytes, chondrocytes, and bone cells, are generated solely by mesenchymal stem cells. Recently, a number of studies, including those from our laboratory based on transplantation of single hematopoietic stem cells, strongly suggested a hematopoietic stem cell origin of these adult mesenchymal tissues. This review summarizes the experimental evidence for this new paradigm and discusses its translational implications. Copyright 2010 ISEH - Society for Hematology and Stem Cells. All rights reserved.

  19. Banking brain tissue for research.

    PubMed

    Klioueva, Natasja; Bovenberg, Jasper; Huitinga, Inge

    2017-01-01

    Well-characterized human brain tissue is crucial for scientific breakthroughs in research of the human brain and brain diseases. However, the collection, characterization, management, and accessibility of brain human tissue are rather complex. Well-characterized human brain tissue is often provided from private, sometimes small, brain tissue collections by (neuro)pathologic experts. However, to meet the increasing demand for human brain tissue from the scientific community, many professional brain-banking activities aiming at both neurologic and psychiatric diseases as well as healthy controls are currently being initiated worldwide. Professional biobanks are open-access and in many cases run donor programs. They are therefore costly and need effective business plans to guarantee long-term sustainability. Here we discuss the ethical, legal, managerial, and financial aspects of professional brain banks. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Mitochondrial function in engineered cardiac tissues is regulated by extracellular matrix elasticity and tissue alignment.

    PubMed

    Lyra-Leite, Davi M; Andres, Allen M; Petersen, Andrew P; Ariyasinghe, Nethika R; Cho, Nathan; Lee, Jezell A; Gottlieb, Roberta A; McCain, Megan L

    2017-10-01

    Mitochondria in cardiac myocytes are critical for generating ATP to meet the high metabolic demands associated with sarcomere shortening. Distinct remodeling of mitochondrial structure and function occur in cardiac myocytes in both developmental and pathological settings. However, the factors that underlie these changes are poorly understood. Because remodeling of tissue architecture and extracellular matrix (ECM) elasticity are also hallmarks of ventricular development and disease, we hypothesize that these environmental factors regulate mitochondrial function in cardiac myocytes. To test this, we developed a new procedure to transfer tunable polydimethylsiloxane disks microcontact-printed with fibronectin into cell culture microplates. We cultured Sprague-Dawley neonatal rat ventricular myocytes within the wells, which consistently formed tissues following the printed fibronectin, and measured oxygen consumption rate using a Seahorse extracellular flux analyzer. Our data indicate that parameters associated with baseline metabolism are predominantly regulated by ECM elasticity, whereas the ability of tissues to adapt to metabolic stress is regulated by both ECM elasticity and tissue alignment. Furthermore, bioenergetic health index, which reflects both the positive and negative aspects of oxygen consumption, was highest in aligned tissues on the most rigid substrate, suggesting that overall mitochondrial function is regulated by both ECM elasticity and tissue alignment. Our results demonstrate that mitochondrial function is regulated by both ECM elasticity and myofibril architecture in cardiac myocytes. This provides novel insight into how extracellular cues impact mitochondrial function in the context of cardiac development and disease. NEW & NOTEWORTHY A new methodology has been developed to measure O 2 consumption rates in engineered cardiac tissues with independent control over tissue alignment and matrix elasticity. This led to the findings that matrix

  1. Tissue expansion and fluid absorption by skin tissue following intradermal injections through hollow microneedles

    NASA Astrophysics Data System (ADS)

    Shrestha, Pranav; Stoeber, Boris

    2017-11-01

    Hollow microneedles provide a promising alternative to conventional drug delivery techniques due to improved patient compliance and the dose sparing effect. The dynamics of fluid injected through hollow microneedles into skin, which is a heterogeneous and deformable porous medium, have not been investigated extensively in the past. We have introduced the use of Optical Coherence Tomography (OCT) for real-time visualization of fluid injections into excised porcine tissue. The results from ex-vivo experiments, including cross-sectional tissue images from OCT and pressure/flow-rate measurements, show a transient mode of high flow-rate into the tissue followed by a lower steady-state infusion rate. The injected fluid expands the underlying tissue and causes the external free surface of the skin to rise, forming a characteristic intradermal wheal. We have used OCT to visualize the evolution of tissue and free surface deformation, and advancement of the boundary between regions of expanding and stationary tissue. We will show the effect of different injection parameters such as fluid pressure, viscosity and microneedle retraction on the injected volume. This work has been supported through funding from the Collaborative Health Research Program by the Natural Science and Engineering Research Council of Canada and the Canadian Health Research Institute, and through the Canada Research Chairs program.

  2. Nedd4L expression is decreased in ovarian epithelial cancer tissues compared to ovarian non-cancer tissue.

    PubMed

    Yang, Qiuyun; Zhao, Jinghe; Cui, Manhua; Gi, Shuting; Wang, Wei; Han, Xiaole

    2015-12-01

    Recent studies have demonstrated that the neural precursor cell expressed, developmentally downregulated 4-like (Nedd4L) gene plays a role in the progression of various cancers. However, reports describing Nedd4L expression in ovarian cancer tissues are limited. A cohort (n = 117) of archival formalin-fixed, paraffin embedded resected normal ovarian epithelial tissues (n = 10), benign ovarian epithelial tumor tissues (n = 10), serous borderline ovarian epithelial tumor tissues (n = 14), mucous borderline ovarian epithelial tumor tissues (n = 11), and invasive ovarian epithelial cancer tissues (n = 72) were assessed for Nedd4L protein expression using immunohistochemistry. Nedd4L protein expression was significantly decreased in invasive ovarian epithelial cancer tissues compared to non-cancer tissues (P < 0.05). Decreased Nedd4L protein expression correlated with clinical stage, pathological grade, lymph node metastasis and survival (P < 0.05). Nedd4L protein expression may be an independent prognostic marker of ovarian cancer development. © 2015 Japan Society of Obstetrics and Gynecology.

  3. A Novel Esthetic Approach using Connective Tissue Graft for Soft Tissue Defect Following Surgical Excision of Gingival Fibrolipoma

    PubMed Central

    Parthasarathy, Harinath; Kumar, Praveenkrishna; Gajendran, Priyalochana; Appukuttan, Devapriya

    2014-01-01

    The aim of the present case report is to evaluate the adjunctive use of a connective tissue graft to overcome soft tissue defects following excision of a gingival fibrolipoma in the aesthetic region. Connective tissue graft has been well documented for treating defects of esthetic concern. However, the literature does not contain many reports on the esthetic clinical outcome following the use of connective tissue graft secondary to excision of soft tissue tumours. A 28-year-old male patient reported with a complaint of a recurrent growth in relation to his lower front tooth region. The lesion which was provisionally diagnosed as fibroma was treated with a complete surgical excision, following which a modified coronally advanced flap and connective tissue graft was adopted to overcome the soft tissue defect. The excised growth was diagnosed histologically as fibrolipoma. One year follow up showed no recurrence of the lesion and good esthetics.The adjunctive use of the connective tissue graft and modified coronally advanced flap predictably yields optimal soft tissue fill and excellent esthetics. Hence, routine use of this procedure may be recommended for surgical excision of soft tissue growths in esthetically sensitive areas. PMID:25584336

  4. Laser interaction with tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berns, M.W.

    These proceedings collect papers on laser biomedicine. Topics include: light distributions on tissue; chemical byproducts of laser/tissue interactions; laser applications in ophthalmology; phododynamic therapy; diode pumped solid state lasers at two and three micrometers; and applications of excimer lasers to peripheral nerve repair.

  5. Tissue engineering therapy for cardiovascular disease.

    PubMed

    Nugent, Helen M; Edelman, Elazer R

    2003-05-30

    The present treatments for the loss or failure of cardiovascular function include organ transplantation, surgical reconstruction, mechanical or synthetic devices, or the administration of metabolic products. Although routinely used, these treatments are not without constraints and complications. The emerging and interdisciplinary field of tissue engineering has evolved to provide solutions to tissue creation and repair. Tissue engineering applies the principles of engineering, material science, and biology toward the development of biological substitutes that restore, maintain, or improve tissue function. Progress has been made in engineering the various components of the cardiovascular system, including blood vessels, heart valves, and cardiac muscle. Many pivotal studies have been performed in recent years that may support the move toward the widespread application of tissue-engineered therapy for cardiovascular diseases. The studies discussed include endothelial cell seeding of vascular grafts, tissue-engineered vascular conduits, generation of heart valve leaflets, cardiomyoplasty, genetic manipulation, and in vitro conditions for optimizing tissue-engineered cardiovascular constructs.

  6. Diffuse reflectance spectroscopy of liver tissue

    NASA Astrophysics Data System (ADS)

    Reistad, Nina; Nilsson, Jan; Vilhelmsson Timmermand, Oskar; Sturesson, Christian; Andersson-Engels, Stefan

    2015-06-01

    Diffuse reflectance spectroscopy (DRS) with a fiber-optic contact probe is a cost-effective, rapid, and non-invasive optical method used to extract diagnosis information of tissue. By combining commercially available VIS- and NIR-spectrometers with various fiber-optic contact-probes, we have access to the full wavelength range from around 400 to 1600 nm. Using this flexible and portable spectroscopy system, we have acquired ex-vivo DRS-spectra from murine, porcine, and human liver tissue. For extracting the tissue optical properties from the measured spectra, we have employed and compared predictions from two models for light propagation in tissue, diffusion theory model (DT) and Monte Carlo simulations (MC). The focus in this work is on the capacity of this DRS-technique in discriminating metastatic tumor tissue from normal liver tissue as well as in assessing and characterizing damage to non-malignant liver tissue induced by preoperative chemotherapy for colorectal liver metastases.

  7. Importance of tissue preparation methods in FTIR micro-spectroscopical analysis of biological tissues: 'traps for new users'.

    PubMed

    Zohdi, Vladislava; Whelan, Donna R; Wood, Bayden R; Pearson, James T; Bambery, Keith R; Black, M Jane

    2015-01-01

    Fourier Transform Infrared (FTIR) micro-spectroscopy is an emerging technique for the biochemical analysis of tissues and cellular materials. It provides objective information on the holistic biochemistry of a cell or tissue sample and has been applied in many areas of medical research. However, it has become apparent that how the tissue is handled prior to FTIR micro-spectroscopic imaging requires special consideration, particularly with regards to methods for preservation of the samples. We have performed FTIR micro-spectroscopy on rodent heart and liver tissue sections (two spectroscopically very different biological tissues) that were prepared by desiccation drying, ethanol substitution and formalin fixation and have compared the resulting spectra with that of fully hydrated freshly excised tissues. We have systematically examined the spectra for any biochemical changes to the native state of the tissue caused by the three methods of preparation and have detected changes in infrared (IR) absorption band intensities and peak positions. In particular, the position and profile of the amide I, key in assigning protein secondary structure, changes depending on preparation method and the lipid absorptions lose intensity drastically when these tissues are hydrated with ethanol. Indeed, we demonstrate that preserving samples through desiccation drying, ethanol substitution or formalin fixation significantly alters the biochemical information detected using spectroscopic methods when compared to spectra of fresh hydrated tissue. It is therefore imperative to consider tissue preparative effects when preparing, measuring, and analyzing samples using FTIR spectroscopy.

  8. Engineering complex orthopaedic tissues via strategic biomimicry.

    PubMed

    Qu, Dovina; Mosher, Christopher Z; Boushell, Margaret K; Lu, Helen H

    2015-03-01

    The primary current challenge in regenerative engineering resides in the simultaneous formation of more than one type of tissue, as well as their functional assembly into complex tissues or organ systems. Tissue-tissue synchrony is especially important in the musculoskeletal system, wherein overall organ function is enabled by the seamless integration of bone with soft tissues such as ligament, tendon, or cartilage, as well as the integration of muscle with tendon. Therefore, in lieu of a traditional single-tissue system (e.g., bone, ligament), composite tissue scaffold designs for the regeneration of functional connective tissue units (e.g., bone-ligament-bone) are being actively investigated. Closely related is the effort to re-establish tissue-tissue interfaces, which is essential for joining these tissue building blocks and facilitating host integration. Much of the research at the forefront of the field has centered on bioinspired stratified or gradient scaffold designs which aim to recapitulate the structural and compositional inhomogeneity inherent across distinct tissue regions. As such, given the complexity of these musculoskeletal tissue units, the key question is how to identify the most relevant parameters for recapitulating the native structure-function relationships in the scaffold design. Therefore, the focus of this review, in addition to presenting the state-of-the-art in complex scaffold design, is to explore how strategic biomimicry can be applied in engineering tissue connectivity. The objective of strategic biomimicry is to avoid over-engineering by establishing what needs to be learned from nature and defining the essential matrix characteristics that must be reproduced in scaffold design. Application of this engineering strategy for the regeneration of the most common musculoskeletal tissue units (e.g., bone-ligament-bone, muscle-tendon-bone, cartilage-bone) will be discussed in this review. It is anticipated that these exciting efforts will

  9. Engineering Complex Orthopaedic Tissues via Strategic Biomimicry

    PubMed Central

    Qu, Dovina; Mosher, Christopher Z.; Boushell, Margaret K.; Lu, Helen H.

    2014-01-01

    The primary current challenge in regenerative engineering resides in the simultaneous formation of more than one type of tissue, as well as their functional assembly into complex tissues or organ systems. Tissue-tissue synchrony is especially important in the musculoskeletal system, whereby overall organ function is enabled by the seamless integration of bone with soft tissues such as ligament, tendon, or cartilage, as well as the integration of muscle with tendon. Therefore, in lieu of a traditional single-tissue system (e.g. bone, ligament), composite tissue scaffold designs for the regeneration of functional connective tissue units (e.g. bone-ligament-bone) are being actively investigated. Closely related is the effort to re-establish tissue-tissue interfaces, which is essential for joining these tissue building blocks and facilitating host integration. Much of the research at the forefront of the field has centered on bioinspired stratified or gradient scaffold designs which aim to recapitulate the structural and compositional inhomogeneity inherent across distinct tissue regions. As such, given the complexity of these musculoskeletal tissue units, the key question is how to identify the most relevant parameters for recapitulating the native structure-function relationships in the scaffold design. Therefore, the focus of this review, in addition to presenting the state-of-the-art in complex scaffold design, is to explore how strategic biomimicry can be applied in engineering tissue connectivity. The objective of strategic biomimicry is to avoid over-engineering by establishing what needs to be learned from nature and defining the essential matrix characteristics that must be reproduced in scaffold design. Application of this engineering strategy for the regeneration of the most common musculoskeletal tissue units (e.g. bone-ligament-bone, muscle-tendon-bone, cartilage-bone) will be discussed in this review. It is anticipated that these exciting efforts will

  10. Synthetic Materials for Osteochondral Tissue Engineering.

    PubMed

    Iulian, Antoniac; Dan, Laptoiu; Camelia, Tecu; Claudia, Milea; Sebastian, Gradinaru

    2018-01-01

    The objective of an articular cartilage repair treatment is to repair the affected surface of an articular joint's hyaline cartilage. Currently, both biological and tissue engineering research is concerned with discovering the clues needed to stimulate cells to regenerate tissues and organs totally or partially. The latest findings on nanotechnology advances along with the processability of synthetic biomaterials have succeeded in creating a new range of materials to develop into the desired biological responses to the cellular level. 3D printing has a great ability to establish functional tissues or organs to cure or replace abnormal and necrotic tissue, providing a promising solution for serious tissue/organ failure. The 4D print process has the potential to continually revolutionize the current tissue and organ manufacturing platforms. A new active research area is the development of intelligent materials with high biocompatibility to suit 4D printing technology. As various researchers and tissue engineers have demonstrated, the role of growth factors in tissue engineering for repairing osteochondral and cartilage defects is a very important one. Following animal testing, cell-assisted and growth-factor scaffolds produced much better results, while growth-free scaffolds showed a much lower rate of healing.

  11. Growth versus metabolic tissue replacement in mouse tissues determined by stable carbon and nitrogen isotope analysis

    NASA Astrophysics Data System (ADS)

    Macavoy, S. E.; Jamil, T.; Macko, S. A.; Arneson, L. S.

    2003-12-01

    Stable isotope analysis is becoming an extensively used tool in animal ecology. The isotopes most commonly used for analysis in terrestrial systems are those of carbon and nitrogen, due to differential carbon fractionation in C3 and C4 plants, and the approximately 3‰ enrichment in 15N per trophic level. Although isotope signatures in animal tissues presumably reflect the local food web, analysis is often complicated by differential nutrient routing and fractionation by tissues, and by the possibility that large organisms are not in isotopic equilibrium with the foods available in their immediate environment. Additionally, the rate at which organisms incorporate the isotope signature of a food through both growth and metabolic tissue replacement is largely unknown. In this study we have assessed the rate of carbon and nitrogen isotopic turnover in liver, muscle and blood in mice following a diet change. By determining growth rates, we were able to determine the proportion of tissue turnover caused by growth versus that caused by metabolic tissue replacement. Growth was found to account for approximately 10% of observed tissue turnover in sexually mature mice (Mus musculus). Blood carbon was found to have the shortest half-life (16.9 days), followed by muscle (24.7 days). Liver carbon turnover was not as well described by the exponential decay equations as other tissues. However, substantial liver carbon turnover was observed by the 28th day after diet switch. Surprisingly, these tissues primarily reflect the carbon signature of the protein, rather than carbohydrate, source in their diet. The nitrogen signature in all tissues was enriched by 3 - 5‰ over their dietary protein source, depending on tissue type, and the isotopic turnover rates were comparable to those observed in carbon.

  12. Fetal tissue banking for transplantation: characteristics of the donor population and considerations for donor and tissue screening.

    PubMed

    Newman-Gage, H; Bravo, D; Holmberg, L; Mason, J; Eisenhower, M; Nekhani, N; Fantel, A

    2000-01-01

    We initiated this study to evaluate the suitability for therapeutic use in transplantation of tissues obtained from human abortuses. We have developed protocols for the collection, handling and preservation of hepatic stem cells from electively aborted embryos and have developed methods for assessment of the cells so derived and processed. In this paper we present our findings regarding screening of potential donors, acquisition of fetal tissues, and assessment of the tissues for potentially infectious contaminants. We assess the suitability of the tissue donors according to current standards used for donors of commonly transplanted tissues (e.g., bone grafts, skin grafts and heart valves) and present data regarding the real availability of tissues from elective abortion procedures that would meet those standard tissue banking criteria.We specifically evaluated the donor's willingness to provide a blood sample for testing, conducted a detailed interview similar to those used for typical organ and tissue donors, and assessed the type and incidence of contamination in collected tissues. We find that although many women are willing to consent to use of the tissues for transplantation, attrition from the study for various reasons results in few fetal organs ultimately realistically available for transplantation. Typical reasons for attrition include: unwillingness to have a blood sample drawn or tested, positive serology results, social/medical high risk factors for acquisition of transmissible disease, no identifiable organs available, and unacceptable microbial contamination. Thus, although it might seem that due to the numbers of abortions performed annually, that there would be substantial numbers of suitable tissues available, only a small proportion are truly suitable for transplantation.

  13. Imaging Strategies for Tissue Engineering Applications

    PubMed Central

    Nam, Seung Yun; Ricles, Laura M.; Suggs, Laura J.

    2015-01-01

    Tissue engineering has evolved with multifaceted research being conducted using advanced technologies, and it is progressing toward clinical applications. As tissue engineering technology significantly advances, it proceeds toward increasing sophistication, including nanoscale strategies for material construction and synergetic methods for combining with cells, growth factors, or other macromolecules. Therefore, to assess advanced tissue-engineered constructs, tissue engineers need versatile imaging methods capable of monitoring not only morphological but also functional and molecular information. However, there is no single imaging modality that is suitable for all tissue-engineered constructs. Each imaging method has its own range of applications and provides information based on the specific properties of the imaging technique. Therefore, according to the requirements of the tissue engineering studies, the most appropriate tool should be selected among a variety of imaging modalities. The goal of this review article is to describe available biomedical imaging methods to assess tissue engineering applications and to provide tissue engineers with criteria and insights for determining the best imaging strategies. Commonly used biomedical imaging modalities, including X-ray and computed tomography, positron emission tomography and single photon emission computed tomography, magnetic resonance imaging, ultrasound imaging, optical imaging, and emerging techniques and multimodal imaging, will be discussed, focusing on the latest trends of their applications in recent tissue engineering studies. PMID:25012069

  14. Iron in spleen and liver: Some cases of normal tissues and tissues from patients with hematological malignancies

    NASA Astrophysics Data System (ADS)

    Alenkina, Irina V.; Oshtrakh, Michael I.; Felner, Israel; Vinogradov, Alexander V.; Konstantinova, Tatiana S.; Semionkin, Vladimir A.

    2016-10-01

    Iron deposits in spleen and liver tissues obtained from several healthy people and patients with mantle cell lymphoma, acute myeloid leukemia and primary myelofibrosis were studied using Mössbauer spectroscopy and magnetization measurements. The results obtained demonstrated differences in the iron content in tissues as well as some variations in the ferrihydrite-like iron core structure in the iron storage proteins in these tissues. The presence of tiny amount of magnetite and paramagnetic component in spleen and liver tissue was also detected in different quantities in the studied tissues.

  15. Synthetic Phage for Tissue Regeneration

    PubMed Central

    Merzlyak, Anna; Lee, Seung-Wuk

    2014-01-01

    Controlling structural organization and signaling motif display is of great importance to design the functional tissue regenerating materials. Synthetic phage, genetically engineered M13 bacteriophage has been recently introduced as novel tissue regeneration materials to display a high density of cell-signaling peptides on their major coat proteins for tissue regeneration purposes. Structural advantages of their long-rod shape and monodispersity can be taken together to construct nanofibrous scaffolds which support cell proliferation and differentiation as well as direct orientation of their growth in two or three dimensions. This review demonstrated how functional synthetic phage is designed and subsequently utilized for tissue regeneration that offers potential cell therapy. PMID:24991085

  16. RNA Extraction from Animal and Human's Cancerous Tissues: Does Tissue Matter?

    PubMed

    Samadani, Ali Akbar; Nikbakhsh, Novin; Fattahi, Sadegh; Pourbagher, Roghayeh; Aghajanpour Mir, Seyyed Mohsen; Mousavi Kani, Narges; Abedian, Zeinab; Akhavan-Niaki, Haleh

    2015-01-01

    The reliability of gene expression profiling, based technologies and methods to find transcriptional differences representative of the original samples is influenced by the quality of the extracted RNA. Hence, RNA extraction is the first step to investigate the gene expression and its function. Consequently, the quality of extracted RNA is really significant. Correspondingly, this research was accomplished to optimize the RNA extraction methods and compare the amounts of tissue or quality of tissue. Relatively, the cancerous tissue of human stomach in fresh and frozen conditions and also the mouse fresh tissue were studied. Some factors like the amount of samples, efficacy differences of diverse extraction buffers (TriPure, Trizol) and also the efficacy of b-mercaptoethanol were compared and investigated. The results indicated that the less amount (1-2 mg) compared to other amounts (2-5 mg, 5-15 mg) yielded the best quality and the RNA bands (5S, 18S, 28S) were observed perfectly. Relatively, comparing and measuring some kinds of buffers (Trizol, TriPure) indicated no difference in RNA extraction quality. The last investigated factor was the effect of b- mercaptoethanol which was used along with TriPure to remove the RNAse. Conclusively, no effective impression was observed.

  17. Current state of cartilage tissue engineering

    PubMed Central

    Tuli, Richard; Li, Wan-Ju; Tuan, Rocky S

    2003-01-01

    Damage to cartilage is of great clinical consequence given the tissue's limited intrinsic potential for healing. Current treatments for cartilage repair are less than satisfactory, and rarely restore full function or return the tissue to its native normal state. The rapidly emerging field of tissue engineering holds great promise for the generation of functional cartilage tissue substitutes. The general approach involves a biocompatible, structurally and mechanically sound scaffold, with an appropriate cell source, which is loaded with bioactive molecules that promote cellular differentiation and/or maturation. This review highlights aspects of current progress in cartilage tissue engineering. PMID:12932283

  18. Photothermal effects of laser tissue soldering.

    PubMed

    McNally, K M; Sorg, B S; Welch, A J; Dawes, J M; Owen, E R

    1999-04-01

    Low-strength anastomoses and thermal damage of tissue are major concerns in laser tissue welding techniques where laser energy is used to induce thermal changes in the molecular structure of the tissues being joined, hence allowing them to bond together. Laser tissue soldering, on the other hand, is a bonding technique in which a protein solder is applied to the tissue surfaces to be joined, and laser energy is used to bond the solder to the tissue surfaces. The addition of protein solders to augment tissue repair procedures significantly reduces the problems of low strength and thermal damage associated with laser tissue welding techniques. Investigations were conducted to determine optimal solder and laser parameters for tissue repair in terms of tensile strength, temperature rise and damage and the microscopic nature of the bonds formed. An in vitro study was performed using an 808 nm diode laser in conjunction with indocyanine green (ICG)-doped albumin protein solders to repair bovine aorta specimens. Liquid and solid protein solders prepared from 25% and 60% bovine serum albumin (BSA), respectively, were compared. The efficacy of temperature feedback control in enhancing the soldering process was also investigated. Increasing the BSA concentration from 25% to 60% greatly increased the tensile strength of the repairs. A reduction in dye concentration from 2.5 mg ml(-1) to 0.25 mg ml(-1) was also found to result in an increase in tensile strength. Increasing the laser irradiance and thus surface temperature resulted in an increased severity of histological injury. Thermal denaturation of tissue collagen and necrosis of the intimal layer smooth muscle cells increased laterally and in depth with higher temperatures. The strongest repairs were produced with an irradiance of 6.4 W cm(-2) using a solid protein solder composed of 60% BSA and 0.25 mg ml(-1) ICG. Using this combination of laser and solder parameters, surface temperatures were observed to reach 85

  19. Current good tissue practice for human cell, tissue, and cellular and tissue-based product establishments; inspection and enforcement. Final rule.

    PubMed

    2004-11-24

    The Food and Drug Administration (FDA) is requiring human cell, tissue, and cellular and tissue-based product (HCT/P) establishments to follow current good tissue practice (CGTP), which governs the methods used in, and the facilities and controls used for, the manufacture of HCT/Ps; recordkeeping; and the establishment of a quality program. The agency is also issuing new regulations pertaining to labeling, reporting, inspections, and enforcement that will apply to manufacturers of those HCT/Ps regulated solely under the authority of the Public Health Service Act (PHS Act), and not as drugs, devices, and/or biological products. The agency's actions are intended to improve protection of the public health while keeping regulatory burden to a minimum, which in turn would encourage significant innovation.

  20. Combined spectroscopic imaging and chemometric approach for automatically partitioning tissue types in human prostate tissue biopsies

    NASA Astrophysics Data System (ADS)

    Haka, Abigail S.; Kidder, Linda H.; Lewis, E. Neil

    2001-07-01

    We have applied Fourier transform infrared (FTIR) spectroscopic imaging, coupling a mercury cadmium telluride (MCT) focal plane array detector (FPA) and a Michelson step scan interferometer, to the investigation of various states of malignant human prostate tissue. The MCT FPA used consists of 64x64 pixels, each 61 micrometers 2, and has a spectral range of 2-10.5 microns. Each imaging data set was collected at 16-1 resolution, resulting in 512 image planes and a total of 4096 interferograms. In this article we describe a method for separating different tissue types contained within FTIR spectroscopic imaging data sets of human prostate tissue biopsies. We present images, generated by the Fuzzy C-Means clustering algorithm, which demonstrate the successful partitioning of distinct tissue type domains. Additionally, analysis of differences in the centroid spectra corresponding to different tissue types provides an insight into their biochemical composition. Lastly, we demonstrate the ability to partition tissue type regions in a different data set using centroid spectra calculated from the original data set. This has implications for the use of the Fuzzy C-Means algorithm as an automated technique for the separation and examination of tissue domains in biopsy samples.

  1. The Annual Meeting of the American Society of Tropical Medicine and Hygiene (38th) Held in Honolulu, Hawaii on 10-14 December 1989

    DTIC Science & Technology

    1991-01-01

    FOR IgG ANTIBODIES TO LEISHMANIA MEXICANA MEXICANA. M.R. Garcia*, F. Andrade, R. Esquivel, E. Simmonds, S. Canto, and A.L. Cruz. University of Yucatan ...Baltimore, MD; Universidad Peruana Cayetano Heredia; and Instituto de Investigacin Nutricional .?? 4:15 437 CHICKENPOX IN THE U.S. ARMY: A DEVELOPING... Yucatan (Mexico) Tropical Diseases Research Unit. Reference Center for Leishmaniasis Control. A total of 223 sera from human beings were processed by

  2. [Lasers in dentistry. Part B--Interaction with biological tissues and the effect on the soft tissues of the oral cavity, the hard tissues of the tooth and the dental pulp].

    PubMed

    Moshonov, J; Stabholz, A; Leopold, Y; Rosenberg, I; Stabholz, A

    2001-10-01

    The interaction of laser energy with target tissue is mainly determined by two non operator-dependent factors: the specific wavelength of the laser and the optical properties of the target tissues. Power density, energy density, pulse repetition rate, pulse duration and the mode of energy transferring to the tissue are dictated by the clinician. Combination of these factors enables to control optimal response for the clinical application. Four responses are described when the laser beam hits the target tissue: reflection, absorption, transmission and scattering. Three main mechanisms of interaction between the laser and the biological tissues exist: photothermic, photoacoustic and photochemical. The effect of lasers on the soft tissues of the oral cavity is based on transformation of light energy into thermal energy which, in turn heats the target tissue to produce the desirable effect. In comparison to the scalpel used in surgical procedures, the laser beam is characterized by tissue natural sterility and by minimum bleeding during the surgical procedures due to blood vessels welding. The various effects achieved by the temperature elevation during the laser application on the soft tissue are: I. coagulation and hemostasis II. tissue sterilization III. tissue welding IV. incision and excision V. ablation and vaporization Ablation and melting are the two basic modalities by which the effect of lasers on the hard tissues of the tooth is produced. When discussing the effect of laser on dental hard tissues, the energy absorption in the hydroxyapatite plays a major role in addition to its absorption in water. When laser energy is absorbed in the water of the hard tissues, a rapid volume expansion of the evaporating water occurs as a result of a substantial temperature elevation in the interaction site. Microexplosions are produced causing hard tissue disintegration. If pulp temperatures are raised beyond 5 degrees C level, damage to the dental pulp is irreversible

  3. Difference in volatile composition between the pericarp tissue and inner tissue of tomato (Solanum lycopersicum) fruit

    USDA-ARS?s Scientific Manuscript database

    Numerous studies have reported the volatile profiles in the whole fruit or pericarp tissue of tomato (Solanum lycopersicum) fruit; however, information is limited on the volatile composition in the inner tissue and its contribution to tomato aroma. For this, the pericarps and inner tissues of “Money...

  4. A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue.

    PubMed

    Azaripour, Adriano; Lagerweij, Tonny; Scharfbillig, Christina; Jadczak, Anna Elisabeth; Willershausen, Brita; Van Noorden, Cornelis J F

    2016-08-01

    For 3-dimensional (3D) imaging of a tissue, 3 methodological steps are essential and their successful application depends on specific characteristics of the type of tissue. The steps are 1° clearing of the opaque tissue to render it transparent for microscopy, 2° fluorescence labeling of the tissues and 3° 3D imaging. In the past decades, new methodologies were introduced for the clearing steps with their specific advantages and disadvantages. Most clearing techniques have been applied to the central nervous system and other organs that contain relatively low amounts of connective tissue including extracellular matrix. However, tissues that contain large amounts of extracellular matrix such as dermis in skin or gingiva are difficult to clear. The present survey lists methodologies that are available for clearing of tissues for 3D imaging. We report here that the BABB method using a mixture of benzyl alcohol and benzyl benzoate and iDISCO using dibenzylether (DBE) are the most successful methods for clearing connective tissue-rich gingiva and dermis of skin for 3D histochemistry and imaging of fluorescence using light-sheet microscopy. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  5. Vascularized interpositional periosteal connective tissue flap: A modern approach to augment soft tissue

    PubMed Central

    Agarwal, Chitra; Deora, Savita; Abraham, Dennis; Gaba, Rohini; Kumar, Baron Tarun; Kudva, Praveen

    2015-01-01

    Context: Nowadays esthetics plays an important role in dentistry along with function of the prosthesis. Various soft tissue augmentation procedures are available to correct the ridge defects in the anterior region. The newer technique, vascularized interpositional periosteal connective tissue (VIP-CT) flap has been introduced, which has the potential to augment predictable amount of tissue and has many benefits when compared to other techniques. Aim: The study was designed to determine the efficacy of the VIP-CT flap in augmenting the ridge defect. Materials and Methods: Ten patients with Class III (Seibert's) ridge defects were treated with VIP-CT flap technique before fabricating fixed partial denture. Height and width of the ridge defects were measured before and after the procedure. Subsequent follow-up was done every 3 months for 1-year. Statistical Analysis Used: Paired t-test was performed to detect the significance of the procedure. Results: The surgical site healed uneventfully. The predictable amount of soft tissue augmentation had been achieved with the procedure. The increase in height and width of the ridge was statistically highly significant. Conclusion: The VIP-CT flap technique was effective in augmenting the soft tissue in esthetic area that remained stable over a long period. PMID:25810597

  6. Transcriptome architecture across tissues in the pig

    PubMed Central

    Ferraz, André LJ; Ojeda, Ana; López-Béjar, Manel; Fernandes, Lana T; Castelló, Anna; Folch, Josep M; Pérez-Enciso, Miguel

    2008-01-01

    Background Artificial selection has resulted in animal breeds with extreme phenotypes. As an organism is made up of many different tissues and organs, each with its own genetic programme, it is pertinent to ask: How relevant is tissue in terms of total transcriptome variability? Which are the genes most distinctly expressed between tissues? Does breed or sex equally affect the transcriptome across tissues? Results In order to gain insight on these issues, we conducted microarray expression profiling of 16 different tissues from four animals of two extreme pig breeds, Large White and Iberian, two males and two females. Mixed model analysis and neighbor – joining trees showed that tissues with similar developmental origin clustered closer than those with different embryonic origins. Often a sound biological interpretation was possible for overrepresented gene ontology categories within differentially expressed genes between groups of tissues. For instance, an excess of nervous system or muscle development genes were found among tissues of ectoderm or mesoderm origins, respectively. Tissue accounted for ~11 times more variability than sex or breed. Nevertheless, we were able to confidently identify genes with differential expression across tissues between breeds (33 genes) and between sexes (19 genes). The genes primarily affected by sex were overall different than those affected by breed or tissue. Interaction with tissue can be important for differentially expressed genes between breeds but not so much for genes whose expression differ between sexes. Conclusion Embryonic development leaves an enduring footprint on the transcriptome. The interaction in gene × tissue for differentially expressed genes between breeds suggests that animal breeding has targeted differentially each tissue's transcriptome. PMID:18416811

  7. Brain tissue segmentation based on DTI data

    PubMed Central

    Liu, Tianming; Li, Hai; Wong, Kelvin; Tarokh, Ashley; Guo, Lei; Wong, Stephen T.C.

    2008-01-01

    We present a method for automated brain tissue segmentation based on the multi-channel fusion of diffusion tensor imaging (DTI) data. The method is motivated by the evidence that independent tissue segmentation based on DTI parametric images provides complementary information of tissue contrast to the tissue segmentation based on structural MRI data. This has important applications in defining accurate tissue maps when fusing structural data with diffusion data. In the absence of structural data, tissue segmentation based on DTI data provides an alternative means to obtain brain tissue segmentation. Our approach to the tissue segmentation based on DTI data is to classify the brain into two compartments by utilizing the tissue contrast existing in a single channel. Specifically, because the apparent diffusion coefficient (ADC) values in the cerebrospinal fluid (CSF) are more than twice that of gray matter (GM) and white matter (WM), we use ADC images to distinguish CSF and non-CSF tissues. Additionally, fractional anisotropy (FA) images are used to separate WM from non-WM tissues, as highly directional white matter structures have much larger fractional anisotropy values. Moreover, other channels to separate tissue are explored, such as eigenvalues of the tensor, relative anisotropy (RA), and volume ratio (VR). We developed an approach based on the Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm that combines these two-class maps to obtain a complete tissue segmentation map of CSF, GM, and WM. Evaluations are provided to demonstrate the performance of our approach. Experimental results of applying this approach to brain tissue segmentation and deformable registration of DTI data and spoiled gradient-echo (SPGR) data are also provided. PMID:17804258

  8. Programmable Hydrogels for Cell Encapsulation and Neo-Tissue Growth to Enable Personalized Tissue Engineering.

    PubMed

    Bryant, Stephanie J; Vernerey, Franck J

    2018-01-01

    Biomimetic and biodegradable synthetic hydrogels are emerging as a promising platform for cell encapsulation and tissue engineering. Notably, synthetic-based hydrogels offer highly programmable macroscopic properties (e.g., mechanical, swelling and transport properties) and degradation profiles through control over several tunable parameters (e.g., the initial network structure, degradation kinetics and behavior, and polymer properties). One component to success is the ability to maintain structural integrity as the hydrogel transitions to neo-tissue. This seamless transition is complicated by the fact that cellular activity is highly variable among donors. Thus, computational models provide an important tool in tissue engineering due to their unique ability to explore the coupled processes of hydrogel degradation and neo-tissue growth across multiple length scales. In addition, such models provide new opportunities to develop predictive computational tools to overcome the challenges with designing hydrogels for different donors. In this report, programmable properties of synthetic-based hydrogels and their relation to the hydrogel's structural properties and their evolution with degradation are reviewed. This is followed by recent progress on the development of computational models that describe hydrogel degradation with neo-tissue growth when cells are encapsulated in a hydrogel. Finally, the potential for predictive models to enable patient-specific hydrogel designs for personalized tissue engineering is discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Expression profiling of peroxisome proliferator-activated receptor-delta (PPAR-delta) in mouse tissues using tissue microarray.

    PubMed

    Higashiyama, Hiroyuki; Billin, Andrew N; Okamoto, Yuji; Kinoshita, Mine; Asano, Satoshi

    2007-05-01

    Peroxisome proliferator-activated receptor-delta (PPAR-delta) is known as a transcription factor involved in the regulation of fatty acid oxidation and mitochondrial biogenesis in several tissues, such as skeletal muscle, liver and adipose tissues. In this study, to elucidate systemic physiological functions of PPAR-delta, we examined the tissue distribution and localization of PPAR-delta in adult mouse tissues using tissue microarray (TMA)-based immunohistochemistry. PPAR-delta positive signals were observed on variety of tissues/cells in multiple systems including cardiovascular, urinary, respiratory, digestive, endocrine, nervous, hematopoietic, immune, musculoskeletal, sensory and reproductive organ systems. In these organs, PPAR-delta immunoreactivity was generally localized on the nucleus, although cytoplasmic localization was observed on several cell types including neurons in the nervous system and cells of the islet of Langerhans. These expression profiling data implicate various physiological roles of PPAR-delta in multiple organ systems. TMA-based immunohistochemistry enables to profile comprehensive protein localization and distribution in a high-throughput manner.

  10. An informatics model for tissue banks--lessons learned from the Cooperative Prostate Cancer Tissue Resource.

    PubMed

    Patel, Ashokkumar A; Gilbertson, John R; Parwani, Anil V; Dhir, Rajiv; Datta, Milton W; Gupta, Rajnish; Berman, Jules J; Melamed, Jonathan; Kajdacsy-Balla, Andre; Orenstein, Jan; Becich, Michael J

    2006-05-05

    Advances in molecular biology and growing requirements from biomarker validation studies have generated a need for tissue banks to provide quality-controlled tissue samples with standardized clinical annotation. The NCI Cooperative Prostate Cancer Tissue Resource (CPCTR) is a distributed tissue bank that comprises four academic centers and provides thousands of clinically annotated prostate cancer specimens to researchers. Here we describe the CPCTR information management system architecture, common data element (CDE) development, query interfaces, data curation, and quality control. Data managers review the medical records to collect and continuously update information for the 145 clinical, pathological and inventorial CDEs that the Resource maintains for each case. An Access-based data entry tool provides de-identification and a standard communication mechanism between each group and a central CPCTR database. Standardized automated quality control audits have been implemented. Centrally, an Oracle database has web interfaces allowing multiple user-types, including the general public, to mine de-identified information from all of the sites with three levels of specificity and granularity as well as to request tissues through a formal letter of intent. Since July 2003, CPCTR has offered over 6,000 cases (38,000 blocks) of highly characterized prostate cancer biospecimens, including several tissue microarrays (TMA). The Resource developed a website with interfaces for the general public as well as researchers and internal members. These user groups have utilized the web-tools for public query of summary data on the cases that were available, to prepare requests, and to receive tissues. As of December 2005, the Resource received over 130 tissue requests, of which 45 have been reviewed, approved and filled. Additionally, the Resource implemented the TMA Data Exchange Specification in its TMA program and created a computer program for calculating PSA recurrence

  11. Is epicardial adipose tissue, assessed by echocardiography, a reliable method for visceral adipose tissue prediction?

    PubMed

    Silaghi, Alina Cristina; Poantă, Laura; Valea, Ana; Pais, Raluca; Silaghi, Horatiu

    2011-03-01

    Epicardial adipose tissue is an ectopic fat storage at the heart surface in direct contact with the coronary arteries. It is considered a metabolically active tissue, being a local source of pro-inflammatory factors that contribute to the pathogenesis of coronary artery disease. The AIM of our study was to establish correlations between echocardiographic assessment of epicardial adipose tissue and anthropometric and ultrasound measurements of the central and peripheral fat depots. The study was conducted on 22 patients with or without coronaropathy. Epicardial adipose tissue was measured using Aloka Prosound α 10 machine with a 3.5-7.5 MHz variable-frequency transducer and subcutaneous and visceral fat with Esaote Megas GPX machine and 3.5-7.5 MHz variable frequency transducer. Epicardial adipose tissue measured by echocardiography is correlated with waist circumference (p < 0.05), visceral adipose tissue thickness measured by ultrasonography (US) and is not correlated with body mass index (p = 0.315), hip and thigh circumference or subcutaneous fat thickness measured by US. Our study confirms that US assessment of epicardial fat correlates with anthropometric and US measurements of the central fat, representing an indirect but reliable marker of the visceral fat.

  12. Donor cornea tissue in cases of drowning or water submersion: eye banks practice patterns and tissue outcomes.

    PubMed

    Vijayakumar, Nithya P; Parikh, Purak; Mian, Shahzad I; Tennant, Brad; Grossman, Gregory H; Albrecht, Bob; Niziol, Leslie M; Woodward, Maria A

    2018-03-01

    Surgical use of donor corneal tissue from victims of water submersion (drowning or submersion secondary to death) remains controversial due to limited evidence about the quality of these tissues. To assess the safety of donor corneal tissue from victims of water submersion, an investigation of eye banks' practice patterns and tissue outcomes was conducted. All 79 Eye Bank Association of America accredited eye banks were contacted for a phone interview of practices regarding tissue from victims of water submersion. A retrospective review of corneal tissues from 2014 to 2016 from a large eye bank network was performed to identify all donors submerged in water. Corneal epithelial integrity, endothelial cell density (ECD), rim cultures, and adverse events were analyzed for associations with water submersion characteristics. 49 eye banks (62% response) participated in the survey. 55% of these eye banks had specific, written protocol for tissue eligibility from donors submerged in water. With or without specific protocol, eye banks reported considering water type (84%) and length of time submerged (92%) to determine eligibility. 22% of eye banks reported medical director involvement when eligibility determination was unclear. 79 tissues from 40 donors who were submerged were identified in 2014-2016 eye bank data. No donor tissues had pre-processing corneal infiltrates, positive rim cultures, or adverse events post-keratoplasty. Corneal epithelial integrity and ECD were not associated with water type or length of time submerged. In conclusion, data from a large eye bank network showed no adverse events or outcomes, indicating these tissues may be safe.

  13. Repair of Craniomaxillofacial Traumatic Soft Tissue Defects With Tissue Expansion in the Early Stage.

    PubMed

    Han, Yan; Zhao, Jianhui; Tao, Ran; Guo, Lingli; Yang, Hongyan; Zeng, Wei; Song, Baoqiang; Xia, Wensen

    2017-09-01

    Craniomaxillofacial traumatic soft tissue defects severely affect the function and appearance of the patients. The traditional skin grafting or free flap transplantation can only close the defects in the early stage of operation but cannot ensure similar color, texture, and relative aesthetic contour. In the present study, the authors have explored a novel strategy to repair craniomaxillofacial traumatic soft tissue defects by tissue expansion in the early stage and have obtained satisfactory results. Eighteen patients suffering large craniomaxillofacial traumatic soft tissue defects were treated by thorough debridement leaving the wounds unclosed or simply closed with thin split-thickness scalp grafts, adjacent expander implantation in the first stage, and expanded flap transposition in the second stage. There were 11 male patients and 7 female patients ranging in age from 3.5 to 40 years (mean, 19.4 ± 12.2 years), with average 15 months follow-up (range, 3-67 months). The average expansion time was 74.3 days (range, 53-96 days). The 18 patients with a total of 22 expanders were treated with satisfactory results. All the flaps survived and the skin color, texture, and contour well matched those of the peripheral tissue. Only 1 complication of infection happened in the 18 cases (5.56%) and the 22 expanders (4.55%), which was similar to the rate reported in the literature. No other complications related to the expanders occurred. Debridement and tissue expansion in the early stage has been proved to be a more effective strategy to repair craniomaxillofacial traumatic soft tissue defects. This strategy can not only achieve satisfactory color, unbulky and well-matched texture similar to normal, but also avoid unnecessary donor site injuries.

  14. Differentiated embryonic chondrocytes 1 expression of periodontal ligament tissue and gingival tissue in the patients with chronic periodontitis.

    PubMed

    Hu, Shenlin; Shang, Wei; Yue, Haitao; Chen, Ruini; Dong, Zheng; Hu, Jinhua; Mao, Zhao; Yang, Jian

    2015-04-01

    To evaluate the DEC1 expression of periodontal ligament tissue and gingival tissue in the patients with chronic periodontitis. 20 non-smoking patients with chronic periodontitis and 20 healthy individuals were enrolled. Periodontal ligament tissue and gingival tissue samples from healthy subjects were collected during teeth extraction for orthodontic reason or the third molar extraction. The parallel samples from patients with chronic periodontitis were obtained during periodontal flap operations or teeth extraction as part of periodontal treatment. The DEC1 expression and the alkaline phosphatase (ALP) activity of both the periodontal ligament tissue and gingival tissue were determined by Western blot, Immunohistochemistry and ALP Detection Kit. The DEC1 expression of periodontal ligament tissue in the patients with chronic periodontitis decreased significantly along with the decreased ALP activity. On the contrary, the DEC1 expression of gingival tissue in the patients with chronic periodontitis increased significantly. Further study found that the DEC1 expression of gingival tissue increased mainly in the suprabasal layer of gingival epithelial cells but decreased in the gingival connective tissue of the patients with chronic periodontitis. The DEC1 expression decreases in the periodontal ligament tissue which is related to the osteogenic capacity, whereas the DEC1 expression increases in the suprabasal layer of gingival epithelial cells which are involved in immune inflammatory response in the patients with chronic periodontitis. The findings provide a new target to explore the pathology and the therapy of periodontitis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Defining adipose tissue-derived stem cells in tissue and in culture.

    PubMed

    Lin, Ching-Shwun; Xin, Zhong-Cheng; Deng, Chun-Hua; Ning, Hongxiu; Lin, Guiting; Lue, Tom F

    2010-06-01

    Adipose tissue-derived stem cells (ADSC) are routinely isolated from the stromal vascular fraction (SVF) of homogenized adipose tissue. Similar to other types of mesenchymal stem cells (MSC), ADSC remain difficult to define due to the lack of definitive cellular markers. Still, many types of MSC, including ADSC, have been shown to reside in a perivascular location, and increasing evidence shows that both MSC and ADSC may in fact be vascular stem cells (VSC). Locally, these cells differentiate into smooth muscle and endothelial cells that are assembled into newly formed blood vessels during angiogenesis and neovasculogenesis. Additionally, MSC or ADSC can also differentiate into tissue cells such as adipocytes in the adipose tissue. Systematically, MSC or ADSC are recruited to injury sites where they participate in the repair/regeneration of the injured tissue. Due to the vasculature's dynamic capacity for growth and multipotential nature for diversification, VSC in tissue are individually at various stages and on different paths of differentiation. Therefore, when isolated and put in culture, these cells are expected to be heterogeneous in marker expression, renewal capacity, and differentiation potential. Although this heterogeneity of VSC does impose difficulties and cause confusions in basic science studies, its impact on the development of VSC as a therapeutic cell source has not been as apparent, as many preclinical and clinical trials have reported favorable outcomes. With this understanding, ADSC are generally defined as CD34+CD31- although loss of CD34 expression in culture is well documented. In adipose tissue, CD34 is localized to the intima and adventitia of blood vessels but not the media where cells expressing alpha-smooth muscle actin (SMA) exist. By excluding the intima, which contains the CD34+CD31+ endothelial cells, and the media, which contains the CD34-CD31- smooth muscle cells, it leaves the adventitia as the only possible location for the CD34

  16. Advances in bionanomaterials for bone tissue engineering.

    PubMed

    Scott, Timothy G; Blackburn, Gary; Ashley, Michael; Bayer, Ilker S; Ghosh, Anindya; Biris, Alexandru S; Biswas, Abhijit

    2013-01-01

    Bone is a specialized form of connective tissue that forms the skeleton of the body and is built at the nano and microscale levels as a multi-component composite material consisting of a hard inorganic phase (minerals) in an elastic, dense organic network. Mimicking bone structure and its properties present an important frontier in the fields of nanotechnology, materials science and bone tissue engineering, given the complex morphology of this tissue. There has been a growing interest in developing artificial bone-mimetic nanomaterials with controllable mineral content, nanostructure, chemistry for bone, cartilage tissue engineering and substitutes. This review describes recent advances in bionanomaterials for bone tissue engineering including developments in soft tissue engineering. The significance and basic process of bone tissue engineering along with different bionanomaterial bone scaffolds made of nanocomposites and nanostructured biopolymers/bioceramics and the prerequisite biomechanical functions are described. It also covers latest developments in soft-tissue reconstruction and replacement. Finally, perspectives on the future direction in nanotechnology-enabled bone tissue engineering are presented.

  17. Principles, Techniques, and Applications of Tissue Microfluidics

    NASA Technical Reports Server (NTRS)

    Wade, Lawrence A.; Kartalov, Emil P.; Shibata, Darryl; Taylor, Clive

    2011-01-01

    The principle of tissue microfluidics and its resultant techniques has been applied to cell analysis. Building microfluidics to suit a particular tissue sample would allow the rapid, reliable, inexpensive, highly parallelized, selective extraction of chosen regions of tissue for purposes of further biochemical analysis. Furthermore, the applicability of the techniques ranges beyond the described pathology application. For example, they would also allow the posing and successful answering of new sets of questions in many areas of fundamental research. The proposed integration of microfluidic techniques and tissue slice samples is called "tissue microfluidics" because it molds the microfluidic architectures in accordance with each particular structure of each specific tissue sample. Thus, microfluidics can be built around the tissues, following the tissue structure, or alternatively, the microfluidics can be adapted to the specific geometry of particular tissues. By contrast, the traditional approach is that microfluidic devices are structured in accordance with engineering considerations, while the biological components in applied devices are forced to comply with these engineering presets.

  18. Supply of human allograft tissue in Canada.

    PubMed

    Lakey, Jonathan R T; Mirbolooki, Mohammadreza; Rogers, Christina; Mohr, Jim

    2007-01-01

    There is relatively little known about the supply for allograft tissues in Canada. The major aim of this study is to quantify the current or "Known Supply" of human allograft tissue (bone, tendons, soft tissue, cardiovascular, ocular and skin) from known tissue banks in Canada, to estimate the "Unknown Supply" of human allograft tissue available to Canadian users from other sources, and to investigate the nature and source of these tissue products. Two surveys were developed; one for tissue banks processing one or more tissue types and the other specific to eye banks. Thirty nine sites were initially identified as potential tissue bank respondent sites. Of the 39 sites, 29 sites indicated that they were interested in participating or would consider completing the survey. A survey package and a self-addressed courier envelope were couriered to each of 29 sites. A three week response time was indicated. The project consultants conducted telephone and email follow-up for incomplete data. Unknown supply was estimated by 5 methods. Twenty-eight of 29 sites (97%) completed and returned surveys. Over the past year, respondents reported a total of 5,691 donors (1,550 living and 4,141 cadaveric donors). Including cancellous ground bone, there were 10,729 tissue products produced by the respondent banks. Of these, 71% were produced by accredited banks and 32% were ocular tissues. Total predicted shortfall of allograft tissues was 31,860-66,481 grafts. Through estimating Current supply, and compiling additional qualitative information, this study has provided a snapshot of the current Canadian supply and shortfall of allograft tissue grafts.

  19. Tissue banking in India: gamma-irradiated allografts.

    PubMed

    Lobo Gajiwala, A

    2003-01-01

    In India, the procurement of tissues for transplantation is governed by the Transplantation of Human Organs Act, 1994. Although this law exists, it is primarily applied to organ transplantation and rules and regulations that are specific to tissue banking which have yet to be developed. The Tata Memorial Hospital (TMH) Tissue Bank was started in 1988 as part of an International Atomic Energy Agency (IAEA) programme to promote the use of ionising radiation for the sterilisation of biological tissues. It represents the Government of India within this project and was the first facility in the country to use radiation for the sterilisation of allografts. It is registered with the Health Services Maharashtra State and provides freeze-dried, gamma irradiated amnion, dura mater, skin and bone. The tissues are obtained either from cadavers or live donors. To date the TMH Tissue Bank has provided 6328 allografts which have found use as biological dressings and in various reconstructive procedures. The TMH Tissue Bank has helped initiate a Tissue Bank at the Defence Laboratory (DL), Jodhpur. At present these are the only two Banks in the country using radiation for the terminal sterilisation of preserved tissues. The availability of safe, clinically useful and cost effective grafts has stimulated innovative approaches to surgery. There is an increased demand for banked tissues and a heightened interest in the development of tissue banks. Inadequate infrastructure for donor referral programmes and the lack of support for tissue transplant co-ordinators however, continue to limit the availability of donor tissue.

  20. Design Standards for Engineered Tissues

    PubMed Central

    Nawroth, Janna C.; Parker, Kevin Kit

    2013-01-01

    Traditional technologies are required to meet specific, quantitative standards of safety and performance. In tissue engineering, similar standards will have to be developed to enable routine clinical use and customized tissue fabrication. In this essay, we discuss a framework of concepts leading towards general design standards for tissue-engineering, focusing in particular on systematic design strategies, control of cell behavior, physiological scaling, fabrication modes and functional evaluation. PMID:23267860

  1. Bioencapsulation technologies in tissue engineering

    PubMed Central

    Majewski, Rebecca L.; Zhang, Wujie; Ma, Xiaojun; Cui, Zhanfeng; Ren, Weiping; Markel, David C.

    2017-01-01

    Bioencapsulation technologies have played an important role in the developing successes of tissue engineering. Besides offering immunoisolation, they also show promise for cell/tissue banking and the directed differentiation of stem cells, by providing a unique microenvironment. This review describes bioencapsulation technologies and summarizes their recent progress in research into tissue engineering. The review concludes with a brief outlook regarding future research directions in this field. PMID:27716872

  2. Principles, Techniques, and Applications of Tissue Microfluidics

    NASA Technical Reports Server (NTRS)

    Wade, Lawrence A.; Kartalov, Emil P.; Shibata, Darryl; Taylor, Clive

    2011-01-01

    The principle of tissue microfluidics and its resultant techniques has been applied to cell analysis. Building microfluidics to suit a particular tissue sample would allow the rapid, reliable, inexpensive, highly parallelized, selective extraction of chosen regions of tissue for purposes of further biochemical analysis. Furthermore, the applicability of the techniques ranges beyond the described pathology application. For example, they would also allow the posing and successful answering of new sets of questions in many areas of fundamental research. The proposed integration of microfluidic techniques and tissue slice samples is called tissue microfluidics because it molds the microfluidic architectures in accordance with each particular structure of each specific tissue sample. Thus, microfluidics can be built around the tissues, following the tissue structure, or alternatively, the microfluidics can be adapted to the specific geometry of particular tissues. By contrast, the traditional approach is that microfluidic devices are structured in accordance with engineering considerations, while the biological components in applied devices are forced to comply with these engineering presets. The proposed principles represent a paradigm shift in microfluidic technology in three important ways: Microfluidic devices are to be directly integrated with, onto, or around tissue samples, in contrast to the conventional method of off-chip sample extraction followed by sample insertion in microfluidic devices. Architectural and operational principles of microfluidic devices are to be subordinated to suit specific tissue structure and needs, in contrast to the conventional method of building devices according to fluidic function alone and without regard to tissue structure. Sample acquisition from tissue is to be performed on-chip and is to be integrated with the diagnostic measurement within the same device, in contrast to the conventional method of off-chip sample prep and

  3. Parthenolide Selectively Sensitizes Prostate Tumor Tissue to Radiotherapy while Protecting Healthy Tissues In Vivo.

    PubMed

    Morel, Katherine L; Ormsby, Rebecca J; Bezak, Eva; Sweeney, Christopher J; Sykes, Pamela J

    2017-05-01

    Radiotherapy is widely used in cancer treatment, however the benefits can be limited by radiation-induced damage to neighboring normal tissues. Parthenolide (PTL) exhibits anti-inflammatory and anti-tumor properties and selectively induces radiosensitivity in prostate cancer cell lines, while protecting primary prostate epithelial cell lines from radiation-induced damage. Low doses of radiation have also been shown to protect from subsequent high-dose-radiation-induced apoptosis as well as DNA damage. These properties of PTL and low-dose radiation could be used to improve radiotherapy by killing more tumor cells and less normal cells. Sixteen-week-old male Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) and C57BL/6J mice were treated with PTL (40 mg/kg), dimethylaminoparthenolide (DMAPT, a PTL analogue with increased bioavailability) (100 mg/kg), or vehicle control three times over one week prior to combinations of low (10 mGy) and high (6 Gy) doses of whole-body X-irradiation. Tissues were analyzed for apoptosis at a range of time points up to 72 h postirradiation. Both PTL and DMAPT protected normal tissues, but not prostate tumor tissues, from a significant proportion of high-dose-radiation-induced apoptosis. DMAPT provided superior protection compared to PTL in normal dorsolateral prostate (71.7% reduction, P = 0.026), spleen (48.2% reduction, P = 0.0001) and colorectal tissue (38.0% reduction, P = 0.0002), and doubled radiation-induced apoptosis in TRAMP prostate tumor tissue (101.3% increase, P = 0.039). Both drugs induced the greatest radiosensitivity in TRAMP prostate tissue in areas with higher grade prostatic intraepithelial neoplasia (PIN) lesions. A 10 mGy dose delivered 3 h prior to a 6 Gy dose induced a radioadaptive apoptosis response in normal C57Bl/6J prostate (28.4% reduction, P = 0.045) and normal TRAMP spleen (13.6% reduction, P = 0.047), however the low-dose-adaptive radioprotection did not significantly add to the PTL

  4. AAV vector encoding human VEGF165-transduced pectineus muscular flaps increase the formation of new tissue through induction of angiogenesis in an in vivo chamber for tissue engineering: A technique to enhance tissue and vessels in microsurgically engineered tissue.

    PubMed

    Moimas, Silvia; Manasseri, Benedetto; Cuccia, Giuseppe; Stagno d'Alcontres, Francesco; Geuna, Stefano; Pattarini, Lucia; Zentilin, Lorena; Giacca, Mauro; Colonna, Michele R

    2015-01-01

    In regenerative medicine, new approaches are required for the creation of tissue substitutes, and the interplay between different research areas, such as tissue engineering, microsurgery and gene therapy, is mandatory. In this article, we report a modification of a published model of tissue engineering, based on an arterio-venous loop enveloped in a cross-linked collagen-glycosaminoglycan template, which acts as an isolated chamber for angiogenesis and new tissue formation. In order to foster tissue formation within the chamber, which entails on the development of new vessels, we wondered whether we might combine tissue engineering with a gene therapy approach. Based on the well-described tropism of adeno-associated viral vectors for post-mitotic tissues, a muscular flap was harvested from the pectineus muscle, inserted into the chamber and transduced by either AAV vector encoding human VEGF165 or AAV vector expressing the reporter gene β-galactosidase, as a control. Histological analysis of the specimens showed that muscle transduction by AAV vector encoding human VEGF165 resulted in enhanced tissue formation, with a significant increase in the number of arterioles within the chamber in comparison with the previously published model. Pectineus muscular flap, transduced by adeno-associated viral vectors, acted as a source of the proangiogenic factor vascular endothelial growth factor, thus inducing a consistent enhancement of vessel growth into the newly formed tissue within the chamber. In conclusion, our present findings combine three different research fields such as microsurgery, tissue engineering and gene therapy, suggesting and showing the feasibility of a mixed approach for regenerative medicine.

  5. Adipose and mammary epithelial tissue engineering.

    PubMed

    Zhu, Wenting; Nelson, Celeste M

    2013-01-01

    Breast reconstruction is a type of surgery for women who have had a mastectomy, and involves using autologous tissue or prosthetic material to construct a natural-looking breast. Adipose tissue is the major contributor to the volume of the breast, whereas epithelial cells comprise the functional unit of the mammary gland. Adipose-derived stem cells (ASCs) can differentiate into both adipocytes and epithelial cells and can be acquired from autologous sources. ASCs are therefore an attractive candidate for clinical applications to repair or regenerate the breast. Here we review the current state of adipose tissue engineering methods, including the biomaterials used for adipose tissue engineering and the application of these techniques for mammary epithelial tissue engineering. Adipose tissue engineering combined with microfabrication approaches to engineer the epithelium represents a promising avenue to replicate the native structure of the breast.

  6. Adipose and mammary epithelial tissue engineering

    PubMed Central

    Zhu, Wenting; Nelson, Celeste M.

    2013-01-01

    Breast reconstruction is a type of surgery for women who have had a mastectomy, and involves using autologous tissue or prosthetic material to construct a natural-looking breast. Adipose tissue is the major contributor to the volume of the breast, whereas epithelial cells comprise the functional unit of the mammary gland. Adipose-derived stem cells (ASCs) can differentiate into both adipocytes and epithelial cells and can be acquired from autologous sources. ASCs are therefore an attractive candidate for clinical applications to repair or regenerate the breast. Here we review the current state of adipose tissue engineering methods, including the biomaterials used for adipose tissue engineering and the application of these techniques for mammary epithelial tissue engineering. Adipose tissue engineering combined with microfabrication approaches to engineer the epithelium represents a promising avenue to replicate the native structure of the breast. PMID:23628872

  7. Soft-tissue tension total knee arthroplasty.

    PubMed

    Asano, Hiroshi; Hoshino, Akiho; Wilton, Tim J

    2004-08-01

    It is far from clear how best to define the proper strength of soft-tissue tensioning in total knee arthroplasty (TKA). We attached a torque driver to the Monogram balancer/tensor device and measured soft-tissue tension in full extension and 90 degrees flexion during TKA. In our surgical procedure, when we felt proper soft-tissue tension was being applied, the mean distraction force was noted to be 126N in extension and 121N in flexion. There was no significant correlation between soft-tissue tension and the postoperative flexion angle finally achieved. To the best of our knowledge, this is the first study to assess the actual distraction forces in relation to soft-tissue tension in TKA. Further study may reveal the most appropriate forces to achieve proper soft-tissue tension in the wide variety of circumstances presenting at knee arthroplasty.

  8. Fatty acids of Pinus elliottii tissues.

    NASA Technical Reports Server (NTRS)

    Laseter, J. L.; Lawler, G. C.; Walkinshaw, C. H.; Weete, J. D.

    1973-01-01

    The total fatty constituents of slash pine (Pinus elliottii) tissue cultures, seeds, and seedlings were examined by GLC and MS. Qualitatively, the fatty acid composition of these tissues was found to be very similar to that reported for other pine species. The fatty acid contents of the tissue cultures resembled that of the seedling tissues. The branched-chain C(sub 17) acid reported for several other Pinus species was confirmed as the anteiso isomer.

  9. X-ray Phase Contrast Imaging of Calcified Tissue and Biomaterial Structure in Bioreactor Engineered Tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appel, Alyssa A.; Larson, Jeffery C.; Garson, III, Alfred B.

    2014-11-04

    Tissues engineered in bioreactor systems have been used clinically to replace damaged tissues and organs. In addition, these systems are under continued development for many tissue engineering applications. The ability to quantitatively assess material structure and tissue formation is critical for evaluating bioreactor efficacy and for preimplantation assessment of tissue quality. These techniques allow for the nondestructive and longitudinal monitoring of large engineered tissues within the bioreactor systems and will be essential for the translation of these strategies to viable clinical therapies. X-ray Phase Contrast (XPC) imaging techniques have shown tremendous promise for a number of biomedical applications owing tomore » their ability to provide image contrast based on multiple X-ray properties, including absorption, refraction, and scatter. In this research, mesenchymal stem cell-seeded alginate hydrogels were prepared and cultured under osteogenic conditions in a perfusion bioreactor. The constructs were imaged at various time points using XPC microcomputed tomography (µCT). Imaging was performed with systems using both synchrotron- and tube-based X-ray sources. XPC µCT allowed for simultaneous three-dimensional (3D) quantification of hydrogel size and mineralization, as well as spatial information on hydrogel structure and mineralization. Samples were processed for histological evaluation and XPC showed similar features to histology and quantitative analysis consistent with the histomorphometry. Furthermore, these results provide evidence of the significant potential of techniques based on XPC for noninvasive 3D imaging engineered tissues grown in bioreactors.« less

  10. Method for creating ideal tissue fusion in soft-tissue structures using radio frequency (RF) energy.

    PubMed

    Shields, Chelsea A; Schechter, David A; Tetzlaff, Phillip; Baily, Ali L; Dycus, Sean; Cosgriff, Ned

    2004-01-01

    Bipolar radiofrequency (RF) energy can successfully seal vascular structures up to 7 mm by fusing collagen and elastin in the lumen. Valleylab has created a system to expand this technology beyond vessel sealing with the development of a closed-loop, feedback-control RF generator that closely monitors tissue fusion. This generator, operating with a loop time of approximately 250 micros, continuously adjusts energy output, creating optimized soft-tissue fusion through structural protein amalgamation. In the first study, RF energy was applied to canine lung using the new-generation generator and lung-prototype device. A lobectomy was completed, sealing the lobar bronchus, parenchyma, and pulmonary vasculature. Chronic performance of the seals was evaluated at necropsy on postoperative days 7 and 14. In a second study, RF energy was applied to porcine small intestine using the same closed-loop generator and anastomosis prototype device. Acute tissue fusion was assessed qualitatively for hemostasis and seal quality. Terminal tissue evaluation was completed on postoperative day 7 and analyzed histopathologically. Histopathology confirmed acute and chronic tissue fusion in both the lung and intestine. Normal pathological healing was substantiated by angiogenesis, granulation, and proliferation of fibroblasts. Preliminary studies using canine lung and porcine small intestine demonstrate the potential of this closed-loop generator for soft-tissue amalgamation. Advanced monitoring capabilities make this fusion system applicable in many soft-tissue structures with adequate collagen and elastin. Further investigation of potential surgical applications needs to be completed.

  11. The growth of tissue engineering.

    PubMed

    Lysaght, M J; Reyes, J

    2001-10-01

    This report draws upon data from a variety of sources to estimate the size, scope, and growth rate of the contemporary tissue engineering enterprise. At the beginning of 2001, tissue engineering research and development was being pursued by 3,300 scientists and support staff in more than 70 startup companies or business units with a combined annual expenditure of over $600 million. Spending by tissue engineering firms has been growing at a compound annual rate of 16%, and the aggregate investment since 1990 now exceeds $3.5 billion. At the beginning of 2001, the net capital value of the 16 publicly traded tissue engineering startups had reached $2.6 billion. Firms focusing on structural applications (skin, cartilage, bone, cardiac prosthesis, and the like) comprise the fastest growing segment. In contrast, efforts in biohybrid organs and other metabolic applications have contracted over the past few years. The number of companies involved in stem cells and regenerative medicine is rapidly increasing, and this area represents the most likely nidus of future growth for tissue engineering. A notable recent trend has been the emergence of a strong commercial activity in tissue engineering outside the United States, with at least 16 European or Australian companies (22% of total) now active.

  12. Soft tissue differentiation by diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zam, Azhar; Stelzle, Florian; Nkenke, Emeka; Tangermann-Gerk, Katja; Schmidt, Michael; Adler, Werner; Douplik, Alexandre

    2009-07-01

    Laser surgery gives the possibility to work remotely which leads to high precision, little trauma and high level sterility. However these advantages are coming with the lack of haptic feedback during the laser ablation of tissue. Therefore additional means are required to control tissue-specific ablation during laser surgery supporting the surgeon regardless of experience and skills. Diffuse Reflectance Spectroscopy provides a straightforward and simple approach for optical tissue differentiation. We measured diffuse reflectance from four various tissue types ex vivo. We applied Linear Discriminant Analysis (LDA) to differentiate the four tissue types and computed the area under the ROC curve (AUC). Special emphasis was taken on the identification of nerve as the most crucial tissue for maxillofacial surgery. The results show a promise for differentiating soft tissues as guidance for tissue-specific laser surgery by means of the diffuse reflectance.

  13. Three Dimensional Optic Tissue Culture and Process

    NASA Technical Reports Server (NTRS)

    OConnor, Kim C. (Inventor); Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); Aten, Laurie A. (Inventor); Francis, Karen M. (Inventor); Caldwell, Delmar R. (Inventor); Prewett, Tacey L. (Inventor); Fitzgerald, Wendy S. (Inventor)

    1999-01-01

    A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioireactor at low shear conditions. The tissue forms as normal, functional tissue grows with tissue organization and extracellular matrix formation.

  14. Novel three-dimensional autologous tissue-engineered vaginal tissues using the self-assembly technique.

    PubMed

    Orabi, Hazem; Saba, Ingrid; Rousseau, Alexandre; Bolduc, Stéphane

    2017-02-01

    Many diseases necessitate the substitution of vaginal tissues. Current replacement therapies are associated with many complications. In this study, we aimed to create bioengineered neovaginas with the self-assembly technique using autologous vaginal epithelial (VE) and vaginal stromal (VS) cells without the use of exogenous materials and to document the survival and incorporation of these grafts into the tissues of nude female mice. Epithelial and stromal cells were isolated from vaginal biopsies. Stromal cells were driven to form collagen sheets, 3 of which were superimposed to form vaginal stromas. VE cells were seeded on top of these stromas and allowed to mature in an air-liquid interface. The vaginal equivalents were implanted subcutaneously in female nude mice, which were sacrificed after 1 and 2 weeks after surgery. The in vitro and animal-retrieved equivalents were assessed using histologic, functional, and mechanical evaluations. Vaginal equivalents could be handled easily. VE cells formed a well-differentiated epithelial layer with a continuous basement membrane. The equivalent matrix was composed of collagen I and III and elastin. The epithelium, basement membrane, and stroma were comparable to those of native vaginal tissues. The implanted equivalents formed mature vaginal epithelium and matrix that were integrated into the mice tissues. Using the self-assembly technique, in vitro vaginal tissues were created with many functional and biological similarities to native vagina without any foreign material. They formed functional vaginal tissues after in vivo animal implantation. It is appropriate for vaginal substitution and disease modeling for infectious studies, vaginal applicants, and drug testing. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Three-Dimensionally Engineered Normal Human Lung Tissue-Like Assemblies: Target Tissues for Human Respiratory Viral Infections

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.; McCarthy, M.; Lin, Y-H.; Deatly, A. M.

    2008-01-01

    In vitro three-dimensional (3D) human lung epithelio-mesenchymal tissue-like assemblies (3D hLEM TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and the detection of membrane bound glycoproteins over time confirm productive infection with the virus. Therefore, we assert TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host s immune system.

  16. Ergot alkaloid transport across ruminant gastric tissues.

    PubMed

    Hill, N S; Thompson, F N; Stuedemann, J A; Rottinghaus, G W; Ju, H J; Dawe, D L; Hiatt, E E

    2001-02-01

    Ergot alkaloids cause fescue toxicosis when livestock graze endophyte-infected tall fescue. It is generally accepted that ergovaline is the toxic component of endophyte-infected tall fescue, but there is no direct evidence to support this hypothesis. The objective of this study was to examine relative and potential transport of ergoline and ergopeptine alkaloids across isolated gastric tissues in vitro. Sheep ruminal and omasal tissues were surgically removed and placed in parabiotic chambers. Equimolar concentrations of lysergic acid, lysergol, ergonovine, ergotamine, and ergocryptine were added to a Kreb's Ringer phosphate (KRP) solution on the mucosal side of the tissue. Tissue was incubated in near-physiological conditions for 240 min. Samples were taken from KRP on the serosal side of the chambers at times 0, 30, 60, 120, 180, and 240 min and analyzed for ergot alkaloids by competitive ELISA. The serosal KRP remaining after incubation was freeze-dried and the alkaloid species quantified by HPLC. The area of ruminal and omasal tissues was measured and the potential transportable alkaloids calculated by multiplying the moles of transported alkaloids per square centimeter of each tissue type by the surface area of the tissue. Studies were conducted to compare alkaloid transport in reticular, ruminal, and omasal tissues and to determine whether transport was active or passive. Ruminal tissue had greater ergot alkaloid transport potential than omasal tissue (85 vs 60 mmol) because of a larger surface area. The ruminal posterior dorsal sac had the greatest potential for alkaloid transport, but the other ruminal tissues were not different from one another. Alkaloid transport was less among reticular tissues than among ruminal tissues. Transport of alkaloids seemed to be an active process. The alkaloids with greatest transport potential were lysergic acid and lysergol. Ergopeptine alkaloids tended to pass across omasal tissues in greater quantities than across ruminal

  17. Developmental biology and tissue engineering.

    PubMed

    Marga, Francoise; Neagu, Adrian; Kosztin, Ioan; Forgacs, Gabor

    2007-12-01

    Morphogenesis implies the controlled spatial organization of cells that gives rise to tissues and organs in early embryonic development. While morphogenesis is under strict genetic control, the formation of specialized biological structures of specific shape hinges on physical processes. Tissue engineering (TE) aims at reproducing morphogenesis in the laboratory, i.e., in vitro, to fabricate replacement organs for regenerative medicine. The classical approach to generate tissues/organs is by seeding and expanding cells in appropriately shaped biocompatible scaffolds, in the hope that the maturation process will result in the desired structure. To accomplish this goal more naturally and efficiently, we set up and implemented a novel TE method that is based on principles of developmental biology and employs bioprinting, the automated delivery of cellular composites into a three-dimensional (3D) biocompatible environment. The novel technology relies on the concept of tissue liquidity according to which multicellular aggregates composed of adhesive and motile cells behave in analogy with liquids: in particular, they fuse. We emphasize the major role played by tissue fusion in the embryo and explain how the parameters (surface tension, viscosity) that govern tissue fusion can be used both experimentally and theoretically to control and simulate the self-assembly of cellular spheroids into 3D living structures. The experimentally observed postprinting shape evolution of tube- and sheet-like constructs is presented. Computer simulations, based on a liquid model, support the idea that tissue liquidity may provide a mechanism for in vitro organ building. Copyright 2008 Wiley-Liss, Inc.

  18. Tissue refractometry using Hilbert phase microscopy

    PubMed Central

    Lue, Niyom; Bewersdorf, Joerg; Lessard, Mark D.; Badizadegan, Kamran; Dasari, Ramachandra R.; Feld, Michael S.; Popescu, Gabriel

    2009-01-01

    We present, for the first time to our knowledge, quantitative phase images associated with unstained 5 μm thick tissue slices of mouse brain, spleen, and liver. The refractive properties of the tissue are retrieved in terms of the average refractive index and its spatial variation. We find that the average refractive index varies significantly with tissue type, such that the brain is characterized by the lowest value and the liver by the highest. The spatial power spectra of the phase images reveal power law behavior with different exponents for each tissue type. This approach opens a new possibility for stain-free characterization of tissues, where the diagnostic power is provided by the intrinsic refractive properties of the biological structure. We present results obtained for liver tissue affected by a lysosomal storage disease and show that our technique can quantify structural changes during this disease development. PMID:18087529

  19. Tissue refractometry using Hilbert phase microscopy.

    PubMed

    Lue, Niyom; Bewersdorf, Joerg; Lessard, Mark D; Badizadegan, Kamran; Dasari, Ramachandra R; Feld, Michael S; Popescu, Gabriel

    2007-12-15

    We present, for the first time to our knowledge, quantitative phase images associated with unstained 5 mum thick tissue slices of mouse brain, spleen, and liver. The refractive properties of the tissue are retrieved in terms of the average refractive index and its spatial variation. We find that the average refractive index varies significantly with tissue type, such that the brain is characterized by the lowest value and the liver by the highest. The spatial power spectra of the phase images reveal power law behavior with different exponents for each tissue type. This approach opens a new possibility for stain-free characterization of tissues, where the diagnostic power is provided by the intrinsic refractive properties of the biological structure. We present results obtained for liver tissue affected by a lysosomal storage disease and show that our technique can quantify structural changes during this disease development.

  20. Nanomaterials for Cardiac Myocyte Tissue Engineering.

    PubMed

    Amezcua, Rodolfo; Shirolkar, Ajay; Fraze, Carolyn; Stout, David A

    2016-07-19

    Since their synthesizing introduction to the research community, nanomaterials have infiltrated almost every corner of science and engineering. Over the last decade, one such field has begun to look at using nanomaterials for beneficial applications in tissue engineering, specifically, cardiac tissue engineering. During a myocardial infarction, part of the cardiac muscle, or myocardium, is deprived of blood. Therefore, the lack of oxygen destroys cardiomyocytes, leaving dead tissue and possibly resulting in the development of arrhythmia, ventricular remodeling, and eventual heart failure. Scarred cardiac muscle results in heart failure for millions of heart attack survivors worldwide. Modern cardiac tissue engineering research has developed nanomaterial applications to combat heart failure, preserve normal heart tissue, and grow healthy myocardium around the infarcted area. This review will discuss the recent progress of nanomaterials for cardiovascular tissue engineering applications through three main nanomaterial approaches: scaffold designs, patches, and injectable materials.

  1. The Comparative Genomics and Phylogenomics of Leishmania amazonensis Parasite.

    PubMed

    Tschoeke, Diogo A; Nunes, Gisele L; Jardim, Rodrigo; Lima, Joana; Dumaresq, Aline Sr; Gomes, Monete R; de Mattos Pereira, Leandro; Loureiro, Daniel R; Stoco, Patricia H; de Matos Guedes, Herbert Leonel; de Miranda, Antonio Basilio; Ruiz, Jeronimo; Pitaluga, André; Silva, Floriano P; Probst, Christian M; Dickens, Nicholas J; Mottram, Jeremy C; Grisard, Edmundo C; Dávila, Alberto Mr

    2014-01-01

    Leishmaniasis is an infectious disease caused by Leishmania species. Leishmania amazonensis is a New World Leishmania species belonging to the Mexicana complex, which is able to cause all types of leishmaniasis infections. The L. amazonensis reference strain MHOM/BR/1973/M2269 was sequenced identifying 8,802 codifying sequences (CDS), most of them of hypothetical function. Comparative analysis using six Leishmania species showed a core set of 7,016 orthologs. L. amazonensis and Leishmania mexicana share the largest number of distinct orthologs, while Leishmania braziliensis presented the largest number of inparalogs. Additionally, phylogenomic analysis confirmed the taxonomic position for L. amazonensis within the "Mexicana complex", reinforcing understanding of the split of New and Old World Leishmania. Potential non-homologous isofunctional enzymes (NISE) were identified between L. amazonensis and Homo sapiens that could provide new drug targets for development.

  2. The Comparative Genomics and Phylogenomics of Leishmania amazonensis Parasite

    PubMed Central

    Tschoeke, Diogo A; Nunes, Gisele L; Jardim, Rodrigo; Lima, Joana; Dumaresq, Aline SR; Gomes, Monete R; de Mattos Pereira, Leandro; Loureiro, Daniel R; Stoco, Patricia H; de Matos Guedes, Herbert Leonel; de Miranda, Antonio Basilio; Ruiz, Jeronimo; Pitaluga, André; Silva, Floriano P; Probst, Christian M; Dickens, Nicholas J; Mottram, Jeremy C; Grisard, Edmundo C; Dávila, Alberto MR

    2014-01-01

    Leishmaniasis is an infectious disease caused by Leishmania species. Leishmania amazonensis is a New World Leishmania species belonging to the Mexicana complex, which is able to cause all types of leishmaniasis infections. The L. amazonensis reference strain MHOM/BR/1973/M2269 was sequenced identifying 8,802 codifying sequences (CDS), most of them of hypothetical function. Comparative analysis using six Leishmania species showed a core set of 7,016 orthologs. L. amazonensis and Leishmania mexicana share the largest number of distinct orthologs, while Leishmania braziliensis presented the largest number of inparalogs. Additionally, phylogenomic analysis confirmed the taxonomic position for L. amazonensis within the “Mexicana complex”, reinforcing understanding of the split of New and Old World Leishmania. Potential non-homologous isofunctional enzymes (NISE) were identified between L. amazonensis and Homo sapiens that could provide new drug targets for development. PMID:25336895

  3. Microimaging FT-IR of oral cavity tumours. Part III: Cells, inoculated tissues and human tissues

    NASA Astrophysics Data System (ADS)

    Conti, C.; Ferraris, P.; Giorgini, E.; Pieramici, T.; Possati, L.; Rocchetti, R.; Rubini, C.; Sabbatini, S.; Tosi, G.; Mariggiò, M. A.; Lo Muzio, L.

    2007-05-01

    The biochemistry of healthy and tumour cell cultures, inoculated tissues and oral cavity tissues have been studied by FT-IR Microscopy with the aim to relate spectral patterns with microbiological and histopathological findings. 'Supervised' and 'unsupervised' procedures of data handling afforded a satisfactory degree of accordance between spectroscopic and the other two techniques. In particular, changes in frequency and intensity of proteins, connective and nucleic acids vibrational modes as well as the visualization of biochemical single wave number or band ratio images, allowed an evaluation of the pathological changes. The spectroscopic patterns of inoculated tissues resulted quite similar to human tissues; differences of both types of sections with cellular lines could be explained by the influence of the environment.

  4. 3D Bioprinting of Tissue/Organ Models.

    PubMed

    Pati, Falguni; Gantelius, Jesper; Svahn, Helene Andersson

    2016-04-04

    In vitro tissue/organ models are useful platforms that can facilitate systematic, repetitive, and quantitative investigations of drugs/chemicals. The primary objective when developing tissue/organ models is to reproduce physiologically relevant functions that typically require complex culture systems. Bioprinting offers exciting prospects for constructing 3D tissue/organ models, as it enables the reproducible, automated production of complex living tissues. Bioprinted tissues/organs may prove useful for screening novel compounds or predicting toxicity, as the spatial and chemical complexity inherent to native tissues/organs can be recreated. In this Review, we highlight the importance of developing 3D in vitro tissue/organ models by 3D bioprinting techniques, characterization of these models for evaluating their resemblance to native tissue, and their application in the prioritization of lead candidates, toxicity testing, and as disease/tumor models. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Nonmuscle Tissues Contribution to Cancer Cachexia

    PubMed Central

    Stemmler, Britta

    2015-01-01

    Cachexia is a syndrome associated with cancer, characterized by body weight loss, muscle and adipose tissue wasting, and inflammation, being often associated with anorexia. In spite of the fact that muscle tissue represents more than 40% of body weight and seems to be the main tissue involved in the wasting that occurs during cachexia, recent developments suggest that tissues/organs such as adipose (both brown and white), brain, liver, gut, and heart are directly involved in the cachectic process and may be responsible for muscle wasting. This suggests that cachexia is indeed a multiorgan syndrome. Bearing all this in mind, the aim of the present review is to examine the impact of nonmuscle tissues in cancer cachexia. PMID:26523094

  6. Human Tissues Investigation Using PALS Technique

    NASA Astrophysics Data System (ADS)

    Jasińska, B.; Zgardzińska, B.; Chołubek, G.; Gorgol, M.; Wiktor, K.; Wysogląd, K.; Białas, P.; Curceanu, C.; Czerwiński, E.; Dulski, K.; Gajos, A.; Głowacz, B.; Hiesmayr, B.; Jodłowska-Jędrych, B.; Kamińska, D.; Korcyl, G.; Kowalski, P.; Kozik, T.; Krawczyk, N.; Krzemień, W.; Kubicz, E.; Mohammed, M.; Pawlik-Niedźwiecka, M.; Niedźwiecki, S.; Pałka, M.; Raczyński, L.; Rudy, Z.; Sharma, N. G.; Sharma, S.; Shopa, R.; Silarski, M.; Skurzok, M.; Wieczorek, A.; Wiktor, H.; Wiślicki, W.; Zieliński, M.; Moskal, P.

    Samples of uterine leiomyomatis and normal tissues taken from patients after surgery were investigated using the Positron Annihilation Lifetime Spectroscopy (PALS). Significant differences in all PALS parameters between normal and diseased tissues were observed. For all studied patients, it was found that the values of the free annihilation and ortho-positronium lifetime are larger for the tumorous tissues than for the healthy ones. For most of the patients, the intensity of the free annihilation and ortho-positronium annihilation was smaller for the tumorous than for the healthy tissues. For the first time, in this kind of studies, the $3\\gamma$ fraction of positron annihilation was determined to describe changes in the tissue porosity during morphologic alteration.

  7. Neoproteoglycans in tissue engineering.

    PubMed

    Weyers, Amanda; Linhardt, Robert J

    2013-05-01

    Proteoglycans, comprised of a core protein to which glycosaminoglycan chains are covalently linked, are an important structural and functional family of macromolecules found in the extracellular matrix. Advances in our understanding of biological interactions have lead to a greater appreciation for the need to design tissue engineering scaffolds that incorporate mimetics of key extracellular matrix components. A variety of synthetic and semisynthetic molecules and polymers have been examined by tissue engineers that serve as structural, chemical and biological replacements for proteoglycans. These proteoglycan mimetics have been referred to as neoproteoglycans and serve as functional and therapeutic replacements for natural proteoglycans that are often unavailable for tissue engineering studies. Although neoproteoglycans have important limitations, such as limited signaling ability and biocompatibility, they have shown promise in replacing the natural activity of proteoglycans through cell and protein binding interactions. This review focuses on the recent in vivo and in vitro tissue engineering applications of three basic types of neoproteoglycan structures, protein-glycosaminoglycan conjugates, nano-glycosaminoglycan composites and polymer-glycosaminoglycan complexes. © 2013 The Authors Journal compilation © 2013 FEBS.

  8. Neoproteoglycans in tissue engineering

    PubMed Central

    Weyers, Amanda; Linhardt, Robert J.

    2014-01-01

    Proteoglycans, comprised of a core protein to which glycosaminoglycan chains are covalently linked, are an important structural and functional family of macromolecules found in the extracellular matrix. Advances in our understanding of biological interactions have lead to a greater appreciation for the need to design tissue engineering scaffolds that incorporate mimetics of key extracellular matrix components. A variety of synthetic and semisynthetic molecules and polymers have been examined by tissue engineers that serve as structural, chemical and biological replacements for proteoglycans. These proteoglycan mimetics have been referred to as neoproteoglycans and serve as functional and therapeutic replacements for natural proteoglycans that are often unavailable for tissue engineering studies. Although neoproteoglycans have important limitations, such as limited signaling ability and biocompatibility, they have shown promise in replacing the natural activity of proteoglycans through cell and protein binding interactions. This review focuses on the recent in vivo and in vitro tissue engineering applications of three basic types of neoproteoglycan structures, protein–glycosaminoglycan conjugates, nano-glycosaminoglycan composites and polymer–glycosaminoglycan complexes. PMID:23399318

  9. Bioprinting for vascular and vascularized tissue biofabrication.

    PubMed

    Datta, Pallab; Ayan, Bugra; Ozbolat, Ibrahim T

    2017-03-15

    Bioprinting is a promising technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision. Bioprinting enables the deposition of various biologics including growth factors, cells, genes, neo-tissues and extra-cellular matrix-like hydrogels. Benefits of bioprinting have started to make a mark in the fields of tissue engineering, regenerative medicine and pharmaceutics. Specifically, in the field of tissue engineering, the creation of vascularized tissue constructs has remained a principal challenge till date. However, given the myriad advantages over other biofabrication methods, it becomes organic to expect that bioprinting can provide a viable solution for the vascularization problem, and facilitate the clinical translation of tissue engineered constructs. This article provides a comprehensive account of bioprinting of vascular and vascularized tissue constructs. The review is structured as introducing the scope of bioprinting in tissue engineering applications, key vascular anatomical features and then a thorough coverage of 3D bioprinting using extrusion-, droplet- and laser-based bioprinting for fabrication of vascular tissue constructs. The review then provides the reader with the use of bioprinting for obtaining thick vascularized tissues using sacrificial bioink materials. Current challenges are discussed, a comparative evaluation of different bioprinting modalities is presented and future prospects are provided to the reader. Biofabrication of living tissues and organs at the clinically-relevant volumes vitally depends on the integration of vascular network. Despite the great progress in traditional biofabrication approaches, building perfusable hierarchical vascular network is a major challenge. Bioprinting is an emerging technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision

  10. Therapeutic cloning and tissue engineering.

    PubMed

    Koh, Chester J; Atala, Anthony

    2004-01-01

    A severe shortage of donor organs available for transplantation in the United States leaves patients suffering from diseased and injured organs with few treatment options. Scientists in the field of tissue engineering apply the principles of cell transplantation, material science, and engineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. Therapeutic cloning, where the nucleus from a donor cell is transferred into an enucleated oocyte in order to extract pluripotent embryonic stem cells, offers a potentially limitless source of cells for tissue engineering applications. The present chapter reviews recent advances that have occurred in therapeutic cloning and tissue engineering and describes applications of these new technologies that may offer novel therapies for patients with end-stage organ failure.

  11. Scaffolds in Tendon Tissue Engineering

    PubMed Central

    Longo, Umile Giuseppe; Lamberti, Alfredo; Petrillo, Stefano; Maffulli, Nicola; Denaro, Vincenzo

    2012-01-01

    Tissue engineering techniques using novel scaffold materials offer potential alternatives for managing tendon disorders. Tissue engineering strategies to improve tendon repair healing include the use of scaffolds, growth factors, cell seeding, or a combination of these approaches. Scaffolds have been the most common strategy investigated to date. Available scaffolds for tendon repair include both biological scaffolds, obtained from mammalian tissues, and synthetic scaffolds, manufactured from chemical compounds. Preliminary studies support the idea that scaffolds can provide an alternative for tendon augmentation with an enormous therapeutic potential. However, available data are lacking to allow definitive conclusion on the use of scaffolds for tendon augmentation. We review the current basic science and clinical understanding in the field of scaffolds and tissue engineering for tendon repair. PMID:22190961

  12. Creation of a Large Adipose Tissue Construct in Humans Using a Tissue-engineering Chamber: A Step Forward in the Clinical Application of Soft Tissue Engineering.

    PubMed

    Morrison, Wayne A; Marre, Diego; Grinsell, Damien; Batty, Andrew; Trost, Nicholas; O'Connor, Andrea J

    2016-04-01

    Tissue engineering is currently exploring new and exciting avenues for the repair of soft tissue and organ defects. Adipose tissue engineering using the tissue engineering chamber (TEC) model has yielded promising results in animals; however, to date, there have been no reports on the use of this device in humans. Five female post mastectomy patients ranging from 35 to 49years old were recruited and a pedicled thoracodorsal artery perforator fat flap ranging from 6 to 50ml was harvested, transposed onto the chest wall and covered by an acrylic perforated dome-shaped chamber ranging from 140 to 350cm(3). Magnetic resonance evaluation was performed at three and six months after chamber implantation. Chambers were removed at six months and samples were obtained for histological analysis. In one patient, newly formed tissue to a volume of 210ml was generated inside the chamber. One patient was unable to complete the trial and the other three failed to develop significant enlargement of the original fat flap, which, at the time of chamber explantation, was encased in a thick fibrous capsule. Our study provides evidence that generation of large well-vascularized tissue engineered constructs using the TEC is feasible in humans. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Laser Ablatin of Dental Hard Tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seka, W.; Rechmann, P.; Featherstone, J.D.B.

    This paper discusses ablation of dental hard tissue using pulsed lasers. It focuses particularly on the relevant tissue and laser parameters and some of the basic ablation processes that are likely to occur. The importance of interstitial water and its phase transitions is discussed in some detail along with the ablation processes that may or may not directly involve water. The interplay between tissue parameters and laser parameters in the outcome of the removal of dental hard tissue is discussed in detail.

  14. Aporphine alkaloids from Guatteria spp. with leishmanicidal activity.

    PubMed

    Montenegro, Hector; Gutiérrez, Marcelino; Romero, Luz I; Ortega-Barría, Eduardo; Capson, Todd L; Rios, Luis Cubilla

    2003-07-01

    Fractionation of Guatteria amplifolia yielded the alkaloids xylopine (1), nornuciferine (4), lysicamine (6), and laudanosine (5). Fractionation of Guatteria dumetorum yielded the alkaloids cryptodorine (2) and nornantenine (3). Compounds 1-4 demonstrated significant activity against Leishmania mexicana and L. panamensis. Xylopine (1) was among the most active compounds (LD 50 = 3 microM) and showed a 37-fold higher toxicity towards L. mexicana than macrophages, the regular host cells of Leishmania spp.

  15. Rapid Wall Relaxation in Elongating Tissues 1

    PubMed Central

    Matyssek, Rainer; Maruyama, Sachio; Boyer, John S.

    1988-01-01

    Reported differences in the relaxation of cell walls in enlarging stem tissues of soybean (Glycine max [L.] Merr.) and pea (Pisum sativum L.) cause measurements of the yield threshold turgor, an important growth parameter, to be in doubt. Using the pressure probe and guillotine psychrometer, we investigated wall relaxation in these species by excising the elongating tissue in air to remove the water supply. We found that the rapid kinetics usually exhibited by soybean could be delayed and made similar to the slow kinetics previously reported for pea if slowly growing or mature tissue was left attached to the rapidly growing tissue when relaxation was initiated. The greater the amount of attached tissue, the slower the relaxation, suggesting that slowly growing tissue acted as a water source. Consistent with this concept was a lower water potential in the rapidly elongating tissue than in the slowly growing tissue. Previous reports of wall relaxation in pea included slowly growing tissue. If this tissue was removed from pea, relaxation became as rapid as usually exhibited by soybean. It is concluded that the true relaxation of cell walls to the yield threshold requires only a few minutes and that the yield threshold should be constant during so short a time, thus reflecting the yield threshold in the intact plant before excision. Under these conditions, the yield threshold was close to the turgor in the intact plant regardless of the species. The presence of slowly growing or mature tissue delays wall relaxation and should be avoided during such measurements. However, this delay can be used to advantage when turgor of intact growing tissues is being measured using excised tissues because turgor does not change for a considerable time after excision. PMID:16666048

  16. Synthetic biology meets tissue engineering

    PubMed Central

    Davies, Jamie A.; Cachat, Elise

    2016-01-01

    Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the ‘embryological cycle’ of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work. PMID:27284030

  17. Synthetic biology meets tissue engineering.

    PubMed

    Davies, Jamie A; Cachat, Elise

    2016-06-15

    Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the 'embryological cycle' of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work. © 2016 Authors; published by Portland Press Limited.

  18. Depth-resolved fluorescence of human ectocervical tissue

    NASA Astrophysics Data System (ADS)

    Wu, Yicong; Xi, Peng; Cheung, Tak-Hong; Yim, So Fan; Yu, Mei-Yung; Qu, Jianan Y.

    2005-04-01

    The depth-resolved autofluorescence of normal and dysplastic human ectocervical tissue within 120um depth were investigated utilizing a portable confocal fluorescence spectroscopy with the excitations at 355nm and 457nm. From the topmost keratinizing layer of all ectocervical tissue samples, strong keratin fluorescence with the spectral characteristics similar to collagen was observed, which created serious interference in seeking the correlation between tissue fluorescence and tissue pathology. While from the underlying non-keratinizing epithelial layer, the measured NADH fluorescence induced by 355nm excitation and FAD fluorescence induced by 457nm excitation were strongly correlated to the tissue pathology. The ratios between NADH over FAD fluorescence increased statistically in the CIN epithelial relative to the normal and HPV epithelia, which indicated increased metabolic activity in precancerous tissue. This study demonstrates that the depth-resolved fluorescence spectroscopy can reveal fine structural information on epithelial tissue and potentially provide more accurate diagnostic information for determining tissue pathology.

  19. 3D bioprinting for vascularized tissue fabrication

    PubMed Central

    Richards, Dylan; Jia, Jia; Yost, Michael; Markwald, Roger; Mei, Ying

    2016-01-01

    3D bioprinting holds remarkable promise for rapid fabrication of 3D tissue engineering constructs. Given its scalability, reproducibility, and precise multi-dimensional control that traditional fabrication methods do not provide, 3D bioprinting provides a powerful means to address one of the major challenges in tissue engineering: vascularization. Moderate success of current tissue engineering strategies have been attributed to the current inability to fabricate thick tissue engineering constructs that contain endogenous, engineered vasculature or nutrient channels that can integrate with the host tissue. Successful fabrication of a vascularized tissue construct requires synergy between high throughput, high-resolution bioprinting of larger perfusable channels and instructive bioink that promotes angiogenic sprouting and neovascularization. This review aims to cover the recent progress in the field of 3D bioprinting of vascularized tissues. It will cover the methods of bioprinting vascularized constructs, bioink for vascularization, and perspectives on recent innovations in 3D printing and biomaterials for the next generation of 3D bioprinting for vascularized tissue fabrication. PMID:27230253

  20. Tissue Anisotropy Modeling Using Soft Composite Materials.

    PubMed

    Chanda, Arnab; Callaway, Christian

    2018-01-01

    Soft tissues in general exhibit anisotropic mechanical behavior, which varies in three dimensions based on the location of the tissue in the body. In the past, there have been few attempts to numerically model tissue anisotropy using composite-based formulations (involving fibers embedded within a matrix material). However, so far, tissue anisotropy has not been modeled experimentally. In the current work, novel elastomer-based soft composite materials were developed in the form of experimental test coupons, to model the macroscopic anisotropy in tissue mechanical properties. A soft elastomer matrix was fabricated, and fibers made of a stiffer elastomer material were embedded within the matrix material to generate the test coupons. The coupons were tested on a mechanical testing machine, and the resulting stress-versus-stretch responses were studied. The fiber volume fraction (FVF), fiber spacing, and orientations were varied to estimate the changes in the mechanical responses. The mechanical behavior of the soft composites was characterized using hyperelastic material models such as Mooney-Rivlin's, Humphrey's, and Veronda-Westmann's model and also compared with the anisotropic mechanical behavior of the human skin, pelvic tissues, and brain tissues. This work lays the foundation for the experimental modelling of tissue anisotropy, which combined with microscopic studies on tissues can lead to refinements in the simulation of localized fiber distribution and orientations, and enable the development of biofidelic anisotropic tissue phantom materials for various tissue engineering and testing applications.

  1. Tissue Anisotropy Modeling Using Soft Composite Materials

    PubMed Central

    Callaway, Christian

    2018-01-01

    Soft tissues in general exhibit anisotropic mechanical behavior, which varies in three dimensions based on the location of the tissue in the body. In the past, there have been few attempts to numerically model tissue anisotropy using composite-based formulations (involving fibers embedded within a matrix material). However, so far, tissue anisotropy has not been modeled experimentally. In the current work, novel elastomer-based soft composite materials were developed in the form of experimental test coupons, to model the macroscopic anisotropy in tissue mechanical properties. A soft elastomer matrix was fabricated, and fibers made of a stiffer elastomer material were embedded within the matrix material to generate the test coupons. The coupons were tested on a mechanical testing machine, and the resulting stress-versus-stretch responses were studied. The fiber volume fraction (FVF), fiber spacing, and orientations were varied to estimate the changes in the mechanical responses. The mechanical behavior of the soft composites was characterized using hyperelastic material models such as Mooney-Rivlin's, Humphrey's, and Veronda-Westmann's model and also compared with the anisotropic mechanical behavior of the human skin, pelvic tissues, and brain tissues. This work lays the foundation for the experimental modelling of tissue anisotropy, which combined with microscopic studies on tissues can lead to refinements in the simulation of localized fiber distribution and orientations, and enable the development of biofidelic anisotropic tissue phantom materials for various tissue engineering and testing applications. PMID:29853996

  2. Choice of surrogate tissue influences neonatal EWAS findings.

    PubMed

    Lin, Xinyi; Teh, Ai Ling; Chen, Li; Lim, Ives Yubin; Tan, Pei Fang; MacIsaac, Julia L; Morin, Alexander M; Yap, Fabian; Tan, Kok Hian; Saw, Seang Mei; Lee, Yung Seng; Holbrook, Joanna D; Godfrey, Keith M; Meaney, Michael J; Kobor, Michael S; Chong, Yap Seng; Gluckman, Peter D; Karnani, Neerja

    2017-12-05

    Epigenomes are tissue specific and thus the choice of surrogate tissue can play a critical role in interpreting neonatal epigenome-wide association studies (EWAS) and in their extrapolation to target tissue. To develop a better understanding of the link between tissue specificity and neonatal EWAS, and the contributions of genotype and prenatal factors, we compared genome-wide DNA methylation of cord tissue and cord blood, two of the most accessible surrogate tissues at birth. In 295 neonates, DNA methylation was profiled using Infinium HumanMethylation450 beadchip arrays. Sites of inter-individual variability in DNA methylation were mapped and compared across the two surrogate tissues at birth, i.e., cord tissue and cord blood. To ascertain the similarity to target tissues, DNA methylation profiles of surrogate tissues were compared to 25 primary tissues/cell types mapped under the Epigenome Roadmap project. Tissue-specific influences of genotype on the variable CpGs were also analyzed. Finally, to interrogate the impact of the in utero environment, EWAS on 45 prenatal factors were performed and compared across the surrogate tissues. Neonatal EWAS results were tissue specific. In comparison to cord blood, cord tissue showed higher inter-individual variability in the epigenome, with a lower proportion of CpGs influenced by genotype. Both neonatal tissues were good surrogates for target tissues of mesodermal origin. They also showed distinct phenotypic associations, with effect sizes of the overlapping CpGs being in the same order of magnitude. The inter-relationship between genetics, prenatal factors and epigenetics is tissue specific, and requires careful consideration in designing and interpreting future neonatal EWAS. This birth cohort is a prospective observational study, designed to study the developmental origins of health and disease, and was retrospectively registered on 1 July 2010 under the identifier NCT01174875 .

  3. Phagocytosis imprints heterogeneity in tissue-resident macrophages

    PubMed Central

    A-Gonzalez, Noelia; Quintana, Juan A.; Mazariegos, Marina; González de la Aleja, Arturo; Nicolás-Ávila, José A.; Crainiciuc, Georgiana; Rothlin, Carla V.; Peinado, Héctor; Castrillo, Antonio

    2017-01-01

    Tissue-resident macrophages display varying phenotypic and functional properties that are largely specified by their local environment. One of these functions, phagocytosis, mediates the natural disposal of billions of cells, but its mechanisms and consequences within living tissues are poorly defined. Using a parabiosis-based strategy, we identified and isolated macrophages from multiple tissues as they phagocytosed blood-borne cellular material. Phagocytosis was circadianally regulated and mediated by distinct repertoires of receptors, opsonins, and transcription factors in macrophages from each tissue. Although the tissue of residence defined the core signature of macrophages, phagocytosis imprinted a distinct antiinflammatory profile. Phagocytic macrophages expressed CD206, displayed blunted expression of Il1b, and supported tissue homeostasis. Thus, phagocytosis is a source of macrophage heterogeneity that acts together with tissue-derived factors to preserve homeostasis. PMID:28432199

  4. Bioactive glass in tissue engineering

    PubMed Central

    Rahaman, Mohamed N.; Day, Delbert E.; Bal, B. Sonny; Fu, Qiang; Jung, Steven B.; Bonewald, Lynda F.; Tomsia, Antoni P.

    2011-01-01

    This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084

  5. Soft tissue fillers for adipose tissue regeneration: From hydrogel development toward clinical applications.

    PubMed

    Van Nieuwenhove, I; Tytgat, L; Ryx, M; Blondeel, P; Stillaert, F; Thienpont, H; Ottevaere, H; Dubruel, P; Van Vlierberghe, S

    2017-11-01

    There is a clear and urgent clinical need to develop soft tissue fillers that outperform the materials currently used for adipose tissue reconstruction. Recently, extensive research has been performed within this field of adipose tissue engineering as the commercially available products and the currently existing techniques are concomitant with several disadvantages. Commercial products are highly expensive and associated with an imposing need for repeated injections. Lipofilling or free fat transfer has an unpredictable outcome with respect to cell survival and potential resorption of the fat grafts. Therefore, researchers are predominantly investigating two challenging adipose tissue engineering strategies: in situ injectable materials and porous 3D printed scaffolds. The present work provides an overview of current research encompassing synthetic, biopolymer-based and extracellular matrix-derived materials with a clear focus on emerging fabrication technologies and developments realized throughout the last decade. Moreover, clinical relevance of the most promising materials will be discussed, together with potential concerns associated with their application in the clinic. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. High-frequency viscoelastic shear properties of vocal fold tissues: implications for vocal fold tissue engineering.

    PubMed

    Teller, Sean S; Farran, Alexandra J E; Xiao, Longxi; Jiao, Tong; Duncan, Randall L; Clifton, Rodney J; Jia, Xinqiao

    2012-10-01

    The biomechanical function of the vocal folds (VFs) depends on their viscoelastic properties. Many conditions can lead to VF scarring that compromises voice function and quality. To identify candidate replacement materials, the structure, composition, and mechanical properties of native tissues need to be understood at phonation frequencies. Previously, the authors developed the torsional wave experiment (TWE), a stress-wave-based experiment to determine the linear viscoelastic shear properties of small, soft samples. Here, the viscoelastic properties of porcine and human VFs were measured over a frequency range of 10-200 Hz. The TWE utilizes resonance phenomena to determine viscoelastic properties; therefore, the specimen test frequency is determined by the sample size and material properties. Viscoelastic moduli are reported at resonance frequencies. Structure and composition of the tissues were determined by histology and immunochemistry. Porcine data from the TWE are separated into two groups: a young group, consisting of fetal and newborn pigs, and an adult group, consisting of 6-9-month olds and 2+-year olds. Adult tissues had an average storage modulus of 2309±1394 Pa and a loss tangent of 0.38±0.10 at frequencies of 36-200 Hz. The VFs of young pigs were significantly more compliant, with a storage modulus of 394±142 Pa and a loss tangent of 0.40±0.14 between 14 and 30 Hz. No gender dependence was observed. Histological staining showed that adult porcine tissues had a more organized, layered structure than the fetal tissues, with a thicker epithelium and a more structured lamina propria. Elastin fibers in fetal VF tissues were immature compared to those in adult tissues. Together, these structural changes in the tissues most likely contributed to the change in viscoelastic properties. Adult human VF tissues, recovered postmortem from adult patients with a history of smoking or disease, had an average storage modulus of 756±439 Pa and a loss tangent of 0

  7. Live birth after ovarian tissue transplant

    NASA Astrophysics Data System (ADS)

    Lee, D. M.; Yeoman, R. R.; Battaglia, D. E.; Stouffer, R. L.; Zelinski-Wooten, M. B.; Fanton, J. W.; Wolf, D. P.

    2004-03-01

    Radiation and high-dose chemotherapy may render women with cancer prematurely sterile, a side-effect that would be avoided if ovarian tissue that had been removed before treatment could be made to function afterwards. Live offspring have been produced from transplanted ovarian tissue in mice and sheep but not in monkeys or humans, although sex steroid hormones are still secreted. Here we describe the successful transplantation of fresh ovarian tissue to a different site in a monkey, which has led to the birth of a healthy female after oocyte production, fertilization and transfer to a surrogate mother. The ectopically grafted tissue functions without surgical connection to major blood vessels and sets the stage for the transplantation of cryopreserved ovarian tissue in humans.

  8. Viscoelastic Properties of Human Tracheal Tissues.

    PubMed

    Safshekan, Farzaneh; Tafazzoli-Shadpour, Mohammad; Abdouss, Majid; Shadmehr, Mohammad B

    2017-01-01

    The physiological performance of trachea is highly dependent on its mechanical behavior, and therefore, the mechanical properties of its components. Mechanical characterization of trachea is key to succeed in new treatments such as tissue engineering, which requires the utilization of scaffolds which are mechanically compatible with the native human trachea. In this study, after isolating human trachea samples from brain-dead cases and proper storage, we assessed the viscoelastic properties of tracheal cartilage, smooth muscle, and connective tissue based on stress relaxation tests (at 5% and 10% strains for cartilage and 20%, 30%, and 40% for smooth muscle and connective tissue). After investigation of viscoelastic linearity, constitutive models including Prony series for linear viscoelasticity and quasi-linear viscoelastic, modified superposition, and Schapery models for nonlinear viscoelasticity were fitted to the experimental data to find the best model for each tissue. We also investigated the effect of age on the viscoelastic behavior of tracheal tissues. Based on the results, all three tissues exhibited a (nonsignificant) decrease in relaxation rate with increasing the strain, indicating viscoelastic nonlinearity which was most evident for cartilage and with the least effect for connective tissue. The three-term Prony model was selected for describing the linear viscoelasticity. Among different models, the modified superposition model was best able to capture the relaxation behavior of the three tracheal components. We observed a general (but not significant) stiffening of tracheal cartilage and connective tissue with aging. No change in the stress relaxation percentage with aging was observed. The results of this study may be useful in the design and fabrication of tracheal tissue engineering scaffolds.

  9. Nanotopography-guided tissue engineering and regenerative medicine☆

    PubMed Central

    Kim, Hong Nam; Jiao, Alex; Hwang, Nathaniel S.; Kim, Min Sung; Kang, Do Hyun; Kim, Deok-Ho; Suh, Kahp-Yang

    2017-01-01

    Human tissues are intricate ensembles of multiple cell types embedded in complex and well-defined structures of the extracellular matrix (ECM). The organization of ECM is frequently hierarchical from nano to macro, with many proteins forming large scale structures with feature sizes up to several hundred microns. Inspired from these natural designs of ECM, nanotopography-guided approaches have been increasingly investigated for the last several decades. Results demonstrate that the nanotopography itself can activate tissue-specific function in vitro as well as promote tissue regeneration in vivo upon transplantation. In this review, we provide an extensive analysis of recent efforts to mimic functional nanostructures in vitro for improved tissue engineering and regeneration of injured and damaged tissues. We first characterize the role of various nanostructures in human tissues with respect to each tissue-specific function. Then, we describe various fabrication methods in terms of patterning principles and material characteristics. Finally, we summarize the applications of nanotopography to various tissues, which are classified into four types depending on their functions: protective, mechano-sensitive, electro-active, and shear stress-sensitive tissues. Some limitations and future challenges are briefly discussed at the end. PMID:22921841

  10. Effect of luminescence transport through adipose tissue on measurement of tissue temperature by using ZnCdS nanothermometers

    NASA Astrophysics Data System (ADS)

    Volkova, Elena K.; Yanina, Irina Yu.; Sagaydachnaya, Elena; Konyukhova, Julia G.; Kochubey, Vyacheslav I.; Tuchin, Valery V.

    2018-02-01

    The spectra of luminescence of ZnCdS nanoparticles (ZnCdS NPs) were measured and analyzed in a wide temperature range: from room to human body and further to a hyperthermic temperature resulting in tissue morphology change. The results show that the signal of luminescence of ZnCdS NPs placed within the tissue is reasonably good sensitive to temperature change and accompanied by phase transitions of lipid structures of adipose tissue. It is shown that the presence of a phase transition in adipose tissue upon its heating (polymorphic transformations of lipids) leads to a nonmonotonic temperature dependence of the intensity of luminescence for the nanoparticles introduced into adipose tissue. This is due to a change in the light scattering by the tissue. The light scattering of adipose tissue greatly distorts the results of temperature measurements. The application of these nanoparticles is possible for temperature measurements in very thin or weakly scattering samples.

  11. Curriculum in biomedical optics and laser-tissue interactions

    NASA Astrophysics Data System (ADS)

    Jacques, Steven L.

    2003-10-01

    A graduate student level curriculum has been developed for teaching the basic principles of how lasers and light interact with biological tissues and materials. The field of Photomedicine can be divided into two topic areas: (1) where tissue affects photons, used for diagnostic sensing, imaging, and spectroscopy of tissues and biomaterials, and (2) where photons affect tissue, used for surgical and therapeutic cutting, dissecting, machining, processing, coagulating, welding, and oxidizing tissues and biomaterials. The courses teach basic principles of tissue optical properties and light transport in tissues, and interaction of lasers and conventional light sources with tissues via photochemical, photothermal and photomechanical mechanisms.

  12. Detergent Lysis of Animal Tissues for Immunoprecipitation.

    PubMed

    DeCaprio, James; Kohl, Thomas O

    2017-12-01

    This protocol details protein extraction from mouse tissues for immunoprecipitation purposes and has been applied for the performance of large-scale immunoprecipitations of target proteins from various tissues for the identification of associated proteins by mass spectroscopy. The key factors in performing a successful immunoprecipitation directly relate to the abundance of target protein in a particular tissue type and whether or not the embryonic, newborn, or adult mouse-derived tissues contain fibrous and other insoluble material. Several tissue types, including lung and liver as well as carcinomas, contain significant amounts of fibrous tissue that can interfere with an immunoprecipitation. © 2017 Cold Spring Harbor Laboratory Press.

  13. Polymeric Nanofibers in Tissue Engineering

    PubMed Central

    Dahlin, Rebecca L.; Kasper, F. Kurtis

    2011-01-01

    Polymeric nanofibers can be produced using methods such as electrospinning, phase separation, and self-assembly, and the fiber composition, diameter, alignment, degradation, and mechanical properties can be tailored to the intended application. Nanofibers possess unique advantages for tissue engineering. The small diameter closely matches that of extracellular matrix fibers, and the relatively large surface area is beneficial for cell attachment and bioactive factor loading. This review will update the reader on the aspects of nanofiber fabrication and characterization important to tissue engineering, including control of porous structure, cell infiltration, and fiber degradation. Bioactive factor loading will be discussed with specific relevance to tissue engineering. Finally, applications of polymeric nanofibers in the fields of bone, cartilage, ligament and tendon, cardiovascular, and neural tissue engineering will be reviewed. PMID:21699434

  14. Nonlinear spectral imaging of biological tissues

    NASA Astrophysics Data System (ADS)

    Palero, J. A.

    2007-07-01

    The work presented in this thesis demonstrates live high resolution 3D imaging of tissue in its native state and environment. The nonlinear interaction between focussed femtosecond light pulses and the biological tissue results in the emission of natural autofluorescence and second-harmonic signal. Because biological intrinsic emission is generally very weak and extends from the ultraviolet to the visible spectral range, a broad-spectral range and high sensitivity 3D spectral imaging system is developed. Imaging the spectral characteristics of the biological intrinsic emission reveals the structure and biochemistry of the cells and extra-cellular components. By using different methods in visualizing the spectral images, discrimination between different tissue structures is achieved without the use of any stain or fluorescent label. For instance, RGB real color spectral images of the intrinsic emission of mouse skin tissues show blue cells, green hair follicles, and purple collagen fibers. The color signature of each tissue component is directly related to its characteristic emission spectrum. The results of this study show that skin tissue nonlinear intrinsic emission is mainly due to the autofluorescence of reduced nicotinamide adenine dinucleotide (phosphate), flavins, keratin, melanin, phospholipids, elastin and collagen and nonlinear Raman scattering and second-harmonic generation in Type I collagen. In vivo time-lapse spectral imaging is implemented to study metabolic changes in epidermal cells in tissues. Optical scattering in tissues, a key factor in determining the maximum achievable imaging depth, is also investigated in this work.

  15. Bacteriology testing of cardiovascular tissues: comparison of transport solution versus tissue testing.

    PubMed

    Díaz Rodríguez, R; Van Hoeck, B; Mujaj, B; Ngakam, R; Fan, Y; Bogaerts, K; Jashari, R

    2016-06-01

    Bacteriology testing is mandatory for quality control of recovered cardiovascular allografts (CVA). In this paper, two different bacteriology examinations (A tests) performed before tissue antibiotic decontamination were compared: transport solution filtration analysis (A1) and tissue fragment direct incubation (A2). For this purpose, 521 CVA (326 heart and 195 artery tissues) from 280 donors were collected and analyzed by the European Homograft Bank (EHB). Transport solution (A1) tested positive in 43.25 % of hearts and in 48.21 % of arteries, whereas the tissue samples (A2) tested positive in 38.34 % of hearts and 33.85 % of arteries. The main species identified in both A1 and A2 were Staphylococcus spp. in 55 and 26 % of cases, and Propionibacterium spp. in 8 and 19 %, respectively. Mismatches in bacteriology results between both initial tests A1 and A2 were found. 18.40 % of the heart valves were identified as positive by A1 whilst 13.50 % were considered positive by A2. For arteries, 20.51 % of cases were positive in A1 and negative in A2, and just 6.15 % of artery allografts presented contamination in the A2 test but were considered negative for the A1 test. Comparison between each A test with the B and C tests after antibiotic treatment of the allograft was also performed. A total decontamination rate of 70.8 % of initial positive A tests was obtained. Due to the described mismatches and different bacteria identification percentage, utilization of both A tests should be implemented in tissue banks in order to avoid false negatives.

  16. Quality control of human tissues--experience from the Indiana University Cancer Center-Lilly Research Labs human tissue bank.

    PubMed

    Sandusky, George E; Teheny, Katie Heinz; Esterman, Mike; Hanson, Jeff; Williams, Stephen D

    2007-01-01

    The success of molecular research and its applications in both the clinical and basic research arenas is strongly dependent on the collection, handling, storage, and quality control of fresh human tissue samples. This tissue bank was set up to bank fresh surgically obtained human tissue using a Clinical Annotated Tissue Database (CATD) in order to capture the associated patient clinical data and demographics using a one way patient encryption scheme to protect patient identification. In this study, we determined that high quality of tissue samples is imperative for both genomic and proteomic molecular research. This paper also contains a brief compilation of the literature involved in the patient ethics, patient informed consent, patient de-identification, tissue collection, processing, and storage as well as basic molecular research generated from the tissue bank using good clinical practices. The current applicable rules, regulations, and guidelines for handling human tissues are briefly discussed. More than 6,610 cancer patients have been consented (97% of those that were contacted by the consenter) and 16,800 tissue specimens have been banked from these patients in 9 years. All samples collected in the bank were QC'd by a pathologist. Approximately 1,550 tissue samples have been requested for use in basic, clinical, and/or biomarker cancer research studies. Each tissue aliquot removed from the bank for a research study were evaluated by a second H&E, if the samples passed the QC, they were submitted for genomic and proteomic molecular analysis/study. Approximately 75% of samples evaluated were of high histologic quality and used for research studies. Since 2003, we changed the patient informed consent to allow the tissue bank to gather more patient clinical follow-up information. Ninety two percent of the patients (1,865 patients) signed the new informed consent form and agreed to be re-contacted for follow-up information on their disease state. In addition

  17. Microgravity cultivation of cells and tissues

    NASA Technical Reports Server (NTRS)

    Freed, L. E.; Pellis, N.; Searby, N.; de Luis, J.; Preda, C.; Bordonaro, J.; Vunjak-Novakovic, G.

    1999-01-01

    In vitro studies of cells and tissues in microgravity, either simulated by cultivation conditions on earth or actual, during spaceflight, are expected to help identify mechanisms underlying gravity sensing and transduction in biological organisms. In this paper, we review rotating bioreactor studies of engineered skeletal and cardiovascular tissues carried out in unit gravity, a four month long cartilage tissue engineering study carried out aboard the Mir Space Station, and the ongoing laboratory development and testing of a system for cell and tissue cultivation aboard the International Space Station.

  18. Molecular Diversity between Salivary Proteins from New World and Old World Sand Flies with Emphasis on Bichromomyia olmeca, the Sand Fly Vector of Leishmania mexicana in Mesoamerica

    PubMed Central

    Townsend, Shannon; Pasos-Pinto, Silvia; Sanchez, Laura; Rasouli, Manoochehr; B. Guimaraes-Costa, Anderson; Aslan, Hamide; Francischetti, Ivo M. B.; Oliveira, Fabiano; Becker, Ingeborg; Kamhawi, Shaden; Ribeiro, Jose M. C.; Jochim, Ryan C.; Valenzuela, Jesus G.

    2016-01-01

    Background Sand fly saliva has been shown to have proteins with potent biological activities, salivary proteins that can be used as biomarkers of vector exposure, and salivary proteins that are candidate vaccines against different forms of leishmaniasis. Sand fly salivary gland transcriptomic approach has contributed significantly to the identification and characterization of many of these salivary proteins from important Leishmania vectors; however, sand fly vectors in some regions of the world are still neglected, as Bichromomyia olmeca (formerly known as Lutzomyia olmeca olmeca), a proven vector of Leishmania mexicana in Mexico and Central America. Despite the importance of this vector in transmitting Leishmania parasite in Mesoamerica there is no information on the repertoire of B. olmeca salivary proteins and their relationship to salivary proteins from other sand fly species. Methods and Findings A cDNA library of the salivary glands of wild-caught B. olmeca was constructed, sequenced, and analyzed. We identified transcripts encoding for novel salivary proteins from this sand fly species and performed a comparative analysis between B. olmeca salivary proteins and those from other sand fly species. With this new information we present an updated catalog of the salivary proteins specific to New World sand flies and salivary proteins common to all sand fly species. We also report in this work the anti-Factor Xa activity of Lofaxin, a salivary anticoagulant protein present in this sand fly species. Conclusions This study provides information on the first transcriptome of a sand fly from Mesoamerica and adds information to the limited repertoire of salivary transcriptomes from the Americas. This comparative analysis also shows a fast degree of evolution in salivary proteins from New World sand flies as compared with Old World sand flies. PMID:27409591

  19. Soft tissue grafting to improve implant esthetics

    PubMed Central

    Kassab, Moawia M

    2010-01-01

    Dental implants are becoming the treatment of choice to replace missing teeth, especially if the adjacent teeth are free of restorations. When minimal bone width is present, implant placement becomes a challenge and often resulting in recession and dehiscence around the implant that leads to subsequent gingival recession. To correct such defect, the author turned to soft tissue autografting and allografting to correct a buccal dehiscence around tooth #24 after a malpositioned implant placed by a different surgeon. A 25-year-old woman presented with the chief complaint of gingival recession and exposure of implant threads around tooth #24. The patient received three soft tissue grafting procedures to augment the gingival tissue. The first surgery included a connective tissue graft to increase the width of the keratinized gingival tissue. The second surgery included the use of autografting (connective tissue graft) to coronally position the soft tissue and achieve implant coverage. The third and final surgery included the use of allografting material Alloderm to increase and mask the implant from showing through the gingiva. Healing period was uneventful for the patient. After three surgical procedures, it appears that soft tissue grafting has increased the width and height of the gingiva surrounding the implant. The accomplished thickness of gingival tissue appeared to mask the showing of implant threads through the gingival tissue and allowed for achieving the desired esthetic that the patient desired. The aim of the study is to present a clinical case with soft tissue grafting procedures. PMID:23662087

  20. Stable isotopic comparison between loggerhead sea turtle tissues.

    PubMed

    Vander Zanden, Hannah B; Tucker, Anton D; Bolten, Alan B; Reich, Kimberly J; Bjorndal, Karen A

    2014-10-15

    Stable isotope analysis has been used extensively to provide ecological information about diet and foraging location of many species. The difference in isotopic composition between animal tissue and its diet, or the diet-tissue discrimination factor, varies with tissue type. Therefore, direct comparisons between isotopic values of tissues are inaccurate without an appropriate conversion factor. We focus on the loggerhead sea turtle (Caretta caretta), for which a variety of tissues have been used to examine diet, habitat use, and migratory origin through stable isotope analysis. We calculated tissue-to-tissue conversions between two commonly sampled tissues. Epidermis and scute (the keratin covering on the carapace) were sampled from 33 adult loggerheads nesting at two beaches in Florida (Casey Key and Canaveral National Seashore). Carbon and nitrogen stable isotope ratios were measured in the epidermis and the youngest portion of the scute tissue, which reflect the isotopic composition of the diet and habitat over similar time periods of the order of several months. Significant linear relationships were observed between the δ(13)C and δ(15)N values of these two tissues, indicating they can be converted reliably. Whereas both epidermis and scute samples are commonly sampled from nesting sea turtles to study trophic ecology and habitat use, the data from these studies have not been comparable without reliable tissue-to-tissue conversions. The equations provided here allow isotopic datasets using the two tissues to be combined in previously published and subsequent studies of sea turtle foraging ecology and migratory movement. In addition, we recommend that future isotopic comparisons between tissues of any organism utilize linear regressions to calculate tissue-to-tissue conversions. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Biomimetic and synthetic esophageal tissue engineering.

    PubMed

    Jensen, Todd; Blanchette, Alex; Vadasz, Stephanie; Dave, Apeksha; Canfarotta, Michael; Sayej, Wael N; Finck, Christine

    2015-07-01

    A tissue-engineered esophagus offers an alternative for the treatment of pediatric patients suffering from severe esophageal malformations, caustic injury, and cancer. Additionally, adult patients suffering from carcinoma or trauma would benefit. Donor rat esophageal tissue was physically and enzymatically digested to isolate epithelial and smooth muscle cells, which were cultured in epithelial cell medium or smooth muscle cell medium and characterized by immunofluorescence. Isolated cells were also seeded onto electrospun synthetic PLGA and PCL/PLGA scaffolds in a physiologic hollow organ bioreactor. After 2 weeks of in vitro culture, tissue-engineered constructs were orthotopically transplanted. Isolated cells were shown to give rise to epithelial, smooth muscle, and glial cell types. After 14 days in culture, scaffolds supported epithelial, smooth muscle and glial cell phenotypes. Transplanted constructs integrated into the host's native tissue and recipients of the engineered tissue demonstrated normal feeding habits. Characterization after 14 days of implantation revealed that all three cellular phenotypes were present in varying degrees in seeded and unseeded scaffolds. We demonstrate that isolated cells from native esophagus can be cultured and seeded onto electrospun scaffolds to create esophageal constructs. These constructs have potential translatable application for tissue engineering of human esophageal tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Adipose tissue as an immunological organ

    PubMed Central

    Grant, Ryan W.; Dixit, Vishwa Deep

    2014-01-01

    Objective This review will focus on the immunological aspects of adipose tissue and its potential role in development of chronic inflammation that instigates obesity-associated co-morbidities. Design and Methods The review utilized PubMed searches of current literature to examine adipose tissue leukocytosis. Results The adipose tissue of obese subjects becomes inflamed and contributes to the development of insulin resistance, type 2 diabetes and metabolic syndrome. Numerous immune cells including B cells, T cells, macrophages and neutrophils have been identified in adipose tissue, and obesity influences both the quantity and the nature of immune cell subtypes which emerges as an active immunological organ capable of modifying whole body metabolism through paracrine and endocrine mechanisms. Conclusion Adipose tissue is a large immunologically active organ during obesity that displays hallmarks of both and innate and adaptive immune response. Despite the presence of hematopoietic lineage cells in adipose tissue, it is presently unclear whether the adipose compartment has a direct role in immune-surveillance or host defense. Understanding the interactions between leukocytes and adipocytes may reveal the clinically relevant pathways that control adipose tissue inflammation and is likely to reveal mechanism by which obesity contributes to increased susceptibility to both metabolic and certain infectious disease. PMID:25612251

  3. Multilayer scaffolds in orthopaedic tissue engineering.

    PubMed

    Atesok, Kivanc; Doral, M Nedim; Karlsson, Jon; Egol, Kenneth A; Jazrawi, Laith M; Coelho, Paulo G; Martinez, Amaury; Matsumoto, Tomoyuki; Owens, Brett D; Ochi, Mitsuo; Hurwitz, Shepard R; Atala, Anthony; Fu, Freddie H; Lu, Helen H; Rodeo, Scott A

    2016-07-01

    The purpose of this study was to summarize the recent developments in the field of tissue engineering as they relate to multilayer scaffold designs in musculoskeletal regeneration. Clinical and basic research studies that highlight the current knowledge and potential future applications of the multilayer scaffolds in orthopaedic tissue engineering were evaluated and the best evidence collected. Studies were divided into three main categories based on tissue types and interfaces for which multilayer scaffolds were used to regenerate: bone, osteochondral junction and tendon-to-bone interfaces. In vitro and in vivo studies indicate that the use of stratified scaffolds composed of multiple layers with distinct compositions for regeneration of distinct tissue types within the same scaffold and anatomic location is feasible. This emerging tissue engineering approach has potential applications in regeneration of bone defects, osteochondral lesions and tendon-to-bone interfaces with successful basic research findings that encourage clinical applications. Present data supporting the advantages of the use of multilayer scaffolds as an emerging strategy in musculoskeletal tissue engineering are promising, however, still limited. Positive impacts of the use of next generation scaffolds in orthopaedic tissue engineering can be expected in terms of decreasing the invasiveness of current grafting techniques used for reconstruction of bone and osteochondral defects, and tendon-to-bone interfaces in near future.

  4. Enoxacin penetration into human prostatic tissue.

    PubMed Central

    Bergeron, M G; Roy, R; Lessard, C; Foucault, P

    1988-01-01

    Concurrent enoxacin concentrations in serum and prostatic tissue were determined in 14 patients. The mean ratios of enoxacin concentration in tissue over concentration in serum were 1.4 +/- 0.2 (standard error of the mean). The levels in serum and prostatic tissue were above the MICs for most urinary pathogens. PMID:3196004

  5. Tissue Integration of a Volume-Stable Collagen Matrix in an Experimental Soft Tissue Augmentation Model.

    PubMed

    Ferrantino, Luca; Bosshardt, Dieter; Nevins, Myron; Santoro, Giacomo; Simion, Massimo; Kim, David

    Reducing the need for a connective tissue graft by using an efficacious biomaterial is an important task for dental professionals and patients. This experimental study aimed to test the soft tissue response to a volume-stable new collagen matrix. The device demonstrated good stability during six different time points ranging from 0 to 90 days of healing with no alteration of the wound-healing processes. The 90-day histologic specimen demonstrates eventual replacement of most of the matrix with new connective tissue fibers.

  6. Use of an in vitro model in tissue engineering to study wound repair and differentiation of blastema tissue from rabbit pinna.

    PubMed

    Hashemzadeh, Mohammad Reza; Mahdavi-Shahri, Nasser; Bahrami, Ahmad Reza; Kheirabadi, Masoumeh; Naseri, Fatemeh; Atighi, Mitra

    2015-08-01

    Rabbit ear wound repair is an accepted model for studies of tissue regeneration, leading to scar less wound repair. It is believed that a specific tissue, blastema, is responsible for such interesting capacity of tissue regeneration. To test this idea further and to elucidate the cellular events happening during the ear wound repair, we designed some controlled experiments in vitro. Small pieces of the ear were punched and washed immediately with normal saline. The tissues were then cultured in the Dulbecco's Modified Eagle(')s Medium, supplemented with fetal bovine serum in control group. As a treatment vitamin A and C was used to evaluate the differentiation potency of the tissue. These tissues were fixed, sectioned, stained, and microscopically studied. Micrographs of electron microscopy provided evidences revealing dedifferentiation of certain cells inside the punched tissues after incubation in tissue culture medium. The histological studies revealed that cells of the tissue (i) can undergo cellular proliferation, (ii) differentiate to epithelial, condrogenic, and osteogenic tissues, and (iii) regenerate the wounds. These results could be used for interpretation of the possible events happening during tissue engineering and wound repair in vitro. An important goal of this study is to create a tissue engineering and tissue banking model, so that in the future it could be used in further blastema tissue studies at different levels.

  7. Dynamics of cancerous tissue correlates with invasiveness

    NASA Astrophysics Data System (ADS)

    West, Ann-Katrine Vransø; Wullkopf, Lena; Christensen, Amalie; Leijnse, Natascha; Tarp, Jens Magelund; Mathiesen, Joachim; Erler, Janine Terra; Oddershede, Lene Broeng

    2017-03-01

    Two of the classical hallmarks of cancer are uncontrolled cell division and tissue invasion, which turn the disease into a systemic, life-threatening condition. Although both processes are studied, a clear correlation between cell division and motility of cancer cells has not been described previously. Here, we experimentally characterize the dynamics of invasive and non-invasive breast cancer tissues using human and murine model systems. The intrinsic tissue velocities, as well as the divergence and vorticity around a dividing cell correlate strongly with the invasive potential of the tissue, thus showing a distinct correlation between tissue dynamics and aggressiveness. We formulate a model which treats the tissue as a visco-elastic continuum. This model provides a valid reproduction of the cancerous tissue dynamics, thus, biological signaling is not needed to explain the observed tissue dynamics. The model returns the characteristic force exerted by an invading cell and reveals a strong correlation between force and invasiveness of breast cancer cells, thus pinpointing the importance of mechanics for cancer invasion.

  8. Glassy dynamics in three-dimensional embryonic tissues

    PubMed Central

    Schötz, Eva-Maria; Lanio, Marcos; Talbot, Jared A.; Manning, M. Lisa

    2013-01-01

    Many biological tissues are viscoelastic, behaving as elastic solids on short timescales and fluids on long timescales. This collective mechanical behaviour enables and helps to guide pattern formation and tissue layering. Here, we investigate the mechanical properties of three-dimensional tissue explants from zebrafish embryos by analysing individual cell tracks and macroscopic mechanical response. We find that the cell dynamics inside the tissue exhibit features of supercooled fluids, including subdiffusive trajectories and signatures of caging behaviour. We develop a minimal, three-parameter mechanical model for these dynamics, which we calibrate using only information about cell tracks. This model generates predictions about the macroscopic bulk response of the tissue (with no fit parameters) that are verified experimentally, providing a strong validation of the model. The best-fit model parameters indicate that although the tissue is fluid-like, it is close to a glass transition, suggesting that small changes to single-cell parameters could generate a significant change in the viscoelastic properties of the tissue. These results provide a robust framework for quantifying and modelling mechanically driven pattern formation in tissues. PMID:24068179

  9. Histological observation for needle-tissue interactions.

    PubMed

    Nakagawa, Yoshiyuki; Koseki, Yoshihiko

    2013-01-01

    We histologically investigated tissue fractures and deformations caused by ex vivo needle insertions. The tissue was formalin-fixed while the needle remained in the tissue. Following removal of the needle, the tissue was microtomed, stained, and observed microscopically. This method enabled observations of cellular and tissular conditions where deformations caused by needle insertions were approximately preserved. For this study, our novel method presents preliminary findings related with tissue fractures and the orientation of needle blade relative to muscle fibers. When the needle blade was perpendicular to the muscle fiber, transfiber fractures and relatively large longitudinal deformations occurred. When the needle blade was parallel to the muscle fiber, interfiber fractures and relatively small longitudinal deformations occurred. This made a significant difference in the resistance force of the needle insertions.

  10. Studying cytokinesis in Drosophila epithelial tissues.

    PubMed

    Pinheiro, D; Bellaïche, Y

    2017-01-01

    Epithelial tissue cohesiveness is ensured through cell-cell junctions that maintain both adhesion and mechanical coupling between neighboring cells. During development, epithelial tissues undergo intensive cell proliferation. Cell division, and particularly cytokinesis, is coupled to the formation of new adhesive contacts, thereby preserving tissue integrity and propagating cell polarity. Remarkably, the geometry of the new interfaces is determined by the combined action of the dividing cell and its neighbors. To further understand the interplay between the dividing cell and its neighbors, as well as the role of cell division for tissue morphogenesis, it is important to analyze cytokinesis in vivo. Here we present methods to perform live imaging of cell division in Drosophila epithelial tissues and discuss some aspects of image processing and analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Tissue and Organ 3D Bioprinting.

    PubMed

    Xia, Zengmin; Jin, Sha; Ye, Kaiming

    2018-02-01

    Three-dimensional (3D) bioprinting enables the creation of tissue constructs with heterogeneous compositions and complex architectures. It was initially used for preparing scaffolds for bone tissue engineering. It has recently been adopted to create living tissues, such as cartilage, skin, and heart valve. To facilitate vascularization, hollow channels have been created in the hydrogels by 3D bioprinting. This review discusses the state of the art of the technology, along with a broad range of biomaterials used for 3D bioprinting. It provides an update on recent developments in bioprinting and its applications. 3D bioprinting has profound impacts on biomedical research and industry. It offers a new way to industrialize tissue biofabrication. It has great potential for regenerating tissues and organs to overcome the shortage of organ transplantation.

  12. Donation transplants and tissue banking in Mexico.

    PubMed

    Luna-Zaragoza, D; Reyes-Frías, M L

    2001-01-01

    Knowledge about transplants in Mexico goes back to the Aztec period. Today the need for organ and tissue transplants in Mexico is high; the estimated number is 100,000 patients, but there are only 2 donors per million population, for corneas. The organ, tissue and cell transplantation law which was modified in 2,000, establishes that when a person dies, he will be a potential donor of organs and tissues. This new law will give hope to many patients, since it is expected to increase significantly the amount of organs and tissues for transplants. At present Mexico has 178 hospitals that are authorized to carry out organ and tissue transplants, and 53 Tissue Banks.

  13. The Resistance of Certain Tissues to Invasion

    PubMed Central

    Eisenstein, Reuben; Sorgente, Nino; Soble, Lawrence W.; Miller, Alexander; Kuettner, Klaus E.

    1973-01-01

    If puppy tissues are explanted onto the chick chorioallantoic membrane, those tissues which normally have a blood supply are rapidly invaded by vascularized mesenchyme of host origin. Hyaline cartilage, a tissue virtually devoid of blood vessels, is impenetrable by proliferating mesenchyme of the host, while calcified cartilage, which normally is vascularized, is penetrable. The stroma of the cornea, another normally avascular tissue, is readily penetrable, but Descemet's membrane forms a barrier to invasion by host tissues. The experimental system used permits the design of experiments in which the study of factors responsible for the resistance of tissues such as cartilage to invasion can be undertaken. ImagesFig 1Fig 2Fig 3Fig 4 PMID:4129060

  14. Handling, storage, and preparation of human tissues.

    PubMed

    Dressler, L G; Visscher, D

    2001-05-01

    Human tissue for flow cytometry must be prepared as an adequate single-cell suspension. The appropriate methods for tissue collection, transport, storage, and dissociation depend on the cell parameters being measured and the localization of the markers. This unit includes a general method for collecting and transporting human tissue and preparing a tissue imprint. Protocols are supplied for tissue disaggregation by either mechanical or enzymatic means and for preparation of single-cell suspensions of whole cells from fine-needle aspirates, pleural effusions, abdominal fluids, or other body fluids. Other protocols detail preparation of intact nuclei from fresh, frozen, or paraffin-embedded tissue. Support protocols cover fixation, cryospin preparation, cryopreservation, and removal of debris.

  15. Tissue specificity of the hormonal response in sex accessory tissues is associated with nuclear matrix protein patterns.

    PubMed

    Getzenberg, R H; Coffey, D S

    1990-09-01

    The DNA of interphase nuclei have very specific three-dimensional organizations that are different in different cell types, and it is possible that this varying DNA organization is responsible for the tissue specificity of gene expression. The nuclear matrix organizes the three-dimensional structure of the DNA and is believed to be involved in the control of gene expression. This study compares the nuclear structural proteins between two sex accessory tissues in the same animal responding to the same androgen stimulation by the differential expression of major tissue-specific secretory proteins. We demonstrate here that the nuclear matrix is tissue specific in the rat ventral prostate and seminal vesicle, and undergoes characteristic alterations in its protein composition upon androgen withdrawal. Three types of nuclear matrix proteins were observed: 1) nuclear matrix proteins that are different and tissue specific in the rat ventral prostate and seminal vesicle, 2) a set of nuclear matrix proteins that either appear or disappear upon androgen withdrawal, and 3) a set of proteins that are common to both the ventral prostate and seminal vesicle and do not change with the hormonal state of the animal. Since the nuclear matrix is known to bind androgen receptors in a tissue- and steroid-specific manner, we propose that the tissue specificity of the nuclear matrix arranges the DNA in a unique conformation, which may be involved in the specific interaction of transcription factors with DNA sequences, resulting in tissue-specific patterns of secretory protein expression.

  16. Sensing in tissue bioreactors

    NASA Astrophysics Data System (ADS)

    Rolfe, P.

    2006-03-01

    Specialized sensing and measurement instruments are under development to aid the controlled culture of cells in bioreactors for the fabrication of biological tissues. Precisely defined physical and chemical conditions are needed for the correct culture of the many cell-tissue types now being studied, including chondrocytes (cartilage), vascular endothelial cells and smooth muscle cells (blood vessels), fibroblasts, hepatocytes (liver) and receptor neurones. Cell and tissue culture processes are dynamic and therefore, optimal control requires monitoring of the key process variables. Chemical and physical sensing is approached in this paper with the aim of enabling automatic optimal control, based on classical cell growth models, to be achieved. Non-invasive sensing is performed via the bioreactor wall, invasive sensing with probes placed inside the cell culture chamber and indirect monitoring using analysis within a shunt or a sampling chamber. Electroanalytical and photonics-based systems are described. Chemical sensing for gases, ions, metabolites, certain hormones and proteins, is under development. Spectroscopic analysis of the culture medium is used for measurement of glucose and for proteins that are markers of cell biosynthetic behaviour. Optical interrogation of cells and tissues is also investigated for structural analysis based on scatter.

  17. NASA Bioreactor tissue culture

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  18. Tissue identification during Pneumoperitoneum in laparoscopy

    NASA Astrophysics Data System (ADS)

    Chang, Yin; Tseng, Chi-Yang

    2015-03-01

    Pneumoperitoneum is the beginning procedure of laparoscopy to enlarge the abdominal cavity in order to allow the surgical instruments to insert for surgical purpose. However, the insertion of Veress needle is a blind fashion that could cause blood vessels or visceral injury without attention and results in undetectable internal bleeding. Seriously it may cause a life-threatened complication. We have developed a method that can monitor the tissue reflective spectrum, which can be used for tissue discrimination, in real time during the puncture of the Veress needle. The system includes a modified Veress needle which containes an optical bundle, a light spectrum analyzing and control unit. Therefore, the tissue reflective spectrum can be vivid observed and analyzed through the fiber optical technology during the procedure of the Veress needle insertion. In this study, we have measured the reflective spectra of various porcine abdominal tissues. The features of their spectra were analyzed and characterized to build up the data base and create an algorithm for tissue discrimination in laparoscopy. The results showed that the correlation coefficient (r) of the reflective spectrum can be 0.79-0.95 for the wavelength range of 350-1000 nm and 0.85-0.98 for the wavelength range of 350-650 nm in the same tissue of various samples which were obtained from different days. An alternative way for tissue discrimination is achieved through a decision making tree according to the characteristics of tissue spectrum. For single blind test the success rate is nearly 100%. It seems that both the algorithms mentioned above for tissue discrimination are all very promising. Therefore, these algorithms will be applied to in vivo study in animal in the near future.

  19. Nanotopography-guided tissue engineering and regenerative medicine.

    PubMed

    Kim, Hong Nam; Jiao, Alex; Hwang, Nathaniel S; Kim, Min Sung; Kang, Do Hyun; Kim, Deok-Ho; Suh, Kahp-Yang

    2013-04-01

    Human tissues are intricate ensembles of multiple cell types embedded in complex and well-defined structures of the extracellular matrix (ECM). The organization of ECM is frequently hierarchical from nano to macro, with many proteins forming large scale structures with feature sizes up to several hundred microns. Inspired from these natural designs of ECM, nanotopography-guided approaches have been increasingly investigated for the last several decades. Results demonstrate that the nanotopography itself can activate tissue-specific function in vitro as well as promote tissue regeneration in vivo upon transplantation. In this review, we provide an extensive analysis of recent efforts to mimic functional nanostructures in vitro for improved tissue engineering and regeneration of injured and damaged tissues. We first characterize the role of various nanostructures in human tissues with respect to each tissue-specific function. Then, we describe various fabrication methods in terms of patterning principles and material characteristics. Finally, we summarize the applications of nanotopography to various tissues, which are classified into four types depending on their functions: protective, mechano-sensitive, electro-active, and shear stress-sensitive tissues. Some limitations and future challenges are briefly discussed at the end. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  20. Tissue polarimetry: concepts, challenges, applications, and outlook.

    PubMed

    Ghosh, Nirmalya; Vitkin, I Alex

    2011-11-01

    Polarimetry has a long and successful history in various forms of clear media. Driven by their biomedical potential, the use of the polarimetric approaches for biological tissue assessment has also recently received considerable attention. Specifically, polarization can be used as an effective tool to discriminate against multiply scattered light (acting as a gating mechanism) in order to enhance contrast and to improve tissue imaging resolution. Moreover, the intrinsic tissue polarimetry characteristics contain a wealth of morphological and functional information of potential biomedical importance. However, in a complex random medium-like tissue, numerous complexities due to multiple scattering and simultaneous occurrences of many scattering and polarization events present formidable challenges both in terms of accurate measurements and in terms of analysis of the tissue polarimetry signal. In order to realize the potential of the polarimetric approaches for tissue imaging and characterization/diagnosis, a number of researchers are thus pursuing innovative solutions to these challenges. In this review paper, we summarize these and other issues pertinent to the polarized light methodologies in tissues. Specifically, we discuss polarized light basics, Stokes-Muller formalism, methods of polarization measurements, polarized light modeling in turbid media, applications to tissue imaging, inverse analysis for polarimetric results quantification, applications to quantitative tissue assessment, etc.

  1. Surgical lasers and hard dental tissue.

    PubMed

    Parker, S

    2007-04-28

    The cutting of dental hard tissue during restorative procedures presents considerable demands on the ability to selectively remove diseased carious tissue, obtain outline and retention form and maintain the integrity of supporting tooth tissue without structural weakening. In addition, the requirement to preserve healthy tissue and prevent further breakdown of the restoration places the choice of instrumentation and clinical technique as prime factors for the dental surgeon. The quest for an alternative treatment modality to the conventional dental turbine has been, essentially, patient-driven and has led to the development of various mechanical and chemical devices. The review of the literature has endorsed the beneficial effects of current laser machines. However utopian, there is additional evidence to support the development of ultra-short (nano- and femto-second) pulsed lasers that are stable in use and commercially viable, to deliver more efficient hard tissue ablation with less risk of collateral thermal damage. This paper explores the interaction of laser energy with dental hard tissues and bone and the integration of current laser wavelengths into restorative and surgical dentistry.

  2. Phagocyte dysfunction, tissue aging and degeneration

    PubMed Central

    2013-01-01

    Immunologically-silent phagocytosis of apoptotic cells is critical to maintaining tissue homeostasis and innate immune balance. Aged phagocytes reduce their functional activity, leading to accumulation of unphagocytosed debris, chronic sterile inflammation and exacerbation of tissue aging and damage. Macrophage dysfunction plays an important role in immunosenescence. Microglial dysfunction has been linked to age-dependent neurodegenerations. Retinal pigment epithelial (RPE) cell dysfunction has been implicated in the pathogenesis of age-related macular degeneration (AMD). Despite several reports on the characterization of aged phagocytes, the role of phagocyte dysfunction in tissue aging and degeneration is yet to be fully appreciated. Lack of knowledge of molecular mechanisms by which aging reduces phagocyte function has hindered our capability to exploit the therapeutic potentials of phagocytosis for prevention or delay of tissue degeneration. This review summarizes our current knowledge of phagocyte dysfunction in aged tissues and discusses possible links to age-related diseases. We highlight the challenges to decipher the molecular mechanisms, present new research approaches and envisage future strategies to prevent phagocyte dysfunction, tissue aging and degeneration. PMID:23748186

  3. Phagocyte dysfunction, tissue aging and degeneration.

    PubMed

    Li, Wei

    2013-09-01

    Immunologically-silent phagocytosis of apoptotic cells is critical to maintaining tissue homeostasis and innate immune balance. Aged phagocytes reduce their functional activity, leading to accumulation of unphagocytosed debris, chronic sterile inflammation and exacerbation of tissue aging and damage. Macrophage dysfunction plays an important role in immunosenescence. Microglial dysfunction has been linked to age-dependent neurodegenerations. Retinal pigment epithelial (RPE) cell dysfunction has been implicated in the pathogenesis of age-related macular degeneration (AMD). Despite several reports on the characterization of aged phagocytes, the role of phagocyte dysfunction in tissue aging and degeneration is yet to be fully appreciated. Lack of knowledge of molecular mechanisms by which aging reduces phagocyte function has hindered our capability to exploit the therapeutic potentials of phagocytosis for prevention or delay of tissue degeneration. This review summarizes our current knowledge of phagocyte dysfunction in aged tissues and discusses possible links to age-related diseases. We highlight the challenges to decipher the molecular mechanisms, present new research approaches and envisage future strategies to prevent phagocyte dysfunction, tissue aging and degeneration. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Effect of substrate choice and tissue type on tissue preparation for spectral histopathology by Raman microspectroscopy.

    PubMed

    Fullwood, Leanne M; Griffiths, Dave; Ashton, Katherine; Dawson, Timothy; Lea, Robert W; Davis, Charles; Bonnier, Franck; Byrne, Hugh J; Baker, Matthew J

    2014-01-21

    Raman spectroscopy is a non-destructive, non-invasive, rapid and economical technique which has the potential to be an excellent method for the diagnosis of cancer and understanding disease progression through retrospective studies of archived tissue samples. Historically, biobanks are generally comprised of formalin fixed paraffin preserved tissue and as a result these specimens are often used in spectroscopic research. Tissue in this state has to be dewaxed prior to Raman analysis to reduce paraffin contributions in the spectra. However, although the procedures are derived from histopathological clinical practice, the efficacy of the dewaxing procedures that are currently employed is questionable. Ineffective removal of paraffin results in corruption of the spectra and previous experiments have shown that the efficacy can depend on the dewaxing medium and processing time. The aim of this study was to investigate the influence of commonly used spectroscopic substrates (CaF2, Spectrosil quartz and low-E slides) and the influence of different histological tissue types (normal, cancerous and metastatic) on tissue preparation and to assess their use for spectral histopathology. Results show that CaF2 followed by Spectrosil contribute the least to the spectral background. However, both substrates retain paraffin after dewaxing. Low-E substrates, which exhibit the most intense spectral background, do not retain wax and resulting spectra are not affected by paraffin peaks. We also show a disparity in paraffin retention depending upon the histological identity of the tissue with abnormal tissue retaining more paraffin than normal.

  5. Cryopreservation of human ovarian tissue.

    PubMed

    Fabbri, Raffaella; Pasquinelli, Gianandrea; Bracone, Graziella; Orrico, Catia; Di Tommaso, Barbara; Venturoli, Stefano

    2006-01-01

    New and often aggressive treatment schemes allow the successful healing of many young patients with cancer, but the price the young women have to pay is high: many of them lose ovarian function and fertility. Due to the improved long-term survival of adolescents and young women with malignancies undergoing gonadotoxic chemotherapy, preservation of future fertility has been the focus of recent ubiquitarian interest. A feasible solution is the cryopreservation of ovarian tissue. Ovarian tissue, after thawing, can be used in three different ways: 1. grafted into its normal site (orthotopic); 2. grafted into a site other than its normal position (heterotopic), necessitating recourse to in vitro fertilization (IVF); 3. grown and in vitro matured in order to obtain metaphase II oocytes for an IVF program. It is believed that protein supplementation, in cryopreservation solution, is essential for improving ovarian tissue cryopreservation. The aim of this study was to evaluate the ultrastructural appearance of human ovarian tissue cryopreserved in 1.5 M 1,2 propanediol (PROH), 0.2 M sucrose using different protein sources: fetal calf serum (FCS), plasmanate or syntetic serum substitute (SSS). Fresh and frozen/thawed ovarian tissues were compared by transmission electron microscope (TEM), to evaluate the appearance of stromal and follicle cells as affected by different protein sources. Our data indicate that FCS is a better protein support for ovarian tissue cryopreservation when compared to SSS or Plasmanate. In addition the follicles are more resistant to the cryopreservation with respect to stroma.

  6. System for and method of freezing biological tissue

    NASA Technical Reports Server (NTRS)

    Williams, T. E.; Cygnarowicz, T. A. (Inventor)

    1978-01-01

    Biological tissue is frozen while a polyethylene bag placed in abutting relationship against opposed walls of a pair of heaters. The bag and tissue are cooled with refrigerating gas at a time programmed rate at least equal to the maximum cooling rate needed at any time during the freezing process. The temperature of the bag, and hence of the tissue, is compared with a time programmed desired value for the tissue temperature to derive an error indication. The heater is activated in response to the error indication so that the temperature of the tissue follows the desired value for the time programmed tissue temperature. The tissue is heated to compensate for excessive cooling of the tissue as a result of the cooling by the refrigerating gas. In response to the error signal, the heater is deactivated while the latent heat of fusion is being removed from the tissue while the tissue is changing phase from liquid to solid.

  7. Tissue Engineering Approaches in the Design of Healthy and Pathological In Vitro Tissue Models

    PubMed Central

    Caddeo, Silvia; Boffito, Monica; Sartori, Susanna

    2017-01-01

    In the tissue engineering (TE) paradigm, engineering and life sciences tools are combined to develop bioartificial substitutes for organs and tissues, which can in turn be applied in regenerative medicine, pharmaceutical, diagnostic, and basic research to elucidate fundamental aspects of cell functions in vivo or to identify mechanisms involved in aging processes and disease onset and progression. The complex three-dimensional (3D) microenvironment in which cells are organized in vivo allows the interaction between different cell types and between cells and the extracellular matrix, the composition of which varies as a function of the tissue, the degree of maturation, and health conditions. In this context, 3D in vitro models can more realistically reproduce a tissue or organ than two-dimensional (2D) models. Moreover, they can overcome the limitations of animal models and reduce the need for in vivo tests, according to the “3Rs” guiding principles for a more ethical research. The design of 3D engineered tissue models is currently in its development stage, showing high potential in overcoming the limitations of already available models. However, many issues are still opened, concerning the identification of the optimal scaffold-forming materials, cell source and biofabrication technology, and the best cell culture conditions (biochemical and physical cues) to finely replicate the native tissue and the surrounding environment. In the near future, 3D tissue-engineered models are expected to become useful tools in the preliminary testing and screening of drugs and therapies and in the investigation of the molecular mechanisms underpinning disease onset and progression. In this review, the application of TE principles to the design of in vitro 3D models will be surveyed, with a focus on the strengths and weaknesses of this emerging approach. In addition, a brief overview on the development of in vitro models of healthy and pathological bone, heart, pancreas, and

  8. Tissue Engineering Approaches in the Design of Healthy and Pathological In Vitro Tissue Models.

    PubMed

    Caddeo, Silvia; Boffito, Monica; Sartori, Susanna

    2017-01-01

    In the tissue engineering (TE) paradigm, engineering and life sciences tools are combined to develop bioartificial substitutes for organs and tissues, which can in turn be applied in regenerative medicine, pharmaceutical, diagnostic, and basic research to elucidate fundamental aspects of cell functions in vivo or to identify mechanisms involved in aging processes and disease onset and progression. The complex three-dimensional (3D) microenvironment in which cells are organized in vivo allows the interaction between different cell types and between cells and the extracellular matrix, the composition of which varies as a function of the tissue, the degree of maturation, and health conditions. In this context, 3D in vitro models can more realistically reproduce a tissue or organ than two-dimensional (2D) models. Moreover, they can overcome the limitations of animal models and reduce the need for in vivo tests, according to the "3Rs" guiding principles for a more ethical research. The design of 3D engineered tissue models is currently in its development stage, showing high potential in overcoming the limitations of already available models. However, many issues are still opened, concerning the identification of the optimal scaffold-forming materials, cell source and biofabrication technology, and the best cell culture conditions (biochemical and physical cues) to finely replicate the native tissue and the surrounding environment. In the near future, 3D tissue-engineered models are expected to become useful tools in the preliminary testing and screening of drugs and therapies and in the investigation of the molecular mechanisms underpinning disease onset and progression. In this review, the application of TE principles to the design of in vitro 3D models will be surveyed, with a focus on the strengths and weaknesses of this emerging approach. In addition, a brief overview on the development of in vitro models of healthy and pathological bone, heart, pancreas, and liver

  9. FATIGUE OF BIOMATERIALS: HARD TISSUES

    PubMed Central

    Arola, D.; Bajaj, D.; Ivancik, J.; Majd, H.; Zhang, D.

    2009-01-01

    The fatigue and fracture behavior of hard tissues are topics of considerable interest today. This special group of organic materials comprises the highly mineralized and load-bearing tissues of the human body, and includes bone, cementum, dentin and enamel. An understanding of their fatigue behavior and the influence of loading conditions and physiological factors (e.g. aging and disease) on the mechanisms of degradation are essential for achieving lifelong health. But there is much more to this topic than the immediate medical issues. There are many challenges to characterizing the fatigue behavior of hard tissues, much of which is attributed to size constraints and the complexity of their microstructure. The relative importance of the constituents on the type and distribution of defects, rate of coalescence, and their contributions to the initiation and growth of cracks, are formidable topics that have not reached maturity. Hard tissues also provide a medium for learning and a source of inspiration in the design of new microstructures for engineering materials. This article briefly reviews fatigue of hard tissues with shared emphasis on current understanding, the challenges and the unanswered questions. PMID:20563239

  10. [Connective tissue and inflammation].

    PubMed

    Jakab, Lajos

    2014-03-23

    The author summarizes the structure of the connective tissues, the increasing motion of the constituents, which determine the role in establishing the structure and function of that. The structure and function of the connective tissue are related to each other in the resting as well as inflammatory states. It is emphasized that cellular events in the connective tissue are part of the defence of the organism, the localisation of the damage and, if possible, the maintenance of restitutio ad integrum. The organism responds to damage with inflammation, the non specific immune response, as well as specific, adaptive immunity. These processes are located in the connective tissue. Sterile and pathogenic inflammation are relatively similar processes, but inevitable differences are present, too. Sialic acids and glycoproteins containing sialic acids have important roles, and the role of Siglecs is also highlighted. Also, similarities and differences in damages caused by pathogens and sterile agents are briefly summarized. In addition, the roles of adhesion molecules linked to each other, and the whole event of inflammatory processes are presented. When considering practical consequences it is stressed that the structure (building up) of the organism and the defending function of inflammation both have fundamental importance. Inflammation has a crucial role in maintaining the integrity and the unimpaired somato-psychological state of the organism. Thus, inflammation serves as a tool of organism identical with the natural immune response, inseparably connected with the specific, adaptive immune response. The main events of the inflammatory processes take place in the connective tissue.

  11. Use of bioreactors in maxillofacial tissue engineering.

    PubMed

    Depprich, Rita; Handschel, Jörg; Wiesmann, Hans-Peter; Jäsche-Meyer, Janine; Meyer, Ulrich

    2008-07-01

    Engineering of various oral tissues is a challenging issue in contemporary maxillofacial reconstructive research. In contrast to the classic biomaterial approach, tissue engineering is based on the understanding of cell driven tissue formation, and aims to generate new functional tissues, rather than just to implant non-living space holders. Researchers hope to reach this goal by combining knowledge from biology, physics, materials science, engineering, and medicine in an integrated manner. Several major technical advances have been made in this field during the last decade, and clinical application is at the stage of first clinical trials. A recent limitation of extracorporally engineered cellular substitutes is the problem of growing enlarged tissues ex vivo. One of the main research topics is therefore to scale up artificial tissue constructs for use in extended defect situations. To overcome the monolayer inherent two-dimensional cell assembly, efforts have been made to grow cells in a three-dimensional space. Bioreactors have therefore been in focus for a considerable time to build up enlarged tissues. The shift from the ex vivo approach of cell multiplication to the generation of a real tissue growth is mirrored by the development of bioreactors, enabling scientists to grow more complex tissue constructs. This present review intends to provide an overview of the current state of art in maxillofacial tissue engineering by the use of bioreactors, its limitations and hopes, as well as the future research trends.

  12. Inverse tissue mechanics of cell monolayer expansion.

    PubMed

    Kondo, Yohei; Aoki, Kazuhiro; Ishii, Shin

    2018-03-01

    Living tissues undergo deformation during morphogenesis. In this process, cells generate mechanical forces that drive the coordinated cell motion and shape changes. Recent advances in experimental and theoretical techniques have enabled in situ measurement of the mechanical forces, but the characterization of mechanical properties that determine how these forces quantitatively affect tissue deformation remains challenging, and this represents a major obstacle for the complete understanding of morphogenesis. Here, we proposed a non-invasive reverse-engineering approach for the estimation of the mechanical properties, by combining tissue mechanics modeling and statistical machine learning. Our strategy is to model the tissue as a continuum mechanical system and to use passive observations of spontaneous tissue deformation and force fields to statistically estimate the model parameters. This method was applied to the analysis of the collective migration of Madin-Darby canine kidney cells, and the tissue flow and force were simultaneously observed by the phase contrast imaging and traction force microscopy. We found that our monolayer elastic model, whose elastic moduli were reverse-engineered, enabled a long-term forecast of the traction force fields when given the tissue flow fields, indicating that the elasticity contributes to the evolution of the tissue stress. Furthermore, we investigated the tissues in which myosin was inhibited by blebbistatin treatment, and observed a several-fold reduction in the elastic moduli. The obtained results validate our framework, which paves the way to the estimation of mechanical properties of living tissues during morphogenesis.

  13. Three-Dimensionally Engineered Normal Human Broncho-epithelial Tissue-Like Assemblies: Target Tissues for Human Respiratory Viral Infections

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; McCarthy, M.; Lin, Y-H

    2006-01-01

    In vitro three-dimensional (3D) human broncho-epithelial (HBE) tissue-like assemblies (3D HBE TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and parainfluenza virus type 3 (wtPIV3 JS) and the detection of membrane bound glycoproteins over time confirm productive infections with both viruses. Therefore, TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host's immune system.

  14. Micro- and nanotechnology in cardiovascular tissue engineering.

    PubMed

    Zhang, Boyang; Xiao, Yun; Hsieh, Anne; Thavandiran, Nimalan; Radisic, Milica

    2011-12-09

    While in nature the formation of complex tissues is gradually shaped by the long journey of development, in tissue engineering constructing complex tissues relies heavily on our ability to directly manipulate and control the micro-cellular environment in vitro. Not surprisingly, advancements in both microfabrication and nanofabrication have powered the field of tissue engineering in many aspects. Focusing on cardiac tissue engineering, this paper highlights the applications of fabrication techniques in various aspects of tissue engineering research: (1) cell responses to micro- and nanopatterned topographical cues, (2) cell responses to patterned biochemical cues, (3) controlled 3D scaffolds, (4) patterned tissue vascularization and (5) electromechanical regulation of tissue assembly and function.

  15. Design Approaches to Myocardial and Vascular Tissue Engineering.

    PubMed

    Akintewe, Olukemi O; Roberts, Erin G; Rim, Nae-Gyune; Ferguson, Michael A H; Wong, Joyce Y

    2017-06-21

    Engineered tissues represent an increasingly promising therapeutic approach for correcting structural defects and promoting tissue regeneration in cardiovascular diseases. One of the challenges associated with this approach has been the necessity for the replacement tissue to promote sufficient vascularization to maintain functionality after implantation. This review highlights a number of promising prevascularization design approaches for introducing vasculature into engineered tissues. Although we focus on encouraging blood vessel formation within myocardial implants, we also discuss techniques developed for other tissues that could eventually become relevant to engineered cardiac tissues. Because the ultimate solution to engineered tissue vascularization will require collaboration between wide-ranging disciplines such as developmental biology, tissue engineering, and computational modeling, we explore contributions from each field.

  16. Biological characterization of soft tissue sarcomas.

    PubMed

    Hayashi, Takuma; Horiuchi, Akiko; Sano, Kenji; Kanai, Yae; Yaegashi, Nobuo; Aburatani, Hiroyuki; Konishi, Ikuo

    2015-12-01

    Soft tissue sarcomas are neoplastic malignancies that typically arise in tissues of mesenchymal origin. The identification of novel molecular mechanisms leading to mesenchymal transformation and the establishment of new therapies and diagnostic biomarker has been hampered by several critical factors. First, malignant soft tissue sarcomas are rarely observed in the clinic with fewer than 15,000 newly cases diagnosed each year in the United States. Another complicating factor is that soft tissue sarcomas are extremely heterogeneous as they arise in a multitude of tissues from many different cell lineages. The scarcity of clinical materials coupled with its inherent heterogeneity creates a challenging experimental environment for clinicians and scientists. Faced with these challenges, there has been extremely limited advancement in clinical treatment options available to patients as compared to other malignant tumours. In order to glean insight into the pathobiology of soft tissue sarcomas, scientists are now using mouse models whose genomes have been specifically tailored to carry gene deletions, gene amplifications, and somatic mutations commonly observed in human soft tissue sarcomas. The use of these model organisms has been successful in increasing our knowledge and understanding of how alterations in relevant oncogenic and/or tumour suppressive signal cascades, i.e., interferon-γ (IFN-γ), tumour protein 53 (TP53) and/or retinoblastoma (RB) pathway directly impact sarcomagenesis. It is the goal of many in the physiological community that the use of several mouse models will serve as powerful in vivo tools for further understanding of sarcomagenesis and potentially identify new diagnostic biomarker and therapeutic strategies against human soft tissue sarcomas.

  17. Endothelial keratoplasty with infant donor tissue

    PubMed Central

    Kobayashi, Akira; Yokogawa, Hideaki; Yamazaki, Natsuko; Masaki, Toshinori; Sugiyama, Kazuhisa

    2014-01-01

    Here we report a case of endothelial keratoplasty with infant donor tissue obtained after brain death. A 52-year-old man with endothelial dysfunction of unknown cause in the right eye underwent non-Descemet stripping automated endothelial keratoplasty (nDSAEK) with tissue from an infant donor (2 years). Intraoperative and postoperative complications were recorded. Best corrected visual acuity and donor central endothelial cell density were recorded preoperatively and postoperatively. Infant donor tissue preparation with a microkeratome set at 300 μm was successful; the donor tissue was extremely elastic and soft compared with adult tissue. The central endothelial cell density of the infant donor tissue was as high as 4,291 cells/mm2. No complications were observed during donor tissue (8.0 mm in diameter) insertion with the double-glide technique (Busin glide with intraocular lens sheet glide) or any of the other procedures. Best corrected visual acuity improved from 1.7 logMAR (logarithm of the minimum angle of resolution; 0.02 decimal visual acuity) preoperatively to 0.2 logMAR (0.6) after 6 months and 0.1 logMAR (0.8) after 1 year. The central endothelial cell density after 6 months was 4,098 cells/mm2 (representing a 4.5% cell loss from preoperative donor cell measurements), and the central endothelial cell density after 1 year was 4,032 cells/mm2 (6.0% decrease). Infant donor tissue may be preferably used for DSAEK/nDASEK, since it may not be suitable for penetrating keratoplasty or Descemet membrane endothelial keratoplasty. PMID:25246761

  18. Gram stain of tissue biopsy

    MedlinePlus

    ... biopsy To use the sharing features on this page, please enable JavaScript. Gram stain of tissue biopsy test involves using crystal violet stain to test a sample of tissue taken from a biopsy . The Gram stain method can ...

  19. Adipose-derived stem cells and periodontal tissue engineering.

    PubMed

    Tobita, Morikuni; Mizuno, Hiroshi

    2013-01-01

    Innovative developments in the multidisciplinary field of tissue engineering have yielded various implementation strategies and the possibility of functional tissue regeneration. Technologic advances in the combination of stem cells, biomaterials, and growth factors have created unique opportunities to fabricate tissues in vivo and in vitro. The therapeutic potential of human multipotent mesenchymal stem cells (MSCs), which are harvested from bone marrow and adipose tissue, has generated increasing interest in a wide variety of biomedical disciplines. These cells can differentiate into a variety of tissue types, including bone, cartilage, fat, and nerve tissue. Adipose-derived stem cells have some advantages compared with other sources of stem cells, most notably that a large number of cells can be easily and quickly isolated from adipose tissue. In current clinical therapy for periodontal tissue regeneration, several methods have been developed and applied either alone or in combination, such as enamel matrix proteins, guided tissue regeneration, autologous/allogeneic/xenogeneic bone grafts, and growth factors. However, there are various limitations and shortcomings for periodontal tissue regeneration using current methods. Recently, periodontal tissue regeneration using MSCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because the various secreted growth factors from MSCs might not only promote the regeneration of periodontal tissue but also encourage neovascularization of the damaged tissues. Adipose-derived stem cells are especially effective for neovascularization compared with other MSC sources. In this review, the possibility and potential of adipose-derived stem cells for regenerative medicine are introduced. Of particular interest, periodontal tissue regeneration with adipose-derived stem cells is discussed.

  20. Hardwiring stem cell communication through tissue structure

    PubMed Central

    Xin, Tianchi; Greco, Valentina; Myung, Peggy

    2016-01-01

    Adult stem cells across diverse organs self-renew and differentiate to maintain tissue homeostasis. How stem cells receive input to preserve tissue structure and function largely relies on their communication with surrounding cellular and non-cellular elements. As such, how tissues are organized and patterned not only reflects organ function but also inherently hardwires networks of communication between stem cells and their environment to direct tissue homeostasis and injury repair. This review highlights how different methods of stem cell communication reflect the unique organization and function of diverse tissues. PMID:26967287

  1. Microscopic histological characteristics of soft tissue sarcomas: analysis of tissue features and electrical resistance.

    PubMed

    Tosi, A L; Campana, L G; Dughiero, F; Forzan, M; Rastrelli, M; Sieni, E; Rossi, C R

    2017-07-01

    Tissue electrical conductivity is correlated with tissue characteristics. In this work, some soft tissue sarcomas (STS) excised from patients have been evaluated in terms of histological characteristics (cell size and density) and electrical resistance. The electrical resistance has been measured using the ex vivo study on soft tissue tumors electrical characteristics (ESTTE) protocol proposed by the authors in order to study electrical resistance of surgical samples excised by patients in a fixed measurement setup. The measurement setup includes a voltage pulse generator (700 V, 100 µs long at 5 kHz, period 200 µs) and an electrode with 7 needles, 20 mm-long, with the same distance arranged in a fixed hexagonal geometry. In the ESTTE protocol, the same voltage pulse sequence is applied to each different tumor mass and the corresponding resistance has been evaluated from voltage and current recorded by the equipment. For each tumor mass, a histological sample of the volume treated by means of voltage pulses has been taken for histological analysis. Each mass has been studied in order to identify the sarcoma type. For each histological sample, an image at 20× or 40× of magnification was acquired. In this work, the electrical resistance measured for each tumor has been correlated with tissue characteristics like the type, size and density of cells. This work presents a preliminary study to explore possible correlations between tissue characteristics and electrical resistance of STS. These results can be helpful to adjust the pulse voltage intensity in order to improve the electrochemotherapy efficacy on some histotype of STS.

  2. Regeneration of urologic tissues and organs.

    PubMed

    Atala, Anthony

    2005-01-01

    Patients suffering from a variety of urologic diseases may be treated with transplanted tissues and organs. However, there is a shortage of donor tissues and organs, which is worsening yearly owing to the ageing population. Scientists in the field of regenerative medicine and tissue engineering are applying the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that will restore and maintain normal function in diseased and injured urologic tissues. This chapter reviews recent advances that have occurred in the regeneration of urologic organs and describes how these applications may offer novel therapies for patients with urologic disease.

  3. Local deformation for soft tissue simulation

    PubMed Central

    Omar, Nadzeri; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2016-01-01

    ABSTRACT This paper presents a new methodology to localize the deformation range to improve the computational efficiency for soft tissue simulation. This methodology identifies the local deformation range from the stress distribution in soft tissues due to an external force. A stress estimation method is used based on elastic theory to estimate the stress in soft tissues according to a depth from the contact surface. The proposed methodology can be used with both mass-spring and finite element modeling approaches for soft tissue deformation. Experimental results show that the proposed methodology can improve the computational efficiency while maintaining the modeling realism. PMID:27286482

  4. Genetic evidence of enzootic leishmaniasis in a stray canine and Texas mouse from sites in west and central Texas

    PubMed Central

    Kipp, Evan J; Mariscal, Jacqueline; Armijos, Rodrigo X; Weigel, Margaret; Waldrup, Kenneth

    2016-01-01

    We detected Leishmania mexicana in skin biopsies taken from a stray canine (Canis familiaris) and Texas mouse (Peromyscus attwateri) at two ecologically disparate sites in west and central Texas using polymerase chain reaction (PCR). A single PCR-positive dog was identified from a sample of 96 stray canines and was collected in a peri-urban area in El Paso County, Texas. The PCR-positive P. attwateri was trapped at a wildlife reserve in Mason County, Texas, from a convenience sample of 20 sylvatic mammals of different species. To our knowledge, this represents the first description of L. mexicana in west Texas and extends the known geographic range of the parasite to an area that includes the arid Chihuahuan Desert. Our finding of L. mexicana in P. attwateri represents a new host record and is the first description of the parasite in a wild peromyscid rodent in the United States. PMID:27759765

  5. Predicting multicellular function through multi-layer tissue networks

    PubMed Central

    Zitnik, Marinka; Leskovec, Jure

    2017-01-01

    Abstract Motivation: Understanding functions of proteins in specific human tissues is essential for insights into disease diagnostics and therapeutics, yet prediction of tissue-specific cellular function remains a critical challenge for biomedicine. Results: Here, we present OhmNet, a hierarchy-aware unsupervised node feature learning approach for multi-layer networks. We build a multi-layer network, where each layer represents molecular interactions in a different human tissue. OhmNet then automatically learns a mapping of proteins, represented as nodes, to a neural embedding-based low-dimensional space of features. OhmNet encourages sharing of similar features among proteins with similar network neighborhoods and among proteins activated in similar tissues. The algorithm generalizes prior work, which generally ignores relationships between tissues, by modeling tissue organization with a rich multiscale tissue hierarchy. We use OhmNet to study multicellular function in a multi-layer protein interaction network of 107 human tissues. In 48 tissues with known tissue-specific cellular functions, OhmNet provides more accurate predictions of cellular function than alternative approaches, and also generates more accurate hypotheses about tissue-specific protein actions. We show that taking into account the tissue hierarchy leads to improved predictive power. Remarkably, we also demonstrate that it is possible to leverage the tissue hierarchy in order to effectively transfer cellular functions to a functionally uncharacterized tissue. Overall, OhmNet moves from flat networks to multiscale models able to predict a range of phenotypes spanning cellular subsystems. Availability and implementation: Source code and datasets are available at http://snap.stanford.edu/ohmnet. Contact: jure@cs.stanford.edu PMID:28881986

  6. Irbesartan increased PPAR{gamma} activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwai, Masaru; Kanno, Harumi; Senba, Izumi

    2011-03-04

    Research highlights: {yields} Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. {yields} Irbesartan decreased white adipose tissue weight without affecting body weight. {yields} DNA-binding for PPAR{gamma} was increased in white adipose tissue in vivo by irbesartan. {yields} Irbesartan increased adipocyte number in white adipose tissue. {yields} Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPAR{gamma} agonistic action of an AT{sub 1} receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with amore » high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPAR{gamma} in white adipose tissue and the DNA-binding activity of PPAR{gamma} in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPAR{gamma} and improved adipose tissue dysfunction including insulin resistance.« less

  7. Aloe Vera for Tissue Engineering Applications

    PubMed Central

    Rahman, Shekh; Carter, Princeton; Bhattarai, Narayan

    2017-01-01

    Aloe vera, also referred as Aloe barbadensis Miller, is a succulent plant widely used for biomedical, pharmaceutical and cosmetic applications. Aloe vera has been used for thousands of years. However, recent significant advances have been made in the development of aloe vera for tissue engineering applications. Aloe vera has received considerable attention in tissue engineering due to its biodegradability, biocompatibility, and low toxicity properties. Aloe vera has been reported to have many biologically active components. The bioactive components of aloe vera have effective antibacterial, anti-inflammatory, antioxidant, and immune-modulatory effects that promote both tissue regeneration and growth. The aloe vera plant, its bioactive components, extraction and processing, and tissue engineering prospects are reviewed in this article. The use of aloe vera as tissue engineering scaffolds, gels, and films is discussed, with a special focus on electrospun nanofibers. PMID:28216559

  8. Grating-based tomography of human tissues

    NASA Astrophysics Data System (ADS)

    Müller, Bert; Schulz, Georg; Mehlin, Andrea; Herzen, Julia; Lang, Sabrina; Holme, Margaret; Zanette, Irene; Hieber, Simone; Deyhle, Hans; Beckmann, Felix; Pfeiffer, Franz; Weitkamp, Timm

    2012-07-01

    The development of therapies to improve our health requires a detailed knowledge on the anatomy of soft tissues from the human body down to the cellular level. Grating-based phase contrast micro computed tomography using synchrotron radiation provides a sensitivity, which allows visualizing micrometer size anatomical features in soft tissue without applying any contrast agent. We show phase contrast tomography data of human brain, tumor vessels and constricted arteries from the beamline ID 19 (ESRF) and urethral tissue from the beamline W2 (HASYLAB/DESY) with micrometer resolution. Here, we demonstrate that anatomical features can be identified within brain tissue as well known from histology. Using human urethral tissue, the application of two photon energies is compared. Tumor vessels thicker than 20 μm can be perfectly segmented. The morphology of coronary arteries can be better extracted in formalin than after paraffin embedding.

  9. Aloe Vera for Tissue Engineering Applications.

    PubMed

    Rahman, Shekh; Carter, Princeton; Bhattarai, Narayan

    2017-02-14

    Aloe vera, also referred as Aloe barbadensis Miller, is a succulent plant widely used for biomedical, pharmaceutical and cosmetic applications. Aloe vera has been used for thousands of years. However, recent significant advances have been made in the development of aloe vera for tissue engineering applications. Aloe vera has received considerable attention in tissue engineering due to its biodegradability, biocompatibility, and low toxicity properties. Aloe vera has been reported to have many biologically active components. The bioactive components of aloe vera have effective antibacterial, anti-inflammatory, antioxidant, and immune-modulatory effects that promote both tissue regeneration and growth. The aloe vera plant, its bioactive components, extraction and processing, and tissue engineering prospects are reviewed in this article. The use of aloe vera as tissue engineering scaffolds, gels, and films is discussed, with a special focus on electrospun nanofibers.

  10. Periodontal tissue regeneration by combined implantation of adipose tissue-derived stem cells and platelet-rich plasma in a canine model.

    PubMed

    Tobita, Morikuni; Uysal, Cagri A; Guo, Xin; Hyakusoku, Hiko; Mizuno, Hiroshi

    2013-12-01

    One goal of periodontal therapy is to regenerate periodontal tissues. Stem cells, growth factors and scaffolds and biomaterials are vital for the restoration of the architecture and function of complex tissues. Adipose tissue-derived stem cells (ASCs) are an ideal population of stem cells for practical regenerative medicine. In addition, platelet-rich plasma (PRP) can be useful for its ability to stimulate tissue regeneration. PRP contains various growth factors and may be useful as a cell carrier in stem cell therapies. The purpose of this study was to determine whether a mixture of ASCs and PRP promoted periodontal tissue regeneration in a canine model. Autologous ASCs and PRP were implanted into areas with periodontal tissue defects. Periodontal tissue defects that received PRP alone or non-implantation were also examined. Histologic, immunohistologic and x-ray studies were performed 1 or 2 months after implantation. The amount of newly formed bone and the scale of newly formed cementum in the region of the periodontal tissue defect were analyzed on tissue sections. The areas of newly formed bone and cementum were greater 2 months after implantation of ASCs and PRP than at 1 month after implantation, and the radiopacity in the region of the periodontal tissue defect increased markedly by 2 months after implantation. The ASCs and PRP group exhibited periodontal tissue with the correct architecture, including alveolar bone, cementum-like structures and periodontal ligament-like structures, by 2 months after implantation. These findings suggest that a combination of autologous ASCs and PRP promotes periodontal tissue regeneration that develops the appropriate architecture for this complex tissue. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  11. Lasers in Esthetic Dentistry: Soft Tissue Photobiomodulation, Hard Tissue Decontamination, and Ceramics Conditioning

    PubMed Central

    Ramalho, Karen Müller; de Freitas, Patrícia Moreira; Correa-Aranha, Ana Cecília; Bello-Silva, Marina Stella; Lopes, Roberta Marques da Graça; Eduardo, Carlos de Paula

    2014-01-01

    The increasing concern and the search for conservative dental treatments have resulted in the development of several new technologies. Low and high power lasers can be cited as one of these new technologies. Low power lasers act at cellular level leading to pain reduction, modulation of inflammation, and improvement of tissue healing. High power lasers act by increasing temperature and have the potential to promote microbial reduction and ablation of hard and soft tissues. The clinical application of both low and high power lasers requires specific knowledge concerning laser interaction with biological tissues, so that the correct irradiation protocol can be established. The present case report describes the clinical steps of two metal-ceramic crowns development in a 60-year-old patient. Three different laser wavelengths were applied throughout the treatment with different purposes: Nd:YAG laser (1,064 nm) for dentin decontamination, diode (660 nm) for soft tissue biomodulation, and Er:YAG laser (2,940 nm) for inner ceramic surface conditioning. Lasers were successfully applied in the present case report as coadjutant in the treatment. This coadjutant technology can be a potential tool to assist treatment to reach the final success. PMID:25147746

  12. RBFOX2 Is an Important Regulator of Mesenchymal Tissue-Specific Splicing in both Normal and Cancer Tissues

    PubMed Central

    Venables, Julian P.; Brosseau, Jean-Philippe; Gadea, Gilles; Klinck, Roscoe; Prinos, Panagiotis; Beaulieu, Jean-François; Lapointe, Elvy; Durand, Mathieu; Thibault, Philippe; Tremblay, Karine; Rousset, François; Tazi, Jamal; Abou Elela, Sherif

    2013-01-01

    Alternative splicing provides a critical and flexible layer of regulation intervening in many biological processes to regulate the diversity of proteins and impact cell phenotype. To identify alternative splicing differences that distinguish epithelial from mesenchymal tissues, we have investigated hundreds of cassette exons using a high-throughput reverse transcription-PCR (RT-PCR) platform. Extensive changes in splicing were noted between epithelial and mesenchymal tissues in both human colon and ovarian tissues, with many changes from mostly one splice variant to predominantly the other. Remarkably, many of the splicing differences that distinguish normal mesenchymal from normal epithelial tissues matched those that differentiate normal ovarian tissues from ovarian cancer. Furthermore, because splicing profiling could classify cancer cell lines according to their epithelial/mesenchymal characteristics, we used these cancer cell lines to identify regulators for these specific splicing signatures. By knocking down 78 potential splicing factors in five cell lines, we provide an extensive view of the complex regulatory landscape associated with the epithelial and mesenchymal states, thus revealing that RBFOX2 is an important driver of mesenchymal tissue-specific splicing. PMID:23149937

  13. High-Frequency Viscoelastic Shear Properties of Vocal Fold Tissues: Implications for Vocal Fold Tissue Engineering

    PubMed Central

    Teller, Sean S.; Farran, Alexandra J.E.; Xiao, Longxi; Jiao, Tong; Duncan, Randall L.

    2012-01-01

    The biomechanical function of the vocal folds (VFs) depends on their viscoelastic properties. Many conditions can lead to VF scarring that compromises voice function and quality. To identify candidate replacement materials, the structure, composition, and mechanical properties of native tissues need to be understood at phonation frequencies. Previously, the authors developed the torsional wave experiment (TWE), a stress-wave-based experiment to determine the linear viscoelastic shear properties of small, soft samples. Here, the viscoelastic properties of porcine and human VFs were measured over a frequency range of 10–200 Hz. The TWE utilizes resonance phenomena to determine viscoelastic properties; therefore, the specimen test frequency is determined by the sample size and material properties. Viscoelastic moduli are reported at resonance frequencies. Structure and composition of the tissues were determined by histology and immunochemistry. Porcine data from the TWE are separated into two groups: a young group, consisting of fetal and newborn pigs, and an adult group, consisting of 6–9-month olds and 2+-year olds. Adult tissues had an average storage modulus of 2309±1394 Pa and a loss tangent of 0.38±0.10 at frequencies of 36–200 Hz. The VFs of young pigs were significantly more compliant, with a storage modulus of 394±142 Pa and a loss tangent of 0.40±0.14 between 14 and 30 Hz. No gender dependence was observed. Histological staining showed that adult porcine tissues had a more organized, layered structure than the fetal tissues, with a thicker epithelium and a more structured lamina propria. Elastin fibers in fetal VF tissues were immature compared to those in adult tissues. Together, these structural changes in the tissues most likely contributed to the change in viscoelastic properties. Adult human VF tissues, recovered postmortem from adult patients with a history of smoking or disease, had an average storage modulus of 756±439 Pa and a

  14. Force generation within tissues during development

    NASA Astrophysics Data System (ADS)

    Kasza, Karen

    During embryonic development, multicellular tissues physically change shape, move, and grow. Changes in epithelial tissue organization are often accomplished by local movements of cells that are driven largely by forces generated by the motor protein myosin II. These forces are patterned to orient cell movements, resulting in changes in tissue shape and organization to build functional tissues and organs. To investigate the mechanisms of force generation in vivo, we use the fruit fly embryo as a model system. Spatial patterns of forces orient cell movements to drive rapid tissue elongation along the head-to-tail axis of the embryo. I will describe how studying embryos generated with engineered myosin variants provides insight into where, when, and how forces are generated to efficiently reorganize tissues. We found that a myosin variant that is locked-in to the active or ``on'' state accelerates cell movements, while two mutant myosin variants associated with human disease produce slowed cell movement. These myosin variants all disrupt tissue elongation, but live imaging and biophysical measurements reveal distinct effects on myosin organization and dynamics within cells and uncover mechanisms that control the spatial and temporal patterns of force generation. These studies shed light not only on how defects in force generation contribute to disease but also on physical principles at work in active, living materials.

  15. Radiotherapy in patients with connective tissue diseases.

    PubMed

    Giaj-Levra, Niccolò; Sciascia, Savino; Fiorentino, Alba; Fersino, Sergio; Mazzola, Rosario; Ricchetti, Francesco; Roccatello, Dario; Alongi, Filippo

    2016-03-01

    The decision to offer radiotherapy in patients with connective tissue diseases continues to be challenging. Radiotherapy might trigger the onset of connective tissue diseases by increasing the expression of self-antigens, diminishing regulatory T-cell activity, and activating effectors of innate immunity (dendritic cells) through Toll-like receptor-dependent mechanisms, all of which could potentially lead to breaks of immune tolerance. This potential risk has raised some debate among radiation oncologists about whether patients with connective tissue diseases can tolerate radiation as well as people without connective tissue diseases. Because the number of patients with cancer and connective tissue diseases needing radiotherapy will probably increase due to improvements in medical treatment and longer life expectancy, the issue of interactions between radiotherapy and connective tissue diseases needs to be clearer. In this Review, we discuss available data and evidence for patients with connective tissue diseases treated with radiotherapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Surface-enhanced Raman scattering of rat tissues.

    PubMed

    Aydin, Omer; Kahraman, Mehmet; Kiliç, Ertuğul; Culha, Mustafa

    2009-06-01

    Surface-enhanced Raman scattering (SERS) is proven to be a powerful tool for investigation of biological structures. In this study, tissues obtained from different rat organs are examined using SERS. The tissue samples are crushed with a pestle after sudden freezing in liquid nitrogen and mixed with a concentrated colloidal silver nanoparticle suspension. The reproducibility of SERS spectra acquired from several tissue samples from different organs is demonstrated. The collected spectra are comparatively evaluated based on the physiological function of the organ from which the tissue is obtained. The spectra from the tissues show significant differences and indicate that they can be used for tissue characterization and differentiation. The identification of the origins of the bands on the spectra is also attempted. This study suggests that SERS can be used to monitor the changes at the molecular level during metabolic changes in an organ or tissue as a result of a disease or another cause.

  17. Tissue-specific contribution of macrophages to wound healing.

    PubMed

    Minutti, Carlos M; Knipper, Johanna A; Allen, Judith E; Zaiss, Dietmar M W

    2017-01-01

    Macrophages are present in all tissues, either as resident cells or monocyte-derived cells that infiltrate into tissues. The tissue site largely determines the phenotype of tissue-resident cells, which help to maintain tissue homeostasis and act as sentinels of injury. Both tissue resident and recruited macrophages make a substantial contribution to wound healing following injury. In this review, we evaluate how macrophages in two fundamentally distinct tissues, i.e. the lung and the skin, differentially contribute to the process of wound healing. We highlight the commonalities of macrophage functions during repair and contrast them with distinct, tissue-specific functions that macrophages fulfill during the different stages of wound healing. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Nanofibers and their applications in tissue engineering

    PubMed Central

    Vasita, Rajesh; Katti, Dhirendra S

    2006-01-01

    Developing scaffolds that mimic the architecture of tissue at the nanoscale is one of the major challenges in the field of tissue engineering. The development of nanofibers has greatly enhanced the scope for fabricating scaffolds that can potentially meet this challenge. Currently, there are three techniques available for the synthesis of nanofibers: electrospinning, self-assembly, and phase separation. Of these techniques, electrospinning is the most widely studied technique and has also demonstrated the most promising results in terms of tissue engineering applications. The availability of a wide range of natural and synthetic biomaterials has broadened the scope for development of nanofibrous scaffolds, especially using the electrospinning technique. The three dimensional synthetic biodegradable scaffolds designed using nanofibers serve as an excellent framework for cell adhesion, proliferation, and differentiation. Therefore, nanofibers, irrespective of their method of synthesis, have been used as scaffolds for musculoskeletal tissue engineering (including bone, cartilage, ligament, and skeletal muscle), skin tissue engineering, vascular tissue engineering, neural tissue engineering, and as carriers for the controlled delivery of drugs, proteins, and DNA. This review summarizes the currently available techniques for nanofiber synthesis and discusses the use of nanofibers in tissue engineering and drug delivery applications. PMID:17722259

  19. Nanomaterials for Craniofacial and Dental Tissue Engineering.

    PubMed

    Li, G; Zhou, T; Lin, S; Shi, S; Lin, Y

    2017-07-01

    Tissue engineering shows great potential as a future treatment for the craniofacial and dental defects caused by trauma, tumor, and other diseases. Due to the biomimetic features and excellent physiochemical properties, nanomaterials are of vital importance in promoting cell growth and stimulating tissue regeneration in tissue engineering. For craniofacial and dental tissue engineering, the frequently used nanomaterials include nanoparticles, nanofibers, nanotubes, and nanosheets. Nanofibers are attractive for cell invasion and proliferation because of their resemblance to extracellular matrix and the presence of large pores, and they have been used as scaffolds in bone, cartilage, and tooth regeneration. Nanotubes and nanoparticles improve the mechanical and chemical properties of scaffold, increase cell attachment and migration, and facilitate tissue regeneration. In addition, nanofibers and nanoparticles are also used as a delivery system to carry the bioactive agent in bone and tooth regeneration, have better control of the release speed of agent upon degradation of the matrix, and promote tissue regeneration. Although applications of nanomaterials in tissue engineering remain in their infancy with numerous challenges to face, the current results indicate that nanomaterials have massive potential in craniofacial and dental tissue engineering.

  20. Piezoelectric polymers as biomaterials for tissue engineering applications.

    PubMed

    Ribeiro, Clarisse; Sencadas, Vítor; Correia, Daniela M; Lanceros-Méndez, Senentxu

    2015-12-01

    Tissue engineering often rely on scaffolds for supporting cell differentiation and growth. Novel paradigms for tissue engineering include the need of active or smart scaffolds in order to properly regenerate specific tissues. In particular, as electrical and electromechanical clues are among the most relevant ones in determining tissue functionality in tissues such as muscle and bone, among others, electroactive materials and, in particular, piezoelectric ones, show strong potential for novel tissue engineering strategies, in particular taking also into account the existence of these phenomena within some specific tissues, indicating their requirement also during tissue regeneration. This referee reports on piezoelectric materials used for tissue engineering applications. The most used materials for tissue engineering strategies are reported together with the main achievements, challenges and future needs for research and actual therapies. This review provides thus a compilation of the most relevant results and strategies and a start point for novel research pathways in the most relevant and challenging open questions. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. MFehi adipose tissue macrophages compensate for tissue iron pertubations in mice.

    PubMed

    Hubler, Merla J; Erikson, Keith M; Kennedy, Arion J; Hasty, Alyssa H

    2018-05-16

    Resident adipose tissue macrophages (ATMs) play multiple roles to maintain tissue homeostasis, such as removing excess FFAs and regulation of extracellular matrix. The phagocytic nature and oxidative resiliency of macrophages not only allows them to function as innate immune cells but also to respond to specific tissue needs, such as iron homeostasis. MFe hi ATMs are a subtype of resident ATMs that we recently identified to have twice the intracellular iron content as other ATMs and elevated expression of iron handling genes. While studies have demonstrated iron homeostasis is important for adipocyte health, little is known about how MFe hi ATMs may respond to and influence AT iron availability. Two methodologies were used to address this question - dietary iron supplementation and intraperitoneal iron injection. Upon exposure to high dietary iron, MFe hi ATMs accumulated excess iron, while the iron content of MFe lo ATMs and adipocytes remained unchanged. In this model of chronic iron excess, MFe hi ATMs exhibited increased expression of genes involved in iron storage. In the injection model, MFe hi ATMs incorporated high levels of iron and adipocytes were spared iron overload. This acute model of iron overload was associated with increased numbers of MFe hi ATMs; 17% could be attributed to monocyte recruitment and 83% to MFe lo ATM incorporation into the MFe hi pool. The MFe hi ATM population maintained its low inflammatory profile and iron cycling expression profile. These studies expand the field's understanding of ATMs and confirm that they can respond as a tissue iron sink in models of iron overload.

  2. Tissue Engineering Using Transfected Growth-Factor Genes

    NASA Technical Reports Server (NTRS)

    Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.

  3. Diagnosis of breast cancer by tissue analysis

    PubMed Central

    Bhattacharyya, Debnath; Bandyopadhyay, Samir Kumar

    2013-01-01

    In this paper, we propose a technique to locate abnormal growth of cells in breast tissue and suggest further pathological test, when require. We compare normal breast tissue with malignant invasive breast tissue by a series of image processing steps. Normal ductal epithelial cells and ductal/lobular invasive carcinogenic cells also consider for comparison here in this paper. In fact, features of cancerous breast tissue (invasive) are extracted and analyses with normal breast tissue. We also suggest the breast cancer recognition technique through image processing and prevention by controlling p53 gene mutation to some extent. PMID:23372340

  4. Design strategies and applications of tissue bioadhesives.

    PubMed

    Mehdizadeh, Mohammadreza; Yang, Jian

    2013-03-01

    In the past two decades tissue adhesives and sealants have revolutionized bleeding control and wound healing. This paper focuses on existing tissue adhesive design, their structure, functioning mechanism, and their pros and cons in wound management. It also includes the latest advances in the development of new tissue adhesives as well as the emerging applications in regenerative medicine. We expect that this paper will provide insightful discussion on tissue bioadhesive design and lead to innovations for the development of the next generation of tissue bioadhesives and their related biomedical applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Three dimensional optic tissue culture and process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor); Prewett, Tacey L. (Inventor); Goodwin, Thomas J. (Inventor); Francis, Karen M. (Inventor); Cardwell, Delmar R. (Inventor); Oconnor, Kim (Inventor); Fitzgerald, Wendy S. (Inventor); Aten, Laurie A. (Inventor)

    1994-01-01

    A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioreactor at low shear conditions. The tissue forms normal, functional tissue organization and extracellular matrix.

  6. Periosteum tissue engineering-a review.

    PubMed

    Li, Nanying; Song, Juqing; Zhu, Guanglin; Li, Xiaoyu; Liu, Lei; Shi, Xuetao; Wang, Yingjun

    2016-10-18

    As always, the clinical therapy of critical size bone defects caused by trauma, tumor removal surgery or congenital malformation is facing great challenges. Currently, various approaches including autograft, allograft and cell-biomaterial composite based tissue-engineering strategies have been implemented to reconstruct injured bone. However, due to damage during the transplantation processes or design negligence of the bionic scaffolds, these methods expose vulnerabilities without the assistance of periosteum, a bilayer membrane on the outer surface of the bone. Periosteum plays a significant role in bone formation and regeneration as a store for progenitor cells, a source of local growth factors and a scaffold to recruit cells and growth factors, and more and more researchers have recognized its great value in tissue engineering application. Besides direct transplantation, periosteum-derived cells can be cultured on various scaffolds for osteogenesis or chondrogenesis application due to their availability. Research studies also provide a biomimetic methodology to synthesize artificial periosteum which mimic native periosteum in structure or function. According to the studies, these tissue-engineered periostea did obviously enhance the therapeutic effects of bone graft and scaffold engineering while they could be directly used as substitutes of native periosteum. Periosteum tissue engineering, whose related research studies have provided new opportunities for the development of bone tissue engineering and therapy, has gradually become a hot spot and there are still lots to consummate. In this review, tissue-engineered periostea were classified into four kinds and discussed, which might help subsequent researchers get a more systematic view of pseudo-periosteum.

  7. Transcranial light-tissue interaction analysis

    NASA Astrophysics Data System (ADS)

    Aulakh, Kavleen; Zakaib, Scott; Willmore, William G.; Ye, Winnie N.

    2016-03-01

    The penetration depth of light plays a crucial role in therapeutic medical applications. In order to design effective medical photonic devices, an in-depth understanding of light's ability to penetrate tissues (including bone, skin, and fat) is necessary. The amount of light energy absorbed or scattered by tissues affects the intensity of light reaching an intended target in vivo. In this study, we examine the transmittance of light through a variety of cranial tissues for the purpose of determining the efficacy of neuro stimulation using a transcranial laser. Tissue samples collected from a pig were irradiated with a pulsed laser. We first determine the optimal irradiation wavelength of the laser to be 808nm. With varying peak and average power of the laser, we found an inverse and logarithmic relationship between the penetration depth and the intensity of the light. After penetrating the skin and skull of the pig, the light decreases in intensity at a rate of approximately 90.8 (+/-0.4) percent for every 5 mm of brain tissue penetrated. We also found the correlation between the irradiation time and dosage, using three different lasers (with peak power of 500, 1000, and 1500mW respectively). These data will help deduce what laser power is required to achieve a clinically-realistic model for a given irradiation time. This work is fundamental and the experimental data can be used to supplement existing and future research on the effects of laser light on brain tissue for the design of medical devices.

  8. Tissue Engineering: Step Ahead in Maxillofacial Reconstruction.

    PubMed

    Rai, Raj; Raval, Rushik; Khandeparker, Rakshit Vijay Sinai; Chidrawar, Swati K; Khan, Abdul Ahad; Ganpat, Makne Sachin

    2015-09-01

    Within the precedent decade, a new field of "tissue engineering" or "tissue regeneration" emerge that offers an innovative and exhilarating substitute for maxillofacial reconstruction. It offers a new option to supplement existing treatment regimens for reconstruction/regeneration of the oral and craniofacial complex, which includes the teeth, periodontium, bones, soft tissues (oral mucosa, conjunctiva, skin), salivary glands, and the temporomandibular joint (bone and cartilage), as well as blood vessels, muscles, tendons, and nerves. Tissue engineering is based on harvesting the stem cells which are having potential to form an organ. Harvested cells are then transferred into scaffolds that are manufactured in a laboratory to resemble the structure of the desired tissue to be replaced. This article reviews the principles of tissue engineering and its various applications in oral and maxillofacial surgery.

  9. Bacterial contamination of tissue allografts - experiences of the donor tissue bank of Victoria.

    PubMed

    Ireland, Lyn; Spelman, Denis

    2005-01-01

    The aim of this study is to report the experience of the Donor Tissue Bank of Victoria with bacteria isolated from musculoskeletal, skin and cardiac allografts retrieved from cadaveric donors. The results of all quality control samples for bacterial culture, taken during retrieval and processing of allografts at the DTBV for a 12 month period, were extracted and analysed. It was found that 15.7% of skin, 15.1% of heart valves and 5.8% of musculoskeletal samples had positive culture results. The number and types of organisms isolated varied with tissue type. The most commonly isolated organisms were Staphylococcus species (including S. aureus). The identity of the isolate and the number of positive specimens from the same donor were considerations in the decision concerning the suitability of tissue for subsequent implantation.

  10. Allograft replacement for absent native tissue.

    PubMed

    Chaudhury, Salma; Wanivenhaus, Florian; Fox, Alice J; Warren, Russell F; Doyle, Maureen; Rodeo, Scott A

    2013-03-01

    Structural instability due to poor soft tissue quality often requires augmentation. Allografts are important biological substitutes that are used for the symptomatic patient in the reconstruction of deficient ligaments, tendons, menisci, and osteochondral defects. Interest in the clinical application of allografts has arisen from the demand to obtain stable anatomy with restoration of function and protection against additional injury, particularly for high-demand patients who participate in sports. Traditionally, allografts were employed to reinforce weakened tissue. However, they can also be employed to substitute deficient or functionally absent tissue, particularly in the sports medicine setting. This article presents a series of 6 cases that utilized allografts to restore functionally deficient anatomic architecture, rather than just simply augmenting the degenerated or damaged native tissue. Detailed discussions are presented of the use of allografts as a successful treatment strategy to replace functionally weakened tissue, often after failed primary repairs.

  11. Allograft Replacement for Absent Native Tissue

    PubMed Central

    Chaudhury, Salma; Wanivenhaus, Florian; Fox, Alice J.; Warren, Russell F.; Doyle, Maureen; Rodeo, Scott A.

    2013-01-01

    Context: Structural instability due to poor soft tissue quality often requires augmentation. Allografts are important biological substitutes that are used for the symptomatic patient in the reconstruction of deficient ligaments, tendons, menisci, and osteochondral defects. Interest in the clinical application of allografts has arisen from the demand to obtain stable anatomy with restoration of function and protection against additional injury, particularly for high-demand patients who participate in sports. Traditionally, allografts were employed to reinforce weakened tissue. However, they can also be employed to substitute deficient or functionally absent tissue, particularly in the sports medicine setting. Objective: This article presents a series of 6 cases that utilized allografts to restore functionally deficient anatomic architecture, rather than just simply augmenting the degenerated or damaged native tissue. Detailed discussions are presented of the use of allografts as a successful treatment strategy to replace functionally weakened tissue, often after failed primary repairs. PMID:24427387

  12. Biological aspects of tissue-engineered cartilage.

    PubMed

    Hoshi, Kazuto; Fujihara, Yuko; Yamawaki, Takanori; Harai, Motohiro; Asawa, Yukiyo; Hikita, Atsuhiko

    2018-04-01

    Cartilage regenerative medicine has been progressed well, and it reaches the stage of clinical application. Among various techniques, tissue engineering, which incorporates elements of materials science, is investigated earnestly, driven by high clinical needs. The cartilage tissue engineering using a poly lactide scaffold has been exploratorily used in the treatment of cleft lip-nose patients, disclosing good clinical results during 3-year observation. However, to increase the reliability of this treatment, not only accumulation of clinical evidence on safety and usefulness of the tissue-engineered products, but also establishment of scientific background on biological mechanisms, are regarded essential. In this paper, we reviewed recent trends of cartilage tissue engineering in clinical practice, summarized experimental findings on cellular and matrix changes during the cartilage regeneration, and discussed the importance of further studies on biological aspects of tissue-engineered cartilage, especially by the histological and the morphological methods.

  13. Morphology and growth of polarized tissues.

    PubMed

    Blanch-Mercader, C; Casademunt, J; Joanny, J F

    2014-05-01

    We study and classify the time-dependent morphologies of polarized tissues subject to anisotropic but spatially homogeneous growth. Extending previous studies, we model the tissue as a fluid, and discuss the interplay of the active stresses generated by the anisotropic cell division and three types of passive mechanical forces: viscous stresses, friction with the environment and tension at the tissue boundary. The morphology dynamics is formulated as a free-boundary problem, and conformal mapping techniques are used to solve the evolution numerically. We combine analytical and numerical results to elucidate how the different passive forces compete with the active stresses to shape the tissue in different temporal regimes and derive the corresponding scaling laws. We show that in general the aspect ratio of elongated tissues is non-monotonic in time, eventually recovering isotropic shapes in the presence of friction forces, which are asymptotically dominant.

  14. Tissue engineering: confronting the transplantation crisis.

    PubMed

    Nerem, R M

    2000-01-01

    Tissue engineering is the development of biological substitutes and/or the fostering of tissue regeneration/remodelling. It is emerging as a technology which has the potential to confront the crisis in transplantation caused by the shortage of donor tissues and organs. With the development of this technology, ther is emerging a new industry which is at the interface of biotechnology and the traditional medical implant field. For this technology and the associated industry to realize their full potential, there are core, enabling technologies that need to be developed. This is the focus of the Georgia Tech/Emory Center for the Engineering of Living Tissues, newly established in the United States, with an Engineering Research Center Award from the National Science Foundation. With the development of these core technologies, tissue engineering will evolve from an art form to a technology based on science and engineering.

  15. Carbon Dioxide Metabolism in Leaf Epidermal Tissue 1

    PubMed Central

    Willmer, C. M.; Pallas, J. E.; Black, C. C.

    1973-01-01

    A number of plant species were surveyed to obtain pure leaf epidermal tissue in quantity. Commelina communis L. and Tulipa gesnariana L. (tulip) were chosen for further work. Chlorophyll a/b ratios of epidermal tissues were 2.41 and 2.45 for C. communis and tulip, respectively. Phosphoenolpyruvate carboxylase, ribulose-1,5-diphosphate carboxylase, malic enzyme, and NAD+ and NADP+ malate dehydrogenases were assayed with epidermal tissue and leaf tissue minus epidermal tissue. In both species, there was less ribulose 1,5-diphosphate than phosphoenolpyruvate carboxylase activity in epidermal tissue whether expressed on a protein or chlorophyll basis whereas the reverse was true for leaf tissue minus epidermal tissue. In both species, malic enzyme activities were higher in epidermal tissue than in the remaining leaf tissue when expressed on a protein or chlorophyll basis. In both species, NAD+ and NADP+ malate dehydrogenase activities were higher in the epidermal tissue when expressed on a chlorophyll basis; however, on a protein basis, the converse was true. Microautoradiography of C. communis epidermis and histochemical tests for keto acids suggested that CO2 fixation occurred predominantly in the guard cells. The significance and possible location of the enzymes are discussed in relation to guard cell metabolism. Images PMID:16658581

  16. Force transmission in epithelial tissues.

    PubMed

    Vasquez, Claudia G; Martin, Adam C

    2016-03-01

    In epithelial tissues, cells constantly generate and transmit forces between each other. Forces generated by the actomyosin cytoskeleton regulate tissue shape and structure and also provide signals that influence cells' decisions to divide, die, or differentiate. Forces are transmitted across epithelia because cells are mechanically linked through junctional complexes, and forces can propagate through the cell cytoplasm. Here, we review some of the molecular mechanisms responsible for force generation, with a specific focus on the actomyosin cortex and adherens junctions. We then discuss evidence for how these mechanisms promote cell shape changes and force transmission in tissues. © 2016 Wiley Periodicals, Inc.

  17. Bladder tissue engineering through nanotechnology.

    PubMed

    Harrington, Daniel A; Sharma, Arun K; Erickson, Bradley A; Cheng, Earl Y

    2008-08-01

    The field of tissue engineering has developed in phases: initially researchers searched for "inert" biomaterials to act solely as replacement structures in the body. Then, they explored biodegradable scaffolds--both naturally derived and synthetic--for the temporary support of growing tissues. Now, a third phase of tissue engineering has developed, through the subcategory of "regenerative medicine." This renewed focus toward control over tissue morphology and cell phenotype requires proportional advances in scaffold design. Discoveries in nanotechnology have driven both our understanding of cell-substrate interactions, and our ability to influence them. By operating at the size regime of proteins themselves, nanotechnology gives us the opportunity to directly speak the language of cells, through reliable, repeatable creation of nanoscale features. Understanding the synthesis of nanoscale materials, via "top-down" and "bottom-up" strategies, allows researchers to assess the capabilities and limits inherent in both techniques. Urology research as a whole, and bladder regeneration in particular, are well-positioned to benefit from such advances, since our present technology has yet to reach the end goal of functional bladder restoration. In this article, we discuss the current applications of nanoscale materials to bladder tissue engineering, and encourage researchers to explore these interdisciplinary technologies now, or risk playing catch-up in the future.

  18. Tissue engineering in urothelium regeneration.

    PubMed

    Vaegler, Martin; Maurer, Sabine; Toomey, Patricia; Amend, Bastian; Sievert, Karl-Dietrich

    2015-03-01

    The development of therapeutic treatments to regenerate urothelium, manufacture tissue equivalents or neourethras for in-vivo application is a significant challenge in the field of tissue engineering. Many studies have focused on urethral defects that, in most cases, inadequately address current therapies. This article reviews the primary tissue engineering strategies aimed at the clinical requirements for urothelium regeneration while concentrating on promising investigations in the use of grafts, cellular preparations, as well as seeded or unseeded natural and synthetic materials. Despite significant progress being made in the development of scaffolds and matrices, buccal mucosa transplants have not been replaced. Recently, graft tissues appear to have an advantage over the use of matrices. These therapies depend on cell isolation and propagation in vitro that require, not only substantial laboratory resources, but also subsequent surgical implant procedures. The choice of the correct cell source is crucial when determining an in-vivo application because of the risks of tissue changes and abnormalities that may result in donor site morbidity. Addressing an appropriately-designed animal model and relevant regulatory issues is of fundamental importance for the principal investigators when a therapy using cellular components has been developed for clinical use. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. An adipoinductive role of inflammation in adipose tissue engineering: key factors in the early development of engineered soft tissues.

    PubMed

    Lilja, Heidi E; Morrison, Wayne A; Han, Xiao-Lian; Palmer, Jason; Taylor, Caroline; Tee, Richard; Möller, Andreas; Thompson, Erik W; Abberton, Keren M

    2013-05-15

    Tissue engineering and cell implantation therapies are gaining popularity because of their potential to repair and regenerate tissues and organs. To investigate the role of inflammatory cytokines in new tissue development in engineered tissues, we have characterized the nature and timing of cell populations forming new adipose tissue in a mouse tissue engineering chamber (TEC) and characterized the gene and protein expression of cytokines in the newly developing tissues. EGFP-labeled bone marrow transplant mice and MacGreen mice were implanted with TEC for periods ranging from 0.5 days to 6 weeks. Tissues were collected at various time points and assessed for cytokine expression through ELISA and mRNA analysis or labeled for specific cell populations in the TEC. Macrophage-derived factors, such as monocyte chemotactic protein-1 (MCP-1), appear to induce adipogenesis by recruiting macrophages and bone marrow-derived precursor cells to the TEC at early time points, with a second wave of nonbone marrow-derived progenitors. Gene expression analysis suggests that TNFα, LCN-2, and Interleukin 1β are important in early stages of neo-adipogenesis. Increasing platelet-derived growth factor and vascular endothelial cell growth factor expression at early time points correlates with preadipocyte proliferation and induction of angiogenesis. This study provides new information about key elements that are involved in early development of new adipose tissue.

  20. Soft tissue volume alterations after connective tissue grafting at teeth: the subepithelial autologous connective tissue graft versus a porcine collagen matrix - a pre-clinical volumetric analysis.

    PubMed

    Schmitt, Christian M; Matta, Ragai E; Moest, Tobias; Humann, Julia; Gammel, Lisa; Neukam, Friedrich W; Schlegel, Karl A

    2016-07-01

    This study evaluates a porcine collagen matrix (CM) for soft tissue thickening in comparison to the subepithelial connective tissue graft (SCTG). In eight beagle dogs, soft tissue thickening was performed at the buccal aspects of the upper canines (SCTG and CM). Impressions were taken before augmentation (i1), after surgery (i2), after one (i3), three (i4) and ten month (i5). Casts were optically scanned with a 3D scanner and each augmented region (unit of analysis) evaluated (primary outcome variable: volume increase in mm(3) ; secondary outcome variables: volume increase in percent, mean and maximum thickness increases in mm). 3D tissue measurements after surgery revealed a significant higher volume increase in the CM (86.37 mm(3)  ± 35.16 mm(3) ) than in the SCTG group (47.65 mm(3)  ± 17.90 mm(3) ). After 10 months, volume increase was non-significant between groups (SCTG:11.36 mm(3)  ± 9.26 mm(3) ; CM: 8.67 mm(3)  ± 13.67 mm(3) ). Maximum soft tissue thickness increase (i1-i5) was 0.66 mm ± 0.29 mm (SCTG) and 0.79 mm ± 0.37 mm (CM) with no significant difference. Ten months after soft tissue thickening, the CM is statistically non-inferior to the SCTG in terms of soft tissue volume and thickness increase. Further 3D studies are needed to confirm the data. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Devising tissue ingrowth metrics: a contribution to the computational characterization of engineered soft tissue healing.

    PubMed

    Alves, Antoine; Attik, Nina; Bayon, Yves; Royet, Elodie; Wirth, Carine; Bourges, Xavier; Piat, Alexis; Dolmazon, Gaëlle; Clermont, Gaëlle; Boutrand, Jean-Pierre; Grosgogeat, Brigitte; Gritsch, Kerstin

    2018-03-14

    The paradigm shift brought about by the expansion of tissue engineering and regenerative medicine away from the use of biomaterials, currently questions the value of histopathologic methods in the evaluation of biological changes. To date, the available tools of evaluation are not fully consistent and satisfactory for these advanced therapies. We have developed a new, simple and inexpensive quantitative digital approach that provides key metrics for structural and compositional characterization of the regenerated tissues. For example, metrics provide the tissue ingrowth rate (TIR) which integrates two separate indicators; the cell ingrowth rate (CIR) and the total collagen content (TCC) as featured in the equation, TIR% = CIR% + TCC%. Moreover a subset of quantitative indicators describing the directional organization of the collagen (relating structure and mechanical function of tissues), the ratio of collagen I to collagen III (remodeling quality) and the optical anisotropy property of the collagen (maturity indicator) was automatically assessed as well. Using an image analyzer, all metrics were extracted from only two serial sections stained with either Feulgen & Rossenbeck (cell specific) or Picrosirius Red F3BA (collagen specific). To validate this new procedure, three-dimensional (3D) scaffolds were intraperitoneally implanted in healthy and in diabetic rats. It was hypothesized that quantitatively, the healing tissue would be significantly delayed and of poor quality in diabetic rats in comparison to healthy rats. In addition, a chemically modified 3D scaffold was similarly implanted in a third group of healthy rats with the assumption that modulation of the ingrown tissue would be quantitatively present in comparison to the 3D scaffold-healthy group. After 21 days of implantation, both hypotheses were verified by use of this novel computerized approach. When the two methods were run in parallel, the quantitative results revealed fine details and

  2. Tissue-tissue interaction-triggered calcium elevation is required for cell polarization during Xenopus gastrulation.

    PubMed

    Shindo, Asako; Hara, Yusuke; Yamamoto, Takamasa S; Ohkura, Masamichi; Nakai, Junichi; Ueno, Naoto

    2010-02-02

    The establishment of cell polarity is crucial for embryonic cells to acquire their proper morphologies and functions, because cell alignment and intracellular events are coordinated in tissues during embryogenesis according to the cell polarity. Although much is known about the molecules involved in cell polarization, the direct trigger of the process remains largely obscure. We previously demonstrated that the tissue boundary between the chordamesoderm and lateral mesoderm of Xenopus laevis is important for chordamesodermal cell polarity. Here, we examined the intracellular calcium dynamics during boundary formation between two different tissues. In a combination culture of nodal-induced chordamesodermal explants and a heterogeneous tissue, such as ectoderm or lateral mesoderm, the chordamesodermal cells near the boundary frequently displayed intracellular calcium elevation; this frequency was significantly less when homogeneous explants were used. Inhibition of the intracellular calcium elevation blocked cell polarization in the chordamesodermal explants. We also observed frequent calcium waves near the boundary of the dorsal marginal zone (DMZ) dissected from an early gastrula-stage embryo. Optical sectioning revealed that where heterogeneous explants touched, the chordamesodermal surface formed a wedge with the narrow end tucked under the heterogeneous explant. No such configuration was seen between homogeneous explants. When physical force was exerted against a chordamesodermal explant with a glass needle at an angle similar to that created in the explant, or migrating chordamesodermal cells crawled beneath a silicone block, intracellular calcium elevation was frequent and cell polarization was induced. Finally, we demonstrated that a purinergic receptor, which is implicated in mechano-sensing, is required for such frequent calcium elevation in chordamesoderm and for cell polarization. This study raises the possibility that tissue-tissue interaction generates

  3. Cytokine mediated tissue fibrosis☆

    PubMed Central

    Borthwick, Lee A.; Wynn, Thomas A.; Fisher, Andrew J.

    2013-01-01

    Acute inflammation is a recognised part of normal wound healing. However, when inflammation fails to resolve and a chronic inflammatory response is established this process can become dysregulated resulting in pathological wound repair, accumulation of permanent fibrotic scar tissue at the site of injury and the failure to return the tissue to normal function. Fibrosis can affect any organ including the lung, skin, heart, kidney and liver and it is estimated that 45% of deaths in the western world can now be attributed to diseases where fibrosis plays a major aetiological role. In this review we examine the evidence that cytokines play a vital role in the acute and chronic inflammatory responses that drive fibrosis in injured tissues. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease. PMID:23046809

  4. Tissue adhesives in otorhinolaryngology

    PubMed Central

    Schneider, Gerlind

    2011-01-01

    The development of medical tissue adhesives has a long history without finding an all-purpose tissue adhesive for clinical daily routine. This is caused by the specific demands which are made on a tissue adhesive, and the different areas of application. In otorhinolaryngology, on the one hand, this is the mucosal environment as well as the application on bones, cartilage and periphery nerves. On the other hand, there are stressed regions (skin, oral cavity, pharynx, oesophagus, trachea) and unstressed regions (middle ear, nose and paranasal sinuses, cranial bones). But due to the facts that adhesives can have considerable advantages in assuring surgery results, prevention of complications and so reduction of medical costs/treatment expenses, the search for new adhesives for use in otorhinolaryngology will be continued intensively. In parallel, appropriate application systems have to be developed for microscopic and endoscopic use. PMID:22073094

  5. Possible roles of mechanical cell elimination intrinsic to growing tissues from the perspective of tissue growth efficiency and homeostasis.

    PubMed

    Lee, Sang-Woo; Morishita, Yoshihiro

    2017-07-01

    Cell competition is a phenomenon originally described as the competition between cell populations with different genetic backgrounds; losing cells with lower fitness are eliminated. With the progress in identification of related molecules, some reports described the relevance of cell mechanics during elimination. Furthermore, recent live imaging studies have shown that even in tissues composed of genetically identical cells, a non-negligible number of cells are eliminated during growth. Thus, mechanical cell elimination (MCE) as a consequence of mechanical cellular interactions is an unavoidable event in growing tissues and a commonly observed phenomenon. Here, we studied MCE in a genetically-homogeneous tissue from the perspective of tissue growth efficiency and homeostasis. First, we propose two quantitative measures, cell and tissue fitness, to evaluate cellular competitiveness and tissue growth efficiency, respectively. By mechanical tissue simulation in a pure population where all cells have the same mechanical traits, we clarified the dependence of cell elimination rate or cell fitness on different mechanical/growth parameters. In particular, we found that geometrical (specifically, cell size) and mechanical (stress magnitude) heterogeneities are common determinants of the elimination rate. Based on these results, we propose possible mechanical feedback mechanisms that could improve tissue growth efficiency and density/stress homeostasis. Moreover, when cells with different mechanical traits are mixed (e.g., in the presence of phenotypic variation), we show that MCE could drive a drastic shift in cell trait distribution, thereby improving tissue growth efficiency through the selection of cellular traits, i.e. intra-tissue "evolution". Along with the improvement of growth efficiency, cell density, stress state, and phenotype (mechanical traits) were also shown to be homogenized through growth. More theoretically, we propose a mathematical model that

  6. Possible roles of mechanical cell elimination intrinsic to growing tissues from the perspective of tissue growth efficiency and homeostasis

    PubMed Central

    2017-01-01

    Cell competition is a phenomenon originally described as the competition between cell populations with different genetic backgrounds; losing cells with lower fitness are eliminated. With the progress in identification of related molecules, some reports described the relevance of cell mechanics during elimination. Furthermore, recent live imaging studies have shown that even in tissues composed of genetically identical cells, a non-negligible number of cells are eliminated during growth. Thus, mechanical cell elimination (MCE) as a consequence of mechanical cellular interactions is an unavoidable event in growing tissues and a commonly observed phenomenon. Here, we studied MCE in a genetically-homogeneous tissue from the perspective of tissue growth efficiency and homeostasis. First, we propose two quantitative measures, cell and tissue fitness, to evaluate cellular competitiveness and tissue growth efficiency, respectively. By mechanical tissue simulation in a pure population where all cells have the same mechanical traits, we clarified the dependence of cell elimination rate or cell fitness on different mechanical/growth parameters. In particular, we found that geometrical (specifically, cell size) and mechanical (stress magnitude) heterogeneities are common determinants of the elimination rate. Based on these results, we propose possible mechanical feedback mechanisms that could improve tissue growth efficiency and density/stress homeostasis. Moreover, when cells with different mechanical traits are mixed (e.g., in the presence of phenotypic variation), we show that MCE could drive a drastic shift in cell trait distribution, thereby improving tissue growth efficiency through the selection of cellular traits, i.e. intra-tissue “evolution”. Along with the improvement of growth efficiency, cell density, stress state, and phenotype (mechanical traits) were also shown to be homogenized through growth. More theoretically, we propose a mathematical model that

  7. Myocardial Tissue Engineering for Regenerative Applications.

    PubMed

    Fujita, Buntaro; Zimmermann, Wolfram-Hubertus

    2017-09-01

    This review provides an overview of the current state of tissue-engineered heart repair with a special focus on the anticipated modes of action of tissue-engineered therapy candidates and particular implications as to transplant immunology. Myocardial tissue engineering technologies have made tremendous advances in recent years. Numerous different strategies are under investigation and have reached different stages on their way to clinical translation. Studies in animal models demonstrated that heart repair requires either remuscularization by delivery of bona fide cardiomyocytes or paracrine support for the activation of endogenous repair mechanisms. Tissue engineering approaches result in enhanced cardiomyocyte retention and sustained remuscularization, but may also be explored for targeted paracrine or mechanical support. Some of the more advanced tissue engineering approaches are already tested clinically; others are at late stages of pre-clinical development. Process optimization towards cGMP compatibility and clinical scalability of contractile engineered human myocardium is an essential step towards clinical translation. Long-term allograft retention can be achieved under immune suppression. HLA matching may be an option to enhance graft retention and reduce the need for comprehensive immune suppression. Tissue-engineered heart repair is entering the clinical stage of the translational pipeline. Like in any effective therapy, side effects must be anticipated and carefully controlled. Allograft implantation under immune suppression is the most likely clinical scenario. Strategies to overcome transplant rejection are evolving and may further boost the clinical acceptance of tissue-engineered heart repair.

  8. Facial Soft Tissue Trauma

    PubMed Central

    Kretlow, James D.; McKnight, Aisha J.; Izaddoost, Shayan A.

    2010-01-01

    Traumatic facial soft tissue injuries are commonly encountered in the emergency department by plastic surgeons and other providers. Although rarely life-threatening, the treatment of these injuries can be complex and may have significant impact on the patient's facial function and aesthetics. This article provides a review of the relevant literature related to this topic and describes the authors' approach to the evaluation and management of the patient with facial soft tissue injuries. PMID:22550459

  9. Tissue Culture in Microgravity

    NASA Technical Reports Server (NTRS)

    Pellis, Neal R.; Duray, Paul H.; Hatfill, Steven J.

    1997-01-01

    Attempts to simulate normal tissue micro-environments in vitro have been thwarted by the complexity and plasticity of the extracellular matrix, which is important in regulating cytoskeletal and nuclear matrix proteins. Gravity is one of the problems, tending to separate components that should be kept together. For space shuttle experiments, NASA engineers devised a double-walled rotating bioreactor, which is proving to be a useful tissue culture device on earth as well as in space.

  10. Qualitative assessment of connective tissue graft with epithelial component. A microsurgical periodontal plastic surgical technique for soft tissue esthetics.

    PubMed

    Rossi, Roberto; Pilloni, Andrea; Morales, Regina Santos

    2009-01-01

    Connective tissue grafts have been used successfully in the treatment of gingival recession. In the mid 80s and late 90s, the periodontal literature presented various techniques such as free gingival grafts, pedicle flaps, subepithelial connective tissue grafts, acellular dermal matrix grafts, and guided tissue regeneration to cover denuded root surfaces. Currently, connective tissue grafting is a reliable treatment for esthetic root coverage. This paper presents a qualitative assessment of a surgical technique that uses a connective tissue graft, including a portion of epithelium in the shape of the defect. This procedure enhances the healing of the covered root surface, increases the thickness of the soft tissue and improves esthetics. The criteria used for evaluation were: color, volume, texture, and blending. This evaluation demonstrated encouraging results from an esthetic viewpoint.

  11. Assessment of tissue viability by polarization spectroscopy

    NASA Astrophysics Data System (ADS)

    Nilsson, G.; Anderson, C.; Henricson, J.; Leahy, M.; O'Doherty, J.; Sjöberg, F.

    2008-09-01

    A new and versatile method for tissue viability imaging based on polarization spectroscopy of blood in superficial tissue structures such as the skin is presented in this paper. Linearly polarized light in the visible wavelength region is partly reflected directly by the skin surface and partly diffusely backscattered from the dermal tissue matrix. Most of the directly reflected light preserves its polarization state while the light returning from the deeper tissue layers is depolarized. By the use of a polarization filter positioned in front of a sensitive CCD-array, the light directly reflected from the tissue surface is blocked, while the depolarized light returning from the deeper tissue layers reaches the detector array. By separating the colour planes of the detected image, spectroscopic information about the amount of red blood cells (RBCs) in the microvascular network of the tissue under investigation can be derived. A theory that utilizes the differences in light absorption of RBCs and bloodless tissue in the red and green wavelength region forms the basis of an algorithm for displaying a colour coded map of the RBC distribution in a tissue. Using a fluid model, a linear relationship (cc. = 0.99) between RBC concentration and the output signal was demonstrated within the physiological range 0-4%. In-vivo evaluation using transepidermal application of acetylcholine by the way of iontophoresis displayed the heterogeneity pattern of the vasodilatation produced by the vasoactive agent. Applications of this novel technology are likely to be found in drug and skin care product development as well as in the assessment of skin irritation and tissue repair processes and even ultimately in a clinic case situation.

  12. Thick Prelaminar Tissue Decreases Lamina Cribrosa Visibility.

    PubMed

    Lucy, Katie A; Wang, Bo; Schuman, Joel S; Bilonick, Richard A; Ling, Yun; Kagemann, Larry; Sigal, Ian A; Grulkowski, Ireneusz; Liu, Jonathan J; Fujimoto, James G; Ishikawa, Hiroshi; Wollstein, Gadi

    2017-03-01

    Evaluation of the effect of prelaminar tissue thickness on visualization of the lamina cribrosa (LC) using optical coherence tomography (OCT). The optic nerve head (ONH) region was scanned using OCT. The quality of visible LC microstructure was assessed subjectively using a grading system and objectively by analyzing the signal intensity of each scan's superpixel components. Manual delineations were made separately and in 3-dimensions quantifying prelaminar tissue thickness, analyzable regions of LC microstructure, and regions with a visible anterior LC (ALC) boundary. A linear mixed effect model quantified the association between tissue thickness and LC visualization. A total of 17 healthy, 27 glaucoma suspect, and 47 glaucomatous eyes were included. Scans with thicker average prelaminar tissue measurements received worse grading scores (P = 0.007), and superpixels with low signal intensity were associated significantly with regions beneath thick prelaminar tissue (P < 0.05). The average prelaminar tissue thickness in regions of scans where the LC was analyzable (214 μm) was significantly thinner than in regions where the LC was not analyzable (569 μm; P < 0.001). Healthy eyes had significantly thicker average prelaminar tissue measurements than glaucoma or glaucoma suspect eyes (both P < 0.001), and glaucoma suspect eyes had significantly thicker average prelaminar tissue measurements than glaucoma eyes (P = 0.008). Significantly more of the ALC boundary was visible in glaucoma eyes (63% of ONH) than in healthy eyes (41%; P = 0.005). Thick prelaminar tissue was associated with impaired visualization of the LC. Healthy subjects generally had thicker prelaminar tissue, which potentially could create a selection bias against healthy eyes when comparing LC structures.

  13. Thick Prelaminar Tissue Decreases Lamina Cribrosa Visibility

    PubMed Central

    Lucy, Katie A.; Wang, Bo; Schuman, Joel S.; Bilonick, Richard A.; Ling, Yun; Kagemann, Larry; Sigal, Ian A.; Grulkowski, Ireneusz; Liu, Jonathan J.; Fujimoto, James G.; Ishikawa, Hiroshi; Wollstein, Gadi

    2017-01-01

    Purpose Evaluation of the effect of prelaminar tissue thickness on visualization of the lamina cribrosa (LC) using optical coherence tomography (OCT). Methods The optic nerve head (ONH) region was scanned using OCT. The quality of visible LC microstructure was assessed subjectively using a grading system and objectively by analyzing the signal intensity of each scan's superpixel components. Manual delineations were made separately and in 3-dimensions quantifying prelaminar tissue thickness, analyzable regions of LC microstructure, and regions with a visible anterior LC (ALC) boundary. A linear mixed effect model quantified the association between tissue thickness and LC visualization. Results A total of 17 healthy, 27 glaucoma suspect, and 47 glaucomatous eyes were included. Scans with thicker average prelaminar tissue measurements received worse grading scores (P = 0.007), and superpixels with low signal intensity were associated significantly with regions beneath thick prelaminar tissue (P < 0.05). The average prelaminar tissue thickness in regions of scans where the LC was analyzable (214 μm) was significantly thinner than in regions where the LC was not analyzable (569 μm; P < 0.001). Healthy eyes had significantly thicker average prelaminar tissue measurements than glaucoma or glaucoma suspect eyes (both P < 0.001), and glaucoma suspect eyes had significantly thicker average prelaminar tissue measurements than glaucoma eyes (P = 0.008). Significantly more of the ALC boundary was visible in glaucoma eyes (63% of ONH) than in healthy eyes (41%; P = 0.005). Conclusions Thick prelaminar tissue was associated with impaired visualization of the LC. Healthy subjects generally had thicker prelaminar tissue, which potentially could create a selection bias against healthy eyes when comparing LC structures. PMID:28324116

  14. Adipose tissue: cell heterogeneity and functional diversity.

    PubMed

    Esteve Ràfols, Montserrat

    2014-02-01

    There are two types of adipose tissue in the body whose function appears to be clearly differentiated. White adipose tissue stores energy reserves as fat, whereas the metabolic function of brown adipose tissue is lipid oxidation to produce heat. A good balance between them is important to maintain energy homeostasis. The concept of white adipose tissue has radically changed in the past decades, and is now considered as an endocrine organ that secretes many factors with autocrine, paracrine, and endocrine functions. In addition, we can no longer consider white adipose tissue as a single tissue, because it shows different metabolic profiles in its different locations, with also different implications. Although the characteristic cell of adipose tissue is the adipocyte, this is not the only cell type present in adipose tissue, neither the most abundant. Other cell types in adipose tissue described include stem cells, preadipocytes, macrophages, neutrophils, lymphocytes, and endothelial cells. The balance between these different cell types and their expression profile is closely related to maintenance of energy homeostasis. Increases in adipocyte size, number and type of lymphocytes, and infiltrated macrophages are closely related to the metabolic syndrome diseases. The study of regulation of proliferation and differentiation of preadipocytes and stem cells, and understanding of the interrelationship between the different cell types will provide new targets for action against these diseases. Copyright © 2012 SEEN. Published by Elsevier Espana. All rights reserved.

  15. Intra-body microwave communication through adipose tissue.

    PubMed

    Asan, Noor Badariah; Noreland, Daniel; Hassan, Emadeldeen; Redzwan Mohd Shah, Syaiful; Rydberg, Anders; Blokhuis, Taco J; Carlsson, Per-Ola; Voigt, Thiemo; Augustine, Robin

    2017-08-01

    The human body can act as a medium for the transmission of electromagnetic waves in the wireless body sensor networks context. However, there are transmission losses in biological tissues due to the presence of water and salts. This Letter focuses on lateral intra-body microwave communication through different biological tissue layers and demonstrates the effect of the tissue thicknesses by comparing signal coupling in the channel. For this work, the authors utilise the R-band frequencies since it overlaps the industrial, scientific and medical radio (ISM) band. The channel model in human tissues is proposed based on electromagnetic simulations, validated using equivalent phantom and ex-vivo measurements. The phantom and ex-vivo measurements are compared with simulation modelling. The results show that electromagnetic communication is feasible in the adipose tissue layer with a low attenuation of ∼2 dB per 20 mm for phantom measurements and 4 dB per 20 mm for ex-vivo measurements at 2 GHz. Since the dielectric losses of human adipose tissues are almost half of ex-vivo tissue, an attenuation of around 3 dB per 20 mm is expected. The results show that human adipose tissue can be used as an intra-body communication channel.

  16. Skin tissue generation by laser cell printing.

    PubMed

    Koch, Lothar; Deiwick, Andrea; Schlie, Sabrina; Michael, Stefanie; Gruene, Martin; Coger, Vincent; Zychlinski, Daniela; Schambach, Axel; Reimers, Kerstin; Vogt, Peter M; Chichkov, Boris

    2012-07-01

    For the aim of ex vivo engineering of functional tissue substitutes, Laser-assisted BioPrinting (LaBP) is under investigation for the arrangement of living cells in predefined patterns. So far three-dimensional (3D) arrangements of single or two-dimensional (2D) patterning of different cell types have been presented. It has been shown that cells are not harmed by the printing procedure. We now demonstrate for the first time the 3D arrangement of vital cells by LaBP as multicellular grafts analogous to native archetype and the formation of tissue by these cells. For this purpose, fibroblasts and keratinocytes embedded in collagen were printed in 3D as a simple example for skin tissue. To study cell functions and tissue formation process in 3D, different characteristics, such as cell localisation and proliferation were investigated. We further analysed the formation of adhering and gap junctions, which are fundamental for tissue morphogenesis and cohesion. In this study, it was demonstrated that LaBP is an outstanding tool for the generation of multicellular 3D constructs mimicking tissue functions. These findings are promising for the realisation of 3D in vitro models and tissue substitutes for many applications in tissue engineering. Copyright © 2012 Wiley Periodicals, Inc.

  17. Three-dimensional bioprinting of thick vascularized tissues

    NASA Astrophysics Data System (ADS)

    Kolesky, David B.; Homan, Kimberly A.; Skylar-Scott, Mark A.; Lewis, Jennifer A.

    2016-03-01

    The advancement of tissue and, ultimately, organ engineering requires the ability to pattern human tissues composed of cells, extracellular matrix, and vasculature with controlled microenvironments that can be sustained over prolonged time periods. To date, bioprinting methods have yielded thin tissues that only survive for short durations. To improve their physiological relevance, we report a method for bioprinting 3D cell-laden, vascularized tissues that exceed 1 cm in thickness and can be perfused on chip for long time periods (>6 wk). Specifically, we integrate parenchyma, stroma, and endothelium into a single thick tissue by coprinting multiple inks composed of human mesenchymal stem cells (hMSCs) and human neonatal dermal fibroblasts (hNDFs) within a customized extracellular matrix alongside embedded vasculature, which is subsequently lined with human umbilical vein endothelial cells (HUVECs). These thick vascularized tissues are actively perfused with growth factors to differentiate hMSCs toward an osteogenic lineage in situ. This longitudinal study of emergent biological phenomena in complex microenvironments represents a foundational step in human tissue generation.

  18. Alpha-dispersion in human tissue

    NASA Astrophysics Data System (ADS)

    Grimnes, Sverre; Martinsen, Ørjan G.

    2010-04-01

    Beta dispersion is found in living tissue in the kilohertz - megahertz range and is caused by the cellular structure of biological materials with low frequency properties caused by cell membranes. Alpha dispersion is found in the hertz range and the causes are not so well known. Alpha dispersions are the first to disappear when tissue dies. Tissue data have often been based upon excised specimen from animals and are therefore not necessarily representative for human tissue alpha dispersions. Here we present data obtained with non-invasive skin surface electrodes for different segments of the living human body. We found alpha dispersions in all cases; the ankle-wrist results had the smallest. Large alpha dispersions were found where the distance between the electrodes and muscle masses was small, e.g. on the calf. Further studies on electrode technique and reciprocity, electrode positioning, statistical variations, gender, age and bodily constitutions are necessary in order to reveal more about the alpha dispersion, its appearance and disappearance.

  19. Biomaterials in myocardial tissue engineering

    PubMed Central

    Reis, Lewis A.; Chiu, Loraine L. Y.; Feric, Nicole; Fu, Lara; Radisic, Milica

    2016-01-01

    Cardiovascular disease is the leading cause of death in the developed world, and as such there is a pressing need for treatment options. Cardiac tissue engineering emerged from the need to develop alternate sources and methods of replacing tissue damaged by cardiovascular diseases, as the ultimate treatment option for many who suffer from end-stage heart failure is a heart transplant. In this review we focus on biomaterial approaches to augment injured or impaired myocardium with specific emphasis on: the design criteria for these biomaterials; the types of scaffolds—composed of natural or synthetic biomaterials, or decellularized extracellular matrix—that have been used to develop cardiac patches and tissue models; methods to vascularize scaffolds and engineered tissue, and finally injectable biomaterials (hydrogels)designed for endogenous repair, exogenous repair or as bulking agents to maintain ventricular geometry post-infarct. The challenges facing the field and obstacles that must be overcome to develop truly clinically viable cardiac therapies are also discussed. PMID:25066525

  20. Tissue fusion over nonadhering surfaces

    PubMed Central

    Nier, Vincent; Deforet, Maxime; Duclos, Guillaume; Yevick, Hannah G.; Cochet-Escartin, Olivier; Marcq, Philippe; Silberzan, Pascal

    2015-01-01

    Tissue fusion eliminates physical voids in a tissue to form a continuous structure and is central to many processes in development and repair. Fusion events in vivo, particularly in embryonic development, often involve the purse-string contraction of a pluricellular actomyosin cable at the free edge. However, in vitro, adhesion of the cells to their substrate favors a closure mechanism mediated by lamellipodial protrusions, which has prevented a systematic study of the purse-string mechanism. Here, we show that monolayers can cover well-controlled mesoscopic nonadherent areas much larger than a cell size by purse-string closure and that active epithelial fluctuations are required for this process. We have formulated a simple stochastic model that includes purse-string contractility, tissue fluctuations, and effective friction to qualitatively and quantitatively account for the dynamics of closure. Our data suggest that, in vivo, tissue fusion adapts to the local environment by coordinating lamellipodial protrusions and purse-string contractions. PMID:26199417