Sample records for arginase inhibition alleviates

  1. Stachytarpheta cayennensis extract inhibits promastigote and amastigote growth in Leishmania amazonensis via parasite arginase inhibition.

    PubMed

    Maquiaveli, Claudia do Carmo; Oliveira E Sá, Amanda Maria; Vieira, Paulo Cezar; da Silva, Edson Roberto

    2016-11-04

    Stachytarpheta cayennensis is a plant that is traditionally used to treat tegumentary leishmaniasis and as an anti-inflammatory agent. This study aimed to evaluate the action of S. cayennensis extracts on the Leishmania (Leishmania) amazonensis arginase enzyme. S. cayennensis was collected from the Brazilian Amazon region. Aqueous extracts were fractionated with n-butanol. The leishmanicidal effects of the n-butanolic fraction (BUF) were evaluated in L. (L.) amazonensis promastigotes and amastigotes. BUF was tested against recombinant arginase from both L. (L.) amazonensis and macrophage arginase. Promastigote cultures and infected macrophage cultures were supplemented with L-ornithine to verify arginase inhibition. NMR analysis was used to identify the major components of BUF. BUF showed an EC 50 of 51 and 32µg/mL against promastigotes and amastigotes of L. (L.) amazonensis, respectively. BUF contains a mixture of verbascoside and isoverbascoside (7:3 ratio) and is a potent L. (L.) amazonensis arginase inhibitor (IC 50 =1.2µg/mL), while macrophage arginase was weakly inhibited (IC 50 >1000µg/mL). The inhibition of arginase by BUF in promastigotes and amastigotes could be demonstrated by culture media supplementation with L-ornithine, a product of the hydrolysis of L-arginine by arginase. Leishmanicidal effects of the S. cayennensis BUF fraction on L. (L.) amazonensis are associated with selective parasite arginase inhibition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Homoarginine and inhibition of human arginase activity: kinetic characterization and biological relevance.

    PubMed

    Tommasi, S; Elliot, D J; Da Boit, M; Gray, S R; Lewis, B C; Mangoni, A A

    2018-02-27

    The inhibition of arginase, resulting in higher arginine (ARG) availability for nitric oxide synthesis, may account for the putative protective effect of homoarginine (HOMOARG) against atherosclerosis and cardiovascular disease. However, uncertainty exists regarding the significance of HOMOARG-induced arginase inhibition in vivo. A novel UPLC-MS method, measuring the conversion of ARG to ornithine (ORN), was developed to determine arginase 1 and arginase 2 inhibition by HOMOARG, lysine (LYS), proline (PRO), agmatine (AG), asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), and NG-Monomethyl-L-arginine (L-NMMA). Plasma HOMOARG, ARG and ORN concentrations were further measured in 50 healthy older adults >65 years (27 males and 23 females). HOMOARG inhibited arginase 1 with IC 50 and K i values of 8.14 ± 0.52 mM and 6.1 ± 0.50 mM, and arginase 2 with IC 50 and K i values of 2.52 ± 0.01 mM and 1.73 ± 0.10 mM, respectively. Both arginase isoforms retained 90% activity vs. control when physiological HOMOARG concentrations (1-10 µM) were used. In partial correlation analysis, plasma HOMOARG was not associated with ARG (P = 0.38) or ARG/ORN ratio (P = 0.73) in older adults. Our results suggest that arginase inhibition is unlikely to play a significant role in the reported cardio-protective effects of HOMOARG.

  3. Arginase inhibition in airways from normal and nitric oxide synthase 2-knockout mice exposed to ovalbumin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bratt, Jennifer M.; Franzi, Lisa M.; Linderholm, Angela L.

    Arginase1 and nitric oxide synthase2 (NOS2) utilize L-arginine as a substrate, with both enzymes expressed at high levels in the asthmatic lung. Inhibition of arginase in ovalbumin-exposed C57BL/6 mice with the transition state inhibitor N{sup o}mega-hydroxy-nor-L-arginine (nor-NOHA) significantly increased total L-arginine content in the airway compartment. We hypothesized that such an increase in L-arginine content would increase the amount of nitric oxide (NO) being produced in the airways and thereby decrease airway hyperreactivity and eosinophilic influx. We further hypothesized that despite arginase inhibition, NOS2 knockout (NOS2-/-) mice would be unable to up-regulate NO production in response to allergen exposure andmore » would demonstrate higher amounts of airway hyperreactivity and eosinophilia under conditions of arginase inhibition than C57BL/6 animals. We found that administration of nor-NOHA significantly decreased airway hyperreactivity and eosinophilic airway inflammation in ovalbumin-exposed C57BL/6 mice, but these parameters were unchanged in ovalbumin-exposed NOS2-/- mice. Arginase1 protein content was increased in mice exposed to ovalbumin, an effect that was reversed upon nor-NOHA treatment in C57BL/6 mice. Arginase1 protein content in the airway compartment directly correlated with the degree of airway hyperreactivity in all treatment groups. NOS2-/- mice had significantly greater arginase1 and arginase2 concentrations compared to their respective C57BL/6 groups, indicating that inhibition of arginase may be dependent upon NOS2 expression. Arginase1 and 2 content were not affected by nor-NOHA administration in the NOS2-/- mice. We conclude that L-arginine metabolism plays an important role in the development of airway hyperreactivity and eosinophilic airway inflammation. Inhibition of arginase early in the allergic inflammatory response decreases the severity of the chronic inflammatory phenotype. These effects appear to be attributable to NOS2, which is a major source of NO production in the inflamed airway, although arginase inhibition may also be affecting the turnover of arginine by the other NOS isoforms, NOS1 and NOS3. The increased L-arginine content in the airway compartment of mice treated with nor-NOHA may directly or indirectly, through NOS2, control arginase expression both in response to OVA exposure and at a basal level.« less

  4. Arginase inhibition reduces interleukin-1β-stimulated vascular smooth muscle cell proliferation by increasing nitric oxide synthase-dependent nitric oxide production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Jeongyeon; Ryoo, Sungwoo, E-mail: ryoosw08@kangwon.ac.kr

    2013-06-07

    Highlights: •Arginase inhibition suppressed proliferation of IL-1β-stimulated VSMCs in dose-dependent manner. •NO production from IL-1β-induced iNOS expression was augmented by arginase inhibition, reducing VSMC proliferation. •Incubation with cGMP analogues abolished IL-1β-dependent proliferation of VSMCs. -- Abstract: We investigated whether arginase inhibition suppressed interleukin (IL)-1β-stimulated proliferation in vascular smooth muscle cells (VSMCs) and the possible mechanisms involved. IL-1β stimulation increased VSMC proliferation, while the arginase inhibitor BEC and transfection of the antisense (AS) oligonucleotide against arginase I decreased VSMC proliferation and was associated with increased protein content of the cell cycle regulator p21Waf1/Cip1. IL-1β incubation induced inducible nitric oxide synthase (iNOS)more » mRNA expression and protein levels in a dose-dependent manner, but did not affect arginase I and II expression. Consistent with this data, IL-1β stimulation resulted in increase in NO production that was significantly augmented by arginase inhibition. The specific iNOS inhibitor 1400W abolished IL-1β-mediated NO production and further accentuated IL-1β-stimulated cell proliferation. Incubation with NO donors GSNO and DETA/NO in the presence of IL-1β abolished VSMCs proliferation and increased p21Waf1/Cip1 protein content. Furthermore, incubation with the cGMP analogue 8-Br-cGMP prevented IL-1β-induced VSMCs proliferation. In conclusion, arginase inhibition augmented iNOS-dependent NO production that resulted in suppression of IL-1β-induced VSMCs proliferation in a cGMP-dependent manner.« less

  5. Arginase Inhibition Restores Peroxynitrite-Induced Endothelial Dysfunction via L-Arginine-Dependent Endothelial Nitric Oxide Synthase Phosphorylation

    PubMed Central

    Nguyen, Minh Cong; Park, Jong Taek; Jeon, Yeong Gwan; Jeon, Byeong Hwa; Hoe, Kwang Lae; Kim, Young Myeong

    2016-01-01

    Purpose Peroxynitrite plays a critical role in vascular pathophysiology by increasing arginase activity and decreasing endothelial nitric oxide synthase (eNOS) activity. Therefore, the aims of this study were to investigate whether arginase inhibition and L-arginine supplement could restore peroxynitrite-induced endothelial dysfunction and determine the involved mechanism. Materials and Methods Human umbilical vein endothelial cells (HUVECs) were treated with SIN-1, a peroxynitrite generator, and arginase activity, nitrite/nitrate production, and expression levels of proteins were measured. eNOS activation was evaluated via Western blot and dimer blot analysis. We also tested nitric oxide (NO) and reactive oxygen species (ROS) production and performed a vascular tension assay. Results SIN-1 treatment increased arginase activity in a time- and dose-dependent manner and reciprocally decreased nitrite/nitrate production that was prevented by peroxynitrite scavenger in HUVECs. Furthermore, SIN-1 induced an increase in the expression level of arginase I and II, though not in eNOS protein. The decreased eNOS phosphorylation at Ser1177 and the increased at Thr495 by SIN-1 were restored with arginase inhibitor and L-arginine. The changed eNOS phosphorylation was consistent in the stability of eNOS dimers. SIN-1 decreased NO production and increased ROS generation in the aortic endothelium, all of which was reversed by arginase inhibitor or L-arginine. NG-Nitro-L-arginine methyl ester (L-NAME) prevented SIN-1-induced ROS generation. In the vascular tension assay, SIN-1 enhanced vasoconstrictor responses to U46619 and attenuated vasorelaxant responses to acetylcholine that were reversed by arginase inhibition. Conclusion These findings may explain the beneficial effect of arginase inhibition and L-arginine supplement on endothelial dysfunction under redox imbalance-dependent pathophysiological conditions. PMID:27593859

  6. Arginase Inhibition Restores Peroxynitrite-Induced Endothelial Dysfunction via L-Arginine-Dependent Endothelial Nitric Oxide Synthase Phosphorylation.

    PubMed

    Nguyen, Minh Cong; Park, Jong Taek; Jeon, Yeong Gwan; Jeon, Byeong Hwa; Hoe, Kwang Lae; Kim, Young Myeong; Lim, Hyun Kyo; Ryoo, Sungwoo

    2016-11-01

    Peroxynitrite plays a critical role in vascular pathophysiology by increasing arginase activity and decreasing endothelial nitric oxide synthase (eNOS) activity. Therefore, the aims of this study were to investigate whether arginase inhibition and L-arginine supplement could restore peroxynitrite-induced endothelial dysfunction and determine the involved mechanism. Human umbilical vein endothelial cells (HUVECs) were treated with SIN-1, a peroxynitrite generator, and arginase activity, nitrite/nitrate production, and expression levels of proteins were measured. eNOS activation was evaluated via Western blot and dimer blot analysis. We also tested nitric oxide (NO) and reactive oxygen species (ROS) production and performed a vascular tension assay. SIN-1 treatment increased arginase activity in a time- and dose-dependent manner and reciprocally decreased nitrite/nitrate production that was prevented by peroxynitrite scavenger in HUVECs. Furthermore, SIN-1 induced an increase in the expression level of arginase I and II, though not in eNOS protein. The decreased eNOS phosphorylation at Ser1177 and the increased at Thr495 by SIN-1 were restored with arginase inhibitor and L-arginine. The changed eNOS phosphorylation was consistent in the stability of eNOS dimers. SIN-1 decreased NO production and increased ROS generation in the aortic endothelium, all of which was reversed by arginase inhibitor or L-arginine. N(G)-Nitro-L-arginine methyl ester (L-NAME) prevented SIN-1-induced ROS generation. In the vascular tension assay, SIN-1 enhanced vasoconstrictor responses to U46619 and attenuated vasorelaxant responses to acetylcholine that were reversed by arginase inhibition. These findings may explain the beneficial effect of arginase inhibition and L-arginine supplement on endothelial dysfunction under redox imbalance-dependent pathophysiological conditions.

  7. Arginase Inhibition Improves Microvascular Endothelial Function in Patients With Type 2 Diabetes Mellitus.

    PubMed

    Kövamees, Oskar; Shemyakin, Alexey; Checa, Antonio; Wheelock, Craig E; Lundberg, Jon O; Östenson, Claes-Göran; Pernow, John

    2016-11-01

    The development of microvascular complications in diabetes is a complex process in which endothelial dysfunction is important. Emerging evidence suggests that arginase is a key mediator of endothelial dysfunction in type 2 diabetes mellitus by reciprocally regulating nitric oxide bioavailability. The aim of this prospective intervention study was to test the hypothesis that arginase activity is increased and that arginase inhibition improves microvascular endothelial function in patients with type 2 diabetes and microvascular dysfunction. Microvascular endothelium-dependent and -independent dilatation was determined in patients with type 2 diabetes (n = 12) and healthy age-matched control subjects (n = 12) with laser Doppler flowmetry during iontophoretic application of acetylcholine and sodium nitroprusside, respectively, before and after administration of the arginase inhibitor N ω -hydroxy-nor-L-arginine (120 min). Plasma ratios of amino acids involved in arginase and nitric oxide synthase activities were determined. The laser Doppler flowmetry data were the primary outcome variable. Microvascular endothelium-dependent dilatation was impaired in subjects with type 2 diabetes (P < .05). After administration of N ω -hydroxy-nor-L-arginine, microvascular endothelial function improved significantly in patients with type 2 diabetes to the level observed in healthy controls. Endothelium-independent vasodilatation did not change significantly. Subjects with type 2 diabetes had higher levels of ornithine and higher ratios of ornithine/citrulline and ornithine/arginine (P < .05), suggesting increased arginase activity. Arginase inhibition improves microvascular endothelial function in patients with type 2 diabetes and microvascular dysfunction. Arginase inhibition may represent a novel therapeutic strategy to improve microvascular endothelial function in patients with type 2 diabetes.

  8. Verbascoside Inhibits Promastigote Growth and Arginase Activity of Leishmania amazonensis.

    PubMed

    Maquiaveli, Claudia C; Lucon-Júnior, João F; Brogi, Simone; Campiani, Giuseppe; Gemma, Sandra; Vieira, Paulo C; Silva, Edson R

    2016-05-27

    Verbascoside (1) is a phenylethanoid glycoside that has antileishmanial activity against Leishmania infantum and Leishmania donovani. In this study, we verified the activity of 1 on Leishmania amazonensis and arginase inhibition. Compound 1 showed an EC50 of 19 μM against L. amazonensis promastigotes and is a competitive arginase inhibitor (Ki = 0.7 μM). Docking studies were performed to assess the interaction of 1 with arginase at the molecular level. Arginase is an enzyme of the polyamine biosynthesis pathway that is important to parasite infectivity, and the results of our study suggest that 1 could be useful to develop new approaches for treating leishmaniasis.

  9. Novel selective inhibitor of Leishmania (Leishmania) amazonensis arginase.

    PubMed

    da Silva, Edson R; Boechat, Nubia; Pinheiro, Luiz C S; Bastos, Monica M; Costa, Carolina C P; Bartholomeu, Juliana C; da Costa, Talita H

    2015-11-01

    Arginase is a glycosomal enzyme in Leishmania that is involved in polyamine and trypanothione biosynthesis. The central role of arginase in Leishmania (Leishmania) amazonensis was demonstrated by the generation of two mutants: one with an arginase lacking the glycosomal addressing signal and one in which the arginase-coding gene was knocked out. Both of these mutants exhibited decreased infectivity. Thus, arginase seems to be a potential drug target for Leishmania treatment. In an attempt to search for arginase inhibitors, 29 derivatives of the [1,2,4]triazolo[1,5-a]pyrimidine system were tested against Leishmania (Leishmania) amazonensis arginase in vitro. The [1,2,4]triazolo[1,5-a]pyrimidine scaffold containing R1  = CF3 exhibited greater activity against the arginase rather than when the substituent R1  = CH3 in the 2-position. The novel compound 2-(5-methyl-2-(trifluoromethyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl)hydrazinecarbothioamide (30) was the most potent, inhibiting arginase by a non-competitive mechanism, with the Ki and IC50 values for arginase inhibition estimated to be 17 ± 1 μm and 16.5 ± 0.5 μm, respectively. These results can guide the development of new drugs against leishmaniasis based on [1,2,4]triazolo[1,5-a]pyrimidine derivatives targeting the arginase enzyme. © 2015 John Wiley & Sons A/S.

  10. Neuroblastoma arginase activity creates an immunosuppressive microenvironment that impairs autologous and engineered immunity

    PubMed Central

    Mussai, Francis; Egan, Sharon; Hunter, Stuart; Webber, Hannah; Fisher, Jonathan; Wheat, Rachel; McConville, Carmel; Sbirkov, Yordan; Wheeler, Kate; Bendle, Gavin; Petrie, Kevin; Anderson, John; Chesler, Louis; De Santo, Carmela

    2015-01-01

    Neuroblastoma is the most common extra cranial solid tumour of childhood, and survival remains poor for patients with advanced disease. Novel immune therapies are currently in development, but clinical outcomes have not matched preclinical results. Here, we describe key mechanisms in which neuroblastoma inhibits the immune response. We show that murine and human neuroblastoma tumour cells suppress T cell proliferation, through increased arginase activity. Arginase II is the predominant isoform expressed and creates an arginine deplete local and systemic microenvironment. Neuroblastoma arginase activity results in inhibition of myeloid cell activation and suppression of bone marrow CD34+ progenitor proliferation. Finally we demonstrate that the arginase activity of neuroblastoma impairs NY-ESO-1 specific TCR and GD2-specific CAR engineered T cell proliferation and cytotoxicity. High arginase II expression correlates with poor survival for neuroblastoma patients. The results support the hypothesis that neuroblastoma creates an arginase-dependent immunosuppressive microenvironment in both the tumour and blood that leads to impaired immune surveillance and sub-optimal efficacy of immunotherapeutic approaches. PMID:26054597

  11. Arginase inhibition promotes wound healing in mice.

    PubMed

    Kavalukas, Sandra L; Uzgare, Aarti R; Bivalacqua, Trinity J; Barbul, Adrian

    2012-02-01

    Arginase plays important regulatory roles in polyamine, ornithine, and nitric oxide syntheses. However, its role in the healing process has not been delineated. In this study, we used a highly potent and specific inhibitor of arginase, namely 2(S)-amino-6-boronohexanoic acid NH4 (ABH) to evaluate the role of arginase function in wound healing. ABH or saline was applied topically to full thickness, dorsal, excisional wounds in C57BL/6 mice every 8 hours for 14 days post surgery and the rate of wound closure was estimated planimetrically. Wound tissue was harvested from mice sacrificed on postoperative days 3 and 7 and examined histologically. The extent of epithelial, connective, and granulation tissue present within the wound area was estimated histomorphometrically. The effect of ABH on wound arginase activity, production of nitric oxide metabolites (NO(x)), and presence of smooth muscle actin positive cells (myofibroblasts) was evaluated. While arginase activity was inhibited in vivo, the rate of wound closure significantly increased 7 days post-surgery, (21 ± 4%: P < .01; Student t test) in ABH treated animals. This was accompanied by an early increase in wound granulation tissue and accumulation of NO(x) followed by enhanced re-epithelialization and localization of myofibroblasts beneath the wound epithelium. Arginase inhibition improves excisional wound healing and may be used to develop therapeutics for early wound closure. Copyright © 2012 Mosby, Inc. All rights reserved.

  12. Insights into the arginine paradox: evidence against the importance of subcellular location of arginase and eNOS

    PubMed Central

    Elms, Shawn; Chen, Feng; Wang, Yusi; Qian, Jin; Askari, Bardia; Yu, Yanfang; Pandey, Deepesh; Iddings, Jennifer; Caldwell, Ruth B.

    2013-01-01

    Reduced production of nitric oxide (NO) is one of the first indications of endothelial dysfunction and precedes overt cardiovascular disease. Increased expression of Arginase has been proposed as a mechanism to account for diminished NO production. Arginases consume l-arginine, the substrate for endothelial nitric oxide synthase (eNOS), and l-arginine depletion is thought to competitively reduce eNOS-derived NO. However, this simple relationship is complicated by the paradox that l-arginine concentrations in endothelial cells remain sufficiently high to support NO synthesis. One mechanism proposed to explain this is compartmentalization of intracellular l-arginine into distinct, poorly interchangeable pools. In the current study, we investigated this concept by targeting eNOS and Arginase to different intracellular locations within COS-7 cells and also BAEC. We found that supplemental l-arginine and l-citrulline dose-dependently increased NO production in a manner independent of the intracellular location of eNOS. Cytosolic arginase I and mitochondrial arginase II reduced eNOS activity equally regardless of where in the cell eNOS was expressed. Similarly, targeting arginase I to disparate regions of the cell did not differentially modify eNOS activity. Arginase-dependent suppression of eNOS activity was reversed by pharmacological inhibitors and absent in a catalytically inactive mutant. Arginase did not directly interact with eNOS, and the metabolic products of arginase or downstream enzymes did not contribute to eNOS inhibition. Cells expressing arginase had significantly lower levels of intracellular l-arginine and higher levels of ornithine. These results suggest that arginases inhibit eNOS activity by depletion of substrate and that the compartmentalization of l-arginine does not play a major role. PMID:23792682

  13. Breaking bad habits: Targeting MDSCs to alleviate immunosuppression in prostate cancer.

    PubMed

    Pal, Sumanta K; Kortylewski, Marcin

    2016-02-01

    The myeloid-derived suppressor cells (MDSCs) contribute to tumor immune evasion and still remain an elusive therapeutic target. Our study identified granulocytic MDSCs accumulating in prostate cancer patients during disease progression. We demonstrate the feasibility of using STAT3siRNA-based strategy for targeting MDSCs to alleviate arginase-dependent suppression of T cell activity.

  14. Hepatoprotective, antioxidant, and ameliorative effects of ginger (Zingiber officinale Roscoe) and vitamin E in acetaminophen treated rats.

    PubMed

    Abdel-Azeem, Amal S; Hegazy, Amany M; Ibrahim, Khadiga S; Farrag, Abdel-Razik H; El-Sayed, Eman M

    2013-09-01

    Ginger is a remedy known to possess a number of pharmacological properties. This study investigated efficacy of ginger pretreatment in alleviating acetaminophen-induced acute hepatotoxicity in rats. Rats were divided into six groups; negative control, acetaminophen (APAP) (600 mg/kg single intraperitoneal injection); vitamin E (75 mg/kg), ginger (100 mg/kg), vitamin E + APAP, and ginger + APAP. Administration of APAP elicited significant liver injury that was manifested by remarkable increase in plasma alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), arginase activities, and total bilirubin concentration. Meanwhile, APAP significantly decreased plasma total proteins and albumin levels. APAP administration resulted in substantial increase in each of plasma triacylglycerols (TAGs), malondialdhyde (MDA) levels, and total antioxidant capacity (TAC). However, ginger or vitamin E treatment prior to APAP showed significant hepatoprotective effect by lowering the hepatic marker enzymes (AST, ALT, ALP, and arginase) and total bilirubin in plasma. In addition, they remarkably ameliorated the APAP-induced oxidative stress by inhibiting lipid peroxidation (MDA). Pretreatment by ginger or vitamin E significantly restored TAGs, and total protein levels. Histopathological examination of APAP treated rats showed alterations in normal hepatic histoarchitecture, with necrosis and vacuolization of cells. These alterations were substantially decreased by ginger or vitamin E. Our results demonstrated that ginger can prevent hepatic injuries, alleviating oxidative stress in a manner comparable to that of vitamin E. Combination therapy of ginger and APAP is recommended especially in cases with hepatic disorders or when high doses of APAP are required.

  15. Distinct roles of arginases 1 and 2 in diabetic nephropathy.

    PubMed

    Morris, Sidney M; You, Hanning; Gao, Ting; Vacher, Jean; Cooper, Timothy K; Awad, Alaa S

    2017-10-01

    Diabetes is the leading cause of end-stage renal disease, resulting in a significant health care burden and loss of economic productivity by affected individuals. Because current therapies for progression of diabetic nephropathy (DN) are only moderately successful, identification of underlying mechanisms of disease is essential to develop more effective therapies. We showed previously that inhibition of arginase using S -(2-boronoethyl)-l-cysteine (BEC) or genetic deficiency of the arginase-2 isozyme was protective against key features of nephropathy in diabetic mouse models. However, those studies did not determine whether all markers of DN were dependent only on arginase-2 expression. The objective of this study was to identify features of DN that are associated specifically with expression of arginase-1 or -2. Elevated urinary albumin excretion rate and plasma urea levels, increases in renal fibronectin mRNA levels, and decreased renal medullary blood flow were associated almost completely and specifically with arginase-2 expression, indicating that arginase-2 selectively mediates major aspects of diabetic renal injury. However, increases in renal macrophage infiltration and renal TNF-α mRNA levels occurred independent of arginase-2 expression but were almost entirely abolished by treatment with BEC, indicating a distinct role for arginase-1. We therefore generated mice with a macrophage-specific deletion of arginase-1 ( CD11b Cre / Arg1 fl/fl ). CD11b Cre / Arg1 fl/fl mice had significantly reduced macrophage infiltration but had no effect on albuminuria compared with Arg1 fl/fl mice after 12 wk of streptozotocin-induced diabetes. These results indicate that selective inhibition of arginase-2 would be effective in preventing or ameliorating major features of diabetic renal injury. Copyright © 2017 the American Physiological Society.

  16. Inhibition of arginase in rat and rabbit alveolar macrophages by Nω-hydroxy-D,L-indospicine, effects on L-arginine utilization by nitric oxide synthase

    PubMed Central

    Hey, Claudia; Boucher, Jean-Luc; Vadon-Le Goff, Sandrine; Ketterer, Gabi; Wessler, Ignaz; Racké, Kurt

    1997-01-01

    Alveolar macrophages (AMΦ) exhibit arginase activity and may, in addition, express an inducible form of nitric oxide (NO) synthase (iNOS). Both pathways may compete for the substrate, L-arginine. The present study tested whether two recently described potent inhibitors of liver arginase (Nω-hydroxy-D,L-indospicine and 4-hydroxyamidino-D,L-phenylalanine) might also inhibit arginase in AMΦ and whether inhibition of arginase might affect L-arginine utilization by iNOS. AMΦ obtained by broncho-alveolar lavage of rat and rabbit isolated lungs were disseminated (2.5 or 3×106 cells per well) and allowed to adhere for 2 h. Thereafter, they were either used to study [*H]-L-arginine uptake (37 kBq, 0.1 μM, 2 min) or cultured for 20 h in the absence or presence of bacterial lipopolysaccharide (LPS). Cultured AMΦ were incubated for 1 h with [*H]-L-arginine (37 kBq, 0.1 μM) and the accumulation of [*H]-L-citrulline (NOS activity) and [*H]-L-ornithine (arginase activity) was determined. During 1 h incubation of rabbit AMΦ with [*H]-L-arginine, no [*H]-L-citrulline, but significant amounts of [*H]-L-ornithine (150 d.p.m.×1000) were formed. Nω-hydroxy-D,L-indospicine and 4-hydroxyamidino-D,L-phenylalanine, present during incubation, concentration-dependently reduced [*H]-L-ornithine formation (IC50: 2 and 45 μM, respectively). Nω-hydroxy-D,L-indospicine (up to 100 μM) had no effect on [*H]-L-arginine uptake into rabbit AMΦ, whereas 4-hydroxyamidino-D,L-phenylalanine caused a concentration-dependent inhibition (IC50: 300 μM). Rat AMΦ, cultured in the absence of LPS, formed significant amounts of [*H]-L-citrulline and [*H]-L-ornithine (133 and 212 d.p.m.×1000, respectively) when incubated for 1 h with [*H]-L-arginine. When AMΦ had been cultured in the presence of 0.1 or 1 μg ml−1 LPS, the formation of [*H]-L-citrulline was enhanced by 37±8.3 and 99±12% and that of [*H]-L-ornithine reduced by 21±8.7 and 70±2.5%, respectively. In rat AMΦ, cultured in the absence or presence of LPS, Nω-hydroxy-D,L-indospicine (10 and 30 μM) greatly reduced formation of [*H]-L-ornithine (by 80–95%) and this was accompanied by increased formation of [*H]-L-citrulline. However, only 20–30% of the [*H]-L-arginine not metabolized to [*H]-L-ornithine after inhibition of arginase was metabolized to [*H]-L-citrulline, when the AMΦ had been cultured in the absence of LPS (i.e. low level of iNOS). On the other hand, when the AMΦ had been cultured in the presence of LPS (i.e. high level of iNOS), all the [*H]-L-arginine not metabolized by the inhibited arginase was metabolized to [*H]-L-citrulline. In conclusion, Nω-hydroxy-D,L-indospicine is a potent and specific inhibitor of arginase in AMΦ. In cells in which, in addition to arginase, iNOS is expressed, inhibition of arginase can cause a shift of L-arginine metabolism to the NOS pathway. However, the extent of this shift appears to depend in a complex manner on the level of iNOS. PMID:9179379

  17. Arginase Inhibition Suppresses Native Low-Density Lipoprotein-Stimulated Vascular Smooth Muscle Cell Proliferation by NADPH Oxidase Inactivation.

    PubMed

    Koo, Bon Hyeock; Yi, Bong Gu; Wang, Wi Kwang; Ko, In Young; Hoe, Kwang Lae; Kwon, Young Guen; Won, Moo Ho; Kim, Young Myeong; Lim, Hyun Kyo; Ryoo, Sungwoo

    2018-05-01

    Vascular smooth muscle cell (VSMC) proliferation induced by native low-density lipoprotein (nLDL) stimulation is dependent on superoxide production from activated NADPH oxidase. The present study aimed to investigate whether the novel arginase inhibitor limonin could suppress nLDL-induced VSMC proliferation and to examine related mechanisms. Isolated VSMCs from rat aortas were treated with nLDL, and cell proliferation was measured by WST-1 and BrdU assays. NADPH oxidase activation was evaluated by lucigenin-induced chemiluminescence, and phosphorylation of protein kinase C (PKC) βII and extracellular signal-regulated kinase (ERK) 1/2 was determined by western blot analysis. Mitochondrial reactive oxygen species (ROS) generation was assessed using MitoSOX-red, and intracellular L-arginine concentrations were determined by high-performance liquid chromatography (HPLC) in the presence or absence of limonin. Limonin inhibited arginase I and II activity in the uncompetitive mode, and prevented nLDL-induced VSMC proliferation in a p21Waf1/Cip1-dependent manner without affecting arginase protein levels. Limonin blocked PKCβII phosphorylation, but not ERK1/2 phosphorylation, and translocation of p47phox to the membrane was decreased, as was superoxide production in nLDL-stimulated VSMCs. Moreover, mitochondrial ROS generation was increased by nLDL stimulation and blocked by preincubation with limonin. Mitochondrial ROS production was responsible for the phosphorylation of PKCβII. HPLC analysis showed that arginase inhibition with limonin increases intracellular L-arginine concentrations, but decreases polyamine concentrations. L-Arginine treatment prevented PKCβII phosphorylation without affecting ERK1/2 phosphorylation. Increased L-arginine levels following limonin-dependent arginase inhibition prohibited NADPH oxidase activation in a PKCβII-dependent manner, and blocked nLDL-stimulated VSMC proliferation. © Copyright: Yonsei University College of Medicine 2018.

  18. Arginase Inhibition Suppresses Native Low-Density Lipoprotein-Stimulated Vascular Smooth Muscle Cell Proliferation by NADPH Oxidase Inactivation

    PubMed Central

    Wang, Wi-Kwang; Ko, In-Young; Hoe, Kwang-Lae; Kwon, Young-Guen; Won, Moo-Ho; Kim, Young-Myeong

    2018-01-01

    Purpose Vascular smooth muscle cell (VSMC) proliferation induced by native low-density lipoprotein (nLDL) stimulation is dependent on superoxide production from activated NADPH oxidase. The present study aimed to investigate whether the novel arginase inhibitor limonin could suppress nLDL-induced VSMC proliferation and to examine related mechanisms. Materials and Methods Isolated VSMCs from rat aortas were treated with nLDL, and cell proliferation was measured by WST-1 and BrdU assays. NADPH oxidase activation was evaluated by lucigenin-induced chemiluminescence, and phosphorylation of protein kinase C (PKC) βII and extracellular signal-regulated kinase (ERK) 1/2 was determined by western blot analysis. Mitochondrial reactive oxygen species (ROS) generation was assessed using MitoSOX-red, and intracellular L-arginine concentrations were determined by high-performance liquid chromatography (HPLC) in the presence or absence of limonin. Results Limonin inhibited arginase I and II activity in the uncompetitive mode, and prevented nLDL-induced VSMC proliferation in a p21Waf1/Cip1-dependent manner without affecting arginase protein levels. Limonin blocked PKCβII phosphorylation, but not ERK1/2 phosphorylation, and translocation of p47phox to the membrane was decreased, as was superoxide production in nLDL-stimulated VSMCs. Moreover, mitochondrial ROS generation was increased by nLDL stimulation and blocked by preincubation with limonin. Mitochondrial ROS production was responsible for the phosphorylation of PKCβII. HPLC analysis showed that arginase inhibition with limonin increases intracellular L-arginine concentrations, but decreases polyamine concentrations. L-Arginine treatment prevented PKCβII phosphorylation without affecting ERK1/2 phosphorylation. Conclusion Increased L-arginine levels following limonin-dependent arginase inhibition prohibited NADPH oxidase activation in a PKCβII-dependent manner, and blocked nLDL-stimulated VSMC proliferation. PMID:29611398

  19. Effects of Arginase Inhibition in Hypertensive Hyperthyroid Rats.

    PubMed

    Rodríguez-Gómez, Isabel; Manuel Moreno, Juan; Jimenez, Rosario; Quesada, Andrés; Montoro-Molina, Sebastian; Vargas-Tendero, Pablo; Wangensteen, Rosemary; Vargas, Félix

    2015-12-01

    This study analyzed the effects of chronic administration of N[omega]-hydroxy-nor-l-arginine (nor-NOHA), an inhibitor of arginase, on the hemodynamic, oxidative stress, morphologic, metabolic, and renal manifestations of hyperthyroidism in rats. Four groups of male Wistar rats were used: control, nor-NOHA-treated (10 mg/kg/day), thyroxine (T4)-treated (75 μg/rat/day), and thyroxine- plus nor-NOHA-treated rats. All treatments were maintained for 4 weeks. Body weight, tail systolic blood pressure (SBP), and heart rate (HR) were recorded weekly. Finally, morphologic, metabolic, plasma, and renal variables were measured. Arginase I and II protein abundance and arginase activity were measured in aorta, heart, and kidney. The T4 group showed increased arginase I and II protein abundance, arginase activity, SBP, HR, plasma nitrates/nitrites (NOx), brainstem and urinary isoprostanes, proteinuria and cardiac and renal hypertrophy in comparison to control rats. In hyperthyroid rats, chronic nor-NOHA prevented the increase in SBP and HR and decreased proteinuria in association with an increase in plasma NOx and a decrease in brainstem and urinary isoprostanes. In normal rats, nor-NOHA treatment did not significantly change any hemodynamic, morphologic, or renal variables. Acute nor-NOHA administration did not affect renal or systemic hemodynamic variables in normal or T4-treated rats. Hyperthyroidism in rats is associated with the increased expression and activity of arginase in aorta, heart, and kidney. Chronic arginase inhibition with nor-NOHA suppresses the characteristic hemodynamic manifestations of hyperthyroidism in association with a reduced oxidative stress. These results indicate an important role for arginase pathway alterations in the cardiovascular and renal abnormalities of hyperthyroidism. © American Journal of Hypertension, Ltd 2015. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Hypoxia induces arginase II expression and increases viable human pulmonary artery smooth muscle cell numbers via AMPKα1 signaling

    PubMed Central

    Xue, Jianjing; Nelin, Leif D.

    2017-01-01

    Pulmonary artery smooth muscle cell (PASMC) proliferation is one of the hallmark features of hypoxia-induced pulmonary hypertension. With only supportive treatment options available for this life-threatening disease, treating and preventing the proliferation of PASMCs is a viable therapeutic option. A key promoter of hypoxia-induced increases in the number of viable human PASMCs is arginase II, with attenuation of viable cell numbers following pharmacologic inhibition or siRNA knockdown of the enzyme. Additionally, increased levels of arginase have been demonstrated in the pulmonary vasculature of patients with pulmonary hypertension. The signaling pathways responsible for the hypoxic induction of arginase II in PASMCs, however, remain unknown. Hypoxia is a recognized activator of AMPK, which is known to be expressed in human PASMCs (hPASMCs). Activation of AMPK by hypoxia has been shown to promote cell survival in PASMCs. In addition, pharmacologic agents targeting AMPK have been shown to attenuate chronic hypoxia-induced pulmonary hypertension in animal models. The present studies tested the hypothesis that hypoxia-induced arginase II expression in hPASMCs is mediated through AMPK signaling. We found that pharmacologic inhibitors of AMPK, as well as siRNA knockdown of AMPKα1, prevented hypoxia-induced arginase II. The hypoxia-induced increase in viable hPASMC numbers was also prevented following both pharmacologic inhibition and siRNA knockdown of AMPK. Furthermore, we demonstrate that overexpression of AMPK induced arginase II protein expression and viable cells numbers in hPASMCs. PMID:28213467

  1. Inhibition of phosphodiesterase 4 amplifies cytokine-dependent induction of arginase in macrophages.

    PubMed

    Erdely, Aaron; Kepka-Lenhart, Diane; Clark, Melissa; Zeidler-Erdely, Patti; Poljakovic, Mirjana; Calhoun, William J; Morris, Sidney M

    2006-03-01

    Arginase is greatly elevated in asthma and is thought to play a role in the pathophysiology of this disease. As inhibitors of phosphodiesterase 4 (PDE4), the predominant PDE in macrophages, elevate cAMP levels and reduce inflammation, they have been proposed for use in treatment of asthma and chronic obstructive pulmonary disease. As cAMP is an inducer of arginase, we tested the hypothesis that a PDE4 inhibitor would enhance macrophage arginase induction by key cytokines implicated in asthma and other pulmonary diseases. RAW 264.7 cells were stimulated with IL-4 or transforming growth factor (TGF)-beta, with and without the PDE4 inhibitor rolipram. IL-4 and TGF-beta increased arginase activity 16- and 5-fold, respectively. Rolipram alone had no effect but when combined with IL-4 and TGF-beta synergistically enhanced arginase activity by an additional 15- and 5-fold, respectively. The increases in arginase I protein and mRNA levels mirrored increases in arginase activity. Induction of arginase II mRNA was also enhanced by rolipram but to a much lesser extent than arginase I. Unlike its effect in RAW 264.7 cells, IL-4 alone did not increase arginase activity in human alveolar macrophages (AM) from healthy volunteers. However, combining IL-4 with agents to induce cAMP levels induced arginase activity in human AM significantly above the level obtained with cAMP-inducing agents alone. In conclusion, agents that elevate cAMP significantly enhance induction of arginase by cytokines. Therefore, consequences of increased arginase expression should be evaluated whenever PDE inhibitors are proposed for treatment of inflammatory disorders in which IL-4 and/or TGF-beta predominate.

  2. Crystal Structure of Arginase from Plasmodium falciparum and Implications for l-Arginine Depletion in Malarial Infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowling, Daniel P.; Ilies, Monica; Olszewski, Kellen L.

    The 2.15 {angstrom} resolution crystal structure of arginase from Plasmodium falciparum, the parasite that causes cerebral malaria, is reported in complex with the boronic acid inhibitor 2(S)-amino-6-boronohexanoic acid (ABH) (K{sub d} = 11 {micro}M). This is the first crystal structure of a parasitic arginase. Various protein constructs were explored to identify an optimally active enzyme form for inhibition and structural studies and to probe the structure and function of two polypeptide insertions unique to malarial arginase: a 74-residue low-complexity region contained in loop L2 and an 11-residue segment contained in loop L8. Structural studies indicate that the low-complexity region ismore » largely disordered and is oriented away from the trimer interface; its deletion does not significantly compromise enzyme activity. The loop L8 insertion is located at the trimer interface and makes several intra- and intermolecular interactions important for enzyme function. In addition, we also demonstrate that arg- Plasmodium berghei sporozoites show significantly decreased liver infectivity in vivo. Therefore, inhibition of malarial arginase may serve as a possible candidate for antimalarial therapy against liver-stage infection, and ABH may serve as a lead for the development of inhibitors.« less

  3. Arginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vessels

    NASA Technical Reports Server (NTRS)

    Berkowitz, Dan E.; White, Ron; Li, Dechun; Minhas, Khalid M.; Cernetich, Amy; Kim, Soonyul; Burke, Sean; Shoukas, Artin A.; Nyhan, Daniel; Champion, Hunter C.; hide

    2003-01-01

    BACKGROUND: Although abnormal L-arginine NO signaling contributes to endothelial dysfunction in the aging cardiovascular system, the biochemical mechanisms remain controversial. L-arginine, the NO synthase (NOS) precursor, is also a substrate for arginase. We tested the hypotheses that arginase reciprocally regulates NOS by modulating L-arginine bioavailability and that arginase is upregulated in aging vasculature, contributing to depressed endothelial function. METHODS AND RESULTS: Inhibition of arginase with (S)-(2-boronoethyl)-L-cysteine, HCl (BEC) produced vasodilation in aortic rings from young (Y) adult rats (maximum effect, 46.4+/-9.4% at 10(-5) mol/L, P<0.01). Similar vasorelaxation was elicited with the additional arginase inhibitors N-hydroxy-nor-L-arginine (nor-NOHA) and difluoromethylornithine (DFMO). This effect required intact endothelium and was prevented by 1H-oxadiazole quinoxalin-1-one (P<0.05 and P<0.001, respectively), a soluble guanylyl cyclase inhibitor. DFMO-elicited vasodilation was greater in old (O) compared with Y rat aortic rings (60+/-6% versus 39+/-6%, P<0.05). In addition, BEC restored depressed L-arginine (10(-4) mol/L)-dependent vasorelaxant responses in O rings to those of Y. Arginase activity and expression were increased in O rings, whereas NOS activity and cyclic GMP levels were decreased. BEC and DFMO suppressed arginase activity and restored NOS activity and cyclic GMP levels in O vessels to those of Y. CONCLUSIONS: These findings demonstrate that arginase modulates NOS activity, likely by regulating intracellular L-arginine availability. Arginase upregulation contributes to endothelial dysfunction of aging and may therefore be a therapeutic target.

  4. Oral atorvastatin therapy increases nitric oxide-dependent cutaneous vasodilation in humans by decreasing ascorbate-sensitive oxidants

    PubMed Central

    Kenney, W. Larry

    2011-01-01

    Elevated low-density lipoproteins (LDL) are associated with cutaneous microvascular dysfunction partially mediated by increased arginase activity, which is decreased following a systemic atorvastatin therapy. We hypothesized that increased ascorbate-sensitive oxidant stress, partially mediated through uncoupled nitric oxide synthase (NOS) induced by upregulated arginase, contributes to cutaneous microvascular dysfunction in hypercholesterolemic (HC) humans. Four microdialysis fibers were placed in the skin of nine HC (LDL = 177 ± 6 mg/dl) men and women before and after 3 mo of a systemic atorvastatin intervention and at baseline in nine normocholesterolemic (NC) (LDL = 95 ± 4 mg/dl) subjects. Sites served as control, NOS inhibited, L-ascorbate, and arginase-inhibited+L-ascorbate. Skin blood flow was measured while local skin heating (42°C) induced NO-dependent vasodilation. After the established plateau in all sites, 20 mM ≪ngname≫ was infused to quantify NO-dependent vasodilation. Data were normalized to maximum cutaneous vascular conductance (CVC) (sodium nitroprusside + 43°C). The plateau in vasodilation during local heating (HC: 78 ± 4 vs. NC: 96 ± 2% CVCmax, P < 0.01) and NO-dependent vasodilation (HC: 40 ± 4 vs. NC: 54 ± 4% CVCmax, P < 0.01) was reduced in the HC group. Acute L-ascorbate alone (91 ± 5% CVCmax, P < 0.001) or combined with arginase inhibition (96 ± 3% CVCmax, P < 0.001) augmented the plateau in vasodilation in the HC group but not the NC group (ascorbate: 96 ± 2; combo: 93 ± 4% CVCmax, both P > 0.05). After the atorvastatin intervention NO-dependent vasodilation was augmented in the HC group (HC postatorvastatin: 64 ± 4% CVCmax, P < 0.01), and there was no further effect of ascorbate alone (58 ± 4% CVCmax, P > 0.05) or combined with arginase inhibition (67 ± 4% CVCmax, P > 0.05). Increased ascorbate-sensitive oxidants contribute to hypercholesteromic associated cutaneous microvascular dysfunction which is partially reversed with atorvastatin therapy. PMID:21715698

  5. Inhibition of lytic infection of pseudorabies virus by arginine depletion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, H.-C.; Kao, Y.-C.; Chang, T-J.

    2005-08-26

    Pseudorabies virus (PRV) is a member of Alphahepesviruses; it is an enveloped virus with a double-stranded DNA genome. Polyamines (such as spermine and spermidine) are ubiquitous in animal cells and participate in cellular proliferation and differentiation. Previous results of our laboratory showed that the PRV can accomplish lytic infection either in the presence of exogenous spermine (or spermidine) or depletion of cellular polyamines. The amino acid arginine is a precursor of polyamine biosynthesis. In this work, we investigated the role of arginine in PRV infection. It was found that the plaque formation of PRV was inhibited by arginase (enzyme catalyzingmore » the conversion of arginine into ornithine and urea) treatment whereas this inhibition can be reversed by exogenous arginine, suggesting that arginine is essential for PRV proliferation. Western blotting was conducted to study the effect of arginine depletion on the levels of structural proteins of PRV in virus-infected cells. Four PRV structural proteins (gB, gE, UL47, and UL48) were chosen for examination, and results revealed that the levels of viral proteins were obviously reduced in long time arginase treatment. However, the overall protein synthesis machinery was apparently not influenced by arginase treatment either in mock or PRV-infected cells. Analyzing with native gel, we found that arginase treatment affected the mobility of PRV structural proteins, suggesting the conformational change of viral proteins by arginine depletion. Heat shock proteins, acting as molecular chaperons, participate in protein folding and translocation. Our results demonstrated that long time arginase treatment could reduce the expression of cellular heat shock proteins 70 (hsc70 and hsp70), and transcriptional suppression of heat shock protein 70 gene promoter was one of the mechanisms involved in this reduced expression.« less

  6. EDA-Fibronectin Originating from Osteoblasts Inhibits the Immune Response against Cancer

    PubMed Central

    Rossnagl, Stephanie; Altrock, Eva; Sens, Carla; Kraft, Sabrina; Rau, Katrin; Giese, Thomas; Samstag, Yvonne; Nakchbandi, Inaam A.

    2016-01-01

    Osteoblasts lining the inner surface of bone support hematopoietic stem cell differentiation by virtue of proximity to the bone marrow. The osteoblasts also modify their own differentiation by producing various isoforms of fibronectin (FN). Despite evidence for immune regulation by osteoblasts, there is limited knowledge of how osteoblasts modulate cells of the immune system. Here, we show that extra domain A (EDA)-FN produced by osteoblasts increases arginase production in myeloid-derived cells, and we identify α5β1 as the mediating receptor. In different mouse models of cancer, osteoblasts or EDA-FN was found to up-regulate arginase-1 expression in myeloid-derived cells, resulting in increased cancer growth. This harmful effect can be reduced by interfering with the integrin α5β1 receptor or inhibiting arginase. Conversely, in tissue injury, the expression of arginase-1 is normally beneficial as it dampens the immune response to allow wound healing. We show that EDA-FN protects against excessive fibrotic tissue formation in a liver fibrosis model. Our results establish an immune regulatory function for EDA-FN originating from the osteoblasts and identify new avenues for enhancing the immune reaction against cancer. PMID:27653627

  7. Protein kinase C-α and arginase I mediate pneumolysin-induced pulmonary endothelial hyperpermeability.

    PubMed

    Lucas, Rudolf; Yang, Guang; Gorshkov, Boris A; Zemskov, Evgeny A; Sridhar, Supriya; Umapathy, Nagavedi S; Jezierska-Drutel, Agnieszka; Alieva, Irina B; Leustik, Martin; Hossain, Hamid; Fischer, Bernhard; Catravas, John D; Verin, Alexander D; Pittet, Jean-François; Caldwell, Ruth B; Mitchell, Timothy J; Cederbaum, Stephen D; Fulton, David J; Matthay, Michael A; Caldwell, Robert W; Romero, Maritza J; Chakraborty, Trinad

    2012-10-01

    Antibiotics-induced release of the pore-forming virulence factor pneumolysin (PLY) in patients with pneumococcal pneumonia results in its presence days after lungs are sterile and is a major factor responsible for the induction of permeability edema. Here we sought to identify major mechanisms mediating PLY-induced endothelial dysfunction. We evaluated PLY-induced endothelial hyperpermeability in human lung microvascular endothelial cells (HL-MVECs) and human lung pulmonary artery endothelial cells in vitro and in mice instilled intratracheally with PLY. PLY increases permeability in endothelial monolayers by reducing stable and dynamic microtubule content and modulating VE-cadherin expression. These events, dependent upon an increased calcium influx, are preceded by protein kinase C (PKC)-α activation, perturbation of the RhoA/Rac1 balance, and an increase in myosin light chain phosphorylation. At later time points, PLY treatment increases the expression and activity of arginase in HL-MVECs. Arginase inhibition abrogates and suppresses PLY-induced endothelial barrier dysfunction by restoring NO generation. Consequently, a specific PKC-α inhibitor and the TNF-derived tonoplast intrinsic protein peptide, which blunts PLY-induced PKC-α activation, are able to prevent activation of arginase in HL-MVECs and to reduce PLY-induced endothelial hyperpermeability in mice. Arginase I (AI)(+/-)/arginase II (AII)(-/-) C57BL/6 mice, displaying a significantly reduced arginase I expression in the lungs, are significantly less sensitive to PLY-induced capillary leak than their wild-type or AI(+/+)/AII(-/-) counterparts, indicating an important role for arginase I in PLY-induced endothelial hyperpermeability. These results identify PKC-α and arginase I as potential upstream and downstream therapeutic targets in PLY-induced pulmonary endothelial dysfunction.

  8. Protein Kinase C-α and Arginase I Mediate Pneumolysin-Induced Pulmonary Endothelial Hyperpermeability

    PubMed Central

    Yang, Guang; Gorshkov, Boris A.; Zemskov, Evgeny A.; Sridhar, Supriya; Umapathy, Nagavedi S.; Jezierska-Drutel, Agnieszka; Alieva, Irina B.; Leustik, Martin; Hossain, Hamid; Fischer, Bernhard; Catravas, John D.; Verin, Alexander D.; Pittet, Jean-François; Caldwell, Ruth B.; Mitchell, Timothy J.; Cederbaum, Stephen D.; Fulton, David J.; Matthay, Michael A.; Caldwell, Robert W.; Romero, Maritza J.; Chakraborty, Trinad

    2012-01-01

    Antibiotics-induced release of the pore-forming virulence factor pneumolysin (PLY) in patients with pneumococcal pneumonia results in its presence days after lungs are sterile and is a major factor responsible for the induction of permeability edema. Here we sought to identify major mechanisms mediating PLY-induced endothelial dysfunction. We evaluated PLY-induced endothelial hyperpermeability in human lung microvascular endothelial cells (HL-MVECs) and human lung pulmonary artery endothelial cells in vitro and in mice instilled intratracheally with PLY. PLY increases permeability in endothelial monolayers by reducing stable and dynamic microtubule content and modulating VE-cadherin expression. These events, dependent upon an increased calcium influx, are preceded by protein kinase C (PKC)-α activation, perturbation of the RhoA/Rac1 balance, and an increase in myosin light chain phosphorylation. At later time points, PLY treatment increases the expression and activity of arginase in HL-MVECs. Arginase inhibition abrogates and suppresses PLY-induced endothelial barrier dysfunction by restoring NO generation. Consequently, a specific PKC-α inhibitor and the TNF-derived tonoplast intrinsic protein peptide, which blunts PLY-induced PKC-α activation, are able to prevent activation of arginase in HL-MVECs and to reduce PLY-induced endothelial hyperpermeability in mice. Arginase I (AI)+/−/arginase II (AII)−/− C57BL/6 mice, displaying a significantly reduced arginase I expression in the lungs, are significantly less sensitive to PLY-induced capillary leak than their wild-type or AI+/+/AII−/− counterparts, indicating an important role for arginase I in PLY-induced endothelial hyperpermeability. These results identify PKC-α and arginase I as potential upstream and downstream therapeutic targets in PLY-induced pulmonary endothelial dysfunction. PMID:22582175

  9. Oral atorvastatin therapy increases nitric oxide-dependent cutaneous vasodilation in humans by decreasing ascorbate-sensitive oxidants.

    PubMed

    Holowatz, Lacy A; Kenney, W Larry

    2011-09-01

    Elevated low-density lipoproteins (LDL) are associated with cutaneous microvascular dysfunction partially mediated by increased arginase activity, which is decreased following a systemic atorvastatin therapy. We hypothesized that increased ascorbate-sensitive oxidant stress, partially mediated through uncoupled nitric oxide synthase (NOS) induced by upregulated arginase, contributes to cutaneous microvascular dysfunction in hypercholesterolemic (HC) humans. Four microdialysis fibers were placed in the skin of nine HC (LDL = 177 ± 6 mg/dl) men and women before and after 3 mo of a systemic atorvastatin intervention and at baseline in nine normocholesterolemic (NC) (LDL = 95 ± 4 mg/dl) subjects. Sites served as control, NOS inhibited, L-ascorbate, and arginase-inhibited+L-ascorbate. Skin blood flow was measured while local skin heating (42°C) induced NO-dependent vasodilation. After the established plateau in all sites, 20 mM ≪ngname≫ was infused to quantify NO-dependent vasodilation. Data were normalized to maximum cutaneous vascular conductance (CVC) (sodium nitroprusside + 43°C). The plateau in vasodilation during local heating (HC: 78 ± 4 vs. NC: 96 ± 2% CVC(max), P < 0.01) and NO-dependent vasodilation (HC: 40 ± 4 vs. NC: 54 ± 4% CVC(max), P < 0.01) was reduced in the HC group. Acute L-ascorbate alone (91 ± 5% CVC(max), P < 0.001) or combined with arginase inhibition (96 ± 3% CVC(max), P < 0.001) augmented the plateau in vasodilation in the HC group but not the NC group (ascorbate: 96 ± 2; combo: 93 ± 4% CVC(max), both P > 0.05). After the atorvastatin intervention NO-dependent vasodilation was augmented in the HC group (HC postatorvastatin: 64 ± 4% CVC(max), P < 0.01), and there was no further effect of ascorbate alone (58 ± 4% CVC(max,) P > 0.05) or combined with arginase inhibition (67 ± 4% CVC(max,) P > 0.05). Increased ascorbate-sensitive oxidants contribute to hypercholesteromic associated cutaneous microvascular dysfunction which is partially reversed with atorvastatin therapy.

  10. l-Arginine Uptake by Cationic Amino Acid Transporter Promotes Intra-Macrophage Survival of Leishmania donovani by Enhancing Arginase-Mediated Polyamine Synthesis

    PubMed Central

    Mandal, Abhishek; Das, Sushmita; Kumar, Ajay; Roy, Saptarshi; Verma, Sudha; Ghosh, Ayan Kumar; Singh, Ruby; Abhishek, Kumar; Saini, Savita; Sardar, Abul Hasan; Purkait, Bidyut; Kumar, Ashish; Mandal, Chitra; Das, Pradeep

    2017-01-01

    The survival of intracellular protozoan parasite, Leishmania donovani, the causative agent of Indian visceral leishmaniasis (VL), depends on the activation status of macrophages. l-Arginine, a semi-essential amino acid plays a crucial regulatory role for activation of macrophages. However, the role of l-arginine transport in VL still remains elusive. In this study, we demonstrated that intra-macrophage survival of L. donovani depends on the availability of extracellular l-arginine. Infection of THP-1-derived macrophage/human monocyte-derived macrophage (hMDM) with Leishmania, resulted in upregulation of l-arginine transport. While investigating the involvement of the transporters, we observed that Leishmania survival was greatly impaired when the transporters were blocked either using inhibitor or siRNA-mediated downregulation. CAT-2 was found to be the main isoform associated with l-arginine transport in L. donovani-infected macrophages. l-arginine availability and its transport regulated the host arginase in Leishmania infection. Arginase and inducible nitric oxide synthase (iNOS) expression were reciprocally regulated when assayed using specific inhibitors and siRNA-mediated downregulation. Interestingly, induction of iNOS expression and nitric oxide production were observed in case of inhibition of arginase in infected macrophages. Furthermore, inhibition of l-arginine transport as well as arginase resulted in decreased polyamine production, limiting parasite survival inside macrophages. l-arginine availability and transport regulated Th1/Th2 cytokine levels in case of Leishmania infection. Upregulation of l-arginine transport, induction of host arginase, and enhanced polyamine production were correlated with increased level of IL-10 and decreased level of IL-12 and TNF-α in L. donovani-infected macrophages. Our findings provide clear evidence for targeting the metabolism of l-arginine and l-arginine-metabolizing enzymes as an important therapeutic and prophylactic strategy to treat VL. PMID:28798743

  11. [Arginase inhibitor nor-NOHA induces apoptosis and inhibits invasion and migration of HepG2 cells].

    PubMed

    Li, Xiangnan; Zhu, Fangyu; He, Yongsong; Luo, Fang

    2017-04-01

    Objective To investigate the cell inhibitory effect of arginase inhibitor nor-NOHA on HepG2 hepatocellular carcinoma cells and related mechanism. Methods CCK-8 assay was used to detect the cell proliferation and flow cytometry to detect the apoptosis of HepG2 cells treated with (0, 0.5, 1.0, 2.0, 3.0) ng/μL nor-NOHA. The protein levels of arginase 1 (Arg1), P53, matrix metalloproteinase-2 (MMP-2), E-cadherin (ECD) were determined by Western blotting. Real time quantitative PCR was employed to examine the changes in the mRNA level of inducible nitric oxide synthase (iNOS). Griess assay was used to measure the concentration of nitric oxide (NO) in HepG2 cells. Transwell TM assay and wound-healing assay were performed to evaluate the changes of the cell invasion and migration ability, respectively. Results nor-NOHA inhibited the proliferation and induced the apoptosis of HepG2 cells. It also decreased the expression levels of Arg1 and MMP-2, increased the expression levels of P53 and ECD as well as the production of NO; in addition, nor-NOHA inhibited the invasion and migration of HepG2 cells. Conclusion Nor-NOHA can induce cell apoptosis and inhibit the ability of invasion and migration of HepG2 cells by inhibiting Arg1, which is related with the increase of iNOS expression and the high concentration of NO.

  12. Role of Arginase 1 from Myeloid Cells in Th2-Dominated Lung Inflammation

    PubMed Central

    Barron, Luke; Smith, Amber M.; El Kasmi, Karim C.; Qualls, Joseph E.; Huang, Xiaozhu; Cheever, Allen; Borthwick, Lee A.; Wilson, Mark S.; Murray, Peter J.; Wynn, Thomas A.

    2013-01-01

    Th2-driven lung inflammation increases Arginase 1 (Arg1) expression in alternatively-activated macrophages (AAMs). AAMs modulate T cell and wound healing responses and Arg1 might contribute to asthma pathogenesis by inhibiting nitric oxide production, regulating fibrosis, modulating arginine metabolism and restricting T cell proliferation. We used mice lacking Arg1 in myeloid cells to investigate the contribution of Arg1 to lung inflammation and pathophysiology. In six model systems encompassing acute and chronic Th2-mediated lung inflammation we observed neither a pathogenic nor protective role for myeloid-expressed Arg1. The number and composition of inflammatory cells in the airways and lungs, mucus secretion, collagen deposition, airway hyper-responsiveness, and T cell cytokine production were not altered if AAMs were deficient in Arg1 or simultaneously in both Arg1 and NOS2. Our results argue that Arg1 is a general feature of alternative activation but only selectively regulates Th2 responses. Therefore, attempts to experimentally or therapeutically inhibit arginase activity in the lung should be examined with caution. PMID:23637937

  13. Traumatic Brain Injury Causes Endothelial Dysfunction in the Systemic Microcirculation through Arginase-1-Dependent Uncoupling of Endothelial Nitric Oxide Synthase.

    PubMed

    Villalba, Nuria; Sackheim, Adrian M; Nunez, Ivette A; Hill-Eubanks, David C; Nelson, Mark T; Wellman, George C; Freeman, Kalev

    2017-01-01

    Endothelial dysfunction is a hallmark of many chronic diseases, including diabetes and long-term hypertension. We show that acute traumatic brain injury (TBI) leads to endothelial dysfunction in rat mesenteric arteries. Endothelial-dependent dilation was greatly diminished 24 h after TBI because of impaired nitric oxide (NO) production. The activity of arginase, which competes with endothelial NO synthase (eNOS) for the common substrate l-arginine, were also significantly increased in arteries, suggesting that arginase-mediated depletion of l-arginine underlies diminished NO production. Consistent with this, substrate restoration by exogenous application of l-arginine or inhibition of arginase recovered endothelial function. Moreover, evidence for increased reactive oxygen species production, a consequence of l-arginine starvation-dependent eNOS uncoupling, was detected in endothelium and plasma. Collectively, our findings demonstrate endothelial dysfunction in a remote vascular bed after TBI, manifesting as impaired endothelial-dependent vasodilation, with increased arginase activity, decreased generation of NO, and increased O 2 - production. We conclude that blood vessels have a "molecular memory" of neurotrauma, 24 h after injury, because of functional changes in vascular endothelial cells; these effects are pertinent to understanding the systemic inflammatory response that occurs after TBI even in the absence of polytrauma.

  14. Effect of Two Ginger Varieties on Arginase Activity in Hypercholesterolemic Rats.

    PubMed

    Akinyemi, Ayodele Jacob; Oboh, Ganiyu; Ademiluyi, Adedayo Oluwaseun; Boligon, Aline Augusti; Athayde, Margareth Linde

    2016-04-01

    Recently, ginger has been used in traditional Chinese medicine as an herbal therapy for treating several cardiovascular diseases, however, information on its mechanism of action is limited. The present study assessed the effect of two ginger varieties (Zingiber officinale and Curcuma longa) on the arginase activity, atherogenic index, levels of liver thiobarbituric acid reactive substances (TBARSs), and plasma lipids in rats fed with a high-cholesterol (2%) diet for 14 days. Following the treatment period, it was found that feeding a high-cholesterol diet to rats caused significant (p < 0.05) increases in arginase activity, atherogenic index, levels of TBARS, total cholesterol (TC), triglycerides (TGs), and low-density lipoprotein cholesterol (LDL-C) with a concomitant decrease in high-density lipoprotein cholesterol (HDL-C). However, both ginger and turmeric (2% and 4%) caused significant (p < 0.05) decreases in arginase activity and the atherogenic index, and prevented hypercholesterolemia by decreasing the TC, TGs, and LDL-C while increasing the HDL-C when compared with the controls. In conclusion, dietary supplementation with both types of rhizomes (ginger and turmeric) inhibited arginase activity and prevented hypercholesterolemia in rats that received a high-cholesterol diet. Therefore, these activities of ginger and turmeric represent possible mechanisms underlying its use in herbal medicine to treat several cardiovascular diseases. Copyright © 2015. Published by Elsevier B.V.

  15. Arginaseless Neurospora: Genetics, Physiology, and Polyamine Synthesis

    PubMed Central

    Davis, Rowland H.; Lawless, Mary B.; Port, Loretta A.

    1970-01-01

    Four arginaseless mutants of Neurospora crassa have been isolated. All carry mutations which lie at a single locus, aga, on linkage group VIIR. A study of aga strains shows the arginase reaction to be the major, perhaps the only, route of arginine consumption in Neurospora other than protein synthesis. Ornithine-δ-transaminase, the second enzyme of the arginine catabolic pathway, is present and normally inducible by arginine in aga strains, and ornithine transcarbamylase, an enzyme of arginine synthesis, also has normal activity. Arginine inhibits the growth of aga strains. The inhibition can be reversed by spermidine, putrescine (1,4-diaminobutane), or ornithine. The results suggest that ornithine is the major source of the putrescine moiety of polyamines in Neurospora, and that putrescine is an essential growth factor for this organism. The inhibition of aga strains by arginine can be attributed to feedback inhibition of ornithine synthesis by arginine, combined with the complete lack of ornithine normally provided by the arginase reaction. PMID:5419257

  16. Inhibition of herpes simplex virus multiplication by activated macrophages: a role for arginase?

    PubMed Central

    Wildy, P; Gell, P G; Rhodes, J; Newton, A

    1982-01-01

    Proteose-peptone-activated mouse macrophages can prevent productive infection by herpes simplex virus in neighboring cells in vitro whether or not those cells belong to the same animal species. The effect does not require contact between the macrophages and the infected cells, may be prevented by adding extra arginine to the medium, and may be reversed when extra arginine is added 24 h after the macrophages. Arginase activity was found both intracellularly and released from the macrophages. The extracellular enzyme is quite stable; 64% activity was found after 48 h of incubation at 37 degrees C in tissue culture medium. No evidence was found that the inefficiency of virus replication in macrophages was due to self-starvation by arginase. As might be predicted macrophages can, by the same mechanism, limit productive infection by vaccinia virus. PMID:6286497

  17. Inhibition of herpes simplex virus multiplication by activated macrophages: a role for arginase?

    PubMed

    Wildy, P; Gell, P G; Rhodes, J; Newton, A

    1982-07-01

    Proteose-peptone-activated mouse macrophages can prevent productive infection by herpes simplex virus in neighboring cells in vitro whether or not those cells belong to the same animal species. The effect does not require contact between the macrophages and the infected cells, may be prevented by adding extra arginine to the medium, and may be reversed when extra arginine is added 24 h after the macrophages. Arginase activity was found both intracellularly and released from the macrophages. The extracellular enzyme is quite stable; 64% activity was found after 48 h of incubation at 37 degrees C in tissue culture medium. No evidence was found that the inefficiency of virus replication in macrophages was due to self-starvation by arginase. As might be predicted macrophages can, by the same mechanism, limit productive infection by vaccinia virus.

  18. Long term exposure to L-arginine accelerates endothelial cell senescence through arginase-II and S6K1 signaling

    PubMed Central

    Xiong, Yuyani; Fru, Michael Forbiteh; Yu, Yi; Montani, Jean-Pierre; Ming, Xiu-Fen; Yang, Zhihong

    2014-01-01

    L-arginine supplementation is proposed to improve health status or as adjunct therapy for diseases including cardiovascular diseases. However, controversial results and even detrimental effects of L-arginine supplementation are reported. We investigate potential mechanisms of L-arginine-induced detrimental effects on vascular endothelial cells. Human endothelial cells were exposed to a physiological (0.1 mmol/L) or pharmacological (0.5 mmol/L) concentration of L-arginine for 30 minutes (acute) or 7 days (chronic). The effects of L-arginine supplementation on endothelial senescence phenotype, i.e., levels of senescence-associated beta-galactosidase, expression of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1, eNOS-uncoupling, arginase-II expression/activity, and mTORC1-S6K1 activity were analyzed. While acute L-arginine treatment enhances endothelial NO production accompanied with superoxide production and activation of S6K1 but no up-regulation of arginase-II, chronic L-arginine supplementation causes endothelial senescence, up-regulation of the adhesion molecule expression, and eNOS-uncoupling (decreased NO and enhanced superoxide production), which are associated with S6K1 activation and up-regulation of arginase-II. Silencing either S6K1 or arginase-II inhibits up-regulation/activation of each other, prevents endothelial dysfunction, adhesion molecule expression, and senescence under the chronic L-arginine supplementation condition. These results demonstrate that S6K1 and arginase-II form a positive circuit mediating the detrimental effects of chronic L-arginine supplementation on endothelial cells. PMID:24860943

  19. Cells for bioartificial liver devices: the human hepatoma-derived cell line C3A produces urea but does not detoxify ammonia.

    PubMed

    Mavri-Damelin, Demetra; Damelin, Leonard H; Eaton, Simon; Rees, Myrddin; Selden, Clare; Hodgson, Humphrey J F

    2008-02-15

    Extrahepatic bioartificial liver devices should provide an intact urea cycle to detoxify ammonia. The C3A cell line, a subclone of the hepatoma-derived HepG2 cell line, is currently used in this context as it produces urea, and this has been assumed to be reflective of ammonia detoxification via a functional urea cycle. However, based on our previous findings of perturbed urea-cycle function in the non-urea producing HepG2 cell line, we hypothesized that the urea produced by C3A cells was via a urea cycle-independent mechanism, namely, due to arginase II activity, and therefore would not detoxify ammonia. Urea was quantified using (15)N-ammonium chloride metabolic labelling with gas chromatography-mass spectrometry. Gene expression was determined by real-time reverse transcriptase-PCR, protein expression by western blotting, and functional activities with radiolabelling enzyme assays. Arginase inhibition studies used N(omega)-hydroxy-nor-L-arginine. Urea was detected in C3A conditioned medium; however, (15)N-ammonium chloride-labelling indicated that (15)N-ammonia was not incorporated into (15)N-labelled urea. Further, gene expression of two urea cycle genes, ornithine transcarbamylase and arginase I, were completely absent. In contrast, arginase II mRNA and protein was expressed at high levels in C3A cells and was inhibited by N(omega)-hydroxy-nor-L-arginine, which prevented urea production, thereby indicating a urea cycle-independent pathway. The urea cycle is non-functional in C3A cells, and their urea production is solely due to the presence of arginase II, which therefore cannot provide ammonia detoxification in a bioartificial liver system. This emphasizes the continued requirement for developing a component capable of a full repertoire of liver function. (c) 2007 Wiley Periodicals, Inc.

  20. Arginase expression modulates nitric oxide production in Leishmania (Leishmania) amazonensis.

    PubMed

    Acuña, Stephanie Maia; Aoki, Juliana Ide; Laranjeira-Silva, Maria Fernanda; Zampieri, Ricardo Andrade; Fernandes, Juliane Cristina Ribeiro; Muxel, Sandra Marcia; Floeter-Winter, Lucile Maria

    2017-01-01

    Arginase is an enzyme that converts L-arginine to urea and L-ornithine, an essential substrate for the polyamine pathway supporting Leishmania (Leishmania) amazonensis replication and its survival in the mammalian host. L-arginine is also the substrate of macrophage nitric oxide synthase 2 (NOS2) to produce nitric oxide (NO) that kills the parasite. This competition can define the fate of Leishmania infection. The transcriptomic profiling identified a family of oxidoreductases in L. (L.) amazonensis wild-type (La-WT) and L. (L.) amazonensis arginase knockout (La-arg-) promastigotes and axenic amastigotes. We highlighted the identification of an oxidoreductase that could act as nitric oxide synthase-like (NOS-like), due to the following evidences: conserved domain composition, the participation of NO production during the time course of promastigotes growth and during the axenic amastigotes differentiation, regulation dependence on arginase activity, as well as reduction of NO amount through the NOS activity inhibition. NO quantification was measured by DAF-FM labeling analysis in a flow cytometry. We described an arginase-dependent NOS-like activity in L. (L.) amazonensis and its role in the parasite growth. The increased detection of NO production in the mid-stationary and late-stationary growth phases of La-WT promastigotes could suggest that this production is an important factor to metacyclogenesis triggering. On the other hand, La-arg- showed an earlier increase in NO production compared to La-WT, suggesting that NO production can be arginase-dependent. Interestingly, La-WT and La-arg- axenic amastigotes produced higher levels of NO than those observed in promastigotes. As a conclusion, our work suggested that NOS-like is expressed in Leishmania in the stationary growth phase promastigotes and amastigotes, and could be correlated to metacyclogenesis and amastigotes growth in a dependent way to the internal pool of L-arginine and arginase activity.

  1. Phenolic-rich extracts of Eurycoma longifolia and Cylicodiscus gabunensis inhibit enzymes responsible for the development of erectile dysfunction and are antioxidants.

    PubMed

    Oboh, Ganiyu; Adebayo, Adeniyi A; Ademosun, Ayokunle O

    2018-05-19

    Herbs have been used from ages to manage male sexual dysfunction. Hence, this study sought to investigate the effects of Eurycoma longifolia (EL) and Cylicodiscus gabunensis (CG) stem bark extracts on some enzymes implicated in erectile dysfunction in vitro. The extracts were prepared, and their effects on phosphodiesterase-5 (PDE-5), arginase, and angiotensin-1-converting enzyme (ACE) as well as pro-oxidant-induced lipid peroxidation were assessed. Furthermore, phenolic contents were determined, and their components were characterized and quantified using high-performance liquid chromatography with diode array detector (HPLC-DAD). The results revealed that the extracts inhibited PDE-5, arginase, and ACE in a concentration-dependent manner. However, IC50 values revealed that CG had higher inhibitory potential on PDE-5 (IC50=204.4 μg/mL), arginase (IC50=39.01 μg/mL), and ACE (IC50=48.81 μg/mL) than EL. In addition, the extracts inhibited pro-oxidant-induced lipid peroxidation in penile tissue homogenate. HPLC-DAD analysis showed that CG is richer in phenolic compounds than EL, and this could be responsible for higher biological activities observed in CG than EL. Hence, the observed antioxidant property and inhibitory action of CG and EL on enzymes relevant to erectile dysfunction in vitro could be part of possible mechanisms underlying their involvement in traditional medicine for the management of male sexual dysfunction.

  2. Short communication: Arginase inhibition reduces the synthesis of casein in bovine mammary epithelial cells.

    PubMed

    Wang, M Z; Ding, L Y; Wang, C; Chen, L M; Loor, J J; Wang, H R

    2017-05-01

    The main purpose of this work was to determine the effect of arginase inhibition via N ω -hydroxy-nor-l-arginine (nor-NOHA) on casein synthesis in bovine mammary epithelial cells (BMEC). Passage 2 BMEC isolated from dairy cows were seeded to 6-well plates and randomly divided into 4 treatments: (1) control [Dulbecco's modified Eagle medium:Nutrient Mixture F-12 medium (DMEM/F12)]; (2) nor-NOHA (DMEM/F12 + 1 mmol/L nor-NOHA); (3) nor-NOHA + arginine (DMEM/F12 + 1 mmol/L nor-NOHA + 3.2 mmol/L Arg); and (4) nor-NOHA + ornithine (DMEM/F12+ 1 mmol/L nor-NOHA + 1 mmol/L Orn). Then, we determined the activity of enzymes related to Arg metabolism and casein synthesis in BMEC and the proliferation of cells. The addition of nor-NOHA reduced the activity of arginase and ornithine decarboxylase but had no effect on the activity of nitric oxide synthase, and these responses were the same at the gene expression level. In addition, supplementation of nor-NOHA in BMEC reduced cellular proliferation and casein synthesis. Addition of Arg to nor-NOHA resulted in cellular proliferation and casein synthesis similar to that of nor-NOHA alone. In contrast, addition of Orn to the medium with nor-NOHA increased the synthesis of casein and cellular proliferation compared with Nor-NOHA. In conclusion, suppression of the Arg-arginase-Orn pathway reduced casein synthesis and cellular proliferation, which indicated that this pathway is an important regulator of the synthesis of casein in BMEC. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. African crocus (Curculigo pilosa) and wonderful kola (Buchholzia coriacea) seeds modulate critical enzymes relevant to erectile dysfunction and oxidative stress.

    PubMed

    Adefegha, Stephen A; Oyeleye, Sunday I; Oboh, Ganiyu

    2018-05-23

    Background The seeds of African crocus (AC) (Curculigo pilosa) and wonderful kola (WK) (Buchholzia coriacea) are commonly used in folklore medicine in managing erectile dysfunction (ED) without the full understanding of the possible mechanism of actions. This study investigated and compared the effects of aqueous extracts from the seeds of AC and WK on arginase and acetylcholinesterase (AChE) activities and some pro-oxidant [FeSO4 and sodium nitroprusside (SNP)]-induced lipid peroxidation in rat penile homogenate in vitro. Method Aqueous extracts of AC and WK were prepared, and their effects on arginase and AChE activities as well as FeSO4- and SNP-induced lipid peroxidation in rat penile homogenate were assessed. Furthermore, phenolic constituents of the extract were determined using high-performance liquid chromatography coupled with diode-array detector (HPLC-DAD). Results Both extracts exhibited concentration-dependent inhibition on arginase (AC, IC50=0.05 mg/mL; WK, IC50=0.22 mg/mL) and AChE (AC, IC50=0.68 mg/mL; WK, IC50=0.28 mg/mL) activities. The extracts also inhibited FeSO4- and SNP-induced lipid peroxidation in rat penile homogenate. HPLC-DAD analysis revealed the presence of phenolic acids (gallic, caffeic, ellagic and coumaric acids) and flavonoids (catechin, quercetin and apigenin) in AC and WK. AC had higher arginase inhibitory and antioxidative activities but lower AChE inhibitory properties when compared with WK. Conclusions These effects could explain the possible mechanistic actions of the seeds in the management/treatment of ED and could be as a result of individual and/or synergistic effect of the constituent phenolic compounds of the seeds.

  4. [Mechanisms of nitroxide-ergic dysregulation in tissues of parodontium in rats under combined excessive sodium nitrate and fluoride intake].

    PubMed

    Богданов, Алексей В; Гришко, Юлия М; Костенко, Виталий А

    2016-01-01

    intake of inorganic nitrates is typically accompanied by production of excessive amount of nitric oxide (NO), which level is maintained by the mechanism of autoregulation known as the NO cycle. Hypothetically, this process may be disrupted with fluorides that are able to suppress arginase pathway of L-arginine metabolism, which competes with NO-synthase pathway. to study mechanisms of disregulation of oxidative (NO-synthase) and non-oxidative (arginase) metabolic pathways of L-arginine in the tissues of periodontium under combined excessive sodium nitrate and fluoride intake. these investigations were carried out on 90 white Wistar rats. Homogenates of parodontium soft tissues were used to assess spectrophotometrically the total activities of NO-synthase (NOS), arginase, ornithine decarboxylase as well as the peroxynitrite concentration. typical for the isolated sodium nitrate administration inhibition of total NOS activity varies under combined administration of nitrate and sodium fluoride and is usually manifested by its hyperactivation that is accompanied by an increase in peroxynitrite concentration. At this time arginase and ornithine decarboxylase activity is observed to be substantially reduced. The administration of aminoguanidine, an iNOS inhibitor, (20 mg/kg, twice a week during the experiment) increases arginase and ornithine decarboxylase activities, and the administration of L-arginine (500 mg/kg, twice a week) results in the increase of arginase activity. The administration of L-selenomethionine, a peroxynitrite scavenger (3 mg/kg, twice a week), and JSH-23 (4-methyl-N-(3-phenylpropyl) benzene-1,2-diamine, an inhibitor of NF-κB activation (1 mg/kg, twice a week) for modeling binary nitrate and fluoride intoxication reduces the total concentration of NOS activity and peroxynitrite concentration, and increases ornithine decarboxylase activity. the combined effect of nitrate and sodium fluoride for 30 days leads to disregulatory increased activity of NO-synthase enzymes and reduction of arginase pathway of L-arginine in the soft tissues of parodontium that is promoted by hyperactivation of iNOS and NF-κB, and increased peroxynitrite production.

  5. [Mechanisms of nitroxide-ergic dysregulation in tissues of parodontium in rats under combined excessive sodium nitrate and fluoride intake].

    PubMed

    Богданов, Алексей В; Гришко, Юлия М; Костенко, Виталий А

    intake of inorganic nitrates is typically accompanied by production of excessive amount of nitric oxide (NO), which level is maintained by the mechanism of autoregulation known as the NO cycle. Hypothetically, this process may be disrupted with fluorides that are able to suppress arginase pathway of L-arginine metabolism, which competes with NO-synthase pathway. to study mechanisms of disregulation of oxidative (NO-synthase) and non-oxidative (arginase) metabolic pathways of L-arginine in the tissues of periodontium under combined excessive sodium nitrate and fluoride intake. these investigations were carried out on 90 white Wistar rats. Homogenates of parodontium soft tissues were used to assess spectrophotometrically the total activities of NO-synthase (NOS), arginase, ornithine decarboxylase as well as the peroxynitrite concentration. typical for the isolated sodium nitrate administration inhibition of total NOS activity varies under combined administration of nitrate and sodium fluoride and is usually manifested by its hyperactivation that is accompanied by an increase in peroxynitrite concentration. At this time arginase and ornithine decarboxylase activity is observed to be substantially reduced. The administration of aminoguanidine, an iNOS inhibitor, (20 mg/kg, twice a week during the experiment) increases arginase and ornithine decarboxylase activities, and the administration of L-arginine (500 mg/kg, twice a week) results in the increase of arginase activity. The administration of L-selenomethionine, a peroxynitrite scavenger (3 mg/kg, twice a week), and JSH-23 (4-methyl-N-(3-phenylpropyl) benzene-1,2-diamine, an inhibitor of NF-κB activation (1 mg/kg, twice a week) for modeling binary nitrate and fluoride intoxication reduces the total concentration of NOS activity and peroxynitrite concentration, and increases ornithine decarboxylase activity. the combined effect of nitrate and sodium fluoride for 30 days leads to disregulatory increased activity of NO-synthase enzymes and reduction of arginase pathway of L-arginine in the soft tissues of parodontium that is promoted by hyperactivation of iNOS and NF-κB, and increased peroxynitrite production.

  6. Arginase-I enhances vascular endothelial inflammation and senescence through eNOS-uncoupling.

    PubMed

    Zhu, Cuicui; Yu, Yi; Montani, Jean-Pierre; Ming, Xiu-Fen; Yang, Zhihong

    2017-02-02

    Augmented arginase-II (Arg-II) is implicated in endothelial senescence and inflammation through a mutual positive regulatory circuit with S6K1. This study was conducted to investigate whether Arg-I, another isoform of arginase that has been also reported to play a role in vascular endothelial dysfunction, promotes endothelial senescence through similar mechanisms. The non-senescent human endothelial cells from umbilical veins (passage 2 to 4) were transduced with empty recombinant adenovirus vector (rAd/CMV) as control or rAd/CMV-Arg-I to overexpress Arg-I. Overexpressing Arg-I promoted eNOS-uncoupling, enhanced senescence markers including p53-S15, p21 and senescence-associated β-galactosidase (SA-β-gal) staining, and increased inflammatory vascular adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) as well as monocyte adhesion to endothelial cells without activating S6K1. All the effects of Arg-I were inhibited by the anti-oxidant N-acetylcysteine (NAC). Our study demonstrates that Arg-I promotes endothelial senescence and inflammatory responses through eNOS-uncoupling unrelated to activation of the S6K1 pathway.

  7. Contribution of arginase to manganese metabolism of Aspergillus niger.

    PubMed

    Keni, Sarita; Punekar, Narayan S

    2016-02-01

    Aspects of manganese metabolism during normal and acidogenic growth of Aspergillus niger were explored. Arginase from this fungus was a Mn[II]-enzyme. The contribution of the arginase protein towards A. niger manganese metabolism was investigated using arginase knockout (D-42) and arginase over-expressing (ΔXCA-29) strains of A. niger NCIM 565. The Mn[II] contents of various mycelial fractions were found in the order: D-42 strain < parent strain < ΔXCA-29 strain. While the soluble fraction forms 60% of the total mycelial Mn[II] content, arginase accounted for a significant fraction of this soluble Mn[II] pool. Changes in the arginase levels affected the absolute mycelial Mn[II] content but not its distribution in the various mycelial fractions. The A. niger mycelia harvested from acidogenic growth media contain substantially less Mn[II] as compared to those from normal growth media. Nevertheless, acidogenic mycelia harbor considerable Mn[II] levels and a functional arginase. Altered levels of mycelial arginase protein did not significantly influence citric acid production. The relevance of arginase to cellular Mn[II] pool and homeostasis was evaluated and the results suggest that arginase regulation could occur via manganese availability.

  8. 4-Methoxylonchocarpin attenuates inflammation by inhibiting lipopolysaccharide binding to Toll-like receptor of macrophages and M1 macrophage polarization.

    PubMed

    Jang, Hyo-Min; Kang, Geum-Dan; Van Le, Thi Kim; Lim, Su-Min; Jang, Dae-Sik; Kim, Dong-Hyun

    2017-04-01

    The roots of Abrus precatorius (AP, Fabaceae) have traditionally been used in Vietnam and China for the treatment of inflammatory diseases such as stomatitis, asthma, bronchitis, and hepatitis. Therefore, in this study, we isolated 4-methoxylonchocarpin (ML), an anti-inflammatory compound present in AP, and studied its anti-inflammatory effects in mice with 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis. In lipopolysaccharide (LPS)-stimulated macrophages, ML was found to inhibit nuclear factor (NF)-κB activation and tumor necrosis factor (TNF) and interleukin (IL)-6 expression by inhibiting LPS binding to Toll-like receptor 4 (TLR4) in vitro. Oral administration of ML in mice with TNBS-induced colitis suppressed colon shortening and colonic myeloperoxidase activity. ML treatment significantly inhibited the activation of nuclear factor (NF)-κB and phosphorylation of transforming growth factor β-activated kinase 1 in the colon. Treatment with ML also inhibited TNBS-induced expression of IL-1β, IL-17A, and TNF. While ML reduced the TNBS-induced expression of M1 macrophage markers such as arginase-2 and TNF, it was found to increase the expression of M2 macrophage markers such as arginase-1 and IL-10. In conclusion, oral administration of ML attenuated colitis in mice by inhibiting the binding of LPS to TLR4 on immune cells and increasing the polarization of M1 macrophages to M2 macrophages. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Arginase distribution in tissues of domestic animals.

    PubMed

    Aminlari, M; Vaseghi, T

    1992-10-01

    1. A new colorimetric method was used for determination of arginase in different tissues of some domestic animals. 2. In all species studied liver was the richest source of arginase. 3. Significant differences were observed in the specific activity of arginase in livers from different species. 4. In all species, besides liver, kidney and brain also contained significant levels of arginase. 5. In the dog, in addition to the three organs mentioned above, lung, heart, spleen and skeletal muscle showed some arginase activity. 6. In sheep and cattle significant arginase activity was observed in the rumen. No differences were observed between epithelial and muscular layers of different parts of digestive system in all species studied. 7. These results are discussed in terms of the possible role of arginase in different tissues of animals.

  10. [Arginase Level in Suspended Red Blood Cells Storaged for Different Time].

    PubMed

    Fan, Li-Ping; Huang, Hao-Bo; Wei, Shi-Jin; Fu, Dan-Hui; Zeng, Feng; Huang, Qing-Hua; Hong, Jin-Quan

    2015-10-01

    To explore the effect of storage time on arginase level, and the possible source of arginase in suspended red blood cells (RBC). The arginase and myeloperoxidase (MPO) levels in suspended RBC and control plasma were detected by ELISA. The free hemoglobin level in suspended RBC and control plasma were detected by colorimetric method. The relationship between arginase level, MPO level and free hemoglobin level in suspended RBC was analyzed by the related methods. The arginase and free hemoglobin levels in suspended RBC were higher than those in control plasma. Otherwise, MPO level was not significantly different between suspended RBC and control plasma. All of them did not increase along with prolonging of storage time. There was not a significant correlation between arginase level and free hemoglobin level in suspended RBC of different storage time (r = 0.03), but arginase level positively correlated with MPO level in the suspended RBC of different storage time (r = 0.76). The arginase level in suspended RBC storaged for different time increases significantly, but not along with prolonging of storage time. The main possible source of arginase in the suspended RBC is the residual white blood cell, especially neutrophils.

  11. Binding of [alpha, alpha]-Disubstituted Amino Acids to Arginase Suggests New Avenues for Inhibitor Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilies, Monica; Di Costanzo, Luigi; Dowling, Daniel P.

    Arginase is a binuclear manganese metalloenzyme that hydrolyzes L-arginine to form L-ornithine and urea, and aberrant arginase activity is implicated in various diseases such as erectile dysfunction, asthma, atherosclerosis, and cerebral malaria. Accordingly, arginase inhibitors may be therapeutically useful. Continuing our efforts to expand the chemical space of arginase inhibitor design and inspired by the binding of 2-(difluoromethyl)-L-ornithine to human arginase I, we now report the first study of the binding of {alpha},{alpha}-disubstituted amino acids to arginase. Specifically, we report the design, synthesis, and assay of racemic 2-amino-6-borono-2-methylhexanoic acid and racemic 2-amino-6-borono-2-(difluoromethyl)hexanoic acid. X-ray crystal structures of human arginase Imore » and Plasmodium falciparum arginase complexed with these inhibitors reveal the exclusive binding of the L-stereoisomer; the additional {alpha}-substituent of each inhibitor is readily accommodated and makes new intermolecular interactions in the outer active site of each enzyme. Therefore, this work highlights a new region of the protein surface that can be targeted for additional affinity interactions, as well as the first comparative structural insights on inhibitor discrimination between a human and a parasitic arginase.« less

  12. [Effect of enalapril on nitric oxide synthesis, oxidative metabolism, and vascular tone in aging rats].

    PubMed

    Sahach, V F; Baziliuk, O V; Stepanenko, L H; Korkach, Iu P; Kotsiuruba, A V

    2007-01-01

    Endothelium-dependent and endothelium-independent reactions of relaxations of vascular smooth muscle (VSM) were examined in the aorta preparations of the two groups (6-8 and 21-22 month). The studies also two NO synthase (NOS) isoform activity--inducible (iNOS) and constitutive (cNOS), activity of arginase and nitrate reductase and the content of high-molecular nitrosothiols (HMNT) and low-molecular nitrosothiols (LMNT) and stable metabolites of NO (NO(-)2, NO(-)3). Aging rats demonstrated only endothelium-dependent responses of VSM to acethylcholine lowering. This endothelial dysfunction depend on high activity of arginase, iNOS and salvage (by nitrate reductase) NO synthesis, both reactive oxigen species (ROS) (by xanthine oxidase) and peroxynitrite generation, as well as low activity of constitutive (eNOS, nNOS) NO synthesis. Angiotensin-converting enzyme inhibitor (enalapril) administration (20 mg/kg, 30 or 55 days) up regalate constitutive NO synthesis by arginase, iNOS, nitrate reductase activity and ROS and peroxynitrite generation inhibition thus restore endothelium-dependent relaxations of VSM in aging rats. The result obtained suggest a new roles for the renin-angiotensin system in vascular tone regulation. Thus enalapril might serve as a novel tool to prevent aging-associated endothelial dysfunction.

  13. Local Arginase 1 Activity Is Required for Cutaneous Wound Healing

    PubMed Central

    Campbell, Laura; Saville, Charis R; Murray, Peter J; Cruickshank, Sheena M; Hardman, Matthew J

    2013-01-01

    Chronic nonhealing wounds in the elderly population are associated with a prolonged and excessive inflammatory response, which is widely hypothesized to impede healing. Previous studies have linked alterations in local L-arginine metabolism, principally mediated by the enzymes arginase (Arg) and inducible nitric oxide synthase (iNOS), to pathological wound healing. Over subsequent years, interest in Arg/iNOS has focused on the classical versus alternatively activated (M1/M2) macrophage paradigm. Although the role of iNOS during healing has been studied, Arg contribution to healing remains unclear. Here, we report that Arg is dynamically regulated during acute wound healing. Pharmacological inhibition of local Arg activity directly perturbed healing, as did Tie2-cre-mediated deletion of Arg1, revealing the importance of Arg1 during healing. Inhibition or depletion of Arg did not alter alternatively activated macrophage numbers but instead was associated with increased inflammation, including increased influx of iNOS+ cells and defects in matrix deposition. Finally, we reveal that in preclinical murine models reduced Arg expression directly correlates with delayed healing, and as such may represent an important future therapeutic target. PMID:23552798

  14. Local arginase 1 activity is required for cutaneous wound healing.

    PubMed

    Campbell, Laura; Saville, Charis R; Murray, Peter J; Cruickshank, Sheena M; Hardman, Matthew J

    2013-10-01

    Chronic nonhealing wounds in the elderly population are associated with a prolonged and excessive inflammatory response, which is widely hypothesized to impede healing. Previous studies have linked alterations in local L-arginine metabolism, principally mediated by the enzymes arginase (Arg) and inducible nitric oxide synthase (iNOS), to pathological wound healing. Over subsequent years, interest in Arg/iNOS has focused on the classical versus alternatively activated (M1/M2) macrophage paradigm. Although the role of iNOS during healing has been studied, Arg contribution to healing remains unclear. Here, we report that Arg is dynamically regulated during acute wound healing. Pharmacological inhibition of local Arg activity directly perturbed healing, as did Tie2-cre-mediated deletion of Arg1, revealing the importance of Arg1 during healing. Inhibition or depletion of Arg did not alter alternatively activated macrophage numbers but instead was associated with increased inflammation, including increased influx of iNOS(+) cells and defects in matrix deposition. Finally, we reveal that in preclinical murine models reduced Arg expression directly correlates with delayed healing, and as such may represent an important future therapeutic target.

  15. Comparison of biochemical properties of liver arginase from streptozocin-induced diabetic and control mice.

    PubMed

    Spolarics, Z; Bond, J S

    1989-11-01

    Arginase activity is elevated in livers of diabetic animals compared to controls and there is evidence that this is due in part to increased specific activity (activity/mg arginase protein). To investigate the molecular basis of this increased activity, the physicochemical and kinetic properties of hepatic arginase from diabetic and control mice were compared. Two types of arginase subunits with molecular weights of 35,000 and 38,000 were found in both the diabetic and control animals and the subunits in these animals had similar, multiple ionic forms. Kinetic parameters of purified preparations of arginase for arginine (apparent Km and Vmax values) and the thermal stability of these preparations from diabetics and controls were also similar. Furthermore, no difference was found in the distribution of arginase activity among different subcellular liver fractions. Separation of basic and acidic oligomeric forms of arginase by fast-protein liquid chromatography resulted in a slightly different distribution of activity among the forms in the normal and diabetic group. The apparent Km values for Mn2+ of the basic form of the enzyme were 25 and 33 microM for the enzyme from normal and diabetic animals, respectively; for acidic forms, for which two apparent Km values were measured, the values were 8 and 197 microM for arginase from controls and 35 and 537 microM from diabetics. These results indicate that in diabetes, while no marked changes in the physicochemical characteristics of arginase are obvious, some changes are found in the interaction of arginase with its cofactor Mn.

  16. Activated Rho Kinase Mediates Diabetes-Induced Elevation of Vascular Arginase Activation and Contributes to Impaired Corpora Cavernosa Relaxation: Possible Involvement of p38 MAPK Activation

    PubMed Central

    Nunes, Kenia P.; Yao, Lin; Liao, James K.; Webb, R. Clinton; Caldwell, Ruth B.; Caldwell, R. William

    2013-01-01

    Introduction Activated RhoA/Rho kinase (ROCK) has been implicated in diabetes-induced erectile dysfunction. Earlier studies have demonstrated involvement of ROCK pathway in the activation of arginase in endothelial cells. However, signaling pathways activated by ROCK in the penis remain unclear. Aim We tested whether ROCK and p38 MAPK are involved in the elevation of arginase activity and subsequent impairment of corpora cavernosal (CC) relaxation in diabetes. Methods Eight weeks after streptozotocin-induced diabetes, vascular functional studies, arginase activity assay, and protein expression of RhoA, ROCK, phospho-p38 MAPK, p38 MAPK, phospho-MYPT-1Thr850, MYPT-1 and arginase levels were assessed in CC tissues from nondiabetic wild type (WT), diabetic (D) WT (WT + D), partial ROCK 2+/− knockout (KO), and ROCK 2+/− KO + D mice. Main Outcome Measures The expression of RhoA, ROCK 1 and 2, phosphorylation of MYPT-1Thr850 and p38 MAPK, arginase activity/expression, endothelial- and nitrergic-dependent relaxation of CC was assayed. Results Diabetes significantly reduced maximum relaxation (Emax) to both endothelium-dependent acetylcholine (WT + D: Emax; 61 ± 4% vs. WT: Emax; 75 ± 2%) and nitrergic nerve stimulation. These effects were associated with increased expression of active RhoA, ROCK 2, phospho-MYPT-1Thr850, phospho-p38 MAPK, arginase II, and activity of corporal arginase (1.6-fold) in WT diabetic CC. However, this impairment in CC of WT + D mice was absent in heterozygous ROCK 2+/− KO + D mice for acetylcholine (Emax: 80 ± 5%) and attenuated for nitrergic nerve-induced relaxation. CC of ROCK 2+/− KO + D mice showed much less ROCK activity, did not exhibit p38 MAPK activation, and had reduced arginase activity and arginase II expression. These findings indicate that ROCK 2 mediates diabetes-induced elevation of arginase activity. Additionally, pretreatment of WT diabetic CC with inhibitors of arginase (ABH) or p38 MAPK (SB203580) partially prevented impairment of ACh- and nitrergic nerve-induced relaxation and elevation of arginase activity. Conclusion ROCK 2, p38 MAPK and arginase play key roles in diabetes-induced impairment of CC relaxation. PMID:23566117

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hai, Yang; Christianson, David W.

    Leishmaniaarginase is a potential drug target for the treatment of leishmaniasis because this binuclear manganese metalloenzyme initiatesde novopolyamine biosynthesis by catalyzing the hydrolysis of L-arginine to generate L-ornithine and urea. The product L-ornithine subsequently undergoes decarboxylation to yield putrescine, which in turn is utilized for spermidine biosynthesis. Polyamines such as spermidine are essential for the growth and survival of the parasite, so inhibition of enzymes in the polyamine-biosynthetic pathway comprises an effective strategy for treating parasitic infections. To this end, two X-ray crystal structures ofL. mexicanaarginase complexed with α,α-disubstituted boronic amino-acid inhibitors based on the molecular scaffold of 2-(S)-amino-6-boronohexanoic acidmore » are now reported. Structural comparisons with human and parasitic arginase complexes reveal interesting differences in the binding modes of the additional α-substituents,i.e.the D side chains, of these inhibitors. Subtle differences in the three-dimensional contours of the outer active-site rims among arginases from different species lead to different conformations of the D side chains and thus different inhibitor-affinity trends. The structures suggest that it is possible to maintain affinity while fine-tuning intermolecular interactions of the D side chain of α,α-disubstituted boronic amino-acid inhibitors in the search for isozyme-specific and species-specific arginase inhibitors.« less

  18. The AP-1 Transcription Factor c-Jun Promotes Arthritis by Regulating Cyclooxygenase-2 and Arginase-1 Expression in Macrophages.

    PubMed

    Hannemann, Nicole; Jordan, Jutta; Paul, Sushmita; Reid, Stephen; Baenkler, Hanns-Wolf; Sonnewald, Sophia; Bäuerle, Tobias; Vera, Julio; Schett, Georg; Bozec, Aline

    2017-05-01

    Activation of proinflammatory macrophages is associated with the inflammatory state of rheumatoid arthritis. Their polarization and activation are controlled by transcription factors such as NF-κB and the AP-1 transcription factor member c-Fos. Surprisingly, little is known about the role of the AP-1 transcription factor c-Jun in macrophage activation. In this study, we show that mRNA and protein levels of c-Jun are increased in macrophages following pro- or anti-inflammatory stimulations. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment cluster analyses of microarray data using wild-type and c-Jun-deleted macrophages highlight the central function of c-Jun in macrophages, in particular for immune responses, IL production, and hypoxia pathways. Mice deficient for c-Jun in macrophages show an amelioration of inflammation and bone destruction in the serum-induced arthritis model. In vivo and in vitro gene profiling, together with chromatin immunoprecipitation analysis of macrophages, revealed direct activation of the proinflammatory factor cyclooxygenase-2 and indirect inhibition of the anti-inflammatory factor arginase-1 by c-Jun. Thus, c-Jun regulates the activation state of macrophages and promotes arthritis via differentially regulating cyclooxygenase-2 and arginase-1 levels. Copyright © 2017 by The American Association of Immunologists, Inc.

  19. Human recombinant arginase enzyme reduces plasma arginine in mouse models of arginase deficiency

    PubMed Central

    Burrage, Lindsay C.; Sun, Qin; Elsea, Sarah H.; Jiang, Ming-Ming; Nagamani, Sandesh C.S.; Frankel, Arthur E.; Stone, Everett; Alters, Susan E.; Johnson, Dale E.; Rowlinson, Scott W.; Georgiou, George; Lee, Brendan H.

    2015-01-01

    Arginase deficiency is caused by deficiency of arginase 1 (ARG1), a urea cycle enzyme that converts arginine to ornithine. Clinical features of arginase deficiency include elevated plasma arginine levels, spastic diplegia, intellectual disability, seizures and growth deficiency. Unlike other urea cycle disorders, recurrent hyperammonemia is typically less severe in this disorder. Normalization of plasma arginine levels is the consensus treatment goal, because elevations of arginine and its metabolites are suspected to contribute to the neurologic features. Using data from patients enrolled in a natural history study conducted by the Urea Cycle Disorders Consortium, we found that 97% of plasma arginine levels in subjects with arginase deficiency were above the normal range despite conventional treatment. Recently, arginine-degrading enzymes have been used to deplete arginine as a therapeutic strategy in cancer. We tested whether one of these enzymes, a pegylated human recombinant arginase 1 (AEB1102), reduces plasma arginine in murine models of arginase deficiency. In neonatal and adult mice with arginase deficiency, AEB1102 reduced the plasma arginine after single and repeated doses. However, survival did not improve likely, because this pegylated enzyme does not enter hepatocytes and does not improve hyperammonemia that accounts for lethality. Although murine models required dosing every 48 h, studies in cynomolgus monkeys indicate that less frequent dosing may be possible in patients. Given that elevated plasma arginine rather than hyperammonemia is the major treatment challenge, we propose that AEB1102 may have therapeutic potential as an arginine-reducing agent in patients with arginase deficiency. PMID:26358771

  20. Early obesity leads to increases in hepatic arginase I and related systemic changes in nitric oxide and L-arginine metabolism in mice.

    PubMed

    Ito, Tatsuo; Kubo, Masayuki; Nagaoka, Kenjiro; Funakubo, Narumi; Setiawan, Heri; Takemoto, Kei; Eguchi, Eri; Fujikura, Yoshihisa; Ogino, Keiki

    2018-02-01

    Obesity is a risk factor for vascular endothelial cell dysfunction characterized by low-grade, chronic inflammation. Increased levels of arginase I and concomitant decreases in L-arginine bioavailability are known to play a role in the pathogenesis of vascular endothelial cell dysfunction. In the present study, we focused on changes in the systemic expression of arginase I as well as L-arginine metabolism in the pre-disease state of early obesity prior to the onset of atherosclerosis. C57BL/6 mice were fed a control diet (CD; 10% fat) or high-fat diet (HFD; 60% fat) for 8 weeks. The mRNA expression of arginase I in the liver, adipose tissue, aorta, and muscle; protein expression of arginase I in the liver and plasma; and systemic levels of L-arginine bioavailability and NO 2 - were assessed. HFD-fed mice showed early obesity without severe disease symptoms. Arginase I mRNA and protein expression levels in the liver were significantly higher in HFD-fed obese mice than in CD-fed mice. Arginase I levels were slightly increased, whereas L-arginine levels were significantly reduced, and these changes were followed by reductions in NO 2 - levels. Furthermore, hepatic arginase I levels positively correlated with plasma arginase I levels and negatively correlated with L-arginine bioavailability in plasma. These results suggested that increases in the expression of hepatic arginase I and reductions in plasma L-arginine and NO 2 - levels might lead to vascular endothelial dysfunction in the pre-disease state of early obesity.

  1. Elevated levels of polymorphonuclear myeloid-derived suppressor cells in patients with glioblastoma highly express S100A8/9 and arginase and suppress T cell function

    PubMed Central

    Gielen, Paul R.; Schulte, Barbara M.; Kers-Rebel, Esther D.; Verrijp, Kiek; Bossman, Sandra A.J.F.H.; ter Laan, Mark; Wesseling, Pieter

    2016-01-01

    Background Gliomas are primary brain tumors that are associated with a poor prognosis. The introduction of new treatment modalities (including immunotherapy) for these neoplasms in the last 3 decades has resulted in only limited improvement in survival. Gliomas are known to create an immunosuppressive microenvironment that hampers the efficacy of (immuno)therapy. One component of this immunosuppressive environment is the myeloid-derived suppressor cell (MDSC). Methods We set out to analyze the presence and activation state of MDSCs in blood (n = 41) and tumor (n = 20) of glioma patients by measuring S100A8/9 and arginase using flow cytometry and qPCR. Inhibition of T cell proliferation and cytokine production after stimulation with anti-CD3/anti-CD28 coated beads was used to measure in vitro MDSC suppression capacity. Results We report a trend toward a tumor grade-dependent increase of both monocytic (M-) and polymorphonuclear (PMN-) MDSC subpopulations in the blood of patients with glioma. M-MDSCs of glioma patients have increased levels of intracellular S100A8/9 compared with M-MDSCs in healthy controls (HCs). Glioma patients also have increased S100A8/9 serum levels, which correlates with increased arginase activity in serum. PMN-MDSCs in both blood and tumor tissue demonstrated high expression of arginase. Furthermore, we assessed blood-derived PMN-MDSC function and showed that these cells have potent T cell suppressive function in vitro. Conclusions These data indicate a tumor grade-dependent increase of MDSCs in the blood of patients with a glioma. These MDSCs exhibit an increased activation state compared with MDSCs in HCs, independent of tumor grade. PMID:27006175

  2. Effects of a chronic l-arginine supplementation on the arginase pathway in aged rats.

    PubMed

    Moretto, Johnny; Guglielmetti, Anne-Sophie; Tournier-Nappey, Maude; Martin, Hélène; Prigent-Tessier, Anne; Marie, Christine; Demougeot, Céline

    2017-04-01

    While ageing is frequently associated with l-arginine deficiency, clinical and experimental studies provided controversial data on the interest of a chronic l-arginine supplementation with beneficial, no or even deleterious effects. It was hypothesized that these discrepancies might relate to a deviation of l-arginine metabolism towards production of l-ornithine rather than nitric oxide as a result of age-induced increase in arginase activity. This study investigated the effect of ageing on arginase activity/expression in target tissues and determined whether l-arginine supplementation modulated the effect of ageing on arginase activity. Arginase activity and expression were measured in the heart, vessel, brain, lung, kidney and liver in young rats (3-months old) and aged Wistar rats (22-24-months-old) with or without l-arginine supplementation (2.25% in drinking water for 6weeks). Plasma levels of l-arginine and l-ornithine were quantified in order to calculate the plasma l-arginine/l-ornithine ratio, considered as a reflection of arginase activity. Cardiovascular parameters (blood pressure, heart rate) and aortic vascular reactivity were also studied. Ageing dramatically reduced plasma l-arginine and l-arginine/l-ornithine ratio, decreased liver and kidney arginase activities but did not change activities in other tissues. l-Arginine supplementation normalized plasma l-arginine and l-arginine/l-ornithine ratio, improved endothelial function and decreased systolic blood pressure. These effects were associated with decreased arginase activity in aorta along with no change in the other tissues except in the lung in which activity was increased. A strong mismatch was therefore observed between arginase activity and expression in analyzed tissues. The present study reveals that ageing selectively changes arginase activity in clearance tissues, but does not support a role of the arginase pathway in the potential deleterious effect of the l-arginine supplementation in aged patients. Moreover, our data argue against the use of the measurement of plasma l-arginine/l-ornithine ratio to estimate arginase activity in aged patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Counter-regulatory paracrine actions of FGF-23 and 1,25(OH)2D in macrophages

    PubMed Central

    Han, Xiaobin; Li, Linqiang; Yang, Jiancheng; King, Gwendalyn; Xiao, Zhousheng; Quarles, Leigh Darryl

    2016-01-01

    Mechanisms underlying the association between fibroblastic growth factor 23 (FGF-23) and inflammation are uncertain. We found that FGF-23 was markedly up-regulated in LPS/INF-γ-induced proinflammatory M1 macrophages and Hyp mouse-derived peritoneal macrophages, but not in IL-4-induced M2 anti-inflammatory macrophages. NF-κB and JAK/STAT1 pathways mediated the increased transcription of FGF-23 in response to M1 polarization. FGF-23 stimulated TNF-α, but not IL-6, expression in M0 macrophages and suppressed Arginase-1 expression in M2 macrophages through FGFR-mediated mechanisms. 1,25(OH)2D stimulated Arginase-1 expression and inhibited FGF-23 stimulation of TNF-α. FGF-23 has proinflammatory paracrine functions and counter-regulatory actions to 1,25(OH)2D on innate immune responses. PMID:26762170

  4. Genetics Home Reference: arginase deficiency

    MedlinePlus

    ... occurs in liver cells. This cycle processes excess nitrogen, generated when protein is used by the body, ... the urea cycle, which produces urea by removing nitrogen from arginine. In people with arginase deficiency , arginase ...

  5. Deregulation of arginase induces bone complications in high-fat/high-sucrose diet diabetic mouse model

    PubMed Central

    Bhatta, Anil; Sangani, Rajnikumar; Kolhe, Ravindra; Toque, Haroldo A.; Cain, Michael; Wong, Abby; Howie, Nicole; Shinde, Rahul; Elsalanty, Mohammed; Yao, Lin; Chutkan, Norman; Hunter, Monty; Caldwell, Ruth B.; Isales, Carlos; Caldwell, R. William; Fulzele, Sadanand

    2016-01-01

    A balanced diet is crucial for healthy development and prevention of musculoskeletal related diseases. Diets high in fat content are known to cause obesity, diabetes and a number of other disease states. Our group and others have previously reported that activity of the urea cycle enzyme arginase is involved in diabetes-induced dysregulation of vascular function due to decreases in nitric oxide formation. We hypothesized that diabetes may also elevate arginase activity in bone and bone marrow, which could lead to bone-related complications. To test this we determined the effects of diabetes on expression and activity of arginase, in bone and bone marrow stromal cells (BMSCs). We demonstrated that arginase 1 is abundantly present in the bone and BMSCs. We also demonstrated that arginase activity and expression in bone and bone marrow is up-regulated in models of diabetes induced by HFHS diet and streptozotocin (STZ). HFHS diet down-regulated expression of healthy bone metabolism markers (BMP2, COL-1, ALP, and RUNX2) and reduced bone mineral density, bone volume and trabecular thickness. However, treatment with an arginase inhibitor (ABH) prevented these bone-related complications of diabetes. In-vitro study of BMSCs showed that high glucose treatment increased arginase activity and decreased nitric oxide production. These effects were reversed by treatment with an arginase inhibitor (ABH). Our study provides evidence that deregulation of L-arginine metabolism plays a vital role in HFHS diet-induced diabetic complications and that these complications can be prevented by treatment with arginase inhibitors. The modulation of L-arginine metabolism in disease could offer a novel therapeutic approach for osteoporosis and other musculoskeletal related diseases. PMID:26704078

  6. Association of arginase I or nitric oxide-related factors with job strain in healthy workers

    PubMed Central

    Eguchi, Eri; Nagaoka, Kenjiro

    2017-01-01

    This study evaluated the associations between job strain and arginase I in 378 healthy Japanese factory workers by a cross-sectional study measuring nitric oxide (NO)-related parameters (arginase I, L-arginine, exhaled nitric oxide (FeNO), and NOx), clinical parameters, and job strain using a Japanese version of the Job Content Questionnaire by Karasek. Arginase I and FEV1% were negatively correlated with job strain and positively correlated with job control and social support. FeNO and hs-CRP were negatively correlated with job strain. Multiple regression analysis showed negative association of arginase I with job strain and positive association with job control and social support in females. It is concluded that serum levels of arginase I may be useful biomarkers for the diagnosis of job stress in healthy female workers, although many factors can be influencing the data. PMID:28403218

  7. Recent advances in arginine metabolism: roles and regulation of the arginases

    PubMed Central

    Morris, Sidney M

    2009-01-01

    As arginine can serve as precursor to a wide range of compounds, including nitric oxide, creatine, urea, polyamines, proline, glutamate and agmatine, there is considerable interest in elucidating mechanisms underlying regulation of its metabolism. It is now becoming apparent that the two isoforms of arginase in mammals play key roles in regulation of most aspects of arginine metabolism in health and disease. In particular, work over the past several years has focused on the roles and regulation of the arginases in vascular disease, pulmonary disease, infectious disease, immune cell function and cancer. As most of these topics have been considered in recent review articles, this review will focus more closely on results of recent studies on expression of the arginases in endothelial and vascular smooth muscle cells, post-translational modulation of arginase activity and applications of arginase inhibitors in vivo. PMID:19508396

  8. Citrulline Supplementation Improves Organ Perfusion and Arginine Availability under Conditions with Enhanced Arginase Activity

    PubMed Central

    Wijnands, Karolina A.P.; Meesters, Dennis M.; van Barneveld, Kevin W.Y.; Visschers, Ruben G.J.; Briedé, Jacob J.; Vandendriessche, Benjamin; van Eijk, Hans M.H.; Bessems, Babs A.F.M.; van den Hoven, Nadine; von Wintersdorff, Christian J.H.; Brouckaert, Peter; Bouvy, Nicole D.; Lamers, Wouter H.; Cauwels, Anje; Poeze, Martijn

    2015-01-01

    Enhanced arginase-induced arginine consumption is believed to play a key role in the pathogenesis of sickle cell disease-induced end organ failure. Enhancement of arginine availability with l-arginine supplementation exhibited less consistent results; however, l-citrulline, the precursor of l-arginine, may be a promising alternative. In this study, we determined the effects of l-citrulline compared to l-arginine supplementation on arginine-nitric oxide (NO) metabolism, arginine availability and microcirculation in a murine model with acutely-enhanced arginase activity. The effects were measured in six groups of mice (n = 8 each) injected intraperitoneally with sterile saline or arginase (1000 IE/mouse) with or without being separately injected with l-citrulline or l-arginine 1 h prior to assessment of the microcirculation with side stream dark-field (SDF)-imaging or in vivo NO-production with electron spin resonance (ESR) spectroscopy. Arginase injection caused a decrease in plasma and tissue arginine concentrations. l-arginine and l-citrulline supplementation both enhanced plasma and tissue arginine concentrations in arginase-injected mice. However, only the citrulline supplementation increased NO production and improved microcirculatory flow in arginase-injected mice. In conclusion, the present study provides for the first time in vivo experimental evidence that l-citrulline, and not l-arginine supplementation, improves the end organ microcirculation during conditions with acute arginase-induced arginine deficiency by increasing the NO concentration in tissues. PMID:26132994

  9. Unique properties of arginase purified from camel liver cytosol.

    PubMed

    Maharem, Tahany M; Zahran, Walid E; Hassan, Rasha E; Abdel Fattah, Mohamed M

    2018-03-01

    Arginase (ARG) is an enzyme involved in urea cycle, where it catalyzes the hydrolysis of L-arginine into L-ornithine and urea. Since there is no information about the isolation and purification of ARG from camel liver, this investigation was designed to purify and characterize ARG from camel liver and compare its molecular and kinetic properties with that reported from other species. Camel liver arginase (CL-ARG) was purified to homogeneity using heat denaturation followed by ammonium sulphate precipitation with a combination of DEAE-cellulose, SP-Sepharose and Sephadex G 100-120 chromatography columns. The specific activity of CL-ARG was increased to 18,485 units/mg proteins with 23.5-fold purification over crude homogenate. It was observed that CL-ARG showed a similarity with other species such as behaviour on DEAE-cellulose column, kinetics of inhibition, necessity for metal ions as cofactor, and alkaline optimum pH. On the contrary, CL-ARG differed in its molecular weight (180kDa), oligomeric protein structure, slightly neutral-alkaline pI value (7.7), K m value (7.1mM), optimum pH (9, 10.7), and higher optimum temperature (70°C). In conclusion, this study investigated the properties of CL-ARG via a simple and reproducible purification procedure and provided valuable information for its production from available source in Egypt for medical and industrial purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Different mechanisms lead to the angiogenic process induced by three adenocarcinoma cell lines.

    PubMed

    Davel, Lilia E; Rimmaudo, Laura; Español, Alejandro; de la Torre, Eulalia; Jasnis, María Adela; Ribeiro, María Laura; Gotoh, Tomomi; de Lustig, Eugenia Sacerdote; Sales, María Elena

    2004-01-01

    Neoangiogenesis is essential for tumor and metastasis growth, but this complex process does not follow the same activation pathway, at least in tumor cell lines originated from different murine mammary adenocarcinomas. LMM3 cells were the most potent to stimulate new blood vessel formation. This response was significantly reduced by preincubating cells with indomethacin and NS-398, non-selective cyclooxygenase (COX) and COX-2 selective inhibitors, respectively. COX-1 and COX-2 isoenzymes were both highly expressed in LMM3 cells, and we observed that indomethacin was more effective than NS-398 to inhibit prostaglandin E2 (PGE2) synthesis. In addition, nitric oxide synthase (NOS) inhibitors, Nomega monomethyl L-arginine and aminoguanidine, also reduced LMM3-induced angiogenesis and nitric oxide (NO) synthesis as well. NOS2 > NOS3 proteins and arginase II isoform were detected in LMM3 cells by Western blot. The latter enzyme was also involved in the LMM3 neovascular response, since the arginase inhibitor, Nomega hydroxy L-arginine reduced the angiogenic cascade. On the other hand, parental LM3 cells were able to stimulate neovascularization via COX-1 and arginase products since only indomethacin and Nomega hydroxy L-arginine, which diminished PGE2 and urea synthesis, respectively, also reduced angiogenesis. In turn, LM2 cells angiogenic response could be due in fact to PGE2-induced VEGF liberation that stimulated neoangiogenesis at very low levels of NO.

  11. The role of the megagametophyte in maintaining loblolly pine (Pinus taeda L.) seedling arginase gene expression in vitro.

    PubMed

    Todd, Christopher D; Gifford, David J

    2002-05-01

    Following loblolly pine (Pinus taeda L.) seed germination, storage-protein breakdown in the megagametophyte and in the seedling results in a large increase in the seedling's free amino acid pool. A substantial portion of both the storage proteins and the amino acid pool is arginine, a very efficient nitrogen-storage compound. Free arginine is hydrolyzed in the seedling by the enzyme arginase (EC 3.5.3.1), which is under strong developmental control. At present, regulation of arginase in conifers is not well understood. Here we report the utilization of an in vitro culture system to address the separate impacts of the seedling and megagametophyte tissues on arginase enzyme activity, protein levels and patterns of gene expression. We also describe the generation of an anti-arginase antibody prepared from a histidine-tagged loblolly pine arginase fusion protein expressed in Escherichia coli. Our results indicate that arginase gene expression in the seedling is initiated by the seedling itself and then maintained or up-regulated by the megagametophyte. The contribution of storage-protein breakdown and the free amino acid pool, particularly arginine, in this regulation is also addressed.

  12. Smoking increases salivary arginase activity in patients with dental implants.

    PubMed

    Queiroz, D A; Cortelli, J R; Holzhausen, M; Rodrigues, E; Aquino, D R; Saad, W A

    2009-09-01

    It is believed that an increased arginase activity may lead to less nitric oxide production, which consequently increases the susceptibility to bacterial infection. Considering the hypothesis that smoking may alter the arginase activity and that smoking is considered a risk factor to dental implant survival, the present study aimed at evaluating the effect of smoking on the salivary arginase activity of patients with dental implants. Salivary samples of 41 subjects were collected: ten non-smoking and with no dental implants (group A), ten non-smoking subjects with dental implants (group B), ten smoking subjects with implants (group C), and 11 smoking subjects with no dental implants (group D). The levels of salivary arginase activity were determined by the measurement of L-ornithine and expressed as mIU/mg of protein. A significant increase in the salivary arginase activity was verified in groups C (64.26 +/- 16.95) and D (49.55 +/- 10.01) compared to groups A (10.04 +/- 1.95, p = 0.00001 and p = 0.0110, groups C and D, respectively) and B (11.77 +/- 1.45, p = 0.00001 and p = 0.0147, groups C and D, respectively). No significant difference was found between groups C and D (p = 0.32). Within the limits of the present study, it can be concluded that salivary arginase activity is increased in smoking subjects with dental implants in contrast to non-smoking subjects with dental implants, therefore suggesting a possible mechanism by which cigarette smoking may lead to implant failure. The analysis of salivary arginase activity may represent an important tool to prevent implant failure in the near future.

  13. Selective Inhibition of Alpha/Beta-Hydrolase Domain 6 Attenuates Neurodegeneration, Alleviates Blood Brain Barrier Breakdown, and Improves Functional Recovery in a Mouse Model of Traumatic Brain Injury

    PubMed Central

    Tchantchou, Flaubert

    2013-01-01

    Abstract 2-arachidonylglycerol (2-AG) is the most abundant endocannabinoid in the central nervous system and is elevated after brain injury. Because of its rapid hydrolysis, however, the compensatory and neuroprotective effect of 2-AG is short-lived. Although inhibition of monoacylglycerol lipase, a principal enzyme for 2-AG degradation, causes a robust increase of brain levels of 2-AG, it also leads to cannabinoid receptor desensitization and behavioral tolerance. Alpha/beta hydrolase domain 6 (ABHD6) is a novel 2-AG hydrolytic enzyme that accounts for a small portion of 2-AG hydrolysis, but its inhibition is believed to elevate the levels of 2-AG within the therapeutic window without causing side effect. Using a mouse model of traumatic brain injury (TBI), we found that post-insult chronic treatment with a selective ABHD6 inhibitor WWL70 improved motor coordination and working memory performance. WWL70 treatment reduced lesion volume in the cortex and neurodegeneration in the dendate gyrus. It also suppressed the expression of inducible nitric oxide synthase and cyclooxygenase-2 and enhanced the expression of arginase-1 in the ipsilateral cortex at 3 and 7 days post-TBI, suggesting microglia/macrophages shifted from M1 to M2 phenotypes after treatment. The blood-brain barrier dysfunction at 3 and 7 days post-TBI was dramatically reduced. Furthermore, the beneficial effects of WWL70 involved up-regulation and activation of cannabinoid type 1 and type 2 receptors and were attributable to the phosphorylation of the extracellular signal regulated kinase and the serine/threonine protein kinase AKT. This study indicates that the fine-tuning of 2-AG signaling by modulating ABHD6 activity can exert anti-inflammatory and neuroprotective effects in TBI. PMID:23151067

  14. Biochemical Effects of Cadmium Exposure and the Potential Pharmacologic Significance of Cadmium Mediated Hydrolase Inhibition

    DTIC Science & Technology

    1997-04-18

    DNA polymerase Alcohol dehydrogenase Hexokinase Glucose-6- phosphatase Arginase Pyruvate kinase (also requires Mg2•) Urease Nitrate...cyclohexane. The layers are separated by centrifugation (5 min at 1000 x g), the top organic layer is removed and dried with anhydrous sodium sulfate...An aliquot of the dried organic layer is transferred to a clean tube and evaporated under a gentle stream of nitrogen at room temperature

  15. Unusual hepatic mitochondrial arginase in an Indian air-breathing teleost, Heteropneustes fossilis: purification and characterization.

    PubMed

    Srivastava, Shilpee; Ratha, B K

    2013-02-01

    A functional urea cycle with both cytosolic (ARG I) and mitochondrial (ARG II) arginase activity is present in the liver of an ureogenic air-breathing teleost, Heteropneustes fossilis. Antibodies against mammalian ARG II showed no cross-reactivity with the H. fossilis ARG II. ARG II was purified to homogeneity from H. fossilis liver. Purified ARG II showed a native molecular mass of 96 kDa. SDS-PAGE showed a major band at 48 kDa. The native enzyme, therefore, appears to be a homodimer. The pI value of the enzyme was 7.5. The purified enzyme showed maximum activity at pH 10.5 and 55 °C. The K(m) of purified ARG II for l-arginine was 5.25±1.12 mM. L-Ornithine and N(ω)-hydroxy-L-arginine showed mixed inhibition with K(i) values 2.16±0.08 and 0.02±0.004 mM respectively. Mn(+2) and Co(+2) were effective activators of arginase activity. Antibody raised against purified H. fossilis ARG II did not cross-react with fish ARG I, and mammalian ARG I and ARG II. Western blot with the antibodies against purified H. fossilis hepatic ARG II showed cross reactivity with a 96 kDa band on native PAGE and a 48 kDa band on SDS-PAGE. The molecular, immunological and kinetic properties suggest uniqueness of the hepatic mitochondrial ARG II in H. fossilis. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Arginase activity and nitric oxide levels in patients with obstructive sleep apnea syndrome

    PubMed Central

    Yüksel, Meral; Okur, Hacer Kuzu; Pelin, Zerrin; Öğünç, Ayliz Velioğlu; Öztürk, Levent

    2014-01-01

    OBJECTIVE: Obstructive sleep apnea syndrome is characterized by repetitive obstruction of the upper airways, and it is a risk factor for cardiovascular diseases. There have been several studies demonstrating low levels of nitric oxide in patients with obstructive sleep apnea syndrome compared with healthy controls. In this study, we hypothesized that reduced nitric oxide levels would result in high arginase activity. Arginase reacts with L-arginine and produces urea and L-ornithine, whereas L-arginine is a substrate for nitric oxide synthase, which produces nitric oxide. METHODS: The study group consisted of 51 obstructive sleep apnea syndrome patients (M/F: 43/8; mean age 49±10 years of age) and 15 healthy control subjects (M/F: 13/3; mean age 46±14 years of age). Obstructive sleep apnea syndrome patients were divided into two subgroups based on the presence or absence of cardiovascular disease. Nitric oxide levels and arginase activity were measured via an enzyme-linked immunosorbent assay of serum samples. RESULTS: Serum nitric oxide levels in the control subjects were higher than in the obstructive sleep apnea patients with and without cardiovascular diseases (p<0.05). Arginase activity was significantly higher (p<0.01) in obstructive sleep apnea syndrome patients without cardiovascular diseases compared with the control group. Obstructive sleep apnea syndrome patients with cardiovascular diseases had higher arginase activity than the controls (p<0.001) and the obstructive sleep apnea syndrome patients without cardiovascular diseases (p<0.05). CONCLUSION: Low nitric oxide levels are associated with high arginase activity. The mechanism of nitric oxide depletion in sleep apnea patients suggests that increased arginase activity might reduce the substrate availability of nitric oxide synthase and thus could reduce nitric oxide levels. PMID:24714832

  17. Arginase treatment prevents the recovery of canine lymphoma and osteosarcoma cells resistant to the toxic effects of prolonged arginine deprivation.

    PubMed

    Wells, James W; Evans, Christopher H; Scott, Milcah C; Rütgen, Barbara C; O'Brien, Timothy D; Modiano, Jaime F; Cvetkovic, Goran; Tepic, Slobodan

    2013-01-01

    Rapidly growing tumor cells require a nutrient-rich environment in order to thrive, therefore, restricting access to certain key amino acids, such as arginine, often results in the death of malignant cells, which frequently display defective cell cycle check-point control. Healthy cells, by contrast, become quiescent and remain viable under arginine restriction, displaying full recovery upon return to arginine-rich conditions. The use of arginase therapy to restrict available arginine for selectively targeting malignant cells is currently under investigation in human clinical trials. However, the suitability of this approach for veterinary uses is unexplored. As a prelude to in vivo studies in canine malignancies, we examined the in vitro effects of arginine-deprivation on canine lymphoid and osteosarcoma cell lines. Two lymphoid and 2 osteosarcoma cell lines were unable to recover following 6 days of arginine deprivation, but all remaining cell lines displayed full recovery upon return to arginine-rich culture conditions. These remaining cell lines all proved susceptible to cell death following the addition of arginase to the cultures. The lymphoid lines were particularly sensitive to arginase, becoming unrecoverable after just 3 days of treatment. Two of the osteosarcoma lines were also susceptible over this time-frame; however the other 3 lines required 6-8 days of arginase treatment to prevent recovery. In contrast, adult progenitor cells from the bone marrow of a healthy dog were able to recover fully following 9 days of culture in arginase. Over 3 days in culture, arginase was more effective than asparaginase in inducing the death of lymphoid lines. These results strongly suggest that short-term arginase treatment warrants further investigation as a therapy for lymphoid malignancies and osteosarcomas in dogs.

  18. Arginase in Retinopathy

    PubMed Central

    Narayanan, S. Priya; Rojas, Modesto; Suwanpradid, Jutamas; Toque, Haroldo A.; Caldwell, R. William; Caldwell, Ruth B.

    2013-01-01

    Ischemic retinopathies, such as diabetic retinopathy (DR), retinopathy of prematurity and retinal vein occlusion are a major cause of blindness in developed nations worldwide. Each of these conditions is associated with early neurovascular dysfunction. However, conventional therapies target clinically significant macula edema or neovascularization, which occur much later. Intraocular injections of anti-VEGF show promise in reducing retinal edema, but the effects are usually transient and the need for repeated injections increases the risk of intraocular infection. Laser photocoagulation can control pathological neovascularization, but may impair vision and in some patients the retinopathy continues to progress. Moreover, neither treatment targets early stage disease or promotes repair. This review examines the potential role of the ureahydrolase enzyme arginase as a therapeutic target for the treatment of ischemic retinopathy. Arginase metabolizes L-arginine to form proline, polyamines and glutamate. Excessive arginase activity reduces the L-arginine supply for nitric oxide synthase (NOS), causing it to become uncoupled and produce superoxide and less NO. Superoxide and NO react and form the toxic oxidant peroxynitrite. The catabolic products of polyamine oxidation and glutamate can induce more oxidative stress and DNA damage, both of which can cause cellular injury. Studies indicate that neurovascular injury during retinopathy is associated with increased arginase expression/activity, decreased NO, polyamine oxidation, formation of superoxide and peroxynitrite and dysfunction and injury of both vascular and neural cells. Furthermore, data indicate that the cytosolic isoform arginase I (AI) is involved in hyperglycemia-induced dysfunction and injury of vascular endothelial cells whereas the mitochondrial isoform arginase II (AII) is involved in neurovascular dysfunction and death following hyperoxia exposure. Thus, we postulate that activation of the arginase pathway causes neurovascular injury by uncoupling NOS and inducing polyamine oxidation and glutamate formation, thereby reducing NO and increasing oxidative stress, all of which contribute to the retinopathic process. PMID:23830845

  19. Candida albicans Chitin Increases Arginase-1 Activity in Human Macrophages, with an Impact on Macrophage Antimicrobial Functions

    PubMed Central

    MacCallum, Donna M.; Brown, Gordon D.

    2017-01-01

    ABSTRACT   The opportunistic human fungal pathogen Candida albicans can cause a variety of diseases, ranging from superficial mucosal infections to life-threatening systemic infections. Phagocytic cells of the innate immune response, such as neutrophils and macrophages, are important first-line responders to an infection and generate reactive oxygen and nitrogen species as part of their protective antimicrobial response. During an infection, host cells generate nitric oxide through the enzyme inducible nitric oxide synthase (iNOS) to kill the invading pathogen. Inside the phagocyte, iNOS competes with the enzyme arginase-1 for a common substrate, the amino acid l-arginine. Several pathogenic species, including bacteria and parasitic protozoans, actively modulate the production of nitric oxide by inducing their own arginases or the host’s arginase activity to prevent the conversion of l-arginine to nitric oxide. We report here that C. albicans blocks nitric oxide production in human-monocyte-derived macrophages by induction of host arginase activity. We further determined that purified chitin (a fungal cell wall polysaccharide) and increased chitin exposure at the fungal cell wall surface induces this host arginase activity. Blocking the C. albicans-induced arginase activity with the arginase-specific substrate inhibitor Nω-hydroxy-nor-arginine (nor-NOHA) or the chitinase inhibitor bisdionin F restored nitric oxide production and increased the efficiency of fungal killing. Moreover, we determined that C. albicans influences macrophage polarization from a classically activated phenotype toward an alternatively activated phenotype, thereby reducing antimicrobial functions and mediating fungal survival. Therefore, C. albicans modulates l-arginine metabolism in macrophages during an infection, potentiating its own survival. PMID:28119468

  20. Arginase Inhibitor in the Pharmacological Correction of Endothelial Dysfunction

    PubMed Central

    Pokrovskiy, Mihail V.; Korokin, Mihail V.; Tsepeleva, Svetlana A.; Pokrovskaya, Tatyana G.; Gureev, Vladimir V.; Konovalova, Elena A.; Gudyrev, Oleg S.; Kochkarov, Vladimir I.; Korokina, Liliya V.; Dudina, Eleonora N.; Babko, Anna V.; Terehova, Elena G.

    2011-01-01

    This paper is about a way of correction of endothelial dysfunction with the inhibitor of arginase: L-norvaline. There is an imbalance between vasoconstriction and vasodilatation factors of endothelium on the basis of endothelial dysfunction. Among vasodilatation agents, nitrogen oxide plays the basic role. Amino acid L-arginine serves as a source of molecules of nitrogen oxide in an organism. Because of the high activity of arginase enzyme which catalyzes the hydrolysis of L-arginine into ornithine and urea, the bioavailability of nitrogen oxide decreases. The inhibitors of arginase suppress the activity of the given enzyme, raising and production of nitrogen oxide, preventing the development of endothelial dysfunction. PMID:21747978

  1. Ethanol Extract of Mylabris phalerata Inhibits M2 Polarization Induced by Recombinant IL-4 and IL-13 in Murine Macrophages

    PubMed Central

    Chung, Hwan-Suck; Lee, Bong-Seon

    2017-01-01

    Mylabris phalerata (MP) is an insect used in oriental herbal treatments for tumor, tinea infections, and stroke. Recent studies have shown that tumor-associated macrophages (TAM) have detrimental roles such as tumor progression, angiogenesis, and metastasis. Although TAM has phenotypes and characteristics in common with M2-polarized macrophages, M1 macrophages have tumor suppression and immune stimulation effects. Medicines polarizing macrophages to M1 have been suggested to have anticancer effects via the modulation of the tumor microenvironment. In this line, we screened oriental medicines to find M1 polarizing medicines in M2-polarized macrophages. Among approximately 400 types of oriental medicine, the ethanol extract of M. phalerata (EMP) was the most proficient in increasing TNF-α secretion in M2-polarized macrophages and TAM. Although EMP enhanced the levels of an M1 cytokine (TNF-α) and a marker (CD86), it significantly reduced the levels of an M2 marker (arginase-1) in M2-polarized macrophages. In addition, EMP-treated macrophages increased the levels of M1 markers (Inos and Tnf-α) and reduced those of the enhanced M2 markers (Fizz-1, Ym-1, and arginase-1). EMP-treated macrophages significantly reduced Lewis lung carcinoma cell migration in a transwell migration assay and inhibited EL4-luc2 lymphoma proliferation. In our mechanism study, EMP was found to inhibit STAT3 phosphorylation in M2-polarized macrophages. These results suggest that EMP is effective in treating TAM-mediated tumor progression and metastasis. PMID:28811825

  2. Highly selective apo-arginase based method for sensitive enzymatic assay of manganese (II) and cobalt (II) ions

    NASA Astrophysics Data System (ADS)

    Stasyuk, Nataliya; Gayda, Galina; Zakalskiy, Andriy; Zakalska, Oksana; Errachid, Abdelhamid; Gonchar, Mykhailo

    2018-03-01

    A novel enzymatic method of manganese (II) and cobalt (II) ions assay, based on using apo-enzyme of Mn2 +-dependent recombinant arginase I (arginase) and 2,3-butanedione monoxime (DMO) as a chemical reagent is proposed. The principle of the method is the evaluation of the activity of L-arginine-hydrolyzing of arginase holoenzyme after the specific binding of Mn2 + or Co2 + with apo-arginase. Urea, which is the product of enzymatic hydrolysis of L-arginine (Arg), reacts with DMO and the resulted compound is detected by both fluorometry and visual spectrophotometry. Thus, the content of metal ions in the tested samples can be determined by measuring the level of urea generated after enzymatic hydrolysis of Arg by reconstructed arginase holoenzyme in the presence of tested metal ions. The linearity range of the fluorometric apo-arginase-DMO method in the case of Mn2 + assay is from 4 pM to 1.10 nM with a limit of detection of 1 pM Mn2 +, whereas the linearity range of the present method in the case of Co2 + assay is from 8 pM to 45 nM with a limit of detection of 2.5 pM Co2 +. The proposed method being highly sensitive, selective, valid and low-cost, may be useful to monitor Mn2 + and Co2 + content in clinical laboratories, food industry and environmental control service.

  3. Changes in arginase isoenzymes pattern in human hepatocellular carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chrzanowska, Alicja; Krawczyk, Marek; Baranczyk-Kuzma, Anna

    2008-12-12

    Hepatocellular carcinoma (HCC) is one of the most common tumors worldwide affecting preferentially patients with liver cirrhosis. The studies were performed on tissues obtained during surgery from 50 patients with HCC, 40 with liver cirrhosis and 40 control livers. It was found that arginase activity in HCC was nearly 5- and 15-fold lower than in cirrhotic and normal livers, respectively. Isoenzymes AI (so-called liver-type arginase) and AII (extrahepatic arginase) were identified by Western blotting in all studied tissues, however the amount of AI, as well as the expression of AI-mRNA were lower in HCC, in comparison with normal liver, andmore » those of AII were significantly higher. Since HCC is arginine-dependent, and arginine is essential for cells growth, the decrease of AI may preserve this amino acid within tumor cells. Concurrently, the rise of AII can increase the level of polyamines, compounds crucial for cells proliferation. Thus, both arginase isoenzymes seem to participate in liver cancerogenesis.« less

  4. A protective effect of the laminated layer on Echinococcus granulosus survival dependent on upregulation of host arginase.

    PubMed

    Amri, Manel; Touil-Boukoffa, Chafia

    2015-09-01

    The role of nitric oxide (NO) in host defense against Echinococcus granulosus larvae was previously reported. However, NO production by NOS2 (inducible NO synthase) is counteracted by the expression of Arginase. In the present study, our aim is to evaluate the involvement of the laminated layer (external layer of parasitic cyst) in Arginase induction and the protoscoleces (living and infective part of the cyst) survival. Our in vitro results indicate that this cystic compound increases the Arginase activity in macrophages. Moreover, C-type lectin receptors (CLRs) with specificity for mannan and the TGF-β are implicated in this effect as shown after adding Mannan and Anti-TGFβ. Interestingly, the laminated layer increases protoscoleces survival in macrophages-parasite co-cultures. Our results indicate that the laminated layer protects E. granulosus against the NOS2 protective response through Arginase pathway, a hallmark of M2 macrophages. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Disruption of the CAR1 gene encoding arginase enhances freeze tolerance of the commercial baker's yeast Saccharomyces cerevisiae.

    PubMed

    Shima, Jun; Sakata-Tsuda, Yuko; Suzuki, Yasuo; Nakajima, Ryouichi; Watanabe, Hajime; Kawamoto, Shinichi; Takano, Hiroyuki

    2003-01-01

    The effect of intracellular charged amino acids on freeze tolerance in dough was determined by constructing homozygous diploid arginase-deficient mutants of commercial baker's yeast. An arginase mutant accumulated higher levels of arginine and/or glutamate and showed increased leavening ability during the frozen-dough baking process, suggesting that disruption of the CAR1 gene enhances freeze tolerance.

  6. Arginase activity in peripheral blood of patients with intestinal schistosomiasis, Wonji, Central Ethiopia.

    PubMed

    Getaneh, A; Tamrat, A; Tadesse, K

    2015-07-01

    Morbidity and mortality caused by schistosomiasis usually results from immunopathology. But the underlying mechanisms are not yet clearly understood. Th2-type immune response is thought to be dominant during chronic schistosomiasis, and upregulation of arginase-I is one component of this milieu. A cohort study was conducted to assess arginase activity in peripheral blood of humans with intestinal schistosomiasis in Wonji-Shoa Sugar Estate, Central Ethiopia. Laboratory-confirmed 30 Schistosoma mansoni-infected patients and 18 apparently healthy controls were recruited. Faecal egg count was carried out by Kato-Katz technique. Plasma and peripheral blood mononuclear cells (PBMCs) were isolated from whole blood. Activity of arginase in plasma and PBMC lysates was measured, and results were compared with that of controls. Twenty-one of 30 patients had light infection, whereas moderate and heavy intensity infections were observed in eight and only one patient(s), respectively. A significant increase in both PBMC (patients: 59.96 + 82.99, controls: 25.44 + 24.6 mU/mg protein, P < 0.0001) and plasma (patients: 1.61 + 2.19, controls: 0.31 + 0.73 mU/mL plasma, P < 0.0001) arginase activity was observed during human S. mansoni infection. Arginase activity increases in peripheral blood of patients with intestinal schistosomiasis. © 2015 John Wiley & Sons Ltd.

  7. Candida albicans Chitin Increases Arginase-1 Activity in Human Macrophages, with an Impact on Macrophage Antimicrobial Functions.

    PubMed

    Wagener, Jeanette; MacCallum, Donna M; Brown, Gordon D; Gow, Neil A R

    2017-01-24

    The opportunistic human fungal pathogen Candida albicans can cause a variety of diseases, ranging from superficial mucosal infections to life-threatening systemic infections. Phagocytic cells of the innate immune response, such as neutrophils and macrophages, are important first-line responders to an infection and generate reactive oxygen and nitrogen species as part of their protective antimicrobial response. During an infection, host cells generate nitric oxide through the enzyme inducible nitric oxide synthase (iNOS) to kill the invading pathogen. Inside the phagocyte, iNOS competes with the enzyme arginase-1 for a common substrate, the amino acid l-arginine. Several pathogenic species, including bacteria and parasitic protozoans, actively modulate the production of nitric oxide by inducing their own arginases or the host's arginase activity to prevent the conversion of l-arginine to nitric oxide. We report here that C. albicans blocks nitric oxide production in human-monocyte-derived macrophages by induction of host arginase activity. We further determined that purified chitin (a fungal cell wall polysaccharide) and increased chitin exposure at the fungal cell wall surface induces this host arginase activity. Blocking the C. albicans-induced arginase activity with the arginase-specific substrate inhibitor Nω-hydroxy-nor-arginine (nor-NOHA) or the chitinase inhibitor bisdionin F restored nitric oxide production and increased the efficiency of fungal killing. Moreover, we determined that C. albicans influences macrophage polarization from a classically activated phenotype toward an alternatively activated phenotype, thereby reducing antimicrobial functions and mediating fungal survival. Therefore, C. albicans modulates l-arginine metabolism in macrophages during an infection, potentiating its own survival. The availability and metabolism of amino acids are increasingly recognized as crucial regulators of immune functions. In acute infections, the conversion of the "conditionally essential" amino acid l-arginine by the inducible nitric oxide synthase to nitric oxide is a resistance factor that is produced by the host to fight pathogens. Manipulation of these host defense mechanisms by the pathogen can be key to successful host invasion. We show here that the human opportunistic fungal pathogen Candida albicans influences l-arginine availability for nitric oxide production by induction of the substrate-competing host enzyme arginase-1. This led to a reduced production of nitric oxide and, moreover, reduced eradication of the fungus by human macrophages. We demonstrate that blocking of host arginase-1 activity restored nitric oxide production and increased the killing potential of macrophages. These results highlight the therapeutic potential of l-arginine metabolism in fungal diseases. Copyright © 2017 Wagener et al.

  8. Adoptive Transfer of Tumor-Specific Th2 Cells Eradicates Tumors by Triggering an In Situ Inflammatory Immune Response.

    PubMed

    Lorvik, Kristina Berg; Hammarström, Clara; Fauskanger, Marte; Haabeth, Ole Audun Werner; Zangani, Michael; Haraldsen, Guttorm; Bogen, Bjarne; Corthay, Alexandre

    2016-12-01

    Adoptive cell therapy (ACT) trials to date have focused on transfer of autologous tumor-specific cytotoxic CD8 + T cells; however, the potential of CD4 + T helper (Th) cells for ACT is gaining interest. While encouraging results have been reported with IFNγ-producing Th1 cells, tumor-specific Th2 cells have been largely neglected for ACT due to their reported tumor-promoting properties. In this study, we tested the efficacy of idiotype-specific Th2 cells for the treatment of mice with MHC class II-negative myeloma. Th2 ACT efficiently eradicated subcutaneous myeloma in an antigen-specific fashion. Transferred Th2 cells persisted in vivo and conferred long-lasting immunity. Cancer eradication mediated by tumor-specific Th2 cells did not require B cells, natural killer T cells, CD8 + T cells, or IFNγ. Th2 ACT was also curative against B-cell lymphoma. Upon transfer, Th2 cells induced a type II inflammation at the tumor site with massive infiltration of M2-type macrophages producing arginase. In vivo blockade of arginase strongly inhibited Th2 ACT, consistent with a key role of arginase and M2 macrophages in myeloma elimination by Th2 cells. These results illustrate that cancer eradication may be achieved by induction of a tumor-specific Th2 inflammatory immune response at the tumor site. Thus, ACT with tumor-specific Th2 cells may represent a highly efficient immunotherapy protocol against cancer. Cancer Res; 76(23); 6864-76. ©2016 AACR. ©2016 American Association for Cancer Research.

  9. In vitro antileishmanial activity of fisetin flavonoid via inhibition of glutathione biosynthesis and arginase activity in Leishmania infantum.

    PubMed

    Adinehbeigi, Keivan; Razi Jalali, Mohammad Hossein; Shahriari, Ali; Bahrami, Somayeh

    2017-06-01

    With the increasing emergence of drug resistant Leishmania sp. in recent years, combination therapy has been considered as a useful way to treat and control of Leishmaniasis. The present study was designed to evaluate the antileishmanial effects of the fisetin alone and combination of fisetin plus Meglumine antimoniate (Fi-MA) against Leishmania infantum. The IC50 values for fisetin were obtained 0.283 and 0.102 μM against promastigotes and amastigote forms, respectively. Meglumine antimoniate (MA, Glucantime) as control drug also revealed IC50 values of 0.247 and 0.105 μM for promastigotes and amastigotes of L. infantum, respectively. In order to determine the mode of action of fisetin and Meglumine antimoniate (MA, Glucantime), the activities of arginase (ARG), catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) were measured. Moreover, intracellular glutathione (GSH) and nitric oxide (NO) levels in L. infantum-infected macrophages and L. infantum promastigotes which were treated with IC50 concentrations of fisetin, MA and Fi-MA were investigated. Our results showed that MA decreased CAT and SOD activity and increased NO levels in L. infantum-infected macrophages. In promastigotes, MA inhibited parasite SOD activity and reduced parasite NO production. The decreased levels of most of the antioxidant enzymes, accompanying by the raised level of NO in treated macrophages with MA, were observed to regain their normal profiles due to Fi-MA treatment. Furthermore, fisetin could prevent the growth of promastigotes by inhibition of ARG activity and reduction of GSH levels and NO production. In conclusion, these findings showed that fisetin improves MA side effects.

  10. In vitro antileishmanial activity of fisetin flavonoid via inhibition of glutathione biosynthesis and arginase activity in Leishmania infantum

    PubMed Central

    Razi Jalali, Mohammad Hossein; Shahriari, Ali; Bahrami, Somayeh

    2017-01-01

    With the increasing emergence of drug resistant Leishmania sp. in recent years, combination therapy has been considered as a useful way to treat and control of Leishmaniasis. The present study was designed to evaluate the antileishmanial effects of the fisetin alone and combination of fisetin plus Meglumine antimoniate (Fi-MA) against Leishmania infantum. The IC50 values for fisetin were obtained 0.283 and 0.102 μM against promastigotes and amastigote forms, respectively. Meglumine antimoniate (MA, Glucantime) as control drug also revealed IC50 values of 0.247 and 0.105 μM for promastigotes and amastigotes of L. infantum, respectively. In order to determine the mode of action of fisetin and Meglumine antimoniate (MA, Glucantime), the activities of arginase (ARG), catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) were measured. Moreover, intracellular glutathione (GSH) and nitric oxide (NO) levels in L. infantum-infected macrophages and L. infantum promastigotes which were treated with IC50 concentrations of fisetin, MA and Fi-MA were investigated. Our results showed that MA decreased CAT and SOD activity and increased NO levels in L. infantum-infected macrophages. In promastigotes, MA inhibited parasite SOD activity and reduced parasite NO production. The decreased levels of most of the antioxidant enzymes, accompanying by the raised level of NO in treated macrophages with MA, were observed to regain their normal profiles due to Fi-MA treatment. Furthermore, fisetin could prevent the growth of promastigotes by inhibition of ARG activity and reduction of GSH levels and NO production. In conclusion, these findings showed that fisetin improves MA side effects. PMID:28385129

  11. p38 mitogen-activated protein kinase is involved in arginase-II-mediated eNOS-Uncoupling in Obesity

    PubMed Central

    2014-01-01

    Background Endothelial nitric oxide synthase (eNOS)-uncoupling links obesity-associated insulin resistance and type-II diabetes to the increased incidence of cardiovascular disease. Studies have indicated that increased arginase is involved in eNOS-uncoupling through competing with the substrate L-arginine. Given that arginase-II (Arg-II) exerts some of its biological functions through crosstalk with signal transduction pathways, and that p38 mitogen-activated protein kinase (p38mapk) is involved in eNOS-uncoupling, we investigated here whether p38mapk is involved in Arg-II-mediated eNOS-uncoupling in a high fat diet (HFD)-induced obesity mouse model. Methods Obesity was induced in wild type (WT) and Arg-II-deficient (Arg-II-/-) mice on C57BL/6 J background by high-fat diet (HFD, 55% fat) for 14 weeks starting from age of 7 weeks. The entire aortas were isolated and subjected to 1) immunoblotting analysis of the protein level of eNOS, Arg-II and p38mapk activation; 2) arginase activity assay; 3) endothelium-dependent and independent vasomotor responses; 4) en face staining of superoxide anion and NO production with Dihydroethidium and 4,5-Diaminofluorescein Diacetate, respectively, to assess eNOS-uncoupling. To evaluate the role of p38mapk, isolated aortas were treated with p38mapk inhibitor SB203580 (10 μmol/L, 1 h) prior to the analysis. In addition, the role of p38mapk in Arg-II-induced eNOS-uncoupling was investigated in cultured human endothelial cells overexpressing Arg-II in the absence or presence of shRNA against p38mapk. Results HFD enhanced Arg-II expression/activity and p38mapk activity, which was associated with eNOS-uncoupling as revealed by decreased NO and enhanced L-NAME-inhibitable superoxide in aortas of WT obese mice. In accordance, WT obese mice revealed decreased endothelium-dependent relaxations to acetylcholine despite of higher eNOS protein level, whereas Arg-II-/- obese mice were protected from HFD-induced eNOS-uncoupling and endothelial dysfunction, which was associated with reduced p38mapk activation in aortas of the Arg-II-/- obese mice. Moreover, overexpression of Arg-II in human endothelial cells caused eNOS-uncoupling and augmented p38mapk activation. The Arg-II-induced eNOS-uncoupling was prevented by silencing p38mapk. Furthermore, pharmacological inhibition of p38mapk recouples eNOS in isolated aortas from WT obese mice. Conclusions Taking together, we demonstrate here for the first time that Arg-II causes eNOS-uncoupling through activation of p38 mapk in HFD-induced obesity. PMID:25034973

  12. Inhibition of nuclear factor-κB signal by pyrrolidine dithiocarbamate alleviates lipopolysaccharide-induced acute lung injury

    PubMed Central

    Yang, Hongfu; Sun, Rongqing; Ma, Ning; Liu, Qilong; Sun, Xiaoge; Zi, Panpan; Wang, Junsheng; Chao, Ke; Yu, Lei

    2017-01-01

    This study mainly studied the effect of inhibition of nuclear factor-κB (NF-κB) signal by pyrrolidine dithiocarbamate (PDTC) on lipopolysaccharide (LPS)-induced inflammatory response, oxidative stress, and mitochondrial dysfunction in a murine acute lung injury model. The results showed that LPS exposure activated NF-κB and its upstream proteins and caused lung inflammation, oxidative stress, and mitochondrial dysfunction in mice. While inhibition of NF-κB by PDTC adminstration alleviated LPS-induced generation of lymphocytes, IL-1β, and TNF-α. Malondialdehyde, a common oxidative product, was markedly reduced after PDTC treatment in LPS-challenged mice. Furthermore, PDTC alleviated LPS-induced mitochondrial dysfunction via improving ATP synthesis and uncoupling protein 2 expression. In conclusion, inhibition of NF-κB by PDTC alleviated LPS-induced acute lung injury via maintaining inflammatory status, oxidative balance, and mitochondrial function in mice. PMID:28521300

  13. Kidney Mass Reduction Leads to l-Arginine Metabolism-Dependent Blood Pressure Increase in Mice.

    PubMed

    Pillai, Samyuktha Muralidharan; Seebeck, Petra; Fingerhut, Ralph; Huang, Ji; Ming, Xiu-Fen; Yang, Zhihong; Verrey, François

    2018-02-25

    Uninephrectomy (UNX) is performed for various reasons, including kidney cancer or donation. Kidneys being the main site of l-arginine production in the body, we tested whether UNX mediated kidney mass reduction impacts l-arginine metabolism and thereby nitric oxide production and blood pressure regulation in mice. In a first series of experiments, we observed a significant increase in arterial blood pressure 8 days post-UNX in female and not in male mice. Further experimental series were performed in female mice, and the blood pressure increase was confirmed by telemetry. l-citrulline, that is used in the kidney to produce l-arginine, was elevated post-UNX as was also asymmetric dimethylarginine, an inhibitor of nitric oxide synthase that competes with l-arginine and is a marker for renal failure. Interestingly, the UNX-induced blood pressure increase was prevented by supplementation of the diet with 5% of the l-arginine precursor, l-citrulline. Because l-arginine is metabolized in the kidney and other peripheral tissues by arginase-2, we tested whether the lack of this metabolic pathway also compensates for decreased l-arginine production in the kidney and/or for local nitric oxide synthase inhibition and consecutive blood pressure increase. Indeed, upon uninephrectomy, arginase-2 knockout mice (Arg-2 -/- ) neither displayed an increase in asymmetric dimethylarginine and l-citrulline plasma levels nor a significant increase in blood pressure. UNX leads to a small increase in blood pressure that is prevented by l-citrulline supplementation or arginase deficiency, 2 measures that appear to compensate for the impact of kidney mass reduction on l-arginine metabolism. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  14. The effect of mineral trioxide aggregate on phagocytic activity and production of reactive oxygen, nitrogen species and arginase activity by M1 and M2 macrophages.

    PubMed

    Rezende, T M B; Vieira, L Q; Cardoso, F P; Oliveira, R R; de Oliveira Mendes, S T; Jorge, M L R; Ribeiro Sobrinho, A P

    2007-08-01

    To assess the influence of co-culture with mineral trioxide aggregate (MTA) on phagocytosis and the production of reactive oxygen intermediates (ROI) and nitrogen (NO) species and the arginase activity by M1 and M2 peritoneal macrophages. Cellular viability, adherence and phagocytosis of Saccharomyces boulardii were assayed in the presence of MTA. Macrophages were stimulated with zymosan for ROI assays and with Fusobacterium nucleatum and Peptostreptococcus anaerobius and IFN-gamma for NO production and arginase activity, when in contact with capillaries containing MTA. Data were analysed by T, anova, Kruskall-Wallis and Mann-Whitney tests. M2 macrophages displayed greater cellular viability in polypropylene tubes, greater ability to ingest yeast and smaller production of ROI and higher arginase activity when compared with M1 macrophages. Both macrophages, M1 and M2, presented similar cell adherence and NO production. The addition of bacterial preparations to macrophages interfered with NO and arginase productions. MTA did not interfere with any of the parameters measured. Phagocytosis and the ability of the two macrophage subtypes to eliminate microbes were not affected by MTA.

  15. L-arginine and Arginase Products Potentiate Dexmedetomidine-induced Contractions in the Rat Aorta.

    PubMed

    Wong, Emily S W; Man, Ricky Y K; Ng, Kwok F J; Leung, Susan W S; Vanhoutte, Paul M

    2018-03-01

    The α2-adrenergic sedative/anesthetic agent dexmedetomidine exerts biphasic effects on isolated arteries, causing endothelium-dependent relaxations at concentrations at or below 30 nM, followed by contractions at higher concentrations. L-arginine is a common substrate of endothelial nitric oxide synthase and arginases. This study was designed to investigate the role of L-arginine in modulating the overall vascular response to dexmedetomidine. Isometric tension was measured in isolated aortic rings of Sprague Dawley rats. Cumulative concentrations of dexmedetomidine (10 nM to 10 μM) were added to quiescent rings (with and without endothelium) after previous incubation with vehicle, N-nitro-L-arginine methyl ester hydrochloride (L-NAME; nitric oxide synthase inhibitor), prazosin (α1-adrenergic antagonist), rauwolscine (α2-adrenergic antagonist), L-arginine, (S)-(2-boronethyl)-L-cysteine hydrochloride (arginase inhibitor), N-hydroxy-L-arginine (arginase inhibitor), urea and/or ornithine. In some preparations, immunofluorescent staining, immunoblotting, or measurement of urea content were performed. Dexmedetomidine did not contract control rings with endothelium but evoked concentration-dependent increases in tension in such rings treated with L-NAME (Emax 50 ± 4%) or after endothelium-removal (Emax 74 ± 5%; N = 7 to 12). Exogenous L-arginine augmented the dexmedetomidine-induced contractions in the presence of L-NAME (Emax 75 ± 3%). This potentiation was abolished by (S)-(2-boronethyl)-L-cysteine hydrochloride (Emax 16 ± 4%) and N-hydroxy-L-arginine (Emax 18 ± 4%). Either urea or ornithine, the downstream arginase products, had a similar potentiating effect as L-arginine. Immunoassay measurements demonstrated an upregulation of arginase I by L-arginine treatment in the presence of L-NAME (N = 4). These results suggest that when vascular nitric oxide homeostasis is impaired, the potentiation of the vasoconstrictor effect of dexmedetomidine by L-arginine depends on arginase activity and the production of urea and ornithine.

  16. Isolation and characterization of a cyanobacterium-binding protein and its cell wall receptor in the lichen Peltigera canina

    PubMed Central

    Díaz, Eva-María; Sacristán, Mara; Legaz, María-Estrella

    2009-01-01

    Peltigera canina, a cyanolichen containing Nostoc as cyanobiont, produces and secretes arginase to a medium containing arginine. Secreted arginase acts as a lectin by binding to the surface of Nostoc cells through a specific receptor which develops urease activity. The enzyme urease has been located in the cell wall of recently isolated cyanobionts. Cytochemical detection of urease is achieved by producing a black, electron-dense precipitate of cobalt sulfide proceeding from CO2 evolved from urea hydrolysis in the presence of cobalt chloride. This urease has been pre-purified by affinity chromatography on a bead of active agarose to which arginase was attached. Urease was eluted from the beads by 50 mM α-D-galactose. The experimentally probed fact that a fungal lectin developing subsidiary arginase activity acts as a recognition factor of compatible algal cells in chlorolichens can now been expanded to cyanolichens. PMID:19820309

  17. Genetic ablation of arginase 1 in macrophages and neutrophils enhances clearance of an arthritogenic alphavirus

    PubMed Central

    Stoermer, Kristina A.; Burrack, Adam; Oko, Lauren; Montgomery, Stephanie A.; Borst, Luke B.; Gill, Ronald G.; Morrison, Thomas E.

    2012-01-01

    Chikungunya virus (CHIKV) and Ross River virus (RRV) cause a debilitating, and often chronic, musculoskeletal inflammatory disease in humans. Macrophages constitute the major inflammatory infiltrates in musculoskeletal tissues during these infections. However, the precise macrophage effector functions that affect the pathogenesis of arthritogenic alphaviruses have not been defined. We hypothesized that the severe damage to musculoskeletal tissues observed in RRV or CHIKV-infected mice would promote a wound healing response characterized by M2-like macrophages. Indeed, we found that RRV and CHIKV-induced musculoskeletal inflammatory lesions, and macrophages present in these lesions, have a unique gene expression pattern characterized by high expression of arginase 1 and Ym1/Chi3l3 in the absence of FIZZ1/Relmα that is consistent with an M2-like activation phenotype. Strikingly, mice specifically deleted for Arg1 in neutrophils and macrophages had dramatically reduced viral loads and improved pathology in musculoskeletal tissues at late times post-RRV infection. These findings indicate that arthritogenic alphavirus infection drives a unique myeloid cell activation program in inflamed musculoskeletal tissues that inhibits virus clearance and impedes disease resolution in an Arg1-dependent manner. PMID:22972923

  18. l-Arginine modulates neonatal lymphocyte proliferation through an interleukin-2 independent pathway

    PubMed Central

    Yu, Hong-Ren; Kuo, Ho-Chang; Huang, Li-Tung; Chen, Chih-Cheng; Tain, You-Lin; Sheen, Jiunn-Ming; Tiao, Mao-Meng; Huang, Hsin-Chun; Yang, Kuender D; Ou, Chia-Yo; Hsu, Te-Yao

    2014-01-01

    In cases of arginine depletion, lymphocyte proliferation, cytokine production and CD3ζ chain expression are all diminished. In addition to myeloid suppressor cells, polymorphonuclear cells (PMN) also exert T-cell immune suppressive effects through arginase-induced l-arginine depletion, especially during pregnancy. In this study, we investigated how arginase/l-arginine modulates neonatal lymphocyte proliferation. Results showed that the neonatal plasma l-arginine level was lower than in adults (48·1 ± 11·3 versus 86·5 ± 14·6 μm; P = 0·003). Neonatal PMN had a greater abundance of arginase I protein than adult PMN. Both transcriptional regulation and post-transcriptional regulation were responsible for the higher arginase I expression of neonatal PMN. Exogenous l-arginine enhanced neonate lymphocyte proliferation but not that of adult cells. The RNA-binding protein HuR was important but was not the only modulation factor in l-arginine-regulated neonatal T-cell proliferation. l-Arginine-mediated neonatal lymphocyte proliferation could not be blocked by interleukin-2 receptor blocking antibodies. These results suggest that the altered arginase/l-arginine cascade may be one of the mechanisms that contribute to altered neonatal immune responses. Exogenous l-arginine could enhance neonate lymphocyte proliferation through an interleukin-2-independent pathway. PMID:24697328

  19. Type I IFN Inhibits Alternative Macrophage Activation during Mycobacterium tuberculosis Infection and Leads to Enhanced Protection in the Absence of IFN-γ Signaling

    PubMed Central

    Sousa, Jeremy; McNab, Finlay W.; Torrado, Egídio; Cardoso, Filipa; Machado, Henrique; Castro, Flávia; Cardoso, Vânia; Gaifem, Joana; Wu, Xuemei; Appelberg, Rui; Castro, António Gil; O’Garra, Anne; Saraiva, Margarida

    2016-01-01

    Tuberculosis causes ∼1.5 million deaths every year, thus remaining a leading cause of death from infectious diseases in the world. A growing body of evidence demonstrates that type I IFN plays a detrimental role in tuberculosis pathogenesis, likely by interfering with IFN-γ–dependent immunity. In this article, we reveal a novel mechanism by which type I IFN may confer protection against Mycobacterium tuberculosis infection in the absence of IFN-γ signaling. We show that production of type I IFN by M. tuberculosis–infected macrophages induced NO synthase 2 and inhibited arginase 1 gene expression. In vivo, absence of both type I and type II IFN receptors led to strikingly increased levels of arginase 1 gene expression and protein activity in infected lungs, characteristic of alternatively activated macrophages. This correlated with increased lung bacterial burden and pathology and decreased survival compared with mice deficient in either receptor. Increased expression of other genes associated with alternatively activated macrophages, as well as increased expression of Th2-associated cytokines and decreased TNF expression, were also observed. Thus, in the absence of IFN-γ signaling, type I IFN suppressed the switching of macrophages from a more protective classically activated phenotype to a more permissive alternatively activated phenotype. Together, our data support a model in which suppression of alternative macrophage activation by type I IFN during M. tuberculosis infection, in the absence of IFN-γ signaling, contributes to host protection. PMID:27849167

  20. Differential proteomic and tissue expression analyses identify valuable diagnostic biomarkers of hepatocellular differentiation and hepatoid adenocarcinomas.

    PubMed

    Reis, Henning; Padden, Juliet; Ahrens, Maike; Pütter, Carolin; Bertram, Stefanie; Pott, Leona L; Reis, Anna-Carinna; Weber, Frank; Juntermanns, Benjamin; Hoffmann, Andreas-C; Eisenacher, Martin; Schlaak, Joörg F; Canbay, Ali; Meyer, Helmut E; Sitek, Barbara; Baba, Hideo A

    2015-10-01

    The exact discrimination of lesions with true hepatocellular differentiation from secondary tumours and neoplasms with hepatocellular histomorphology like hepatoid adenocarcinomas (HAC) is crucial. Therefore, we aimed to identify ancillary protein biomarkers by using complementary proteomic techniques (2D-DIGE, label-free MS). The identified candidates were immunohistochemically validated in 14 paired samples of hepatocellular carcinoma (HCC) and non-tumourous liver tissue (NT). The candidates and HepPar1/Arginase1 were afterwards tested for consistency in a large cohort of hepatocellular lesions and NT (n = 290), non-hepatocellular malignancies (n = 383) and HAC (n = 13). Eight non-redundant, differentially expressed proteins were suitable for further immunohistochemical validation and four (ABAT, BHMT, FABP1, HAOX1) for further evaluation. Sensitivity and specificity rates for HCC/HAC were as follows: HepPar1 80.2%, 94.3% / 80.2%, 46.2%; Arginase1 82%, 99.4% / 82%, 69.2%; BHMT 61.4%, 93.8% / 61.4%, 100%; ABAT 84.4%, 33.7% / 84.4%, 30.8%; FABP1 87.2%, 95% / 87.2%, 69.2%; HAOX1 95.5%, 36.3% / 95.5%, 46.2%. The best 2×/3× biomarker panels for the diagnosis of HCC consisted of Arginase1/HAOX1 and BHMT/Arginase1/HAOX1 and for HAC consisted of Arginase1/FABP1 and BHMT/Arginase1/FABP1. In summary, we successfully identified, validated and benchmarked protein biomarker candidates of hepatocellular differentiation. BHMT in particular exhibited superior diagnostic characteristics in hepatocellular lesions and specifically in HAC. BHMT is therefore a promising (panel based) biomarker candidate in the differential diagnostic process of lesions with hepatocellular aspect.

  1. Effects of the Hydroalcoholic Extract of Zingiber officinale on Arginase I Activity and Expression in the Retina of Streptozotocin-Induced Diabetic Rats.

    PubMed

    Lamuchi-Deli, Nasrin; Aberomand, Mohammad; Babaahmadi-Rezaei, Hossein; Mohammadzadeh, Ghorban

    2017-04-01

    Emerging evidence suggests that an increased arginase activity is involved in vascular dysfunction in experimental animals. Zingiber officinale Roscoe, commonly known as ginger, has been widely used in the traditional medicine for treatment of diabetes. This study aimed at investigating the effects of the hydroalcoholic extract of Z. officinale on arginase I activity and expression in the retina of streptozotocin (STZ)-induced diabetic rats. In this experimental study, 16 male Wistar rats weighing 200 - 250 g were assessed. Diabetes was induced via a single intraperitoneal injection of STZ (60 mg/kg body weight). The rats were randomly allocated into four experimental groups. Untreated healthy and diabetic controls received 1.5 mL/kg distilled water. Treated diabetic rats received 200, and 400 mg/kg of the Z. officinale extract dissolved in distilled water (1.5 mL/kg). Body weight, blood glucose and insulin concentration were measured by standard methods. The arginase I activity and expression were determined by spectrophotometric and western blot analysis, respectively. Our results showed that blood glucose concentration was significantly decreased in diabetic rats treated with the extract compared to untreated diabetic controls (P < 0.01). Treatment with 400 mg/kg of the extract reduced arginase I activity and expression (P < 0.05). A significant elevation in body weight was observed in diabetic rats treated with the extract. Serum insulin was significantly increased in diabetic rats treated with 400 mg/kg of the extract compared to diabetic controls (P < 0.05). Our results suggest that the Z. officinale hydroalcoholic extract may potentially be a promising therapeutic option for treating diabetes-induced vascular disorders, possibly through reducing arginase I activity and expression in the retina.

  2. Effects of the Hydroalcoholic Extract of Zingiber officinale on Arginase I Activity and Expression in the Retina of Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Lamuchi-Deli, Nasrin; Aberomand, Mohammad; Babaahmadi-Rezaei, Hossein; Mohammadzadeh, Ghorban

    2017-01-01

    Background Emerging evidence suggests that an increased arginase activity is involved in vascular dysfunction in experimental animals. Zingiber officinale Roscoe, commonly known as ginger, has been widely used in the traditional medicine for treatment of diabetes. Objectives This study aimed at investigating the effects of the hydroalcoholic extract of Z. officinale on arginase I activity and expression in the retina of streptozotocin (STZ)-induced diabetic rats. Methods In this experimental study, 16 male Wistar rats weighing 200 – 250 g were assessed. Diabetes was induced via a single intraperitoneal injection of STZ (60 mg/kg body weight). The rats were randomly allocated into four experimental groups. Untreated healthy and diabetic controls received 1.5 mL/kg distilled water. Treated diabetic rats received 200, and 400 mg/kg of the Z. officinale extract dissolved in distilled water (1.5 mL/kg). Body weight, blood glucose and insulin concentration were measured by standard methods. The arginase I activity and expression were determined by spectrophotometric and western blot analysis, respectively. Results Our results showed that blood glucose concentration was significantly decreased in diabetic rats treated with the extract compared to untreated diabetic controls (P < 0.01). Treatment with 400 mg/kg of the extract reduced arginase I activity and expression (P < 0.05). A significant elevation in body weight was observed in diabetic rats treated with the extract. Serum insulin was significantly increased in diabetic rats treated with 400 mg/kg of the extract compared to diabetic controls (P < 0.05). Conclusions Our results suggest that the Z. officinale hydroalcoholic extract may potentially be a promising therapeutic option for treating diabetes-induced vascular disorders, possibly through reducing arginase I activity and expression in the retina. PMID:28835766

  3. T Lymphocyte Inhibition by Tumor-Infiltrating Dendritic Cells Involves Ectonucleotidase CD39 but Not Arginase-1.

    PubMed

    Trad, Malika; Gautheron, Alexandrine; Fraszczak, Jennifer; Alizadeh, Darya; Larmonier, Claire; LaCasse, Collin J; Centuori, Sara; Audia, Sylvain; Samson, Maxime; Ciudad, Marion; Bonnefoy, Francis; Lemaire-Ewing, Stéphanie; Katsanis, Emmanuel; Perruche, Sylvain; Saas, Philippe; Bonnotte, Bernard

    2015-01-01

    T lymphocytes activated by dendritic cells (DC) which present tumor antigens play a key role in the antitumor immune response. However, in patients suffering from active cancer, DC are not efficient at initiating and supporting immune responses as they participate to T lymphocyte inhibition. DC in the tumor environment are functionally defective and exhibit a characteristic of immature phenotype, different to that of DC present in nonpathological conditions. The mechanistic bases underlying DC dysfunction in cancer responsible for the modulation of T-cell responses and tumor immune escape are still being investigated. Using two different mouse tumor models, we showed that tumor-infiltrating DC (TIDC) are constitutively immunosuppressive, exhibit a semimature phenotype, and impair responder T lymphocyte proliferation and activation by a mechanism involving CD39 ectoenzyme.

  4. Pollutant particles induce arginase II in human bronchial epithelial cells

    EPA Science Inventory

    Exposure to particulate matter (PM) is associated with adverse pulmonary effects, including induction and exacerbation of asthma. Recently arginase was shown to play an important role in the pathogenesis of asthma. In this study, we hypothesized that PM exposure would induce ar...

  5. Protection against herbivores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howe, Gregg A.; Chen, Hui

    The present invention relates to genes, proteins and methods comprising molecules that alter amino acid levels. In one embodiment, the present invention relates to altering guanidino substrate hydrolysis activities in plants, arthropods and microorganisms using molecules within the arginase family and other molecules that alter an amino acid levels. In ones embodiment, the present invention relates to altering threonine substrate deamination and dehydration activities in plants, arthropods and microorganisms using molecules within the threonine deaminase family and other molecules that alter amino acid levels. In one embodiment, the present invention relates to using genes, proteins and methods comprising arginase ormore » threonine deaminase for altering the pathophysiology of plants, arthropods and microorganisms. In a preferred embodiment, the present invention relates to altering guanidino substrate hydrolysis activity in plants, arthropods, and microorganisms using arginase. In another preferred embodiment, the invention relates to altering threonine substrated deamination and dehydration activity in plants, arthropods, and microorganisms using threonine deaminase. In some embodiments, the invention related to overexpression and increased activity of arginase, threonine deaminase and a proteinase inhibitor.« less

  6. Protection against herbivores

    DOEpatents

    Howe, Gregg A; Chen, Hui

    2014-10-28

    The present invention relates to genes, proteins and methods comprising molecules that alter amino acid levels. In one embodiment, the present invention relates to altering guanidino substrate hydrolysis activities in plants, arthropods and microorganisms using molecules within the arginase family and other molecules that alter an amino acid levels. In ones embodiment, the present invention relates to altering threonine substrate deamination and dehydration activities in plants, arthropods and microorganisms using molecules within the threonine deaminase family and other molecules that alter amino acid levels. In one embodiment, the present invention relates to using genes, proteins and methods comprising arginase or threonine deaminase for altering the pathophysiology of plants, arthropods and microorganisms. In a preferred embodiment, the present invention relates to altering guanidino substrate hydrolysis activity in plants, arthropods, and microorganisms using arginase. In another preferred embodiment, the invention relates to altering threonine substrated deamination and dehydration activity in plants, arthropods, and microorganisms using threonine deaminase. In some embodiments, the invention related to overexpression and increased activity of arginase, threonine deaminase and a proteinase inhibitor.

  7. Arginase induction by sodium phenylbutyrate in mouse tissues and human cell lines.

    PubMed

    Kern, R M; Yang, Z; Kim, P S; Grody, W W; Iyer, R K; Cederbaum, S D

    2007-01-01

    Hyperargininemia is a urea cycle disorder caused by mutations in the gene for arginase I (AI) resulting in elevated blood arginine and ammonia levels. Sodium phenylacetate and a precursor, sodium phenylbutyrate (NaPB) have been used to lower ammonia, conjugating glutamine to produce phenylacetylglutamine which is excreted in urine. The elevated arginine levels induce the second arginase (AII) in patient kidney and kidney tissue culture. It has been shown that NaPB increases expression of some target genes and we tested its effect on arginase induction. Eight 9-week old male mice fed on chow containing 7.5 g NaPB/kg rodent chow and drank water with 10 g NaPB/L, and four control mice had a normal diet. After one week all mice were sacrificed. The arginase specific activities for control and NaPB mice, respectively, were 38.2 and 59.4 U/mg in liver, 0.33 and 0.42 U/mg in kidney, and 0.29 and 1.19 U/mg in brain. Immunoprecipitation of arginase in each tissue with AI and AII antibodies showed the activity induced by NaPB is mostly AI. AII may also be induced in kidney. AI accounts for the fourfold increased activity in brain. In some cell lines, NaPB increased arginase activity up to fivefold depending on dose (1-5 mM) and exposure time (2-5 days); control and NaPB activities, respectively, are: erythroleukemia, HEL, 0.06 and 0.31 U/mg, and K562, 0.46 and 1.74 U/mg; embryonic kidney, HEK293, 1.98 and 3.58 U/mg; breast adenocarcinoma, MDA-MB-468, 1.11 and 4.06 U/mg; and prostate adenocarcinoma, PC-3, 0.55 and 3.20 U/mg. In MDA-MB-468 and HEK most, but not all, of the induced activity is AI. These studies suggest that NaPB may induce AI when used to treat urea cycle disorders. It is relatively less useful in AI deficiency, although it could have some effect in those patients with missense mutations.

  8. Enteral arginase II provides ornithine for citrulline synthesis

    USDA-ARS?s Scientific Manuscript database

    The synthesis of citrulline from arginine in the small intestine depends on the provision of ornithine. To test the hypothesis that arginase II plays a central role in the supply of ornithine for citrulline synthesis, the contribution of dietary arginine, glutamine, and proline was determined by uti...

  9. Arginase activity, urea, and hydroxyproline concentration are reduced in keratoconus keratocytes.

    PubMed

    Stachon, Tanja; Kolev, Krasimir; Flaskó, Zsuzsa; Seitz, Berthold; Langenbucher, Achim; Szentmáry, Nóra

    2017-01-01

    Keratoconus (KC) is a disease characterized by thinning and deformation of the cornea, but its etiology remains unknown. Seventy percent of the corneal stroma consists of collagen, which is composed of three intertwined polypeptide chains with glycine-hydroxyproline-proline repeats along their sequence. Arginase is a cytoplasmatic enzyme and catalyzes the conversion of arginine to urea and ornithine, which serves as a precursor for the endogenous synthesis of proline and hydroxyproline. The purpose of this study was to analyze arginase activity, as well as collagen and urea formation in normal and KC-keratocytes and to determine the impact of urea on keratocyte viability and proliferation in vitro. Primary human keratocytes were isolated by digestion in collagenase (1.0 mg/mL) from surgically removed corneas of eight keratoconus patients and eight normal human corneal buttons and cultured in DMEM/Ham's F12 medium supplemented with 5 % fetal calf serum. Arginase activity and urea concentration were measured in cell-lysates, hydroxyproline concentration in supernatant of cultured keratocytes using colorimetric assay. Cell viability and cell proliferation of cultured keratocytes were assessed after treatment with urea at concentrations up to10 mM for 24 h using assays for metabolic activity and DNA replication. Arginase activity and urea concentration in KC-keratocytes decreased by about 50 % compared to normal keratocytes (p = 0.003 and p = 0.008). Hydroxyproline synthesized by cultured KC-keratocytes was also approximately 50 % less compared to normal keratocytes (p = 0.02) and this difference decreased following treatment with 5.0 or 10.0 mM urea (p = 0.02; 0.03), without any change in cell viability (p > 0.09). However, the urea treatment increased modestly (by 20 %) the proliferation rate of KC-keratocytes (p = 0.04; 0.04; 0.04), without any effect on normal cultured keratocytes (p > 0.09). We identified suppressed arginase activity in the metabolic program of cultured keratoconus keratocytes. The level of urea, as one product of the enzyme arginase was also decreased. This results in impaired collagen synthesis, evidenced in the culture by reduced hydroxyproline concentration. In addition, our data showed that the other product of the arginase reaction, urea supports the proliferation of KC-keratocytes, without changes in their viability. The metabolic reprogramming of keratoconus keratocytes and its impact on development of a clinically detectable keratoconus disease has to be further analyzed.

  10. Decreased Rate of Plasma Arginine Appearance in Murine Malaria May Explain Hypoargininemia in Children With Cerebral Malaria

    PubMed Central

    Alkaitis, Matthew S.; Wang, Honghui; Ikeda, Allison K.; Rowley, Carol A.; MacCormick, Ian J. C.; Chertow, Jessica H.; Billker, Oliver; Suffredini, Anthony F.; Roberts, David J.; Taylor, Terrie E.; Seydel, Karl B.; Ackerman, Hans C.

    2016-01-01

    Background. Plasmodium infection depletes arginine, the substrate for nitric oxide synthesis, and impairs endothelium-dependent vasodilation. Increased conversion of arginine to ornithine by parasites or host arginase is a proposed mechanism of arginine depletion. Methods. We used high-performance liquid chromatography to measure plasma arginine, ornithine, and citrulline levels in Malawian children with cerebral malaria and in mice infected with Plasmodium berghei ANKA with or without the arginase gene. Heavy isotope–labeled tracers measured by quadrupole time-of-flight liquid chromatography–mass spectrometry were used to quantify the in vivo rate of appearance and interconversion of plasma arginine, ornithine, and citrulline in infected mice. Results. Children with cerebral malaria and P. berghei–infected mice demonstrated depletion of plasma arginine, ornithine, and citrulline. Knock out of Plasmodium arginase did not alter arginine depletion in infected mice. Metabolic tracer analysis demonstrated that plasma arginase flux was unchanged by P. berghei infection. Instead, infected mice exhibited decreased rates of plasma arginine, ornithine, and citrulline appearance and decreased conversion of plasma citrulline to arginine. Notably, plasma arginine use by nitric oxide synthase was decreased in infected mice. Conclusions. Simultaneous arginine and ornithine depletion in malaria parasite–infected children cannot be fully explained by plasma arginase activity. Our mouse model studies suggest that plasma arginine depletion is driven primarily by a decreased rate of appearance. PMID:27923948

  11. Helminth-induced arginase-1 exacerbates lung inflammation and disease severity in tuberculosis

    PubMed Central

    Monin, Leticia; Griffiths, Kristin L.; Lam, Wing Y.; Gopal, Radha; Kang, Dongwan D.; Ahmed, Mushtaq; Rajamanickam, Anuradha; Cruz-Lagunas, Alfredo; Zúñiga, Joaquín; Babu, Subash; Kolls, Jay K.; Mitreva, Makedonka; Rosa, Bruce A.; Ramos-Payan, Rosalio; Morrison, Thomas E.; Murray, Peter J.; Rangel-Moreno, Javier; Pearce, Edward J.; Khader, Shabaana A.

    2015-01-01

    Parasitic helminth worms, such as Schistosoma mansoni, are endemic in regions with a high prevalence of tuberculosis (TB) among the population. Human studies suggest that helminth coinfections contribute to increased TB susceptibility and increased rates of TB reactivation. Prevailing models suggest that T helper type 2 (Th2) responses induced by helminth infection impair Th1 immune responses and thereby limit Mycobacterium tuberculosis (Mtb) control. Using a pulmonary mouse model of Mtb infection, we demonstrated that S. mansoni coinfection or immunization with S. mansoni egg antigens can reversibly impair Mtb-specific T cell responses without affecting macrophage-mediated Mtb control. Instead, S. mansoni infection resulted in accumulation of high arginase-1–expressing macrophages in the lung, which formed type 2 granulomas and exacerbated inflammation in Mtb-infected mice. Treatment of coinfected animals with an antihelminthic improved Mtb-specific Th1 responses and reduced disease severity. In a genetically diverse mouse population infected with Mtb, enhanced arginase-1 activity was associated with increased lung inflammation. Moreover, in patients with pulmonary TB, lung damage correlated with increased serum activity of arginase-1, which was elevated in TB patients coinfected with helminths. Together, our data indicate that helminth coinfection induces arginase-1–expressing type 2 granulomas, thereby increasing inflammation and TB disease severity. These results also provide insight into the mechanisms by which helminth coinfections drive increased susceptibility, disease progression, and severity in TB. PMID:26571397

  12. Helminth-induced arginase-1 exacerbates lung inflammation and disease severity in tuberculosis.

    PubMed

    Monin, Leticia; Griffiths, Kristin L; Lam, Wing Y; Gopal, Radha; Kang, Dongwan D; Ahmed, Mushtaq; Rajamanickam, Anuradha; Cruz-Lagunas, Alfredo; Zúñiga, Joaquín; Babu, Subash; Kolls, Jay K; Mitreva, Makedonka; Rosa, Bruce A; Ramos-Payan, Rosalio; Morrison, Thomas E; Murray, Peter J; Rangel-Moreno, Javier; Pearce, Edward J; Khader, Shabaana A

    2015-12-01

    Parasitic helminth worms, such as Schistosoma mansoni, are endemic in regions with a high prevalence of tuberculosis (TB) among the population. Human studies suggest that helminth coinfections contribute to increased TB susceptibility and increased rates of TB reactivation. Prevailing models suggest that T helper type 2 (Th2) responses induced by helminth infection impair Th1 immune responses and thereby limit Mycobacterium tuberculosis (Mtb) control. Using a pulmonary mouse model of Mtb infection, we demonstrated that S. mansoni coinfection or immunization with S. mansoni egg antigens can reversibly impair Mtb-specific T cell responses without affecting macrophage-mediated Mtb control. Instead, S. mansoni infection resulted in accumulation of high arginase-1-expressing macrophages in the lung, which formed type 2 granulomas and exacerbated inflammation in Mtb-infected mice. Treatment of coinfected animals with an antihelminthic improved Mtb-specific Th1 responses and reduced disease severity. In a genetically diverse mouse population infected with Mtb, enhanced arginase-1 activity was associated with increased lung inflammation. Moreover, in patients with pulmonary TB, lung damage correlated with increased serum activity of arginase-1, which was elevated in TB patients coinfected with helminths. Together, our data indicate that helminth coinfection induces arginase-1-expressing type 2 granulomas, thereby increasing inflammation and TB disease severity. These results also provide insight into the mechanisms by which helminth coinfections drive increased susceptibility, disease progression, and severity in TB.

  13. Reduced bioavailable manganese causes striatal urea cycle pathology in Huntington's disease mouse model.

    PubMed

    Bichell, Terry Jo V; Wegrzynowicz, Michal; Tipps, K Grace; Bradley, Emma M; Uhouse, Michael A; Bryan, Miles; Horning, Kyle; Fisher, Nicole; Dudek, Karrie; Halbesma, Timothy; Umashanker, Preethi; Stubbs, Andrew D; Holt, Hunter K; Kwakye, Gunnar F; Tidball, Andrew M; Colbran, Roger J; Aschner, Michael; Neely, M Diana; Di Pardo, Alba; Maglione, Vittorio; Osmand, Alexander; Bowman, Aaron B

    2017-06-01

    Huntington's disease (HD) is caused by a mutation in the huntingtin gene (HTT), resulting in profound striatal neurodegeneration through an unknown mechanism. Perturbations in the urea cycle have been reported in HD models and in HD patient blood and brain. In neurons, arginase is a central urea cycle enzyme, and the metal manganese (Mn) is an essential cofactor. Deficient biological responses to Mn, and reduced Mn accumulation have been observed in HD striatal mouse and cell models. Here we report in vivo and ex vivo evidence of a urea cycle metabolic phenotype in a prodromal HD mouse model. Further, either in vivo or in vitro Mn supplementation reverses the urea-cycle pathology by restoring arginase activity. We show that Arginase 2 (ARG2) is the arginase enzyme present in these mouse brain models, with ARG2 protein levels directly increased by Mn exposure. ARG2 protein is not reduced in the prodromal stage, though enzyme activity is reduced, indicating that altered Mn bioavailability as a cofactor leads to the deficient enzymatic activity. These data support a hypothesis that mutant HTT leads to a selective deficiency of neuronal Mn at an early disease stage, contributing to HD striatal urea-cycle pathophysiology through an effect on arginase activity. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  14. Arginase: A Novel Proliferative Determinant in Prostate Cancer

    DTIC Science & Technology

    2005-04-01

    neoplastic prostate samples. The purpose of the present research funded by USAMRMC is to examine the expression of All in a wider range of benign and - malignant prostate...of polyamine synthesis levels in these lines, and our measurement and localization of arginase expression in benign and malignant prostate tissue samples.

  15. Inhibition of ethylene production by putrescine alleviates aluminium-induced root inhibition in wheat plants.

    PubMed

    Yu, Yan; Jin, Chongwei; Sun, Chengliang; Wang, Jinghong; Ye, Yiquan; Zhou, Weiwei; Lu, Lingli; Lin, Xianyong

    2016-01-08

    Inhibition of root elongation is one of the most distinct symptoms of aluminium (Al) toxicity. Although putrescine (Put) has been identified as an important signaling molecule involved in Al tolerance, it is yet unknown how Put mitigates Al-induced root inhibition. Here, the possible mechanism was investigated by using two wheat genotypes differing in Al resistance: Al-tolerant Xi Aimai-1 and Al-sensitive Yangmai-5. Aluminium caused more root inhibition in Yangmai-5 and increased ethylene production at the root apices compared to Xi Aimai-1, whereas the effects were significantly reversed by ethylene biosynthesis inhibitors. The simultaneous exposure of wheat seedlings to Al and ethylene donor, ethephon, or ethylene biosynthesis precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), increased ethylene production and aggravated root inhibition, which was more pronounced in Xi Aimai-1. In contrast, Put treatment decreased ethylene production and alleviated Al-induced root inhibition in both genotypes, and the effects were more conspicuous in Yangmai-5. Furthermore, our results indicated that Al-induced ethylene production was mediated by ACC synthase (ACS) and ACC oxidase, and that Put decreased ethylene production by inhibiting ACS. Altogether, these findings indicate that ethylene is involved in Al-induced root inhibition and this process could be alleviated by Put through inhibiting ACS activity.

  16. Resveratrol Is Active against Leishmania amazonensis: In Vitro Effect of Its Association with Amphotericin B

    PubMed Central

    Ferreira, Christian; Soares, Deivid Costa; do Nascimento, Michelle Tanny Cunha; Pinto-da-Silva, Lucia Helena; Sarzedas, Carolina Galvão; Tinoco, Luzineide Wanderley

    2014-01-01

    Resveratrol is a polyphenol found in black grapes and red wine and has many biological activities. In this study, we evaluated the effect of resveratrol alone and in association with amphotericin B (AMB) against Leishmania amazonensis. Our results demonstrate that resveratrol possesses both antipromastigote and antiamastigote effects, with 50% inhibitory concentrations (IC50s) of 27 and 42 μM, respectively. The association of resveratrol with AMB showed synergy for L. amazonensis amastigotes, as demonstrated by the mean sums of fractional inhibitory index concentration (mean ΣFIC) of 0.483, although for promastigotes, this association was indifferent. Treatment with resveratrol increased the percentage of promastigotes in the sub-G0/G1 phase of the cell cycle, reduced the mitochondrial potential, and showed an elevated choline peak and CH2-to-CH3 ratio in the nuclear magnetic resonance (NMR) spectroscopy analysis; all these features indicate parasite death. Resveratrol also decreased the activity of the enzyme arginase in uninfected and infected macrophages with and without stimulation with interleukin-4 (IL-4), also implicating arginase inhibition in parasite death. The anti-Leishmania effect of resveratrol and its potential synergistic association with AMB indicate that these compounds should be subjected to further studies of drug association therapy in vivo. PMID:25114129

  17. Construction of a highly efficient Bacillus subtilis 168 whole-cell biocatalyst and its application in the production of L-ornithine.

    PubMed

    Wang, Meizhou; Xu, Meijuan; Rao, Zhiming; Yang, Taowei; Zhang, Xian

    2015-11-01

    L-Ornithine, a non-protein amino acid, is usually extracted from hydrolyzed protein as well as produced by microbial fermentation. Here, we focus on a highly efficient whole-cell biocatalyst for the production of L-ornithine. The gene argI, encoding arginase, which catalyzes the hydrolysis of L-arginine to L-ornithine and urea, was cloned from Bacillus amyloliquefaciens B10-127 and expressed in GRAS strain Bacillus subtilis 168. The recombinant strain exhibited an arginase activity of 21.9 U/mg, which is 26.7 times that of wild B. subtilis 168. The optimal pH and temperature of the purified recombinant arginase were 10.0 and 40 °C, respectively. In addition, the recombinant arginase exhibited a strong Mn(2+) preference. When using whole-cell biocatalyst-based bioconversion, a hyper L-ornithine production of 356.9 g/L was achieved with a fed-batch strategy in a 5-L reactor within 12 h. This whole-cell bioconversion study demonstrates an environmentally friendly strategy for L-ornithine production in industry.

  18. Studies on the advent of ureotelism. Factors that render the hepatic arginase of the Mexican axolotl able to hydrolyse endogenous arginine

    PubMed Central

    Palacios, R.; Tarrab, Rebeca; Soberón, G.

    1968-01-01

    1. A study was undertaken of the conditions that might operate in the synthesis and hydrolysis of arginine by axolotl liver homogenate to test a previous postulate that liver arginase of the non-metamorphosed Mexican axolotl is not able to hydrolyse arginine formed from citrulline and aspartic acid, though it can split exogenous arginine, and also that an enhanced capacity to hydrolyse endogenous arginine plays a major role in the advent of ureotelism observed during the metamorphosis of the axolotl. 2. It was found that the arginase from axolotl liver is very unstable under the conditions followed, contrary to what is observed in rat liver. 3. Axolotl arginase is able to hydrolyse endogenous arginine if preserved. 4. Mn2+ protects the enzyme and renders it able to split endogenous arginine. 5. It is suggested that the metal ion produces a change of conformation of the enzyme that, being stable, is capable of hydrolysing the amino acid, or that the new conformation is appropriate for interaction with the sites of arginine synthesis. PMID:5701670

  19. T Lymphocyte Inhibition by Tumor-Infiltrating Dendritic Cells Involves Ectonucleotidase CD39 but Not Arginase-1

    PubMed Central

    Trad, Malika; Gautheron, Alexandrine; Fraszczak, Jennifer; Larmonier, Claire; LaCasse, Collin J.; Centuori, Sara; Audia, Sylvain; Samson, Maxime; Ciudad, Marion; Bonnefoy, Francis; Lemaire-Ewing, Stéphanie; Katsanis, Emmanuel; Perruche, Sylvain; Saas, Philippe; Bonnotte, Bernard

    2015-01-01

    T lymphocytes activated by dendritic cells (DC) which present tumor antigens play a key role in the antitumor immune response. However, in patients suffering from active cancer, DC are not efficient at initiating and supporting immune responses as they participate to T lymphocyte inhibition. DC in the tumor environment are functionally defective and exhibit a characteristic of immature phenotype, different to that of DC present in nonpathological conditions. The mechanistic bases underlying DC dysfunction in cancer responsible for the modulation of T-cell responses and tumor immune escape are still being investigated. Using two different mouse tumor models, we showed that tumor-infiltrating DC (TIDC) are constitutively immunosuppressive, exhibit a semimature phenotype, and impair responder T lymphocyte proliferation and activation by a mechanism involving CD39 ectoenzyme. PMID:26491691

  20. Neutrophil degranulation and immunosuppression in patients with GBM: restoration of cellular immune function by targeting arginase I.

    PubMed

    Sippel, Trisha R; White, Jason; Nag, Kamalika; Tsvankin, Vadim; Klaassen, Marci; Kleinschmidt-DeMasters, B K; Waziri, Allen

    2011-11-15

    The source of glioblastoma (GBM)-associated immunosuppression remains multifactorial. We sought to clarify and therapeutically target myeloid cell-derived peripheral immunosuppression in patients with GBM. Direct ex vivo T-cell function, serum Arginase I (ArgI) levels, and circulating myeloid lineage populations were compared between patients with GBM and normal donors or patients with other intracranial tumors. Immunofunctional assays were conducted using bulk and sorted cell populations to explore the potential transfer of myeloid cell-mediated immunosuppression and to identify a potential mechanism for these effects. ArgI-mediated immunosuppression was therapeutically targeted in vitro through pharmacologic inhibition or arginine supplementation. We identified a significantly expanded population of circulating, degranulated neutrophils associated with elevated levels of serum ArgI and decreased T-cell CD3ζ expression within peripheral blood from patients with GBM. Sorted CD11b(+) cells from patients with GBM were found to markedly suppress normal donor T-cell function in coculture, and media harvested from mitogen-stimulated GBM peripheral blood mononuclear cell (PBMC) or GBM-associated mixed lymphoid reactions showed ArgI levels that were significantly higher than controls. Critically, T-cell suppression in both settings could be completely reversed through pharmacologic ArgI inhibition or with arginine supplementation. These data indicate that peripheral cellular immunosuppression in patients with GBM is associated with neutrophil degranulation and elevated levels of circulating ArgI, and that T-cell function can be restored in these individuals by targeting ArgI. These data identify a novel pathway of GBM-mediated suppression of cellular immunity and offer a potential therapeutic window for improving antitumor immunity in affected patients.

  1. Inactivation of agmatinase expressed in vegetative cells alters arginine catabolism and prevents diazotrophic growth in the heterocyst-forming cyanobacterium Anabaena.

    PubMed

    Burnat, Mireia; Flores, Enrique

    2014-10-01

    Arginine decarboxylase produces agmatine, and arginase and agmatinase are ureohydrolases that catalyze the production of ornithine and putrescine from arginine and agmatine, respectively, releasing urea. In the genome of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120, ORF alr2310 putatively encodes an ureohydrolase. Cells of Anabaena supplemented with [(14) C]arginine took up and catabolized this amino acid generating a set of labeled amino acids that included ornithine, proline, and glutamate. In an alr2310 deletion mutant, an agmatine spot appeared and labeled glutamate increased with respect to the wild type, suggesting that Alr2310 is an agmatinase rather than an arginase. As determined in cell-free extracts, agmatinase activity could be detected in the wild type but not in the mutant. Thus, alr2310 is the Anabaena speB gene encoding agmatinase. The ∆alr2310 mutant accumulated large amounts of cyanophycin granule polypeptide, lacked nitrogenase activity, and did not grow diazotrophically. Growth tests in solid media showed that agmatine is inhibitory for Anabaena, especially under diazotrophic conditions, suggesting that growth of the mutant is inhibited by non-metabolized agmatine. Measurements of incorporation of radioactivity from [(14) C]leucine into macromolecules showed, however, a limited inhibition of protein synthesis in the ∆alr2310 mutant. Analysis of an Anabaena strain producing an Alr2310-GFP (green fluorescent protein) fusion showed expression in vegetative cells but much less in heterocysts, implying compartmentalization of the arginine decarboxylation pathway in the diazotrophic filaments of this heterocyst-forming cyanobacterium. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  2. Mouse Model for Human Arginase Deficiency

    PubMed Central

    Iyer, Ramaswamy K.; Yoo, Paul K.; Kern, Rita M.; Rozengurt, Nora; Tsoa, Rosemarie; O'Brien, William E.; Yu, Hong; Grody, Wayne W.; Cederbaum, Stephen D.

    2002-01-01

    Deficiency of liver arginase (AI) causes hyperargininemia (OMIM 207800), a disorder characterized by progressive mental impairment, growth retardation, and spasticity and punctuated by sometimes fatal episodes of hyperammonemia. We constructed a knockout mouse strain carrying a nonfunctional AI gene by homologous recombination. Arginase AI knockout mice completely lacked liver arginase (AI) activity, exhibited severe symptoms of hyperammonemia, and died between postnatal days 10 and 14. During hyperammonemic crisis, plasma ammonia levels of these mice increased >10-fold compared to those for normal animals. Livers of AI-deficient animals showed hepatocyte abnormalities, including cell swelling and inclusions. Plasma amino acid analysis showed the mean arginine level in knockouts to be approximately fourfold greater than that for the wild type and threefold greater than that for heterozygotes; the mean proline level was approximately one-third and the ornithine level was one-half of the proline and ornithine levels, respectively, for wild-type or heterozygote mice—understandable biochemical consequences of arginase deficiency. Glutamic acid, citrulline, and histidine levels were about 1.5-fold higher than those seen in the phenotypically normal animals. Concentrations of the branched-chain amino acids valine, isoleucine, and leucine were 0.4 to 0.5 times the concentrations seen in phenotypically normal animals. In summary, the AI-deficient mouse duplicates several pathobiological aspects of the human condition and should prove to be a useful model for further study of the disease mechanism(s) and to explore treatment options, such as pharmaceutical administration of sodium phenylbutyrate and/or ornithine and development of gene therapy protocols. PMID:12052859

  3. Possible Role of Arginase-1 in Concomitant Tumor Immunity

    PubMed Central

    Korrer, Michael J.; Routes, John M.

    2014-01-01

    The expression of Adenovirus serotype 2 or serotype 5 (Ad2/5) E1A in tumor cells reduces their tumorigenicity in vivo by enhancing the NK cell mediated and T cell mediated anti-tumor immune response, an activity that correlates with the ability of E1A to bind p300. We determined if E1A could be used as a molecular adjuvant to enhance antigen-specific T cell responses to a model tumor antigen, ovalbumin (OVA). To achieve this goal, we stably expressed a fusion protein of E1A and OVA (MCA-205-E1A-OVA), OVA (MCA-205-OVA) or a mutant version of E1A unable to bind p300 and OVA (E1A-Δp300-OVA) in the B6-derived, highly tumorigenic MCA-205 tumor cell line. MCA-205-E1A-OVA tumor cells were over 10,000 fold less tumorigenic than MCA-205-OVA, MCA-205-E1A-Δp300-OVA, or MCA-205 in B6 mice. However, immunization of B6 mice with live MCA-205-OVA, MCA-205-E1A-Δp300-OVA and MCA-E1A-OVA tumor cells induced nearly equivalent OVA-specific CD4 T cells and CD8 CTL responses. Further studies revealed that mice with primary, enlarging MCA-205-OVA or MCA-205-E1A-Δp300-OVA tumors on one flank exhibited OVA-specific anti-tumor T cell responses that rejected a tumorigenic dose of MCA-205-OVA cells on the contralateral flank (concomitant tumor immunity). Next we found that tumor associated macrophages (TAMs) in progressive MCA-205-OVA tumors, but not MCA-205-E1A-OVA tumors that expressed high levels of arginase-1, which is known to have local immunosuppressive activities. In summary, immunization of mice with MCA-205 cells expressing OVA, E1A-Δp300-OVA or E1A-OVA induced equivalent OVA-specific CD4 and CD8 anti-tumor responses. TAMs found in MCA-205-OVA, but not MCA-205-E1A-OVA, tumors expressed high levels of arginase-1. We hypothesize that the production of arginase-1 by TAMs in MCA-205-OVA or MCA-205-E1A-Δp300-OVA tumor cells leads to an ineffective anti-tumor immune response in the tumor microenvironment, but does not result in inhibition of a systemic anti-tumor immunity. PMID:24614600

  4. [L-arginine metabolism enzyme activities in rat liver subcellular fractions under condition of protein deprivation].

    PubMed

    Kopyl'chuk, G P; Buchkovskaia, I M

    2014-01-01

    The features of arginase and NO-synthase pathways of arginine's metabolism have been studied in rat liver subcellular fractions under condition of protein deprivation. During the experimental period (28 days) albino male rats were kept on semi synthetic casein diet AIN-93. The protein deprivation conditions were designed as total absence of protein in the diet and consumption of the diet partially deprived with 1/2 of the casein amount compared to in the regular diet. Daily diet consumption was regulated according to the pair feeding approach. It has been shown that the changes of enzyme activities, involved in L-arginine metabolism, were characterized by 1.4-1.7 fold decrease in arginase activity, accompanied with unchanged NO-synthase activity in cytosol. In mitochondrial fraction the unchanged arginase activity was accompanied by 3-5 fold increase of NO-synthase activity. At the terminal stages of the experiment the monodirectional dynamics in the studied activities have been observed in the mitochondrial and cytosolfractions in both experimental groups. In the studied subcellular fractions arginase activity decreased (2.4-2.7 fold with no protein in the diet and 1.5 fold with partly supplied protein) and was accompanied by NO-synthase activity increase by 3.8 fold in cytosole fraction, by 7.2 fold in mitochondrial fraction in the group with no protein in the diet and by 2.2 and 3.5 fold in the group partialy supplied with protein respectively. The observed tendency is presumably caused by the switch of L-arginine metabolism from arginase into oxidizing NO-synthase parthway.

  5. Decreased Rate of Plasma Arginine Appearance in Murine Malaria May Explain Hypoargininemia in Children With Cerebral Malaria.

    PubMed

    Alkaitis, Matthew S; Wang, Honghui; Ikeda, Allison K; Rowley, Carol A; MacCormick, Ian J C; Chertow, Jessica H; Billker, Oliver; Suffredini, Anthony F; Roberts, David J; Taylor, Terrie E; Seydel, Karl B; Ackerman, Hans C

    2016-12-15

     Plasmodium infection depletes arginine, the substrate for nitric oxide synthesis, and impairs endothelium-dependent vasodilation. Increased conversion of arginine to ornithine by parasites or host arginase is a proposed mechanism of arginine depletion.  We used high-performance liquid chromatography to measure plasma arginine, ornithine, and citrulline levels in Malawian children with cerebral malaria and in mice infected with Plasmodium berghei ANKA with or without the arginase gene. Heavy isotope-labeled tracers measured by quadrupole time-of-flight liquid chromatography-mass spectrometry were used to quantify the in vivo rate of appearance and interconversion of plasma arginine, ornithine, and citrulline in infected mice.  Children with cerebral malaria and P. berghei-infected mice demonstrated depletion of plasma arginine, ornithine, and citrulline. Knock out of Plasmodium arginase did not alter arginine depletion in infected mice. Metabolic tracer analysis demonstrated that plasma arginase flux was unchanged by P. berghei infection. Instead, infected mice exhibited decreased rates of plasma arginine, ornithine, and citrulline appearance and decreased conversion of plasma citrulline to arginine. Notably, plasma arginine use by nitric oxide synthase was decreased in infected mice.  Simultaneous arginine and ornithine depletion in malaria parasite-infected children cannot be fully explained by plasma arginase activity. Our mouse model studies suggest that plasma arginine depletion is driven primarily by a decreased rate of appearance. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  6. Fluorometric enzymatic assay of L-arginine

    NASA Astrophysics Data System (ADS)

    Stasyuk, Nataliya; Gayda, Galina; Yepremyan, Hasmik; Stepien, Agnieszka; Gonchar, Mykhailo

    2017-01-01

    The enzymes of L-arginine (further - Arg) metabolism are promising tools for elaboration of selective methods for quantitative Arg analysis. In our study we propose an enzymatic method for Arg assay based on fluorometric monitoring of ammonia, a final product of Arg splitting by human liver arginase I (further - arginase), isolated from the recombinant yeast strain, and commercial urease. The selective analysis of ammonia (at 415 nm under excitation at 360 nm) is based on reaction with o-phthalaldehyde (OPA) in the presence of sulfite in alkali medium: these conditions permit to avoid the reaction of OPA with any amino acid. A linearity range of the fluorometric arginase-urease-OPA method is from 100 nM to 6 μМ with a limit of detection of 34 nM Arg. The method was used for the quantitative determination of Arg in the pooled sample of blood serum. The obtained results proved to be in a good correlation with the reference enzymatic method and literature data. The proposed arginase-urease-OPA method being sensitive, economical, selective and suitable for both routine and micro-volume formats, can be used in clinical diagnostics for the simultaneous determination of Arg as well as urea and ammonia in serum samples.

  7. In vivo inhibition of polyamine biosynthesis and growth in tobacco ovary tissues

    NASA Technical Reports Server (NTRS)

    Slocum, R. D.; Galston, A. W.

    1985-01-01

    Post fertilization growth of tobacco ovary tissues treated with inhibitors of polyamine (PA) biosynthesis was examined in relation to endogenous PA titers and the activities of arginine decarboxylase (ADC, EC 4.1.1.19) and ornithine decarboxylase (ODC, EC 4.1.1.17). DL-alpha-Difluoromethylornithine (DFMO) and DL-alpha-difluoromethylarginine (DFMA), specific, irreversible ("suicide") inhibitors of ODC and ADC in vitro, were used to modulate PA biosynthesis in excised flowers. ODC represented >99% of the total decarboxylase activity in tobacco ovaries. In vivo inhibition of ODC with DFMO resulted in a significant decrease in PA titers, ovary fresh weight and protein content. Simultaneous inhibition of both decarboxylases by DFMO and DFMA produced only a marginally greater depression in growth and PA titers, indicating that ODC activity is rate-limiting for PA biosynthesis in these tissues. Paradoxically, DFMA alone inhibited PA biosynthesis, not as a result of a specific inhibition of ADC, but primarily through the inactivation of ODC. In vivo inhibition of ODC by DFMA appears to result from arginase-mediated hydrolysis of this inhibitor to urea and DFMO, the suicide substrate for ODC. Putrescine conjugates in tobacco appear to function as a storage form of this amine which, upon hydrolysis, may contribute to Put homeostasis during growth.

  8. Polarization of macrophages in the tumor microenvironment is influenced by EGFR signaling within colon cancer cells

    PubMed Central

    Zhang, Weina; Chen, Lechuang; Ma, Kai; Zhao, Yahui; Liu, Xianghe; Wang, Yu; Liu, Mei; Liang, Shufang; Zhu, Hongxia; Xu, Ningzhi

    2016-01-01

    Epidermal growth factor receptor (EGFR) is a target of colon cancer therapy, but the effects of this therapy on the tumor microenvironment remain poorly understood. Our in vivo studies showed that cetuximab, an anti-EGFR monoclonal antibody, effectively inhibited AOM/DSS-induced, colitis-associated tumorigenesis, downregulated M2-related markers, and decreased F4/80+/CD206+ macrophage populations. Treatment with conditioned medium of colon cancer cells increased macrophage expression of the M2-related markers arginase-1 (Arg1), CCL17, CCL22, IL-10 and IL-4. By contrast, conditioned medium of EGFR knockout colon cancer cells inhibited expression of these M2-related markers and induced macrophage expression of the M1-related markers inducible nitric oxide synthase (iNOS), IL-12, TNF-α and CCR7. EGFR knockout in colon cancer cells inhibited macrophage-induced promotion of xenograft tumor growth. Moreover, colon cancer-derived insulin-like growth factor-1 (IGF-1) increased Arg1 expression, and treatment with the IGF1R inhibitor AG1024 inhibited that increase. These results suggest that inhibition of EGFR signaling in colon cancer cells modulates cytokine secretion (e.g. IGF-1) and prevents M1-to-M2 macrophage polarization, thereby inhibiting cancer cell growth. PMID:27683110

  9. Alleviation effect of alginate-derived oligosaccharides on Vicia faba root tip cells damaged by cadmium.

    PubMed

    Ma, L J; Zhang, Y; Bu, N; Wang, S H

    2010-02-01

    Cadmium has been shown to prevent Vicia faba growth by inhibiting cell mitosis. In this study we investigated the role of Alginate-derived Oligosaccharides (ADO) in alleviating Vicia faba root tip cells damaged by 6 and 8 mg L(-1) CdCl2. Micronucleus assay and chromosomal aberration assay were used to determine mitotic index, micronucleus frequency and chromosomal aberration frequency. The results showed that micronucleus frequency of Vicia faba root tip cells was inhibited under all the ADO concentrations. Especially, the inhibition ratio of 0.125% ADO highly reached 66.11 and 67.17% in 6 and 8 mg L(-1) CdCl2, respectively. Furthermore, the mitotic index increased (p < 0.05) and chromosomal aberration frequency decreased (p < 0.05) under all the ADO concentrations. This indicated that ADO had a significant alleviation effect on Vicia faba root tip cells damaged by cadmium.

  10. Evaluation of the Possible Mechanisms of Antihypertensive Activity of Loranthus micranthus: An African Mistletoe

    PubMed Central

    Iwalokun, Bamidele A.; Hodonu, Sedoten A.; Nwoke, Stella; Ojo, Olabisi; Agomo, Phillip U.

    2011-01-01

    Loranthus micranthus (LM), also called African mistletoe is a major Nigerian Loranthaceae plant used traditionally to treat hypertension. The methanolic leaf extract of the plant (LMME) has been shown to elicit anti-hypertensive activity in rats but mechanism remains unclear. This study was undertaken to study the effect of LM on pressor-induced contraction of rat aorta smooth muscles and serum lipid profiles in mice. The LMME was partitioned to produce n-butanol (NBF-LMME), chloroform (CF-LMME), ethyl acetate (EAF-LMME) and water (WF-LMME) fractions. The median effective concentrations and maximum relaxation of the fractions were determined against epinephrine and KCl pre-contracted rat aorta ring model. Serum lipid profiles and nitric oxide (NO) were determined spectrophotometrically in mice administered per orally 250 mg/kg b.w. of each fraction for 21 days. Data were analyzed statistically. NBF-LMME elicited the highest dose-dependent inhibitory effect on rat aorta pre-contracted with norepinephrine and KCl, followed in decreasing order by WF-LMME > CF-LMME > EAF-LMME. Similar order of activity was observed in the ability of these fractions to inhibit elevation in artherogenic lipids, raise serum nitric oxide and reduce cardiac arginase in mice. We conclude the anti-hypertensive activity of L. micranthus involve anti-artherogenic events, vasorelaxation, cardiac arginase reduction and NO elevation. PMID:21918720

  11. Arginase up-regulation and eNOS uncoupling contribute to impaired endothelium-dependent vasodilation in a rat model of intrauterine growth restriction.

    PubMed

    Grandvuillemin, Isabelle; Buffat, Christophe; Boubred, Farid; Lamy, Edouard; Fromonot, Julien; Charpiot, Philippe; Simoncini, Stephanie; Sabatier, Florence; Dignat-George, Françoise; Peyter, Anne-Christine; Simeoni, Umberto; Yzydorczyk, Catherine

    2018-05-09

    Individuals born after intrauterine growth restriction (IUGR) are at increased risk of developing cardiovascular diseases in adulthood, notably hypertension (HTN). Alterations in the vascular system, particularly impaired endothelium-dependent vasodilation, may play an important role in long-term effects of IUGR. Whether such vascular dysfunction precedes HTN has not been fully established in individuals born after IUGR. Moreover, the intimate mechanisms of altered endothelium-dependent vasodilation remain incompletely elucidated. We therefore investigated, using a rat model of IUGR, whether impaired endothelium-dependent relaxation precedes the development of HTN and whether key components of the L-Arginine-nitric oxide (NO) pathway are involved in its pathogenesis. Pregnant rats were fed with a control (CTRL, 23% casein) or low-protein diet (LP, 9% casein) to induce IUGR. Systolic blood pressure (SBP) was measured by tail-cuff plethysmography in 5- and 8-week-old male offspring. Aortic rings were isolated to investigate relaxation to acetylcholine, NO production, eNOS protein content, arginase activity, and superoxide anion production. SBP was not different at 5 weeks, but significantly increased in 8-week-old LP vs. CRTL offspring. In 5-week-old LP vs. CRTL males, endothelium-dependent vasorelaxation was significantly impaired, but restored by pre-incubation with L-Arginine or the arginase inhibitor BEC; NO production was significantly reduced, but restored by L-Arginine pretreatment; total eNOS protein, dimer/monomer ratio, and arginase activity were significantly increased; superoxide anion production was significantly enhanced, but normalized by pretreatment with the NOS inhibitor L-NNA. In this model, IUGR leads to early-impaired endothelium-dependent vasorelaxation, resulting from arginase up-regulation and eNOS uncoupling, which precedes the development of HTN.

  12. Melatonin alleviates inflammasome-induced pyroptosis through inhibiting NF-κB/GSDMD signal in mice adipose tissue.

    PubMed

    Liu, Zhenjiang; Gan, Lu; Xu, Yatao; Luo, Dan; Ren, Qian; Wu, Song; Sun, Chao

    2017-08-01

    Pyroptosis is a proinflammatory form of cell death that is associated with pathogenesis of many chronic inflammatory diseases. Melatonin is substantially reported to possess anti-inflammatory properties by inhibiting inflammasome activation. However, the effects of melatonin on inflammasome-induced pyroptosis in adipocytes remain elusive. Here, we demonstrated that melatonin alleviated lipopolysaccharides (LPS)-induced inflammation and NLRP3 inflammasome formation in mice adipose tissue. The NLRP3 inflammasome-mediated pyroptosis was also inhibited by melatonin in adipocytes. Further analysis revealed that gasdermin D (GSDMD), the key executioner of pyroptosis, was the target for melatonin inhibition of adipocyte pyroptosis. Importantly, we determined that nuclear factor κB (NF-κB) signal was required for the GSDMD-mediated pyroptosis in adipocytes. We also confirmed that melatonin alleviated adipocyte pyroptosis by transcriptional suppression of GSDMD. Moreover, GSDMD physically interacted with interferon regulatory factor 7 (IRF7) and subsequently formed a complex to promote adipocyte pyroptosis. Melatonin also attenuated NLRP3 inflammasome activation and pyroptosis, which was induced by LPS or obesity. In summary, our results demonstrate that melatonin alleviates inflammasome-induced pyroptosis by blocking NF-κB/GSDMD signal in mice adipose tissue. Our data reveal a novel function of melatonin on adipocyte pyroptosis, suggesting a new potential therapy for melatonin to prevent and treat obesity caused systemic inflammatory response. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Hydrogen sulfide from a NaHS source attenuates dextran sulfate sodium (DSS)-induced inflammation via inhibiting nuclear factor-κB

    PubMed Central

    Chen, Xi; Liu, Xi-shuang

    2016-01-01

    This study investigated the alleviating effects of hydrogen sulfide (H2S), derived from sodium hydrosulfide (NaHS), on inflammation induced by dextran sulfate sodium (DSS) in both in vivo and in vitro models. We found that NaHS injection markedly decreased rectal bleeding, diarrhea, and histological injury in DSS-challenged mice. NaHS (20 μmol/L) reversed DSS-induced inhibition in cell viability in Caco-2 cells and alleviated pro-inflammation cytokine expression in vivo and in vitro, indicating an anti-inflammatory function for H2S. It was also found that H2S may regulate cytokine expression by inhibiting the nuclear factor-κB (NF-κB) signaling pathway. In conclusion, our results demonstrated that H2S alleviated DSS-induced inflammation in vivo and in vitro and that the signal mechanism might be associated with the NF-κB signaling pathway. PMID:26984841

  14. Cascading reaction of arginase and urease on a graphene-based FET for ultrasensitive, real-time detection of arginine.

    PubMed

    Berninger, Teresa; Bliem, Christina; Piccinini, Esteban; Azzaroni, Omar; Knoll, Wolfgang

    2018-09-15

    Herein, a biosensor based on a reduced graphene oxide field effect transistor (rGO-FET) functionalized with the cascading enzymes arginase and urease was developed for the detection of L-arginine. Arginase and urease were immobilized on the rGO-FET sensing surface via electrostatic layer-by-layer assembly using polyethylenimine (PEI) as cationic building block. The signal transduction mechanism is based on the ability of the cascading enzymes to selectively perform chemical transformations and prompt local pH changes, that are sensitively detected by the rGO-FET. In the presence of L-arginine, the transistors modified with (PEI/urease(arginase)) multilayers showed a shift in the Dirac point due to the change in the local pH close to the graphene surface, produced by the catalyzed urea hydrolysis. The transistors were able to monitor L-arginine in the 10-1000 μM linear range with a LOD of 10 μM, displaying a fast response and a good long-term stability. The sensor showed stereospecificity and high selectivity in the presence of non-target amino acids. Taking into account the label-free, real-time measurement capabilities and the easily quantifiable, electronic output signal, this biosensor offers advantages over state-of-the-art L-arginine detection methods. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  15. CaCO3 supplementation alleviates the inhibition of formic acid on acetone/butanol/ethanol fermentation by Clostridium acetobutylicum.

    PubMed

    Qi, Gaoxiang; Xiong, Lian; Lin, Xiaoqing; Huang, Chao; Li, Hailong; Chen, Xuefang; Chen, Xinde

    2017-01-01

    To investigate the inhibiting effect of formic acid on acetone/butanol/ethanol (ABE) fermentation and explain the mechanism of the alleviation in the inhibiting effect under CaCO 3 supplementation condition. From the medium containing 50 g sugars l -1 and 0.5 g formic acid l -1 , only 0.75 g ABE l -1 was produced when pH was adjusted by KOH and fermentation ended prematurely before the transformation from acidogenesis to solventogenesis. In contrast, 11.4 g ABE l -1 was produced when pH was adjusted by 4 g CaCO 3 l -1 . The beneficial effect can be ascribed to the buffering capacity of CaCO 3 . Comparative analysis results showed that the undissociated formic acid concentration and acid production coupled with ATP and NADH was affected by the pH buffering capacity of CaCO 3 . Four millimole undissociated formic acid was the threshold at which the transformation to solventogenesis occurred. The inhibiting effect of formic acid on ABE fermentation can be alleviated by CaCO 3 supplementation due to its buffering capacity.

  16. Role of the Lipoxygenase Pathway in RSV-induced Alternatively Activated Macrophages Leading to Resolution of Lung Pathology

    PubMed Central

    Shirey, Kari Ann; Lai, Wendy; Pletneva, Lioubov M.; Karp, Christopher L.; Divanovic, Senad; Blanco, Jorge C. G.; Vogel, Stefanie N.

    2013-01-01

    Resolution of severe RSV-induced bronchiolitis is mediated by alternatively activated macrophages (AA-Mϕ) that counteract cyclooxygenase (COX)-2-induced lung pathology. Herein, we report that RSV infection of 5-lipoxygenase (LO)−/− and 15-LO−/− macrophages or mice failed to elicit AA-Mϕ differentiation and concomitantly exhibited increased COX-2 expression. Further, RSV infection of 5-LO−/− mice resulted in enhanced lung pathology. Pharmacologic inhibition of 5-LO or 15-LO also blocked differentiation of RSV-induced AA-Mϕ in vitro and, conversely, treatment of 5-LO−/− macrophages with downstream products, lipoxin A4 (LXA4) and resolvin E1 (RvE1), but not leukotriene B4 (LTB4) or LTD4, partially restored expression of AA-Mϕ markers. Indomethacin blockade of COX activity in RSV-infected macrophages increased 5-LO, and 15-LO, as well as arginase-1 mRNA expression. Treatment of RSV-infected mice with indomethacin also resulted not only in enhanced lung arginase-1 mRNA expression and decreased COX-2, but also, decreased lung pathology in RSV-infected 5-LO−/− mice. Treatment of RSV-infected cotton rats with a COX-2-specific inhibitor resulted in enhanced lung 5-LO mRNA and AA-Mϕ marker expression. Together, these data suggest a novel therapeutic approach for RSV that promotes AA-Mϕ differentiation by activating the 5-LO pathway. PMID:24064666

  17. The effects of WW2/WW3 domains of Smurf2 molecule on TGF-β signaling and arginase I gene expression.

    PubMed

    Ganji, Ali; Roshan, Hani Mosayebzadeh; Varasteh, Abdolreza; Moghadam, Malihe; Sankian, Mojtaba

    2015-06-01

    Smad ubiquitination regulatory factor 2 (Smurf2) consists of multiple WW domains which can interact with Smad7 molecule and inhibit signaling of transforming growth factor-beta (TGF-β) cytokine. Arginase I (ArgI) is one of the main products of TGF-β signaling that plays important roles in tumor escape and airway tissue fibrosis and remodeling in asthma. In this study, the effects of TAT fused to WW2/WW3 (TAT-WW2/WW3) recombinant protein on TGF-β signaling and ArgI gene expression were evaluated on J774A.1 cell culture. For this purpose, interaction of TAT-WW2/WW3 with Smad7, mRNA expression of ArgI, and phosphorylated Smad3 (P-Smad3) were analyzed in TAT-WW2/WW3-treated J774A.1 cell. The results showed interaction of TAT-WW2/WW3 with Smad7, downregulation of ArgI gene expression (P < 0.05), and higher amount of P-Smad3 in the TAT-WW2/WW3-treated cells. In conclusion, we suggest that TAT-WW2/WW3 could interfere with TGF-β signaling and reduce ArgI gene expression. Since, ArgI has important effects on tissue remodeling in asthma and cancer progression, so these findings could be used to develop a new approach in the treatment of asthma and cancers. © 2015 International Federation for Cell Biology.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yuan; Luo, Fangjun; Li, Hui

    During inflammation in the glomerulus, the proliferation of myofiroblast-like mesangial cells is commonly associated with the pathological process. Macrophages play an important role in regulating the growth of resident mesangial cells in the glomeruli. Alternatively activated macrophage (M2 macrophage) is a subset of macrophages induced by IL-13/IL-4, which is shown to play a repair role in glomerulonephritis. Prompted by studies of development, we performed bone marrow derived macrophage and rat mesangial cell co-culture study. Conditioned medium from IL-4 primed M2 macrophages induced rat mesangial cell apoptosis. The pro-apoptotic effect of M2 macrophages was demonstrated by condensed nuclei stained with Hoechstmore » 33258, increased apoptosis rates by flow cytometry analysis and enhanced caspase-3 activation by western blot. Fas protein was up-regulated in rat mesangial cells, and its neutralizing antibody ZB4 partly inhibited M2 macrophage-induced apoptosis. The up-regulated arginase-1 expression in M2 macrophage also contributed to this apoptotic effect. These results indicated that the process of apoptosis triggered by conditioned medium from M2 macrophages, at least is partly conducted through Fas in rat mesangial cells. Our findings provide compelling evidence that M2 macrophages control the growth of mesangial cells in renal inflammatory conditions. - Highlights: • Conditioned-medium from M2 macrophages induces rat mesangial cell (MsC) apoptosis. • M2 macrophage conditioned medium exerts its pro-apoptotic effects via Fas ligand. • Arginase-1 activity in M2 macrophages plays a role in inducing apoptosis in rat MsC.« less

  19. Ablation of Arginase II Spares Arginine and Abolishes the Arginine Requirement for Growth in Male Mice.

    PubMed

    Didelija, Inka C; Mohammad, Mahmoud A; Marini, Juan C

    2017-08-01

    Background: Arginine is considered a semiessential amino acid in many species, including humans, because under certain conditions its demand exceeds endogenous production. Arginine availability, however, is determined not only by its production but also by its disposal. Manipulation of disposal pathways has the potential to increase availability and thus abolish the requirement for arginine. Objective: The objective of the study was to test the hypothesis that arginase II ablation increases arginine availability for growth. Methods: In a completely randomized design with a factorial arrangement of treatments, postweaning growth was determined for 3 wk in male and female wild-type (WT) mice and arginase II knockout mice (ARGII) on a C57BL/6J background fed arginine-sufficient [Arg(+); 8 g arginine/kg] or arginine-free [Arg(-)] diets. Tracers were used to determine citrulline and arginine kinetics. Results: A sex dimorphism in arginine metabolism was detected; female mice had a greater citrulline flux (∼30%, P < 0.001), which translated to greater de novo synthesis of arginine (∼31%, P < 0.001). Female mice also had greater arginine fluxes ( P < 0.015) and plasma arginine concentrations ( P < 0.01), but a reduced arginine clearance rate ( P < 0.001). Ablation of arginase II increased plasma arginine concentrations in both sexes (∼27%, P < 0.01) but increased arginine flux only in males ( P < 0.01). The absence of arginine in the diet limited the growth of male WT mice ( P < 0.01), but had no effect on male ARGII mice ( P = 0.12). In contrast, WT females on the Arg(-) diet grew at the same rate and achieved final weight similar to that of female WT mice fed the Arg(+) diet ( P = 0.47). Conclusion: The ablation of arginase II in male mice spares arginine that can then be used for growth and to meet other metabolic functions, thus abolishing arginine requirements. © 2017 American Society for Nutrition.

  20. PDE5 inhibition alleviates functional muscle ischemia in boys with Duchenne muscular dystrophy.

    PubMed

    Nelson, Michael D; Rader, Florian; Tang, Xiu; Tavyev, Jane; Nelson, Stanley F; Miceli, M Carrie; Elashoff, Robert M; Sweeney, H Lee; Victor, Ronald G

    2014-06-10

    To determine whether phosphodiesterase type 5 (PDE5) inhibition can alleviate exercise-induced skeletal muscle ischemia in boys with Duchenne muscular dystrophy (DMD). In 10 boys with DMD and 10 healthy age-matched male controls, we assessed exercise-induced attenuation of reflex sympathetic vasoconstriction, i.e., functional sympatholysis, a protective mechanism that matches oxygen delivery to metabolic demand. Reflex vasoconstriction was induced by simulated orthostatic stress, measured as the decrease in forearm muscle oxygenation with near-infrared spectroscopy, and performed when the forearm muscles were rested or lightly exercised with rhythmic handgrip exercise. Then, the patients underwent an open-label, dose-escalation, crossover trial with single oral doses of tadalafil or sildenafil. The major new findings are 2-fold: first, sympatholysis is impaired in boys with DMD-producing functional muscle ischemia-despite contemporary background therapy with corticosteroids alone or in combination with cardioprotective medication. Second, PDE5 inhibition with standard clinical doses of either tadalafil or sildenafil alleviates this ischemia in a dose-dependent manner. Furthermore, PDE5 inhibition also normalizes the exercise-induced increase in skeletal muscle blood flow (measured by Doppler ultrasound), which is markedly blunted in boys with DMD. These data provide in-human proof of concept for PDE5 inhibition as a putative new therapeutic strategy for DMD. This study provides Class IV evidence that in patients with DMD, PDE5 inhibition restores functional sympatholysis. © 2014 American Academy of Neurology.

  1. The Synthetic Melanocortin (CKPV)2 Exerts Anti-Fungal and Anti-Inflammatory Effects against Candida albicans Vaginitis via Inducing Macrophage M2 Polarization

    PubMed Central

    Jia, Zhi-rong; Li, Xian-jing; Wang, Zhuo; Li, Li; Li, Yong-wen; Liu, Gen-yan; Tong, Ming-Qing; Li, Xiao-yi; Zhang, Guo-hui; Dai, Xiang-rong; He, Ling; Li, Zhi-yu; Cao, Cong; Yang, Yong

    2013-01-01

    In this study, we examined anti-fungal and anti-inflammatory effects of the synthetic melanocortin peptide (Ac-Cys-Lys-Pro-Val-NH2)2 or (CKPV)2 against Candida albicans vaginitis. Our in vitro results showed that (CKPV)2 dose-dependently inhibited Candida albicans colonies formation. In a rat Candida albicans vaginitis model, (CKPV)2 significantly inhibited vaginal Candida albicans survival and macrophages sub-epithelial mucosa infiltration. For mechanisms study, we observed that (CKPV)2 inhibited macrophages phagocytosis of Candida albicans. Meanwhile, (CKPV)2 administration inhibited macrophage pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) release, while increasing the arginase activity and anti-inflammatory cytokine IL-10 production, suggesting macrophages M1 to M2 polarization. Cyclic AMP (cAMP) production was also induced by (CKPV)2 administration in macrophages. These above effects on macrophages by (CKPV)2 were almost reversed by melanocortin receptor-1(MC1R) siRNA knockdown, indicating the requirement of MC1R in the process. Altogether, our results suggest that (CKPV)2 exerted anti-fungal and anti-inflammatory activities against Candida albicans vaginitis probably through inducing macrophages M1 to M2 polarization and MC1R activation. PMID:23457491

  2. Erythrocyte arginase, pyrimidine 5'-nucleotidase (P5N), and deoxypyrimidine 5'-nucleotidase (dP5N) as indices of lead exposure.

    PubMed Central

    Cook, L R; Angle, C R; Stohs, S J

    1986-01-01

    The activities of three erythrocyte (rbc) enzymes, arginase, pyrimidine 5'-nucleotidase (P5N), and deoxypyrimidine 5'-nucleotidase (dP5N), were compared in 16 lead workers and 14 age matched controls as correlates of blood lead (PbB) and unextracted zinc protoporphyrin (EP) concentrations. Subjects with PbB of 0.9-2.5 microM (19-52 micrograms/dl) had 6.5 +/- 0.6 IU of P5N activity with uridine monophosphate (UMP) as substrate, significantly less (p less than 0.001) than the 12.0 +/- 0.7 IU activity of controls with PbB 0.3-0.6 microM (6-12 micrograms/dl). The mean activity of rbc dP5N with either deoxyuridine monophosphate (dUMP) or thymidine monophosphate as substrate, and of rbc arginase, did not differentiate the two groups. The correlation coefficients of ln PbB with the selected substrates for P5N and dP5N were: UMP, r = -0.75; dUMP, r = -0.61; TMP, r = -0.23. The correlation coefficient of ln PbB and arginase activity was -0.03. Rbc P5N (UMPase) is a significant correlate of PbB, equivalent to rbc protoporphyrin. HPLC assay of rbc UMPase activity is a sensitive and rapid assay that appears to meet criteria for a reliable clinical laboratory index of blood lead concentrations. PMID:3013277

  3. ARG1 Gene Polymorphisms and Their Association in Individuals with Essential Hypertension: A Case-Control Study.

    PubMed

    Shah, Syed Fawad Ali; Iqbal, Tahir; Qamar, Raheel; Rafiq, Muhammad Arshad; Hussain, Sabir

    2018-05-14

    The purpose of this study is to investigate the association of variant alleles (rs2781666 and rs2781667) at ARG1 to be involved in the generation of essential hypertension (EH) phenotypes in human subjects. The ARG1 noncoding polymorphisms (rs2781666; Chr6:131572419-G/T and rs2781667; Chr6:131573754-C/T) were investigated in 570 subjects, including 285 individuals diagnosed with EH. Determination of serum arginase activity and concentrations of nitric oxide catabolites were detected by the colorimetric enzymatic assay. Genetic typing of the noncoding polymorphisms, in ARG1, was performed using PCR and restriction digestion strategy. A significant increase in arginase activity was observed in individuals exhibiting EH phenotypes, compared with controls (p < 0.0001). Arginase showed negative correlation with serum nitrite and nitrate (r = -0.446 and r = -0.6075, respectively). A significant difference to be claimed in the distribution of SNPotypes, in rs2781666 and rs2781667, between cases and controls (p = 0.0086 and p = 0.0232; respectively). Interestingly, variant allele T, at both loci, is tightly linked to the disease phenotypes compared to the wild-type allele (p = 0.002; and p = 0.007, respectively). To our knowledge, this report is the first ever that described arginase activity, and the ARG1 polymorphism data of individuals originated in Pakistan, segregating EH phenotypes, thus, highlighting a novel risk factor for the disease.

  4. Methane alleviates copper-induced seed germination inhibition and oxidative stress in Medicago sativa.

    PubMed

    Samma, Muhammad Kaleem; Zhou, Heng; Cui, Weiti; Zhu, Kaikai; Zhang, Jing; Shen, Wenbiao

    2017-02-01

    Recent results discovered the protective roles of methane (CH 4 ) against oxidative stress in animals. However, the possible physiological roles of CH 4 in plants are still unknown. By using physiological, histochemical and molecular approaches, the beneficial role of CH 4 in germinating alfalfa seeds upon copper (Cu) stress was evaluated. Endogenous production of CH 4 was significantly increased in Cu-stressed alfalfa seeds, which was mimicked by 0.39 mM CH 4 . The pretreatment with CH 4 significantly alleviated the inhibition of seed germination and seedling growth induced by Cu stress. Cu accumulation was obviously blocked as well. Meanwhile, α/β amylase activities and sugar contents were increased, all of which were consistent with the alleviation of seed germination inhibition triggered by CH 4 . The Cu-triggered oxidative stress was also mitigated, which was confirmed by the decrease of lipid peroxidation and reduction of Cu-induced loss of plasma membrane integrity in CH 4 -pretreated alfalfa seedlings. The results of antioxidant enzymes, including ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT), and guaiacol peroxidase (POD) total or isozymatic activities, and corresponding transcripts (APX1/2, Cu/Zn SOD and Mn-SOD), indicated that CH 4 reestablished cellular redox homeostasis. Further, Cu-induced proline accumulation was partly impaired by CH 4 , which was supported by the alternation of proline metabolism. Together, these results indicated that CH 4 performs an advantageous effect on the alleviation of seed germination inhibition caused by Cu stress, and reestablishment of redox homeostasis mainly via increasing antioxidant defence.

  5. Alleviation of Ultraviolet B-Induced Photodamage by Coffea arabica Extract in Human Skin Fibroblasts and Hairless Mouse Skin

    PubMed Central

    Wu, Po-Yuan; Huang, Chi-Chang; Chu, Yin; Huang, Ya-Han; Lin, Ping; Liu, Yu-Han; Wen, Kuo-Ching; Lin, Chien-Yih; Hsu, Mei-Chich; Chiang, Hsiu-Mei

    2017-01-01

    Coffea arabica extract (CAE) containing 48.3 ± 0.4 mg/g of chlorogenic acid and a trace amount of caffeic acid was found to alleviate photoaging activity in human skin fibroblasts. In this study, polyphenol-rich CAE was investigated for its antioxidant and antiinflammatory properties, as well as for its capability to alleviate ultraviolet B (UVB)-induced photodamage in BALB/c hairless mice. The results indicated that 500 μg/mL of CAE exhibited a reducing power of 94.7%, ferrous ion chelating activity of 46.4%, and hydroxyl radical scavenging activity of 20.3%. The CAE dose dependently reduced UVB-induced reactive oxygen species (ROS) generation in fibroblasts. Furthermore, CAE inhibited the UVB-induced expression of cyclooxygenase-2 and p-inhibitor κB, and the translocation of nuclear factor-kappa B (NF-κB) to the nucleus of fibroblasts. In addition, CAE alleviated UVB-induced photoaging and photodamage in BALB/c hairless mice by restoring the collagen content and reduced UVB-induced epidermal hyperplasia. CAE also inhibited UVB-induced NF-κB, interleukin-6, and matrix metalloproteinase-1 expression in the hairless mouse skin. The results indicated that CAE exhibits antiphotodamage activity by inhibiting UV-induced oxidative stress and inflammation. Therefore, CAE is a candidate for use in antioxidant, antiinflammatory, and antiphotodamage products. PMID:28387707

  6. Blockade of store-operated calcium entry alleviates ethanol-induced hepatotoxicity via inhibiting apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Ruibing; Yan, Lihui; Luo, Zheng

    2015-08-15

    Extracellular Ca{sup 2+} influx has been suggested to play a role in ethanol-induced hepatocyte apoptosis and necrosis. Previous studies indicated that store-operated Ca{sup 2+} entry (SOCE) was involved in liver injury induced by ethanol in HepG2 cells. However, the mechanisms underlying liver injury caused by SOCE remain unclear. We aimed to investigate the effects and mechanism of SOCE inhibition on liver injury induced by ethanol in BRL cells and Sprague–Dawley rats. Our data demonstrated that ethanol (0–400 mM) dose-dependently increased hepatocyte injury and 100 mM ethanol significantly upregulated the mRNA and protein expression of SOC for at least 72 hmore » in BRL cells. Blockade of SOCE by pharmacological inhibitors and sh-RNA knockdown of STIM1 and Orai1 attenuated intracellular Ca{sup 2+} overload, restored the mitochondrial membrane potential (MMP), decreased cytochrome C release and inhibited ethanol-induced apoptosis. STIM1 and Orai1 expression was greater in ethanol-treated than control rats, and the SOCE inhibitor corosolic acid ameliorated the histopathological findings and alanine transaminase and aspartate transaminase activity as well as decreased cytochrome C release and inhibited alcohol-induced cell apoptosis. These findings suggest that SOCE blockade could alleviate alcohol-induced hepatotoxicity via inhibiting apoptosis. SOCE might be a useful therapeutic target in alcoholic liver diseases. - Highlights: • Blockade of SOCE alleviated overload of Ca{sup 2+} and hepatotoxicity after ethanol application. • Blockade of SOCE inhibited mitochondrial apoptosis after ethanol application. • SOCE might be a useful therapeutic target in alcoholic liver diseases.« less

  7. Dietary nitrate increases arginine availability and protects mitochondrial complex I and energetics in the hypoxic rat heart

    PubMed Central

    Ashmore, Tom; Fernandez, Bernadette O; Branco-Price, Cristina; West, James A; Cowburn, Andrew S; Heather, Lisa C; Griffin, Julian L; Johnson, Randall S; Feelisch, Martin; Murray, Andrew J

    2014-01-01

    Hypoxic exposure is associated with impaired cardiac energetics in humans and altered mitochondrial function, with suppressed complex I-supported respiration, in rat heart. This response might limit reactive oxygen species generation, but at the cost of impaired electron transport chain (ETC) activity. Dietary nitrate supplementation improves mitochondrial efficiency and can promote tissue oxygenation by enhancing blood flow. We therefore hypothesised that ETC dysfunction, impaired energetics and oxidative damage in the hearts of rats exposed to chronic hypoxia could be alleviated by sustained administration of a moderate dose of dietary nitrate. Male Wistar rats (n = 40) were given water supplemented with 0.7 mmol l−1 NaCl (as control) or 0.7 mmol l−1 NaNO3, elevating plasma nitrate levels by 80%, and were exposed to 13% O2 (hypoxia) or normoxia (n = 10 per group) for 14 days. Respiration rates, ETC protein levels, mitochondrial density, ATP content and protein carbonylation were measured in cardiac muscle. Complex I respiration rates and protein levels were 33% lower in hypoxic/NaCl rats compared with normoxic/NaCl controls. Protein carbonylation was 65% higher in hearts of hypoxic rats compared with controls, indicating increased oxidative stress, whilst ATP levels were 62% lower. Respiration rates, complex I protein and activity, protein carbonylation and ATP levels were all fully protected in the hearts of nitrate-supplemented hypoxic rats. Both in normoxia and hypoxia, dietary nitrate suppressed cardiac arginase expression and activity and markedly elevated cardiac l-arginine concentrations, unmasking a novel mechanism of action by which nitrate enhances tissue NO bioavailability. Dietary nitrate therefore alleviates metabolic abnormalities in the hypoxic heart, improving myocardial energetics. PMID:25172947

  8. Nitric Oxide-Related Biological Pathways in Patients with Major Depression

    PubMed Central

    Baranyi, Andreas; Amouzadeh-Ghadikolai, Omid; Rothenhäusler, Hans-Bernd; Theokas, Simon; Robier, Christoph; Baranyi, Maria; Koppitz, Michael; Reicht, Gerhard; Hlade, Peter; Meinitzer, Andreas

    2015-01-01

    Background Major depression is a well-known risk factor for cardiovascular diseases and increased mortality following myocardial infarction. However, biomarkers of depression and increased cardiovascular risk are still missing. The aim of this prospective study was to evaluate, whether nitric-oxide (NO) related factors for endothelial dysfunction, such as global arginine bioavailability, arginase activity, L-arginine/ADMA ratio and the arginine metabolites asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) might be biomarkers for depression-induced cardiovascular risk. Methods In 71 in-patients with major depression and 48 healthy controls the Global Arginine Bioavailability Ratio (GABR), arginase activity (arginine/ornithine ratio), the L-arginine/ADMA ratio, ADMA, and SDMA were determined by high-pressure liquid chromatography. Psychiatric and laboratory assessments were obtained at baseline at the time of in-patient admittance and at the time of hospital discharge. Results The ADMA concentrations in patients with major depression were significantly elevated and the SDMA concentrations were significantly decreased in comparison with the healthy controls. Even after a first improvement of depression, ADMA and SDMA levels remained nearly unchanged. In addition, after a first improvement of depression at the time of hospital discharge, a significant decrease in arginase activity, an increased L-arginine/ADMA ratio and a trend for increased global arginine bioavailability were observed. Conclusions Our study results are evidence that in patients with major depression ADMA and SDMA might be biomarkers to indicate an increased cardiovascular threat due to depression-triggered NO reduction. GABR, the L-arginine/ADMA ratio and arginase activity might be indicators of therapy success and increased NO production after remission. PMID:26581044

  9. Short curcumin treatment modulates oxidative stress, arginase activity, aberrant crypt foci, and TGF-β1 and HES-1 transcripts in 1,2-dimethylhydrazine-colon carcinogenesis in mice.

    PubMed

    Bounaama, Abdelkader; Djerdjouri, Bahia; Laroche-Clary, Audrey; Le Morvan, Valérie; Robert, Jacques

    2012-12-16

    This study investigated the effect of short curcumin treatment, a natural antioxidant on 1,2-dimethylhydrazine (DMH)-induced aberrant crypt foci (ACF) in mice. The incidence of aberrant crypt foci (ACF) was 100%, with 54 ± 6 per colon, 10 weeks after the first DMH injection and reached 67 ± 12 per colon after 12 weeks. A high level of undifferentiated goblet cells and a weak apoptotic activity were shown in dysplastic ACF. The morphological alterations of colonic mucosa were associated to severe oxidative stress ratio with 43% increase in malondialdehyde vs. 36% decrease in GSH. DMH also increased inducible nitric synthase (iNOS) mRNA transcripts (250%), nitrites level (240%) and arginase activity (296%), leading to nitrosative stress and cell proliferation. Curcumin treatment, starting at week 10 post-DMH injection for 14 days, reduced the number of ACF (40%), iNOS expression (25%) and arginase activity (73%), and improved redox status by approximately 46%, compared to DMH-treated mice. Moreover, curcumin induced apoptosis of dysplastic ACF cells without restoring goblet cells differentiation. Interestingly, curcumin induced a parallel increase in TGF-β1 and HES-1 transcripts (42% and 26%, respectively). In conclusion, the protective effect of curcumin was driven by the reduction of arginase activity and nitrosative stress. The up regulation of TGF-β1 and HES-1 expression by curcumin suggests for the first time, a potential interplay between these signalling pathways in the chemoprotective mechanism of curcumin. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Restoring Ureagenesis in Hepatocytes by CRISPR/Cas9-mediated Genomic Addition to Arginase-deficient Induced Pluripotent Stem Cells.

    PubMed

    Lee, Patrick C; Truong, Brian; Vega-Crespo, Agustin; Gilmore, W Blake; Hermann, Kip; Angarita, Stephanie Ak; Tang, Jonathan K; Chang, Katherine M; Wininger, Austin E; Lam, Alex K; Schoenberg, Benjamen E; Cederbaum, Stephen D; Pyle, April D; Byrne, James A; Lipshutz, Gerald S

    2016-11-29

    Urea cycle disorders are incurable enzymopathies that affect nitrogen metabolism and typically lead to hyperammonemia. Arginase deficiency results from a mutation in Arg1, the enzyme regulating the final step of ureagenesis and typically results in developmental disabilities, seizures, spastic diplegia, and sometimes death. Current medical treatments for urea cycle disorders are only marginally effective, and for proximal disorders, liver transplantation is effective but limited by graft availability. Advances in human induced pluripotent stem cell research has allowed for the genetic modification of stem cells for potential cellular replacement therapies. In this study, we demonstrate a universally-applicable CRISPR/Cas9-based strategy utilizing exon 1 of the hypoxanthine-guanine phosphoribosyltransferase locus to genetically modify and restore arginase activity, and thus ureagenesis, in genetically distinct patient-specific human induced pluripotent stem cells and hepatocyte-like derivatives. Successful strategies restoring gene function in patient-specific human induced pluripotent stem cells may advance applications of genetically modified cell therapy to treat urea cycle and other inborn errors of metabolism.

  11. Comparative effects of selenite and selenate on nitrate assimilation in barley seedlings

    NASA Technical Reports Server (NTRS)

    Aslam, M.; Harbit, K. B.; Huffaker, R. C.

    1990-01-01

    The effect of SeO3= and SeO4= on NO3- assimilation in 8-d-old barley (Hordeum vulgare L.) seedlings was studied over a 24-h period. Selenite at 0.1 mol m-3 in the uptake solutions severely inhibited the induction of NO3- uptake and active nitrate reductases. Selenate, at 1.0 mol m-3 in the nutrient solution, had little effect on induction of activities of these systems until after 12 h; however, when the seedlings were pretreated with 1.0 mol m-3 SeO4= for 24 h, subsequent NO3- uptake from SeO4(=) -free solutions was inhibited about 60%. Sulphate partially alleviated the inhibitory effect of SeO3= when supplied together in the ambient solutions, but had no effect in seedlings pretreated with SeO3=. By contrast, SO4= partially alleviated the inhibitory effect of SeO4= even in seedlings pretreated with SeO4=. Since uptake of NO3- by intact seedlings was also inhibited by SO3=, the percentage of the absorbed NO3- that was reduced was not affected. By contrast, SeO4=, which affected NO3- uptake much less, inhibited the percentage reduced of that absorbed. However, when supplied to detached leaves, both SeO3= and SeO4= inhibited the in vivo reduction of NO3- as well as induction of nitrate reductase and nitrite reductase activities. Selenite was more inhibitory than SeO4= ; approximately a five to 10 times higher concentration of SeO4= than SeO3= was required to achieve similar inhibition. In detached leaves, the inhibitory effect of both SeO3= and SeO4= on in vivo NO3- reduction as well as on the induction of nitrate reductase activity was partially alleviated by SO4=. The inhibitory effects of Se salts on the induction of the nitrite reductase were, however, completely alleviated by SO4=. The results show that in barley seedlings SeO3= is more toxic than SeO4=. The reduction of SeO4= to SeO3= may be a rate limiting step in causing Se toxicity.

  12. T cell-macrophage interaction in arginase-mediated resistance to herpes simplex virus.

    PubMed

    Bonina, L; Nash, A A; Arena, A; Leung, K N; Wildy, P

    1984-09-01

    Peritoneal macrophages activated by-products derived from a herpes simplex virus-specific helper T cell clone were used to investigate intrinsic and extrinsic resistance mechanisms to herpes simplex virus type 1 infection in vitro. T cell-activated macrophages produced fewer infective centres, indicating enhanced intrinsic resistance, and markedly reduced the growth of virus in a permissive cell line. The reduction in virus growth correlated with the depletion of arginine in the support medium, presumably resulting from increased arginase production by activated macrophages. The significance of these findings for antiviral immunity in vivo is discussed.

  13. Potential of Lactobacillus plantarum CCFM639 in Protecting against Aluminum Toxicity Mediated by Intestinal Barrier Function and Oxidative Stress.

    PubMed

    Yu, Leilei; Zhai, Qixiao; Tian, Fengwei; Liu, Xiaoming; Wang, Gang; Zhao, Jianxin; Zhang, Hao; Narbad, Arjan; Chen, Wei

    2016-12-02

    Aluminum (Al) is a ubiquitous metal that can seriously harm the health of animals and humans. In our previous study, we demonstrated that Lactobacillus plantarum CCFM639 can decrease Al burden in the tissues of mice by inhibiting intestinal Al absorption. The main aim of the present research was to investigate whether the protection by the strain is also associated with enhancement of the intestinal barrier, alleviation of oxidative stress and modulation of the inflammatory response. In an in vitro cell model, two protection modes (intervention and therapy) were examined and the results indicated that L. plantarum CCFM639 alleviated Al-induced cytotoxicity. In a mouse model, L. plantarum CCFM639 treatment was found to significantly alleviate oxidative stress in the intestinal tract, regulate the function of the intestinal mucosal immune system, restore the integrity of tight junction proteins and maintain intestinal permeability. These results suggest that in addition to Al sequestration, L. plantarum CCFM639 can also inhibit Al absorption by protecting the intestinal barrier, alleviating Al-induced oxidative stress and inflammatory response. Therefore, L. plantarum CCFM639 has the potential to be a dietary supplement ingredient that provides protection against Al-induced gut injury.

  14. Myeloid-derived suppressor cells in breast cancer.

    PubMed

    Markowitz, Joseph; Wesolowski, Robert; Papenfuss, Tracey; Brooks, Taylor R; Carson, William E

    2013-07-01

    Myeloid-derived suppressor cells (MDSCs) are a population of immature myeloid cells defined by their suppressive actions on immune cells such as T cells, dendritic cells, and natural killer cells. MDSCs typically are positive for the markers CD33 and CD11b but express low levels of HLADR in humans. In mice, MDSCs are typically positive for both CD11b and Gr1. These cells exert their suppressive activity on the immune system via the production of reactive oxygen species, arginase, and cytokines. These factors subsequently inhibit the activity of multiple protein targets such as the T cell receptor, STAT1, and indoleamine-pyrrole 2,3-dioxygenase. The numbers of MDSCs tend to increase with cancer burden while inhibiting MDSCs improves disease outcome in murine models. MDSCs also inhibit immune cancer therapeutics. In light of the poor prognosis of metastatic breast cancer in women and the correlation of increasing levels of MDSCs with increasing disease burden, the purposes of this review are to (1) discuss why MDSCs may be important in breast cancer, (2) describe model systems used to study MDSCs in vitro and in vivo, (3) discuss mechanisms involved in MDSC induction/function in breast cancer, and (4) present pre-clinical and clinical studies that explore modulation of the MDSC-immune system interaction in breast cancer. MDSCs inhibit the host immune response in breast cancer patients and diminishing MDSC actions may improve therapeutic outcomes.

  15. Myeloid-derived suppressor cells as a potential therapy for experimental autoimmune myasthenia gravis

    PubMed Central

    Li, Yan; Tu, Zhidan; Qian, Shiguang; Fung, John J.; Markowitz, Sanford D.; Kusner, Linda L.; Kaminski, Henry J.; Lu, Lina; Lin, Feng

    2016-01-01

    We recently demonstrated that hepatic stellate cells induce the differentiation of myeloid-derived suppressor cells (MDSCs) from myeloid progenitors. In this study, we found that adoptive transfer of these MDSCs effectively reversed disease progression in experimental autoimmune myasthenia gravis (EAMG), a T-cell-dependent and B-cell-mediated model for myasthenia gravis. In addition to ameliorated disease severity, MDSC-treated EAMG mice showed suppressed acetylcholine receptors (AChR)-specific T-cell responses, decreased levels of serum anti-AChR IgGs, and reduced complement activation at the neuromuscular junctions. Incubating MDSCs with B cells activated by anti-IgM or anti-CD40 antibodies inhibited the proliferation of these in vitro activated B cells. Administering MDSCs into mice immunized with a T-cell-independent antigen inhibited the antigen-specific antibody production in vivo. MDSCs directly inhibit B cells through multiple mechanisms including prostaglandin E2, inducible nitric oxide synthase and arginase. Interestingly, MDSC treatment in EMAG mice does not appear to significantly inhibit their immune response to a non-relevant antigen, ovalbumin. These results demonstrated that hepatic stellate cell-induced MDSCs concurrently suppress both T- and B- cell autoimmunity, leading to effective treatment of established EAMG; and that the MDSCs inhibit AChR-specific immune responses at least partially in an antigen-specific manner. These data suggest that MDSCs could be further developed as a novel approach to treating myasthenia gravis and, even more broadly, other diseases in which T and B cells are involved in pathogenesis. PMID:25057008

  16. Silymarin suppressed lung cancer growth in mice via inhibiting myeloid-derived suppressor cells.

    PubMed

    Wu, Tiancong; Liu, Wen; Guo, Wenjie; Zhu, Xixu

    2016-07-01

    In this study, we investigated the antitumor activity of Silymarin in a mouse model of colon cancer xenograft of Lewis lung cancer (LLC) cells. Silymarin significantly suppressed tumor growth and induced apoptosis of cells in tumor tissues at a dose of 25 and 50mg/kg. Silymarin treatment enhanced the infiltration and function of CD8(+) T cells. In the meantime, Silymarin decreased the level of IL-10 while elevated the level of IL-2 and IFN-γ in the serum of tumor-bearing mice. Finally, Silymarin reduced the proportion of myeloid-derived suppressor cells (MDSC) in the tumor tissue and also the mRNA expressions of inducible nitric oxide synthases-2 (iNOS2), arginase-1 (Arg-1) and MMP9, which indicated that the function of MDSC in tumor tissues were suppressed. Altogether, our data here showed that Silymarin inhibited the MDSC and promoted the infiltration and function of CD8(+) T cells thus suppressed the growth of LLC xenografts, which provides evidence for the possible use of Silymarin against lung cancer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Naringin Alleviates Diabetic Kidney Disease through Inhibiting Oxidative Stress and Inflammatory Reaction.

    PubMed

    Chen, Fenqin; Zhang, Ning; Ma, Xiaoyu; Huang, Ting; Shao, Ying; Wu, Can; Wang, Qiuyue

    2015-01-01

    Naringin, a flavanone glycoside extracted from Citrus grandis Osbeck, has a wide range of pharmacological effects. In the present study we aimed at demonstrating the protective effect of naringin against diabetic kidney disease (DKD) and elucidating its possible molecular mechanism underlying. The beneficial effect of naringin was assessed in rats with streptozotocin (STZ)-induced diabetes and high glucose-induced HBZY-1 cells. According to our results, first we found that naringin relieved kidney injury, improved renal function and inhibited collagen formation and renal interstitial fibrosis. Second, we confirmed that naringin restrained oxidative stress by activating Nrf2 antioxidant pathway. Moreover, the results suggested that naringin significantly resisted inflammatory reaction by inhibiting NF- κ B signaling pathway. Taken together, our results demonstrate that naringin effectively alleviates DKD, which provide theoretical basis for naringin clinically used to treatment of DKD.

  18. Combined effect of salt and drought on boron toxicity in Puccinellia tenuiflora.

    PubMed

    Liu, Chunguang; Dai, Zheng; Xia, Jingye; Chang, Can; Sun, Hongwen

    2018-08-15

    Boron toxicity is a worldwide problem, usually accompanied by salt (NaCl) and drought. The combined stresses may induce complex toxicity to the plant. The aim of the present study was to investigate how the combined stresses of salt and drought affect B toxicity in plants. Puccinellia tenuiflora seedlings were planted in vermiculite. A three (B) × three (salt) × three (drought) factorial experiment (for a total of 27 treatments) was conducted. After a 30-day cultivation, plants were harvested to determine dry weight and the concentrations of B, Na + , K + , Ca 2+ , and Mg 2+ . Plant growth was inhibited by B toxicity, which was alleviated by salt and drought. B stress enhanced B uptake and transport of the plant, which was inhibited by salt and drought. B stress had a little effect on K + and Na + concentration and caused Ca 2+ and Mg 2+ accumulation in the plant. Salt addition increased Na + concentration and inhibited Ca 2+ and Mg 2+ accumulation. Drought addition inhibited Na + accumulation and enhanced Ca 2+ and Mg 2+ accumulation. The combined stresses of salt and drought had a greater alleviation on the inhibition of dry weight caused by B than individual salt and drought. Besides, the combined stresses of salt and drought also enhanced B uptake and inhibited B transport. The results indicate that salt, drought, and the combined stresses of salt and drought all can alleviate B toxicity in P. tenuiflora, the main mechanism of which is the restriction of B and Na + uptake caused by salt and drought. The combined stresses of salt and drought have a greater effect on B toxicity than individual salt and drought. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Carnosic Acid Alleviates BDL-Induced Liver Fibrosis through miR-29b-3p-Mediated Inhibition of the High-Mobility Group Box 1/Toll-Like Receptor 4 Signaling Pathway in Rats

    PubMed Central

    Zhang, Shuai; Wang, Zhecheng; Zhu, Jie; Xu, Ting; Zhao, Yan; Zhao, Huanyu; Tang, Fan; Li, Zhenlu; Zhou, Junjun; Gao, Dongyan; Tian, Xiaofeng; Yao, Jihong

    2018-01-01

    Fibrosis reflects a progression to liver cancer or cirrhosis of the liver. Recent studies have shown that high-mobility group box-1 (HMGB1) plays a major role in hepatic injury and fibrosis. Carnosic acid (CA), a compound extracted from rosemary, has been reported to alleviate alcoholic and non-alcoholic fatty liver injury. CA can also alleviate renal fibrosis. We hypothesized that CA might exert anti-liver fibrosis properties through an HMGB1-related pathway, and the results of the present study showed that CA treatment significantly protected against hepatic fibrosis in a bile duct ligation (BDL) rat model. CA reduced the liver expression of α-smooth muscle actin (α-SMA) and collagen 1 (Col-1). Importantly, we found that CA ameliorated the increase in HMGB1 and Toll-like receptor 4 (TLR4) caused by BDL, and inhibited NF-κB p65 nuclear translocation in fibrotic livers. In vitro, CA inhibited LX2 cell activation by inhibiting HMGB1/TLR4 signaling pathway. Furthermore, miR-29b-3p decreased HMGB1 expression, and a dual-luciferase assay validated these results. Moreover, CA down-regulated HMGB1 and inhibited LX2 cell activation, and these effects were significantly counteracted by antago-miR-29b-3p, indicating that the CA-mediated inhibition of HMGB1 expression might be miR-29b-3p dependent. Collectively, the results demonstrate that a miR-29b-3p/HMGB1/TLR4/NF-κB signaling pathway, which can be modulated by CA, is important in liver fibrosis, and indicate that CA might be a prospective therapeutic drug for liver fibrosis. PMID:29403377

  20. Coagulase-Negative Staphylococci Favor Conversion of Arginine into Ornithine despite a Widespread Genetic Potential for Nitric Oxide Synthase Activity

    PubMed Central

    Sánchez Mainar, María; Weckx, Stefan

    2014-01-01

    Within ecosystems that are poor in carbohydrates, alternative substrates such as arginine may be of importance to coagulase-negative staphylococci (CNS). However, the versatility of arginine conversion in CNS remains largely uncharted. Therefore, a set of 86 strains belonging to 17 CNS species was screened for arginine deiminase (ADI), arginase, and nitric oxide synthase (NOS) activities, in view of their ecological relevance. In fermented meats, for instance, ADI could improve bacterial competitiveness, whereas NOS may serve as an alternative nitrosomyoglobin generator to nitrate and nitrite curing. About 80% of the strains were able to convert arginine, but considerable inter- and intraspecies heterogeneity regarding the extent and mechanism of conversion was found. Overall, ADI was the most commonly employed pathway, resulting in mixtures of ornithine and small amounts of citrulline. Under aerobic conditions, which are more relevant for skin-associated CNS communities, several strains shifted toward arginase activity, leading to the production of ornithine and urea. The obtained data indeed suggest that arginase occurs relatively more in CNS isolates from a dairy environment, whereas ADI seems to be more abundant in strains from a fermented meat background. With some exceptions, a reasonable match between phenotypic ADI and arginase activity and the presence of the encoding genes (arcA and arg) was found. With respect to the NOS pathway, however, only one strain (Staphylococcus haemolyticus G110) displayed phenotypic NOS-like activity under aerobic conditions, despite a wide prevalence of the NOS-encoding gene (nos) among CNS. Hence, the group of CNS displays a strain- and condition-dependent toolbox of arginine-converting mechanisms with potential implications for competitiveness and functionality. PMID:25281381

  1. Identification and characterization of proteins involved in rice urea and arginine catabolism.

    PubMed

    Cao, Feng-Qiu; Werner, Andrea K; Dahncke, Kathleen; Romeis, Tina; Liu, Lai-Hua; Witte, Claus-Peter

    2010-09-01

    Rice (Oryza sativa) production relies strongly on nitrogen (N) fertilization with urea, but the proteins involved in rice urea metabolism have not yet been characterized. Coding sequences for rice arginase, urease, and the urease accessory proteins D (UreD), F (UreF), and G (UreG) involved in urease activation were identified and cloned. The functionality of urease and the urease accessory proteins was demonstrated by complementing corresponding Arabidopsis (Arabidopsis thaliana) mutants and by multiple transient coexpression of the rice proteins in Nicotiana benthamiana. Secondary structure models of rice (plant) UreD and UreF proteins revealed a possible functional conservation to bacterial orthologs, especially for UreF. Using amino-terminally StrepII-tagged urease accessory proteins, an interaction between rice UreD and urease could be shown. Prokaryotic and eukaryotic urease activation complexes seem conserved despite limited protein sequence conservation for UreF and UreD. In plant metabolism, urea is generated by the arginase reaction. Rice arginase was transiently expressed as a carboxyl-terminally StrepII-tagged fusion protein in N. benthamiana, purified, and biochemically characterized (K(m) = 67 mm, k(cat) = 490 s(-1)). The activity depended on the presence of manganese (K(d) = 1.3 microm). In physiological experiments, urease and arginase activities were not influenced by the external N source, but sole urea nutrition imbalanced the plant amino acid profile, leading to the accumulation of asparagine and glutamine in the roots. Our data indicate that reduced plant performance with urea as N source is not a direct result of insufficient urea metabolism but may in part be caused by an imbalance of N distribution.

  2. Ornithine transcarbamylase and arginase I deficiency are responsible for diminished urea cycle function in the human hepatoblastoma cell line HepG2.

    PubMed

    Mavri-Damelin, Demetra; Eaton, Simon; Damelin, Leonard H; Rees, Myrddin; Hodgson, Humphrey J F; Selden, Clare

    2007-01-01

    A possible cell source for a bio-artificial liver is the human hepatblastoma-derived cell line HepG2 as it confers many hepatocyte functions, however, the urea cycle is not maintained resulting in the lack of ammonia detoxification via this cycle. We investigated urea cycle activity in HepG2 cells at both a molecular and biochemical level to determine the causes for the lack of urea cycle expression, and subsequently addressed reinstatement of the cycle by gene transfer. Metabolic labelling studies showed that urea production from 15N-ammonium chloride was not detectable in HepG2 conditioned medium, nor could 14C-labelled urea cycle intermediates be detected. Gene expression data from HepG2 cells revealed that although expression of three urea cycle genes Carbamoyl Phosphate Synthase I, Arginosuccinate Synthetase and Arginosuccinate Lyase was evident, Ornithine Transcarbamylase and Arginase I expression were completely absent. These results were confirmed by Western blot for arginase I, where no protein was detected. Radiolabelled enzyme assays showed that Ornithine Transcarbamylase functional activity was missing but that Carbamoyl Phosphate Synthase I, Arginosuccinate Synthetase and Arginosuccinate Lyase were functionally expressed at levels comparable to cultured primary human hepatocytes. To restore the urea cycle, HepG2 cells were transfected with full length Ornithine Transcarbamylase and Arginase I cDNA constructs under a CMV promoter. Co-transfected HepG2 cells displayed complete urea cycle activity, producing both labelled urea and urea cycle intermediates. This strategy could provide a cell source capable of urea synthesis, and hence ammonia detoxificatory function, which would be useful in a bio-artificial liver.

  3. Classical and alternative activation of rat hepatic sinusoidal endothelial cells by inflammatory stimuli.

    PubMed

    Liu, Yinglin; Gardner, Carol R; Laskin, Jeffrey D; Laskin, Debra L

    2013-02-01

    The ability of rat hepatic sinusoidal endothelial cells (HSEC) to become activated in response to diverse inflammatory stimuli was analyzed. Whereas the classical macrophage activators, IFNγ and/or LPS upregulated expression of iNOS in HSEC, the alternative macrophage activators, IL-10 or IL-4+IL-13 upregulated arginase-1 and mannose receptor. Similar upregulation of iNOS and arginase-1 was observed in classically and alternatively activated Kupffer cells, respectively. Removal of inducing stimuli from the cells had no effect on expression of these markers, demonstrating that activation is persistent. Washing and incubation of IFNγ treated cells with IL-4+IL-13 resulted in decreased iNOS and increased arginase-1 expression, while washing and incubation of IL-4+IL-13 treated cells with IFNγ resulted in decreased arginase-1 and increased iNOS, indicating that classical and alternative activation of the cells is reversible. HSEC were more sensitive to phenotypic switching than Kupffer cells, suggesting greater functional plasticity. Hepatocyte viability and expression of PCNA, β-catenin and MMP-9 increased in the presence of alternatively activated HSEC. In contrast, the viability of hepatocytes pretreated for 2 h with 5 mM acetaminophen decreased in the presence of classically activated HSEC. These data demonstrate that activated HSEC can modulate hepatocyte responses following injury. The ability of hepatocytes to activate HSEC was also investigated. Co-culture of HSEC with acetaminophen-injured hepatocytes, but not control hepatocytes, increased the sensitivity of HSEC to classical and alternative activating stimuli. The capacity of HSEC to respond to phenotypic activators may represent an important mechanism by which they participate in inflammatory responses associated with hepatotoxicity. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Naringin ameliorates diabetic nephropathy by inhibiting NADPH oxidase 4.

    PubMed

    Zhang, Junwei; Yang, Suxia; Li, Huicong; Chen, Fang; Shi, Jun

    2017-06-05

    Naringin, a naturally flavanone glycoside, has been previously demonstrated to alleviate diabetic kidney disease by inhibiting oxidative stress and inflammatory reaction. However, the underlying mechanism of naringin in diabetic nephropathy (DN) has not been fully elucidated. Here, the beneficial effect of naringin on DN in streptozotocin (STZ)-induced DN rats and high glucose (HG)-induced podocytes and its underlying mechanism were elaborated. The result revealed that naringin alleviated STZ-induced renal dysfunction and injury in DN rats, relieved STZ-induced oxidative stress in vivo and inhibited HG-induced apoptosis and reactive oxygen species level i20n vitro. More importantly, naringin inhibited NOX4 expression at mRNA and protein levels in STZ-induced DN rats and HG-induced podocytes. Loss of function indicated that NADPH oxidases 4 (NOX4) down-regulation suppressed apoptosis and reactive oxygen species level in HG-treated podocytes. Take together, this study demonstrated that naringin ameliorates diabetic nephropathy by inhibiting NOX4, contributing to a better understanding of the progression of DN. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Edaravone protects osteoblastic cells from dexamethasone through inhibiting oxidative stress and mPTP opening.

    PubMed

    Sun, Wen-xiao; Zheng, Hai-ya; Lan, Jun

    2015-11-01

    Existing evidences have emphasized an important role of oxidative stress in dexamethasone (Dex)-induced osteoblastic cell damages. Here, we investigated the possible anti-Dex activity of edaravone in osteoblastic cells, and studied the underlying mechanisms. We showed that edaravone dose-dependently attenuated Dex-induced death and apoptosis of established human or murine osteoblastic cells. Further, Dex-mediated damages to primary murine osteoblasts were also alleviated by edaravone. In osteoblastic cells/osteoblasts, Dex induced significant oxidative stresses, tested by increased levels of reactive oxygen species and lipid peroxidation, which were remarkably inhibited by edaravone. Meanwhile, edaravone repressed Dex-induced mitochondrial permeability transition pore (mPTP) opening, or mitochondrial membrane potential reduction, in osteoblastic cells/osteoblasts. Significantly, edaravone-induced osteoblast-protective activity against Dex was alleviated with mPTP inhibition through cyclosporin A or cyclophilin-D siRNA. Together, we demonstrate that edaravone protects osteoblasts from Dex-induced damages probably through inhibiting oxidative stresses and following mPTP opening.

  6. Blockade of store-operated calcium entry alleviates high glucose-induced neurotoxicity via inhibiting apoptosis in rat neurons.

    PubMed

    Xu, Zhenkuan; Xu, Wenzhe; Song, Yan; Zhang, Bin; Li, Feng; Liu, Yuguang

    2016-07-25

    Altered store-operated calcium entry (SOCE) has been suggested to be involved in many diabetic complications. However, the association of altered SOCE and diabetic neuronal damage remains unclear. This study aimed to investigate the effects of altered SOCE on primary cultured rat neuron injury induced by high glucose. Our data demonstrated that high glucose increased rat neuron injury and upregulated the expression of store-operated calcium channel (SOC). Inhibition of SOCE by a pharmacological inhibitor and siRNA knockdown of stromal interaction molecule 1 weakened the intracellular calcium overload, restored mitochondrial membrane potential, downregulated cytochrome C release and inhibited cell apoptosis. As well, treatment with the calcium chelator BAPTA-AM prevented cell apoptosis by ameliorating the high glucose-increased intracellular calcium level. These findings suggest that SOCE blockade may alleviate high glucose-induced neuronal damage by inhibiting apoptosis. SOCE might be a promising therapeutic target in diabetic neurotoxicity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Structure and Inhibition of Microbiome β-Glucuronidases Essential to the Alleviation of Cancer Drug Toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Bret D.; Roberts, Adam B.; Pollet, Rebecca M.

    The selective inhibition of bacterial β-glucuronidases was recently shown to alleviate drug-induced gastrointestinal toxicity in mice, including the damage caused by the widely used anticancer drug irinotecan. Here, we report crystal structures of representative β-glucuronidases from the Firmicutes Streptococcus agalactiae and Clostridium perfringens and the Proteobacterium Escherichia coli, and the characterization of a β-glucuronidase from the Bacteroidetes Bacteroides fragilis. While largely similar in structure, these enzymes exhibit marked differences in catalytic properties and propensities for inhibition, indicating that the microbiome maintains functional diversity in orthologous enzymes. Small changes in the structure of designed inhibitors can induce significant conformational changes inmore » the β-glucuronidase active site. Finally, we establish that β-glucuronidase inhibition does not alter the serum pharmacokinetics of irinotecan or its metabolites in mice. Together, the data presented advance our in vitro and in vivo understanding of the microbial β-glucuronidases, a promising new set of targets for controlling drug-induced gastrointestinal toxicity.« less

  8. Effect of limited aeration on the anaerobic treatment of evaporator condensate from a sulfite pulp mill.

    PubMed

    Zhou, Weili; Imai, Tsuyoshi; Ukita, Masao; Li, Fusheng; Yuasa, Akira

    2007-01-01

    Serious inhibition was found in the regular up-flow anaerobic sludge blanket (UASB) reactor in treating the evaporator condensate from a sulfite pulp mill, which contained high strength sulfur compounds. After applying the direct limited aeration in the UASB, the inhibition was alleviated gradually and the activity of the microorganisms was recovered. The COD removal rate increased from 40% to 80% at the organic loading rate of 8kgCODm(-3)d(-1) and a hydraulic retention time of 12h. Limited aeration caused no oxygen inhibition to the anaerobic microorganisms but instigated sulfide oxidization and H(2)S removal, which was beneficial to the methanogens. The experiment confirmed the feasibility of applying limited aeration in the anaerobic reactor to alleviate the sulfide inhibition. It also proved that the anaerobic system was actually aerotolerant. SEM observation showed that the predominant microorganisms partly changed from rod-shaped methanogens to cocci after the UASB reactor was aerated.

  9. γ-Aminobutyric acid addition alleviates ammonium toxicity by limiting ammonium accumulation in rice (Oryza sativa) seedlings.

    PubMed

    Ma, Xiaoling; Zhu, Changhua; Yang, Na; Gan, Lijun; Xia, Kai

    2016-12-01

    Excessive use of nitrogen (N) fertilizer has increased ammonium (NH 4 + ) accumulation in many paddy soils to levels that reduce rice vegetative biomass and yield. Based on studies of NH 4 + toxicity in rice (Oryza sativa, Nanjing 44) seedlings cultured in agar medium, we found that NH 4 + concentrations above 0.75 mM inhibited the growth of rice and caused NH 4 + accumulation in both shoots and roots. Use of excessive NH 4 + also induced rhizosphere acidification and inhibited the absorption of K, Ca, Mg, Fe and Zn in rice seedlings. Under excessive NH 4 + conditions, exogenous γ-aminobutyric acid (GABA) treatment limited NH 4 + accumulation in rice seedlings, reduced NH 4 + toxicity symptoms and promoted plant growth. GABA addition also reduced rhizosphere acidification and alleviated the inhibition of Ca, Mg, Fe and Zn absorption caused by excessive NH 4 + . Furthermore, we found that the activity of glutamine synthetase/NADH-glutamate synthase (GS; EC 6.3.1.2/NADH-GOGAT; EC1.4.1.14) in root increased gradually as the NH 4 + concentration increased. However, when the concentration of NH 4 + is more than 3 mM, GABA treatment inhibited NH 4 + -induced increases in GS/NADH-GOGAT activity. The inhibition of ammonium assimilation may restore the elongation of seminal rice roots repressed by high NH 4 + . These results suggest that mitigation of ammonium accumulation and assimilation is essential for GABA-dependent alleviation of ammonium toxicity in rice seedlings. © 2016 Scandinavian Plant Physiology Society.

  10. A crucial role of ROCK for alleviation of senescence-associated phenotype.

    PubMed

    Park, Joon Tae; Kang, Hyun Tae; Park, Chi Hyun; Lee, Young-Sam; Cho, Kyung A; Park, Sang Chul

    2018-06-01

    In our previous study, we uncovered a novel mechanism in which amelioration of Hutchinson-Gilford progeria syndrome (HGPS) phenotype is mediated by mitochondrial functional recovery upon rho-associated protein kinase (ROCK) inhibition. However, it remains elusive whether this mechanism is also applied to the amelioration of normal aging cells. In this study, we used Y-27632 and fasudil as effective ROCK inhibitors, and examined their role in senescence. We found that ROCK inhibition induced the functional recovery of the mitochondria as well as the metabolic reprogramming, which are two salient features that are altered in normal aging cells. Moreover, microarray analysis revealed that the up-regulated pathway upon ROCK inhibition is enriched for chromatin remodeling genes, which may play an important role in the alleviation of senescence-associated cell cycle arrest. Indeed, ROCK inhibition induced cellular proliferation, concomitant with the amelioration of senescent phenotype. Furthermore, the restorative effect by ROCK inhibition was observed in vivo as evidenced by the facilitated cutaneous wound healing. Taken together, our data indicate that ROCK inhibition might be utilized to ameliorate normal aging process and to treat age-related disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. L-Glycine Alleviates Furfural-Induced Growth Inhibition during Isobutanol Production in Escherichia coli.

    PubMed

    Song, Hun-Suk; Jeon, Jong-Min; Choi, Yong Keun; Kim, Jun-Young; Kim, Wooseong; Yoon, Jeong-Jun; Park, Kyungmoon; Ahn, Jungoh; Lee, Hongweon; Yang, Yung-Hun

    2017-12-28

    Lignocellulose is now a promising raw material for biofuel production. However, the lignin complex and crystalline cellulose require pretreatment steps for breakdown of the crystalline structure of cellulose for the generation of fermentable sugars. Moreover, several fermentation inhibitors are generated with sugar compounds, majorly furfural. The mitigation of these inhibitors is required for the further fermentation steps to proceed. Amino acids were investigated on furfural-induced growth inhibition in E. coli producing isobutanol. Glycine and serine were the most effective compounds against furfural. In minimal media, glycine conferred tolerance against furfural. From the IC₅₀ value for inhibitors in the production media, only glycine could alleviate growth arrest for furfural, where 6 mM glycine addition led to a slight increase in growth rate and isobutanol production from 2.6 to 2.8 g/l under furfural stress. Overexpression of glycine pathway genes did not lead to alleviation. However, addition of glycine to engineered strains blocked the growth arrest and increased the isobutanol production about 2.3-fold.

  12. Genistein inhibited ammonia induced astrocyte swelling by inhibiting NF-κB activation-mediated nitric oxide formation.

    PubMed

    Dai, Hongliang; Jia, Guizhi; Wang, Wei; Liang, Chunguang; Han, Siyu; Chu, Minghui; Mei, Xifan

    2017-06-01

    Our previous study has indicated the involvement of epidermal growth factor receptor (EGFR) transactivation in ammonia-induced astrocyte swelling, which represents a major pathogenesis of brain edema in hepatic encephalopathy. In this study, we examined the effect of genistein, a naturally occurred broad-spectrum protein tyrosine kinase (PTK) inhibitor, on ammonia-induced cell swelling. We found that genistein pretreatment significantly prevented ammonia-induced astrocyte swelling. Mechanistically, ammonia triggered EGFR/extracellular signal-regulated kinase (ERK) association and subsequent ERK phosphorylation were alleviated by genistein pretreatment. Moreover, ammonia-induced NF-κB nuclear location, iNOS expression, and consequent NO production were all prevented by AG1478 and genistein pretreatment. This study suggested that genistein could alleviate ammonia-induced astrocyte swelling, which may be, at least partly, related to its PTK-inhibiting activity and repression of NF-κB mediated iNOS-derived NO accumulation.

  13. Naringin Alleviates Diabetic Kidney Disease through Inhibiting Oxidative Stress and Inflammatory Reaction

    PubMed Central

    Chen, Fenqin; Zhang, Ning; Ma, Xiaoyu; Huang, Ting; Shao, Ying; Wu, Can; Wang, Qiuyue

    2015-01-01

    Naringin, a flavanone glycoside extracted from Citrus grandis Osbeck, has a wide range of pharmacological effects. In the present study we aimed at demonstrating the protective effect of naringin against diabetic kidney disease (DKD) and elucidating its possible molecular mechanism underlying. The beneficial effect of naringin was assessed in rats with streptozotocin (STZ)-induced diabetes and high glucose-induced HBZY-1 cells. According to our results, first we found that naringin relieved kidney injury, improved renal function and inhibited collagen formation and renal interstitial fibrosis. Second, we confirmed that naringin restrained oxidative stress by activating Nrf2 antioxidant pathway. Moreover, the results suggested that naringin significantly resisted inflammatory reaction by inhibiting NF- κ B signaling pathway. Taken together, our results demonstrate that naringin effectively alleviates DKD, which provide theoretical basis for naringin clinically used to treatment of DKD. PMID:26619044

  14. Protopine from Corydalis ternata has anticholinesterase and antiamnesic activities.

    PubMed

    Kim, S R; Hwang, S Y; Jang, Y P; Park, M J; Markelonis, G J; Oh, T H; Kim, Y C

    1999-04-01

    While screening extracts of natural products in search of anticholinesterase activity, we found that a total methanolic extract of the tuber of Corydalis ternata (Papaveraceae) showed significant inhibitory effects on acetylcholinesterase. Further fractionation of this extract using acetylcholinesterase inhibition as the parameter screened resulted in the isolation and purification of an alkaloid, protopine. Protopine inhibited acetylcholinesterase activity in a dose-dependent manner. The concentration required for 50% inhibition was 50 microM. The anti-acetylcholinesterase activity of protopine was specific reversible and competitive in manner. Furthermore, when mice were pretreated with protopine, the alkaloid significantly alleviated scopolamine-induced memory impairment. In fact, protopine had an efficacy almost identical to that of velnacrine, a tacrine derivative developed by a major drug manufacturer to treat Alzheimer's disease, at an identical therapeutic concentration. We suggest, therefore, that protopine has both anti-acetylcholinesterase and antiamnesic properties that may ultimately hold significant therapeutic value in alleviating certain memory impairments observed in dementia.

  15. Assaying Ornithine and Arginine Decarboxylases in Some Plant Species 1

    PubMed Central

    Birecka, Helena; Bitonti, Alan J.; McCann, Peter P.

    1985-01-01

    A release of 14CO2 not related to ornithine decarboxylase activity was found in crude leaf extracts from Lycopersicon esculentum, Avena sativa, and especially from the pyrrolizidine alkaloid-bearing Heliotropium angiospermum when incubated with [1-14C]- or [U-14C]ornithine. The total 14CO2 produced was about 5- to 100-fold higher than that due to ornithine decarboxylase activities calculated from labeled putrescine (Put) found by thin-layer electrophoresis in the incubation mixtures. Partial purification with (NH4)2SO4 did not eliminate completely the interfering decarboxylation. When incubated with labeled arginine, a very significant 14CO2 release not related to arginine decarboxylase activity was observed only in extracts from H. angiospermum leaves, especially in Tris·HCl buffer. Under the assay conditions, these extracts exhibited oxidative degradation of added Put and agmatine (Agm) and also revealed a high arginase activity. Amino-guanidine at 0.1 to 0.2 millimolar prevented Put degradation and greatly decreased oxidative degradation of Agm; ornithine at 15 to 20 millimolar significantly inhibited arginase activity. A verification of the reliability of the standard 14CO2-based method by assessing labeled Put and/or Agm—formed in the presence of added aminoguanidine and/or ornithine when needed—is recommended especially when crude or semicrude plant extracts are assayed. When based on Put and/or Agm formed at 1.0 to 2.5 millimolar of substrate, the activities of ornithine decarboxylase and arginine decarboxylase in the youngest leaves of the tested species ranged between 1.1 and 3.6 and 1 and 1600 nanomoles per hour per gram fresh weight, respectively. The enzyme activities are discussed in relation to the biosynthesis of pyrrolizidine alkaloids. PMID:16664441

  16. The anti-inflammatory mechanism of heme oxygenase-1 induced by hemin in primary rat alveolar macrophages.

    PubMed

    Hualin, Chen; Wenli, Xu; Dapeng, Liu; Xijing, Li; Xiuhua, Pan; Qingfeng, Pang

    2012-06-01

    Alveolar macrophages (AMs) can initiate lung inflammation by producing pro-inflammatory cytokines and chemokines, but they participate actively in the prevention of inflammation during acute lung injury (ALI). Heme oxygenase-1 (HO-1) is mainly expressed in AMs and has anti-inflammatory properties in ALI, but the anti-inflammatory mechanisms of HO-1 are largely unknown. In this study, AMs were treated with saline, LPS (1 μg/ml), hemin (10 μM), zinc protoporphyrin (ZnPP; 10 μM, 1 h prior to LPS and hemin), SB203580 (10 μM, 1 h prior to LPS and hemin), or their combination up to 24 h. The specific HO-1 inhibitor ZnPP and SB203580 were used to inhibit the effects of HO-1 and the phosphorylated p38 mitogen-activated protein kinase (MAPK), respectively. The protein levels of HO-1 and p38 MAPK were analyzed by western blotting; arginase activity was measured in lysates obtained from cultured cells; nitric oxide production in the extracellular medium of AMs cultured for 24 h was monitored by assessing nitrite levels; the phagocytic ability of macrophage was measured by neutral red uptake. IL-10 of culture supernatants in AMs was determined by enzyme-linked immunosorbent assay. The results indicated that HO-1 induced by hemin increased arginase activity and phagocytic ability and decreased iNOS activity via p38 MAPK pathway in primary rat AMs. These changes and p38 MAPK may be the anti-inflammatory mechanism of HO-1 induced by hemin in primary rat AMs.

  17. Schistosomal-derived lysophosphatidylcholine triggers M2 polarization of macrophages through PPARγ dependent mechanisms.

    PubMed

    Assunção, Leonardo Santos; Magalhães, Kelly G; Carneiro, Alan Brito; Molinaro, Raphael; Almeida, Patrícia E; Atella, Georgia C; Castro-Faria-Neto, Hugo C; Bozza, Patrícia T

    2017-02-01

    Mansonic schistosomiasis is a disease caused by the trematode Schistosoma mansoni, endemic to tropical countries. S. mansoni infection induces the formation of granulomas and potent polarization of Th2-type immune response. There is great interest in understanding the mechanisms used by this parasite that causes a modulation of the immune system. Recent studies from our group demonstrated that lipids of S. mansoni, including lysophosphatidylcholine (LPC) have immunomodulatory activity. In the present study, our aim was to investigate the role of lipids derived from S. mansoni in the activation and polarization of macrophages and to characterize the mechanisms involved in this process. Peritoneal macrophages obtained from wild type C57BL/6mice or bone marrow derived macrophages were stimulated in vitro with lipids extracted from adult worms of S. mansoni. We demonstrated that total schistosomal-derived lipids as well as purified LPC induced alternatively activated macrophages/M2 profile observed by increased expression of arginase-1, mannose receptor, Chi3l3, TGFβ and production of IL-10 and PGE 2 24h after stimulation. The involvement of the nuclear receptor PPARγ in macrophage response against LPC was investigated. Through Western blot and immunofluorescence confocal microscopy we demonstrated that schistosomal-derived LPC induces increased expression of PPARγ in macrophages. The LPC-induced increased expression of arginase-1 were significantly inhibited by the PPAR-γ antagonist GW9662. Together, these results demonstrate an immunomodulatory role of schistosomal-derived LPC in activating macrophages to a profile of the type M2 through PPARγ-dependent mechanisms, indicating a novel pathway for macrophage polarization triggered by parasite-derived LPC with potential implications to disease pathogenesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Self-Referential Information Alleviates Retrieval Inhibition of Directed Forgetting Effects-An ERP Evidence of Source Memory.

    PubMed

    Mao, Xinrui; Wang, Yujuan; Wu, Yanhong; Guo, Chunyan

    2017-01-01

    Directed forgetting (DF) assists in preventing outdated information from interfering with cognitive processing. Previous studies pointed that self-referential items alleviated DF effects due to the elaboration of encoding processes. However, the retrieval mechanism of this phenomenon remains unknown. Based on the dual-process framework of recognition, the retrieval of self-referential information was involved in familiarity and recollection. Using source memory tasks combined with event-related potential (ERP) recording, our research investigated the retrieval processes of alleviative DF effects elicited by self-referential information. The FN400 (frontal negativity at 400 ms) is a frontal potential at 300-500 ms related to familiarity and the late positive complex (LPC) is a later parietal potential at 500-800 ms related to recollection. The FN400 effects of source memory suggested that familiarity processes were promoted by self-referential effects without the modulation of to-be-forgotten (TBF) instruction. The ERP results of DF effects were involved with LPCs of source memory, which indexed retrieval processing of recollection. The other-referential source memory of TBF instruction caused the absence of LPC effects, while the self-referential source memory of TBF instruction still elicited the significant LPC effects. Therefore, our neural findings suggested that self-referential processing improved both familiarity and recollection. Furthermore, the self-referential processing advantage which was caused by the autobiographical retrieval alleviated retrieval inhibition of DF, supporting that the self-referential source memory alleviated DF effects.

  19. Self-Referential Information Alleviates Retrieval Inhibition of Directed Forgetting Effects—An ERP Evidence of Source Memory

    PubMed Central

    Mao, Xinrui; Wang, Yujuan; Wu, Yanhong; Guo, Chunyan

    2017-01-01

    Directed forgetting (DF) assists in preventing outdated information from interfering with cognitive processing. Previous studies pointed that self-referential items alleviated DF effects due to the elaboration of encoding processes. However, the retrieval mechanism of this phenomenon remains unknown. Based on the dual-process framework of recognition, the retrieval of self-referential information was involved in familiarity and recollection. Using source memory tasks combined with event-related potential (ERP) recording, our research investigated the retrieval processes of alleviative DF effects elicited by self-referential information. The FN400 (frontal negativity at 400 ms) is a frontal potential at 300–500 ms related to familiarity and the late positive complex (LPC) is a later parietal potential at 500–800 ms related to recollection. The FN400 effects of source memory suggested that familiarity processes were promoted by self-referential effects without the modulation of to-be-forgotten (TBF) instruction. The ERP results of DF effects were involved with LPCs of source memory, which indexed retrieval processing of recollection. The other-referential source memory of TBF instruction caused the absence of LPC effects, while the self-referential source memory of TBF instruction still elicited the significant LPC effects. Therefore, our neural findings suggested that self-referential processing improved both familiarity and recollection. Furthermore, the self-referential processing advantage which was caused by the autobiographical retrieval alleviated retrieval inhibition of DF, supporting that the self-referential source memory alleviated DF effects. PMID:29066962

  20. Involvement of ethylene in gibberellic acid-induced sulfur assimilation, photosynthetic responses, and alleviation of cadmium stress in mustard.

    PubMed

    Masood, Asim; Khan, M Iqbal R; Fatma, Mehar; Asgher, Mohd; Per, Tasir S; Khan, Nafees A

    2016-07-01

    The role of gibberellic acid (GA) or sulfur (S) in stimulation of photosynthesis is known. However, information on the involvement of ethylene in GA-induced photosynthetic responses and cadmium (Cd) tolerance is lacking. This work shows that ethylene is involved in S-assimilation, photosynthetic responses and alleviation of Cd stress by GA in mustard (Brassica juncea L.). Plants grown with 200 mg Cd kg(-1) soil were less responsive to ethylene despite high ethylene evolution and showed photosynthetic inhibition. Plants receiving 10 μM GA spraying plus 100 mg S kg(-1) soil supplementation exhibited increased S-assimilation and photosynthetic responses under Cd stress. Application of GA plus S decreased oxidative stress of plants grown with Cd and limited stress ethylene formation to the range suitable for promoting sulfur use efficiency (SUE), glutathione (GSH) production and photosynthesis. The role of ethylene in GA-induced S-assimilation and reversal of photosynthetic inhibition by Cd was substantiated by inhibiting ethylene biosynthesis with the use of aminoethoxyvinylglycine (AVG). The suppression of S-assimilation and photosynthetic responses by inhibiting ethylene in GA plus S treated plants under Cd stress indicated the involvement of ethylene in GA-induced S-assimilation and Cd stress alleviation. The outcome of the study is important to unravel the interaction between GA and ethylene and their role in Cd tolerance in plants. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Inhibition of adipogenic differentiation by myostatin is alleviated by arginine supplementation in porcine-muscle-derived mesenchymal stem cells.

    PubMed

    Lei, Hulong; Yu, Bing; Yang, Xuerong; Liu, Zehui; Huang, Zhiqing; Mao, Xiangbing; Tian, Gang; He, Jun; Han, Guoquan; Chen, Hong; Mao, Qian; Chen, Daiwen

    2011-10-01

    Porcine mesenchymal stem cells in postnatal muscle have been demonstrated to differentiate into adipocytes. This increases adipocyte number and lipid accumulation, and is thought to be the origin of intramuscular fat. In this study, the effects of myostatin and arginine on adipogenic differentiation in mesenchymal stem cells derived from porcine muscle (pMDSCs) were investigated in vitro. Intracellular triglyceride levels were reduced by exogenous myostatin and increased by arginine supplementation or myostatin antibody (P<0.01). The inhibition of lipid accumulation by myostatin in pMDSCs was alleviated by arginine supplementation (P<0.01). Expression patterns of adipogenic transcription factors showed that exogenous myostatin suppressed PPARγ2 and aP2 expression (P<0.01), while supplemental arginine or myostatin antibody promoted ADD1 expression (P<0.01). Furthermore, compared with the addition of either myostatin protein or antibody alone, ADD1 and PPARδ expression were promoted by the combination of arginine and myostatin (P<0.01), and arginine combined with myostatin antibody promoted the expression of ADD1, PPARδ, C/EBPα, PPARγ2 and LPL in pMDSCs (P<0.05). These results suggest that myostatin inhibits adipogenesis in pMDSCs, and that this can be alleviated by arginine supplementation, at least in part, through promoting ADD1 and PPARδ expression.

  2. Potential of Lactobacillus plantarum CCFM639 in Protecting against Aluminum Toxicity Mediated by Intestinal Barrier Function and Oxidative Stress

    PubMed Central

    Yu, Leilei; Zhai, Qixiao; Tian, Fengwei; Liu, Xiaoming; Wang, Gang; Zhao, Jianxin; Zhang, Hao; Narbad, Arjan; Chen, Wei

    2016-01-01

    Aluminum (Al) is a ubiquitous metal that can seriously harm the health of animals and humans. In our previous study, we demonstrated that Lactobacillus plantarum CCFM639 can decrease Al burden in the tissues of mice by inhibiting intestinal Al absorption. The main aim of the present research was to investigate whether the protection by the strain is also associated with enhancement of the intestinal barrier, alleviation of oxidative stress and modulation of the inflammatory response. In an in vitro cell model, two protection modes (intervention and therapy) were examined and the results indicated that L. plantarum CCFM639 alleviated Al-induced cytotoxicity. In a mouse model, L. plantarum CCFM639 treatment was found to significantly alleviate oxidative stress in the intestinal tract, regulate the function of the intestinal mucosal immune system, restore the integrity of tight junction proteins and maintain intestinal permeability. These results suggest that in addition to Al sequestration, L. plantarum CCFM639 can also inhibit Al absorption by protecting the intestinal barrier, alleviating Al-induced oxidative stress and inflammatory response. Therefore, L. plantarum CCFM639 has the potential to be a dietary supplement ingredient that provides protection against Al-induced gut injury. PMID:27918411

  3. Myeloid-derived suppressor cells as a potential therapy for experimental autoimmune myasthenia gravis.

    PubMed

    Li, Yan; Tu, Zhidan; Qian, Shiguang; Fung, John J; Markowitz, Sanford D; Kusner, Linda L; Kaminski, Henry J; Lu, Lina; Lin, Feng

    2014-09-01

    We recently demonstrated that hepatic stellate cells induce the differentiation of myeloid-derived suppressor cells (MDSCs) from myeloid progenitors. In this study, we found that adoptive transfer of these MDSCs effectively reversed disease progression in experimental autoimmune myasthenia gravis (EAMG), a T cell-dependent and B cell-mediated model for myasthenia gravis. In addition to ameliorated disease severity, MDSC-treated EAMG mice showed suppressed acetylcholine receptor (AChR)-specific T cell responses, decreased levels of serum anti-AChR IgGs, and reduced complement activation at the neuromuscular junctions. Incubating MDSCs with B cells activated by anti-IgM or anti-CD40 Abs inhibited the proliferation of these in vitro-activated B cells. Administering MDSCs into mice immunized with a T cell-independent Ag inhibited the Ag-specific Ab production in vivo. MDSCs directly inhibit B cells through multiple mechanisms, including PGE2, inducible NO synthase, and arginase. Interestingly, MDSC treatment in EAMG mice does not appear to significantly inhibit their immune response to a nonrelevant Ag, OVA. These results demonstrated that hepatic stellate cell-induced MDSCs concurrently suppress both T and B cell autoimmunity, leading to effective treatment of established EAMG, and that the MDSCs inhibit AChR-specific immune responses at least partially in an Ag-specific manner. These data suggest that MDSCs could be further developed as a novel approach to treating myasthenia gravis and, even more broadly, other diseases in which T and B cells are involved in pathogenesis. Copyright © 2014 by The American Association of Immunologists, Inc.

  4. Cell-based evaluation of a novel Dictyophora indusiata polysaccharide against oxidative-induced erythrocyte hemolysis.

    PubMed

    Liao, W; Chen, L; Yu, B; Lei, Z; Wu, X; Yang, J; Ren, J

    2016-01-11

    The protective effect of a polysaccharide from Dictyophora indusiata(DP1)against oxidative hemolysis was comprehensively evaluated. The 2, 2-azobis (2-amidino-propane) dihydrochloride (AAPH)-induced erythrocyte hemolysis assay showed that DP1 exhibited excellent anti-hemolytic activity(87.4% hemolysis suppression ratio at 20 nmol/mL). Also, the formation of conjugated diene induced by cupric chloride (CuCl2) in plasma was significantly inhibited by DP1. Besides, DP1 could effectively inhibit AAPH-induced overproduction of reactive oxygen species (81.5% inhibition at 20 nmol/mL) and alleviated the enhancement of intracellular antioxidant enzymes including superoxide dismutase(SOD), glutathione peroxidase (GPX) and catalase (CAT) activities. Also, the malondialdehyde (MDA) formation caused by oxidative stress was suppressed by 57.0% at DP1 concentration of 20 nmol/mL. Taken together, the possible intracellular antioxidant detoxifying mechanism of DP1 was probably via preserving the activities of the antioxidant enzymes (SOD, GPx and CAT) as well as inhibiting lipid peroxidation, and thus alleviated erythrocytes oxidation and plasma oxidation.

  5. Studies on possibility for alleviation of lifestyle diseases by low-dose irradiation or radon inhalation.

    PubMed

    Kataoka, Takahiro; Sakoda, Akihiro; Yoshimoto, Masaaki; Nakagawa, Shinya; Toyota, Teruaki; Nishiyama, Yuichi; Yamato, Keiko; Ishimori, Yuu; Kawabe, Atsushi; Hanamoto, Katsumi; Taguchi, Takehito; Yamaoka, Kiyonori

    2011-07-01

    Our previous studies showed the possibility that activation of the antioxidative function alleviates various oxidative damages, which are related to lifestyle diseases. Results showed that, low-dose X-ray irradiation activated superoxide dismutase and inhibits oedema following ischaemia-reperfusion. To alleviate ischaemia-reperfusion injury with transplantation, the changes of the antioxidative function in liver graft using low-dose X-ray irradiation immediately after exenteration were examined. Results showed that liver grafts activate the antioxidative function as a result of irradiation. In addition, radon inhalation enhances the antioxidative function in some organs, and alleviates alcohol-induced oxidative damage of mouse liver. Moreover, in order to determine the most effective condition of radon inhalation, mice inhaled radon before or after carbon tetrachloride (CCl(4)) administration. Results showed that radon inhalation alleviates CCl(4)-induced hepatopathy, especially prior inhalation. It is highly possible that adequate activation of antioxidative functions induced by low-dose irradiation can contribute to preventing or reducing oxidative damages, which are related to lifestyle diseases.

  6. Reduced production of ethyl carbamate for wine fermentation by deleting CAR1 in Saccharomyces cerevisiae.

    PubMed

    Guo, Xue-Wu; Li, Yuan-Zi; Guo, Jian; Wang, Qing; Huang, Shi-Yong; Chen, Ye-Fu; Du, Li-Ping; Xiao, Dong-Guang

    2016-05-01

    Ethyl carbamate (EC), a pluripotent carcinogen, is mainly formed by a spontaneous chemical reaction of ethanol with urea in wine. The arginine, one of the major amino acids in grape musts, is metabolized by arginase (encoded by CAR1) to ornithine and urea. To reduce the production of urea and EC, an arginase-deficient recombinant strain YZ22 (Δcarl/Δcarl) was constructed from a diploid wine yeast, WY1, by successive deletion of two CAR1 alleles to block the pathway of urea production. The RT-qPCR results indicated that the YZ22 almost did not express CAR1 gene and the specific arginase activity of strain YZ22 was 12.64 times lower than that of parent strain WY1. The fermentation results showed that the content of urea and EC in wine decreased by 77.89 and 73.78 %, respectively. Furthermore, EC was forming in a much lower speed with the lower urea during wine storage. Moreover, the two CAR1 allele deletion strain YZ22 was substantially equivalent to parental strain in terms of growth and fermentation characteristics. Our research also suggested that EC in wine originates mainly from urea that is produced by the arginine.

  7. l-Arginine administration attenuates airway inflammation by altering l-arginine metabolism in an NC/Nga mouse model of asthma.

    PubMed

    Zhang, Ran; Kubo, Masayuki; Murakami, Ikuo; Setiawan, Heri; Takemoto, Kei; Inoue, Kiyomi; Fujikura, Yoshihisa; Ogino, Keiki

    2015-05-01

    Changes in l-arginine metabolism, including increased arginase levels and decreased nitric oxide production, are involved in the pathophysiology of asthma. In this study, using an intranasal mite-induced NC/Nga mouse model of asthma, we examined whether administration of l-arginine ameliorated airway hyperresponsiveness and inflammation by altering l-arginine metabolism. Experimental asthma was induced in NC/Nga mice via intranasal administration of mite crude extract (50 µg/day) on 5 consecutive days (days 0-4, sensitization) and on day 11 (challenge). Oral administration of l-arginine (250 mg/kg) was performed twice daily on days 5-10 for prevention or on days 11-13 for therapy. On day 14, we evaluated the inflammatory airway response (airway hyperresponsiveness, the number of cells in the bronchoalveolar lavage fluid, and the changes in pathological inflammation of the lung), arginase expression and activity, l-arginine bioavailability, and the concentration of NOx, the end products of nitric oxide. Treatment with l-arginine ameliorated the mite-induced inflammatory airway response. Furthermore, l-arginine administration attenuated the increases in arginase expression and activity and elevated the NOx levels by enhancing l-arginine bioavailability. These findings indicate that l-arginine administration may contribute to the improvement of asthmatic symptoms by altering l-arginine metabolism.

  8. Altered brain arginine metabolism in schizophrenia.

    PubMed

    Liu, P; Jing, Y; Collie, N D; Dean, B; Bilkey, D K; Zhang, H

    2016-08-16

    Previous research implicates altered metabolism of l-arginine, a versatile amino acid with a number of bioactive metabolites, in the pathogenesis of schizophrenia. The present study, for we believe the first time, systematically compared the metabolic profile of l-arginine in the frontal cortex (Brodmann's area 8) obtained post-mortem from schizophrenic individuals and age- and gender-matched non-psychiatric controls (n=20 per group). The enzyme assays revealed no change in total nitric oxide synthase (NOS) activity, but significantly increased arginase activity in the schizophrenia group. Western blot showed reduced endothelial NOS protein expression and increased arginase II protein level in the disease group. High-performance liquid chromatography and liquid chromatography/mass spectrometric assays confirmed significantly reduced levels of γ-aminobutyric acid (GABA), but increased agmatine concentration and glutamate/GABA ratio in the schizophrenia cases. Regression analysis indicated positive correlations between arginase activity and the age of disease onset and between l-ornithine level and the duration of illness. Moreover, cluster analyses revealed that l-arginine and its main metabolites l-citrulline, l-ornithine and agmatine formed distinct groups, which were altered in the schizophrenia group. The present study provides further evidence of altered brain arginine metabolism in schizophrenia, which enhances our understanding of the pathogenesis of schizophrenia and may lead to the future development of novel preventions and/or therapeutics for the disease.

  9. Early Expansion of Circulating Granulocytic Myeloid-derived Suppressor Cells Predicts Development of Nosocomial Infections in Patients with Sepsis.

    PubMed

    Uhel, Fabrice; Azzaoui, Imane; Grégoire, Murielle; Pangault, Céline; Dulong, Joelle; Tadié, Jean-Marc; Gacouin, Arnaud; Camus, Christophe; Cynober, Luc; Fest, Thierry; Le Tulzo, Yves; Roussel, Mikael; Tarte, Karin

    2017-08-01

    Sepsis induces a sustained immune dysfunction responsible for poor outcome and nosocomial infections. Myeloid-derived suppressor cells (MDSCs) described in cancer and inflammatory processes may be involved in sepsis-induced immune suppression, but their clinical impact remains poorly defined. To clarify phenotype, suppressive activity, origin, and clinical impact of MDSCs in patients with sepsis. Peripheral blood transcriptomic analysis was performed on 29 patients with sepsis and 15 healthy donors. A second cohort of 94 consecutive patients with sepsis, 11 severity-matched intensive care patients, and 67 healthy donors was prospectively enrolled for flow cytometry and functional experiments. Genes involved in MDSC suppressive functions, including S100A12, S100A9, MMP8, and ARG1, were up-regulated in the peripheral blood of patients with sepsis. CD14 pos HLA-DR low/neg monocytic (M)-MDSCs were expanded in intensive care unit patients with and without sepsis and CD14 neg CD15 pos low-density granulocytes/granulocytic (G)-MDSCs were more specifically expanded in patients with sepsis (P < 0.001). Plasma levels of MDSC mediators S100A8/A9, S100A12, and arginase 1 were significantly increased. In vitro, CD14 pos - and CD15 pos -cell depletion increased T-cell proliferation in patients with sepsis. G-MDSCs, made of immature and mature granulocytes expressing high levels of degranulation markers, were specifically responsible for arginase 1 activity. High initial levels of G-MDSCs, arginase 1, and S100A12 but not M-MDSCs were associated with subsequent occurrence of nosocomial infections. M-MDSCs and G-MDSCs strongly contribute to T-cell dysfunction in patients with sepsis. More specifically, G-MDSCs producing arginase 1 are associated with a higher incidence of nosocomial infections and seem to be major actors of sepsis-induced immune suppression.

  10. The Increase in Mannose Receptor Recycling Favors Arginase Induction and Trypanosoma Cruzi Survival in Macrophages

    PubMed Central

    Garrido, Vanina V.; Dulgerian, Laura R.; Stempin, Cinthia C.; Cerbán, Fabio M.

    2011-01-01

    The macrophage mannose receptor (MR) is a pattern recognition receptor of the innate immune system that binds to microbial structures bearing mannose, fucose and N-acetylglucosamine on their surface. Trypanosoma cruzi antigen cruzipain (Cz) is found in the different developmental forms of the parasite. This glycoprotein has a highly mannosylated C-terminal domain that participates in the host-antigen contact. Our group previously demonstrated that Cz-macrophage (Mo) interaction could modulate the immune response against T. cruzi through the induction of a preferential metabolic pathway. In this work, we have studied in Mo the role of MR in arginase induction and in T. cruzi survival using different MR ligands. We have showed that pre-incubation of T. cruzi infected cells with mannose-Bovine Serum Albumin (Man-BSA, MR specific ligand) biased nitric oxide (NO)/urea balance towards urea production and increased intracellular amastigotes growth. The study of intracellular signals showed that pre-incubation with Man-BSA in T. cruzi J774 infected cells induced down-regulation of JNK and p44/p42 phosphorylation and increased of p38 MAPK phosphorylation. These results are coincident with previous data showing that Cz also modifies the MAPK phosphorylation profile induced by the parasite. In addition, we have showed by confocal microscopy that Cz and Man-BSA enhance MR recycling. Furthermore, we studied MR behavior during T. cruzi infection in vivo. MR was up-regulated in F4/80+ cells from T. cruzi infected mice at 13 and 15 days post infection. Besides, we investigated the effect of MR blocking antibody in T. cruzi infected peritoneal Mo. Arginase activity and parasite growth were decreased in infected cells pre-incubated with anti-MR antibody as compared with infected cells treated with control antibody. Therefore, we postulate that during T. cruzi infection, Cz may contact with MR, increasing MR recycling which leads to arginase activity up-regulation and intracellular parasite growth. PMID:22110379

  11. Regulatory parameters of the lung immune response during the early phase of experimental trichinellosis.

    PubMed

    Falduto, Guido H; Vila, Cecilia C; Saracino, María P; Gentilini, María V; Venturiello, Stella M

    2016-11-15

    Parasitic infection caused by Trichinella spiralis provokes an early stimulation of the mucosal immune system which causes an allergic inflammatory response in the lungs. The present work was intended to characterize the kinetics of emergence of regulatory parameters in Wistar rat lungs during this early inflammatory response, between days 0 and 13p.i. The presence of regulatory cells such as regulatory T cells (Tregs) and alternatively activated macrophages (AAM) was analyzed in lung cell suspensions. Moreover, a regulatory cytokine (TGF-β) was studied in lung tissue extracts. Considering that newborn larvae (NBL) travel along the pulmonary microvasculature, the ability of this parasite stage to modulate the activation of lung macrophages was evaluated. For this purpose, lung macrophages from non-infected or infected rats (day 6p.i.) were cultured with live or dead NBL. Arginase activity (characteristic of AAM) and nitric oxide (NO produced by iNOS, characteristic of classical activated macrophages) were measured after 48h. Our results revealed a significant increase in the percentage of Tregs on days 6 and 13p.i., arginase activity on day 13p.i. and TGF-β levels on days 6 and 13p.i. Lung macrophages from non-infected rats cultured with live NBL showed a significant increase in arginase activity and NO levels. Live and dead NBL induced a significant increase in arginase activity in lung macrophages from infected rats. Only live NBL significantly increased NO levels in these macrophages. The present work demonstrates for the first time, the emergence of regulatory parameters in the early lung immune response during T. spiralis infection. The immumodulatory properties exerted by NBL during its passage through this organ could be the cause of such regulation. Moreover, we have shown the ability of NBL to activate macrophages from the lung parenchyma by the classical and alternative pathways. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Bioaugmentation as a solution to increase methane production from an ammonia-rich substrate.

    PubMed

    Fotidis, Ioannis A; Wang, Han; Fiedel, Nicolai R; Luo, Gang; Karakashev, Dimitar B; Angelidaki, Irini

    2014-07-01

    Ammonia-rich substrates inhibit the anaerobic digestion (AD) process and constitute the main reason for low energy recovery in full-scale reactors. It is estimated that many full-scale AD reactors are operating in ammonia induced "inhibited steady-state" with significant losses of the potential biogas production yield. To date there are not any reliable methods to alleviate the ammonia toxicity effect or to efficiently digest ammonia-rich waste. In the current study, bioaugmentation as a possible method to alleviate ammonia toxicity effect in a mesophilic continuously stirred-tank reactor (CSTR) operating under "inhibited steady state" was tested. A fast growing hydrogenotrophic methanogen (i.e., Methanoculleus bourgensis MS2(T)) was bioaugmented in the CSTR reactor at high ammonia levels (5 g NH4(+)-N L(-1)). A second CSTR reactor was used as control with no bioaugmentation. The results derived from this study clearly demonstrated a 31.3% increase in methane production yield in the CSTR reactor, at steady-state, after bioaugmentation. Additionally, high-throughput 16S rRNA gene sequencing analysis showed a 5-fold increase in relative abundance of Methanoculleus spp. after bioaugmentation. On the contrary to all methods used today to alleviate ammonia toxicity effect, the tested bioaugmentation process performed without interrupting the continuous operation of the reactor and without replacing the ammonia-rich feedstock.

  13. Effects of Melatonin on Anti-oxidative Systems and Photosystem II in Cold-Stressed Rice Seedlings

    PubMed Central

    Han, Qiao-Hong; Huang, Bo; Ding, Chun-Bang; Zhang, Zhong-Wei; Chen, Yang-Er; Hu, Chao; Zhou, Li-Jun; Huang, Yan; Liao, Jin-Qiu; Yuan, Shu; Yuan, Ming

    2017-01-01

    Melatonin (N-acetyl-5-methoxytryptamine) plays important role in multiple plant developmental processes and stress responses. We investigated the possible mediatory role of melatonin in growth, photosynthesis, and the response to cold stress in rice by using three different experiments: soaking seed; immersing roots, and spraying to leaves with 0, 20, or 100 μM melatonin. After 6 days of cold stress, the growth of rice seedlings was significantly inhibited, but this inhibition was alleviated by exogenous melatonin. Furthermore, exogenous melatonin pretreatment alleviated the accumulation of reactive oxygen species, malondialdehyde and cell death induced by cold stress. Melatonin pretreatment also relieved the stress-induced inhibitions to photosynthesis and photosystem II activities. Further investigations showed that, antioxidant enzyme activities and non-enzymatic antioxidant levels were increased by melatonin pretreatments. The treatment methods of seed soaking and root immersion were more effective in improving cold stress resistance than the spraying method. The results also indicated the dose-dependent response of melatonin on rice physiological, biochemical, and photosynthetic parameters. PMID:28553310

  14. Generation Mechanism of Radical Species by Tyrosine-Tyrosinase Reaction

    PubMed Central

    Tada, Mika; Kohno, Masahiro; Kasai, Shigenobu; Niwano, Yoshimi

    2010-01-01

    Alleviated melanin formation in the skin through inhibition of tyrosine-tyrosinase reaction is one of the major targets of cosmetics for whitening ability. Since melanin has a pivotal role for photoprotection, there are pros and cons of inhibition of melanin formation. This study applying electron spin resonance (ESR)-spin trapping method revealed that •H and •OH are generated through tyrosine-tyrosinase reaction. When deuterium water was used instead of H2O, the signal of 5,5-dimethyl-1-pyrroline N-oxide (DMPO)-H (a spin adduct of DMPO and •H) greatly decreased, whilst DMPO-OH (a spin adduct of DMPO and •OH) did not. Thus, it is suggested that •H was derived from H2O, and •OH through oxidative catalytic process of tyrosine to dopaquinone. Our study suggests that tyrosinase inhibitors might contribute to alleviate the oxidative damage of the skin by inhibiting •OH generation via the enzyme reaction. PMID:20838572

  15. CTLA-4Ig immunotherapy of obesity-induced insulin resistance by manipulation of macrophage polarization in adipose tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujii, Masakazu, E-mail: masakazu731079@yahoo.co.jp; Inoguchi, Toyoshi, E-mail: toyoshi@intmed3.med.kyushu-u.ac.jp; Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582

    Highlights: •CTLA-4Ig completely alleviates HFD-induced insulin resistance. •CTLA-4Ig reduces epididymal and subcutaneous fat tissue weight and adipocyte size. •CTLA-4Ig alters ATM polarization from inflammatory M1 to anti-inflammatory M2. •CTLA-4Ig may lead to a novel anti-obesity/inflammation/insulin resistance agent. •We identified the mechanism of the novel favorable effects of CTLA-4lg. -- Abstract: It has been established that obesity alters the metabolic and endocrine function of adipose tissue and, together with accumulation of adipose tissue macrophages, contributes to insulin resistance. Although numerous studies have reported that shifting the polarization of macrophages from M1 to M2 can alleviate adipose tissue inflammation, manipulation of macrophagemore » polarization has not been considered as a specific therapy. Here, we determined whether cytotoxic T-lymphocyte-associated antigen-4IgG1 (CTLA-4Ig) can ameliorate insulin resistance by induction of macrophages from proinflammatory M1 to anti-inflammatory M2 polarization in the adipose tissues of high fat diet-induced insulin-resistant mice. CTLA4-Ig treatment prevented insulin resistance by changing gene expression to M2 polarization, which increased the levels of arginase 1. Furthermore, flow cytometric analysis confirmed the alteration of polarization from CD11c (M1)- to CD206 (M2)-positive cells. Concomitantly, CTLA-4Ig treatment resulted in weight reductions of epididymal and subcutaneous adipose tissues, which may be closely related to overexpression of apoptosis inhibitors in macrophages. Moreover, proinflammatory cytokine and chemokine levels decreased significantly. In contrast, CCAAT enhancer binding protein α, peroxisome proliferator-activated receptor γ, and adiponectin expression increased significantly in subcutaneous adipose tissue. This novel mechanism of CTLA-4lg immunotherapy may lead to an ideal anti-obesity/inflammation/insulin resistance agent.« less

  16. Phosphatidylinositol 4,5-bisphosphate regulates SNARE-dependent membrane fusion.

    PubMed

    James, Declan J; Khodthong, Chuenchanok; Kowalchyk, Judith A; Martin, Thomas F J

    2008-07-28

    Phosphatidylinositol 4,5-bisphosphate (PI 4,5-P(2)) on the plasma membrane is essential for vesicle exocytosis but its role in membrane fusion has not been determined. Here, we quantify the concentration of PI 4,5-P(2) as approximately 6 mol% in the cytoplasmic leaflet of plasma membrane microdomains at sites of docked vesicles. At this concentration of PI 4,5-P(2) soluble NSF attachment protein receptor (SNARE)-dependent liposome fusion is inhibited. Inhibition by PI 4,5-P(2) likely results from its intrinsic positive curvature-promoting properties that inhibit formation of high negative curvature membrane fusion intermediates. Mutation of juxtamembrane basic residues in the plasma membrane SNARE syntaxin-1 increase inhibition by PI 4,5-P(2), suggesting that syntaxin sequesters PI 4,5-P(2) to alleviate inhibition. To define an essential rather than inhibitory role for PI 4,5-P(2), we test a PI 4,5-P(2)-binding priming factor required for vesicle exocytosis. Ca(2+)-dependent activator protein for secretion promotes increased rates of SNARE-dependent fusion that are PI 4,5-P(2) dependent. These results indicate that PI 4,5-P(2) regulates fusion both as a fusion restraint that syntaxin-1 alleviates and as an essential cofactor that recruits protein priming factors to facilitate SNARE-dependent fusion.

  17. Nitric Oxide Inhibits Al-Induced Programmed Cell Death in Root Tips of Peanut (Arachis hypogaea L.) by Affecting Physiological Properties of Antioxidants Systems and Cell Wall

    PubMed Central

    Pan, Chun-Liu; Yao, Shao-Chang; Xiong, Wei-Jiao; Luo, Shu-Zhen; Wang, Ya-Lun; Wang, Ai-Qin; Xiao, Dong; Zhan, Jie; He, Long-Fei

    2017-01-01

    It has been reported that nitric oxide (NO) is a negative regulator of aluminum (Al)-induced programmed cell death (PCD) in peanut root tips. However, the inhibiting mechanism of NO on Al-induced PCD is unclear. In order to investigate the mechanism by which NO inhibits Al-induced PCD, the effects of co-treatment Al with the exogenous NO donor or the NO-specific scavenger on peanut root tips, the physiological properties of antioxidants systems and cell wall (CW) in root tip cells of NO inhibiting Al-induced PCD were studied with two peanut cultivars. The results showed that Al exposure induced endogenous NO accumulation, and endogenous NO burst increased antioxidant enzyme activity in response to Al stress. The addition of NO donor sodium nitroprusside (SNP) relieved Al-induced root elongation inhibition, cell death and Al adsorption in CW, as well as oxidative damage and ROS accumulation. Furthermore, co-treatment with the exogenous NO donor decreased MDA content, LOX activity and pectin methylesterase (PME) activity, increased xyloglucan endotransglucosylase (XET) activity and relative expression of the xyloglucan endotransglucosylase/hydrolase (XTH-32) gene. Taken together, exogenous NO alleviated Al-induced PCD by inhibiting Al adsorption in CW, enhancing antioxidant defense and reducing peroxidation of membrane lipids, alleviating the inhibition of Al on root elongation by maintaining the extensibility of CW, decreasing PME activity, and increasing XET activity and relative XTH-32 expression of CW. PMID:29311970

  18. Nitric Oxide Inhibits Al-Induced Programmed Cell Death in Root Tips of Peanut (Arachis hypogaea L.) by Affecting Physiological Properties of Antioxidants Systems and Cell Wall.

    PubMed

    Pan, Chun-Liu; Yao, Shao-Chang; Xiong, Wei-Jiao; Luo, Shu-Zhen; Wang, Ya-Lun; Wang, Ai-Qin; Xiao, Dong; Zhan, Jie; He, Long-Fei

    2017-01-01

    It has been reported that nitric oxide (NO) is a negative regulator of aluminum (Al)-induced programmed cell death (PCD) in peanut root tips. However, the inhibiting mechanism of NO on Al-induced PCD is unclear. In order to investigate the mechanism by which NO inhibits Al-induced PCD, the effects of co-treatment Al with the exogenous NO donor or the NO-specific scavenger on peanut root tips, the physiological properties of antioxidants systems and cell wall (CW) in root tip cells of NO inhibiting Al-induced PCD were studied with two peanut cultivars. The results showed that Al exposure induced endogenous NO accumulation, and endogenous NO burst increased antioxidant enzyme activity in response to Al stress. The addition of NO donor sodium nitroprusside (SNP) relieved Al-induced root elongation inhibition, cell death and Al adsorption in CW, as well as oxidative damage and ROS accumulation. Furthermore, co-treatment with the exogenous NO donor decreased MDA content, LOX activity and pectin methylesterase (PME) activity, increased xyloglucan endotransglucosylase (XET) activity and relative expression of the xyloglucan endotransglucosylase/hydrolase ( XTH-32 ) gene. Taken together, exogenous NO alleviated Al-induced PCD by inhibiting Al adsorption in CW, enhancing antioxidant defense and reducing peroxidation of membrane lipids, alleviating the inhibition of Al on root elongation by maintaining the extensibility of CW, decreasing PME activity, and increasing XET activity and relative XTH-32 expression of CW.

  19. Pantoprazole blocks the JAK2/STAT3 pathway to alleviate skeletal muscle wasting in cancer cachexia by inhibiting inflammatory response

    PubMed Central

    Guo, Dunwei; Wang, Chaoyi; Wang, Qiang; Qiao, Zhongpeng; Tang, Hua

    2017-01-01

    Objective Cancer cachexia is often present in patients with advanced malignant tumors, and the subsequent body weight reduction results in poor quality of life. However, there has been no progress in developing effective clinical therapeutic strategies for skeletal muscle wasting in cancer cachexia. Herein, we explored the functions of pantoprazole on cancer cachexia skeletal muscle wasting. Methods The mouse colon adenocarcinoma cell line C26 was inoculated in the right forelimb of male BALB/C mice to establish a cancer cachexia model. The animals were treated with or without different concentrations of pantoprazole orally, and the body weight, tumor growth, spontaneous activity, and muscle functions were determined at various time points. Two weeks later, the levels of serum IL-6 and TNF-α, the mRNA levels of gastrocnemius JAK2 and STAT3, and the expression levels of p-JAK2, p-STAT3, Fbx32, and MuRF1 were examined with ELISA assay, qRT-PCR assay, and Western blotting, respectively. Further studies were performed to assess the levels of Fbx32 and MuRF1 expression and morphological changes. Results Pantoprazole can alleviate cancer cachexia-induced body weight reduction and inhibit skeletal muscle wasting in a dose-dependent manner. Our results indicated that pantoprazole treatment can decrease the levels of serum IL-6 and TNF-α (56.3% and 67.6%, respectively), and inhibit the activation of the JAK2/STAT3 signaling pathway. Moreover, the expression levels of MuRF1 and Fbx32 were also suppressed after pantoprazole treatment. Conclusion Our findings suggested that pantoprazole can alleviate cancer cachexia skeletal muscle wasting by inhibiting the inflammatory response and blocking the JAK2/STAT3 or ubiquitin proteasome pathway. PMID:28489606

  20. Recombinant human GLP-1(rhGLP-1) alleviating renal tubulointestitial injury in diabetic STZ-induced rats.

    PubMed

    Yin, Weiqin; Xu, Shiqing; Wang, Zai; Liu, Honglin; Peng, Liang; Fang, Qing; Deng, Tingting; Zhang, Wenjian; Lou, Jinning

    2018-01-01

    GLP-1-based treatment improves glycemia through stimulation of insulin secretion and inhibition of glucagon secretion. Recently, more and more findings showed that GLP-1 could also protect kidney from diabetic nephropathy. Most of these studies focused on glomeruli, but the effect of GLP-1 on tubulointerstitial and tubule is not clear yet. In this study, we examined the renoprotective effect of recombinant human GLP-1 (rhGLP-1), and investigated the influence of GLP-1 on inflammation and tubulointerstitial injury using diabetic nephropathy rats model of STZ-induced. The results showed that rhGLP-1 reduced urinary albumin without influencing the body weight and food intake. rhGLP-1 could increased the serum C-peptide slightly but not lower fasting blood glucose significantly. In diabetic nephropathy rats, beside glomerular sclerosis, tubulointerstitial fibrosis was very serious. These lesions could be alleviated by rhGLP-1. rhGLP-1 decreased the expression of profibrotic factors collagen I, α-SMA, fibronectin, and inflammation factors MCP-1 and TNFα in tubular tissue and human proximal tubular cells (HK-2 cells). Furthermore, rhGLP-1 significantly inhibited the phosphorylation of NF-κB, MAPK in both diabetic tubular tissue and HK-2 cells. The inhibition of the expression of TNFα, MCP-1, collagen I and α-SMA in HK-2 cells by GLP-1 could be mimicked by blocking NF-κB or MAPK. These results indicate that rhGLP-1 exhibit renoprotective effect by alleviation of tubulointerstitial injury via inhibiting phosphorylation of MAPK and NF-κB. Therefore, rhGLP-1 may be a potential drug for treatment of diabetic nephropathy. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Pantoprazole blocks the JAK2/STAT3 pathway to alleviate skeletal muscle wasting in cancer cachexia by inhibiting inflammatory response.

    PubMed

    Guo, Dunwei; Wang, Chaoyi; Wang, Qiang; Qiao, Zhongpeng; Tang, Hua

    2017-06-13

    Cancer cachexia is often present in patients with advanced malignant tumors, and the subsequent body weight reduction results in poor quality of life. However, there has been no progress in developing effective clinical therapeutic strategies for skeletal muscle wasting in cancer cachexia. Herein, we explored the functions of pantoprazole on cancer cachexia skeletal muscle wasting. The mouse colon adenocarcinoma cell line C26 was inoculated in the right forelimb of male BALB/C mice to establish a cancer cachexia model. The animals were treated with or without different concentrations of pantoprazole orally, and the body weight, tumor growth, spontaneous activity, and muscle functions were determined at various time points. Two weeks later, the levels of serum IL-6 and TNF-α, the mRNA levels of gastrocnemius JAK2 and STAT3, and the expression levels of p-JAK2, p-STAT3, Fbx32, and MuRF1 were examined with ELISA assay, qRT-PCR assay, and Western blotting, respectively. Further studies were performed to assess the levels of Fbx32 and MuRF1 expression and morphological changes. Pantoprazole can alleviate cancer cachexia-induced body weight reduction and inhibit skeletal muscle wasting in a dose-dependent manner. Our results indicated that pantoprazole treatment can decrease the levels of serum IL-6 and TNF-α (56.3% and 67.6%, respectively), and inhibit the activation of the JAK2/STAT3 signaling pathway. Moreover, the expression levels of MuRF1 and Fbx32 were also suppressed after pantoprazole treatment. Our findings suggested that pantoprazole can alleviate cancer cachexia skeletal muscle wasting by inhibiting the inflammatory response and blocking the JAK2/STAT3 or ubiquitin proteasome pathway.

  2. Targeting arginase-II protects mice from high-fat-diet-induced hepatic steatosis through suppression of macrophage inflammation.

    PubMed

    Liu, Chang; Rajapakse, Angana G; Riedo, Erwin; Fellay, Benoit; Bernhard, Marie-Claire; Montani, Jean-Pierre; Yang, Zhihong; Ming, Xiu-Fen

    2016-02-05

    Nonalcoholic fatty liver disease (NAFLD) associates with obesity and type 2 diabetes. Hypoactive AMP-activated protein kinase (AMPK), hyperactive mammalian target of rapamycin (mTOR) signaling, and macrophage-mediated inflammation are mechanistically linked to NAFLD. Studies investigating roles of arginase particularly the extrahepatic isoform arginase-II (Arg-II) in obesity-associated NAFLD showed contradictory results. Here we demonstrate that Arg-II(-/-) mice reveal decreased hepatic steatosis, macrophage infiltration, TNF-α and IL-6 as compared to the wild type (WT) littermates fed high fat diet (HFD). A higher AMPK activation (no difference in mTOR signaling), lower levels of lipogenic transcription factor SREBP-1c and activity/expression of lipogenic enzymes were observed in the Arg-II(-/-) mice liver. Moreover, release of TNF-α and IL-6 from bone marrow-derived macrophages (BMM) of Arg-II(-/-) mice is decreased as compared to WT-BMM. Conditioned medium from Arg-II(-/-)-BMM exhibits weaker activity to facilitate triglyceride synthesis paralleled with lower expression of SREBP-1c and SCD-1 and higher AMPK activation in hepatocytes as compared to that from WT-BMM. These effects of BMM conditioned medium can be neutralized by neutralizing antibodies against TNF-α and IL-6. Thus, Arg-II-expressing macrophages facilitate diet-induced NAFLD through TNF-α and IL-6 in obesity.

  3. Altered brain arginine metabolism in schizophrenia

    PubMed Central

    Liu, P; Jing, Y; Collie, N D; Dean, B; Bilkey, D K; Zhang, H

    2016-01-01

    Previous research implicates altered metabolism of l-arginine, a versatile amino acid with a number of bioactive metabolites, in the pathogenesis of schizophrenia. The present study, for we believe the first time, systematically compared the metabolic profile of l-arginine in the frontal cortex (Brodmann's area 8) obtained post-mortem from schizophrenic individuals and age- and gender-matched non-psychiatric controls (n=20 per group). The enzyme assays revealed no change in total nitric oxide synthase (NOS) activity, but significantly increased arginase activity in the schizophrenia group. Western blot showed reduced endothelial NOS protein expression and increased arginase II protein level in the disease group. High-performance liquid chromatography and liquid chromatography/mass spectrometric assays confirmed significantly reduced levels of γ-aminobutyric acid (GABA), but increased agmatine concentration and glutamate/GABA ratio in the schizophrenia cases. Regression analysis indicated positive correlations between arginase activity and the age of disease onset and between l-ornithine level and the duration of illness. Moreover, cluster analyses revealed that l-arginine and its main metabolites l-citrulline, l-ornithine and agmatine formed distinct groups, which were altered in the schizophrenia group. The present study provides further evidence of altered brain arginine metabolism in schizophrenia, which enhances our understanding of the pathogenesis of schizophrenia and may lead to the future development of novel preventions and/or therapeutics for the disease. PMID:27529679

  4. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age

    PubMed Central

    Xu, Ming; Tchkonia, Tamara; Ding, Husheng; Ogrodnik, Mikolaj; Lubbers, Ellen R.; Pirtskhalava, Tamar; White, Thomas A.; Johnson, Kurt O.; Stout, Michael B.; Mezera, Vojtech; Giorgadze, Nino; Jensen, Michael D.; LeBrasseur, Nathan K.; Kirkland, James L.

    2015-01-01

    Chronic, low grade, sterile inflammation frequently accompanies aging and age-related diseases. Cellular senescence is associated with the production of proinflammatory chemokines, cytokines, and extracellular matrix (ECM) remodeling proteases, which comprise the senescence-associated secretory phenotype (SASP). We found a higher burden of senescent cells in adipose tissue with aging. Senescent human primary preadipocytes as well as human umbilical vein endothelial cells (HUVECs) developed a SASP that could be suppressed by targeting the JAK pathway using RNAi or JAK inhibitors. Conditioned medium (CM) from senescent human preadipocytes induced macrophage migration in vitro and inflammation in healthy adipose tissue and preadipocytes. When the senescent cells from which CM was derived had been treated with JAK inhibitors, the resulting CM was much less proinflammatory. The administration of JAK inhibitor to aged mice for 10 wk alleviated both adipose tissue and systemic inflammation and enhanced physical function. Our findings are consistent with a possible contribution of senescent cells and the SASP to age-related inflammation and frailty. We speculate that SASP inhibition by JAK inhibitors may contribute to alleviating frailty. Targeting the JAK pathway holds promise for treating age-related dysfunction. PMID:26578790

  5. Inhibition of cyclooxygenase-2 alleviates liver cirrhosis via improvement of the dysfunctional gut-liver axis in rats.

    PubMed

    Gao, Jin-Hang; Wen, Shi-Lei; Tong, Huan; Wang, Chun-Hui; Yang, Wen-Juan; Tang, Shi-Hang; Yan, Zhao-Ping; Tai, Yang; Ye, Cheng; Liu, Rui; Huang, Zhi-Yin; Tang, Ying-Mei; Yang, Jin-Hui; Tang, Cheng-Wei

    2016-06-01

    Inflammatory transport through the gut-liver axis may facilitate liver cirrhosis. Cyclooxygenase-2 (COX-2) has been considered as one of the important molecules that regulates intestinal epithelial barrier function. This study was aimed to test the hypothesis that inhibition of COX-2 by celecoxib might alleviate liver cirrhosis via reduction of intestinal inflammatory transport in thiacetamide (TAA) rat model. COX-2/prostaglandin E2 (PGE2)/EP-2/p-ERK integrated signal pathways regulated the expressions of intestinal zonula occludens-1 (ZO-1) and E-cadherin, which maintain the function of intestinal epithelial barrier. Celecoxib not only decreased the intestinal permeability to a 4-kDa FITC-dextran but also significantly increased expressions of ZO-1 and E-cadherin. When celecoxib greatly decreased intestinal levels of LPS, TNF-α, and IL-6, it significantly enhanced T cell subsets reduced by TAA. As a result, liver fibrosis induced by TAA was significantly alleviated in the celecoxib group. These data indicated that celecoxib improved the integrity of intestinal epithelial barrier, blocked inflammatory transport through the dysfunctional gut-liver axis, and ameliorated the progress of liver cirrhosis. Copyright © 2016 the American Physiological Society.

  6. Knocking out or pharmaceutical inhibition of fatty acid binding protein 4 (FABP4) alleviates osteoarthritis induced by high-fat diet in mice.

    PubMed

    Zhang, C; Chiu, K Y; Chan, B P M; Li, T; Wen, C; Xu, A; Yan, C H

    2018-06-01

    Adipokines play roles in the pathogenesis of osteoarthritis (OA). Fatty acid binding protein 4 (FABP4) is a novel adipokine that is closely associated with obesity and metabolic diseases. The aim of this study was to discover the potential role of FABP4 in OA. Seventy-two FABP4 knockout mice (KO) in C57BL/6N background and wild-type littermates (WT) (male, 6-week-old) were fed with a high-fat diet (HFD, 60% calorie) or standard diet (STD, 11.6% calorie) for 3 months, 6 months and 9 months (n = 6 each). In the parallel study, forty-eight 6-week-old male WT mice were fed with HFD or STD, and simultaneously treated with daily oral gavage of selective FABP4 inhibitor BMS309403 (15 mg/kg/d) or vehicle for 4 months and 6 months (n = 6 each). Serum FABP4 and cartilage oligomeric matrix protein (COMP) concentration was quantified. Histological assessment of knee OA and micro-CT analysis of subchondral bone were performed. HFD induced obesity in mice. After 3 months and 6 months of HFD, KO mice showed alleviated cartilage degradation and synovitis, with significantly lower COMP, modified Mankin OA score, and MMP-13/ADAMTS4 expression. After 6 months and 9 months of HFD, KO mice showed less osteophyte formation and subchondral bone sclerosis. Chronic treatment of BMS309403 for 4 months and 6 months significantly alleviated cartilage degradation, but had no effects on the subchondral bone. Knocking out or pharmaceutical inhibition of FABP4 did not have significant effects on lean mice fed with STD. Knocking out or pharmaceutical inhibition of FABP4 alleviates OA induced by HFD in mice. Copyright © 2018 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  7. L-Arginine metabolism in cardiovascular and renal tissue from hyper- and hypothyroid rats.

    PubMed

    Rodríguez-Gómez, Isabel; Moliz, Juan N; Quesada, Andrés; Montoro-Molina, Sebastian; Vargas-Tendero, Pablo; Osuna, Antonio; Wangensteen, Rosemary; Vargas, Félix

    2016-03-01

    This study assessed the effects of thyroid hormones on the enzymes involved in l-arginine metabolism and the metabolites generated by the different metabolic pathways. Compounds of l-arginine metabolism were measured in the kidney, heart, aorta, and liver of euthyroid, hyperthyroid, and hypothyroid rats after 6 weeks of treatment. Enzymes studied were NOS isoforms (neuronal [nNOS], inducible [iNOS], and endothelial [eNOS]), arginases I and II, ornithine decarboxylase (ODC), ornithine aminotransferase (OAT), and l-arginine decarboxylase (ADC). Metabolites studied were l-arginine, l-citrulline, spermidine, spermine, and l-proline. Kidney heart and aorta levels of eNOS and iNOS were augmented and reduced (P < 0.05, for each tissue and enzyme) in hyper- and hypothyroid rats, respectively. Arginase I abundance in aorta, heart, and kidney was increased (P < 0.05, for each tissue) in hyperthyroid rats and was decreased in kidney and aorta of hypothyroid rats (P < 0.05, for each tissue). Arginase II was augmented in aorta and kidney (P < 0.05, for each tissue) of hyperthyroid rats and remained unchanged in all organs of hypothyroid rats. The substrate for these enzymes, l-arginine, was reduced (P < 0.05, for all tissues) in hyperthyroid rats. Levels of ODC and spermidine, its product, were increased and decreased (P < 0.05) in hyper- and hypothyroid rats, respectively, in all organs studied. OAT and proline levels were positively modulated by thyroid hormones in liver but not in the other tissues. ADC protein levels were positively modulated by thyroid hormones in all tissues. According to these findings, thyroid hormone treatment positively modulates different l-arginine metabolic pathways. The changes recorded in the abundance of eNOS, arginases I and II, and ADC protein in renal and cardiovascular tissues may play a role in the hemodynamic and renal manifestations observed in thyroid disorders. Furthermore, the changes in ODC and spermidine might contribute to the changes in cardiac and renal mass observed in thyroid disorders. © 2015 by the Society for Experimental Biology and Medicine.

  8. l-Arginine metabolism in cardiovascular and renal tissue from hyper- and hypothyroid rats

    PubMed Central

    Moliz, Juan N; Quesada, Andrés; Montoro-Molina, Sebastian; Vargas-Tendero, Pablo; Osuna, Antonio; Wangensteen, Rosemary; Vargas, Félix

    2015-01-01

    This study assessed the effects of thyroid hormones on the enzymes involved in l-arginine metabolism and the metabolites generated by the different metabolic pathways. Compounds of l-arginine metabolism were measured in the kidney, heart, aorta, and liver of euthyroid, hyperthyroid, and hypothyroid rats after 6 weeks of treatment. Enzymes studied were NOS isoforms (neuronal [nNOS], inducible [iNOS], and endothelial [eNOS]), arginases I and II, ornithine decarboxylase (ODC), ornithine aminotransferase (OAT), and l-arginine decarboxylase (ADC). Metabolites studied were l-arginine, l-citrulline, spermidine, spermine, and l-proline. Kidney heart and aorta levels of eNOS and iNOS were augmented and reduced (P < 0.05, for each tissue and enzyme) in hyper- and hypothyroid rats, respectively. Arginase I abundance in aorta, heart, and kidney was increased (P < 0.05, for each tissue) in hyperthyroid rats and was decreased in kidney and aorta of hypothyroid rats (P < 0.05, for each tissue). Arginase II was augmented in aorta and kidney (P < 0.05, for each tissue) of hyperthyroid rats and remained unchanged in all organs of hypothyroid rats. The substrate for these enzymes, l-arginine, was reduced (P < 0.05, for all tissues) in hyperthyroid rats. Levels of ODC and spermidine, its product, were increased and decreased (P < 0.05) in hyper- and hypothyroid rats, respectively, in all organs studied. OAT and proline levels were positively modulated by thyroid hormones in liver but not in the other tissues. ADC protein levels were positively modulated by thyroid hormones in all tissues. According to these findings, thyroid hormone treatment positively modulates different l-arginine metabolic pathways. The changes recorded in the abundance of eNOS, arginases I and II, and ADC protein in renal and cardiovascular tissues may play a role in the hemodynamic and renal manifestations observed in thyroid disorders. Furthermore, the changes in ODC and spermidine might contribute to the changes in cardiac and renal mass observed in thyroid disorders. PMID:26674221

  9. Supplementation of chitosan alleviates high-fat diet-enhanced lipogenesis in rats via adenosine monophosphate (AMP)-activated protein kinase activation and inhibition of lipogenesis-associated genes.

    PubMed

    Chiu, Chen-Yuan; Chan, Im-Lam; Yang, Tsung-Han; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2015-03-25

    This study investigated the role of chitosan in lipogenesis in high-fat diet-induced obese rats. The lipogenesis-associated genes and their upstream regulatory proteins were explored. Diet supplementation of chitosan efficiently decreased the increased weights in body, livers, and adipose tissues in high-fat diet-fed rats. Chitosan supplementation significantly raised the lipolysis rate; attenuated the adipocyte hypertrophy, triglyceride accumulation, and lipoprotein lipase activity in epididymal adipose tissues; and decreased hepatic enzyme activities of lipid biosynthesis. Chitosan supplementation significantly activated adenosine monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation and attenuated high-fat diet-induced protein expressions of lipogenic transcription factors (PPAR-γ and SREBP1c) in livers and adipose tissues. Moreover, chitosan supplementation significantly inhibited the expressions of downstream lipogenic genes (FAS, HMGCR, FATP1, and FABP4) in livers and adipose tissues of high-fat diet-fed rats. These results demonstrate for the first time that chitosan supplementation alleviates high-fat diet-enhanced lipogenesis in rats via AMPK activation and lipogenesis-associated gene inhibition.

  10. RNCR3 knockdown inhibits diabetes mellitus-induced retinal reactive gliosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chang; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing

    Retinal reactive gliosis is an important pathological feature of diabetic retinopathy. Identifying the underlying mechanisms causing reactive gliosis will be important for developing new therapeutic strategies for treating diabetic retinopathy. Herein, we show that long noncoding RNA-RNCR3 knockdown significantly inhibits retinal reactive gliosis. RNCR3 knockdown leads to a marked reduction in the release of several cytokines. RNCR3 knockdown alleviates diabetes mellitus-induced retinal neurodegeneration, as shown by less apoptotic retinal cells and ameliorative visual function. RNCR3 knockdown could also decrease Müller glial cell viability and proliferation, and reduce the expression of glial reactivity-related genes including GFAP and vimentin in vitro. Collectively, thismore » study shows that RNCR3 knockdown may be a promising strategy for the prevention of diabetes mellitus-induced retinal neurodegeneration. - Highlights: • RNCR3 knockdown inhibits retinal reactive gliosis. • RNCR3 knockdown causes a significant change in cytokine profile. • RNCR3 knockdown alleviates diabetes mellitus-induced retinal neurodegeneration. • RNCR3 knockdown affects Müller glial cell function in vitro.« less

  11. Juglone alleviates pneumolysin-induced human alveolar epithelial cell injury via inhibiting the hemolytic activity of pneumolysin.

    PubMed

    Song, Meng; Lu, Gejin; Li, Meng; Deng, Xuming; Wang, Jianfeng

    2017-08-01

    Streptococcus pneumoniae (the pneumococcus) is an opportunistic pathogen responsible for several human diseases, including acute otitis media, pneumonia, sepsis and bacterial meningitis, and possesses numerous virulence factors associated with pneumococcal infection and pathogenesis. With the capacity to form pores in cholesterol-rich membranes, pneumolysin (PLY) is a key virulence factor of S. pneumoniae and causes severe tissue damage during pneumococcal infection. Juglone (JG), a natural 1,4-naphthoquinone widely found in the roots, leaves, woods and fruits of Juglandaceae walnut trees, inhibits PLY-induced hemolysis via inhibition of the oligomerization of PLY and exhibits minimal anti-S. pneumoniae activity. In addition, when human alveolar epithelial (A549) cells were co-cultured with PLY and JG, PLY-mediated cell injury was significantly alleviated. These results indicate that JG directly interacts with PLY to reduce the cytotoxicity of the toxin in human alveolar epithelial cells. Hence, JG is an effective inhibitor of PLY and protects lung cells from PLY-mediated cell injury. This study also provides the basis for the development of anti-virulence drugs for the treatment of S. pneumoniae infections.

  12. Immunosuppressive CD71+ erythroid cells compromise neonatal host defence against infection

    NASA Astrophysics Data System (ADS)

    Elahi, Shokrollah; Ertelt, James M.; Kinder, Jeremy M.; Jiang, Tony T.; Zhang, Xuzhe; Xin, Lijun; Chaturvedi, Vandana; Strong, Beverly S.; Qualls, Joseph E.; Steinbrecher, Kris A.; Kalfa, Theodosia A.; Shaaban, Aimen F.; Way, Sing Sing

    2013-12-01

    Newborn infants are highly susceptible to infection. This defect in host defence has generally been ascribed to the immaturity of neonatal immune cells; however, the degree of hyporesponsiveness is highly variable and depends on the stimulation conditions. These discordant responses illustrate the need for a more unified explanation for why immunity is compromised in neonates. Here we show that physiologically enriched CD71+ erythroid cells in neonatal mice and human cord blood have distinctive immunosuppressive properties. The production of innate immune protective cytokines by adult cells is diminished after transfer to neonatal mice or after co-culture with neonatal splenocytes. Neonatal CD71+ cells express the enzyme arginase-2, and arginase activity is essential for the immunosuppressive properties of these cells because molecular inhibition of this enzyme or supplementation with L-arginine overrides immunosuppression. In addition, the ablation of CD71+ cells in neonatal mice, or the decline in number of these cells as postnatal development progresses parallels the loss of suppression, and restored resistance to the perinatal pathogens Listeria monocytogenes and Escherichia coli. However, CD71+ cell-mediated susceptibility to infection is counterbalanced by CD71+ cell-mediated protection against aberrant immune cell activation in the intestine, where colonization with commensal microorganisms occurs swiftly after parturition. Conversely, circumventing such colonization by using antimicrobials or gnotobiotic germ-free mice overrides these protective benefits. Thus, CD71+ cells quench the excessive inflammation induced by abrupt colonization with commensal microorganisms after parturition. This finding challenges the idea that the susceptibility of neonates to infection reflects immune-cell-intrinsic defects and instead highlights processes that are developmentally more essential and inadvertently mitigate innate immune protection. We anticipate that these results will spark renewed investigation into the need for immunosuppression in neonates, as well as improved strategies for augmenting host defence in this vulnerable population.

  13. SMAD-PI3K-Akt-mTOR Pathway Mediates BMP-7 Polarization of Monocytes into M2 Macrophages

    PubMed Central

    Rocher, Crystal; Singla, Dinender K.

    2013-01-01

    Previously we demonstrated that bone morphogenetic protein-7 (BMP-7) treatment polarizes monocytes into M2 macrophages and increases the expression of anti-inflammatory cytokines. Despite these findings, the mechanisms for the observed BMP-7 induced monocyte polarization into M2 macrophages are completely unknown. In this study, we demonstrate the mechanisms involved in the polarization of monocytes into M2 macrophages. Apoptotic conditioned media (ACM) was generated to mimic the stressed conditions, inducing monocyte polarization. Monocytes were treated with ACM along with BMP-7 and/or its inhibitor, follistatin, for 48 hours. Furthermore, an inhibitor of the PI3K pathway, LY-294002, was also studied. Our data show that BMP-7 induces polarization of monocytes into M2 macrophages while significantly increasing the expression of anti-inflammatory markers, arginase-1 and IL-10, and significantly (p<0.05) decreasing the expression of pro-inflammatory markers iNOS, IL-6, TNF-α and MCP-1; (p<0.05). Moreover, addition of the PI3K inhibitor, LY-294002, significantly (p<0.05) decreases upregulation of IL-10 and arginase-1, suggesting involvement of the PI3K pathway in M2 macrophage polarization. Next, following BMP-7 treatment, a significant (p<0.05) increase in p-SMAD1/5/8 and p-PI3K expression resulting in downstream activation of p-Akt and p-mTOR was observed. Furthermore, expression of p-PTEN, an inhibitor of the PI3K pathway, was significantly (p<0.05) increased in the ACM group. However, BMP-7 treatment inhibited its expression, suggesting involvement of the PI3K-Akt-mTOR pathway. In conclusion, we demonstrate that BMP-7 polarizes monocytes into M2 macrophages and enhances anti-inflammatory cytokine expression which is mediated by the activated SMAD-PI3K-Akt-mTOR pathway. PMID:24376781

  14. l-Citrulline Protects from Kidney Damage in Type 1 Diabetic Mice

    PubMed Central

    Romero, Maritza J.; Yao, Lin; Sridhar, Supriya; Bhatta, Anil; Dou, Huijuan; Ramesh, Ganesan; Brands, Michael W.; Pollock, David M.; Caldwell, Ruth B.; Cederbaum, Stephen D.; Head, C. Alvin; Bagi, Zsolt; Lucas, Rudolf; Caldwell, Robert W.

    2013-01-01

    Rationale: Diabetic nephropathy (DN) is a major cause of end-stage renal disease, associated with endothelial dysfunction. Chronic supplementation of l-arginine (l-arg), the substrate for endothelial nitric oxide synthase (eNOS), failed to improve vascular function. l-Citrulline (l-cit) supplementation not only increases l-arg synthesis, but also inhibits cytosolic arginase I, a competitor of eNOS for the use of l-arg, in the vasculature. Aims: To investigate whether l-cit treatment reduces DN in streptozotocin (STZ)-induced type 1 diabetes (T1D) in mice and rats and to study its effects on arginase II (ArgII) function, the main renal isoform. Methods: STZ-C57BL6 mice received l-cit or vehicle supplemented in the drinking water. For comparative analysis, diabetic ArgII knock out mice and l-cit-treated STZ-rats were evaluated. Results: l-Citrulline exerted protective effects in kidneys of STZ-rats, and markedly reduced urinary albumin excretion, tubulo-interstitial fibrosis, and kidney hypertrophy, observed in untreated diabetic mice. Intriguingly, l-cit treatment was accompanied by a sustained elevation of tubular ArgII at 16 weeks and significantly enhanced plasma levels of the anti-inflammatory cytokine IL-10. Diabetic ArgII knock out mice showed greater blood urea nitrogen levels, hypertrophy, and dilated tubules than diabetic wild type (WT) mice. Despite a marked reduction in collagen deposition in ArgII knock out mice, their albuminuria was not significantly different from diabetic WT animals. l-Cit also restored nitric oxide/reactive oxygen species balance and barrier function in high glucose-treated monolayers of human glomerular endothelial cells. Moreover, l-cit also has the ability to establish an anti-inflammatory profile, characterized by increased IL-10 and reduced IL-1β and IL-12(p70) generation in the human proximal tubular cells. Conclusion: l-Citrulline supplementation established an anti-inflammatory profile and significantly preserved the nephron function during T1D. PMID:24400007

  15. Trehalose protects against cadmium-induced cytotoxicity in primary rat proximal tubular cells via inhibiting apoptosis and restoring autophagic flux

    PubMed Central

    Wang, Xin-Yu; Yang, Heng; Wang, Min-Ge; Yang, Du-Bao; Wang, Zhen-Yong; Wang, Lin

    2017-01-01

    Autophagy has an important renoprotective function and we recently found that autophagy inhibition is involved in cadmium (Cd)-induced nephrotoxicity. Here, we aimed to investigate the protective effect of trehalose (Tre), a novel autophagy activator, against Cd-induced cytotoxicity in primary rat proximal tubular (rPT) cells. First, data showed that Tre treatment significantly decreased Cd-induced apoptotic cell death of rPT cells via inhibiting caspase-dependent apoptotic pathway, evidenced by morphological analysis, flow cytometric and immunoblot assays. Also, administration with Tre protected rPT cells against Cd-induced lipid peroxidation. Inhibition of autophagic flux in Cd-exposed rPT cells was markedly restored by Tre administration, demonstrated by immunoblot analysis of autophagy marker proteins and GFP and RFP tandemly tagged LC3 method. Resultantly, Cd-induced autophagosome accumulation was obviously alleviated by Tre treatment. Meanwhile, blockage of autophagosome–lysosome fusion by Cd exposure was noticeably restored by Tre, which promoted the autophagic degradation in Cd-exposed rPT cells. Moreover, Tre treatment markedly recovered Cd-induced lysosomal alkalinization and impairment of lysosomal degradation capacity in rPT cells, demonstrating that Tre has the ability to restore Cd-impaired lysosomal function. Collectively, these findings demonstrate that Tre treatment alleviates Cd-induced cytotoxicity in rPT cells by inhibiting apoptosis and restoring autophagic flux. PMID:29022917

  16. Effects of mosapride citrate, a 5-HT4-receptor agonist, on gastric distension-induced visceromotor response in conscious rats.

    PubMed

    Seto, Yasuhiro; Yoshida, Naoyuki; Kaneko, Hiroshi

    2011-01-01

    Mosapride citrate (mosapride), a prokinetic agent with 5-HT(4)-receptor agonistic activity, is known to enhance gastric emptying and alleviate symptoms in patients with functional dyspepsia (FD). As hyperalgesia and delayed gastric emptying play an important role in the pathogenesis of FD, we used in this study balloon gastric distension to enable abdominal muscle contractions and characterized the visceromotor response (VMR) to such distension in conscious rats. We also investigated the effects of mosapride on gastric distension-induced VMR in the same model. Mosapride (3-10 mg/kg, p.o.) dose-dependently inhibited gastric distension-induced VMR in rats. However, itopride even at 100 mg/kg failed to inhibit gastric distension-induced VMR in rats. Additionally, a major metabolite M1 of mosapride, which possesses 5-HT(3)-receptor antagonistic activity, inhibited gastric distension-induced VMR. The inhibitory effect of mosapride on gastric distension-induced visceral pain was partially, but significantly inhibited by SB-207266, a selective 5-HT(4)-receptor antagonist. This study shows that mosapride inhibits gastric distension-induced VMR in conscious rats. The inhibitory effect of mosapride is mediated via activation of 5-HT(4) receptors and blockage of 5-HT(3) receptors by a mosapride metabolite. This finding indicates that mosapride may be useful in alleviating FD-associated gastrointestinal symptoms via increase in pain threshold.

  17. Ursodeoxycholic Acid (UDCA) Exerts Anti-Atherogenic Effects by Inhibiting Endoplasmic Reticulum (ER) Stress Induced by Disturbed Flow.

    PubMed

    Chung, Jihwa; Kim, Kyoung Hwa; Lee, Seok Cheol; An, Shung Hyun; Kwon, Kihwan

    2015-10-01

    Disturbed blood flow with low-oscillatory shear stress (OSS) is a predominant atherogenic factor leading to dysfunctional endothelial cells (ECs). Recently, it was found that disturbed flow can directly induce endoplasmic reticulum (ER) stress in ECs, thereby playing a critical role in the development and progression of atherosclerosis. Ursodeoxycholic acid (UDCA), a naturally occurring bile acid, has long been used to treat chronic cholestatic liver disease and is known to alleviate endoplasmic reticulum (ER) stress at the cellular level. However, its role in atherosclerosis remains unexplored. In this study, we demonstrated the anti-atherogenic activity of UDCA via inhibition of disturbed flow-induced ER stress in atherosclerosis. UDCA effectively reduced ER stress, resulting in a reduction in expression of X-box binding protein-1 (XBP-1) and CEBP-homologous protein (CHOP) in ECs. UDCA also inhibits the disturbed flow-induced inflammatory responses such as increases in adhesion molecules, monocyte adhesion to ECs, and apoptosis of ECs. In a mouse model of disturbed flow-induced atherosclerosis, UDCA inhibits atheromatous plaque formation through the alleviation of ER stress and a decrease in adhesion molecules. Taken together, our results revealed that UDCA exerts anti-atherogenic activity in disturbed flow-induced atherosclerosis by inhibiting ER stress and the inflammatory response. This study suggests that UDCA may be a therapeutic agent for prevention or treatment of atherosclerosis.

  18. Inhibition of phosphoantigen-mediated gammadelta T-cell proliferation by CD4+ CD25+ FoxP3+ regulatory T cells.

    PubMed

    Kunzmann, Volker; Kimmel, Brigitte; Herrmann, Thomas; Einsele, Hermann; Wilhelm, Martin

    2009-02-01

    Tumour growth promotes the expansion of CD4(+) CD25(+) FoxP3(+) regulatory T cells (Tregs) which suppress various arms of immune responses and might therefore contribute to tumour immunosurveillance. In this study, we found an inverse correlation between circulating Treg frequencies and phosphoantigen-induced gammadelta T-cell proliferation in cancer patients, which prompted us to address the role of Tregs in controlling the gammadelta T-cell arm of innate immune responses. In vitro, human Treg-peripheral blood mononuclear cell (PBMC) co-cultures strongly inhibited phosphoantigen-induced proliferation of gammadelta T cells and depletion of Tregs restored the impaired phosphoantigen-induced gammadelta T-cell proliferation of cancer patients. Tregs did not suppress other effector functions of gammadelta T cells such as cytokine production or cytotoxicity. Our experiments indicate that Tregs do not mediate their suppressive activity via a cell-cell contact-dependent mechanism, but rather secrete a soluble non-proteinaceous factor, which is independent of known soluble factors interacting with amino acid depletion (e.g. arginase-diminished arginine and indolamine 2,3-dioxygenase-diminished tryptophan) or nitric oxide (NO) production. However, the proliferative activity of alphabeta T cells was not affected by this cell-cell contact-independent suppressive activity induced by Tregs. In conclusion, these findings indicate a potential new mechanism by which Tregs can specifically suppress gammadelta T cells and highlight the strategy of combining Treg inhibition with subsequent gammadelta T-cell activation to enhance gammadelta T cell-mediated immunotherapy.

  19. The effects of some polyamine biosynthetic inhibitors on growth and morphology of phytopathogenic fungi

    NASA Technical Reports Server (NTRS)

    Rajam, M. V.; Galston, A. W.

    1985-01-01

    We have studied the effects of two polyamine biosynthetic inhibitors, alpha-difluoromethylornithine (DFMO) and alpha-difluoromethylarginine (DFMA), and of polyamines (PAs), alone and in combination, on mycelial growth and morphology of four phytopathogenic fungi: Botrytis sp, B. cinerea, Rhizoctonia solani and Monilinia fructicola. The inhibitors were added to a Czapek agar medium to get final concentrations of 0.1, 0.5 and 1.0 mM. DFMO and DFMA, suicide inhibitors of ornithine decarboxylase (ODC) and arginine decarboxylase (ADC) respectively, inhibited mycelial growth strongly; the effect was generally more pronounced with DFMA than with DFMO, but each fungus had its own response pattern. The addition of the PAs putrescine (Put) and spermidine (Spd) to the culture medium resulted in a promotion of growth. In Botrytis sp and Monilinia fructicola exposed to inhibitors plus PAs, mycelial growth was actually increased above control values. Mycelial morphology was altered and cell size dramatically reduced in plates containing inhibitors alone, whereas with PAs alone, or in combination with inhibitors, morphology was normal, but cell length and diameters increased considerably. These results suggest that PAs are essential for growth in fungal mycelia. The inhibition caused by DFMA may be due to its arginase-mediated conversion to DFMO.

  20. Nutmeg oil alleviates chronic inflammatory pain through inhibition of COX-2 expression and substance P release in vivo.

    PubMed

    Zhang, Wei Kevin; Tao, Shan-Shan; Li, Ting-Ting; Li, Yu-Sang; Li, Xiao-Jun; Tang, He-Bin; Cong, Ren-Huai; Ma, Fang-Li; Wan, Chu-Jun

    2016-01-01

    Chronic pain, or sometimes referred to as persistent pain, reduces the life quality of patients who are suffering from chronic diseases such as inflammatory diseases, cancer and diabetes. Hence, herbal medicines draw many attentions and have been shown effective in the treatment or relief of pain. Here in this study, we used the CFA-injected rats as a sustainable pain model to test the anti-inflammatory and analgesic effect of nutmeg oil, a spice flavor additive to beverages and baked goods produced from the seed of Myristica fragrans tree. We have demonstrated that nutmeg oil could potentially alleviate the CFA-injection induced joint swelling, mechanical allodynia and heat hyperanalgesia of rats through inhibition of COX-2 expression and blood substance P level, which made it possible for nutmeg oil to be a potential chronic pain reliever.

  1. Overcoming fixation with repeated memory suppression.

    PubMed

    Angello, Genna; Storm, Benjamin C; Smith, Steven M

    2015-01-01

    Fixation (blocks to memories or ideas) can be alleviated not only by encouraging productive work towards a solution, but, as the present experiments show, by reducing counterproductive work. Two experiments examined relief from fixation in a word-fragment completion task. Blockers, orthographically similar negative primes (e.g., ANALOGY), blocked solutions to word fragments (e.g., A_L_ _GY) in both experiments. After priming, but before the fragment completion test, participants repeatedly suppressed half of the blockers using the Think/No-Think paradigm, which results in memory inhibition. Inhibiting blockers did not alleviate fixation in Experiment 1 when conscious recollection of negative primes was not encouraged on the fragment completion test. In Experiment 2, however, when participants were encouraged to remember negative primes at fragment completion, relief from fixation was observed. Repeated suppression may nullify fixation effects, and promote creative thinking, particularly when fixation is caused by conscious recollection of counterproductive information.

  2. Is the urea cycle involved in Alzheimer's disease?

    PubMed

    Hansmannel, Franck; Sillaire, Adeline; Kamboh, M Ilyas; Lendon, Corinne; Pasquier, Florence; Hannequin, Didier; Laumet, Geoffroy; Mounier, Anais; Ayral, Anne-Marie; DeKosky, Steven T; Hauw, Jean-Jacques; Berr, Claudine; Mann, David; Amouyel, Philippe; Campion, Dominique; Lambert, Jean-Charles

    2010-01-01

    Since previous observations indicated that the urea cycle may have a role in the Alzheimer's disease (AD) process, we set out to quantify the expression of each gene involved in the urea cycle in control and AD brains and establish whether these genes could be genetic determinants of AD. We first confirmed that all the urea cycle enzyme genes are expressed in the AD brain. The expression of arginase 2 was greater in the AD brain than in the control brain. The presence of the rare arginase 2 allele rs742869 was associated with an increase in the risk of AD in men and with an earlier age-at-onset for both genders. None of the other genes in the pathway appeared to be differentially expressed in the AD brain or act as genetic determinants of the disease.

  3. Is the urea cycle involved in Alzheimer’s disease?

    PubMed Central

    Hansmannel, Franck; Sillaire, Adeline; Kamboh, M. Ilyas; Lendon, Corinne; Pasquier, Florence; Hannequin, Didier; Laumet, Geoffroy; Mounier, Anais; Ayral, Anne-Marie; DeKosky, Steven T.; Hauw, Jean-Jacques; Berr, Claudine; Mann, David; Amouyel, Philippe; Campion, Dominique; Lambert, Jean-Charles

    2010-01-01

    Since previous observations indicated that the urea cycle may have a role in the Alzheimer’s disease (AD) process, we set out to quantify the expression of each gene involved in the urea cycle in control and AD brains and establish whether these genes could be genetic determinants of AD. We first confirmed that all the urea cycle enzyme genes are expressed in the AD brain. The expression of arginase 2 was greater in the AD brain than in the control brain. The presence of the rare arginase 2 allele rs742869 was associated with an increase in the risk of AD in men and with an earlier age at onset for both genders. None of the other genes in the pathway appeared to be differentially expressed in the AD brain or act as genetic determinants of the disease. PMID:20693631

  4. Evolution of the arginase fold and functional diversity

    PubMed Central

    Dowling, Daniel P.; Costanzo, Luigi Di; Gennadios, Heather A.; Christianson, David W.

    2009-01-01

    The large number of protein structures deposited in the Protein Data Bank allows for the identification of novel structural superfamilies based on conservation of fold in addition to conservation of amino acid sequence. Since sequence diverges more rapidly than fold in protein evolution, proteins with little or no significant sequence identity are occasionally observed to adopt similar folds, thereby reflecting unanticipated evolutionary relationships. Here, we review the unique α/β fold first observed in the manganese metalloenzyme rat liver arginase, consisting of a parallel 8 stranded β-sheet surrounded by several helices, and its evolutionary relationship with the zinc-requiring and/or iron-requiring histone deacetylases and acetylpolyamine amidohydrolases. Structural comparisons reveal key features of the core α/β fold that contribute to the divergent metal ion specificity and stoichiometry required for the chemical and biological functions of these enzymes. PMID:18360740

  5. Arginine and Polyamines Fate in Leishmania Infection

    PubMed Central

    Muxel, Sandra M.; Aoki, Juliana I.; Fernandes, Juliane C. R.; Laranjeira-Silva, Maria F.; Zampieri, Ricardo A.; Acuña, Stephanie M.; Müller, Karl E.; Vanderlinde, Rubia H.; Floeter-Winter, Lucile M.

    2018-01-01

    Leishmania is a protozoan parasite that alternates its life cycle between the sand fly and the mammalian host macrophages, involving several environmental changes. The parasite responds to these changes by promoting a rapid metabolic adaptation through cellular signaling modifications that lead to transcriptional and post-transcriptional gene expression regulation and morphological modifications. Molecular approaches such as gene expression regulation, next-generation sequencing (NGS), microRNA (miRNA) expression profiling, in cell Western blot analyses and enzymatic activity profiling, have been used to characterize the infection of murine BALB/c and C57BL/6 macrophages, as well as the human monocytic cell-lineage THP-1, with Leishmania amazonensis wild type (La-WT) or arginase knockout (La-arg-). These models are being used to elucidate physiological roles of arginine and polyamines pathways and the importance of arginase for the establishment of the infection. In this review, we will describe the main aspects of Leishmania-host interaction, focusing on the arginine and polyamines pathways and pointing to possible targets to be used for prognosis and/or in the control of the infection. The parasite enzymes, arginase and nitric oxide synthase-like, have essential roles in the parasite survival and in the maintenance of infection. On the other hand, in mammalian macrophages, defense mechanisms are activated inducing alterations in the mRNA, miRNA and enzymatic profiles that lead to the control of infection. Furthermore, the genetic background of both parasite and host are also important to define the fate of infection. PMID:29379478

  6. Novel Route for Agmatine Catabolism in Aspergillus niger Involves 4-Guanidinobutyrase

    PubMed Central

    Kumar, Sunil; Saragadam, Tejaswani

    2015-01-01

    Agmatine, a significant polyamine in bacteria and plants, mostly arises from the decarboxylation of arginine. The functional importance of agmatine in fungi is poorly understood. The metabolism of agmatine and related guanidinium group-containing compounds in Aspergillus niger was explored through growth, metabolite, and enzyme studies. The fungus was able to metabolize and grow on l-arginine, agmatine, or 4-guanidinobutyrate as the sole nitrogen source. Whereas arginase defined the only route for arginine catabolism, biochemical and bioinformatics approaches suggested the absence of arginine decarboxylase in A. niger. Efficient utilization by the parent strain and also by its arginase knockout implied an arginase-independent catabolic route for agmatine. Urea and 4-guanidinobutyrate were detected in the spent medium during growth on agmatine. The agmatine-grown A. niger mycelia contained significant levels of amine oxidase, 4-guanidinobutyraldehyde dehydrogenase, 4-guanidinobutyrase (GBase), and succinic semialdehyde dehydrogenase, but no agmatinase activity was detected. Taken together, the results support a novel route for agmatine utilization in A. niger. The catabolism of agmatine by way of 4-guanidinobutyrate to 4-aminobutyrate into the Krebs cycle is the first report of such a pathway in any organism. A. niger GBase peptide fragments were identified by tandem mass spectrometry analysis. The corresponding open reading frame from the A. niger NCIM 565 genome was located and cloned. Subsequent expression of GBase in both Escherichia coli and A. niger along with its disruption in A. niger functionally defined the GBase locus (gbu) in the A. niger genome. PMID:26048930

  7. Endothelial Nitric Oxide Pathways in the Pathophysiology of Dengue: A Prospective Observational Study.

    PubMed

    Yacoub, Sophie; Lam, Phung Khanh; Huynh, Trieu Trung; Nguyen Ho, Hong Hanh; Dong Thi, Hoai Tam; Van, Nguyen Thu; Lien, Le Thi; Ha, Quyen Nguyen Than; Le, Duyen Huynh Thi; Mongkolspaya, Juthathip; Culshaw, Abigail; Yeo, Tsin Wen; Wertheim, Heiman; Simmons, Cameron; Screaton, Gavin; Wills, Bridget

    2017-10-16

    Dengue can cause increased vascular permeability that may lead to hypovolemic shock. Endothelial dysfunction may underlie this; however, the association of endothelial nitric oxide (NO) pathways with disease severity is unknown. We performed a prospective observational study in 2 Vietnamese hospitals, assessing patients presenting early (<72 hours of fever) and patients hospitalized with warning signs or severe dengue. The reactive hyperemic index (RHI), which measures endothelium-dependent vasodilation and is a surrogate marker of endothelial function and NO bioavailability, was evaluated using peripheral artery tonometry (EndoPAT), and plasma levels of l-arginine, arginase-1, and asymmetric dimethylarginine were measured at serial time-points. The main outcome of interest was plasma leakage severity. Three hundred fourteen patients were enrolled; median age of the participants was 21(interquartile range, 13-30) years. No difference was found in the endothelial parameters between dengue and other febrile illness. Considering dengue patients, the RHI was significantly lower for patients with severe plasma leakage compared to those with no leakage (1.46 vs 2.00; P < .001), over acute time-points, apparent already in the early febrile phase (1.29 vs 1.75; P = .012). RHI correlated negatively with arginase-1 and positively with l-arginine (P = .001). Endothelial dysfunction/NO bioavailability is associated with worse plasma leakage, occurs early in dengue illness and correlates with hypoargininemia and high arginase-1 levels. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  8. Endothelial Nitric Oxide Pathways in the Pathophysiology of Dengue: A Prospective Observational Study

    PubMed Central

    Yacoub, Sophie; Lam, Phung Khanh; Huynh, Trieu Trung; Nguyen Ho, Hong Hanh; Dong Thi, Hoai Tam; Van, Nguyen Thu; Lien, Le Thi; Ha, Quyen Nguyen Than; Le, Duyen Huynh Thi; Mongkolspaya, Juthathip; Culshaw, Abigail; Yeo, Tsin Wen; Wertheim, Heiman; Simmons, Cameron; Screaton, Gavin; Wills, Bridget

    2017-01-01

    Abstract Background Dengue can cause increased vascular permeability that may lead to hypovolemic shock. Endothelial dysfunction may underlie this; however, the association of endothelial nitric oxide (NO) pathways with disease severity is unknown. Methods We performed a prospective observational study in 2 Vietnamese hospitals, assessing patients presenting early (<72 hours of fever) and patients hospitalized with warning signs or severe dengue. The reactive hyperemic index (RHI), which measures endothelium-dependent vasodilation and is a surrogate marker of endothelial function and NO bioavailability, was evaluated using peripheral artery tonometry (EndoPAT), and plasma levels of l-arginine, arginase-1, and asymmetric dimethylarginine were measured at serial time-points. The main outcome of interest was plasma leakage severity. Results Three hundred fourteen patients were enrolled; median age of the participants was 21(interquartile range, 13–30) years. No difference was found in the endothelial parameters between dengue and other febrile illness. Considering dengue patients, the RHI was significantly lower for patients with severe plasma leakage compared to those with no leakage (1.46 vs 2.00; P < .001), over acute time-points, apparent already in the early febrile phase (1.29 vs 1.75; P = .012). RHI correlated negatively with arginase-1 and positively with l-arginine (P = .001). Conclusions Endothelial dysfunction/NO bioavailability is associated with worse plasma leakage, occurs early in dengue illness and correlates with hypoargininemia and high arginase-1 levels. PMID:28673038

  9. Arginine reduces Cryptosporidium parvum infection in undernourished suckling mice involving both nitric oxide synthase and arginase

    PubMed Central

    Castro, Ibraim C.; Oliveira, Bruna B.; Slowikowski, Jacek J.; Coutinho, Bruna P.; Siqueira, Francisco Júlio W.S.; Costa, Lourrany B.; Sevilleja, Jesus Emmanuel; Almeida, Camila A.; Lima, Aldo A.M.; Warren, Cirle A.; Oriá, Reinaldo B.; Guerrant, Richard L.

    2011-01-01

    Objective This study investigated the role of L-arginine supplementation to undernourished and Cryptosporidium parvum-infected suckling mice. Methods The following regimens were initiated on the 4th day of life and given subcutaneously daily: either 200mM of L-arginine or PBS for the C. parvum-infected controls. L-arginine-treated mice were grouped to receive either 20mM of NG-nitroarginine-methyl-ester (L-NAME) or PBS. Infected mice received orally 106 excysted-C. parvum oocysts on day 6 and were euthanized on day 14th at the infection peak. Results L-arginine improved weight gain compared to the untreated infected controls. L-NAME profoundly impaired body weight gain as compared to all other groups. Cryptosporidiosis was associated with ileal crypt hyperplasia, villus blunting, and inflammation. L-arginine improved mucosal histology following infection. L-NAME abrogated these arginine-induced improvements. Infected control mice showed an intense arginase expression, which was even greater with L-NAME. L-arginine reduced parasite burden, an effect that was reversed by L-NAME. C. parvum infection increased urine NO3-/NO2- concentration when compared to uninfected controls, which was increased by L-arginine supplementation, an effect that was also reversed by L-NAME. Conclusion These findings show a protective role of L-arginine during C. parvum infection in undernourished mice with involvement of arginase I and nitric oxide synthase enzymatic actions. PMID:22261576

  10. High-frequency transcutaneous electrical nerve stimulation alleviates spasticity after spinal contusion by inhibiting activated microglia in rats.

    PubMed

    Hahm, Suk-Chan; Yoon, Young Wook; Kim, Junesun

    2015-05-01

    Transcutaneous electrical nerve stimulation (TENS) can be used as a physical therapy for spasticity, but the effects of TENS on spasticity and its underlying mechanisms remain unclear. The purpose of this study was to test the effects of TENS on spasticity and the role of activated microglia as underlying mechanisms of TENS treatment for spasticity in rats with a 50-mm contusive spinal cord injury (SCI). A spinal contusion was made at the T12 spinal segment in adult male Sprague-Dawley rats using the NYU impactor. Behavioral tests for motor function were conducted before and after SCI and before and after TENS application. To assess spasticity, the modified Ashworth scale (MAS) was used before and after SCI, high-frequency (HF)/low-frequency (LF) TENS application at 3 different intensities (motor threshold [MT], 50% and 90% MT) or minocycline administration. Immunohistochemistry for microglia was performed at the lumbar spinal segments. Motor recovery reached a plateau approximately 28 days after SCI. Spasticity was well developed and was sustained above the MAS grade of 3, beginning at 28 days after SCI. HF-TENS at 90% MT significantly alleviated spasticity. Motor function did not show any significant changes with LF- or HF-TENS treatment. HF-TENS significantly reduced the proportion of activated microglia observed after SCI. Minocycline, the microglia inhibitor, also significantly alleviated spasticity with the reduction of activated microglia expression. These results suggest that HF-TENS at 90% MT alleviates spasticity in rats with SCI by inhibiting activated microglia. © The Author(s) 2014.

  11. Carbon monoxide alleviates lipopolysaccharide-induced oxidative stress injury through suppressing the expression of Fis1 in NR8383 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Jia; Yu, Jian-bo, E-mail: yujianbo11@126.com; Liu, Wei

    Acute respiratory distress syndrome (ARDS) is one of the most devastating complications of sepsis lacking of effective therapy. Mitochondrial dynamics undergoing continuous fusion and fission play a crucial role in mitochondrial structure and function. Fis1, as a small protein located on the outer membrane of mitochondria, has been thought to be an important protein mediated mitochondrial fission. During ARDS, alveolar macrophages suffer from increased oxidative stress and apoptosis, and also accompanied by disrupted mitochondrial dynamics. In addition, as one of the products of heme degradation catalyzed by heme oxygenase, carbon monoxide (CO) possesses powerful protective properties in vivo or inmore » vitro models, such as anti-inflammatory, antioxidant and anti-apoptosis function. However, there is little evidence that CO alleviates oxidative stress damage through altering mitochondrial fission in alveolar macrophages. In the present study, our results showed that CO increased cell vitality, improved mitochondrial SOD activity, reduced reactive oxygen species (ROS) production and inhibited cell apoptosis in NR8383 exposed to LPS. Meanwhile, CO decreased the expression of Fis1, increased mitochondrial membrane potential and sustained elongation of mitochondria in LPS-incubated NR8383. Overall, our study underscored a critical role of CO in suppressing the expression of Fis1 and alleviating LPS- induced oxidative stress damage in alveolar macrophages. - Highlights: • LPS exposure triggered cell injury in NR8383. • CO alleviated LPS-induced oxidative stress damage in alveolar macrophages. • CO inhibited Fis1 levels and improved mitochondrial function in LPS-induced NR8383.« less

  12. Exogenously applied spermidine alleviates photosynthetic inhibition under drought stress in maize (Zea mays L.) seedlings associated with changes in endogenous polyamines and phytohormones.

    PubMed

    Li, Lijie; Gu, Wanrong; Li, Jing; Li, Congfeng; Xie, Tenglong; Qu, Danyang; Meng, Yao; Li, Caifeng; Wei, Shi

    2018-05-15

    Drought stress (DS) is a major environmental factor limiting plant growth and crop productivity worldwide. It has been established that exogenous spermidine (Spd) stimulates plant tolerance to DS. The effects of exogenous Spd on plant growth, photosynthetic performance, and chloroplast ultrastructure as well as changes in endogenous polyamines (PAs) and phytohormones were investigate in DS-resistant (Xianyu 335) and DS-sensitive (Fenghe 1) maize seedlings under well-watered and DS treatments. Exogenous Spd alleviated the stress-induced reduction in growth, photosynthetic pigment content, photosynthesis rate (P n ) and photochemical quenching (q P ) parameters, including the maximum photochemistry efficiency of photosystem II (PSII) (F v /F m ), PSII operating efficiency (ФPSII), and qP coefficient. Exogenous Spd further enhanced stress-induced elevation in non-photochemical quenching (NPQ) and the de-epoxidation state of the xanthophyll cycle (DEPS). Microscopic analysis revealed that seedlings displayed a more ordered arrangement of chloroplast ultrastructure upon Spd application during DS. Exogenous Spd increased the endogenous PA concentrations in the stressed plants. Additionally, exogenous Spd increased indoleacetic acid (IAA), zeatin riboside (ZR) and gibberellin A 3 (GA 3 ) and decreased salicylic acid (SA) and jasmonate (JA) concentrations under DS. These results indicate that exogenous Spd can alleviate the growth inhibition and damage to the structure and function of the photosynthetic apparatus caused by DS and that this alleviation may be associated with changes in endogenous PAs and phytohormones. This study contributes to advances in the knowledge of Spd-induced drought tolerance. Copyright © 2018. Published by Elsevier Masson SAS.

  13. Alleviation of Carbon-Tetrachloride-Induced Liver Injury and Fibrosis by Betaine Supplementation in Chickens

    PubMed Central

    Tsai, Meng-Tsz; Chen, Ching-Yi; Pan, Yu-Hui; Wang, Siou-Huei; Mersmann, Harry J.; Ding, Shih-Torng

    2015-01-01

    Betaine is a food component with well-reported hepatoprotection effects. However, the effects and mechanisms of betaine on liver fibrosis development are still insufficient. Because metabolic functions of chicken and human liver is similar, we established a chicken model with carbon Tetrachloride- (CCl4-) induced fibrosis for studying antifibrotic effect of betaine in vivo and in vitro. Two-week-old male chicks were supplemented with betaine (1%, w/v) in drinking water for 2 weeks prior to the initiation of CCl4 treatment (i.p.) until sacrifice. Primary chicken hepatocytes were treated with CCl4 and betaine to mimic the in vivo supplementation. The supplementation of betaine significantly alleviated liver fibrosis development along with the inhibition of lipid peroxidation, hepatic inflammation cytokine, and transforming growth factor-β1 expression levels. These inhibitive effects were also accompanied with the attenuation of hepatic stellate cell activation. Furthermore, our in vitro studies confirmed that betaine provides antioxidant capacity for attenuating the hepatocyte necrosis by CCl4. Altogether, our results highlight the antioxidant ability of betaine, which alleviates CCl4-induced fibrogenesis process along with the suppression of hepatic stellate cells activation. Since betaine is a natural compound without toxicity, we suggest betaine can be used as a potent nutritional or therapeutic factor for reducing liver fibrosis. PMID:26491462

  14. Decreasing mitochondrial fission alleviates hepatic steatosis in a murine model of nonalcoholic fatty liver disease.

    PubMed

    Galloway, Chad A; Lee, Hakjoo; Brookes, Paul S; Yoon, Yisang

    2014-09-15

    Mitochondria produce the majority of cellular ATP through oxidative phosphorylation, and their capacity to do so is influenced by many factors. Mitochondrial morphology is recently suggested as an important contributor in controlling mitochondrial bioenergetics. Mitochondria divide and fuse continuously, which is affected by environmental factors, including metabolic alterations. Underscoring its bioenergetic influence, altered mitochondrial morphology is reported in tissues of patients and in animal models of metabolic dysfunction. In this study, we found that mitochondrial fission plays a vital role in the progression of nonalcoholic fatty liver disease (NAFLD). The development of hepatic steatosis, oxidative/nitrative stress, and hepatic tissue damage, induced by a high-fat diet, were alleviated in genetically manipulated mice suppressing mitochondrial fission. The alleviation of steatosis was recapitulated in primary hepatocytes with the inhibition of mitochondrial fission. Mechanistically, our study indicates that fission inhibition enhances proton leak under conditions of free fatty acid incubation, implicating bioenergetic change through manipulating mitochondrial fission. Taken together, our results suggest a mechanistic role for mitochondrial fission in the etiology of NAFLD. The efficacy of decreasing mitochondrial fission in the suppression of NAFLD suggests that mitochondrial fission represents a novel target for therapeutic treatment of NAFLD. Copyright © 2014 the American Physiological Society.

  15. Sulfur Mediated Alleviation of Mn Toxicity in Polish Wheat Relates to Regulating Mn Allocation and Improving Antioxidant System

    PubMed Central

    Sheng, Huajin; Zeng, Jian; Liu, Yang; Wang, Xiaolu; Wang, Yi; Kang, Houyang; Fan, Xing; Sha, Lina; Zhang, Haiqin; Zhou, Yonghong

    2016-01-01

    Sulfur (S) is an essential macronutrient that has been proved to play an important role in regulating plant responses to various biotic and abiotic stresses. The present study was designed to investigate the effect of S status on polish wheat plant response to Mn toxicity. Results showed that Mn stress inhibited plant growth, disturbed photosynthesis and induced oxidative stress. In response to Mn stress, polish wheat plant activated several detoxification mechanisms to counteract Mn toxicity, including enhanced antioxidant defense system, increased Mn distribution in the cell wall and up-regulated genes involved in S assimilation. Moderate S application was found to alleviate Mn toxicity mainly by sequestering excess Mn into vacuoles, inhibiting Mn translocation from roots to shoots, stimulating activities of antioxidant enzymes and enhancing GSH production via up-regulating genes involved in S metabolism. However, application of high level S to Mn-stressed plants did not significantly alleviated Mn toxicity likely due to osmotic stress. In conclusion, moderate S application is beneficial to polish wheat plant against Mn toxicity, S exerts its effects via stimulating the antioxidant defense system and regulating the translocation and subcellular distribution of Mn, in which processes GSH plays an indispensable role. PMID:27695467

  16. Fluoxetine Prevents Oligodendrocyte Cell Death by Inhibiting Microglia Activation after Spinal Cord Injury

    PubMed Central

    Lee, Jee Y.; Kang, So R.

    2015-01-01

    Abstract Oligodendrocyte cell death and axon demyelination after spinal cord injury (SCI) are known to be important secondary injuries contributing to permanent neurological disability. Thus, blocking oligodendrocyte cell death should be considered for therapeutic intervention after SCI. Here, we demonstrated that fluoxetine, an antidepressant drug, alleviates oligodendrocyte cell death by inhibiting microglia activation after SCI. After injury at the T9 level with a Precision Systems and Instrumentation (Lexington, KY) device, fluoxetine (10 mg/kg, intraperitoneal) was administered once a day for the indicated time points. Immunostaining with CD11b (OX-42) antibody and quantification analysis showed that microglia activation was significantly inhibited by fluoxetine at 5 days after injury. Fluoxetine also significantly inhibited activation of p38 mitogen-activated protein kinase (p38-MAPK) and expression of pro-nerve growth factor (pro-NGF), which is known to mediate oligodendrocyte cell death through the p75 neurotrophin receptor after SCI. In addition, fluoxetine attenuated activation of Ras homolog gene family member A and decreased the level of phosphorylated c-Jun and, ultimately, alleviated caspase-3 activation and significantly reduced cell death of oligodendrocytes at 5 days after SCI. Further, the decrease of myelin basic protein, myelin loss, and axon loss in white matter was also significantly blocked by fluoxetine, as compared to vehicle control. These results suggest that fluoxetine inhibits oligodendrocyte cell death by inhibiting microglia activation and p38-MAPK activation, followed by pro-NGF production after SCI, and provide a potential usage of fluoxetine for a therapeutic agent after acute SCI in humans. PMID:25366938

  17. Traditional Japanese medicines inhibit compound action potentials in the frog sciatic nerve.

    PubMed

    Matsushita, Akitomo; Fujita, Tsugumi; Ohtsubo, Sena; Kumamoto, Eiichi

    2016-02-03

    Traditional Japanese (Kampo) medicines have a variety of clinical effects including pain alleviation, but evidence for a mechanism for their pain relief has not yet been elucidated fully. Considering that Kampo medicine contains many plant-derived chemicals having an ability to inhibit nerve action potential conduction, it is possible that this medicine inhibits nerve conduction. The purpose of the present study was to know how various Kampo medicines affect nerve conduction. We examined the effects of Kampo and crude medicines on compound action potentials (CAPs) recorded from the frog sciatic nerve by using the air-gap method. Daikenchuto, rikkosan, kikyoto, rikkunshito, shakuyakukanzoto and kakkonto concentration-dependently reduced the peak amplitude of the CAP. Among the Kampo medicines, daikenchuto was the most effective in inhibiting CAPs. Daikenchuto is composed of three kinds of crude medicine, Japanese pepper, processed ginger and ginseng radix. When the crude medicines were tested, Japanese pepper and processed ginger reduced CAP peak amplitudes, while ginseng radix hardly affected CAPs. Moreover, there was an interaction between the Japanese pepper and processed ginger activities in such that one medicine at low but not high concentrations increased the extent of the inhibition by the other one that was co-applied. Kampo medicines have an ability to inhibit nerve conduction. This action of daikenchuto is due to Japanese pepper and processed ginger but not ginseng radix, probably through an interaction between Japanese pepper and processed ginger in a manner dependent on their concentrations. Nerve conduction inhibition could contribute to at least a part of Kampo medicine's clinical effects such as pain alleviation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Coadministration of VDR and RXR agonists synergistically alleviates atherosclerosis through inhibition of oxidative stress: An in vivo and in vitro study.

    PubMed

    Lin, L M; Peng, F; Liu, Y P; Chai, D J; Ning, R B; Xu, C S; Lin, J X

    2016-08-01

    Diabetes contributes to atherosclerosis partially through induction of oxidative stress. Both vitamin D receptor (VDR) and retinoid X receptor (RXR) agonists exhibit anti-atherogenic effects. We explored the effects of combination treatment with VDR and RXR agonists (represented by calcitriol and bexarotene, respectively) on atherosclerosis progression and the mechanisms involved, using a diabetes model of mice. The animals were intragastrically fed calcitriol (200 ng/kg, twice-a-week), bexarotene (10 mg/kg, once-daily) either alone or in combination for 12 weeks. VDR and RXR agonists delayed atherosclerosis progression independent of serum lipid and glucose levels, and significantly reduced the protein expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit gp91phox and nuclear factor-kappa B (NF-κB) subunit p65, as well as plasma biomarkers of oxidative stress and inflammation. Combination therapy alleviated atherosclerosis and inhibited indexes of oxidative stress and inflammation to a greater extent than either monotherapy. In the in vitro study, naturally occurring VDR ligand 1α,25-dihydroxyvitamin D3 (1,25[OH]2D3) and RXR ligand 9-cis retinoic acid (9-cis-RA), both significantly inhibited high-glucose-induced endothelial cell apoptosis. Co-administration of VDR and RXR ligands produced synergistic protection against endothelial apoptosis by antagonizing the protein kinase C /NADPH oxidase/reactive oxygen species pathway. The inhibitory effects of 9-cis-RA on oxidative stress was attenuated when VDR was downregulated by VDR siRNA; however, downregulation of RXR by RXR siRNA imposed no influence on the effects of 1,25(OH)2D3. Combination treatment with VDR and RXR agonists synergistically alleviated diabetic atherosclerosis through inhibition of oxidative stress, and the preventive effects of RXR agonist may partially depend on VDR activation. Copyright © 2016. Published by Elsevier Ireland Ltd.

  19. Anti-inflammatory, anticholinesterase and antioxidant activity of leaf extracts of twelve plants used traditionally to alleviate pain and inflammation in South Africa.

    PubMed

    Dzoyem, J P; Eloff, J N

    2015-02-03

    Oxidative stress and inflammatory conditions are among the pathological features associated with the central nervous system in Alzheimer׳s disease. Traditionally, medicinal plants have been used to alleviate inflammation, pains and also other symptoms possibly associated with Alzheimer׳s disease. Therefore, the present study was designed to determine the in vitro anti-inflammatory, antioxidant and anticholinesterase activity of twelve South African medicinal plants traditionally used to alleviate pain and inflammation. Nitric oxide (NO) production in LPS-activated RAW 264.7 macrophages and 15-lipoxygenase (LOX) inhibitory assay were used to evaluate the anti-inflammatory activity. Acetylcholinesterase inhibition was assessed by using a modification of the Ellman׳s method. Antioxidant activity, total phenolic and total flavonoids contents were determined using standard in vitro methods. The extract of Burkea africana had the highest anti-15-lipoxygenase activity with 85.92% inhibition at 100µg/mL. All the extracts tested inhibited nitric oxide (NO) production in a dose dependant manner in LPS-stimulated RAW 264.7 macrophages. However, extracts from Leucaena leucocephala, Lippia javanica inhibited the production of NO by 97% at a concentration of 25µg/mL. In addition, both Leucaena leucocephala and Englerophytum magaliesmontanum had strong activity against acetylcholinesterase with IC50 values of 118µg/mL and 160µg/mL respectively. Hight levels of phenolics and flavonoids were found in Leucaena leucocephala, Lippia javanica and Burkea africana. The correlation with antioxidant activities was not strong indicating that other metabolites may also be involved in antioxidant activity. The results obtained in this study validate the use of leaf extracts of these plants in South African traditional medicine against inflammation. Extracts of these plants species might be of value in the management of various diseases emerging from oxidative stress and related degenerative disorders. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Resveratrol alleviates diabetes-induced testicular dysfunction by inhibiting oxidative stress and c-Jun N-terminal kinase signaling in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faid, Iman; Al-Hussaini, Heba; Kilarkaje, Narayana, E-mail: knarayana@hsc.edu.kw

    Diabetes adversely affects reproductive functions in humans and animals. The present study investigated the effects of Resveratrol on diabetes-induced alterations in oxidative stress, c-Jun N-terminal kinase (JNK) signaling and apoptosis in the testis. Adult male Wistar rats (13–15 weeks; n = 6/group) were segregated into 1) normal control, 2) Resveratrol-treated (5 mg/kg; ip; given during last 3 weeks), 3) Streptozotocin-induced diabetic and, 4) Resveratrol-treated diabetic groups, and euthanized on day 42 after the confirmation of diabetes. Resveratrol did not normalize blood glucose levels in diabetic rats. Resveratrol supplementation recovered diabetes-induced decreases in reproductive organ weights, sperm count and motility, intra-testicularmore » levels of superoxide dismutase, catalase, and glutathione peroxidase and an increase in 4-hydroxynonenal activities (P < 0.05). Resveratrol also recovered diabetes-induced increases in JNK signaling pathway proteins, namely, ASK1 (apoptosis signal-regulating kinase 1), JNKs (46 and 54 kDa isoforms) and p-JNK to normal control levels (P < 0.05). Interestingly, the expression of a down-stream target of ASK1, MKK4 (mitogen-activated protein kinase kinase 4) and its phosphorylated form (p-MKK4) did not change in experimental groups. Resveratrol inhibited diabetes-induced increases in AP-1 (activator protein-1) components, c-Jun and ATF2 (activating transcription factor 2), but not their phosphorylated forms, to normal control levels (P < 0.05). Further, Resveratrol inhibited diabetes-induced increase in cleaved-caspase-3 to normal control levels. In conclusion, Resveratrol alleviates diabetes-induced apoptosis in testis by modulating oxidative stress, JNK signaling pathway and caspase-3 activities, but not by inhibiting hyperglycemia, in rats. These results suggest that Resveratrol supplementation may be a useful strategy to treat diabetes-induced testicular dysfunction. - Highlights: • Resveratrol up-regulates glutathione peroxidase and catalase levels in the testis. • Diabetes up-regulates oxidative stress and JNK pathway in the testis. • Resveratrol inhibits diabetes-induced oxidative stress and JNK pathway. • Resveratrol mitigates diabetes-induced apoptosis of testicular cells. • Resveratrol treatment alleviates diabetes-induced testicular dysfunction.« less

  1. Galectin-3 Inhibition Is Associated with Neuropathic Pain Attenuation after Peripheral Nerve Injury

    PubMed Central

    Ai, Zisheng; Zheng, Yongjun

    2016-01-01

    Neuropathic pain remains a prevalent and persistent clinical problem because it is often poorly responsive to the currently used analgesics. It is very urgent to develop novel drugs to alleviate neuropathic pain. Galectin-3 (gal3) is a multifunctional protein belonging to the carbohydrate-ligand lectin family, which is expressed by different cells. Emerging studies showed that gal3 elicits a pro-inflammatory response by recruiting and activating lymphocytes, macrophages and microglia. In the study we investigated whether gal3 inhibition could suppress neuroinflammation and alleviate neuropathic pain following peripheral nerve injury. We found that L5 spinal nerve ligation (SNL) increases the expression of gal3 in dorsal root ganglions at the mRNA and protein level. Intrathecal administration of modified citrus pectin (MCP), a gal3 inhibitor, reduces gal3 expression in dorsal root ganglions. MCP treatment also inhibits SNL-induced gal3 expression in primary rat microglia. SNL results in an increased activation of autophagy that contributes to microglial activation and subsequent inflammatory response. Intrathecal administration of MCP significantly suppresses SNL-induced autophagy activation. MCP also inhibits lipopolysaccharide (LPS)-induced autophagy in cultured microglia in vitro. MCP further decreases LPS-induced expression of proinflammatory mediators including IL-1β, TNF-α and IL-6 by regulating autophagy. Intrathecal administration of MCP results in adecreased mechanical and cold hypersensitivity following SNL. These results demonstrated that gal3 inhibition is associated with the suppression of SNL-induced inflammatory process andneurophathic pain attenuation. PMID:26872020

  2. Amoxapine Demonstrates Incomplete Inhibition of β-Glucuronidase Activity from Human Gut Microbiota.

    PubMed

    Yang, Wei; Wei, Bin; Yan, Ru

    2018-01-01

    Amoxapine has been demonstrated to be a potent inhibitor of Escherichia coli β-glucuronidase. This study aims to explore the factors causing unsatisfactory efficacy of amoxapine in alleviating CPT-11-induced gastrointestinal toxicity in mice and to predict the outcomes in humans. Amoxapine (100 µM) exhibited poor and varied inhibition on β-glucuronidase activity in gut microbiota from 10 healthy individuals and their pool (pool, 11.9%; individuals, 3.6%-54.4%) with IC 50 >100 µM and potent inhibition toward E. coli β-glucuronidase (IC 50 = 0.34 µM). p-Nitrophenol formation from p-nitrophenyl-β-D-glucuronide by pooled and individual gut microbiota fitted classical Michaelis-Menten kinetics, showing similar affinity (K m = 113-189 µM) but varied catalytic capability (V max = 53-556 nmol/h/mg). Interestingly, amoxapine showed distinct inhibitory effects (8.7%-100%) toward β-glucuronidases of 13 bacterial isolates (including four Enterococcus, three Streptococcus, two Escherichia, and two Staphylococcus strains; gus genes belonging to OTU1, 2 or 21) regardless of their genetic similarity or bacterial origin. In addition, amoxapine inhibited the growth of pooled and individual gut microbiota at a high concentration (6.3%-30.8%, 200 µM). Taken together, these findings partly explain the unsatisfactory efficacy of amoxapine in alleviating CPT-11-induced toxicity and predict a poor outcome of β-glucuronidase inhibition in humans, highlighting the necessity of using a human gut microbiota community for drug screening.

  3. 6-Shogaol, an active compound of ginger, alleviates allergic dermatitis-like skin lesions via cytokine inhibition by activating the Nrf2 pathway.

    PubMed

    Park, Gunhyuk; Oh, Dal-Seok; Lee, Mi Gi; Lee, Chang Eon; Kim, Yong-Ung

    2016-11-01

    Allergic dermatitis (AD) clinically presents with skin erythematous plaques, eruption, and elevated serum IgE, and T helper cell type 2 and 1 (Th2 and Th1) cytokine levels. 6-Shogaol [1-(4-hydroxy-methoxyphenyl)-4-decen-one], a pungent compound isolated from ginger, has shown anti-inflammatory effects, but its inhibitory effects on AD are unknown. The aim of this study was to examine whether 6-shogaol inhibits AD-like skin lesions and their underlying mechanism in vivo and in vitro. An AD-like response was induced by tumor necrosis factor-α (TNF-α)+IFN-γ in human keratinocytes or by 2,4-dinitrochlorobenzene (DNCB) in mice. In vivo, 6-shogaol inhibited the development of DNCB-induced AD-like skin lesions and scratching behavior, and showed significant reduction in Th2/1-mediated inflammatory cytokines, IgE, TNF-α, IFN-γ, thymus and activation-regulated chemokine, IL-1, 4, 12, and 13, cyclooxygenase-2, and nitric oxide synthase levels. In vitro, 6-shogaol inhibited reactive oxygen species (ROS) and mitogen-activated protein kinases (MAPKs) signaling, and increased the levels of total glutathione, heme oxygenase-1, and quinone 1 via nuclear factor erythroid 2 related factor 2 (Nrf2) activation. 6-Shogaol can alleviate AD-like skin lesions by inhibiting immune mediators via regulating the ROS/MAPKs/Nrf2 signaling pathway, and may be an effective alternative therapy for AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Brain catechol-o-methyltransferase (COMT) inhibition by tolcapone counteracts recognition memory deficits in normal and chronic phencyclidine-treated rats and in COMT-Val transgenic mice

    PubMed Central

    Detrait, E.R.; Carr, G.V.; Ferraille, S.; Weinberger, D.R.; Lamberty, Y.

    2015-01-01

    The critical involvement of dopamine in cognitive processes has been well established, suggesting therapies targeting dopamine metabolism may alleviate cognitive dysfunction. COMT is a catecholamine-degrading enzyme, the substrates of which include dopamine, epinephrine, and norepinephrine. The present work illustrates the potential therapeutic efficacy of COMT inhibition for alleviating cognitive impairment. A brain penetrant COMT inhibitor, tolcapone, was tested in normal and phencyclidine (PCP)-treated rats and COMT–Val transgenic mice. In a Novel Object Recognition (NOR) procedure, tolcapone counteracted a 24h-dependent forgetting of a familiar object and counteracted PCP-induced recognition deficits in the rats at doses ranging from 7.5 to 30 mg/kg. In contrast, entacapone, a COMT inhibitor which does not readily cross the blood-brain barrier failed to show efficacy at doses up to 30mg/kg. Tolcapone at a dose of 30 mg/kg also improved NOR performance in the transgenic mice, which showed clear recognition deficits. Complementing earlier studies, our results indicate that central inhibition of COMT positively impacts recognition memory processes and might constitute an appealing treatment for cognitive dysfunction related to neuropsychiatric disorders. PMID:26919286

  5. The flavonoid cyanidin blocks binding of the cytokine interleukin-17A to the IL-17RA subunit to alleviate inflammation in vivo

    PubMed Central

    Liu, Caini; Zhu, Liang; Fukuda, Koichi; Ouyang, Suidong; Chen, Xing; Wang, Chenhui; Zhang, Cun-jin; Martin, Bradley; Gu, Chunfang; Qin, Luke; Rachakonda, Suguna; Aronica, Mark; Qin, Jun; Li, Xiaoxia

    2017-01-01

    Cyanidin, a key flavonoid that is present in red berries and other fruits, attenuates the development of several diseases, including asthma, diabetes, atherosclerosis, and cancer, through its anti-inflammatory effects. We investigated the molecular basis of cyanidin action. Through a structure-based search for small molecules that inhibit signaling by the proinflammatory cytokine interleukin-17A (IL-17A), we found that cyanidin specifically recognizes an IL-17A binding site in the IL-17A receptor subunit (IL-17RA) and inhibits the IL-17A/IL-17RA interaction. Experiments with mice demonstrated that cyanidin inhibited IL-17A–induced skin hyperplasia, attenuated inflammation induced by IL-17–producing T helper 17 (TH17) cells (but not that induced by TH1 or TH2 cells), and alleviated airway hyperreactivity in models of steroid-resistant and severe asthma. Our findings uncover a previously uncharacterized molecular mechanism of action of cyanidin, which may inform its further development into an effective small-molecule drug for the treatment of IL-17A–dependent inflammatory diseases and cancer. PMID:28223414

  6. Multifunction of Chrysin in Parkinson's Model: Anti-Neuronal Apoptosis, Neuroprotection via Activation of MEF2D, and Inhibition of Monoamine Oxidase-B.

    PubMed

    Guo, Baojian; Zheng, Chengyou; Cai, Wei; Cheng, Jiehong; Wang, Hongyu; Li, Haitao; Sun, Yewei; Cui, Wei; Wang, Yuqiang; Han, Yifan; Lee, Simon Ming-Yuen; Zhang, Zaijun

    2016-07-06

    Chrysin, a flavonoid compound existing in several plants, is applied as a dietary supplement because of its beneficial effects on general human health and alleviation of neurological disorders. However, mechanisms underlying neuroprotection of chrysin has not been fully elucidated, and the effects of chrysin on the Parkinson's disease (PD) model in vivo have not been investigated. It is here shown that chrysin protects primary granular neurons against 1-methyl-4-phenylpyridinium ion insult via antiapoptosis by reversing the dysregulated expression of Bcl-2, Bax, and caspase 3. The mechanisms also involved activating transcriptional factor myocyte enhancer factor 2D (MEF2D) via regulation of AKT-GSK3β signaling. In this in vivo model of PD, chrysin rescued the dopaminergic neurons loss and alleviated the decrease in dopamine level induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. Moreover, chrysin markedly inhibited monoamine oxidase-B activity in vitro and in vivo. In conclusion, chrysin exerts beneficial effects to PD, possibly through multitarget mechanisms including antineuronal apoptosis, activation of the AKT-GSK3β/MEF2D pathway, and inhibition of the MAO-B activity.

  7. Opposite Associations of Plasma Homoarginine and Ornithine with Arginine in Healthy Children and Adolescents

    PubMed Central

    JaŸwińska-Kozuba, Aleksandra; Martens-Lobenhoffer, Jens; Kruszelnicka, Olga; Rycaj, Jarosław; Chyrchel, Bernadeta; Surdacki, Andrzej; Bode-Böger, Stefanie M.

    2013-01-01

    Homoarginine, a non-proteinogenic amino acid, is formed when lysine replaces ornithine in reactions catalyzed by hepatic urea cycle enzymes or lysine substitutes for glycine as a substrate of renal arginine:glycine amidinotransferase. Decreased circulating homoarginine and elevated ornithine, a downstream product of arginase, predict adverse cardiovascular outcome. Our aim was to investigate correlates of plasma homoarginine and ornithine and their relations with carotid vascular structure in 40 healthy children and adolescents aged 3–18 years without coexistent diseases or subclinical carotid atherosclerosis. Homoarginine, ornithine, arginine, asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) were measured by liquid chromatography-tandem mass spectrometry with stable isotope-labeled internal standards. Intima-media thickness (IMT) and extra-medial thickness (EMT) of common carotid arteries were estimated by B-mode ultrasound. Homoarginine correlated with arginine (r = 0.43, p = 0.005), age (r = 0.42, p = 0.007) and, weakly, with an increased arginine-to-ornithine ratio, a putative measure of lower arginase activity (r = 0.31, p = 0.048). Ornithine correlated inversely with arginine (r = −0.64, p < 0.001). IMT, EMT or their sum were unrelated to any of the biochemical parameters (p > 0.12). Thus, opposite associations of plasma homoarginine and ornithine with arginine may partially result from possible involvement of arginase, an enzyme controlling homoarginine degradation and ornithine synthesis from arginine. Age-dependency of homoarginine levels can reflect developmental changes in homoarginine metabolism. However, neither homoarginine nor ornithine appears to be associated with carotid vascular structure in healthy children and adolescents. PMID:24192823

  8. Novel Route for Agmatine Catabolism in Aspergillus niger Involves 4-Guanidinobutyrase.

    PubMed

    Kumar, Sunil; Saragadam, Tejaswani; Punekar, Narayan S

    2015-08-15

    Agmatine, a significant polyamine in bacteria and plants, mostly arises from the decarboxylation of arginine. The functional importance of agmatine in fungi is poorly understood. The metabolism of agmatine and related guanidinium group-containing compounds in Aspergillus niger was explored through growth, metabolite, and enzyme studies. The fungus was able to metabolize and grow on l-arginine, agmatine, or 4-guanidinobutyrate as the sole nitrogen source. Whereas arginase defined the only route for arginine catabolism, biochemical and bioinformatics approaches suggested the absence of arginine decarboxylase in A. niger. Efficient utilization by the parent strain and also by its arginase knockout implied an arginase-independent catabolic route for agmatine. Urea and 4-guanidinobutyrate were detected in the spent medium during growth on agmatine. The agmatine-grown A. niger mycelia contained significant levels of amine oxidase, 4-guanidinobutyraldehyde dehydrogenase, 4-guanidinobutyrase (GBase), and succinic semialdehyde dehydrogenase, but no agmatinase activity was detected. Taken together, the results support a novel route for agmatine utilization in A. niger. The catabolism of agmatine by way of 4-guanidinobutyrate to 4-aminobutyrate into the Krebs cycle is the first report of such a pathway in any organism. A. niger GBase peptide fragments were identified by tandem mass spectrometry analysis. The corresponding open reading frame from the A. niger NCIM 565 genome was located and cloned. Subsequent expression of GBase in both Escherichia coli and A. niger along with its disruption in A. niger functionally defined the GBase locus (gbu) in the A. niger genome. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. The mechanism of opiorphin-induced experimental priapism in rats involves activation of the polyamine synthetic pathway.

    PubMed

    Kanika, Nirmala Devi; Tar, Moses; Tong, Yuehong; Kuppam, Dwaraka Srinivasa Rao; Melman, Arnold; Davies, Kelvin Paul

    2009-10-01

    Intracorporal injection of plasmids encoding opiorphins into retired breeder rats can result in animals developing a priapic-like condition. Microarray analysis demonstrated that following intracorporal gene transfer of plasmids expressing opiorphins the most significantly upregulated gene in corporal tissue was the ornithine decarboxylase gene (ODC). Quantitative RT-PCR confirmed the upregulation of ODC, as well as other genes involved in polyamine synthesis, such as arginase-I and -II, polyamine oxidase, spermidine synthase, spermidine acetyltransferase (SAT), and S-adenosylmethionine decarboxylase. Western blot analysis demonstrated upregulation of arginase-I and -II, ODC, and SAT at the protein level. Levels of the polyamine putrescine were upregulated in animals treated with opiorphin-expressing plasmids compared with controls. A direct role for the upregulation of polyamine synthesis in the development of the priapic-like condition was supported by the observation that the ODC inhibitor 1,3-diaminopropane, when added to the drinking water of animals treated with plasmids expressing opiorphins, prevented experimental priapism. We also demonstrate that in sickle cell mice, another model of priapism, there is increased expression of the mouse opiorphin homologue in corporal tissue compared with the background strain at a life stage prior to evidence of priapism. At a life stage when there is onset of priapism, there is increased expression of the enzymes involved in polyamine synthesis (ODC and arginase-I and -II). Our results suggest that the upregulation of enzymes involved in the polyamine synthetic pathway may play a role in the development of experimental priapism and represent a target for the prevention of priapism.

  10. The mechanism of opiorphin-induced experimental priapism in rats involves activation of the polyamine synthetic pathway

    PubMed Central

    Kanika, Nirmala Devi; Tar, Moses; Tong, Yuehong; Kuppam, Dwaraka Srinivasa Rao; Melman, Arnold

    2009-01-01

    Intracorporal injection of plasmids encoding opiorphins into retired breeder rats can result in animals developing a priapic-like condition. Microarray analysis demonstrated that following intracorporal gene transfer of plasmids expressing opiorphins the most significantly upregulated gene in corporal tissue was the ornithine decarboxylase gene (ODC). Quantitative RT-PCR confirmed the upregulation of ODC, as well as other genes involved in polyamine synthesis, such as arginase-I and -II, polyamine oxidase, spermidine synthase, spermidine acetyltransferase (SAT), and S-adenosylmethionine decarboxylase. Western blot analysis demonstrated upregulation of arginase-I and -II, ODC, and SAT at the protein level. Levels of the polyamine putrescine were upregulated in animals treated with opiorphin-expressing plasmids compared with controls. A direct role for the upregulation of polyamine synthesis in the development of the priapic-like condition was supported by the observation that the ODC inhibitor 1,3-diaminopropane, when added to the drinking water of animals treated with plasmids expressing opiorphins, prevented experimental priapism. We also demonstrate that in sickle cell mice, another model of priapism, there is increased expression of the mouse opiorphin homologue in corporal tissue compared with the background strain at a life stage prior to evidence of priapism. At a life stage when there is onset of priapism, there is increased expression of the enzymes involved in polyamine synthesis (ODC and arginase-I and -II). Our results suggest that the upregulation of enzymes involved in the polyamine synthetic pathway may play a role in the development of experimental priapism and represent a target for the prevention of priapism. PMID:19657052

  11. A role for PPARα in the regulation of arginine metabolism and nitric oxide synthesis.

    PubMed

    Guelzim, Najoua; Mariotti, François; Martin, Pascal G P; Lasserre, Frédéric; Pineau, Thierry; Hermier, Dominique

    2011-10-01

    The pleiotropic effects of PPARα may include the regulation of amino acid metabolism. Nitric oxide (NO) is a key player in vascular homeostasis. NO synthesis may be jeopardized by a differential channeling of arginine toward urea (via arginase) versus NO (via NO synthase, NOS). This was studied in wild-type (WT) and PPARα-null (KO) mice fed diets containing either saturated fatty acids (COCO diet) or 18:3 n-3 (LIN diet). Metabolic markers of arginine metabolism were assayed in urine and plasma. mRNA levels of arginases and NOS were determined in liver. Whole-body NO synthesis and the conversion of systemic arginine into urea were assessed by using (15)N(2)-guanido-arginine and measuring urinary (15)NO(3) and [(15)N]-urea. PPARα deficiency resulted in a markedly lower whole-body NO synthesis, whereas the conversion of systemic arginine into urea remained unaffected. PPARα deficiency also increased plasma arginine and decreased citrulline concentration in plasma. These changes could not be ascribed to a direct effect on hepatic target genes, since NOS mRNA levels were unaffected, and arginase mRNA levels decreased in KO mice. Despite the low level in the diet, the nature of the fatty acids modulated some effects of PPARα deficiency, including plasma arginine and urea, which increased more in KO mice fed the LIN diet than in those fed the COCO diet. In conclusion, PPARα is largely involved in normal whole-body NO synthesis. This warrants further study on the potential of PPARα activation to maintain NO synthesis in the initiation of the metabolic syndrome.

  12. Mechanism, Kinetics and Microbiology of Inhibition Caused by Long-Chain Fatty Acids in Anaerobic Digestion of Algal Biomass

    DOE PAGES

    Ma, Jingwei; Zhao, Quan-Bao; Laurens, Lieve L.; ...

    2015-09-15

    Oleaginous microalgae contain a high level of lipids, which can be extracted and converted to biofuel. The lipid-extracted residue can then be further utilized through anaerobic digestion to produce biogas. However, long-chain fatty acids (LCFAs) have been identified as the main inhibitory factor on microbial activity of anaerobic consortium. In this study, the mechanism of LCFA inhibition on anaerobic digestion of whole and lipid-extracted algal biomass was investigated with a range of calcium concentrations against various inoculum to substrate ratios as a means to alleviate the LCFA inhibition.

  13. Mechanism, Kinetics and Microbiology of Inhibition Caused by Long-Chain Fatty Acids in Anaerobic Digestion of Algal Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Jingwei; Zhao, Quan-Bao; Laurens, Lieve L.

    Oleaginous microalgae contain a high level of lipids, which can be extracted and converted to biofuel. The lipid-extracted residue can then be further utilized through anaerobic digestion to produce biogas. However, long-chain fatty acids (LCFAs) have been identified as the main inhibitory factor on microbial activity of anaerobic consortium. In this study, the mechanism of LCFA inhibition on anaerobic digestion of whole and lipid-extracted algal biomass was investigated with a range of calcium concentrations against various inoculum to substrate ratios as a means to alleviate the LCFA inhibition.

  14. SOCS2 overexpression alleviates diabetic nephropathy in rats by inhibiting the TLR4/NF-κB pathway

    PubMed Central

    Yang, Suxia; Zhang, Junwei; Wang, Shiying; Zhao, Xinxin; Shi, Jun

    2017-01-01

    Suppressor of cytokine signaling 2 (SOCS2) was reported to be involved in the development of Diabetic Nephropathy (DN). However, its underlying mechanism remains undefined. Western blot was carried out to determine the expressions of SOCS2, Toll-like receptors 4 (TLR4) and nuclear factor kappa B (NF-κB) pathway-related proteins in DN patients, streptozotocin (STZ)-induced DN rats and high glucose (HG)-stimulated podocytes. The effects of SOCS2 overexpression on renal injury, the inflammatory cytokines production, renal pathological changes, apoptosis and the TLR4/NF-κB pathway in DN rats or HG-stimulated podocytes were investigated. TLR4 antagonist TAK-242 and NF-κB inhibitor PDTC were used to confirm the functional mechanism of SOCS2 overexpression in HG-stimulated podocytes. SOCS2 was down-regulated, while TLR4 and NF-κB were up-regulated in renal tissues of DN patients and DN rats. Ad-SOCS2 infection alleviated STZ-induced renal injury and pathological changes and inhibited STZ-induced IL-6, IL-1β and MCP-1 generation and activation of the TLR4/NF-κB pathway in DN rats. SOCS2 overexpression attenuated apoptosis, suppressed the inflammatory cytokines expression, and inactivated the TLR4/NF-κB pathway in HG-stimulated podocytes. Suppression of the TLR4/NF-κB pathway enhanced the inhibitory effect of SOCS2 overexpression on apoptosis and inflammatory cytokines expressions in HG-stimulated podocytes. SOCS2 overexpression alleviated the development of DN by inhibiting the TLR4/NF-κB pathway, contributing to developing new therapeutic strategies against DN. PMID:29207635

  15. Silencing of FKBP51 alleviates the mechanical pain threshold, inhibits DRG inflammatory factors and pain mediators through the NF-kappaB signaling pathway.

    PubMed

    Yu, Hong-Mei; Wang, Qi; Sun, Wen-Bo

    2017-09-05

    Neuropathic pain is chronic pain caused by lesions or diseases of the somatosensory system, currently available analgesics provide only temporal relief. The precise role of FK506 binding protein 51 (FKBP51) in neuropathic pain induced by chronic constriction injury (CCI) is not clear. The purpose of the present study was to investigate the effects and possible mechanisms of FKBP51 in neuropathic pain in the rat model of CCI. Our results showed that FKBP51 was obviously upregulated in a time-dependent manner in the dorsal root ganglion (DRG) of CCI rats. Additionally, silencing of FKBP51 remarkably attenuated mechanical allodynia and thermal hyperalgesia as reflected by paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) in CCI rats. Moreover, knockdown of FKBP51 reduced the production of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6), nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) expression in the DRG of CCI rats. Furthermore, we revealed that inhibition of FKBP51 greatly suppressed the activation of the NF-kappaB (NF-κB) signaling in the DRG of CCI rats. Interestingly, similar to the FKBP51 siRNA (si-FKBP51), ammonium pyrrolidinedithiocarbamate (PDTC, an inhibitor of NF-κB) also alleviated neuropathic pain and neuro-inflammation, indicating that knockdown of FKBP51 alleviated neuropathic pain development of CCI rats by inhibiting the activation of NF-κB signaling pathway. Taken together, our findings indicate that FKBP51 may serve as a novel therapeutic target for neuropathic pain. Copyright © 2017. Published by Elsevier B.V.

  16. Ciprofloxacin blocked enterohepatic circulation of diclofenac and alleviated NSAID-induced enteropathy in rats partly by inhibiting intestinal β-glucuronidase activity

    PubMed Central

    Zhong, Ze-yu; Sun, Bin-bin; Shu, Nan; Xie, Qiu-shi; Tang, Xian-ge; Ling, Zhao-li; Wang, Fan; Zhao, Kai-jing; Xu, Ping; Zhang, Mian; Li, Ying; Chen, Yang; Liu, Li; Xia, Lun-zhu; Liu, Xiao-dong

    2016-01-01

    Aim: Diclofenac is a non-steroidal anti-inflammatory drug (NSAID), which may cause serious intestinal adverse reactions (enteropathy). In this study we investigated whether co-administration of ciprofloxacin affected the pharmacokinetics of diclofenac and diclofenac-induced enteropathy in rats. Methods: The pharmacokinetics of diclofenac was assessed in rats after receiving diclofenac (10 mg/kg, ig, or 5 mg/kg, iv), with or without ciprofloxacin (20 mg/kg, ig) co-administered. After receiving 6 oral doses or 15 intravenous doses of diclofenac, the rats were sacrificed, and small intestine was removed to examine diclofenac-induced enteropathy. β-Glucuronidase activity in intestinal content, bovine liver and E coli was evaluated. Results: Following oral or intravenous administration, the pharmacokinetic profile of diclofenac displayed typical enterohepatic circulation, and co-administration of ciprofloxacin abolished the enterohepatic circulation, resulted in significant reduction in the plasma content of diclofenac. In control rats, β-glucuronidase activity in small intestinal content was region-dependent: proximal intestine

  17. Ciprofloxacin blocked enterohepatic circulation of diclofenac and alleviated NSAID-induced enteropathy in rats partly by inhibiting intestinal β-glucuronidase activity.

    PubMed

    Zhong, Ze-Yu; Sun, Bin-Bin; Shu, Nan; Xie, Qiu-Shi; Tang, Xian-Ge; Ling, Zhao-Li; Wang, Fan; Zhao, Kai-Jing; Xu, Ping; Zhang, Mian; Li, Ying; Chen, Yang; Liu, Li; Xia, Lun-Zhu; Liu, Xiao-Dong

    2016-07-01

    Diclofenac is a non-steroidal anti-inflammatory drug (NSAID), which may cause serious intestinal adverse reactions (enteropathy). In this study we investigated whether co-administration of ciprofloxacin affected the pharmacokinetics of diclofenac and diclofenac-induced enteropathy in rats. The pharmacokinetics of diclofenac was assessed in rats after receiving diclofenac (10 mg/kg, ig, or 5 mg/kg, iv), with or without ciprofloxacin (20 mg/kg, ig) co-administered. After receiving 6 oral doses or 15 intravenous doses of diclofenac, the rats were sacrificed, and small intestine was removed to examine diclofenac-induced enteropathy. β-Glucuronidase activity in intestinal content, bovine liver and E coli was evaluated. Following oral or intravenous administration, the pharmacokinetic profile of diclofenac displayed typical enterohepatic circulation, and co-administration of ciprofloxacin abolished the enterohepatic circulation, resulted in significant reduction in the plasma content of diclofenac. In control rats, β-glucuronidase activity in small intestinal content was region-dependent: proximal intestine

  18. Astragaloside Alleviates Hepatic Fibrosis Function via PAR2 Signaling Pathway in Diabetic Rats.

    PubMed

    Wang, Zhenchang; Li, Quanqiang; Xiang, Mingpeng; Zhang, Fengying; Wei, Dongyu; Wen, Zhixi; Zhou, Ying

    2017-01-01

    Astragaloside (AGS) extracted from radix astragalin (Huangqi) has been considered to be beneficial to liver diseases. In this study, we examined the role played by AGS in alleviating hepatic fibrosis function via protease-activated receptor-2 (PAR2) mechanisms. We hypothesized that AGS affects PAR2 signaling pathway thereby improving hepatic function in rats with hepatic fibrosis induced by carbon tetrachloride (CCl4). We further hypothesized that AGS attenuates impaired hepatic function evoked by CCl4 to a greater degree in diabetic animals. ELISA and Western Blot analysis were used to examine PAR2 signaling pathway in diabetic CCl4-rats and non-diabetic CCl4-rats. AGS inhibited the protein expression of PAR2 and its downstream pathway PKA and PKCɛ in CCl4-rats. Notably, the effects of AGS were greater in CCl4-rats with diabetes. AGS also significantly attenuated the CCl4-induced upregulations of pro-inflammatory cytokines, namely interleukin-1β, interleukin-6 and tumor necrosis factor-α accompanied with decreases of collagenic parameters such as hexadecenoic acid, laminin and hydroxyproline. Additionally, AGS improved the CCl4-induced exaggerations of liver index and functions including alanine aminotransferase, aspartate aminotransferase. Moreover, TGF-β1, a marker of hepatic fibrosis, was increased in CCl4-rats and AGS inhibited increases in TGF-β1 induced by CCl4. AGS alleviates hepatic fibrosis by inhibiting PAR2 signaling expression and its effects are largely enhanced in diabetic animals. Targeting one or more of these signaling molecules may present new opportunities for treatment and management of hepatic fibrosis; and results of our study are likely to shed light on strategies for application of AGS because it has potentially greater therapeutic effectiveness for hepatic fibrosis in diabetes. © 2017 The Author(s)Published by S. Karger AG, Basel.

  19. [Influence of exogenous gamma-aminobutyric acid (GABA) on GABA metabolism and amino acid contents in roots of melon seedling under hypoxia stress].

    PubMed

    Wang, Chun-Yan; Li, Jing-Rui; Xia, Qing-Ping; Wu, Xiao-Lei; Gao, Hong-Bo

    2014-07-01

    This paper investigated the influence of gamma-aminobutyric acid (GABA) on GABA metabolism and amino acid content under hypoxia stress by accurately controlling the level of dissolved oxygen in hydroponics, using the roots of melon 'Xiyu 1' seedlings as the test material. The results showed that compared with the control, the growth of roots was inhibited seriously under hypoxia stress. Meanwhile, the hypoxia-treated roots had significantly higher activities of glutamate decarboxylase (GAD), glutamate dehydrogenase (GDH), glutamate synthase (GOGAT), glutamine synthetase (GS), alanine aminotransferase (ALT), aspartate aminotransferase (AST) as well as the contents of GABA, pyruvic acid, alanine (Ala) and aspartic acid (Asp). But the contents of glutamic acid (Glu) and alpha-keto glutaric acid in roots under hypoxia stress was obviously lower than those of the control. Exogenous treatment with GABA alleviated the inhibition effect of hypoxia stress on root growth, which was accompanied by an increase in the contents of endogenous GABA, Glu, alpha-keto glutaric acid and Asp. Furthermore, under hypoxia stress, the activities of GAD, GDH, GOGAT, GS, ALT, AST as well as the contents of pyruvic acid and Ala significantly decreased in roots treated with GABA. However, adding GABA and viny-gamma-aminobutyric acid (VGB) reduced the alleviation effect of GABA on melon seedlings under hypoxia stress. The results suggested that absorption of GABA by roots could alleviate the injury of hypoxia stress to melon seedlings. This meant that GABA treatment allows the normal physiological metabolism under hypoxia by inhibiting the GAD activity through feedback and maintaining higher Glu content as well as the bal- ance of carbon and nitrogen.

  20. Haem oxygenase-1 is involved in salicylic acid-induced alleviation of oxidative stress due to cadmium stress in Medicago sativa

    PubMed Central

    Shen, Wenbiao

    2012-01-01

    This work examines the involvement of haem oxygenase-1 (HO-1) in salicylic acid (SA)-induced alleviation of oxidative stress as a result of cadmium (Cd) stress in alfalfa (Medicago sativa L.) seedling roots. CdCl2 exposure caused severe growth inhibition and Cd accumulation, which were potentiated by pre-treatment with zinc protoporphyrin (ZnPPIX), a potent HO-1 inhibitor. Pre-treatment of plants with the HO-1 inducer haemin or SA, both of which could induce MsHO1 gene expression, significantly reduced the inhibition of growth and Cd accumulation. The alleviation effects were also evidenced by a decreased content of thiobarbituric acid-reactive substances (TBARS). The antioxidant behaviour was confirmed by histochemical staining for the detection of lipid peroxidation and the loss of plasma membrane integrity. Furthermore, haemin and SA pre-treatment modulated the activities of ascorbate peroxidase (APX), superoxide dismutase (SOD), and guaiacol peroxidase (POD), or their corresponding transcripts. Significant enhancement of the ratios of reduced/oxidized homoglutathione (hGSH), ascorbic acid (ASA)/dehydroascorbate (DHA), and NAD(P)H/NAD(P)+, and expression of their metabolism genes was observed, consistent with a decreased reactive oxygen species (ROS) distribution in the root tips. These effects are specific for HO-1, since ZnPPIX blocked the above actions, and the aggravated effects triggered by SA plus ZnPPIX were differentially reversed when carbon monoxide (CO) or bilirubin (BR), two catalytic by-products of HO-1, was added. Together, the results suggest that HO-1 is involved in the SA-induced alleviation of Cd-triggered oxidative stress by re-establishing redox homeostasis. PMID:22915740

  1. Embryonic Stem Cells Promoting Macrophage Survival and Function are Crucial for Teratoma Development

    PubMed Central

    Chen, Tianxiang; Wang, Xi; Guo, Lei; Wu, Mingmei; Duan, Zhaoxia; Lv, Jing; Tai, Wenjiao; Renganathan, Hemamalini; Didier, Ruth; Li, Jinhua; Sun, Dongming; Chen, Xiaoming; He, Xijing; Fan, Jianqing; Young, Wise; Ren, Yi

    2014-01-01

    Stem cell therapies have had tremendous potential application for many diseases in recent years. However, the tumorigenic properties of stem cells restrict their potential clinical application; therefore, strategies for reducing the tumorigenic potential of stem cells must be established prior to transplantation. We have demonstrated that syngeneic transplantation of embryonic stem cells (ESCs) provokes an inflammatory response that involves the rapid recruitment of bone marrow-derived macrophages (BMDMs). ESCs are able to prevent mature macrophages from macrophage colony-stimulating factor (M-CSF) withdrawal-induced apoptosis, and thus prolong macrophage lifespan significantly by blocking various apoptotic pathways in an M-CSF-independent manner. ESCs express and secrete IL-34, which may be responsible for ESC-promoted macrophage survival. This anti-apoptotic effect of ESCs involves activation of extracellular signal-regulated kinase (ERK)1/2 and PI3K/Akt pathways and thus, inhibition of ERK1/2 and PI3K/AKT activation decreases ESC-induced macrophage survival. Functionally, ESC-treated macrophages also showed a higher level of phagocytic activity. ESCs further serve to polarize BMDMs into M2-like macrophages that exhibit most tumor-associated macrophage phenotypic and functional features. ESC-educated macrophages produce high levels of arginase-1, Tie-2, and TNF-α, which participate in angiogenesis and contribute to teratoma progression. Our study suggests that induction of M2-like macrophage activation is an important mechanism for teratoma development. Strategies targeting macrophages to inhibit teratoma development would increase the safety of ESC-based therapies, inasmuch as the depletion of macrophages completely inhibits ESC-induced angiogenesis and teratoma development. PMID:25071759

  2. Protective effect of cerium ion against ultraviolet B radiation-induced water stress in soybean seedlings.

    PubMed

    Mao, Chun Xia; Chen, Min Min; Wang, Lei; Zou, Hua; Liang, Chan Juan; Wang, Li Hong; Zhou, Qing

    2012-06-01

    Effects of cerium ion (Ce(III)) on water relations of soybean seedlings (Glycine max L.) under ultraviolet B radiation (UV-B, 280-320 nm) stress were investigated under laboratory conditions. UV-B radiation not only affected the contents of two osmolytes (proline, soluble sugar) in soybean seedlings, but also inhibited the transpiration in soybean seedlings by decreasing the stomatal density and conductance. The two effects caused the inhibition in the osmotic and metabolic absorption of water, which decreased the water content and the free water/bound water ratio. Obviously, UV-B radiation led to water stress, causing the decrease in the photosynthesis in soybean seedlings. The pretreatment with 20 mg L(-1) Ce(III) could alleviate UV-B-induced water stress by regulating the osmotic and metabolic absorption of water in soybean seedlings. The alleviated effect caused the increase in the photosynthesis and the growth of soybean seedlings. It is one of the protective effect mechanisms of Ce(III) against the UV-B radiation-induced damage to plants.

  3. Tang-Tong-Fang Confers Protection against Experimental Diabetic Peripheral Neuropathy by Reducing Inflammation

    PubMed Central

    Li, Mingdi; Huang, Da; Liu, Xiaoxing; Lin, Lan

    2015-01-01

    Tang-tong-fang (TTF) is a Chinese herbal formula that has been shown to be beneficial in diabetic peripheral neuropathy (DPN), a common complication secondary to diabetic microvascular injury. However, the underlying mechanism of protection in nerve ischemia provided by TTF is still unclear. We hypothesized that TTF alleviates DPN via inhibition of ICAM-1 expression. Therefore, we tested the effect of TTF in a previously established DPN model, in which nerve injury was induced by ischemia/reperfusion in streptozotocin-induced diabetic rats. We found that the conduction velocity and amplitude of action potentials of sciatic nerve conduction were reduced in the DPN model group but were rescued by TTF treatment. In addition, TTF treatment also attenuated the effect of DPN on other parameters including histology and ultrastructural changes, expression of ICAM-1, MPO, and TNF-α in rat sciatic nerves, and plasma sICAM-1 and MPO levels. Together, our data suggest that TTF treatment may alleviate DPN via ICAM-1 inhibition. PMID:26539228

  4. Elevated Carbon Dioxide Alleviates Aluminum Toxicity by Decreasing Cell Wall Hemicellulose in Rice (Oryza sativa)

    PubMed Central

    Zhu, Xiao Fang; Zhao, Xu Sheng; Wang, Bin; Wu, Qi; Shen, Ren Fang

    2017-01-01

    Carbon dioxide (CO2) is involved in plant growth as well as plant responses to abiotic stresses; however, it remains unclear whether CO2 is involved in the response of rice (Oryza sativa) to aluminum (Al) toxicity. In the current study, we discovered that elevated CO2 (600 μL·L−1) significantly alleviated Al-induced inhibition of root elongation that occurred in ambient CO2 (400 μL·L−1). This protective effect was accompanied by a reduced Al accumulation in root apex. Al significantly induced citrate efflux and the expression of OsALS1, but elevated CO2 had no further effect. By contrast, elevated CO2 significantly decreased Al-induced accumulation of hemicellulose, as well as its Al retention. As a result, the amount of Al fixed in the cell wall was reduced, indicating an alleviation of Al-induced damage to cell wall function. Furthermore, elevated CO2 decreased the Al-induced root nitric oxide (NO) accumulation, and the addition of the NO scavenger c-PTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) abolished this alleviation effect, indicating that NO maybe involved in the CO2-alleviated Al toxicity. Taken together, these results demonstrate that the alleviation of Al toxicity in rice by elevated CO2 is mediated by decreasing hemicellulose content and the Al fixation in the cell wall, possibly via the NO pathway. PMID:28769823

  5. Involvement of nitric oxide in the jasmonate-dependent basal defense against root-knot nematode in tomato plants.

    PubMed

    Zhou, Jie; Jia, Feifei; Shao, Shujun; Zhang, Huan; Li, Guiping; Xia, Xiaojian; Zhou, Yanhong; Yu, Jingquan; Shi, Kai

    2015-01-01

    Jasmonic acid (JA) and nitric oxide (NO) are well-characterized signaling molecules in plant defense responses. However, their roles in plant defense against root-knot nematode (RKN, Meloidogyne incognita) infection are largely unknown. In this study, we found that the transcript levels of the JA- and NO-related biosynthetic and signaling component genes were induced after RKN infection. Application of exogenous JA and sodium nitroprusside (SNP; a NO donor) significantly decreased the number of egg masses in tomato roots after RKN infection and partially alleviated RKN-induced decreases in plant fresh weight and net photosynthetic rate. These molecules also alleviated RKN-induced increases in root electrolyte leakage and membrane peroxidation. Importantly, NO scavenger partially inhibited JA-induced RKN defense. The pharmacological inhibition of JA biosynthesis significantly increased the plants' susceptibility to RKNs, which was effectively alleviated by SNP application, showing that NO may be involved in the JA-dependent RKN defense pathway. Furthermore, both JA and SNP induced increases in protease inhibitor 2 (PI2) gene expression after RKN infestation. Silencing of PI2 compromised both JA- and SNP-induced RKN defense responses, suggesting that the PI2 gene mediates JA- and NO-induced defense against RKNs. This work will be important for deepening the understanding of the mechanisms involved in basal defense against RKN attack in plants.

  6. Cumulative therapeutic effects of phytochemicals in Arnica montana flower extract alleviated collagen-induced arthritis: inhibition of both pro-inflammatory mediators and oxidative stress.

    PubMed

    Sharma, Shikha; Arif, Mohammad; Nirala, Ranjeet Kumar; Gupta, Ritu; Thakur, Sonu Chand

    2016-03-30

    The plant Arnica montana is used in folk medicine to alleviate pain, inflammation and swelling of muscles and joints associated with rheumatoid arthritis and other inflammatory conditions. The present study aimed to investigate the therapeutic effects and mechanism of action of A. montana flower methanol extract (AMME) against both inflammation and oxidative stress in a collagen-induced arthritis (CIA) rat model. Oral administration of AMME was found to reduce clinical signs and improve the histological and radiological status of the hind limb joints. AMME-treated rats had lower expression levels of nitric oxide, tumor necrosis factor-α, interleukins (IL-1β, IL-6 and IL-12) and titer of anti-type II collagen antibody compared with untreated CIA rats. Furthermore, by inhibiting these mediators, AMME also contributed towards the reversal of disturbed antioxidant levels and peroxidative damage. The alleviation of arthritis in rats was very likely due to the combined action of phenolic and flavonoid compounds, the major constituents identified by gas chromatography/mass spectrometry (GC/MS) analysis. The study also shed some light on mechanisms involved in diminution of inflammatory mediators and free radical-generating toxicants and enhancement of the antioxidant armory, thereby preventing further tissue damage, injury and synovial hyperproliferation in arthritis. © 2015 Society of Chemical Industry.

  7. Ticagrelor protects against AngII-induced endothelial dysfunction by alleviating endoplasmic reticulum stress.

    PubMed

    Wang, Xiaoyu; Han, Xuejie; Li, Minghui; Han, Yu; Zhang, Yun; Zhao, Shiqi; Li, Yue

    2018-05-16

    Ticagrelor has been reported to decrease cardiovascular mortality compared with clopidogrel. This benefit cannot be fully explained by the more efficient platelet inhibition. Many studies demonstrated that ticagrelor improved endothelial function, leaving the mechanism elusive though. The present study aims to investigate whether ticagrelor protects against endothelial dysfunction induced by angiotensinII (AngII) through alleviating endoplasmic reticulum (ER) stress. Male Sprague Dawley rats were infused with AngII or vehicle and administrated with ticagrelor or vehicle for 14 days. Reactive oxygen species (ROS) was detected. Aortas from normal mice were incubated with endoplasmic reticulum stress inducer tunicamycin with or without ticagrelor. Vasorecactivity was measured on wire myography. Rat aortic endothelial cells (RAECs) were pretreated with ticagrelor followed by AngII or tunicamycin. Endothelial nitric oxide synthase (eNOS) phosphorylation and ER stress markers were determined by western blotting. Impaired endothelial function, induction of ER stress, reduced eNOS phosphorylation and elevated ROS generation was restored by ticagrelor treatment in vivo. In addition, tunicamycin induced endothelial dysfunction was improved by ticagrelor. In vitro, the induction of ER stress and inhibited eNOS phosphorylation in REACs exposed to AngII as well as tunicamycin was reversed by co-culturing with ticagrelor. In conclusion, ticagrelor protects against AngII-induced endothelial dysfunction via alleviating ER stress. Copyright © 2017. Published by Elsevier Inc.

  8. Involvement of nitric oxide in the jasmonate-dependent basal defense against root-knot nematode in tomato plants

    PubMed Central

    Zhou, Jie; Jia, Feifei; Shao, Shujun; Zhang, Huan; Li, Guiping; Xia, Xiaojian; Zhou, Yanhong; Yu, Jingquan; Shi, Kai

    2015-01-01

    Jasmonic acid (JA) and nitric oxide (NO) are well-characterized signaling molecules in plant defense responses. However, their roles in plant defense against root-knot nematode (RKN, Meloidogyne incognita) infection are largely unknown. In this study, we found that the transcript levels of the JA- and NO-related biosynthetic and signaling component genes were induced after RKN infection. Application of exogenous JA and sodium nitroprusside (SNP; a NO donor) significantly decreased the number of egg masses in tomato roots after RKN infection and partially alleviated RKN-induced decreases in plant fresh weight and net photosynthetic rate. These molecules also alleviated RKN-induced increases in root electrolyte leakage and membrane peroxidation. Importantly, NO scavenger partially inhibited JA-induced RKN defense. The pharmacological inhibition of JA biosynthesis significantly increased the plants’ susceptibility to RKNs, which was effectively alleviated by SNP application, showing that NO may be involved in the JA-dependent RKN defense pathway. Furthermore, both JA and SNP induced increases in protease inhibitor 2 (PI2) gene expression after RKN infestation. Silencing of PI2 compromised both JA- and SNP-induced RKN defense responses, suggesting that the PI2 gene mediates JA- and NO-induced defense against RKNs. This work will be important for deepening the understanding of the mechanisms involved in basal defense against RKN attack in plants. PMID:25914698

  9. 6-Shogaol, an active compound of ginger, alleviates allergic dermatitis-like skin lesions via cytokine inhibition by activating the Nrf2 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Gunhyuk, E-mail: uranos5@kiom.re.kr

    Allergic dermatitis (AD) clinically presents with skin erythematous plaques, eruption, and elevated serum IgE, and T helper cell type 2 and 1 (Th2 and Th1) cytokine levels. 6-Shogaol [1-(4-hydroxy-methoxyphenyl)-4-decen-one], a pungent compound isolated from ginger, has shown anti-inflammatory effects, but its inhibitory effects on AD are unknown. The aim of this study was to examine whether 6-shogaol inhibits AD-like skin lesions and their underlying mechanism in vivo and in vitro. An AD-like response was induced by tumor necrosis factor-α (TNF-α) + IFN-γ in human keratinocytes or by 2,4-dinitrochlorobenzene (DNCB) in mice. In vivo, 6-shogaol inhibited the development of DNCB-induced AD-likemore » skin lesions and scratching behavior, and showed significant reduction in Th2/1-mediated inflammatory cytokines, IgE, TNF-α, IFN-γ, thymus and activation-regulated chemokine, IL-1, 4, 12, and 13, cyclooxygenase-2, and nitric oxide synthase levels. In vitro, 6-shogaol inhibited reactive oxygen species (ROS) and mitogen-activated protein kinases (MAPKs) signaling, and increased the levels of total glutathione, heme oxygenase-1, and quinone 1 via nuclear factor erythroid 2 related factor 2 (Nrf2) activation. 6-Shogaol can alleviate AD-like skin lesions by inhibiting immune mediators via regulating the ROS/MAPKs/Nrf2 signaling pathway, and may be an effective alternative therapy for AD. - Highlights: • 6-Shogaol inhibited Th2/1-mediated inflammatory mediators in vitro and in vivo. • 6-Shogaol regulated ROS/MAPKs/Nrf2 signaling pathway. • 6-Shogaol can protect against the development of AD-like skin lesions.« less

  10. CSF1R inhibition prevents radiation pulmonary fibrosis by depletion of interstitial macrophages.

    PubMed

    Meziani, Lydia; Mondini, Michele; Petit, Benoît; Boissonnas, Alexandre; Thomas de Montpreville, Vincent; Mercier, Olaf; Vozenin, Marie-Catherine; Deutsch, Eric

    2018-03-01

    Radiation-induced lung fibrosis (RIF) is a delayed side-effect of chest radiotherapy, frequently associated with macrophage infiltration.We aimed to characterise the role of pulmonary macrophages in RIF using human lung biopsies from patients receiving radiotherapy for thorax malignancies and a RIF model developed in C57BL/6 mice after 16-Gy thorax irradiation.High numbers of macrophages (both interstitial and alveolar) were detected in clinical and preclinical RIF. In the preclinical model, upregulation of T-helper (Th)2 cytokines was measured, whereas Th1 cytokines were downregulated in RIF tissue lysate. Bronchoalveolar lavage demonstrated upregulation of both types of cytokines. At steady state, tissue-infiltrating macrophages (IMs) expressed 10-fold more arginase (Arg)-1 than alveolar macrophages (AMs), and a 40-fold upregulation of Arg-1 was found in IMs isolated from RIF. IMs, but not AMs, were able to induce myofibroblast activation in vitro In addition, whereas depletion of AMs using Clodrosome didn't affect RIF score, depletion of IMs using a clinically available colony-stimulating factor receptor-1 (CSF1R) neutralising antibody was antifibrotic.These findings suggest differential contributions of alveolar versus interstitial macrophages in RIF, highlighting the fibrogenic role of IMs. The CSF1/CSF1R pathway was identified as a new therapeutic target to inhibit RIF. Copyright ©ERS 2018.

  11. Calcium/calmodulin alleviates substrate inhibition in a strawberry UDP-glucosyltransferase involved in fruit anthocyanin biosynthesis

    USDA-ARS?s Scientific Manuscript database

    UDP-glucosyltransferase (UGT) is a key enzyme during anthocyanin biosynthesis by catalyzing glucosylation of anthocyanins so as to increase their solubility and accumulation. Previously it has been shown that preharvest spray of calcium chloride enhances anthocyanin accumulation in strawberry fruit ...

  12. Altered Expression of Urea Cycle Enzymes in Amyloid-β Protein Precursor Overexpressing PC12 Cells and in Sporadic Alzheimer's Disease Brain.

    PubMed

    Jęśko, Henryk; Lukiw, Walter J; Wilkaniec, Anna; Cieślik, Magdalena; Gąssowska-Dobrowolska, Magdalena; Murawska, Emilia; Hilgier, Wojciech; Adamczyk, Agata

    2018-01-01

    Urea cycle enzymes may play important yet poorly characterized roles in Alzheimer's disease (AD). Our previous results showed that amyloid-β (Aβ) affects urea cycle enzymes in rat pheochromocytoma (PC12) cells. The aim of the present study was to investigate the changes in arginases, other urea cycle enzymes, and nitric oxide synthases (NOSs) in PC12 cells transfected with AβPP bearing the double 'Swedish' mutation (APPsw, K670M/N671L) and in postmortem sporadic AD brain hippocampus; the mutation intensifies Aβ production and strongly associates with AD neuropathology. mRNA expression was analyzed using real-time PCR in cell cultures and DNA microarrays in hippocampal CA1 area of human AD brains. Arginase activity was measured spectrophotometrically, and arginine, ornithine, and citrulline levels by high-performance liquid chromatography. Our data demonstrated that the expression and activity of arginases (Arg1 and Arg2), as well as the expression of argininosuccinate synthase (Ass) were significantly reduced in APPsw cells compared to control. However, argininosuccinate lyase (Asl) was upregulated in APPsw cells. Real-time PCR analysis revealed significant elevation of neuronal nitric oxide synthase (Nnos) mRNA in APPsw cells, without changes in the endothelial Enos, whereas inducible Inos was undetectable. The changes were found to follow closely those observed in the human hippocampal CA1 region of sporadic AD brains. The changes in enzyme expression were accompanied in APPsw cells by significantly elevated citrulline, ornithine, and arginine. Our findings demonstrate that AβPP/Aβ alters arginine metabolism and induces a shift of cellular homeostasis that may support the oxidative/nitrosative stress observed in AD.

  13. Participation of non-neuronal muscarinic receptors in the effect of carbachol with paclitaxel on human breast adenocarcinoma cells. Roles of nitric oxide synthase and arginase.

    PubMed

    Español, Alejandro Javier; Salem, Agustina; Rojo, Daniela; Sales, María Elena

    2015-11-01

    Breast cancer is the most common type of cancer in women and represents a major issue in public health. The most frequent methods to treat these tumors are surgery and/or chemotherapy. The latter can exert not only beneficial effects by reducing tumor growth and metastasis, but also toxic actions on normal tissues. Metronomic therapy involves the use of low doses of cytotoxic drugs alone or in combination to improve efficacy and to reduce adverse effects. We have previously reported that breast tumors highly express functional muscarinic acetylcholine receptors (mAChRs) that regulate tumor progression. For this reason, mAChRs could be considered as therapeutic targets in breast cancer. In this paper, we investigated the ability of a combination of the cytotoxic drug paclitaxel plus carbachol, a cholinergic agonist, at low doses, to induce death in breast tumor MCF-7 cells, via mAChR activation, and the role of nitric oxide synthase (NOS) and arginase in this effect. We observed that the combination of carbachol plus paclitaxel at subthreshold doses significantly increased cytotoxicity in tumor cells without affecting MCF-10A cells, derived from human normal mammary gland. This effect was reduced in the presence of the muscarinic antagonist atropine. The combination also increased nitric oxide production by NOS1 and NOS3 via mAChR activation, concomitantly with an up-regulation of NOS3 expression. The latter effects were accompanied by a reduction in arginase II activity. In conclusion, our work demonstrates that mAChRs expressed in breast tumor cells could be considered as candidates to become targets for metronomic therapy in cancer treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Inhibition of GSK-3β Alleviates Collagen II-Induced Rheumatoid Arthritis in Rats.

    PubMed

    Zhou, Haiyan; Liu, Jun; Zeng, Jiashun; Hu, Bailong; Fang, Xiuyi; Li, Long

    2016-03-31

    Glycogen synthase kinase-3β (GSK-3β) inhibitor is a serine/threonine kinase with an inhibitory role in glycogen synthesis, which is essential in inflammatory and immunological diseases. The purpose of our study was to determine if TDZD-8 can alleviate collagen II-induced rheumatoid arthritis in rats. Twenty collagen II-induced rheumatoid arthritis rats were treated with selective GSK-3β inhibitor. The effects of GSK-3β inhibition on collagen II-induced rheumatoid arthritis in the rats were evaluated by paw edema, histological examination of arthritic synovium, radiographic examination of knee joint, and the level of inflammation mediators such as prostaglandin E2, 5-hydroxytryptamin, and histamine. The level of cytokines such as IL-6, IL-12, IL-10, and TNF-α, was examined by Elisa. GSK-3β inhibitor significantly reduced the development of rheumatoid arthritis in rats. The levels of inflammation mediators such as prostaglandin E2, 5-hydroxytryptamin, and histamine were decreased in the TDZD-8 group. Serum levels of IL-6, IL-12, and TNF-α were significantly reduced in the TDZD-8 group compared with the RA group. Treatment with GSK-3β inhibitor suppressed inflammatory response in RA rats. These findings suggest that the inhibition of GSK-3β can be an effective treatment for RA.

  15. Boron reduces aluminum-induced growth inhibition, oxidative damage and alterations in the cell wall components in the roots of trifoliate orange.

    PubMed

    Riaz, Muhammad; Yan, Lei; Wu, Xiuwen; Hussain, Saddam; Aziz, Omar; Imran, Muhammad; Rana, Muhammad Shoaib; Jiang, Cuncang

    2018-05-30

    Aluminum (Al) toxicity is a major restriction for crops production on acidic soils. The primary symptom of aluminum toxicity is visible in the roots of plants. Recently, several studies reported the alleviation of Al toxicity by the application of Boron (B), however, the information how B alleviates Al toxicity is not well understood. Thus, we investigated the ameliorative response of B on Al-induced growth inhibition, oxidative damages, and variations in the cell wall components in trifoliate orange roots. The results indicated that plants under Al stress experienced a substantial decrement in root length and overall plant growth. The supply of B improved the root elongation by eliminating oxidative stress, membrane peroxidation, membrane leakage, and cell death produced under Al toxicity. Moreover, accumulation of Al on the cell wall and alteration in the cell wall components might be one of the causes resulting in the quick inhibition of root elongation under B-starvation circumstances by providing susceptible negative charges on pectin matrix for binding of Al. The results provide a useful understanding of the insight into mechanisms of B-induced mitigation of Al toxicity especially in the trifoliate orange that might be helpful in the production of crops on acidic soils. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Leaf cDNA-AFLP analysis reveals novel mechanisms for boron-induced alleviation of aluminum-toxicity in Citrus grandis seedlings.

    PubMed

    Wang, Liu-Qing; Yang, Lin-Tong; Guo, Peng; Zhou, Xin-Xing; Ye, Xin; Chen, En-Jun; Chen, Li-Song

    2015-10-01

    Little information is available on the molecular mechanisms of boron (B)-induced alleviation of aluminum (Al)-toxicity. 'Sour pummelo' (Citrus grandis) seedlings were irrigated for 18 weeks with nutrient solution containing different concentrations of B (2.5 or 20μM H3BO3) and Al (0 or 1.2mM AlCl3·6H2O). B alleviated Al-induced inhibition in plant growth accompanied by lower leaf Al. We used cDNA-AFLP to isolate 127 differentially expressed genes from leaves subjected to B and Al interactions. These genes were related to signal transduction, transport, cell wall modification, carbohydrate and energy metabolism, nucleic acid metabolism, amino acid and protein metabolism, lipid metabolism and stress responses. The ameliorative mechanisms of B on Al-toxicity might be related to: (a) triggering multiple signal transduction pathways; (b) improving the expression levels of genes related to transport; (c) activating genes involved in energy production; and (d) increasing amino acid accumulation and protein degradation. Also, genes involved in nucleic acid metabolism, cell wall modification and stress responses might play a role in B-induced alleviation of Al-toxicity. To conclude, our findings reveal some novel mechanisms on B-induced alleviation of Al-toxicity at the transcriptional level in C. grandis leaves. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Arginine metabolism and nutrition in growth, health and disease

    USDA-ARS?s Scientific Manuscript database

    L-Arginine (Arg) is synthesised from glutamine, glutamate, and proline via the intestinal-renal axis in humans and most other mammals (including pigs, sheep, and rats). Arg degradation occurs via multiple pathways that are initiated by arginase, nitric-oxide synthase, Arg:glycine amidinotransferase,...

  18. Arginase 2 Suppresses Renal Carcinoma Progression via Biosynthetic Cofactor Pyridoxal Phosphate Depletion and Increased Polyamine Toxicity.

    PubMed

    Ochocki, Joshua D; Khare, Sanika; Hess, Markus; Ackerman, Daniel; Qiu, Bo; Daisak, Jennie I; Worth, Andrew J; Lin, Nan; Lee, Pearl; Xie, Hong; Li, Bo; Wubbenhorst, Bradley; Maguire, Tobi G; Nathanson, Katherine L; Alwine, James C; Blair, Ian A; Nissim, Itzhak; Keith, Brian; Simon, M Celeste

    2018-05-04

    Kidney cancer, one of the ten most prevalent malignancies in the world, has exhibited increased incidence over the last decade. The most common subtype is "clear cell" renal cell carcinoma (ccRCC), which features consistent metabolic abnormalities, such as highly elevated glycogen and lipid deposition. By integrating metabolomics, genomic, and transcriptomic data, we determined that enzymes in multiple metabolic pathways are universally depleted in human ccRCC tumors, which are otherwise genetically heterogeneous. Notably, the expression of key urea cycle enzymes, including arginase 2 (ARG2) and argininosuccinate synthase 1 (ASS1), is strongly repressed in ccRCC. Reduced ARG2 activity promotes ccRCC tumor growth through at least two distinct mechanisms: conserving the critical biosynthetic cofactor pyridoxal phosphate and avoiding toxic polyamine accumulation. Pharmacological approaches to restore urea cycle enzyme expression would greatly expand treatment strategies for ccRCC patients, where current therapies only benefit a subset of those afflicted with renal cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Effect of exogenous abscisic acid on morphology, growth and nutrient uptake of rice (Oryza sativa) roots under simulated acid rain stress.

    PubMed

    Liu, Hongyue; Ren, Xiaoqian; Zhu, Jiuzheng; Wu, Xi; Liang, Chanjuan

    2018-05-31

    Application of proper ABA can improve acid tolerance of rice roots by balancing endogenous hormones and promoting nutrient uptake. Abscisic acid (ABA) has an important signaling role in enhancing plant tolerance to environmental stress. To alleviate the inhibition on plant growth and productivity caused by acid rain, it is crucial to clarify the regulating mechanism of ABA on adaptation of plants to acid rain. Here, we studied the effects of exogenously applied ABA on nutrients uptake of rice roots under simulated acid rain (SAR) stress from physiological, biochemical and molecular aspects. Compared to the single SAR treatment (pH 4.5 or 3.5), exogenous 10 μM ABA alleviated the SAR-induced inhibition of root growth by balancing endogenous hormones (abscisic acid, indole-3-acetic acid, gibberellic acid and zeatin), promoting nutrient uptake (nitrate, P, K and Mg) in rice roots, and increasing the activity of the plasma membrane H + -ATPase by up-regulating expression levels of genes (OSA2, OSA4, OSA9 and OSA10). However, exogenous 100 μM ABA exacerbated the SAR-caused inhibition of root growth by disrupting the balance of endogenous hormones, and inhibiting nutrient uptake (nitrate, P, K, Ca and Mg) through decreasing the activity of the plasma membrane H + -ATPase. These results indicate that proper concentration of exogenous ABA could enhance tolerance of rice roots to SAR stress by promoting nutrients uptake and balancing endogenous hormones.

  20. [Lactobacillus rhamnosus GG conditioned medium prevents E. coli meningitis by inhibiting nuclear factor-κB pathway].

    PubMed

    Zeng, Qing; He, Xiao-Long; Xiao, Han-Sheng; DU, Lei; Li, Yu-Jing; Chen, Le-Cheng; Tian, Hui-Wen; Huang, Sheng-He; Cao, Hong

    2017-01-20

    To investigate whether Lactobacillus rhamnosus GG conditioned medium(LGG-CM)has preventive effect against E. coli K1-induced neuropathogenicity in vitro by inhibiting nuclear factor-κB (NF-κB) signaling pathway. An in vitro blood-brain barrier (BBB) model was constructed using human brain microvascular endothelial cells (HBMECs). The effect of LGG-CM on E. coli-actived NF-κB signaling pathway was assayed using Western blotting. Invasion assay and polymorphonuclear leukocyte (PMN) transmigration assay were performed to explore whether LGG-CM could inhibit E. coli invasion and PMN transmigration across the BBB in vitro. The expressions of ZO-1 and CD44 were detected using Western blotting and immunofluorescence. The changes of trans-epithelial electric resistance (TEER) and bacterial translocation were determined to evaluate the BBB permeability. Pre-treament with LGG-CM inhibited E. coli-activated NF-κB signaling pathway in HBMECs and decreased the invasion of E. coli K1 and transmigration of PMN. Western blotting showed that LGG-CM could alleviate E. coli-induced up-regulation of CD44 and down-regulation of ZO-1 expressions in HBMECs. In addition, pre-treatment with LGG-CM alleviated E. coli K1-induced reduction of TEER and suppressed bacterial translocation across the BBB in vitro. LGG-CM can block E. coli-induced activation of NF-κB signaling pathway and thereby prevents E. coli K1-induced neuropathogenicity by decreasing E. coli K1 invasion rates and PMN transmigration.

  1. Metabolomic profiling of doxycycline treatment in chronic obstructive pulmonary disease.

    PubMed

    Singh, Brajesh; Jana, Saikat K; Ghosh, Nilanjana; Das, Soumen K; Joshi, Mamata; Bhattacharyya, Parthasarathi; Chaudhury, Koel

    2017-01-05

    Serum metabolic profiling can identify the metabolites responsible for discrimination between doxycycline treated and untreated chronic obstructive pulmonary disease (COPD) and explain the possible effect of doxycycline in improving the disease conditions. 1 H nuclear magnetic resonance (NMR)-based metabolomics was used to obtain serum metabolic profiles of 60 add-on doxycycline treated COPD patients and 40 patients receiving standard therapy. The acquired data were analyzed using multivariate principal component analysis (PCA), partial least-squares-discriminant analysis (PLS-DA), and orthogonal projection to latent structure with discriminant analysis (OPLS-DA). A clear metabolic differentiation was apparent between the pre and post doxycycline treated group. The distinguishing metabolites lactate and fatty acids were significantly down-regulated and formate, citrate, imidazole and l-arginine upregulated. Lactate and folate are further validated biochemically. Metabolic changes, such as decreased lactate level, inhibited arginase activity and lowered fatty acid level observed in COPD patients in response to add-on doxycycline treatment, reflect the anti-inflammatory action of the drug. Doxycycline as a possible therapeutic option for COPD seems promising. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers.

    PubMed

    Bronte, Vincenzo; Kasic, Tihana; Gri, Giorgia; Gallana, Keti; Borsellino, Giovanna; Marigo, Ilaria; Battistini, Luca; Iafrate, Massimo; Prayer-Galetti, Tommaso; Pagano, Francesco; Viola, Antonella

    2005-04-18

    Immunotherapy may provide valid alternative therapy for patients with hormone-refractory metastatic prostate cancer. However, if the tumor environment exerts a suppressive action on antigen-specific tumor-infiltrating lymphocytes (TIL), immunotherapy will achieve little, if any, success. In this study, we analyzed the modulation of TIL responses by the tumor environment using collagen gel matrix-supported organ cultures of human prostate carcinomas. Our results indicate that human prostatic adenocarcinomas are infiltrated by terminally differentiated cytotoxic T lymphocytes that are, however, in an unresponsive status. We demonstrate the presence of high levels of nitrotyrosines in prostatic TIL, suggesting a local production of peroxynitrites. By inhibiting the activity of arginase and nitric oxide synthase, key enzymes of L-arginine metabolism that are highly expressed in malignant but not in normal prostates, reduced tyrosine nitration and restoration of TIL responsiveness to tumor were achieved. The metabolic control exerted by the tumor on TIL function was confirmed in a transgenic mouse prostate model, which exhibits similarities with human prostate cancer. These results identify a novel and dominant mechanism by which cancers induce immunosuppression in situ and suggest novel strategies for tumor immunotherapy.

  3. Compound 13, an α1-selective small molecule activator of AMPK, inhibits Helicobacter pylori-induced oxidative stresses and gastric epithelial cell apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Hangyong; Zhu, Huanghuang; Lin, Zhou

    Half of the world's population experiences Helicobacter pylori (H. pylori) infection, which is a main cause of gastritis, duodenal and gastric ulcer, and gastric cancers. In the current study, we investigated the potential role of compound 13 (C13), a novel α1-selective small molecule activator of AMP-activated protein kinase (AMPK), against H. pylori-induced cytotoxicity in cultured gastric epithelial cells (GECs). We found that C13 induced significant AMPK activation, evidenced by phosphorylation of AMPKα1 and ACC (acetyl-CoA carboxylase), in both primary and transformed GECs. Treatment of C13 inhibited H. pylori-induced GEC apoptosis. AMPK activation was required for C13-mediated GEC protection. Inhibition ofmore » AMPK kinase activity by the AMPK inhibitor Compound C, or silencing AMPKα1 expression by targeted-shRNAs, alleviated C13-induced GEC protective activities against H. pylori. Significantly, C13 inhibited H. pylori-induced reactive oxygen species (ROS) production in GECs. C13 induced AMPK-dependent expression of anti-oxidant gene heme oxygenase (HO-1) in GECs. Zinc protoporphyrin (ZnPP) and tin protoporphyrin (SnPP), two HO-1 inhibitors, not only suppressed C13-mediated ROS scavenging activity, but also alleviated its activity in GECs against H. pylori. Together, these results indicate that C13 inhibits H. pylori-induced ROS production and GEC apoptosis through activating AMPK–HO–1 signaling. - Highlights: • We synthesized compound 13 (C13), a α1-selective small molecule AMPK activator. • C13-induced AMPK activation requires α1 subunit in gastric epithelial cells (GECs). • C13 enhances Helicobacter pylori-induced pro-survival AMPK activation to inhibit GEC apoptosis. • C13 inhibits H. pylori-induced reactive oxygen species (ROS) production in GECs. • AMPK-heme oxygenase (HO-1) activation is required for C13-mediated anti-oxidant activity.« less

  4. Traditional Chinese medicine for the treatment of primary dysmenorrhea: how do Yuanhu painkillers effectively treat dysmenorrhea?

    PubMed

    Chen, Yuetao; Cao, Yu; Xie, Yanhua; Zhang, Xiaokai; Yang, Qian; Li, Xiaoqian; Sun, Jiyuan; Qiu, Pengcheng; Cao, Wei; Wang, Siwang

    2013-09-15

    To examine the efficacy of YuanHu painkillers (YHP) as a treatment for primary dysmenorrhea and to reveal YHP's principle formula. A Wistar rat uterine contraction model was utilized in this study. Rats were given 0.698g/kg YHP, 0.07g/kg tetrahydropalmatine (THP; YHP's main component), 0.02g/kg imperatorin (IMP), or THP+IMP (0.07+0.02g/kg) as polypharmacy (PG) by gavage. H&E staining and histopathological examination of the uteri tissue samples were performed. We then detected superoxide dismutase (SOD) and malondialdehyde (MDA), nitric oxide (NO), as well as inducible nitric oxide synthase (iNOS), i-κB, nuclear factor-κB (NF-κB), and cyclooxygenase-2 (COX-2) indices. PG significantly inhibited the uterine contraction of the primary dysmenorrhea rat model (p<0.05), and was significantly different than single-agent therapy (p<0.05). Histopathological examination showed inflammation in the uteri of the control group which YHP and its main constitutes alleviated. THP significantly inhibited the contraction of isolated uteri caused by Ach, PGF2α and oxytocin in a concentration-dependent fashion. THP and IMP both significantly affected the levels of NO, activation of NF-κB, up-regulated the expression of i-κB and down-regulated the expression of both iNOS and COX-2. IMP obviously decreased the level of MDA and increased the activation of SOD (p<0.05). PG obviously improved all the parameters mentioned above (p<0.05). YHP exerted protective effects on primary dysmenorrhea in rats and remarkably alleviated the severity of experimental primary dysmenorrhea. The combined strategy proved to be more effective than either THP or IMP alone and may have synergistic effects in combination in primary dysmenorrhea. Mechanisms that might account for the beneficial effects include abating oxidative stress, inhibiting over-inflammatory reaction, and alleviating the contraction of isolated rat uteri by inhibiting the influx of extracellular Ca(2+). Broad potential for future clinical practice is foreseeable. Copyright © 2013 Elsevier GmbH. All rights reserved.

  5. Moisture absorption and retention properties, and activity in alleviating skin photodamage of collagen polypeptide from marine fish skin.

    PubMed

    Hou, Hu; Li, Bafang; Zhang, Zhaohui; Xue, Changhu; Yu, Guangli; Wang, Jingfeng; Bao, Yuming; Bu, Lin; Sun, Jiang; Peng, Zhe; Su, Shiwei

    2012-12-01

    Collagen polypeptides were prepared from cod skin. Moisture absorption and retention properties of collagen polypeptides were determined at different relative humidities. In addition, the protective effects of collagen polypeptide against UV-induced damage to mouse skin were evaluated. Collagen polypeptides had good moisture absorption and retention properties and could alleviate the damage induced by UV radiation. The action mechanisms of collagen polypeptide mainly involved enhancing immunity, reducing the loss of moisture and lipid, promoting anti-oxidative properties, inhibiting the increase of glycosaminoglycans, repairing the endogenous collagen and elastin protein fibres, and maintaining the ratio of type III to type I collagen. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. [Effect of organic materials in controlling cucumber seedling diseases].

    PubMed

    Yuan, Fei; Peng, Yu; Zhang, Chunlan; Shen, Qirong

    2004-05-01

    In this work, pot experiments with organic materials were carried out to study the alleviation of Fusarim wilt and Rhizictonia wilt of cucumber and the changes of soil microorganism. The results showed that rice straw, pig feces and wood chip could alleviate Fusarium wiltand Rhizoctonia wilt of cucumber, and the effect of rice strawwas most significant, followed by pig feces and wood chip. The amount of soil microbes was higher in organic materials treatments than in control. The total amount of actinomyces and epidhyte which can inhibit the growth of pathogen was the highest in rice straw treatment, followed by pig feces treatment. No significant change of soil microbial amount was found in wood chip treatment.

  7. Rebamipide alleviates radiation-induced colitis through improvement of goblet cell differentiation in mice.

    PubMed

    Jang, Hyosun; Park, Sunhoo; Lee, Janet; Myung, Jae Kyung; Jang, Won-Suk; Lee, Sun-Joo; Myung, Hyunwook; Lee, Changsun; Kim, Hyewon; Lee, Seung-Sook; Jin, Young-Woo; Shim, Sehwan

    2018-04-01

    Radiation-induced colitis is a common clinical problem associated with radiotherapy and accidental exposure to ionizing radiation. Goblet cells play a pivotal role in the intestinal barrier against pathogenic bacteria. Rebamipide, an anti-gastric ulcer drug, has the effects to promote goblet cell proliferation. The aim of this study was to investigate whether radiation-induced colonic injury could be alleviated by rebamipide. This study orally administered rebamipide for 6 days to mice, which were subjected to 13 Gy abdominal irradiation, to evaluate the therapeutic effects of rebamipide against radiation-induced colitis. To confirm the effects of rebamipide on irradiated colonic epithelial cells, this study used the HT29 cell line. Rebamipide clearly alleviated the acute radiation-induced colitis, as reflected by the histopathological data, and significantly increased the number of goblet cells. The drug also inhibited intestinal inflammation and protected from bacterial translocation during acute radiation-induced colitis. Furthermore, rebamipide significantly increased mucin 2 expression in both the irradiated mouse colon and human colonic epithelial cells. Additionally, rebamipide accelerated not only the recovery of defective tight junctions but also the differentiation of impaired goblet cells in an irradiated colonic epithelium, which indicates that rebamipide has beneficial effects on the colon. Rebamipide is a therapeutic candidate for radiation-induced colitis, owing to its ability to inhibit inflammation and protect the colonic epithelial barrier. © 2017 The Authors Journal of Gastroenterology and Hepatology published by Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  8. Saint John's wort, an herbal inducer of the cytochrome P4503A4 isoform, may alleviate symptoms of Willis-Ekbom's disease

    PubMed Central

    Pereira, José Carlos; Pradella-Hallinan, Márcia; Alves, Rosana Cardoso

    2013-01-01

    OBJECTIVE: Certain drug classes alleviate the symptoms of Willis-Ekbom's disease, whereas others aggravate them. The pharmacological profiles of these drugs suggest that drugs that alleviate Willis-Ekbom's disease inhibit thyroid hormone activity, whereas drugs that aggravate Willis-Ekbom's disease increase thyroid hormone activity. These different effects may be secondary to the opposing actions that drugs have on the CYP4503A4 enzyme isoform. Drugs that worsen the symptoms of the Willis-Ekbom's disease inhibit the CYP4503A4 isoform, and drugs that ameliorate the symptoms induce CYP4503A4. The aim of this study is to determine whether Saint John's wort, as an inducer of the CYP4503A4 isoform, diminishes the severity of Willis-Ekbom's disease symptoms by increasing the metabolism of thyroid hormone in treated patients. METHODS: In an open-label pilot trial, we treated 21 Willis-Ekbom's disease patients with a concentrated extract of Saint John's wort at a daily dose of 300 mg over the course of three months. RESULTS: Saint John's wort reduced the severity of Willis-Ekbom's disease symptoms in 17 of the 21 patients. CONCLUSION: Results of this trial suggest that Saint John's wort may benefit some Willis-Ekbom's disease patients. However, as this trial was not placebo-controlled, the extent to which Saint John's wort is effective as a Willis-Ekbom's disease treatment will depend on future, blinded placebo-controlled studies. PMID:23778343

  9. Pre-ischemia melatonin treatment alleviated acute neuronal injury after ischemic stroke by inhibiting endoplasmic reticulum stress-dependent autophagy via PERK and IRE1 signalings.

    PubMed

    Feng, Dayun; Wang, Bao; Wang, Lei; Abraham, Neeta; Tao, Kai; Huang, Lu; Shi, Wei; Dong, Yushu; Qu, Yan

    2017-04-01

    Melatonin has demonstrated a potential protective effect in central nervous system. Thus, it is interesting to determine whether pre-ischemia melatonin administration could protect against cerebral ischemia/reperfusion (IR)-related injury and the underlying molecular mechanisms. In this study, we revealed that IR injury significantly activated endoplasmic reticulum (ER) stress and autophagy in a middle cerebral artery occlusion mouse model. Pre-ischemia melatonin treatment was able to attenuate IR-induced ER stress and autophagy. In addition, with tandem RFP-GFP-LC3 adeno-associated virus, we demonstrated pre-ischemic melatonin significantly alleviated IR-induced autophagic flux. Furthermore, we showed that IR induced neuronal apoptosis through ER stress related signalings. Moreover, IR-induced autophagy was significantly blocked by ER stress inhibitor (4-PBA), as well as ER-related signaling inhibitors (PERK inhibitor, GSK; IRE1 inhibitor, 3,5-dibromosalicylaldehyde). Finally, we revealed that melatonin significantly alleviated cerebral infarction, brain edema, neuronal apoptosis, and neurological deficiency, which were remarkably abolished by tunicamycin (ER stress activator) and rapamycin (autophagy activator), respectively. In summary, our study provides strong evidence that pre-ischemia melatonin administration significantly protects against cerebral IR injury through inhibiting ER stress-dependent autophagy. Our findings shed light on the novel preventive and therapeutic strategy of daily administration of melatonin, especially among the population with high risk of cerebral ischemic stroke. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Effects of ferulic acid and γ-oryzanol on high-fat and high-fructose diet-induced metabolic syndrome in rats.

    PubMed

    Wang, Ou; Liu, Jia; Cheng, Qian; Guo, Xiaoxuan; Wang, Yong; Zhao, Liang; Zhou, Feng; Ji, Baoping

    2015-01-01

    The high morbidity of metabolic dysfunction diseases has heightened interest in seeking natural and safe compounds to maintain optimal health. γ-Oryzanol (OZ), the ferulic acid (FA) ester with phytosterols, mainly present in rice bran has been shown to improve markers of metabolic syndrome. This study investigates the effects of FA and OZ on alleviating high-fat and high-fructose diet (HFFD)-induced metabolic syndrome parameters. Male SD rats were fed with a regular rodent diet, HFFD, or HFFD supplemented with 0.05% FA or 0.16% OZ (equimolar concentrations) for 13 weeks. Food intake, organ indices, serum lipid profiles, glucose metabolism, insulin resistance (IR) index and cytokine levels were analyzed. The mechanisms were further investigated in oleic acid-stimulated HepG2 cells by analyzing triglyceride (TG) content and lipogenesis-related gene expressions. In the in vivo study, FA and OZ exhibited similar effects in alleviating HFFD-induced obesity, hyperlipidemia, hyperglycemia, and IR. However, only OZ treatment significantly decreased liver index and hepatic TG content, lowered serum levels of C-reactive protein and IL-6, and increased serum concentration of adiponectin. In the in vitro assay, only OZ administration significantly inhibited intracellular TG accumulation and down-regulated expression of stearoyl coenzyme-A desaturase-1, which might facilitate OZ to enhance its hepatoprotective effect. OZ is more effective than FA in inhibiting hepatic fat accumulation and inflammation. Thus, FA and OZ could be used as dietary supplements to alleviate the deleterious effects of HFFD.

  11. Insulin Protects Hepatic Lipotoxicity by Regulating ER Stress through the PI3K/Akt/p53 Involved Pathway Independently of Autophagy Inhibition.

    PubMed

    Ning, Hua; Sun, Zongxiang; Liu, Yunyun; Liu, Lei; Hao, Liuyi; Ye, Yaxin; Feng, Rennan; Li, Jie; Li, Ying; Chu, Xia; Li, Songtao; Sun, Changhao

    2016-04-19

    The detrimental role of hepatic lipotoxicity has been well-implicated in the pathogenesis of NAFLD. Previously, we reported that inhibiting autophagy aggravated saturated fatty acid (SFA)-induced hepatotoxicity. Insulin, a physiological inhibitor of autophagy, is commonly increased within NAFLD mainly caused by insulin resistance. We therefore hypothesized that insulin augments the sensitivity of hepatocyte to SFA-induced lipotoxicity. The present study was conducted via employing human and mouse hepatocytes, which were exposed to SFAs, insulin, or their combination. Unexpectedly, our results indicated that insulin protected hepatocytes against SFA-induced lipotoxicity, based on the LDH, MTT, and nuclear morphological measurements, and the detection from cleaved-Parp-1 and -caspase-3 expressions. We subsequently clarified that insulin led to a rapid and short-period inhibition of autophagy, which was gradually recovered after 1 h incubation in hepatocytes, and such extent of inhibition was insufficient to aggravate SFA-induced lipotoxicity. The mechanistic study revealed that insulin-induced alleviation of ER stress contributed to its hepatoprotective role. Pre-treating hepatocytes with insulin significantly stimulated phosphorylated-Akt and reversed SFA-induced up-regulation of p53. Chemical inhibition of p53 by pifithrin-α robustly prevented palmitate-induced cell death. The PI3K/Akt pathway blockade by its special antagonist abolished the protective role of insulin against SFA-induced lipotoxicity and p53 up-regulation. Furthermore, we observed that insulin promoted intracellular TG deposits in hepatocytes in the present of palmitate. However, blocking TG accumulation via genetically silencing DGAT-2 did not prevent insulin-protected lipotoxicity. Our study demonstrated that insulin strongly protected against SFA-induced lipotoxicity in hepatocytes mechanistically through alleviating ER stress via a PI3K/Akt/p53 involved pathway but independently from autophagy.

  12. PARP-1 inhibition alleviates diabetic cardiac complications in experimental animals.

    PubMed

    Zakaria, Esraa M; El-Bassossy, Hany M; El-Maraghy, Nabila N; Ahmed, Ahmed F; Ali, Abdelmoneim A

    2016-11-15

    Cardiovascular complications are the major causes of mortality among diabetic population. Poly(ADP-ribose) polymerase-1 enzyme (PARP-1) is activated by oxidative stress leading to cellular damage. We investigated the implication of PARP-1 in diabetic cardiac complications. Type 2 diabetes was induced in rats by high fructose-high fat diet and low streptozotocin dose. PARP inhibitor 4-aminobenzamide (4-AB) was administered daily for ten weeks after diabetes induction. At the end of study, surface ECG, blood pressure and vascular reactivity were studied. PARP-1 activity, reduced glutathione (GSH) and nitrite contents were assessed in heart muscle. Fasting glucose, fructosamine, insulin, and tumor necrosis factor alpha (TNF-α) levels were measured in serum. Finally, histological examination and collagen deposition detection in rat ventricular and aortic sections were carried out. Hearts isolated from diabetic animals showed increased PARP-1 enzyme activity compared to control animals while significantly reduced by 4-AB administration. PARP-1 inhibition by 4-AB alleviated cardiac ischemia in diabetic animals as indicated by ECG changes. PARP-1 inhibition also reduced cardiac inflammation in diabetic animals as evidenced by histopathological changes. In addition, 4-AB administration improved the elevated blood pressure and the associated exaggerated vascular contractility, endothelial destruction and vascular inflammation seen in diabetic animals. Moreover, PARP-1 inhibition decreased serum levels of TNF-α and cardiac nitrite but increased cardiac GSH contents in diabetic animals. However, PARP-1 inhibition did not significantly affect the developed hyperglycemia. Our findings prove that PARP-1 enzyme plays an important role in diabetic cardiac complications through combining inflammation, oxidative stress, and fibrosis mechanisms. Copyright © 2016. Published by Elsevier B.V.

  13. The sGC activator inhibits the proliferation and migration, promotes the apoptosis of human pulmonary arterial smooth muscle cells via the up regulation of plasminogen activator inhibitor-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Shuai; Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, 8 Gongti South Rd, Beijing; Zou, Lihui

    Background: Different types of pulmonary hypertension (PH) share the same process of pulmonary vascular remodeling, the molecular mechanism of which is not entirely clarified by far. The abnormal biological behaviors of pulmonary arterial smooth muscle cells (PASMCs) play an important role in this process. Objectives: We investigated the regulation of plasminogen activator inhibitor-2 (PAI-2) by the sGC activator, and explored the effect of PAI-2 on PASMCs proliferation, apoptosis and migration. Methods: After the transfection with PAI-2 overexpression vector and specific siRNAs or treatment with BAY 41-2272 (an activator of sGC), the mRNA and protein levels of PAI-2 in cultured humanmore » PASMCs were detected, and the proliferation, apoptosis and migration of PASMCs were investigated. Results: BAY 41-2272 up regulated the endogenous PAI-2 in PASMCs, on the mRNA and protein level. In PAI-2 overexpression group, the proliferation and migration of PASMCs were inhibited significantly, and the apoptosis of PASMCs was increased. In contrast, PAI-2 knockdown with siRNA increased PASMCs proliferation and migration, inhibited the apoptosis. Conclusions: PAI-2 overexpression inhibits the proliferation and migration and promotes the apoptosis of human PASMCs. Therefore, sGC activator might alleviate or reverse vascular remodeling in PH through the up-regulation of PAI-2. - Highlights: • sGC activator BAY41-2272 up regulated PAI-2 in PASMCs, on the mRNA and protein level. • PAI-2 overexpression inhibits the proliferation and migration of human PASMCs. • PAI-2 overexpression promotes the apoptosis of human PASMCs. • sGC activator might alleviate the vascular remodeling in pulmonary hypertension.« less

  14. Electroacupuncture alleviates affective pain in an inflammatory pain rat model

    PubMed Central

    Zhang, Yu; Meng, Xianze; Li, Aihui; Xin, Jiajia; Berman, Brian M.; Lao, Lixing; Tan, Ming; Ren, Ke; Zhang, Rui-Xin

    2011-01-01

    Pain has both sensory-discriminative and emotional-affective dimensions. Previous studies demonstrate that electroacupuncture (EA) alleviates the sensory dimension but do not address the affective. An inflammatory pain rat model, produced by a complete Freund adjuvant (CFA) injection into the hind paw, was combined with a conditioned place avoidance (CPA) test to determine whether EA inhibits spontaneous pain-induced affective response and, if so, to study the possibility that rostral anterior cingulate cortex (rACC) opioids underlie this effect. Male Sprague-Dawley rats (250–275g, Harlan) were used. The rats showed place aversion (i.e. affective pain) by spending less time in a pain-paired compartment after conditioning than during a preconditioning test. Systemic non-analgesic morphine (0.5 and 1.0 mg/ kg, i.p.) inhibited the affective reaction, suggesting that the affective dimension is underpinned by mechanisms different from those of the sensory dimension of pain. Morphine at 0.5 and at 1 mg/kg did not induce reward. Rats given EA treatment before pain-paired conditioning at GB 30 showed no aversion to the pain-paired compartment, indicating that EA inhibited the affective dimension. EA treatment did not produce reward or aversive effect. Intra-rACC administration of D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr amide (CTOP), a selective mu opioid receptor antagonist, but not norbinaltorphimine (nor-BNI), a selective kappa opioid receptor antagonist, blocked EA inhibition of the affective dimension. These data demonstrate that EA activates opioid receptors in the rACC to inhibit pain-induced affective responses and that EA may be an effective therapy for both the sensory-discriminative and the affective dimensions of pain. PMID:22323370

  15. Teacher Stress: What It Is, Why It's Important, How It Can Be Alleviated

    ERIC Educational Resources Information Center

    Prilleltensky, Isaac; Neff, Marilyn; Bessell, Ann

    2016-01-01

    Teacher stress can be conceptualized as an imbalance between risk and protective factors. Stress emanates from risk factors at the personal, interpersonal, and organizational levels. When risk factors exceed protective factors, teacher ability to cope with adversity is inhibited, likely resulting in stress and pernicious consequences. In this…

  16. Ablation of arginase II spares arginine and abolishes the arginine requirement for growth in male mice

    USDA-ARS?s Scientific Manuscript database

    Arginine is considered a semi-essential amino acid in many species, including humans, because under certain conditions its demand exceeds endogenous production. Arginine availability, however, is not only determined by its production, but also by its disposal. Manipulation of disposal pathways has t...

  17. Hormonal regulation of wheat growth during hydroponic culture

    NASA Technical Reports Server (NTRS)

    Wetherell, Donald

    1988-01-01

    Hormonal control of root growth has been explored as one means to alleviate the crowding of plant root systems experienced in prototype hydroponic biomass production chambers being developed by the CELSS Breadboard Project. Four plant hormones, or their chemical analogs, which have been reported to selectively inhibit root growth, were tested by adding them to the nutrient solutions on day 10 of a 25 day growth test using spring wheat in hydroponic cultures. Growth and morphological changes is both shoot and root systems were evaluated. In no case was it possible to inhibit root growth without a comparable inhibition of shoot growth. It was concluded that this approach is unlikely to prove useful for wheat.

  18. L-glutamine is a key parameter in the immunosuppression phenomenon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammami, Ines; Chen, Jingkui; Bronte, Vincenzo

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer The absence of L-Gln inhibited iNOS activity, but not ARG1 one. Black-Right-Pointing-Pointer MSC-1 cells were able to inhibit Jurkat cell growth, but not their viability. Black-Right-Pointing-Pointer Absence of L-Gln down-regulated central carbon metabolism and L-Arg recycling. Black-Right-Pointing-Pointer Absence of L-Gln deteriorated cell bioenergetic status. Black-Right-Pointing-Pointer L-Gln is crucial for iNOS-mediated immunosuppression activity. -- Abstract: Suppression of tumour-specific T-cell functions by myeloid-derived suppressor cells (MDSCs) is a dominant mechanism of tumour escape. MDSCs express two enzymes, i.e. inducible nitric oxide synthase (iNOS) and arginase (ARG1), which metabolize the semi-essential amino acid L-arginine (L-Arg) whose bioavailability is crucial for T-cellmore » proliferation and functions. Recently, we showed that glutaminolysis supports MDSC maturation process by ensuring the supply of intermediates and energy. In this work, we used an immortalized cell line derived from mouse MDSCs (MSC-1 cell line) to further investigate the role of L-glutamine (L-Gln) in the maintenance of MDSC immunosuppressive activity. Culturing MSC-1 cells in L-Gln-limited medium inhibited iNOS activity, while ARG1 was not affected. MSC-1 cells inhibited Jukat cell growth without any noticeable effect on their viability. The characterization of MSC-1 cell metabolic profile revealed that L-Gln is an important precursor of lactate production via the NADP{sup +}-dependent malic enzyme, which co-produces NADPH. Moreover, the TCA cycle activity was down-regulated in the absence of L-Gln and the cell bioenergetic status was deteriorated accordingly. This strongly suggests that iNOS activity, but not that of ARG1, is related to an enhanced central carbon metabolism and a high bioenergetic status. Taken altogether, our results suggest that the control of glutaminolysis fluxes may represent a valuable target for immunotherapy.« less

  19. Myeloid-derived suppressor cells in murine retrovirus-induced AIDS inhibit T- and B-cell responses in vitro that are used to define the immunodeficiency.

    PubMed

    Green, Kathy A; Cook, W James; Green, William R

    2013-02-01

    Myeloid-derived suppressor cells (MDSCs) have been characterized in several disease settings, especially in many tumor systems. Compared to their involvement in tumor microenvironments, however, MDSCs have been less well studied in their responses to infectious disease processes, in particular to retroviruses that induce immunodeficiency. Here, we demonstrate for the first time the development of a highly immunosuppressive MDSC population that is dependent on infection by the LP-BM5 retrovirus, which causes murine acquired immunodeficiency. These MDSCs express a cell surface marker signature (CD11b(+) Gr-1(+) Ly6C(+)) characteristic of monocyte-type MDSCs. Such MDSCs profoundly inhibit immune responsiveness by a cell dose- and substantially inducible nitric oxide synthase (iNOS)-dependent mechanism that is independent of arginase activity, PD-1-PD-L1 expression, and interleukin 10 (IL-10) production. These MDSCs display levels of immunosuppressive function in parallel with the extent of disease in LP-BM5-infected wild-type (w.t.) versus knockout mouse strains that are differentially susceptible to pathogenesis. These MDSCs suppressed not only T-cell but also B-cell responses, which are an understudied target for MDSC inhibition. The MDSC immunosuppression of B-cell responses was confirmed by the use of purified B responder cells, multiple B-cell stimuli, and independent assays measuring B-cell expansion. Retroviral load measurements indicated that the suppressive Ly6G(low/±) Ly6C(+) CD11b(+)-enriched MDSC subset was positive for LP-BM5, albeit at a significantly lower level than that of nonfractionated splenocytes from LP-BM5-infected mice. These results, including the strong direct MDSC inhibition of B-cell responsiveness, are novel for murine retrovirus-induced immunosuppression and, as this broadly suppressive function mirrors that of the LP-BM5-induced disease syndrome, support a possible pathogenic effector role for these retrovirus-induced MDSCs.

  20. Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Tian; Wang, Chenlong; Chen, Xuewei

    Dopamine (DA), a monoamine catecholamine neurotransmitter with antiangiogenic activity, stabilizes tumor vessels in colon, prostate and ovarian cancers, thus increases chemotherapeutic efficacy. Here, in the rat C6 glioma models, we investigated the vascular normalization effects of DA and its mechanisms of action. DA (25, 50 mg/kg) inhibited tumor growth, while a precursor of DA (levodopa) prolonged the survival time of rats bearing orthotopic C6 glioma. DA improved tumor perfusion, with significant effects from day 3, and a higher level at days 5 to 7. In addition, DA decreased microvessel density and hypoxia-inducible factor-1α expression in tumor tissues, while increasing themore » coverage of pericyte. Conversely, an antagonist of dopamine receptor 2 (DR2) (eticlopride) but not DR1 (butaclamol) abrogated DA-induced tumor regression and vascular normalization. Furthermore, DA improved the delivery and efficacy of temozolomide therapy. Importantly, DA increased representative M1 markers (iNOS, CXCL9, etc.), while decreasing M2 markers (CD206, arginase-1, etc.). Depletion of macrophages by clodronate or zoledronic acid attenuated the effects of DA. Notably, DA treatment induced M2-to-M1 polarization in RAW264.7 cells and mouse peritoneal macrophages, and enhanced the migration of pericyte-like cells (10T1/2), which was reversed by eticlopride or DR2-siRNA. Such changes were accompanied by the downregulation of VEGF/VEGFR2 signaling. In summary, DA induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages. Thus, targeting the tumor microvasculature by DA represents a promising strategy for human glioma therapy. - Highlights: • Dopamine induces tumor growth inhibition and vascular normalization in rat C6 glioma. • Dopamine switches macrophage phenotype from M2 to M1. • Dopamine-induced vascular normalization is mediated by macrophage polarization. • Dopamine is a promising agent targeting the microvasculature in tumor microenvironment.« less

  1. UDCA and CDCA alleviate 17α-ethinylestradiol-induced cholestasis through PKA-AMPK pathways in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaojiaoyang; Yuan, Zihang

    Estrogen-induced cholestasis, known as intrahepatic cholestasis of pregnancy (ICP), is an estrogen-related liver disease that is widely recognized as female or pregnancy-specific. Our previous findings showed that the synthetic estrogen, 17α-ethinylestradiol (EE), induced cholestatic injury through ERK1/2-LKB1-AMP-activated protein kinase (AMPK) signaling pathway and its mediated suppression of farnesoid X receptor (FXR). To investigate the role played by bile acids in EE-induced cholestasis, we evaluated the effects of chenodeoxycholic acid (CDCA), ursodeoxycholic acid (UDCA) and deoxycholic acid (DCA) on sandwich cultured rat primary hepatocytes (SCRHs) and an in vivo rat model. Our results showed that, both CDCA and UDCA significantly inducedmore » time- and concentration-dependent reduction in AMPK phosphorylation in SCRHs. Despite having different effects on FXR activation, CDCA and UDCA both inhibited EE-induced AMPK activation, accompanied with the up-regulation of FXR and its downstream bile acid transporters. However, although DCA activates FXR and induces SHP, it was unable to alleviate EE-induced FXR suppression and further aggravated EE-induced cholestasis. We further demonstrated that both CDCA and UDCA, but not DCA, activated cyclic AMP dependent protein kinase (PKA) in SCRHs and the livers of male rats (8 weeks old) liver. Furthermore, PKA antagonist, H89, blocked the AMPK inhibition by CDCA and UDCA, and pharmacological and genetic activation of PKA suppressed EE-induced AMPK activation and its downstream effects. Collectively, these results suggest that CDCA and UDCA protect against estrogen-induced cholestatic injury via PKA signaling pathway and up-regulation of EE-suppressed FXR, which suggests a potential therapeutic target for ICP. - Highlights: • AMPK is involved in cholestatic liver injury with bile acid dysregulation. • CDCA and UDCA inhibit the phosphorylation of AMPK and alleviate estrogen-induced cholestasis. • PKA activation contributes to the CDCA- and UDCA-induced protective effects. • FXR up-regulation may be critical for improvement of cholestasis.« less

  2. Geraniol alleviates diabetic cardiac complications: Effect on cardiac ischemia and oxidative stress.

    PubMed

    El-Bassossy, Hany M; Ghaleb, Hanna; Elberry, Ahmed A; Balamash, Khadijah S; Ghareib, Salah A; Azhar, Ahmad; Banjar, Zainy

    2017-04-01

    The present study was planned to assess the possible protective effect of geraniol on cardiovascular complications in an animal model with diabetes. Diabetes was induced in rats by a single streptozotocin injection. In the treated group, geraniol (150mgkg -1 day -1 ) was administered orally starting from the 15th day after induction of diabetes, and ending after 7 weeks; diabetic control rats were given vehicle for the same period. At the end of the study, cardiac contractility was assessed by using a Millar microtip catheter in anesthetised rats, and cardiac conductivity determined by a surface ECG. Serum levels of glucose, cholesterol, triglyceride and adiponectin as well as urine 8-isoprostane were determined. In addition, cardiac superoxide dismutase (SOD) and catalase activity were measured. Geraniol administration significantly alleviated the attenuated cardiac systolic function associated with diabetes as indicated by inhibiting the decrease in the rate of rise (dP/dt max ) in ventricular pressure and the increase in systolic duration observed in diabetic rats. In addition, geraniol alleviated impaired diastolic function as shown by inhibiting the decrease in the rate of fall (dP/dt min ) in ventricular pressure and increased isovolumic relaxation constant (Tau) observed in diabetic rats. ECG recordings showed that geraniol prevented any increase in QTc and T-peak-T-end intervals, and markers of LV ischemia and arrhythmogenesis, seen in diabetic animals. Geraniol suppressed the exaggerated oxidative stress as evidenced by preventing the increase in 8-isoprotane. In diabetic heart tissue, geraniol prevented the inhibition in catalase activity but did not affect the heart SOD. Geraniol partially reduced hyperglycemia, prevented the hypercholesterolemia, but did not affect the serum level of adiponectin in diabetic animals. Results obtained in this study suggest that geraniol provides a potent protective effect against cardiac dysfunction induced by diabetes. This ameliorative effect could be attributed to its suppression of oxidative stress. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Cocoa and human health.

    PubMed

    Ellam, Samantha; Williamson, Gary

    2013-01-01

    Cocoa is a dry, powdered, nonfat component product prepared from the seeds of the Theobroma cacao L. tree and is a common ingredient of many food products, particularly chocolate. Nutritionally, cocoa contains biologically active substances that may affect human health: flavonoids (epicatechin and oligomeric procyanidins), theobromine, and magnesium. Theobromine and epicatechin are absorbed efficiently in the small intestine, and the nature of their conjugates and metabolites are now known. Oligomeric procyanidins are poorly absorbed in the small intestine, but catabolites are very efficiently absorbed after microbial biotransformation in the colon. A significant number of studies, using in vitro and in vivo approaches, on the effects of cocoa and its constituent flavonoids have been conducted. Most human intervention studies have been performed on cocoa as an ingredient, whereas many in vitro studies have been performed on individual components. Approximately 70 human intervention studies have been carried out on cocoa and cocoa-containing products over the past 12 years, with a variety of endpoints. These studies indicate that the most robust biomarkers affected are endothelial function, blood pressure, and cholesterol level. Mechanistically, supporting evidence shows that epicatechin affects nitric oxide synthesis and breakdown (via inhibition of nicotinamide adenine di-nucleotide phosphate oxidase) and the substrate arginine (via inhibition of arginase), among other targets. Evidence further supports cocoa as a biologically active ingredient with potential benefits on biomarkers related to cardiovascular disease. However, the calorie and sugar content of chocolate and its contribution to the total diet should be taken into account in intervention studies.

  4. Glioma-mediated microglial activation promotes glioma proliferation and migration: roles of Na+/H+ exchanger isoform 1

    PubMed Central

    Zhu, Wen; Carney, Karen E.; Pigott, Victoria M.; Falgoust, Lindsay M.; Clark, Paul A.; Kuo, John S.; Sun, Dandan

    2016-01-01

    Microglia play important roles in extracellular matrix remodeling, tumor invasion, angiogenesis, and suppression of adaptive immunity in glioma. Na+/H+ exchanger isoform 1 (NHE1) regulates microglial activation and migration. However, little is known about the roles of NHE1 in intratumoral microglial activation and microglia–glioma interactions. Our study revealed up-regulation of NHE1 protein expression in both glioma cells and tumor-associated Iba1+ microglia in glioma xenografts and glioblastoma multiforme microarrays. Moreover, we observed positive correlation of NHE1 expression with Iba1 intensity in microglia/macrophages. Glioma cells, via conditioned medium or non-contact glioma-microglia co-cultures, concurrently upregulated microglial expression of NHE1 protein and other microglial activation markers (iNOS, arginase-1, TGF-β, IL-6, IL-10 and the matrix metalloproteinases MT1-MMP and MMP9). Interestingly, glioma-stimulated microglia reciprocally enhanced glioma proliferation and migration. Most importantly, inhibition of microglial NHE1 activity via small interfering RNA (siRNA) knockdown or the potent NHE1-specific inhibitor HOE642 significantly attenuated microglial activation and abolished microglia-stimulated glioma migration and proliferation. Taken together, our findings provide the first evidence that NHE1 function plays an important role in glioma–microglia interactions, enhancing glioma proliferation and invasion by stimulating microglial release of soluble factors. NHE1 upregulation is a novel marker of the glioma-associated microglial activation phenotype. Inhibition of NHE1 represents a novel glioma therapeutic strategy by targeting tumor-induced microglial activation. PMID:27287871

  5. Pulmonary antifibrotic mechanisms aspirin-triggered lipoxin A(4) synthetic analog.

    PubMed

    Guilherme, Rafael F; Xisto, Debora G; Kunkel, Steven L; Freire-de-Lima, Célio G; Rocco, Patricia R M; Neves, Josiane S; Fierro, Iolanda M; Canetti, Claudio; Benjamim, Claudia F

    2013-12-01

    No successful therapies are available for pulmonary fibrosis, indicating the need for new treatments. Lipoxins and their 15-epimers, aspirin-triggered lipoxins (ATL), present potent antiinflammatory and proresolution effects (Martins et al., J Immunol 2009;182:5374-5381). We show that ATLa, an ATL synthetic analog, therapeutically reversed a well-established pulmonary fibrotic process induced by bleomycin (BLM) in mice. We investigated the mechanisms involved in its effect and found that systemic treatment with ATLa 1 week after BLM instillation considerably reversed the inflammatory response, total collagen and collagen type 1 deposition, vascular endothelial growth factor, and transforming growth factor (TGF)-β expression in the lung and restored surfactant protein C expression levels. ATLa also inhibited BLM-induced apoptosis and cellular accumulation in bronchoalveolar lavage fluid and in the lung parenchyma as evaluated by light microscopy and flow cytometry (Ly6G(+), F4/80(+), CD11c(+), CD4(+), and B220(+) cells) assays. Moreover, ATLa inhibited the lung production of IL-1β, IL-17, TNF-α, and TGF-β induced by BLM-challenged mice. ATLa restored the balance of inducible nitric oxide synthase-positive and arginase-positive cells in the lungs, suggesting a prevalence of M2 versus M1 macrophages. Together, these effects improved pulmonary mechanics because ATLa treatment brought to normal levels lung resistance and elastance, which were clearly altered at 7 days after BLM challenge. Our findings support ATLa as a promising therapeutic agent to treat lung fibrosis.

  6. Pulmonary Antifibrotic Mechanisms Aspirin-Triggered Lipoxin A4 Synthetic Analog

    PubMed Central

    Guilherme, Rafael F.; Xisto, Debora G.; Kunkel, Steven L.; Freire-de-Lima, Célio G.; Rocco, Patricia R.M.; Neves, Josiane S.; Fierro, Iolanda M.; Canetti, Claudio

    2013-01-01

    No successful therapies are available for pulmonary fibrosis, indicating the need for new treatments. Lipoxins and their 15-epimers, aspirin-triggered lipoxins (ATL), present potent antiinflammatory and proresolution effects (Martins et al., J Immunol 2009;182:5374–5381). We show that ATLa, an ATL synthetic analog, therapeutically reversed a well-established pulmonary fibrotic process induced by bleomycin (BLM) in mice. We investigated the mechanisms involved in its effect and found that systemic treatment with ATLa 1 week after BLM instillation considerably reversed the inflammatory response, total collagen and collagen type 1 deposition, vascular endothelial growth factor, and transforming growth factor (TGF)-β expression in the lung and restored surfactant protein C expression levels. ATLa also inhibited BLM-induced apoptosis and cellular accumulation in bronchoalveolar lavage fluid and in the lung parenchyma as evaluated by light microscopy and flow cytometry (Ly6G+, F4/80+, CD11c+, CD4+, and B220+ cells) assays. Moreover, ATLa inhibited the lung production of IL-1β, IL-17, TNF-α, and TGF-β induced by BLM-challenged mice. ATLa restored the balance of inducible nitric oxide synthase–positive and arginase-positive cells in the lungs, suggesting a prevalence of M2 versus M1 macrophages. Together, these effects improved pulmonary mechanics because ATLa treatment brought to normal levels lung resistance and elastance, which were clearly altered at 7 days after BLM challenge. Our findings support ATLa as a promising therapeutic agent to treat lung fibrosis. PMID:23848293

  7. Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea).

    PubMed

    Iqbal, Noushina; Umar, Shahid; Khan, Nafees A

    2015-04-15

    Proline content and ethylene production have been shown to be involved in salt tolerance mechanisms in plants. To assess the role of nitrogen (N) in the protection of photosynthesis under salt stress, the effect of N (0, 5, 10, 20 mM) on proline and ethylene was studied in mustard (Brassica juncea). Sufficient N (10 mM) optimized proline production under non-saline conditions through an increase in proline-metabolizing enzymes, leading to osmotic balance and protection of photosynthesis through optimal ethylene production. Excess N (20 mM), in the absence of salt stress, inhibited photosynthesis and caused higher ethylene evolution but lower proline production compared to sufficient N. In contrast, under salt stress with an increased demand for N, excess N optimized ethylene production, which regulates the proline content resulting in recovered photosynthesis. The effect of excess N on photosynthesis under salt stress was further substantiated by the application of the ethylene biosynthesis inhibitor, 1-aminoethoxy vinylglycine (AVG), which inhibited proline production and photosynthesis. Without salt stress, AVG promoted photosynthesis in plants receiving excess N by inhibiting stress ethylene production. The results suggest that a regulatory interaction exists between ethylene, proline and N for salt tolerance. Nitrogen differentially regulates proline production and ethylene formation to alleviate the adverse effect of salinity on photosynthesis in mustard. Copyright © 2015 Elsevier GmbH. All rights reserved.

  8. Liver X receptor agonist alleviated high glucose-induced endothelial progenitor cell dysfunction via inhibition of reactive oxygen species and activation of AMP-activated protein kinase.

    PubMed

    Li, Xiaoxia; Song, Yimeng; Han, Yingying; Wang, Dawei; Zhu, Yi

    2012-08-01

    Liver X receptors (LXRs) are key regulators of cholesterol homeostasis. Synthetic LXR agonists are anti-atherogenic and anti-inflammatory. However, the effect of LXR agonists on endothelial progenitor cell (EPC) function is largely unknown. Here, we explored the effect of the LXR agonist TO901317 (TO) on EPC biology and the underlying mechanisms. Endothelial progenitor cells were cultured in mannitol or 30 mm glucose (high glucose) for 24 hours. For TO treatments, cells were pretreated with TO (10 μm) for 12 hours, then mannitol or high glucose was added for an additional 24 hours. EPCs function, reactive oxygen species (ROS) release, and phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) were analyzed. TO could restore the high glucose-impaired adhesion and migration capacity of EPCs. High glucose impaired EPC-mediated angiogenesis, and TO reversed the impairment. TO also alleviated ROS release induced by high glucose. Western blot analysis revealed that high glucose downregulated the phosphorylation of AMPK and endothelial nitric oxide synthase, which could be reversed with TO treatment. Furthermore, inhibiting AMPK activation by compound C could abolish the protective effects of TO on EPCs. TO had a protective effect on EPCs under high glucose by inhibiting ROS release and activating AMPK. © 2012 John Wiley & Sons Ltd.

  9. Nitrogen Can Alleviate the Inhibition of Photosynthesis Caused by High Temperature Stress under Both Steady-State and Flecked Irradiance.

    PubMed

    Huang, Guanjun; Zhang, Qiangqiang; Wei, Xinghai; Peng, Shaobing; Li, Yong

    2017-01-01

    Nitrogen is one of the most important elements for plants and is closely related to photosynthesis. High temperature stress significantly inhibits photosynthesis under both steady-state and flecked irradiance. However, it is not known whether nitrogen can affect the decrease in photosynthesis caused by high temperature, especially under flecked irradiance. In the present study, a pot experiment was conducted under two nitrogen (N) supplies with rice plants, and the steady-state and dynamic photosynthesis rates were measured under 28 and 40°C. High temperature significantly increased leaf hydraulic conductance ( K leaf ) under high N supply (HN) but not under low N supply (LN). The increased K leaf maintained a constant leaf water potential (Ψ leaf ) and steady-state stomatal conductance ( g s,sat ) under HN, while the Ψ leaf and g s,sat significantly decreased under high temperature in LN conditions. This resulted in a more severe decrease in steady-state photosynthesis ( A sat ) under high temperature in the LN conditions. After shifting from low to high light, high temperature significantly delayed the recovery of photosynthesis, which resulted in more carbon loss under flecked irradiance. These effects were obtained under HN to a lesser extent than under LN supply. Therefore, it is concluded that nitrogen can alleviate the inhibition of photosynthesis caused by high temperature stress under both steady-state and flecked irradiance.

  10. Effect of AMPK signal pathway on pathogenesis of abdominal aortic aneurysms

    PubMed Central

    Yang, Le; Shen, Lin; Gao, Peixian; Li, Gang; He, Yuxiang; Wang, Maohua; Zhou, Hua; Yuan, Hai; Jin, Xing; Wu, Xuejun

    2017-01-01

    Background and aims Determine the effect of AMPK activation and inhibition on the development of AAA (abdominal aortic aneurysm). Methods AAA was induced in ApoE−/− mice by Ang II (Angiotensin II)-infusion. AICAR (5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside) was used as AMPK activator and Compound C was used as AMPK inhibitor. We further investigate the effect of metformin, a widely used anti-diabetic drug which could activate AMPK signal pathway, on the pathogenesis of aneurysm. Results Phospho-AMPK level was significantly decreased in AAA tissue compared with control aortas. AICAR significantly reduced the incidence, severity and mortality of aneurysm in the Ang II-infusion model. AICAR also alleviated macrophage infiltration and neovascularity in Ang II infusion model at day 28. The expression of pro-inflammatory factors, angiogenic factors and the activity of MMPs were also alleviated by AICAR during AAA induction. On the other hand, Compound C treatment did not exert obvious protective effect. AMPK activation may inhibit the activation of nuclear factor-κB (NF-κB) and signal transducer and activator of transcription-3 (STAT-3) during AAA induction. Administration of metformin also activated AMPK signal pathway and retarded AAA progression in Ang II infusion model. Conclusions Activation of AMPK signaling pathway may inhibit the Ang II-induced AAA in mice. Metformin may be a promising approach to the treatment of AAA. PMID:29190959

  11. Role of salicylic acid in resistance to cadmium stress in plants.

    PubMed

    Liu, Zhouping; Ding, Yanfei; Wang, Feijuan; Ye, Yaoyao; Zhu, Cheng

    2016-04-01

    We review and introduce the importance of salicylic acid in plants under cadmium stress, and provide insights into potential regulatory mechanisms for alleviating cadmium toxicity. Cadmium (Cd) is a widespread and potentially toxic environmental pollutant, originating mainly from rapid industrial processes, the application of fertilizers, manures and sewage sludge, and urban activities. It is easily taken up by plants, resulting in obvious toxicity symptoms, including growth retardation, leaf chlorosis, leaf and root necrosis, altered structures and ultrastructures, inhibition of photosynthesis, and cell death. Therefore, alleviating Cd toxicity in plants is a major aim of plant research. Salicylic acid (SA) is a ubiquitous plant phenolic compound that has been used in many plant species to alleviate Cd toxicity by regulating plant growth, reducing Cd uptake and distribution in plants, protecting membrane integrity and stability, scavenging reactive oxygen species and enhancing antioxidant defense system, improving photosynthetic capacity. Furthermore, SA functions as a signaling molecule involved in the expression of several important genes. Significant amounts of research have focused on understanding SA functions and signaling in plants under Cd stress, but several questions still remain unanswered. In this article, the influence of SA on Cd-induced stress in plants and the potential regulation mechanism for alleviating Cd toxicity are reviewed.

  12. Early treatment of minocycline alleviates white matter and cognitive impairments after chronic cerebral hypoperfusion

    PubMed Central

    Ma, Jing; Zhang, Jing; Hou, Wei Wei; Wu, Xiao Hua; Liao, Ru Jia; Chen, Ying; Wang, Zhe; Zhang, Xiang Nan; Zhang, Li San; Zhou, Yu Dong; Chen, Zhong; Hu, Wei Wei

    2015-01-01

    Subcortical ischemic vascular dementia (SIVD) caused by chronic cerebral hypoperfusion develops with progressive white matter and cognitive impairments, yet no effective therapy is available. We investigated the temporal effects of minocycline on an experimental SIVD exerted by right unilateral common carotid arteries occlusion (rUCCAO). Minocycline treated at the early stage (day 0–3), but not the late stage after rUCCAO (day 4–32) alleviated the white matter and cognitive impairments, and promoted remyelination. The actions of minocycline may not involve the inhibition of microglia activation, based on the effects after the application of a microglial activation inhibitor, macrophage migration inhibitory factor, and co-treatment with lipopolysaccharides. Furthermore, minocycline treatment at the early stage promoted the proliferation of oligodendrocyte progenitor cells (OPCs) in subventricular zone, increased OPC number and alleviated apoptosis of mature oligodendrocytes in white matter. In vitro, minocycline promoted OPC proliferation and increased the percentage of OPCs in S and G2/M phases. We provided direct evidence that early treatment is critical for minocycline to alleviate white matter and cognitive impairments after chronic cerebral hypoperfusion, which may be due to its robust effects on OPC proliferation and mature oligodendrocyte loss. So, early therapeutic time window may be crucial for its application in SIVD. PMID:26174710

  13. White beans provide more bioavailable iron than red beans: studies in poultry (Gallus gallus) and an in vitro digestion/Caco-2 model

    USDA-ARS?s Scientific Manuscript database

    Iron-biofortification of crops is a strategy that alleviates iron deficiency. The common bean (Phaseolus vulgaris L.) is an attractive candidate for biofortification. However, beans are high in poly-phenols that may inhibit iron absorption. In vitro studies have shown that iron bioavailability from ...

  14. Topographical modulation of macrophage phenotype by shrink-film multi-scale wrinkles.

    PubMed

    Wang, Tingting; Luu, Thuy U; Chen, Aaron; Khine, Michelle; Liu, Wendy F

    2016-06-24

    The host immune response to foreign materials is a major hurdle for implanted medical devices. To control this response, modulation of macrophage behavior has emerged as a promising strategy, given their prominent role in inflammation and wound healing. Towards this goal, we explore the effect of biomimetic multi-scale wrinkles on macrophage adhesion and expression of phenotype markers. We find that macrophages elongate along the direction of the uniaxial wrinkles made from shape memory polymers, and express more arginase-1 and IL-10, and less TNF-α, suggesting polarization towards an alternatively activated, anti-inflammatory phenotype. Materials were further implanted in the subcutaneous space of mice and tissue surrounding the material evaluated by histology and immunohistochemistry. We found that material surface topography altered the distribution of collagen deposition in the adjacent tissue, with denser collagen tissue observed near flat materials when compared to wrinkled materials. Furthermore, cells surrounding wrinkled materials exhibited higher arginase-1 expression. Together these data suggest that wrinkled material surfaces promote macrophage alternative activation, and may influence the foreign body response to implants.

  15. Increasing the endogenous NO level causes catalase inactivation and reactivation of intercellular apoptosis signaling specifically in tumor cells

    PubMed Central

    Bauer, Georg

    2015-01-01

    Tumor cells generate extracellular superoxide anions and are protected against intercellular apoptosis-inducing HOCl- and NO/peroxynitrite signaling through the expression of membrane-associated catalase. This enzyme decomposes H2O2 and thus prevents HOCl synthesis. It efficiently interferes with NO/peroxynitrite signaling through oxidation of NO and decomposition of peroxynitrite. The regulatory potential of catalase at the crosspoint of ROS and RNS chemical biology, as well as its high local concentration on the outside of the cell membrane of tumor cells, establish tight control of intercellular signaling and thus prevent tumor cell apoptosis. Therefore, inhibition of catalase or its inactivation by singlet oxygen reactivate intercellular apoptosis-inducing signaling. Nitric oxide and peroxynitrite are connected with catalase in multiple and meaningful ways, as (i) NO can be oxidated by compound I of catalase, (ii) NO can reversibly inhibit catalase, (iii) peroxynitrite can be decomposed by catalase and (iv) the interaction between peroxynitrite and H2O2 leads to the generation of singlet oxygen that inactivates catalase. Therefore, modulation of the concentration of free NO through addition of arginine, inhibition of arginase, induction of NOS expression or inhibition of NO dioxygenase triggers an autoamplificatory biochemical cascade that is based on initial formation of singlet oxygen, amplification of superoxide anion/H2O2 and NO generation through singlet oxygen dependent stimulation of the FAS receptor and caspase-8. Finally, singlet oxygen is generated at sufficiently high concentration to inactivate protective catalase and to reactivate intercellular apoptosis-inducing ROS signaling. This regulatory network allows to establish several pathways for synergistic interactions, like the combination of modulators of NO metabolism with enhancers of superoxide anion generation, modulators of NO metabolism that act at different targets and between modulators of NO metabolism and direct catalase inhibitors. The latter aspect is explicitely studied for the interaction between catalase inhibiting acetylsalicylic acid and an NO donor. It is also shown that hybrid molecules like NO-aspirin utilize this synergistic potential. Our data open novel approaches for rational tumor therapy based on specific ROS signaling and its control in tumor cells. PMID:26342455

  16. Andrographolide alleviates imiquimod-induced psoriasis in mice via inducing autophagic proteolysis of MyD88.

    PubMed

    Shao, Fenli; Tan, Tao; Tan, Yang; Sun, Yang; Wu, Xingxin; Xu, Qiang

    2016-09-01

    Psoriasis is a chronic inflammatory skin disease with excessive activation of toll-like receptors (TLRs), which play important roles in developing psoriasis. Targeting TLR signaling remains a challenge for treating psoriasis. Here, we found that andrographolide (Andro), a small-molecule natural product, alleviated imiquimod- but not interleukin 23 (IL-23)-induced psoriasis in mice with reducing expressions of IL-23 and IL-1β in the skin. The improvement in imiquimod-induced psoriasis by Andro was not observed in microtubule-associated protein 1 light chain 3 beta (MAP1LC3B) knockout mice. Furthermore, Andro inhibited mRNA expressions of IL-23, IL-6 and IL-1β but not CD80 and CD86 in bone-marrow derived dendritic cells (BMDCs) treated with lipopolysaccharide (LPS) in a MAP1LC3B-dependent manner. In addition, Andro inhibited imiquimod-induced mRNA expressions of IL-23, IL-6, IL-1β, CD80 and CD86 in BMDCs from mice. Interestingly, Andro induced a degradation of myeloid differentiation factor 88 (MyD88) and blocked the recruitment of TNF receptor-associated factor 6 (TRAF6) to MyD88 upon LPS stimulation in BMDCs from mice. Blockade of autophagic proteolysis using NH4Cl or MAP1LC3B(-/-) BMDCs abolished the Andro-induced MyD88 degradation. In conclusion, Andro controls activation of MyD88-dependent cytokines and alleviates psoriasis in mice via inducing autophagic proteolysis of MyD88, which could be a novel strategy to treat psoriasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Role of brassinosteroids in alleviation of phenanthrene–cadmium co-contamination-induced photosynthetic inhibition and oxidative stress in tomato

    PubMed Central

    Ahammed, Golam Jalal; Yu, Jingquan

    2013-01-01

    Heavy metal pollution often occurs together with organic contaminants. Brassinosteroids (BRs) induce plant tolerance to several abiotic stresses, including phenanthrene (PHE) and cadmium (Cd) stress. However, the role of BRs in PHE+Cd co-contamination-induced stress amelioration is unknown. Here, the interactive effects of PHE, Cd, and 24-epibrassinolide (EBR; a biologically active BR) were investigated in tomato plants. The application of Cd (100 µM) alone was more phytotoxic than PHE applied alone (100 µM); however, their combined application resulted in slightly improved photosynthetic activity and pigment content compared with Cd alone after a 40 d exposure. Accumulation of reactive oxygen species and membrane lipid peroxidation were induced by PHE and/or Cd; however, the differences in effect were insignificant between Cd and PHE+Cd. The foliar application of EBR (0.1 µM) to PHE- and/or Cd-stressed plants alleviated photosynthetic inhibition and oxidative stress by causing enhancement of the activity of the enzymes and related transcript levels of the antioxidant system, secondary metabolism, and the xenobiotic detoxification system. Additionally, PHE and/or Cd residues were significantly decreased in both the leaves and roots after application of EBR, more specifically in PHE+Cd-stressed plants when treated with EBR, indicating a possible improvement in detoxification of these pollutants. The findings thus suggest a potential interaction of EBR and PHE for Cd stress alleviation. These results advocate a positive role for EBR in reducing pollutant residues for food safety and also strengthening phytoremediation. PMID:23201830

  18. Effects of Ferulic Acid and γ-Oryzanol on High-Fat and High-Fructose Diet-Induced Metabolic Syndrome in Rats

    PubMed Central

    Wang, Ou; Liu, Jia; Cheng, Qian; Guo, Xiaoxuan; Wang, Yong; Zhao, Liang; Zhou, Feng; Ji, Baoping

    2015-01-01

    Background The high morbidity of metabolic dysfunction diseases has heightened interest in seeking natural and safe compounds to maintain optimal health. γ-Oryzanol (OZ), the ferulic acid (FA) ester with phytosterols, mainly present in rice bran has been shown to improve markers of metabolic syndrome. This study investigates the effects of FA and OZ on alleviating high-fat and high-fructose diet (HFFD)-induced metabolic syndrome parameters. Methods Male SD rats were fed with a regular rodent diet, HFFD, or HFFD supplemented with 0.05% FA or 0.16% OZ (equimolar concentrations) for 13 weeks. Food intake, organ indices, serum lipid profiles, glucose metabolism, insulin resistance (IR) index and cytokine levels were analyzed. The mechanisms were further investigated in oleic acid-stimulated HepG2 cells by analyzing triglyceride (TG) content and lipogenesis-related gene expressions. Results In the in vivo study, FA and OZ exhibited similar effects in alleviating HFFD-induced obesity, hyperlipidemia, hyperglycemia, and IR. However, only OZ treatment significantly decreased liver index and hepatic TG content, lowered serum levels of C-reactive protein and IL-6, and increased serum concentration of adiponectin. In the in vitro assay, only OZ administration significantly inhibited intracellular TG accumulation and down-regulated expression of stearoyl coenzyme-A desaturase-1, which might facilitate OZ to enhance its hepatoprotective effect. Conclusion OZ is more effective than FA in inhibiting hepatic fat accumulation and inflammation. Thus, FA and OZ could be used as dietary supplements to alleviate the deleterious effects of HFFD. PMID:25646799

  19. The cardiovascular biology of microsomal prostaglandin E synthase-1

    PubMed Central

    Wang, Miao; FitzGerald, Garret A.

    2011-01-01

    Both traditional and purpose designed nonsteroidal anti-inflammatory drugs (NSAIDs), selective for inhibition of cyclooxygenase (COX) -2 alleviate pain and inflammation but confer a cardiovascular hazard, attributable to inhibition of COX-2 derived prostacyclin (PGI2). Deletion of microsomal PGE synthase–1 (mPGES-1), the dominant enzyme that converts the COX derived intermediate product, PGH2, to form PGE2, modulates inflammatory pain in rodents. By contrast with COX-2 deletion or inhibition, PGI2 formation is augmented in mPGES-1−/− mice an effect which may confer cardiovascular benefit, yet undermine the analgesic potential of inhibitors of this enzyme. This review will consider the cardiovascular biology of mPGES1, and the complex challenge of developing inhibitors of this enzyme. PMID:22137640

  20. Arginase 2 deletion leads to enhanced M1 macrophage activation and upregulated polyamine metabolism in response to Helicobacter pylori infection

    PubMed Central

    Hardbower, Dana M.; Asim, Mohammad; Murray-Stewart, Tracy; Casero, Robert A.; Verriere, Thomas; Lewis, Nuruddeen D.; Chaturvedi, Rupesh; Piazuelo, M. Blanca; Wilson, Keith T.

    2016-01-01

    We reported that arginase 2 (ARG2) deletion results in increased gastritis and decreased bacterial burden during Helicobacter pylori infection in mice. Our studies implicated a potential role for inducible nitric oxide (NO) synthase (NOS2), as Arg2−/− mice exhibited increased NOS2 levels in gastric macrophages, and NO can kill H. pylori. We now bred Arg2−/− to Nos2−/− mice, and infected them with H. pylori. Compared to wild-type mice, both Arg2−/− and Arg2−/−;Nos2−/− mice exhibited increased gastritis and decreased colonization, the latter indicating that the effect of ARG2 deletion on bacterial burden was not mediated by NO. While Arg2−/− mice demonstrated enhanced M1 macrophage activation, Nos2−/− and Arg2−/−;Nos2−/− mice did not demonstrate these changes, but exhibited increased CXCL1 and CXCL2 responses. There was an increased expression of the Th1/ Th17 cytokines, interferon gamma and interleukin 17, in gastric tissues and splenic T-cells from Arg2−/−, but not Nos2−/− or Arg2−/−;Nos2−/− mice. Gastric tissues from infected Arg2−/− mice demonstrated increased expression of arginase 1, ornithine decarboxylase, adenosylmethionine decarboxylase 1, spermidine/spermine N1-acetyltransferase 1, and spermine oxidase, along with increased spermine levels. These data indicate that ARG2 deletion results in compensatory upregulation of gastric polyamine synthesis and catabolism during H. pylori infection, which may contribute to increased gastric inflammation and associated decreased bacterial load. Overall, the finding of this study is that ARG2 contributes to the immune evasion of H. pylori by restricting M1 macrophage activation and polyamine metabolism. PMID:27074721

  1. Arginine-supplemented enteral nutrition in critically ill diabetic and obese rats: a dose-ranging study evaluating nutritional status and macrophage function.

    PubMed

    Bonhomme, Sandra; Belabed, Linda; Blanc, Marie-Céline; Neveux, Nathalie; Cynober, Luc; Darquy, Sylviane

    2013-01-01

    Critically ill diabetic and obese patients are at high risk of complications. Arginine availability is lowered in diabetes and in stress situations, yet arginine is necessary for immune response, mainly by its action through nitric oxide (NO). These facts argue for arginine-supplemented diets in critically ill patients. However, studies have raised concerns about possible adverse effects of such diets in intensive-care patients. We therefore analyzed the metabolic and immunologic effects of an arginine-enriched diet in stressed diabetic-obese rats. Zucker Diabetic Fatty rats (fa/fa) were made endotoxemic by an intraperitoneal injection of lipopolysaccharide and then fed 4-d enteral nutrition enriched with arginine (ARG group) or a non-essential amino acid mix (NEAA group). The two groups each were subdivided into three subgroups: the ARG subgroups received 0.5 g (ARG0.5), 2 g (ARG2), and 5 g (ARG5) of arginine per kilogram daily, and the NEAA groups were made isonitrogenous with the corresponding ARG subgroups (NEAA0.5, NEAA2, and NEAA5). Plasma and urinary biomarkers were measured. Cytokine and NO production levels and inducible NO synthase and arginase protein levels were determined from peritoneal macrophages. The survival rate was lower in the ARG5 and NEAA5 subgroups than in all the other subgroups. The nitrogen balance was higher in the ARG5 group than in the NEAA5 group. Plasma triacylglycerol levels were lower in the ARG2 group than in the NEAA2 group. Interleukin-6, tumor necrosis factor-α, and NO production in the macrophages decreased and arginase-1 was upregulated in the ARG-treated rats. In this model, mortality was increased by the nitrogen burden rather than by arginine per se. Arginine improved nitrogen balance and had an anti-inflammatory action on macrophages by regulating NO production, probably through arginase-1 expression. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Enhancement of Fenton oxidation for removing organic matter from hypersaline solution by accelerating ferric system with hydroxylamine hydrochloride and benzoquinone.

    PubMed

    Peng, Siwei; Zhang, Weijun; He, Jie; Yang, Xiaofang; Wang, Dongsheng; Zeng, Guisheng

    2016-03-01

    Fenton oxidation is generally inhibited in the presence of a high concentration of chloride ions. This study investigated the feasibility of using benzoquinone (BQ) and hydroxylamine hydrochloride (HA) as Fenton enhancers for the removal of glycerin from saline water under ambient temperature by accelerating the ferric system. It was found that organics removal was not obviously affected by chloride ions of low concentration (less than 0.1mol/L), while the mineralization rate was strongly inhibited in the presence of a large amount of chloride ions. In addition, ferric hydrolysis-precipitation was significantly alleviated in the presence of HA and BQ, and HA was more effective in reducing ferric ions into ferrous ions than HA, while the H2O2 decomposition rate was higher in the BQ-Fenton system. Electron spin resonance analysis revealed that OH production was reduced in high salinity conditions, while it was enhanced after the addition of HA and BQ (especially HA). This study provided a possible solution to control and alleviate the inhibitory effect of chloride ions on the Fenton process for organics removal. Copyright © 2015. Published by Elsevier B.V.

  3. Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers

    PubMed Central

    Bronte, Vincenzo; Kasic, Tihana; Gri, Giorgia; Gallana, Keti; Borsellino, Giovanna; Marigo, Ilaria; Battistini, Luca; Iafrate, Massimo; Prayer-Galetti, Tommaso; Pagano, Francesco; Viola, Antonella

    2005-01-01

    Immunotherapy may provide valid alternative therapy for patients with hormone-refractory metastatic prostate cancer. However, if the tumor environment exerts a suppressive action on antigen-specific tumor-infiltrating lymphocytes (TIL), immunotherapy will achieve little, if any, success. In this study, we analyzed the modulation of TIL responses by the tumor environment using collagen gel matrix–supported organ cultures of human prostate carcinomas. Our results indicate that human prostatic adenocarcinomas are infiltrated by terminally differentiated cytotoxic T lymphocytes that are, however, in an unresponsive status. We demonstrate the presence of high levels of nitrotyrosines in prostatic TIL, suggesting a local production of peroxynitrites. By inhibiting the activity of arginase and nitric oxide synthase, key enzymes of L-arginine metabolism that are highly expressed in malignant but not in normal prostates, reduced tyrosine nitration and restoration of TIL responsiveness to tumor were achieved. The metabolic control exerted by the tumor on TIL function was confirmed in a transgenic mouse prostate model, which exhibits similarities with human prostate cancer. These results identify a novel and dominant mechanism by which cancers induce immunosuppression in situ and suggest novel strategies for tumor immunotherapy. PMID:15824085

  4. Th1/Th2 Cytokines: An Easy Model to Study Gene Expression in Immune Cells

    ERIC Educational Resources Information Center

    Moran, Jose M.; Gonzalez-Polo, Rosa A.; Soler, German; Fuentes, Jose M.

    2006-01-01

    This report describes a laboratory exercise that was incorporated into a Cell Biology and Molecular Biology advanced course. The exercise was made for a class size with eight students and was designed to reinforce the understanding of basic molecular biology techniques. Students used the techniques of reverse transcription and arginase activity…

  5. Valsartan Protects Against Contrast-Induced Acute Kidney Injury in Rats by Inhibiting Endoplasmic Reticulum Stress-Induced Apoptosis.

    PubMed

    Sun, Yan; Peng, Ping-An; Ma, Yue; Liu, Xiao-Li; Yu, Yi; Jia, Shuo; Xu, Xiao-Han; Wu, Si-Jing; Zhou, Yu-Jie

    2017-01-01

    Contrast-induced acute kidney injury (CI-AKI) is a serious complication of the administration of iodinated contrast media (CM) for diagnostic and interventional cardiovascular procedures and is associated with substantial morbidity and mortality. While the preventative measures can mitigate the risk of CI-AKI, there remains a need for novel and effective therapeutic approaches. The pathogenesis of CI-AKI is complex and not completely understood. CM-induced renal tubular cell apoptosis caused by the activation of endoplasmic reticulum (ER) stress is involved in CIAKI. We previously demonstrated that valsartan alleviated CM-induced human renal tubular cell apoptosis by inhibiting ER stress in vitro. However, the nephroprotective effect of valsartan on CI-AKI in vivo has not been investigated. Therefore, the aim of this study was to explore the protective effect of valsartan in a rat model of CI-AKI by measuring the amelioration of renal damage and the changes in ER stressrelated biomarkers. Our results showed that the radiocontrast agent meglumine diatrizoate caused significant renal insufficiency, renin-angiotensin system (RAS) activation, and renal tubular apoptosis by triggering ER stress through activation of glucose-regulated protein 78 (GRP78), activating transcription factor 4 (ATF4), caspase 12, CCAAT/enhancer-binding protein-homologous protein (CHOP) and c-Jun N-terminal protein kinase (JNK) (P<0.05; n=6 in each group). Pre-treatment with valsartan significantly alleviated renal dysfunction, pathological injury, and apoptosis along with the inhibition of ER stressrelated biomarkers (P<0.05; n=8 in each group). Valsartan could protect against meglumine diatrizoate-induced kidney injury in rats by inhibiting the ER stress-induced apoptosis, making it a promising strategy for preventing CI-AKI. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Insulin alleviates degradation of skeletal muscle protein by inhibiting the ubiquitin-proteasome system in septic rats.

    PubMed

    Chen, Qiyi; Li, Ning; Zhu, Weiming; Li, Weiqin; Tang, Shaoqiu; Yu, Wenkui; Gao, Tao; Zhang, Juanjuan; Li, Jieshou

    2011-06-03

    Hypercatabolism is common under septic conditions. Skeletal muscle is the main target organ for hypercatabolism, and this phenomenon is a vital factor in the deterioration of recovery in septic patients. In skeletal muscle, activation of the ubiquitin-proteasome system plays an important role in hypercatabolism under septic status. Insulin is a vital anticatabolic hormone and previous evidence suggests that insulin administration inhibits various steps in the ubiquitin-proteasome system. However, whether insulin can alleviate the degradation of skeletal muscle protein by inhibiting the ubiquitin-proteasome system under septic condition is unclear. This paper confirmed that mRNA and protein levels of the ubiquitin-proteasome system were upregulated and molecular markers of skeletal muscle proteolysis (tyrosine and 3-methylhistidine) simultaneously increased in the skeletal muscle of septic rats. Septic rats were infused with insulin at a constant rate of 2.4 mU.kg-1.min-1 for 8 hours. Concentrations of mRNA and proteins of the ubiquitin-proteasome system and molecular markers of skeletal muscle proteolysis were mildly affected. When the insulin infusion dose increased to 4.8 mU.kg-1.min-1, mRNA for ubiquitin, E2-14 KDa, and the C2 subunit were all sharply downregulated. At the same time, the levels of ubiquitinated proteins, E2-14KDa, and the C2 subunit protein were significantly reduced. Tyrosine and 3-methylhistidine decreased significantly. We concluded that the ubiquitin-proteasome system is important skeletal muscle hypercatabolism in septic rats. Infusion of insulin can reverse the detrimental metabolism of skeletal muscle by inhibiting the ubiquitin-proteasome system, and the effect is proportional to the insulin infusion dose.

  7. Norisoboldine, an alkaloid from Radix linderae, inhibits NFAT activation and attenuates 2,4-dinitrofluorobenzene-induced dermatitis in mice.

    PubMed

    Gao, Shuang; Li, Wencai; Lin, Guochao; Liu, Guangrong; Deng, Wenjuan; Zhai, Chuntao; Bian, Chunliang; He, Gaiying; Hu, Zhenlin

    2016-10-01

    The nuclear factor of activated T-cells (NFAT) is a family of transcription factors, essential for T-cell activation. Norisoboldine (NOR), an isoquinoline alkaloid from Radix linderae, has been demonstrated to possess anti-inflammatory activity. This study examines NOR's effect on NFAT activation and its therapeutic potential for atopic dermatitis (AD). The transcriptional activity of NFAT was examined with luciferase reporter assay, using K562-luc cells, stimulated with 20 ng/mL PMA plus 1 μM ionomycin. NFAT dephosphorylation was examined by immuno-blotting in K562-luc cells and Jurkat cells. Interleukin-2 (IL-2) expression in Jurkat cells was examined by real-time PCR. A mouse model of dermatitis, induced by 2,4-dinitrochlorobenzene (DNCB), was used to test NOR's therapeutic potential for AD. NOR, dose-dependently, inhibited PMA and ionomycin-induced NFAT reporter gene expression in K562-luc cells in the range of 2-50 μM. NOR also inhibited PMA and ionomycin-induced NFAT dephosphorylation in K562-luc cells and Jurkat cells. Consequently, NOR suppressed PMA plus ionomycin-induced IL-2 expression in Jurkat cells. The administration of NOR (10 mg/kg, i.p.), alleviated DNCB-induced dermatitis in mice, by the reduction of ear swelling and attenuation of inflammatory infiltration into ear tissue. Moreover, mRNA levels of INF-γ, TNF-α, IL-4 and IL-6 in ears of NOR-treated mice were reduced by 78.4, 77.8, 72.3 and 73.9%, respectively, compared with untreated controls. This study demonstrates that NOR inhibits NFAT activation in T-cells and alleviates AD-like inflammatory reaction in a DNCB-induced dermatitis model, highlighting NOR as a potential therapeutic agent for AD.

  8. BLM and RMI1 alleviate RPA inhibition of TopoIIIα decatenase activity.

    PubMed

    Yang, Jay; Bachrati, Csanad Z; Hickson, Ian D; Brown, Grant W

    2012-01-01

    RPA is a single-stranded DNA binding protein that physically associates with the BLM complex. RPA stimulates BLM helicase activity as well as the double Holliday junction dissolution activity of the BLM-topoisomerase IIIα complex. We investigated the effect of RPA on the ssDNA decatenase activity of topoisomerase IIIα. We found that RPA and other ssDNA binding proteins inhibit decatenation by topoisomerase IIIα. Complex formation between BLM, TopoIIIα, and RMI1 ablates inhibition of decatenation by ssDNA binding proteins. Together, these data indicate that inhibition by RPA does not involve species-specific interactions between RPA and BLM-TopoIIIα-RMI1, which contrasts with RPA modulation of double Holliday junction dissolution. We propose that topoisomerase IIIα and RPA compete to bind to single-stranded regions of catenanes. Interactions with BLM and RMI1 enhance toposiomerase IIIα activity, promoting decatenation in the presence of RPA.

  9. Alleviation of Cd toxicity by composted sewage sludge in Cd-treated Schmidt birch (Betula schmidtii) seedlings.

    PubMed

    Han, Sim-Hee; Lee, Jae-Cheon; Oh, Chang-Young; Kim, Pan-Gi

    2006-10-01

    We investigated alleviation of Cd toxicity and changes in the physiological characteristics of Betula schmidtii seedlings following application of composted sewage sludge to Cd-treated plants. Plants were grown under four test conditions: control, Cd treatment, sludge amendment, and Cd treatment with sludge amendment. B. schmidtii treated with Cd only accumulated the greatest amount of Cd in the leaves, but absorbed Cd was also highly concentrated in the roots. In contrast, Cd concentrations in the Cd and sludge amendment treated seedlings were the lowest in the roots. Since sludge amendment increased the growth of seedlings, it may have alleviated toxicity by dilution of Cd. Additionally, the absorbed Cd was more widely distributed since it was transported from the roots and accumulated in the stems and leaves of Cd and sludge treated plants. Cd treatment inhibited the growth and physiological functions of B. schmidtii seedlings, but sludge amendment compensated for these effects and improved growth and physiological functions in both Cd-treated and control plants. SOD activity in the leaves of seedlings was increased in the Cd-treated plants, but not in the Cd and sludge amendment treated seedlings. In conclusion, alleviation of Cd toxicity in response to sludge amendment may be related to a dilution effect, in which the Cd concentration in the tissues was effectively lowered by the improved growth performance of the seedlings.

  10. Dendrobium chrysotoxum Lindl. Alleviates Diabetic Retinopathy by Preventing Retinal Inflammation and Tight Junction Protein Decrease

    PubMed Central

    Yu, Zengyang; Gong, Chenyuan; Lu, Bin; Yang, Li; Sheng, Yuchen; Ji, Lili; Wang, Zhengtao

    2015-01-01

    Diabetic retinopathy (DR) is a serious complication of diabetes mellitus. This study aimed to observe the alleviation of the ethanol extract of Dendrobium chrysotoxum Lindl. (DC), a traditional Chinese herbal medicine, on DR and its engaged mechanism. After DC (30 or 300 mg/kg) was orally administrated, the breakdown of blood retinal barrier (BRB) in streptozotocin- (STZ-) induced diabetic rats was attenuated by DC. Decreased retinal mRNA expression of tight junction proteins (including occludin and claudin-1) in diabetic rats was also reversed by DC. Western blot analysis and retinal immunofluorescence staining results further confirmed that DC reversed the decreased expression of occludin and claudin-1 proteins in diabetic rats. DC reduced the increased retinal mRNA expressions of intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor α (TNFα), interleukin- (IL-) 6, and IL-1β in diabetic rats. In addition, DC alleviated the increased 1 and phosphorylated p65, IκB, and IκB kinase (IKK) in diabetic rats. DC also reduced the increased serum levels of TNFα, interferon-γ (IFN-γ), IL-6, IL-1β, IL-8, IL-12, IL-2, IL-3, and IL-10 in diabetic rats. Therefore, DC can alleviate DR by inhibiting retinal inflammation and preventing the decrease of tight junction proteins, such as occludin and claudin-1. PMID:25685822

  11. Emodin alleviates bleomycin-induced pulmonary fibrosis in rats.

    PubMed

    Guan, Ruijuan; Zhao, Xiaomei; Wang, Xia; Song, Nana; Guo, Yuhong; Yan, Xianxia; Jiang, Liping; Cheng, Wenjing; Shen, Linlin

    2016-11-16

    Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease with few treatment options and poor prognosis. Emodin, extracted from Chinese rhubarb, was found to be able to alleviate bleomycin (BLM)-induced pulmonary fibrosis, yet the underlying mechanism remains largely unknown. This study aimed to further investigate the effects of emodin on the inflammation and fibrosis of BLM-induced pulmonary fibrosis and the mechanism involved in rats. Our results showed that emodin improved pulmonary function, reduced weight loss and prevented death in BLM-treated rats. Emodin significantly relieved lung edema and fibrotic changes, decreased collagen deposition, and suppressed the infiltration of myofibroblasts [characterized by expression of α-smooth muscle actin (α-SMA)] and inflammatory cells (mainly macrophages and lymphocytes). Moreover, emodin reduced levels of TNF-α, IL-6, TGF-β1 and heat shock protein (HSP)-47 in the lungs of BLM-treated rats. In vitro, emodin profoundly inhibited TGF-β1-induced α-SMA, collagen IV and fibronectin expression in human embryo lung fibroblasts (HELFs). Emodin also inhibited TGF-β1-induced Smad2/3 and STAT3 activation, indicating that Smad2/3 and STAT3 inactivation mediates emodin-induced effects on TGF-β1-induced myofibroblast differentiation. These results suggest that emodin can exert its anti-fibrotic effect via suppression of TGF-β1 signaling and subsequently inhibition of inflammation, HSP-47 expression, myofibroblast differentiation and extracellular matrix (ECM) deposition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Inhibition of inflammation by astaxanthin alleviates cognition deficits in diabetic mice.

    PubMed

    Zhou, Xiaoyan; Zhang, Fang; Hu, Xiaotong; Chen, Jing; Wen, Xiangru; Sun, Ying; Liu, Yonghai; Tang, Renxian; Zheng, Kuiyang; Song, Yuanjian

    2015-11-01

    Neurons in the hippocampal and cortical functional regions are more susceptible to damage induced by hyperglycemia, which can result in severe spatial learning and memory impairment. Neuroprotection ameliorates cognitive impairment induced by hyperglycemia in diabetic encephalopathy (DE). Astaxanthin has been widely studied in diabetes mellitus and diabetic complications due to its hypoglycemic, antioxidant and anti-apoptotic effects. However, whether astaxanthin can alleviate cognition deficits induced by DE and its precise mechanisms remain undetermined. In this study, DE was induced by streptozotocin (STZ, 150 mg/kg) in ICR mice. We observed the effect of astaxanthin on cognition and investigated its potential mechanisms in DE mice. Results showed that astaxanthin treatment significantly decreased the latency and enhanced the distance and time spent in the target quadrant in the Morris water maze test. Furthermore, neuronal survival was significantly increased in the hippocampal CA3 region and the frontal cortex following treatment with astaxanthin. Meanwhile, immunoblotting was used to observe the nuclear translocation of nuclear factor-kappaB (NF-κB) p65 and the expression of tumor necrosis factor-α (TNF-α) in the hippocampus and frontal cortex. The results indicated that astaxanthin could inhibit NF-κB nuclear translocation and downregulate TNF-α expression in the hippocampus and frontal cortex. Overall, the present study implied that astaxanthin could improve cognition by protecting neurons against inflammation injury potentially through inhibiting the nuclear translocation of NF-κB and down-regulating TNF-α. Copyright © 2015. Published by Elsevier Inc.

  13. Non-canonical Wnt4 prevents skeletal aging and inflammation by inhibiting NF-κB

    PubMed Central

    Yu, Bo; Chang, Jia; Liu, Yunsong; Li, Jiong; Kevork, Kareena; Al-Hezaimi, Khalid; Graves, Dana T; Park, No-Hee; Wang, Cun-Yu

    2014-01-01

    Aging-related bone loss and osteoporosis affect millions of patients worldwide. Chronic inflammation associated with aging and arthritis promotes bone resorption and impairs bone formation. Here we show that Wnt4 attenuated bone loss in osteoporosis and skeletal aging by inhibiting nuclear factor-kappa B (NF-κB) via non-canonical Wnt signaling. Transgenic mice expressing Wnt4 from osteoblasts were significantly protected from bone loss and chronic inflammation induced by ovariectomy, tumor necrosis factor or natural aging. In addition to promoting bone formation, Wnt4 could inhibit osteoclast formation and bone resorption. Mechanistically, Wnt4 inhibited transforming growth factor beta-activated kinase 1-mediated NF-κB activation in macrophages and osteoclast precursors independent of β-catenin. Moreover, recombinant Wnt4 proteins were able to alleviate osteoporotic bone loss and inflammation by inhibiting NF-κB in vivo. Taken together, our results suggest that Wnt4 might be used as a therapeutic agent for treating osteoporosis by attenuating NF-κB. PMID:25108526

  14. HDAC inhibition inhibits brachial plexus avulsion induced neuropathic pain.

    PubMed

    Zhao, Yingbo; Wu, Tianjian

    2018-05-09

    Introduction Neuropathic pain induced by brachial plexus avulsion (BPA) is a pathological condition. We hypothesized that inhibition of histone deacetylase (HDAC) could suppress BPA-induced neuropathic pain through inhibition of transient reception potential (TRP) overexpression and protein kinase B (Akt) mediated mammalian target of rapamycin (mTOR) activation. Methods We generated a rat BPA model, administered HDAC inhibitor Tricostatin A (TSA) for 7 days post-surgery and assessed the effects on HDAC expression, Akt phosphorylation, neuroinflammation and mTOR activation. Results TSA treatment alleviated BPA induced mechanical hyperalgesia, suppressed Akt phosphorylation and increased HDAC. We found suppressed pro-inflammatory cytokine levels, TRP cation channel subfamily V member 1 (TRPV1) and TRP melastatin 8 (TRPM8) expression and mTOR activity in TSA treated BPA rats. Discussion Our results suggest that altered HDAC and Akt signaling are involved in BPA-induced neuropathic pain and that inhibition of HDAC could be an effective therapeutic approach in reducing neuropathic pain. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  15. Protective effect of caspase inhibition on compression-induced muscle damage

    PubMed Central

    Teng, Bee T; Tam, Eric W; Benzie, Iris F; Siu, Parco M

    2011-01-01

    Abstract There are currently no effective therapies for treating pressure-induced deep tissue injury. This study tested the efficacy of pharmacological inhibition of caspase in preventing muscle damage following sustained moderate compression. Adult Sprague–Dawley rats were subjected to prolonged moderate compression. Static pressure of 100 mmHg compression was applied to an area of 1.5 cm2 in the tibialis region of the right limb of the rats for 6 h each day for two consecutive days. The left uncompressed limb served as intra-animal control. Rats were randomized to receive either vehicle (DMSO) as control treatment (n = 8) or 6 mg kg−1 of caspase inhibitor (z-VAD-fmk; n = 8) prior to the 6 h compression on the two consecutive days. Muscle tissues directly underneath the compression region of the compressed limb and the same region of control limb were harvested after the compression procedure. Histological examination and biochemical/molecular measurement of apoptosis and autophagy were performed. Caspase inhibition was effective in alleviating the compression-induced pathohistology of muscle. The increases in caspase-3 protease activity, TUNEL index, apoptotic DNA fragmentation and pro-apoptotic factors (Bax, p53 and EndoG) and the decreases in anti-apoptotic factors (XIAP and HSP70) observed in compressed muscle of DMSO-treated animals were not found in animals treated with caspase inhibitor. The mRNA content of autophagic factors (Beclin-1, Atg5 and Atg12) and the protein content of LC3, FoxO3 and phospho-FoxO3 that were down-regulated in compressed muscle of DMSO-treated animals were all maintained at their basal level in the caspase inhibitor treated animals. Our data provide evidence that caspase inhibition attenuates compression-induced muscle apoptosis and maintains the basal autophagy level. These findings demonstrate that pharmacological inhibition of caspase/apoptosis is effective in alleviating muscle damage as induced by prolonged compression. PMID:21540338

  16. Celecoxib-Induced Cytotoxic Effect Is Potentiated by Inhibition of Autophagy in Human Urothelial Carcinoma Cells

    PubMed Central

    Ho, I-Lin; Chang, Hong-Chiang; Chuang, Yuan-Ting; Lin, Wei-Chou; Lee, Ping-Yi; Chang, Shih-Chen; Chiang, Chih-Kang; Pu, Yeong-Shiau; Chou, Chien-Tso; Hsu, Chen-Hsun; Liu, Shing-Hwa

    2013-01-01

    Celecoxib, a cyclooxygenase-2 (COX-2) inhibitor, can elicit anti-tumor effects in various malignancies. Here, we sought to clarify the role of autophagy in celecoxib-induced cytotoxicity in human urothelial carcinoma (UC) cells. The results shows celecoxib induced cellular stress response such as endoplasmic reticulum (ER) stress, phosopho-SAPK/JNK, and phosopho-c-Jun as well as autophagosome formation in UC cells. Inhibition of autophagy by 3-methyladenine (3-MA), bafilomycin A1 or ATG7 knockdown potentiated celecoxib-induced apoptosis. Up-regulation of autophagy by rapamycin or GFP-LC3B-transfection alleviated celecoxib-induced cytotoxicity in UC cells. Taken together, the inhibition of autophagy enhances therapeutic efficacy of celecoxib in UC cells, suggesting a novel therapeutic strategy against UC. PMID:24349176

  17. Betaine prevented fructose-induced NAFLD by regulating LXRα/PPARα pathway and alleviating ER stress in rats.

    PubMed

    Ge, Chen-Xu; Yu, Rong; Xu, Min-Xuan; Li, Pei-Qin; Fan, Chen-Yu; Li, Jian-Mei; Kong, Ling-Dong

    2016-01-05

    Betaine has been proven effective in treating nonalcoholic fatty liver disease (NAFLD) in animal models, however, its molecular mechanisms remain elusive. The aims of this study were to explore the mechanisms mediating the anti-inflammatory and anti-lipogenic actions of betaine in fructose-fed rats. In this study, betaine improved insulin resistance, reduced body weight gain and serum lipid levels, and prevented hepatic lipid accumulation in fructose-fed rats. It up-regulated hepatic expression of liver X receptor-alpha (LXRα) and peroxisome proliferator-activated receptor-alpha (PPARα), with the attenuation of the changes of their target genes, including hepatic carnitine palmitoyl transferase (CPT) 1α, glycosylphosphatidylinositol anchored high density lipoprotein binding protein 1, apolipoprotein B, sterol regulatory element-binding protein 1c and adipocyte differentiation-related protein, involved in fatty acid oxidation and lipid storage in these model rats. Furthermore, betaine alleviated ER stress and inhibited acetyl-CoA carboxylase α, CPT II, stearoyl-CoA desaturase 1 and fatty acid synthase expression involved in fatty acid synthesis in the liver of fructose-fed rats. Betaine suppressed hepatic gluconeogenesis in fructose-fed rats by moderating protein kinase B -forkhead box protein O1 pathway, as well as p38 mitogen-activated protein kinase and mammalian target of rapamycin activity. Moreover, betaine inhibited hepatic nuclear factor kappa B /nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 inflammasome activation-mediated inflammation in this animal model. These results demonstrated that betaine ameliorated hepatic lipid accumulation, gluconeogenesis, and inflammation through restoring LXRα and PPARα expression and alleviating ER stress in fructose-fed rats. This study provides the potential mechanisms of betaine involved in the treatment of NAFLD. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Histamine H4-Receptors Inhibit Mast Cell Renin Release in Ischemia/Reperfusion via Protein Kinase Cε-Dependent Aldehyde Dehydrogenase Type-2 Activation

    PubMed Central

    Aldi, Silvia; Takano, Ken-ichi; Tomita, Kengo; Koda, Kenichiro; Chan, Noel Y.-K.; Marino, Alice; Salazar-Rodriguez, Mariselis; Thurmond, Robin L.

    2014-01-01

    Renin released by ischemia/reperfusion (I/R) from cardiac mast cells (MCs) activates a local renin-angiotensin system (RAS) causing arrhythmic dysfunction. Ischemic preconditioning (IPC) inhibits MC renin release and consequent activation of this local RAS. We postulated that MC histamine H4-receptors (H4Rs), being Gαi/o-coupled, might activate a protein kinase C isotype–ε (PKCε)–aldehyde dehydrogenase type-2 (ALDH2) cascade, ultimately eliminating MC-degranulating and renin-releasing effects of aldehydes formed in I/R and associated arrhythmias. We tested this hypothesis in ex vivo hearts, human mastocytoma cells, and bone marrow–derived MCs from wild-type and H4R knockout mice. We found that activation of MC H4Rs mimics the cardioprotective anti-RAS effects of IPC and that protection depends on the sequential activation of PKCε and ALDH2 in MCs, reducing aldehyde-induced MC degranulation and renin release and alleviating reperfusion arrhythmias. These cardioprotective effects are mimicked by selective H4R agonists and disappear when H4Rs are pharmacologically blocked or genetically deleted. Our results uncover a novel cardioprotective pathway in I/R, whereby activation of H4Rs on the MC membrane, possibly by MC-derived histamine, leads sequentially to PKCε and ALDH2 activation, reduction of toxic aldehyde-induced MC renin release, prevention of RAS activation, reduction of norepinephrine release, and ultimately to alleviation of reperfusion arrhythmias. This newly discovered protective pathway suggests that MC H4Rs may represent a new pharmacologic and therapeutic target for the direct alleviation of RAS-induced cardiac dysfunctions, including ischemic heart disease and congestive heart failure. PMID:24696042

  19. Lanthanum (III) regulates the nitrogen assimilation in soybean seedlings under ultraviolet-B radiation.

    PubMed

    Huang, Guangrong; Wang, Lihong; Zhou, Qing

    2013-01-01

    Ultraviolet-B (UV-B, 280-320 nm) radiation has seriously affected the growth of plants. Finding the technology/method to alleviate the damage of UV-B radiation has become a frontal topic in the field of environmental science. The pretreatment with rare earth elements (REEs) is an effective method, but the regulation mechanism of REEs is unknown. Here, the regulation effects of lanthanum (La(III)) on nitrogen assimilation in soybean seedlings (Glycine max L.) under ultraviolet-B radiation were investigated to elucidate the regulation mechanism of REEs on plants under UV-B radiation. UV-B radiation led to the inhibition in the activities of the key enzymes (nitrate reductase, glutamine synthetase, glutamate synthase) in the nitrogen assimilation, the decrease in the contents of nitrate and soluble proteins, as well as the increase in the content of amino acid in soybean seedlings. The change degree of UV-B radiation at the high level (0.45 W m(-2)) was higher than that of UV-B radiation at the low level (0.15 W m(-2)). The pretreatment with 20 mg L(-1) La(III) could alleviate the effects of UV-B radiation on the activities of nitrate reductase, glutamine synthetase, glutamate synthase, and glutamate dehydrogenase, promoting amino acid conversion and protein synthesis in soybean seedlings. The regulation effect of La(III) under UV-B radiation at the low level was better than that of UV-B radiation at the high level. The results indicated that the pretreatment with 20 mg L(-1) La(III) could alleviate the inhibition of UV-B radiation on nitrogen assimilation in soybean seedlings.

  20. Pharmacologic targeting of bacterial β-glucuronidase alleviates nonsteroidal anti-inflammatory drug-induced enteropathy in mice.

    PubMed

    LoGuidice, Amanda; Wallace, Bret D; Bendel, Lauren; Redinbo, Matthew R; Boelsterli, Urs A

    2012-05-01

    Small intestinal mucosal injury is a frequent adverse effect caused by nonsteroidal anti-inflammatory drugs (NSAIDs). The underlying mechanisms are not completely understood, but topical (luminal) effects have been implicated. Many carboxylic acid-containing NSAIDs, including diclofenac (DCF), are metabolized to acyl glucuronides (AGs), and/or ether glucuronides after ring hydroxylation, and exported into the biliary tree. In the gut, these conjugates are cleaved by bacterial β-glucuronidase, releasing the potentially harmful aglycone. We first confirmed that DCF-AG was an excellent substrate for purified Escherichia coli β-D-glucuronidase. Using a previously characterized novel bacteria-specific β-glucuronidase inhibitor (Inhibitor-1), we then found that the enzymatic hydrolysis of DCF-AG in vitro was inhibited concentration dependently (IC₅₀ ∼164 nM). We next hypothesized that pharmacologic inhibition of bacterial β-glucuronidase would reduce exposure of enterocytes to the aglycone and, as a result, alleviate enteropathy. C57BL/6J mice were administered an ulcerogenic dose of DCF (60 mg/kg i.p.) with or without oral pretreatment with Inhibitor-1 (10 μg per mouse, b.i.d.). Whereas DCF alone caused the formation of numerous large ulcers in the distal parts of the small intestine and increased (2-fold) the intestinal permeability to fluorescein isothiocyanate-dextran, Inhibitor-1 cotreatment significantly alleviated mucosal injury and reduced all parameters of enteropathy. Pharmacokinetic profiling of DCF plasma levels in mice revealed that Inhibitor-1 coadministration did not significantly alter the C(max), half-life, or area under the plasma concentration versus time curve of DCF. Thus, highly selective pharmacologic targeting of luminal bacterial β-D-glucuronidase by a novel class of small-molecule inhibitors protects against DCF-induced enteropathy without altering systemic drug exposure.

  1. Pharmacologic Targeting of Bacterial β-Glucuronidase Alleviates Nonsteroidal Anti-Inflammatory Drug-Induced Enteropathy in Mice

    PubMed Central

    LoGuidice, Amanda; Wallace, Bret D.; Bendel, Lauren; Redinbo, Matthew R.

    2012-01-01

    Small intestinal mucosal injury is a frequent adverse effect caused by nonsteroidal anti-inflammatory drugs (NSAIDs). The underlying mechanisms are not completely understood, but topical (luminal) effects have been implicated. Many carboxylic acid-containing NSAIDs, including diclofenac (DCF), are metabolized to acyl glucuronides (AGs), and/or ether glucuronides after ring hydroxylation, and exported into the biliary tree. In the gut, these conjugates are cleaved by bacterial β-glucuronidase, releasing the potentially harmful aglycone. We first confirmed that DCF-AG was an excellent substrate for purified Escherichia coli β-d-glucuronidase. Using a previously characterized novel bacteria-specific β-glucuronidase inhibitor (Inhibitor-1), we then found that the enzymatic hydrolysis of DCF-AG in vitro was inhibited concentration dependently (IC50 ∼164 nM). We next hypothesized that pharmacologic inhibition of bacterial β-glucuronidase would reduce exposure of enterocytes to the aglycone and, as a result, alleviate enteropathy. C57BL/6J mice were administered an ulcerogenic dose of DCF (60 mg/kg i.p.) with or without oral pretreatment with Inhibitor-1 (10 μg per mouse, b.i.d.). Whereas DCF alone caused the formation of numerous large ulcers in the distal parts of the small intestine and increased (2-fold) the intestinal permeability to fluorescein isothiocyanate-dextran, Inhibitor-1 cotreatment significantly alleviated mucosal injury and reduced all parameters of enteropathy. Pharmacokinetic profiling of DCF plasma levels in mice revealed that Inhibitor-1 coadministration did not significantly alter the Cmax, half-life, or area under the plasma concentration versus time curve of DCF. Thus, highly selective pharmacologic targeting of luminal bacterial β-d-glucuronidase by a novel class of small-molecule inhibitors protects against DCF-induced enteropathy without altering systemic drug exposure. PMID:22328575

  2. 20(R)-ginsenoside Rg3, a rare saponin from red ginseng, ameliorates acetaminophen-induced hepatotoxicity by suppressing PI3K/AKT pathway-mediated inflammation and apoptosis.

    PubMed

    Zhou, Yan-Dan; Hou, Jin-Gang; Liu, Wei; Ren, Shen; Wang, Ying-Ping; Zhang, Rui; Chen, Chen; Wang, Zi; Li, Wei

    2018-06-01

    Although ginsenoside Rg3 was isolated as a major component of Korea red ginseng and confirmed to exert potential hepatoprotective effect on acetaminophen (APAP)-induced liver injury via induction of glutathione S-transferase (GST) in vitro, thein vivo hepatoprotective effect of Rg3 and the underlying molecular mechanism of action remain unclear. The current study was aimed to explore whether 20(R)-Ginsenoside Rg3 (20(R)-Rg3) could alleviate acetaminophen-induced liver injury in mice and to determine the involvement of PI3K/AKT signaling pathway. Our findings demonstrated that a single injection of APAP (250 mg/kg) increased the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β); such increases were attenuated by pretreatment of mice with 20(R)-Rg3 for seven days. The depletion of glutathione (GSH), generation of malondialdehyde (MDA) and the over expression of cytochrome P450 E1 (CYP2E1) and 4-hydroxynonenal (4-HNE) caused by APAP exposure were also inhibited by 20(R)-Rg3 pretreatment. Moreover, 20(R)-Rg3 pretreatment significantly alleviated APAP-induced apoptosis, necrosis, and inflammatory infiltration in liver tissues. Importantly, 20(R)-Rg3 effectively attenuated APAP-induced liver injury in part via activating PI3K/AKT signaling pathway. In summary, 20(R)-Rg3 exerted liver protection against APAP-caused hepatotoxicity evidenced by inhibition of oxidative stress and inflammatory response, alleviation of hepatocellular necrosis and apoptosis via activation of PI3K/AKT signaling pathway, showing potential as a novel therapeutic agent to prevent liver damage. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Effects of early-life exposure to THIP on brainstem neuronal excitability in the Mecp2-null mouse model of Rett syndrome before and after drug withdrawal.

    PubMed

    Zhong, Weiwei; Johnson, Christopher M; Cui, Ningren; Oginsky, Max F; Wu, Yang; Jiang, Chun

    2017-01-01

    Rett syndrome (RTT) is mostly caused by mutations of the X-linked MECP2 gene. Although the causal neuronal mechanisms are still unclear, accumulating experimental evidence obtained from Mecp2 -/Y mice suggests that imbalanced excitation/inhibition in central neurons plays a major role. Several approaches may help to rebalance the excitation/inhibition, including agonists of GABA A receptors (GABA A R). Indeed, our previous studies have shown that early-life exposure of Mecp2-null mice to the extrasynaptic GABA A R agonist THIP alleviates several RTT-like symptoms including breathing disorders, motor dysfunction, social behaviors, and lifespan. However, how the chronic THIP affects the Mecp2 -/Y mice at the cellular level remains elusive. Here, we show that the THIP exposure in early lives markedly alleviated hyperexcitability of two types of brainstem neurons in Mecp2 -/Y mice. In neurons of the locus coeruleus (LC), known to be involved in breathing regulation, the hyperexcitability showed clear age-dependence, which was associated with age-dependent deterioration of the RTT-like breathing irregularities. Both the neuronal hyperexcitability and the breathing disorders were relieved with early THIP treatment. In neurons of the mesencephalic trigeminal nucleus (Me5), both the neuronal hyperexcitability and the changes in intrinsic membrane properties were alleviated with the THIP treatment in Mecp2-null mice. The effects of THIP on both LC and Me5 neuronal excitability remained 1 week after withdrawal. Persistent alleviation of breathing abnormalities in Mecp2 -/Y mice was also observed a week after THIP withdrawal. These results suggest that early-life exposure to THIP, a potential therapeutic medicine, appears capable of controlling neuronal hyperexcitability in Mecp2 -/Y mice, which occurs in the absence of THIP in the recording solution, lasts at least 1 week after withdrawal, and may contribute to the RTT-like symptom mitigation. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  4. Effects of AIT-082, a purine derivative, on tremor induced by arecoline or oxotremorine in mice.

    PubMed

    Nannan, Gao; Runmei, Yang; Fusheng, Lin; Shoulan, Zhang; Guangqing, Lei

    2007-01-01

    The effects of AIT-082, a hypoxanthine derivative, on tremor in mice were investigated. The mice received intragastric administration of AIT-082 for consecutive 60 days at doses of 150, 300 and 600 mg.kg(-1). The results showed that AIT-082 not only effectively inhibited the tremor induced by arecoline or oxotremorine, but also alleviated the tremor intensity and significantly shortened the tremor durations. The inhibition of tremor was perhaps associated with the central cholinergic nerve depressant effects as well as the stimulation of proliferation and differentiation of nerve cells. Copyright (c) 2007 S. Karger AG, Basel.

  5. Long noncoding RNA HAGLROS regulates cell apoptosis and autophagy in lipopolysaccharides-induced WI-38 cells via modulating miR-100/NF-κB axis.

    PubMed

    Liu, Meihan; Han, Tao; Shi, Shaomin; Chen, Enqi

    2018-06-07

    Pneumonia is a lower respiratory disease caused by pathogens or other factors. This study aimed to explore the roles and mechanism of long noncoding RNA HAGLROS in lipopolysaccharides (LPS)-induced inflammatory injury in pneumonia. The HAGLROS expression in serum of patients with acute stage pneumonia was detected. To induce pulmonary injury, WI-38 human lung fibroblasts were stimulated with lipopolysaccharides (LPS). The HAGLROS expressions in LPS-treated WI-38 cells and the effects of HAGLROS knockdown on the viability, apoptosis, and autophagy of LPS-induced cells were detected. Moreover, the regulatory relationship between HAGLROS and miR-100 was explored as well as the functional targets of miR-100 were identified. Furthermore, the regulatory relationship between miR-100 and PI3K/AKT/NF-κB pathway was elucidated. LncRNA HAGLROS was higher expressed in serum of patients with acute stage pneumonia compared with that in serum of healthy control. LPS caused WI-38 cell injury and increased HAGLROS levels. Downregulation of HAGLROS alleviated LPS-induced cell injury via increasing cell viability, and inhibiting apoptosis and autophagy. Moreover, there was a negative correlation between HAGLROS and miR-100, and the effects of HAGLROS downregulation on LPS-induced apoptosis and autophagy in WI-38 cells were by regulation of miR-100. Furthermore, NFΚB3 was verified as a functional target of miR-100 and effects of miR-100 inhibition on LPS-induced WI-38 cell injury were alleviated by knockdown of NFΚB3. Besides, Knockdown of HAGLROS inhibited the activation of PI3K/AKT/NF-κB pathway. Our findings reveal that downregulation of HAGLROS may alleviate LPS-induced inflammatory injury in WI-38 cells via modulating miR-100/NF-κB axis. HAGLROS/miR-100/NF-κB axis may provide a new strategy for treating acute stage of pneumonia. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Characterization of Arginase Expression in Glioma-Associated Microglia and Macrophages

    PubMed Central

    Zhang, Leying; Gao, Hang; Song, Yanyan; Ren, Hui; Ouyang, Mao; Wu, Xiwei; D’Apuzzo, Massimo; Badie, Behnam

    2016-01-01

    Microglia (MG) and macrophages (MPs) represent a significant component of the inflammatory response to gliomas. When activated, MG/MP release a variety of pro-inflammatory cytokines, however, they also secrete anti-inflammatory factors that limit their cytotoxic function. The balance between pro and anti-inflammatory functions dictates their antitumor activity. To evaluate potential variations in MG and MP function in gliomas, we isolated these cells (and other Gr1+ cells) from intracranial GL261 murine gliomas by FACS and evaluated their gene expression profiles by microarray analysis. As expected, arginase 1 (Arg1, M2 marker) was highly expressed by tumor-associated Gr1+, MG and MP. However, in contrast to MP and Gr1+ cells that expressed Arg1 shortly after tumor trafficking, Arg1 expression in MG was delayed and occurred in larger tumors. Interestingly, depletion of MPs in tumors did not prevent MG polarization, suggesting direct influence of tumor-specific factors on MG Arg1 upregulation. Finally, Arg1 expression was confirmed in human GBM samples, but most Arg1+ cells were neutrophils and not MPs. These findings confirm variations in tumor MG and MP polarization states and its dependency on tumor microenvironmental factors. PMID:27936099

  7. Characterization of Arginase Expression in Glioma-Associated Microglia and Macrophages.

    PubMed

    Zhang, Ian; Alizadeh, Darya; Liang, Junling; Zhang, Leying; Gao, Hang; Song, Yanyan; Ren, Hui; Ouyang, Mao; Wu, Xiwei; D'Apuzzo, Massimo; Badie, Behnam

    2016-01-01

    Microglia (MG) and macrophages (MPs) represent a significant component of the inflammatory response to gliomas. When activated, MG/MP release a variety of pro-inflammatory cytokines, however, they also secrete anti-inflammatory factors that limit their cytotoxic function. The balance between pro and anti-inflammatory functions dictates their antitumor activity. To evaluate potential variations in MG and MP function in gliomas, we isolated these cells (and other Gr1+ cells) from intracranial GL261 murine gliomas by FACS and evaluated their gene expression profiles by microarray analysis. As expected, arginase 1 (Arg1, M2 marker) was highly expressed by tumor-associated Gr1+, MG and MP. However, in contrast to MP and Gr1+ cells that expressed Arg1 shortly after tumor trafficking, Arg1 expression in MG was delayed and occurred in larger tumors. Interestingly, depletion of MPs in tumors did not prevent MG polarization, suggesting direct influence of tumor-specific factors on MG Arg1 upregulation. Finally, Arg1 expression was confirmed in human GBM samples, but most Arg1+ cells were neutrophils and not MPs. These findings confirm variations in tumor MG and MP polarization states and its dependency on tumor microenvironmental factors.

  8. Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination

    NASA Astrophysics Data System (ADS)

    de Santo, Carmela; Serafini, Paolo; Marigo, Ilaria; Dolcetti, Luigi; Bolla, Manlio; del Soldato, Piero; Melani, Cecilia; Guiducci, Cristiana; Colombo, Mario P.; Iezzi, Manuela; Musiani, Piero; Zanovello, Paola; Bronte, Vincenzo

    2005-03-01

    Active suppression of tumor-specific T lymphocytes can limit the immune-mediated destruction of cancer cells. Of the various strategies used by tumors to counteract immune attacks, myeloid suppressors recruited by growing cancers are particularly efficient, often resulting in the induction of systemic T lymphocyte dysfunction. We have previously shown that the mechanism by which myeloid cells from tumor-bearing hosts block immune defense strategies involves two enzymes that metabolize L-arginine: arginase and nitric oxide (NO) synthase. NO-releasing aspirin is a classic aspirin molecule covalently linked to a NO donor group. NO aspirin does not possess direct antitumor activity. However, by interfering with the inhibitory enzymatic activities of myeloid cells, orally administered NO aspirin normalized the immune status of tumor-bearing hosts, increased the number and function of tumor-antigen-specific T lymphocytes, and enhanced the preventive and therapeutic effectiveness of the antitumor immunity elicited by cancer vaccination. Because cancer vaccines and NO aspirin are currently being investigated in independent phase I/II clinical trials, these findings offer a rationale to combine these treatments in subjects with advanced neoplastic diseases. arginase | immunosuppression | myeloid cells | nitric oxide | immunotherapy

  9. Agmatine: at the crossroads of the arginine pathways.

    PubMed

    Satriano, Joseph

    2003-12-01

    In acute inflammatory responses, such as wound healing and glomerulonephritis, arginine is the precursor for production of the cytostatic molecule nitric oxide (NO) and the pro-proliferative polyamines. NO is an early phase response whereas increased generation of polyamines is requisite for the later, repair phase response. The temporal switch of arginine as a substrate for the inducible nitric oxide synthase (iNOS)/NO axis to arginase/ornithine decarboxylase (ODC)/polyamine axis is subject to regulation by inflammatory cytokines as well as interregulation by the arginine metabolites themselves. Herein we describe the capacity of another arginine pathway, the metabolism of arginine to agmatine by arginine decarboxylase (ADC), to aid in this interregulation. Agmatine is an antiproliferative molecule due to its suppressive effects on intracellular polyamine levels, whereas the aldehyde metabolite of agmatine is a potent inhibitor of iNOS. We propose that the catabolism of agmatine to its aldehyde metabolite may act as a gating mechanism at the transition from the iNOS/NO axis to the arginase/ODC/polyamine axis. Thus, agmatine has the potential to serve in the coordination of the early and repair phase pathways of arginine in inflammation.

  10. Arginine pathways and the inflammatory response: interregulation of nitric oxide and polyamines: review article.

    PubMed

    Satriano, J

    2004-07-01

    An early response to an acute inflammatory insult, such as wound healing or experimental glomerulonephritis, is the conversion of arginine to the cytostatic molecule nitric oxide (NO). This 'anti-bacterial' phase is followed by the conversion of arginine to ornithine, which is the precursor for the pro-proliferative polyamines as well as proline for the production of extracellular matrix. This latter, pro-growth phase constitutes a 'repair' phase response. The temporal switch of arginine as a substrate for the cytostatic iNOS/NO axis to the pro-growth arginase/ ornithine/polyamine and proline axis is subject to regulation by inflammatory cytokines as well as interregulation by the arginine metabolites themselves. Arginine is also the precursor for another biogenic amine, agmatine. Here we describe the capacity of these three arginine pathways to interregulate, and propose a model whereby agmatine has the potential to serve in the coordination of the early and repair phase pathways of arginine in the inflammatory response by acting as a gating mechanism at the transition from the iNOS/NO axis to the arginase/ODC/polyamine axis. Due to the pathophysiologic and therapeutic potential, we will further examine the antiproliferative effects of agmatine on the polyamine pathway.

  11. A Sativex®-like combination of phytocannabinoids as a disease-modifying therapy in a viral model of multiple sclerosis

    PubMed Central

    Feliú, A; Moreno-Martet, M; Mecha, M; Carrillo-Salinas, F J; de Lago, E; Fernández-Ruiz, J; Guaza, C

    2015-01-01

    Background and Purpose Sativex® is an oromucosal spray, containing equivalent amounts of Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD)-botanical drug substance (BDS), which has been approved for the treatment of spasticity and pain associated to multiple sclerosis (MS). In this study, we investigated whether Sativex may also serve as a disease-modifying agent in the Theiler's murine encephalomyelitis virus-induced demyelinating disease model of MS. Experimental Approach A Sativex-like combination of phytocannabinoids and each phytocannabinoid alone were administered to mice once they had established MS-like symptoms. Motor activity and the putative targets of these cannabinoids were assessed to evaluate therapeutic efficacy. The accumulation of chondroitin sulfate proteoglycans (CSPGs) and astrogliosis were assessed in the spinal cord and the effect of Sativex on CSPGs production was evaluated in astrocyte cultures. Key Results Sativex improved motor activity – reduced CNS infiltrates, microglial activity, axonal damage – and restored myelin morphology. Similarly, we found weaker vascular cell adhesion molecule-1 staining and IL-1β gene expression but an up-regulation of arginase-1. The astrogliosis and accumulation of CSPGs in the spinal cord in vehicle-infected animals were decreased by Sativex, as was the synthesis and release of CSPGs by astrocytes in culture. We found that CBD-BDS alone alleviated motor deterioration to a similar extent as Sativex, acting through PPARγ receptors whereas Δ9-THC-BDS produced weaker effects, acting through CB2 and primarily CB1 receptors. Conclusions and Implications The data support the therapeutic potential of Sativex to slow MS progression and its relevance in CNS repair. PMID:25857324

  12. Radix Stellariae extract prevents high-fat-diet-induced obesity in C57BL/6 mice by accelerating energy metabolism

    PubMed Central

    Li, Yin; Liu, Xin; Fan, Yu

    2017-01-01

    Stellaria dichotoma L. is widely distributed in Ningxia and surrounding areas in northwestern China. Its root, Radix Stellariae (RS), has been used in herbal formulae for treating asthenic-fever, infection, malaria, dyspepsia in children and several other symptoms. This study investigated whether the RS extract (RSE) alleviates metabolic disorders. The results indicated that RSE significantly inhibited body weight gain in high-fat (HF)-diet-fed C57BL/6 mice, reduced fasting glucose levels, and improved insulin tolerance. Moreover, RSE increased the body temperature of the mice and the expression of uncoupling proteins and peroxisome proliferator-activated receptors in the white adipose tissue. Thus, RSE alleviated metabolic disorders in HF-diet-fed C57BL/6 mice by potentially activating UCP and PPAR signaling. PMID:28507819

  13. Cyclic AMP Pathway Suppress Autoimmune Neuroinflammation by Inhibiting Functions of Encephalitogenic CD4 T Cells and Enhancing M2 Macrophage Polarization at the Site of Inflammation

    PubMed Central

    Veremeyko, Tatyana; Yung, Amanda W. Y.; Dukhinova, Marina; Kuznetsova, Inna S.; Pomytkin, Igor; Lyundup, Alexey; Strekalova, Tatyana; Barteneva, Natasha S.; Ponomarev, Eugene D.

    2018-01-01

    Although it has been demonstrated that cAMP pathway affect both adaptive and innate cell functions, the role of this pathway in the regulation of T-cell-mediated central nervous system (CNS) autoimmune inflammation, such as in experimental autoimmune encephalomyelitis (EAE), remains unclear. It is also unclear how cAMP pathway affects the function of CD4 T cells in vivo at the site of inflammation. We found that adenylyl cyclase activator Forskolin besides inhibition of functions autoimmune CD4 T cells also upregulated microRNA (miR)-124 in the CNS during EAE, which is associated with M2 phenotype of microglia/macrophages. Our study further established that in addition to direct influence of cAMP pathway on CD4 T cells, stimulation of this pathway promoted macrophage polarization toward M2 leading to indirect inhibition of function of T cells in the CNS. We demonstrated that Forskolin together with IL-4 or with Forskolin together with IL-4 and IFNγ effectively stimulated M2 phenotype of macrophages indicating high potency of this pathway in reprogramming of macrophage polarization in Th2- and even in Th1/Th2-mixed inflammatory conditions such as EAE. Mechanistically, Forskolin and/or IL-4 activated ERK pathway in macrophages resulting in the upregulation of M2-associated molecules miR-124, arginase (Arg)1, and Mannose receptor C-type 1 (Mrc1), which was reversed by ERK inhibitors. Administration of Forskolin after the onset of EAE substantially upregulated M2 markers Arg1, Mrc1, Fizz1, and Ym1 and inhibited M1 markers nitric oxide synthetase 2 and CD86 in the CNS during EAE resulting in decrease in macrophage/microglia activation, lymphocyte and CD4 T cell infiltration, and the recovery from the disease. Forskolin inhibited proliferation and IFNγ production by CD4 T cells in the CNS but had rather weak direct effect on proliferation of autoimmune T cells in the periphery and in vitro, suggesting prevalence of indirect effect of Forskolin on differentiation and functions of autoimmune CD4 T cells in vivo. Thus, our data indicate that Forskolin has potency to skew balance toward M2 affecting ERK pathway in macrophages and indirectly inhibit pathogenic CD4 T cells in the CNS leading to the suppression of autoimmune inflammation. These data may have also implications for future therapeutic approaches to inhibit autoimmune Th1 cells at the site of tissue inflammation. PMID:29422898

  14. Cyclic AMP Pathway Suppress Autoimmune Neuroinflammation by Inhibiting Functions of Encephalitogenic CD4 T Cells and Enhancing M2 Macrophage Polarization at the Site of Inflammation.

    PubMed

    Veremeyko, Tatyana; Yung, Amanda W Y; Dukhinova, Marina; Kuznetsova, Inna S; Pomytkin, Igor; Lyundup, Alexey; Strekalova, Tatyana; Barteneva, Natasha S; Ponomarev, Eugene D

    2018-01-01

    Although it has been demonstrated that cAMP pathway affect both adaptive and innate cell functions, the role of this pathway in the regulation of T-cell-mediated central nervous system (CNS) autoimmune inflammation, such as in experimental autoimmune encephalomyelitis (EAE), remains unclear. It is also unclear how cAMP pathway affects the function of CD4 T cells in vivo at the site of inflammation. We found that adenylyl cyclase activator Forskolin besides inhibition of functions autoimmune CD4 T cells also upregulated microRNA (miR)-124 in the CNS during EAE, which is associated with M2 phenotype of microglia/macrophages. Our study further established that in addition to direct influence of cAMP pathway on CD4 T cells, stimulation of this pathway promoted macrophage polarization toward M2 leading to indirect inhibition of function of T cells in the CNS. We demonstrated that Forskolin together with IL-4 or with Forskolin together with IL-4 and IFNγ effectively stimulated M2 phenotype of macrophages indicating high potency of this pathway in reprogramming of macrophage polarization in Th2- and even in Th1/Th2-mixed inflammatory conditions such as EAE. Mechanistically, Forskolin and/or IL-4 activated ERK pathway in macrophages resulting in the upregulation of M2-associated molecules miR-124, arginase (Arg)1, and Mannose receptor C-type 1 (Mrc1), which was reversed by ERK inhibitors. Administration of Forskolin after the onset of EAE substantially upregulated M2 markers Arg1, Mrc1, Fizz1, and Ym1 and inhibited M1 markers nitric oxide synthetase 2 and CD86 in the CNS during EAE resulting in decrease in macrophage/microglia activation, lymphocyte and CD4 T cell infiltration, and the recovery from the disease. Forskolin inhibited proliferation and IFNγ production by CD4 T cells in the CNS but had rather weak direct effect on proliferation of autoimmune T cells in the periphery and in vitro , suggesting prevalence of indirect effect of Forskolin on differentiation and functions of autoimmune CD4 T cells in vivo . Thus, our data indicate that Forskolin has potency to skew balance toward M2 affecting ERK pathway in macrophages and indirectly inhibit pathogenic CD4 T cells in the CNS leading to the suppression of autoimmune inflammation. These data may have also implications for future therapeutic approaches to inhibit autoimmune Th1 cells at the site of tissue inflammation.

  15. Ethylene Mediates Alkaline-Induced Rice Growth Inhibition by Negatively Regulating Plasma Membrane H+-ATPase Activity in Roots

    PubMed Central

    Chen, Haifei; Zhang, Quan; Cai, Hongmei; Xu, Fangsen

    2017-01-01

    pH is an important factor regulating plant growth. Here, we found that rice was better adapted to low pH than alkaline conditions, as its growth was severely inhibited at high pH, with shorter root length and an extreme biomass reduction. Under alkaline stress, the expression of genes for ethylene biosynthesis enzymes in rice roots was strongly induced by high pH and exogenous ethylene precursor ACC and ethylene overproduction in etol1-1 mutant aggravated the alkaline stress-mediated inhibition of rice growth, especially for the root elongation with decreased cell length in root apical regions. Conversely, the ethylene perception antagonist silver (Ag+) and ein2-1 mutants could partly alleviate the alkaline-induced root elongation inhibition. The H+-ATPase activity was extremely inhibited by alkaline stress and exogenous ACC. However, the H+-ATPase-mediated rhizosphere acidification was enhanced by exogenous Ag+, while H+ efflux on the root surface was extremely inhibited by exogenous ACC, suggesting that ethylene negatively regulated H+-ATPase activity under high-pH stress. Our results demonstrate that H+-ATPase is involved in ethylene-mediated inhibition of rice growth under alkaline stress. PMID:29114258

  16. Polysaccharide Agaricus blazei Murill stimulates myeloid derived suppressor cell differentiation from M2 to M1 type, which mediates inhibition of tumour immune-evasion via the Toll-like receptor 2 pathway.

    PubMed

    Liu, Yi; Zhang, Lingyun; Zhu, Xiangxiang; Wang, Yuehua; Liu, WenWei; Gong, Wei

    2015-11-01

    Gr-1(+) CD11b(+) myeloid-derived suppressor cells (MDSCs) accumulate in tumor-bearing animals and play a critical negative role during tumor immunotherapy. Strategies for inhibition of MDSCs are expected to improve cancer immunotherapy. Polysaccharide Agaricus blazei Murill (pAbM) has been found to have anti-cancer activity, but the underlying mechanism of this is poorly understood. Here, pAbM directly activated the purified MDSCs through inducing the expression of interleukin-6 (IL-6), IL-12, tumour necrosis factor and inducible nitric oxide synthase (iNOS), CD86, MHC II, and pSTAT1 of it, and only affected natural killer and T cells in the presence of Gr-1(+) CD11b(+) monocytic MDSCs. On further analysis, we demonstrated that pAbM could selectively block the Toll-like receptor 2 (TLR2) signal of Gr-1(+) CD11b(+) MDSCs and increased their M1-type macrophage characteristics, such as producing IL-12, lowering expression of Arginase 1 and increasing expression of iNOS. Extensive study showed that Gr-1(+) CD11b(+) MDSCs by pAbM treatment had less ability to convert the CD4(+) CD25(-) cells into CD4(+) CD25(+) phenotype. Moreover, result from selective depletion of specific cell populations in xenograft mice model suggested that the anti-tumour effect of pAbM was dependent on Gr-1(+ ) CD11b(+) monocytes, nether CD8(+) T cells nor CD4(+) T cells. In addition to, pAbM did not inhibit tumour growth in TLR2(-/-) mice. All together, these results suggested that pAbM, a natural product commonly used for cancer treatment, was a specific TLR2 agonist and had potent anti-tumour effects through the opposite of the suppressive function of Gr-1(+) CD11b(+) MDSCs. © 2015 John Wiley & Sons Ltd.

  17. Effect of calcium and light on the germination of Urochondra setulosa under different salts*

    PubMed Central

    Shaikh, Faiza; Gul, Bilquees; Li, Wei-qiang; Liu, Xiao-jing; Khan, M. Ajmal

    2007-01-01

    Urochondra setulosa (Trin.) C.E. Hubbard is a coastal halophytic grass thriving on the coastal dunes along the Pakistani seashore. This grass could be useful in coastal sand dune stabilization using seawater irrigation. The purpose of this investigation was to test the hypothesis that Ca2+ (0.0, 2.5, 5.0, 10.0 and 50.0 mmol/L) alleviates the adverse effects of KCl, MgSO4, NaCl and Na2SO4 at 0, 200, 400, 600, 800 and 1000 mmol/L on the germination of Urochondra setulosa. Seed germination was inhibited with increase in salt concentration with few seeds germinated at and above 400 mmol/L concentration. No seed germinated in any of the KCl treatments. Inclusion of CaCl2 substantially alleviated the inhibitory effects of all salts. Germination was higher under photoperiod in comparison to those seeds germinated under complete darkness. Among the CaCl2 concentrations used, 10 mmol/L was most effective in alleviating salinity effects and allowing few seeds to germinate at 1000 mmol/L KCl, MgSO4, NaCl and Na2SO4 solution. PMID:17173358

  18. Alleviation of isoproturon toxicity to wheat by exogenous application of glutathione.

    PubMed

    Nemat Alla, Mamdouh M; Hassan, Nemat M

    2014-06-01

    Treatment with the recommended field dose of isoproturon to 7-d-old wheat seedlings significantly decreased shoot height, fresh and dry weights during the subsequent 15days. Meanwhile contents of carotenoids, chlorophylls and anthocyanin as well as activities of δ-aminolevulinate dehydratase (ALA-D), phenylalanine ammonia lyase (PAL) and tyrosine ammonia lyase (TAL) were significantly inhibited. On the other hand, the herbicide significantly increased malondialdehyde (MDA), a naturally occurring product of lipid peroxidation and H2O2, while it significantly decreased the contents of glutathione (GSH) and ascorbic acid (AsA) and reduced the activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX). These findings indicate an induction of a stress status in wheat seedlings following isoproturon treatment. However, exogenous GSH appeared to limit the toxic effects of isoproturon and seemed to overcome this stress status. Most likely, contents of pigment and activities of enzymes were raised to approximate control levels. Moreover, antioxidants were elevated and the oxidative stress indices seemed to be alleviated by GSH application. These results indicate that exogenous GSH enhances enzymatic and nonenzymatic antioxidants to alleviate the effects of isoproturon. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Cannabinoid receptor 2 activation restricts fibrosis and alleviates hydrocephalus after intraventricular hemorrhage.

    PubMed

    Tan, Qiang; Chen, Qianwei; Feng, Zhou; Shi, Xia; Tang, Jun; Tao, Yihao; Jiang, Bing; Tan, Liang; Feng, Hua; Zhu, Gang; Yang, Yunfeng; Chen, Zhi

    2017-01-01

    Fibrosis in ventricular system has a role in hydrocephalus following intraventricular hemorrhage (IVH). The cannabinoid receptor 2 (CB2) has been reported to participate in alleviating the fibrosis process of many diseases. However, its role in fibrosis after IVH was unclear so far, and we hypothesized that CB2 activation has potential to attenuate hydrocephalus after IVH via restricting fibrosis. So the present study was designed to investigate this hypothesis in a modified rat IVH model. Autologous non-anticoagulative blood injection model was induced to mimic ventricular extension of hemorrhage in adult Sprague-Dawley rats. Rats were randomized to receive JWH-133(CB2 agonist), SR144528 (CB2 antagonist) or saline. The lateral ventricular volumes, fibrosis in the subarachnoid space and ventricular wall, transforming growth factor-β 1(TGF-β1) in cerebrospinal fluid and brain tissue, and animal neurological scores were measured to evaluate the effects of CB2 in hydrocephalus following IVH. CB2 agonist JWH-133 significantly decreased the lateral ventricular volumes, improved the associated neurological deficits, down-regulated TGF-β1 expression, and alleviated fibrosis in the subarachnoid space and ventricular wall after IVH. All of these effects were reversed by SR144528. In conclusion, CB2 may have anti-fibrogenic effects after IVH. CB2 agonist suppressed fibrosis of ventricular system and alleviated hydrocephalus following IVH, which is partly mediated by inhibiting TGF-β1. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Alleviative effect of grape seed proanthocyanidin extract on small artery vascular remodeling in spontaneous hypertensive rats via inhibition of collagen hyperplasia.

    PubMed

    Liang, Ying; Gao, Haiqing; Wang, Jian; Wang, Quanzhen; Zhao, Shaohua; Zhang, Jun; Qiu, Jie

    2017-05-01

    Vascular remodeling is a primary contributor to the initiation and development of hypertension, which has a pathological association with subsequent multi-organ damage. Grape seed proanthocyanidin extracts (GSPE) exhibit protective cardiovascular effects, resulting from their anti‑oxidant and anti‑inflammatory properties. However, the function and mechanism underlying the effect of GSPE on small artery remodeling remain to be elucidated. The present study investigated the effect of GSPE on vascular remodeling in the mesenteric small arteries of spontaneous hypertensive rats (SHR). Parameters associated with hypertension, including systolic blood pressure, oxidative stress, morphological and ultrastructural alteration of vessels, deposition of collagen and transforming growth factor (TGF)-β1, were analyzed. The results revealed that GSPE alleviated hypertension-induced hypertrophic vascular remodeling in the small arteries of SHR, which was independent of blood pressure. GSPE decreased oxidative stress associated with hypertension in SHR and suppressed the increased expression of TGF‑β1, which blocked the translocation and differentiation of adventitia fibroblasts and eventually inhibited collagen hyperplasia in the blood vessel. The inhibitory effect of GSPE on small artery remodeling was achieved via its suppressive effect on oxidant production and the subsequent intercellular and intracellular cascades. The findings of the present study supported the potential therapeutic value of GSPE for the treatment of hypertension.

  1. Neuroprotective Effects of Sevoflurane against Electromagnetic Pulse-Induced Brain Injury through Inhibition of Neuronal Oxidative Stress and Apoptosis

    PubMed Central

    Wang, Jin; Han, Li-Chun; Li, Li-Ya; Wu, Guang-Li; Hou, Yan-Ning; Guo, Guo-Zhen; Wang, Qiang; Sang, Han-Fei; Xu, Li-Xian

    2014-01-01

    Electromagnetic pulse (EMP) causes central nervous system damage and neurobehavioral disorders, and sevoflurane protects the brain from ischemic injury. We investigated the effects of sevoflurane on EMP-induced brain injury. Rats were exposed to EMP and immediately treated with sevoflurane. The protective effects of sevoflurane were assessed by Nissl staining, Fluoro-Jade C staining and electron microscopy. The neurobehavioral effects were assessed using the open-field test and the Morris water maze. Finally, primary cerebral cortical neurons were exposed to EMP and incubated with different concentration of sevoflurane. The cellular viability, lactate dehydrogenase (LDH) release, superoxide dismutase (SOD) activity and malondialdehyde (MDA) level were assayed. TUNEL staining was performed, and the expression of apoptotic markers was determined. The cerebral cortexes of EMP-exposed rats presented neuronal abnormalities. Sevoflurane alleviated these effects, as well as the learning and memory deficits caused by EMP exposure. In vitro, cell viability was reduced and LDH release was increased after EMP exposure; treatment with sevoflurane ameliorated these effects. Additionally, sevoflurane increased SOD activity, decreased MDA levels and alleviated neuronal apoptosis by regulating the expression of cleaved caspase-3, Bax and Bcl-2. These findings demonstrate that Sevoflurane conferred neuroprotective effects against EMP radiation-induced brain damage by inhibiting neuronal oxidative stress and apoptosis. PMID:24614080

  2. [Fisetin alleviates hypoxia/reoxygenation injury in rat hepatocytes via modulation of TLR4/NF-κB signaling pathway].

    PubMed

    Pu, Junliang; Wan, Lei; Zheng, Daofeng; Wei, Xufu; Wu, Zhongjun; Tang, Chengyong

    2017-07-01

    Objective To investigate the protective effect of fisetin (FIS) against hypoxia/reoxygenation (H/R) injury in rat hepatocytes and its mechanism. Methods H/R injury model of BRL-3A cells was established and the cells were pretreated with FIS. Survival rate was detected by CCK-8 assay. Cell apoptosis was measured by flow cytometry. The levels of ALT and AST were determined by microplate assay. The production of TNF-α and IL-1β were detected by ELISA. The mRNA and protein levels of TLR4 and NF-κBp65 were analyzed by quantitative real-time PCR and Western blotting, respectively. Results After subjected to H/R, cell survival rate decreased and the apoptosis level increased. The levels of ALT and AST in cell supernatant were elevated, so were the production of TNF-α and IL-1β. FIS pretreatment increased the cell survival rate and inhibited apoptosis. The levels of ALT, AST and the production of TNF-α and IL-1β were reduced significantly. Moreover, FIS inhibited the increasing expression levels of TLR4 and NF-κBp65 induced by H/R. Conclusion FIS alleviates the hepatocyte injury induced by H/R via modulation of TLR4/NF-κB signaling pathway.

  3. Neuroprotective effects of sevoflurane against electromagnetic pulse-induced brain injury through inhibition of neuronal oxidative stress and apoptosis.

    PubMed

    Deng, Bin; Xu, Hao; Zhang, Jin; Wang, Jin; Han, Li-Chun; Li, Li-Ya; Wu, Guang-Li; Hou, Yan-Ning; Guo, Guo-Zhen; Wang, Qiang; Sang, Han-Fei; Xu, Li-Xian

    2014-01-01

    Electromagnetic pulse (EMP) causes central nervous system damage and neurobehavioral disorders, and sevoflurane protects the brain from ischemic injury. We investigated the effects of sevoflurane on EMP-induced brain injury. Rats were exposed to EMP and immediately treated with sevoflurane. The protective effects of sevoflurane were assessed by Nissl staining, Fluoro-Jade C staining and electron microscopy. The neurobehavioral effects were assessed using the open-field test and the Morris water maze. Finally, primary cerebral cortical neurons were exposed to EMP and incubated with different concentration of sevoflurane. The cellular viability, lactate dehydrogenase (LDH) release, superoxide dismutase (SOD) activity and malondialdehyde (MDA) level were assayed. TUNEL staining was performed, and the expression of apoptotic markers was determined. The cerebral cortexes of EMP-exposed rats presented neuronal abnormalities. Sevoflurane alleviated these effects, as well as the learning and memory deficits caused by EMP exposure. In vitro, cell viability was reduced and LDH release was increased after EMP exposure; treatment with sevoflurane ameliorated these effects. Additionally, sevoflurane increased SOD activity, decreased MDA levels and alleviated neuronal apoptosis by regulating the expression of cleaved caspase-3, Bax and Bcl-2. These findings demonstrate that Sevoflurane conferred neuroprotective effects against EMP radiation-induced brain damage by inhibiting neuronal oxidative stress and apoptosis.

  4. Coniferyl Aldehyde Attenuates Radiation Enteropathy by Inhibiting Cell Death and Promoting Endothelial Cell Function

    PubMed Central

    Son, Yeonghoon; Jang, Jun-Ho; Lee, Yoon-Jin; Kim, Sung-Ho; Ko, Young-Gyo; Lee, Yun-Sil; Lee, Hae-June

    2015-01-01

    Radiation enteropathy is a common complication in cancer patients. The aim of this study was to investigate whether radiation-induced intestinal injury could be alleviated by coniferyl aldehyde (CA), an HSF1-inducing agent that increases cellular HSP70 expression. We systemically administered CA to mice with radiation enteropathy following abdominal irradiation (IR) to demonstrate the protective effects of CA against radiation-induced gastrointestinal injury. CA clearly alleviated acute radiation-induced intestinal damage, as reflected by the histopathological data and it also attenuated sub-acute enteritis. CA prevented intestinal crypt cell death and protected the microvasculature in the lamina propria during the acute and sub-acute phases of damage. CA induced HSF1 and HSP70 expression in both intestinal epithelial cells and endothelial cells in vitro. Additionally, CA protected against not only the apoptotic cell death of both endothelial and epithelial cells but also the loss of endothelial cell function following IR, indicating that CA has beneficial effects on the intestine. Our results provide novel insight into the effects of CA and suggest its role as a therapeutic candidate for radiation-induced enteropathy due to its ability to promote rapid re-proliferation of the intestinal epithelium by the synergic effects of the inhibition of cell death and the promotion of endothelial cell function. PMID:26029925

  5. Inhibition of Cathepsin B Alleviates Secondary Degeneration in Ipsilateral Thalamus After Focal Cerebral Infarction in Adult Rats.

    PubMed

    Zuo, Xialin; Hou, Qinghua; Jin, Jizi; Zhan, Lixuan; Li, Xinyu; Sun, Weiwen; Lin, Kunqin; Xu, En

    2016-09-01

    Secondary degeneration in areas beyond ischemic foci can inhibit poststroke recovery. The cysteine protease Cathepsin B (CathB) regulates cell death and intracellular protein catabolism. To investigate the roles of CathB in the development of secondary degeneration in the ventroposterior nucleus (VPN) of the ipsilateral thalamus after focal cerebral infarction, infarct volumes, immunohistochemistry and immunofluorescence, and Western blotting analyses were conducted in a distal middle cerebral artery occlusion (dMCAO) stroke model in adult rats. We observed marked neuron loss and gliosis in the ipsilateral thalamus after dMCAO, and the expression of CathB and cleaved caspase-3 in the VPN was significantly upregulated; glial cells were the major source of CathB. Although it had no effect on infarct volume, delayed intracerebroventricular treatment with the membrane-permeable CathB inhibitor CA-074Me suppressed the expression of CathB and cleaved caspase-3 in ipsilateral VPN and accordingly alleviated the secondary degeneration. These data indicate that CathB mediates a novel mechanism of secondary degeneration in the VPN of the ipsilateral thalamus after focal cortical infarction and suggest that CathB might be a therapeutic target for the prevention of secondary degeneration in patients after stroke. © 2016 American Association of Neuropathologists, Inc. All rights reserved.

  6. Rapamycin alleviates brain edema after focal cerebral ischemia reperfusion in rats.

    PubMed

    Guo, Wei; Feng, Guoying; Miao, Yanying; Liu, Guixiang; Xu, Chunsheng

    2014-06-01

    Brain edema is a major consequence of cerebral ischemia reperfusion. However, few effective therapeutic options are available for retarding the brain edema progression after cerebral ischemia. Recently, rapamycin has been shown to produce neuroprotective effects in rats after cerebral ischemia reperfusion. Whether rapamycin could alleviate this brain edema injury is still unclear. In this study, the rat stroke model was induced by a 1-h left transient middle cerebral artery occlusion using an intraluminal filament, followed by 48 h of reperfusion. The effects of rapamycin (250 μg/kg body weight, intraperitoneal; i.p.) on brain edema progression were evaluated. The results showed that rapamycin treatment significantly reduced the infarct volume, the water content of the brain tissue and the Evans blue extravasation through the blood-brain barrier (BBB). Rapamycin treatment could improve histological appearance of the brain tissue, increased the capillary lumen space and maintain the integrity of BBB. Rapamycin also inhibited matrix metalloproteinase 9 (MMP9) and aquaporin 4 (AQP4) expression. These data imply that rapamycin could improve brain edema progression after reperfusion injury through maintaining BBB integrity and inhibiting MMP9 and AQP4 expression. The data of this study provide a new possible approach for improving brain edema after cerebral ischemia reperfusion by administration of rapamycin.

  7. Danshen attenuates osteoarthritis-related cartilage degeneration through inhibition of NF-κB signaling pathway in vivo and in vitro.

    PubMed

    Xu, Xilin; Lv, Hang; Li, Xiaodong; Su, Hui; Zhang, Xiaofeng; Yang, Jun

    2017-12-01

    Danshen (Salvia miltiorrhiza) is a traditional Chinese medicine herb that can alleviate the symptoms of osteoarthritis (OA) (Söder et al. 2006) in animals. However, the underlying mechanisms remain poorly understood and require further investigation. In this study, rabbits with experimentally induced OA were given an intra-articular injection of danshen (0.7 mL/day) for 5 weeks. In addition to attenuating the cartilage degeneration of OA in the rabbits, danshen decreased the expression and activity of matrix metalloproteinase 9 (MMP-9) and MMP-13, and increased the expression of their natural inhibitors: tissue inhibitor of matrix metalloproteinase 1 (TIMP-1) and TIMP-2. Apoptosis in osteoarthritic cartilage tissues was attenuated by danshen, accompanied with increased expression of B cell lymphoma 2 (Bcl-2) and decreased levels of Bcl-2-associated X protein (Bax). Further, danshen inhibited the nuclear accumulation of nuclear factor kappa-B (NF-κB) p65 in osteoarthritic cartilage. The therapeutic effects of danshen in vivo were comparable to that of sodium hyaluronate, which is a drug used clinically for the treatment OA. In vitro, sodium nitroprusside (SNP) was used to stimulate apoptosis in primary rabbit chondrocytes. We found that the SNP-induced apoptosis was mitigated by danshen. BAY11-7028, an inhibitor of the NF-κB pathway, augmented danshen's anti-apoptotic effects in cells exposed to SNP. When these results are considered together, they indicate that danshen alleviates the cartilage injury in rabbit OA through inhibition of the NF-κB signaling pathway.

  8. Autophagy induced by AXL receptor tyrosine kinase alleviates acute liver injury via inhibition of NLRP3 inflammasome activation in mice.

    PubMed

    Han, Jihye; Bae, Joonbeom; Choi, Chang-Yong; Choi, Sang-Pil; Kang, Hyung-Sik; Jo, Eun-Kyeong; Park, Jongsun; Lee, Young Sik; Moon, Hyun-Seuk; Park, Chung-Gyu; Lee, Myung-Shik; Chun, Taehoon

    2016-12-01

    Severe hepatic inflammation is a common cause of acute or chronic liver disease. Macrophages are one of the key mediators which regulate the progress of hepatic inflammation. Increasing evidence shows that the TAM (TYRO3, AXL and MERTK) family of RTKs (receptor tyrosine kinases), which is expressed in macrophages, alleviates inflammatory responses through a negative feedback loop. However, the functional contribution of each TAM family member to the progression of hepatic inflammation remains elusive. In this study, we explore the role of individual TAM family proteins during autophagy induction and evaluate their contribution to hepatic inflammation. Among the TAM family of RTKs, AXL (AXL receptor tyrosine kinase) only induces autophagy in macrophages after interaction with its ligand, GAS6 (growth arrest specific 6). Based on our results, autophosphorylation of 2 tyrosine residues (Tyr815 and Tyr860) in the cytoplasmic domain of AXL in mice is required for autophagy induction and AXL-mediated autophagy induction is dependent on MAPK (mitogen-activated protein kinase)14 activity. Furthermore, induction of AXL-mediated autophagy prevents CASP1 (caspase 1)-dependent IL1B (interleukin 1, β) and IL18 (interleukin 18) maturation by inhibiting NLRP3 (NLR family, pyrin domain containing 3) inflammasome activation. In agreement with these observations, axl -/- mice show more severe symptoms than do wild-type (Axl +/+ ) mice following acute hepatic injury induced by administration of lipopolysaccharide (LPS) or carbon tetrachloride (CCl 4 ). Hence, GAS6-AXL signaling-mediated autophagy induction in murine macrophages ameliorates hepatic inflammatory responses by inhibiting NLRP3 inflammasome activation.

  9. Inhibition of cadmium ion uptake in rice (Oryza sativa) cells by a wall-bound form of silicon.

    PubMed

    Liu, Jian; Ma, Jie; He, Congwu; Li, Xiuli; Zhang, Wenjun; Xu, Fangsen; Lin, Yongjun; Wang, Lijun

    2013-11-01

    The stresses acting on plants that are alleviated by silicon (Si) range from biotic to abiotic stresses, such as heavy metal toxicity. However, the mechanism of stress alleviation by Si at the single-cell level is poorly understood. We cultivated suspended rice (Oryza sativa) cells and protoplasts and investigated them using a combination of plant nutritional and physical techniques including inductively coupled plasma mass spectrometry (ICP-MS), the scanning ion-selective electrode technique (SIET) and X-ray photoelectron spectroscopy (XPS). We found that most Si accumulated in the cell walls in a wall-bound organosilicon compound. Total cadmium (Cd) concentrations in protoplasts from Si-accumulating (+Si) cells were significantly reduced at moderate concentrations of Cd in the culture medium compared with those from Si-limiting (-Si) cells. In situ measurement of cellular fluxes of the cadmium ion (Cd(2+) ) in suspension cells and root cells of rice exposed to Cd(2+) and/or Si treatments showed that +Si cells significantly inhibited the net Cd(2+) influx, compared with that in -Si cells. Furthermore, a net negative charge (charge density) within the +Si cell walls could be neutralized by an increase in the Cd(2+) concentration in the measuring solution. A mechanism of co-deposition of Si and Cd in the cell walls via a [Si-wall matrix]Cd co-complexation may explain the inhibition of Cd ion uptake, and may offer a plausible explanation for the in vivo detoxification of Cd in rice. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  10. Arctigenin alleviates ER stress via activating AMPK

    PubMed Central

    Gu, Yuan; Sun, Xiao-xiao; Ye, Ji-ming; He, Li; Yan, Shou-sheng; Zhang, Hao-hao; Hu, Li-hong; Yuan, Jun-ying; Yu, Qiang

    2012-01-01

    Aim: To investigate the protective effects of arctigenin (ATG), a phenylpropanoid dibenzylbutyrolactone lignan from Arctium lappa L (Compositae), against ER stress in vitro and the underlying mechanisms. Methods: A cell-based screening assay for ER stress regulators was established. Cell viability was measured using MTT assay. PCR and Western blotting were used to analyze gene and protein expression. Silencing of the CaMKKβ, LKB1, and AMPKα1 genes was achieved by RNA interference (RNAi). An ATP bioluminescent assay kit was employed to measure the intracellular ATP levels. Results: ATG (2.5, 5 and 10 μmol/L) inhibited cell death and unfolded protein response (UPR) in a concentration-dependent manner in cells treated with the ER stress inducer brefeldin A (100 nmol/L). ATG (1, 5 and 10 μmol/L) significantly attenuated protein synthesis in cells through inhibiting mTOR-p70S6K signaling and eEF2 activity, which were partially reversed by silencing AMPKα1 with RNAi. ATG (1-50 μmol/L) reduced intracellular ATP level and activated AMPK through inhibiting complex I-mediated respiration. Pretreatment of cells with the AMPK inhibitor compound C (25 μmol/L) rescued the inhibitory effects of ATG on ER stress. Furthermore, ATG (2.5 and 5 μmol/L) efficiently activated AMPK and reduced the ER stress and cell death induced by palmitate (2 mmol/L) in INS-1 β cells. Conclusion: ATG is an effective ER stress alleviator, which protects cells against ER stress through activating AMPK, thus attenuating protein translation and reducing ER load. PMID:22705729

  11. Arginase activity in pathogenic and non-pathogenic species of Leishmania parasites.

    PubMed

    Badirzadeh, Alireza; Taheri, Tahereh; Taslimi, Yasaman; Abdossamadi, Zahra; Heidari-Kharaji, Maryam; Gholami, Elham; Sedaghat, Baharehsadat; Niyyati, Maryam; Rafati, Sima

    2017-07-01

    Proliferation of Leishmania (L.) parasites depends on polyamine availability, which can be generated by the L-arginine catabolism and the enzymatic activity of arginase (ARG) of the parasites and of the mammalian hosts. In the present study, we characterized and compared the arginase (arg) genes from pathogenic L. major and L. tropica and from non-pathogenic L. tarentolae. We quantified the level of the ARG activity in promastigotes and macrophages infected with pathogenic L. major and L. tropica and non-pathogenic L. tarentolae amastigotes. The ARG's amino acid sequences of the pathogenic and non-pathogenic Leishmania demonstrated virtually 98.6% and 88% identities with the reference L. major Friedlin ARG. Higher ARG activity was observed in all pathogenic promastigotes as compared to non-pathogenic L. tarentolae. In vitro infection of human macrophage cell line (THP1) with pathogenic and non-pathogenic Leishmania spp. resulted in increased ARG activities in the infected macrophages. The ARG activities present in vivo were assessed in susceptible BALB/c and resistant C57BL/6 mice infected with L. major, L. tropica and L. tarentolae. We demonstrated that during the development of the infection, ARG is induced in both strains of mice infected with pathogenic Leishmania. However, in L. major infected BALB/c mice, the induction of ARG and parasite load increased simultaneously according to the time course of infection, whereas in C57BL/6 mice, the enzyme is upregulated solely during the period of footpad swelling. In L. tropica infected mice, the footpads' swellings were slow to develop and demonstrated minimal cutaneous pathology and ARG activity. In contrast, ARG activity was undetectable in mice inoculated with the non-pathogenic L. tarentolae. Our data suggest that infection by Leishmania parasites can increase ARG activity of the host and provides essential polyamines for parasite salvage and its replication. Moreover, the ARG of Leishmania is vital for parasite proliferation and required for infection in mice. ARG activity can be used as one of the main marker of the disease severity.

  12. Arginase activity in pathogenic and non-pathogenic species of Leishmania parasites

    PubMed Central

    Badirzadeh, Alireza; Taheri, Tahereh; Taslimi, Yasaman; Abdossamadi, Zahra; Heidari-Kharaji, Maryam; Gholami, Elham; Sedaghat, Baharehsadat; Niyyati, Maryam

    2017-01-01

    Proliferation of Leishmania (L.) parasites depends on polyamine availability, which can be generated by the L-arginine catabolism and the enzymatic activity of arginase (ARG) of the parasites and of the mammalian hosts. In the present study, we characterized and compared the arginase (arg) genes from pathogenic L. major and L. tropica and from non-pathogenic L. tarentolae. We quantified the level of the ARG activity in promastigotes and macrophages infected with pathogenic L. major and L. tropica and non-pathogenic L. tarentolae amastigotes. The ARG's amino acid sequences of the pathogenic and non-pathogenic Leishmania demonstrated virtually 98.6% and 88% identities with the reference L. major Friedlin ARG. Higher ARG activity was observed in all pathogenic promastigotes as compared to non-pathogenic L. tarentolae. In vitro infection of human macrophage cell line (THP1) with pathogenic and non-pathogenic Leishmania spp. resulted in increased ARG activities in the infected macrophages. The ARG activities present in vivo were assessed in susceptible BALB/c and resistant C57BL/6 mice infected with L. major, L. tropica and L. tarentolae. We demonstrated that during the development of the infection, ARG is induced in both strains of mice infected with pathogenic Leishmania. However, in L. major infected BALB/c mice, the induction of ARG and parasite load increased simultaneously according to the time course of infection, whereas in C57BL/6 mice, the enzyme is upregulated solely during the period of footpad swelling. In L. tropica infected mice, the footpads' swellings were slow to develop and demonstrated minimal cutaneous pathology and ARG activity. In contrast, ARG activity was undetectable in mice inoculated with the non-pathogenic L. tarentolae. Our data suggest that infection by Leishmania parasites can increase ARG activity of the host and provides essential polyamines for parasite salvage and its replication. Moreover, the ARG of Leishmania is vital for parasite proliferation and required for infection in mice. ARG activity can be used as one of the main marker of the disease severity. PMID:28708893

  13. Increasing the endogenous NO level causes catalase inactivation and reactivation of intercellular apoptosis signaling specifically in tumor cells.

    PubMed

    Bauer, Georg

    2015-12-01

    Tumor cells generate extracellular superoxide anions and are protected against intercellular apoptosis-inducing HOCl- and NO/peroxynitrite signaling through the expression of membrane-associated catalase. This enzyme decomposes H2O2 and thus prevents HOCl synthesis. It efficiently interferes with NO/peroxynitrite signaling through oxidation of NO and decomposition of peroxynitrite. The regulatory potential of catalase at the crosspoint of ROS and RNS chemical biology, as well as its high local concentration on the outside of the cell membrane of tumor cells, establish tight control of intercellular signaling and thus prevent tumor cell apoptosis. Therefore, inhibition of catalase or its inactivation by singlet oxygen reactivate intercellular apoptosis-inducing signaling. Nitric oxide and peroxynitrite are connected with catalase in multiple and meaningful ways, as (i) NO can be oxidated by compound I of catalase, (ii) NO can reversibly inhibit catalase, (iii) peroxynitrite can be decomposed by catalase and (iv) the interaction between peroxynitrite and H2O2 leads to the generation of singlet oxygen that inactivates catalase. Therefore, modulation of the concentration of free NO through addition of arginine, inhibition of arginase, induction of NOS expression or inhibition of NO dioxygenase triggers an autoamplificatory biochemical cascade that is based on initial formation of singlet oxygen, amplification of superoxide anion/H2O2 and NO generation through singlet oxygen dependent stimulation of the FAS receptor and caspase-8. Finally, singlet oxygen is generated at sufficiently high concentration to inactivate protective catalase and to reactivate intercellular apoptosis-inducing ROS signaling. This regulatory network allows to establish several pathways for synergistic interactions, like the combination of modulators of NO metabolism with enhancers of superoxide anion generation, modulators of NO metabolism that act at different targets and between modulators of NO metabolism and direct catalase inhibitors. The latter aspect is explicitely studied for the interaction between catalase inhibiting acetylsalicylic acid and an NO donor. It is also shown that hybrid molecules like NO-aspirin utilize this synergistic potential. Our data open novel approaches for rational tumor therapy based on specific ROS signaling and its control in tumor cells. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Ethylene Production and 1-Aminocyclopropane-1-Carboxylic Acid Conjugation in Thermoinhibited Cicer arietinum L. Seeds 1

    PubMed Central

    Gallardo, Mercedes; Delgado, María del Mar; Sánchez-Calle, Isabel María; Matilla, Angel Jesús

    1991-01-01

    The effect of supraoptimal temperatures (30°C, 35°C) on germination and ethylene production of Cicer arietinum (chick-pea) seeds was measured. Compared with a 25°C control, these temperatures inhibited both germination and ethylene production. The effect of supraoptimal temperatures could be alleviated by treating the seeds with ethylene. It was concluded that one effect of high temperature on germination was due to its negative effect on ethylene production. This inhibitory effect of high temperature was due to increased conjugation of 1-aminocyclopropane-1-carboxylic acid to 1-(malonylamino)cyclopropane-1-carboxylic acid and to an inhibition of ethylene-forming enzyme activity. PMID:16668358

  15. Prion-like Nanofibrils of Small Molecules (PriSM) Selectively Inhibit Cancer Cells by Impeding Cytoskeleton Dynamics*

    PubMed Central

    Kuang, Yi; Long, Marcus J. C.; Zhou, Jie; Shi, Junfeng; Gao, Yuan; Xu, Chen; Hedstrom, Lizbeth; Xu, Bing

    2014-01-01

    Emerging evidence reveals that prion-like structures play important roles to maintain the well-being of cells. Although self-assembly of small molecules also affords prion-like nanofibrils (PriSM), little is known about the functions and mechanisms of PriSM. Previous works demonstrated that PriSM formed by a dipeptide derivative selectively inhibiting the growth of glioblastoma cells over neuronal cells and effectively inhibiting xenograft tumor in animal models. Here we examine the protein targets, the internalization, and the cytotoxicity pathway of the PriSM. The results show that the PriSM selectively accumulate in cancer cells via macropinocytosis to impede the dynamics of cytoskeletal filaments via promiscuous interactions with cytoskeletal proteins, thus inducing apoptosis. Intriguingly, Tau proteins are able to alleviate the effect of the PriSM, thus protecting neuronal cells. This work illustrates PriSM as a new paradigm for developing polypharmacological agents that promiscuously interact with multiple proteins yet result in a primary phenotype, such as cancer inhibition PMID:25157102

  16. Single-Walled Carbon Nanotubes Inhibit the Cytochrome P450 Enzyme, CYP3A4

    NASA Astrophysics Data System (ADS)

    El-Sayed, Ramy; Bhattacharya, Kunal; Gu, Zonglin; Yang, Zaixing; Weber, Jeffrey K.; Li, Hu; Leifer, Klaus; Zhao, Yichen; Toprak, Muhammet S.; Zhou, Ruhong; Fadeel, Bengt

    2016-02-01

    We report a detailed computational and experimental study of the interaction of single-walled carbon nanotubes (SWCNTs) with the drug-metabolizing cytochrome P450 enzyme, CYP3A4. Dose-dependent inhibition of CYP3A4-mediated conversion of the model compound, testosterone, to its major metabolite, 6β-hydroxy testosterone was noted. Evidence for a direct interaction between SWCNTs and CYP3A4 was also provided. The inhibition of enzyme activity was alleviated when SWCNTs were pre-coated with bovine serum albumin. Furthermore, covalent functionalization of SWCNTs with polyethylene glycol (PEG) chains mitigated the inhibition of CYP3A4 enzymatic activity. Molecular dynamics simulations suggested that inhibition of the catalytic activity of CYP3A4 is mainly due to blocking of the exit channel for substrates/products through a complex binding mechanism. This work suggests that SWCNTs could interfere with metabolism of drugs and other xenobiotics and provides a molecular mechanism for this toxicity. Our study also suggests means to reduce this toxicity, eg., by surface modification.

  17. Single-Walled Carbon Nanotubes Inhibit the Cytochrome P450 Enzyme, CYP3A4

    PubMed Central

    El-Sayed, Ramy; Bhattacharya, Kunal; Gu, Zonglin; Yang, Zaixing; Weber, Jeffrey K.; Li, Hu; Leifer, Klaus; Zhao, Yichen; Toprak, Muhammet S.; Zhou, Ruhong; Fadeel, Bengt

    2016-01-01

    We report a detailed computational and experimental study of the interaction of single-walled carbon nanotubes (SWCNTs) with the drug-metabolizing cytochrome P450 enzyme, CYP3A4. Dose-dependent inhibition of CYP3A4-mediated conversion of the model compound, testosterone, to its major metabolite, 6β-hydroxy testosterone was noted. Evidence for a direct interaction between SWCNTs and CYP3A4 was also provided. The inhibition of enzyme activity was alleviated when SWCNTs were pre-coated with bovine serum albumin. Furthermore, covalent functionalization of SWCNTs with polyethylene glycol (PEG) chains mitigated the inhibition of CYP3A4 enzymatic activity. Molecular dynamics simulations suggested that inhibition of the catalytic activity of CYP3A4 is mainly due to blocking of the exit channel for substrates/products through a complex binding mechanism. This work suggests that SWCNTs could interfere with metabolism of drugs and other xenobiotics and provides a molecular mechanism for this toxicity. Our study also suggests means to reduce this toxicity, eg., by surface modification. PMID:26899743

  18. End-joining inhibition at telomeres requires the translocase and polySUMO-dependent ubiquitin ligase Uls1.

    PubMed

    Lescasse, Rachel; Pobiega, Sabrina; Callebaut, Isabelle; Marcand, Stéphane

    2013-03-20

    In eukaryotes, permanent inhibition of the non-homologous end joining (NHEJ) repair pathway at telomeres ensures that chromosome ends do not fuse. In budding yeast, binding of Rap1 to telomere repeats establishes NHEJ inhibition. Here, we show that the Uls1 protein is required for the maintenance of NHEJ inhibition at telomeres. Uls1 protein is a non-essential Swi2/Snf2-related translocase and a Small Ubiquitin-related Modifier (SUMO)-Targeted Ubiquitin Ligase (STUbL) with unknown targets. Loss of Uls1 results in telomere-telomere fusions. Uls1 requirement is alleviated by the absence of poly-SUMO chains and by rap1 alleles lacking SUMOylation sites. Furthermore, Uls1 limits the accumulation of Rap1 poly-SUMO conjugates. We propose that one of Uls1 functions is to clear non-functional poly-SUMOylated Rap1 molecules from telomeres to ensure the continuous efficiency of NHEJ inhibition. Since Uls1 is the only known STUbL with a translocase activity, it can be the general molecular sweeper for the clearance of poly-SUMOylated proteins on DNA in eukaryotes.

  19. DOT1L inhibition attenuates graft-versus-host disease by allogeneic T cells in adoptive immunotherapy models.

    PubMed

    Kagoya, Yuki; Nakatsugawa, Munehide; Saso, Kayoko; Guo, Tingxi; Anczurowski, Mark; Wang, Chung-Hsi; Butler, Marcus O; Arrowsmith, Cheryl H; Hirano, Naoto

    2018-05-15

    Adoptive T-cell therapy is a promising therapeutic approach for cancer patients. The use of allogeneic T-cell grafts will improve its applicability and versatility provided that inherent allogeneic responses are controlled. T-cell activation is finely regulated by multiple signaling molecules that are transcriptionally controlled by epigenetic mechanisms. Here we report that inhibiting DOT1L, a histone H3-lysine 79 methyltransferase, alleviates allogeneic T-cell responses. DOT1L inhibition reduces miR-181a expression, which in turn increases the ERK phosphatase DUSP6 expression and selectively ameliorates low-avidity T-cell responses through globally suppressing T-cell activation-induced gene expression alterations. The inhibition of DOT1L or DUSP6 overexpression in T cells attenuates the development of graft-versus-host disease, while retaining potent antitumor activity in xenogeneic and allogeneic adoptive immunotherapy models. These results suggest that DOT1L inhibition may enable the safe and effective use of allogeneic antitumor T cells by suppressing unwanted immunological reactions in adoptive immunotherapy.

  20. Hydrogen sulfide inhibits enzymatic browning of fresh-cut lotus root slices by regulating phenolic metabolism.

    PubMed

    Sun, Ying; Zhang, Wei; Zeng, Tao; Nie, Qixing; Zhang, Fengying; Zhu, Liqin

    2015-06-15

    The effect of fumigation with hydrogen sulfide (H2S) gas on inhibiting enzymatic browning of fresh-cut lotus root slices was investigated. Browning degree, changes in color, total phenol content, superoxide anion production rate (O2(-)), H2O2 content, antioxidant capacities (DPPH radical scavenging ability, ABTS radical scavenging activity and the reducing power) and activities of the phenol metabolism-associated enzymes including phenylalanine ammonialyase (PAL), catalase (CAT), peroxidase (POD), polyphenol oxidase (PPO) were evaluated. The results showed that treatment with 15 μl L(-1) H2S significantly inhibited the browning of fresh-cut lotus root slices (P<0.05), reduced significantly O2(-) production rate and H2O2 content, and enhanced antioxidant capacities (P<0.05). PPO and POD activities in the fresh-cut lotus root slices were also significantly inhibited by treatment with H2S (P<0.05). This study suggested that treatment with exogenous H2S could inhibit the browning of fresh-cut lotus root slices by enhancing antioxidant capacities to alleviate the oxidative damage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. JNK1 controls adult hippocampal neurogenesis and imposes cell-autonomous control of anxiety behaviour from the neurogenic niche

    PubMed Central

    Mohammad, H; Marchisella, F; Ortega-Martinez, S; Hollos, P; Eerola, K; Komulainen, E; Kulesskaya, N; Freemantle, E; Fagerholm, V; Savontous, E; Rauvala, H; Peterson, B D; van Praag, H; Coffey, E T

    2018-01-01

    Promoting adult hippocampal neurogenesis is expected to induce neuroplastic changes that improve mood and alleviate anxiety. However, the underlying mechanisms remain largely unknown and the hypothesis itself is controversial. Here we show that mice lacking Jnk1, or c-Jun N-terminal kinase (JNK) inhibitor-treated mice, display increased neurogenesis in adult hippocampus characterized by enhanced cell proliferation and survival, and increased maturation in the ventral region. Correspondingly, anxiety behaviour is reduced in a battery of tests, except when neurogenesis is prevented by AraC treatment. Using engineered retroviruses, we show that exclusive inhibition of JNK in adult-born granule cells alleviates anxiety and reduces depressive-like behaviour. These data validate the neurogenesis hypothesis of anxiety. Moreover, they establish a causal role for JNK in the hippocampal neurogenic niche and anxiety behaviour, and advocate targeting of JNK as an avenue for novel therapies against affective disorders. PMID:27843149

  2. mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome.

    PubMed

    Johnson, Simon C; Yanos, Melana E; Kayser, Ernst-Bernhard; Quintana, Albert; Sangesland, Maya; Castanza, Anthony; Uhde, Lauren; Hui, Jessica; Wall, Valerie Z; Gagnidze, Arni; Oh, Kelly; Wasko, Brian M; Ramos, Fresnida J; Palmiter, Richard D; Rabinovitch, Peter S; Morgan, Philip G; Sedensky, Margaret M; Kaeberlein, Matt

    2013-12-20

    Mitochondrial dysfunction contributes to numerous health problems, including neurological and muscular degeneration, cardiomyopathies, cancer, diabetes, and pathologies of aging. Severe mitochondrial defects can result in childhood disorders such as Leigh syndrome, for which there are no effective therapies. We found that rapamycin, a specific inhibitor of the mechanistic target of rapamycin (mTOR) signaling pathway, robustly enhances survival and attenuates disease progression in a mouse model of Leigh syndrome. Administration of rapamycin to these mice, which are deficient in the mitochondrial respiratory chain subunit Ndufs4 [NADH dehydrogenase (ubiquinone) Fe-S protein 4], delays onset of neurological symptoms, reduces neuroinflammation, and prevents brain lesions. Although the precise mechanism of rescue remains to be determined, rapamycin induces a metabolic shift toward amino acid catabolism and away from glycolysis, alleviating the buildup of glycolytic intermediates. This therapeutic strategy may prove relevant for a broad range of mitochondrial diseases.

  3. S-Mercuration of rat sorbitol dehydrogenase by methylmercury causes its aggregation and the release of the zinc ion from the active site.

    PubMed

    Kanda, Hironori; Toyama, Takashi; Shinohara-Kanda, Azusa; Iwamatsu, Akihiro; Shinkai, Yasuhiro; Kaji, Toshiyuki; Kikushima, Makoto; Kumagai, Yoshito

    2012-11-01

    We previously developed a screening method to identify proteins that undergo aggregation through S-mercuration by methylmercury (MeHg) and found that rat arginase I is a target protein for MeHg (Kanda et al. in Arch Toxicol 82:803-808, 2008). In the present study, we characterized another S-mercurated protein from a rat hepatic preparation that has a subunit mass of 42 kDa, thereby facilitating its aggregation. Two-dimensional SDS-polyacrylamide gel electrophoresis and subsequent peptide mass fingerprinting using matrix-assisted laser desorption and ionization time-of-flight mass spectrometry revealed that the 42 kDa protein was NAD-dependent sorbitol dehydrogenase (SDH). With recombinant rat SDH, we found that MeHg is covalently bound to SDH through Cys44, Cys119, Cys129 and Cys164, resulting in the inhibition of its catalytic activity, release of zinc ions and facilitates protein aggregation. Mutation analysis indicated that Cys44, which ligates the active site zinc atom, and Cys129 play a crucial role in the MeHg-mediated aggregation of SDH. Pretreatment with the cofactor NAD, but not NADP or FAD, markedly prevented aggregation of SDH. Such a protective effect of NAD on the aggregation of SDH caused by MeHg is discussed.

  4. Differential Trafficking of TLR1 I602S Underlies Host Protection Against Pathogenic Mycobacteria§

    PubMed Central

    Hart, Bryan E.; Tapping, Richard I.

    2012-01-01

    We have recently identified I602S as a frequent single nucleotide polymorphism of human TLR1 which greatly inhibits cell surface trafficking, confers hyporesponsiveness to TLR1 agonists, and protects against the mycobacterial diseases leprosy and tuberculosis. Since mycobacteria are known to manipulate the TLR system to their advantage, we hypothesize that the hyporesponsive 602S variant may confer protection by enabling the host to overcome this immune subversion. We report that primary human monocytes and macrophages from homozygous TLR1 602S individuals are resistant to mycobacterial-induced downregulation of macrophage MHCII, CD64, and IFNγ responses compared to individuals who harbor the TLR1 602I variant. Additionally, when challenged with mycobacterial agonists, macrophages from TLR1 602S/S individuals resist induction of host arginase-1; an enzyme that depletes cellular arginine stores required for production of antimicrobial reactive nitrogen intermediates. The differences in cell activation mediated by TLR1 602S and TLR1 602I are observed upon stimulation with soluble mycobacterial-derived agonists but not with whole mycobacterial cells. Taken together, these results suggest that the TLR1 602S variant protects against mycobacterial disease by preventing soluble mycobacterial products, perhaps released from granulomas, from disarming myeloid cells prior to their encounter with whole mycobacteria. PMID:23105135

  5. Exogenous l-Valine Promotes Phagocytosis to Kill Multidrug-Resistant Bacterial Pathogens

    PubMed Central

    Chen, Xin-hai; Liu, Shi-rao; Peng, Bo; Li, Dan; Cheng, Zhi-xue; Zhu, Jia-xin; Zhang, Song; Peng, Yu-ming; Li, Hui; Zhang, Tian-tuo; Peng, Xuan-xian

    2017-01-01

    The emergence of multidrug-resistant bacteria presents a severe threat to public health and causes extensive losses in livestock husbandry and aquaculture. Effective strategies to control such infections are in high demand. Enhancing host immunity is an ideal strategy with fewer side effects than antibiotics. To explore metabolite candidates, we applied a metabolomics approach to investigate the metabolic profiles of mice after Klebsiella pneumoniae infection. Compared with the mice that died from K. pneumoniae infection, mice that survived the infection displayed elevated levels of l-valine. Our analysis showed that l-valine increased macrophage phagocytosis, thereby reducing the load of pathogens; this effect was not only limited to K. pneumoniae but also included Escherichia coli clinical isolates in infected tissues. Two mechanisms are involved in this process: l-valine activating the PI3K/Akt1 pathway and promoting NO production through the inhibition of arginase activity. The NO precursor l-arginine is necessary for l-valine-stimulated macrophage phagocytosis. The valine-arginine combination therapy effectively killed K. pneumoniae and exerted similar effects in other Gram-negative (E. coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria. Our study extends the role of metabolism in innate immunity and develops the possibility of employing the metabolic modulator-mediated innate immunity as a therapy for bacterial infections. PMID:28321214

  6. Arginase-II Promotes Tumor Necrosis Factor-α Release From Pancreatic Acinar Cells Causing β-Cell Apoptosis in Aging.

    PubMed

    Xiong, Yuyan; Yepuri, Gautham; Necetin, Sevil; Montani, Jean-Pierre; Ming, Xiu-Fen; Yang, Zhihong

    2017-06-01

    Aging is associated with glucose intolerance. Arginase-II (Arg-II), the type-II L -arginine-ureahydrolase, is highly expressed in pancreas. However, its role in regulation of pancreatic β-cell function is not known. Here we show that female (not male) mice deficient in Arg-II (Arg-II -/- ) are protected from age-associated glucose intolerance and reveal greater glucose induced-insulin release, larger islet size and β-cell mass, and more proliferative and less apoptotic β-cells compared with the age-matched wild-type (WT) controls. Moreover, Arg-II is mainly expressed in acinar cells and is upregulated with aging, which enhances p38 mitogen-activated protein kinase (p38 MAPK) activation and release of tumor necrosis factor-α (TNF-α). Accordingly, conditioned medium of isolated acinar cells from old WT (not Arg-II -/- ) mice contains higher TNF-α levels than the young mice and stimulates β-cell apoptosis and dysfunction, which are prevented by a neutralizing anti-TNF-α antibody. In acinar cells, our study demonstrates an age-associated Arg-II upregulation, which promotes TNF-α release through p38 MAPK leading to β-cell apoptosis, insufficient insulin secretion, and glucose intolerance in female rather than male mice. © 2017 by the American Diabetes Association.

  7. Arginine depletion increases susceptibility to serious infections in preterm newborns

    PubMed Central

    Badurdeen, Shiraz; Mulongo, Musa; Berkley, James A.

    2015-01-01

    Preterm newborns are highly susceptible to bacterial infections. This susceptibility is regarded as being due to immaturity of multiple pathways of the immune system. However, it is unclear whether a mechanism that unifies these different, suppressed pathways exists. Here, we argue that the immune vulnerability of the preterm neonate is critically related to arginine depletion. Arginine, a “conditionally essential” amino acid, is depleted in acute catabolic states, including sepsis. Its metabolism is highly compartmentalized and regulated, including by arginase-mediated hydrolysis. Recent data suggest that arginase II-mediated arginine depletion is essential for the innate immune suppression that occurs in newborn models of bacterial challenge, impairing pathways critical for the immune response. Evidence that arginine depletion mediates protection from immune activation during first gut colonization suggests a regulatory role in controlling gut-derived pathogens. Clinical studies show that plasma arginine is depleted during sepsis. In keeping with animal studies, small clinical trials of L-arginine supplementation have shown benefit in reducing necrotizing enterocolitis in premature neonates. We propose a novel, broader hypothesis that arginine depletion during bacterial challenge is a key factor limiting the neonate's ability to mount an adequate immune response, contributing to the increased susceptibility to infections, particularly with respect to gut-derived sepsis. PMID:25360828

  8. Arginase activity of Leishmania isolated from patients with cutaneous leishmaniasis.

    PubMed

    Badirzadeh, A; Taheri, T; Abedi-Astaneh, F; Taslimi, Y; Abdossamadi, Z; Montakhab-Yeganeh, H; Aghashahi, M; Niyyati, M; Rafati, S

    2017-09-01

    Cutaneous leishmaniasis (CL) is one of the most important vector-borne parasitic diseases, highly endemic in Iran, and its prevalence is increasing all over the country. Arginase (ARG) activity in isolated Leishmania parasites from CL patients is yet to be explored. This study aimed to compare the ARG activity of isolated Leishmania promastigotes from CL patients with a standard strain of Leishmania major and its influences on the disease pathogenesis. We recruited 16 confirmed CL patients from Qom Province, in central Iran; after detection of Leishmania species using PCR-RFLP, we assessed the levels of ARG in the isolated promastigotes and determined the parasites' growth rate. Only L. major was identified from CL patients. The level of ARG activity in the isolated Leishmania promastigotes from CL patients was significantly higher than that obtained from the standard strain of L. major. No significant correlations between ARG activity and lesion size, number or duration were observed; in contrast, a significant negative correlation was seen between ARG level and Leishmania' growth rate. The obtained results suggest that increased ARG expression and activity in the isolated Leishmania promastigotes might contribute to the higher parasite infectivity and play a major role in the pathogenicity of the CL. © 2017 John Wiley & Sons Ltd.

  9. CAR1 deletion by CRISPR/Cas9 reduces formation of ethyl carbamate from ethanol fermentation by Saccharomyces cerevisiae.

    PubMed

    Chin, Young-Wook; Kang, Woo-Kyung; Jang, Hae Won; Turner, Timothy L; Kim, Hyo Jin

    2016-11-01

    Enormous advances in genome editing technology have been achieved in recent decades. Among newly born genome editing technologies, CRISPR/Cas9 is considered revolutionary because it is easy to use and highly precise for editing genes in target organisms. CRISPR/Cas9 technology has also been applied for removing unfavorable target genes. In this study, we used CRISPR/Cas9 technology to reduce ethyl carbamate (EC), a potential carcinogen, which was formed during the ethanol fermentation process by yeast. Because the yeast CAR1 gene encoding arginase is the key gene to form ethyl carbamate, we inactivated the yeast CAR1 gene by the complete deletion of the gene or the introduction of a nonsense mutation in the CAR1 locus using CRISPR/Cas9 technology. The engineered yeast strain showed a 98 % decrease in specific activity of arginase while displaying a comparable ethanol fermentation performance. In addition, the CAR1-inactivated mutants showed reduced formation of EC and urea, as compared to the parental yeast strain. Importantly, CRISPR/Cas9 technology enabled generation of a CAR1-inactivated yeast strains without leaving remnants of heterologous genes from a vector, suggesting that the engineered yeast by CRISPR/Cas9 technology might sidestep GMO regulation.

  10. Edaravone protected PC12 cells against MPP(+)-cytoxicity via inhibiting oxidative stress and up-regulating heme oxygenase-1 expression.

    PubMed

    Cheng, Baohua; Guo, Yunliang; Li, Chuangang; Ji, Bingyuan; Pan, Yanyou; Chen, Jing; Bai, Bo

    2014-08-15

    Oxidative stress is involved in the pathogenesis of Parkinson's disease (PD). Edaravone has been shown to have a neuroprotective effect. In the present work, we investigated the effect of edaravone on 1-methyl-4-phenylpyridinium (MPP(+))-treated PC12 cells. Edaravone inhibited the decrease of cell viability and apoptosis induced by MPP(+) in PC12 cells. In addition, edaravone alleviated intracellular reactive oxygen species (ROS) production. MPP(+) induced heme oxygenase-1 (HO-1) expression, which was further enhanced by edaravone. The inhibitor of HO-1 zinc protoporphyrin-IX attenuated the neuroprotection of edaravone. So edaravone protected PC12 cells against MPP(+)-cytoxicity via inhibiting oxidative stress and up-regulating HO-1 expression. The data showed that edaravone was neuroprotective and could be potentially therapeutics for PD in future. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. [Process development for continuous ethanol fermentation by the flocculating yeast under stillage backset conditions].

    PubMed

    Zi, Lihan; Liu, Chenguang; Bai, Fengwu

    2014-02-01

    Propionic acid, a major inhibitor to yeast cells, was accumulated during continuous ethanol fermentation from corn meal hydrolysate by the flocculating yeast under stillage backset conditions. Based on its inhibition mechanism in yeast cells, strategies were developed for alleviating this effect. Firstly, high temperature processes such as medium sterilization generated more propionic acid, which should be avoided. Propionic acid was reduced significantly during ethanol fermentation without medium sterilization, and concentrations of biomass and ethanol increased by 59.3% and 7.4%, respectively. Secondly, the running time of stillage backset should be controlled so that propionic acid accumulated would be lower than its half inhibition concentration IC50 (40 mmol/L). Finally, because low pH augmented propionic acid inhibition in yeast cells, a higher pH of 5.5 was validated to be suitable for ethanol fermentation under the stillage backset condition.

  12. Mangiferin inhibits mastitis induced by LPS via suppressing NF-ĸB and NLRP3 signaling pathways.

    PubMed

    Qu, Shihui; Wang, Wenqing; Li, Depeng; Li, Shumin; Zhang, Like; Fu, Yunhe; Zhang, Naisheng

    2017-02-01

    During the past era, small molecules derived from various plants have attracted extensive attention for their versatile medicinal benefits. Among these, one organic molecule called mangiferin from certain plant species including mangoes and honey bush tea is widely used in treating inflammation. In this study, a LPS-induced mastitis model in mouse is established to investigate the anti-inflammatory effects and mechanism of mangiferin. The result shows that mangiferin significantly alleviates LPS-induced histopathology, meanwhile, also decreases LPS-induced MPO activity. Furthermore, mangiferin treatment remarkably impeded the expression of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. In addition, mangiferin was found to inhibit LPS-induced NF-ĸB and NLRP3 inflammasome activation. In conclusion, these results suggested that LPS-induced mastitis can be abated by mangiferin through inhibiting NF-ĸB and NLRP3 signaling pathways. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. [DNA hydroxymethylase 10-11 translocation 2 (TET2) inhibits mouse macrophage activation and polarization].

    PubMed

    Li, Bingyi; Huo, Yi; Lin, Zhifeng; Wang, Tao

    2017-09-01

    Objective To study the role of DNA hydroxymethylase 10-11 translocation 2 (TET2) in macrophage activation and polarization. Methods RAW264.7 macrophages were cultured in vitro and stimulated with 100 ng/mL LPS for 0, 1, 2, 4, 6 hours. Real-time quantitative PCR was used to detect TET2 mRNA expression. TET2 expression was knocked down with siRNA and the knock-down efficiency was evaluated by real-time quantitative PCR and Western blotting. Following siRNA transfection for 48 hours, RAW264.7 cells were stimulated by LPS for 4 hours, and then real-time quantitative PCR and ELISA were performed to detect the expressions of interleukin 6 (IL-6), tumor necrosis factor α (TNF-α) and IL-12. The M1 polarizing markers TNF-α, inducible nitric oxide synthase (iNOS) and IL-12, and M2 polarizing markers mannose receptor (MR), arginase 1 (Arg-1) and chitinase 3-like molecule 1 (Ym1) were tested after M1 or M2 induction by LPS/IFN-γ or IL-4. Results TET2 expression increased after LPS treatment in RAW264.7 cells and reached the peak at 2 hours later. The siRNA effectively reduced the expression of TET2. The expressions of IL-6, TNF-α and IL-12 mRNAs increased after TET2 knock-down and LPS stimulation. The expressions of M1 polarization markers and M2 markers were up-regulated by the corresponding stimulations after TET2 knock-down. Conclusion TET2 has the effect of inhibiting LPS-induced macrophage activation and plays an inhibitory role in macrophage M1 and M2 polarization.

  14. BTB and CNC homolog 1 (Bach1) deficiency ameliorates TNBS colitis in mice: role of M2 macrophages and heme oxygenase-1.

    PubMed

    Harusato, Akihito; Naito, Yuji; Takagi, Tomohisa; Uchiyama, Kazuhiko; Mizushima, Katsura; Hirai, Yasuko; Higashimura, Yasuki; Katada, Kazuhiro; Handa, Osamu; Ishikawa, Takeshi; Yagi, Nobuaki; Kokura, Satoshi; Ichikawa, Hiroshi; Muto, Akihiko; Igarashi, Kazuhiko; Yoshikawa, Toshikazu

    2013-01-01

    BTB and CNC homolog 1 (Bach1) is a transcriptional repressor of heme oxygenase-1 (HO-1), which plays an important role in the protection of cells and tissues against acute and chronic inflammation. However, the role of Bach1 in the gastrointestinal mucosal defense system remains little understood. HO-1 supports the suppression of experimental colitis and localizes mainly in macrophages in colonic mucosa. This study was undertaken to elucidate the Bach1/HO-1 system's effects on the pathogenesis of experimental colitis. This study used C57BL/6 (wild-type) and homozygous Bach1-deficient C57BL/6 mice in which colonic damage was induced by the administration of an enema of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Subsequently, they were evaluated macroscopically, histologically, and biochemically. Peritoneal macrophages from the respective mice were isolated and analyzed. Then, wild-type mice were injected with peritoneal macrophages from the respective mice. Acute colitis was induced similarly. TNBS-induced colitis was inhibited in Bach1-deficient mice. TNBS administration increased the expression of HO-1 messenger RNA and protein in colonic mucosa in Bach1-deficient mice. The expression of HO-1 mainly localized in F4/80-immunopositive and CD11b-immunopositive macrophages. Isolated peritoneal macrophages from Bach1-deficient mice highly expressed HO-1 and also manifested M2 macrophage markers, such as Arginase-1, Fizz-1, Ym1, and MRC1. Furthermore, TNBS-induced colitis was inhibited by the transfer of Bach1-deficient macrophages into wild-type mice. Deficiency of Bach1 ameliorated TNBS-induced colitis. Bach1-deficient macrophages played a key role in protection against colitis. Targeting of this mechanism is applicable to cell therapy for human inflammatory bowel disease.

  15. M1 and M2 macrophages differentially regulate hematopoietic stem cell self-renewal and ex vivo expansion

    PubMed Central

    Luo, Yi; Shao, Lijian; Chang, Jianhui; Feng, Wei; Liu, Y. Lucy; Cottler-Fox, Michele H.; Emanuel, Peter D.; Hauer-Jensen, Martin; Bernstein, Irwin D.; Liu, Lingbo; Chen, Xing; Zhou, Jianfeng; Murray, Peter J.

    2018-01-01

    Uncovering the cellular and molecular mechanisms by which hematopoietic stem cell (HSC) self-renewal is regulated can lead to the development of new strategies for promoting ex vivo HSC expansion. Here, we report the discovery that alternative (M2)-polarized macrophages (M2-MΦs) promote, but classical (M1)-polarized macrophages (M1-MΦs) inhibit, the self-renewal and expansion of HSCs from mouse bone marrow (BM) in vitro. The opposite effects of M1-MΦs and M2-MΦs on mouse BM HSCs were attributed to their differential expression of nitric oxide synthase 2 (NOS2) and arginase 1 (Arg1), because genetic knockout of Nos2 and Arg1 or inhibition of these enzymes with a specific inhibitor abrogated the differential effects of M1-MΦs and M2-MΦs. The opposite effects of M1-MΦs and M2-MΦs on HSCs from human umbilical cord blood (hUCB) were also observed when hUCB CD34+ cells were cocultured with M1-MΦs and M2-MΦs generated from hUCB CD34− cells. Importantly, coculture of hUCB CD34+ cells with human M2-MΦs for 8 days resulted in 28.7- and 6.6-fold increases in the number of CD34+ cells and long-term SCID mice–repopulating cells, respectively, compared with uncultured hUCB CD34+ cells. Our findings could lead to the development of new strategies to promote ex vivo hUCB HSC expansion to improve the clinical utility and outcome of hUCB HSC transplantation and may provide new insights into the pathogenesis of hematological dysfunctions associated with infection and inflammation that can lead to differential macrophage polarization. PMID:29666049

  16. Killing of Leishmania parasites in activated murine macrophages is based on an L-arginine-dependent process that produces nitrogen derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maul, J.R.; Ransijn, A.; Buchmueller-Rouiller, Y.

    1991-01-01

    The experiments described in this report were aimed at determining whether L-arginine (L-arg)-derived nitrogen oxidation products (nitric oxide, nitrous acid, nitrites) are involved in the intracellular killing of Leishmania parasites by activated murine macrophages in vitro. Peritoneal or bone marrow-derived macrophages were infected with L. enriettii or L. major, then activated by exposure to recombinant murine interferon-gamma or to macrophage activating factor (MAF)-rich media in the presence of lipopolysaccharide. Activation of macrophages in regular (i.e., arginine-containing) culture medium led to complete destruction of the microorganisms within 24 h (L. enriettii) or 48 h (L. major), concomitant with accumulation of nitritesmore » (NO2-) in the culture fluids. When macrophage activation was carried out in L-arg-free medium, however, neither parasite killing nor NO2- production was obtained. A similar inhibition of macrophage leishmanicidal activity and of NO2- release was observed using media treated with arginase (which converts L-arg to urea and ornithine), or supplemented with NG-monomethyl-L-arg or guanidine (which inhibit the conversion of L-arg to nitrogen oxidation products). In all these situations, an excellent correlation between the levels of NO2- production by macrophages and intracellular killing of Leishmania was observed, whereas no strict correlation was detectable between leishmanicidal activity and superoxide production. Intracellular parasite killing by activated macrophages could be prevented by addition of iron salts to the incubation fluids. Incubation of free parasites with NaNO2 at acid pH led to immobilisation, multiplication arrest, and morphological degeneration of the microorganisms. Similarly, exposure of infected cells to NaNO2 led to killing of the intracellular parasite without affecting macrophage viability.« less

  17. Morin hydrate attenuates Staphylococcus aureus virulence by inhibiting the self-assembly of α-hemolysin.

    PubMed

    Wang, J; Zhou, X; Liu, S; Li, G; Shi, L; Dong, J; Li, W; Deng, X; Niu, X

    2015-03-01

    To investigate the mechanism by which morin hydrate inhibits the haemolytic activity of α-hemolysin (Hla), a channel-forming toxin that is important for the pathogenesis of disease in experimental animals, and its therapeutic effect against Staphylococcus aureus pneumonia in a mouse model. The results from the in vitro (haemolysis, western blot and cytotoxicity assays) and in vivo (mouse model of intranasal lung infection) experiments indicated that morin hydrate, a natural compound with little anti-Staph. aureus activity, could effectively antagonize the cytolytic activity of Hla, alleviate human lung cell injury, and protect against mortality of Staph. aureus pneumonia in a mouse model of infection. Molecular dynamics simulations, free energy calculations and mutagenesis assays were further employed to determine the catalytic mechanism of inhibition, which indicated that a direct binding of morin to the 'Stem' domain of Hla (residues I107 and T109) and the concomitant change in conformation led to the inhibition of the self-assembly of the heptameric transmembrane pore, thus inhibiting the biological activity of Hla for cell lysis. Morin inhibited Staph. aureus virulence via inhibiting the haemolytic activity of α-hemolysin. These findings suggested that morin is a promising candidate for the development of anti-virulence therapeutic agents for the treatment of Staph. aureus infections. © 2015 The Society for Applied Microbiology.

  18. Lycium barbarum polysaccharides improve CCl4-induced liver fibrosis, inflammatory response and TLRs/NF-kB signaling pathway expression in wistar rats.

    PubMed

    Gan, Fang; Liu, Qing; Liu, Yunhuan; Huang, Da; Pan, Cuiling; Song, Suquan; Huang, Kehe

    2018-01-01

    Lycium barbarum polysaccharides (LBPs) have multiple biological and pharmacological functions, including antioxidant, anti-inflammatory and anticancer activities. This research was conducted to evaluate whether LBPs could alleviate carbon tetrachloride (CCl 4 )-induced liver fibrosis and the underlying signaling pathway mechanism. Fifty male wistar rats were randomly allocated to five groups (n=10): control, CCl 4 and CCl 4 with 400, 800 or 1600mg/kg LBPs, respectively. Each wistar rat from each group was used for blood and tissue collections at the end of experiment. The results showed that CCl 4 induced liver fibrosis as demonstrated by increasing histopathological damage, α-smooth muscle actin expression, aspartate transaminase activities, alkaline phosphatase activities and alanine aminotransferase activities. LBPs supplementation alleviated CCl 4 -induced liver fibrosis as demonstrated by reversing the above parameters. In addition, CCl 4 treatment induced the oxidative injury, increased the mRNA levels of tumor necrosis factor-α, monocyte chemoattractant protein-1 and interleukin-1β, and up-regulated the protein expressions of toll-like receptor 4 (TLR4), TLR2, myeloid differentiation factor 88, nuclear factor-kappa B (NF-kB) and p-p65. LBPs supplementation alleviated CCl 4 -induced oxidative injury, inflammatory response and TLRs/NF-kB signaling pathway expression by reversing the above some parameters. These results suggest that the alleviating effects of LBPs on CCl 4 -induced liver fibrosis in wistar rats may be through inhibiting the TLRs/NF-kB signaling pathway expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Boron toxicity is alleviated by hydrogen sulfide in cucumber (Cucumis sativus L.) seedlings.

    PubMed

    Wang, Bao-Lan; Shi, Lei; Li, Yin-Xing; Zhang, Wen-Hao

    2010-05-01

    Boron (B) is an essential micronutrient for plants, which when occurs in excess in the growth medium, becomes toxic to plants. Rapid inhibition of root elongation is one of the most distinct symptoms of B toxicity. Hydrogen sulfide (H(2)S) is emerging as a potential messenger molecule involved in modulation of physiological processes in plants. In the present study, we investigated the role of H(2)S in B toxicity in cucumber (Cucumis sativus) seedlings. Root elongation was significantly inhibited by exposure of cucumber seedlings to solutions containing 5 mM B. The inhibitory effect of B on root elongation was substantially alleviated by treatment with H(2)S donor sodium hydrosulfide (NaHS). There was an increase in the activity of pectin methylesterase (PME) and up-regulated expression of genes encoding PME (CsPME) and expansin (CsExp) on exposure to high B concentration. The increase in PME activity and up-regulation of expression of CsPME and CsExp induced by high B concentration were markedly reduced in the presence of H(2)S donor. There was a rapid increase in soluble B concentrations in roots on exposure to high concentration B solutions. Treatment with H(2)S donor led to a transient reduction in soluble B concentration in roots such that no differences in soluble B concentrations in roots in the absence and presence of NaHS were found after 8 h exposure to the high concentration B solutions. These findings suggest that increases in activities of PME and expansin may underlie the inhibition of root elongation by toxic B, and that H(2)S plays an ameliorative role in protection of plants from B toxicity by counteracting B-induced up-regulation of cell wall-associated proteins of PME and expansins.

  20. The effects of an intraperitoneal single low dose of ketamine in attenuating the postoperative skin/muscle incision and retraction-induced pain related to the inhibition of N-methyl-D-aspartate receptors in the spinal cord.

    PubMed

    Shen, Yu; Xu, Li; Liu, Ming; Lei, Yishan; Gu, Xiaoping; Ma, Zhengliang

    2016-03-11

    Chronic postoperative pain (CPOP) is a common clinical problem which might be related to central sensitization. It has been widely accepted that NMDA (N-methyl-D-aspartate) receptors are among the triggers of central sensitization. Ketamine is a non-competitive NMDA receptor antagonist that is widely used in alleviating postoperative pain, but its effect on CPOP has been rarely reported. In the present study, the skin/muscle incision and retraction (SMIR) model was used to investigate the role of NMDARs in chronic postoperative pain and the effect of an intraperitoneal single low dose ketamine (10mg/kg) of attenuating SMIR-induced CPOP. We assessed pain behaviours after a SMIR operation by paw withdrawal threshold (PWMT) and paw withdrawal latency (PWMTL). Western blotting were performed to examine the role of NMDARs in SMIR-induced CPOP and the effect of ketamine on the expression and phosphorylation of NMDARs. The SMIR operation induced long-lasting mechanical hyperalgesia, and the up-regulation of phosphorylated NMDARs and total NMDARs at the spinal level. A single intraperitoneal administration of low dose ketamine (10mg/kg) during surgery alleviated pain behaviors and inhibited the up-regulation of phosphorylated NMDARs and total NMDARs. Our datas suggested that NMDARs play important roles in SMIR-induced CPOP. A single intraperitoneal low dose of ketamine could attenuate SMIR-induced CPOP, which might be associated with the inhibition of NMDARs. Our finding might provide a new, simple method of addressing CPOP. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Influence of titanium dioxide nanoparticles on the toxicity of arsenate in Nannochloropsis maritima.

    PubMed

    Yang, Fan; Yan, Changzhou

    2018-06-13

    Interest is growing in the role that nanoparticles play in modifying the biological effects of contaminants. This study aimed to determine whether nano-TiO 2 exhibited pronounced influence on arsenate (As(V)) toxicity levels to the marine microalgae Nannochloropsis maritima. We compared individual and combined toxicity levels of As(V) and nano-TiO 2 by assessing the inhibition percentages of algal growth. Compared to groups treated with As(V) alone, an EC 50 of 53.0 mg/L decreased by 28.8% after the addition of nanoparticles. This enhanced toxicity was attributed to the inhibition of As methylation and the promotion of lipid peroxidation in the presence of nano-TiO 2 . Additionally, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) also showed that algal cells exhibited different degrees of shrinkage, that cell wall were destroyed in the process, and that the photosynthetic apparatus was virtually indiscernible after the addition of nano-TiO 2 . In addition, for low As(V) concentration exposure groups, nano-TiO 2 could alleviate As(V) toxicity to some extent by reducing As sorption onto algal cells and subcellular distribution in organelles, but this alleviation effect could not protect against the combined toxicity (both As(V) and nano-TiO 2 ) effect on N. maritima, which was verified by the higher inhibition percentage of the algal growth rate in the combined exposure group treatment compared to the As(V) exposure treatment alone. Our results suggest that more attention must be paid to the potential impact of nanoparticles on the bioavailability and biotransformation of contaminants in phytoplankton. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Go-6976 Reverses Hyperglycemia-Induced Insulin Resistance Independently of cPKC Inhibition in Adipocytes

    PubMed Central

    Robinson, Katherine A.; Hegyi, Krisztina; Hannun, Yusuf A.; Buse, Maria G.; Sethi, Jaswinder K.

    2014-01-01

    Chronic hyperglycemia induces insulin resistance by mechanisms that are incompletely understood. One model of hyperglycemia-induced insulin resistance involves chronic preincubation of adipocytes in the presence of high glucose and low insulin concentrations. We have previously shown that the mTOR complex 1 (mTORC1) plays a partial role in the development of insulin resistance in this model. Here, we demonstrate that treatment with Go-6976, a widely used “specific” inhibitor of cPKCs, alleviates hyperglycemia-induced insulin resistance. However, the effects of mTOR inhibitor, rapamycin and Go-6976 were not additive and only rapamycin restored impaired insulin-stimulated AKT activation. Although, PKCα, (but not –β) was abundantly expressed in these adipocytes, our studies indicate cPKCs do not play a major role in causing insulin-resistance in this model. There was no evidence of changes in the expression or phosphorylation of PKCα, and PKCα knock-down did not prevent the reduction of insulin-stimulated glucose transport. This was also consistent with lack of IRS-1 phosphorylation on Ser-24 in hyperglycemia-induced insulin-resistant adipocytes. Treatment with Go-6976 did inhibit a component of the mTORC1 pathway, as evidenced by decreased phosphorylation of S6 ribosomal protein. Raptor knock-down enhanced the effect of insulin on glucose transport in insulin resistant adipocytes. Go-6976 had the same effect in control cells, but was ineffective in cells with Raptor knock-down. Taken together these findings suggest that Go-6976 exerts its effect in alleviating hyperglycemia-induced insulin-resistance independently of cPKC inhibition and may target components of the mTORC1 signaling pathway. PMID:25330241

  3. Phenylbutyric acid protects against carbon tetrachloride-induced hepatic fibrogenesis in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jian-Qing; Second Affiliated Hospital, Anhui Medical University, Hefei 230601; Chen, Xi

    2013-01-15

    A recent report showed that the unfolded protein response (UPR) signaling was activated in the pathogenesis of carbon tetrachloride (CCl{sub 4})-induced hepatic fibrosis. Phenylbutyric acid (PBA) is a well-known chemical chaperone that inhibits endoplasmic reticulum (ER) stress and unfolded protein response (UPR) signaling. In the present study, we investigated the effects of PBA on CCl{sub 4}-induced hepatic fibrosis in mice. All mice were intraperitoneally (i.p.) injected with CCl{sub 4} (0.15 ml/kg BW, twice per week) for 8 weeks. In CCl{sub 4} + PBA group, mice were i.p. injected with PBA (150 mg/kg, twice per day) from the beginning of CCl{submore » 4} injection to the end. As expected, PBA significantly attenuated CCl{sub 4}-induced hepatic ER stress and UPR activation. Although PBA alleviated, only to a less extent, hepatic necrosis, it obviously inhibited CCl{sub 4}-induced tumor necrosis factor alpha (TNF-α) and transforming growth factor beta (TGF-β). Moreover, PBA inhibited CCl{sub 4}-induced hepatic nuclear factor kappa B (NF-κB) p65 translocation and extracellular signal-regulated kinase (ERK) and c-Jun N-terminal Kinase (JNK) phosphorylation. Interestingly, CCl{sub 4}-induced α-smooth muscle actin (α-SMA), a marker for the initiation phase of HSC activation, was significantly attenuated in mice pretreated with PBA. Correspondingly, CCl{sub 4}-induced hepatic collagen (Col)1α1 and Col1α2, markers for the perpetuation phase of HSC activation, were inhibited in PBA-treated mice. Importantly, CCl{sub 4}-induced hepatic fibrosis, as determined using Sirius red staining, was obviously attenuated by PBA. In conclusion, PBA prevents CCl{sub 4}-induced hepatic fibrosis through inhibiting hepatic inflammatory response and HSC activation. Highlights: ► CCl{sub 4} induces hepatic ER stress, inflammation, HSC activation and hepatic fibrosis. ► PBA alleviates CCl{sub 4}-induced hepatic ER stress and UPR signaling activation. ► PBA inhibits CCl{sub 4}-induced hepatic NF-κB activation and ERK and JNK phosphorylation. ► PBA effectively protects against CCl{sub 4}-induced HSC activation and hepatic fibrosis. ► ER stress is involved in CCl{sub 4}-induced hepatic inflammation and fibrogenesis.« less

  4. MicroRNA-16 Alleviates Inflammatory Pain by Targeting Ras-Related Protein 23 (RAB23) and Inhibiting p38 MAPK Activation.

    PubMed

    Chen, Wenjin; Guo, Shengdong; Wang, Shenggang

    2016-10-22

    BACKGROUND The purpose of our study was to determine the functional role of microRNA (miR)-16 in chronic inflammatory pain and to disclose its underlying molecular mechanism. MATERIAL AND METHODS Inflammatory pain was induced by injection of complete Freund's adjuvant (CFA) to Wistar rats. The pWPXL-miR-16, PcDNA3.1- Ras-related protein (RAB23), and/or SB203580 were delivered intrathecally to the rats. Behavioral tests were detected at 0 h, 4 h, 1 d, 4 d, 7 d, and 14 d after CFA injection. After behavioral tests, L4-L6 dorsal spinal cord were obtained and the levels of miR-16, RAB23, and phosphorylation of p38 (p-p38) were evaluated by quantitative real-time PCR (qRT-PCR). In addition, luciferase reporter assay was performed to explore whether RAB23 was a target of miR-16, and qRT-PCR and Western blotting were used to confirm the regulation between RAB23 and miR-16. RESULTS The level of miR-16 was significantly decreased in the CFA-induced inflammatory pain. Intrathecal injection of miR-16 alleviates pain response and raised pain threshold. The level of RAB23 was significantly increased in the pain model, and intrathecal injection of RAB23 aggravated pain response. Luciferase reporter assay confirmed that RAB23 was a direct target of miR-16, and RAB23 was negatively regulated by miR-16. In addition, we found that simultaneous administration of SB203580 and miR-16 further alleviates pain response compared to only administration of miR-16. CONCLUSIONS Our findings suggest that miR-16 relieves chronic inflammatory pain by targeting RAB23 and inhibiting p38 MAPK activation.

  5. Epoetin beta pegol alleviates oxidative stress and exacerbation of renal damage from iron deposition, thereby delaying CKD progression in progressive glomerulonephritis rats.

    PubMed

    Hirata, Michinori; Tashiro, Yoshihito; Aizawa, Ken; Kawasaki, Ryohei; Shimonaka, Yasushi; Endo, Koichi

    2015-12-01

    The increased deposition of iron in the kidneys that occurs with glomerulopathy hinders the functional and structural recovery of the tubules and promotes progression of chronic kidney disease (CKD). Here, we evaluated whether epoetin beta pegol (continuous erythropoietin receptor activator: CERA), which has a long half-life in blood and strongly suppresses hepcidin-25, exerts renoprotection in a rat model of chronic progressive glomerulonephritis (cGN). cGN rats showed elevated urinary total protein excretion (uTP) and plasma urea nitrogen (UN) from day 14 after the induction of kidney disease (day 0) and finally declined into end-stage kidney disease (ESKD), showing reduced creatinine clearance with glomerulosclerosis, tubular dilation, and tubulointerstitial fibrosis. A single dose of CERA given on day 1, but not on day 16, alleviated increasing uTP and UN, thereby delaying ESKD. In the initial disease phase, CERA significantly suppressed urinary 8-OHdG and liver-type fatty acid-binding protein (L-FABP), a tubular damage marker. CERA also inhibited elevated plasma hepcidin-25 levels and alleviated subsequent iron accumulation in kidneys in association with elevated urinary iron excretion and resulted in alleviation of growth of Ki67-positive tubular and glomerular cells. In addition, at day 28 when the exacerbation of uTP occurs, a significant correlation was observed between iron deposition in the kidney and urinary L-FABP. In our study, CERA mitigated increasing kidney damage, thereby delaying CKD progression in this glomerulonephritis rat model. Alleviation by CERA of the exacerbation of kidney damage could be attributable to mitigation of tubular damage that might occur with lowered iron deposition in tubules. © 2015 Chugai Pharmaceutical Co., Ltd. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  6. Lycopene Protects against Hypoxia/Reoxygenation Injury by Alleviating ER Stress Induced Apoptosis in Neonatal Mouse Cardiomyocytes

    PubMed Central

    Xu, Jiqian; Hu, Houxiang; Chen, Bin; Yue, Rongchuan; Zhou, Zhou; Liu, Yin; Zhang, Shuang; Xu, Lei; Wang, Huan; Yu, Zhengping

    2015-01-01

    Endoplasmic reticulum (ER) stress induced apoptosis plays a pivotal role in myocardial ischemia/reperfusion (I/R)-injury. Inhibiting ER stress is a major therapeutic target/strategy in treating cardiovascular diseases. Our previous studies revealed that lycopene exhibits great pharmacological potential in protecting against the I/R-injury in vitro and vivo, but whether attenuation of ER stress (and) or ER stress-induced apoptosis contributes to the effects remains unclear. In the present study, using neonatal mouse cardiomyocytes to establish an in vitro model of hypoxia/reoxygenation (H/R) to mimic myocardium I/R in vivo, we aimed to explore the hypothesis that lycopene could alleviate the ER stress and ER stress-induced apoptosis in H/R-injury. We observed that lycopene alleviated the H/R injury as revealed by improving cell viability and reducing apoptosis, suppressed reactive oxygen species (ROS) generation and improved the phosphorylated AMPK expression, attenuated ER stress as evidenced by decreasing the expression of GRP78, ATF6 mRNA, sXbp-1 mRNA, eIF2α mRNA and eIF2α phosphorylation, alleviated ER stress-induced apoptosis as manifested by reducing CHOP/GADD153 expression, the ratio of Bax/Bcl-2, caspase-12 and caspase-3 activity in H/R-treated cardiomyocytes. Thapsigargin (TG) is a potent ER stress inducer and used to elicit ER stress of cardiomyocytes. Our results showed that lycopene was able to prevent TG-induced ER stress as reflected by attenuating the protein expression of GRP78 and CHOP/GADD153 compared to TG group, significantly improve TG-caused a loss of cell viability and decrease apoptosis in TG-treated cardiomyocytes. These results suggest that the protective effects of lycopene on H/R-injury are, at least in part, through alleviating ER stress and ER stress-induced apoptosis in neonatal mouse cardiomyocytes. PMID:26291709

  7. Improved assay for quantitating adherence of ruminal bacteria to cellulose.

    PubMed Central

    Rasmussen, M A; White, B A; Hespell, R B

    1989-01-01

    A quantitative technique suitable for the determination of adherence of ruminal bacteria to cellulose was developed. This technique employs adherence of cells to cellulose disks and alleviates the problem of nonspecific cell entrapment within cellulose particles. By using this technique, it was demonstrated that the adherence of Ruminococcus flavefaciens FD1 to cellulose was inhibited by formaldehyde, methylcellulose, and carboxymethyl cellulose. Adherence was unaffected by acid hydrolysates of methylcellulose, glucose, and cellobiose. PMID:2782879

  8. Emodin alleviates jejunum injury in rats with sepsis by inhibiting inflammation response.

    PubMed

    Chen, Yi-Kun; Xu, Ying-Kun; Zhang, Hao; Yin, Jiang-Tao; Fan, Xin; Liu, Da-Dong; Fu, Hai-Yan; Wan, Bing

    2016-12-01

    Emodin is an anthraquinone derived from Chinese herb that exerts anti-inflammation effects. This study aimed to investigate whether emodin provides the protection for jejunum injury by inhibiting inflammation. We established a model of sepsis caused by cecal ligation and puncture. Forty-eight male Wistar rats were divided into four groups (n=12). Jejunum injury was assessed by pathological examination. The activity of pJAK1/pSTAT3 and protein levels of Bcl-2 and Bax were detected by Western blot analysis. Inflammatory factors IL-6, TNF-α and procalcitonin were detected by ELISA. Apoptosis was detected by TUNEL. We found that emodin alleviated jejunum damage and apoptosis induced by sepsis and decreased the levels of IL-6, TNF-α and procalcitonin in septic rats. Furthermore, we observed that emodin increased the levels of pJAK1 and of pSTAT3, which were decreased in rats with sepsis. In addition, emodin enhanced the expression of Bcl-2 which was downregulated by sepsis and decreased the expression of Bax which was upregulated by sepsis. In conclusion, these results indicate that emodin suppresses inflammatory response induced by sepsis. Emodin activates JAK1/STAT3 signaling pathway and regulates Bcl-2 and Bax expression to protect the jejunum in rats with sepsis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Cetylpyridinium chloride mouth rinses alleviate experimental gingivitis by inhibiting dental plaque maturation.

    PubMed

    Teng, Fei; He, Tao; Huang, Shi; Bo, Cun-Pei; Li, Zhen; Chang, Jin-Lan; Liu, Ji-Quan; Charbonneau, Duane; Xu, Jian; Li, Rui; Ling, Jun-Qi

    2016-09-29

    Oral rinses containing chemotherapeutic agents, such as cetylpyridinium chloride (CPC), can alleviate plaque-induced gingival infections, but how oral microbiota respond to these treatments in human population remains poorly understood. Via a double-blinded, randomised controlled trial of 91 subjects, the impact of CPC-containing oral rinses on supragingival plaque was investigated in experimental gingivitis, where the subjects, after a 21-day period of dental prophylaxis to achieve healthy gingivae, received either CPC rinses or water for 21 days. Within-subject temporal dynamics of plaque microbiota and symptoms of gingivitis were profiled via 16S ribosomal DNA gene pyrosequencing and assessment with the Mazza gingival index. Cetylpyridinium chloride conferred gingival benefits, as progression of gingival inflammation resulting from a lack of dental hygiene was significantly slower in the mouth rinse group than in the water group due to inhibition of 17 gingivitis-enriched bacterial genera. Tracking of plaque α and β diversity revealed that CPC treatment prevents acquisition of new taxa that would otherwise accumulate but maintains the original biodiversity of healthy plaques. Furthermore, CPC rinses reduced the size, local connectivity and microbiota-wide connectivity of the bacterial correlation network, particularly for nodes representing gingivitis-enriched taxa. The findings of this study provide mechanistic insights into the impact of oral rinses on the progression and maturation of dental plaque in the natural human population.

  10. Nitric oxide alleviates aluminum-induced oxidative damage through regulating the ascorbate-glutathione cycle in roots of wheat.

    PubMed

    Sun, Chengliang; Liu, Lijuan; Yu, Yan; Liu, Wenjing; Lu, Lingli; Jin, Chongwei; Lin, Xianyong

    2015-06-01

    The possible association with nitric oxide (NO) and ascorbate-glutathione (AsA-GSH) cycle in regulating aluminum (Al) tolerance of wheat (Triticum aestivum L.) was investigated using two genotypes with different Al resistance. Exposure to Al inhibited root elongation, and triggered lipid peroxidation and oxidation of AsA to dehydroascorbate and GSH to glutathione disulfide in wheat roots. Exogenous NO significantly increased endogenous NO levels, and subsequently alleviated Al-induced inhibition of root elongation and oxidation of AsA and GSH to maintain the redox molecules in the reduced form in both wheat genotypes. Under Al stress, significantly increased activities and gene transcriptional levels of ascorbate peroxidase, glutathione reductase, and dehydroascorbate reductase, were observed in the root tips of the Al-tolerant genotype Jian-864. Nitric oxide application enhanced the activity and gene transcriptional level of these enzymes in both wheat genotypes. γ-Glutamylcysteine synthetase was not significantly affected by Al or NO, but NO treatments increased the activity of glutathione peroxidase and glutathione S-transferase to a greater extent than the Al-treated wheat seedlings. Proline was significantly decreased by Al, while it was not affected by NO. These results clearly suggest that NO protects wheat root against Al-induced oxidative stress, possibly through its regulation of the AsA-GSH cycle. © 2014 Institute of Botany, Chinese Academy of Sciences.

  11. Cetylpyridinium chloride mouth rinses alleviate experimental gingivitis by inhibiting dental plaque maturation

    PubMed Central

    Teng, Fei; He, Tao; Huang, Shi; Bo, Cun-Pei; Li, Zhen; Chang, Jin-Lan; Liu, Ji-Quan; Charbonneau, Duane; Xu, Jian; Li, Rui; Ling, Jun-Qi

    2016-01-01

    Oral rinses containing chemotherapeutic agents, such as cetylpyridinium chloride (CPC), can alleviate plaque-induced gingival infections, but how oral microbiota respond to these treatments in human population remains poorly understood. Via a double-blinded, randomised controlled trial of 91 subjects, the impact of CPC-containing oral rinses on supragingival plaque was investigated in experimental gingivitis, where the subjects, after a 21-day period of dental prophylaxis to achieve healthy gingivae, received either CPC rinses or water for 21 days. Within-subject temporal dynamics of plaque microbiota and symptoms of gingivitis were profiled via 16S ribosomal DNA gene pyrosequencing and assessment with the Mazza gingival index. Cetylpyridinium chloride conferred gingival benefits, as progression of gingival inflammation resulting from a lack of dental hygiene was significantly slower in the mouth rinse group than in the water group due to inhibition of 17 gingivitis-enriched bacterial genera. Tracking of plaque α and β diversity revealed that CPC treatment prevents acquisition of new taxa that would otherwise accumulate but maintains the original biodiversity of healthy plaques. Furthermore, CPC rinses reduced the size, local connectivity and microbiota-wide connectivity of the bacterial correlation network, particularly for nodes representing gingivitis-enriched taxa. The findings of this study provide mechanistic insights into the impact of oral rinses on the progression and maturation of dental plaque in the natural human population. PMID:27680288

  12. Neurotropin® alleviates hippocampal neuron damage through a HIF-1α/MAPK pathway.

    PubMed

    Fang, Wen-Li; Zhao, De-Qiang; Wang, Fei; Li, Mei; Fan, Sheng-Nuo; Liao, Wang; Zheng, Yu-Qiu; Liao, Shao-Wei; Xiao, Song-Hua; Luan, Ping; Liu, Jun

    2017-05-01

    The main purpose was to verify the potent capacity of Neurotropin® against neuronal damage in hippocampus and to explore its underlying mechanisms. HT22 cells were treated with 40 μmol/L Aβ 25-35 in the presence of various concentrations of Neurotropin® or in its absence. The cell viability was assessed with a CCK-8 assay, and flow cytometry was used to measure cell apoptosis, intracellular ROS levels, and mitochondrial membrane potential. Aβ plaques were examined by Bielschowsky silver staining, and the activities of antioxidants were detected in hippocampus of APP/PS1 mice after Neurotropin® treatment. The expression of proteins, including HIF-1α, Bcl-2, Bax, and MAPKs signaling molecules was evaluated by Western blot. Neurotropin® significantly reversed the cell injury induced by Aβ 25-35 through increasing cell viability and mitochondrial membrane potential, decreasing intracellular ROS and cell apoptosis of HT22 cells (P<.05). Furthermore, Neurotropin® markedly reduced the formation of Aβ plaques and upregulated the activities of antioxidants (P<.05). Additionally, the protein expression of HIF-1α, p-ERK1/2, p-JNK, and p-P38 was significantly inhibited in hippocampus of APP/PS1 mice. Neurotropin® exhibited a potent neuroprotective effect on inhibiting Aβ-induced oxidative damage and alleviating Aβ deposition in hippocampus via modulation of HIF-1α/MAPK signaling pathway. © 2017 John Wiley & Sons Ltd.

  13. Ribes nigrum L. Prevents UVB-mediated Photoaging in Human Dermal Fibroblasts: Potential Antioxidant and Antiinflammatory Activity.

    PubMed

    Li, Lu; Hwang, Eunson; Ngo, Hien T T; Seo, Seul A; Lin, Pei; Gao, Wei; Liu, Ying; Yi, Tae-Hoo

    2018-05-16

    Black currants (Ribes nigrum L, RN) are known as a "super fruit" to possess for their many potential health benefits such as the alleviation of oxidative stress-related disorders. However, little skin photoaging-related research has been done on the use of this agent. In the present study, we investigated the protective effects of RN in UVB-irradiated human dermal fibroblasts (NHDFs). RN treatment in UVB-irradiated skin models alleviated UVB-mediated photoaging through several mechanisms: Treatment with RN downregulated MAPK-related signaling models, such as those of activation protein 1 (AP-1) and nuclear factor kappa B (NF-κB). In addition, phase II gene heme oxygenase-1 (HO-1) was modulated by the increase in nuclear factor erythroid 2-related factor 2 (Nrf2) in the nuclear, and finally, transforming growth factor TGF-β was upregulated in vitro. Further study indicated that UVB-induced production of MMP-1 and IL-6 could be inhibited by PD 98059 (an inhibitor of ERK) and SP600125 (an inhibitor of JNK). Thus, RN improved the expression of type I procollagen and inhibited UVB-induced MMP-1 and IL-6 secretion through inactivating MAPK cascades. Therefore, RN is a suitable target for further investigation as an antiphotoaging agent and may have applications in the skincare industry. © 2018 The American Society of Photobiology.

  14. Valsartan protects HK-2 cells from contrast media-induced apoptosis by inhibiting endoplasmic reticulum stress.

    PubMed

    Peng, Ping-An; Wang, Le; Ma, Qian; Xin, Yi; Zhang, Ou; Han, Hong-Ya; Liu, Xiao-Li; Ji, Qing-Wei; Zhou, Yu-Jie; Zhao, Ying-Xin

    2015-12-01

    Contrast-induced acute kidney injury (CI-AKI) is associated with increasing in-hospital and long-term adverse clinical outcomes in high-risk patients undergoing percutaneous coronary intervention (PCI). Contrast media (CM)-induced renal tubular cell apoptosis is reported to participate in this process by activating endoplasmic reticulum (ER) stress. An angiotensin II type 1 receptor (AT1R) antagonist can alleviate ER stress-induced renal apoptosis in streptozotocin (STZ)-induced diabetic mice and can reduce CM-induced renal apoptosis by reducing oxidative stress and reversing the enhancement of bax mRNA and the reduction of bcl-2 mRNA, but the effect of the AT1R blocker on ER stress in the pathogenesis of CI-AKI is still unknown. In this study, we explored the effect of valsartan on meglumine diatrizoate-induced human renal tubular cell apoptosis by measuring changes in ER stress-related biomarkers. The results showed that meglumine diatrizoate caused significant cell apoptosis by up-regulating the expression of ER stress markers, including glucose-regulated protein 78 (GRP78), activating transcription factor 4 (ATF4), CCAAT/enhancer-binding protein-homologous protein (CHOP) and caspase 12, in a time- and dose-dependent manner, which could be alleviated by preincubation with valsartan. In conclusion, valsartan had a potential nephroprotective effect on meglumine diatrizoate-induced renal cell apoptosis by inhibiting ER stress. © 2015 International Federation for Cell Biology.

  15. Physiological and molecular analysis of the interaction between aluminium toxicity and drought stress in common bean (Phaseolus vulgaris)

    PubMed Central

    Yang, Zhong-Bao; Eticha, Dejene; Albacete, Alfonso; Rao, Idupulapati Madhusudana; Roitsch, Thomas; Horst, Walter Johannes

    2012-01-01

    Aluminium (Al) toxicity and drought are two major factors limiting common bean (Phaseolus vulgaris) production in the tropics. Short-term effects of Al toxicity and drought stress on root growth in acid, Al-toxic soil were studied, with special emphasis on Al–drought interaction in the root apex. Root elongation was inhibited by both Al and drought. Combined stresses resulted in a more severe inhibition of root elongation than either stress alone. This result was different from the alleviation of Al toxicity by osmotic stress (–0.60 MPa polyethylene glycol) in hydroponics. However, drought reduced the impact of Al on the root tip, as indicated by the reduction of Al-induced callose formation and MATE expression. Combined Al and drought stress enhanced up-regulation of ACCO expression and synthesis of zeatin riboside, reduced drought-enhanced abscisic acid (ABA) concentration, and expression of NCED involved in ABA biosynthesis and the transcription factors bZIP and MYB, thus affecting the regulation of ABA-dependent genes (SUS, PvLEA18, KS-DHN, and LTP) in root tips. The results provide circumstantial evidence that in soil, drought alleviates Al injury, but Al renders the root apex more drought-sensitive, particularly by impacting the gene regulatory network involved in ABA signal transduction and cross-talk with other phytohormones necessary for maintaining root growth under drought. PMID:22371077

  16. Ophiopogonin D alleviates cardiac hypertrophy in rat by upregulating CYP2J3 in vitro and suppressing inflammation in vivo.

    PubMed

    Wang, Yuan; Huang, Xiaoyan; Ma, Zengchun; Wang, Yuguang; Chen, Xiangmei; Gao, Yue

    2018-06-20

    Ophiopogonin D (OPD) is the chief pharmacological active component of the traditional Chinese herbal prescription drug-Shenmai injection (SMI), which has been used to prevent and treat cardiovascular diseases. In the present study, we investigated whether OPD protectively relieve cardiac hypertrophy against inflammation via inhibiting the expression of NF-κB and examined whether cytochrome P450 2J3 (CYP2J3)was involved in this pathway. H9c2 cells were treated with Angiotensin II (Ang II). Hypertrophy in rat was induced by administration of Ang II infusion. To evaluate the effect of OPD on disease progression and the role of CYP2J3 in this way, inflammatory mediators (NF-κB), specific hypertrophic factors and pathological change were determined in this experiment. In addition, Ang II induced hypertrophy with the elevated expression of specific hypertrophy genes and NF-κB signaling molecules. However, these inductive effects were reversed by OPD in conjunction with Ang II. Overexpression of CYP2J3 prevented the excessive expression of NF-κB. In vivo, some pathological cardiac hypertrophy injuries were relieved after OPD treatment. OPD exerts a positive effect on alleviating cardiac hypertrophy. The mechanism is probably inhibiting the expression of NF-κB by upregulating CYP2J3 to suppressing inflammation. Copyright © 2018. Published by Elsevier Inc.

  17. STAT6 Deletion Enhances Immunity to Mammary Carcinoma

    DTIC Science & Technology

    2005-06-01

    probably oxygen intermediates, such as hydrogen peroxide and nitric oxide, not involved in the IFN--y effect on the 4TI mammary carcinoma, which are...mechanistic explanation for the improved tumor immunity is not clear. The purpose of this project is to determine the potency of the Stat6 effect for enhancing...Staining with DCFDA, which measures hydrogen peroxide , hydroxyl radical, by BALB/c, but not CD 1-V, MSC is arginase-dependent. peroxynitrile, and

  18. Inhibition of FUSCA3 degradation at high temperature is dependent on ABA signaling and is regulated by the ABA/GA ratio.

    PubMed

    Chiu, Rex Shun; Saleh, Yazan; Gazzarrini, Sonia

    2016-11-01

    During seed imbibition at supra-optimal temperature, an increase in the abscisic acid (ABA)/gibberellin (GA) ratio imposes secondary dormancy to prevent germination (thermoinhibition). FUSCA3 (FUS3), a positive regulator of seed dormancy, accumulates in seeds imbibed at high temperature and increases ABA levels to inhibit germination. Recently, we showed that ABA inhibits FUS3 degradation at high temperature, and that ABA and high temperature also inhibit the ubiquitin-proteasome system, by dampening both proteasome activity and protein polyubiquitination. Here, we investigated the role of ABA signaling components and the ABA antagonizing hormone, GA, in the regulation of FUS3 levels. We show that the ABA receptor mutant, pyl1-1, is less sensitive to ABA and thermoinhibition. In this mutant background, FUS3 degradation in vitro is faster. Similarly, GA alleviates thermoinhibition and also increases FUS3 degradation. These results indicate that inhibition of FUS3 degradation at high temperature is dependent on a high ABA/GA ratio and a functional ABA signaling pathway. Thus, FUS3 constitutes an important node in ABA-GA crosstalk during germination at supra-optimal temperature.

  19. Mangiferin alleviates lipopolysaccharide and D-galactosamine-induced acute liver injury by activating the Nrf2 pathway and inhibiting NLRP3 inflammasome activation.

    PubMed

    Pan, Chen-wei; Pan, Zhen-zhen; Hu, Jian-jian; Chen, Wei-lai; Zhou, Guang-yao; Lin, Wei; Jin, Ling-xiang; Xu, Chang-long

    2016-01-05

    Mangiferin, a glucosylxanthone from Mangifera indica, has been reported to have anti-inflammatory effects. However, the protective effects and mechanisms of mangiferin on liver injury remain unclear. This study aimed to determine the protective effects and mechanisms of mangiferin on lipopolysaccharide (LPS) and D-galactosamine (D-GalN)-induced acute liver injury. Mangiferin was given 1h after LPS and D-GalN treatment. The results showed that mangiferin inhibited the levels of serum ALT, AST, IL-1β, TNF-α, MCP-1, and RANTES, as well as hepatic malondialdehyde (MDA) and ROS levels. Moreover, mangiferin significantly inhibited IL-1β and TNF-α production in LPS-stimulated primary hepatocytes. Mangiferin was found to up-regulate the expression of Nrf2 and HO-1 in a dose-dependent manner. Furthermore, mangiferin inhibited LPS/d-GalN-induced hepatic NLRP3, ASC, caspase-1, IL-1β and TNF-α expression. In conclusion, mangiferin protected against LPS/GalN-induced liver injury by activating the Nrf2 pathway and inhibiting NLRP3 inflammasome activation. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Chk1 promotes replication fork progression by controlling replication initiation

    PubMed Central

    Petermann, Eva; Woodcock, Mick; Helleday, Thomas

    2010-01-01

    DNA replication starts at initiation sites termed replication origins. Metazoan cells contain many more potential origins than are activated (fired) during each S phase. Origin activation is controlled by the ATR checkpoint kinase and its downstream effector kinase Chk1, which suppresses origin firing in response to replication blocks and during normal S phase by inhibiting the cyclin-dependent kinase Cdk2. In addition to increased origin activation, cells deficient in Chk1 activity display reduced rates of replication fork progression. Here we investigate the causal relationship between increased origin firing and reduced replication fork progression. We use the Cdk inhibitor roscovitine or RNAi depletion of Cdc7 to inhibit origin firing in Chk1-inhibited or RNAi-depleted cells. We report that Cdk inhibition and depletion of Cdc7 can alleviate the slow replication fork speeds in Chk1-deficient cells. Our data suggest that increased replication initiation leads to slow replication fork progression and that Chk1 promotes replication fork progression during normal S phase by controlling replication origin activity. PMID:20805465

  1. An efficient process for wastewater treatment to mitigate free nitrous acid generation and its inhibition on biological phosphorus removal

    PubMed Central

    Zhao, Jianwei; Wang, Dongbo; Li, Xiaoming; Yang, Qi; Chen, Hongbo; Zhong, Yu; An, Hongxue; Zeng, Guangming

    2015-01-01

    Free nitrous acid (FNA), which is the protonated form of nitrite and inevitably produced during biological nitrogen removal, has been demonstrated to strongly inhibit the activity of polyphosphate accumulating organisms (PAOs). Herein we reported an efficient process for wastewater treatment, i.e., the oxic/anoxic/oxic/extended-idle process to mitigate the generation of FNA and its inhibition on PAOs. The results showed that this new process enriched more PAOs which thereby achieved higher phosphorus removal efficiency than the conventional four-step (i.e., anaerobic/oxic/anoxic/oxic) biological nutrient removal process (41 ± 7% versus 30 ± 5% in abundance of PAOs and 97 ± 0.73% versus 82 ± 1.2% in efficiency of phosphorus removal). It was found that this new process increased pH value but decreased nitrite accumulation, resulting in the decreased FNA generation. Further experiments showed that the new process could alleviate the inhibition of FNA on the metabolisms of PAOs even under the same FNA concentration. PMID:25721019

  2. Prion-like nanofibrils of small molecules (PriSM) selectively inhibit cancer cells by impeding cytoskeleton dynamics.

    PubMed

    Kuang, Yi; Long, Marcus J C; Zhou, Jie; Shi, Junfeng; Gao, Yuan; Xu, Chen; Hedstrom, Lizbeth; Xu, Bing

    2014-10-17

    Emerging evidence reveals that prion-like structures play important roles to maintain the well-being of cells. Although self-assembly of small molecules also affords prion-like nanofibrils (PriSM), little is known about the functions and mechanisms of PriSM. Previous works demonstrated that PriSM formed by a dipeptide derivative selectively inhibiting the growth of glioblastoma cells over neuronal cells and effectively inhibiting xenograft tumor in animal models. Here we examine the protein targets, the internalization, and the cytotoxicity pathway of the PriSM. The results show that the PriSM selectively accumulate in cancer cells via macropinocytosis to impede the dynamics of cytoskeletal filaments via promiscuous interactions with cytoskeletal proteins, thus inducing apoptosis. Intriguingly, Tau proteins are able to alleviate the effect of the PriSM, thus protecting neuronal cells. This work illustrates PriSM as a new paradigm for developing polypharmacological agents that promiscuously interact with multiple proteins yet result in a primary phenotype, such as cancer inhibition. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. The protective effect of dopamine on ventilator-induced lung injury via the inhibition of NLRP3 inflammasome.

    PubMed

    Yang, Xiaomei; Sun, Xiaotong; Chen, Hongli; Xi, Guangmin; Hou, Yonghao; Wu, Jianbo; Liu, Dejie; Wang, Huanliang; Hou, Yuedong; Yu, Jingui

    2017-04-01

    Dopamine (DA), a neurotransmitter, was previously shown to have anti-inflammatory effects. However, its role in ventilator-induced lung injury (VILI) has not been explicitly demonstrated. This study aimed to investigate the therapeutic efficacy and molecular mechanisms of dopamine in VILI. Rats were treated with dopamine during mechanical ventilation. Afterwards, the influence of dopamine on histological changes, pulmonary edema, the lung wet/dry (W/D) ratio, myeloperoxidase (MPO) activity, polymorphonuclear(PMN)counts, inflammatory cytokine levels, and NLRP3 inflammasome protein expression were examined. Our results showed that dopamine significantly attenuated lung tissue injury, the lung W/D ratio, MPO activity and neutrophil infiltration. Moreover, it inhibited inflammatory cytokine levels in the Bronchoalveolar lavage fluid (BAL). In addition, dopamine significantly inhibited ventilation-induced NLRP3 activation. Our experimental findings demonstrate that dopamine exerted protective effects in VILI by alleviating the inflammatory response through inhibition of NLRP3 signaling pathways. The present study indicated that dopamine could be a potential effective therapeutic strategy for the treatment of VILI. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. mTORC1-Mediated Inhibition of 4EBP1 Is Essential for Hedgehog Signaling-Driven Translation and Medulloblastoma.

    PubMed

    Wu, Chang-Chih; Hou, Shirui; Orr, Brent A; Kuo, Bryan R; Youn, Yong Ha; Ong, Taren; Roth, Fanny; Eberhart, Charles G; Robinson, Giles W; Solecki, David J; Taketo, Makoto M; Gilbertson, Richard J; Roussel, Martine F; Han, Young-Goo

    2017-12-18

    Mechanistic target of rapamycin (MTOR) cooperates with Hedgehog (HH) signaling, but the underlying mechanisms are incompletely understood. Here we provide genetic, biochemical, and pharmacologic evidence that MTOR complex 1 (mTORC1)-dependent translation is a prerequisite for HH signaling. The genetic loss of mTORC1 function inhibited HH signaling-driven growth of the cerebellum and medulloblastoma. Inhibiting translation or mTORC1 blocked HH signaling. Depleting 4EBP1, an mTORC1 target that inhibits translation, alleviated the dependence of HH signaling on mTORC1. Consistent with this, phosphorylated 4EBP1 levels were elevated in HH signaling-driven medulloblastomas in mice and humans. In mice, an mTORC1 inhibitor suppressed medulloblastoma driven by a mutant SMO that is inherently resistant to existing SMO inhibitors, prolonging the survival of the mice. Our study reveals that mTORC1-mediated translation is a key component of HH signaling and an important target for treating medulloblastoma and other cancers driven by HH signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Extracts, Anthocyanins and Procyanidins from Aronia melanocarpa as Radical Scavengers and Enzyme Inhibitors

    PubMed Central

    Bräunlich, Marie; Slimestad, Rune; Wangensteen, Helle; Brede, Cato; Malterud, Karl E.; Barsett, Hilde

    2013-01-01

    Extracts, subfractions, isolated anthocyanins and isolated procyanidins B2, B5 and C1 from the berries and bark of Aronia melanocarpa were investigated for their antioxidant and enzyme inhibitory activities. Four different bioassays were used, namely scavenging of the diphenylpicrylhydrazyl (DPPH) radical, inhibition of 15-lipoxygenase (15-LO), inhibition of xanthine oxidase (XO) and inhibition of α-glucosidase. Among the anthocyanins, cyanidin 3-arabinoside possessed the strongest and cyanidin 3-xyloside the weakest radical scavenging and enzyme inhibitory activity. These effects seem to be influenced by the sugar units linked to the anthocyanidin. Subfractions enriched in procyanidins were found to be potent α-glucosidase inhibitors; they possessed high radical scavenging properties, strong inhibitory activity towards 15-LO and moderate inhibitory activity towards XO. Trimeric procyanidin C1 showed higher activity in the biological assays compared to the dimeric procyanidins B2 and B5. This study suggests that different polyphenolic compounds of A. melanocarpa can have beneficial effects in reducing blood glucose levels due to inhibition of α-glucosidase and may have a potential to alleviate oxidative stress. PMID:23459328

  6. Extracts, anthocyanins and procyanidins from Aronia melanocarpa as radical scavengers and enzyme inhibitors.

    PubMed

    Bräunlich, Marie; Slimestad, Rune; Wangensteen, Helle; Brede, Cato; Malterud, Karl E; Barsett, Hilde

    2013-03-04

    Extracts, subfractions, isolated anthocyanins and isolated procyanidins B2, B5 and C1 from the berries and bark of Aronia melanocarpa were investigated for their antioxidant and enzyme inhibitory activities. Four different bioassays were used, namely scavenging of the diphenylpicrylhydrazyl (DPPH) radical, inhibition of 15-lipoxygenase (15-LO), inhibition of xanthine oxidase (XO) and inhibition of α-glucosidase. Among the anthocyanins, cyanidin 3-arabinoside possessed the strongest and cyanidin 3-xyloside the weakest radical scavenging and enzyme inhibitory activity. These effects seem to be influenced by the sugar units linked to the anthocyanidin. Subfractions enriched in procyanidins were found to be potent α-glucosidase inhibitors; they possessed high radical scavenging properties, strong inhibitory activity towards 15-LO and moderate inhibitory activity towards XO. Trimeric procyanidin C1 showed higher activity in the biological assays compared to the dimeric procyanidins B2 and B5. This study suggests that different polyphenolic compounds of A. melanocarpa can have beneficial effects in reducing blood glucose levels due to inhibition of α-glucosidase and may have a potential to alleviate oxidative stress.

  7. Dual inhibition of acetylcholinesterase and butyrylcholinesterase enzymes by allicin

    PubMed Central

    Kumar, Suresh

    2015-01-01

    Objectives: The brain of mammals contains two major form of cholinesterase enzymes, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The dual inhibition of these enzymes is considered as a promising strategy for the treatment of neurological disorder such as Alzheimer's disease (AD), senile dementia, ataxia, and myasthenia gravis. The present study was undertaken to explore the anticholinesterase inhibition property of allicin. Materials and Methods: An assessment of cholinesterase inhibition was carried out by Ellman's assay. Results: The present study demonstrates allicin, a major ingredient of crushed garlic (Allium sativum L.) inhibited both AChE and BuChE enzymes in a concentration-dependent manner. For allicin, the IC50 concentration was 0.01 mg/mL (61.62 μM) for AChE and 0.05 ± 0.018 mg/mL (308.12 μM) for BuChE enzymes. Conclusions: Allicin shows a potential to ameliorate the decline of cognitive function and memory loss associated with AD by inhibiting cholinesterase enzymes and upregulate the levels of acetylcholine (ACh) in the brain. It can be used as a new lead to target AChE and BuChE to upregulate the level of ACh which will be useful in alleviating the symptoms associated with AD. PMID:26288480

  8. Pentose sugars inhibit metabolism and increase expression of an AgrD-type cyclic pentapeptide in Clostridium thermocellum.

    PubMed

    Verbeke, Tobin J; Giannone, Richard J; Klingeman, Dawn M; Engle, Nancy L; Rydzak, Thomas; Guss, Adam M; Tschaplinski, Timothy J; Brown, Steven D; Hettich, Robert L; Elkins, James G

    2017-02-23

    Clostridium thermocellum could potentially be used as a microbial biocatalyst to produce renewable fuels directly from lignocellulosic biomass due to its ability to rapidly solubilize plant cell walls. While the organism readily ferments sugars derived from cellulose, pentose sugars from xylan are not metabolized. Here, we show that non-fermentable pentoses inhibit growth and end-product formation during fermentation of cellulose-derived sugars. Metabolomic experiments confirmed that xylose is transported intracellularly and reduced to the dead-end metabolite xylitol. Comparative RNA-seq analysis of xylose-inhibited cultures revealed several up-regulated genes potentially involved in pentose transport and metabolism, which were targeted for disruption. Deletion of the ATP-dependent transporter, CbpD partially alleviated xylose inhibition. A putative xylitol dehydrogenase, encoded by Clo1313_0076, was also deleted resulting in decreased total xylitol production and yield by 41% and 46%, respectively. Finally, xylose-induced inhibition corresponds with the up-regulation and biogenesis of a cyclical AgrD-type, pentapeptide. Medium supplementation with the mature cyclical pentapeptide also inhibits bacterial growth. Together, these findings provide new foundational insights needed for engineering improved pentose utilizing strains of C. thermocellum and reveal the first functional Agr-type cyclic peptide to be produced by a thermophilic member of the Firmicutes.

  9. Pentose sugars inhibit metabolism and increase expression of an AgrD-type cyclic pentapeptide in Clostridium thermocellum

    PubMed Central

    Verbeke, Tobin J.; Giannone, Richard J.; Klingeman, Dawn M.; Engle, Nancy L.; Rydzak, Thomas; Guss, Adam M.; Tschaplinski, Timothy J.; Brown, Steven D.; Hettich, Robert L.; Elkins, James G.

    2017-01-01

    Clostridium thermocellum could potentially be used as a microbial biocatalyst to produce renewable fuels directly from lignocellulosic biomass due to its ability to rapidly solubilize plant cell walls. While the organism readily ferments sugars derived from cellulose, pentose sugars from xylan are not metabolized. Here, we show that non-fermentable pentoses inhibit growth and end-product formation during fermentation of cellulose-derived sugars. Metabolomic experiments confirmed that xylose is transported intracellularly and reduced to the dead-end metabolite xylitol. Comparative RNA-seq analysis of xylose-inhibited cultures revealed several up-regulated genes potentially involved in pentose transport and metabolism, which were targeted for disruption. Deletion of the ATP-dependent transporter, CbpD partially alleviated xylose inhibition. A putative xylitol dehydrogenase, encoded by Clo1313_0076, was also deleted resulting in decreased total xylitol production and yield by 41% and 46%, respectively. Finally, xylose-induced inhibition corresponds with the up-regulation and biogenesis of a cyclical AgrD-type, pentapeptide. Medium supplementation with the mature cyclical pentapeptide also inhibits bacterial growth. Together, these findings provide new foundational insights needed for engineering improved pentose utilizing strains of C. thermocellum and reveal the first functional Agr-type cyclic peptide to be produced by a thermophilic member of the Firmicutes. PMID:28230109

  10. The combination of osthole with baicalin protects mice from Staphylococcus aureus pneumonia.

    PubMed

    Liu, Shui; Liu, Bowen; Luo, Zhao-Qing; Qiu, Jiaming; Zhou, Xuan; Li, Gen; Zhang, Bing; Deng, Xuming; Yang, Zhenguo; Wang, Jianfeng

    2017-01-01

    We reported the inhibition of α-Hemolysin (Hla) production in methicillin-resistant Staphylococcus aureus USA300 by osthole and further investigated the combination of osthole and baicalin in the treatment of staphylococcal pneumonia. Using cytotoxicity assays and a mouse model of intranasal lung infection, we evaluated the effect of combined therapy. Our results suggest that the combination of osthole and baicalin alleviated S. aureus-mediated A549 cell injury and protected mice from S. aureus pneumonia.

  11. Hydrogen Sulfide Alleviates Aluminum Toxicity via Decreasing Apoplast and Symplast Al Contents in Rice

    PubMed Central

    Zhu, Chun Q.; Zhang, Jun H.; Sun, Li M.; Zhu, Lian F.; Abliz, Buhailiqem; Hu, Wen J.; Zhong, Chu; Bai, Zhi G.; Sajid, Hussain; Cao, Xiao C.; Jin, Qian Y.

    2018-01-01

    Hydrogen sulfide (H2S) plays a vital role in Al3+ stress resistance in plants, but the underlying mechanism is unclear. In the present study, pretreatment with 2 μM of the H2S donor NaHS significantly alleviated the inhibition of root elongation caused by Al toxicity in rice roots, which was accompanied by a decrease in Al contents in root tips under 50 μM Al3+ treatment. NaHS pretreatment decreased the negative charge in cell walls by reducing the activity of pectin methylesterase and decreasing the pectin and hemicellulose contents in rice roots. This treatment also masked Al-binding sites in the cell wall by upregulating the expression of OsSATR1 and OsSTAR2 in roots and reduced Al binding in the cell wall by stimulating the expression of the citrate acid exudation gene OsFRDL4 and increasing the secretion of citrate acid. In addition, NaHS pretreatment decreased the symplasmic Al content by downregulating the expression of OsNRAT1, and increasing the translocation of cytoplasmic Al to the vacuole via upregulating the expression of OsALS1. The increment of antioxidant enzyme [superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), and peroxidase (POD)] activity with NaHS pretreatment significantly decreased the MDA and H2O2 content in rice roots, thereby reducing the damage of Al3+ toxicity on membrane integrity in rice. H2S exhibits crosstalk with nitric oxide (NO) in response to Al toxicity, and through reducing NO content in root tips to alleviate Al toxicity. Together, this study establishes that H2S alleviates Al toxicity by decreasing the Al content in the apoplast and symplast of rice roots. PMID:29559992

  12. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants--A soil microcosm experiment.

    PubMed

    Wang, Fayuan; Liu, Xueqin; Shi, Zhaoyong; Tong, Ruijian; Adams, Catharine A; Shi, Xiaojun

    2016-03-01

    ZnO nanoparticles (NPs) are considered an emerging contaminant when in high concentration, and their effects on crops and soil microorganisms pose new concerns and challenges. Arbuscular mycorrhizal (AM) fungi (AMF) form mutualistic symbioses with most vascular plants, and putatively contribute to reducing nanotoxicity in plants. Here, we studied the interactions between ZnO NPs and maize plants inoculated with or without AMF in ZnO NPs-spiked soil. ZnO NPs had no significant adverse effects at 400 mg/kg, but inhibited both maize growth and AM colonization at concentrations at and above 800 mg/kg. Sufficient addition of ZnO NPs decreased plant mineral nutrient acquisition, photosynthetic pigment concentrations, and root activity. Furthermore, ZnO NPs caused Zn concentrations in plants to increase in a dose-dependent pattern. As the ZnO NPs dose increased, we also found a positive correlation with soil diethylenetriaminepentaacetic acid (DTPA)-extractable Zn. However, AM inoculation significantly alleviated the negative effects induced by ZnO NPs: inoculated-plants experienced increased growth, nutrient uptake, photosynthetic pigment content, and SOD activity in leaves. Mycorrhizal plants also exhibited decreased ROS accumulation, Zn concentrations and bioconcentration factor (BCF), and lower soil DTPA-extractable Zn concentrations at high ZnO NPs doses. Our results demonstrate that, at high contamination levels, ZnO NPs cause toxicity to AM symbiosis, but AMF help alleviate ZnO NPs-induced phytotoxicity by decreasing Zn bioavailability and accumulation, Zn partitioning to shoots, and ROS production, and by increasing mineral nutrients and antioxidant capacity. AMF may play beneficial roles in alleviating the negative effects and environmental risks posed by ZnO NPs in agroecosystems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Hydrogen Sulfide Alleviates Aluminum Toxicity via Decreasing Apoplast and Symplast Al Contents in Rice.

    PubMed

    Zhu, Chun Q; Zhang, Jun H; Sun, Li M; Zhu, Lian F; Abliz, Buhailiqem; Hu, Wen J; Zhong, Chu; Bai, Zhi G; Sajid, Hussain; Cao, Xiao C; Jin, Qian Y

    2018-01-01

    Hydrogen sulfide (H 2 S) plays a vital role in Al 3+ stress resistance in plants, but the underlying mechanism is unclear. In the present study, pretreatment with 2 μM of the H 2 S donor NaHS significantly alleviated the inhibition of root elongation caused by Al toxicity in rice roots, which was accompanied by a decrease in Al contents in root tips under 50 μM Al 3+ treatment. NaHS pretreatment decreased the negative charge in cell walls by reducing the activity of pectin methylesterase and decreasing the pectin and hemicellulose contents in rice roots. This treatment also masked Al-binding sites in the cell wall by upregulating the expression of OsSATR1 and OsSTAR2 in roots and reduced Al binding in the cell wall by stimulating the expression of the citrate acid exudation gene OsFRDL4 and increasing the secretion of citrate acid. In addition, NaHS pretreatment decreased the symplasmic Al content by downregulating the expression of OsNRAT1 , and increasing the translocation of cytoplasmic Al to the vacuole via upregulating the expression of OsALS1 . The increment of antioxidant enzyme [superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), and peroxidase (POD)] activity with NaHS pretreatment significantly decreased the MDA and H 2 O 2 content in rice roots, thereby reducing the damage of Al 3+ toxicity on membrane integrity in rice. H 2 S exhibits crosstalk with nitric oxide (NO) in response to Al toxicity, and through reducing NO content in root tips to alleviate Al toxicity. Together, this study establishes that H 2 S alleviates Al toxicity by decreasing the Al content in the apoplast and symplast of rice roots.

  14. TSC1 and TSC2 Gene Homologs in Schizosaccharomyces Pombe

    DTIC Science & Technology

    2005-04-01

    arginine metabolism in B C S. pombe. Enzymes are in italic. Arginase converts arginine into ornithine, a precur- pyroglutamic acid sor of polyamines. 5...both Atscl and Atsc2. 5-Oxoprolinase hydro- 12. Yang, W., Tabancay, A. P., Jr., Urano, J., and Tamanoi, F. (2001) Mol. Micro- lyzed pyroglutamic acid to...relationship of the S. pombe model to human TSC. The transcriptional expression profile and intracellular amino acid levels associated with Atscl and Atsc2

  15. Dietary supplementation of tiger nut alters biochemical parameters relevant to erectile function in l-NAME treated rats.

    PubMed

    Olabiyi, Ayodeji A; Carvalho, Fabiano B; Bottari, Nathieli B; Lopes, Thauan F; da Costa, Pauline; Stefanelo, Naiara; Morsch, Vera M; Akindahunsi, Afolabi A; Oboh, Ganiyu; Schetinger, Maria Rosa

    2018-07-01

    Tiger nut tubers have been reportedly used for the treatment of erectile dysfunction (ED) in folk medicine without scientific basis. Hence, this study evaluated the effect of tiger nut on erectile dysfunction by assessing biochemical parameters relevant to ED in male rats by nitric oxide synthase (NOS) inhibitor, Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME) treatment. Rats were divided into five groups (n = 10) each: Control group; l-NAME plus basal diet; l-NAME plus Sildenafil citrate; diet supplemented processed tiger nut (20%) plus l-NAME;diet supplemented raw tiger nut (20%) plus l-NAME. l-NAME pre-treatment (40 mg/kg/day) lasted for 14 days. Arginase, acetycholinesterase (AChE) and adenosine deaminase (ADA) activities as well as nitric oxide levels (NO) in serum, brain and penile tissue were measured. l-NAME increased the activity of arginase, AChE and ADA and reduced NO levels. However, dietary supplementation with tiger nut caused a reduction on the activities of the above enzymes and up regulated nitric oxide levels when compared to the control group. The effect of tiger nut supplemented diet may be said to prevent alterations of the activities of the enzymes relevant in erectile function. Quercetin was revealed to be the most active component of tiger nut tuber by HPLC finger printing. Copyright © 2018. Published by Elsevier Ltd.

  16. The improvement of M1 polarization in macrophages by glycopeptide derived from Ganoderma lucidum.

    PubMed

    Sun, Li-Xin; Lin, Zhi-Bin; Lu, Jie; Li, Wei-Dong; Niu, Yan-Dong; Sun, Yu; Hu, Chen-Yang; Zhang, Guo-Qiang; Duan, Xin-Suo

    2017-06-01

    Ganoderma lucidum (Fr.) Karst (Ganodermataceae) is a medicinal mushroom that has been extensively used in China for centuries to promote longevity and improve vigor without significant adverse effects. There is continuous interest in the bioactive properties of G. lucidum in view of its newly developed popularity in other regions besides Asia, such as Europe. Glycopeptide derived from G. lucidum (Gl-PS) is one of the main effective components isolated from this mushroom. The Gl-PS has been demonstrated pleiotropic with many bioactivities including immunomodulatory and antitumor effects. Macrophages are important cells involved in innate and adaptive immunity. Classically activated macrophages (M1) and alternatively activated macrophages (M2), with their different roles, display distinct cytokine profiles: M1 preferentially produces TNF-α, IL-6, and IL-12; conversely, M2 generates more IL-10 and arginase. Gl-PS might have the potential to promote macrophage M1 polarization by lipopolysaccharide (LPS). In this study, LPS was used to induce the M1 polarization. It was shown that the level of the TNF-α, IL-6, and IL-12 were increased and the IL-10 and arginase I were decreased in the polarized M1 macrophages after application of Gl-PS compared to the control. The results indicated the potential of Gl-PS to promote M1 polarization vs M2, with the health beneficial understanding of the bioactivities of Gl-PS.

  17. Novel photoluminescence enzyme immunoassay based on supramolecular host-guest recognition using L-arginine/6-aza-2-thiothymine-stabilized gold nanocluster.

    PubMed

    Wang, Youmei; Lu, Minghua; Tang, Dianping

    2018-06-30

    A new photoluminescence (PL) enzyme immunoassay was designed for sensitive detection of aflatoxin B 1 (AFB 1 ) via an innovative enzyme substrate, 6-aza-2-thiothymine-stabilized gold nanocluster (AAT-AuNC) with L-arginine. The enzyme substrate with strong PL intensity was formed through supramolecular host-guest assembly between guanidine group of L-arginine and AAT capped on the surface of AuNC. Upon arginase introduction, the captured L-arginine was hydrolyzed into ornithine and urea, thus resulting in the decreasing PL intensity. Based on this principle, a novel competitive-type immunoreaction was first carried out on AFB 1 -bovine serum albumin (AFB 1 -BSA) conjugate-coated microplate, using arginase-labeled anti-AFB 1 antibody as the competitor. Under the optimum conditions, the PL intensity increased with the increment of target AFB 1 , and allowed the detection of the analyte at concentrations as low as 3.2 pg mL -1 (ppt). Moreover, L-arginine-AAT-AuNC-based PL enzyme immunoassay afforded good reproducibility and acceptable specificity. In addition, the accuracy of this methodology, referring to commercial AFB 1 ELISA kit, was evaluated to analyze naturally contaminated or spiked peanut samples, giving well-matched results between two methods, thus representing a useful scheme for practical application in quantitative monitoring of mycotoxins in foodstuff. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Alternative activation modifies macrophage resistance to Mycobacterium bovis.

    PubMed

    Castillo-Velázquez, Uziel; Aranday-Cortés, Elihú; Gutiérrez-Pabello, José A

    2011-07-05

    The aim of this study was to evaluate the influence of macrophage alternative activation in the intracellular pathogen natural disease resistance phenotype of the host. Macrophage monolayers from resistant (R) (3) or susceptible (S) (3) cattle donors were treated with 10 ng/ml of bovine recombinant IL-4 (rbIL-4), and infected with virulent and avirulent Mycobacterium bovis (MOI 10:1). Bactericidal assays were performed to assess the bacterial phagocytic index and intracellular survival. Total RNA was reverse transcribed and used to analyze the relative changes in gene expression of IL-10, IL-12, IL-18 IL-1β, TNF-α, MCP-1, MCP-2, IL-6, MIP-1, MIP-3, iNOS, ARGII and SLAM by real time PCR. Cell supernatants were collected and nitric oxide and arginase production was assessed. Apoptosis induction was measured by TUNEL. IL-4 treatment increased the phagocytic index in both R and S macrophages; however intracellular survival was augmented mainly in S macrophages. Alternative activation decreased gene expression of pro-inflammatory cytokines, nitric oxide production and DNA fragmentation mainly in R macrophages. On the other hand, arginase production was not different between R and S macrophages. Alternative activation modifies the macrophage response against M. bovis. IL-4 treatment minimized the functional differences that exist between R and S macrophages. Copyright © 2011. Published by Elsevier B.V.

  19. Edaravone alleviates Alzheimer's disease-type pathologies and cognitive deficits.

    PubMed

    Jiao, Shu-Sheng; Yao, Xiu-Qing; Liu, Yu-Hui; Wang, Qing-Hua; Zeng, Fan; Lu, Jian-Jun; Liu, Jia; Zhu, Chi; Shen, Lin-Lin; Liu, Cheng-Hui; Wang, Ye-Ran; Zeng, Gui-Hua; Parikh, Ankit; Chen, Jia; Liang, Chun-Rong; Xiang, Yang; Bu, Xian-Le; Deng, Juan; Li, Jing; Xu, Juan; Zeng, Yue-Qin; Xu, Xiang; Xu, Hai-Wei; Zhong, Jin-Hua; Zhou, Hua-Dong; Zhou, Xin-Fu; Wang, Yan-Jiang

    2015-04-21

    Alzheimer's disease (AD) is one of most devastating diseases affecting elderly people. Amyloid-β (Aβ) accumulation and the downstream pathological events such as oxidative stress play critical roles in pathogenesis of AD. Lessons from failures of current clinical trials suggest that targeting multiple key pathways of the AD pathogenesis is necessary to halt the disease progression. Here we show that Edaravone, a free radical scavenger that is marketed for acute ischemic stroke, has a potent capacity of inhibiting Aβ aggregation and attenuating Aβ-induced oxidation in vitro. When given before or after the onset of Aβ deposition via i.p. injection, Edaravone substantially reduces Aβ deposition, alleviates oxidative stress, attenuates the downstream pathologies including Tau hyperphosphorylation, glial activation, neuroinflammation, neuronal loss, synaptic dysfunction, and rescues the behavioral deficits of APPswe/PS1 mice. Oral administration of Edaravone also ameliorates the AD-like pathologies and memory deficits of the mice. These findings suggest that Edaravone holds a promise as a therapeutic agent for AD by targeting multiple key pathways of the disease pathogenesis.

  20. Improved tolerance to transplanting injury and chilling stress in rice seedlings treated with orysastrobin.

    PubMed

    Takahashi, Naoto; Sunohara, Yukari; Fujiwara, Masami; Matsumoto, Hiroshi

    2017-04-01

    In addition to their fungicidal activity, strobilurin-type fungicides are reported to show enhancing effects on crop growth and yield. Previous studies suggested that the fungicide has a mitigating effect on abiotic stresses. However, there are few reports about growth enhancement through abiotic stress alleviation by strobilurin-type fungicides, but the mechanism of action of the growth enhancement is still not clear. The present study revealed that orysastrobin enhanced rice seedling growth after root cutting injury and chilling stress. We also found that orysastrobin decreased the transpiration rate and increased ascorbate peroxidase and glutathione reductase activities. This stress alleviation was eliminated by the application of naproxen, a putative abscisic acid biosynthesis inhibitor. These results suggested that orysastrobin improved tolerance against transplanting injury and chilling stress in rice seedlings by inducing water-retaining activity through the suppression of transpiration, and also by inducing reactive oxygen scavenging activity thus inhibiting reactive oxygen species accumulation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Dietary Supplementation of Genistein Alleviates Liver Inflammation and Fibrosis Mediated by a Methionine-Choline-Deficient Diet in db/db Mice.

    PubMed

    Yoo, Na-young; Jeon, Sookyoung; Nam, Yerim; Park, Youn-Jin; Won, Sae Bom; Kwon, Young Hye

    2015-05-06

    Nonalcoholic fatty liver disease is a complex disorder which includes simple steatosis, steatohepatitis, fibrosis and ultimately cirrhosis. Previous studies have reported that genistein, a soy phytoestrogen, attenuates steatohepatitis induced in obese and type 2 diabetic models. Here we investigated the effect of dietary genistein supplementation (0.05%) on nonalcoholic steatohepatitis (NASH) development induced by a methionine-choline-deficient (MCD) diet in db/db mice. MCD-diet-fed mice exhibited a significantly lower body weight and a higher degree of steatohepatitis with increased oxidative stress, steatosis, inflammation, stellate cell activation, and mild fibrosis. Although genistein did not inhibit hepatic steatosis, we observed that oxidative stress, endoplasmic reticulum stress, and AMP-dependent kinase inactivation were alleviated by genistein. Genistein also down-regulated the augmented gene expressions associated with hepatic inflammation and fibrosis. Therefore, these results suggest that genistein may protect MCD-diet-mediated NASH development by suppressing lipid peroxidation, inflammation, and even liver fibrosis in db/db mice.

  2. Alleviation effect of arbutin on oxidative stress generated through tyrosinase reaction with l-tyrosine and l-DOPA

    PubMed Central

    2014-01-01

    Background Hydroxyl radical that has the highest reactivity among reactive oxygen species (ROS) is generated through l-tyrosine-tyrosinase reaction. Thus, the melanogenesis might induce oxidative stress in the skin. Arbutin (p-hydroxyphenyl-β-d-glucopyranoside), a well-known tyrosinase inhibitor has been widely used for the purpose of skin whitening. The aim of the present study was to examine if arbutin could suppress the hydroxyl radical generation via tyrosinase reaction with its substrates, l-tyrosine and l-DOPA. Results The hydroxyl radical, which was determined by an electron spin resonance-spin trapping technique, was generated by the addition of not only l-tyrosine but l-DOPA to tyrosinase in a concentration dependent manner. Arbutin could inhibit the hydroxyl radical generation in the both reactions. Conclusion It is presumed that arbutin could alleviate oxidative stress derived from the melanogenic pathway in the skin in addition to its function as a whitening agent in cosmetics. PMID:25297374

  3. Photoprotection in plants: a new light on photosystem II damage.

    PubMed

    Takahashi, Shunichi; Badger, Murray R

    2011-01-01

    Sunlight damages photosynthetic machinery, primarily photosystem II (PSII), and causes photoinhibition that can limit plant photosynthetic activity, growth and productivity. The extent of photoinhibition is associated with a balance between the rate of photodamage and its repair. Recent studies have shown that light absorption by the manganese cluster in the oxygen-evolving complex of PSII causes primary photodamage, whereas excess light absorbed by light-harvesting complexes acts to cause inhibition of the PSII repair process chiefly through the generation of reactive oxygen species. As we review here, PSII photodamage and the inhibition of repair are therefore alleviated by photoprotection mechanisms associated with avoiding light absorption by the manganese cluster and successfully consuming or dissipating the light energy absorbed by photosynthetic pigments, respectively. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Structure and inhibition of EV-D68, a virus that causes respiratory illness in children.

    PubMed

    Liu, Yue; Sheng, Ju; Fokine, Andrei; Meng, Geng; Shin, Woong-Hee; Long, Feng; Kuhn, Richard J; Kihara, Daisuke; Rossmann, Michael G

    2015-01-02

    Enterovirus D68 (EV-D68) is a member of Picornaviridae and is a causative agent of recent outbreaks of respiratory illness in children in the United States. We report here the crystal structures of EV-D68 and its complex with pleconaril, a capsid-binding compound that had been developed as an anti-rhinovirus drug. The hydrophobic drug-binding pocket in viral protein 1 contained density that is consistent with a fatty acid of about 10 carbon atoms. This density could be displaced by pleconaril. We also showed that pleconaril inhibits EV-D68 at a half-maximal effective concentration of 430 nanomolar and might, therefore, be a possible drug candidate to alleviate EV-D68 outbreaks. Copyright © 2015, American Association for the Advancement of Science.

  5. Structure and inhibition of EV-D68, a virus that causes respiratory illness in children

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yue; Sheng, Ju; Fokine, Andrei

    Enterovirus D68 (EV-D68) is a member of Picornaviridae and is a causative agent of recent outbreaks of respiratory illness in children in the United States. We report in this paper the crystal structures of EV-D68 and its complex with pleconaril, a capsid-binding compound that had been developed as an anti-rhinovirus drug. The hydrophobic drug-binding pocket in viral protein 1 contained density that is consistent with a fatty acid of about 10 carbon atoms. This density could be displaced by pleconaril. Finally, we also showed that pleconaril inhibits EV-D68 at a half-maximal effective concentration of 430 nanomolar and might, therefore, bemore » a possible drug candidate to alleviate EV-D68 outbreaks.« less

  6. [The pharmacodynamic research on fuxiye, a Chinese herbal lotion for external wash].

    PubMed

    Chen, Xue-Qi; Ge, Bei-Fen; Shen, Wei; Liu, Pei; Cao, Jun-Ming; Chen, Zhe

    2013-05-01

    To observe antisepsis, anti-swelling, and therapeutic effects of Fuxiye (FXY), a Chinese medical lotion for external wash in treating vaginitis model rats. The cervicitis rat model was induced by agar plate diffusion, ear auricle swelling induced by dimethylbenzene, and chemical stimulus. The in vitro antibiotic actions of FXY were observed. Besides, its effects on the swelling and inflammation in model rats were also observed. FXY at 25 mg/mL could completely inhibit the growth of Pseudomonas aeruginosa, Escherichia coli, pyogenic Streptococcus, and Streptococcus agalactiae. FXY at 50 mg/mL could completely inhibit the growth of Staphylococcus aureus and Candida albicans. It obviously restrained dimethylbenzene induced ear auricle swelling. It significantly alleviated cervicitis induced by chemical stiumli. FXY showed better effects on antisepsis, anti-inflammation, and treating cervicitis.

  7. Lysophosphatidic acid induces neuronal cell death via activation of asparagine endopeptidase in cerebral ischemia-reperfusion injury.

    PubMed

    Wang, Chao; Zhang, Jie; Tang, Junchun; Li, Yi-Yi; Gu, YanXia; Yu, Ying; Xiong, Jing; Zhao, Xueqing; Zhang, Zheng; Li, Ting-Ting; Chen, Jutao; Wan, Qi; Zhang, Zhaohui

    2018-04-17

    Lysophosphatidic acid (LPA), an extracellular signaling molecule, influences diverse biological events, including the pathophysiological process induced after ischemic brain injury. However, the molecular mechanisms mediating the pathological change after ischemic stroke remain elusive. Here we report that asparagine endopeptidase (AEP), a lysosomal cysteine proteinase, is regulated by LPA during stroke. AEP proteolytically cleaves tau and generates tauN368 fragments, triggering neuronal death. Inhibiting the generation of LPA reduces the expression of AEP and tauN368, and alleviates neuronal cell death. Together, this evidence indicates that the LPA-AEP pathway plays a key role in the pathophysiological process induced after ischemic stroke. Inhibition of LPA could be a useful therapeutic for treating neuronal injury after stroke. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Structure and inhibition of EV-D68, a virus that causes respiratory illness in children

    DOE PAGES

    Liu, Yue; Sheng, Ju; Fokine, Andrei; ...

    2015-01-02

    Enterovirus D68 (EV-D68) is a member of Picornaviridae and is a causative agent of recent outbreaks of respiratory illness in children in the United States. We report in this paper the crystal structures of EV-D68 and its complex with pleconaril, a capsid-binding compound that had been developed as an anti-rhinovirus drug. The hydrophobic drug-binding pocket in viral protein 1 contained density that is consistent with a fatty acid of about 10 carbon atoms. This density could be displaced by pleconaril. Finally, we also showed that pleconaril inhibits EV-D68 at a half-maximal effective concentration of 430 nanomolar and might, therefore, bemore » a possible drug candidate to alleviate EV-D68 outbreaks.« less

  9. Persimmon Tannin Decreased the Glycemic Response through Decreasing the Digestibility of Starch and Inhibiting α-Amylase, α-Glucosidase, and Intestinal Glucose Uptake.

    PubMed

    Li, Kaikai; Yao, Fen; Du, Jing; Deng, Xiangyi; Li, Chunmei

    2018-02-21

    Regulation of postprandial blood glucose levels is an effective therapeutic proposal for type 2 diabetes treatment. In this study, the effect of persimmon tannin on starch digestion with different amylose levels was investigated both in vitro and in vivo. Oral administration of persimmon tannin-starch complexes significantly suppressed the increase of blood glucose levels and the area under the curve (AUC) in a dose-dependent manner compared with starch treatment alone in an in vivo rat model. Further study proved that persimmon tannin could not only interact with starch directly but also inhibit α-amylase and α-glucosidase strongly, with IC 50 values of 0.35 and 0.24 mg/mL, separately. In addition, 20 μg/mL of persimmon tannin significantly decreased glucose uptake and transport in Caco-2 cells model. Overall, our data suggested that persimmon tannin may alleviate postprandial hyperglycemia through limiting the digestion of starch as well as inhibiting the uptake and transport of glucose.

  10. Disentangling the Roles of Approach, Activation and Valence in Instrumental and Pavlovian Responding

    PubMed Central

    Huys, Quentin J. M.; Cools, Roshan; Gölzer, Martin; Friedel, Eva; Heinz, Andreas; Dolan, Raymond J.; Dayan, Peter

    2011-01-01

    Hard-wired, Pavlovian, responses elicited by predictions of rewards and punishments exert significant benevolent and malevolent influences over instrumentally-appropriate actions. These influences come in two main groups, defined along anatomical, pharmacological, behavioural and functional lines. Investigations of the influences have so far concentrated on the groups as a whole; here we take the critical step of looking inside each group, using a detailed reinforcement learning model to distinguish effects to do with value, specific actions, and general activation or inhibition. We show a high degree of sophistication in Pavlovian influences, with appetitive Pavlovian stimuli specifically promoting approach and inhibiting withdrawal, and aversive Pavlovian stimuli promoting withdrawal and inhibiting approach. These influences account for differences in the instrumental performance of approach and withdrawal behaviours. Finally, although losses are as informative as gains, we find that subjects neglect losses in their instrumental learning. Our findings argue for a view of the Pavlovian system as a constraint or prior, facilitating learning by alleviating computational costs that come with increased flexibility. PMID:21556131

  11. Innovative encapsulated oxygen-releasing beads for bioremediation of BTEX at high concentration in groundwater.

    PubMed

    Lin, Chi-Wen; Wu, Chih-Hung; Guo, Pei-Yu; Chang, Shih-Hsien

    2017-12-15

    Both a low concentration of dissolved oxygen and the toxicity of a high concentration of BTEX inhibit the bioremediation of BTEX in groundwater. A novel method of preparing encapsulated oxygen-releasing beads (encap-ORBs) for the biodegradation of BTEX in groundwater was developed. Experimental results show that the integrality and oxygen-releasing capacity of encap-ORBs exceeded those of ORBs. The use of polyvinyl alcohol (PVA) with high M.W. to prepare encap-ORBs improved their integrality. The encap-ORBs effectively released oxygen for 128 days. High concentration of BTEX (480 mg L -1 ) inhibited the biodegradation by the free cells. Immobilization of degraders in the encap-ORB alleviated the inhibition. Scanning electron microscope analysis reveals that the BTEX degraders grew on the surface of encap-ORB after bioremediation. The above results indicate that the encap-ORBs were effective in the bioremediation of BTEX at high concentration in groundwater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Alleviative effects of α-lipoic acid supplementation on acute heat stress-induced thermal panting and the level of plasma nonesterified fatty acids in hypothyroid broiler chickens.

    PubMed

    Hamano, Y

    2012-01-01

    1. The present study was conducted to examine the effects of α-lipoic acid on hypothyroidism-induced negative growth performance and whether α-lipoic acid alleviates acute heat stress in relation to hypothyroid status. 2. Female broiler chickens (14 d-old) were fed diets supplemented with α-lipoic acid (100 mg/kg) and an antithyroid substance, propylthiouracil (200 mg/kg), for 20 d under thermoneutral conditions (25°C). At 42 d of age, chickens were exposed to a high ambient temperature (36°C, 60% RH) for 4 h. 3. Under the thermoneutral condition, propylthiouracil administration decreased feed efficiency and concomitantly increased adipose tissue and thyroid gland weights. Plasma nonesterified fatty acids and triacylglycerol were also increased by propylthiouracil administration. However, α-lipoic acid supplementation did not affect the hypothyroidism-induced effects. 4. In hypothyroid chickens, the rise in respiratory rate induced by heat exposure was greatly inhibited by α-lipoic acid administration at 1 h, but this effect had disappeared at 4 h. In addition, a similar inhibitory effect on the concentrations of plasma nonesterified fatty acids was subsequently observed at 4 h. 5. Therefore, the present study suggested that α-lipoic acid alleviates acute heat stress if chickens are in a hypothyroid status.

  13. Hydrogen Sulfide Alleviates Postharvest Senescence of Grape by Modulating the Antioxidant Defenses

    PubMed Central

    Ni, Zhi-Jing; Hu, Kang-Di; Song, Chang-Bing; Ma, Run-Hui; Li, Zhi-Rong; Zheng, Ji-Lian; Fu, Liu-Hui

    2016-01-01

    Hydrogen sulfide (H2S) has been identified as an important gaseous signal in plants. Here, we investigated the mechanism of H2S in alleviating postharvest senescence and rotting of Kyoho grape. Exogenous application of H2S released from 1.0 mM NaHS remarkably decreased the rotting and threshing rate of grape berries. H2S application also prevented the weight loss in grape clusters and inhibited the decreases in firmness, soluble solids, and titratable acidity in grape pulp during postharvest storage. The data of chlorophyll and carotenoid content suggested the role of H2S in preventing chlorophyll breakdown and carotenoid accumulation in both grape rachis and pulp. In comparison to water control, exogenous H2S application maintained significantly higher levels of ascorbic acid and flavonoid and total phenolics and reducing sugar and soluble protein in grape pulp. Meanwhile, H2S significantly reduced the accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide anion (O2 ∙−) in grape pulp. Further investigations showed that H2S enhanced the activities of antioxidant enzymes ascorbate peroxidase (APX) and catalase (CAT) and decreased those of lipoxygenase (LOX) in both grape peels and pulp. In all, we provided strong evidence that H2S effectively alleviated postharvest senescence and rotting of Kyoho grape by modulating antioxidant enzymes and attenuating lipid peroxidation. PMID:27594971

  14. Dai-Huang-Fu-Zi-Tang Alleviates Intestinal Injury Associated with Severe Acute Pancreatitis by Regulating Mitochondrial Permeability Transition Pore of Intestinal Mucosa Epithelial Cells

    PubMed Central

    Kang, Xin; Liang, Zhengkai; Zhan, Libin; Song, Jianbo; Wang, Yi; Yang, Yilun; Fan, Zhiwei; Bai, Lizhi

    2017-01-01

    Objective The aim of the present study was to examine whether Dai-Huang-Fu-Zi-Tang (DHFZT) could regulate mitochondrial permeability transition pore (MPTP) of intestinal mucosa epithelial cells for alleviating intestinal injury associated with severe acute pancreatitis (SAP). Methods A total of 72 Sprague-Dawley rats were randomly divided into 3 groups (sham group, SAP group, and DHFZT group, n = 24 per group). The rats in each group were divided into 4 subgroups (n = 6 per subgroup) accordingly at 1, 3, 6, and 12 h after the operation. The contents of serum amylase, D-lactic acid, diamine oxidase activity, and degree of MPTP were measured by dry chemical method and enzyme-linked immunosorbent assay. The change of mitochondria of intestinal epithelial cells was observed by transmission electron microscopy. Results The present study showed that DHFZT inhibited the openness of MPTP at 3, 6, and 12 h after the operation. Meanwhile, it reduced the contents of serum D-lactic acid and activity of diamine oxidase activity and also drastically relieved histopathological manifestations and epithelial cells injury of intestine. Conclusion DHFZT alleviates intestinal injury associated SAP via reducing the openness of MPTP. In addition, DHFZT could also decrease the content of serum diamine oxidase activity and D-lactic acid after SAP. PMID:29403537

  15. Mitragyna speciosa Leaf Extract Exhibits Antipsychotic-Like Effect with the Potential to Alleviate Positive and Negative Symptoms of Psychosis in Mice

    PubMed Central

    Vijeepallam, Kamini; Pandy, Vijayapandi; Kunasegaran, Thubasni; Murugan, Dharmani D.; Naidu, Murali

    2016-01-01

    In this study, we investigated the antipsychotic-like effect of methanolic extract of Mitragyna speciosa leaf (MMS) using in vivo and ex vivo studies. In vivo studies comprised of apomorphine-induced climbing behavior, haloperidol-induced catalepsy, and ketamine-induced social withdrawal tests in mice whereas the ex vivo study was conducted utilizing isolated rat vas deferens preparation. Acute oral administration of MMS (50–500 mg/kg) showed an inverted bell-shaped dose-response in apomorphine-induced cage climbing behavior in mice. The effective inhibitory doses of MMS (75 and 100 mg/kg, p.o.) obtained from the apomorphine study was further tested on haloperidol (subcataleptic dose; 0.1 mg/kg, i.p.)-induced catalepsy in the mouse bar test. MMS (75 and 100 mg/kg, p.o.) significantly potentiated the haloperidol-induced catalepsy in mice. Interestingly, MMS at the same effective doses (75 and 100 mg/kg, p.o.) significantly facilitated the social interaction in ketamine-induced social withdrawal mice. Furthermore, MMS inhibited the dopamine-induced contractile response dose-dependently in the isolated rat vas deferens preparations. In conclusion, this investigation provides first evidence that MMS exhibits antipsychotic-like activity with potential to alleviate positive as well as negative symptoms of psychosis in mice. This study also suggests the antidopaminergic activity of MMS that could be responsible for alleviating positive symptoms of psychosis. PMID:27999544

  16. Mangiferin alleviates hypertension induced by hyperuricemia via increasing nitric oxide releases.

    PubMed

    Yang, Hua; Bai, Wenwei; Gao, Lihui; Jiang, Jun; Tang, Yingxi; Niu, Yanfen; Lin, Hua; Li, Ling

    2018-06-06

    Mangiferin, a natural glucosyl xanthone, was confirmed to be an effective uric acid (UA)- lowering agent with dual action of inhibiting production and promoting excretion of UA. In this study, we aimed to evaluate the effect of mangiferin on alleviating hypertension induced by hyperuricemia. Mangiferin (30, 60, 120 mg/kg) was administered intragastrically to hyperuricemic rats induced by gavage with potassium oxonate (750 mg/kg). Systolic blood pressure (SBP), serum levels of UA, nitric oxide (NO), C-reactionprotein (CRP) and ONOO - were measured. The mRNA and protein levels of endothelial nitric oxide synthase (eNOS), intercellular adhesion molecule-1 (ICAM-1), CRP were also analyzed. Human umbilical vein endothelial cells (HUVECs) were used in vitro studies. Administration of mangiferin significantly decreased the serum urate level and SBP at 8 weeks and last to 12 weeks. Further more, mangiferin could increase the release of NO and decrease the level of CRP in blood. In addition, mangiferin reversed the protein expression of eNOS, CRP, ICAM-1 and ONOO - in aortic segments in hyperuricemic rats. The results in vitro were consistent with the observed results in vivo. Taken together, these data suggested that mangiferin has played an important part in alleviating hypertension induced by hyperuricemia via increasing NO secretion and improving endothelial function. Copyright © 2018 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  17. Peripheral Interventions Enhancing Brain Glutamate Homeostasis Relieve Amyloid β- and TNFα- Mediated Synaptic Plasticity Disruption in the Rat Hippocampus.

    PubMed

    Zhang, Dainan; Mably, Alexandra J; Walsh, Dominic M; Rowan, Michael J

    2017-07-01

    Dysregulation of glutamate homeostasis in the interstitial fluid of the brain is strongly implicated in causing synaptic dysfunction in many neurological and psychiatric illnesses. In the case of Alzheimer's disease (AD), amyloid β (Aβ)-mediated disruption of synaptic plasticity and memory can be alleviated by interventions that directly remove glutamate or block certain glutamate receptors. An alternative strategy is to facilitate the removal of excess glutamate from the nervous system by activating peripheral glutamate clearance systems. One such blood-based system, glutamate oxaloacetate transaminase (GOT), is activated by oxaloacetate, which acts as a co-substrate. We report here that synthetic and AD brain-derived Aβ-mediated inhibition of synaptic long-term potentiation in the hippocampus is alleviated by oxaloacetate. Moreover the effect of oxaloacetate was GOT-dependent. The disruptive effects of a general inhibitor of excitatory amino acid transport or TNFα, a pro-inflammatory mediator of Aβ action, were also reversed by oxaloacetate. Furthermore, another intervention that increases peripheral glutamate clearance, peritoneal dialysis, mimicked the beneficial effect of oxaloacetate. These findings lend support to the promotion of the peripheral clearance of glutamate as a means to alleviate synaptic dysfunction that is caused by impaired glutamate homeostasis in the brain. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Polysaccharide Agaricus blazei Murill stimulates myeloid derived suppressor cell differentiation from M2 to M1 type, which mediates inhibition of tumour immune-evasion via the Toll-like receptor 2 pathway

    PubMed Central

    Liu, Yi; Zhang, Lingyun; Zhu, Xiangxiang; Wang, Yuehua; Liu, WenWei; Gong, Wei

    2015-01-01

    Gr-1+ CD11b+ myeloid-derived suppressor cells (MDSCs) accumulate in tumor-bearing animals and play a critical negative role during tumor immunotherapy. Strategies for inhibition of MDSCs are expected to improve cancer immunotherapy. Polysaccharide Agaricus blazei Murill (pAbM) has been found to have anti-cancer activity, but the underlying mechanism of this is poorly understood. Here, pAbM directly activated the purified MDSCs through inducing the expression of interleukin-6 (IL-6), IL-12, tumour necrosis factor and inducible nitric oxide synthase (iNOS), CD86, MHC II, and pSTAT1 of it, and only affected natural killer and T cells in the presence of Gr-1+ CD11b+ monocytic MDSCs. On further analysis, we demonstrated that pAbM could selectively block the Toll-like receptor 2 (TLR2) signal of Gr-1+ CD11b+ MDSCs and increased their M1-type macrophage characteristics, such as producing IL-12, lowering expression of Arginase 1 and increasing expression of iNOS. Extensive study showed that Gr-1+ CD11b+ MDSCs by pAbM treatment had less ability to convert the CD4+ CD25− cells into CD4+ CD25+ phenotype. Moreover, result from selective depletion of specific cell populations in xenograft mice model suggested that the anti-tumour effect of pAbM was dependent on Gr-1+ CD11b+ monocytes, nether CD8+ T cells nor CD4+ T cells. In addition to, pAbM did not inhibit tumour growth in TLR2–/– mice. All together, these results suggested that pAbM, a natural product commonly used for cancer treatment, was a specific TLR2 agonist and had potent anti-tumour effects through the opposite of the suppressive function of Gr-1+ CD11b+ MDSCs. PMID:26194418

  19. Protection of wheat against leaf and stem rust and powdery mildew diseases by inhibition of polyamine metabolism

    NASA Technical Reports Server (NTRS)

    Weinstein, L. H.; Osmeloski, J. F.; Wettlaufer, S. H.; Galston, A. W.

    1987-01-01

    In higher plants, polyamines arise from arginine by one of two pathways: via ornithine and ornithine decarboxylase or via agmatine and arginine decarboxylase but in fungi, only the ornithine decarboxylase pathway is present. Since polyamines are required for normal growth of microorganisms and plants and since the ornithine pathway can be irreversibly blocked by alpha-difluoromethylornithine (DFMO) which has no effect on arginine decarboxylase, fungal infection of green plants might be controlled by the site-directed use of such a specific metabolic inhibitor. DFMO at relatively low concentrations provided effective control of the three biotrophic fungal pathogens studied, Puccinia recondita (leaf rust), P. graminis f. sp. tritici (stem rust), and Erysiphe graminis (powdery mildew) on wheat (Triticum aestivum L.) Effective control of infection by leaf or stem rust fungi was obtained with sprays of DFMO that ranged from about 0.01 to 0.20 mM in experiments where the inhibitor was applied after spore inoculation. The powdery mildew fungus was somewhat more tolerant of DFMO, but good control of the pathogen was obtained at less than 1.0 mM. In general, application of DFMO after spore inoculation was more effective than application before inoculation. Less control was obtained following treatment with alpha-difluoromethylarginine (DFMA) but the relatively high degree of control obtained raises the possibility of a DFMA to DFMO conversion by arginase.

  20. Escin activates AKT-Nrf2 signaling to protect retinal pigment epithelium cells from oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Kaijun; Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou; Jiang, Yiqian

    Here we explored the anti-oxidative and cytoprotective potentials of escin, a natural triterpene-saponin, against hydrogen peroxide (H{sub 2}O{sub 2}) in retinal pigment epithelium (RPE) cells. We showed that escin remarkably attenuated H{sub 2}O{sub 2}-induced death and apoptosis of established (ARPE-19) and primary murine RPE cells. Meanwhile, ROS production and lipid peroxidation by H{sub 2}O{sub 2} were remarkably inhibited by escin. Escin treatment in RPE cells resulted in NF-E2-related factor 2 (Nrf2) signaling activation, evidenced by transcription of anti-oxidant-responsive element (ARE)-regulated genes, including HO-1, NQO-1 and SRXN-1. Knockdown of Nrf2 through targeted shRNAs/siRNAs alleviated escin-mediated ARE gene transcription, and almost abolishedmore » escin-mediated anti-oxidant activity and RPE cytoprotection against H{sub 2}O{sub 2}. Reversely, escin was more potent against H{sub 2}O{sub 2} damages in Nrf2-over-expressed ARPE-19 cells. Further studies showed that escin-induced Nrf2 activation in RPE cells required AKT signaling. AKT inhibitors (LY294002 and perifosine) blocked escin-induced AKT activation, and dramatically inhibited Nrf2 phosphorylation, its cytosol accumulation and nuclear translocation in RPE cells. Escin-induced RPE cytoprotection against H{sub 2}O{sub 2} was also alleviated by the AKT inhibitors. Together, these results demonstrate that escin protects RPE cells from oxidative stress possibly through activating AKT-Nrf2 signaling.« less

  1. Effect of soil metal contamination on glyphosate mineralization: role of zinc in the mineralization rates of two copper-spiked mineral soils.

    PubMed

    Kim, Bojeong; Kim, Young Sik; Kim, Bo Min; Hay, Anthony G; McBride, Murray B

    2011-03-01

    A systematic investigation into lowered degradation rates of glyphosate in metal-contaminated soils was performed by measuring mineralization of [(14)C]glyphosate to (14)CO(2) in two mineral soils that had been spiked with Cu and/or Zn at various loadings. Cumulative (14)CO(2) release was estimated to be approximately 6% or less of the amount of [(14)C]glyphosate originally added in both soils over an 80-d incubation. For all but the highest Cu treatments (400 mg kg(-1)) in the coarse-textured Arkport soil, mineralization began without a lag phase and declined over time. No inhibition of mineralization was observed for Zn up to 400 mg kg(-1) in either soil, suggesting differential sensitivity of glyphosate mineralization to the types of metal and soil. Interestingly, Zn appeared to alleviate high-Cu inhibition of mineralization in the Arkport soil. The protective role of Zn against Cu toxicity was also observed in the pure culture study with Pseudomonas aeruginosa, suggesting that increased mineralization rates in high Cu soil with Zn additions might have been due to alleviation of cellular toxicity by Zn rather than a mineralization specific mechanism. Extensive use of glyphosate combined with its reduced degradation in Cu-contaminated, coarse-textured soils may increase glyphosate persistence in soil and consequently facilitate Cu and glyphosate mobilization in the soil environment. Copyright © 2010 SETAC.

  2. Pathogenic effects of Rift Valley fever virus NSs gene are alleviated in cultured cells by expressed antiviral short hairpin RNAs.

    PubMed

    Scott, Tristan; Paweska, Janusz T; Arbuthnot, Patrick; Weinberg, Marc S

    2012-01-01

    Rift Valley fever virus (RVFV), a member of the Bunyaviridae family, may cause severe hepatitis, encephalitis and haemorrhagic fever in humans. There are currently no available licensed vaccines or therapies to treat the viral infection in humans. RNA interference (RNAi)-based viral gene silencing offers a promising approach to inhibiting replication of this highly pathogenic virus. The small (S) segment of the RVFV tripartite genome carries the genetic determinates for pathogenicity during infection. This segment encodes the non-structural S (NSs) and essential nucleocapsid (N) genes. To advance RNAi-based inhibition of RVFV replication, we designed several Pol III short hairpin RNA (shRNA) expression cassettes against the NSs and N genes, including a multimerized plasmid vector that included four shRNA expression cassettes. Effective target silencing was demonstrated using full- and partial-length target reporter assays, and confirmed by western blot analysis of exogenous N and NSs expression. Small RNA northern blots showed detectable RNAi guide strand formation from single and multimerized shRNA constructs. Using a cell culture model of RVFV replication, shRNAs targeting the N gene decreased intracellular nucleocapsid protein concentration and viral replication. The shRNAs directed against the NSs gene reduced NSs protein concentrations and alleviated NSs-mediated cytotoxicity, which may be caused by host transcription suppression. These data are the first demonstration that RNAi activators have a potential therapeutic benefit for countering RVFV infection.

  3. Glycyrrhetinic acid prevents acetaminophen-induced acute liver injury via the inhibition of CYP2E1 expression and HMGB1-TLR4 signal activation in mice.

    PubMed

    Yang, Genling; Zhang, Li; Ma, Li; Jiang, Rong; Kuang, Ge; Li, Ke; Tie, Hongtao; Wang, Bin; Chen, Xinyu; Xie, Tianjun; Gong, Xia; Wan, Jingyuan

    2017-09-01

    Acetaminophen (APAP) is a widely used antipyretic and analgesic drug, which is safe and effective at the therapeutic dose. Unfortunately, excessive dosage of APAP could cause severe liver injury due to lack of effective therapy. Successful therapeutic strategies are urgently requested in clinic. Glycyrrhetinic acid (GA), derived from a traditional medicine licorice, has been shown to exert anti-inflammatory and antioxidant actions. In this study, the effect and the underlying mechanism of GA on APAP-induced hepatotoxicity were explored. Our results showed that pretreatment with GA significantly reduced serum ALT and AST activities, alleviated hepatic pathological damages with hepatocellular apoptosis, down-regulated expression of CYP2E1 mRNA and protein, increased GSH levels, and reduced reactive oxygen species (ROS) productions in the liver of APAP-exposed mice. Furthermore, GA obviously inhibited APAP-induced HMGB1-TLR4 signal activation, as evaluated by reduced hepatic HMGB1 release, p-IRAK1, p-MAPK and p-IκB expression as well as the productions of TNF-α and IL-1β. In addition, GA attenuated hepatic neutrophils recruitment and macrophages infiltration caused by APAP. These findings reflected that GA could alleviate APAP-induced hepatotoxicity, the possible mechanism is associated with down-regulation of CYP2E1 expression and deactivation of HMGB1-TLR4 signal pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Inhibition of the signalling kinase JAK3 alleviates inflammation in monoarthritic rats

    PubMed Central

    Kim, Byung-Hak; Kim, Myunghwan; Yin, Chang-Hong; Jee, Jun-Goo; Sandoval, Claudio; Lee, Hyejung; Bach, Erika A; Hahm, Dae-Hyun; Baeg, Gyeong-Hun

    2011-01-01

    BACKGROUND AND PURPOSE Many cytokines associated with autoimmune disorders and inflammation have been shown to activate the signalling kinase JAK3, implying that JAK3 plays key roles in the pathogenesis of these diseases. Therefore, investigating the alterations of JAK3 activity and the efficacy of selective JAK3 antagonists in animal models of such disorders is essential to a better understanding of the biology of JAK3 and to assess the potential clinical benefits of JAK3 inhibitors. EXPERIMENTAL APPROACH Through high-throughput cell-based screening using the NCI compound library, we identified NSC163088 (berberine chloride) as a novel inhibitor of JAK3. Specificity and efficacy of this compound were investigated in both cellular and animal models. KEY RESULTS We show that berberine chloride has selectivity for JAK3 over other JAK kinase members, as well as over other oncogenic kinases such as Src, in various cellular assays. Biochemical and modelling studies strongly suggested that berberine chloride bound directly to the kinase domain of JAK3. Also phospho-JAK3 levels were significantly increased in the synovial tissues of rat joints with acute inflammation, and the treatment of these rats with berberine chloride decreased JAK3 phosphorylation and suppressed the inflammatory responses. CONCLUSIONS AND IMPLICATIONS The up-regulation of JAK3/STATs was closely correlated with acute arthritic inflammation and that inhibition of JAK3 activity by JAK3 antagonists, such as berberine chloride, alleviated the inflammation in vivo. PMID:21434883

  5. Hydrogen sulfide alleviates mercury toxicity by sequestering it in roots or regulating reactive oxygen species productions in rice seedlings.

    PubMed

    Chen, Zhen; Chen, Moshun; Jiang, Ming

    2017-02-01

    Soil mercury (Hg) contamination is a major factor that affects agricultural yield and food security. Hydrogen sulfide (H 2 S) plays multifunctional roles in mediating a variety of responses to abiotic stresses. The effects of exogenous H 2 S on rice (Oryza sativa var 'Nipponbare') growth and metabolism under mercuric chloride (HgCl 2 ) stress were investigated in this study. Either 100 or 200 μM sodium hydrosulfide (NaHS, a donor of H 2 S) pretreatment improved the transcription of bZIP60, a membrane-associated transcription factor, and then enhanced the expressions of non-protein thiols (NPT) and metallothioneins (OsMT-1) to sequester Hg in roots and thus inhibit Hg transport to shoots. Meanwhile, H 2 S promoted seedlings growth significantly even in the presences of Hg and superoxide dismutase (SOD, EC 1.15.1.1) or catalase (CAT, EC 1.11.1.6) inhibitors, diethyldithiocarbamate (DDC) or 3-amino-1,2,4-triazole (AT). H 2 S might act as an antioxidant to inhibit or scavenge reactive oxygen species (ROS) productions for maintaining the lower MDA and H 2 O 2 levels, and thereby preventing oxidative damages. All these results indicated H 2 S effectively alleviated Hg toxicity by sequestering it in roots or by regulating ROS in seedlings and then thus significantly promoted rice growth. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Grape skin phenolics as inhibitors of mammalian α-glucosidase and α-amylase--effect of food matrix and processing on efficacy.

    PubMed

    Lavelli, V; Sri Harsha, P S C; Ferranti, P; Scarafoni, A; Iametti, S

    2016-03-01

    Type-2 diabetes is continuously increasing worldwide. Hence, there is a need to develop functional foods that efficiently alleviate damage due to hyperglycaemia complications while meeting the criteria for a sustainable food processing technology. Inhibition of mammalian α-amylase and α-glucosidase was studied for white grape skin samples recovered from wineries and found to be higher than that of the drug acarbose. In white grape skins, quercetin and kaempferol derivatives, analysed by UPLC-DAD-MS, and the oligomeric series of catechin/epicatechin units and their gallic acid ester derivatives up to nonamers, analysed by MALDI-TOF-MS were identified. White grape skin was then used for enrichment of a tomato puree (3%) and a flat bread (10%). White grape skin phenolics were found in the extract obtained from the enriched foods, except for the higher mass proanthocyanidin oligomers, mainly due to their binding to the matrix and to a lesser extent to heat degradation. Proanthocyanidin solubility was lower in bread, most probably due to formation of binary proanthocyanin/protein complexes, than in tomato puree where possible formation of ternary proanthocyanidin/protein/pectin complexes can enhance solubility. Enzyme inhibition by the enriched foods was significantly higher than for unfortified foods. Hence, this in vitro approach provided a platform to study potential dietary agents to alleviate hyperglycaemia damage and suggested that grape skin phenolics could be effective even if the higher mass proanthocyanidins are bound to the food matrix.

  7. Nrf2 inhibits oxaliplatin-induced peripheral neuropathy via protection of mitochondrial function.

    PubMed

    Yang, Yang; Luo, Lan; Cai, Xueting; Fang, Yuan; Wang, Jiaqi; Chen, Gang; Yang, Jie; Zhou, Qian; Sun, Xiaoyan; Cheng, Xiaolan; Yan, Huaijiang; Lu, Wuguang; Hu, Chunping; Cao, Peng

    2018-05-20

    Oxaliplatin-induced peripheral neuropathy (OIPN) is a severe, dose-limiting toxicity associated with cancer chemotherapy. The efficacy of antioxidant administration in OIPN is debatable, as the promising preliminary results obtained with a number of antioxidants have not been confirmed in larger clinical trials. Besides its antioxidant activity, the transcription factor, nuclear factor-erythroid 2 (NF-E2) p45-related factor 2 (Nrf2) plays a crucial role in the maintenance of mitochondrial homeostasis, and mitochondrial dysfunction is a key contributor to OIPN. Here, we have investigated the protective properties of Nrf2 in OIPN. Nrf2 -/- mice displayed severe mechanical allodynia and cold sensitivity and thus experienced increased peripheral nervous system injury compared to Nrf2 +/+ mice. Furthermore, Nrf2 knockout aggravated oxaliplatin-induced reactive oxygen species production, decreased the mitochondrial membrane potential, led to abnormal intracellular calcium levels, and induced cytochrome c-related apoptosis and overexpression of the TRP protein family. Sulforaphane-induced activation of the Nrf2 signaling pathway alleviated morphological alterations, mitochondrial dysfunction in dorsal root ganglion neurons, and nociceptive sensations in mice. Our findings reveal that Nrf2 may play a critical role in ameliorating OIPN, through protection of mitochondrial function by alleviating oxidative stress and inhibiting TRP protein family expression. This suggests that pharmacological or therapeutic activation of Nrf2 may be used to prevent or slow down the progression of OIPN. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Alleviation of collagen-induced arthritis by the benzoxathiole derivative BOT-4-one in mice: Implication of the Th1- and Th17-cell-mediated immune responses.

    PubMed

    Kim, Byung-Hak; Yoon, Bo Ruem; Kim, Eun Kyoung; Noh, Kum Hee; Kwon, Sun-Ho; Yi, Eun Hee; Lee, Hyun Gyu; Choi, Jung Sook; Kang, Seong Wook; Park, In-Chul; Lee, Won-Woo; Ye, Sang-Kyu

    2016-06-15

    Autoimmune rheumatoid arthritis is characterized by chronic inflammation and hyperplasia in the synovial joints. Although the cause of rheumatoid arthritis is largely unknown, substantial evidence has supported the importance of immune cells and inflammatory cytokines in the initiation and progression of this disease. Herein, we demonstrated that the benzoxathiole derivative 2-cyclohexylimino-6-methyl-6,7-dihydro-5H-benzo[1,3]oxathiol-4-one (BOT-4-one) alleviated type II collagen-induced arthritis in a mouse model. The levels of pro-inflammatory cytokines are elevated in both human patients with rheumatoid arthritis and mice with collagen-induced arthritis. BOT-4-one treatment reduced the levels of pro-inflammatory cytokines in mice and endotoxin-stimulated macrophages. BOT-4-one treatment suppressed the polarization of Th1- and Th17-cell subsets by inhibiting the expression and production of their lineage-specific master transcription factors and cytokines, as well as activation of signal transducer and activator of transcription proteins. In addition, BOT-4-one inhibited mitogen-activated protein kinase and NF-kappaB signaling as well as the transcriptional activities and DNA-binding of transcription factors, including activator protein-1, cAMP response element-binding protein and NF-kappaB. Our results suggest that BOT-4-one may have therapeutic potential for the treatment of chronic inflammation associated with autoimmune rheumatoid arthritis. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Mitochondria-targeted esculetin alleviates mitochondrial dysfunction by AMPK-mediated nitric oxide and SIRT3 regulation in endothelial cells: potential implications in atherosclerosis.

    PubMed

    Karnewar, Santosh; Vasamsetti, Sathish Babu; Gopoju, Raja; Kanugula, Anantha Koteswararao; Ganji, Sai Krishna; Prabhakar, Sripadi; Rangaraj, Nandini; Tupperwar, Nitin; Kumar, Jerald Mahesh; Kotamraju, Srigiridhar

    2016-04-11

    Mitochondria-targeted compounds are emerging as a new class of drugs that can potentially alter the pathophysiology of those diseases where mitochondrial dysfunction plays a critical role. We have synthesized a novel mitochondria-targeted esculetin (Mito-Esc) with an aim to investigate its effect during oxidative stress-induced endothelial cell death and angiotensin (Ang)-II-induced atherosclerosis in ApoE(-/-) mice. Mito-Esc but not natural esculetin treatment significantly inhibited H2O2- and Ang-II-induced cell death in human aortic endothelial cells by enhancing NO production via AMPK-mediated eNOS phosphorylation. While L-NAME (NOS inhibitor) significantly abrogated Mito-Esc-mediated protective effects, Compound c (inhibitor of AMPK) significantly decreased Mito-Esc-mediated increase in NO production. Notably, Mito-Esc promoted mitochondrial biogenesis by enhancing SIRT3 expression through AMPK activation; and restored H2O2-induced inhibition of mitochondrial respiration. siSIRT3 treatment not only completely reversed Mito-Esc-mediated mitochondrial biogenetic marker expressions but also caused endothelial cell death. Furthermore, Mito-Esc administration to ApoE(-/-) mice greatly alleviated Ang-II-induced atheromatous plaque formation, monocyte infiltration and serum pro-inflammatory cytokines levels. We conclude that Mito-Esc is preferentially taken up by the mitochondria and preserves endothelial cell survival during oxidative stress by modulating NO generation via AMPK. Also, Mito-Esc-induced SIRT3 plays a pivotal role in mediating mitochondrial biogenesis and perhaps contributes to its anti-atherogenic effects.

  10. Blocking mammalian target of rapamycin alleviates bladder hyperactivity and pain in rats with cystitis.

    PubMed

    Liang, Simin; Li, Jie; Gou, Xin; Chen, Daihui

    2016-01-01

    Bladder disorders associated with interstitial cystitis are frequently characterized by increased contractility and pain. The purposes of this study were to examine (1) the effects of blocking mammalian target of rapamycin (mTOR) on the exaggerated bladder activity and pain evoked by cystitis and (2) the underlying mechanisms responsible for the role of mTOR in regulating cystic sensory activity. The expression of p-mTOR, mTOR-mediated phosphorylation of p70 ribosomal S6 protein kinase 1 (p-S6K1), 4 E-binding protein 4 (p-4 E-BP1), as well as phosphatidylinositide 3-kinase (p-PI3K) pathway were amplified in cyclophosphamide rats as compared with control rats. Blocking mTOR by intrathecal infusion of rapamycin attenuated bladder hyperactivity and pain. In addition, blocking PI3K signal pathway attenuated activities of mTOR, which was accompanied with decreasing bladder hyperactivity and pain. Inhibition of either mTOR or PI3K blunted the enhanced spinal substance P and calcitonin gene-related peptide in cyclophosphamide rats. The data for the first time revealed specific signaling pathways leading to cyclophosphamide-induced bladder hyperactivity and pain, including the activation of mTOR and PI3K. Inhibition of these pathways alleviates cystic pain. Targeting one or more of these signaling molecules may present new opportunities for treatment and management of overactive bladder and pain often observed in cystitis. © The Author(s) 2016.

  11. Toxicological effects of thiomersal and ethylmercury: Inhibition of the thioredoxin system and NADP{sup +}-dependent dehydrogenases of the pentose phosphate pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodrigues, Juan, E-mail: juanricardorodrigues@gmail.com; Laboratory of Biochemistry, Faculty of Pharmacy, Central University of Venezuela; Branco, Vasco

    Mercury (Hg) is a strong toxicant affecting mainly the central nervous, renal, cardiovascular and immune systems. Thiomersal (TM) is still in use in medical practice as a topical antiseptic and as a preservative in multiple dose vaccines, routinely given to young children in some developing countries, while other forms of mercury such as methylmercury represent an environmental and food hazard. The aim of the present study was to determine the effects of thiomersal (TM) and its breakdown product ethylmercury (EtHg) on the thioredoxin system and NADP{sup +}-dependent dehydrogenases of the pentose phosphate pathway. Results show that TM and EtHg inhibitedmore » the thioredoxin system enzymes in purified suspensions, being EtHg comparable to methylmercury (MeHg). Also, treatment of neuroblastoma and liver cells with TM or EtHg decreased cell viability (GI{sub 50}: 1.5 to 20 μM) and caused a significant (p < 0.05) decrease in the overall activities of thioredoxin (Trx) and thioredoxin reductase (TrxR) in a concentration- and time-dependent manner in cell lysates. Compared to control, the activities of Trx and TrxR in neuroblastoma cells after EtHg incubation were reduced up to 60% and 80% respectively, whereas in hepatoma cells the reduction was almost 100%. In addition, the activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were also significantly inhibited by all mercurials, with inhibition intensity of Hg{sup 2+} > MeHg ≈ EtHg > TM (p < 0.05). Cell incubation with sodium selenite alleviated the inhibitory effects on TrxR and glucose-6-phosphate dehydrogenase. Thus, the molecular mechanism of toxicity of TM and especially of its metabolite EtHg encompasses the blockage of the electrons from NADPH via the thioredoxin system. - Highlights: • TM and EtHg inhibit Trx and TrxR both in purified suspensions and cell lysates. • TM and EtHg also inhibit the activities of G6PDH and 6PGDH in cell lysates, • Co-exposure to selenite alleviates the inhibitory effects of TM/EtHg on TrxR and G6PDH. • EtHg is more toxic than the parent compound TM.« less

  12. High glucose increases Cdk5 activity in podocytes via transforming growth factor-β1 signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yue; Li, Hongbo; Hao, Jun

    Podocytes are highly specialized and terminally differentiated glomerular cells that play a vital role in the development and progression of diabetic nephropathy (DN). Cyclin-dependent kinase 5 (Cdk5), who is an atypical but essential member of the Cdk family of proline-directed serine/threonine kinases, has been shown as a key regulator of podocyte differentiation, proliferation and morphology. Our previous studies demonstrated that the expression of Cdk5 was significantly increased in podocytes of diabetic rats, and was closely related with podocyte injury of DN. However, the mechanisms of how expression and activity of Cdk5 are regulated under the high glucose environment have notmore » yet been fully elucidated. In this study, we showed that high glucose up-regulated the expression of Cdk5 and its co-activator p35 with a concomitant increase in Cdk5 kinase activity in conditionally immortalized mouse podocytes in vitro. When exposed to 30 mM glucose, transforming growth factor-β1 (TGF-β1) was activated. Most importantly, we found that SB431542, the Tgfbr1 inhibitor, significantly decreased the expression of Cdk5 and p35 and Cdk5 kinase activity in high glucose-treated podocytes. Moreover, high glucose increased the expression of early growth response-1 (Egr-1) via TGF-β1-ERK1/2 pathway in podocytes and inhibition of Egr-1 by siRNA decreased p35 expression and Cdk5 kinase activity. Furthermore, inhibition of Cdk5 kinase activity effectively alleviated podocyte apoptosis induced by high glucose or TGF-β1. Thus, the TGF-β1-ERK1/2-Egr-1 signaling pathway may regulate the p35 expression and Cdk5 kinase activity in high glucose-treated podocytes, which contributes to podocyte injury of DN. - Highlights: • HG up-regulated the expression of Cdk5 and p35, and Cdk5 activity in podocytes. • HG activated TGF-β1 pathway and SB431542 inhibited Cdk5 expression and activity. • HG increased the expression of Egr-1 via TGF-β1-ERK1/2 pathway. • Inhibition of Egr-1 decreased p35 expression in HG-cultured podocytes. • Inhibition of Cdk5 activity alleviated podocyte apoptosis induced by HG or TGF-β1.« less

  13. Impaired Arginine Metabolism Coupled to a Defective Redox Conduit Contributes to Low Plasma Nitric Oxide in Polycystic Ovary Syndrome.

    PubMed

    Krishna, Meera B; Joseph, Annu; Thomas, Philip Litto; Dsilva, Belinda; Pillai, Sathy M; Laloraya, Malini

    2017-01-01

    Though oxidative stress is associated with Polycystic Ovary Syndrome (PCOS), the status of nitric oxide is still unclear. Nitric Oxide (NO) plays pivotal roles in many physiological functions which are compromised in PCOS. Our recent study reveals lowered T-regulatory cells (Tregs) in PCOS, and Treg generation is known to be regulated by NO levels. However concrete evidences are lacking on mechanisms modulating NO levels under PCOS. This is a retrospective case-control cohort study, comprised of PCOS women (N=29) and normal menstruating women as controls (N=20). We analysed NOx (nitrite+nitrate) and hydrogen peroxide (H2O2) concentrations, transcript levels of endothelial nitric oxide synthase (eNOS)/inducible nitric oxide synthase (iNOS) and arginine modulators, hydrogen peroxide regulators in the cohort. PCOS women showed reduced plasma NOx(nitrate+nitrite) and H2O2 compared to controls. We report reduction in transcript levels of iNOS/NOS2 and eNOS/NOS3 in PCOS peripheral blood. The transcripts involved in arginine bioavailability: Argininosuccinate lyase (ASL), Solute Carrier Family1, member 7 (SLC7A1) and Arginase 1 (ARG1) and Asymmetric Dimethyl Arginine (ADMA) metabolism: Protein arginine methyltransferase 1 (PRMT1) and Dimethylarginine dimethylaminohydrolase 2 (DDAH2) also showed differential expression. H2O2 concentration in PCOS women was also found to be reduced. The reduction can be attributed to increase in catalase levels as a consequence of the body's effort to alleviate the oxidative burden in the system. Our study advocates that PCOS women have lowered NO due to reduced iNOS/eNOS expression, low H2O2, high ADMA synthesis and reduced arginine bioavailability. An in-depth analysis of redox biology of PCOS to open up potential therapeutic strategies is highly recommended. © 2017 The Author(s). Published by S. Karger AG, Basel.

  14. Histone deacetylase inhibitors suppress RSV infection and alleviate virus-induced airway inflammation

    PubMed Central

    Feng, Qiuqin; Su, Zhonglan; Song, Shiyu; Xu, Hui; Zhang, Bin; Yi, Long; Tian, Man; Wang, Hongwei

    2016-01-01

    Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants and young children. However, the majority of RSV-infected patients only show mild symptoms. Different severities of infection and responses among the RSV-infected population indicate that epigenetic regulation as well as personal genetic background may affect RSV infectivity. Histone deacetylase (HDAC) is an important epigenetic regulator in lung diseases. The present study aimed to explore the possible connection between HDAC expression and RSV-induced lung inflammation. To address this question, RSV-infected airway epithelial cells (BEAS-2B) were prepared and a mouse model of RSV infection was established, and then treated with various concentrations of HDAC inhibitors (HDACis), namely trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA). Viral replication and markers of virus-induced airway inflammation or oxidative stress were assessed. The activation of the nuclear factor-κB (NF-κB), cyclo-oxygenase-2 (COX-2), mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) signaling pathways was evaluated by western blot analysis. Our results showed that RSV infection in airway epithelial cells (AECs) significantly decreased histone acetylation levels by altering HDAC2 expression. The treatment of RSV-infected AECs with HDACis significantly restricted RSV replication by upregulating the interferon-α (IFN-α) related signaling pathways. The treatment of RSV-infected AECs with HDACis also significantly inhibited RSV-induced pro-inflammatory cytokine release [interleukin (IL)-6 and IL-8] and oxidative stress-related molecule production [malondialdehyde (MDA), and nitrogen monoxide (NO)]. The activation of NF-κB, COX-2, MAPK and Stat3, which orchestrate pro-inflammatory gene expression and oxidative stress injury, was also significantly inhibited. Our in vivo study using a mouse model of RSV infection validated these results. Treatment with HDACis alleviated airway inflammation and reduced in vivo RSV replication. Our data demonstrated that RSV reduced histone acetylation by enhancing HDAC2 expression. Treatment with HDACis (TSA/SAHA) significantly inhibited RSV replication and decreased RSV-induced airway inflammation and oxidative stress. Therefore, the inhibition of HDACs represents a novel therapeutic approach in modulating RSV-induced lung disease. PMID:27460781

  15. Fuzheng Huayu recipe alleviates hepatic fibrosis via inhibiting TNF-α induced hepatocyte apoptosis.

    PubMed

    Tao, Yan-yan; Yan, Xiu-chuan; Zhou, Tao; Shen, Li; Liu, Zu-long; Liu, Cheng-hai

    2014-11-18

    What was the relationship of Fuzheng Huayu recipe (FZHY) inhibiting hepatocyte apoptosis and HSC activation at different stage of liver fibrosis? In order to answer this question, the study was carried out to dynamically observe FZHY's effect on hepatocyte apoptosis and HSC activation and further explored underling mechanism of FZHY against hepatocyte apoptosis. Mice were randomly divided into four groups: normal, model, FZHY, and N-acetylcystein (NAC) groups. Acute hepatic injury and liver fibrosis in mice were induced by CCl4. Three days before the first CCl4 injection, treatment with FZHY powder or NAC respectively was started. In vitro, primary hepatocytes were pretreated with FZHY medicated serum or Z-VAD-FMK and then incubated with ActD and TNF-α. Primary HSCs were treated with DNA from apoptotic hepatocytes incubated by Act D/TNF-α or FZHY medicated. Liver sections were analyzed for HE staining and immunohistochemical evaluation of apoptosis. Serum ALT and AST, Alb content and TNF-α expression in liver tissue were detected. Hyp content was assayed and collagen deposition was visualized. Expressions of α-SMA and type I collagen were analyzed by immunofluorescence and immunoblotting. Flow cytometry, immunofluorescence, and DNA ladder for hepatocyte apoptosis and immunoblotting for TNF-R1, Bcl-2 and Bax were also analyzed. Mice showed characteristic features of massive hepatocytes apoptosis in early stage of liver injury and developed severe hepatic fibrosis in later phase. FZHY treatment significantly alleviated acute liver injury and hepatocyte apoptosis, and inhibited liver fibrosis by decreasing α-SMA expression and hepatic Hyp content. In vitro, primary hepatocytes were induced by TNF-α and Act D. The anti-apoptotic effect of FZHY was generated by reducing TNFR1 expression and balancing the expressions of Bcl-2 and Bax. Meanwhile, the nuclear DNA from apoptotic hepatocytes stimulated HSC activation in a dose dependent manner, and the DNA from apoptotic hepatocytes treated with FZHY or Z-VAD-FMK reduced HSC activation and type I collagen expression. These findings suggested that FZHY suppressed hepatocyte apoptosis through regulating mediators in death receptor and mitochondrial pathways, and the effect of FZHY on hepatocyte apoptosis might play an important role in inhibiting liver fibrosis.

  16. Vitamin D3 supplementation alleviates rotavirus infection in pigs and IPEC-J2 cells via regulating the autophagy signaling pathway.

    PubMed

    Tian, Gang; Liang, Xiaofang; Chen, Daiwen; Mao, Xiangbing; Yu, Jie; Zheng, Ping; He, Jun; Huang, Zhiqing; Yu, Bing

    2016-10-01

    Vitamin D had an anti-infection effect and benefited to the intestinal health. Autophagy signaling pathway was regulated by vitamin D3 to inhibit the infection of human immunodeficiency virus type-1. Rotavirus (RV) was a major cause of the severe diarrheal disease in young children and young animals. Although evidence suggested that vitamin D3 attenuates the negative effects of RV infection via the retinoic acid-inducible gene I signaling pathway, little is known of its antiviral effect whether through the regulation of autophagy. The present study was performed to investigate whether vitamin D3 alleviates RV infection in pig and porcine small intestinal epithelial cell line (IPEC-J2) models via regulating the autophagy signaling pathway. RV administration increased the Beclin 1 mRNA abundance in porcine jejunum and ileum. 5000 IU/kg dietary vitamin D3 supplementation greatly up-regulated LC3-II/LC3-I ratios and PR-39 mRNA expression under the condition of RV challenged. The viability of IPEC-J2 was significantly inhibited by RV infection. Incubation with 25-hydroxyvitamin D3 significantly decreased the concentrations of RV antigen and non-structural protein 4 (NSP4), and up-regulated the mRNA expression of Beclin 1 and PR-39 in the RV-infected IPEC-J2 cells. And then, based on the 25-hydroxyvitamin D3 treatment and RV infection, LC3-II mRNA expression in cells was inhibited by an autophagy inhibitor 3-methyladenine (3-MA). Bafilomycin A1 (Baf A1, a class of inhibitors of membrane ATPases, inhibits maturation of autophagic vacuoles) treatment numerically enhanced the LC3-II mRNA abundance, but had no effect on NSP4 concentration. Furthermore, 25-hydroxyvitamin D3 decreased the p62 mRNA expression and increased porcine cathelicidins (PMAP23, PG1-5 and PR-39) mRNA expression in the RV-infected cells. Taken together, these results indicated that vitamin D3 attenuates RV infection through regulating autophagic maturation and porcine cathelicidin genes expression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Rat Strains Bred for Low and High Aerobic Running Capacity do not Differ in Their Survival Time to Hemorrhage

    DTIC Science & Technology

    2009-12-01

    23. Ensunsa JL, Symons JD, Lanoue L, Schrader HR, Keen CL. Reducing arginase activity via dietary manganese deficiency enhances endothelium- dependent ...maximal oxygen consumption (Vo2max) was 12% greater during normoxia and 20% greater during hypoxia in the HCR vs LCR (12). This enhanced Vo2max...was ∼ 40% greater in HCR vs LCR due to both increased oxygen delivery-- resulting from an enhanced stroke volume-- and oxygen tissue transfer (13

  18. Arginase: A Novel Proliferative Determinant in Prostate Cancer

    DTIC Science & Technology

    2007-08-01

    TABLE 1. Comparison of Polyamine Levels in Human Prostate Cancer Cell Lines* Cell Line Putrescine Spermidine Spermine...as the aminopropyl donor to synthesize spermidine and spermine from putrescine (Hayashi et al 1997, Kramer et al 1988). Real-time RT-PCR analysis on...putrescine and spermidine levels in these cell lines (Fig. 4). 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 Antizyme AdoMetDC R el at iv e

  19. Thread Embedding Acupuncture Inhibits Ultraviolet B Irradiation-Induced Skin Photoaging in Hairless Mice.

    PubMed

    Kim, Yoon-Jung; Kim, Ha-Neui; Shin, Mi-Sook; Choi, Byung-Tae

    2015-01-01

    Thread embedding acupuncture (TEA) is an acupuncture treatment applied to many diseases in Korean medical clinics because of its therapeutic effects by continuous stimulation to tissues. It has recently been used to enhance facial skin appearance and antiaging, but data from evidence-based medicine are limited. To investigate whether TEA therapy can inhibit skin photoaging by ultraviolet B (UVB) irradiation, we performed analyses for histology, histopathology, in situ zymography and western blot analysis in HR-1 hairless mice. TEA treatment resulted in decreased wrinkle formation and skin thickness (Epidermis; P = 0.001 versus UV) in UVB irradiated mice and also inhibited degradation of collagen fibers (P = 0.010 versus normal) by inhibiting proteolytic activity of gelatinase matrix-metalloproteinase-9 (MMP-9). Western blot data showed that activation of c-Jun N-terminal kinase (JNK) induced by UVB (P = 0.002 versus normal group) was significantly inhibited by TEA treatment (P = 0.005 versus UV) with subsequent alleviation of MMP-9 activation (P = 0.048 versus UV). These results suggest that TEA treatment can have anti-photoaging effects on UVB-induced skin damage by maintenance of collagen density through regulation of expression of MMP-9 and related JNK signaling. Therefore, TEA therapy may have potential roles as an alternative treatment for protection against skin damage from aging.

  20. Thread Embedding Acupuncture Inhibits Ultraviolet B Irradiation-Induced Skin Photoaging in Hairless Mice

    PubMed Central

    Kim, Yoon-Jung; Kim, Ha-Neui; Shin, Mi-Sook; Choi, Byung-Tae

    2015-01-01

    Thread embedding acupuncture (TEA) is an acupuncture treatment applied to many diseases in Korean medical clinics because of its therapeutic effects by continuous stimulation to tissues. It has recently been used to enhance facial skin appearance and antiaging, but data from evidence-based medicine are limited. To investigate whether TEA therapy can inhibit skin photoaging by ultraviolet B (UVB) irradiation, we performed analyses for histology, histopathology, in situ zymography and western blot analysis in HR-1 hairless mice. TEA treatment resulted in decreased wrinkle formation and skin thickness (Epidermis; P = 0.001 versus UV) in UVB irradiated mice and also inhibited degradation of collagen fibers (P = 0.010 versus normal) by inhibiting proteolytic activity of gelatinase matrix-metalloproteinase-9 (MMP-9). Western blot data showed that activation of c-Jun N-terminal kinase (JNK) induced by UVB (P = 0.002 versus normal group) was significantly inhibited by TEA treatment (P = 0.005 versus UV) with subsequent alleviation of MMP-9 activation (P = 0.048 versus UV). These results suggest that TEA treatment can have anti-photoaging effects on UVB-induced skin damage by maintenance of collagen density through regulation of expression of MMP-9 and related JNK signaling. Therefore, TEA therapy may have potential roles as an alternative treatment for protection against skin damage from aging. PMID:26185518

  1. Isoliquiritigenin Attenuates Adipose Tissue Inflammation in vitro and Adipose Tissue Fibrosis through Inhibition of Innate Immune Responses in Mice.

    PubMed

    Watanabe, Yasuharu; Nagai, Yoshinori; Honda, Hiroe; Okamoto, Naoki; Yamamoto, Seiji; Hamashima, Takeru; Ishii, Yoko; Tanaka, Miyako; Suganami, Takayoshi; Sasahara, Masakiyo; Miyake, Kensuke; Takatsu, Kiyoshi

    2016-03-15

    Isoliquiritigenin (ILG) is a flavonoid derived from Glycyrrhiza uralensis and potently suppresses NLRP3 inflammasome activation resulting in the improvement of diet-induced adipose tissue inflammation. However, whether ILG affects other pathways besides the inflammasome in adipose tissue inflammation is unknown. We here show that ILG suppresses adipose tissue inflammation by affecting the paracrine loop containing saturated fatty acids and TNF-α by using a co-culture composed of adipocytes and macrophages. ILG suppressed inflammatory changes induced by the co-culture through inhibition of NF-κB activation. This effect was independent of either inhibition of inflammasome activation or activation of peroxisome proliferator-activated receptor-γ. Moreover, ILG suppressed TNF-α-induced activation of adipocytes, coincident with inhibition of IκBα phosphorylation. Additionally, TNF-α-mediated inhibition of Akt phosphorylation under insulin signaling was alleviated by ILG in adipocytes. ILG suppressed palmitic acid-induced activation of macrophages, with decreasing the level of phosphorylated Jnk expression. Intriguingly, ILG improved high fat diet-induced fibrosis in adipose tissue in vivo. Finally, ILG inhibited TLR4- or Mincle-stimulated expression of fibrosis-related genes in stromal vascular fraction from obese adipose tissue and macrophages in vitro. Thus, ILG can suppress adipose tissue inflammation by both inflammasome-dependent and -independent manners and attenuate adipose tissue fibrosis by targeting innate immune sensors.

  2. Inhibition of sympathetic sprouting in CCD rats by lacosamide.

    PubMed

    Wang, Yuying; Huo, Fuquan

    2018-05-14

    Early hyperexcitability activity of injured nerve/neuron is critical for developing sympathetic nerve sprouting within dorsal root ganglia (DRG). Since lacosamide (LCM), an anticonvulsant, inhibits Na + channel. The present study tried to test the potential effect of LCM on inhibiting sympathetic sprouting in vivo. LCM (50 mg/kg) was daily injected intraperitoneally into rats subjected to chronic compression DRG (CCD), an animal model of neuropathic pain that exhibits sympathetic nerve sprouting, for the 1st 7 days after injury. Mechanical sensitivity was tested from day 3 to day 18 after injury, and then DRGs were removed off. Immunohistochemical staining for tyrosine hydroxylase (TH) was examined to observe sympathetic sprouting, and patch-clamp recording was performed to test the excitability and Na + current of DRG neurons. Early systemic LCM treatment significantly reduced TH immunoreactivity density in injured DRG, lowered the excitability level of injured DRG neurons, and increased paw withdrawal threshold (PWT). These effects on reducing sympathetic sprouting, inhibiting excitability and suppressing pain behavior were observed 10 days after the end of early LCM injection. In vitro 100 μM LCM instantly reduced the excitability of CCD neurons via inhibiting Na + current and reducing the amplitude of AP. All the findings suggest, for the first time, that early administration of LCM inhibited sympathetic sprouting and then alleviated neuropathic pain. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Emodin ameliorates bleomycin-induced pulmonary fibrosis in rats by suppressing epithelial-mesenchymal transition and fibroblast activation

    PubMed Central

    Guan, Ruijuan; Wang, Xia; Zhao, Xiaomei; Song, Nana; Zhu, Jimin; Wang, Jijiang; Wang, Jin; Xia, Chunmei; Chen, Yonghua; Zhu, Danian; Shen, Linlin

    2016-01-01

    Aberrant activation of TGF-β1 is frequently encountered and promotes epithelial-mesenchymal transition (EMT) and fibroblast activation in pulmonary fibrosis. The present study investigated whether emodin mediates its effect via suppressing TGF-β1-induced EMT and fibroblast activation in bleomycin (BLM)-induced pulmonary fibrosis in rats. Here, we found that emodin induced apoptosis and inhibited cellular proliferation, migration and differentiation in TGF-β1-stimulated human embryonic lung fibroblasts (HELFs). Emodin suppressed TGF-β1-induced EMT in a dose- and time-dependent manner in alveolar epithelial A549 cells. Emodin also inhibited TGF-β1-induced Smad2, Smad3 and Erk1/2 activation, suggesting that Smad2/3 and Erk1/2 inactivation mediated the emodin-induced effects on TGF-β1-induced EMT. Additionally, we provided in vivo evidence suggesting that emodin apparently alleviated BLM-induced pulmonary fibrosis and improved pulmonary function by inhibiting TGF-β1 signaling and subsequently repressing EMT, fibroblast activation and extracellular matrix (ECM) deposition. Taken together, our data suggest that emodin mediates its effects mainly via inhibition of EMT and fibroblast activation and thus has a potential for the treatment of pulmonary fibrosis. PMID:27774992

  4. Emodin ameliorates bleomycin-induced pulmonary fibrosis in rats by suppressing epithelial-mesenchymal transition and fibroblast activation.

    PubMed

    Guan, Ruijuan; Wang, Xia; Zhao, Xiaomei; Song, Nana; Zhu, Jimin; Wang, Jijiang; Wang, Jin; Xia, Chunmei; Chen, Yonghua; Zhu, Danian; Shen, Linlin

    2016-10-24

    Aberrant activation of TGF-β1 is frequently encountered and promotes epithelial-mesenchymal transition (EMT) and fibroblast activation in pulmonary fibrosis. The present study investigated whether emodin mediates its effect via suppressing TGF-β1-induced EMT and fibroblast activation in bleomycin (BLM)-induced pulmonary fibrosis in rats. Here, we found that emodin induced apoptosis and inhibited cellular proliferation, migration and differentiation in TGF-β1-stimulated human embryonic lung fibroblasts (HELFs). Emodin suppressed TGF-β1-induced EMT in a dose- and time-dependent manner in alveolar epithelial A549 cells. Emodin also inhibited TGF-β1-induced Smad2, Smad3 and Erk1/2 activation, suggesting that Smad2/3 and Erk1/2 inactivation mediated the emodin-induced effects on TGF-β1-induced EMT. Additionally, we provided in vivo evidence suggesting that emodin apparently alleviated BLM-induced pulmonary fibrosis and improved pulmonary function by inhibiting TGF-β1 signaling and subsequently repressing EMT, fibroblast activation and extracellular matrix (ECM) deposition. Taken together, our data suggest that emodin mediates its effects mainly via inhibition of EMT and fibroblast activation and thus has a potential for the treatment of pulmonary fibrosis.

  5. Activation of Nrf2 Attenuates Pulmonary Vascular Remodeling via Inhibiting Endothelial-to-Mesenchymal Transition: an Insight from a Plant Polyphenol

    PubMed Central

    Chen, Yucai; Yuan, Tianyi; Zhang, Huifang; Yan, Yu; Wang, Danshu; Fang, Lianhua; Lu, Yang; Du, Guanhua

    2017-01-01

    The endothelial-to-mesenchymal transition (EndMT) has been demonstrated to be involved in pulmonary vascular remodeling. It is partly attributed to oxidative and inflammatory stresses in endothelial cells. In current study, we conducted a series of experiments to clarify the effect of salvianolic acid A (SAA), a kind of polyphenol compound, in the process of EndMT in human pulmonary arterial endothelial cells and in vivo therapeutic efficacy on vascular remodeling in monocrotaline (MCT)-induced EndMT. EndMT was induced by TGFβ1 in human pulmonary arterial endothelial cells (HPAECs). SAA significantly attenuated EndMT, simultaneously inhibited cell migration and reactive oxygen species (ROS) formation. In MCT-induced pulmonary arterial hypertension (PAH) model, SAA improved vascular function, decreased TGFβ1 level and inhibited inflammation. Mechanistically, SAA stimulated Nrf2 translocation and subsequent heme oxygenase-1 (HO-1) up-regulation. The effect of SAA on EndMT in vitro was abolished by ZnPP, a HO-1 inhibitor. In conclusion, this study indicates a deleterious impact of oxidative stress on EndMT. Polyphenol antioxidant treatment may provide an adjunctive action to alleviate pulmonary vascular remodeling via inhibiting EndMT. PMID:28924387

  6. Cyanidin-3-rutinoside alleviates postprandial hyperglycemia and its synergism with acarbose by inhibition of intestinal α-glucosidase

    PubMed Central

    Adisakwattana, Sirichai; Yibchok-Anun, Sirintorn; Charoenlertkul, Piyawan; Wongsasiripat, Natthakarn

    2011-01-01

    The inhibitory activity on intestinal α-glucosidase by cyanidin-3-rutinoside was examined in vitro and in vivo. The IC50 values of cyanidin-3-rutinoside against intestinal maltase, and sucrase were 2,323 ± 14.8 and 250.2 ± 8.1 µM, respectively. The kinetic analysis revealed that intestinal sucrase was inhibited by cyanidin-3-rutinoside in a mixed-type manner. The synergistic inhibition also found in combination of cyanidin-3-rutinoside with acarbose against intestinal maltase and sucrase. The oral administration of cyanidin-3-rutinoside (100 and 300 mg/kg) plus maltose or sucrose to normal rats, postprandial plasma glucose was markedly suppressed at 30–90 min after loading. Furthermore, the normal rats treated with acarbose and cyanidin-3-rutinoside (30 mg/kg) showed greater reduction of postprandial plasma glucose than the group treated with acarbose alone. These results suggest that cyanidin-3-rutinoside retards absorption of carbohydrates by inhibition of α-glucosidase which may be useful as a potential inhibitor for prevention and treatment of diabetes mellitus. PMID:21765605

  7. Mitochondria related peptide MOTS-c suppresses ovariectomy-induced bone loss via AMPK activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ming, Wei, E-mail: weiming@xiyi.edu.cn; Department of Pharmacology, Xi’an Medical University, Xi’an 710021; Lu, Gan, E-mail: leonming99@163.com

    Therapeutic targeting bone loss has been the focus of the study in osteoporosis. The present study is intended to evaluate whether MOTS-c, a novel mitochondria related 16 aa peptide, can protect mice from ovariectomy-induced osteoporosis. After ovary removal, the mice were injected with MOTS-c at a dose of 5 mg/kg once a day for 12 weeks. Our results showed that MOTS-c treatment significantly alleviated bone loss, as determined by micro-CT examination. Mechanistically, we found that the receptor activator of nuclear factor-κB ligand (RANKL) induced osteoclast differentiation was remarkably inhibited by MOTS-c. Moreover, MOTS-c increased phosphorylated AMPK levels, and compound C, anmore » AMPK inhibitor, could partially abrogate the effects of the MOTS-c on osteoclastogenesis. Thus, our findings provide evidence that MOTS-c may exert as an inhibitor of osteoporosis via AMPK dependent inhibition of osteoclastogenesis. -- Highlights: •MOTS-c decreases OVX-induced bone loss in vivo. •MOTS-c inhibits RANKL-induced osteoclast formation. •MOTS-c inhibits RANKL-induced osteoclast-specific gene expression. •MOTS-c represses osteoclast differentiation via the activation of AMPK.« less

  8. Astilbin alleviates sepsis-induced acute lung injury by inhibiting the expression of macrophage inhibitory factor in rats.

    PubMed

    Zhang, Hong-Bo; Sun, Li-Chao; Zhi, Li-da; Wen, Qian-Kuan; Qi, Zhi-Wei; Yan, Sheng-Tao; Li, Wen; Zhang, Guo-Qiang

    2017-10-01

    Sepsis is a systemic inflammatory response syndrome caused by severe infections. Astilbin is a dihydroflavonol derivative found in many medicinal and food plants with multiple pharmacological functions. To investigate the effects of astilbin on sepsis-induced acute lung injury (ALI), cecal ligation and puncture was performed on rats to establish a sepsis-induced ALI model; these rats were then treated with astilbin at different concentrations. Lung injury scores, including lung wet/dry ratio, protein leakage, myeloperoxidase activity, and inflammatory cell infiltration were determined to evaluate the effects of astilbin on sepsis-induced ALI. We found that astilbin treatment significantly attenuates sepsis-induced lung injury and improves survival rate, lung injury scores, lung wet/dry ratio, protein leakage, myeloperoxidase activity, and inflammatory cell infiltration. Astilbin treatment also dramatically decreased the production of inflammatory cytokines and chemokines in bronchoalveolar lavage fluid. Further, astilbin treatment inhibited the expression and production of macrophage inhibitory factor (MIF), which inhibits the inflammatory response. Collectively, these data suggest that astilbin has a protective effect against sepsis-induced ALI by inhibiting MIF-mediated inflammatory responses. This study provides a molecular basis for astilbin as a new medical treatment for sepsis-induced ALI.

  9. Endomorphin-1 attenuates Aβ42 induced impairment of novel object and object location recognition tasks in mice.

    PubMed

    Zhang, Rui-san; Xu, Hong-jiao; Jiang, Jin-hong; Han, Ren-wen; Chang, Min; Peng, Ya-li; Wang, Yuan; Wang, Rui

    2015-12-10

    A growing body of evidence suggests that the agglomeration of amyloid-β (Aβ) may be a trigger for Alzheimer׳s disease (AD). Central infusion of Aβ42 can lead to memory impairment in mice. Inhibiting the aggregation of Aβ has been considered a therapeutic strategy for AD. Endomorphin-1 (EM-1), an endogenous agonist of μ-opioid receptors, has been shown to inhibit the aggregation of Aβ in vitro. In the present study, we investigated whether EM-1 could alleviate the memory-impairing effects of Aβ42 in mice using novel object recognition (NOR) and object location recognition (OLR) tasks. We showed that co-administration of EM-1 was able to ameliorate Aβ42-induced amnesia in the lateral ventricle and the hippocampus, and these effects could not be inhibited by naloxone, an antagonist of μ-opioid receptors. Infusion of EM-1 or naloxone separately into the lateral ventricle had no influence on memory in the tasks. These results suggested that EM-1 might be effective as a drug for AD preventative treatment by inhibiting Aβ aggregation directly as a molecular modifier. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Characterization of taurine as inhibitor of sodium glucose transporter.

    PubMed

    Kim, Ha Won; Lee, Alexander John; You, Seungkwon; Park, Taesun; Lee, Dong Hee

    2006-01-01

    The most characterized roles of taurine include osmoregulator and membrane-stabilizing activities. However, much remains to be understood about its role in human physiology concerning its anti-hyperglycemic effect. Studies indicate that taurine-supplemented diet helps alleviate hyperglycemia or insulin resistance. This hypoglycemic effect has been postulated as taurine helping to increase the excretion of cholesterol. Alternatively, this study investigated the effect of taurine on glucose transporter using heterologous expression of sodium-glucose transporter-1 (SGLT-1). SGLT-1 was expressed in Xenopus oocytes and the effect of taurine on the expressed SGLT-1 was analyzed utilizing 2-deoxy-D-glucose (2-DOG) uptake and voltage clamp studies. In the oocytes expressing SGLT-1, taurine was shown to inhibit SGLT-1 activity compared to the non-treated controls in a dose-dependent manner. In the presence of taurine, the glucose uptake was greatly inhibited and the glucose-generated current was significantly inhibited. Synthetic taurine analogs were also shown to be effective in inhibiting SGLT-1 activity in a manner comparable to taurine. These effects might offer a promising opportunity in designing functional foods with anti-hyperglycemic potential by supplementing taurine and its analogs to the diet.

  11. Pharmacologic Calcitriol Inhibits Osteoclast Lineage Commitment via the BMP-Smad1 and IκB-NF-κB Pathways.

    PubMed

    Li, Anna; Cong, Qian; Xia, Xuechun; Leong, Wai Fook; Yeh, James; Miao, Dengshun; Mishina, Yuji; Liu, Huijuan; Li, Baojie

    2017-07-01

    Vitamin D is involved in a range of physiological processes and its active form and analogs have been used to treat diseases such as osteoporosis. Yet how vitamin D executes its function remains unsolved. Here we show that the active form of vitamin D calcitriol increases the peak bone mass in mice by inhibiting osteoclastogenesis and bone resorption. Although calcitriol modestly promoted osteoclast maturation, it strongly inhibited osteoclast lineage commitment from its progenitor monocyte by increasing Smad1 transcription via the vitamin D receptor and enhancing BMP-Smad1 activation, which in turn led to increased IκBα expression and decreased NF-κB activation and NFATc1 expression, with IκBα being a Smad1 target gene. Inhibition of BMP type I receptor or ablation of Bmpr1a in monocytes alleviated the inhibitory effects of calcitriol on osteoclast commitment, bone resorption, and bone mass augmentation. These findings uncover crosstalk between the BMP-Smad1 and RANKL-NF-κB pathways during osteoclastogenesis that underlies the action of active vitamin D on bone health. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  12. miR-29b promotes skin wound healing and reduces excessive scar formation by inhibition of the TGF-β1/Smad/CTGF signaling pathway.

    PubMed

    Guo, Jingdong; Lin, Quan; Shao, Ying; Rong, Li; Zhang, Duo

    2017-04-01

    The hypertrophic scar is a medical difficulty of humans, which has caused great pain to patients. Here, we investigated the inhibitory effect of miR-29b on scar formation. The scalded model was established in mice and miR-29b mimics or a negative control was subcutaneously injected into the injury skin. Then various molecular biological experiments were performed to assess the effect of miR-29b on scar formation. According to our present study, first, the results demonstrated that miR-29b was down-regulated in thermal injury tissue and miR-29b treatment could promote wound healing, inhibit scar formation, and alleviate histopathological morphologic alteration in scald tissues. Additionally, miR-29b treatment suppressed collagen deposition and fibrotic gene expression in scar tissues. Finally, we found that miR-29b treatment inhibited the TGF-β1/Smad/CTGF signaling pathway. Taken together, our data suggest that miR-29b treatment has an inhibitory effect against scar formation via inhibition of the TGF-β1/Smad/CTGF signaling pathway and may provide a potential molecular basis for future treatments for hypertrophic scars.

  13. Tiron Inhibits UVB-Induced AP-1 Binding Sites Transcriptional Activation on MMP-1 and MMP-3 Promoters by MAPK Signaling Pathway in Human Dermal Fibroblasts

    PubMed Central

    Zhang, Chao; Zhao, Mei; Zhang, Quan-Wu; Gao, Feng-Hou

    2016-01-01

    Recent research found that Tiron was an effective antioxidant that could act as the intracellular reactive oxygen species (ROS) scavenger or alleviate the acute toxic metal overload in vivo. In this study, we investigated the inhibitory effect of Tiron on matrix metalloproteinase (MMP)-1 and MMP-3 expression in human dermal fibroblast cells. Western blot and ELISA analysis revealed that Tiron inhibited ultraviolet B (UVB)-induced protein expression of MMP-1 and MMP-3. Real-time quantitative PCR confirmed that Tiron could inhibit UVB-induced mRNA expression of MMP-1 and MMP-3. Furthermore, Tiron significantly blocked UVB-induced activation of the MAPK signaling pathway and activator protein (AP)-1 in the downstream of this transduction pathway in fibroblasts. Through the AP-1 binding site mutation, it was found that Tiron could inhibit AP-1-induced upregulation of MMP-1 and MMP-3 expression through blocking AP-1 binding to the AP-1 binding sites in the MMP-1 and MMP-3 promoter region. In conclusion, Tiron may be a novel antioxidant for preventing and treating skin photoaging UV-induced. PMID:27486852

  14. Alleviating Cancer Drug Toxicity by Inhibiting a Bacterial Enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Bret D.; Wang, Hongwei; Lane, Kimberly T.

    2011-08-12

    The dose-limiting side effect of the common colon cancer chemotherapeutic CPT-11 is severe diarrhea caused by symbiotic bacterial {beta}-glucuronidases that reactivate the drug in the gut. We sought to target these enzymes without killing the commensal bacteria essential for human health. Potent bacterial {beta}-glucuronidase inhibitors were identified by high-throughput screening and shown to have no effect on the orthologous mammalian enzyme. Crystal structures established that selectivity was based on a loop unique to bacterial {beta}-glucuronidases. Inhibitors were highly effective against the enzyme target in living aerobic and anaerobic bacteria, but did not kill the bacteria or harm mammalian cells. Finally,more » oral administration of an inhibitor protected mice from CPT-11-induced toxicity. Thus, drugs may be designed to inhibit undesirable enzyme activities in essential microbial symbiotes to enhance chemotherapeutic efficacy.« less

  15. Alleviating Cancer Drug Toxicity by Inhibiting a Bacterial Enzyme

    PubMed Central

    Wallace, Bret D.; Wang, Hongwei; Lane, Kimberly T.; Scott, John E.; Orans, Jillian; Koo, Ja Seol; Venkatesh, Madhukumar; Jobin, Christian; Yeh, Li-An; Mani, Sridhar; Redinbo, Matthew R.

    2011-01-01

    The dose-limiting side effect of the common colon cancer chemotherapeutic CPT-11 is severe diarrhea caused by symbiotic bacterial β-glucuronidases that reactivate the drug in the gut. We sought to target these enzymes without killing the commensal bacteria essential for human health. Potent bacterial β-glucuronidase inhibitors were identified by high-throughput screening and shown to have no effect on the orthologous mammalian enzyme. Crystal structures established that selectivity was based on a loop unique to bacterial β-glucuronidases. Inhibitors were highly effective against the enzyme target in living aerobic and anaerobic bacteria, but did not kill the bacteria or harm mammalian cells. Finally, oral administration of an inhibitor protected mice from CPT-11–induced toxicity. Thus, drugs may be designed to inhibit undesirable enzyme activities in essential microbial symbiotes to enhance chemotherapeutic efficacy. PMID:21051639

  16. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme.

    PubMed

    Wallace, Bret D; Wang, Hongwei; Lane, Kimberly T; Scott, John E; Orans, Jillian; Koo, Ja Seol; Venkatesh, Madhukumar; Jobin, Christian; Yeh, Li-An; Mani, Sridhar; Redinbo, Matthew R

    2010-11-05

    The dose-limiting side effect of the common colon cancer chemotherapeutic CPT-11 is severe diarrhea caused by symbiotic bacterial β-glucuronidases that reactivate the drug in the gut. We sought to target these enzymes without killing the commensal bacteria essential for human health. Potent bacterial β-glucuronidase inhibitors were identified by high-throughput screening and shown to have no effect on the orthologous mammalian enzyme. Crystal structures established that selectivity was based on a loop unique to bacterial β-glucuronidases. Inhibitors were highly effective against the enzyme target in living aerobic and anaerobic bacteria, but did not kill the bacteria or harm mammalian cells. Finally, oral administration of an inhibitor protected mice from CPT-11-induced toxicity. Thus, drugs may be designed to inhibit undesirable enzyme activities in essential microbial symbiotes to enhance chemotherapeutic efficacy.

  17. Hypertonic saline alleviates experimentally induced cerebral oedema through suppression of vascular endothelial growth factor and its receptor VEGFR2 expression in astrocytes.

    PubMed

    Huang, Linqiang; Cao, Wei; Deng, Yiyu; Zhu, Gaofeng; Han, Yongli; Zeng, Hongke

    2016-10-13

    Cerebral oedema is closely related to the permeability of blood-brain barrier, vascular endothelial growth factor (VEGF) and its receptor vascular endothelial growth factor receptor 2 (VEGFR2) all of which are important blood-brain barrier (BBB) permeability regulatory factors. Zonula occludens 1 (ZO-1) and claudin-5 are also the key components of BBB. Hypertonic saline is widely used to alleviate cerebral oedema. This study aimed to explore the possible mechanisms underlying hypertonic saline that ameliorates cerebral oedema effectively. Middle cerebral artery occlusion (MCAO) model in Sprague-Dawley (SD) rats and of oxygen-glucose deprivation model in primary astrocytes were used in this study. The brain water content (BWC) was used to assess the effect of 10 % HS on cerebral oedema. The assessment of Evans blue (EB) extravasation was performed to evaluate the protective effect of 10 % HS on blood-brain barrier. The quantification of VEGF, VEGFR2, ZO-1 and claudin-5 was used to illustrate the mechanism of 10 % HS ameliorating cerebral oedema. BWC was analysed by wet-to-dry ratios in the ischemic hemisphere of SD rats; it was significantly decreased after 10 % HS treatment (P < 0.05). We also investigated the blood-brain barrier protective effect by 10 % HS which reduced EB extravasation effectively in the peri-ischemic brain tissue. In parallel to the above notably at 24 h following MCAO, mRNA and protein expression of VEGF and VEGFR2 in the peri-ischemic brain tissue was down-regulated after 10 % HS treatment (P < 0.05). Along with this, in vitro studies showed increased VEGF and VEGFR2 mRNA and protein expression in primary astrocytes under hypoxic condition (P < 0.05), but it was suppressed after HS treatment (P < 0.05). In addition, HS inhibited the down-regulation of ZO-1, claudin-5 effectively. The results suggest that 10 % HS could alleviate cerebral oedema possibly through reducing the ischemia induced BBB permeability as a consequence of inhibiting VEGF-VEGFR2-mediated down-regulation of ZO-1, claudin-5.

  18. Effectiveness of monotherapy and combined therapy with calcitonin and minodronic acid hydrate, a bisphosphonate, for early treatment in patients with new vertebral fractures: An open-label, randomized, parallel-group study.

    PubMed

    Tanaka, Shinya; Yoshida, Akira; Kono, Shinjiro; Ito, Manabu

    2017-05-01

    Evidence related to the effectiveness of combination drug therapy for the treatment of osteoporosis is currently considered insufficient. Therefore, this study was performed to clarify the effects of monotherapy, and combination therapy, with a bisphosphonate (minodronic acid hydrate), a bone resorption inhibitor, and calcitonin (elcatonin), which is effective for the alleviation of pain due to vertebral fractures in osteoporotic patients. Study participants comprised of 51 female subjects with post-menopausal osteoporosis, whose main complaint was acute lower back pain caused by vertebral fractures. Subjects were randomly allocated into three groups and then administered with either intramuscular injections of elcatonin at a dose of 20 units weekly, minodronic acid hydrate at a dose of 1 mg daily, or a combination of these two drugs. As primary endpoints, time-dependent changes in levels of pain were assessed using a visual analog scale from baseline to 6 months of duration. In addition, we examined the effects of monotherapies, and a combination therapy on bone resorption, with changes in bone mineral density at 4 sites and advanced hip assessment parameters from baseline to 6 months. A two-tailed significance level of 5% was used for hypothesis testing. Elcatonin monotherapy showed some alleviation of pain immediately after any vertebral fractures, which was more than in the minodronic acid hydrate monotherapy group. In addition, the minodronic acid hydrate monotherapy group experienced more effective inhibited bone resorption than the elcatonin monotherapy group. In the combination therapy, the efficacy for alleviating pain and inhibiting bone resorption was equivalent to the effect observed in the elcatonin and minodronic acid hydrate monotherapy groups respectively, with further improved values of bone mineral density observed in the femoral neck and lumbar vertebrae, and in parameters of advanced hip assessment compared with both monotherapy groups. Combination therapy with elcatonin and minodronic acid hydrate appears to be an effective treatment for osteoporosis patients with lower back pain, caused by fresh vertebral fractures. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Citral alleviates an accelerated and severe lupus nephritis model by inhibiting the activation signal of NLRP3 inflammasome and enhancing Nrf2 activation.

    PubMed

    Ka, Shuk-Man; Lin, Jung-Chen; Lin, Tsai-Jung; Liu, Feng-Cheng; Chao, Louis Kuoping; Ho, Chen-Lung; Yeh, Li-Tzu; Sytwu, Huey-Kang; Hua, Kuo-Feng; Chen, Ann

    2015-11-19

    Lupus nephritis (LN) is a major complication of systemic lupus erythematosus. NLRP3 inflammasome activation, reactive oxygen species (ROS) and mononuclear leukocyte infiltration in the kidney have been shown to provoke the acceleration and deterioration of LN, such as accelerated and severe LN (ASLN). Development of a novel therapeutic remedy based on these molecular events to prevent the progression of the disease is clinically warranted. Citral (3,7-dimethyl-2,6-octadienal), a major active compound in a Chinese herbal medicine Litsea cubeba, was used to test its renoprotective effects in a lipopolysaccharide (LPS)-induced mouse ASLN model by examining NLRP3 inflammasome activation, ROS and COX-2 production as well as Nrf2 activation. The analysis of mechanisms of action of Citral also involved its effects on IL-1β secretion and signaling pathways of NLRP3 inflammasome in LPS-primed peritoneal macrophages or J774A macrophages. Attenuated proteinuria, renal function impairment, and renal histopathology, the latter including intrinsic cell proliferation, cellular crescents, neutrophil influx, fibrinoid necrosis in the glomerulus, and peri-glomerular infiltration of mononuclear leukocytes as well as glomerulonephritis activity score were observed in Citral-treated ASLN mice. In addition, Citral inhibited NLRP3 inflammasome activation and levels of ROS, NAD(P)H oxidase subunit p47(phox), or COX-2, and it enhanced the activation of nuclear factor E2-related factor 2 (Nrf2). In LPS-primed macrophages, Citral reduced ATP-induced IL-1β secretion and caspase-1 activation, but did not affect LPS-induced NLRP3 protein expression. Our data show that Citral alleviates the mouse ASLN model by inhibition of the activation signal, but not the priming signal, of NLRP3 inflammasome and enhanced activation of Nrf2 antioxidant signaling.

  20. Pharmacological Inhibition of Macrophage Toll-like Receptor 4/Nuclear Factor-kappa B Alleviates Rhabdomyolysis-induced Acute Kidney Injury.

    PubMed

    Huang, Rong-Shuang; Zhou, Jiao-Jiao; Feng, Yu-Ying; Shi, Min; Guo, Fan; Gou, Shen-Ju; Salerno, Stephen; Ma, Liang; Fu, Ping

    2017-09-20

    Acute kidney injury (AKI) is the most common and life-threatening systemic complication of rhabdomyolysis. Inflammation plays an important role in the development of rhabdomyolysis-induced AKI. This study aimed to investigate the kidney model of AKI caused by rhabdomyolysis to verify the role of macrophage Toll-like receptor 4/nuclear factor-kappa B (TLR4/NF-κB) signaling pathway. C57BL/6 mice were injected with a 50% glycerin solution at bilateral back limbs to induce rhabdomyolysis, and CLI-095 or pyrrolidine dithiocarbamate (PDTC) was intraperitoneally injected at 0.5 h before molding. Serum creatinine levels, creatine kinase, the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, and hematoxylin and eosin stainings of kidney tissues were tested. The infiltration of macrophage, mRNA levels, and protein expression of TLR4 and NF-κB were investigated by immunofluorescence double-staining techniques, reverse transcriptase-quantitative polymerase chain reaction, and Western blotting, respectively. In vitro, macrophage RAW264.7 was stimulated by ferrous myoglobin; the cytokines, TLR4 and NF-κB expressions were also detected. In an in vivo study, using CLI-095 or PDTC to block TLR4/NF-κB, functional and histologic results showed that the inhibition of TLR4 or NF-κB alleviated glycerol-induced renal damages (P < 0.01). CLI-095 or PDTC administration suppressed proinflammatory cytokine (TNF-α, IL-6, and IL-1β) production and macrophage infiltration into the kidney (P < 0.01). Moreover, in an in vitro study, CLI-095 or PDTC suppressed myoglobin-induced expression of TLR4, NF-κB, and proinflammatory cytokine levels in macrophage RAW264.7 cells (P < 0.01). The pharmacological inhibition of TLR4/NF-κB exhibited protective effects on rhabdomyolysis-induced AKI by the regulation of proinflammatory cytokine production and macrophage infiltration.

Top