PREFACE: Workshop Photograph and Program
NASA Astrophysics Data System (ADS)
2011-07-01
Workshop photograph Workshop Program Sunday 28 March 201019:00-21:00 Reception at Okura Frontier Hotel Tsukuba(Buffet style dinner with drink) Monday 29 March 2010Introduction (Chair: André Rubbia (ETH Zurich))09:00 Welcome address (05') Atsuto Suzuki (KEK)09:05 Message from CERN on neutrino physics (10') Sergio Bertolucci (CERN)09:15 Message from FNAL on neutrino physics (10') Young Kee Kim (FNAL)09:25 Message from KEK on neutrino physics (10') Koichiro Nishikawa (KEK)09:35 Introductory remark on GLA2010 (10') Takuya Hasegawa (KEK) Special session (Chair: Koichiro Nishikawa (KEK))09:45 The ICARUS Liquid Argon TPC (45') Carlo Rubbia (CERN)10:30-11:00 Coffee break Main goals of Giant Liquid Argon Charge Imaging Experiments I (Chair: Takashi Kobayashi (KEK))11:00 Results from massive underground detectors (non accelerator) (30') Takaaki Kajita (ICRR, U. of Tokyo)11:30 Present long baseline neutrino experiments (30') Chang Kee Jung (SUNY Stony Brook)12:00-12:10 Workshop picture12:10-14:00 Lunch break Main goals of Giant Liquid Argon Charge Imaging Experiments II (Chair: Takashi Kobayashi (KEK))14:00 Physics goals of the next generation massive underground experiments (30') David Wark (Imperial College London)14:30 Near detectors for long baseline neutrino experiments (20') Tsuyoshi Nakaya (Kyoto U.) Lessons on Liquid Argon Charge Imaging technology from ongoing developments (Chair: Chang Kee Jung (SUNY Stony Brook))14:50 WARP (30') Claudio Montanari (U. of Pavia)15:20 ArDM (30') Alberto Marchionni (ETH Zurich)15:50 From ArgoNeuT to MicroBooNE (30') Bonnie Fleming (Yale U.)16:20 250L (30') Takasumi Maruyama (KEK)16:50 The DEAP/CLEAN project (20') Mark Boulay (Queen's U.)17:10-17:40 Coffee break Lessons from Xe based Liquids Imaging detectors (Chair: Flavio Cavanna (U. of L'Aquilla))17:30 MEG (20') Satoshi Mihara (KEK)17:50 The XENON project (20') Elena Aprile (Columbia U.)18:10 XMASS (20') Hiroyuki Sekiya (ICRR, U. of Tokyo) Studies on physics performance (Chair: Bonnie Fleming (Yale U.))18:30 Supernovae neutrino detection (20') Ines Gil-Botella (CIEMAT)18:50 Neutrino cross-section in Liquid Argon in the GeV range (15') Flavio Cavanna (U. of L'Aquila)19:05 Analysis of the ArgoNeuT neutrino data (15') Carl Bromberg (Michigan State U.)19:20 Neutrino event reconstruction (15') Gary Barker (U. of Warwick) Tuesday 30 March 2010Ways to improve the Liquid Argon Charge Imaging technology I (Chair: Christos Touramanis (U. of Liverpool))09:00 Liquid Argon LEM TPC (30') Filippo Resnati (ETH Zurich)09:30 Micromegas for charge readout of double phase liquid Argon large TPCs (20') Alain Delbart (Saclay)09:50 Development of Thick-GEMs for GEM-TPC Tracker (20') Fuminori Sakuma (RIKEN)10:10 Optical readout of the ionization (20') Neil Spooner (U. of Sheffield)10:30 Scintillation light readout (20') Kostas Mavrokoridis (U. of Liverpool)10:50-11:10 Coffee break Ways to improve the Liquid Argon Charge Imaging technology II (Chair: Alberto Marchionni (ETH Zurich))11:10 Development of cold electronics (30') Veljko Radeka (BNL)11:40 Development of a frontend ASIC and DAQ system Dario Autiero (IPN Lyon)12:00 CAEN digitizers (20') Carlo Tintori (CAEN)12:20 Recent results from Liquid Argon R&D activity (20') Masashi Tanaka (KEK)12:40 Results from the materials test stand and status of LAPD (20') Brian Rebel (FNAL)13:00 Purging and purification: 6 m3 @CERN (20') Alessandro Curioni (ETH Zurich)13:20-14:30 Lunch break14:30-20:00 Trip to J-PARC to visit T2K Beam Facility and Near Detector20:00-22:00 Workshop dinner at Okura Frontier Hotel Tsukuba Wednesday 31 March 2010Ways to improve the Liquid Argon Charge Imaging technology III (Chair: Takasumi Maruyama (KEK))09:00 ArgonTube and UV laser ionization (25') Biagio Rossi (U. of Bern)09:25 Detector magnetization (15') Andreas Badertscher (ETH Zurich)09:40 HV system (25') Sosuke Horikawa (ETH Zurich) Localization studies (Chair: Takuya Hasegawa (KEK))10:05 Okinoshima site study (20') Masakazu Yoshioka (KEK)10:25 LAGUNA sites study (30') Guido Nuijten (Rockplan)10:55 FNAL/DUSEL project (20') Regina Rameika (FNAL)11:15-11:35 Coffee break Future steps towards the realization of Giant Liquid Argon Charge Imaging detectors (Chair: Takuya Hasegawa (KEK))11:35 LBNE Liquid Argon option (30') Bruce Baller (FNAL)12:05 Towards a 100 kton Liquid Argon experiment (30') André Rubbia (ETH Zurich)12:35 Discussion (30')13:05 Final remark (05') Takuya Hasegawa (KEK)
NASA Astrophysics Data System (ADS)
Dey, Arka; Das, Mrinmay; Datta, Joydeep; Jana, Rajkumar; Dhar, Joydeep; Sil, Sayantan; Biswas, Debasish; Banerjee, Chandan; Ray, Partha Pratim
2016-07-01
Here we have presented the results of large area (30 × 30 cm2) silicon-hydrogen alloy material and solar cell by argon dilution method. As an alternative to hydrogen dilution, argon dilution method has been applied to develop single junction solar cell with appreciable stability. Optimization of deposition conditions revealed that 95% argon dilution gives a nanostructured material with improved transport property and less light induced degradation. The minority carrier diffusion length (L d ) and mobility-lifetime (μτ) product of the material with 95% argon dilution degrades least after light soaking. Also the density of states (DOS) below conduction level reveals that this material is less defective. Solar cell with this argon diluted material has been fabricated with all the layers deposited by argon dilution method. Finally we have compared the argon diluted solar cell results with the optimized hydrogen diluted solar cell. Light soaking study proves that it is possible to develop stable solar cell on large area by argon dilution method and that the degradation of argon diluted solar cell is less than that of hydrogen diluted one. [Figure not available: see fulltext.
Herbert, Ulrike; Rossaint, Sonja; Khanna, Meik-Ankush; Kreyenschmidt, Judith
2013-05-01
Poultry fillets were packaged under 6 different gas atmospheres (A: 15% Ar, 60% O2, 25% CO2; B: 15% N2, 60% O2, 25% CO2; C: 25% Ar, 45% O2, 30% CO2; D: 25% N2, 45% O2, 30% CO2; E: 82% Ar; 18% CO2; F: 82% N2, 18% CO2) and stored at 4°C. During storage, the growth of typical spoilage organisms (Brochothrix thermosphacta, Pseudomonas spp., Enterobacteriaceae, and Lactobacilli spp.) and total viable count were analyzed and modeled using the Gompertz function. Sensory analyses of the poultry samples were carried out by trained sensory panelists for color, odor, texture, drip loss, and general appearance. No significant difference in microbiological growth parameters was observed for fresh poultry stored under an argon-enriched atmosphere in comparison with nitrogen, except the B. thermosphacta stored under 82% argon. The sensory evaluation showed a significant effect of an argon-enriched atmosphere, particularly on color of meat stored under 15% argon (P < 0.05). In contrast, 25 and 82% argon concentrations in place of nitrogen showed no beneficial effect on sensory parameters.
Geologic Map of the Craters of the Moon 30' x 60' Quadrangle, Idaho
Kuntz, Mel A.; Skipp, Betty; Champion, Duane E.; Gans, Philip B.; VanSistine, D. Paco; Snyders, Scott R.
2007-01-01
The Craters of the Moon 30 x 60 minute quadrangle shows the geology of the northern two-thirds of the Craters of the Moon (COM) lava field and volcanic structures of the northern and central parts of the Great Rift volcanic rift zone. The COM lava field is the largest, predominantly Holocene lava field in the conterminous United States. The northwest corner of the map shows older sedimentary, intrusive, and volcanic rocks that range in age from Ordovician to Miocene. These rocks provide evidence of compressional fold and thrust events of the Antler and Sevier orogenies. Compression was followed by voluminous volcanism represented by the Challis Volcanic Group. Basin-and-Range faulting followed in Neogene time. The COM lava field covers about 1,600 square kilometers and contains about 30 cubic kilometers of lava flows and associated vent deposits. Stratigraphic relationships, paleomagnetic studies, and radiocarbon ages indicate that the field formed during eight eruptive periods designated as H, the oldest, to A, the youngest. Each eruptive period was several hundred years or less in duration and separated from other eruptive periods by non-eruptive recurrence intervals of several hundred to about 3,000 years. The first eruptive period began about 15,000 carbon-14 years ago and the latest one ended about 2,100 carbon-14 years ago. All available field, paleomagnetic, radiocarbon, and argon-40/argon-39 data are incorporated in this map and they quantitatively refine the volcanic and paleomagnetic history of the pre-Holocene lava fields and the COM lava field. In a sense, these data determine the 'pulse rate' for Pleistocene and Holocene basaltic volcanism in the area of this map. Twenty-three new argon-40/argon-39 geochronologic data reveal a fairly complete and continuous record of basaltic volcanism in the Craters of the Moon 30 x 60 minute quadrangle for the last 500 ka. The ages cluster into age groupings at ~30 ka, 50-70 ka, 100-125 ka, 260-290 ka, 320-340 ka, and 475 ka. There are apparent periods of ~30 to 60 ka duration when little or no volcanic activity took place between groups. Magnetic polarity and remanent inclination and declination directions for most lava flows in the quadrangle have normal magnetic polarity; they were emplaced during the Brunhes Normal Polarity Chron and are younger than 780,000 years. Directions of remanent magnetization and the new argon-40/argon-39 ages were used to correlate and approximately date lava flows and lava fields for this map.
Solution and shock-induced exsolution of argon in vitreous carbon
NASA Technical Reports Server (NTRS)
Gazis, Carey; Ahrens, Thomas J.
1991-01-01
To add to the knowledge of noble gas solution and exsolution in carbonaceus material, experiments were performed on vitreous carbon. Ar-rich vitreous carbon samples were prepared under vapor-saturated conditions using argon as the pressurizing medium. Solubility data were obtained for temperatures of 773 to 973 K and pressures of 250 to 1500 bars. Up to 7 wt pct Ar was dissolved in the carbon. The solubility data were compared to a thermodynamic model of argon atoms dissolving into a fixed population of 'holes' in the carbon. Two variations of the model yielded estimates of the enthalpy of solution of Ar in vitreous carbon equal to about -4700 cal/mole. Preliminary shock experiments showed that 28 percent of the total argon was released by driving 4 GPa shocks into the argon-rich carbon. It was demonstrated that shock-induced argon loss is not simply caused by the impact-induced diminution of grain size. The present value of shock pressure required for partial impact devolatilization of Ar from carbon is below the range (5-30 GPa) at which H2O is released from phyllosilicates.
NASA Astrophysics Data System (ADS)
Hoentsch, Maxi; von Woedtke, Thomas; Weltmann, Klaus-Dieter; Nebe, J. Barbara
2012-01-01
The application of physical plasma to living tissues is expected to promote wound healing by plasma disinfection and stimulation of tissue regeneration. However, the effects of plasma on healthy cells must be studied and understood. In our experiments we used an argon plasma jet (kINPen®09) to gain insights into time-dependent plasma effects on cell attachment, viability and tight junction formation in vitro. Murine epithelial cells mHepR1 were suspended in complete cell culture medium and were irradiated with argon plasma (direct approach) for 30, 60 and 120 s. Suspecting that physical plasma may exert its effect via the medium, cell culture medium alone was first treated with argon plasma (indirect approach) and immediately afterwards, cells were added and also cultured for 24 h. Cell morphology and vitality were verified using light microscopy and an enzyme-linked immunosorbent assay. Already after 30 s of treatment the mHepR1 cells lost their capability to adhere and the cell vitality decreased with increasing treatment time. Interestingly, the same inhibitory effect was observed in the indirect approach. Furthermore, the argon plasma-treated culture medium-induced large openings of the cell's tight junctions, were verified by the zonula occludens protein ZO-1, which we observed for the first time in confluently grown epithelial cells.
De Deken, J; Rex, S; Lerut, E; Martinet, W; Monbaliu, D; Pirenne, J; Jochmans, I
2018-07-01
Ischaemia-reperfusion injury is inevitable during renal transplantation and can lead to delayed graft function and primary non-function. Preconditioning, reconditioning and postconditioning with argon and xenon protects against renal ischaemia-reperfusion injury in rodent models. The hypothesis that postconditioning with argon or xenon inhalation would improve graft function in a porcine renal autotransplant model was tested. Pigs (n = 6 per group) underwent left nephrectomy after 60 min of warm ischaemia (renal artery and vein clamping). The procured kidney was autotransplanted in a separate procedure after 18 h of cold storage, immediately after a right nephrectomy. Upon reperfusion, pigs were randomized to inhalation of control gas (70 per cent nitrogen and 30 per cent oxygen), argon (70 per cent and 30 per cent oxygen) or xenon (70 per cent and 30 per cent oxygen) for 2 h. The primary outcome parameter was peak plasma creatinine; secondary outcome parameters included further markers of graft function (creatinine course, urine output), graft injury (aspartate aminotransferase, heart-type fatty acid-binding protein, histology), apoptosis and autophagy (western blot, terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) staining), inflammatory mediators and markers of cell survival/growth (mRNA and tissue protein quantification), and animal survival. Results are presented as median (i.q.r.). ANOVA and Kruskal-Wallis tests were used where indicated. Peak plasma creatinine levels were similar between the groups: control 20·8 (16·4-23·1) mg/dl, argon 21·4 (17·1-24·9) mg/dl and xenon 19·4 (17·5-21·0) mg/dl (P = 0·607). Xenon was associated with an increase in autophagy and proapoptotic markers. Creatinine course, urine output, injury markers, histology, survival and inflammatory mediators were not affected by the intervention. Postconditioning with argon or xenon did not improve kidney graft function in this experimental model. Surgical relevance Ischaemia-reperfusion injury is inevitable during renal transplantation and can lead to delayed graft function and primary non-function. Based on mainly small animal experiments, noble gases (argon and xenon) have been proposed to minimize this ischaemia-reperfusion injury and improve outcomes after transplantation. The hypothesis that postconditioning with argon or xenon inhalation would improve graft function was tested in a porcine kidney autotransplantation model. The peak plasma creatinine concentration was similar in the control, argon and xenon groups. No other secondary outcome parameters, including animal survival, were affected by the intervention. Xenon was associated with an increase in autophagy and proapoptotic markers. Despite promising results in small animal models, postconditioning with argon or xenon in a translational model of kidney autotransplantation was not beneficial. Clinical trials would require better results. © 2018 BJS Society Ltd Published by John Wiley & Sons Ltd.
Fundamental studies of coal liquefaction. Quarterly report No. 8, July 1, 1993--October 1, 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, D.S.
In the last report the effects of water, tetralin, and argon were discussed as media during the heating of Illinois No. 6 coal. In studies in which the temperature was ramped from ambient to 460{degrees}C at 30{degrees}C/min particles were observed to shrink in the case of both water and tetralin, and first swell and then collapse back to particles with their starting shapes in the case of argon. The result with tetralin was expected, but that for water was not. Similarly, the results in argon were not in accord with some models of coal pyrolysis which suggest that coals fullymore » liquefy when heated (Solomon, et al.). The work described here includes discussion of additional work with Illinois No. 6 coal with argon and water, and new work with n-undecane as medium.« less
Lunar exospheric argon modeling
NASA Astrophysics Data System (ADS)
Grava, Cesare; Chaufray, J.-Y.; Retherford, K. D.; Gladstone, G. R.; Greathouse, T. K.; Hurley, D. M.; Hodges, R. R.; Bayless, A. J.; Cook, J. C.; Stern, S. A.
2015-07-01
Argon is one of the few known constituents of the lunar exosphere. The surface-based mass spectrometer Lunar Atmosphere Composition Experiment (LACE) deployed during the Apollo 17 mission first detected argon, and its study is among the subjects of the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) and Lunar Atmospheric and Dust Environment Explorer (LADEE) mission investigations. We performed a detailed Monte Carlo simulation of neutral atomic argon that we use to better understand its transport and storage across the lunar surface. We took into account several loss processes: ionization by solar photons, charge-exchange with solar protons, and cold trapping as computed by recent LRO/Lunar Orbiter Laser Altimeter (LOLA) mapping of Permanently Shaded Regions (PSRs). Recycling of photo-ions and solar radiation acceleration are also considered. We report that (i) contrary to previous assumptions, charge exchange is a loss process as efficient as photo-ionization, (ii) the PSR cold-trapping flux is comparable to the ionization flux (photo-ionization and charge-exchange), and (iii) solar radiation pressure has negligible effect on the argon density, as expected. We determine that the release of 2.6 × 1028 atoms on top of a pre-existing argon exosphere is required to explain the maximum amount of argon measured by LACE. The total number of atoms (1.0 × 1029) corresponds to ∼6700 kg of argon, 30% of which (∼1900 kg) may be stored in the cold traps after 120 days in the absence of space weathering processes. The required population is consistent with the amount of argon that can be released during a High Frequency Teleseismic (HFT) Event, i.e. a big, rare and localized moonquake, although we show that LACE could not distinguish between a localized and a global event. The density of argon measured at the time of LACE appears to have originated from no less than four such episodic events. Finally, we show that the extent of the PSRs that trap argon, 0.007% of the total lunar surface, is consistent with the presence of adsorbed water in such PSRs.
Inactivation of bacteria by a mixed argon and oxygen micro-plasma as a function of exposure time.
Weng, Chih-Chiang; Wu, Yi-Te; Liao, Juinn-Der; Kao, Chi-Yuan; Chao, Chih-Cheng; Chang, Juu-En; Hsu, Bo-Wen
2009-04-01
A radio-frequency dielectric barrier discharge (DBD) was applied as a micro-plasma device for the inactivation of bacteria, e.g., Escherichia coli. The cultured bacteria were placed on a polydimethyl siloxane (PDMS) film and placed inside the DBD cavity. The bacteria were exposed to micro-plasmas of varying oxygen/argon ratios for different exposure times. The survival of the bacteria was measured by determining bacterial growth using optical methods. The excited oxygen species increased with the increase in the oxygen to argon ratio as measured by optical emission spectroscopy (OES), but the increase of excited oxygen species in argon micro-plasma did not enhance the inactivation of bacteria. In contrast, increases in the time the bacteria were exposed to the micro-plasma were of importance. The results show that a continuous plasma flow containing energetic and reactive species may result in electro-physical interactions with bacteria exposed to the plasma leading to their inactivation. For currently-employed DBD device, addition of 0.5% oxygen to the argon micro-plasma for an exposure time of 30 sec was optimum for the inactivation of E. coli.
Harris, Katie; Armstrong, Scott P; Campos-Pires, Rita; Kiru, Louise; Franks, Nicholas P; Dickinson, Robert
2013-11-01
Xenon, the inert anesthetic gas, is neuroprotective in models of brain injury. The authors investigate the neuroprotective mechanisms of the inert gases such as xenon, argon, krypton, neon, and helium in an in vitro model of traumatic brain injury. The authors use an in vitro model using mouse organotypic hippocampal brain slices, subjected to a focal mechanical trauma, with injury quantified by propidium iodide fluorescence. Patch clamp electrophysiology is used to investigate the effect of the inert gases on N-methyl-D-aspartate receptors and TREK-1 channels, two molecular targets likely to play a role in neuroprotection. Xenon (50%) and, to a lesser extent, argon (50%) are neuroprotective against traumatic injury when applied after injury (xenon 43±1% protection at 72 h after injury [N=104]; argon 30±6% protection [N=44]; mean±SEM). Helium, neon, and krypton are devoid of neuroprotective effect. Xenon (50%) prevents development of secondary injury up to 48 h after trauma. Argon (50%) attenuates secondary injury, but is less effective than xenon (xenon 50±5% reduction in secondary injury at 72 h after injury [N=104]; argon 34±8% reduction [N=44]; mean±SEM). Glycine reverses the neuroprotective effect of xenon, but not argon, consistent with competitive inhibition at the N-methyl-D-aspartate receptor glycine site mediating xenon neuroprotection against traumatic brain injury. Xenon inhibits N-methyl-D-aspartate receptors and activates TREK-1 channels, whereas argon, krypton, neon, and helium have no effect on these ion channels. Xenon neuroprotection against traumatic brain injury can be reversed by increasing the glycine concentration, consistent with inhibition at the N-methyl-D-aspartate receptor glycine site playing a significant role in xenon neuroprotection. Argon and xenon do not act via the same mechanism.
First measurement of surface nuclear recoil background for argon dark matter searches
Xu, Jingke; Stanford, Chris; Westerdale, Shawn; ...
2017-09-19
Here, one major background in direct searches for weakly interacting massive particles (WIMPs) comes from the deposition of radon progeny on detector surfaces. A dangerous surface background is the 206Pb nuclear recoils produced by 210Po decays. In this paper, we report the first characterization of this background in liquid argon. The scintillation signal of low energy Pb recoils is measured to be highly quenched in argon, and we estimate that the 103 keV 206Pb recoil background will produce a signal equal to that of a ~5 keV (30 keV) electron recoil ( 40Ar recoil). In addition, we demonstrate that thismore » dangerous 210Po surface background can be suppressed, using pulse shape discrimination methods, by a factor of ~100 or higher, which can make argon dark matter detectors near background-free and enhance their potential for discovery of medium- and high-mass WIMPs. Lastly, we also discuss the impact on other low background experiments.« less
Laser-induced surface modification of metals and alloys in liquid argon medium
NASA Astrophysics Data System (ADS)
Kazakevich, V. S.; Kazakevich, P. V.; Yaresko, P. S.; Kamynina, D. A.
2016-08-01
Micro and nanostructuring of metals and alloys surfaces (Ti, Mo, Ni, T30K4) was considered by subnanocosecond laser radiation in stationary and dynamic mode in the liquid argon, ethanol and air. Depending of structures size on the samples surface from the energy density and the number of pulses were built. Non-periodic (NSS) and periodic (PSS) surface structures with periods about λ-λ/2 were obtained. PSS formation took place as at the target surface so at the NSS surface.
Development of advanced inert-gas ion thrusters
NASA Technical Reports Server (NTRS)
Poeschel, R. L.
1983-01-01
Inert gas ion thruster technology offers the greatest potential for providing high specific impulse, low thrust, electric propulsion on large, Earth orbital spacecraft. The development of a thruster module that can be operated on xenon or argon propellant to produce 0.2 N of thrust at a specific impulse of 3000 sec with xenon propellant and at 6000 sec with argon propellant is described. The 30 cm diameter, laboratory model thruster is considered to be scalable to produce 0.5 N thrust. A high efficiency ring cusp discharge chamber was used to achieve an overall thruster efficiency of 77% with xenon propellant and 66% with argon propellant. Measurements were performed to identify ion production and loss processes and to define critical design criteria (at least on a preliminary basis).
1 Kw Arc-Jet Engine: Experiments With Argon
2004-06-23
3 s- 6 ) R + R ( non-linear) FLAME STABILITY CHAMBER PRESSURE 1.0 - 1.625 atm VACUUM PRESSURE 30 – 30 mmHg FLAME LENGTH 28 – 33 mm CHAMBER...PRESSURE 2.25 – 2.875 atm VACUUM PRESSURE 30 – 40 mmHg FLAME LENGTH 36 – 42 mm CHAMBER PRESSURE 3.0 – 3.0 atm VACUUM PRESSURE 60 – 36 mmHg FLAME LENGTH 18
Isothermal evaporation of ethanol in a dynamic gas atmosphere.
Milev, Adriyan S; Wilson, Michael A; Kannangara, G S Kamali; Feng, Hai; Newman, Phillip A
2012-01-12
Optimization of evaporation and pyrolysis conditions for ethanol are important in carbon nanotube (CNT) synthesis. The activation enthalpy (ΔH(‡)), the activation entropy (ΔS(‡)), and the free energy barrier (ΔG(‡)) to evaporation have been determined by measuring the molar coefficient of evaporation, k(evap), at nine different temperatures (30-70 °C) and four gas flow rates (25-200 mL/min) using nitrogen and argon as carrier gases. At 70 °C in argon, the effect of the gas flow rate on k(evap) and ΔG(‡) is small. However, this is not true at temperatures as low as 30 °C, where the increase of the gas flow rate from 25 to 200 mL/min results in a nearly 6 times increase of k(evap) and decrease of ΔG(‡) by ~5 kJ/mol. Therefore, at 30 °C, the effect of the gas flow rate on the ethanol evaporation rate is attributed to interactions of ethanol with argon molecules. This is supported by simultaneous infrared spectroscopic analysis of the evolved vapors, which demonstrates the presence of different amounts of linear and cyclic hydrogen bonded ethanol aggregates. While the amount of these aggregates at 30 °C depends upon the gas flow rate, no such dependence was observed during evaporation at 70 °C. When the evaporation was carried out in nitrogen, ΔG(‡) was almost independent of the evaporation temperature (30-70 °C) and the gas flow rate (25-200 mL/min). Thus the evaporation of ethanol in a dynamic gas atmosphere at different temperatures may go via different mechanisms depending on the nature of the carrier gas.
A FUSE Search for Argon on Titan
NASA Astrophysics Data System (ADS)
Gladstone, G. R.; Link, R.; Stern, S. A.; Festou, M.; Waite, J. H.
2002-09-01
The origin of Titan's thick nitrogen and methane atmosphere is a compelling enigma. One key and still missing observable concerns the abundances of noble gases in general, and argon in particular. Detection of sufficient argon could indicate that the N2 and CO now found in the atmosphere came in with ice during Titan's accretion. Alternatively, if there is very little argon, then we have to turn to models starting with frozen ammonia, methane and water ice, indicating a more important role for the Saturn sub-nebula, and requiring subsequent modification by photochemistry. Current estimates on the fraction of argon in Titan's atmosphere are crude, and based only on indirect evidence, and range up to 25%. On Sept. 21, 2000, using the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite, we performed an observation of Titan to search for argon and to make a survey of Titan's dayglow in the 90--115 nm FUSE bandpass. No emissions were found in the 18 ks exposure, although only 7.4 ks were obtained when FUSE was in Earth's shadow where terrestrial airglow contamination is minimal. While no Ar, N, or N2 emissions were detected, 2-σ upper limits of 4 R (for Ar 104.8 nm) and 20 R (for N 113.4 nm) are found using the best of the FUSE data. There is a bump on the terrestrial geocorona H Lyβ emission at 102.5 nm which may be due to Titan and a Titan Torus. The signal in the bump is about 400 R. Model estimates suggest that the Lyβ brightness of Titan should be about 20 R and the Titan Torus in the 30--700 R range. For an assumed argon abundance of 5% the 104.8 nm emission is predicted to be 7 R, so the argon estimate is constraining already. The nitrogen estimate is very close to the model expectation of 15 R. An accurate determination of the abundance of argon on Titan would be useful in preparing for the arrival of the Cassini orbiter and Huygens probe at the Saturn system, so further FUSE observations of Titan are planned. We gratefully acknowledge support from NASA through FUSE grant NAG5-9972.
Direct Search for Dark Matter with DarkSide
NASA Astrophysics Data System (ADS)
Agnes, P.; Alexander, T.; Alton, A.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Brigatti, A.; Brodsky, J.; Budano, F.; Cadonati, L.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cocco, A. G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Deo, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M. Y.; Guardincerri, Y.; Hackett, B.; Herner, K.; Hungerford, E. V.; Ianni, Al; Ianni, An; Jollet, C.; Keeter, K.; Kendziora, C.; Kidner, S.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kurlej, A.; Li, P. X.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Ma, Y. Q.; Machulin, I.; Mandarano, A.; Mari, S.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P. D.; Milincic, R.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Musico, P.; Nelson, A.; Odrowski, S.; Okounkova, M.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Papp, L.; Parmeggiano, S.; Parsells, R.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Segreto, E.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A.; Westerdale, S.; Wojcik, M.; Wright, A.; Xiang, X.; Xu, J.; Yang, C. G.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhu, C.; Zuzel, G.
2015-11-01
The DarkSide experiment is designed for the direct detection of Dark Matter with a double phase liquid Argon TPC operating underground at Laboratori Nazionali del Gran Sasso. The TPC is placed inside a 30 tons liquid organic scintillator sphere, acting as a neutron veto, which is in turn installed inside a 1 kt water Cherenkov detector. The current detector is running since November 2013 with a 50 kg atmospheric Argon fill and we report here the first null results of a Dark Matter search for a (1422 ± 67) kg.d exposure. This result correspond to a 90% CL upper limit on the WIMP-nucleon cross section of 6.1 × 10-44 cm2 (for a WIMP mass of 100 GeV/c2) and it's currently the most sensitive limit obtained with an Argon target.
Cambi, Maria Paula Carlini; Marchesini, Simone Dallegrave; Baretta, Giorgio Alfredo Pedroso
2015-01-01
Bariatric surgery is effective treatment for weight loss, but demand continuous nutritional care and physical activity. They regain weight happens with inadequate diets, physical inactivity and high alcohol consumption. To investigate in patients undergoing Roux-Y-of gastroplasty weight regain, nutritional deficiencies, candidates for the treatment with endoscopic argon plasma, the diameter of the gastrojejunostomy and the size of the gastric pouch at the time of treatment with plasma. A prospective 59 patients non-randomized study with no control group undergoing gastroplasty with recurrence of weight and candidates for the endoscopic procedure of argon plasma was realized. The surgical evaluation consisted of investigation of complications in the digestive system and verification of the increased diameter of the gastrojejunostomy. Nutritional evaluation was based on body mass index at the time of operation, in the minimum BMI achieved after and in which BMI was when making the procedure with plasma. The laboratory tests included hemoglobin, erythrocyte volume, ferritin, vitamin D, B12, iron, calcium, zinc and serum albumin. Clinical analysis was based on scheduled follow-up. Of the 59 selected, five were men and 51 women; were included 49 people (four men and 44 women) with all the complete data. The exclusion was due to the lack of some of the laboratory tests. Of this total 19 patients (38.7%) had a restrictive ring, while 30 (61.2%) did not. Iron deficiency anemia was common; 30 patients (61.2%) were below 30 with ferritin (unit); 35 (71.4%) with vitamin B12 were below 300 pg/ml; vitamin D3 deficiency occurred in more than 90%; there were no cases of deficiency of protein, calcium and zinc; glucose levels were above 99 mg/dl in three patients (6.12%). Clinically all had complaints of labile memory, irritability and poor concentration. All reported that they stopped treatment with the multidisciplinary team in the first year after the operation. The profile of patients submitted to argon plasma procedure was: anastomosis in average with 27 mm; multiple nutritional deficiencies with predominance of iron deficiency anemia; ferritin below 30; vitamin B12 levels below 300 pg/ml; labile memory complaints, irritability and poor concentration.
Surface wet-ability modification of thin PECVD silicon nitride layers by 40 keV argon ion treatments
NASA Astrophysics Data System (ADS)
Caridi, F.; Picciotto, A.; Vanzetti, L.; Iacob, E.; Scolaro, C.
2015-10-01
Measurements of wet-ability of liquid drops have been performed on a 30 nm silicon nitride (Si3N4) film deposited by a PECVD reactor on a silicon wafer and implanted by 40 keV argon ions at different doses. Surface treatments by using Ar ion beams have been employed to modify the wet-ability. The chemical composition of the first Si3N4 monolayer was investigated by means of X-ray Photoelectron Spectroscopy (XPS). The surface morphology was tested by Atomic Force Microscopy (AFM). Results put in evidence the best implantation conditions for silicon nitride to increase or to reduce the wet-ability of the biological liquid. This permits to improve the biocompatibility and functionality of Si3N4. In particular experimental results show that argon ion bombardment increases the contact angle, enhances the oxygen content and increases the surface roughness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Jingke; Stanford, Chris; Westerdale, Shawn
Here, one major background in direct searches for weakly interacting massive particles (WIMPs) comes from the deposition of radon progeny on detector surfaces. A dangerous surface background is the 206Pb nuclear recoils produced by 210Po decays. In this paper, we report the first characterization of this background in liquid argon. The scintillation signal of low energy Pb recoils is measured to be highly quenched in argon, and we estimate that the 103 keV 206Pb recoil background will produce a signal equal to that of a ~5 keV (30 keV) electron recoil ( 40Ar recoil). In addition, we demonstrate that thismore » dangerous 210Po surface background can be suppressed, using pulse shape discrimination methods, by a factor of ~100 or higher, which can make argon dark matter detectors near background-free and enhance their potential for discovery of medium- and high-mass WIMPs. Lastly, we also discuss the impact on other low background experiments.« less
Direct search for dark matter with DarkSide
Agnes, P.
2015-11-16
Here, the DarkSide experiment is designed for the direct detection of Dark Matter with a double phase liquid Argon TPC operating underground at Laboratori Nazionali del Gran Sasso. The TPC is placed inside a 30 tons liquid organic scintillator sphere, acting as a neutron veto, which is in turn installed inside a 1 kt water Cherenkov detector. The current detector is running since November 2013 with a 50 kg atmospheric Argon fill and we report here the first null results of a Dark Matter search for a (1422 ± 67) kg.d exposure. This result correspond to a 90% CL uppermore » limit on the WIMP-nucleon cross section of 6.1 × 10 -44 cm 2 (for a WIMP mass of 100 GeV/c 2) and it's currently the most sensitive limit obtained with an Argon target.« less
40K-(40)Ar constraints on recycling continental crust into the mantle
Coltice; Albarede; Gillet
2000-05-05
Extraction of potassium into magmas and outgassing of argon during melting constrain the relative amounts of potassium in the crust with respect to those of argon in the atmosphere. No more than 30% of the modern mass of the continents was subducted back into the mantle during Earth's history. It is estimated that 50 to 70% of the subducted sediments are reincorporated into the deep continental crust. A consequence of the limited exchange between the continental crust and the upper mantle is that the chemistry of the upper mantle is driven by exchange of material with the deep mantle.
Phase II Upgrade of the GERDA Experiment for the Search of Neutrinoless Double Beta Decay
NASA Astrophysics Data System (ADS)
Majorovits, B.
Observation of neutrinoless double beta decay could answer the question regarding the Majorana or Dirac nature of neutrinos. The GERDA experiment utilizes HPGe detectors enriched with the isotope 76Ge to search for this process. Recently the GERDA collaboration has unblinded data of Phase I of the experiment. In order to further improve the sensitivity of the experiment, additionally to the coaxial detectors used, 30 BEGe detectors made from germanium enriched in 76Ge will be deployed in GERDA Phase II. BEGe detectors have superior PSD capability, thus the background can be further reduced. The liquid argon surrounding the detector array will be instrumented in order to reject background by detecting scintillation light induced in the liquid argon by radiation. After a short introduction the hardware preparations for GERDA Phase II as well as the processing and characterization of the 30 BEGe detectors are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnes, P.
We report the first results of DarkSide-50, a direct search for dark matter operating in the underground Laboratori Nazionali del Gran Sasso (LNGS) and searching for the rare nuclear recoils possibly induced by weakly interacting massive particles (WIMPs). The dark matter detector is a Liquid Argon Time Projection Chamber with a (46.4 ± 0.7) kg active mass, operated inside a 30 t organic liquid scintillator neutron veto, which is in turn installed at the center of a 1 kt water Cherenkov veto for the residual flux of cosmic rays. We report here the null results of a dark matter searchmore » for a (1422 ± 67) kg d exposure with an atmospheric argon fill. As a result, this is the most sensitive dark matter search performed with an argon target, corresponding to a 90% CL upper limit on the WIMP-nucleon spin-independent cross section of 6.1×10 -44 cm 2 for a WIMP mass of 100 Gev/c 2.« less
First results from the DarkSide-50 dark matter experiment at Laboratori Nazionali del Gran Sasso
NASA Astrophysics Data System (ADS)
Agnes, P.; Alexander, T.; Alton, A.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Brigatti, A.; Brodsky, J.; Budano, F.; Cadonati, L.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cocco, A. G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Deo, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M. Y.; Guardincerri, Y.; Hackett, B.; Herner, K.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; Jollet, C.; Keeter, K.; Kendziora, C.; Kidner, S.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kurlej, A.; Li, P. X.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Ma, Y. Q.; Machulin, I.; Mandarano, A.; Mari, S.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P. D.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Musico, P.; Nelson, A.; Odrowski, S.; Okounkova, M.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Papp, L.; Parmeggiano, S.; Parsells, R.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Segreto, E.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A.; Westerdale, S.; Wojcik, M.; Wright, A.; Xiang, X.; Xu, J.; Yang, C. G.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhu, C.; Zuzel, G.
2015-04-01
We report the first results of DarkSide-50, a direct search for dark matter operating in the underground Laboratori Nazionali del Gran Sasso (LNGS) and searching for the rare nuclear recoils possibly induced by weakly interacting massive particles (WIMPs). The dark matter detector is a Liquid Argon Time Projection Chamber with a (46.4 ± 0.7) kg active mass, operated inside a 30 t organic liquid scintillator neutron veto, which is in turn installed at the center of a 1 kt water Cherenkov veto for the residual flux of cosmic rays. We report here the null results of a dark matter search for a (1422 ± 67) kgd exposure with an atmospheric argon fill. This is the most sensitive dark matter search performed with an argon target, corresponding to a 90% CL upper limit on the WIMP-nucleon spin-independent cross section of 6.1 ×10-44 cm2 for a WIMP mass of 100 Gev /c2.
Developing a scalable inert gas ion thruster
NASA Technical Reports Server (NTRS)
James, E.; Ramsey, W.; Steiner, G.
1982-01-01
Analytical studies to identify and then design a high performance scalable ion thruster operating with either argon or xenon for use in large space systems are presented. The magnetoelectrostatic containment concept is selected for its efficient ion generation capabilities. The iterative nature of the bounding magnetic fields allows the designer to scale both the diameter and length, so that the thruster can be adapted to spacecraft growth over time. Three different thruster assemblies (conical, hexagonal and hemispherical) are evaluated for a 12 cm diameter thruster and performance mapping of the various thruster configurations shows that conical discharge chambers produce the most efficient discharge operation, achieving argon efficiencies of 50-80% mass utilization at 240-310 eV/ion and xenon efficiencies of 60-97% at 240-280 eV/ion. Preliminary testing of the large 30 cm thruster, using argon propellant, indicates a 35% improvement over the 12 cm thruster in mass utilization efficiency. Since initial performance is found to be better than projected, a larger 50 cm thruster is already in the development stage.
The effects of argon ion bombardment on the corrosion resistance of tantalum
NASA Astrophysics Data System (ADS)
Ramezani, A. H.; Sari, A. H.; Shokouhy, A.
2017-02-01
Application of ion beam has been widely used as a surface modification method to improve surface properties. This paper investigates the effect of argon ion implantation on surface structure as well as resistance against tantalum corrosion. In this experiment, argon ions with energy of 30 keV and in doses of 1 × 1017-10 × 1017 ions/cm2 were used. The surface bombardment with inert gases mainly produces modified topography and morphology of the surface. Atomic Force Microscopy was also used to patterned the roughness variations prior to and after the implantation phase. Additionally, the corrosion investigation apparatus wear was applied to compare resistance against tantalum corrosion both before and after ion implantation. The results show that argon ion implantation has a substantial impact on increasing resistance against tantalum corrosion. After the corrosion test, scanning electron microscopy (SEM) analyzed the samples' surface morphologies. In addition, the elemental composition is characterized by energy-dispersive X-ray (EDX) analysis. The purpose of this paper was to obtain the perfect condition for the formation of tantalum corrosion resistance. In order to evaluate the effect of the ion implantation on the corrosion behavior, potentiodynamic tests were performed. The results show that the corrosion resistance of the samples strongly depends on the implantation doses.
Faure, Alice; Bruzzese, Laurie; Steinberg, Jean-Guillaume; Jammes, Yves; Torrents, Julia; Berdah, Stephane V; Garnier, Emmanuelle; Legris, Tristan; Loundou, Anderson; Chalopin, Matthieu; Magalon, Guy; Guieu, Regis; Fenouillet, Emmanuel; Lechevallier, Eric
2016-02-04
In kidney transplantation, the conditions of organ preservation following removal influence function recovery. Current static preservation procedures are generally based on immersion in a cold-storage solution used under atmospheric air (approximately 78 kPa N2, 21 kPa O2, 1 kPa Ar). Research on static cold-preservation solutions has stalled, and modifying the gas composition of the storage medium for improving preservation was considered. Organoprotective strategies successfully used noble gases and we addressed here the effects of argon and xenon on graft preservation in an established preclinical pig model of autotransplantation. The preservation solution Celsior saturated with pure argon (Argon-Celsior) or xenon (Xenon-Celsior) at atmospheric pressure was tested versus Celsior saturated with atmospheric air (Air-Celsior). The left kidney was removed, and Air-Celsior (n = 8 pigs), Argon-Celsior (n = 8) or Xenon-Celsior (n = 6) was used at 4 °C to flush and store the transplant for 30 h, a duration that induced ischemic injury in our model when Air-Celsior was used. Heterotopic autotransplantation and contralateral nephrectomy were performed. Animals were followed for 21 days. The use of Argon-Celsior vs. Air-Celsior: (1) improved function recovery as monitored via creatinine clearance, the fraction of excreted sodium and tubulopathy duration; (2) enabled diuresis recovery 2-3 days earlier; (3) improved survival (7/8 vs. 3/8 pigs survived at postoperative day-21); (4) decreased tubular necrosis, interstitial fibrosis, apoptosis and inflammation, and preserved tissue structures as observed after the natural death/euthanasia; (5) stimulated plasma antioxidant defences during the days following transplantation as shown by monitoring the "reduced ascorbic acid/thiobarbituric acid reactive substances" ratio and Hsp27 expression; (6) limited the inflammatory response as shown by expression of TNF-alpha, IL1-beta and IL6 as observed after the natural death/euthanasia. Conversely, Xenon-Celsior was detrimental, no animal surviving by day-8 in a context where functional recovery, renal tissue properties and the antioxidant and inflammation responses were significantly altered. Thus, the positive effects of argon were not attributable to the noble gases as a group. The saturation of Celsior with argon improved early functional recovery, graft quality and survival. Manipulating the gas composition of a preservation medium constitutes therefore a promising approach to improve preservation.
The Mysterious Case of the Solar Argon Abundance Near Sunspots in Flares
NASA Astrophysics Data System (ADS)
Doschek, George A.; Warren, Harry
2016-05-01
Recently Doschek et al. (2015, ApJL, 808, L7) reported on an observation of an enhancement of the abundance of Ar XIV relative to Ca XIV of about a factor of 30 near a sunspot during a flare, observed in spectra recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft. This enhancement yields an argon/calcium abundance ratio 7 times greater than expected from the photospheric abundances. Such a large abundance anomaly is unprecedented in the solar atmosphere. We interpreted this result as due to an inverse First Ionization Potential (FIP) effect. Argon is a high-FIP element and calcium is a low-FIP element. In the published work two lines of Ar XIV were observed and one line was tentatively identified as an Ar XI line. The number of argon lines was limited by the limitations of the flare study that was executed. In this paper we report observing a similar enhancement in a full-CCD EIS flare spectrum in argon lines with reasonable statistics and lack of blending that lie within the EIS wavelength ranges. The observed lines include two Ar XI lines, four Ar XIII lines, six Ar XIV lines, and one Ar XV line. The enhancement is far less than reported in Doschek et al. (2015) but exhibits similar morphology. The argon abundance is close to a photospheric abundance in the enhanced area, and is only marginally an inverse FIP effect. However, as for the published cases, this newly discovered enhancement occurs in association with a sunspot in a small area only a few arcsec in size and therefore we feel it is produced by the same physics that produced the strong inverse FIP case. There is no enhancement effect observed in the normally high-FIP sulfur and oxygen line ratios relative to lines of low-FIP elements available to EIS. Calculations of path lengths in the strongest enhanced area in Doschek et al. (2015) indicate that the argon/calcium enhancement is due to a depletion of low-FIP elements. This work is supported by a NASA Hinode grant.
The investigation of argon diffusion in phlogopite under high pressure conditions
NASA Astrophysics Data System (ADS)
Yudin, Denis; Korzhova, Sophia; Travin, Alexey; Zhimulev, Egor; Murzintsev, Nikolay; Moroz, Tatiana
2014-05-01
The present study deals with assessment of pressure effect on the mechanism of bleeding an argon from mica at high temperatures and pressures. The influence of pressure on the diffusion of argon in crustal conditions is not significant (Harrison et al., 2009), while in the mantle conditions, should be significant. The authors suggest that the findings will help to better understand the behavior of K/Ar isotopic system in mica under the lower crust and mantle, including xenoliths transport by kimberlite melt. The experiment was made by using high-pressure spacer "split-sphere" (BARS - 300). Phlogopite from veins cutting metamorphic rocks from the Sludyanka number 2 quarry was used as a testing material. Inclusions of other minerals were not found in the original phlogopite crystal. Chemical composition of phlogopite is homogeneous. 8 experiments was made at a constant pressure of 30 kbar and different temperature and duration: 20 degrees Celsius, 20 minutes; 700 degrees Celsius, 20 minutes; 800 degrees Celsius, 10 minutes; 800 degrees Celsius, 20 minutes; 800 degrees Celsius, 30 minutes; 900 degrees Celsius, 20 minutes; 1000 degrees Celsius, 20 minutes; 1100 degrees Celsius, 20 minutes. According the results of SEM-observation, there is no signs of recrystallization and solid state transformations and melting of phlogopite. It's chemical composition is identical to that of the original phlogopite. Diffractograms of phlogopites after the experiments are similar to the diffractograms of the original phlogopites. Research results of IR spectroscopy, together with the results of SEM and microprobe analysis suggest that phlogopite dehydroxylation in the temperature range T = 700-900 degrees Celsius was negligible. Numerical simulation of the behavior of radiogenic argon in phlogopite at high temperatures and pressure was performed using «Diffarg» software finite differences algorithm, based on the mechanism of bulk thermally activated diffusion (Wheeler, 1996). The size of the effective diffusion domain of mica was considered to be 100-150 microns, when modeling (Baxter, 2010). Comparison of results of simulations and experiments suggests that the mobility of argon isotopes in phlogopite at high temperatures and pressure is well described by the mechanism of thermally activated volume diffusion. Stepwise release of argon in a vacuum experiment was also conducted. The activation energy of 207,714 J/mol was calculated from the slope of the line on the Arrhenius chart. This value is consistent with data obtained by other authors in hydrothermal experiments (Baxter, 2010). The work was supported by the grant of the President of Russia MK-3240.2014.5. Baxter E.F. Diffusion of Noble Gases in Minerals // Reviews in Mineralogy & Geochemistry. 2010. V.72. P.509-557. Harrison T.M., Celerier J., Aikman A.B., Hermann J., Heizler M.T. Diffusion of 40Ar in muscovite // Geochim Cosmochim Acta. 2009. V.73. P.1039-1051. Wheeler J. Diffarg: A program for simulating argon diffusion profiles in minerals // Computers & Geosciences. 1996. V. 22(8). P. 919-929.
Dual-ion-beam deposition of carbon films with diamond-like properties
NASA Technical Reports Server (NTRS)
Mirtich, M. J.; Swec, D. M.; Angus, J. C.
1985-01-01
A single and dual ion beam system was used to generate amorphous carbon films with diamond like properties. A methane/argon mixture at a molar ratio of 0.28 was ionized in the low pressure discharge chamber of a 30-cm-diameter ion source. A second ion source, 8 cm in diameter was used to direct a beam of 600 eV Argon ions on the substrates (fused silica or silicon) while the deposition from the 30-cm ion source was taking place. Nuclear reaction and combustion analysis indicate H/C ratios for the films to be 1.00. This high value of H/C, it is felt, allowed the films to have good transmittance. The films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Although the measured density of the films was approximately 1.8 gm/cu cm, a value lower than diamond, the films exhibited other properties that were relatively close to diamond. These films were compared with diamond like films generated by sputtering a graphite target.
Dual ion beam deposition of carbon films with diamondlike properties
NASA Technical Reports Server (NTRS)
Mirtich, M. J.; Swec, D. M.; Angus, J. C.
1984-01-01
A single and dual ion beam system was used to generate amorphous carbon films with diamond like properties. A methane/argon mixture at a molar ratio of 0.28 was ionized in the low pressure discharge chamber of a 30-cm-diameter ion source. A second ion source, 8 cm in diameter was used to direct a beam of 600 eV Argon ions on the substrates (fused silica or silicon) while the deposition from the 30-cm ion source was taking place. Nuclear reaction and combustion analysis indicate H/C ratios for the films to be 1.00. This high value of H/C, it is felt, allowed the films to have good transmittance. The films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Although the measured density of the films was approximately 1.8 gm/cu cm, a value lower than diamond, the films exhibited other properties that were relatively close to diamond. These films were compared with diamondlike films generated by sputtering a graphite target.
Parra, V; Viguera, J; Sánchez, J; Peinado, J; Espárrago, F; Gutierrez, J I; Andrés, A I
2010-04-01
Dry-cured Iberian ham slices were stored under vacuum and under four different modified atmospheres (60/40=60%N(2)+40%CO(2); 70/30=70%N(2)+30%CO(2); 80/20=80%N(2)+20%CO(2); argon=70%argon+30%CO(2)) at 4+/-1 degrees C during 120 days. Gas composition, moisture content, pH, colour, pigment content, and lipid stability were measured, as well as sensory and microbial analysis were carried out throughout storage. A loss of intensity of red colour (a(*)-values) was observed during storage in ham slices (P<0.05). Consistently, MbFe(II)NO content also decreased throughout storage (P>0.05). Slices of ham packed in 40%CO(2) (60/40) and 30%CO(2) (70/30) showed lower a(*)-values than the rest of the batches after 60 days (P<0.05), though differences were not evident after 120 days (P>0.05). TBARs values showed an upward trend during the storage of packaged slices (P<0.05). Vacuum-packed slices showed the lowest TBARs values and those packed with 40%CO(2), the highest. Sensory attributes did not vary significantly (P>0.05) throughout storage under refrigeration and packed either in vacuum or in modified atmospheres. No safety problems were detected in relation to the microbial quality in any case. 2009 Elsevier Ltd. All rights reserved.
van Leeuwen, Michiel C E; Bulstra, Anne-Eva J; van Leeuwen, Paul A M; Niessen, Frank B
2014-12-01
Intralesional (IL) cryotherapy is a new promising technique for the treatment of keloid scars, in which the scar is frozen from inside. Multiple devices are available, mostly based on a simple liquid nitrogen Dewar system, which have a limited freezing capacity. Argon gas-based systems ensure accurate and highly controlled freezing and have shown to be effective within the field of oncologic surgery. However, this technique has never been used for the treatment of keloid scars. This prospective study evaluates an argon gas-based system for the treatment of keloids in a patient population including all Fitzpatrick skin types with a 1-year follow-up. Twenty-five patients with 30 keloid scars were included and treated with a device called Seednet (Galil Medical, Yokneam, Israel). Scar quality and possible scar recurrence were assessed before treatment and post treatment (6 and 12 months) with objective devices determining scar color, scar elasticity, scar volume, and patient's skin type. In addition, scars were evaluated using the Patient and Observer Scar Assessment Scale. After 12 months, a significant volume reduction of 62% was obtained, p = 0.05. Moreover, complaints of pain and itching were alleviated and scar quality had improved according to the Patient and Observer Scar Assessment Scale. Scar pigmentation recovered in 62% of all keloid scars within 12 months. Five out of 30 (17%) scars recurred within 12 months, three of which had previously been treated with liquid nitrogen-based IL cryotherapy. Both recurrent and persistent hypopigmentation were mainly seen in Afro-American patients. IL cryotherapy with the use of an argon gas-based system proves to be effective in the treatment of keloid scars, yielding volume reduction and low recurrence rates. Although hypopigmentation recovered in most cases, it is strongly related to non-Caucasian patients. Finally, additional treatment of keloid scars previously unresponsive to IL cryotherapy is predisposed to a high recurrence rate. NCT02063243. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Diamondlike carbon protective coatings for optical windows
NASA Technical Reports Server (NTRS)
Swec, Diane M.; Mirtich, Michael J.
1989-01-01
Diamondlike carbon (DLC) films were deposited on infrared transmitting optical windows and were evaluated as protective coatings for these windows exposed to particle and rain erosion. The DLC films were deposited on zinc selenide (ZnSe) and zinc sulfide (ZnS) by three different ion beam methods: (1) sputter deposition from a carbon target using an 8-cm argon ion source; (2) direct deposition by a 30-cm hollow cathode ion source with hydrocarbon gas in argon; and (3) dual beam direct deposition by the 30-cm hollow cathode ion source and an 8-cm argon ion source. In an attempt to improve the adherence of the DLC films on ZnSc and ZnS, ion beam cleaning, ion implantation with helium and neon ions, or sputter deposition of a thin, ion beam intermediate coating was employed prior to deposition of the DLC film. The protection that the DLC films afforded the windows from particle and rain erosion was evaluated, along with the hydrogen content, adherence, intrinsic stress, and infrared transmittance of the films. Because of the elevated stress levels in the ion beam sputtered DLC films and in those ion beam deposited with butane, films thicker than 0.1 micron and with good adherence on ZnS and ZnSe could not be generated. An intermediate coating of germanium successfully allowed the DLC films to remain adherent to the optical windows and caused only negligible reduction in the specular transmittance of the ZnS and ZnSe at 10 microns.
NASA Technical Reports Server (NTRS)
DellaCorte, Christopher
2002-01-01
PS304, a plasma spray deposited solid lubricant coating developed for high temperature sliding contacts was deposited on nine different substrate metals, heat treated at 650C in either air or argon and subsequently tested for strength using a commercially available pull-off adhesion test. Some samples were examined metallographically to help elucidate and explain the results. As deposited coatings exhibit pull-off strengths typically between 16 and 20 MPa with failure occuring (cohesively) within the coating. Heat treatment in argon at 650 C results in a slight increase in coating (cohesive) strength of about 30 percent to 21 to 27 MPa. Heat treatment in air at 650 C results in a dramatic increase in strength to over 30 MPa, exceeding the strength of the epoxy used in the pull test. Cross section metallographic analyses show that no microstructural coating changes occur following the argon heat treatments, however, exposure to air at 650C gives rise to the formation of a second chromium-rich phase precipitate within the PS304 NiCr constituent which provides a strengthening effect and a slight (approximately 5 percent) coating thickness increase. Subsequent heat treatments do not result in any further coating changes. Based upon these studies, PS304 is a suitable coating for use on a wide variety of high temperature substrates and must be heat treated following deposition to enhance strength and ensure dimensional stability.
Industrial ion source technology. [for ion beam etching, surface texturing, and deposition
NASA Technical Reports Server (NTRS)
Kaufman, H. R.
1977-01-01
Plasma probe surveys were conducted in a 30-cm source to verify that the uniformity in the ion beam is the result of a corresponding uniformity in the discharge-chamber plasma. A 15 cm permanent magnet multipole ion source was designed, fabricated, and demonstrated. Procedures were investigated for texturing a variety of seed and surface materials for controlling secondary electron emission, increasing electron absorption of light, and improved attachment of biological tissue for medical implants using argon and tetrafluoromethane as the working gases. The cross section for argon-argon elastic collisions in the ion-beam energy range was calculated from interaction potentials and permits calculation of beam interaction effects that can determine system pumping requirements. The data also indicate that different optimizations of ion-beam machines will be advantageous for long and short runs, with 1 mA-hr/cm being the rough dividing line for run length. The capacity to simultaneously optimize components in an ion-beam machine for a single application, a capacity that is not evident in competitive approaches such as diode sputtering is emphasized.
Tappan, G. Gray; Hadj, Amadou; Wood, Eric C.; Lietzow, Ronald W.
2000-01-01
Over the past 35 years, an agricultural area of west-central Senegal has experienced rapid population growth, fast expansion of agricultural lands, a decline in rainfall, and degradation of vegetative and soil resources. Although such changes have not escaped the attention of Senegal's people, its government, and the scientific community the ability to monitor and quantify land resource trends of recent decades has been difficult. Recently available high-resolution satellite photographs from the American Argon and Corona Programs provide coverage of Senegal back to 1963. The photographs make it possible to study and map land resources at the beginning of the Space Age. In this study, we characterize the changes that have occurred in the region from the early 1960s to the mid-1 990s. Early Argon and Corona photographs are used to reconstruct the historical land use and land cover; comparisons are made with assessments from recent Landsat images. Field studies and aerial surveys provide additional insight. The forces of change, driven primarily by population growth and unsustainable agricultural practices, are examined
NASA Astrophysics Data System (ADS)
Qingsong, GAO; Yongjun, LIU; Bing, SUN
2017-11-01
A simple gas-liquid diaphragm discharge reactor was designed and characteristics of the discharge and its application on decolorization of brilliant red B in an aqueous solution were investigated. The results showed that strong oxidizing agents such as ·OH and ·O radicals were generated. Average electron temperature of the discharge was 0.72 eV, 1.15 eV and 0.83 eV with air, oxygen and argon as the discharge gas, respectively. Solution pH and conductivity changed little when oxygen or argon was used as the discharge gas; however, these two parameters changed significantly when the discharge was performed in air. During the discharge treatment, the characteristic absorption peaks of brilliant red B gradually decreased where the decolorization followed the first-order kinetics. With 10 min of discharge, the decolorization of brilliant red B (30 mg L-1) can reach 96%, 81% and 62% in the cases of oxygen, argon and air, respectively. The analysis of by-products showed that the brilliant red B molecule can be effectively destroyed in this discharge mode.
NASA Astrophysics Data System (ADS)
Abdel-Kader, Mahmoud H.; El-Nozahy, Adel M.; Ahmed, Salwa M. S.; Khalifa, Ibtesam A.
2007-02-01
The present work was carried out to evaluate the actual effect of subleathal dosage of LD30 of two different lasers (Argon-ion and CO2 lasers) on the main metabolites, phosphatases enzymes, transaminases, acetylcholinestrase and peroxidases in the one day adult stage of Trogoderma granarium treated as 2-3 days old pupae. Our results clearly indicated that two different wavelengths of laser radiation increased significantly the total proteins content, whereas no significant changes occurred in the total lipids for the two laser radiation wavelenghts. On the other hand the total carbohydrates were significantly decreased when irradiating using CO2 laser wavelength which is not the case for the Argon-ion laser radiation. Significant changes of phosphatases occurred for both wavelengths. Inhibition of transaminases GOT (glutamic oxaloacetic transaminases) and insignificant changes of GPT (glutamic pyruvic oxaloacetic transaminases) was observed for both laser wavelengths. Significant inhibition of acetyl cholinestrase was observed using CO2 laser and insignificant changes were recorded for Argon ion laser radiation where as insignificant decrease of peroxideses was observed for both lasers.
An investigation of the normal momentum transfer for gases on tungsten
NASA Technical Reports Server (NTRS)
Moskal, E. J.
1971-01-01
The near monoenergetic beam of neutral helium and argon atoms impinged on a single crystal tungsten target, with the (100) face exposed to the beam. The target was mounted on a torsion balance. The rotation of this torsion balance was monitored by an optical lever, and this reading was converted to a measurement of the momentum exchange between the beam and the target. The tungsten target was flashed to a temperature in excess of 2000 C before every clean run, and the vacuum levels in the final chamber were typically between 0.5 and 1 ntorr. The momentum exchange for the helium-tungsten surface and the argon-tungsten surface combination was obtained over approximately a decade of incoming energy (for the argon gas) at angles of incidence of 0, 30, and 41 deg on both clean and dirty (gas covered) surfaces. The results exhibited a significant variation in momentum transfer between the data obtained for the clean and dirty surfaces. The values of normal momentum accommodation coefficient for the clean surface were found to be lower than the values previously reported.
First results from the DarkSide-50 dark matter experiment at Laboratori Nazionali del Gran Sasso
Agnes, P.
2015-03-11
We report the first results of DarkSide-50, a direct search for dark matter operating in the underground Laboratori Nazionali del Gran Sasso (LNGS) and searching for the rare nuclear recoils possibly induced by weakly interacting massive particles (WIMPs). The dark matter detector is a Liquid Argon Time Projection Chamber with a (46.4 ± 0.7) kg active mass, operated inside a 30 t organic liquid scintillator neutron veto, which is in turn installed at the center of a 1 kt water Cherenkov veto for the residual flux of cosmic rays. We report here the null results of a dark matter searchmore » for a (1422 ± 67) kg d exposure with an atmospheric argon fill. As a result, this is the most sensitive dark matter search performed with an argon target, corresponding to a 90% CL upper limit on the WIMP-nucleon spin-independent cross section of 6.1×10 -44 cm 2 for a WIMP mass of 100 Gev/c 2.« less
Argon Isotopes Provide Robust Signature of Atmospheric Loss
2013-04-08
This image, made by the quadrupole mass spectrometer in the SAM suite of instruments in NASA Curiosity Mars rover. shows the ratio of the argon isotope argon-36 to the heavier argon isotope argon-38, in various measurements.
Effect of milling atmosphere on structural and magnetic properties of Ni-Zn ferrite nanocrystalline
NASA Astrophysics Data System (ADS)
Hajalilou, Abdollah; Hashim, Mansor; Ebrahimi-Kahrizsangi, Reza; Masoudi Mohamad, Taghi
2015-04-01
Powder mixtures of Zn, NiO, and Fe2O3 are mechanically alloyed by high energy ball milling to produce Ni-Zn ferrite with a nominal composition of Ni0.36Zn0.64Fe2O4. The effects of milling atmospheres (argon, air, and oxygen), milling time (from 0 to 30 h) and heat treatment are studied. The products are characterized using x-ray diffractometry, field emission scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy, and transmitted electron microscopy. The results indicate that the desired ferrite is not produced during the milling in the samples milled under either air or oxygen atmospheres. In those samples milled under argon, however, Zn/NiO/Fe2O3 reacts with a solid-state diffusion mode to produce Ni-Zn ferrite nanocrystalline in a size of 8 nm after 30-h-milling. The average crystallite sizes decrease to 9 nm and 10 nm in 30-h-milling samples under air and oxygen atmospheres, respectively. Annealing the 30-h-milling samples at 600 °C for 2 h leads to the formation of a single phase of Ni-Zn ferrite, an increase of crystallite size, and a reduction of internal lattice strain. Finally, the effects of the milling atmosphere and heating temperature on the magnetic properties of the 30-h-milling samples are investigated. Project supported by the University Putra Malaysia Graduate Research Fellowship Section.
Hayashi, K; Nakao, F; Hayashi, F
1993-03-01
We studied the changes in corneal shape after suture cutting with an argon laser to reduce corneal astigmatism following cataract extraction. Sixty-two patients who exhibited high with-the-rule astigmatism (> 3 diopters [D]) following extracapsular lens extraction had argon laser suture cutting. The patients were classified into three groups: Group A comprised 30 patients whose sutures were cut two to three months after planned extracapsular cataract extraction (p-ECCE); Group B consisted of eight patients who had the same treatment five to nine months after p-ECCE; Group C comprised 24 patients who had the treatment one to two months after phacoemulsification (PE). The dioptric reduction of corneal astigmatism (the percent reduction of astigmatism) was 1.83 +/- 0.98 D (37.4 +/- 18.3%) in Group A, 3.20 +/- 2.35 D (55.6 +/- 34.4%) in Group B, and 2.08 +/- 1.20 D (41.4 +/- 20.4%) in Group C. There was no statistical significance in the dioptric reduction and the percent reduction among Groups A, B, and C. This suggests that the wound size and time of cutting are not directly correlated to the effect of argon laser suture cutting. To examine the relationship between the effect and changes in corneal shape from suture cutting, we divided the patients into two subgroups; one was Subgroup (+) in which the percent reduction of astigmatism was above 25%; the other was Subgroup (-) in which the percent reduction was below 25%.(ABSTRACT TRUNCATED AT 250 WORDS)
Collisional transfer of population and orientation in NaK
NASA Astrophysics Data System (ADS)
Wolfe, C. M.; Ashman, S.; Bai, J.; Beser, B.; Ahmed, E. H.; Lyyra, A. M.; Huennekens, J.
2011-05-01
Collisional satellite lines with |ΔJ| ≤ 58 have been identified in recent polarization spectroscopy V-type optical-optical double resonance (OODR) excitation spectra of the Rb2 molecule [H. Salami et al., Phys. Rev. A 80, 022515 (2009)]. Observation of these satellite lines clearly requires a transfer of population from the rotational level directly excited by the pump laser to a neighboring level in a collision of the molecule with an atomic perturber. However to be observed in polarization spectroscopy, the collision must also partially preserve the angular momentum orientation, which is at least somewhat surprising given the extremely large values of ΔJ that were observed. In the present work, we used the two-step OODR fluorescence and polarization spectroscopy techniques to obtain quantitative information on the transfer of population and orientation in rotationally inelastic collisions of the NaK molecules prepared in the 2(A)1Σ+(v' = 16, J' = 30) rovibrational level with argon and potassium perturbers. A rate equation model was used to study the intensities of these satellite lines as a function of argon pressure and heat pipe oven temperature, in order to separate the collisional effects of argon and potassium atoms. Using a fit of this rate equation model to the data, we found that collisions of NaK molecules with potassium atoms are more likely to transfer population and destroy orientation than collisions with argon atoms. Collisions with argon atoms show a strong propensity for population transfer with ΔJ = even. Conversely, collisions with potassium atoms do not show this ΔJ = even propensity, but do show a propensity for ΔJ = positive compared to ΔJ = negative, for this particular initial state. The density matrix equations of motion have also been solved numerically in order to test the approximations used in the rate equation model and to calculate fluorescence and polarization spectroscopy line shapes. In addition, we have measured rate coefficients for broadening of NaK 31Π ← 2(A)1Σ+spectral lines due to collisions with argon and potassium atoms. Additional broadening, due to velocity changes occurring in rotationally inelastic collisions, has also been observed.
Collisional transfer of population and orientation in NaK.
Wolfe, C M; Ashman, S; Bai, J; Beser, B; Ahmed, E H; Lyyra, A M; Huennekens, J
2011-05-07
Collisional satellite lines with |ΔJ| ≤ 58 have been identified in recent polarization spectroscopy V-type optical-optical double resonance (OODR) excitation spectra of the Rb(2) molecule [H. Salami et al., Phys. Rev. A 80, 022515 (2009)]. Observation of these satellite lines clearly requires a transfer of population from the rotational level directly excited by the pump laser to a neighboring level in a collision of the molecule with an atomic perturber. However to be observed in polarization spectroscopy, the collision must also partially preserve the angular momentum orientation, which is at least somewhat surprising given the extremely large values of ΔJ that were observed. In the present work, we used the two-step OODR fluorescence and polarization spectroscopy techniques to obtain quantitative information on the transfer of population and orientation in rotationally inelastic collisions of the NaK molecules prepared in the 2(A)(1)Σ(+)(v' = 16, J' = 30) rovibrational level with argon and potassium perturbers. A rate equation model was used to study the intensities of these satellite lines as a function of argon pressure and heat pipe oven temperature, in order to separate the collisional effects of argon and potassium atoms. Using a fit of this rate equation model to the data, we found that collisions of NaK molecules with potassium atoms are more likely to transfer population and destroy orientation than collisions with argon atoms. Collisions with argon atoms show a strong propensity for population transfer with ΔJ = even. Conversely, collisions with potassium atoms do not show this ΔJ = even propensity, but do show a propensity for ΔJ = positive compared to ΔJ = negative, for this particular initial state. The density matrix equations of motion have also been solved numerically in order to test the approximations used in the rate equation model and to calculate fluorescence and polarization spectroscopy line shapes. In addition, we have measured rate coefficients for broadening of NaK 3(1)Π ← 2(A)(1)Σ(+)spectral lines due to collisions with argon and potassium atoms. Additional broadening, due to velocity changes occurring in rotationally inelastic collisions, has also been observed.
Argon-40: Excess in submarine pillow basalts from Kilauea Volcano, Hawaii
Brent, Dalrymple G.; Moore, J.G.
1968-01-01
Submarine pillow basalts from Kilauea Volcano contain excess radiogenic argon-40 and give anomalously high potassium-argon ages. Glassy rims of pillows show a systematic increase in radiogenic argon-40 with depth, and a pillow from a depth of 2590 meters shows a decrease in radiogenic argon-40 inward from the pillow rim. The data indicate that the amount of excess radiogenic argon-40 is a direct function of both hydrostatic pressure and rate of cooling, and that many submarine basalts are not suitable for potassium-argon dating.
Argon-40: excess in submarine pillow basalts from kilauea volcano, hawaii.
Dalrymple, G B; Moore, J G
1968-09-13
Submarine pillow basalts from Kilauea Volcano contain excess radiogenic argon-40 and give anomalously high potassium-argon ages. Glassy rims of pillows show a systematic increase in radiogenic argon-40 with depth, and a pillow from a depth of 2590 meters shows a decrease in radiogenic argon40 inward from the pillow rim. The data indicate that the amount of excess radiogenic argon-40 is a direct function of both hydrostatic pressure and rate of cooling, and that many submarine basalts are not suitable for potassium-argon dating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demarest, J.A.
A study of the extreme-ultraviolet radiation emitted by ion beams of highly ionized neon and argon after passage through thin foils was conducted. A grazing-incidence spectrometer was equipped with a position-sensitive microchannel plate (MCP) detector, which improved the detection efficiency by two orders of magnitude. The position information of the MCP was determined to be linear over 90% of the 50-mm-wide detector. Spectra spanning regions of over 100 A were accumulated at a resolution of less than 1 A. A wavelength calibration based on a second order equation of spectrometer position was found to result in an accuracy of -more » 0.1 A. Over 40 transitions of Ne VIII, Ne IX, and Ne X were observed in the wavelength region from 350 to 30 A from n=2-3,4,5; n=3-4,5,6,7,8; n=4-6,7; and n=5-9. An intensity calibration of the detection system allowed the determination of the relative populations of n=3 states of Ne VIII and Ne IX. An overpopulation of states with low orbital angular momenta support electron-capture predictions by the first-order Born approximation. The argon beam-foil data confirmed the wavelength predictions of 30 previously unobserved transitions in the wavlength region from 355 to 25 A from n=2-2; n=3-4; n=4-5,6,7; and n=6-8. Lifetime determinations were made by the simultaneous measurement of 26 argon lines in the spectral region from 295-180 A. Many of the n=2-2 transitions agreed well with theory.« less
NASA Astrophysics Data System (ADS)
Khan, E.; Suomijärvi, T.; Blumenfeld, Y.; Van Giai, Nguyen; Alamanos, N.; Auger, F.; Bauge, E.; Beaumel, D.; Delaroche, J. P.; Delbourgo-Salvador, P.; Drouart, A.; Fortier, S.; Frascaria, N.; Gillibert, A.; Girod, M.; Jouanne, C.; Kemper, K. W.; Lagoyannis, A.; Lapoux, V.; Lépine-Szily, A.; Lhenry, I.; Libert, J.; Maréchal, F.; Maison, J. M.; Musumarra, A.; Ottini-Hustache, S.; Piattelli, P.; Pita, S.; Pollacco, E. C.; Roussel-Chomaz, P.; Santonocito, D.; Sauvestre, J. E.; Scarpaci, J. A.; Zerguerras, T.
2001-11-01
Proton elastic and inelastic scattering angular distributions to the 2 1+ and 3 1- collective states of the proton-rich nuclei 30S and 34Ar were measured at 53 MeV/ A and 47 MeV/ A, respectively, using secondary beams from the GANIL facility and the MUST silicon strip detector array. Data for the stable 32S nucleus were also obtained at 53 MeV/ A for comparison. A phenomenological analysis was used to deduce the deformation parameters βp,p' for the low-lying collective excitations. A microscopic analysis was performed by generating matter and transition densities from self-consistent QRPA calculations. Configuration mixing calculations based on a collective Bohr Hamiltonian were also performed. DWBA and coupled-channel calculations using microscopic optical potentials built from these densities and the JLM interaction are compared to the data. There is no indication for the presence of proton skins in these nuclei. The microscopic calculations are extended to the even-even sulfur and argon isotopes from A=30 to A=40, and A=34 to A=44, respectively, and compared to available experimental results. On the basis of this analysis predictions are made for the 42,44S and 46Ar nuclei concerning ground state and transition densities.
Uranium (III)-Plutonium (III) co-precipitation in molten chloride
NASA Astrophysics Data System (ADS)
Vigier, Jean-François; Laplace, Annabelle; Renard, Catherine; Miguirditchian, Manuel; Abraham, Francis
2018-02-01
Co-management of the actinides in an integrated closed fuel cycle by a pyrochemical process is studied at the laboratory scale in France in the CEA-ATALANTE facility. In this context the co-precipitation of U(III) and Pu(III) by wet argon sparging in LiCl-CaCl2 (30-70 mol%) molten salt at 705 °C is studied. Pu(III) is prepared in situ in the molten salt by carbochlorination of PuO2 and U(III) is then introduced as UCl3 after chlorine purge by argon to avoid any oxidation of uranium up to U(VI) by Cl2. The oxide conversion yield through wet argon sparging is quantitative. However, the preferential oxidation of U(III) in comparison to Pu(III) is responsible for a successive conversion of the two actinides, giving a mixture of UO2 and PuO2 oxides. Surprisingly, the conversion of sole Pu(III) in the same conditions leads to a mixture of PuO2 and PuOCl, characteristic of a partial oxidation of Pu(III) to Pu(IV). This is in contrast with coconversion of U(III)-Pu(III) mixtures but in agreement with the conversion of Ce(III).
Performance of a nonlaser light source for photodynamic therapy
NASA Astrophysics Data System (ADS)
Whitehurst, Colin; Byrne, Karen T.; Morton, Colin; Moore, James V.
1995-03-01
Advances in short arc technology and optical filter coatings led to the design and construction of a table-top light source in 1989; the first viable and cost-effective alternative to a laser. The device can deliver over 3 W within a 30 nm band centered at any wavelength from 200 nm to 1200 nm at fluence rates of over 1 W cm-2. Its relative biological effectiveness (RBE) in vitro has been proven alongside an argon pumped dye laser and a copper vapor pumped dye laser. These in vitro tests showed an efficiency of hematoporphyrin derivative (HPD) induced cellular photoinactivation close to that of the argon/dye laser (RBE 100%), with a mean RBE for the lamp of 87 +/- 3% (p < 0.05). The lamp proved to be superior to that of the copper/dye laser system with an RBE of up to 150% at fluence rates above 50 mWcm-2. In vivo tests show that the extent and depth of tumor necrosis are comparable to that of an argon/dye laser. An in situ bioassay using tumor regrowth delay is currently underway. Early clinical trials show clearance of Bowen's disease and actinic keratosis using the same light fluences as costly PDT lasers.
Application of ion thruster technology to a 30-cm multipole sputtering ion source
NASA Technical Reports Server (NTRS)
Robinson, R. S.; Kaufman, H. R.
1976-01-01
A 30-cm electron-bombardment ion source has been designed and fabricated for micromachining and sputtering applications. This source has a multipole magnetic field that employs permanent magnets between permeable pole pieces. An average ion current density of 1 ma/sq cm with 500-eV argon ions was selected as a design operating condition. The ion beam at this operating condition was uniform and well collimated, with an average variation of + or -5 percent over the center 20 cm of the beam at a distance up to 30 cm from the ion source.
First Commissioning of a Cryogenic Distillation Column for Low Radioactivity Underground Argon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Back, H. O.; Alexander, T.; Alton, A.
2012-04-01
We report on the performance and commissioning of a cryogenic distillation column for low radioactivity underground argon at Fermi National Accelerator Laboratory. The distillation column is designed to accept a mixture of argon, helium, and nitrogen and return pure argon with a nitrogen contamination less than 10 ppm. In the first commissioning, we were able to run the distillation column in a continuous mode and produce argon that is 99.9% pure. After running in a batch mode, the argon purity was increased to 99.95%, with 500 ppm of nitrogen remaining. The efficiency of collecting the argon from the gas mixturemore » was between 70% and 81%, at an argon production rate of 0.84-0.98 kg/day.« less
Blankenship, G W
1986-01-01
The effects of PRP with red krypton laser are essentially identical to those produced with blue-green argon laser. Burns of the rabbit retina produced with these two different lasers are almost the same. In a prospective and randomized clinical trial of proliferative diabetic retinopathy treatment there was no significant difference between PRP using these two different lasers. The characteristic changes of rabbit fundi 3, 7, and 30 days after PRP with red krypton laser were almost the same as those following blue-green argon laser. Both types of treatment frequently produced small vitreous hemorrhages and exudative retinal detachments, but choroidal thickening occurred more frequently with argon treatment. These changes were transient and had resolved within 30 days of treatment. The microscopic changes consisted of pigment epithelial disruption with pigment migration into the retina, heat coagulation of the photoreceptors, disruption of the outer and inner nuclear layers with atrophy of the nuclei, and temporary swelling of the nerve fiber layer. The untreated retina and choroid between burns was not involved and appeared normal at each period. Thirty days after treatment, the scarring produced by these two types of burns was identical. Seventy-one eyes with proliferative diabetic retinopathy having three or four retinopathy risk factors were treated with panretinal laser photocoagulation, and followed in a prospective study for 6 months. Thirty-six eyes were randomly selected for blue-green argon treatment, and 35 were randomly selected for red krypton treatment. The incidence of undesired side effects during the first 2 weeks following treatment was almost identical between the two groups. However, by 1 month the majority of eyes in both groups had visual acuities equal to or better than the pretreatment acuities and complete regression of NVD. Six months after treatment, the majority of eyes in both groups continued to have visual acuities equal to or better than the pretreatment acuities with fewer cases having larger losses of vision in the krypton treated group. Loss of peripheral visual field was equal with the two types of treatment having a minimal decrease with the IV-4e isopter, but substantial loss with the I-4e isopter. Additional vitreous hemorrhage rarely occurred in either group, but was slightly more frequent in those treated with krypton. Complete regression was accomplished in most eyes with pretreatment disc and/or NVE in both groups, but persistence of neovascularization was more frequent in those treated with krypton. Overall, the wavelength used seemingly had little effect on the result.(ABSTRACT TRUNCATED AT 400 WORDS)
Broadband Ftmw Spectroscopy of the Urea-Argon and Thiourea-Argon Complexes
NASA Astrophysics Data System (ADS)
Medcraft, Chris; Bittner, Dror M.; Cooper, Graham A.; Mullaney, John C.; Walker, Nick
2017-06-01
The rotational spectra complexes of argon-urea, argon-thiourea and water-thiourea have been measured by chirped-pulse Fourier transform microwave spectroscopy from 2-18.5 GHz. The sample was produced via laser vaporisation of a rod containing copper and the organic sample as a stream of argon was passed over the surface and subsequently expanded into the vacuum chamber cooling the sample. Argon was found to bind to π system of the carbonyl bond for both the urea and thiourea complexes.
NASA Astrophysics Data System (ADS)
Mohamed, Abdel-Aleam H.; Shariff, Samir M. Al; Ouf, Salama A.; Benghanem, Mohamed
2016-05-01
An atmospheric pressure plasma jet was tested for decontaminating and improving the characteristics of wastewater derived from blackberry, date palm, tomato and beetroot processing industries. The jet was generated by blowing argon gas through a cylindrical alumina tube while a high voltage was applied between two electrodes surrounding the tube. Oxygen gas was mixed with argon at the rate of 0.2% and the argon mass flow was fixed at 4.5 slm. Images show that the generated plasma jet penetrated the treated wastewater samples. Plasma emission spectra show the presence of O and OH radicals as well as excited molecular nitrogen and argon. Complete decontamination of wastewater derived from date palm and tomato processing was achieved after 120 and 150 s exposure to the plasma jet, respectively. The bacterial count of wastewater from blackberry and beetroot was reduced by 0.41 and 2.24 log10 colony-forming units (CFU) per ml, respectively, after 180 s. Escherichia coli was the most susceptible bacterial species to the cold plasma while Shigella boydii had the minimum susceptibility, recording 1.30 and 3.34 log10 CFU ml-1, respectively, as compared to the 7.00 log10 initial count. The chemical oxygen demands of wastewater were improved by 57.5-93.3% after 180 s exposure to the plasma jet being tested. The endotoxins in the wastewater were reduced by up to 90.22%. The variation in plasma effectiveness is probably related to the antioxidant concentration of the different investigated wastewaters.
Optical and electrical properties of ion beam textured Kapton and Teflon
NASA Technical Reports Server (NTRS)
Mirtich, M. J.; Sovey, J. S.
1977-01-01
Results are given for ion beam texturing of polyimide (Kapton) and fluorinated ethylene propylene (Teflon) by means of a 30-cm diam electron bombardment argon ion source. Ion beam-textured Kapton and Teflon surfaces are evaluated for various beam energies, current densities, and exposure times. The optical properties and sheet resistance are measured after each exposure. Provided in the paper are optical spectral data, resistivity measurements, calculated absorptance and emittance measurements, and surface structure SEM micrographs for various exposures to argon ions. It is found that Kapton becomes conducting and Teflon nonconducting when ion beam-textured. Textured Kapton exhibits large changes in the transmittance and solar absorptance, but only slight changes in reflectance. Surface texturing of Teflon may allow better adherence of subsequent sputtered metallic films for a high absorptance value. The results are valuable in spacecraft charging applications.
NASA Astrophysics Data System (ADS)
Greene, Amy
2013-04-01
MicroBooNE is a neutrino experiment at Fermilab designed to investigate the 3σ low-energy electron candidate events measured by the MiniBooNE experiment. Neutrinos from the Booster Neutrino Beam are detected by a 89-ton liquid argon time projection chamber, which is expected to start taking data in 2014. MicroBooNE measures both the ionization electrons and scintillation light produced by neutrino interactions in the liquid argon. The scintillation light is collected by an array of 30 PMTs located at one side of the detector. This array can be calibrated using Michel electrons from stopping cosmic ray muons, by fitting the measured PMT response with the theoretical expectation. I will report on the progress of the PMT calibration software that has been developed using the MicroBooNE Monte Carlo.
On Both Spatial And Velocity Distribution Of Sputtered Particles In Magnetron Discharge
NASA Astrophysics Data System (ADS)
Vitelaru, C.; Pohoata, V.; Tiron, V.; Costin, C.; Popa, G.
2012-12-01
The kinetics of the sputtered atoms from the metallic target as well as the time-space distribution of the argon metastable atoms have been investigated for DC and high power pulse magnetron discharge by means of Tunable Diode - Laser Absorption Spectroscopy (TD-LAS) and Tunable Diode - Laser Induced Fluorescence (TD-LIF). The discharge was operated in argon (5-30 mTorr) with two different targets, tungsten and aluminum, for pulses of 1 to 20 μs, at frequencies of 0.2 to 1 kHz. Peak current intensity of ~100 A has been attained at cathode peak voltage of ~1 kV. The mean velocity distribution functions and particle fluxes of the sputtered metal atoms, in parallel and perpendicular direction to the target, have been obtained and compared for DC and pulse mode.
Sterilization of Surfaces with a Handheld Atmospheric Pressure Plasma
NASA Astrophysics Data System (ADS)
Hicks, Robert; Habib, Sara; Chan, Wai; Gonzalez, Eleazar; Tijerina, A.; Sloan, Mark
2009-10-01
Low temperature, atmospheric pressure plasmas have shown great promise for decontaminating the surfaces of materials and equipment. In this study, an atmospheric pressure, oxygen and argon plasma was investigated for the destruction of viruses, bacteria, and spores. The plasma was operated at an argon flow rate of 30 L/min, an oxygen flow rate of 20 mL/min, a power density of 101.0 W/cm^3 (beam area = 5.1 cm^2), and at a distance from the surface of 7.1 mm. An average 6log10 reduction of viable spores was obtained after only 45 seconds of exposure to the reactive gas. By contrast, it takes more than 35 minutes at 121^oC to sterilize anthrax in an autoclave. The plasma properties were investigated by numerical modeling and chemical titration with nitric oxide. The numerical model included a detailed reaction mechanism for the discharge as well as for the afterglow. It was predicted that at a delivered power density of 29.3 W/cm^3, 30 L/min argon, and 0.01 volume% O2, the plasma generated 1.9 x 10^14 cm-3 O atoms, 1.6 x 10^12 cm-3 ozone, 9.3 x 10^13 cm-3 O2(^1δg), and 2.9 x 10^12 cm-3 O2(^1σ^+g) at 1 cm downstream of the source. The O atom density measured by chemical titration with NO was 6.0 x 10^14 cm-3 at the same conditions. It is believe that the oxygen atoms and the O2(^1δg) metastables were responsible for killing the anthrax and other microorganisms.
Murthy, S Srinivasa; Murthy, Gargi S
2015-01-01
Background: Dentistry in general and prosthodontics in particular is evolving at greater pace, but the denture base resins poly methyl methacrylate. There has been vast development in modifying chemically and the polymerization techniques for better manipulation and enhancement of mechanical properties. One such invention was introduction of visible light cure (VLC) denture base resin. Argon ion lasers have been used extensively in dentistry, studies has shown that it can polymerize restorative composite resins. Since composite resin and VLC resin share the same photo initiator, Argon laser is tested as activator for polymerizing VLC resin. In the Phase 1 study, the VLC resin was evaluated for exposure time for optimum polymerization using argon ion laser and in Phase 2; flexural strength, impact strength, surface hardness and surface characteristics of laser cured resin was compared with light cure and conventional heat cure resin. Materials and Methods: Phase 1; In compliance with American Dental Association (ADA) specification no. 12, 80 samples were prepared with 10 each for different curing time using argon laser and evaluated for flexural strength on three point bend test. Results were compared to established performance requirement specified. Phase 2, 10 specimen for each of the mechanical properties (30 specimen) were polymerized using laser, visible light and heat and compared. Surface and fractured surface of laser, light and heat cured resins were examined under scanning electron microscope (SEM). Results: In Phase 1, the specimen cured for 7, 8, 9 and 10 min fulfilled ADA requirement. 8 min was taken as suitable curing time for laser curing. Phase 2 the values of mechanical properties were computed and subjected to statistical analysis using one-way ANOVA and Tukey post-hoc test. The means of three independent groups showed significant differences between any two groups (P < 0.001). Conclusion: Triad VLC resin can be polymerized by argon ion laser with 1 W/mm2 power and exposure time of 8 min to satisfy ADA specification. Impact strength, surface hardness of laser cure was better than light cure and heat cure resin. Flexural strength of light cure was better than laser cure and heat cure resin. The SEM study showed similar density on surface, the fractured surface of heat cure resin was dense and compact. PMID:26124596
NASA Technical Reports Server (NTRS)
Weigel, C.; Ball, C. L.
1972-01-01
The performance data were taken at 50,000 rpm, using argon gas. As the Reynolds number was reduced from near design value to 30 percent of design, the maximum efficiency decreased about 1.5 percentage points. Reducing the Reynolds number from 30 percent to approximately 10 percent of design caused the maximum efficiency to decrease another 2.5 percentage points. The variation in loss with Reynolds number is compared with inverse power relation of loss with Reynolds number.
Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds
NASA Astrophysics Data System (ADS)
Bhatt, R. B.; Kamat, H. S.; Ghosal, S. K.; de, P. K.
1999-10-01
The influence of nitrogen in shielding gas on the corrosion resistance of welds of a duplex stainless steel (grade U-50), obtained by gas tungsten arc (GTA) with filler wire, autogenous GTA (bead-on-plate), electron beam welding (EBW), and microplasma techniques, has been evaluated in chloride solutions at 30 °C. Pitting attack has been observed in GTA, electron beam welding, and microplasma welds when welding has been carried out using pure argon as the shielding gas. Gas tungsten arc welding with 5 to 10% nitrogen and 90 to 95% argon, as the shielding gas, has been found to result in an improved pitting corrosion resistance of the weldments of this steel. However, the resistance to pitting of autogenous welds (bead-on-plate) obtained in pure argon as the shielding gas has been observed to remain unaffected. Microscopic examination, electron probe microanalysis (EPMA), and x-ray diffraction studies have revealed that the presence of nitrogen in the shielding gas in the GTA welds not only modifies the microstructure and the austenite to ferrite ratio but also results in a nearly uniform distribution of the various alloying elements, for example, chromium, nickel, and molybdenum among the constitutent phases, which are responsible for improved resistance to pitting corrosion.
An experimental study of atmospheric pressure dielectric barrier discharge (DBD) in argon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subedi, D. P.; Tyata, R. B.; Shrestha, R.
2014-03-05
In this paper, experimental results on atmospheric pressure argon dielectric barrier discharge (DBD) have been presented. The discharge was generated using a high voltage (0 to 20 kV) power supply operating at frequency of 10 to 30 kHz and was studied by means of electrical and optical measurements. A homogeneous and steady discharge was observed between the electrodes with gap spacing from 1 mm to 3 mm and with a dielectric barrier of thickness 1.5 mm while argon gas is fed at a controlled flow rate of 2liter per min. The electron temperature (T{sub e}) and electron density (n{sub e})more » of the plasma have been determined by means of optical emission spectroscopy. Our results show that the electron density is of the order of 10{sup 16} cm{sup −3} while the electron temperature is estimated to be ∼ 1 eV. The homogeneity and non-thermal nature of the discharge were utilized in the investigation of the change in wettabilty of a polymer sample subjected to the treatment by the discharge. Contact angle analysis showed that the discharge was effective in improving the wettability of low density Polyethylene (LDPE) polymer sample after the treatment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiao; Yu, Peng-Cheng; Liu, Yu
2015-10-15
In our experiment, the transition points between the two operational modes of capacitive coupling (E mode) and inductive coupling (H mode) were investigated at a wide range of mercury vapor pressures in an inductively coupled plasma, varying with the input radio-frequency powers and the total filling pressures (10 Pa–30 Pa). The electron temperatures were calculated versus with the mercury vapor pressures for different values of the total filling pressures. The transition power points and electron density also were measured in this study. It is shown that the transition powers, whether the E to H mode transition or the H to E modemore » transition, are lower than that of the argon discharge, and these powers almost increase with the mercury vapor pressure rising. However, the transition electron density follows an inverse relationship with the mercury vapor pressures compared with the transition powers. In addition, at the lower pressures and higher mercury vapor pressures, an inverse hysteresis was observed clearly, which did not appear in the argon gas plasma. We suggest that all these results are attributed to the electron-neutral collision frequency changed with the additional mercury vapor pressures.« less
Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatt, R.B.; Kamat, H.S.; Ghosal, S.K.
1999-10-01
The influence of nitrogen in shielding gas on the corrosion resistance of welds of a duplex stainless steel (grade U-50), obtained by gas tungsten arc (GTA) with filler wire, autogenous GTA (bead-on-plate), electron beam welding (EBW), and microplasma techniques, has been evaluated in chloride solutions at 30 C. Pitting attack has been observed in GTA, electron beam welding, and microplasma welds when welding has been carried out using pure argon as the shielding gas. Gas tungsten arc welding with 5 to 10% nitrogen and 90 to 95% argon, as the shielding gas, has been found to result in an improvedmore » pitting corrosion resistance of the weldments of this steel. However, the resistance of pitting of autogenous welds (bead-on-plate) obtained in pure argon as the shielding gas has been observed to remain unaffected. Microscopic examination, electron probe microanalysis (EPMA), and x-ray diffraction studies have revealed that the presence of nitrogen in the shielding gas in the GTA welds not only modifies the microstructure and the austenite to ferrite ratio but also results in a nearly uniform distribution of the various alloying elements, for example, chromium, nickel, and molybdenum among the constituent phases, which are responsible for improved resistance to pitting corrosion.« less
Argon pneumoperitoneum is more dangerous than CO2 pneumoperitoneum during venous gas embolism.
Mann, C; Boccara, G; Grevy, V; Navarro, F; Fabre, J M; Colson, P
1997-12-01
We investigated the possibility of using argon, an inert gas, as a replacement for carbon dioxide (CO2). The tolerance of argon pneumoperitoneum was compared with that of CO2 pneumoperitoneum. Twenty pigs were anesthetized with enflurane 1.5%. Argon (n = 11) or CO2 (n = 9) pneumoperitoneum was created at 15 mm Hg over 20 min, and serial intravenous injections of each gas (ranging from 0.1 to 20 mL/kg) were made. Cardiorespiratory variables were measured. Transesophageal Doppler and capnographic monitoring were assessed in the detection of embolism. During argon pneumoperitoneum, there was no significant change from baseline in arterial pressure and pulmonary excretion of CO2, mean systemic arterial pressure (MAP), mean pulmonary artery pressure (PAP), or systemic and pulmonary vascular resistances, whereas CO2 pneumoperitoneum significantly increased these values (P < 0.05). During the embolic trial and from gas volumes of 2 and 0.2 mL/kg, the decrease in MAP and the increase in PAP were significantly higher with argon than with CO2 (P < 0.05). In contrast to CO2, argon pneumoperitoneum was not associated with significant changes in cardiorespiratory functions. However, argon embolism seems to be more deleterious than CO2 embolism. The possibility of using argon pneumoperitoneum during laparoscopy remains uncertain. Laparoscopic surgery requires insufflation of gas into the peritoneal cavity. We compared the hemodynamic effects of argon, an inert gas, and carbon dioxide in a pig model of laparoscopic surgery. We conclude that argon carries a high risk factor in the case of an accidental gas embolism.
Sterilization of bacterial endospores by an atmospheric-pressure argon plasma jet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhm, Han S.; Lim, Jin P.; Li, Shou Z.
2007-06-25
Argon plasma jets penetrate deep into ambient air and create a path for oxygen radicals to sterilize microbes. A sterilization experiment with bacterial endospores indicates that an argon-oxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby demonstrating its capability to clean surfaces and its usefulness for reinstating contaminated equipment as free from toxic biological warfare agents. However, the spore-killing efficiency of the atmospheric-pressure argon-oxygen jet depends very sensitively on the oxygen concentration in the argon gas.
Tabari, Kasra; Hosseinpour, Sepanta; Mohammad-Rahimi, Hossein
2017-01-01
Introduction: In recent years, the use of ceramic base zirconia is considered in dentistry for all ceramic restorations because of its chemical stability, biocompatibility, and good compressive as well as flexural strength. However, due to its chemical stability, there is a challenge with dental bonding. Several studies have been done to improve zirconia bonding but they are not reliable. The purpose of this research is to study the effect of plasma treatment on bonding strength of zirconia. Methods: In this in vitro study, 180 zirconia discs' (thickness was 0.85-0.9 mm) surfaces were processed with plasma of oxygen, argon, air and oxygen-argon combination with 90-10 and 80-20 ratio (n=30 for each group) after being polished by sandblast. Surface modifications were assessed by measuring the contact angle, surface roughness, and topographical evaluations. Cylindrical Panavia f2 resin-cement and Diafill were used for microshear strength bond measurements. The data analysis was performed by SPSS 20.0 software and one-way analysis of variance (ANOVA) and Tukey test as the post hoc. Results: Plasma treatment in all groups significantly reduces contact angle compare with control ( P =0.001). Topographic evaluations revealed coarseness promotion occurred in all plasma treated groups which was significant when compared to control ( P <0.05), except argon plasma treated group that significantly decreased surface roughness ( P <0.05). In all treated groups, microshear bond strength increased, except oxygen treated plasma group which decreased this strength. Air and argon-oxygen combination (both groups) significantly increased microshear bond strength ( P <0.05). Conclusion: According to this research, plasmatic processing with dielectric barrier method in atmospheric pressure can increase zirconia bonding strength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yates, Brent R.; Khakoo, Murtadha A.
2011-04-15
We present normalized doubly differential cross sections (DDCS's) for the near-threshold, electron-impact single ionization of argon and krypton, similar to those taken earlier for Ne and Xe [Yates et al., J. Phys. B 42, 095206 (2009)]. The Ar measurements were taken at incident energies of 17, 18, 20, and 30 eV while the Kr measurements were taken at 15, 16, 17.5, and 20 eV. The DDCS scattering angles range from 15 deg. to 120 deg. The differential data are initially normalized to available experimental cross sections for excitation of the ground np{sup 6} to the np{sup 5}(n+1)s excited states ofmore » the noble gas and, after integration, to well-established experimental total ionization cross sections of Rapp and Englander-Golden [J. Chem. Phys. 43, 1464 (1965)].« less
Almadori, Y; Borowik, Ł; Chevalier, N; Barbé, J-C
2017-01-27
Thermally induced solid-state dewetting of ultra-thin films on insulators is a process of prime interest, since it is capable of easily forming nanocrystals. If no particular treatment is performed to the film prior to the solid-state dewetting, it is already known that the size, the shape and the density of nanocrystals is governed by the initial film thickness. In this paper, we report a novel approach to control the size and the surface density of silicon nanocrystals based on an argon-implantation preliminary surface treatment. Using 7.5 nm thin layers of silicon, we show that increasing the implantation dose tends to form smaller silicon nanocrystals with diameter and height lower than 50 nm and 30 nm, respectively. Concomitantly, the surface density is increased by a factor greater than 20, going from 5 μm -2 to values over 100 μm -2 .
NASA Astrophysics Data System (ADS)
Pitsevich, George; Shalamberidze, Elena; Malevich, Alex; Sablinskas, Valdas; Balevicius, Vytautas; Pettersson, Lars G. M.
2017-10-01
The frequencies and intensities of vibration-rotational transitions of water molecules in an argon matrix were calculated for temperatures of 6 and 30 K. The rigid asymmetric top approximation was used with available literature values of the effective rotational constants in the ground and excited vibrational states. The calculations were carried out by taking into account the existence of a non-equilibrium population distribution between the rotational levels of ortho- and para-water isomers. It was assumed that the temperature relaxation of the population of rotational levels is independent of the ortho- and para-isomers. Comparison of the results of the theoretical calculations with experimental literature data shows good agreement for the majority of the rotational structure lines for symmetric and antisymmetric stretching vibrations both in the frequency values and in the values of the relative intensities.
Inert gas ion thruster development
NASA Technical Reports Server (NTRS)
Ramsey, W. D.
1980-01-01
Two 12 cm magneto-electrostatic containment (MESC) ion thrusters were performance mapped with argon and xenon. The first, hexagonal, thruster produced optimized performance of 48.5to 79 percent argon mass utilization efficiencies at discharge energies of 240 to 425 eV/ion, respectively, Xenon mass utilization efficiencies of 78 to 95 percent were observed at discharge energies of 220 to 290 eV/ion with the same optimized hexagonal thruster. Changes to the cathode baffle reduced the discharge anode potential during xenon operation from approximately 40 volts to about 30 volts. Preliminary tests conducted with the second, hemispherical, MESC thruster showed a nonuniform anode magnetic field adversely affected thruster performance. This performance degradation was partially overcome by changes in the boundary anode placement. Conclusions drawn the hemispherical thruster tests gave insights into the plasma processes in the MESC discharge that will aid in the design of future thrusters.
Mechanisms of inert gas narcosis
NASA Technical Reports Server (NTRS)
1973-01-01
Experiments describing the mechanism of inert gas narcosis are reported. A strain of mice, genetically altered to increase susceptibility to botulin poisoning (synaptic response) appears to increase metabolic rates while breathing argon; this infers a genetically altered synaptic response to both botulin toxin and narcotic gases. Studies of metabolic depression in human subjects breathing either air or a 30% mixture of nitrous oxide indicate that nitrous oxide narcosis does not produce pronounced metabolic depression. Tests on mice for relative susceptibilities to narcosis and oxygen poisoning as a function of fatty membrane composition show that alteration of the fatty acid composition of phospholipids increases resistance to metabolically depressant effects of argon but bas no effect on nitrous oxide narcosis. Another study suggests that acclimatization to low tension prior to high pressure oxygen treatment enhances susceptibility of mice to convulsions and death; developing biochemical lesions cause CNS metabolite reductions and pulmonary damage.
Effects of argon gas flow rate on laser-welding.
Takayama, Yasuko; Nomoto, Rie; Nakajima, Hiroyuki; Ohkubo, Chikahiro
2012-01-01
The purpose of this study was to evaluate the effects of the rate of argon gas flow on joint strength in the laser-welding of cast metal plates and to measure the porosity. Two cast plates (Ti and Co-Cr alloy) of the same metal were abutted and welded together. The rates of argon gas flow were 0, 5 and 10 L/min for the Co-Cr alloy, and 5 and 10 L/min for the Ti. There was a significant difference in the ratio of porosity according to the rate of argon gas flow in the welded area. Argon shielding had no significant effect on the tensile strength of Co-Cr alloy. The 5 L/min specimens showed greater tensile strength than the 10 L/min specimens for Ti. Laser welding of the Co-Cr alloy was influenced very little by argon shielding. When the rate of argon gas flow was high, joint strength decreased for Ti.
21 CFR 874.4490 - Argon laser for otology, rhinology, and laryngology.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Argon laser for otology, rhinology, and laryngology. 874.4490 Section 874.4490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... Argon laser for otology, rhinology, and laryngology. (a) Identification. The argon laser device for use...
21 CFR 874.4490 - Argon laser for otology, rhinology, and laryngology.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Argon laser for otology, rhinology, and laryngology. 874.4490 Section 874.4490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... Argon laser for otology, rhinology, and laryngology. (a) Identification. The argon laser device for use...
Code of Federal Regulations, 2011 CFR
2011-07-01
... arc furnaces and argon-oxygen decarburization vessels? 63.10686 Section 63.10686 Protection of... Compliance Requirements § 63.10686 What are the requirements for electric arc furnaces and argon-oxygen... from each EAF (including charging, melting, and tapping operations) and argon-oxygen decarburization...
Code of Federal Regulations, 2012 CFR
2012-07-01
... arc furnaces and argon-oxygen decarburization vessels? 63.10686 Section 63.10686 Protection of... Compliance Requirements § 63.10686 What are the requirements for electric arc furnaces and argon-oxygen... from each EAF (including charging, melting, and tapping operations) and argon-oxygen decarburization...
Code of Federal Regulations, 2013 CFR
2013-07-01
... arc furnaces and argon-oxygen decarburization vessels? 63.10686 Section 63.10686 Protection of... Compliance Requirements § 63.10686 What are the requirements for electric arc furnaces and argon-oxygen... from each EAF (including charging, melting, and tapping operations) and argon-oxygen decarburization...
Code of Federal Regulations, 2010 CFR
2010-07-01
... arc furnaces and argon-oxygen decarburization vessels? 63.10686 Section 63.10686 Protection of... Compliance Requirements § 63.10686 What are the requirements for electric arc furnaces and argon-oxygen... from each EAF (including charging, melting, and tapping operations) and argon-oxygen decarburization...
Code of Federal Regulations, 2014 CFR
2014-07-01
... arc furnaces and argon-oxygen decarburization vessels? 63.10686 Section 63.10686 Protection of... Compliance Requirements § 63.10686 What are the requirements for electric arc furnaces and argon-oxygen... from each EAF (including charging, melting, and tapping operations) and argon-oxygen decarburization...
Argon gas: a potential neuroprotectant and promising medical therapy
2014-01-01
Argon is a noble gas element that has demonstrated narcotic and protective abilities that may prove useful in the medical field. The earliest records of argon gas have exposed its ability to exhibit narcotic symptoms at hyperbaric pressures greater than 10 atmospheres with more recent evidence seeking to display argon as a potential neuroprotective agent. The high availability and low cost of argon provide a distinct advantage over using similarly acting treatments such as xenon gas. Argon gas treatments in models of brain injury such as in vitro Oxygen-Glucose-Deprivation (OGD) and Traumatic Brain Injury (TBI), as well as in vivo Middle Cerebral Artery Occlusion (MCAO) have largely demonstrated positive neuroprotective behavior. On the other hand, some warning has been made to potential negative effects of argon treatments in cases of ischemic brain injury, where increases of damage in the sub-cortical region of the brain have been uncovered. Further support for argon use in the medical field has been demonstrated in its use in combination with tPA, its ability as an organoprotectant, and its surgical applications. This review seeks to summarize the history and development of argon gas use in medical research as mainly a neuroprotective agent, to summarize the mechanisms associated with its biological effects, and to elucidate its future potential. PMID:24533741
Modeling of inhomogeneous mixing of plasma species in argon-steam arc discharge
NASA Astrophysics Data System (ADS)
Jeništa, J.; Takana, H.; Uehara, S.; Nishiyama, H.; Bartlová, M.; Aubrecht, V.; Murphy, A. B.
2018-01-01
This paper presents numerical simulation of mixing of argon- and water-plasma species in an argon-steam arc discharge generated in a thermal plasma generator with the combined stabilization of arc by axial gas flow (argon) and water vortex. The diffusion of plasma species itself is described by the combined diffusion coefficients method in which the coefficients describe the diffusion of argon ‘gas,’ with respect to water vapor ‘gas.’ Diffusion processes due to the gradients of mass density, temperature, pressure, and an electric field have been considered in the model. Calculations for currents 150-400 A with 15-22.5 standard liters per minute (slm) of argon reveal inhomogeneous mixing of argon and oxygen-hydrogen species with the argon species prevailing near the arc axis. All the combined diffusion coefficients exhibit highly nonlinear distribution of their values within the discharge, depending on the temperature, pressure, and argon mass fraction of the plasma. The argon diffusion mass flux is driven mainly by the concentration and temperature space gradients. Diffusions due to pressure gradients and due to the electric field are of about 1 order lower. Comparison with our former calculations based on the homogeneous mixing assumption shows differences in temperature, enthalpy, radiation losses, arc efficiency, and velocity at 400 A. Comparison with available experiments exhibits very good qualitative and quantitative agreement for the radial temperature and velocity profiles 2 mm downstream of the exit nozzle.
NASA Astrophysics Data System (ADS)
Rani, D. Jhansi; Kumar, A. GuruSampath; Sarmash, T. Sofi; Chandra Babu Naidu, K.; Maddaiah, M.; Rao, T. Subba
2016-06-01
High transmitting, non absorbent, nano crystalline zirconium titanate (ZT) thin films suitable for anti reflection coatings (ARC) were deposited on to glass substrates by direct current (DC) magnetron reactive sputtering technique, under distinct Argon to Oxygen (Ar/O2) gas flow rate ratios of 31/1, 30/2, 29/3 and 28/4, with a net gas flow (Ar + O2) of 32sccm, at an optimum substrate temperature of 250°C. The influence of the gas mixture ratio on the film properties has been investigated by employing x-ray diffraction (XRD), ultra violet visible (UV-vis) spectroscopy, atomic force microscopy (AFM), energy dispersive x-ray analysis (EDX) and four point probe methods. The films showed a predominant peak at 30.85° with (111) orientation. The crystallite size reduced from 22.94 nm to 13.5 nm and the surface roughness increased from 11.53 nm to 50.58 nm with increase in oxygen content respectively. The films deposited at 31/1 and 30/2 showed almost similar chemical composition. Increased oxygen content results an increase in electrical resistivity from 3.59 × 103 to 2.1 × 106 Ωm. The film deposited at Ar/O2 of 28/4 exhibited higher average optical transmittance of 91%, but its refractive index is higher than that of what is required for ARC. The films deposited at 31/1 and 30/2 of Ar/O2 possess higher transmittance (low absorbance) apart from suitable refractive index. Thus, these films are preferable candidates for ARC.
Flemming, Bonnie; Rameika, Gina
2018-05-18
On Monday, June 23, 2014 the MicroBooNE detector -- a 30-ton vessel that will be used to study ghostly particles called neutrinos -- was transported three miles across the Fermilab site and gently lowered into the laboratory's Liquid-Argon Test Facility. This video documents that move, some taken with time-lapse camerad, and shows the process of getting the MicroBooNE detector to its new home.
Neutral gas and diffuse interstellar bands in the LMC
NASA Technical Reports Server (NTRS)
Danks, Anthony C.; Penprase, Brian
1994-01-01
Tracing the dynamics of the neutral gas and observing diffuse interstellar bands in the LMC (Large Magellanic Cloud) was the focus of this study. The S/N values, a Quartz lamp exposure, a T horium Argon Comparision lamp exposure, and spectral plots for each star observed were taken. The stars observed were selected to sample the 30 Dor vicinty. NaI absorption profiles are included.
46 CFR 151.50-36 - Argon or nitrogen.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Argon or nitrogen. 151.50-36 Section 151.50-36 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-36 Argon or nitrogen. (a) A cargo tank that contains argon or nitrogen and that has a maximum allowable working pressure of 172 kPa (25...
46 CFR 151.50-36 - Argon or nitrogen.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Argon or nitrogen. 151.50-36 Section 151.50-36 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-36 Argon or nitrogen. (a) A cargo tank that contains argon or nitrogen and that has a maximum allowable working pressure of 172 kPa (25...
46 CFR 151.50-36 - Argon or nitrogen.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Argon or nitrogen. 151.50-36 Section 151.50-36 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-36 Argon or nitrogen. (a) A cargo tank that contains argon or nitrogen and that has a maximum allowable working pressure of 172 kPa (25...
46 CFR 151.50-36 - Argon or nitrogen.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Argon or nitrogen. 151.50-36 Section 151.50-36 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-36 Argon or nitrogen. (a) A cargo tank that contains argon or nitrogen and that has a maximum allowable working pressure of 172 kPa (25...
46 CFR 151.50-36 - Argon or nitrogen.
Code of Federal Regulations, 2010 CFR
2010-10-01
... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-36 Argon or nitrogen. (a) A cargo tank that contains argon or nitrogen and that has a maximum allowable working pressure of 172 kPa (25... 46 Shipping 5 2010-10-01 2010-10-01 false Argon or nitrogen. 151.50-36 Section 151.50-36 Shipping...
Sciamma, Ella M; Bengtson, Roger D; Rowan, W L; Keesee, Amy; Lee, Charles A; Berisford, Dan; Lee, Kevin; Gentle, K W
2008-10-01
We present a method to infer the electron temperature in argon plasmas using a collisional-radiative model for argon ions and measurements of electron density to interpret absolutely calibrated spectroscopic measurements of argon ion (Ar II) line intensities. The neutral density, and hence the degree of ionization of this plasma, can then be estimated using argon atom (Ar I) line intensities and a collisional-radiative model for argon atoms. This method has been tested for plasmas generated on two different devices at the University of Texas at Austin: the helicon experiment and the helimak experiment. We present results that show good correlation with other measurements in the plasma.
Nyberg, Marcus; Heidorn, Thorsten; Lindblad, Peter
2015-12-10
Nitrogenase based hydrogen production was examined in a ΔhupW strain of the filamentous heterocystous cyanobacterium Nostoc PCC 7120, i.e., cells lacking the last step in the maturation system of the large subunit of the uptake hydrogenase and as a consequence with a non-functional uptake hydrogenase. The cells were grown in a developed flat panel photobioreactor system with 3.0L culture volume either aerobically (air) or anaerobically (Ar or 80% N2/20% Ar) and illuminated with a mixture of red and white LED. Aerobic growth of the ΔhupW strain of Nostoc PCC 7120 at 44μmolar photons m(-2)s(-1) PAR gave the highest hydrogen production of 0.7mL H2 L(-1)h(-1), 0.53mmol H2 mg chlorophyll a(-1)h(-1), and a light energy conversion efficiency of 1.2%. Anaerobic growth using 100% argon showed a maximal hydrogen production of 1.7mLL(-1)h(-1), 0.85mmol per mg chlorophyll a(-1) h(-1), and a light energy conversion efficiency of 2.7%. Altering between argon/N2 (20/80) and 100% argon phases resulted in a maximal hydrogen production at hour 128 (100% argon phase) with 6.2mL H2L(-1)h(-1), 0.71mL H2 mg chlorophyll a(-1)h(-1), and a light energy efficiency conversion of 4.0%. The highest buildup of hydrogen gas observed was 6.89% H2 (100% argon phase) of the total photobioreactor system with a maximal production of 4.85mL H2 L(-1)h(-1). The present study clearly demonstrates the potential to use purpose design cyanobacteria in developed flat panel photobioreactor systems for the direct production of the solar fuel hydrogen. Further improvements in the strain used, environmental conditions employed, and growth, production and collection systems used, are needed before a sustainable and economical cyanobacterial based hydrogen production can be realized. Copyright © 2015 Elsevier B.V. All rights reserved.
The Argon Geochronology Experiment (AGE)
NASA Technical Reports Server (NTRS)
Swindle, T. D.; Bode, R.; Fennema, A.; Chutjian, A.; MacAskill, J. A.; Darrach, M. R.; Clegg, S. M.; Wiens, R. C.; Cremers, D.
2006-01-01
This viewgraph presentation reviews the Argon Geochronology Experiment (AGE). Potassium-Argon dating is shown along with cosmic ray dating exposure. The contents include a flow diagram of the Argon Geochronology Experiment, and schematic diagrams of the mass spectrometer vacuum system, sample manipulation mechanism, mineral heater oven, and the quadrupole ion trap mass spectrometer. The Laser-Induced Breakdown Spectroscopy (LIBS) Operation with elemental abundances is also described.
Light detection and the wavelength shifter deposition in DEAP-3600
NASA Astrophysics Data System (ADS)
Broerman, B.; Retière, F.
2016-02-01
The Dark matter Experiment using Argon Pulse-shape discrimination (DEAP) uses liquid argon as a target medium to perform a direct-detection dark matter search. The 3600 kg liquid argon target volume is housed in a spherical acrylic vessel and viewed by a surrounding array of photomultiplier tubes. Ionizing particles in the argon volume produce scintillation light which must be wavelength shifted to be detected by the photomultiplier tubes. Argon scintillation and wavelength shifting, along with details on the application of the wavelength shifter to the inner surface of the acrylic vessel are presented.
Keedakkadan, Habeeb Rahman; Abe, Osamu
2015-04-30
The separation and purification of oxygen-argon mixtures are critical in the high-precision analysis of Δ(17) O and δ(O2 /Ar) for geochemical applications. At present, chromatographic methods are used for the separation and purification of oxygen-argon mixtures or pure oxygen, but these methods require the use of high-purity helium as a carrier gas. Considerable interest has been expressed in the development of a helium-free cryogenic separation of oxygen-argon mixtures in natural air samples. The precise and simplified cryogenic separation of oxygen-argon mixtures from natural air samples presented here was made possible using a single 5A (30/60 mesh) molecular sieve column. The method involves the trapping of eluted gases using molecular sieves at liquid nitrogen temperature, which is associated with isotopic fractionation. We tested the proposed method for the determination of isotopic fractionations during the gas exchange between water and atmospheric air at equilibrium. The dependency of fractionation was studied at different water temperatures and for different methods of equilibration (bubbling and stirring). Isotopic and molecular fractionations during gas desorption from molecular sieves were studied for different amounts and types of molecular sieves. Repeated measurements of atmospheric air yielded a reproducibility (±SD) of 0.021 ‰, 0.044 ‰, 15 per meg and 1.9 ‰ for δ(17) O, δ(18) O, Δ(17) O and δ(O2 /Ar) values, respectively. We applied the method to determine equilibrium isotope fractionation during gas exchange between air and water. Consistent δ(18) O and Δ(17) O results were obtained with the latest two studies, whereas there was a significant difference in δ(18) O values between seawater and deionized water. We have revised a helium-free, cryogenic separation of oxygen-argon mixtures in natural air samples for isotopic and molecular ratio analysis. The use of a single 13X (1/8" pellet) molecular sieve yielded the smallest isotopic and molecular fractionations, and this fractionation by molecular sieves can be corrected by the amount of molecular sieve used in the experiment. The reproducibility of the method was tested by the measurement of the oxygen isotope ratios of dissolved oxygen at equilibrium with atmospheric air. We confirmed that the choice of methods for making air-equilibrated water was not related to the magnitude of isotope fractionation, whereas there was a difference between seawater and deionized water. Copyright © 2015 John Wiley & Sons, Ltd.
Argon Diffusion Measured in Rhyolite Melt at 100 MPa
NASA Astrophysics Data System (ADS)
Weldon, N.; Edwards, P. M.; Watkins, J. M.; Lesher, C. E.
2016-12-01
Argon diffusivity (D_{Ar} ) controls the rate and length scale of argon exchange between melt and gas phases and is used as a parameter to model noble gas fractionation during magma degassing. D_{Ar} may also be useful in geochronology to estimate the distribution of excess (non-radiogenic) atmospheric argon in lavas. Our measurements of D_{Ar} in molten anhydrous rhyolite near 1000 °C and 100 MPa add to the existing dataset. Using a rapid-quench cold seal pressure apparatus we exposed cylindrical charges drilled from a Miocene rhyolite flow near Buck Mtn., CA to a pure argon atmosphere resulting in a gradually lengthening argon concentration gradient between the saturated surface and the argon poor interior. Argon concentration was measured by electron microprobe along radial transects from the center to the surface of bisected samples. D_{Ar} was calculated for each transect by fitting relative argon concentration (as a function of distance from the surface) to Green's function (given each experiment's specific temperature, pressure and runtime). Variability (σ = 1.202{μm }^{2} /s) was smaller than in previous studies, but still greater than what is likely due to analytical or experimental uncertainty. We observed a symmetric geometric bias in the distribution of argon in our samples, possibly related to advective redistribution of argon accompanying the deformation of cylindrical charges into spheroids driven by surface tension. Average diffusivity, D_{Ar} = 4.791{μm }^{2} /s, is close to the predicted value, D_{Ar} = {μm }^{2} /s ( σ_{ \\bar{x} } = 1.576 {μm }^{2} /s), suggesting that Behrens and Zhang's (2001) empirical model is valid for anhydrous rhyolite melts to relatively higher temperatures and lower pressures. Behrens, H. and Y. Zhang (2001). "Ar diffusion in hydrous silicic melts: implications for volatile diffusion mechanisms and fractionation." Earth and Planetary Science Letters 192: 363-376.
Radiation-induced deposition of transparent conductive tin oxide coatings
NASA Astrophysics Data System (ADS)
Umnov, S.; Asainov, O.; Temenkov, V.
2016-04-01
The study of tin oxide films is stimulated by the search for an alternative replacement of indium-tin oxide (ITO) films used as transparent conductors, oxidation catalysts, material gas sensors, etc. This work was aimed at studying the influence of argon ions irradiation on optical and electrical characteristics of tin oxide films. Thin films of tin oxide (without dopants) were deposited on glass substrates at room temperature using reactive magnetron sputtering. After deposition, the films were irradiated with an argon ion beam. The current density of the beam was (were) 2.5 mA/cm2, and the particles energy was 300-400 eV. The change of the optical and electrical properties of the films depending on the irradiation time was studied. Films optical properties were investigated by photometry in the range of 300-1100 nm. Films structural properties were studied using X-ray diffraction. The diffractometric research showed that the films, deposited on a substrate, had a crystal structure, and after argon ions irradiation they became quasi-crystalline (amorphous). It has been found that the transmission increases proportionally with the irradiation time, however the sheet resistance increases disproportionally. Tin oxide films (thickness ~30 nm) with ~100% transmittance and sheet resistance of ~100 kOhm/sq. were obtained. The study has proved to be prospective in the use of ion beams to improve the properties of transparent conducting oxides.
NASA Astrophysics Data System (ADS)
Merchel, Renée. A.; Barnes, Kelli S.; Taylor, Kenneth D.
2015-03-01
INTRODUCTION: The ABC® D-Flex Probe utilizes argon beam coagulation (ABC) technology to achieve hemostasis during minimally invasive surgery. A handle on the probe allows for integration with robotic surgical systems and introduces ABC to the robotic toolbox. To better understand the utility of D-Flex, this study compares the performance of the D-Flex probe to an existing ABC laparoscopic probe through ex vivo tissue analysis. METHODS: Comparisons were performed to determine the effect of four parameters: ABC device, tissue type, activation duration, and distance from tissue. Ten ABC D-Flex probes were used to create 30 burn samples for each comparison. Ex vivo bovine liver and porcine muscle were used as tissue models. The area and depth of each burn was measured using a light microscope. The resulting dimensional data was used to correlate tissue effect with each variable. RESULTS: D-Flex created burns which were smaller in surface area than the laparoscopic probe at all power levels. Additionally, D-Flex achieved thermal penetration levels equivalent to the laparoscopic probe. CONCLUSION: D-Flex implements a small 7F geometry which creates a more focused beam. When used with robotic precision, quick localized superficial hemostasis can be achieved with minimal collateral damage. Additionally, D-Flex achieved equivalent thermal penetration levels at lower power and argon flow-rate settings than the laparoscopic probe.
Weng, Chih-Chiang; Liao, Juinn-Der; Chen, Hsin-Hung; Lin, Tung-Yi; Huang, Chih-Ling
2011-09-01
An aqueous solution containing Escherichia coli can be completely inactivated within a short treatment time using a capillary-tube-based oxygen/argon micro-plasma source. A capillary-tube-based oxygen/argon micro-plasma system with a hollow inner electrode was ignited by a 13.56 MHz radio frequency power supply with a matching network and characterised by optical emission spectroscopy. An aqueous solution containing E. coli was then treated at various the working distances, plasma exposure durations, and oxygen ratios in argon micro-plasma. The treated bacteria were then assessed and qualitatively investigated. The morphologies of treated bacteria were examined using a scanning electron microscope (SEM). In the proposed oxygen/argon micro-plasma system, the intensities of the main emission lines of the excited species, nitric oxide (NO), hydrated oxide (OH), argon (Ar), and atomic oxygen (O), fluctuated with the addition of oxygen to argon micro-plasma. Under a steady state of micro-plasma generation, the complete inactivation of E. coli in aqueous solution was achieved within 90 s of argon micro-plasma exposure time with a working distance of 3 mm. SEM micrographs reveal obvious morphological damage to the treated E. coli. The addition of oxygen to argon micro-plasma increased the variety of O-containing excited species. At a given supply power, the relative intensities of the excited species, NO and OH, correlated with the ultraviolet (UV) intensity, decreased. For the proposed capillary-tube-based micro-plasma system with a hollow inner electrode, the oxygen/argon micro-plasma source is efficient in inactivating E. coli in aqueous solution. The treatment time required for the inactivation process decreases with decreasing working distance or the increasing synthesised effect of reactive species and UV intensity.
Grüßer, Linda; Blaumeiser-Debarry, Rosmarie; Krings, Matthias; Kremer, Benedikt; Höllig, Anke; Rossaint, Rolf; Coburn, Mark
2017-01-01
Despite years of research, treatment of traumatic brain injury (TBI) remains challenging. Considerable data exists that some volatile anesthetics might be neuroprotective. However, several studies have also revealed a rather neurotoxic profile of anesthetics. In this study, we investigated the effects of argon 50%, desflurane 6% and their combination in an in vitro TBI model with incubation times similar to narcotic time slots in a daily clinical routine. Organotypic hippocampal brain slices of 5- to 7-day-old mice were cultivated for 14 days before TBI was performed. Slices were eventually incubated for 2 hours in an atmosphere containing no anesthetic gas, argon 50% or desflurane 6% or both. Trauma intensity was evaluated via fluorescent imagery. Our results show that neither argon 50% nor desflurane 6% nor their combination could significantly reduce the trauma intensity in comparison to the standard atmosphere. However, in comparison to desflurane 6%, argon 50% displayed a rather neuroprotective profile within the first 2 hours after a focal mechanical trauma ( P = 0.015). A 2-hour incubation in an atmosphere containing both gases, argon 50% and desflurane 6%, did not result in significant effects in comparison to the argon 50% group or the desflurane 6% group. Our findings demonstrate that within a 2-hour incubation time neither argon nor desflurane could affect propidium iodide-detectable cell death in an in vitro TBI model in comparison to the standard atmosphere, although cell death was less with argon 50% than with desflurane 6%. The results show that within this short time period processes concerning the development of secondary injury are already taking place and may be manipulated by argon.
The DarkSide direct dark matter search with liquid argon
NASA Astrophysics Data System (ADS)
Edkins, E.; Agnes, P.; Alexander, T.; Alton, A.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Brigatti, A.; Brodsky, J.; Budano, F.; Cadonati, L.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cocco, A. G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Deo, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M. Y.; Guardincerri, Y.; Hackett, B.; Herner, K.; Humble, P.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; Jollet, C.; Keeter, K.; Kendziora, C.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kurlej, A.; Li, P. X.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Ma, Y. Q.; Machulin, I.; Mandarano, A.; Mari, S.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P. D.; Milincic, R.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Musico, P.; Nelson, A.; Odrowski, S.; Okounkova, M.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Papp, L.; Parmeggiano, S.; Parsells, R.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Segreto, E.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A.; Westerdale, S.; Wojcik, M.; Wright, A.; Xiang, X.; Xu, J.; Yang, C. G.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhu, C.; Zuzel, G.
2017-11-01
The DarkSide-50 direct dark matter detector is a liquid argon time projection chamber (TPC) surrounded by a liquid scintillator neutron veto (LSV) and a water Cerenkov muon veto (WCV). Located under 3800 m.w.e. at the Laboratori Nazionali del Gran Sasso, Italy, it is the only direct dark matter experiment currently operating background free. The atmospheric argon target was replaced with argon from underground sources in April, 2015. The level of 39Ar, a β emitter present in atmospheric argon (AAr), has been shown to have been reduced by a factor of (1.4 ± 0.2) x 103. The combined spin-independent WIMP exclusion limit of 2.0 x 10-44 cm2 (mχ = 100 GeV/c2) is currently the best limit on a liquid argon target.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Jeter C.; Aalseth, Craig E.; Bonicalzi, Ricco
Age dating groundwater and seawater using 39Ar/Ar ratios is an important tool to understand water mass flow rates and mean residence time. For modern or contemporary argon, the 39Ar activity is 1.8 mBq per liter of argon. Radiation measurements at these activity levels require ultra low-background detectors. Low-background proportional counters have been developed at Pacific Northwest National Laboratory. These detectors use traditional mixtures of argon and methane as counting gas, and the residual 39Ar from commercial argon has become a predominant source of background activity in these detectors. We demonstrated sensitivity to 39Ar by using geological or ancient argon frommore » gas wells in place of commercial argon. The low level counting performance of these proportional counters is then demonstrated for sensitivities to 39Ar/Ar ratios sufficient to date water masses as old as 1000 years.« less
Zhao, Hailin; Mitchell, Sian; Ciechanowicz, Sarah; Savage, Sinead; Wang, Tianlong; Ji, Xunming; Ma, Daqing
2016-01-01
Perinatal hypoxic ischaemic encephalopathy (HIE) has a high mortality rate with neuropsychological impairment. This study investigated the neuroprotective effects of argon against neonatal hypoxic-ischaemic brain injury. In vitro cortical neuronal cell cultures derived from rat foetuses were subjected to an oxygen and glucose deprivation (OGD) challenge for 90 minutes and then exposed to 70% argon or nitrogen with 5% carbon dioxide and balanced with oxygen for 2 hours. In vivo, seven-day-old rats were subjected to unilateral common carotid artery ligation followed by hypoxic (8% oxygen balanced with nitrogen) insult for 90 minutes. They were exposed to 70% argon or nitrogen balanced with oxygen for 2 hours. In vitro, argon treatment of cortical neuronal cultures resulted in a significant increase of p-mTOR and Nuclear factor (erythroid-derived 2)-like 2(Nrf2) and protection against OGD challenge. Inhibition of m-TOR through Rapamycin or Nrf2 through siRNA abolished argon-mediated cyto-protection. In vivo, argon exposure significantly enhanced Nrf2 and its down-stream effector NAD(P)H Dehydrogenase, Quinone 1(NQO1) and superoxide dismutase 1(SOD1). Oxidative stress, neuroinflammation and neuronal cell death were significantly decreased and brain infarction was markedly reduced. Blocking PI-3K through wortmannin or ERK1/2 through U0126 attenuated argon-mediated neuroprotection. These data provide a new molecular mechanism for the potential application of argon as a neuroprotectant in HIE. PMID:27016422
Argon Laser Treatment of Strawberry Hemangioma in Infancy
Achauer, Bruce M.; Vander Kam, Victoria M.
1985-01-01
Argon laser therapy is effective for removing port-wine stains and for reducing cutaneous vascular and pigmented lesions. Strawberry hemangiomas, being much thicker lesions than port-wine stains, were considered not appropriate for argon laser treatment. Using argon laser therapy in 13 cases of strawberry hemangioma, we achieved poor to dramatic results. ImagesFigure 1.Figure 2.Figure 3.Figure 4.Figure 5.Figure 6.Figure 7. PMID:4082569
Argon dye photocoagulator for microsurgery of the interior structure of the eye
NASA Astrophysics Data System (ADS)
Wolinski, Wieslaw L.; Kazmirowski, Antoni; Kesik, Jerzy; Korobowicz, Witold; Spytkowski, Wojciech
1991-08-01
Argon-dye laser photocoagulator for the microsurgery of the interior structure of the eye is described. Some technical specifications like power stability shape of the spots and the dependence of the power on the tissue vs. wavelenght for dye laser are given. Argon-dye photocoagulator was designed and constructed including argon laser tube and dye laser in Institute of Microelectronics and Optoelectronics Technical University of Warsaw.
Argon laser induced changes to the carbonate content of enamel
NASA Astrophysics Data System (ADS)
Ziglo, M. J.; Nelson, A. E.; Heo, G.; Major, P. W.
2009-05-01
Argon laser irradiation can be used to cure orthodontic brackets onto teeth in significantly less time than conventional curing lights. In addition, it has been shown that the argon laser seems to impart a demineralization resistance to the enamel. The purpose of this study was to use surface science techniques to ascertain if this demineralization resistance is possibly a result of a decrease in the carbonate content of enamel. Eleven mandibular third molars previously scheduled for extraction were collected and used in the present study. The teeth were sectioned in two and randomly assigned to either the argon laser (457-502 nm; 250 mW cm -2) or the control (no treatment) group. The sections assigned to the argon laser group were cured for 10 s and analyzed. To exaggerate any potential changes the experimental sections were then exposed to a further 110 s of argon laser irradiation. Surface analysis was performed using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results showed no statistically significant change in the carbonate content of enamel after argon laser irradiation ( p > 0.05). Thus, it is suggested that any demineralization resistance imparted to the enamel surface by argon laser irradiation is not due to alterations in carbonate content.
Argon concentration time-series as a tool to study gas dynamics in the hyporheic zone.
Mächler, Lars; Brennwald, Matthias S; Kipfer, Rolf
2013-07-02
The oxygen dynamics in the hyporheic zone of a peri-alpine river (Thur, Switzerland), were studied through recording and analyzing the concentration time-series of dissolved argon, oxygen, carbon dioxide, and temperature during low flow conditions, for a period of one week. The argon concentration time-series was used to investigate the physical gas dynamics in the hyporheic zone. Differences in the transport behavior of heat and gas were determined by comparing the diel temperature evolution of groundwater to the measured concentration of dissolved argon. These differences were most likely caused by vertical heat transport which influenced the local groundwater temperature. The argon concentration time-series were also used to estimate travel times by cross correlating argon concentrations in the groundwater with argon concentrations in the river. The information gained from quantifying the physical gas transport was used to estimate the oxygen turnover in groundwater after water recharge. The resulting oxygen turnover showed strong diel variations, which correlated with the water temperature during groundwater recharge. Hence, the variation in the consumption rate was most likely caused by the temperature dependence of microbial activity.
Ionizing Shocks in Argon. Part 2: Transient and Multi-Dimensional Effects (Preprint)
2010-09-09
stability in ionizing monatomic gases. Part 1. Argon ,” J. Fluid Mech., 84, 55 (1978). 2M. P. F. Bristow and I. I. Glass, “ Polarizability of singly...Article 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Ionizing Shocks in Argon . Part 2: Transient...Physics. 14. ABSTRACT We extend the computations of ionizing shocks in argon to unsteady and multi-dimensional, using a collisional-radiative
Influence of argon impurities on the elastic scattering of x-rays from imploding beryllium capsules
Saunders, A. M.; Chapman, D. A.; Kritcher, A. L.; ...
2018-03-01
Here, we investigate the effect of argon impurities on the elastic component of x-ray scattering spectra taken from directly driven beryllium capsule implosions at the OMEGA laser. The plasma conditions were obtained in a previous analysis [18] by fitting the inelastic scattering component. We show that the known argon impurity in the beryllium modifies the elastic scattering due to the larger number of bound electrons. We indeed find significant deviations in the elastic scattering from roughly 1 at.% argon contained in the beryllium. With knowledge of the argon impurity fraction, we use the elastic scattering component to determine the chargemore » state of the compressed beryllium, as the fits are rather insensitive to the argon charge state. Lastly, we discuss how doping small fractions of mid- or high-Z elements into low-Z materials could allow ionization balance studies in dense plasmas.« less
Davini, S.; Agnes, P.; Agostino, L.; ...
2016-06-09
Here, the DarkSide program at LNGS aims to perform background-free WIMP searches using two phase liquid argon time projection chambers, with the ultimate goal of covering all parameters down to the so-called neutrino floor. One of the distinct features of the program is the use of underground argon with has a reduced content of the radioactive 39Ar compared to atmospheric argon. The DarkSide Collaboration is currently operating the DarkSide-50 experiment, the first such WIMP detector using underground argon. Operations with underground argon indicate a suppression of 39Ar by a factor (1.4 ± 0.2) × 10 3 relative to atmospheric argon.more » The new results obtained with DarkSide-50 and the plans for the next steps of the DarkSide program, the 20t fiducial mass DarkSide-20k detector and the 200 t fiducial Argo, are reviewed in this proceedings.« less
Simulation of argon response and light detection in the DarkSide-50 dual phase TPC
NASA Astrophysics Data System (ADS)
Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Asner, D. M.; Back, H. O.; Biery, K.; Bocci, V.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Caravati, M.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cataudella, V.; Cavalcante, P.; Chepurnov, A.; Cicalò, C.; Cocco, A. G.; Covone, G.; D'Angelo, D.; D'Incecco, M.; Davini, S.; de Candia, A.; De Cecco, S.; De Deo, M.; De Filippis, G.; De Vincenzi, M.; Derbin, A. V.; De Rosa, G.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Dionisi, C.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Franco, D.; Gabriele, F.; Galbiati, C.; Giagu, S.; Giganti, C.; Giovanetti, G. K.; Goretti, A. M.; Granato, F.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, An.; James, I.; Johnson, T. N.; Keeter, K.; Kendziora, C. L.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Loer, B.; Longo, G.; Ma, Y.; Machado, A. A.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Martoff, C. J.; Meyers, P. D.; Milincic, R.; Monte, A.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Navrer Agasson, A.; Oleinik, A.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Razeti, M.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Sablone, D.; Sands, W.; Sanfilippo, S.; Savarese, C.; Schlitzer, B.; Segreto, E.; Semenov, D. A.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Verducci, M.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xiao, X.; Yang, C.; Ye, Z.; Zhu, C.; Zuzel, G.
2017-10-01
A Geant4-based Monte Carlo package named G4DS has been developed to simulate the response of DarkSide-50, an experiment operating since 2013 at LNGS, designed to detect WIMP interactions in liquid argon. In the process of WIMP searches, DarkSide-50 has achieved two fundamental milestones: the rejection of electron recoil background with a power of ~107, using the pulse shape discrimination technique, and the measurement of the residual 39Ar contamination in underground argon, ~3 orders of magnitude lower with respect to atmospheric argon. These results rely on the accurate simulation of the detector response to the liquid argon scintillation, its ionization, and electron-ion recombination processes. This work provides a complete overview of the DarkSide Monte Carlo and of its performance, with a particular focus on PARIS, the custom-made liquid argon response model.
NASA Astrophysics Data System (ADS)
Davini, S.; Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; D'Angelo, D.; D'Incecco, M.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Foster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K. R.; Hungerford, E. V.; Ianni, Aldo; Ianni, Andrea; James, I.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Lombardi, P.; Luitz, S.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.
2016-05-01
The DarkSide program at LNGS aims to perform background-free WIMP searches using two phase liquid argon time projection chambers, with the ultimate goal of covering all parameters down to the so-called neutrino floor. One of the distinct features of the program is the use of underground argon with has a reduced content of the radioactive 39Ar compared to atmospheric argon. The DarkSide Collaboration is currently operating the DarkSide-50 experiment, the first such WIMP detector using underground argon. Operations with underground argon indicate a suppression of 39Ar by a factor (1.4 ± 0.2) × 103 relative to atmospheric argon. The new results obtained with DarkSide-50 and the plans for the next steps of the DarkSide program, the 20t fiducial mass DarkSide-20k detector and the 200 t fiducial Argo, are reviewed in this proceedings.
Influence of argon impurities on the elastic scattering of x-rays from imploding beryllium capsules
NASA Astrophysics Data System (ADS)
Saunders, A. M.; Chapman, D. A.; Kritcher, A. L.; Schoff, M.; Shuldberg, C.; Landen, O. L.; Glenzer, S. H.; Falcone, R. W.; Gericke, D. O.; Döppner, T.
2018-03-01
We investigate the effect of argon impurities on the elastic component of x-ray scattering spectra taken from directly driven beryllium capsule implosions at the OMEGA laser. The plasma conditions were obtained in a previous analysis [18] by fitting the inelastic scattering component. We show that the known argon impurity in the beryllium modifies the elastic scattering due to the larger number of bound electrons. We indeed find significant deviations in the elastic scattering from roughly 1 at.% argon contained in the beryllium. With knowledge of the argon impurity fraction, we use the elastic scattering component to determine the charge state of the compressed beryllium, as the fits are rather insensitive to the argon charge state. Finally, we discuss how doping small fractions of mid- or high-Z elements into low-Z materials could allow ionization balance studies in dense plasmas.
Litwin, Patrick D; Reis Dib, Anna Luisa; Chen, John; Noga, Michelle; Finlay, Warren H; Martin, Andrew R
2017-06-14
Argon has the potential to be a novel inhaled therapeutic agent, owing to the neuroprotective and organoprotective properties demonstrated in preclinical studies. Before human trials are performed, an understanding of varying gas properties on airway resistance during inhalation is essential. This study predicts the effect of an 80% argon/20% oxygen gas mixture on the pressure drop through conducting airways, and by extension the airway resistance, and then verifies these predictions experimentally using 3-D printed adult tracheobronchial airway replicas. The predicted pressure drop was calculated using established analytical models of airway resistance, incorporating the change in viscosity and density of the 80% argon/20% oxygen mixture versus that of air. Predicted pressure drop for the argon mixture increased by approximately 29% compared to that for air. The experimental results were consistent with this prediction for inspiratory flows ranging from 15 to 90slpm. These results indicate that established analytical models may be used to predict increases in conducting airway resistance for argon/oxygen mixtures, compared with air. Such predictions are valuable in predicting average patient response to breathing argon/oxygen mixtures, and in selecting or designing delivery systems for use in administration of argon/oxygen mixtures to critically ill or injured patients. Copyright © 2017 Elsevier Ltd. All rights reserved.
Inhaled 45-50% argon augments hypothermic brain protection in a piglet model of perinatal asphyxia.
Broad, Kevin D; Fierens, Igor; Fleiss, Bobbi; Rocha-Ferreira, Eridan; Ezzati, Mojgan; Hassell, Jane; Alonso-Alconada, Daniel; Bainbridge, Alan; Kawano, Go; Ma, Daqing; Tachtsidis, Ilias; Gressens, Pierre; Golay, Xavier; Sanders, Robert D; Robertson, Nicola J
2016-03-01
Cooling to 33.5°C in babies with neonatal encephalopathy significantly reduces death and disability, however additional therapies are needed to maximize brain protection. Following hypoxia-ischemia we assessed whether inhaled 45-50% Argon from 2-26h augmented hypothermia neuroprotection in a neonatal piglet model, using MRS and aEEG, which predict outcome in babies with neonatal encephalopathy, and immunohistochemistry. Following cerebral hypoxia-ischemia, 20 Newborn male Large White piglets<40h were randomized to: (i) Cooling (33°C) from 2-26h (n=10); or (ii) Cooling and inhaled 45-50% Argon (Cooling+Argon) from 2-26h (n=8). Whole-brain phosphorus-31 and regional proton MRS were acquired at baseline, 24 and 48h after hypoxia-ischemia. EEG was monitored. At 48h after hypoxia-ischemia, cell death (TUNEL) was evaluated over 7 brain regions. There were no differences in body weight, duration of hypoxia-ischemia or insult severity; throughout the study there were no differences in heart rate, arterial blood pressure, blood biochemistry and inotrope support. Two piglets in the Cooling+Argon group were excluded. Comparing Cooling+Argon with Cooling there was preservation of whole-brain MRS ATP and PCr/Pi at 48h after hypoxia-ischemia (p<0.001 for both) and lower (1)H MRS lactate/N acetyl aspartate in white (p=0.03 and 0.04) but not gray matter at 24 and 48h. EEG background recovery was faster (p<0.01) with Cooling+Argon. An overall difference between average cell-death of Cooling versus Cooling+Argon was observed (p<0.01); estimated cells per mm(2) were 23.9 points lower (95% C.I. 7.3-40.5) for the Cooling+Argon versus Cooling. Inhaled 45-50% Argon from 2-26h augmented hypothermic protection at 48h after hypoxia-ischemia shown by improved brain energy metabolism on MRS, faster EEG recovery and reduced cell death on TUNEL. Argon may provide a cheap and practical therapy to augment cooling for neonatal encephalopathy. Copyright © 2015. Published by Elsevier Inc.
Multipole gas thruster design. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Isaacson, G. C.
1977-01-01
The development of a low field strength multipole thruster operating on both argon and xenon is described. Experimental results were obtained with a 15-cm diameter multipole thruster and are presented for a wide range of discharge-chamber configurations. Minimum discharge losses were 300-350 eV/ion for argon and 200-250 eV/ion for xenon. Ion beam flatness parameters in the plane of the accelerator grid ranged from 0.85 to 0.93 for both propellants. Thruster performance is correlated for a range of ion chamber sizes and operating conditions as well as propellant type and accelerator system open area. A 30-cm diameter ion source designed and built using the procedure and theory presented here-in is shown capable of low discharge losses and flat ion-beam profiles without optimization. This indicates that by using the low field strength multipole design, as well as general performance correlation information provided herein, it should be possible to rapidly translate initial performance specifications into easily fabricated, high performance prototypes.
Magnetic fluorescent lamp having reduced ultraviolet self-absorption
Berman, Samuel M.; Richardson, Robert W.
1985-01-01
The radiant emission of a mercury-argon discharge in a fluorescent lamp assembly (10) is enhanced by providing means (30) for establishing a magnetic field with lines of force along the path of electron flow through the bulb (12) of the lamp assembly, to provide Zeeman splitting of the ultraviolet spectral line. Optimum results are obtained when the magnetic field strength causes a Zeeman splitting of approximately 1.7 times the thermal line width.
Plasma Thruster Development: Magnetoplasmadynamic Propulsion, Status and Basic Problems.
1986-02-01
34 9 Sublimation Rates vs. Temperature for Typical Electrode Materials 65 10 Time to Reach Melting vs. Surface Heat Load (One-Dimensional, Large Area...Approx.) for Different Electrode Materials and Initial Temperatures 75 V LIST OF TABLES TABLE PAGE I Models of Thruster Types (with approximation (1...much higher specific impulse values than the minimum must be achieved in order to obtain acceptable effi- Sciencies , e.g. for 30% efficiency with argon
Results from the first use of low radioactivity argon in a dark matter search
NASA Astrophysics Data System (ADS)
Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; James, I.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Lombardi, P.; Luitz, S.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Nelson, A.; Odrowski, S.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.; DarkSide Collaboration
2016-04-01
Liquid argon is a bright scintillator with potent particle identification properties, making it an attractive target for direct-detection dark matter searches. The DarkSide-50 dark matter search here reports the first WIMP search results obtained using a target of low-radioactivity argon. DarkSide-50 is a dark matter detector, using a two-phase liquid argon time projection chamber, located at the Laboratori Nazionali del Gran Sasso. The underground argon is shown to contain 39Ar at a level reduced by a factor (1.4 ±0.2 )×103 relative to atmospheric argon. We report a background-free null result from (2616 ±43 ) kg d of data, accumulated over 70.9 live days. When combined with our previous search using an atmospheric argon, the 90% C.L. upper limit on the WIMP-nucleon spin-independent cross section, based on zero events found in the WIMP search regions, is 2.0 ×10-44 cm2 (8.6 ×10-44 cm2 , 8.0 ×10-43 cm2 ) for a WIMP mass of 100 GeV /c2 (1 TeV /c2 , 10 TeV /c2 ).
Results from the first use of low radioactivity argon in a dark matter search
Agnes, P.
2016-04-08
Liquid argon is a bright scintillator with potent particle identification properties, making it an attractive target for direct-detection dark matter searches. The DarkSide-50 dark matter search here reports the first WIMP search results obtained using a target of low-radioactivity argon. DarkSide-50 is a dark matter detector, using two-phase liquid argon time projection chamber, located at the Laboratori Nazionali del Gran Sasso. The underground argon is shown to contain Ar-39 at a level reduced by a factor (1.4 +- 0.2) x 10 3 relative to atmospheric argon. We report a background-free null result from (2616 +- 43) kg d of data,more » accumulated over 70.9 live-days. When combined with our previous search using an atmospheric argon, the 90 % C.L. upper limit on the WIMP-nucleon spin-independent cross section based on zero events found in the WIMP search regions, is 2.0 x 10 -44 cm 2 (8.6 x 10 -44 cm 2, 8.0 x 10 -43 cm 2) for a WIMP mass of 100 GeV/c 2 (1 TeV/c 2 , 10 TeV/c 2).« less
A study of dielectric breakdown along insulators surrounding conductors in liquid argon
Lockwitz, Sarah; Jostlein, Hans
2016-03-22
High voltage breakdown in liquid argon is an important concern in the design of liquid argon time projection chambers, which are often used as neutrino and dark matter detectors. We have made systematic measurements of breakdown voltages in liquid argon along insulators surrounding negative rod electrodes where the breakdown is initiated at the anode. The measurements were performed in an open cryostat filled with commercial grade liquid argon exposed to air, and not the ultra-pure argon required for electron drift. While not addressing all high voltage concerns in liquid argon, these measurements have direct relevance to the design of highmore » voltage feedthroughs especially for averting the common problem of flash-over breakdown. The purpose of these tests is to understand the effects of materials, of breakdown path length, and of surface topology for this geometry and setup. We have found that the only material-specific effects are those due to their permittivity. We have found that the breakdown voltage has no dependence on the length of the exposed insulator. Lastly, a model for the breakdown mechanism is presented that can help inform future designs.« less
NASA Technical Reports Server (NTRS)
Owen, T.; Biemann, K.
1976-01-01
The composition of the Martian atmosphere was determined by the mass spectrometer in the molecular analysis experiment. The presence of argon and nitrogen was confirmed and a value of 1 to 2750 plus or minus 500 for the ratio of argon-36 to argon-40 was established. A preliminary interpretation of these results suggests that Mars had a slightly more massive atmosphere in the past, but that much less total outgassing has occurred on Mars than on earth.
NASA Technical Reports Server (NTRS)
Rudolph, L. K.; Jahn, R. G.; Clark, K. E.; Von Jaskowsky, W. F.
1976-01-01
The onset of voltage fluctuations in a multi-megawatt quasi-steady MPD accelerator, indicative of increased cathode ablation and a consequent degradation of performance, is found to be a function of cathode size. With longer cathodes, this onset shifts to substantially higher powers per unit mass flow and the plasma exhaust velocity can be increased to values previously thought inaccessible to accelerators of this class. Centerline velocities up to 30 km/sec have been measured in argon, which for the observed exhaust profiles translate into specific impulses up to 2400 sec and corresponding thrust efficiencies above 30%.
Bozic, Marija M; Karadzic, Jelena B; Kovacevic, Igor M; Marjanovic, Ivan S
2017-06-26
To assess the effect of panretinal laser photocoagulation on ocular pulse amplitude (OPA) in normotensive eyes with proliferative diabetic retinopathy. Prospectively, we performed unilateral argon laser panretinal photocoagulation (PRP) in 30 patients with diabetes mellitus type II and previously untreated bilateral proliferative diabetic retinopathy. Before and 7 and 30 days after the treatment, OPA was measured using dynamic contour tonometer. Compared with the untreated contralateral eyes, laser photocoagulation led to a reduction of OPA. Ocular pulse amplitude did not significantly differ in photocoagulated eyes 7 days after the treatment, but there was a significant difference in OPA 30 days after the treatment. The decrease in OPA values was 15% 7 days after PRP and 40% 30 days after PRP. Ocular pulse amplitude reduction after PRP indirectly informs us about choriocapillary closure, already reported in previous studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sands, Brian L.; Huang, Shih K.; Speltz, Jared W.
2013-04-21
Plasma jet devices that use a helium gas flow mixed with a small percentage of argon have been shown to operate with a larger discharge current and enhanced production of the Ar(1s{sub 5}) metastable state, particularly in the discharge afterglow. In this experiment, time-resolved quantitative measurements of He(2{sup 3}S{sub 1}) and Ar(1s{sub 5}) metastable species were combined with current and spectrally resolved emission measurements to elucidate the role of Penning ionization in a helium plasma jet with a variable argon admixture. The plasma jet was enclosed in a glass chamber through which a flowing nitrogen background was maintained at 600more » Torr. At 3%-5% Ar admixture, we observed a {approx}50% increase in the peak circuit current and streamer velocity relative to a pure helium plasma jet for the same applied voltage. The streamer initiation delay also decreased by {approx}20%. Penning ionization of ground-state argon was found to be the dominant quenching pathway for He(2{sup 3}S{sub 1}) up to 2% Ar and was directly correlated with a sharp increase in both the circuit current and afterglow production of Ar(1s{sub 5}) for Ar admixtures up to 1%, but not necessarily with the streamer velocity, which increased more gradually with Ar concentration. Ar(1s{sub 5}) was produced in the afterglow through recombination of Ar{sup +} and dissociative recombination of Ar{sub 2}{sup +} as the local mean electron energy decreased in the plasma channel behind the streamer head. The discharge current and argon metastable enhancement are contingent on the rapid production of He(2{sup 3}S{sub 1}) near the streamer head, >5 Multiplication-Sign 10{sup 12} cm{sup -3} in 30 ns under the conditions of this experiment.« less
Properties of various plasma surface treatments for low-temperature Au–Au bonding
NASA Astrophysics Data System (ADS)
Yamamoto, Michitaka; Higurashi, Eiji; Suga, Tadatomo; Sawada, Renshi; Itoh, Toshihiro
2018-04-01
Atmospheric-pressure (AP) plasma treatment using three different types of gases (an argon-hydrogen mixed gas, an argon-oxygen mixed gas, and a nitrogen gas) and low-pressure (LP) plasma treatment using an argon gas were compared for Au–Au bonding with thin films and stud bumps at low temperature (25 or 150 °C) in ambient air. The argon-hydrogen gas mixture AP plasma treatment and argon LP plasma treatment were found to distinctly increase the shear bond strength for both samples at both temperatures. From X-ray photoelectron spectroscopy (XPS) analysis, the removal of organic contaminants on Au surfaces without the formation of hydroxyl groups and gold oxide is considered effective in increasing the Au–Au bonding strength at low temperature.
NASA Technical Reports Server (NTRS)
Galante, Joseph M.; Eepoel, John Van; Strube, Matt; Gill, Nat; Gonzalez, Marcelo; Hyslop, Andrew; Patrick, Bryan
2012-01-01
Argon is a flight-ready sensor suite with two visual cameras, a flash LIDAR, an on- board flight computer, and associated electronics. Argon was designed to provide sensing capabilities for relative navigation during proximity, rendezvous, and docking operations between spacecraft. A rigorous ground test campaign assessed the performance capability of the Argon navigation suite to measure the relative pose of high-fidelity satellite mock-ups during a variety of simulated rendezvous and proximity maneuvers facilitated by robot manipulators in a variety of lighting conditions representative of the orbital environment. A brief description of the Argon suite and test setup are given as well as an analysis of the performance of the system in simulated proximity and rendezvous operations.
The Molecular Pathway of Argon-Mediated Neuroprotection
Ulbrich, Felix; Goebel, Ulrich
2016-01-01
The noble gas argon has attracted increasing attention in recent years, especially because of its neuroprotective properties. In a variety of models, ranging from oxygen-glucose deprivation in cell culture to complex models of mid-cerebral artery occlusion, subarachnoid hemorrhage or retinal ischemia-reperfusion injury in animals, argon administration after individual injury demonstrated favorable effects, particularly increased cell survival and even improved neuronal function. As an inert molecule, argon did not show signs of adverse effects in the in vitro and in vivo model used, while being comparably cheap and easy to apply. However, the molecular mechanism by which argon is able to exert its protective and beneficial characteristics remains unclear. Although there are many pieces missing to complete the signaling pathway throughout the cell, it is the aim of this review to summarize the known parts of the molecular pathways and to combine them to provide a clear insight into the cellular pathway, starting with the receptors that may be involved in mediating argons effects and ending with the translational response. PMID:27809248
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lock, E. H., E-mail: evgeniya.lock@nrl.navy.mil, E-mail: scott.walton@nrl.navy.mil; Petrova, Tz. B.; Petrov, G. M.
2016-04-15
The effect of nitrogen addition on the emission intensities of the brightest argon lines produced in a low pressure argon/nitrogen electron beam-generated plasmas is characterized using optical emission spectroscopy. In particular, a decrease in the intensities of the 811.5 nm and 763.5 nm lines is observed, while the intensity of the 750.4 nm line remains unchanged as nitrogen is added. To explain this phenomenon, a non-equilibrium collisional-radiative model is developed and used to compute the population of argon excited states and line intensities as a function of gas composition. The results show that the addition of nitrogen to argon modifies the electron energymore » distribution function, reduces the electron temperature, and depopulates Ar metastables in exchange reactions with electrons and N{sub 2} molecules, all of which lead to changes in argon excited states population and thus the emission originating from the Ar 4p levels.« less
Measurement of the attenuation length of argon scintillation light in the ArDM LAr TPC
NASA Astrophysics Data System (ADS)
Calvo, J.; Cantini, C.; Crivelli, P.; Daniel, M.; Di Luise, S.; Gendotti, A.; Horikawa, S.; Molina-Bueno, L.; Montes, B.; Mu, W.; Murphy, S.; Natterer, G.; Nguyen, K.; Periale, L.; Quan, Y.; Radics, B.; Regenfus, C.; Romero, L.; Rubbia, A.; Santorelli, R.; Sergiampietri, F.; Viant, T.; Wu, S.
2018-01-01
We report on a measurement of the attenuation length for the scintillation light in the tonne size liquid argon target of the ArDM dark matter experiment. The data was recorded in the first underground operation of the experiment in single-phase operational mode. The results were achieved by comparing the light yield spectra from 39Ar and 83mKr to a description of the ArDM setup with a model of full light ray tracing. A relatively low value close to 0.5 m was found for the attenuation length of the liquid argon bulk to its own scintillation light. We interpret this result as a presence of optically active impurities in the liquid argon which are not filtered by the installed purification systems. We also present analyses of the argon gas employed for the filling and discuss cross sections in the vacuum ultraviolet of various molecules in respect to purity requirements in the context of large liquid argon installations.
Wang, Hongbo; Shu, Shengjie; Li, Jinping; Jiang, Huijie
2016-02-01
The objective of this study was to observe the change in blood perfusion of liver cancer following argon-helium knife treatment with functional computer tomography perfusion imaging. Twenty-seven patients with primary liver cancer treated with argon-helium knife and were included in this study. Plain computer tomography (CT) and computer tomography perfusion (CTP) imaging were conducted in all patients before and after treatment. Perfusion parameters including blood flows, blood volume, hepatic artery perfusion fraction, hepatic artery perfusion, and hepatic portal venous perfusion were used for evaluating therapeutic effect. All parameters in liver cancer were significantly decreased after argon-helium knife treatment (p < 0.05 to all). Significant decrease in hepatic artery perfusion was also observed in pericancerous liver tissue, but other parameters kept constant. CT perfusion imaging is able to detect decrease in blood perfusion of liver cancer post-argon-helium knife therapy. Therefore, CTP imaging would play an important role for liver cancer management followed argon-helium knife therapy. © The Author(s) 2014.
Effects of Thermal Treatment on Tensile Creep and Stress-Rupture Behavior of Hi-Nicalon SiC Fibers
NASA Technical Reports Server (NTRS)
Yun, H. M.; Goldsby, J. C.; Dicarlo, J. A.
1995-01-01
Tensile creep and stress-rupture studies were conducted on Hi-Nicalon SiC fibers at 1200 and 1400 C in argon and air. Examined were as-received fibers as well as fibers annealed from 1400 to 1800 C for 1 hour in argon before testing. The creep and rupture results for these annealed fibers were compared to those of the as-received fibers to determine the effects of annealing temperature, test temperature, and test environment. Argon anneals up to 1500 C degrade room temperature strength of Hi-Nicalon fibers, but improve fiber creep resistance in argon or air by as much as 100% with no significant degradation in rupture strength. Argon anneals above 1500 C continue to improve fiber creep resistance when tested in argon, but significantly degrade creep resistance and rupture strength when tested in air. Decrease in creep resistance in air is greater at 1200 C than at 1400 C. Mechanisms are suggested for the observed behavior.
Transition rate diagrams and excitation of titanium in a glow discharge in argon and neon
NASA Astrophysics Data System (ADS)
Weiss, Zdeněk; Steers, Edward B. M.; Pickering, Juliet C.
2018-06-01
Emission spectra of titanium in a Grimm-type glow discharge in argon and neon were studied using the formalism of transition rate diagrams. Ti I spectra in argon and neon discharges are similar, without signs of selective excitation, and populations of Ti I levels exhibit a decreasing trend as function of energy, except for some scatter. A major excitation process of Ti II in argon discharge is charge transfer from argon ions to neutral titanium. In neon discharge, a strong selective excitation was observed of Ti II levels at ≈13.3-13.4 eV relative to the Ti I ground state. It was attributed to charge transfer from doubly charged titanium ions to neutral titanium, while the Ti++ ions are produced by charge transfer and ionization of neutral titanium by neon ions. Cascade excitation is important for Ti II levels up to an energy of ≈13 eV relative to the Ti I ground state, both in argon and neon discharges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krieger, G L
1976-06-01
W (the average energy to form an ion pair) for 5.4 MeV /sup 241/Am alpha particles in a Rossi-type tissue equivalent (T.E.) gas, argon and methane was determined to an accuracy better than 0.2% using a new automated data handling system. A vibrating reed electrometer and current digitizer were used to measure the current produced by completely stopping the alpha particles in a large cylindrical ionization chamber. A multichannel analyzer, operating in a slow multiscalar mode, was used to store pulses from the current digitizer. The dwell time, on the order of 60 minutes per channel, was selected with anmore » external timer gate. Current measurements were made at reduced pressures (approximately 200 torr) to reduce ion-recombination. The average current, over many repeated measurements, was compared to the current produced in nitrogen and its previously published W-value of 36.39 +- 0.04 eV/ion pair. The resulting W-values were (in eV/ion pair): 26.29 +- 0.05 for argon, 29.08 +- 0.03 for methane and 30.72 +- 0.04 for T.E. gas, which had an analyzed composition of 64.6% methane, 32.4% CO/sub 2/, and 2.7% nitrogen. Although the methane and argon values agree within 0.1% with previously published values, the value for T.E. is 1.2% lower than the single previously reported value.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-26
... Furnaces and Argon Oxygen Decarburization Vessels (Renewal) AGENCY: Environmental Protection Agency (EPA... www.regulations.gov . Title: NSPS for Steel Plants: Electric Arc Furnaces and Argon Oxygen.... Respondents/Affected Entities: Owners or operator of electric arc furnaces and argon oxygen decarburization...
21 CFR 868.1075 - Argon gas analyzer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Argon gas analyzer. 868.1075 Section 868.1075 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1075 Argon gas analyzer. (a) Identification. An...
21 CFR 868.1075 - Argon gas analyzer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Argon gas analyzer. 868.1075 Section 868.1075 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1075 Argon gas analyzer. (a) Identification. An...
The LArIAT experiment: first measurement of the inclusive total pion cross-section in Argon
NASA Astrophysics Data System (ADS)
de María Blaszczyk, Flor
2018-05-01
In light of future large neutrino experiments such as DUNE, an excellent understanding of LArTPCs is required. The Liquid Argon In A Test-beam (LArIAT) experiment, located in the Fermilab Test Beam Facility, is designed to characterize the performance of LArTPCs and improve the reconstruction algorithms but also to measure the cross-sections of charged particles in Argon. The goals and experimental layout will be presented, as well as the world’s first inclusive total pion interaction cross-section on Argon measured by LArIAT.
ARCS 3 ionospheric artificial argon ion beam injections - Waves near the heavy ion gyrofrequencies
NASA Technical Reports Server (NTRS)
Erlandson, R. E.; Cahill, L. J., Jr.; Kaufmann, R. L.; Arnoldy, R. L.; Pollock, C. J.
1989-01-01
Low-frequency electric field data below the proton gyrofrequency are presented for the duration of the argon ion beam experiment conducted as part of the Argon Release for Controlled Studies (ARCS) program. An argon ion beam was injected from the subpayload antiparallel or perpendicular to the magnetic field at altitudes from 250 to 405 km. During the injections, the wave spectra were broadband near the subpayload and narrow-band near heavy ion gyrofrequencies at perpendicular separation distances between 42 and 254 m. It is suggested that the narrow-band waves are associated with both the perpendicular argon ion beam and an unexpected flux of low-energy ions which peaked in energy near 15 eV and pitch angle near 90 deg with respect to the magnetic field.
Sugiyama, Kazuo; Suzuki, Katsunori; Kuwasima, Shusuke; Aoki, Yosuke; Yajima, Tatsuhiko
2009-01-01
The decomposition of a poly(amide-imide) thin film coated on a solid copper wire was attempted using atmospheric pressure non-equilibrium plasma. The plasma was produced by applying microwave power to an electrically conductive material in a gas mixture of argon, oxygen, and hydrogen. The poly(amide-imide) thin film was easily decomposed by argon-oxygen mixed gas plasma and an oxidized copper surface was obtained. The reduction of the oxidized surface with argon-hydrogen mixed gas plasma rapidly yielded a metallic copper surface. A continuous plasma heat-treatment process using a combination of both the argon-oxygen plasma and argon-hydrogen plasma was found to be suitable for the decomposition of the poly(amide-imide) thin film coated on the solid copper wire.
Soft Argon-Propane Dielectric Barrier Discharge Ionization.
Schütz, Alexander; Lara-Ortega, Felipe J; Klute, Felix David; Brandt, Sebastian; Schilling, Michael; Michels, Antje; Veza, Damir; Horvatic, Vlasta; García-Reyes, Juan F; Franzke, Joachim
2018-03-06
Dielectric barrier discharges (DBDs) have been used as soft ionization sources (DBDI) for organic mass spectrometry (DBDI-MS) for approximately ten years. Helium-based DBDI is often used because of its good ionization efficiency, low ignition voltage, and homogeneous plasma conditions. Argon needs much higher ignition voltages than helium when the same discharge geometry is used. A filamentary plasma, which is not suitable for soft ionization, may be produced instead of a homogeneous plasma. This difference results in N 2 , present in helium and argon as an impurity, being Penning-ionized by helium but not by metastable argon atoms. In this study, a mixture of argon and propane (C 3 H 8 ) was used as an ignition aid to decrease the ignition and working voltages, because propane can be Penning-ionized by argon metastables. This approach leads to homogeneous argon-based DBDI. Furthermore, operating DBDI in an open environment assumes that many uncharged analyte molecules do not interact with the reactant ions. To overcome this disadvantage, we present a novel approach, where the analyte is introduced in an enclosed system through the discharge capillary itself. This nonambient DBDI-MS arrangement is presented and characterized and could advance the novel connection of DBDI with analytical separation techniques such as gas chromatography (GC) and high-pressure liquid chromatography (HPLC) in the near future.
Behavior of Excited Argon Atoms in Inductively Driven Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
HEBNER,GREGORY A.; MILLER,PAUL A.
1999-12-07
Laser induced fluorescence has been used to measure the spatial distribution of the two lowest energy argon excited states, 1s{sub 5} and 1s{sub 4}, in inductively driven plasmas containing argon, chlorine and boron trichloride. The behavior of the two energy levels with plasma conditions was significantly different, probably because the 1s{sub 5} level is metastable and the 1s{sub 4} level is radiatively coupled to the ground state but is radiation trapped. The argon data is compared with a global model to identify the relative importance of processes such as electron collisional mixing and radiation trapping. The trends in the datamore » suggest that both processes play a major role in determining the excited state density. At lower rfpower and pressure, excited state spatial distributions in pure argon were peaked in the center of the discharge, with an approximately Gaussian profile. However, for the highest rfpowers and pressures investigated, the spatial distributions tended to flatten in the center of the discharge while the density at the edge of the discharge was unaffected. The spatially resolved excited state density measurements were combined with previous line integrated measurements in the same discharge geometry to derive spatially resolved, absolute densities of the 1s{sub 5} and 1s{sub 4} argon excited states and gas temperature spatial distributions. Fluorescence lifetime was a strong fi.mction of the rf power, pressure, argon fraction and spatial location. Increasing the power or pressure resulted in a factor of two decrease in the fluorescence lifetime while adding Cl{sub 2} or BCl{sub 3} increased the fluorescence lifetime. Excited state quenching rates are derived from the data. When Cl{sub 2} or BCl{sub 3} was added to the plasma, the maximum argon metastable density depended on the gas and ratio. When chlorine was added to the argon plasma, the spatial density profiles were independent of chlorine fraction. While it is energetically possible for argon excited states to dissociate some of the molecular species present in this discharge, it does not appear to be a significant source of dissociation. The major source of interaction between the argon and the molecular species BCl{sub 3} and Cl{sub 2} appears to be through modification of the electron density.« less
Adherence and Bonding of the Ion Plated Films.
1983-07-01
adhesion strength is, therefore, governed by the physical interactions and van der waals forces yield the lower bound estimates(42). c) Compound interfaces...plasma and 30% for gold- argon plasma, when using high current densities of the or- der of several milliamperes per square centimetere. Buckely et.al...resulted only from ions following the field lines, whereas that on the front surface was the re- sult of both ions and neut ils. In the present work we
Wagatsuma, Kazuaki
2009-04-01
The emission characteristics of ionic lines of nickel, cobalt, and vanadium were investigated when argon or krypton was employed as the plasma gas in glow discharge optical emission spectrometry. A dc Grimm-style lamp was employed as the excitation source. Detection limits of the ionic lines in each iron-matrix alloy sample were compared between the krypton and the argon plasmas. Particular intense ionic lines were observed in the emission spectra as a function of the discharge gas (krypton or argon), such as the Co II 258.033 nm for krypton and the Co II 231.707 nm for argon. The explanation for this is that collisions with the plasma gases dominantly populate particular excited levels of cobalt ion, which can receive the internal energy from each gas ion selectively, for example, the 3d(7)4p (3)G(5) (6.0201 eV) for krypton and the 3d(7)4p (3)G(4) (8.0779 eV) for argon. In the determination of nickel as well as cobalt in iron-matrix samples, more sensitive ionic lines could be found in the krypton plasma rather than the argon plasma. Detection limits in the krypton plasma were 0.0039 mass% Ni for the Ni II 230.299-nm line and 0.002 mass% Co for the Co II 258.033-nm line. However, in the determination of vanadium, the argon plasma had better analytical performance, giving a detection limit of 0.0023 mass% V for the V II 309.310-nm line.
Khater, Mohammad M.; El-Shorbagy, Mohammad S.; Selima, Adel A.
2016-01-01
AIM To compare argon laser photocoagulation and intrastromal injection of voriconazole as adjunctive treatment modalities in cases of resistant mycotic corneal ulcers. METHODS Two groups each of them included 20 cases of resistant mycotic corneal ulcers. Both groups treated with local and systemic specific antimicrobial drugs guided with culture and sensitivity results. In one group argon laser photocoagulation was used as an adjunctive therapy to the specific antifungal drugs and in the other group, intrastromal injection of voriconazole was done besides the specific antifungal drugs. The 40 cases included in the study were proven according to culture and sensitivity to be 28 cases with pure fungal results and 12 cases with mixed (fungal and bacterial). In argon laser group, argon laser irradiation of the corneal ulcer was performed using argon laser 532 nm wavelength (Carl Zeiss LSL 532s AG; Meditec, Inc.) after fluorescein staining. In the other group, voriconazole solution (500 µg/mL) was prepared and injected in the corneal stroma. All cases were followed up for 3mo after healing was achieved. RESULTS Complete healing of the epithelial defect and resolution of stromal infiltration with no adverse effects were achieved in argon laser group in duration ranged from 2-4wk in 90% of cases. In voriconazole group 4 cases needed amniotic membrane graft due to thinning and 16 cases healed in duration ranged from 2-6wk (80% of cases). CONCLUSION Argon laser photocoagulation is superior to intrastromal voriconazole injection in treatment of resistant fungal corneal ulcers. PMID:26949639
Performance characterization and transient investigation of multipropellant resistojets
NASA Technical Reports Server (NTRS)
Braunscheidel, Edward P.
1989-01-01
The multipropellant resistojet thruster design initially was characterized for performance in a vacuum tank using argon, carbon dioxide, nitrogen, and hydrogen, with gas inlet pressures ranging from 13.7 to 310 kPa (2 to 45 psia) over a heat exchanger temperature range of ambient to 1200 C (2200 F). Specific impulse, the measure of performance, had values ranging from 120 to 600 seconds for argon and hydrogen respectively, with a constant heat exchanger temperature of 1200 C (2200 F). When operated under ambient conditions typical specific impulse values obtained for argon and hydrogen ranged from 55 to 290 seconds, respectively. Performance measured with several mixtures of argon and nitrogen showed no significant deviation from predictions obtained by directly weighting the argon and nitrogen individual performance results. Another aspect of the program investigating transient behavior, showed responses depended heavily on the start-up scenario used. Steady state heater temperatures were achieved in 20 to 75 minutes for argon, and in 10 to 90 minutes for hydrogen. Steady state specific impulses were achieved in 25 to 60, and 20 to 60 minutes respectively.
NASA Astrophysics Data System (ADS)
Coman, Tudor; Timpu, Daniel; Nica, Valentin; Vitelaru, Catalin; Rambu, Alicia Petronela; Stoian, George; Olaru, Mihaela; Ursu, Cristian
2017-10-01
Highly conductive transparent Al-doped ZnO (AZO) thin films were obtained at room temperature through sequential PLD (SPLD) from Zn and Al metallic targets in an oxygen/argon gas mixture. We have investigated the structural, electrical and optical properties as a function of the oxygen/argon pressure ratio in the chamber. The measured Hall carrier concentration was found to increase with argon injection from 1.3 × 1020 to 6.7 × 1020 cm-3, while the laser shots ratio for Al/Zn targets ablation was kept constant. This increase was attributed to an enhancement of the substitution doping into the ZnO lattice. The argon injection also leads to an increase of the Hall mobility up to 20 cm2 V-1 s-1, attributed to a reduction of interstitial-type defects. Thus, the approach of using an oxygen/argon gas mixture during SPLD from metallic targets allows obtaining at room temperature AZO samples with high optical transmittance (about 90%) and low electrical resistivity (down to 5.1 × 10-4 Ω cm).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnes, P.; et al.
A Geant4-based Monte Carlo package named G4DS has been developed to simulate the response of DarkSide-50, an experiment operating since 2013 at LNGS, designed to detect WIMP interactions in liquid argon. In the process of WIMP searches, DarkSide-50 has achieved two fundamental milestones: the rejection of electron recoil background with a power of ~10^7, using the pulse shape discrimination technique, and the measurement of the residual 39Ar contamination in underground argon, ~3 orders of magnitude lower with respect to atmospheric argon. These results rely on the accurate simulation of the detector response to the liquid argon scintillation, its ionization, andmore » electron-ion recombination processes. This work provides a complete overview of the DarkSide Monte Carlo and of its performance, with a particular focus on PARIS, the custom-made liquid argon response model.« less
Virial Coefficients for the Liquid Argon
NASA Astrophysics Data System (ADS)
Korth, Micheal; Kim, Saesun
2014-03-01
We begin with a geometric model of hard colliding spheres and calculate probability densities in an iterative sequence of calculations that lead to the pair correlation function. The model is based on a kinetic theory approach developed by Shinomoto, to which we added an interatomic potential for argon based on the model from Aziz. From values of the pair correlation function at various values of density, we were able to find viral coefficients of liquid argon. The low order coefficients are in good agreement with theoretical hard sphere coefficients, but appropriate data for argon to which these results might be compared is difficult to find.
NASA Astrophysics Data System (ADS)
Cameron, Bruce D.; Joos, Karen M.; Shen, Jin-Hui
1996-05-01
Purpose: To develop a simple suture lysis technique for post-trabeculectomy examinations under anesthesia since slit lamp laser suture lysis in the clinic cannot be performed on infants and young children. Methods: An argon endolaser probe lysed 10-0 nylon suture through conjunctiva harvested from human cadaver eyes. Since suture lysis failed with the thick Hoskins lens, clear plastic from the suture package compressed the conjunctiva. The conjunctiva was examined histologically. Results: Argon laser suture lysis (250 mW, 0.1 sec, 488 - 514 nm) was achieved without conjunctival damage. Conclusion: The argon endolaser probe is effective for suture lysis when the slit lamp cannot be used.
Total body calcium analysis. [neutron irradiation
NASA Technical Reports Server (NTRS)
Lewellen, T. K.; Nelp, W. B.
1974-01-01
A technique to quantitate total body calcium in humans is developed. Total body neutron irradiation is utilized to produce argon 37. The radio argon, which diffuses into the blood stream and is excreted through the lungs, is recovered from the exhaled breath and counted inside a proportional detector. Emphasis is placed on: (1) measurement of the rate of excretion of radio argon following total body neutron irradiation; (2) the development of the radio argon collection, purification, and counting systems; and (3) development of a patient irradiation facility using a 14 MeV neutron generator. Results and applications are discussed in detail.
Modeling Electronegative Impurity Concentrations in Liquid Argon Detectors
NASA Astrophysics Data System (ADS)
Tang, Wei; Li, Yichen; Thorn, Craig; Qian, Xin
2017-01-01
Achieving long electron lifetime is crucial to reach the high performance of large Liquid Argon Time Projection Chamber (LArTPC) envisioned for next generation neutrino experiments. We have built up a quantitative model to describe the impurity distribution and transportation in a cryostat. Henrys constants of Oxygen and water, which describe the partition of impurities between gas argon and liquid argon, have been deduced through this model with the measurements in BNL 20-L LAr test stand. These results indicate the importance of the gas purification system and prospects on large LArTPC detectors will be discussed.
Argon recovery from hydrogen depleted ammonia plant purge gas using a HARP Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnamurthy, R.; Lerner, S.L.; Maclean, D.L.
1987-01-01
A number of ammonia plants employ membranes or cryogenic hydrogen recovery units to separate hydrogen contained in the purge gas for recycle to the ammonia synthesis loop. The resulting hydrogen depleted purge gas, which is usually used for fuel, is an attractive source of argon. This paper presents the novel features of a process which employs a combination of pressure swing adsorption (PSA) and cryogenic technology to separate the argon from this hydrogen depleted purge gas stream. This new proprietary Hybrid Argon Recovery Progress (HARP) plant is an effective alternative to a conventional all-cryogenic plant.
Argon Collection And Purification For Proliferation Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Achey, R.; Hunter, D.
2015-10-09
In order to determine whether a seismic event was a declared/undeclared underground nuclear weapon test, environmental samples must be taken and analyzed for signatures that are unique to a nuclear explosion. These signatures are either particles or gases. Particle samples are routinely taken and analyzed under the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) verification regime as well as by individual countries. Gas samples are analyzed for signature gases, especially radioactive xenon. Underground nuclear tests also produce radioactive argon, but that signature is not well monitored. A radioactive argon signature, along with other signatures, can more conclusively determine whether an event wasmore » a nuclear test. This project has developed capabilities for collecting and purifying argon samples for ultra-low-background proportional counting. SRNL has developed a continuous gas enrichment system that produces an output stream containing 97% argon from whole air using adsorbent separation technology (the flow diagram for the system is shown in the figure). The vacuum swing adsorption (VSA) enrichment system is easily scalable to produce ten liters or more of 97% argon within twelve hours. A gas chromatographic separation using a column of modified hydrogen mordenite molecular sieve has been developed that can further purify the sample to better than 99% purity after separation from the helium carrier gas. The combination of these concentration and purification systems has the capability of being used for a field-deployable system for collecting argon samples suitable for ultra-low-background proportional counting for detecting nuclear detonations under the On-Site Inspection program of the CTBTO verification regime. The technology also has applications for the bulk argon separation from air for industrial purposes such as the semi-conductor industry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khakoo, M.A.; Tran, T.; Bordelon, D.
1992-01-01
Relative intensity ratios for the differential electron-impact excitation of the metastable states of the rare gases neon, argon, and xenon at the incident energy of 30 eV and scattering angles 10{degree}--120{degree} are presented and are compared with available theory.
Study of the Synchronous Operation of an Annular Field Reversed Configuration Plasma Device
2008-05-05
of pulsed diagnostics were developed to explore the operational characteristics of a 40 -cm outer diameter annular theta pinch and its pre-ionization...Optimized pre-ionization conditions, neutral gas densities, and plasma transition energies were determined for the 40 cm annulus in both argon and xenon...MSNW 100 25 10 10 150 Formation 1985 HBQM U Wash 300 22 5 5 30 Formation 1986 TRX-2 STI 100 24 13 10 100 Confinement 1987 CSS U Wash 100 45 3 40 60
1994 Toxic Hazards Research Unit (THRU) Annual Report.
1995-04-01
hydrolysis . TCOH was analyzed by GC/ECD after solvent extraction. Two important artifacts that can occur in analyzing the carboxylic acid metabolites of...Column Supelco Wax 10, 25m x 0.53mm Make Up Gas 5% Methane in Argon Carrier Flow rate 6 mL/min To establish conditions for enzymatic hydrolysis 24-h...incubation mixture. A sample of urine was analyzed without enzymatic hydrolysis for free TCOH. This was determined to be 30 ng/mL which indicates that 99
Effects of Radiation on Oxide Materials.
1981-11-01
argon sputtering. The results show that this technique is quite successful and makes it possible to profile implanted Na that fits the theoretical ...the finite escape depth of the photoionized electrons. Thicker (100 R) oxides were used for depth-profiling XPS measurements. 6.3.2 Results--30-R Films... Scofield , J. Electron Spectrosc. 8, 129 (1976). 63 SOFT SILICON DIOXIOE ON SILICON (WET GROWN) 12 . 0 1 10 o - AUGER z 0 ,- C- IS" SI - 2S Z N-I i sI-P 2 0
Control of Laser High-Harmonic Generation with Counterpropagating Light
NASA Astrophysics Data System (ADS)
Voronov, S. L.; Kohl, I.; Madsen, J. B.; Simmons, J.; Terry, N.; Titensor, J.; Wang, Q.; Peatross, J.
2001-09-01
Relatively weak counterpropagating light is shown to disrupt the emission of laser high-harmonic generation. Harmonic orders ranging from the teens to the low thirties produced by a 30-femtosecond pulse in a narrow argon jet are ``shut down'' with a contrast as high as 2 orders of magnitude by a chirped 1-picosecond counterpropagating laser pulse (60 times less intense). Alternatively, under poor phase-matching conditions, the counterpropagating light boosts harmonic production by similar contrast through quasiphase matching where out-of-phase emission is suppressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calvo, J.; Cantini, C.; Crivelli, P.
The Argon Dark Matter (ArDM) experiment consists of a liquid argon (LAr) time projection chamber (TPC) sensitive to nuclear recoils, resulting from scattering of hypothetical Weakly Interacting Massive Particles (WIMPs) on argon targets. With an active target mass of 850 kg ArDM represents an important milestone towards developments for large LAr Dark Matter detectors. Here we present the experimental apparatus currently installed underground at the Laboratorio Subterráneo de Canfranc (LSC), Spain. We show data on gaseous or liquid argon targets recorded in 2015 during the commissioning of ArDM in single phase at zero E-field (ArDM Run I). The data confirmsmore » the overall good and stable performance of the ArDM tonne-scale LAr detector.« less
The Liquid Argon Purity Demonstrator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamowski, M.; Carls, B.; Dvorak, E.
2014-07-01
The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to themore » cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.« less
Calcium ionization balance and argon/calcium abundance in solar flares
NASA Astrophysics Data System (ADS)
Antonucci, E.; Marocchi, D.; Gabriel, A. H.; Doschek, G. A.
1987-12-01
An earlier analysis of solar flare calcium spectra from XRP and P78-1 aimed at measuring the calcium ionization balance resulted in an ambiguity due to a line blend between the calcium q line and an Ar XVII line. In the present work the calcium line 'r' is included in the analysis in order to resolve this problem. It is shown that the correct calcium ionization balance is that indicated in the earlier paper as corresponding to an argon/calcium abundance ratio of 0.2. The argon/calcium abundance ratio in the group of solar flares studied is shown to be 0.2 + or - 0.2. It is further argued that while the abundance of heavy elements may be enhanced in energetic flare events, this enhancement is less for argon than for calcium, leading to an argon/calcium ratio smaller than that present in the quiet sun.
Jia, Ruinuo; Guo, Ruifeng; Liu, Gang; Yuan, Xiang; Dong, Caihong; Shan, Tanyou; Yuan, Xiaozhi; Zhang, Yi; Tai, Edmund Wing To; Feng, Xiaoshan; Gao, Shegan
2014-01-01
Several endoscopic dilation techniques have been reported for treatment of anastomotic-stenosis of esophageal cancer, but the high incidence of dysphagia has remained unchanged. The aim of this study was to compare the effect of Argon Plasma Coagulation (APC) combined with Savary Bougienage (SB) compared to APC alone or SB alone for anastomotic-stenosis after radical operation for squamous cell carcinoma of the esophagus. Patients with anastomotic-stenosis that was diagnosed for the first time following esophageal squamous cell carcinoma resection surgery were randomly assigned to undergo APC combined with SB, APC alone, or SB alone. Primary endpoints were the dysphagia-free survival (DFS defined as the time from first dilatation of effectively relieved dysphagia to dysphagia relapse expressed in days) after 6 months of follow up. A total of 90 patients from the Cancer Institute, First Affiliated Hospital of Henan University of Science and Technology were entered into the study (APC group, n = 30, SB group, n = 30, combination group [APC combined with SB], n = 30). Primary endpoints: 6 months after treatment, DFS of combination group (115.63 days; 95% CI, 105.31-125.95) was significantly longer than the APC alone group (39.53 days; 95% CI, 35.95-43.11, p = 0.000) and the SB alone group (16.93 days; 95% CI, 15.01-18.84, p = 0.000). No severe complications occurred within the three treatment groups. APC combined with SB was a safe and well-tolerated method for relieving dysphagia of esophageal squamous cell cancer patients with anastomotic-stenosis. (Registered with randomized controlled trials, ChiCRT, registration number ChiCTR-TRC-13003757.) © 2015 S. Karger AG, Basel.
Death during laparoscopy: can 1 gas push out another? Danger of argon electrocoagulation.
Sezeur, Alain; Partensky, Christian; Chipponi, Jacques; Duron, Jean-Jacques
2008-08-01
We report the death of a young man during a laparoscopic partial splenectomy performed with an argon plasma coagulator to remove a benign cyst. The report analyzes the very particular mechanism of a gas embolism, which caused death here. This analysis leads us to recommend a close attention on the use of argon coagulators during laparoscopy. The aim of this article is to draw surgeons' attention to the conclusions of a court-ordered expert assessment intended to elucidate the mechanisms responsible for the death of a 20-year-old man during a laparoscopic partial splenectomy performed with an argon plasma coagulator to remove a benign cyst.
Luminosity limits for liquid argon calorimetry
NASA Astrophysics Data System (ADS)
J, Rutherfoord; B, Walker R.
2012-12-01
We have irradiated liquid argon ionization chambers with betas using high-activity Strontium-90 sources. The radiation environment is comparable to that in the liquid argon calorimeters which are part of the ATLAS detector installed at CERN's Large Hadron Collider. We measure the ionization current over a wide range of applied potential for two different source activities and for three different chamber gaps. These studies provide operating experience at exceptionally high ionization rates. We can operate these chambers either in the normal mode or in the space-charge limited regime and thereby determine the transition point between the two. From the transition point we indirectly extract the positive argon ion mobility.
The Mini-CAPTAIN Neutron Run and Future CAPTAIN Program
NASA Astrophysics Data System (ADS)
Cooper, Robert; CAPTAIN Collaboration
2016-09-01
The Cryogenic Apparatus for Precision Tests of Argon Interaction with Neutrinos (CAPTAIN) is an experimental program to measure critical neutrino interaction cross sections in argon for the DUNE long-baseline program. These cross sections are important for understanding and improving the energy resolution of measurements for neutrino oscillations and supernova detection in argon. The full CAPTAIN detector is a 5-ton fiducial volume liquid argon (LAr) time-projection chamber (TPC) with an independently triggered photon detection system (PDS) for fast-timing capabilities on accelerators. To test the full CAPTAIN concept, the 1-ton fiducial volume mini-CAPTAIN detector has been deployed. Mini-CAPTAIN is another LAr TPC with PDS. It was recently deployed to the Weapons Neutron Research (WNR) facility at Los Alamos National Laboratory to measure high-energy neutron interactions in argon. The WNR is a pulsed accelerator capable of delivering neutrons up to 800 MeV in energy. In this talk, I will report on the analysis of the first time-of-flight tagged, high-energy neutron response in liquid argon from our February 2016 run. I will also highlight a second neutron run at the WNR scheduled for Summer 2017 and discuss the implications these data have on the future CAPTAIN program.
The DarkSide Experiment: Present Status and Future
NASA Astrophysics Data System (ADS)
Zuzel, G.; Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Asner, D. M.; Back, H. O.; Baldin, B.; Biery, K.; Bocci, V.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Caravati, M.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cicalò, C.; Cocco, A. G.; Covone, G.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Dionisi, C.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giagu, S.; Giganti, C.; Giovanetti, G. K.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; James, I.; Johnson, T. N.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Loer, B.; Lombardi, P.; Longo, G.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Milincic, R.; Miller, J. D.; Montanari, D.; Monte, A.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Navrer Agasson, A.; Odrowski, S.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeti, M.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Savarese, C.; Schlitzer, B.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Verducci, M.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, Xi.; Xiao, X.; Xu, J.; Yang, C.; Zec, A.; Zhong, W.; Zhu, C.
2017-01-01
DarkSide is a multi-stage program devoted to direct searches of Dark Matter particles with detectors based on double phase liquid Argon Time Projection Chamber. The DarkSide-50 setup is running underground at the Laboratori Nazionali del Gran Sasso. First it was operated with Atmospheric Argon and during that run (1422 ± 67) kg×d of truly background-free exposure has been accumulated. Obtained data made it possible to set a 90% C.L. upper limit on the WIMP-nucleon cross section of 6.1 × 10-44 cm2 (for a WIMP mass of 100 GeV/c2). Presently the detector is filled with Underground Argon, which is depleted in 39Ar by a factor of (1.4 ± 0.2)×103 with respect to Atmospheric Argon. Acquired so far (2616 ± 43) kg×d (71 live days) in combination with the data from the Atmospheric Argon run give us the 90% C.L. upper limit on the WIMP-nucleon spin-independent cross section of 2.0×10-44 cm2 for a WIMP mass of 100 GeV/c2. Up to date this is the best limit obtained with an argon target.
Effects of argon addition on a-CNx film deposition by hot carbon filament chemical vapor deposition
NASA Astrophysics Data System (ADS)
Watanabe, Yoshihisa; Aono, Masami; Yamazaki, Ayumi; Kitazawa, Nobuaki; Nakamura, Yoshikazu
2002-07-01
Using a carbon filament which supplies carbon and heat, amorphous carbon nitride (a-CNx) films were prepared on Si (100) substrates by hot filament chemical vapor deposition. Deposition was performed in a low-pressure atmosphere of pure nitrogen and a gas mixture of nitrogen and argon. Effects of argon additions to the nitrogen atmosphere on the film microstructure and interface composition between the film and substrate were studied by field-emission scanning electron microscopy (FESEM) and x-ray photoelectron spectroscopy (XPS). FESEM observations reveal that the film prepared in a pure nitrogen atmosphere has uniform nucleation and a densely packed columnar pieces structure. The film prepared in the nitrogen and argon gas mixture exhibits preferential nucleation and a tapered structure with macroscopic voids. Depth analyses using XPS reveal that the film prepared in pure nitrogen possesses a broad interface, which includes silicon carbide as well as a-CNx, whereas a sharp interface is discerned in the film prepared in the mixed nitrogen and argon gas. We observed that silicon carbide formation is suppressed by an argon addition to the nitrogen atmosphere during deposition. copyright 2002 American Vacuum Society.
Effect of hydrostatic pressure on gas solubilization in micelles.
Meng, Bin; Ashbaugh, Henry S
2015-03-24
Molecular dynamics simulations of anionic sodium decylsulfate and nonionic pentaethylene glycol monodecyl ether micelles in water have been performed to examine the impact of hydrostatic pressure on argon solubilization as a function of pressure. The potential-of-mean force between the micelles and argon demonstrates that nonpolar gases are attracted to the interiors of both micelles. The affinity of argon for micelle interiors, however, decreases with increasing pressure as a result of the comparatively higher molar volume of argon inside assemblies. We evaluate solubility enhancement coefficients, which describe the drop in the solute chemical potential as a function of the micellized surfactant concentration, to quantify the impact of micellization on gas solubilization. While argon is similarly attracted to the hydrophobic cores of both micelles, the gas is more effectively sequestered within nonionic micelles compared with anionic micelles as a result of salting out by charged head groups and accompanying counterions. The solubility enhancement coefficients of both micelles decrease with increasing pressure, reflecting the changing forces observed in the potentials-of-mean force. An analytical liquid drop model is proposed to describe the pressure dependence of argon solubilization within micelles that captures the simulation solubility enhancement coefficients after fitting an effective micelle radius for each surfactant.
NASA Astrophysics Data System (ADS)
Chatterjee, Saikat; Li, Donghui; Chattopadhyay, Kinnor
2018-04-01
Multiphase flows are frequently encountered in metallurgical operations. One of the most effective ways to understand these processes is by flow modeling. The process of tundish open eye (TOE) formation involves three-phase interaction between liquid steel, slag, and argon gas. The two-phase interaction involving argon gas bubbles and liquid steel can be modeled relatively easily using the discrete phase modeling technique. However, the effect of an upper slag layer cannot be captured using this approach. The presence of an upper buoyant phase can have a major effect on the behavior of TOEs. Hence, a multiphase model, including three phases, viz. liquid steel, slag, and argon gas, in a two-strand slab caster tundish, was developed to study the formation and evolution of TOEs. The volume of fluid model was used to track the interphase between liquid steel and slag phases, while the discrete phase model was used to trace the movement of the argon gas bubbles in liquid steel. The variation in the TOE areas with different amounts of aspirated argon gas was examined in the presence of an overlying slag phase. The mathematical model predictions were compared against steel plant measurements.
Ar Atmosphere: Implications for Structure and Composition of Mercury's Crust
NASA Technical Reports Server (NTRS)
Killen, R. M.; Morgan, T. H.
2001-01-01
We examine the possibilities of sustaining an argon atmosphere by diffusion from the upper 10 km of crust, and alternatively by effusion from a molten or previously molten area at great depth . Ar-40 in the atmospheres of the planets is a measure of potassium abundance in the interiors since Ar-40 is a product of radiogenic decay of K-40 by electron capture with the subsequent emission of a 1.46 eV gamma-ray. Although the Ar-40 in the earth's atmosphere is expected to have accumulated since the late bombardment, Ar-40 in surface-bounded exospheres is eroded quickly by photoionization and electron impact ionization. Thus, the argon content in the exospheres of the Moon, Mercury and probably Europa is representative of current effusion rather than accumulation over the lifetime of the body. Argon content will be a function of K content, temperature, grain size distribution, connected pore volume and possible seismic activity. Although Mercury and the Moon differ in many details, we can train the solutions to diffusion equations to predict the average lunar atmosphere. Then these parameters can be varied for Hermean conditions. Assuming a lunar crustal potassium abundance of 300 ppm, the observed argon atmosphere requires equilibrium between the argon production in the upper 9 Km of the moon (1.135 x 10(exp -3) cm(exp -3) s(exp -1)) and its loss. Hodges et al. conclude that this loss rate and the observed time variability requires argon release through seismic activity, tapping a deep argon source. An important observation is that the extreme surface of the Moon is enhanced in argon rather than depleted, as one would expect from outgassing of radiogenic argon. Manka and Michel concluded that ion implantation explains the surface enhancement of Ar-40. About half of the argon ions produced in the lunar atmosphere would return to the surface, where they would become embedded in the rocks. Similarly, at Mercury we expect the surface rocks to be enhanced in Ar-40 wherever the magnetosphere has been open over time. Thus the measurement of surface composition will reveal the long-term effects of solar wind-magnetosphere interaction. Additional information is contained in the original extended abstract.
Alaf, M; Gultekin, D; Akbulut, H
2012-12-01
In this study, tin/tinoxide/multi oxide/multi walled carbon nano tube (Sn/SnO2/MWCNT) composites were produced by thermal evaporation and then subsequent plasma oxidation. Buckypapers having controlled porosity were prepared by vacuum filtration from functionalized MWCNTs. Pure metallic tin was thermally evaporated on the buckypapers in argon atmosphere with different thicknesses. It was determined that the evaporated pure tin nano crystals were mechanically penetrated into pores of buckypaper to form a nanocomposite. The tin/MWCNT composites were subjected to plasma oxidation process at oxygen/argon gas mixture. Three different plasma oxidation times (30, 45 and 60 minutes) were used to investigate oxidation and physical and microstructural properties. The effect of coating thickness and oxidation time was investigated to understand the effect of process parameters on the Sn and SnO2 phases after plasma oxidation. Quantitative phase analysis was performed in order to determine the relative phase amounts. The structural properties were studied by field-emission gun scanning electron microscopy (FEG-SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD).
Evolution of basin and range structure in the Ruby Mountains and vicinity, Nevada
NASA Technical Reports Server (NTRS)
Blackwell, D. D.; Reese, N. M.; Kelley, S. A.
1985-01-01
Results from various age dating techniques, seismic reflection profiling hydrocarbon maturation studies, and structural analysis were used to evaluate the Cenozoic deformation in the Ruby Mountains and adjoining ranges (pinyon Range and Cortez Range) in Elko and Eureka Counties, Nevada. Age dating techniques used include potassium-argon ages of biotites from granites published by Kistler et al. (1981) and fission track ages from apatite and zircon. Fission track ages from apatite reflect a closing temperature of 100 plus or minus 20 deg C. Zircon fission track ages reflect a closing temperature of 175 plus or minus 25 deg C and potassium-argon ages from brotite reflect a closing temperature of 250 plus or minus 30 deg C. Thus these results allow a reasonably precise tracking of the evolution of the ranges during the Cenozoic. Seismic reflection data are available from Huntington Valley. Access to seismic reflection data directly to the west of the Harrison Pass Pluton in the central Ruby Mountains was obtained. In addition results are available from several deep exploration holes in Huntington Valley.
NASA Technical Reports Server (NTRS)
Burns, F. J.; Zhao, P.; Xu, G.; Roy, N.; Loomis, C.
2001-01-01
Rat skin was exposed to the plateau region of the 1.0 GeV/nucleon 56Fe beam at the Brookhaven AGS. Rats were irradiated or not with single of split doses of 56Fe or argon; some 56Fe-exposed rats were fed 250 ppm retinyl acetate continuously in the lab chow beginning 1 week before irradiation. All lesions were noted, photographed and identified for eventual histological diagnosis. The preponderance of the tumors so far are fibromas. The data show that single doses of 56Fe ions are 2 or 3 fold more effective than argon in producing tumors at 4.5 Gy but are about equally effective at 3.0 Gy and 9.0 Gy. The presence of 250 ppm retinyl acetate in the lab chow reduced the incidence of tumors by about 50-60% in comparison to groups exposed only to the radiation. These are preliminary findings based on only about one-fourth the eventual number of tumors expected.
Effect of Argon Laser on Enamel Demineralization around Orthodontic Brackets: An In Vitro Study
Miresmaeili, Amirfarhang; Etrati Khosroshahi, Mohammad; Motahary, Pouya; Rezaei-Soufi, Loghman; Mahjub, Hossein; Dadashi, Maryam; Farhadian, Nasrin
2014-01-01
Objective This study was designed to evaluate the effect of argon laser irradiation on development and progress of enamel demineralization around orthodontic brackets. Materials and Methods: Fifty caries-free, intact human premolars were randomly assigned to one of the following five equal groups: Groups 1 (control) and 2: The brackets were bonded using conventional halogen light for 40s and argon laser for 10s, respectively. Teeth in group 3 were lased with argon laser for 10s before bracket bonding with halogen light. Group 4 was the same as group 3 except that brackets were also bonded with argon laser. In group 5 samples were bonded conventionally, immersed in an artificial caries solution for two days and then irradiated for 10s with argon laser. All samples were subjected to demineralization by artificial caries solution for 10 days. After bracket removal, samples were buccolingually sectioned and evaluated by polarized light microscopy. Decalcified lesion depth in each section was measured by a trained examiner in a blind fashion. Data were analyzed in SPSS 14 using one-way ANOVA and Tukey’s HSD post hoc test. Results: The control group showed the greatest mean lesion depth while group 5 revealed the lowest. The laser-treated groups had significantly lower mean lesion depth compared with the control group (P<0.05) except for group 4 (P=0.192). Conclusion: Argon laser irradiation for 10s before or during bracket bonding can increase caries resistance of intact and demineralized enamel. PMID:25584052
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nutini, Irene
2017-09-20
A short overview of the Liquid Argon In A Testbeam (LArIAT) experiment hosted at Fermilab is reported. This program supports the Liquid Argon Time Projection Chamber (LArTPC) Neutrino Experiments at Fermilab. The LArIAT program consists of a calibration of a LArTPC in a dedicated charged particle beamline. The first total pion interaction cross section measurement ever made on argon is presented here (preliminary result).
A X-Ray Diffraction Study of the Structure of Fluid Argon.
NASA Astrophysics Data System (ADS)
Yan, Kam-Leung
X-ray diffraction patterns of liquid argon were measured and analyzed at six thermodynamic states, all above the critical pressure. These states were on the isotherms T = 105.4K ((rho) = 1.43, 1.36, & 1.30 g/cm('3)) and T = 152.0K ((rho) = 1.30, 1.15, & 1.00 g/cm('3)), with pressures between 70 and 765 kg/cm('2). Samples of fluid argon confined in a beryllium cell were irradiated by monochromatized Mo x-radiation. The scattered intensities were detected with a NaI scintillation counter using step-scanning technique. A total resolution of 0.06(DEGREES) in the scattering plane allowed the scanning process to be performed in uniform step-increments of 0.125(DEGREES). Cooling of the Be cell was accomplished with a two-stage N(,2)-He cooling system. Static structure factors S(k) were obtained from the diffraction data. Refinement of these factors and determination of the radial distribution function g(r) were performed by iterative Fourier analysis. The efficacy of this method was exemplified by the overall improvement in the general form as well as the fine details of both functions. The principal features in S(k) and g(r) were located below k = 9 (ANGSTROM)('-1) and r = 16 (ANGSTROM), respectively. The first three maxima in S(k) were approximately at 1.98, 3.66, and 5.28 (ANGSTROM)('-1), respectively, and their respective averaged heights were 2.19, 1.23, and 1.07. In g(r), the positions of the first three coordinate shells were consistently at 3.37, 7.11, and 10.31 (ANGSTROM), respectively; their respective averaged magnitudes were 2.41, 1.20, and 1.07. Both functions were examined for their response to variations of (rho) and T. The main structures in both functions were found to be strongly dependent of the bulk density of the fluid, and relatively insensitive to temperature changes. g(r) for the state of (rho) = 1.43 g/cm('3) presently studied was compared with the results of computer simulation studies of Lennard-Jones fluids (Verlet 1968). The excellent overall agreement inferred from the comparison was apparently indicative of the appropriateness of the Lennard-Jones (6:12) potential as an effective pair potential for classical monatomic fluids. Anomalies in the form of subsidiary peaks were present in g(r) for four states of argon. These secondary features were observed at or near the first major minimum, in between the first two principal coordinate shells. Their position and degree of prominence exhibit little evidence of state-dependence. The triplet correlation function g(,3)(r,s,t) of argon was studied with the modified Kirkwood superposition approximation (Egelstaff et al 1969, 1971) which included a correction term H(r,s,t). The corresponding term of H(r,s,t) in momentum space, H(k),(' )has presently been calculated for argon at six thermodynamic states on the two said isotherms. The structure in(' )H(k) was apparent of a short range nature, and varied smoothly and continuously with the thermodynamic parameters of the fluid. The small -k behavior of(' )H(k) was indicative of the long range form of its real space transform. H(k)(' )for the state of (rho) = 1.08 g/cm('3) showed a substantial increase in the prominence of secondary features. Although no attempt has yet been made to examine the nature of this phenomenon, the implied increase in the significance of the pressure effect might conceivably be caused by the fact that this state was the closest to the critical point. The strong state-dependence of(' )H(k) supported the theoretical prediction that H(k)(' )(--->) 0 for all k as the critical point was approached.
Diamondlike carbon protective coatings for IR materials
NASA Technical Reports Server (NTRS)
Mirtich, M. J.; Nir, D.; Swec, D. M.; Banks, B. A.
1985-01-01
Diamondlike carbon (DLC) films have the potential to protect optical windows in applications where it is important to maintain the integrity of the specular transmittance of these films on ZnS and ZnSe infrared transmitting windows. The films must be adherent and durable such that they protect the windows from rain and particle erosion as well as chemical attack. In order to optimize the performance of these films, 0.1 micro m thick diamondlike carbon films were deposited on fused silica and silicon wafers, using three different methods of ion beam deposition. One method was sputter deposition from a carbon target using an 8 cm ion source. The merits of hydrogen addition were experimentally evaluated in conjunction with this method. The second method used a 30 cm hollow cathode ion source with hydrocarbon/Argon gases to deposit diamondlike carbon films from the primary beam at 90 to 250 eV. The third method used a dual beam system employing a hydrocarbon/Argon 30 cm ion source and an 8 cm ion source. Films were evaluated for adherence, intrinsic stress, infrared transmittance between 2.5 and 50 micro m, and protection from particle erosion. An erosion test using a sandblaster was used to give quantitative values of the protection afforded to the fused silica by the diamondlike carbon films. The fused silica surfaces protected by diamondlike carbon films were exposed to 100 micro m diameter SiO particles at 60 mi/hr (26.8/sec) in the sandblaster.
Transformation of silicate gels during heat treatment in air and in argon - Spectroscopic studies
NASA Astrophysics Data System (ADS)
Rokita, M.; Mozgawa, W.; Adamczyk, A.
2014-07-01
The sol-gel method offers the possibility of obtaining silicate materials with different chemical compositions. When using TEOS or other organic precursor to silica capable of hydrolysis and poly-condensation, it is possible to use inorganic or organic precursors to produce other ingredients. This paper presents results of studying two series of silicate sols with the addition of calcium, in which the molar ratio of calcium to silicon was Ca/Si = x/(100 - x), where x was, respectively, 0-40 (x = 0-control sample). The resulting gels were subjected to heat treatment, wherein the heating was carried out simultaneously in air or in argon. To study the various stages of transformation of the gels, IR spectroscopy was used as the main research method to observe gradual disappearance of bands associated with bonds typical of organic materials and formation of bands characteristic of Si-O-Si bridging bonds. Due to the amorphous or fine crystalline nature of the resulting material, as confirmed in XRD studies, the different bands on the IR spectra were characterized by large full width at half maximum, hence an attempt was made to decompose the spectra into component bands. The analytic parameters of the resulting bands warranted the conclusion that there had been structural changes caused by the varying synthesis parameters. A comparison of the sol spectra after heat treatment in air and in argon at different temperatures showed a clear decrease in the full width at half maximum in the case of bands of samples with calcium content x ⩾ 30. The resulting spectra were compared with spectra of crystalline tobermorite, quartz and pseudowollastonite, which suggested the possibility of existence of areas with quartz-like ordering in the case of materials with calcium content x ⩾ 20 for the samples heated in argon and areas with pseudowollastonite-like ordering in the case of materials with calcium content x ⩾ 10 for the samples heated in air atmosphere. The conclusions drawn on the basis of infrared spectra were confirmed by XRD - prolonged heating of gels at 700 °C allowed us to obtain fine quartz and pseudowollastonite.
NASA Astrophysics Data System (ADS)
Pardanaud, Cédric; Vasserot, Anne-Marie; Michaut, Xavier; Abouaf-Marguin, L.
2008-02-01
We have investigated, at high resolution (0.03 cm -1), the 1593 cm -1 structure observed in the IR absorption spectrum of water trapped in solid argon doped with nitrogen. It exhibits a doublet at 1592.59 ± 0.05 and 1593.08 ± 0.05 cm -1 and a line centered at 1592.93 ± 0.05 cm -1. The central component, which increases irreversibly upon annealing and when the concentration is increased, is due to the proton acceptor submolecule of the H 2O dimer, as mentioned in the literature. The doublet is assigned to the H 2O:N 2 complex. After a fast cooling of the sample from 20 to 4 K, the low frequency line of the doublet decreases with time and the high frequency one increases, the total integrated absorption increasing slightly. The ratio of the integrated intensities between the low frequency component and the high frequency one reaches a constant limit of 0.5 ± 0.1 at infinite time. This time behavior, perfectly exponential with a time constant τ of about 680 min, is reproducible. As the nitrogen molecule cannot rotate in an argon substitutional site, and as the H 2O submolecule seems to preserve somewhat its identity, this is interpreted as nuclear spin species conversion between ortho and para states of the H 2O submolecule within the complex. The order of magnitude of the energy difference between the ortho and para lowest levels, about 5 cm -1, is too weak to imply any, even very hindered, rotational motion of H 2O, but it could be the energy range of a tunneling effect. When the temperature is increased, the two components coalesce at 25 K into a single symmetrical line pointing at 1593.3 cm -1 and the conversion time shortens dramatically. An Arrhenius plot leads to a weak activation energy of the conversion process (about 30 cm -1). A possible geometry of the complex in solid argon, different from the gas phase one, is proposed.
Measuring the Neutron Cross Section and Detector Response from Interactions in Liquid Argon
NASA Astrophysics Data System (ADS)
Kamp, Nicholas; Collaboration, Captain
2017-09-01
The main objective of the CAPTAIN (Cryogenic Apparatus for Precision Tests of Argon Interactions with Neutrinos) program is to measure neutron and neutrino interactions in liquid argon. These results will be essential to the development of both short and long baseline neutrino experiments. The full CAPTAIN experiment involves a 10 ton liquid argon time projection chamber (LArTPC) that will take runs at a low-energy ( 10-50 MeV) stopped pion neutrino source. A two ton LArTPC, MiniCAPTAIN, will serve as a prototype for the full CAPTAIN detector. MiniCAPTAIN has been deployed to take data at the Los Alamos Neutron Science Center in late July. During this run, it will both test new LArTPC technologies and measure the cross section and detector response of neutron interactions in liquid argon. The results will be helpful in characterizing neutral current neutrino interactions and identifying background in future neutrino detection experiments. This poster gives an overview of these results and a status update on the CAPTAIN collaboration.
Galchuk, S V; Turovetskiĭ, V B; Andreev, A I; Buravkova, L B
2001-01-01
Explored were effects of argon and nitrogen on intracellular pH in peritoneal macrophages in mice and resistance of cellular membranes to the UV damaging effect in vitro. Blasting argon or nitrogen along the surface of cell cultures in airtight chamber for 20 minutes was shown to decrease 5-folds the oxygen content of solution as compared with initial level with culture pH unchanged. Ten-minute blasting argon or nitrogen through the incubation chamber slightly elevates intracellular pH in macrophages. The standard cell incubation conditions recovered following approximately 60 minutes in hypoxic atmosphere, the ability of macrophages to build up fluorescein was degraded and they increased intracellular pH no matter the indifferent gas yet more marked in case of nitrogen in use. It was demonstrated that the normobaric gas environment with oxygen partly replaced by nitrogen or argon protects plasmatic membranes of cells from UV-induced damage.
Karthikeya Sharma, T
2015-11-01
Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine's performance within the range studied.
The CAPTAIN-MINERvA Experiment
NASA Astrophysics Data System (ADS)
Yoo, Jieun; -Minerva Collaboration, Captain
2016-03-01
The CAPTAIN-MINERvA experiment aims to measure neutrino-argon interactions in the few GeV energy range, which corresponds to the first oscillation maximum for DUNE. It uses the CAPTAIN LArTPC as an active target in conjunction with MINERvA to measure the neutrino interactions and will provide the only high-statistics measurement of the neutrino-argon cross section above 2 GeV before DUNE. CAPTAIN is a liquid argon TPC which is currently being built at LANL. It will be moved to Fermilab and be used in conjunction with MINERvA. Using MINERvA as the tracking detector will allow us to measure the muon energy by dE/dx and thus more completely measure the incoming neutrino energy. And, by measuring the ratio of cross sections in argon to hydrocarbon in the scintillator, we will be able to make stringent tests of nuclear effect models. Thus, through this unique combination of detectors, CAPTAIN-MINERvA will be able to study neutrino-argon interactions and serve as an important source of input for DUNE.
Karthikeya Sharma, T.
2014-01-01
Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine’s performance within the range studied. PMID:26644918
Analysis of time-resolved argon line spectra from OMEGA direct-drive implosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Florido, R.; Nagayama, T.; Mancini, R. C.
2008-10-15
We discuss the observation and data analysis of argon K-shell line spectra from argon-doped deuterium-filled OMEGA direct-drive implosion cores based on data recorded with two streaked crystal spectrometers. The targets were 870 {mu}m in diameter, 27 {mu}m wall thickness plastic shells filled with 20 atm of deuterium gas, and a tracer amount of argon for diagnostic purposes. The argon K-shell line spectrum is primarily emitted at the collapse of the implosion and its analysis provides a spectroscopic diagnostic of the core implosion conditions. The observed spectra includes the He{alpha}, Ly{alpha}, He{beta}, He{gamma}, Ly{beta}, and Ly{gamma} line emissions and their associatedmore » He- and Li-like satellites thus covering a broad photon energy range from 3100 to 4200 eV with a spectral resolution power of approximately 500. The data analysis relies on detailed atomic and spectral models that take into account nonequilibrium collisional-radiative atomic kinetics, Stark-broadened line shapes, and radiation transport calculations.« less
An investigation of the source of air Ar contamination in KAr dating
Mussett, A.E.; Brent, Dalrymple G.
1968-01-01
Precision of young KAr ages is limited by air argon contamination. A series of experiments in which the exposure of basalt and sanidine samples to air argon was controlled, shows that most of the air contamination does not arise in the laboratory. Because of this, it seems unlikely that air argon contamination can be significantly reduced by special sample handling and preparation techniques. ?? 1968.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escobar, C. O.; Rubinov, P.; Tilly, E.
After a short review of previous attempts to observe and measure the near-infrared scintillation in liquid argon, we present new results obtained with NIR, a dedicated cryostat at the Fermilab Proton Assembly Building (PAB). The new results give confidence that the near-infrared light can be used as the much needed light signal in large liquid argon time projection chambers.11 pages,
The DarkSide experiment: Present status and future
Zuzel, G.; Agnes, P.; Albuquerque, I. F. M.; ...
2017-01-01
Here, DarkSide is a multi-stage program devoted to direct searches of Dark Matter particles with detectors based on double phase liquid Argon Time Projection Chamber. The DarkSide-50 setup is running underground at the Laboratori Nazionali del Gran Sasso. First it was operated with Atmospheric Argon and during that run (1422 ± 67) kg×d of truly background-free exposure has been accumulated. Obtained data made it possible to set a 90% C.L. upper limit on the WIMP-nucleon cross section of 6.1 × 10 –44 cm 2 (for a WIMP mass of 100 GeV/c 2). Presently the detector is filled with Underground Argon,more » which is depleted in 39Ar by a factor of (1.4 ± 0.2)×10 3 with respect to Atmospheric Argon. Acquired so far (2616 ± 43) kg×d (71 live days) in combination with the data from the Atmospheric Argon run give us the 90% C.L. upper limit on the WIMP-nucleon spin-independent cross section of 2.0×10 –44 cm 2 for a WIMP mass of 100 GeV/c 2. Up to date this is the best limit obtained with an argon target.« less
NASA Astrophysics Data System (ADS)
Li, Xuechun; Li, Dian; Wang, Younian
2016-09-01
A dielectric barrier discharge (DBD) can generate a low-temperature plasma easily at atmospheric pressure and has been investigated for applications in trials in cancer therapy, sterilization, air pollution control, etc. It has been confirmed that reactive oxygen species (ROS) play a key role in the processes. In this work, we use a fluid model to simulate the plasma characteristics for DBD in argon-oxygen mixture. The effects of oxygen concentration on the plasma characteristics have been discussed. The evolution mechanism of ROS has been systematically analyzed. It was found that the ground state oxygen atoms and oxygen molecular ions are the dominated oxygen species under the considered oxygen concentrations. With the oxygen concentration increasing, the densities of electrons, argon atomic ions, resonance state argon atoms, metastable state argon atoms and excited state argon atoms all show a trend of decline. The oxygen molecular ions density is high and little influenced by the oxygen concentration. Ground state oxygen atoms density tends to increase before falling. The ozone density increases significantly. Increasing the oxygen concentration, the discharge mode begins to change gradually from the glow discharge mode to Townsend discharge mode. Project supported by the National Natural Science Foundation of China (Grant No. 11175034).
Argon gas analysis to predict water leakage into the W88
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillen, K.T.
1990-08-01
Analyses of the internal argon gas concentrations monitored on surveillance units of the W84 indicates that field aging of this weapon for times up to {approximately}4 years does not lead to important increases in the rate at which water leaks into the interior of the weapon. This implies that the EPDM environmental seals used on the W84 do not age significantly over this time period. By comparing the percentages of oxygen and argon in the internal atmosphere, an estimate of the oxygen consumption rate is made for a typical W84 unit. The argon gas analysis approach is then applied tomore » the W88, which is sealed with a new EPDM material. Predictive expressions are derived which relate the anticipated argon gas concentrations of future, field-returned units to their water leakage rates. The predictions are summarized in convenient plots, which can be immediately and easily applied to surveillance data as reported. Since the argon approach is sensitive enough to be useful over the entire lifetime of the W88, it can be used to point out leaking units and to determine whether long-term aging has any significant effect on the new EPDM material. 11 refs., 10 figs., 3 tabs.« less
NASA Astrophysics Data System (ADS)
Nagasaka, Yuji; Kobayashi, Yusuke
2007-09-01
The surface tension and the viscosity of molten LiNbO 3 (LN) having the congruent composition have been measured simultaneously in a temperature range from 1537 to 1756 K under argon gas and dry-air atmospheres. The present measurement technique involves surface laser-light scattering (SLLS) that detects nanometer-order-amplitude surface waves usually regarded as ripplons excited by thermal fluctuations. This technique's non-invasive nature allows it to avoid the experimental difficulties of conventional techniques resulting from the insertion of an actuator in the melt. The results of surface tension measurement obtained under a dry-air atmosphere are about 5% smaller than those obtained under an argon atmosphere near the melting temperature, and the temperature dependence of the surface tension under a dry-air atmosphere is twice that under an argon atmosphere. The uncertainty of surface tension measurement is estimated to be ±2.6% under argon and ±1.9% under dry air. The temperature dependence of viscosity can be well correlated with the results of Arrhenius-type equations without any anomalous behavior near the melting point. The viscosities obtained under a dry-air atmosphere were slightly smaller than those obtained under an argon atmosphere. The uncertainty of viscosity measurement is estimated to be ±11.1% for argon and ±14.3% for dry air. Moreover, we observed the real-time dynamic behavior of the surface tension and the viscosity of molten LN in response to argon and dry-air atmospheres.
Dopant-assisted direct analysis in real time mass spectrometry with argon gas.
Cody, Robert B; Dane, A John
2016-05-30
Dopants used with Atmospheric Pressure Photoionization (APPI) were examined with the Direct Analysis in Real Time (DART ® ) ion source operated with argon gas. Charge-exchange and proton transfer reactions were observed by adding toluene, anisole, chlorobenzene and acetone to the DART gas stream, complementing the information obtained by helium DART. Mass spectra were acquired with a time-of-flight mass spectrometer equipped with a DART ion source operated with argon gas. A syringe pump was used to introduce dopants directly into the DART gas stream through deactivated fused-silica capillary tubing. Samples including polycyclic aromatic hydrocarbons (PAHs), diesel fuel, trinitrotoluene and cannabinoids were deposited onto the sealed end of melting tube, allowed to dry, and the tube was then suspended in the dopant-enhanced DART gas stream. PAHs could be detected as molecular ions at concentrations in the low parts-per-billion range by using a solution of 0.5% anisole in toluene as a dopant. Argon DART analysis of a diesel fuel sample with the same dopant mixture showed a simpler mass spectrum than obtained by using helium DART. The argon DART mass spectrum was dominated by molecular ions for aromatic compounds, whereas the helium DART mass spectrum showed both molecular ions and protonated molecules. In contrast O 2 - attachment DART showed saturated hydrocarbons and oxygen-containing species. Mass spectra for trinitrotoluene with argon DART in negative-ion mode showed a prominent [M - H] - peak, whereas conventional helium DART showed both M - and [M - H] - . Lastly, in analogy to a report in the literature using APPI, positive ions produced by argon DART ionization for delta-9-tetrahydrocannabinol (THC) and cannabidiol showed distinctive product-ion mass spectra. Dopant-assisted argon DART operates by a mechanism that is analogous to those proposed for dopant-assisted atmospheric-pressure photoionization. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Industrial ion source technology
NASA Technical Reports Server (NTRS)
Kaufman, H. R.
1976-01-01
A 30 cm electron bombardment ion source was designed and fabricated for micromachining and sputtering applications. This source has a multipole magnetic field that employs permanent magnets between permeable pole pieces. An average ion current density of 1 ma/sq cm with 500 eV argon ions was selected as a design operating condition. The ion beam at this operating condition was uniform and well collimated, with an average variation of plus or minus 5 percent over the center 20 cm of the beam at distances up to 30 cm from the ion source. A variety of sputtering applications were undertaken with a small 10 cm ion source to better understand the ion source requirements in these applications. The results of these experimental studies are also included.
[Spectroscopic diagnostics of DC argon plasma at atmospheric pressure].
Tu, Xin; Lu, Sheng-yong; Yan, Jian-hua; Ma, Zeng-yi; Pan, Xin-chao; Cen, Ke-fa; Cheron, Bruno
2006-10-01
The optical emission spectra of DC argon plasma at atmospheric pressure were measured inside and outside the arc chamber. The electron temperature was determined from the Boltzmann plot, and the electron density was derived from Stark broadening of Ar I lines. The criteria for the existence of local thermodynamic equilibrium (LTE)in the plasma was discussed. The results indicate that the DC argon plasma at atmospheric pressure under our experimental conditions is in LTE.
Onset of space charge effects in liquid argon ionization chambers
NASA Astrophysics Data System (ADS)
Toggerson, B.; Newcomer, A.; Rutherfoord, J.; Walker, R. B.
2009-09-01
Using a thin-gap liquid argon ionization chamber and Strontium-90 beta sources we have measured ionization currents over a wide range of gap potentials. These precision "HV plateau curves" advance the understanding of liquid argon sampling calorimeter signals, particularly at high ionization rates. The order of magnitude differences in the activities of the beta sources allow us to estimate where the ionization chamber is driven into the space-charge dominated regime.
Behavior of some singly ionized, heavy-ion impurities during compression in a theta-pinch plasma
NASA Technical Reports Server (NTRS)
Jalufka, N. W.
1975-01-01
The introduction of a small percentage of an impurity gas containing a desired element into a theta-pinch plasma is a standard procedure used to investigate the spectra and atomic processes of the element. This procedure assumes that the mixing ratio of impurity-to-fill gases remains constant during the collapse and heating phase. Spectroscopic investigations of the constant-mixing-ratio assumption for a 2% neon and argon impurity verifies the assumption only for the neon impurity. However, for the 2% argon impurity, only 20 to 25% of the argon is in the high-temperature compressed plasma. It is concluded that the constant-mixing-ratio assumption is not applicable to the argon impurity.
The CAPTAIN liquid argon neutrino experiment
Liu, Qiuguang
2015-01-01
The CAPTAIN liquid argon experiment is designed to make measurements of scientific importance to long-baseline neutrino physics and physics topics that will be explored by large underground detectors. The experiment employs two detectors – a primary detector with approximately 10-ton of liquid argon that will be deployed at different facilities for physics measurements and a prototype detector with 2-ton of liquid argon for configuration testing. The physics programs for CAPTAIN include measuring neutron interactions at Los Alamos Neutron Science Center, measuring neutrino interactions in medium energy regime (1.5–5 GeV) at Fermilab's NuMI beam, and measuring neutrino interactions in low energymore » regime (< 50 MeV) at stopped pion sources for supernova neutrino studies.« less
Garcia-Muller, Pablo L; Hernandez, Rigoberto; Benito, R M; Borondo, F
2014-08-21
The isomerization between CN-Li and Li-CN in an argon bath provides a paradigmatic example of a reaction in a solvent with tunable coupling. In previous work, we found that the rates exhibited a turnover with the density of the argon bath in the limit that the CN bond was held fixed [P. L. Garcia-Muller, R. Hernandez, R. M. Benito, and F. Borondo, J. Chem. Phys. 137, 204301 (2012)]. Here, we report the effect of the CN bond vibration on the dynamics and the persistence of the turnover. As hypothesized earlier, the CN bond is indeed weakly coupled with the reaction path despite the presence of the argon cage.
NASA Technical Reports Server (NTRS)
Brophy, John R. (Inventor)
1993-01-01
Apparatus and methods for large-area, high-power ion engines comprise dividing a single engine into a combination of smaller discharge chambers (or segments) configured to operate as a single large-area engine. This segmented ion thruster (SIT) approach enables the development of 100-kW class argon ion engines for operation at a specific impulse of 10,000 s. A combination of six 30-cm diameter ion chambers operating as a single engine can process over 100 kW. Such a segmented ion engine can be operated from a single power processor unit.
DARPA-NRL Laser Program Annual Technical Report to Defense Advanced Research Projects Agency
1980-04-30
sorption could be removed or significantly reduced then the output power and efficiency of the XeCl laser could be further improved. Figure 1 plots...to 30 nm closer to the visible than the experimentally observed ab- sorption peak for Xe2+ (Fig. 3). Figure 3 is a plot of the measured absorption in...radiation in o00 argon-xenon and neon-xenon mixtures. A reduction in ab- No:X: HCt 41. sorption at the laser wavelength was observed when small r’ NEN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnes, P.; Albuquerque, I. F. M.; Alexander, T.
This paper describes the design, fabrication, commissioning and use of a CALibration source Insertion System (CALIS) in the DarkSide-50 direct dark matter search experiment. CALIS deploys radioactive sources into the liquid scintillator veto to characterize the detector response and detection efficiency of the DarkSide-50 Liquid Argon Time Projection Chamber, and the surrounding 30 t organic liquid scintillator neutron veto. It was commissioned in September 2014 and has been used successfully in several gamma and neutron source campaigns since then. A description of the hardware and an excerpt of calibration analysis results are given below.
NASA Astrophysics Data System (ADS)
Bai, Xueshi; Cao, Fan; Motto-Ros, Vincent; Ma, Qianli; Chen, Yanping; Yu, Jin
2015-11-01
In laser-induced breakdown spectroscopy (LIBS), ablation takes place in general in an ambient gas of the atmospheric pressure, often in air but also in noble gas such as argon or helium. The use of noble gas is known to significantly improve the performance of the technique. We investigate in this work the morphology and the characteristics of induced plasma in argon and in air. The purpose is to understand the mechanism of the analytical performance improvement by the use of argon ambient with respective to air ambient and the dependence on the other experimental parameters such as the laser fluence. The observation of plasma morphology in different ambient gases provides also information for better design of the detection system which optimizes the signal collection according to the used ambient gases. More specifically, the expansion of the plasma induced on an aluminum target with nanosecond infrared (1064 nm) laser pulse in two ambient gases, argon and the atmospheric air, has been studied with spectroscopic imaging at short delays and with emission spectroscopy at longer delays. With relatively low ablation laser fluence (65 J/cm2), similar morphologies have been observed in argon and in air over the early stage of plasma expansion, while diagnostics at longer delay shows stronger emission, higher electron density and temperature for plasma induced in argon. With higher ablation laser fluence (160 J/cm2) however, different expansion behaviors have been observed, with a stagnating aluminum vapor near the target surface in air while a propagating plume away from the target in argon. The craters left on the target surface show as well corresponding difference: in air, the crater is very shallow with a target surface chaotically affected by the laser pulse, indicating an effective re-deposition of the ablated material back to the crater; while in Ar a deeper crater is observed, indicating an efficient mass removal by laser ablation. At longer delays, a brighter, denser and hotter plasma is always observed in argon than in air as with lower ablation laser fluences. The observed different influences of the ambient gas on the plasma expansion behavior for different laser fluences are related to the different modes of laser-supported absorption waves, namely laser-supported combustion (LSC) wave and laser-supported detonation (LSD) wave.
Surface modification of gutta-percha cones by non-thermal plasma.
Prado, Maíra; Menezes, Marilia Santana de Oliveira; Gomes, Brenda Paula Figueiredo de Almeida; Barbosa, Carlos Augusto de Melo; Athias, Leonardo; Simão, Renata Antoun
2016-11-01
This study was designed to evaluate the effects of Oxygen and Argon plasma on gutta-percha surfaces. A total of 185 flat smooth gutta-percha surfaces were used. Samples were divided into groups: control: no plasma treatment; Oxygen: treatment with Oxygen plasma for 1min; Argon: treatment with Argon plasma for 1min. Samples were evaluated topographically by scanning electron microscopy and atomic force microscopy; and chemically by Fourier Transform-infrared Spectroscopy. A goniometer was used to determine the surface free energy and the wettability of the endodontic sealers. Additionally 60 bovine teeth were filled using pellets of gutta-percha (control, oxygen and argon plasma) and the sealers. Teeth were evaluated by push-out and microleakage tests. Data were statistically analyzed using specific tests. Argon plasma did not change the surface topography, while Oxygen plasma led to changes. Both treatments chemically modified the gutta-percha surface. Argon and Oxygen plasma increased the surface free energy and favored the wettability of AH Plus and Pulp Canal Sealer EWT. Regarding bond strength analysis, for AH Plus sealer, both plasma treatments on gutta-percha favored the bond strength to dentin. However, for Pulp Canal Sealer, there is no statistically significant influence. For leakage test, dye penetration occurred between sealer and dentin in all groups. In conclusion, Oxygen plasma led to both topographic and chemical changes in the gutta-percha surface, while Argon plasma caused only chemical changes. Both treatments increased the surface free energy, favoring the wettability of AH Plus and Pulp Canal Sealer EWT sealers and influenced positively in the adhesion and leakage. Copyright © 2016 Elsevier B.V. All rights reserved.
O'Beirne, David; Murphy, Eileen; Ni Eidhin, Deirdre
2011-01-01
The reported benefits of enrichment of air atmospheres with argon or oxygen for control of enzymatic browning were investigated by determining the effects of these atmospheres on PPO kinetics. Kinetics of purified apple PPO and a commercially available mushroom PPO were studied in an in vitro model system. Enrichment with argon produced greater inhibitory effects than the current industry practice of enrichment with nitrogen. Km(app) values (mM) for apple PPO in 3%O(2)/97%Ar, 3%O(2)/97%N(2), and air, were 133, 87, and 48, respectively. The data indicate that inhibition by both gases is competitive, and also support the hypothesis that the greater inhibitory effect of argon was proportional to the size of the Van der Waals radius of argon against nitrogen (1.91 Å against 1.54 Å). Much smaller inhibitory effects were observed in the presence of 80% O(2) (Km(app) 57 mM), and the nature of this inhibition was less clear. The results suggest that the benefits of argon enrichment may be relatively small, and may require critical enzyme, substrate, and gas levels to be successful. However, these benefits may be exploitable commercially in some fresh-cut products, and may allow less anoxic atmospheres to be used. Practical Application: Control of enzymatic browning without sulfites continues to be a challenge in some fresh-cut products. While sporadic benefits of these atmospheres in control of enzymatic browning have been reported, results have been inconsistent in commercial practice. The results suggest that the benefits of argon enrichment may be relatively small, and may require critical enzyme, substrate, and gas levels to be successful. However, these benefits may be exploitable commercially in some fresh-cut products, and allow less anoxic atmospheres to be used.
Argon purification studies and a novel liquid argon re-circulation system
NASA Astrophysics Data System (ADS)
Mavrokoridis, K.; Calland, R. G.; Coleman, J.; Lightfoot, P. K.; McCauley, N.; McCormick, K. J.; Touramanis, C.
2011-08-01
Future giant liquid argon (LAr) time projection chambers (TPCs) require a purity of better than 0.1 parts per billion (ppb) to allow the ionised electrons to drift without significant capture by any electronegative impurities. We present a comprehensive study of the effects of electronegative impurity on gaseous and liquid argon scintillation light, an analysis of the efficiency of various purification chemicals, as well as the Liverpool LAr setup, which utilises a novel re-circulation purification system. Of the impurities tested - Air, O2, H2O, N2 and CO2 in the range of between 0.01 ppm to 1000 ppm - H2O was found to have the most profound effect on gaseous argon scintillation light, and N2 was found to have the least. Additionally, a correlation between the slow component decay time and the total energy deposited with 0.01 ppm - 100 ppm O2 contamination levels in liquid argon has been established. The superiority of molecular sieves over anhydrous complexes at absorbing Ar gas, N2 gas and H2O vapour has been quantified using BET isotherm analysis. The efficiency of Cu and P2O5 at removing O2 and H2O impurities from 1 bar N6 argon gas at both room temperature and -130 °C was investigated and found to be high. A novel, highly scalable LAr re-circulation system has been developed. The complete system, consisting of a motorised bellows pump operating in liquid and a purification cartridge, were designed and built in-house. The system was operated successfully over many days and achieved a re-circulation rate of 27 litres/hour and high purity.
Anomalous optogalvanic line shapes of argon metastable transitions in a hollow cathode lamp
NASA Technical Reports Server (NTRS)
Ruyten, W. M.
1993-01-01
Anomalous optogalvanic line shapes were observed in a commercial hollow cathode lamp containing argon buffer gas. Deviations from Gaussian line shapes were particularly strong for transitions originating from the 3P2 metastable level of argon. The anomalous line shapes can be described reasonably well by the assumption that two regions in the discharge are excited simultaneously, each giving rise to a purely Gaussian line shape, but with different polarities, amplitudes, and linewidths.
LArGe: active background suppression using argon scintillation for the Gerda 0ν β β -experiment
NASA Astrophysics Data System (ADS)
Agostini, M.; Barnabé-Heider, M.; Budjáš, D.; Cattadori, C.; Gangapshev, A.; Gusev, K.; Heisel, M.; Junker, M.; Klimenko, A.; Lubashevskiy, A.; Pelczar, K.; Schönert, S.; Smolnikov, A.; Zuzel, G.
2015-10-01
LArGe is a Gerda low-background test facility to study novel background suppression methods in a low-background environment, for future application in the Gerda experiment. Similar to Gerda, LArGe operates bare germanium detectors submersed into liquid argon (1 m^3, 1.4 tons), which in addition is instrumented with photomultipliers to detect argon scintillation light. The scintillation signals are used in anti-coincidence with the germanium detectors to effectively suppress background events that deposit energy in the liquid argon. The background suppression efficiency was studied in combination with a pulse shape discrimination (PSD) technique using a BEGe detector for various sources, which represent characteristic backgrounds to Gerda. Suppression factors of a few times 10^3 have been achieved. First background data of LArGe with a coaxial HPGe detector (without PSD) yield a background index of (0.12-4.6)× 10^{-2} cts/(keV kg year) (90 % C.L.), which is at the level of Gerda Phase I. Furthermore, for the first time we monitor the natural ^{42}Ar abundance (parallel to Gerda), and have indication for the 2ν β β -decay in natural germanium. These results show the effectivity of an active liquid argon veto in an ultra-low background environment. As a consequence, the implementation of a liquid argon veto in Gerda Phase II is pursued.
Effect of sputtering parameters on optical and electrical properties of ITO films on PET substrates
NASA Astrophysics Data System (ADS)
Tseng, Kun-San; Lo, Yu-Lung
2013-11-01
The optical and electrical properties of indium tin oxide (ITO) thin films deposited on flexible polyethylene terephthalate (PET) substrates using a DC magnetron sputtering technique are investigated as a function of the deposition time, the argon flow rate and the target-substrate distance. It is found that all of the ITO films contain a high fraction of amorphous phase. The volume fraction of crystallite precipitates in the amorphous host increases with an increasing deposition time or a reducing argon flow rate. The deposition time and argon flow rate have higher effects on the optical transparency of the ITO films than the target-substrate distance has. Increasing film thickness is not the only reason for the transmittance reduced. It is found that an increase of the extinction coefficient by increasing deposition time or an increase of the refractive index by decreasing argon flow rate also reduces the transmittance of thin film. For a constant deposition time, the resistivity of the ITO films reduces with a reducing argon flow rate or a reducing target-substrate distance. For a constant argon flow rate, a critical value of the deposition time exists at which both the resistivity and the effect of the target-substrate distance are minimized. Finally, it is concluded that the film resistivity has low sensitivity to the target-substrate distance if the best deposition conditions which mostly attain the lowest resistivity are matched.
NASA Astrophysics Data System (ADS)
Yoon, Sung-Young; Kim, Kyoung-Hwa; Seol, Yang-Jo; Kim, Su-Jeong; Bae, Byeongjun; Huh, Sung-Ryul; Kim, Gon-Ho
2016-05-01
The helium and argon have been widely used as discharge gases in atmospheric pressure plasma jets (APPJs) for bacteria inactivation. The APPJs show apparent different in bullet propagation speed and bacteria inactivation rate apparently vary with discharge gas species. This work shows that these two distinctive features of APPJs can be linked through one factor, the metastable energy level. The effects of helium and argon metastable species on APPJ discharge mechanism for reactive oxygen nitrogen species (RONS) generation in APPJs are investigated by experiments and numerical estimation. The discharge mechanism is investigated by using the bullet velocity from the electric field which is obtained with laser induced fluorescence (LIF) measurement. The measured electric field also applied on the estimation of RONS generation, as electron energy source term in numerical particle reaction. The estimated RONS number is verified by comparing NO and OH densities to the inactivation rate of periodontitis bacteria. The characteristic time for bacteria inactivation of the helium-APPJ was found to be 1.63 min., which is significantly less than that of the argon-APPJ, 12.1 min. In argon-APPJ, the argon metastable preserve the energy due to the lack of the Penning ionization. Thus the surface temperature increase is significantly higher than helium-APPJ case. It implies that the metastable energy plays important role in both of APPJ bullet propagation and bacteria inactivation mechanism.
Pilot study about dose-effect relationship of ocular injury in argon laser photocoagulation
NASA Astrophysics Data System (ADS)
Chen, P.; Zhang, C. P.; Fu, X. B.; Zhang, T. M.; Wang, C. Z.; Qian, H. W.; San, Q.
2011-03-01
The aim of this article was to study the injury effect of either convergent or parallel argon laser beam on rabbit retina, get the dose-effect relationship for the two types of laser beams, and calculate the damage threshold of argon laser for human retinas. An argon laser therapeutic instrument for ophthalmology was used in this study. A total of 80 rabbit eyes were irradiated for 600 lesions, half of which were treated by convergent laser and the other half were done with parallel laser beam. After irradiation, slit lamp microscope and fundus photography were used to observe the lesions, change and the incidence of injury was processed statistically to get the damage threshold of rabbit retina. Based on results from the experiments on animals and the data from clinical cases of laser treatment, the photocoagulation damage thresholds of human retinas for convergent and parallel argon laser were calculated to be 0.464 and 0.285 mJ respectively. These data provided biological reference for safely operation when employing laser photocoagulation in clinical practice and other fields.
First scientific application of the membrane cryostat technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montanari, David; Adamowski, Mark; Baller, Bruce R.
2014-01-29
We report on the design, fabrication, performance and commissioning of the first membrane cryostat to be used for scientific application. The Long Baseline Neutrino Experiment (LBNE) has designed and fabricated a membrane cryostat prototype in collaboration with IHI Corporation (IHI). Original goals of the prototype are: to demonstrate the membrane cryostat technology in terms of thermal performance, feasibility for liquid argon, and leak tightness; to demonstrate that we can remove all the impurities from the vessel and achieve the purity requirements in a membrane cryostat without evacuation and using only a controlled gaseous argon purge; to demonstrate that we canmore » achieve and maintain the purity requirements of the liquid argon during filling, purification, and maintenance mode using mole sieve and copper filters from the Liquid Argon Purity Demonstrator (LAPD) R and D project. The purity requirements of a large liquid argon detector such as LBNE are contaminants below 200 parts per trillion oxygen equivalent. This paper gives the requirements, design, construction, and performance of the LBNE membrane cryostat prototype, with experience and results important to the development of the LBNE detector.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnes, P.; Albuquerque, I. F. M.; Alexander, T.
The DarkSide-50 experiment at the Laboratori Nazionali del Gran Sasso is a search for dark matter using a dual phase time projection chamber with 50 kg of low radioactivity argon as target. Light signals from interactions in the argon are detected by a system of 38 photo-multiplier tubes (PMTs), 19 above and 19 below the TPC volume inside the argon cryostat. We describe the electronics which processes the signals from the photo-multipliers, the trigger system which identifies events of interest, and the data-acquisition system which records the data for further analysis. The electronics include resistive voltage dividers on the PMTs,more » custom pre-amplifiers mounted directly on the PMT voltage dividers in the liquid argon, and custom amplifier/discriminators (at room temperature). After amplification, the PMT signals are digitized in CAEN waveform digitizers, and CAEN logic modules are used to construct the trigger, the data acquisition system for the TPC is based on the Fermilab "artdaq" software. The system has been in operation since early 2014.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Zhili; Shneider, Mikhail N.
2010-03-15
This paper presents the experimental measurement and computational model of sodium plasma decay processes in mixture of sodium and argon by using radar resonance-enhanced multiphoton ionization (REMPI), coherent microwave Rayleigh scattering of REMPI. A single laser beam resonantly ionizes the sodium atoms by means of 2+1 REMPI process. The laser beam can only generate the ionization of the sodium atoms and have negligible ionization of argon. Coherent microwave scattering in situ measures the total electron number in the laser-induced plasma. Since the sodium ions decay by recombination with electrons, microwave scattering directly measures the plasma decay processes of the sodiummore » ions. A theoretical plasma dynamic model, including REMPI of the sodium and electron avalanche ionization (EAI) of sodium and argon in the gas mixture, has been developed. It confirms that the EAI of argon is several orders of magnitude lower than the REMPI of sodium. The theoretical prediction made for the plasma decay process of sodium plasma in the mixture matches the experimental measurement.« less
NASA Astrophysics Data System (ADS)
Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Asner, D. M.; Ave, M.; Back, H. O.; Baldin, B.; Biery, K.; Bocci, V.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Caravati, M.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cataudella, V.; Cavalcante, P.; Chepurnov, A.; Cicaló, C.; Cocco, A. G.; Covone, G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; de Candia, A.; De Cecco, S.; De Deo, M.; De Filippis, G.; De Rosa, G.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Dionisi, C.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giagu, S.; Giganti, C.; Giovanetti, G. K.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K. R.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, A.; Ianni, A.; James, I.; Johnson, T. N.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Loer, B.; Lombardi, P.; Longo, G.; Luitz, S.; Ma, Y.; Machado, A.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Navrer Agasson, A.; Nelson, A.; Odrowski, S.; Oleinik, A.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeti, M.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Schlitzer, B.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Verducci, M.; Vishneva, A.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wojcik, M. M.; Xiang, X.; Xiao, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.
2017-12-01
The DarkSide-50 experiment at the Laboratori Nazionali del Gran Sasso is a search for dark matter using a dual phase time projection chamber with 50 kg of low radioactivity argon as target. Light signals from interactions in the argon are detected by a system of 38 photo-multiplier tubes (PMTs), 19 above and 19 below the TPC volume inside the argon cryostat. We describe the electronics which processes the signals from the photo-multipliers, the trigger system which identifies events of interest, and the data-acquisition system which records the data for further analysis. The electronics include resistive voltage dividers on the PMTs, custom pre-amplifiers mounted directly on the PMT voltage dividers in the liquid argon, and custom amplifier/discriminators (at room temperature). After amplification, the PMT signals are digitized in CAEN waveform digitizers, and CAEN logic modules are used to construct the trigger; the data acquisition system for the TPC is based on the Fermilab artdaq software. The system has been in operation since early 2014.
Interaction of argon and helium plasma jets and jets arrays with account for gravity
NASA Astrophysics Data System (ADS)
Babaeva, Natalia Yu.; Naidis, George V.; Panov, Vladislav A.; Wang, Ruixue; Zhao, Yong; Shao, Tao
2018-06-01
In this paper, we discuss results from an experimental and computational study of the properties of a single jet and two-tube jet arrays operating in argon and helium. The jets are positioned horizontally. It was shown in experiments that the helium plasma plume bends upward and the plumes in the two-tubes jet array tend to divert due to the jet-jet interaction. To investigate these potential interactions, a computational study was performed of one- and two-tube argon and helium jet arrays having variable spacing. The effects of buoyancy forces on the jet-to-jet interaction of the plasma plumes are also investigated. Velocities of ionization waves inside and outside the tubes are estimated and compared for the argon and helium ionization waves. We show that in helium jet-jet interactions primarily depend on the spacing between the tubes and on the buoyancy forces. The helium plumes tend to merge into one single stream before dissipating, while the argon plasma plumes are less sensitive to the spacing of the jet tubes.
Effects of radiator shapes on the bubble diving and dispersion of ultrasonic argon process.
Liu, Xuan; Xue, Jilai; Zhao, Qiang; Le, Qichi; Zhang, Zhiqiang
2018-03-01
In this work, three ultrasonic radiators in different shapes have been designed in order to investigate the effects of radiator shapes on the argon bubble dispersion and diving as well as the degassing efficiency on magnesium melt. The radiator shape has a strong influence on the bubble diving and dispersion by ultrasound. A massive argon bubble slowly flows out from the radiator with the hemispherical cap, due to the covering hemispherical cap. Using a concave radiator can intensively crush the argon bubbles and drive them much deep into the water/melt, depending on the competition between the argon flow and opposite joint shear force from the concave surface. The evolution of wall bubbles involves the ultrasonic cavities carrying dissolved gas, migrating to the vessel wall, and escaping from the liquid. Hydrogen removal can be efficiently achieved using a concave radiator. The hydrogen content can be reduced from 22.3 μg/g down to 8.7 μg/g. Mechanical properties are significantly promoted, due to the structure refinement and efficient hydrogen removal. Copyright © 2017 Elsevier B.V. All rights reserved.
Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; ...
2017-12-01
The DarkSide-50 experiment at the Laboratori Nazionali del Gran Sasso is a search for dark matter using a dual phase time projection chamber with 50 kg of low radioactivity argon as target. Light signals from interactions in the argon are detected by a system of 38 photo-multiplier tubes (PMTs), 19 above and 19 below the TPC volume inside the argon cryostat. We describe the electronics which processes the signals from the photo-multipliers, the trigger system which identifies events of interest, and the data-acquisition system which records the data for further analysis. The electronics include resistive voltage dividers on the PMTs,more » custom pre-amplifiers mounted directly on the PMT voltage dividers in the liquid argon, and custom amplifier/discriminators (at room temperature). After amplification, the PMT signals are digitized in CAEN waveform digitizers, and CAEN logic modules are used to construct the trigger, the data acquisition system for the TPC is based on the Fermilab "artdaq" software. The system has been in operation since early 2014.« less
NASA Technical Reports Server (NTRS)
Pham-Van-diep, Gerald C.; Erwin, Daniel A.
1989-01-01
Velocity distribution functions in normal shock waves in argon and helium are calculated using Monte Carlo direct simulation. These are compared with experimental results for argon at M = 7.18 and for helium at M = 1.59 and 20. For both argon and helium, the variable-hard-sphere (VHS) model is used for the elastic scattering cross section, with the velocity dependence derived from a viscosity-temperature power-law relationship in the way normally used by Bird (1976).
Interatomic scattering in energy dependent photoelectron spectra of Ar clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patanen, M.; Benkoula, S.; Nicolas, C.
2015-09-28
Soft X-ray photoelectron spectra of Ar 2p levels of atomic argon and argon clusters are recorded over an extended range of photon energies. The Ar 2p intensity ratios between atomic argon and clusters’ surface and bulk components reveal oscillations similar to photoelectron extended X-ray absorption fine structure signal (PEXAFS). We demonstrate here that this technique allows us to analyze separately the PEXAFS signals from surface and bulk sites of free-standing, neutral clusters, revealing a bond contraction at the surface.
2008-07-02
In order to cover a range of molecular species, argon , nitrogen, and methane were used as test gases. The polarizability to mass ratio of these gases...Japan, 21-25 July 2008. 14. ABSTRACT The Direct Simulation Monte Carlo (DSMC) method was used to investigate the interaction between argon ...reducing the maximum temperature. The optimal intervening time was found to be 0.7, 1.0 and 0.25 ns for argon , nitrogen, and methane at one atmosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnes, P.; Albuquerque, I. F. M.; Alexander, T.
Geant4-based Monte Carlo package named G4DS has been developed to simulate the response of DarkSide-50, an experiment operating since 2013 at LNGS, designed to detect WIMP interactions in liquid argon. In the process of WIMP searches, DarkSide-50 has achieved two fundamental milestones: the rejection of electron recoil background with a power of ~10^7, using the pulse shape discrimination technique, and the measurement of the residual 39Ar contamination in underground argon, ~3 orders of magnitude lower with respect to atmospheric argon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnes, P.; et al.
The DarkSide-50 experiment, located at the “Laboratori Nazionali del Gran Sasso (INFN)”, is based on low-radioactivity argon double phase time projection chamber, surrounded by an active liquid scintillator veto, designed for the zero background achievement. The liquid argon features sufficient self shielding and easy scalability to multi-tons scale. The impressive reduction of the 39Ar isotope (compared to the atmospheric argon), along with the excellent pulse shape discrimination, make this technology a possible candidate for the forthcoming generation of multi-ton Dark Matter experiments.
An experimental and kinetic investigation of premixed furan/oxygen/argon flames
Tian, Zhenyu; Yuan, Tao; Fournet, Rene; Glaude, Pierre-Alexandre; Sirjean, Baptiste; Battin-Leclerc, Frédérique; Zhang, Kuiwen; Qi, Fei
2013-01-01
The detailed chemical structures of three low-pressure (35 Torr) premixed laminar furan/oxygen/argon flames with equivalence ratios of 1.4, 1.8 and 2.2 have been investigated by using tunable synchrotron vacuum ultraviolet (VUV) photoionization and molecular-beam mass spectrometry. About 40 combustion species including hydrocarbons and oxygenated intermediates have been identified by measurements of photoionization efficiency spectra. Mole fraction profiles of the flame species including reactants, intermediates and products have been determined by scanning burner position with some selected photon energies near ionization thresholds. Flame temperatures have been measured by a Pt-6%Rh/Pt-30%Rh thermocouple. A new mechanism involving 206 species and 1368 reactions has been proposed whose predictions are in reasonable agreement with measured species profiles for the three investigated flames. Rate-of-production and sensitivity analyses have been performed to track the key reaction paths governing furan consumption for different equivalence ratios. Both experimental and modeling results indicate that few aromatics could be formed in these flames. Furthermore, the current model has been validated against previous pyrolysis results of the literature obtained behind shock waves and the agreement is reasonable as well. PMID:23814311
An experimental and kinetic investigation of premixed furan/oxygen/argon flames.
Tian, Zhenyu; Yuan, Tao; Fournet, Rene; Glaude, Pierre-Alexandre; Sirjean, Baptiste; Battin-Leclerc, Frédérique; Zhang, Kuiwen; Qi, Fei
2011-04-01
The detailed chemical structures of three low-pressure (35 Torr) premixed laminar furan/oxygen/argon flames with equivalence ratios of 1.4, 1.8 and 2.2 have been investigated by using tunable synchrotron vacuum ultraviolet (VUV) photoionization and molecular-beam mass spectrometry. About 40 combustion species including hydrocarbons and oxygenated intermediates have been identified by measurements of photoionization efficiency spectra. Mole fraction profiles of the flame species including reactants, intermediates and products have been determined by scanning burner position with some selected photon energies near ionization thresholds. Flame temperatures have been measured by a Pt-6%Rh/Pt-30%Rh thermocouple. A new mechanism involving 206 species and 1368 reactions has been proposed whose predictions are in reasonable agreement with measured species profiles for the three investigated flames. Rate-of-production and sensitivity analyses have been performed to track the key reaction paths governing furan consumption for different equivalence ratios. Both experimental and modeling results indicate that few aromatics could be formed in these flames. Furthermore, the current model has been validated against previous pyrolysis results of the literature obtained behind shock waves and the agreement is reasonable as well.
Study of Electromagnetic Interactions in the MicroBooNE Liquid Argon Time Projection Chamber
NASA Astrophysics Data System (ADS)
Caratelli, David
This thesis presents results on the study of electromagnetic (EM) activity in the MicroBooNE Liquid Argon Time Projection Chamber (LArTPC) neutrino detector. The LArTPC detector technology provides bubble-chamber like information on neutrino interaction final states, necessary to perform precision measurements of neutrino oscillation parameters. Accelerator-based oscillation experiments heavily rely on the appearance channel numu → nu e to make such measurements. Identifying and reconstructing the energy of the outgoing electrons from such interactions is therefore crucial for their success. This work focuses on two sources of EM activity: Michel electrons in the 10-50 MeV energy range, and photons from pi 0 decay in the ˜30-300 MeV range. Studies of biases in the energy reconstruction measurement, and energy resolution are performed. The impact of shower topology at different energies is discussed, and the importance of thresholding and other reconstruction effects on producing an asymmetric and biased energy measurement are highlighted. This work further presents a study of the calorimetric separation of electrons and photons with a focus on the shower energy dependence of the separation power.
NASA Technical Reports Server (NTRS)
Kaufman, H. R.
1976-01-01
Inert gases are of interest as possible alternatives to the usual electric thruster propellants of mercury and cesium. The multipole discharge chamber investigated was shown capable of low discharge chamber losses and flat ion beam profiles with a minimum of optimization. Minimum discharge losses were 200 to 250 eV/ion for xenon and 300 to 350 eV/ion for argon, while flatness parameters in the plane of the accelerator grid were 0.85 to 0.95. The design used employs low magnetic field strengths, which permits the use of sheet-metal parts. The corner problem of the discharge chamber was resolved with recessed corner anodes, which approximately equalized both the magnetic field above the anodes and the electron currents to these anodes. Argon hollow cathodes were investigated at currents up to about 5 amperes using internal thermionic emitters. Cathode chamber diameter optimized in the 1.0 to 2.5 cm range, while orifices diameter optimized in the 0.5 to 5 mm range. The use of a bias voltage for the internal emitter extended the operating range and facilitated starting. The masses of 15 and 30 cm flight type thrusters were estimated at about 4.2 and 10.8 kg.
Gong, Yu; Andrews, Lester; Jackson, Virgil E; Dixon, David A
2012-10-15
Reactions of ThO molecules and CH(4) have been investigated in solid argon near 4 K. The CH(3)Th(O)H molecule is produced when the sample is exposed to UV irradiation. Identification of this new intermediate is substantiated by observation of the Th═O and Th-H stretching vibrational modes with isotopic substitution via matrix infrared spectroscopy, and the assignments are supported by electronic structure frequency calculations. Methanol absorptions increase together with formation of the CH(3)Th(O)H molecule, suggesting a methane to methanol conversion induced by thorium oxide proceeding through the CH(3)Th(O)H intermediate. The formation of CH(3)Th(O)H from ThO + CH(4) is exothermic (ΔH(rxn) = -11 kcal/mol) with an energy barrier of 30 kcal/mol at the CCSD(T)//B3LYP level. Decomposition of this intermediate to form methanol involves spin crossing, and the overall reaction from the intermediate is endothermic by 127 kcal/mol. There is no activation energy for the reaction of thorium atoms with methanol to give CH(3)Th(O)H, as observed in separate experiments with Th and CH(3)OH.
NASA Astrophysics Data System (ADS)
Chaplin, Vernon H.; Bellan, Paul M.
2015-12-01
A time-dependent two-fluid model has been developed to understand axial variations in the plasma parameters in a very high density (peak ne≳ 5 ×1019 m-3 ) argon inductively coupled discharge in a long 1.1 cm radius tube. The model equations are written in 1D with radial losses to the tube walls accounted for by the inclusion of effective particle and energy sink terms. The ambipolar diffusion equation and electron energy equation are solved to find the electron density ne(z ,t ) and temperature Te(z ,t ) , and the populations of the neutral argon 4s metastable, 4s resonant, and 4p excited state manifolds are calculated to determine the stepwise ionization rate and calculate radiative energy losses. The model has been validated through comparisons with Langmuir probe ion saturation current measurements; close agreement between the simulated and measured axial plasma density profiles and the initial density rise rate at each location was obtained at pA r=30 -60 mTorr . We present detailed results from calculations at 60 mTorr, including the time-dependent electron temperature, excited state populations, and energy budget within and downstream of the radiofrequency antenna.
NASA Astrophysics Data System (ADS)
Stepanyan, Sergey; Hayashi, Jun; Salmon, Arthur; Stancu, Gabi D.; Laux, Christophe O.
2017-04-01
This work presents experimental observations of strong expanding thermal jets following the application of nanosecond spark discharges. These jets propagate in a toroidal shape perpendicular to the interelectrode axis, with high velocities of up to 30 m s-1 and over distances of the order of a cm. Their propagation length is much larger than the thermal expansion region produced by the conventional millisecond sparks used in car engine ignition, thus greatly improving the volumetric excitation of gas mixtures. The shape and velocity of the jets is found to be fairly insensitive to the shape of the electrodes. In addition, their spatial extent is found to increase with the number of nanosecond sparks and with the discharge voltage, and to decrease slightly with the pressure between 1 and 7 atm at constant applied voltage. Finally, this thermal jet phenomenon is observed in experiments conducted with many types of gas mixtures, including air, nitrogen, argon, and combustible CH4/air mixtures. This makes nanosecond repetitively pulsed discharges particularly attractive for aerodynamic flow control or plasma-assisted combustion because of their ability to excite large volumes of gas, typically about 100 times the volume of the discharge.
Study of Electromagnetic Interactions in the MicroBooNE Liquid Argon Time Projection Chamber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caratelli, David
This thesis presents results on the study of electromagnetic (EM) activity in the MicroBooNE Liquid Argon Time Projection Chamber (LArTPC) neutrino detector. The LArTPC detector technology provides bubble-chamber like information on neutrino interaction final states, necessary to perform precision measurements of neutrino oscillation parameters. Accelerator-based oscillation experiments heavily rely on the appearance channel ! e to make such measurements. Identifying and reconstructing the energy of the outgoing electrons from such interactions is therefore crucial for their success. This work focuses on two sources of EM activity: Michel electrons in the 10-50 MeV energy range, and photons from 0 decay inmore » the 30-300 MeV range. Studies of biases in the energy reconstruction measurement, and energy resolution are performed. The impact of shower topology at different energies is discussed, and the importance of thresholding and other reconstruction effects on producing an asymmetric and biased energy measurement are highlighted. This work further presents a study of the calorimetric separation of electrons and photons with a focus on the shower energy dependence of the separation power.« less
The source and significance of argon isotopes in fluid inclusions from areas of mineralization
NASA Astrophysics Data System (ADS)
Kelley, S.; Turner, G.; Butterfield, A. W.; Shepherd, T. J.
1986-09-01
Argon isotopes in fluid inclusions in quartz veins associated with granite-hosted tungsten mineralization in the southwest and north of England have been investigated in detail by the 40Ar- 39Ar technique. The natural argon is present as a number of discrete components which can be identified through correlations with 39Ar, 38Ar and 37Ar induced by neutron bombardment of potassium, chlorine and calcium. The potassium-correlated component arises principally from in situ decay of potassium in solid phases in the inclusions. In the case of the Hemerdon tungsten deposit of southwest England the phases responsible are small (≈ 25 μm) captive authigenic micas which are shown to have been deposited from a fluid 268 ± 20 Ma ago, shortly after the emplacement of the host granite. The chlorine-correlated component is present in the brines which constitute the fluid phase of the inclusions. The argon in these hydrothermal fluids is made up in part of "parentless" or "excess" 40Ar leached from surrounding crustal rocks, and in part of dissolved ancient atmospheric argon. Absolute concentrations of both atmospheric and excess components in the brine can be estimated from ( 40ArCl ) ratios and independent determinations of the salinity of the inclusions. The absolute concentrations of the atmospheric argon are close to those found in modern meteoric water, while those of the excess component can be interpreted in terms of the degree of interaction betwen the circulating fluids and country rock. A calcium-correlated component, with a much higher ratio of excess to atmospheric argon than that in the brine, was found to be a dominant phase in one sample from the Hemerdon deposit, indicating the presence of a solid phase (probably a CaSO 4 daughter mineral). Inclusions of this composition represent fluids which have had a more prolonged interaction- with crustal rocks. The results obtained from this study provide a systematization and a framework for future multi-component argon studies of fluid inclusions, together with an indication of the wide range of information which can be inferred.
40 CFR 60.270a - Applicability and designation of affected facility.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Performance for Steel Plants: Electric Arc Furnaces and Argon-Oxygen Decarburization Vessels Constructed After... specialty steels: electric arc furnaces, argon-oxygen decarburization vessels, and dust-handling systems. (b...
40 CFR 60.270a - Applicability and designation of affected facility.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Performance for Steel Plants: Electric Arc Furnaces and Argon-Oxygen Decarburization Vessels Constructed After... specialty steels: electric arc furnaces, argon-oxygen decarburization vessels, and dust-handling systems. (b...
40 CFR 60.270a - Applicability and designation of affected facility.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Performance for Steel Plants: Electric Arc Furnaces and Argon-Oxygen Decarburization Vessels Constructed After... specialty steels: electric arc furnaces, argon-oxygen decarburization vessels, and dust-handling systems. (b...
40 CFR 60.270a - Applicability and designation of affected facility.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Performance for Steel Plants: Electric Arc Furnaces and Argon-Oxygen Decarburization Vessels Constructed After... specialty steels: electric arc furnaces, argon-oxygen decarburization vessels, and dust-handling systems. (b...
40 CFR 60.270a - Applicability and designation of affected facility.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Performance for Steel Plants: Electric Arc Furnaces and Argon-Oxygen Decarburization Vessels Constructed After... specialty steels: electric arc furnaces, argon-oxygen decarburization vessels, and dust-handling systems. (b...
Is there another major constituent in the atmosphere of Mars?. [radiogenic argon
NASA Technical Reports Server (NTRS)
Wood, G. P.
1974-01-01
In view of the possible finding of several tens percent of inert gas in the atmosphere of Mars by an instrument on the descent module of the USSR's Mars 6 spacecraft, the likelihood of the correctness of this result was examined. The basis for the well-known fact that the most likely candidate is radiogenic argon is described. It is shown that, for the two important methods of investigating the atmosphere, earth-based CO2 is infrared absorption spectroscopy and S-band occultation, within the estimated 1 standard deviation uncertainties of these methods about 20% argon can be accommodated. Within the estimated 3 standard deviation uncertainties, more than 35% is possible. It is also stated that even with 35% argon the maximum value of heat transfer rate on the Viking 75 entry vehicle does not exceed the design value.
Argon: Systematic Review on Neuro- and Organoprotective Properties of an “Inert” Gas
Höllig, Anke; Schug, Anita; Fahlenkamp, Astrid V.; Rossaint, Rolf; Coburn, Mark
2014-01-01
Argon belongs to the group of noble gases, which are regarded as chemically inert. Astonishingly some of these gases exert biological properties and during the last decades more and more reports demonstrated neuroprotective and organoprotective effects. Recent studies predominately use in vivo or in vitro models for ischemic pathologies to investigate the effect of argon treatment. Promising data has been published concerning pathologies like cerebral ischemia, traumatic brain injury and hypoxic ischemic encephalopathy. However, models applied and administration of the therapeutic gas vary. Here we provide a systematic review to summarize the available data on argon’s neuro- and organoprotective effects and discuss its possible mechanism of action. We aim to provide a summary to allow further studies with a more homogeneous setting to investigate possible clinical applications of argon. PMID:25310646
NASA Astrophysics Data System (ADS)
Latifah, R.; Bunawas; Noor, J. A. E.
2018-03-01
Linear accelerator (linac) becomes the most commonly used treatment to damage and kill cancer cell. Photon and electron as the radiation beam are produced by accelerating electrons to very high energy. Neutrons are generated when incident high photon energy interacts with component of linac such as target, flattering filter and collimator via photoneutrons reaction. The neutrons can also produce activation of materials in treatment room to generate radioactive materials. We have estimated the concentration of Argon-41 as activated product from argon-40 in the linac room using foil activation. The results show that the Argon-41 concentration in linac room which is operated 15 MV for 1 treatment (1 minute) is 1440 Bq/m3. Accordingly that concentration, the occupational dose is 6.4 mSv per year.
2D laser-collision induced fluorescence in low-pressure argon discharges
Barnat, E. V.; Weatherford, B. R.
2015-09-25
Development and application of laser-collision induced fluorescence (LCIF) diagnostic technique is presented for the use of interrogating argon plasma discharges. Key atomic states of argon utilized for the LCIF method are identified. A simplified two-state collisional radiative model is then used to establish scaling relations between the LCIF, electron density, and reduced electric fields ( E/N). The procedure used to generate, detect and calibrate the LCIF in controlled plasma environments is discussed in detail. LCIF emanating from an argon discharge is then presented for electron densities spanning 10 9 e cm –3 to 10 12 e cm –3 and reducedmore » electric fields spanning 0.1 Td to 40 Td. Lastly, application of the LCIF technique for measuring the spatial distribution of both electron densities and reduced electric field is demonstrated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhaoying; Liu, Bingwen; Zhao, Evan
For the first time, the use of an argon cluster ion sputtering source has been demonstrated to perform superiorly relative to traditional oxygen and cesium ion sputtering sources for ToF-SIMS depth profiling of insulating materials. The superior performance has been attributed to effective alleviation of surface charging. A simulated nuclear waste glass, SON68, and layered hole-perovskite oxide thin films were selected as model systems due to their fundamental and practical significance. Our study shows that if the size of analysis areas is same, the highest sputter rate of argon cluster sputtering can be 2-3 times faster than the highest sputtermore » rates of oxygen or cesium sputtering. More importantly, high quality data and high sputter rates can be achieved simultaneously for argon cluster sputtering while this is not the case for cesium and oxygen sputtering. Therefore, for deep depth profiling of insulating samples, the measurement efficiency of argon cluster sputtering can be about 6-15 times better than traditional cesium and oxygen sputtering. Moreover, for a SrTiO3/SrCrO3 bi-layer thin film on a SrTiO3 substrate, the true 18O/16O isotopic distribution at the interface is better revealed when using the argon cluster sputtering source. Therefore, the implementation of an argon cluster sputtering source can significantly improve the measurement efficiency of insulating materials, and thus can expand the application of ToF-SIMS to the study of glass corrosion, perovskite oxide thin films, and many other potential systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scanavini, Scanavini,Giacomo
This thesis presents a work done in the context of the Fermilab Neutrino Intensity Frontier. In this analysis, the cross section of single charged pion production in charged-current neutrino and antineutrino interactions with the argon nucleus target are measured. These measurements are performed using the Argon Neutrino Test (ArgoNeuT) detector exposed to the Fermilab Neutrino From The Main Injector (NuMI) beam operating in the low energy antineutrino mode. The signal is a charged-current μ interaction in the detector, with exactly one charged pion exiting the target nucleus, with momentum above 100 MeV/c. There shouldn’t be any 0 or kaons inmore » the final state. There is no restriction on other mesons or nucleons. Total and differential cross section measurements are presented. The results are reported in terms of outgoing muon angle and momentum, outgoing pion angle and angle between outgoing pion and muon. The total cross sections, averaged over the flux, are found to be 8.2 ± 0.9 (stat) +0.9 -1.1 (syst) × 10-38 cm2 per argon nuclei and 2.5 ± 0.4 (stat) ± 0.5 (syst) × 10-37 cm2 per argon nuclei for antineutrino and neutrino respectively at a mean neutrino energy of 3.6 GeV (antineutrinos) and 9.6 GeV (neutrinos). This is the first time the single pion production in charged-current interactions cross section is measured on argon nuclei.« less
NASA Astrophysics Data System (ADS)
Ellis, Wade C.; Lewis, Charlotte R.; Openshaw, Anna P.; Farnsworth, Paul B.
2016-09-01
We demonstrate the effectiveness of using hydrogen-doped argon as the support gas for the dielectric barrier discharge (DBD) ambient desorption/ionization (ADI) source in mass spectrometry. Also, we explore the chemistry responsible for the signal enhancement observed when using both hydrogen-doped argon and hydrogen-doped helium. The hydrogen-doped argon was tested for five analytes representing different classes of molecules. Addition of hydrogen to the argon plasma gas enhanced signals for gas-phase analytes and for analytes coated onto glass slides in positive and negative ion mode. The enhancements ranged from factors of 4 to 5 for gas-phase analytes and factors of 2 to 40 for coated slides. There was no significant increase in the background. The limit of detection for caffeine was lowered by a factor of 79 using H2/Ar and 2 using H2/He. Results are shown that help explain the fundamental differences between the pure-gas discharges and those that are hydrogen-doped for both argon and helium. Experiments with different discharge geometries and grounding schemes indicate that observed signal enhancements are strongly dependent on discharge configuration.
Nagamori, Masanao; Mowjood, M I M; Watanabe, Youichi; Isobe, Yugo; Ishigaki, Tomonori; Kawamoto, Ken
2016-12-01
A long-term monitoring of composition of landfill gases in the region with high rainfall was conducted using an argon assay in order to discuss air intrusion into the dump site. Gas samples were taken from vertical gas monitoring pipes installed along transects at two sections (called new and old) of an abandoned waste dump site in Sri Lanka. N 2 O concentrations varied especially widely, by more than three orders of magnitude (0.046-140 ppmv). The nitrogen/argon ratio of landfill gas was normally higher than that of fresh air, implying that denitrification occurred in the dump site. Argon assays indicate that both N 2 and N 2 O production occurred inside waste and more significantly in the old section. The Ar assay would help for evaluations of N 2 O emission in developing countries. A long-term monitoring of composition of landfill gases in the region with high rainfall was conducted using an argon assay in order to discuss air intrusion into the dump site. Argon assays indicate that both N 2 and N 2 O production occurred inside waste and more significantly in the old section.
Charge exchange of highly charged argon ions as a function of projectile energy
NASA Astrophysics Data System (ADS)
Allen, F. I.; Biedermann, C.; Radtke, R.; Fussmann, G.
2007-03-01
X-ray emission of highly charged argon ions following charge exchange collisions with argon atoms has been measured as a function of projectile energy. The ions are extracted from the Electron Beam Ion Trap (EBIT) in Berlin and selected according to their massto-charge ratios. Experiments focussed on hydrogen-like and bare argon ions which were decelerated from 125q eV/amu to below 0.25q eV/amu prior to interaction with an argon gas target. The x-ray spectra recorded probe the cascading transitions resulting from electron capture into Rydberg states and are found to vary significantly with collision velocity. This indicates a shift in the orbital angular momentum of the capture state. Hardness ratios are observed to increase with decreasing projectile energy though at a rate which differs from the results of simulations. For comparison, measurements of the x-ray emission following charge exchange within the trap were carried out and are in agreement with the findings of the EBIT group at LLNL. Both of these in situ measurements, however, are in discrepancy with the results of the experiments using extracted ions.
NASA Astrophysics Data System (ADS)
Wang, Yinan; Liu, Yue
2017-07-01
In this paper, a 1D fluid model is developed to study the characteristics of a discharge in argon with small admixtures of oxygen at atmospheric pressure. This model consists of a series of equations, including continuity equations for electrons, positive ions, negative ions and neutral particles, the energy equation, and the Poisson equation for electric potential. Special attention has been paid to the electron energy dissipation and the mechanisms of electron heating, while the admixture of oxygen is in the range of 0.1%-0.6%. It is found that when the oxygen-to-argon ratio grows, the discharge is obviously divided into three stages: electron growth, electron reduction and the electron remaining unchanged. Furthermore, the cycle-averaged electric field, electron temperature, electron Ohmic heating, electron collisionless heating, electron energy dissipation and the net electron production are also studied in detail, and when the oxygen-to-argon ratio is relatively larger (R = 0.6%), double value peaks of electron Ohmic heating appear in the sheath. According to the results of the numerical simulation, various oxygen-to-argon ratios result in different amounts of electron energy dissipation and electron heating.
NASA Astrophysics Data System (ADS)
Dai, Hongbin; Shen, Xiuqiang; Wang, Haoran
2018-06-01
In the paper, the 5A03 aluminium alloy was employed to study the influence of TIG arc on the penetration and the weld width. And the split anode method with water-cooled copper plate was used to measure and record the distribution of arc current, under different flow ratio of argon and helium conditions. And a gas supply device controlled by a solenoid valve was employed to obtain the stable TIG welding arc of gas supply alternately at the frequency of 1 Hz and 4 Hz, and then collected the phenomenon of arc alternate by the high-speed camera. The experimental results indicated that the current density at the arc anode center of argon and helium supply alternately with different mixing ratio is lower than that of the pure argon-arc center. Nonetheless, the former is more uniform in current density within 2 mm from the arc center. Furthermore, it presented as a component arc of argon-arc and helium-arc switched, with the condition of argon and helium supply alternately at a frequency of 1 Hz and the arc power density is greater and concentrated, leading to the wider and deeper weld.
Shielding gas selection for increased weld penetration and productivity in GTA welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leinonen, J.I.
1996-12-31
The effects of hydrogen and helium additions to the argon shielding gas on GTA weld pool profiles in the case of two austenitic stainless steel sheets 3 mm thick are investigated here in detail. One of the test steels shows good weldability, with a relatively deep, narrow weld pool profile, but the other is poorly weldable, with a shallow, wide weld pool when argon shielding gas is used. Bead-on-plate test welds were produced with arc shields of argon, argon with hydrogen additions of 2 to 18.2% and argon with helium additions of 20 to 80%. The hydrogen additions increases themore » depth of weld penetration in both test steels, but productivity with respect to maximum welding speed can be improved to an accepted level only with steel sheets of good weldability in terms of a relatively high depth/width (D/W) ratio. The depth of penetration in the test steel of good weldability increased somewhat with helium additions and the D/W ratio remained unchanged, while these parameters increased markedly in the poorly weldable steel when a He-20% Ar shielding gas was used and resembled those of the more weldable steel.« less
Antiapoptotic activity of argon and xenon
Spaggiari, Sabrina; Kepp, Oliver; Rello-Varona, Santiago; Chaba, Kariman; Adjemian, Sandy; Pype, Jan; Galluzzi, Lorenzo; Lemaire, Marc; Kroemer, Guido
2013-01-01
Although chemically non-reactive, inert noble gases may influence multiple physiological and pathological processes via hitherto uncharacterized physical effects. Here we report a cell-based detection system for assessing the effects of pre-defined gas mixtures on the induction of apoptotic cell death. In this setting, the conventional atmosphere for cell culture was substituted with gas combinations, including the same amount of oxygen (20%) and carbon dioxide (5%) but 75% helium, neon, argon, krypton, or xenon instead of nitrogen. The replacement of nitrogen with noble gases per se had no effects on the viability of cultured human osteosarcoma cells in vitro. Conversely, argon and xenon (but not helium, neon, and krypton) significantly limited cell loss induced by the broad-spectrum tyrosine kinase inhibitor staurosporine, the DNA-damaging agent mitoxantrone and several mitochondrial toxins. Such cytoprotective effects were coupled to the maintenance of mitochondrial integrity, as demonstrated by means of a mitochondrial transmembrane potential-sensitive dye and by assessing the release of cytochrome c into the cytosol. In line with this notion, argon and xenon inhibited the apoptotic activation of caspase-3, as determined by immunofluorescence microscopy coupled to automated image analysis. The antiapoptotic activity of argon and xenon may explain their clinically relevant cytoprotective effects. PMID:23907115
Ahmad, Mahmoud M; Abdel-Wahab, Essam A; El-Maaref, A A; Rawway, Mohammed; Shaaban, Essam R
2014-01-01
The irradiation effect of argon, oxygen glow discharge plasma, and mercury lamp on silver and agar/silver nanoparticle samples is studied. The irradiation time dependence of the synthesized silver and agar/silver nanoparticle absorption spectra and their antibacterial effect are studied and compared. In the agar/silver nanoparticle sample, as the irradiation time of argon glow discharge plasma or mercury lamp increases, the peak intensity and the full width at half maximum, FWHM, of the surface plasmon resonance absorption band is increased, however a decrease of the peak intensity with oxygen glow plasma has been observed. In the silver nanoparticle sample, as the irradiation time of argon, oxygen glow discharge plasma or mercury lamp increases, the peak intensity of the surface plasmon resonance absorption band is increased, however, there is no significant change in the FWHM of the surface plasmon resonance absorption band. The SEM results for both samples showed nanoparticle formation with mean size about 50 nm and 40 nm respectively. Throughout the irradiation time with the argon, oxygen glow discharge plasma or mercury lamp, the antibacterial activity of several kinds of Gram-positive and Gram-negative bacteria has been examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greig, A., E-mail: amelia.greig@anu.edu.au; Charles, C.; Boswell, R. W.
2016-01-15
Rovibrational spectroscopy band fitting of the nitrogen (N{sub 2}) second positive system is a technique used to estimate the neutral gas temperature of N{sub 2} discharges, or atomic discharges with trace amounts of a N{sub 2} added. For mixtures involving argon and N{sub 2}, resonant energy transfer between argon metastable atoms (Ar*) and N{sub 2} molecules may affect gas temperature estimates made using the second positive system. The effect of Ar* resonance energy transfer is investigated here by analyzing neutral gas temperatures of argon-N{sub 2} mixtures, for N{sub 2} percentages from 1% to 100%. Neutral gas temperature estimates are highermore » than expected for mixtures involving greater than 5% N{sub 2} addition, but are reasonable for argon with less than 5% N{sub 2} addition when compared with an analytic model for ion-neutral charge exchange collisional heating. Additional spatiotemporal investigations into neutral gas temperature estimates with 10% N{sub 2} addition demonstrate that although absolute temperature values may be affected by Ar* resonant energy transfer, spatiotemporal trends may still be used to accurately diagnose the discharge.« less
Publications - GMC 38 | Alaska Division of Geological & Geophysical Surveys
DGGS GMC 38 Publication Details Title: Potassium-Argon age determinations for the General Petroleum Reference Coggeshall, N.D., 1975, Potassium-Argon age determinations for the General Petroleum Corp. Great
... a needle-like applicator called a cryoprobe, and liquid nitrogen or argon gas to create intense cold to freeze and destroy ... of the diseased tissue and then deliver the liquid nitrogen or argon gas. Living tissue, healthy or diseased, cannot withstand extremely ...
Characteristics of Electron Drift in an Ar-Hg Mixture
NASA Astrophysics Data System (ADS)
Golyatina, R. I.; Maiorov, S. A.
2018-04-01
The characteristics of electron drift in a mixture of argon with mercury vapor at reduced electric fields of E/ N = 1-100 Td are calculated and analyzed with allowance for inelastic collisions. It is shown that even a minor additive of mercury to argon at a level of a fraction of percent substantially affects the discharge parameters, in particular, the characteristics of inelastic processes. The influence of the concentration of mercury vapor in argon on the kinetic characteristics, such as the diffusion and mobility coefficients and ionization frequency, is investigated.
Methods for using argon-39 to age-date groundwater using ultra-low-background proportional counting
Mace, Emily; Aalseth, Craig; Brandenberger, Jill; ...
2016-12-21
Argon-39 can be used as a tracer for age-dating glaciers, oceans, and more recently, groundwater. With a half-life of 269 years, 39Ar fills an intermediate age range gap (50–1,000 years) not currently covered by other common groundwater tracers. Therefore, adding this tracer to the data suite for groundwater studies provides an important tool for improving our understanding of groundwater systems. Lastly, we present the methods employed for arriving at an age-date for a given sample of argon degassed from groundwater.
Polarizability of Helium, Neon, and Argon: New Perspectives for Gas Metrology
NASA Astrophysics Data System (ADS)
Gaiser, Christof; Fellmuth, Bernd
2018-03-01
With dielectric-constant gas thermometry, the molar polarizability of helium, neon, and argon has been determined with relative standard uncertainties of about 2 parts per million. A series of isotherms measured with the three noble gases and two different experimental setups led to this unprecedented level of uncertainty. These data are crucial for scientists in the field of gas metrology, working on pressure and temperature standards. Furthermore, with the new benchmark values for neon and argon, theoretical calculations, today about 3 orders of magnitude larger in uncertainty, can be checked and improved.
Polarizability of Helium, Neon, and Argon: New Perspectives for Gas Metrology.
Gaiser, Christof; Fellmuth, Bernd
2018-03-23
With dielectric-constant gas thermometry, the molar polarizability of helium, neon, and argon has been determined with relative standard uncertainties of about 2 parts per million. A series of isotherms measured with the three noble gases and two different experimental setups led to this unprecedented level of uncertainty. These data are crucial for scientists in the field of gas metrology, working on pressure and temperature standards. Furthermore, with the new benchmark values for neon and argon, theoretical calculations, today about 3 orders of magnitude larger in uncertainty, can be checked and improved.
Boltzmann expansion in a radiofrequency conical helicon thruster operating in xenon and argon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles, C.; Boswell, R.; Takahashi, K.
2013-06-03
A low pressure ({approx}0.5 mTorr in xenon and {approx}1 mTorr in argon) Boltzmann expansion is experimentally observed on axis within a magnetized (60 to 180 G) radiofrequency (13.56 MHz) conical helicon thruster for input powers up to 900 W using plasma parameters measured with a Langmuir probe. The axial forces, respectively, resulting from the electron and magnetic field pressures are directly measured using a thrust balance for constant maximum plasma pressure and show a higher fuel efficiency for argon compared to xenon.
Mars' South Polar Ar Enhancement: A Tracer for South Polar Seasonal Meridional Mixing
NASA Astrophysics Data System (ADS)
Sprague, A. L.; Boynton, W. V.; Kerry, K. E.; Janes, D. M.; Hunten, D. M.; Kim, K. J.; Reedy, R. C.; Metzger, A. E.
2004-11-01
The gamma ray spectrometer on the Mars Odyssey spacecraft measured an enhancement of atmospheric argon over southern high latitudes during autumn followed by dissipation during winter and spring. Argon does not freeze at temperatures normal for southern winter (~145 kelvin) and is left in the atmosphere, enriched relative to carbon dioxide (CO2), as the southern seasonal cap of CO2 frost accumulates. Calculations of seasonal transport of argon into and out of southern high latitudes point to meridional (north-south) mixing throughout southern winter and spring.
Characterization of weakly ionized argon flows for radio blackout mitigation experiments
NASA Astrophysics Data System (ADS)
Steffens, L.; Koch, U.; Esser, B.; Gülhan, A.
2017-06-01
For reproducing the so-called E × B communication blackout mitigation scheme inside the L2K arc heated facility of the DLR in weakly ionized argon §ows, a §at plate model has been equipped with a superconducting magnet, electrodes, and a setup comprising microwave plasma transmission spectroscopy (MPTS). A thorough characterization of the weakly ionized argon §ow has been performed including the use of microwave interferometry (MWI), Langmuir probe measurements, Pitot probe pro¦les, and spectroscopic methods like diode laser absorption spectroscopy (DLAS) and emission spectroscopy.
Methods for using argon-39 to age-date groundwater using ultra-low-background proportional counting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mace, Emily; Aalseth, Craig; Brandenberger, Jill
Argon-39 can be used as a tracer for age-dating glaciers, oceans, and more recently, groundwater. With a half-life of 269 years, 39Ar fills an intermediate age range gap (50-1,000 years) not currently covered by other common groundwater tracers. Therefore, adding this tracer to the data suite for groundwater studies provides an important tool for improving our understanding of groundwater systems. We present the methods employed for arriving at an age-date for a given sample of argon degassed from groundwater.
Methods for using argon-39 to age-date groundwater using ultra-low-background proportional counting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mace, Emily; Aalseth, Craig; Brandenberger, Jill
Argon-39 can be used as a tracer for age-dating glaciers, oceans, and more recently, groundwater. With a half-life of 269 years, 39Ar fills an intermediate age range gap (50–1,000 years) not currently covered by other common groundwater tracers. Therefore, adding this tracer to the data suite for groundwater studies provides an important tool for improving our understanding of groundwater systems. Lastly, we present the methods employed for arriving at an age-date for a given sample of argon degassed from groundwater.
40Ar/39Ar systematics and argon diffusion in amber: implications for ancient earth atmospheres
Landis, G.P.; Snee, L.W.
1991-01-01
Argon isotope data indicate retained argon in bulk amber (matrix gas) is radiogenic [40Ar/39Ar ???32o] than the much more abundant surface absorbed argon [40Ar/39Ar ???295.5]. Neutron-induced 39Ar is retained in amber during heating experiments to 150?? -250??C, with no evidence of recoiled 39Ar found after irradiation. A maximum permissible volume diffusion coefficient of argon in amber (at ambient temperature) D???1.5 x 10-17 cm2S-1 is calculated from 39Ar retention. 40Ar/39Ar age calculations indicate Dominican Republic amber is ??? 45 Ma and North Dakota amber is ??? 89 Ma, both at least reasonable ages for the amber based upon stratigraphic and paleontological constraints and upon the small amount of radiogenic 40Ar. To date, over 300 gas analyses of ambers and resins of Cretaceous to Recent age that are geographically distributed among fifteen noted world locations identify mixtures of gases in different sites within amber (Berner and Landis, 1988). The presence of multiple mixing trends between compositionally distinct end-members gases within the same sample and evidence for retained radiogenic argon within the amber argue persuasivley against rapid exchange by diffusion of amber-contained gases with moder air. Only gas in primary bubbles entrapped between successive flows of tree resin has been interpreted as original "ancient air", which is an O2-rich end-member gas with air-like N2/Ar ratios. Gas analyses of these primary bubbles indicate atmospheric O2 levels in the Late Cretaceous of ??? 35%, and that atmospheric O2 dropped by early Tertiary time to near a present atmospheric level of 21% O2. A very low argon diffusion coefficient in amber persuasively argues for a gas in primary bubbles trapped in amber being ancient air (possibly modified only by O2 reaction with amber). ?? 1991.
2012-11-02
New results from the Sample Analysis at Mars, or SAM, instrument on NASA Curiosity rover detected about 2,000 times as much argon-40 as argon-36, which weighs less, confirming the connection between Mars and Martian meteorites found on Earth.
Trapping cold ground state argon atoms.
Edmunds, P D; Barker, P F
2014-10-31
We trap cold, ground state argon atoms in a deep optical dipole trap produced by a buildup cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of cotrapped metastable argon atoms and determine an elastic cross section. Using a type of parametric loss spectroscopy we also determine the polarizability of the metastable 4s[3/2](2) state to be (7.3±1.1)×10(-39) C m(2)/V. Finally, Penning and associative losses of metastable atoms in the absence of light assisted collisions, are determined to be (3.3±0.8)×10(-10) cm(3) s(-1).
Rotational study on the van der Waals complex 1-chloro-1,1-difluoroethane-argon.
Wang, Juan; Chen, Junhua; Feng, Gang; Xia, Zhining; Gou, Qian
2018-03-15
The rotational spectrum of the van der Waals complex formed between 1-chloro-1,1-difluoroethane and argon has been investigated by using a pulsed jet Fourier transform microwave spectrometer. Only one set of rotational transitions belonging to the lowest energy conformer has been observed and assigned, although theoretical calculations suggest six stable conformers that might be observed. The observed conformer, according to the experimental evidence from two isotopologues ( 35 Cl and 37 Cl), adopts a configuration in which the argon atom is located, close to the CF 2 Cl top, between the CCF and CCCl planes (the dihedral angle ∠ArCCCl is 65.2°). The distance between argon atom and the center of mass of CH 3 CF 2 Cl is 3.949(2) Å. The dissociation energy, with pseudo diatomic approximation, is evaluated to be 2.4kJmol -1 . Copyright © 2017 Elsevier B.V. All rights reserved.
Rotational study on the van der Waals complex 1-chloro-1,1-difluoroethane-argon
NASA Astrophysics Data System (ADS)
Wang, Juan; Chen, Junhua; Feng, Gang; Xia, Zhining; Gou, Qian
2018-03-01
The rotational spectrum of the van der Waals complex formed between 1-chloro-1,1-difluoroethane and argon has been investigated by using a pulsed jet Fourier transform microwave spectrometer. Only one set of rotational transitions belonging to the lowest energy conformer has been observed and assigned, although theoretical calculations suggest six stable conformers that might be observed. The observed conformer, according to the experimental evidence from two isotopologues (35Cl and 37Cl), adopts a configuration in which the argon atom is located, close to the sbnd CF2Cl top, between the CCF and CCCl planes (the dihedral angle ∠ ArCCCl is 65.2°). The distance between argon atom and the center of mass of CH3CF2Cl is 3.949(2) Å. The dissociation energy, with pseudo diatomic approximation, is evaluated to be 2.4 kJ mol- 1.
NASA Technical Reports Server (NTRS)
Cygnarowicz, Thomas A.; Schein, Michael E.; Lindauer, David A.; Scarlotti, Roger; Pederson, Robert
1990-01-01
A solid argon cooler (SAC) for attached Shuttle payloads has been developed and qualified to meet the need for low cost cooling of flight instruments to the temperature range of 60-120 K. The SACs have been designed and tested with the intent of flying them up to five times. Two coolers, as part of the Broad Band X-ray Telescope (BBXRT) instrument on the ASTRO-1 payload, are awaiting launch on Space Shuttle mission STS-35. This paper describes the design, testing and performance of the SAC and its vacuum maintenance system (VMS), used to maintain the argon as a solid during launch delays of up to 5 days. BBXRT cryogen system design features used to satisfy Shuttle safety requirements are discussed, along with SAC ground servicing equipment (GSE) and procedures used to fill, freeze and subcool the argon.
The quantitative analysis of silicon carbide surface smoothing by Ar and Xe cluster ions
NASA Astrophysics Data System (ADS)
Ieshkin, A. E.; Kireev, D. S.; Ermakov, Yu. A.; Trifonov, A. S.; Presnov, D. E.; Garshev, A. V.; Anufriev, Yu. V.; Prokhorova, I. G.; Krupenin, V. A.; Chernysh, V. S.
2018-04-01
The gas cluster ion beam technique was used for the silicon carbide crystal surface smoothing. The effect of processing by two inert cluster ions, argon and xenon, was quantitatively compared. While argon is a standard element for GCIB, results for xenon clusters were not reported yet. Scanning probe microscopy and high resolution transmission electron microscopy techniques were used for the analysis of the surface roughness and surface crystal layer quality. The gas cluster ion beam processing results in surface relief smoothing down to average roughness about 1 nm for both elements. It was shown that xenon as the working gas is more effective: sputtering rate for xenon clusters is 2.5 times higher than for argon at the same beam energy. High resolution transmission electron microscopy analysis of the surface defect layer gives values of 7 ± 2 nm and 8 ± 2 nm for treatment with argon and xenon clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldenbuerger, S.; Brandt, C.; Brochard, F.
2010-06-15
Fast visible imaging is used on a cylindrical magnetized argon plasma produced by thermionic discharge in the Mirabelle device. To link the information collected with the camera to a physical quantity, fast camera movies of plasma structures are compared to Langmuir probe measurements. High correlation is found between light fluctuations and plasma density fluctuations. Contributions from neutral argon and ionized argon to the overall light intensity are separated by using interference filters and a light intensifier. Light emitting transitions are shown to involve a metastable neutral argon state that can be excited by thermal plasma electrons, thus explaining the goodmore » correlation between light and density fluctuations. The propagation velocity of plasma structures is calculated by adapting velocimetry methods to the fast camera movies. The resulting estimates of instantaneous propagation velocity are in agreement with former experiments. The computation of mean velocities is discussed.« less
The influence of oxygen additions on argon-shielded gas metal arc welding processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joensson, P.G.; Murphy, A.B.; Szekely, J.
1995-02-01
It has been observed experimentally that small additions of oxygen to the argon shielding gas affect the general operation of GMAW processes. By theoretically modeling the arc column, it is shown that the addition of 2 to 5% oxygen to argon has an insignificant effect on the arc characteristics. This corresponds to the minor changes in the thermophysical transport and thermodynamic properties caused by the oxygen addition. Therefore, it is concluded that the addition of oxygen to the argon shielding gas mainly affects the anode and the cathode regions. From the literature, it was found that the formation of oxidesmore » initiates arcing at the cathode and decreases the movement of the cathode spots. These oxides can also improve the wetting conditions at the workpiece and the electrode. Finally, oxygen is found to affect the surface tension gradient and thereby the convective flow of liquid metal in the weld pool.« less
Synodic and Semiannual Oscillations of Argon-40 in the Lunar Exosphere
NASA Technical Reports Server (NTRS)
Hodges, R. Richard, Jr.; Mahaffy, Paul R.
2016-01-01
The neutral mass spectrometer on the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft collected a trove of exospheric data, including a set of high-quality measurements of radiogenic Ar-40 over a period of 142 days. Data synthesis studies, using well-established exosphere simulation tools, show that the LADEE argon data are consistent with an exosphere-regolith interaction that is dominated by adsorption and that the desorption process generates the Armand distribution of exit velocities. The synthesis work has uncovered an apparent semiannual oscillation of argon that is consistent with temporal sequestration in the seasonal cold traps created at the poles by the obliquity of the Moon. In addition, the LADEE data provide new insight into the pristine nature of lunar regolith, its spatially varying sorption properties, and the influence of sorption processes on the synodic oscillation of the argon exosphere.
Mudgil, A V; To, K W; Balachandran, R M; Janigian, R H; Tsiaras, W G
1999-01-01
To determine the optimal wavelength for subconjunctival laser suture lysis. 130 black monofilament 10-0 nylon sutures were sewn subconjunctivally into the bare sclera of enucleated rabbit globes. The lowest energy levels facilitating laser suture lysis were determined for the argon green (514.5 NM), argon blue-green (488.0 NM, 514.5 NM), and krypton red (647.1 NM) wavelengths. In addition, absorption spectroscopy was performed on the suture material and conjunctiva using the Perkin Elmer W/VIS Lambda 2 spectrometer. Krypton red produced the fewest buttonhole defects, and it was also the most efficient energy source for suture lysis (P = 0.0001) under nontenectomized conjunctiva. Absorbance spectra studies revealed peak absorbance at 628 NM for the 10-0 nylon suture material. Based on animal and absorption spectroscopy studies, krypton red may be a safer and more efficient wavelength for subconjunctival laser suture lysis.
NASA Astrophysics Data System (ADS)
Oldenbürger, S.; Brandt, C.; Brochard, F.; Lemoine, N.; Bonhomme, G.
2010-06-01
Fast visible imaging is used on a cylindrical magnetized argon plasma produced by thermionic discharge in the Mirabelle device. To link the information collected with the camera to a physical quantity, fast camera movies of plasma structures are compared to Langmuir probe measurements. High correlation is found between light fluctuations and plasma density fluctuations. Contributions from neutral argon and ionized argon to the overall light intensity are separated by using interference filters and a light intensifier. Light emitting transitions are shown to involve a metastable neutral argon state that can be excited by thermal plasma electrons, thus explaining the good correlation between light and density fluctuations. The propagation velocity of plasma structures is calculated by adapting velocimetry methods to the fast camera movies. The resulting estimates of instantaneous propagation velocity are in agreement with former experiments. The computation of mean velocities is discussed.
Nuclear recoil measurements with the ARIS experiment
NASA Astrophysics Data System (ADS)
Fan, Alden; ARIS Collaboration
2017-01-01
As direct dark matter searches become increasingly sensitive, it is important to fully characterize the target of the search. The goal of the Argon Recoil Ionization and Scintillation (ARIS) experiment is to quantify information related to the scintillation and ionization energy scale, quenching factor, ion recombination probability, and scintillation time response of nuclear recoils, as expected from WIMPs, in liquid argon. A time projection chamber with an active mass of 0.5 kg of liquid argon and capable of full 3D position reconstruction was exposed to an inverse kinematic neutron beam at the Institut de Physique Nucleaire d'Orsay in France. A scan of nuclear recoil energies was performed through coincidence with a set of neutron detectors to quantify properties of nuclear recoils in liquid argon at various electric fields. The difference in ionization and scintillation response with differing recoil track angle to the electric field was also studied. The preliminary results of the experiment will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yaroshenko, V. V.; Antonova, T.; Thomas, H. M.
2009-10-15
The screening length, the time-average electric field, and the particle charge as well as the local vertical gradients of these quantities are determined experimentally within a sheath of a capacitively coupled rf, 13.56 MHz, discharge at enhanced argon gas pressures of 30, 55, and 100 Pa. The parameters are derived directly from comparative measurements of levitation positions of the particles of different sizes and variations in the levitation heights caused by formation of new dust layers. The electrostatic effect of the horizontally extended dust layers on the sheath electric field is investigated.
Interaction of gases with ablative composites. I - Ar, CO2, and N2
NASA Technical Reports Server (NTRS)
King, C. A.; Wightman, J. P.
1974-01-01
The sorption of argon, carbon dioxide, and nitrogen on two heat shield composites (SLA-561 and SLA-561V) and on the SLA components was measured over the pressure range of 0.001 to 760 torr and in the temperature range of 30 to 50 C. The sorption of the gases by both the composites and the components varied directly with pressure. The sorption of CO2 by the phenolic spheres and the silicone elastomer and of Ar by the silicone elastomer varied inversely with temperature. The mechanism involved in the gas sorption was primarily absorption.
Laser synthesis and spectroscopy of acetonitrile/silver nanoparticles
NASA Astrophysics Data System (ADS)
Akin, S. T.; Liu, X.; Duncan, M. A.
2015-11-01
Silver nanoparticles with acetonitrile ligands are produced in a laser ablation flow reactor. Excimer laser ablation produces gas phase metal clusters which are thermalized with helium or argon collisions in the flowtube, and reactions with acetonitrile vapor coordinate this ligand to the particle surface. The gaseous mixture is captured in a cryogenic trap; warming produces a solution of excess ligand and coated particles. TEM images reveal particle sizes of 10-30 nm diameter. UV-vis absorption and fluorescence spectra are compared to those of standard silver nanoparticles with surfactant coatings. Deep-UV ligand absorption is strongly enhanced by nanoparticle adsorption.
Handbook of Isotopes in the Cosmos
NASA Astrophysics Data System (ADS)
Clayton, Donald
2007-08-01
List of illustrations; Preface; Introduction; 1. Hydrogen (H); 2. Helium (He); 3. Lithium (Li); 4. Beryllium (Be); 5. Boron (B); 6. Carbon (C); 7. Nitrogen (N); 8. Oxygen (O); 9. Fluorine (F); 10. Neon (Ne); 11. Sodium (Na); 12. Magnesium (Mg); 13. Aluminium (Al); 14. Silicon (Si); 15. Phosphorous (P); 16. Sulphur (S); 17. Chlorine (Cl); 18. Argon (Ar); 19. Potassium (K); 20. Calcium (Ca); 21. Scandium (Sc); 22. Titanium (Ti); 23. Vanadium (V); 24. Chromium (Cr); 25. Manganese (Mn); 26. Iron (Fe); 27. Cobalt (Co); 28. Nickel (Ni); 29. Copper (Cu); 30. Zinc (Zn); 31. Gallium (Ga); Glossary.
Handbook of Isotopes in the Cosmos
NASA Astrophysics Data System (ADS)
Clayton, Donald
2003-09-01
List of illustrations; Preface; Introduction; 1. Hydrogen (H); 2. Helium (He); 3. Lithium (Li); 4. Beryllium (Be); 5. Boron (B); 6. Carbon (C); 7. Nitrogen (N); 8. Oxygen (O); 9. Fluorine (F); 10. Neon (Ne); 11. Sodium (Na); 12. Magnesium (Mg); 13. Aluminium (Al); 14. Silicon (Si); 15. Phosphorous (P); 16. Sulphur (S); 17. Chlorine (Cl); 18. Argon (Ar); 19. Potassium (K); 20. Calcium (Ca); 21. Scandium (Sc); 22. Titanium (Ti); 23. Vanadium (V); 24. Chromium (Cr); 25. Manganese (Mn); 26. Iron (Fe); 27. Cobalt (Co); 28. Nickel (Ni); 29. Copper (Cu); 30. Zinc (Zn); 31. Gallium (Ga); Glossary.
Influences of the residual argon gas and thermal annealing on Ta2O5 and SiO2 thin film filters
NASA Astrophysics Data System (ADS)
Liu, Wen-Jen; Chen, Chih-Min; Lai, Yin-Chieh
2005-04-01
Ion beam assisted deposition (IBAD) technique had widely used for improving stacking density and atomic mobility of thin films in many applications, especially adopted in optical film industries. Tantalum pentaoxide (Ta2O5) and silicon oxides (SiO2) optical thin films were deposited on the quartz glass substrate by using argon ion beam assisted deposition, and the influences of the residual argon gas and thermal annealing processes on the optical property, stress, compositional and microstructure evolution of the thin films were investigated in this study. Ta2O5 thin films were analyzed by XPS indicated that the ratio value of oxygen to tantalum was insufficient, at the same time, the residual argon gas in the thin films might result in film and device instabilities. Adopting oxygen-thermal annealing treatment at the temperature of 425°C, the thin films not only decreased the residual argon gas and the surface roughness, but also provided the sufficient stoichiometric ratio. Simultaneously, microstructure examination indicated few nano-crystallized structures and voids existed in Ta2O5 thin films, and possessed reasonable refractive index and lower extinction coefficient. By the way, we also suggested the IBAD system using the film compositional gas ion beam to replace the argon ion beam for assisting deposited optical films. The designed (HL)6H6LH(LH)6 multi-layers indicated higher insertion loss than the designed (HL)68H(LH)6 multi-layers. Therefore, using the high refractive index as spacer material represented lower insertion loss.
Argon metastable dynamics and lifetimes in a direct current microdischarge
NASA Astrophysics Data System (ADS)
Stefanović, Ilija; Kuschel, Thomas; Schröter, Sandra; Böke, Marc
2014-09-01
In this paper we study the properties of a pulsed dc microdischarge with the continuous flow of argon. Argon metastable lifetimes are measured by tunable diode laser absorption spectroscopy (TDLAS) and are compared with calculated values which yield information about excitation and de-excitation processes. By increasing the gas flow-rate about 5 times from 10 to 50 sccm, the Arm lifetime increases from 1 to 5 μs due to the reduction of metastable quenching with gas impurities. Optical emission spectroscopy reveals nitrogen and water molecules as the main gas impurities. The estimated N2 density [N2] = 0.1% is too low to explain the measured metastable lifetimes. Water impurity was found to be the main de-excitation source of argon metastable atoms due to high quenching coefficients. The water impurity level of [H2O] = 0.15% to 1% is sufficient to bring calculated metastable lifetimes in line with experiments. The maximum value of water content in the discharge compared to the argon atoms is estimated to approximately 6%, due to the large surface to volume ratio of the microdischarge. The current pulse releases the water molecules from the electrode surface and they are either re-adsorbed in the time between 0.4 ms for [H2O] = 1% and 2.6 ms for [H2O] = 0.15% or pumped out of the discharge with the speed equal to the gas flow-rate. Depending on its partial pressure, the water impurity re-adsorption time is of the order of magnitude or less then the argon gas residence time.
Burkholder, Tanya H; Niel, Lee; Weed, James L; Brinster, Lauren R; Bacher, John D; Foltz, Charmaine J
2010-07-01
In this study we compared rat (n = 16) responses to euthanasia with either gradual-fill CO(2) or rapid induction argon gas by evaluating the animals' heart rate via radiotelemetry, behavior, and vocalizations. We also evaluated the histologic effects of the gases. Rats were placed in an open test chamber 24 h before the start of the experiment. During baseline tests, rats were exposed to oxygen to evaluate the effects of the noise and movement of gas entering the chamber; 1 wk later, rats were euthanized by gas displacement with either 10%/min CO(2) or 50%/min argon gas. Rats tended to have higher heart rats and were more active during the baseline test, but these parameters were normal before the euthanasia experiment, suggesting that the rats had acclimated to the equipment. Heart rate, behavior, and ultrasonic vocalizations were recorded for 2 min after gas introduction in both groups. All rats appeared conscious throughout the test interval. The heart rates of rats exposed to argon did not change, whereas those of rats exposed to CO(2) declined significantly. Unlike those exposed to CO(2), rats euthanized with argon gas gasped and demonstrated seizure-like activity. There were no differences in the pulmonary lesions resulting from death by either gas. Our results suggest that argon as a sole euthanasia agent is aversive to rats. CO(2) using a 10%/min displacement may be less aversive than more rapid displacements. Future research investigating methods of euthanasia should allow sufficient time for the rats to acclimate to the test apparatus.
Burkholder, Tanya H; Niel, Lee; Weed, James L; Brinster, Lauren R; Bacher, John D; Foltz, Charmaine J
2010-01-01
In this study we compared rat (n = 16) responses to euthanasia with either gradual-fill CO2 or rapid induction argon gas by evaluating the animals' heart rate via radiotelemetry, behavior, and vocalizations. We also evaluated the histologic effects of the gases. Rats were placed in an open test chamber 24 h before the start of the experiment. During baseline tests, rats were exposed to oxygen to evaluate the effects of the noise and movement of gas entering the chamber; 1 wk later, rats were euthanized by gas displacement with either 10%/min CO2 or 50%/min argon gas. Rats tended to have higher heart rats and were more active during the baseline test, but these parameters were normal before the euthanasia experiment, suggesting that the rats had acclimated to the equipment. Heart rate, behavior, and ultrasonic vocalizations were recorded for 2 min after gas introduction in both groups. All rats appeared conscious throughout the test interval. The heart rates of rats exposed to argon did not change, whereas those of rats exposed to CO2 declined significantly. Unlike those exposed to CO2, rats euthanized with argon gas gasped and demonstrated seizure-like activity. There were no differences in the pulmonary lesions resulting from death by either gas. Our results suggest that argon as a sole euthanasia agent is aversive to rats. CO2 using a 10%/min displacement may be less aversive than more rapid displacements. Future research investigating methods of euthanasia should allow sufficient time for the rats to acclimate to the test apparatus. PMID:20819391
Winter, Selina; Nolff, Mirja Christine; Reese, Sven; Meyer-Lindenberg, Andrea
2018-04-01
To evaluate the bacterial contamination rate and to compare the efficacy of polyhexanide, cold argon plasma and saline at reducing bacterial bio-burden in dog bite wounds. Dogs with bite-wound injuries were included when surgical debridement was pursued with subsequent treatment using either polyhexanide-biguanide lavage (A), cold argon plasma treatment (B) or saline lavage (C). Culture swabs were taken after debridement as well as after lavageor argon treatment. Statistical analysis was performed using the chi-square test. A total of 40 dogs were enrolled in the study (A: n = 12; B: n = 10; C: n = 18). The majority of injuries were minor and 87.5% of patients had positive bacterial culture results pre-lavage, with 19.8% of isolates classified as multidrug resistant. A reduction in wound bioburden was achieved in 8/12 patients in group A, 5/10 patients in group B and 14/18 patients in group C. Complete decontamination was achieved in 5/12 patients in group A, 2/10 in group B and 9/18 in group C. None of these differences were statistically significant nor associated with the development of complications. No statistically significant differences were detected between the treatment groups; however, the cold argon plasma treatment provided the least effective decontamination. Bite wounds yield a high rate of bacterial contamination, with increasing multidrug-resistance rates. Based on these preliminary results, no superior effect was detected for lavage using polyhexanidebiguanide or cold argon plasma. Schattauer GmbH.
Jones, J; Richter, K; Price, T J; Ross, A J; Crozet, P; Faust, C; Malenda, R F; Carlus, S; Hickman, A P; Huennekens, J
2017-10-14
We report measurements of rate coefficients at T ≈ 600 K for rotationally inelastic collisions of NaK molecules in the 2(A) 1 Σ + electronic state with helium, argon, and potassium atom perturbers. Several initial rotational levels J between 14 and 44 were investigated. Collisions involving molecules in low-lying vibrational levels (v = 0, 1, and 2) of the 2(A) 1 Σ + state were studied using Fourier-transform spectroscopy. Collisions involving molecules in a higher vibrational level, v = 16, were studied using pump/probe, optical-optical double resonance spectroscopy. In addition, polarization spectroscopy measurements were carried out to study the transfer of orientation in these collisions. Many, but not all, of the measurements were carried out in the "single-collision regime" where more than one collision is unlikely to occur within the lifetime of the excited molecule. The analysis of the experimental data, which is described in detail, includes an estimate of effects of multiple collisions on the reported rate coefficients. The most significant result of these experiments is the observation of a strong propensity for ΔJ = even transitions in collisions involving either helium or argon atoms; the propensity is much stronger for helium than for argon. For the initial rotational levels studied experimentally, almost all initial orientation is preserved in collisions of NaK 2(A) 1 Σ + molecules with helium. Roughly between 1/3 and 2/3 of the orientation is preserved in collisions with argon, and almost all orientation is destroyed in collisions with potassium atoms. Complementary measurements on rotationally inelastic collisions of NaCs 2(A) 1 Σ + with argon do not show a ΔJ = even propensity. The experimental results are compared with new theoretical calculations of collisions of NaK 2(A) 1 Σ + with helium and argon. The calculations are in good agreement with the absolute magnitudes of the experimentally determined rate coefficients and accurately reproduce the very strong propensity for ΔJ = even transitions in helium collisions and the less strong propensity for ΔJ = even transitions in argon collisions. The calculations also show that collisions with helium are less likely to destroy orientation than collisions with argon, in agreement with the experimental results.
NASA Astrophysics Data System (ADS)
Jones, J.; Richter, K.; Price, T. J.; Ross, A. J.; Crozet, P.; Faust, C.; Malenda, R. F.; Carlus, S.; Hickman, A. P.; Huennekens, J.
2017-10-01
We report measurements of rate coefficients at T ≈ 600 K for rotationally inelastic collisions of NaK molecules in the 2(A)1Σ+ electronic state with helium, argon, and potassium atom perturbers. Several initial rotational levels J between 14 and 44 were investigated. Collisions involving molecules in low-lying vibrational levels (v = 0, 1, and 2) of the 2(A)1Σ+ state were studied using Fourier-transform spectroscopy. Collisions involving molecules in a higher vibrational level, v = 16, were studied using pump/probe, optical-optical double resonance spectroscopy. In addition, polarization spectroscopy measurements were carried out to study the transfer of orientation in these collisions. Many, but not all, of the measurements were carried out in the "single-collision regime" where more than one collision is unlikely to occur within the lifetime of the excited molecule. The analysis of the experimental data, which is described in detail, includes an estimate of effects of multiple collisions on the reported rate coefficients. The most significant result of these experiments is the observation of a strong propensity for ΔJ = even transitions in collisions involving either helium or argon atoms; the propensity is much stronger for helium than for argon. For the initial rotational levels studied experimentally, almost all initial orientation is preserved in collisions of NaK 2(A)1Σ+ molecules with helium. Roughly between 1/3 and 2/3 of the orientation is preserved in collisions with argon, and almost all orientation is destroyed in collisions with potassium atoms. Complementary measurements on rotationally inelastic collisions of NaCs 2(A)1Σ+ with argon do not show a ΔJ = even propensity. The experimental results are compared with new theoretical calculations of collisions of NaK 2(A)1Σ+ with helium and argon. The calculations are in good agreement with the absolute magnitudes of the experimentally determined rate coefficients and accurately reproduce the very strong propensity for ΔJ = even transitions in helium collisions and the less strong propensity for ΔJ = even transitions in argon collisions. The calculations also show that collisions with helium are less likely to destroy orientation than collisions with argon, in agreement with the experimental results.
Cryosurgery in Cancer Treatment: Questions and Answers
... is the use of extreme cold produced by liquid nitrogen (or argon gas) to destroy abnormal tissue . Cryosurgery is used to ... and tumors in the bone). For internal tumors, liquid nitrogen or argon gas is circulated through a hollow instrument called a ...
Active background suppression with the liquid argon scintillation veto of GERDA Phase II
NASA Astrophysics Data System (ADS)
Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Di Marco, N.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schulz, O.; Schütz, A.-K.; Schwingenheuer, B.; Selivanenko, O.; Shevzik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.
2017-09-01
The observation of neutrinoless double beta decay would allow to shed light onto the particle nature of neutrinos. Gerda is aiming to perform a background-free search for this process using high purity germanium detectors enriched in 76Ge operated in liquid argon. This goal relies on the application of active background suppression techniques. A low background light instrumentation has been installed for Phase II to detect events with coincident energy deposition in the nearby liquid argon. The intended background index of ˜10-3 cts/(keV·ky·yr) has been confirmed.
A 20-liter test stand with gas purification for liquid argon research
Li, Y.; Thorn, C.; Tang, W.; ...
2016-06-06
Here, we describe the design of a 20-liter test stand constructed to study fundamental properties of liquid argon (LAr). Moreover, this system utilizes a simple, cost-effective gas argon (GAr) purification to achieve high purity, which is necessary to study electron transport properties in LAr. An electron drift stack with up to 25 cm length is constructed to study electron drift, diffusion, and attachment at various electric fields. Finally, a gold photocathode and a pulsed laser are used as a bright electron source. The operational performance of this system is reported.
A 20-liter test stand with gas purification for liquid argon research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y.; Thorn, C.; Tang, W.
Here, we describe the design of a 20-liter test stand constructed to study fundamental properties of liquid argon (LAr). Moreover, this system utilizes a simple, cost-effective gas argon (GAr) purification to achieve high purity, which is necessary to study electron transport properties in LAr. An electron drift stack with up to 25 cm length is constructed to study electron drift, diffusion, and attachment at various electric fields. Finally, a gold photocathode and a pulsed laser are used as a bright electron source. The operational performance of this system is reported.
Plasma of argon enhances the adhesion of murine osteoblasts on different graft materials.
Canullo, Luigi; Genova, Tullio; Naenni, Nadja; Nakajima, Yasushi; Masuda, Katsuhiko; Mussano, Federico
2018-04-25
plasma of argon treatment was demonstrated to increase material surface energy leading to stronger and faster interaction with cells. The aim of the present in vitro study was to test the effect of plasma treatment on different graft materials. synthetic hydroxyapatite (Mg-HA), biphasic calcium phosphate (BCP), cancellous and cortical xenogeneic bone matrices (CaBM, CoBM) were used representing commonly used classes of bone substitute materials. Fifty serially numbered disks with a 10mm-diameter from each graft material were randomly divided into two groups: Test group (argon plasma treatment) and Control group (absence of treatment). Cell morphology (using pre-osteoblastic murine cells) and protein adsorption were analyzed at all samples from both the test and control group. Differences between groups were analyzed using the Mann-Whitney test setting the level of significance at p<0.05. plasma treatment significantly increased the protein adsorption at all samples. Similarly, plasma treatment significantly increased cell adhesion in all groups. data confirmed that non-atmospheric plasma of argon treatment led to an increase of protein adsorption and cell adhesion in all groups of graft material to a similar extent. plasma of argon is able to improve the surface conditions of graft materials. Copyright © 2018 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, Z.; Han, Q.; Wang, D.; Macé, T.; Kipphardt, H.; Maiwald, M.; Tuma, D.; Uehara, S.; Akima, D.; Shimosaka, T.; Jung, J.; Oh, S.-H.; van der Veen, A.; van Wijk, J. I. T.; Ziel, P. R.; Konopelko, L.; Valkova, M.; Mogale, David M.; Botha, A.; Brewer, P.; Murugan, A.; Doval Minnaro, M.; Miller, M.; Guenther, F.; Kelly, M. E.
2016-01-01
This key comparison aims to assess the capabilities of the participants to determine the amount-of-substance fraction oxygen in nitrogen. The GAWG has classified this as a track B comparison, due to the unexpected 50 μmol/mol argon mole fraction content of the transfer standards, which effects the achievable performance of some measurement techniques such a GC-TCD. The separation of oxygen and argon is challenging, and not all systems in use are equally well designed for it. As this analytical challenge due to a substantial fraction of argon in the transfer standards became a reality, the Gas Analysis Working Group (GAWG) decided to qualify this key comparison as a regular key comparison and not as a core comparison, which may be used to support calibration and measurement capabilities (CMCs) for oxygen in nitrogen, or for oxygen in nitrogen mixtures containing argon only (see also the section on support to CMCs). Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
The DarkSide physics program and its recent results
D'Angelo, D.
2017-01-12
Here, DarkSide (DS) at Gran Sasso underground laboratory is a direct Dark Matter search program based on Time Projection Chambers (TPC) with liquid Argon from underground sources. The DarkSide-50 (DS-50) TPC, with 150 kg of Argon is installed inside active neutron and muon detectors. DS-50 has been taking data since November 2013 with Atmospheric Argon (AAr) and since April 2015 with Underground Argon (UAr), depleted in radioactive 39Ar by a factor ~1400. The exposure of 1422 kg d of AAr has demonstrated that the operation of DS-50 for three years in a background free condition is a solid reality, thanksmore » to the superb performance of the Pulse Shape Analysis. The first release of results from an exposure of 2616 kg d of UAr has shown no candidate Dark Matter events. We have set the best limit for Spin-Independent elastic nuclear scattering of WIMPs obtained by Argon-based detectors, corresponding to a cross-section of 2 10 –44 cm 2 at a WIMP mass of 100 GeV. We present the detector design and performance, the results from the AAr run and the first results from the UAr run and we briefly introduce the future of the DarkSide program.« less
[Tonsillotomy with the argon-supported monopolar needle--first clinical results].
Huber, K; Sadick, H; Maurer, J T; Hörmann, K; Hammerschmitt, N
2005-09-01
Primary management of tonsillar hyperplasia in children is tonsillectomy. Recent data from clinical case-series are clearly in support of the hypothesis that tonsillotomy with the CO2-laser seems to be effective and is noted to have less postoperative bleeding and less pain as compared to tonsillectomy. For the first time we used a monopolar argon-supported needle for tonsillotomy in the following study. Fifty patients (age: 4.58 years; SD +/- 2.33) with benign tonsillar hyperplasia were recruited. For tonsillotomy we used the monopolar argon-supported needle. The outcome measures were postoperative pain, capability of oral intake, consumption of analgesics and postoperative bleeding. No postoperative bleeding occurred. Post-operative pain hardly occurred and could easily be controlled. The third postoperative day analgesics intake was under one portion per day (mean: 0.91; SD +/- 1.26). Capability of oral intake and swallowing was normal on the seventh postoperative day. It was concluded that tonsillotomy, using the monopolar argon-supported needle, is a valid treatment for benign tonsillar hyperplasia in children, which can be performed with slight post-operative pain and a low risk for postoperative bleeding. It offers good dissection and haemostasis abilities. Compared to the CO2-laser the monopolar argon-supported needle does not require any laser safety precautions.
The DarkSide physics program and its recent results
NASA Astrophysics Data System (ADS)
D'Angelo, D.; Agnes, P.; Agostino, L.; F. M. Albuquerque, I.; Alexander, T.; K. Alton, A.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; Crippa, L.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; M. Goretti, A.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; R. Hackett, B.; Herner, K.; V. Hungerford, E.; Ianni, Al.; Ianni, An.; James, I.; Jollet, C.; Keeter, K.; L. Kendziora, C.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Lissia, M.; Li, X.; Lombardi, P.; Luitz, S.; N. Machulin, I.; Mandarano, A.; Maricic, J.; Marini, L.; M. Mari, S.; J. Martoff, C.; Ma, Y.; Meregaglia, A.; D. Meyers, P.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M.; Mosteiro, P.; J. Mount, B.; N. Muratova, V.; Musico, P.; Napolitano, J.; Nelson, A.; Odrowski, S.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; A. Pugachev, D.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; L. Renshaw, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; A. Semenov, D.; Shields, E.; N. Singh, P.; D. Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; V. Unzhakov, E.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; W. Watson, A.; Westerdale, S.; Wilhelmi, J.; M. Wojcik, M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.
2017-07-01
DarkSide (DS) at Gran Sasso underground laboratory is a direct Dark Matter search program based on Time Projection Chambers (TPC) with liquid Argon from underground sources. The DarkSide-50 (DS-50) TPC, with 150kg of Argon is installed inside active neutron and muon detectors. DS-50 has been taking data since November 2013 with Atmospheric Argon (AAr) and since April 2015 with Underground Argon (UAr), depleted in radioactive ^{39} Ar by a factor {˜}1400 . The exposure of 1422kg d of AAr has demonstrated that the operation of DS-50 for three years in a background free condition is a solid reality, thanks to the superb performance of the Pulse Shape Analysis. The first release of results from an exposure of 2616kg d of UAr has shown no candidate Dark Matter events. We have set the best limit for Spin-Independent elastic nuclear scattering of WIMPs obtained by Argon-based detectors, corresponding to a cross-section of 2 10^{-44}{ cm2} at a WIMP mass of 100GeV. We present the detector design and performance, the results from the AAr run and the first results from the UAr run and we briefly introduce the future of the DarkSide program.
Binary gaseous mixture and single component adsorption of methane and argon on exfoliated graphite
NASA Astrophysics Data System (ADS)
Russell, Brice Adam
Exfoliated graphite was used as a substrate for adsorption of argon and methane. Adsorption experiments were conducted for both equal parts mixtures of argon and methane and for each gas species independently. The purpose of this was to compare mixture adsorption to single component adsorption and to investigate theoretical predictions concerning the kinetics of adsorption made by Burde and Calbi.6 In particular, time to reach pressure equilibrium of a single dose at a constant temperature for the equal parts mixture was compared to time of adsorption for each species by itself. It was shown that mixture adsorption is a much more complex and time consuming process than single component adsorption and requires a much longer amount of time to reach equilibrium. Information about the composition evolution of the mixture during the times when pressure was going toward equilibrium was obtained using a quadrupole mass spectrometer. Evidence for initial higher rate of adsorption for the weaker binding energy species (argon) was found as well as overall composition change which clearly indicated a higher coverage of methane on the graphite sample by the time equilibration was reached. Effective specific surface area of graphite for both argon and methane was also determined using the Point-B method.2
ERIC Educational Resources Information Center
Schaeffer, Oliver A.
1973-01-01
Discusses methods used in determination of absolute isotopic ages for the returned lunar material, including the uranium-lead, rubidium-strontium, and argon 40-argon 39 ratio methods. Indicates that there would exist a basin-forming bombardment period for the Moon extending over at least 300 million years. (CC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, N.
1990-06-15
Artificially layered niobium-titanium (Nb-Ti) films with various thickness ratios (3/1--1/3) and periodicities (2--100 A) are made in an argon or in a mixed argon/nitrogen atmosphere by a dc magnetron sputtering method. Films with small periodicities (less than 30 A) have an artificial superlattice structure (ASL) with crystallographic coherence between constituent layers, where Nb and Ti grow epitaxially on the closest planes. The crystallographic structures of films are bcc with the (110) plane parallel to the film for films with the same or a thicker Nb layer than a Ti layer, and hcp with the (001) plane parallel to the filmmore » for films with a thinner Nb layer than a Ti layer. Films with large periodicities have an artificial superstructure (ASS) with only periodic stacking of constituent layers. Films deposited in the Ar/N atmosphere also have the artificially layered structures of ASL or ASS. The artificially layered structure is thermally stable at temperatures up to 500 {degree}C. The superconducting properties of the films depend strongly on the periodicity and thickness ratio of Nb and Ti layers. The dependence of the transition temperature on the periodicity and thickness ratio is qualitatively explained by a proximity effect with a three-region model. Films with periodicities less than 20 A, composed of the same or a thicker Nb layer than a Ti layer, show high transition temperatures (above 9.3 K). The highest {ital T}{sub {ital c}} of about 13.6 K is obtained in the film composed of monatomic layers of constituents deposited in an Ar atmosphere including 30 vol % N.« less
Matthes, Rutger; Jablonowski, Lukasz; Koban, Ina; Quade, Antje; Hübner, Nils-Olaf; Schlueter, Rabea; Weltmann, Klaus-Dieter; von Woedtke, Thomas; Kramer, Axel; Kocher, Thomas
2015-12-01
To prevent oral candidiasis, it is crucial to inactivate Candida-based biofilms on dentures. Common denture cleansing solutions cannot sufficiently inactivate Candida albicans. Therefore, we investigated the anticandidal efficacy of a physical plasma against C. albicans biofilms in vitro. Argon or argon plasma with 1 % oxygen admixture was applied on C. albicans biofilms grown for 2, 7, or 16 days on polymethylmethacrylate discs; 0.1 % chlorhexidine digluconate (CHX) and 0.6 % sodium hypochlorite (NaOCl) solutions served as positive treatment controls. In addition, these two solutions were applied in combination with plasma for 30 min to assess potential synergistic effects. The anticandidal efficacy was determined by the number of colony forming units (CFU) in log(10) and expressed as reduction factor (RF, the difference between control and treated specimen). On 2-day-biofilms, plasma treatment alone or combined with 30 min CHX treatment led to significant differences of means of CFU (RF = 4.2 and RF = 4.3), clearly superior to CHX treatment alone (RF = 0.6). Plasma treatment of 7-day-or 16-day-old biofilms revealed no significant CFU reduction. The treatment of 7-day-old (RF = 1.7) and 16-day-old (RF = 1.3) biofilms was slightly more effective with NaOCl alone than with the combined treatment of NaOCl and plasma (RF = 1.6/RF = 1.9). The combination of CHX and plasma increased the RF immaterially. The use of plasma alone and in combination with antiseptics is promising anticandidal regimens for daily use on dentures when biofilms are not older than 2 days. Plasma could help to reduce denture-associated candidiasis.
Skin closure with dye-enhanced laser welding and fibrinogen.
Wider, T M; Libutti, S K; Greenwald, D P; Oz, M C; Yager, J S; Treat, M R; Hugo, N E
1991-12-01
The topical application of wavelength-specific dye and fibrinogen has been used to enhance laser closure of vascular anastomoses. We compared the closure of skin incisions by two different dye-enhanced, fibrinogen-based laser welding systems [argon laser (power density 4.78 W/cm2) with fluorescein isothiocyanate dye (n = 32) and diode laser (power density 9.55 W/cm2) with indocyanine green dye (n = 32)] with closure by interrupted 5-0 nylon suture (n = 64) and examined tensile strength, hydroxyproline production, histology, and cosmesis. Two 3-cm full-thickness incisions were made on the shaved backs of 64 rats. One incision was closed with suture, whereas the other, after treatment with the appropriate dye, was welded with either argon- or diode-lasered fibrinogen. At postoperative days 5, 10, 15, and 28, the closure sites were harvested and sectioned for analysis. Initially, wounds closed with argon-lasered fibrinogen showed less inflammatory response, greater collagen production (34.61 +/- 0.74 mg/gm), and greater mean peak stress at rupture (64.85 lbs/in2) than those closed with suture (16.42 +/- 3.20 mg/gm, 26.68 lbs/in2) (p less than 0.05). By 15 days, both argon and diode laser closures are superior in strength and collagen production to suture closure (p less than 0.05). At 28 days, diode laser closures (1315.60 lbs/in2) are stronger than suture closures (998.09 lbs/in2), whereas both are stronger than argon laser closures (813.16 lbs/in2) (p less than 0.05). Cosmetically, argon-welded wounds consistently appeared finer and lacked cross-hatched suture scars.(ABSTRACT TRUNCATED AT 250 WORDS)
Histology assessment of bipolar coagulation and argon plasma coagulation on digestive tract
Garrido, Teresa; Baba, Elisa R; Wodak, Stephanie; Sakai, Paulo; Cecconello, Ivan; Maluf-Filho, Fauze
2014-01-01
AIM: To analyze the effect of bipolar electrocoagulation and argon plasma coagulation on fresh specimens of gastrointestinal tract. METHODS: An experimental evaluation was performed at Hospital das Clinicas of the University of São Paulo, on 31 fresh surgical specimens using argon plasma coagulation and bipolar electrocoagulation at different time intervals. The depth of tissue damage was histopathologically analyzed by single senior pathologist unaware of the coagulation method and power setting applied. To analyze the results, the mucosa was divided in superficial mucosa (epithelial layer of the esophagus and superficial portion of the glandular layer of the stomach and colon) intermediate mucosa (until the lamina propria of the esophagus and until the bottom of the glandular layer of the stomach and colon) and muscularis mucosa. Necrosis involvement of the layers was compared in several combinations of power and time interval. RESULTS: Involvement of the intermediate mucosa of the stomach and of the muscularis mucosa of the three organs was more frequent when higher amounts of energy were used with argon plasma. In the esophagus and in the colon, injury of the intermediate mucosa was frequent, even when small amounts of energy were used. The use of bipolar electrocoagulation resulted in more frequent involvement of the intermediate mucosa and of the muscularis mucosa of the esophagus and of the colon when higher amounts of energy were used. In the stomach, these involvements were rare. The risk of injury of the muscularis propria was significant only in the colon when argon plasma coagulation was employed. CONCLUSION: Tissue damage after argon plasma coagulation is deeper than bipolar electrocoagulation. Both of them depend on the amount of energy used. PMID:25031789
Time-dependent spectroscopy of plasma plume under laser welding conditions
NASA Astrophysics Data System (ADS)
Hoffman, Jacek; Szymanski, Zygmunt
2004-07-01
Momentary emission spectra of iron and argon lines were measured in a plasma plume induced during welding with a continuous wave CO2 laser. Time-dependent spectra were registered using a fast gate, lens coupled microchannel plate image intensifier placed between a spectrograph and a 1254 silicon intensified target detector connected to an optical multichannel analyser. The results, together with the analysis of the colour images from a fast camera, show that in the case when argon is the shielding gas, two plasmas exist: the argon plasma and the iron plasma. It has been found that during strong bursts the plasma plume over the keyhole consists mainly of metal vapour, not being diluted by the shielding gas. No apparent mixing of the metal vapour and the shielding gas has been observed. The space-averaged electron densities determined from the Stark broadening of the 7503.87, 7514.65 Å Ar I lines amounts to (0.75-1.05) × 1023 m-3 depending on the distance from the surface. Assuming that argon is not mixed with the metal vapour and is in local thermodynamic equilibrium these electron densities correspond to the temperatures of 12-13 kK. At the peaks of strong vapour bursts the space-averaged electron densities determined from the Stark broadening of the 5383.37 Å Fe I line are (0.6-1) × 1023 m-3. Numerical simulations showed that the maximum densities in the plasma centre are considerably higher and amount to ~1.8 × 1023 m-3 and ~2.45 × 1023 m-3 in the case of the argon and metal plasma, respectively. Consequently the absorption of the laser beam in the plasma plume amounts to ~5% of the beam power in the case of argon and 10% in the case of metal plasma.
Chaplin, Vernon H; Bellan, Paul M
2015-07-01
An electrically floating radiofrequency (RF) pre-ionization plasma source has been developed to enable neutral gas breakdown at lower pressures and to access new experimental regimes in the Caltech laboratory astrophysics experiments. The source uses a customized 13.56 MHz class D RF power amplifier that is powered by AA batteries, allowing it to safely float at 3-6 kV with the electrodes of the high voltage pulsed power experiments. The amplifier, which is capable of 3 kW output power in pulsed (<1 ms) operation, couples electrical energy to the plasma through an antenna external to the 1.1 cm radius discharge tube. By comparing the predictions of a global equilibrium discharge model with the measured scalings of plasma density with RF power input and axial magnetic field strength, we demonstrate that inductive coupling (rather than capacitive coupling or wave damping) is the dominant energy transfer mechanism. Peak ion densities exceeding 5 × 10(19) m(-3) in argon gas at 30 mTorr have been achieved with and without a background field. Installation of the pre-ionization source on a magnetohydrodynamically driven jet experiment reduced the breakdown time and jitter and allowed for the creation of hotter, faster argon plasma jets than was previously possible.
Morphometrics of cellular damage in mice testis receiving X-ray and high-energy particle irradiation
NASA Technical Reports Server (NTRS)
Sapp, Walter J.
1987-01-01
Murine tests were exposed to single, low doses of either X-ray, helium, or argon radiation. Animals were sacrificed seventy-two hours later. Testes were fixed for transmission electron microscopy (TEM) and sectioned at either 60 nm for TEM observation or at 2 micron for counting using routine light microscope methods. Counts of the total population of surviving spermatogonia, including all type A cells, intermediate, and type B cells, were taken from tubule cross sections identified as Stage 6 and Stage 1 according to spermatogonial configuration. The surviving fraction of spermatogonia as compared to control, S/S sub o, was calculated for each dose. For both ions and X-rays, there was a rapid decline in survival at dose levels of .10 to .15 Gy in Stage 6 tubules. This was followed by a more gradual decrease in population. At higher doses, 0.30 Gy for argon and 0.80 Gy for helium and X-rays, the cell survival rates declined rapidly. Pre-leptotene spermatocytes in Stage 1 tubules exhibited a different survival curve indicating the extreme radio-sensitivity of type B spermatogonia. Data verify that the seminiferous tubules are composed of a heterogeneous population of cells with different radio-sensitivities and that these differences are manifested even at very low doses.
NASA Astrophysics Data System (ADS)
Ghosh, Pradip; Zamri, Mohd; Ghosh, Debasish; Soga, Tetsuo; Jimbo, Takashi; Hashimoto, Shinobu; Ohashi, Shuho; Tanemura, Masaki
2011-01-01
Carbon nanofibers (CNFs) were grown on a graphite substrate by the spray pyrolysis of a botanical hydrocarbon, turpentine oil, using ferrocene as the catalyst and sulfur as the promoter. The as-grown CNFs were annealed at 450 °C for 30 min in an air, and then at 1800 °C in an argon atmosphere for 2 h. The annealed CNFs have better degree of crystallinity and reduced number of defects compared with the as-grown CNFs confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and thermogravimetric analysis. The as-grown and annealed CNFs were found to be effective electron emitters with turn-on fields of 3.2 and 2.1 V/µm, respectively. The improvement in field emission (FE) performance can be explained in terms of the higher degree of graphitization of the CNFs after thermal annealing. This improved FE performance of the natural precursor grown CNFs was comparable to the FE performance level attainable for the conventional carbon nanomaterials grown using petroleum products. Thus, it was considered that the use of petroleum products could be avoidable for CNF growth and that CNFs grown using ecofriendly materials are very promising for the application in future field emission displays (FEDs).
Ritts, Andy Charles; Li, Hao; Yu, Qingsong; Xu, Changqi; Yao, Xiaomei; Hong, Liang; Wang, Yong
2010-01-01
The objective of this study is to investigate the treatment effects of non-thermal atmospheric gas plasmas on dentin surfaces for composite restoration. Extracted unerupted human third molars were used by removing the crowns and etching the exposed dentin surfaces with 35% phosphoric acid gel. The dentin surfaces were treated by using a non-thermal atmospheric argon plasma brush for various durations. The molecular changes of the dentin surfaces were analyzed using FTIR/ATR and an increase in carbonyl groups on dentin surfaces was detected with plasma treated dentin. Adper Single Bond Plus adhesive and Filtek Z250 dental composite were applied as directed. To evaluate the dentin/composite interfacial bonding, the teeth thus prepared were sectioned into micro-bars as the specimens for tensile test. Student Newman Keuls tests showed that the bonding strength of the composite restoration to peripheral dentin was significantly increased (by 64%) after 30 s plasma treatment. However, the bonding strength to plasma treated inner dentin did not show any improvement. It was found that plasma treatment of peripheral dentin surface up to 100 s gave an increase in interfacial bonding strength, while a prolong plasma treatment of dentin surfaces, e.g., 5 min treatments, showed a decrease in interfacial bonding strength. PMID:20831586
Effect of reactor temperature on direct growth of carbon nanomaterials on stainless steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edzatty, A. N., E-mail: nuredzatty@gmail.com; Syazwan, S. M., E-mail: mdsyazwan.sanusi@gmail.com; Norzilah, A. H., E-mail: norzilah@unimap.edu.my
Currently, carbon nanomaterials (CNMs) are widely used for various applications due to their extraordinary electrical, thermal and mechanical properties. In this work, CNMs were directly grown on the stainless steel (SS316) via chemical vapor deposition (CVD). Acetone was used as a carbon source and argon was used as carrier gas, to transport the acetone vapor into the reactor when the reaction occurred. Different reactor temperature such as 700, 750, 800, 850 and 900 °C were used to study their effect on CNMs growth. The growth time and argon flow rate were fixed at 30 minutes and 200 ml/min, respectively. Characterizationmore » of the morphology of the SS316 surface after CNMs growth using Scanning Electron Microscopy (SEM) showed that the diameter of grown-CNMs increased with the reactor temperature. Energy Dispersive X-ray (EDX) was used to analyze the chemical composition of the SS316 before and after CNMs growth, where the results showed that reduction of catalyst elements such as iron (Fe) and nickel (Ni) at high temperature (700 – 900 °C). Atomic Force Microscopy (AFM) analysis showed that the nano-sized hills were in the range from 21 to 80 nm. The best reactor temperature to produce CNMs was at 800 °C.« less
Shaikhani, Mohammad A R; Husein, Hiwa A B; Karbuli, Taha A; Mohamed, Mohamed Abdulrahman
2013-09-01
Lower gastrointestinal bleeding (LGIB) along with intestinal perforation is a well-known complication of typhoid fever. Reports of colonoscopic appearance and intervention of typhoid perforation involve only few cases. This series reports the colonoscopic findings and the role of colonoscopic hemostatic interventions in controlling the bleeding ileocolonic lesions. During the typhoid fever outbreak in Sulaymaniyah City in Iraqi Kurdistan Region, we received 52 patients with LGIB manifesting as fresh bleeding per rectum or melena. We performed total colonoscopy with ileal intubation for all cases. The findings were recorded and endoscopic hemostatic intervention with adrenaline-saline injection and argon plasma coagulation was applied to actively bleeding lesion. These patients were young, 11-30 years of age, with female preponderance. Blood culture was positive in 50 %. Colonoscopic findings were mostly located in the ileocecal region, although other areas of the colon were involved in many cases. Twenty-four percent of the cases required endoscopic hemostatic intervention by adrenaline injection with argon plasma coagulation which was effective in all patients except one who died in spite of surgical intervention in addition of endoscopic hemostasis. Dual endoscopic hemostatic intervention can be a safe and effective management option for patients with LGIB due to typhoid fever.
Chaplin, Vernon H.; Bellan, Paul M.
2015-12-28
A time-dependent two-fluid model has been developed to understand axial variations in the plasma parameters in a very high density (peak n e~ > 5x10 19 m –3) argon inductively coupled discharge in a long 1.1 cm radius tube. The model equations are written in 1D, with radial losses to the tube walls accounted for by the inclusion of effective particle and energy sink terms. The ambipolar diffusion equation and electron energy equation are solved to find the electron density n e(z,t) and temperature T e(z,t), and the populations of the neutral argon 4s metastable, 4s resonant, and 4p excitedmore » state manifolds are calculated in order to determine the stepwise ionization rate and calculate radiative energy losses. The model has been validated through comparisons with Langmuir probe ion saturation current measurements; close agreement between the simulated and measured axial plasma density profiles and the initial density rise rate at each location was obtained at p Ar = 30-60 mTorr. Lastly, we present detailed results from calculations at 60 mTorr, including the time-dependent electron temperature, excited state populations, and energy budget within and downstream of the radiofrequency (RF) antenna.« less
NASA Astrophysics Data System (ADS)
Canosa, A.; Ocaña, A. J.; Antiñolo, M.; Ballesteros, B.; Jiménez, E.; Albaladejo, J.
2016-09-01
A series of three de Laval nozzles initially designed to generate uniform supersonic flows in helium at 23 and 36 K and in argon at 50 K have been used with either pure nitrogen or mixtures of nitrogen with helium or argon in order to make a sequence of pulsed supersonic flows working at different temperatures. For this, a computer homemade program has been used to design de Laval nozzles contours for gas mixtures in order to determine the theoretical pressure P and temperature T in these supersonic flows. Spatial evolution of T along the flow axis downstream of the nozzle exit has been characterized with a fast response Pitot tube instrument newly developed. Twenty-eight different gas mixture conditions have been tested, indicating a very good agreement with the corresponding calculated flow conditions. The length of uniformity Δ L of the supersonic flows have been found to be >30 cm in more than 80 % of the situations and >50 cm for more than 50 % of the tested conditions. Fine temperature tunability was achieved in the range 22-107 K with very small fluctuations of the mean temperature along Δ L. Advantages and limits of these new developments for studies of gas-phase reaction kinetics are discussed.
Yang, Manman; Wang, Zongyuan; Wang, Wei; Liu, Chang-Jun
2014-01-01
Argon glow discharge has been employed as a cheap, environmentally friendly, and convenient electron source for simultaneous reduction of HAuCl4 and PdCl2 on the anodic aluminum oxide (AAO) substrate. The thermal imaging confirms that the synthesis is operated at room temperature. The reduction is conducted with a short time (30 min) under the pressure of approximately 100 Pa. This room-temperature electron reduction operates in a dry way and requires neither hydrogen nor extra heating nor chemical reducing agent. The analyses using X-ray photoelectron spectroscopy (XPS) confirm all the metallic ions have been reduced. The characterization with X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) shows that AuPd alloyed nanoparticles are formed. There also exist some highly dispersed Au and Pd monometallic particles that cannot be detected by XRD and transmission electron microscopy (TEM) because of their small particle sizes. The observed AuPd alloyed nanoparticles are spherical with an average size of 14 nm. No core-shell structure can be observed. The room-temperature electron reduction can be operated in a larger scale. It is an easy way for the synthesis of AuPd alloyed nanoparticles.
NASA Astrophysics Data System (ADS)
Zin, M. F. M.; Baijan, A. H.; Damideh, V.; Hashim, S. A.; Sabri, R. M.
2017-03-01
In this work, preliminary results of MNA-PF device as a Slow Focus Mode device are presented. Four different kinds of Rogowski Coils which have been designed and constructed for dI/dt signals measurements show that response frequency of Rogowski Coil can affect signal time resolution and delay which can change the discharge circuit inductance. Experimental results for 10 to 20 mbar Deuterium and 0.5 mbar to 6 mbar Argon which are captured by 630 MHz Rogowski coil in correlation with Lee Model Code are presented. Proper current fitting using Lee Model Code shows that the speed factor for MNA-PF device working with 13 mbar Deuterium is 30 kA/cm.torr1/2 at 14 kV which indicates that the device is operating at slow focus mode. Model parameters fm and fmr predicted by Lee Model Code during current fitting for 13 mbar Deuterium at 14kV were 0.025 and 0.31 respectively. Microspec-4 Neutron Detector was used to obtain the dose rate which was found to be maximum at 4.78 uSv/hr and also the maximum neutron yield calculated from Lee Model Code is 7.5E+03 neutron per shot.
Report on the Brookhaven Solar Neutrino Experiment
DOE R&D Accomplishments Database
Davis, R. Jr.; Evans, J. C. Jr.
1976-09-22
This report is intended as a brief statement of the recent developments and results of the Brookhaven Solar Neutrino Experiment communicated through Professor G. Kocharov to the Leningrad conference on active processes on the sun and the solar neutrino problem. The report summarizes the results of experiments performed over a period of 6 years, from April 1970 to January 1976. Neutrino detection depends upon the neutrino capture reaction /sup 37/Cl(..nu..,e/sup -/)/sup 37/Ar producing the isotope /sup 37/Ar (half life of 35 days). The detector contains 3.8 x 10/sup 5/ liters of C/sub 2/Cl/sub 4/ (2.2 x 10/sup 30/ atoms of /sup 37/Cl) and is located at a depth of 4400 meters of water equivalent (m.w.e.) in the Homestake Gold Mine at Lead, South Dakota, U.S.A. The procedures for extracting /sup 37/Ar and the counting techniques used were described in previous reports. The entire recovered argon sample was counted in a small gas proportional counter. Argon-37 decay events were characterized by the energy of the Auger electrons emitted following the electron capture decay and by the rise-time of the pulse. Counting measurements were continued for a period sufficiently long to observe the decay of /sup 37/Ar.
Detection of argon in the coma of comet 67P/Churyumov-Gerasimenko.
Balsiger, Hans; Altwegg, Kathrin; Bar-Nun, Akiva; Berthelier, Jean-Jacques; Bieler, Andre; Bochsler, Peter; Briois, Christelle; Calmonte, Ursina; Combi, Michael; De Keyser, Johan; Eberhardt, Peter; Fiethe, Björn; Fuselier, Stephen A; Gasc, Sébastien; Gombosi, Tamas I; Hansen, Kenneth C; Hässig, Myrtha; Jäckel, Annette; Kopp, Ernest; Korth, Axel; Le Roy, Lena; Mall, Urs; Marty, Bernard; Mousis, Olivier; Owen, Tobias; Rème, Henri; Rubin, Martin; Sémon, Thierry; Tzou, Chia-Yu; Waite, J Hunter; Wurz, Peter
2015-09-01
Comets have been considered to be representative of icy planetesimals that may have contributed a significant fraction of the volatile inventory of the terrestrial planets. For example, comets must have brought some water to Earth. However, the magnitude of their contribution is still debated. We report the detection of argon and its relation to the water abundance in the Jupiter family comet 67P/Churyumov-Gerasimenko by in situ measurement of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) mass spectrometer aboard the Rosetta spacecraft. Despite the very low intensity of the signal, argon is clearly identified by the exact determination of the mass of the isotope (36)Ar and by the (36)Ar/(38)Ar ratio. Because of time variability and spatial heterogeneity of the coma, only a range of the relative abundance of argon to water can be given. Nevertheless, this range confirms that comets of the type 67P/Churyumov-Gerasimenko cannot be the major source of Earth's major volatiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.
Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicatemore » the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. Finally, an intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.« less
NASA Astrophysics Data System (ADS)
Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.; Leone, Stephen R.
2016-01-01
Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicate the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. An intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.
Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.; ...
2016-01-18
Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicatemore » the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. Finally, an intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.« less
Study of axial double layer in helicon plasma by optical emission spectroscopy and simple probe
NASA Astrophysics Data System (ADS)
Gao, ZHAO; Wanying, ZHU; Huihui, WANG; Qiang, CHEN; Chang, TAN; Jiting, OUYANG
2018-07-01
In this work we used a passive measurement method based on a high-impedance electrostatic probe and an optical emission spectroscope (OES) to investigate the characteristics of the double layer (DL) in an argon helicon plasma. The DL can be confirmed by a rapid change in the plasma potential along the axis. The axial potential variation of the passive measurement shows that the DL forms near a region of strong magnetic field gradient when the plasma is operated in wave-coupled mode, and the DL strength increases at higher powers in this experiment. The emission intensity of the argon atom line, which is strongly dependent on the metastable atom concentration, shows a similar spatial distribution to the plasma potential along the axis. The emission intensity of the argon atom line and the argon ion line in the DL suggests the existence of an energetic electron population upstream of the DL. The electron density upstream is much higher than that downstream, which is mainly caused by these energetic electrons.
Microwave plasma generation of arsine from hydrogen and solid arsenic
NASA Astrophysics Data System (ADS)
Omstead, Thomas R.; Annapragada, Ananth V.; Jensen, Klavs F.
1990-12-01
The generation of arsine from the reactions of hydrogen and elemental arsenic in a microwave plasma reactor is described. The arsenic is evaporated from a solid source upstream and carried into the microwave plasma region by a mixture of hydrogen and argon. Stable reaction products, arsine and diarsine are observed by molecular beam sampled mass spectroscopy along with partially hydrogenated species (e.g., AsH and AsH2). The effect of composition and flow rate of the argon/hydrogen carrier gas mixture on the amount of arsine generated is investigated. The arsine production reaches a maximum for an argon-to-hydrogen ratio of unity indicating that metastable argon species act as energy transfer intermediates in the overall reaction. The generation of arsine and diarsine from easily handled solid arsenic by this technique makes it attractive as a possible arsenic source for the growth of compound semiconductors by low-pressure metalorganic chemical vapor deposition.
Detection of argon in the coma of comet 67P/Churyumov-Gerasimenko
Balsiger, Hans; Altwegg, Kathrin; Bar-Nun, Akiva; Berthelier, Jean-Jacques; Bieler, Andre; Bochsler, Peter; Briois, Christelle; Calmonte, Ursina; Combi, Michael; De Keyser, Johan; Eberhardt, Peter; Fiethe, Björn; Fuselier, Stephen A.; Gasc, Sébastien; Gombosi, Tamas I.; Hansen, Kenneth C.; Hässig, Myrtha; Jäckel, Annette; Kopp, Ernest; Korth, Axel; Le Roy, Lena; Mall, Urs; Marty, Bernard; Mousis, Olivier; Owen, Tobias; Rème, Henri; Rubin, Martin; Sémon, Thierry; Tzou, Chia-Yu; Waite, J. Hunter; Wurz, Peter
2015-01-01
Comets have been considered to be representative of icy planetesimals that may have contributed a significant fraction of the volatile inventory of the terrestrial planets. For example, comets must have brought some water to Earth. However, the magnitude of their contribution is still debated. We report the detection of argon and its relation to the water abundance in the Jupiter family comet 67P/Churyumov-Gerasimenko by in situ measurement of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) mass spectrometer aboard the Rosetta spacecraft. Despite the very low intensity of the signal, argon is clearly identified by the exact determination of the mass of the isotope 36Ar and by the 36Ar/38Ar ratio. Because of time variability and spatial heterogeneity of the coma, only a range of the relative abundance of argon to water can be given. Nevertheless, this range confirms that comets of the type 67P/Churyumov-Gerasimenko cannot be the major source of Earth’s major volatiles. PMID:26601264
NASA Astrophysics Data System (ADS)
Emmons, D. J.; Weeks, D. E.; Eshel, B.; Perram, G. P.
2018-01-01
Simulations of an α-mode radio frequency dielectric barrier discharge are performed for varying mixtures of argon and helium at pressures ranging from 200 to 500 Torr using both zero and one-dimensional models. Metastable densities are analyzed as a function of argon-helium mixture and pressure to determine the optimal conditions, maximizing metastable density for use in an optically pumped rare gas laser. Argon fractions corresponding to the peak metastable densities are found to be pressure dependent, shifting from approximately 15% Ar in He at 200 Torr to 10% at 500 Torr. A decrease in metastable density is observed as pressure is increased due to a diminution in the reduced electric field and a quadratic increase in metastable loss rates through A r2* formation. A zero-dimensional effective direct current model of the dielectric barrier discharge is implemented, showing agreement with the trends predicted by the one-dimensional fluid model in the bulk plasma.
Investigation of argon ion sputtering on the secondary electron emission from gold samples
NASA Astrophysics Data System (ADS)
Yang, Jing; Cui, Wanzhao; Li, Yun; Xie, Guibai; Zhang, Na; Wang, Rui; Hu, Tiancun; Zhang, Hongtai
2016-09-01
Secondary electron (SE) yield, δ, is a very sensitive surface property. The values of δ often are not consistent for even identical materials. The influence of surface changes on the SE yield was investigated experimentally in this article. Argon ion sputtering was used to remove the contamination from the surface. Surface composition was monitored by X-ray photoelectron spectroscopy (XPS) and surface topography was scanned by scanning electron microscope (SEM) and atomic force microscope (AFM) before and after every sputtering. It was found that argon sputtering can remove contamination and roughen the surface. An ;equivalent work function; is presented in this thesis to establish the relationship between SE yield and surface properties. Argon ion sputtering of 1.5keV leads to a significant increase of so called ;work function; (from 3.7 eV to 6.0 eV), and a decrease of SE yield (from 2.01 to 1.54). These results provided a new insight into the influence of surface changes on the SE emission.
DarkSide-50: A WIMP Search with a Two-phase Argon TPC
NASA Astrophysics Data System (ADS)
Meyers, P. D.; Agnes, P.; Alton, D.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Brigatti, A.; Brodsky, J.; Budano, F.; Cadonati, L.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cocco, A. G.; Crippa, L.; DAngelo, D.; D'Incecco, M.; Davini, S.; De Deo, M.; Derbin, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B.; Herner, K.; Humble, P.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; Joliet, C.; Keeter, K.; Kendziora, C.; Kidner, S.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kurlej, A.; Li, P.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Ma, Y.; Machulin, I.; Mandarano, A.; Mari, S.; Maricic, J.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P. D.; Milincic, R.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Musico, P.; Nelson, A.; Okounkova, M.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Papp, L.; Parmeggiano, S.; Parsells, R.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Perfetto, F.; Pocar, A.; Pordes, S.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Segreto, E.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Suvarov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wada, M.; Wang, H.; Wang, Y.; Watson, A.; Westerdale, R.; Wojcik, M.; Wright, A.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zuzel, G.
DarkSide-50 is a two phase argon TPC for direct dark matter detection which is installed at the Gran Sasso underground laboratory, Italy. DarkSide-50 has a 50-kg active volume and will make use of underground argon low in 39Ar. The TPC is installed inside an active neutron veto made with boron-loaded high radiopurity liquid scintillator. The neutron veto is installed inside a 1000 m3 water Cherenkov muon veto. The DarkSide-50 TPC and cryostat are assembled in two radon-free clean rooms to reduce radioactive contaminants. The overall design aims for a background free exposure after selection cuts are applied. The expected sensitivity for WIMP-nucleon cross section is of the order of 10-45 cm2 for WIMP masses around 100 GeV/c2. The commissioning and performance of the detector are described. Details of the low-radioactivity underground argon and other unique features of the projects are reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnes, P.; Albuquerque, I. F. M.; Alexander, T.
The DarkSide-50 experiment at the Laboratori Nazionali del Gran Sasso is a search for dark matter using a dual phase time projection chamber with 50 kg of low radioactivity argon as target. Light signals from interactions in the argon are detected by a system of 38 photo-multiplier tubes (PMTs), 19 above and 19 below the TPC volume inside the argon cryostat. We describe the electronics which processes the signals from the photo-multipliers, the trigger system which identifies events of interest, and the data-acquisition system which records the data for further analysis. The electronics include resistive voltage dividers on the PMTs,more » custom pre-amplifiers mounted directly on the PMT voltage dividers in the liquid argon, and custom amplifier/discriminators (at room temperature). After amplification, the PMT signals are digitized in CAEN waveform digitizers, and CAEN logic modules are used to construct the trigger, the data acquisition system for the TPC is based on the Fermilab "artdaq" software. The system has been in operation since early 2014.« less
NASA Technical Reports Server (NTRS)
Agrawal, P. C.; Ramsey, B. D.
1988-01-01
An experimental investigation of propane and six other quench gases was carried out in argon-filled proportional counters. The objective of the study was to find the best gas mixture for optimizing the gas gain and the energy resolution as well as to understand the role of the ionization potential of quench gases in determining these parameters. It was found that the best gas gains and energy resolutions are obtained with propane, ethane, and isobutane in that order. The ionization potentials of these three lie below the argon metastable potentials and have the lowest value of resonance defect compared to the other quench gases. The better results obtained with these mixtures can be explained by an increased ionization yield resulting from the Penning effect. Propylene and trans-2-butene give inferior performance compared to the above three gases. Methane and carbon dioxide, the most commonly used quench gases in the argon-filled detectors, provide the worst results.
NASA Astrophysics Data System (ADS)
Umnov, S.; Asainov, O.
2015-04-01
Thin aluminum films were prepared using the method of magnetron sputtering with and without argon ion beam assistance. The influence of argon ion beam on the reflectivity in the UV range and the structure of aluminum films was studied. The structure of the films was studied by transmission electron microscopy (TEM), X-ray diffractometry (XRD) and atomic- force microscope (AFM). The study has shown that the films deposed with the assistance of the argon ion beam have more significant microstresses associated with an increase of crystallites microstructure defects as compared to the films deposed without ion assistance. Comparison of the measured reflectivity of aluminum films deposed without and with the assistance of the ion beam has shown that the films characterized by a higher level of microstructure def ects have increased reflectivity in the UV range. The studies suggest that the defects of thin aluminum films crystal structure influence its optical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saikia, P., E-mail: partha.008@gmail.com; Goswami, K. S.; Saikia, B. K.
2014-03-15
In this study the effect of hydrogen addition on the formation and properties of soliton in direct-current (DC) argon plasma is theoretically investigated. By coupling fluid equations with Poisons equation for such multi-component plasma, the Mach number and amplitude of the soliton are determined following pseudo potential method. Addition of hydrogen in argon discharge leads to the decrease of electron, Ar{sup +} ion density while a reverse trend was observed for ArH{sup +} and hydrogen like ions. It was found that presence of hydrogen like ions in argon plasma affects the formation of soliton with its amplitude significantly decreases asmore » concentration of hydrogen increases. On the other hand, increase in ion to electron temperature ratios of the lighter ions in the discharge also has a significant influence on the amplitude and formation of soliton. The inverse relation between solitons width and amplitude is found to be consistent for the entire range of study.« less
Palamara, Ornella
2016-12-29
Results from the analysis of charged current pion-less (CC 0-pion) muon neutrino events in argon collected by the ArgoNeuT experiment on the NuMI beam at Fermilab are presented and compared with predictions from Monte Carlo simulations. A novel analysis method, based on the reconstruction of exclusive topologies, fully exploiting the Liquid argon Time Projection Chamber (LAr TPC) technique capabilities, is used to analyze the events, characterized by the presence at the vertex of a leading muon track eventually accompanied by one or more highly ionizing tracks, and study nuclear effects in neutrino interactions on argon nuclei. Multiple protons accompanying themore » leading muon are visible in the ArgoNeuT events, and measured with a proton reconstruction threshold of 21 MeV kinetic energy. As a result, measurements of (anti-)neutrino CC 0-pion inclusive and exclusive cross sections on argon nuclei are reported. Prospects for future, larger mass LAr TPC detectors are discussed.« less
A pixelated charge readout for Liquid Argon Time Projection Chambers
NASA Astrophysics Data System (ADS)
Asaadi, J.; Auger, M.; Ereditato, A.; Goeldi, D.; Hänni, R.; Kose, U.; Kreslo, I.; Lorca, D.; Luethi, M.; von Rohr, C. Rudolf; Sinclair, J.; Stocker, F.; Tognina, C.; Weber, M.
2018-02-01
Liquid Argon Time Projection Chambers (LArTPCs) are ideally suited to perform long-baseline neutrino experiments aiming to measure CP violation in the lepton sector, and determine the ordering of the three neutrino mass eigenstates. LArTPCs have used projective wire readouts for charge detection since their conception in 1977. However, wire readouts are notoriously fragile and therefore a limiting factor in the design of any large mass detectors. Furthermore, a wire readout also introduces intrinsic ambiguities in event reconstruction. Within the ArgonCube concept—the liquid argon component of the DUNE near detector—we are developing a pixelated charge readout for LArTPCs. Pixelated charge readout systems represent the single largest advancement in the sensitivity of LArTPCs. They are mechanically robust and provide direct 3D readout, serving to minimise reconstruction ambiguities, enabling more advanced triggers, further reducing event pile-up and improving background rejection. This article presents first results from a pixelated LArTPC prototype built and operated in Bern.
Studies of thin-film growth of sputtered hydrogenated amorphous silicon
NASA Astrophysics Data System (ADS)
Moustakas, T. D.
1982-11-01
The anticipated potential use of hydrogenated amorphous silicon (a-SiHx), or related materials, for large area thin film device applications has stimulated extensive research. Studies conducted by Ross and Messier (1981) have shown that the growth habit of the sputtered a-SiHx films is columnar. It is found that films produced at high argon pressure have columnar microstructure, while those produced at low argon pressure show no noticeable microstructure. The preferred interpretation for the lack of microstructure for the low argon pressure films is bombardment of the films by positive Ar(+) ions due to the substrate negative floating potential. Anderson et al. (1979) attribute the microstructural changes to the bombardment of the film by the neutral sputtered Si species from which the film grows. In connection with the present investigation, data are presented which clearly indicate that charged particle bombardment rather than neutral particle bombardment is the cause of the observed microstructural changes as a function of argon pressure.
Results from the DarkSide-50 Dark Matter Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Alden
2016-01-01
While there is tremendous astrophysical and cosmological evidence for dark matter, its precise nature is one of the most significant open questions in modern physics. Weakly interacting massive particles (WIMPs) are a particularly compelling class of dark matter candidates with masses of the order 100 GeV and couplings to ordinary matter at the weak scale. Direct detection experiments are aiming to observe the low energy (<100 keV) scattering of dark matter off normal matter. With the liquid noble technology leading the way in WIMP sensitivity, no conclusive signals have been observed yet. The DarkSide experiment is looking for WIMP darkmore » matter using a liquid argon target in a dual-phase time projection chamber located deep underground at Gran Sasso National Laboratory (LNGS) in Italy. Currently filled with argon obtained from underground sources, which is greatly reduced in radioactive 39Ar, DarkSide-50 recently made the most sensitive measurement of the 39Ar activity in underground argon and used it to set the strongest WIMP dark matter limit using liquid argon to date. This work describes the full chain of analysis used to produce the recent dark matter limit, from reconstruction of raw data to evaluation of the final exclusion curve. The DarkSide- 50 apparatus is described in detail, followed by discussion of the low level reconstruction algorithms. The algorithms are then used to arrive at three broad analysis results: The electroluminescence signals in DarkSide-50 are used to perform a precision measurement of ii longitudinal electron diffusion in liquid argon. A search is performed on the underground argon data to identify the delayed coincidence signature of 85Kr decays to the 85mRb state, a crucial ingredient in the measurement of the 39Ar activity in the underground argon. Finally, a full description of the WIMP search is given, including development of cuts, efficiencies, energy scale, and exclusion curve in the WIMP mass vs. spin-independent WIMP-nucleon scattering cross section plane. This work was supervised by Hanguo Wang and was completed in collaboration with members of the DarkSide collaboration.« less
Photoacoustic Studies on Iodine.
NASA Astrophysics Data System (ADS)
Bhan, Avtar N.
A photoacoustic cavity was constructed which employs a temperature-controlled cylindrical cavity with optical windows at either end. It was operated in the lowest longitudinal mode using a small electret microphone for detecting the acoustic signal and a photomultiplier tube for detecting the optical signal. Molecular Iodine was used as the specimen gas and argon as the buffer gas. The photoacoustic characteristics of the system were studied. Iodine molecules, excited periodically by intensity modulated optical radiation (xenon discharge), de-excited by non-radiative processes which result in pressure waves having the same modulation frequency as that of the light. These pressure waves are detected as acoustical pulses by the microphone situated in the wall of the cavity. Studies were conducted for different pressures of buffer gas (100 torr to 800 torr) at several different Iodine pressures in the range between 0.3 and 1 torr. The longitudinal mode of excitation provides an opportunity to compare the response of the cavity under acoustical excitation with that under optical excitation. The relevant parameters in the investigation were: Q, the quality factor of the cavity; the resonant frequency, partial pressures of argon and Iodine; temperature; and the signal amplitude. It was found that the Q of the cavity was well -behaved following the theoretically predicted dependence on SQRT.(P and on T('- 3/4). The absorption coefficient of Iodine determined photometrically, increased with increasing argon pressure up to a limiting value of pressure that depended on Iodine concentration. The photoacoustic signal showed a similar increase with increasing argon pressure. This signal reached a limiting value at a pressure which corresponded closely with that found optically. This is taken to indicate that the extinction coefficient of Iodine in argon, at the level of dilution used in these studies, depends on the argon pressure. A method was developed for measuring the concentration of Iodine at low levels through application of the shift in the frequency of the longitudinal mode resonance of the cavity. Also, resonance technique was employed for determining the velocity of sound in argon. A value of 307.7 M/sec was established as compared with the value of 319 M/sec as reported in various standard handbooks.
NASA Astrophysics Data System (ADS)
Jin, Kai
Continuous casting produces over 95% of steel in the world today, hence even small improvements to this important industrial process can have large economic impact. In the continuous casting of steel process, argon gas is usually injected at the slide gate or stopper rod to prevent clogging, but entrapped bubbles may cause defects in the final product. Many defects in this process are related to the transient fluid flow in the mold region of the caster. Electromagnetic braking (EMBr) device is often used at high casting speed to modify the mold flow, reduce the surface velocity and fluctuation. This work studies the physics in continuous casting process including effects of EMBr on the motion of fluid flow in the mold region, and transport and capture of bubbles in the solidification processes. A computational effective Reynolds-averaged Navier-Stokes (RANS) model and a high fidelity Large Eddy Simulation (LES) model are used to understand the motion of the molten steel flow. A general purpose multi-GPU Navier-Stokes solver, CUFLOW, is developed. A Coherent-Structure Smagorinsky LES model is implemented to model the turbulent flow. A two-way coupled Lagrangian particle tracking model is added to track the motion of argon bubbles. A particle/bubble capture model based on force balance at dendrite tips is validated and used to study the capture of argon bubbles by the solidifying steel shell. To investigate the effects of EMBr on the turbulent molten steel flow and bubble transport, an electrical potential method is implemented to solve the magnetohydrodynamics equations. Volume of Fluid (VOF) simulations are carried out to understand the additional resistance force on moving argon bubbles caused by adding transverse magnetic field. A modified drag coefficient is extrapolated from the results and used in the two-way coupled Eulerian-Lagrangian model to predict the argon bubble transport in a caster with EMBr. A hook capture model is developed to understand the effects of hooks on argon bubble capture.
The Advanced Glaucoma Intervention Study (AGIS): 5. Encapsulated bleb after initial trabeculectomy.
Schwartz, A L; Van Veldhuisen, P C; Gaasterland, D E; Ederer, F; Sullivan, E K; Cyrlin, M N
1999-01-01
To compare the incidence of encapsulated bleb after trabeculectomy in eyes with and without previous argon laser trabeculoplasty and to assess other risk factors for encapsulated bleb development. After medical treatment failure, eyes enrolled in the Advanced Glaucoma Intervention Study (AGIS) were randomly assigned to sequences of interventions starting with either argon laser trabeculoplasty or trabeculectomy. In the present study we compared the clinical course for 1 year after trabeculectomy in 119 eyes with failed argon laser trabeculoplasty with that of 379 eyes without previous argon laser trabeculoplasty. Data on bleb encapsulation were collected at the time that the encapsulation was diagnosed, and 3 and 6 months later. Of multiple factors examined in the AGIS data for the risk of developing encapsulated bleb, only male gender and high school graduation without further formal education were statistically significant. Encapsulation occurred in 18.5% of eyes with previous argon laser trabeculoplasty failure and 14.5% of eyes without previous argon laser trabeculoplasty (unadjusted relative risk, 1.27; 95% confidence limits = 0.81, 2.00; P = .23). After adjusting for age, gender, educational achievement, prescribed systemic beta-blockers, diabetes, visual field score, and years since glaucoma diagnosis, this difference remains statistically not significant. Four weeks after trabeculectomy, mean intraocular pressure was 7.5 mm Hg higher in eyes with (22.5 mm Hg) than without (15.0 mm Hg) encapsulated bleb; at 1 year after trabeculectomy and the resumption of medical therapy when needed, this excess was reduced to 1.4 mm Hg. This study, as did two previous studies, found male gender to be a risk factor for bleb encapsulation. Four studies, including the present study, have reported a higher rate of encapsulation in eyes with previous argon laser trabeculoplasty; in two of the studies, one of which was the present study, the rate was not statistically significantly higher; in the other two studies the rate was significantly higher. The 4-week postoperative mean intraocular pressure was higher in eyes with than without encapsulated bleb; with the resumption of medical treatment the two means converged after 1 year.
Properties of radio-frequency heated argon confined uranium plasmas
NASA Technical Reports Server (NTRS)
1976-01-01
Pure uranium hexafluoride (UF6) was injected into an argon confined, steady state, rf-heated plasma within a fused silica peripheral wall test chamber. Exploratory tests conducted using an 80 kW rf facility and different test chamber flow configurations permitted selection of the configuration demonstrating the best confinement characteristics and minimum uranium compound wall coating. The overall test results demonstrated applicable flow schemes and associated diagnostic techniques were developed for the fluid mechanical confinement and characterization of uranium within an rf plasma discharge when pure UF6 is injected for long test times into an argon-confined, high-temperature, high-pressure, rf-heated plasma.
NASA Astrophysics Data System (ADS)
Oh, Jung-Min; Koo, Ja-Geon; Lim, Jae-Won
2018-05-01
A new sintering technique for enhancing a densification and hardness of sintered titanium body by supplying hydrogen was developed (Hydrogen Sintering Process, HSP). The HSP was developed by only injecting hydrogen into an argon atmosphere during the core time. As a result, sound titanium sintered bodies with high density and hardness were obtained by the HSP. In addition, a pore size and number of the HSP specimens were smaller than those of the argon atmosphere specimen. It was found that the injecting hydrogen into the argon atmosphere by HSP can prevent the formation of oxide layers, resulting in enhanced densification and hardness.
NASA Technical Reports Server (NTRS)
French, R. A.; Cohen, B. A.; Miller, J. S.
2014-01-01
KArLE (Potassium--Argon Laser Experiment) has been developed for in situ planetary geochronology using the K - Ar (potassium--argon) isotope system, where material ablated by LIBS (Laser--Induced Breakdown Spectroscopy) is used to calculate isotope abundances. We are determining the accuracy and precision of volume measurements of these pits using stereo and laser microscope data to better understand the ablation process for isotope abundance calculations. If a characteristic volume can be determined with sufficient accuracy and precision for specific rock types, KArLE will prove to be a useful instrument for future planetary rover missions.
NASA Technical Reports Server (NTRS)
Miller, C. G., III; Wilder, S. E.
1976-01-01
Equilibrium thermodynamic and flow properties are presented in tabulated and graphical form for moving, standing, and reflected normal shock waves in pure argon. Properties include pressure, temperature, density, enthalpy, speed of sound, entropy, molecular-weight ratio, isentropic exponent, velocity, and species mole fractions. Incident (moving) shock velocities are varied from 2 to 18 km/sec for a range of initial pressure of 5 N/sq m to 500 kN/sq m. Working charts illustrating shock tube performance with argon test gas and heated helium and hydrogen driver gases are also presented.
Triple Photoionization of Neon and Argon Near Threshold
NASA Astrophysics Data System (ADS)
Bluett, Jaques B.; Lukić, Dragan; Sellin, Ivan A.; Whitfield, Scott B.; Wehlitz, Ralf
2003-05-01
The threshold behavior of the triple ionization cross-section of neon and argon was investigated using monochromatized synchrotron radiation and ion time-of-flight spectrometry. The Ne^3+ and Ar^3+ cross-sections are found to follow the Wannier power law(G.H. Wannier, Phys. Rev. 90), 817 (1953). consistent with a Wannier exponent of 2.162 predicted by theory. This is also consistent with the findings of Samson and Angel(J.A.R. Samson and G.C. Angel, Phys. Lett. 61), 1584 (1988). for the case of Ne. In the case of argon we find a much shorter range of validity than for neon.
Microstructural and strength stability of CVD SiC fibers in argon environment
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.; Hull, David R.
1991-01-01
The room temperature tensile strength and microstructure of three types of commercially available chemically vapor deposited silicon carbide fibers were measured after 1, 10, and 100 hour heat treatments under argon pressures of 0.1 to 310 MPa at temperatures to 2100 C. Two types of fiber had carbon-rich surface coatings and the other contained no coating. All three fiber types showed strength degradation beyond 1400 C. Time and temperature of exposure had greater influence on strength degradation than argon pressure. Recrystallization and growth of near stoichiometric SiC grains appears to be the dominant mechanism for the strength degradation.
Microstructural and strength stability of CVD SiC fibers in argon environments
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.; Hull, David R.
1991-01-01
The room temperature tensile strength and microstructure of three types of commercially available chemically vapor deposited silicon carbide fibers were measured after 1, 10, and 100 hour heat treatments under argon pressures of 0.1 to 310 MPa at temperatures to 2100 C. Two types of fiber had carbon-rich surface coatings and the other contained no coating. All three fiber types showed strength degradation beyond 1400 C. Time and temperature of exposure had greater influence on strength degradation than argon pressure. Recrystallization and growth of near stoichiometric SiC grains appears to be the dominant mechanism for the strength degradation.
Lead Pipe Scale Analysis Using Broad-Beam Argon Ion Milling to Elucidate Drinking Water Corrosion
Herein, we compared the characterization of lead pipe scale removed from a drinking water distribution system using two different cross section methods (conventional polishing and argon ion beam etching). The pipe scale solids were analyzed using scanning electron microscopy (SEM...
Ambipolar ion acceleration in an expanding magnetic nozzle
NASA Astrophysics Data System (ADS)
Longmier, Benjamin W.; Bering, Edgar A., III; Carter, Mark D.; Cassady, Leonard D.; Chancery, William J.; Díaz, Franklin R. Chang; Glover, Tim W.; Hershkowitz, Noah; Ilin, Andrew V.; McCaskill, Greg E.; Olsen, Chris S.; Squire, Jared P.
2011-02-01
The helicon plasma stage in the Variable Specific Impulse Magnetoplasma Rocket (VASIMR®) VX-200i device was used to characterize an axial plasma potential profile within an expanding magnetic nozzle region of the laboratory based device. The ion acceleration mechanism is identified as an ambipolar electric field produced by an electron pressure gradient, resulting in a local axial ion speed of Mach 4 downstream of the magnetic nozzle. A 20 eV argon ion kinetic energy was measured in the helicon source, which had a peak magnetic field strength of 0.17 T. The helicon plasma source was operated with 25 mg s-1 argon propellant and 30 kW of RF power. The maximum measured values of plasma density and electron temperature within the exhaust plume were 1 × 1020 m-3 and 9 eV, respectively. The measured plasma density is nearly an order of magnitude larger than previously reported steady-state helicon plasma sources. The exhaust plume also exhibits a 95% to 100% ionization fraction. The size scale and spatial location of the plasma potential structure in the expanding magnetic nozzle region appear to follow the size scale and spatial location of the expanding magnetic field. The thickness of the potential structure was found to be 104 to 105 λDe depending on the local electron temperature in the magnetic nozzle, many orders of magnitude larger than typical laboratory double layer structures. The background plasma density and neutral argon pressure were 1015 m-3 and 2 × 10-5 Torr, respectively, in a 150 m3 vacuum chamber during operation of the helicon plasma source. The agreement between the measured plasma potential and plasma potential that was calculated from an ambipolar ion acceleration analysis over the bulk of the axial distance where the potential drop was located is a strong confirmation of the ambipolar acceleration process.
Novel carbon-ion fuel cells. Final report, October 1, 1993--September 30, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cocks, F.H.
1997-01-01
Mixed lanthanide dicarbides having the fluorite crystal structure have been synthesized using the elemental lanthanide metals and elemental carbon that was 99.9% pure carbon-13 isotope. A two step process of first, arc furnace melting of the components, followed by an annealing step in a high vacuum furnace, was adopted as the standard method of fabricating small cast ingots of the dicarbides. The crystal structure of the various lanthanide dicarbides produced were confirmed by x-ray diffraction under protective atmospheres at both room temperature at Duke University and at high temperature at Oak Ridge National Laboratory. After more than 15 combinations ofmore » cerium or lanthanum with dopants were tried, low temperature x-ray diffraction showed that Ce{sub .5}Er{sub .5}C{sub 2} had been successfully stabilized and had the desired fluorite crystal structure at room temperature. The fluorite crystal structure lanthanide dicarbide cast ingots were further prepared by having flat and clean surfaces ground onto their surfaces by high-speed milling machines inside argon gas atmosphere gloveboxes. The surfaces thus created were then coated with carbon-12 by the arc evaporation method under low pressure argon gas. The coated ingots were then allowed to have carbon diffusion occur from the surface coating of carbon-12 into the ingot of dicarbide that had been synthesized from carbon-13. After the diffusion run, the cast ingots were slit down the axis perpendicular to the carbon coating. The fracture surface created was then squared and polished by high,speed milling in a glove box with a argon atmosphere. The high diffusion co-efficient of carbon in lanthanide dicarbides having the fluorite crystal structure would make possible the manufacture of a carbon-ion electrolyte for use in a battery or a fuel cell that could consume solid carbon as it`s feedstock.« less
Thermophysical properties of multi-shock compressed dense argon.
Chen, Q F; Zheng, J; Gu, Y J; Chen, Y L; Cai, L C; Shen, Z J
2014-02-21
In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ∼6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.
Thermophysical properties of multi-shock compressed dense argon
NASA Astrophysics Data System (ADS)
Chen, Q. F.; Zheng, J.; Gu, Y. J.; Chen, Y. L.; Cai, L. C.; Shen, Z. J.
2014-02-01
In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ˜6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.
NASA Astrophysics Data System (ADS)
Kuri, Subrata Kumar; Rakibuzzaman, S. M.; Sabah, Arefiny; Ahmed, Jannat; Hasan, Mohammad Nasim
2017-12-01
Molecular dynamics simulation has been carried out to go through the evaporation and condensation characteristics of thin liquid argon film in nanoscale confinement having nanostructured boundary. Nanoscale confinement under consideration consists of hot and cold parallel platinum plates at the bottom and top end of a model cuboid inside which the fluid domain comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the confinement. Three different confinement configurations have been considered here: (i) Both platinum plates are flat, (ii) Upper plate consisting of transverse slots and (iii) Both plates consisting of transverse slots. The height of the slots is 1.5 nm. Considering hydrophilic nature of top and bottom plates, two different high temperatures of the hot wall was set and an observation was made. For all the structures, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall is set to two different temperatures like 110 K and 250 K for all three models to perform non-equilibrium molecular dynamics (NEMD). Various system characteristics such as atomic distribution, wall heat flux, evaporative mass flux etc. have been obtained and discussed to have a clear understanding of the effect of nanotextured surface on phase change phenomena.
NASA Astrophysics Data System (ADS)
VanBommel, S. J.; Gellert, R.; Clark, B. C.; Ming, D. W.
2018-02-01
The Mars Exploration Rover Opportunity (MER-B) has been exploring the surface of Mars since landing in 2004. Its Alpha Particle X-ray Spectrometer (APXS) is primarily used to interrogate the chemical composition of rocks and soil samples in situ. Additionally, the APXS has measured the atmosphere of Mars with a regular cadence, monitoring the change in relative atmospheric argon density. Atmospheric measurements with the MER-B APXS span over six Mars years providing an unprecedented level of statistics for careful study of the ubiquitous APXS spectral background. Several models were applied to high-frequency long-duration Spirit rover atmospheric APXS measurements. The most stable model with the least uncertainty was applied to the MER-B data set. Seasonal variation of 10-15% in equatorial atmospheric argon density was observed - in agreement with existing literature and global climate models. Unseen in previous work and global climate models, an abrupt deviation from the model-predicted annual mixing ratio was measured by the MER-B APXS around Ls 150. The sharp change, 10% over 10° Ls, provides strong evidence for a northward migrating front, enriched in argon, sourced from the south pole at the end of southern winter. A similar weaker front is possibly observed around Ls 325, sourced from the northern polar region.
Darkside-20k: A 20 ton Liquid Argon Dark Matter Experiment
NASA Astrophysics Data System (ADS)
Back, Henning; Darkside-20k Collaboration
2016-03-01
The Darkside-20k detector is the next step in the Darkside dark matter search program at the Laboratori Nazionali del Gran Sasso in Italy. The Darkside detectors have grown in fiducial mass starting with 10kg in Darkside10, to 50 kg in Darkside50, and finally a proposed 20,000 kg fiducial mass, Darkside20k. The Darkside detectors are dual-phase argon TPCs that combine the very powerful scintillation pulse-shape analysis and ionization information to discriminate against background events. Two unique aspects to the Darkside program is the use of an external neutron veto based on borated liquid scintillator, and the use of low radioactivity argon from underground sources as the target. Argon from the atmosphere has an 39Ar activity of 1Bq/kg, which would be the limiting background, but the underground argon is essentially free of 39Ar. Additionally, the detector is placed in a water Cherenkov muon veto. Combining all these techniques allows Darkside-20k to achieve a background-free 100 t-yr exposure accumulated in a 5 yr run. Darkside-20k is expected to start operations in 2020 with data taking starting in 2021, and will be sensitive to WIMP-nucleon interaction cross sections of 1×10-47 cm2 (1x10-46 cm2) for WIMPs of 1 TeV/c2 (10 TeV/c2) mass.
[Photodissociation of Acetylene and Acetone using Step-Scan Time-Resolved FTIR Emission Spectroscopy
NASA Technical Reports Server (NTRS)
McLaren, Ian A.; Wrobel, Jacek D.
1997-01-01
The photodissociation of acetylene and acetone was investigated as a function of added quenching gas pressures using step-scan time-resolved FTIR emission spectroscopy. Its main components consist of Bruker IFS88, step-scan Fourier Transform Infrared (FTIR) spectrometer coupled to a flow cell equipped with Welsh collection optics. Vibrationally excited C2H radicals were produced from the photodissociation of acetylene in the unfocused experiments. The infrared (IR) emission from these excited C2H radicals was investigated as a function of added argon pressure. Argon quenching rate constants for all C2H emission bands are of the order of 10(exp -13)cc/molecule.sec. Quenching of these radicals by acetylene is efficient, with a rate constant in the range of 10(exp -11) cc/molecule.sec. The relative intensity of the different C2H emission bands did not change with the increasing argon or acetylene pressure. However, the overall IR emission intensity decreased, for example, by more than 50% when the argon partial pressure was raised from 0.2 to 2 Torr at fixed precursor pressure of 160mTorr. These observations provide evidence for the formation of a metastable C2H2 species, which are collisionally quenched by argon or acetylene. Problems encountered in the course of the experimental work are also described.
NASA Astrophysics Data System (ADS)
Franek, James B.
Argon emission lines, particularly those in the near-infrared region (700-900nm), are used to determine plasma properties in low-temperature, partially ionized plasmas to determine effective electron temperature [Boffard et al., 2012], and argon excited state density [Boffard et al., 2009] using appropriately assumed electron energy distributions. While the effect of radiation trapping influences the interpretation of plasma properties from emission-line ratio analysis, eliminating the need to account for these effects by directly observing the 3px-to-1sy transitions [ Boffard et al., 2012] is preferable in most cases as this simplifies the analysis. In this dissertation, a 1-Torr argon, pulsed positive column in a hollow-cathode discharge is used to study the correlation between four quantities: 420.1-419.8nm emission-line ratio, metastable-atom density, reduced electric field, and electron energy distribution. The extended coronal model is used to acquire an expression for 420.1-419.8nm emission-line ratio, which is sensitive to direct electron-impact excitation of argon excited states as well as stepwise electron-impact excitation of argon excited states for the purpose of inferring plasma quantities from experimental measurements. Initial inspection of the 420.1-419.8nm emission-line ratio suggests the pulse may be empirically divided into three distinct stages labelled the Initiation Stage, Transient Stage, and Post-Transient stage. Using equilibrium electron energy distributions from simulation to deduce excitation rates [Adams et al., 2012] in the extended coronal model affords agreement between predicted and observed metastable density in the Post-Transient stage of the discharge [Franek et al., 2015]. Applying this model-assisted diagnostic technique to the characterization of plasma systems utilizing lower-resolution spectroscopic systems is not straightforward, however, as the 419.8nm and 420.1nm emission-line profiles are convolved and become insufficiently resolved for treating the convolution as two separate emission-lines. To remedy this, the argon 425.9nm emission-line is evaluated as a proxy for the 419.8 nm emission-line. Both emission-lines (419.8nm and 425.9nm) are attributed to direct excitation from the argon ground state. The intensity of the 425.9nm emission-line is compared to the intensity of the 419.8nm emission-line over a range of plasma conditions to infer the same plasma quantities from similar experimental measurements. Discrepancies between the observed intensities of the emission-lines (419.8nm, 425.9nm) are explained by electron-impact cross-sections of their parent states. It is shown that the intensity of the argon 425.9nm emission-line is similar to that of the 419.8nm emission-line. The difference between the observed emission lines (425.9nm, 419.8nm) is attributed to the electron energy distribution in the plasma.
NASA Astrophysics Data System (ADS)
Rossi, B.; Agnes, P.; Alexander, T.; Alton, A.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Brigatti, A.; Brodsky, J.; Budano, F.; Calaprice, F.; Canci, N.; Candela, A.; Cariello, M.; Cavalcante, P.; Catalanotti, S.; Chavarria, A.; Chepurnov, A.; Cocco, A. G.; Covone, G.; D'Angelo, D.; D'Incecco, M.; De Deo, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Franco, D.; Gabriele, F.; Galbiati, C.; Goretti, A.; Grandi, L.; Guan, M. Y.; Guardincerri, Y.; Hackett, B.; Herner, K.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; Kendziora, C.; Koh, G.; Korablev, D.; Korga, G.; Kurlej, A.; Li, P. X.; Lombardi, P.; Luitz, S.; Machulin, I.; Mandarano, A.; Mari, S.; Maricic, J.; Marini, L.; Martoff, C. J.; Meyers, P. D.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Musico, P.; Odrowski, S.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Papp, L.; Parmeggiano, S.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A.; Romani, A.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saldanha, R.; Sands, W.; Segreto, E.; Shields, E.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Watson, A.; Westerdale, S.; Wojcik, M.; Xiang, X.; Xu, J.; Yang, C. G.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhu, C.; Zuzel, G.
2016-07-01
DarkSide-50 at Gran Sasso underground laboratory (LNGS), Italy, is a direct dark matter search experiment based on a liquid argon TPC. DS-50 has completed its first dark matter run using atmospheric argon as target. The detector performances and the results of the first physics run are presented in this proceeding.
10 CFR 30.70 - Schedule A-Exempt concentrations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Antimony (51) Sb 122 3×10−4 Sb 124 2×10−4 Sb 125 1×10−3 Argon (18) A 37 1×10−3 A 41 4×10−7 Arsenic (33) As 73 5×10−3 As 74 5×10−4 As 76 2×10−4 As 77 8×10−4 Barium (56) Ba 131 2×10−3 Ba 140 3×10−4 Beryllium (4...×10−10 1×10−6 Footnotes to Schedule A: 1 Values are given only for those materials normally used as...
10 CFR 30.70 - Schedule A-Exempt concentrations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Antimony (51) Sb 122 3×10−4 Sb 124 2×10−4 Sb 125 1×10−3 Argon (18) A 37 1×10−3 A 41 4×10−7 Arsenic (33) As 73 5×10−3 As 74 5×10−4 As 76 2×10−4 As 77 8×10−4 Barium (56) Ba 131 2×10−3 Ba 140 3×10−4 Beryllium (4...×10−10 1×10−6 Footnotes to Schedule A: 1 Values are given only for those materials normally used as...
CALIS—A CALibration Insertion System for the DarkSide-50 dark matter search experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnes, P.; Albuquerque, I. F. M.; Alexander, T.
This paper describes the design, fabrication, commissioning and use of a CALibration source Insertion System (CALIS) in the DarkSide-50 direct dark matter search experiment. CALIS deploys radioactive sources into the liquid scintillator veto to characterize the detector response and detection efficiency of the DarkSide-50 Liquid Argon Time Projection Chamber, and the surrounding 30 t organic liquid scintillator neutron veto. It was commissioned in September 2014 and has been used successfully in several gamma and neutron source campaigns since then. A description of the hardware and an excerpt of calibration analysis results are given below.
Dynamic Strain Aging of Nickel-Base Alloys 800H and 690
NASA Astrophysics Data System (ADS)
Moss, Tyler E.; Was, Gary S.
2012-10-01
The objective of the current investigation is to characterize the dynamic strain aging (DSA) behavior in alloys 800H and 690. Constant extension rate tests were conducted at strain rates in the range of 10-4 s-1 to 10-7 s-1and temperatures between 295 K and 673 K (22 °C and 400 °C), in an argon atmosphere. Maps for the occurrence of serrated flow as a function of strain rate and temperature were built for both alloys. The enthalpy of serrated flow appearance of alloy 800H was found to be 1.07 ± 0.30 eV.
2009-01-30
Fig. 7. ECV data for CH4/H2/Ar/Cl2/BCl3 and Cl2/ SiCl4 /Ar plasma etching. Ni < 1010/cm2. Subsequently, it was exposed to RIE...etching in either a CH4/H2/Ar/Cl2/BCl3 or a Cl2/ SiCl4 /Ar gas mixture which have been used to fabricate nanoposts for the IQB structures (see next...Argon +BCl3 as well as Inductive Coupled Plasma (ICP) etching using SiCl4 . Using both methods we were able to obtain 30-40 nm-diameter nanopoles on
1991-04-23
ClIH16: C, 89.12; H, 10.88; Found: C, 88.85; H, 10.90. Synthesis of Grignard Reagents . Neopentylmagnesium chloride. Into a 500-mL round-bottomed flask... Grignard reagent several times using the following procedure. We placed 5.0 g (0.206 mol) of magnesium chips and a magnetic stir bar to a 200-mL round...Norbornylmagnesium bromide. This Grignard reagent was synthesized using a variation on established procedures. 58,60 We transferred under argon 50.0 mL (30.0 mmol
CALIS—A CALibration Insertion System for the DarkSide-50 dark matter search experiment
NASA Astrophysics Data System (ADS)
Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Asner, D. M.; Back, H. O.; Baldin, B.; Biery, K.; Bocci, V.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Caravati, M.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cicalò, C.; Cocco, A. G.; Covone, G.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Dionisi, C.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giagu, S.; Giganti, C.; Giovanetti, G. K.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; James, I.; Johnson, T. N.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Loer, B.; Lombardi, P.; Longo, G.; Ma, Y.; Machado, A. A.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Milincic, R.; Miller, J. D.; Montanari, D.; Monte, A.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Navrer Agasson, A.; Odrowski, S.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeti, M.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Savarese, C.; Schlitzer, B.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Verducci, M.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, Xi.; Xiao, X.; Xu, J.; Yang, C.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.
2017-12-01
This paper describes the design, fabrication, commissioning and use of a CALibration source Insertion System (CALIS) in the DarkSide-50 direct dark matter search experiment. CALIS deploys radioactive sources into the liquid scintillator veto to characterize the detector response and detection efficiency of the DarkSide-50 Liquid Argon Time Projection Chamber, and the surrounding 30 t organic liquid scintillator neutron veto. It was commissioned in September 2014 and has been used successfully in several gamma and neutron source campaigns since then. A description of the hardware and an excerpt of calibration analysis results are given below.
High density crystalline boron prepared by hot isostatic pressing in refractory metal containers
Hoenig, C.L.
1993-08-31
Boron powder is hot isostatically pressed in a refractory metal container to produce a solid boron monolith with a bulk density at least 2.22 g/cc and up to or greater than 2.34 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1,800 C and 30 PSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.34 g/cc. Complex shapes can be made.
High density crystalline boron prepared by hot isostatic pressing in refractory metal containers
Hoenig, Clarence L.
1993-01-01
Boron powder is hot isostatically pressed in a refractory metal container to produce a solid boron monolith with a bulk density at least 2.22 g/cc and up to or greater than 2.34 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1800.degree. C. and 30 KSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.34 g/cc. Complex shapes can be made.
Removal of glass adhered to sintered ceramics in hot isostatic pressing
NASA Technical Reports Server (NTRS)
1985-01-01
In the hot isostatic pressing of ceramic materials in molten glass using an inert gas as a pressing medium, glass adhered to the sintered ceramics is heated to convert it to a porous glass and removed. Thus, Si3N4 powder was compacted at 5000 kg/sq cm, coated with a 0.5 mm thick BN, embedded in Pyrex glass in a graphite crucible, put inside a hot isostatic press containing Argon, hot pressed at 1750 C and 100 kg/sq cm; cooled, taken out from the crucible, heated at 1100 C for 30 minutes, cooled, and then glass adhered to the sintered body was removed.
High density-high purity graphite prepared by hot isostatic pressing in refractory metal containers
Hoenig, Clarence L.
1994-01-01
Porous graphite in solid form is hot isostatically pressed in a refractory metal container to produce a solid graphite monolith with a bulk density greater than or equal to 2.10 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed, chemically vapor deposited, or coated by some other suitable means onto graphite. Hot isostatic pressing at 2200.degree. C. and 30 KSI (206.8 MPa) argon pressure for two hours produces a bulk density of 2.10 g/cc. Complex shapes can be made.
High density-high purity graphite prepared by hot isostatic pressing in refractory metal containers
Hoenig, C.L.
1994-08-09
Porous graphite in solid form is hot isostatically pressed in a refractory metal container to produce a solid graphite monolith with a bulk density greater than or equal to 2.10 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed, chemically vapor deposited, or coated by some other suitable means onto graphite. Hot isostatic pressing at 2,200 C and 30 KSI (206.8 MPa) argon pressure for two hours produces a bulk density of 2.10 g/cc. Complex shapes can be made. 1 fig.
Laser scattering induced holograms in lithium niobate. [observation of diffraction cones
NASA Technical Reports Server (NTRS)
Magnusson, R.; Gaylord, T. K.
1974-01-01
A 3.0-mm thick poled single crystal of lithium niobate doped with 0.1 mole% iron was exposed to a single beam and then to two intersecting beams of an argon ion laser operating at 515-nm wavelength. Laser scattering induced holograms were thus written and analyzed. The presence of diffraction cones was observed and is shown to result from the internally recorded interference pattern resulting from the interference of the original incident laser beam with light scattered from material inhomogeneities. This phenomenon is analyzed using Ewald sphere construction techniques which reveal the geometrical relationships existing for the diffraction cones.
Thin Film CuInS2 Prepared by Spray Pyrolysis with Single-Source Precursors
NASA Technical Reports Server (NTRS)
Jin, Michael H.; Banger, Kulinder K.; Harris, Jerry D.; Cowen, Jonathan E.; Hepp, Aloysius F.; Lyons, Valerie (Technical Monitor)
2002-01-01
Both horizontal hot-wall and vertical cold-wall atmospheric chemical spray pyrolysis processes deposited near single-phase stoichiometric CuInS2 thin films. Single-source precursors developed for ternary chalcopyrite materials were used for this study, and a new liquid phase single-source precursor was tested with a vertical cold-wall reactor. The depositions were carried out under an argon atmosphere, and the substrate temperature was kept at 400 C. Columnar grain structure was obtained with vapor deposition, and the granular structure was obtained with (liquid) droplet deposition. Conductive films were deposited with planar electrical resistivities ranging from 1 to 30 Omega x cm.
CALIS—A CALibration Insertion System for the DarkSide-50 dark matter search experiment
Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; ...
2017-12-18
This paper describes the design, fabrication, commissioning and use of a CALibration source Insertion System (CALIS) in the DarkSide-50 direct dark matter search experiment. CALIS deploys radioactive sources into the liquid scintillator veto to characterize the detector response and detection efficiency of the DarkSide-50 Liquid Argon Time Projection Chamber, and the surrounding 30 t organic liquid scintillator neutron veto. It was commissioned in September 2014 and has been used successfully in several gamma and neutron source campaigns since then. A description of the hardware and an excerpt of calibration analysis results are given below.
Fuel and oxygen addition for metal smelting or refining process
Schlichting, Mark R.
1994-01-01
A furnace 10 for smelting iron ore and/or refining molten iron 20 is equipped with an overhead pneumatic lance 40, through which a center stream of particulate coal 53 is ejected at high velocity into a slag layer 30. An annular stream of nitrogen or argon 51 enshrouds the coal stream. Oxygen 52 is simultaneously ejected in an annular stream encircling the inert gas stream 51. The interposition of the inert gas stream between the coal and oxygen streams prevents the volatile matter in the coal from combusting before it reaches the slag layer. Heat of combustion is thus more efficiently delivered to the slag, where it is needed to sustain the desired reactions occurring there. A second stream of lower velocity oxygen can be delivered through an outermost annulus 84 to react with carbon monoxide gas rising from slag layer 30, thereby adding still more heat to the furnace.
Lance for fuel and oxygen injection into smelting or refining furnace
Schlichting, Mark R.
1994-01-01
A furnace 10 for smelting iron ore and/or refining molten iron 20 is equipped with an overhead pneumatic lance 40, through which a center stream of particulate coal 53 is ejected at high velocity into a slag layer 30. An annular stream of nitrogen or argon 51 enshrouds the coal stream. Oxygen 52 is simultaneously ejected in an annular stream encircling the inert gas stream 51. The interposition of the inert gas stream between the coal and oxygen streams prevents the volatile matter in the coal from combusting before it reaches the slag layer. Heat of combustion is thus more efficiently delivered to the slag, where it is needed to sustain the desired reactions occurring there. A second stream of lower velocity oxygen can be delivered through an outermost annulus 84 to react with carbon monoxide gas rising from slag layer 30, thereby adding still more heat to the furnace.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christman, E.A.; Appleby, A.; Jayko, M.
1980-07-01
Chemical yields of Fe{sup 3+} have been measured from FeSO{sub 4} solutions irradiated in the presence and absence of oxygen with carbon, neon, and argon ions from the Berkeley Bevalac facility. G(Fe{sup 3+}) decreases with increasing beam penetration and with increasing atomic number of the incident ion. The results are compared with current theoretical expectations of the behavior of these particles in an aqueous absorber. The chemical yields are consistently higher than theoretically predicted, by amounts varying from <6.2% (carbon ions) to <13.2% (argon ions). The additional yields are possibly attributable to fragmentation of the primary particle beams.
Argon ion pollution of the magnetosphere
NASA Technical Reports Server (NTRS)
Lopez, R. E.
1985-01-01
Construction of a Solar Power Satellite (SPS) would require the injection of large quantities of propellant to transport material from Low Earth Orbit (LEO) to the construction site at Geostationary Earth Orbit (GEO). This injection, in the form of approx 10 to the 32nd power, 2 KeV argon ions (and associated electrons) per SPS, is comparable to the content of the plasmasphere (approx 10 to the 31st power ions). In addition to the mass deposited, this represents a considerable injection of energy. The injection is examined in terms of a simple model for the expansion of the beam plasma. General features of the subsequent magnetospheric convection of the argon are also examined.
Low-pressure argon adsorption assessment of micropore connectivities in activated carbons.
Zimny, T; Villieras, F; Finqueneisel, G; Cossarutto, L; Weber, J V
2006-01-01
Low-pressure argon adsorption has been used to study the energetic distribution of microporous activated carbons differing by their burn-off. The collected isotherms were analyzed using the derivative isotherm summation method. Some oscillations on the experimental curves for very low partial pressures were detected. The results are analyzed and discussed according to the literature and could be attributed to local overheating caused by spontaneous mass transfer of argon through constrictions between former pores and the new opening pore or deadend pores. We used the dynamic character of the experimental method and mainly the discrepancy of the quasi-equilibrium state to deduce key parameters related to the porosity topology.
Hypervelocity flows of argon produced in a free piston driven expansion tube
NASA Technical Reports Server (NTRS)
Neely, A. J.; Stalker, R. J.
1992-01-01
An expansion tube with a free piston driver has been used to generate quasi-steady hypersonic flows in argon at flow velocities in excess of 9 km/s. Irregular test flow unsteadiness has limited the performance of previous expansion tubes. Test section measurements of pitot pressure, static pressure, and flat plate heat transfer rates are used to confirm the presence of quasi-steady flow, and comparisons are made with predictions for the equilibrium flow of an ideal, ionizing, monatomic gas. The results of this work indicate that expansion tubes can be used to generate quasi-steady hypersonic flows in argon at speeds in excess of Earth orbital velocity.
Method for the generation of variable density metal vapors which bypasses the liquidus phase
Kunnmann, Walter; Larese, John Z.
2001-01-01
The present invention provides a method for producing a metal vapor that includes the steps of combining a metal and graphite in a vessel to form a mixture; heating the mixture to a first temperature in an argon gas atmosphere to form a metal carbide; maintaining the first temperature for a period of time; heating the metal carbide to a second temperature to form a metal vapor; withdrawing the metal vapor and the argon gas from the vessel; and separating the metal vapor from the argon gas. Metal vapors made using this method can be used to produce uniform powders of the metal oxide that have narrow size distribution and high purity.
Experimental investigations of argon and xenon ion sources
NASA Technical Reports Server (NTRS)
Kaufman, H. R.
1975-01-01
The multipole thruster was used to investigate the use of argon and xenon propellants as possible alternatives to the electric thruster propellants of mercury and cesium. The multipole approach was used because of its general high performance level. The design employed, using flat and cylindrical rolled sections of sheet metal, was selected for ease of fabrication, design, assembly, and modification. All testing was conducted in a vacuum facility and the pumping was accomplished by a 0.8 m diffusion pump together with liquid nitrogen cooled liner. Minimum discharge losses were in the 200-250 ev. ion range for both argon and xenon. Flatness parameters were typically in the 0.70-0.75 range.
NASA Technical Reports Server (NTRS)
Gross, A. R.; Steinle, F. W., Jr.
1975-01-01
A NACA 64A010 pressure-instrumented airfoil was tested at transonic speeds over a range of angle of attack from -1 to 12 degrees at various Reynolds numbers ranging from 2 to 6 million in air, argon, Freon 12, and a mixture of argon and Freon 12 having a ratio of specific heats corresponding to air. Good agreement of results is obtained for conditions where compressibility is not significant and for the air and comparable argon-Freon 12 mixture. Comparison of heavy gas results with air, when adjusted for transonic similarity, show improved, but less than desired agreement.
Broadband Ftmw Spectroscopy of 2-METHYLIMIDAZOLE and Complexes with Water and Argon
NASA Astrophysics Data System (ADS)
Medcraft, Chris; Heitkämper, Juliane; Mullaney, John C.; Walker, Nick
2017-06-01
The rotational spectrum of 2-methylimidazole has been measured using laser ablation chirped-pulse Fourier transform microwave spectroscopy from 2-18.5 GHz. 2-methylimidazole was laser vaporised then entrained within an argon buffer gas undergoing supersonic expansion allowing for efficient rotational cooling. Carbon-13 and nitrogen-15 isotopologues were measured in natural abundance and substitution coordinates have been determined. The barrier to internal rotation of the methyl group was found to be 122.697(20) cm^{-1}. Nuclear quadropole coupling constants for the two nitrogen nuclei were determined via a rigid rotor fit of the A internal rotor state. Complexes with water and argon were also observed and fit in a similar way.
Measurement of longitudinal electron diffusion in liquid argon
Li, Yichen; Tsang, Thomas; Thorn, Craig; ...
2016-02-07
In this paper, we report the measurement of longitudinal electron diffusion coefficients in liquid argon for electric fields between 100 and 2000 V/cm with a gold photocathode as a bright electron source. The measurement principle, apparatus, and data analysis are described. In the region between 100 and 350 V/cm, our results show a discrepancy with the previous measurement. In the region between 350 and 2000 V/cm, our results represent the world's best measurement. Over the entire measured electric field range, our results are systematically higher than the calculation of Atrazhev-Timoshkin. The quantum efficiency of the gold photocathode, the drift velocitymore » and longitudinal diffusion coefficients in gas argon are also presented.« less
NASA Astrophysics Data System (ADS)
Bondarenko, G. G.; Dubinina, M. S.; Fisher, M. R.; Kristya, V. I.
2018-04-01
For a hybrid model of the low-current discharge considering, along with direct ionization of the mixture components by electrons, the Penning ionization of mercury atoms by metastable argon atoms, the ionization coefficient in the argon-mercury mixture used in illuminating lamps is calculated. The analytical approximation formula describing the dependence of the ionization coefficient of the mixture on the reduced electric field strength and temperature is obtained for sufficiently wide ranges of their variations, and its accuracy is estimated. It is demonstrated that the discharge ignition voltage calculated using this formula is in agreement with the results of simulation and the available experimental data.
Canullo, Luigi; Tallarico, Marco; Botticelli, Daniele; Alccayhuaman, Karol Alí Apaza; Martins Neto, Evandro Carneiro; Xavier, Samuel Porfirio
2018-04-01
To histologically assess the hard and soft tissue changes after insertion of cleaned and activated titanium implants using plasma of argon. Eight dogs were included in this study. The mandibular premolars and first molars were extracted. For each hemi-mandible, four implants, 7 mm long and 3.3 mm of diameter, with a ZirTi surface were used. The surface of two implants was randomly treated with argon plasma (test), while the other two implants were left untreated (control). After 1 month, the same procedure was performed in the contralateral hemi-mandible. The amount of old bone, new bone, overall value of old bone plus new bone, and soft tissue was histologically evaluated. After 1 month of healing, high percentages of new bone in close contact with the implant surface were found at both the treated (60.1% ± 15.6%; 95% CI 56.5%-78.0%) and untreated (57.2% ± 13.1%; 95% CI 49.3%-67.5%) implants. Low percentages of old bone were found at this stage of healing, at both the treated (4.4% ± 3.0%; 95% CI 1.2%-5.4%) and untreated (3.4% ± 3.1%; 95% CI 0.6%-4.9%) implants. Not statistically significant differences were found between groups (p > .05). After 2 months of healing, treated implants presented a significantly higher (p = .012) new bone formation (72.5% ± 12.4%; 95% CI 69.6%-86.8%) compared to untreated sites (64.7% ± 17.3%; 95% CI 59.4%-83.3%). Controversially, no difference (p = .270) in terms of old bone was present between treated (3.1% ± 1.7%, 95% CI 1.8%-4.2%) and untreated implants (3.8% ± 1.9%, 95% CI 3.2%-5.8%). Significant differences (p = .018) in terms of total mineralized bone were found between treated (75.6% ± 13.0%, 95% CI 73.3%-91.3%) and untreated implants (68.4% ± 16.8%; 95% CI 64.2%-87.6%). Implants treated using plasma of argon was demonstrated to reach a higher bone-to-implant contact when compared to untreated implants. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Lenticular burns following argon panretinal photocoagulation.
Bloom, S. M.; Mahl, C. F.; Schiller, S. B.
1992-01-01
Photocoagulation burns of the crystalline lens are a rare complication of posterior segment laser surgery. These burns occur more commonly in eyes with cataracts and with small, high-power, long-duration argon blue-green burns. We describe the first occurrence of lenticular burns caused by a fractured laser fibre optic cord. Images PMID:1340772
Mixed uranium dicarbide and uranium dioxide microspheres and process of making same
Stinton, David P.
1983-01-01
Nuclear fuel microspheres are made by sintering microspheres containing uranium dioxide and uncombined carbon in a 1 mole percent carbon monoxide/99 mole percent argon atmosphere at 1550.degree. C. and then sintering the microspheres in a 3 mole percent carbon monoxide/97 mole percent argon atmosphere at the same temperature.
Pressure effects on the thermal stability of SiC fibers
NASA Technical Reports Server (NTRS)
Jaskowiak, Martha H.; Dicarlo, James A.
1986-01-01
Commercially available polymer derived SiC fibers were treated at temperatures from 1000 to 2200 C in vacuum and argon gas pressure of 1 and 1360 atm. Effects of gas pressure on the thermal stability of the fibers were determined through property comparison between the pressure treated fibers and vacuum treated fibers. Investigation of the thermal stability included studies of the fiber microstructure, weight loss, grain growth, and tensile strength. The 1360 atm argon gas treatment was found to shift the onset of fiber weight loss from 1200 to above 1500 C. Grain growth and tensile strength degradation were correlated with weight loss and were thus also inhibited by high pressure treatments. Additional heat treatment in 1 atm argon of the fibers initially treated at 1360 atm argon caused further weight loss and tensile strength degradation, thus indicating that high pressure inert gas conditions would be effective only in delaying fiber strength degradation. However, if the high gas pressure could be maintained throughout composite fabrication, then the composites could be processed at higher temperatures.
Readiness of the ATLAS liquid argon calorimeter for LHC collisions
NASA Astrophysics Data System (ADS)
Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Aktas, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Argyropoulos, T.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Dos Santos Pedrosa, F. Baltasar; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S. P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baron, S.; Baroncelli, A.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Barros, N.; Bartoldus, R.; Bartsch, D.; Bastos, J.; Bates, R. L.; Bathe, S.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G. A.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Bedajanek, I.; Beddall, A. J.; Beddall, A.; Bednár, P.; Bednyakov, V. A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benincasa, G. P.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besson, N.; Bethke, S.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Booth, J. R. A.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Bosteels, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N. D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Byatt, T.; Caballero, J.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campabadal Segura, F.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caracinha, D.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carron Montero, S.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernadez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N.; Cataldi, G.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M.; Choudalakis, G.; Chouridou, S.; Chren, D.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clements, D.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Cole, B.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Coluccia, R.; Conde Muiño, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Silva, P. V. M.; da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S. J.; Daly, C. H.; Dam, M.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davison, A. R.; Dawson, I.; Dawson, J. W.; Daya, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Castro Faria Salgado, P. E.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de La Cruz-Burelo, E.; de La Taille, C.; de Mora, L.; de Oliveira Branco, M.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; de Zorzi, G.; Dean, S.; Deberg, H.; Dedes, G.; Dedovich, D. V.; Defay, P. O.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S. P.; Dennis, C.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Domenico, A.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dindar Yagci, K.; Dingfelder, D. J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Dobbs, M.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O. B.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doxiadis, A.; Doyle, A. T.; Drasal, Z.; Driouichi, C.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duperrin, A.; Duran Yildiz, H.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Eerola, P.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Epshteyn, V. S.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Faccioli, P.; Facius, K.; Fakhrutdinov, R. M.; Falciano, S.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, I.; Fedorko, W.; Feligioni, L.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M. J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gaponenko, A.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Gentile, S.; Georgatos, F.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giovannini, P.; Giraud, P. F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gollub, N. P.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Gonella, L.; Gong, C.; González de La Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goryachev, S. V.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Granado Cardoso, L.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Grishkevich, Y. V.; Groer, L. S.; Grognuz, J.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Härtel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harrington, R. D.; Harris, O. B.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayward, H. S.; Haywood, S. J.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Correia, A. M. Henriques; Henrot-Versille, S.; Hensel, C.; Henß, T.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hirose, M.; Hirsch, F.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Homola, P.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilyushenka, Y.; Imori, M.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, J. N.; Jackson, P.; Jaekel, M.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jarron, P.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jez, P.; Jézéquel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joos, D.; Joram, C.; Jorge, P. M.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinovskaya, L. V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kayumov, F.; Kazanin, V. A.; Kazarinov, M. Y.; Kazi, S. I.; Keates, J. R.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kind, O.; Kind, P.; King, B. T.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konovalov, S. P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kostka, P.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotov, K. Y.; Koupilova, Z.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kreisel, A.; Krejci, F.; Krepouri, A.; Kretzschmar, J.; Krieger, P.; Krobath, G.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z. V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuznetsova, E.; Kvasnicka, O.; Kwee, R.; La Rosa, M.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Lane, J. L.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Le Vine, M.; Leahu, M.; Lebedev, A.; Lebel, C.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lefebvre, M.; Legendre, M.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lelas, D.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Levonian, S.; Lewandowska, M.; Leyton, M.; Li, H.; Li, J.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Liko, D.; Lilley, J. N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S. C.; Lindsay, S. W.; Linhart, V.; Linnemann, J. T.; Liolios, A.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Lovas, L.; Love, J.; Love, P.; Lowe, A. J.; Lu, F.; Lu, J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Miguens, J. Machado; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magradze, E.; Magrath, C. A.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marcisovsky, M.; Marino, C. P.; Marques, C. N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti I Garcia, S.; Martin, A. J.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, T. A.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martini, A.; Martynenko, V.; Martyniuk, A. C.; Maruyama, T.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S. J.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzanti, P.; Mc Donald, J.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCubbin, N. A.; McFarlane, K. W.; McGlone, H.; McHedlidze, G.; McLaren, R. A.; McMahon, S. J.; McMahon, T. R.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T. M.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melamed-Katz, A.; Mellado Garcia, B. R.; Meng, Z.; Menke, S.; Meoni, E.; Merkl, D.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A. M.; Messmer, I.; Metcalfe, J.; Mete, A. S.; Meyer, J.-P.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Micu, L.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikuž, M.; Miller, D. W.; Mills, W. J.; Mills, C. M.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Mir, L. M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V. A.; Miyagawa, P. S.; Mjörnmark, J. U.; Mladenov, D.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moles-Valls, R.; Molina-Perez, J.; Moloney, G.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R. W.; Herrera, C. Mora; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morii, M.; Morley, A. K.; Mornacchi, G.; Morozov, S. V.; Morris, J. D.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muir, A.; Murillo Garcia, R.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S. K.; Neal, H. A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neusiedl, A.; Neves, R. N.; Nevski, P.; Newcomer, F. M.; Nicholson, C.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nomoto, H.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nožička, M.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Odino, G. A.; Ogren, H.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver, J.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Ordonez, G.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Ortega, E. O.; Osculati, B.; Osuna, C.; Otec, R.; P Ottersbach, J.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Ozcan, V. E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padhi, S.; Padilla Aranda, C.; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Pal, A.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th. D.; Park, S. J.; Park, W.; Parker, M. A.; Parker, S. I.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L. S.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, P.; Peshekhonov, V. D.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Pfeifer, B.; Phan, A.; Phillips, A. W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popovic, D. S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Pospelov, G. E.; Pospichal, P.; Pospisil, S.; Potekhin, M.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Potter, K. P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qin, Z.; Qing, D.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammes, M.; Ratoff, P. N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R. A.; Richter, D.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E. R.; Roa Romero, D. A.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosselet, L.; Rossi, L. P.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rusakovich, N. A.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A. F.; Sadrozinski, H. F.-W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchis Lozano, M. A.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santi, L.; Santoni, C.; Santonico, R.; Santos, D.; Santos, J.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A. Y.; Savinov, V.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmid, P.; Schmidt, M. P.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schumacher, J.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjoelin, J.; Sjursen, T. B.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Sosnovtsev, V. V.; Sospedra Suay, L.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Speckmayer, P.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; Denis, R. D. St.; Stahl, T.; Stamen, R.; Stancu, S. N.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Soh, D. A.; Su, D.; Suchkov, S. I.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, T.; Suzuki, Y.; Sviridov, Yu. M.; Sykora, I.; Sykora, T.; Szymocha, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, R. P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Tevlin, C. M.; Thadome, J.; Thananuwong, R.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thomas, T. L.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomson, E.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tovey, S. N.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Triplett, N.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiafis, I.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P. M.; Twomey, M. S.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasilyeva, L.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Villa, M.; Villani, E. G.; Villaplana Perez, M.; Villate, J.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O. V.; Vivarelli, I.; Vives Vaques, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogt, H.; Vokac, P.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wahlen, H.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, J. C.; Wang, S. M.; Ward, C. P.; Warsinsky, M.; Wastie, R.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Webel, M.; Weber, J.; Weber, M. D.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S. L.; Wu, X.; Wulf, E.; Xella, S.; Xie, S.; Xie, Y.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, S.; Yamamura, T.; Yamanaka, K.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S. P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zema, P. F.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi Della Porta, G.; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zilka, B.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zutshi, V.
2010-12-01
The ATLAS liquid argon calorimeter has been operating continuously since August 2006. At this time, only part of the calorimeter was readout, but since the beginning of 2008, all calorimeter cells have been connected to the ATLAS readout system in preparation for LHC collisions. This paper gives an overview of the liquid argon calorimeter performance measured in situ with random triggers, calibration data, cosmic muons, and LHC beam splash events. Results on the detector operation, timing performance, electronics noise, and gain stability are presented. High energy deposits from radiative cosmic muons and beam splash events allow to check the intrinsic constant term of the energy resolution. The uniformity of the electromagnetic barrel calorimeter response along η (averaged over φ) is measured at the percent level using minimum ionizing cosmic muons. Finally, studies of electromagnetic showers from radiative muons have been used to cross-check the Monte Carlo simulation. The performance results obtained using the ATLAS readout, data acquisition, and reconstruction software indicate that the liquid argon calorimeter is well-prepared for collisions at the dawn of the LHC era.
Waves generated in the vicinity of an argon plasma gun in the ionosphere
NASA Technical Reports Server (NTRS)
Cahill, L. J., Jr.; Arnoldy, R. L.; Lysak, R. L.; Peria, W.; Lynch, K. A.
1993-01-01
Wave and particle observations were made in the close vicinity of an argon plasma gun carned to over 600 km altitude on a sounding rocket. The gun was carned on a subpayload, separated from the main payload early in the flight. Twelve-second argon ion ejections were energized alternately with a peak energy of 100 or 200 eV. They produced waves, with multiple harmonics, in the range of ion cyclotron waves, 10 to 1000 Hz at rocket altitudes. Many of these waves could not be identified as corresponding to the cyclotron frequencies of any of the ions, argon or ambient, known to be present. In addition, the wave frequencies were observed to rise and fall and to change abruptly during a 12-s gun operation. The wave amplitudes, near a few hundred Hertz, were of the order of O. 1 V/m. Some of the waves may be ion-ion hybrid waves. Changes in ion populations were observed at the main payload and at the subpayload during gun operations. A gun-related, field-aligned, electron population also appeared.
The importance of accurate interaction potentials in the melting of argon nanoclusters
NASA Astrophysics Data System (ADS)
Pahl, E.; Calvo, F.; Schwerdtfeger, P.
The melting temperatures of argon clusters ArN (N = 13, 55, 147, 309, 561, and 923) and of bulk argon have been obtained from exchange Monte Carlo simulations and are compared using different two-body interaction potentials, namely the standard Lennard-Jones (LJ), Aziz and extended Lennard-Jones (ELJ) potentials. The latter potential has many advantages: while maintaining the computational efficiency of the commonly used LJ potential, it is as accurate as the Aziz potential but the computer time scales more favorably with increasing cluster size. By applying the ELJ form and extrapolating the cluster data to the infinite system, we are able to extract the melting point of argon already in good agreement with experimental measurements. By considering the additional Axilrod-Teller three-body contribution as well, we calculate a melting temperature of T meltELJ = 84.7 K compared to the experimental value of T meltexp = 83.85 K, whereas the LJ potential underestimates the melting point by more than 7 K. Thus melting temperatures within 1 K accuracy are now feasible.
Waves generated in the vicinity of an argon plasma gun in the ionosphere
NASA Astrophysics Data System (ADS)
Cahill, L. J., Jr.; Arnoldy, R. L.; Lysak, R. L.; Peria, W.; Lynch, K. A.
1993-06-01
Wave and particle observations were made in the close vicinity of an argon plasma gun carned to over 600 km altitude on a sounding rocket. The gun was carned on a subpayload, separated from the main payload early in the flight. Twelve-second argon ion ejections were energized alternately with a peak energy of 100 or 200 eV. They produced waves, with multiple harmonics, in the range of ion cyclotron waves, 10 to 1000 Hz at rocket altitudes. Many of these waves could not be identified as corresponding to the cyclotron frequencies of any of the ions, argon or ambient, known to be present. In addition, the wave frequencies were observed to rise and fall and to change abruptly during a 12-s gun operation. The wave amplitudes, near a few hundred Hertz, were of the order of O. 1 V/m. Some of the waves may be ion-ion hybrid waves. Changes in ion populations were observed at the main payload and at the subpayload during gun operations. A gun-related, field-aligned, electron population also appeared.
Spectral properties of gaseous uranium hexafluoride at high temperature
NASA Technical Reports Server (NTRS)
Krascella, N. L.
1980-01-01
A study to determine relative spectral emission and spectral absorption data for UF6-argon mixtures at elevated temperatures is discussed. These spectral data are required to assist in the theoretical analysis of radiation transport in the nuclear fuel-buffer gas region of a plasma core reactor. Relative emission measurements were made for UF6-argon mixtures over a range of temperatures from 650 to 1900 K and in the wavelength range from 600 to 5000 nanometers. All emission results were determined for a total pressure of 1.0 atm. Uranium hexafluoride partial pressures varied from about 3.5 to 12.7 mm Hg. Absorption measurements were attempted at 600, 625, 650 and 675 nanometers for a temperature of 1000 K. The uranium partial pressure for these determinations was 25 mm Hg. The results exhibit appreciable emission for hot UF6-argon mixtures at wavelengths between 600 and 1800 nanometers and no measurable absorption. The equipment used to evaluate the spectral properties of the UF6-argon mixtures included a plasma torch-optical plenum assembly, the monochromator, and the UF6 transfer system. Each is described.
NASA Astrophysics Data System (ADS)
Nguyen, C. T.; Buscail, H.; Cueff, R.; Issartel, C.; Riffard, F.; Perrier, S.; Poble, O.
2009-09-01
Ceria coatings were applied in order to improve the adherence of alumina scales developed on a model Fe-20Cr-5Al alloy during oxidation at high temperature. These coatings were performed by argon annealing of a ceria sol-gel coating at temperatures ranging between 600 and 1000 °C. The influence of these coatings on the alloy oxidation behaviour was studied at 1100 °C. In situ X-ray diffraction (XRD) was performed to characterize the coating crystallographic nature after annealing and during the oxidation process. The alumina scale morphologies were studied by means of scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS). The present work shows that the alumina scale morphology observed on cerium sol-gel coated alloy was very convoluted. On the cerium sol-gel coated alloy, argon annealing results in an increase of the oxidation rate in air, at 1100 °C. The 600 °C argon annealing temperature results in a good alumina scale adherence under thermal cycling conditions at 1100 °C.
Design and construction of a home-made and cheaper argon arc lamp
NASA Astrophysics Data System (ADS)
Sabaeian, Mohammad; Nazari-Tarkarani, Zeinab; Ebrahimzadeh, Azadeh
2018-05-01
The authors report on the design and construction of an argon arc lamp which provides noticeably a cheaper instrument for laser and medical applications. Cesium-doped tungsten and pure tungsten rods were used, respectively, for the lamp cathode and anode. To seal the glassy tube, a 50-50 Fe-Ni alloy was successfully used as a medium to attach the tungsten electrodes to the borosilicate glass tube. Starting voltage of the lamp versus the gas pressure, operation voltage-current diagram at various gas pressures, and lamp spectrum in the various pressures were measured. A comparison was made with krypton arc lamp. The lamp operation was satisfactory without any crack or fracture during lightening operation. The results showed that the lamp-lightening threshold voltage depends linearly on the pressure and arc length in such a way that there is an increase in the voltage by raising these two parameters. We have also observed that by increasing the argon pressure, there is a shifting in emission spectrum from the ultraviolet to the visible region. Comparison with krypton arc lamp indicated that argon lamp needs a higher threshold lightening voltage.
NASA Astrophysics Data System (ADS)
Lim, Jin-Pyo; Uhm, Han S.; Li, Shou-Zhe
2007-09-01
A nonequilibrium Ar /O2 plasma discharge at atmospheric pressure was carried out in a coaxial cylindrical reactor with a stepped electrode configuration powered by a 13.56MHz rf power supplier. The argon glow discharge with high electron density produces oxygen reactive species in large quantities. Argon plasma jets penetrate deep into ambient air and create a path for oxygen radicals to sterilize microbes. A sterilization experiment with bacterial endospores indicates that an argon-oxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby demonstrating its capability to clean surfaces and its usefulness for reinstating contaminated equipment as free from toxic biological warfare agents. The decimal reduction time (D values) of the Ar /O2 plasma jet at an exposure distance of 0.5-1.5cm ranges from 5 to 57s. An actinometric comparison of the sterilization data shows that atomic oxygen radicals play a significant role in plasma sterilization. When observed under a scanning electron microscope, the average size of the spores appears to be greatly reduced due to chemical reactions with the oxygen radicals.
Zhang, Jiao Jiao; Jo, Jin Oh; Huynh, Do Luong; Mongre, Raj Kumar; Ghosh, Mrinmoy; Singh, Amit Kumar; Lee, Sang Baek; Mok, Young Sun; Hyuk, Park; Jeong, Dong Kee
2017-02-07
This study was conducted to determine the effects of argon plasma on the growth of soybean [Glycine max (L.) Merr.] sprouts and investigate the regulation mechanism of energy metabolism. The germination and growth characteristics were modified by argon plasma at different potentials and exposure durations. Upon investigation, plasma treatment at 22.1 kV for 12 s maximized the germination and seedling growth of soybean, increasing the concentrations of soluble protein, antioxidant enzymes, and adenosine triphosphate (ATP) as well as up-regulating ATP a1, ATP a2, ATP b1, ATP b2, ATP b3, target of rapamycin (TOR), growth-regulating factor (GRF) 1-6, down-regulating ATP MI25 mRNA expression, and increasing the demethylation levels of the sequenced region of ATP a1, ATP b1, TOR, GRF 5, and GRF 6 of 6-day-old soybean sprouts. These observations indicate that argon plasma promotes soybean seed germination and sprout growth by regulating the demethylation levels of ATP, TOR, and GRF.
NASA Astrophysics Data System (ADS)
Vasiljević, Milica M.; Spasojević, Djordje; Šišović, Nikola M.; Konjević, Nikola
2017-09-01
We present a study of argon glow discharge which shows that measured wavenumber DC Stark shifts Δ ν of two neutral argon lines, Ar I 518.75 nm and Ar I 522.127 nm, can be used for reliable determination of the electric field strength F distribution in the cathode sheath region of the discharge. In order to experimentally determine the coefficient c in quadratic correlation Δ ν =cF2 , manifested in a low field range (up to 15 kV/cm), the discharge is seeded with a small admixture of hydrogen, and the values of F are measured via Stark polarization spectroscopy of the hydrogen Balmer beta line. Once known, this can be used for the determination of F by a simple and inexpensive spectroscopic Stark shift measurement in discharges with other argon admixtures or pure argon. Reported shift results are in good agreement with data extrapolated from measurements performed at high electric fields (over 100 kV/cm) by Windholz (Phys. Scr., 21 (1980) 67).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forati, Ebrahim, E-mail: forati@ieee.org; Piltan, Shiva; Sievenpiper, Dan, E-mail: dsievenpiper@ucsd.edu
Using a relaxation oscillator circuit, breakdown (V{sub BD}) and quench (V{sub Q}) voltages of a DC discharge microplasma between two needle probes are measured. High resolution modified Paschen curves are obtained for argon microplasmas including a quench voltage curve representing the voltage at which the plasma turns off. It is shown that for a point to point microgap (e.g., the microgap between two needle probes) which describes many realistic microdevices, neither Paschen's law applies nor field emission is noticeable. Although normally V{sub BD} > V{sub Q,} it is observed that depending on environmental parameters of argon, such as pressure and the drivingmore » circuitry, plasma can exist in a different state with equal V{sub BD} and V{sub Q.} Using emission line spectroscopy, it is shown that V{sub BD} and V{sub Q} are equal if the atomic excitation by the electric field dipole moment dominantly leads to one of the argon's metastable states (4P{sub 5} in our study)« less
A Supersonic Argon/Air Coaxial Jet Experiment for Computational Fluid Dynamics Code Validation
NASA Technical Reports Server (NTRS)
Clifton, Chandler W.; Cutler, Andrew D.
2007-01-01
A non-reacting experiment is described in which data has been acquired for the validation of CFD codes used to design high-speed air-breathing engines. A coaxial jet-nozzle has been designed to produce pressure-matched exit flows of Mach 1.8 at 1 atm in both a center jet of argon and a coflow jet of air, creating a supersonic, incompressible mixing layer. The flowfield was surveyed using total temperature, gas composition, and Pitot probes. The data set was compared to CFD code predictions made using Vulcan, a structured grid Navier-Stokes code, as well as to data from a previous experiment in which a He-O2 mixture was used instead of argon in the center jet of the same coaxial jet assembly. Comparison of experimental data from the argon flowfield and its computational prediction shows that the CFD produces an accurate solution for most of the measured flowfield. However, the CFD prediction deviates from the experimental data in the region downstream of x/D = 4, underpredicting the mixing-layer growth rate.
Readiness of the ATLAS liquid argon calorimeter for LHC collisions
Aad, G.; Abbott, B.; Abdallah, J.; ...
2010-08-20
The ATLAS liquid argon calorimeter has been operating continuously since August 2006. At this time, only part of the calorimeter was readout, but since the beginning of 2008, all calorimeter cells have been connected to the ATLAS readout system in preparation for LHC collisions. This paper gives an overview of the liquid argon calorimeter performance measured in situ with random triggers, calibration data, cosmic muons, and LHC beam splash events. Results on the detector operation, timing performance, electronics noise, and gain stability are presented. High energy deposits from radiative cosmic muons and beam splash events allow to check the intrinsicmore » constant term of the energy resolution. The uniformity of the electromagnetic barrel calorimeter response along η (averaged over Φ) is measured at the percent level using minimum ionizing cosmic muons. Finally, studies of electromagnetic showers from radiative muons have been used to cross-check the Monte Carlo simulation. The performance results obtained using the ATLAS readout, data acquisition, and reconstruction software indicate that the liquid argon calorimeter is well-prepared for collisions at the dawn of the LHC era.« less
CAPTAIN-Minerνa. Neutrino-Argon Scattering in a Medium-Energy Neutrino Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauger, Christopher M.
2015-10-29
The NuMI facility at Fermilab is currently providing an extremely intense beam of neutrinos for the NOνA, MINERνA and MINOS+ experiments. By installing the 5-ton CAPTAIN liquid argon TPC in front of the MINERνA detector in the NuMI beamline and combining the data from the CAPTAIN, MINERνA and MINOS+ detectors, a broad program of few-GeV neutrino cross section measurements on argon can be pursued. These measurements will be extremely helpful for future oscillation experiments. By directly comparing the cross sections on argon to MINERνA’s scintillator (CH) target, a new level of precision can be achieved in the measurements of themore » effects of the nucleus on neutrino interactions. These effects are of interest to not only the particle physics but also the nuclear physics community. This document describes in detail the physics goals of the CAPTAIN-MINERνA experiment, in addition to a first estimate of the technical resources required to install, commission and operate the CAPTAIN detector in front of the MINERVA detector.« less
Le Laser A Argon Ionise : Applications Therapeutiques
NASA Astrophysics Data System (ADS)
Brunetaud, J. M.; Mosquet, L.; Mordon, S.; Rotteleur, G.
1984-03-01
Le laser a argon ionise est un laser a emission continue, reglee en general en multiraies de 487 a 544 nm. Le rayonnement de ce laser est bien absorbe par les tissus vivants, avec une action preferentielle au niveau des pigments rouges (hemoglobine, myoglobine) et noirs (melanine). Le laser a argon est princi-palement utilise en therapeutique pour ses effets thermiques : en fonction du choix des parametres (puissance optique, surface exposee, temps d'exposition) on peut obtenir une coagulation (temperature optimale au niveau des tissus 60° - 80°) ou une volatisation (temperature superieure a 100°). Si la zone volatilisee est tres etroite (inferieure a 0,5 mm) on obtient un effet de coupe. Par rapport aux deux autres lasers egalement utilises pour leurs effets thermiques (CO2 et Nd. YAG) l'argon a des effets intermediaires : la coagulation sera plus superficielle qu'avec le Nd. YAG et la volatisation plus profonde qu'avec le CO2. Lors de la coupe, la necrose sur les berges sera egalement plus importante qu'avec le CO2.
Variation of Argon Impurity Assimilation with Runaway Electron Current in DIII-D
NASA Astrophysics Data System (ADS)
Hollmann, Eric; Bykov, I.; Moyer, R. A.; Rudakov, D. L.; Briesemeister, A.; Shiraki, D.; Herfindal, J. L.; Austin, M. E.; Lasnier, C. J.; Carlstrom, T. N.; Eidietis, N. W.; Paz-Soldan, C.; van Zeeland, M.
2017-10-01
Measurements of the effect of runaway electron (RE) pressure upon argon impurity assimilation in DIII-D are reported. Intentionally created post-disruption RE beams are ramped to different plasma currents to vary the RE pressure, while impurity levels are varied by injecting argon gas (in addition to Ar already present from the small pellet used to create the disruption). Based on comparisons of current decay rates and hard x-ray, spectroscopic, interferometer, and Thomson scattering data, it is found that argon is not mixed uniformly through the plasma radially but appears to be preferentially moved out of the center of the plasma toward the walls, relative to the main species (deuterium). This exclusion appears to be stronger at higher plasma current, indicating that this force originates from the runaway electrons. Supported by the US DOE under DE-FG02-07ER54917, DE-AC05-00OR22725, DE-FG02-04ER54758, DE-FC02-04ER54698, DE-AC52-07N27344, DE-FG03-95ER54309, and DE-FG02-04ER54762.
Endoscopic treatment of chronic radiation proctopathy.
Wilson, Sydney A; Rex, Douglas K
2006-09-01
Chronic radiation proctopathy is a complication of pelvic radiation therapy. The acute phase of radiation injury to the rectum occurs during or up to 3 months following radiation. Acute radiation injury can continue into a chronic phase or chronic radiation proctopathy may develop after a latent period of several months or years. Symptoms associated with the condition include diarrhea, rectal pain, bleeding, tenesmus, and stricture formation. Of the various symptoms, only bleeding from radiation-induced telangiectasias is amenable to endoscopic therapy. This paper summarizes the findings of experts in the field on endoscopic treatment of bleeding from chronic radiation proctopathy. Medical management is generally ineffective in controlling bleeding from chronic radiation proctopathy. Surgical intervention has a high incidence of morbidity. Promising advances have been made in endoscopic therapy, including formalin, neodymium/yttrium aluminum garnet, argon and potassium titanyl phosphate laser treatments, as well as argon plasma coagulation. Argon plasma coagulation presents an effective, efficient, inexpensive and reasonably safe noncontact method for destruction of radiation telangiectasias. Based on currently available data and trends, argon plasma coagulation is the favored treatment for bleeding from chronic radiation proctopathy.
NASA Astrophysics Data System (ADS)
Lamsal, B. S.; Dubey, M.; Swaminathan, V.; Huh, Y.; Galipeau, D.; Qiao, Q.; Fan, Q. H.
2014-11-01
This work studied the electronic characteristics of the grains and grain boundaries of indium tin oxide (ITO) thin films using electrostatic and Kelvin probe force microscopy. Two types of ITO films were compared, deposited using radiofrequency magnetron sputtering in pure argon or 99% argon + 1% oxygen, respectively. The average grain size and surface roughness increased with substrate temperature for the films deposited in pure argon. With the addition of 1% oxygen, the increase in the grain size was inhibited above 150°C, which was suggested to be due to passivation of the grains by the excess oxygen. Electrostatic force microscopy and Kelvin probe force microscopy (KPFM) images confirmed that the grain growth was defect mediated and occurred at defective interfaces at high temperatures. Films deposited at room temperature with 1% oxygen showed crystalline nature, while films deposited with pure argon at room temperature were amorphous as observed from KPFM images. The potential drop across the grain and grain boundary was determined by taking surface potential line profiles to evaluate the electronic properties.
NASA Astrophysics Data System (ADS)
Zhang, Jiao Jiao; Jo, Jin Oh; Huynh, Do Luong; Mongre, Raj Kumar; Ghosh, Mrinmoy; Singh, Amit Kumar; Lee, Sang Baek; Mok, Young Sun; Hyuk, Park; Jeong, Dong Kee
2017-02-01
This study was conducted to determine the effects of argon plasma on the growth of soybean [Glycine max (L.) Merr.] sprouts and investigate the regulation mechanism of energy metabolism. The germination and growth characteristics were modified by argon plasma at different potentials and exposure durations. Upon investigation, plasma treatment at 22.1 kV for 12 s maximized the germination and seedling growth of soybean, increasing the concentrations of soluble protein, antioxidant enzymes, and adenosine triphosphate (ATP) as well as up-regulating ATP a1, ATP a2, ATP b1, ATP b2, ATP b3, target of rapamycin (TOR), growth-regulating factor (GRF) 1-6, down-regulating ATP MI25 mRNA expression, and increasing the demethylation levels of the sequenced region of ATP a1, ATP b1, TOR, GRF 5, and GRF 6 of 6-day-old soybean sprouts. These observations indicate that argon plasma promotes soybean seed germination and sprout growth by regulating the demethylation levels of ATP, TOR, and GRF.
NASA Astrophysics Data System (ADS)
Shinde, Neelam Vilas; Telsang, Martand Tamanacharya
2016-07-01
In the present study, an attempt is made to study the effect of alternate supply of the shielding gas in comparison with the conventional method of TIG welding with pure argon gas. The two sets of combination are used as 10-10 and 40-20 s for alternate supply of the Argon and Helium shielding gas respectively. The effect of alternate supply of shielding gas is studied on the mechanical properties like bend test, tensile test and impact test. The full factorial experimental design is applied for three set of combinations. The ANOVA is used to find significant parameters for the process and regression analysis used to develop the mathematical model. The result shows that the alternate supply of the shielding gas for 10-10 s provides better result for the bend, tensile and impact test as compared with the conventional argon gas and the alternate supply of 40-20 s argon and helium gas respectively. Welding speed can be increased for alternate supply of the shielding gas that can reduce the total welding cost.
Low energy collisions of spin-polarized metastable argon atoms with ground state argon atoms
NASA Astrophysics Data System (ADS)
Taillandier-Loize, T.; Perales, F.; Baudon, J.; Hamamda, M.; Bocvarski, V.; Ducloy, M.; Correia, F.; Fabre, N.; Dutier, G.
2018-04-01
The collision between a spin-polarized metastable argon atom in Ar* (3p54s, 3P2, M = +2) state slightly decelerated by the Zeeman slower-laser technique and a co-propagating thermal ground state argon atom Ar (3p6, 1S0), both merged from the same supersonic beam, but coming through adjacent slots of a rotating disk, is investigated at the center of mass energies ranging from 1 to 10 meV. The duration of the laser pulse synchronised with the disk allows the tuning of the relative velocity and thus the collision energy. At these sub-thermal energies, the ‘resonant metastability transfer’ signal is too small to be evidenced. The explored energy range requires using indiscernibility amplitudes for identical isotopes to have a correct interpretation of the experimental results. Nevertheless, excitation transfers are expected to increase significantly at much lower energies as suggested by previous theoretical predictions of potentials 2g(3P2) and 2u(3P2). Limits at ultra-low collisional energies of the order of 1 mK (0.086 μeV) or less, where gigantic elastic cross sections are expected, will also be discussed. The experimental method is versatile and could be applied using different isotopes of Argon like 36Ar combined with 40Ar, as well as other rare gases among which Krypton should be of great interest thanks to the available numerous isotopes present in a natural gas mixture.
NASA Astrophysics Data System (ADS)
Kovalova, Zuzana; Leroy, Magali; Jacobs, Carolyn; Kirkpatrick, Michael J.; Machala, Zdenko; Lopes, Filipa; Laux, Christophe O.; DuBow, Michael S.; Odic, Emmanuel
2015-11-01
Pulsed corona discharges propagated in argon (or in argon with added water vapor) at atmospheric pressure on the interior surface of a 49 cm long quartz tube were investigated for the application of surface bio-decontamination. H2O molecule dissociation in the argon plasma generated reactive species (i.e. OH in ground and excited states) and UV emission, which both directly affected bacterial cells. In order to facilitate the evaluation of the contribution of UV radiation, a DNA damage repair defective bacterial strain, Escherichia coli DH-1, was used. Discharge characteristics, including propagation velocity and plasma temperature, were measured. Up to ~5.5 and ~5 log10 reductions were observed for E. coli DH-1 bacteria (from 106 initial load) exposed 2 cm and 44 cm away from the charged electrode, respectively, for a 20 min plasma treatment. The factors contributing to the observed bactericidal effect include desiccation, reactive oxygen species (OH) plus H2O2 accumulation in the liquid phase, and UV-B (and possibly VUV) emission in dry argon. The steady state temperature measured on the quartz tube wall did not exceeded 29 °C the contribution of heating, along with that of H2O2 accumulation, was estimated to be low. The effect of UV-B emission alone or in combination with the other stress factors of the plasma process was examined for different operating conditions.
NASA Astrophysics Data System (ADS)
Hasan, Mohammad Nasim; Shavik, Sheikh Mohammad; Rabbi, Kazi Fazle; Haque, Mominul
2016-07-01
Molecular dynamics simulation has been carried out to explore the evaporation characteristics of thin liquid argon film in nano-scale confinement. The present study has been conducted to realize the nano-scale physics of simultaneous evaporation and condensation inside a confined space for a three phase system with particular emphasis on the effect of surface wetting conditions. The simulation domain consisted of two parallel platinum plates; one at the top and another at the bottom. The fluid comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the domain. Considering hydrophilic and hydrophobic nature of top and bottom surfaces, two different cases have been investigated: (i) Case A: Both top and bottom surfaces are hydrophilic, (ii) Case B: both top and bottom surfaces are hydrophobic. For all cases, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall was set to four different temperatures such as 110 K, 120 K, 130 K and 140 K to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat fluxes normal to top and bottom walls were estimated and discussed to illuminate the effectiveness of heat transfer in both hydrophilic and hydrophobic confinement at various boundary temperatures of the bottom plate.
ICP-MS with hexapole collision cell for isotope ratio measurements of Ca, Fe, and Se.
Boulyga, S F; Becker, J S
2001-07-01
To avoid mass interferences on analyte ions caused by argon ions and argon molecular ions via reactions with collision gases, an rf hexapole filled with helium and hydrogen has been used in inductively coupled plasma mass spectrometry (ICP-MS), and its performance has been studied. Up to tenfold improvement in sensitivity was observed for heavy elements (m > 100 u), because of better ion transmission through the hexapole ion guide. A reduction of argon ions Ar+ and the molecular ions of argon ArX+ (X = O, Ar) by up to three orders of magnitude was achieved in a hexapole collision cell of an ICP-MS ("Platform ICP", Micromass, Manchester, UK) as a result of gas-phase reactions with hydrogen when the hexapole bias (HB) was set to 0 V; at an HB of 1.6 V argon, and argon-based ions of masses 40 u, 56 u, and 80 u, were reduced by approximately four, two, and five orders of magnitude, respectively. The signal-to-noise ratio 80Se/ 40Ar2+ was improved by more than five orders of magnitude under optimized experimental conditions. Dependence of mass discrimination on collision-cell properties was studied in the mass range 10 u (boron) to 238 u (uranium). Isotopic analysis of the elements affected by mass-spectrometric interference, Ca, Fe, and Se, was performed using a Meinhard nebulizer and an ultrasonic nebulizer (USN). The measured isotope ratios were comparable with tabulated values from IUPAC. Precision of 0.26%, 0.19%, and 0.12%, respectively, and accuracy of 0.13% 0.25%, and 0.92%, respectively, was achieved for isotope ratios 44Ca/ 40Ca and 56Fe/57Fe in 10 microg L(-1) solution nebulized by means of a USN and for 78Se/80Se in 100 microg L(-1) solution nebulized by means of a Meinhard nebulizer.
Controlled Neutralization of Anions in Cryogenic Matrices by Near-Threshold Photodetachment
NASA Astrophysics Data System (ADS)
Ludwig, Ryan M.; Moore, David T.
2014-06-01
Using matrix isolation FTIR, we have observed the formation of anionic copper carbonyl complexes [Cu(CO)n]- (n=1-3) following co-deposition of Cu- and counter-cations (Ar+ or Kr+) into argon matrices doped with CO. The infrared bands have been previously assigned in argon matrix studies employing laser ablation, however they were quite weak compared to the bands for the corresponding neutral species. In the current study, when the deposition is carried out in fully darkened conditions at 10 K with high CO concentrations (1-2%), only the bands for the anionic complexes are observed initially via FTIR. However, upon mild irradiation with broadband visible light, the anionic bands are rapidly depleted, with concomitant appearance of bands corresponding to neutral copper carbonyl complexes. This photo-triggered neutralization is attributed to photodetachment of electrons from the anions, which then "flow" through the solid argon matrix to recombine in the matrix with non-adjacent trapping sites. This mechanism is supported by the appearance of a new band near 1515 wn, assigned to the (CO)2- species in argon. The wavelength dependence of the photodetachment will be discussed in detail, although preliminary indications are that the thresholds for the copper carbonyls, which are normally in the infrared, are shifted into the visible region of the spectrum in argon matrices. This likely occurs because the conduction band of solid argon is known to lie about 1 eV above the vacuum level, and thus the electron must have at least this much energy in order to escape into the matrix and find a trapping site. Funding support from NSF CAREER Award CHE-0955637 is gratefully acknowledged Ryan M. Ludwig and David T. Moore, J. Chem. Phys. 139, 244202 (2013) Zhou, M.; Andrews, L., J. Chem. Phys. 111, 4548 (1999). Thompson, W.E.; Jacox, M.E.; J. Chem. Phys. 91, 735 (1991). Stanzel, J. et al.; Collect. Czech. Chem. Comm. 72, 1 (2007). Harbich, W. et al.; Phys. Rev. B. 76, 104306 (2007).
New Experimental Results on the Interaction of Molten Corium with Reactor Vessel Steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bechta, S.V.; Khabensky, V.B.; Granovsky, V.S.
In order to justify the concept of in-vessel core melt retention, it is necessary to understand the thermal and physico-chemical phenomena. Especially the interaction of the molten pool with the reactor vessel during outside cooling needs to be understood. These phenomena are very complex, in particular, where interactions with the oxidic melt are concerned. In the early stages of the retention process, the oxidic corium and the vessel steel interact under the conditions of low oxygen potential in the melt. These conditions can be simulated by a molten corium having the composition UO{sub 2}/ZrO{sub 2}/Zr, where the degree of Zr-oxidationmore » is in the range between 30 % (C-30) and 100 % (C-100). Corresponding experiments with prototypic melts at low oxygen potentials are being performed in the ISTC METCOR project 2. phase. These are: - MC 5 of corium composition 71w%UO{sub 2}-29w%ZrO{sub 2} (C-100) in neutral atmosphere (argon), - MC 6 of corium composition 76w%UO{sub 2}-9w%ZrO{sub 2}-15w%Zr (C{approx}30), also in argon. In test MC 5, the interaction of molten C-100 corium with a water-cooled steel specimen was studied for the following maximum temperatures at the specimen surface: 1075 deg. C, 1180 deg. C, 1315 deg. C and 1435 deg. C. The total duration of the experiment was {approx} 36 hours. The MC 5 test serves as a reference test for determining the characteristics of the interaction between oxidic melt and steel specimen under the conditions of minimum chemical interaction potential. To investigate the effect of substoichiometry, test No 6 was then performed with sub-oxidized molten corium C{approx}30. The maximum surface temperature of the cooled steel specimen was held at {approx} 1400 deg. C. The test duration was {approx} 10 hours. The ablation phenomena were found to differ significantly from those observed both in the reference test, as well as in former tests with oxidized melts, as they involved the formation of a low-melting metallic phase at the interface which contains iron, zirconium and uranium. The paper summarizes the results of the experiments and of the performed posttest analysis for tests MC 5 and MC 6. (authors)« less
ERIC Educational Resources Information Center
Halpern, Arthur M.
2010-01-01
Using readily available computational applications and resources, students can construct a high-level ab initio potential energy surface (PES) for the argon dimer. From this information, they can obtain detailed molecular constants of the dimer, including its dissociation energy, which compare well with experimental determinations. Using both…
NASA Astrophysics Data System (ADS)
Davini, S.; Agnes, P.; Alexander, T.; Alton, A.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Brigatti, A.; Brodsky, J.; Budano, F.; Calaprice, F.; Canci, N.; Candela, A.; Cariello, M.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cocco, A. G.; D'Angelo, D.; D'Incecco, M.; De Deo, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Franco, D.; Gabriele, F.; Galbiati, C.; Goretti, A.; Grandi, L.; Guan, M. Y.; Guardincerri, Y.; Hackett, B.; Herner, K.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; Kendziora, C.; Koh, G.; Korablev, D.; Korga, G.; Kurlej, A.; Li, P. X.; Lombardi, P.; Luitz, S.; Machulin, I.; Mandarano, A.; Mari, S.; Maricic, J.; Marini, L.; Martoff, C. J.; Meyers, P. D.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Musico, P.; Odrowski, S.; Orsini, M.; Ortica, F.; Pagani, L.; Pantic, E.; Papp, L.; Parmeggiano, S.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saldanha, R.; Sands, W.; Segreto, E.; Shields, E.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Watson, A.; Westerdale, S.; Wojcik, M.; Xiang, X.; Xu, J.; Yang, C. G.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhu, C.; Zuzel, G.
2016-04-01
DarkSide-50 (DS-50) at Gran Sasso underground laboratory (LNGS), Italy, is a direct dark matter search experiment based on a TPC with liquid argon. DS-50 has completed its first dark matter run using atmospheric argon as target. The DS-50 detector performances and the results of the first physics run are reviewed in this proceeding.
Davini, S.; Agnes, P.; Alexander, T.; ...
2016-05-31
DarkSide-50 (DS-50) at Gran Sasso underground laboratory (LNGS), Italy, is a direct dark matter search experiment based on a TPC with liquid argon. DS-50 has completed its first dark matter run using atmospheric argon as target. Here, the DS-50 detector performances and the results of the first physics run are reviewed in this proceeding.
Two systems developed for purifying inert atmospheres
NASA Technical Reports Server (NTRS)
Foster, M. S.; Johnson, C. E.; Kyle, M. L.
1969-01-01
Two systems, one for helium and one for argon, are used for purifying inert atmospheres. The helium system uses an activated charcoal bed at liquid nitrogen temperature to remove oxygen and nitrogen. The argon system uses heated titanium sponge to remove nitrogen and copper wool beds to remove oxygen. Both use molecular sieves to remove water vapor.
Mechanical Properties of Structural Polymers. Computer Simulations and Key Experiments
1992-09-30
Technology", edited by R.W. Cahn, P. Haasen, and E.J. Kramer, (VCH: Weinheim, Germany) (vol. editor H. Mughrabi ) Vol. 6, in the press (1992). 14. A.S. Argon...34, Acta Metall. et Mater., submitted for publication. 5 32. A. Galeski, Z. Bartczak, A.S. Argon and R.E. Cohen, "Morphological Al - terations during
NASA Astrophysics Data System (ADS)
Wang, Huihui; Sukhomlinov, Vladimir S.; Kaganovich, Igor D.; Mustafaev, Alexander S.
2017-02-01
Using the Monte Carlo collision method, we have performed simulations of ion velocity distribution functions (IVDF) taking into account both elastic collisions and charge exchange collisions of ions with atoms in uniform electric fields for argon and helium background gases. The simulation results are verified by comparison with the experiment data of the ion mobilities and the ion transverse diffusion coefficients in argon and helium. The recently published experimental data for the first seven coefficients of the Legendre polynomial expansion of the ion energy and angular distribution functions are used to validate simulation results for IVDF. Good agreement between measured and simulated IVDFs shows that the developed simulation model can be used for accurate calculations of IVDFs.
Near-Infrared Scintillation of Liquid Argon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tilly, Elizabeth; Escobar, Carlos
2017-01-01
Liquid argon is well known to scintillate in the vacuum ultraviolet (VUV) range which is inherently difficult to detect. There has been recent evidence to suggest that it also emits near infrared (NIR) light. If this is the case, many large-scale time projection chambers and other similar detectors will be able to maximize light collection while minimizing cost. The goal of this project is to confirm and quantify this NIR emission. In order to accomplish this, an α-source was placed in a volume of highly purified liquid argon and observed using an infrared PMT with a filter excluding light withmore » wavelength <715 nm. Performing a simple counting experiment, there were indications of NIR scintillation. Further analysis is in progress.« less
Rapid solidification of metallic particulates
NASA Technical Reports Server (NTRS)
Grant, N. J.
1982-01-01
In order to maximize the heat transfer coefficient the most important variable in rapid solidification is the powder particle size. The finer the particle size, the higher the solidification rate. Efforts to decrease the particle size diameter offer the greatest payoff in attained quench rate. The velocity of the liquid droplet in the atmosphere is the second most important variable. Unfortunately the choices of gas atmospheres are sharply limited both because of conductivity and cost. Nitrogen and argon stand out as the preferred gases, nitrogen where reactions are unimportant and argon where reaction with nitrogen may be important. In gas atomization, helium offers up to an order of magnitude increase in solidification rate over argon and nitrogen. By contrast, atomization in vacuum drops the quench rate several orders of magnitude.
NASA Astrophysics Data System (ADS)
Peterson, Richard D.; Eshel, Ben; Rice, Christopher A.; Perram, Glen P.
2018-02-01
The diode-pumped rare gas laser (DPRGL) has been suggested as a potential high-gain, high-energy laser which requires densities on the order of 1013 cm-3 at pressures around 1 atmosphere for efficient operation. Argon 1s5 number densities have been measured in micro-hollow cathode discharges with electrode gaps of 127 and 254 μm and hole diameters from 100-400 μm. The dependency of the metastable argon (1s5) density on total gas pressure, electrode gap distance and hole diameter were explored. The measured densities were all in the range of 0.5 - 2 × 1013 cm-3 with the 400 μm hole diameters being the lowest.
Smith; Evensen; York; Odin
1998-03-06
The mineral series glaucony supplies 40% of the absolute-age database for the geologic time scale of the last 250 million years. However, glauconies have long been suspected of giving young potassium-argon ages on bulk samples. Laser-probe argon-argon dating shows that glaucony populations comprise grains with a wide range of ages, suggesting a period of genesis several times longer ( approximately 5 million years) than previously thought. An estimate of the age of their enclosing sediments (and therefore of time scale boundaries) is given by the oldest nonrelict grains in the glaucony populations, whereas the formation times of the younger grains appear to be modulated by global sea level.
Generation of runaway electrons beams during the breakdown of high-pressure gases
NASA Astrophysics Data System (ADS)
Tarasenko, V. F.; Burachenko, A. G.; Baksht, E. Kh
2017-11-01
Generation of run-away electrons in SF6, CO2, argon and nitrogen at high and super high pressures is studied. Super-short avalanches electron beams (SAEB) was obtained and measured with a collector at pressures up to 0.3, 0.7, 1.0 and 1.2 MPa in SF6, CO2, argon and nitrogen, respectively. The SAEB duration was shown to be ∼60 ps (FWHM) and gas composition has only minor effect on the duration. It was found that in a gap of 4 mm in SF6, CO2, argon and nitrogen at pressure up to 0.3, 0.7, 1.0 и 1.2 MPa the voltage pulse duration (FWHM) and amplitude increase with pressure.
Fatigue crack growth and low cycle fatigue of two nickel base superalloys
NASA Technical Reports Server (NTRS)
Stoloff, N. S.; Duquette, D. J.; Choe, S. J.; Golwalkar, S.
1983-01-01
The fatigue crack growth and low cycle fatigue behavior of two P/M superalloys, Rene 95 and Astroloy, in the hot isostatically pressed (HIP) condition, was determined. Test variables included frequency, temperature, environment, and hold times at peak tensile loads (or strains). Crack initiation sites were identified in both alloys. Crack growth rates were shown to increase in argon with decreasing frequency or with the imposition of hold times. This behavior was attributed to the effect of oxygen in the argon. Auger analyses were performed on oxide films formed in argon. Low cycle fatigue lives also were degraded by tensile hold, contrary to previous reports in the literature. The role of environment in low cycle fatigue behavior is discussed.
NASA Technical Reports Server (NTRS)
Clark, B. C.; Toulmin, P., III; Rose, H. J., Jr.; Baird, A. K.; Keil, K.
1976-01-01
Spectra provided by the Viking 1 X-ray fluorescence spectrometer operating in the calibration mode (without a soil sample in the analysis chamber) were analyzed to determine the argon content of the Martian atmosphere at the landing site. This was found to be less than or equal to 0.15 millibar, or not more than 2% by volume, consistent with data obtained by the entry mass spectrometer and by the mass spectrometer on the lander. It is anticipated that analysis of the K content of surface samples using X-ray fluorescence data will provide information on the evolution of the atmosphere, since most atmospheric argon is apparently produced by decay of K-40.
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1980-01-01
Friction studies were conducted with a silicon carbide (0001) surface contacting polycrystalline iron. The surface of silicon carbide was pretreated: (1) by bombarding it with argon ions for 30 minutes at a pressure of 1.3 pascals; (2) by heating it at 800 C for 3 hours in vacuum at a pressure of 10 to the minus eighth power pascal; or (3) by heating it at 1500 C for 3 hours in a vacuum of 10 to the minus eighth power pascal. Auger emission spectroscopy was used to determine the presence of silicon and carbon and the form of the carbon. The surfaces of silicon carbide bombarded with argon ions or preheated to 800 C revealed the main Si peak and a carbide type of C peak in the Auger spectra. The surfaces preheated to 1500 C revealed only a graphite type of C peak in the Auger spectra, and the Si peak had diminished to a barely perceptible amount. The surfaces of silicon carbide preheated to 800 C gave a 1.5 to 3 times higher coefficient of friction than did the surfaces of silicon carbide preheated to 1500 C. The coefficient of friction was lower in the 11(-2)0 direction than in the 10(-1)0 direction; that is, it was lower in the preferred crystallographic slip direction.
Damar Huner, Irem; Gulec, Haci Ali
2017-12-01
The aim of the study was to investigate the effects of hydrophilic surface modification via atmospheric pressure jet plasma (ApJPls) on the fouling propensity of polyethersulfone (PES) ultrafiltration (UF) membranes during concentration of whey proteins. The distance from nozzle to substrate surface of 30mm and the exposure period of 5 times were determined as the most effective parameters enabling an increase in ΔG iwi value of the plain membrane from (-) 14.92±0.89mJ/m 2 to (+) 17.57±0.67mJ/m 2 . Maximum hydrophilicity and minimum surface roughness achieved by argon plasma action resulted in better antifouling behavior, while the hydraulic permeability and the initial permeate flux were decreased sharply due to the plasma-induced surface cross-linking. A quite steady state flux was obtained throughout the UF with the ApJPls modified PES membrane. The contribution of R frev to R t , which was 94% for the UF through the plain membrane, decreased to 43% after the plasma treatment. The overall results of this study highlighted the ApJPls modification decreased the fouling propensity of PES membrane without affecting the original protein rejection capability and improved the recovery of initial permeate flux after chemical cleaning. Copyright © 2017 Elsevier B.V. All rights reserved.
Dumitrescu, Lucia R; Smeulders, David M J; Dam, Jacques A M; Gaastra-Nedea, Silvia V
2017-02-28
Molecular dynamics (MD) simulations were conducted to study nucleation of water at 350 K in argon using TIP4P and TIP4P/2005 water models. We found that the stability of any cluster, even if large, strongly depends on the energetic interactions with its vicinity, while the stable clusters change their composition almost entirely during nucleation. Using the threshold method, direct nucleation rates are obtained. Our nucleation rates are found to be 1.08×10 27 cm -3 s -1 for TIP4P and 2.30×10 27 cm -3 s -1 for TIP4P/2005. The latter model prescribes a faster dynamics than the former, with a nucleation rate two times larger due to its higher electrostatic charges. The non-equilibrium water densities derived from simulations and state-of-art equilibrium parameters from Vega and de Miguel [J. Chem. Phys. 126, 154707 (2007)] are used for the classical nucleation theory (CNT) prediction. The CNT overestimates our results for both water models, where TIP4P/2005 shows largest discrepancy. Our results complement earlier data at high nucleation rates and supersaturations in the Hale plot [Phys. Rev. A 33, 4156 (1986)], and are consistent with MD data on the SPC/E and the TIP4P/2005 model.
Akhond, Morteza; Absalan, Ghodratollah; Pourshamsi, Tayebe; Ramezani, Amir M
2016-07-01
Gas-assisted dispersive liquid-phase microextraction (GA-DLPME) has been developed for preconcentration and spectrophotometric determination of copper ion in different water samples. The ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate and argon gas, respectively, were used as the extracting solvent and disperser. The procedure was based on direct reduction of Cu(II) to Cu(I) by hydroxylamine hydrochloride, followed by extracting Cu(I) into ionic liquid phase by using neocuproine as the chelating agent. Several experimental variables that affected the GA-DLPME efficiency were investigated and optimized. Under the optimum experimental conditions (IL volume, 50µL; pH, 6.0; acetate buffer, 1.5molL(-1); reducing agent concentration, 0.2molL(-1); NC concentration, 120µgmL(-1); Ar gas bubbling time, 6min; argon flow rate, 1Lmin(-1); NaCl concentration, 6% w/w; and centrifugation time, 3min), the calibration graph was linear over the concentration range of 0.30-2.00µgmL(-1) copper ion with a limit of detection of 0.07µgmL(-1). Relative standard deviation for five replicate determinations of 1.0µgmL(-1) copper ion was found to be 3.9%. The developed method was successfully applied to determination of both Cu(I) and Cu(II) species in water samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Upgraded Readout Electronics for the ATLAS Liquid Argon Calorimeters at the High Luminosity LHC
NASA Astrophysics Data System (ADS)
Andeen, Timothy R.; ATLAS Liquid Argon Calorimeter Group
2012-12-01
The ATLAS liquid-argon calorimeters produce a total of 182,486 signals which are digitized and processed by the front-end and back-end electronics at every triggered event. In addition, the front-end electronics sum analog signals to provide coarsely grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. However, the pile-up background expected during the high luminosity phases of the LHC will be increased by factors of 3 to 7. An improved spatial granularity of the trigger primitives is therefore proposed in order to improve the identification performance for trigger signatures, like electrons or photons, at high background rejection rates. For the first upgrade phase in 2018, new Liquid Argon Trigger Digitizer Boards are being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new, off-detector digital processing system. The digital processing system applies digital filtering and identifies significant energy depositions. The refined trigger primitives are then transmitted to the first level trigger system to extract improved trigger signatures. The general concept of the upgraded liquid-argon calorimeter readout together with the various electronics components to be developed for such a complex system is presented. The research activities and architectural studies undertaken by the ATLAS Liquid Argon Calorimeter Group are described, particularly details of the on-going design of mixed-signal front-end electronics, of radiation tolerant optical-links, and of the high-speed off-detector digital processing system.
NASA Astrophysics Data System (ADS)
Pate, S. F.; Wester, T.; Bugel, L.; Conrad, J.; Henderson, E.; Jones, B. J. P.; McLean, A. I. L.; Moon, J. S.; Toups, M.; Wongjirad, T.
2018-02-01
We present a model for the Global Quantum Efficiency (GQE) of the MicroBooNE optical units. An optical unit consists of a flat, circular acrylic plate, coated with tetraphenyl butadiene (TPB), positioned near the photocathode of a 20.2-cm diameter photomultiplier tube. The plate converts the ultra-violet scintillation photons from liquid argon into visible-spectrum photons to which the cryogenic phototubes are sensitive. The GQE is the convolution of the efficiency of the plates that convert the 128 nm scintillation light from liquid argon to visible light, the efficiency of the shifted light to reach the photocathode, and the efficiency of the cryogenic photomultiplier tube. We develop a GEANT4-based model of the optical unit, based on first principles, and obtain the range of probable values for the expected number of detected photoelectrons (NPE) given the known systematic errors on the simulation parameters. We compare results from four measurements of the NPE determined using alpha-particle sources placed at two distances from a TPB-coated plate in a liquid argon cryostat test stand. We also directly measured the radial dependence of the quantum efficiency, and find that this has the same shape as predicted by our model. Our model results in a GQE of 0.0055±0.0009 for the MicroBooNE optical units. While the information shown here is MicroBooNE specific, the approach to the model and the collection of simulation parameters will be widely applicable to many liquid-argon-based light collection systems.
Comparison of the Argon Triple-Point Temperature in Small Cells of Different Construction
NASA Astrophysics Data System (ADS)
Kołodziej, B.; Kowal, A.; Lipiński, L.; Manuszkiewicz, H.; Szmyrka-Grzebyk, A.
2017-06-01
The argon triple point (T_{90} = 83.8058 \\hbox {K}) is a fixed point of the International Temperature Scale of Preston-Thomas (Metrologia 27:3, 1990). Cells for realization of the fixed point have been manufactured by several European metrology institutes (Pavese in Metrologia 14:93, 1978; Pavese et al. in Temperature, part 1, American Institute of Physics, College Park, 2003; Hermier et al. in Temperature, part 1, American Institute of Physics, College Park, 2003; Pavese and Beciet in Modern gas-based temperature and pressure measurement, Springer, New York, 2013). The Institute of Low Temperature and Structure Research has in its disposal a few argon cells of various constructions used for calibration of capsule-type standard platinum resistance thermometers (CSPRT) that were produced within 40 years. These cells differ in terms of mechanical design and thermal properties, as well as source of gas filling the cell. This paper presents data on differences between temperature values obtained during the realization of the triple point of argon in these cells. For determination of the temperature, a heat-pulse method was applied (Pavese and Beciet in Modern gas-based temperature and pressure measurement, Springer, New York, 2013). The comparisons were performed using three CSPRTs. The temperatures difference was determined in relation to a reference function W(T)=R(T_{90})/R(271.16\\hbox {K}) in order to avoid an impact of CSPRT resistance drift between measurements in the argon cells. Melting curves and uncertainty budgets of the measurements are given in the paper. A construction of measuring apparatus is also presented in this paper.
Wu, Wei; Zoback, Mark D.; Kohli, Arjun H.
2017-05-02
We assess the impacts of effective stress and CO 2 sorption on the bedding-parallel matrix permeability of the Utica shale through pressure pulse-decay experiments. We first measure permeability using argon at relatively high (14.6 MPa) and low (2.8 MPa) effective stresses to assess both pressure dependence and recoverability. We subsequently measure permeability using supercritical CO 2 and again using argon to assess changes due to CO 2 sorption. We find that injection of both argon and supercritical CO 2 reduces matrix permeability in distinct fashion. Samples with permeability higher than 10 –20 m 2 experience a large permeability reduction aftermore » treatment with argon, but a minor change after treatment with supercritical CO 2. However, samples with permeability lower than this threshold undergo a slight change after treatment with argon, but a dramatic reduction after treatment with supercritical CO 2. These results indicate that effective stress plays an important role in the evolution of relatively permeable facies, while CO 2 sorption dominates the change of ultra-low permeability facies. The permeability reduction due to CO 2 sorption varies inversely with initial permeability, which suggests that increased surface area from hydraulic stimulation with CO 2 may be counteracted by sorption effects in ultra-low permeability facies. As a result, we develop a conceptual model to explain how CO 2 sorption induces porosity reduction and volumetric expansion to constrict fluid flow pathways in shale reservoir rocks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Wei; Zoback, Mark D.; Kohli, Arjun H.
We assess the impacts of effective stress and CO 2 sorption on the bedding-parallel matrix permeability of the Utica shale through pressure pulse-decay experiments. We first measure permeability using argon at relatively high (14.6 MPa) and low (2.8 MPa) effective stresses to assess both pressure dependence and recoverability. We subsequently measure permeability using supercritical CO 2 and again using argon to assess changes due to CO 2 sorption. We find that injection of both argon and supercritical CO 2 reduces matrix permeability in distinct fashion. Samples with permeability higher than 10 –20 m 2 experience a large permeability reduction aftermore » treatment with argon, but a minor change after treatment with supercritical CO 2. However, samples with permeability lower than this threshold undergo a slight change after treatment with argon, but a dramatic reduction after treatment with supercritical CO 2. These results indicate that effective stress plays an important role in the evolution of relatively permeable facies, while CO 2 sorption dominates the change of ultra-low permeability facies. The permeability reduction due to CO 2 sorption varies inversely with initial permeability, which suggests that increased surface area from hydraulic stimulation with CO 2 may be counteracted by sorption effects in ultra-low permeability facies. As a result, we develop a conceptual model to explain how CO 2 sorption induces porosity reduction and volumetric expansion to constrict fluid flow pathways in shale reservoir rocks.« less
Optimal Quasi-steady Plasma Thruster system characteristics.
NASA Technical Reports Server (NTRS)
Ludwig, D. E.; Kelly, A. J.
1972-01-01
The overall characteristics of a generalized Quasi-steady Plasma Thruster (QPT) system consisting of thruster head, power conditioning network, propellant supply subsystem are studied. Energy balance equations for the system are coupled with component mass relationships in order to determine overall system mass and performance. Power supply power levels varying from 100 to 10,000 watts with thruster power levels ranging from 300 kw to 30 Mw employing argon as the propellant are considered. The manner in which overall system mass, average thrust, and burn time vary as a function power supply power level, quasi-steady power level, and pulse time are studied. Results indicate the existence of optimum pulse times when system mass is employed as an optimization criterion.
Hoenig, Clarence L.
1992-01-01
Boron nitride powder with less than or equal to the oxygen content of starting powder (down to 0.5% or less) is hot isostatically pressed in a refractory metal container to produce hexagonal boron nitride with a bulk density greater than 2.0 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1800.degree. C. and 30 KSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.21 g/cc. Complex shapes can be made.
Diamond film growth argon-carbon plasmas
Gruen, Dieter M.; Krauss, Alan R.; Liu, Shengzhong; Pan, Xianzheng; Zuiker, Christopher D.
1998-01-01
A method and system for manufacturing diamond film. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrogen and hydrocarbon and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous and deposition of a diamond film on a substrate.
LArIAT: Worlds First Pion-Argon Cross-Section
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, Pip
2016-11-02
The LArIAT experiment has performed the world's first measurement of the total charged-current pion cross-section on an argon target, using the repurposed ArgoNeuT detector in the Fermilab test beam. Presented here are the results of that measurement, along with an overview of the LArIAT experiment and details of the LArIAT collaboration's plans for future measurements.
ERIC Educational Resources Information Center
Howard, William A.
2005-01-01
A detailed examination of a commonly accepted practice in geology offers an example of how to stimulate critical thinking, teaches students how to read reactions, and challenges students to formulate better experiments for determining mineral ages more accurately. A demonstration of a Potassium-Argon radiometric method for dating minerals is…
First observation of low energy electron neutrinos in a liquid argon time projection chamber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acciarri, R.; Adams, C.; Asaadi, J.
Liquid argon time projection chambers (LArTPCs) produce remarkable fidelity in the observation of neutrino interactions. The superior capabilities of such detectors to reconstruct the spatial and calorimetric information of neutrino events have made them the detectors of choice in a number of experiments, specifically those looking to observe electron neutrino (more » $$\
NASA Astrophysics Data System (ADS)
Astafiev, Alexander; Belyaev, Vladimir; Zamchii, Roman; Kudryavtsev, Anatoly; Stepanova, Olga; Chen, Zhaoquan
2016-09-01
DC atmospheric-pressure glow microdischarge was generated between a flat cathode and needle anode with a diameter of 100 μm in a special chamber with helium or argon. Dependences of discharge parameters on an interelectrode gap was investigated with an original experimental setup based on a movable arm on the hinge joint which allowed changing the gap with a step of 5 μm. The gap was varied from 5 to 700 μm. Discharge current was 1-21 mA. Such discharge cell has a very low interelectrode capacitance and provides increasing the stability of the discharge against arc formation (transition to RC oscillations mode) at low currents of 1 mA. A weak dependence of discharge voltage across the gap was revealed in helium at 100-250 μm between the electrodes (normal discharge). In contrast to this, glow microdischarge in argon has a descending current-voltage characteristic and unstable nature. The discharge voltage depending on the gap changes significantly slower than in helium. According to our estimations, the strength of electrical field of positive glow in argon is 5 times lower than in helium. Saint Petersburg State University (Grant No. 0.37.218.2016).
NASA Astrophysics Data System (ADS)
Arnold, Nicholas; Loch, Stuart; Ballance, Connor; Thomas, Ed
2017-10-01
Low temperature plasmas (Te < 10 eV) are ubiquitous in the medical, industrial, basic, and dusty plasma communities, and offer an opportunity for researchers to gain a better understanding of atomic processes in plasmas. Here, we report on a new atomic dataset for neutral and low charge states of argon, from which rate coefficients and cross-sections for the electron-impact excitation of neutral argon are determined. We benchmark by comparing with electron impact excitation cross-sections available in the literature, with very good agreement. We have used the Atomic Data and Analysis Structure (ADAS) code suite to calculate a level-resolved, generalized collisional-radiative (GCR) model for line emission in low temperature argon plasmas. By combining our theoretical model with experimental electron temperature, density, and spectral measurements from the Auburn Linear eXperiment for Instability Studies (ALEXIS), we have developed diagnostic techniques to measure metastable fraction, electron temperature, and electron density. In the future we hope to refine our methods, and extend our model to plasmas other than ALEXIS. Supported by the U.S. Department of Energy. Grant Number: DE-FG02-00ER54476.
Energy and charge transfer in ionized argon coated water clusters.
Kočišek, J; Lengyel, J; Fárník, M; Slavíček, P
2013-12-07
We investigate the electron ionization of clusters generated in mixed Ar-water expansions. The electron energy dependent ion yields reveal the neutral cluster composition and structure: water clusters fully covered with the Ar solvation shell are formed under certain expansion conditions. The argon atoms shield the embedded (H2O)n clusters resulting in the ionization threshold above ≈15 eV for all fragments. The argon atoms also mediate more complex reactions in the clusters: e.g., the charge transfer between Ar(+) and water occurs above the threshold; at higher electron energies above ~28 eV, an excitonic transfer process between Ar(+)* and water opens leading to new products Ar(n)H(+) and (H2O)(n)H(+). On the other hand, the excitonic transfer from the neutral Ar* state at lower energies is not observed although this resonant process was demonstrated previously in a photoionization experiment. Doubly charged fragments (H2O)(n)H2(2+) and (H2O)(n)(2+) ions are observed and Intermolecular Coulomb decay (ICD) processes are invoked to explain their thresholds. The Coulomb explosion of the doubly charged cluster formed within the ICD process is prevented by the stabilization effect of the argon solvent.
Direct Measurement of Impurity Transport in a Field Reversed Configuration
NASA Astrophysics Data System (ADS)
Roche, T.; Bolte, N.; Heidbrink, W. W.; McWilliams, R.; Wessel, F.
2011-10-01
An optical tomography system has been developed and implemented in the Flux Coil Generated Field Reversed Configuration (FCG-FRC) at Tri Alpha Energy. Sixteen chords view ~ 35 % of the FRC at the mid-plane. The chords are arranged in two identical fans of eight chords each. To measure transport of an impurity species, argon, an FRC is generated using either Nitrogen or Deuterium as the primary species. A puff valve is activated prior to the shot such that the argon begins to bleed in to the vacuum chamber as the FRC is formed. The gas is puffed at the optimal location for tomographic reconstruction. Each chord is collimated to illuminate a fiber optic cable which is fed to an array of photomultiplier tubes which are fitted with neutral density and band pass filters to allow the appropriate amount of light from the emitting, singly ionized, argon at 434 . 8 nm to be measured. Using a preliminary assumption that density of argon is proportional to light intensity gathered data have been used to reconstruct density profiles. These profiles often peak near the field null. The data are being analyzed to determine diffusive and convective transport coefficients.
Novel cryogenic sources for liquid droplet and solid filament beams
NASA Astrophysics Data System (ADS)
Grams, Michael P.
Two novel atomic and molecular beam sources have been created and tested consisting first of a superfluid helium liquid jet, and secondly a solid filament of argon. The superfluid helium apparatus is the second of its kind in the world and uses a modified liquid helium cryostat to inject a cylindrical stream of superfluid helium into vacuum through glass capillary nozzles with diameters on the order of one micron created on-site at Arizona State University. The superfluid beam is an entirely new way to study superfluid behavior, and has many new applications such as superfluid beam-surface scattering, beam-beam scattering, and boundary-free study of superfluidity. The solid beam of argon is another novel beam source created by flowing argon gas through a capillary 50 microns in diameter which is clamped by a small copper plate to a copper block kept at liquid nitrogen temperature. The gas subsequently cools and solidifies plugging the capillary. Upon heating, the solid plug melts and liquid argon exits the capillary and immediately freezes by evaporative cooling. The solid filaments may find application as wall-less cryogenic matrices, or targets for laser plasma sources of extreme UV and soft x-ray sources.
Chakraborty Thakur, Saikat; McCarren, Dustin; Carr, Jerry; Scime, Earl E
2012-02-01
We report continuous wave cavity ring down spectroscopy (CW-CRDS) measurements of ion velocity distribution functions (VDFs) in low pressure argon helicon plasma (magnetic field strength of 600 G, T(e) ≈ 4 eV and n ≈ 5 × 10(11) cm(-3)). Laser induced fluorescence (LIF) is routinely used to measure VDFs of argon ions, argon neutrals, helium neutrals, and xenon ions in helicon sources. Here, we describe a CW-CRDS diagnostic based on a narrow line width, tunable diode laser as an alternative technique to measure VDFs in similar regimes but where LIF is inapplicable. Being an ultra-sensitive, cavity enhanced absorption spectroscopic technique; CW-CRDS can also provide a direct quantitative measurement of the absolute metastable state density. The proof of principle CW-CRDS measurements presented here are of the Doppler broadened absorption spectrum of Ar II at 668.6138 nm. Extrapolating from these initial measurements, it is expected that this diagnostic is suitable for neutrals and ions in plasmas ranging in density from 1 × 10(9) cm(-3) to 1 × 10(13) cm(-3) and target species temperatures less than 20 eV.
NASA Astrophysics Data System (ADS)
Chakraborty Thakur, Saikat; McCarren, Dustin; Carr, Jerry; Scime, Earl E.
2012-02-01
We report continuous wave cavity ring down spectroscopy (CW-CRDS) measurements of ion velocity distribution functions (VDFs) in low pressure argon helicon plasma (magnetic field strength of 600 G, Te ≈ 4 eV and n ≈ 5 × 1011 cm-3). Laser induced fluorescence (LIF) is routinely used to measure VDFs of argon ions, argon neutrals, helium neutrals, and xenon ions in helicon sources. Here, we describe a CW-CRDS diagnostic based on a narrow line width, tunable diode laser as an alternative technique to measure VDFs in similar regimes but where LIF is inapplicable. Being an ultra-sensitive, cavity enhanced absorption spectroscopic technique; CW-CRDS can also provide a direct quantitative measurement of the absolute metastable state density. The proof of principle CW-CRDS measurements presented here are of the Doppler broadened absorption spectrum of Ar II at 668.6138 nm. Extrapolating from these initial measurements, it is expected that this diagnostic is suitable for neutrals and ions in plasmas ranging in density from 1 × 109 cm-3 to 1 × 1013 cm-3 and target species temperatures less than 20 eV.
Phototoxicity of argon laser irradiation on biofilms of Porphyromonas and Prevotella species.
Henry, C A; Dyer, B; Wagner, M; Judy, M; Matthews, J L
1996-07-01
Species of Prevotella (Pr.) and Porphyromonas (Po.) and other microorganisms were cultivated as biofilms on agar medium and examined for their susceptibility to argon laser irradiation (continuous mode; wavelengths, 488-514 nm; fluences, 20-200 J cm(-2)). Fluences of 35 to 80 J cm(-2) inhibited biofilm growth in Po. endodontalis, Po. gingivalis, Pr. denticola, Pr. intermedia, Pr. melaninogenica and Pr. nigrescens. A fluence of 70 J cm(-2) did not affect biofilm growth in species of Bacillus, Candida, Enterobacter, Proteus, Pseudomonas, Staphylococcus and Streptococcus. The phototoxic effects of argon laser irradiation against Prevotella and Porphyromonas species were: (1) caused by the radiation alone; (2) modified by biofilm age; (3) dependent on the presence of atmospheric oxygen; (4) influenced by medium supplements of hemin, hemoglobin and blood; (5) greater when compared with other microbial species; (6) demonstrated without augmentation with an exogenous photosensitizer; and (7) apparently unrelated to the protoporphyrin content of the cells. Overall, these in vitro findings suggest that low doses of argon laser radiation may be effective in the treatment and/or prevention of clinical infections caused by biofilm-associated species of Prevotella or Porphyromonas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Jin-Pyo; Uhm, Han S.; Li, Shou-Zhe
2007-09-15
A nonequilibrium Ar/O{sub 2} plasma discharge at atmospheric pressure was carried out in a coaxial cylindrical reactor with a stepped electrode configuration powered by a 13.56 MHz rf power supplier. The argon glow discharge with high electron density produces oxygen reactive species in large quantities. Argon plasma jets penetrate deep into ambient air and create a path for oxygen radicals to sterilize microbes. A sterilization experiment with bacterial endospores indicates that an argon-oxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby demonstrating its capability to clean surfaces and its usefulness for reinstating contaminated equipment as freemore » from toxic biological warfare agents. The decimal reduction time (D values) of the Ar/O{sub 2} plasma jet at an exposure distance of 0.5-1.5 cm ranges from 5 to 57 s. An actinometric comparison of the sterilization data shows that atomic oxygen radicals play a significant role in plasma sterilization. When observed under a scanning electron microscope, the average size of the spores appears to be greatly reduced due to chemical reactions with the oxygen radicals.« less
Modeling ionization and recombination from low energy nuclear recoils in liquid argon
Foxe, M.; Hagmann, C.; Jovanovic, I.; ...
2015-03-27
Coherent elastic neutrino-nucleus scattering (CENNS) is an as-yet undetected, flavor-independent neutrino interaction predicted by the Standard Model. Detection of CENNS could offer benefits for detection of supernova and solar neutrinos in astrophysics, or for detection of antineutrinos for nuclear reactor monitoring and nuclear nonproliferation. One challenge with detecting CENNS is the low energy deposition associated with a typical CENNS nuclear recoil. In addition, nuclear recoils result in lower ionization yields than those produced by electron recoils of the same energy. While a measurement of the nuclear recoil ionization yield in liquid argon in the keV energy range has been recentlymore » reported, a corresponding model for low-energy ionization yield in liquid argon does not exist. For this reason, a Monte Carlo simulation has been developed to predict the ionization yield at sub-10 keV energies. The model consists of two distinct components: (1) simulation of the atomic collision cascade with production of ionization, and (2) the thermalization and drift of ionization electrons in an applied electric field including local recombination. As an application of our results we report updated estimates of detectable ionization in liquid argon from CENNS at a nuclear reactor.« less
Tielemans, M; Compere, Ph; Geerts, S O; Lamy, M; Limme, M; De Moor, R J G; Delmé, K I M; Bertrand, M F; Rompen, E; Nammour, S
2009-01-01
In this study, we compared the microleakage of composite fillings cured with halogen bulb, LED and argon ion laser (488 nm). Twenty-four extracted human molars were divided randomly in three groups. Six cavities were prepared on the coronal part of each tooth. Standard cavities (1.7 x 2 mm) were prepared. Cavities were acid etched, sealed with Scotch Bond 1 and filled by a hybrid composite. Cavities were exposed to one light source, thermocycled and immersed in a 2% methylene blue dye solution. Dye penetration in the leakage of cavities was recorded using a digital optical microscope. Mean values of percentage of dye penetrations in microleakages of cavities were 49.303 +/- 5.178% for cavities cured with LED, 44.486 +/- 6.075% with halogen bulb and 36.647 +/- 5.936% for those cured by argon laser. Statistically significant difference exists between cavities cured by halogen vs LED (P < 0.01), halogen vs laser (P < 0.001) and LED vs laser (P < 0.001). The lowest microleakage was observed in the cavities and composites cured with argon ion laser.
ARGON, XENON, HYDROGEN, AND THE OXYGEN CONSUMPTION AND GLYCOLYSIS OF MOUSE TISSUE SLICES
South, Frank E.; Cook, Sherburne F.
1954-01-01
The effects of xenon, argon, and hydrogen on the aerobic and anaerobic metabolism of mouse liver, brain, and sarcoma slices have been investigated. Xenon was found to alter the rates of metabolism of these tissues in a manner almost identical with helium. The gas increased the rate of oxygen consumption in all three tissues and significantly depressed that of anaerobic glycolysis in brain and liver. The depression of glycolysis in sarcoma was less pronounced and not highly significant. Although both the magnitude and statistical significance of the effects observed with argon were much smaller, there was a seeming adherence to the general pattern established by xenon and helium. Hydrogen while remaining essentially ineffective insofar as oxygen uptake was concerned, depressed glycolysis in both liver and brain slices but did not significantly affect sarcoma slices. The following points are stressed in the Discussion: (1) the magnitude and direction of effects exerted by helium, argon, xenon, hydrogen, and nitrogen do not conform with the relative values of molecular weight, density, and solubility of these gases; (2) the effect of these gases on tissue metabolism does not necessarily parallel that exerted upon the whole organism. PMID:13118104
NASA Astrophysics Data System (ADS)
Jaritz, M.; Behm, H.; Hopmann, Ch; Kirchheim, D.; Mitschker, F.; Awakowicz, P.; Dahlmann, R.
2017-01-01
The influence of ultraviolet (UV) radiation from oxygen and argon pretreatment plasmas on a plastic substrate has not been fully understood yet. In particular, its influence on the adhesion properties has not been sufficiently researched so far. This paper addresses this issue by comparing the bond strength of a plasmapolymerized silicon organic coating (SiO x C y H z ) on polypropylene (PP) after oxygen and argon plasma pretreatment and pretreatment by UV radiation emitted by the same plasmas. The UV radiation is isolated from the other species from the plasma by means of a magnesium fluoride (MgF2) optical filter. It could be shown that UV radiation originating from an oxygen plasma has a significant impact on both substrate surface chemistry and coating adhesion. The same maximum bond strength enhancement can be reached by pretreating the polypropylene surface either with pulsed oxygen plasma, or with only the UV radiation from this oxygen plasma. Also, similar surface chemistry and topography modifications are induced. For argon plasma no significant influence of its UV radiation on the substrate could be observed in this study.
Metabolic effects of artificial environments
NASA Technical Reports Server (NTRS)
Jordan, J. P.
1971-01-01
The mechanisms by which inert gases influence metabolism were investigated from several viewpoints. Groups of rats were exposed at the thermal neutral temperature of the respective mixtures, to normoxic (P sub A 02 = 100 mm Hq) environments with argon, helium or nitrogen as the diluent at a total pressure of one atmosphere. The possible influence of diluent gases on oxygen transport to the cell was examined with hypoxic (P sub A O2 = 70 mm Hg) mixtures of the same diluent gases. Metabolic measurements included food, water, and oxygen consumption, CO2 production, hematocrit and the rate C-14O2 of expiration subsequent to intraperitoneal injection of acetate-1-C-14 or glucose UL-C-14. Argon-exposed animals showed a consistently decreased metabolic rate while, on the other hand, helium-exposed rats did not significantly alter metabolic rate relative to nitrogen. Certain indices, including acetate and glucose utilization, suggested that helium attenuated the imposed hypoxia at the cellular level while argon facilitated it as compared with nitrogen. These results suggest that metabolic influence of helium is largely thermal in nature while argon has a significant direct metabolic effect and that diluent gases may selectively influence oxygen availability to the interior of the cell.
Rait, N.
1981-01-01
A modified method is described for a 1-mg sample multi-element semiquantitative spectrographic analysis. This method uses a direct-current arc source, carbon instead of graphite electrodes, and an 80% argon-20% oxygen atmosphere instead of air. Although this is a destructive method, an analysis can be made for 68 elements in all mineral and geochemical samples. Carbon electrodes have been an aid in improving the detection limits of many elements. The carbon has a greater resistance to heat conductance and develops a better tip, facilitating sample volatilization and counter balancing the cooling effect of a flow of the argon-oxygen mixture around the anode. Where such an argon-oxygen atmosphere is used instead of air, the cyanogen band lines are greatly diminished in intensity, and thus more spectral lines of analysis elements are available for use; the spectral background is also lower. The main advantage of using the carbon electrode and the 80% argon-20% oxygen atmosphere is the improved detection limits of 36 out of 68 elements. The detection limits remain the same for 23 elements, and are not as good for only nine elements. ?? 1981.
The search for 0νββ decay with the GERDA experiment: Status and prospects
NASA Astrophysics Data System (ADS)
Majorovits, B.
2015-08-01
The GERDA experiment is designed to search for neutrinoless double beta decay of 76Ge using HPGe detectors directly immersed into liquid argon. In its first phase the GERDA experiment has yielded a half life limit on this decay of T1/2 0 v>2.1 ṡ1025 . A background model has been developed. It explains the measured spectrum well, taking into account only components with distances to the detectors less then 2 cm. Competitive limits on Majoron accompanied double beta decay have been derived. Phase II of the experiment, now with additional liquid argon veto installed, is presently starting its commissioning phase. First commissioning spectra from calibration measurements are shown, proving that the liquid argon veto leads to a significant reduction of background events.
DEAP-3600 Dark Matter Search at SNOLAB
NASA Astrophysics Data System (ADS)
Boulay, Mark; DEAP Collaboration
2014-09-01
The DEAP-3600 experiment will search for dark matter particle interactions on 3.6 tonnes of liquid argon at SNOLAB. The argon is contained in a large ultralow-background acrylic vessel viewed by 255 8-inch photomultiplier tubes. Very good pulse-shape discrimination has been demonstrated for scintillation in argon, and the detector has been designed for a total background budget, including (alpha,n) and external neutron recoils, surface contamination from 210Pb and radon daughters, of 0.2 events per tonne-year, allowing an ultimate sensitivity to spin-independent scattering of 10-46 cm2 per nucleon at 100 GeV mass. Installation of the detector is currently being completed at SNOLAB. The status of the experiment and an overview of low background techniques employed will be presented.
Ion beam sputter etching of orthopedic implanted alloy MP35N and resulting effects on fatigue
NASA Technical Reports Server (NTRS)
Wintucky, E. G.; Christopher, M.; Bahnuik, E.; Wang, S.
1981-01-01
The effects of two types of argon ion sputter etched surface structures on the tensile stress fatigue properties of orthopedic implant alloy MP35N were investigated. One surface structure was a natural texture resulting from direct bombardment by 1 keV argon ions. The other structure was a pattern of square holes milled into the surface by a 1 keV argon ion beam through a Ni screen mask. The etched surfaces were subjected to tensile stress only in fatigue tests designed to simulate the cyclic load conditions experienced by the stems of artificial hip joint implants. Both types of sputter etched surface structures were found to reduce the fatigue strength below that of smooth surface MP35N.
Simulation of propagation of the HPM in the low-pressure argon plasma
NASA Astrophysics Data System (ADS)
Zhigang, LI; Zhongcai, YUAN; Jiachun, WANG; Jiaming, SHI
2018-02-01
The propagation of the high-power microwave (HPM) with a frequency of 6 GHz in the low-pressure argon plasma was studied by the method of fluid approximation. The two-dimensional transmission model was built based on the wave equation, the electron drift-diffusion equations and the heavy species transport equations, which were solved by means of COMSOL Multiphysics software. The simulation results showed that the propagation characteristic of the HPM was closely related to the average electron density of the plasma. The attenuation of the transmitted wave increased nonlinearly with the electron density. Specifically, the growth of the attenuation slowed down as the electron density increased uniformly. In addition, the concrete transmission process of the HPM wave in the low-pressure argon plasma was given.
Terekhov, G V; Furmanov, Iu A; Gvozdetskiĭ, V S; Savitskaia, I M
2008-06-01
A new method of the live biological tissues connection, using thermal energy of a high-temperature argon plasma, constituting perspective trend of application of a new nonsuture methods of the tissues connection, original for the world practice, was elaborated in the Department of Experimental Surgery together with the Institute of welding named after Academician E. O. Paton NAS of Ukraine. The argon-plasma welding application secure safe adhesion of the connecting surfaces formation due to the protein complexes temperature denaturation occurrence. The absence of foreign bodies in the connection zone as well as the presence of the plasma flow bacterocidal properties secure, while application of this new method, a significant lowering of a bacterial soiling of the formatted anastomoses, not interfering with the tissue natural regeneration process course.
Heat and metal transfer in gas metal arc welding using argon and helium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joensson, P.G.; Eagar, T.W.; Szekely, J.
1995-04-01
This article describes a theoretical investigation on the arc parameters and metal transfer in gas metal arc welding (GMAW) of mild steel using argon and helium shielding gases. Major differences in the predicted arc parameters were determined to be due to large differences in thermophysical properties. Various findings from the study include that an arc cannot be struck in a pure helium atmosphere without the assistance of metal vapor, that a strong electromagnetic cathode force affects the fluid flow and heat transfer in the helium arc, providing a possible explanation for the experimentally observed globular transfer mode and that themore » tapering of t electrode in an argon arc is caused by electron condensation on the side of the electrode.« less
Automatic-Control System for Safer Brazing
NASA Technical Reports Server (NTRS)
Stein, J. A.; Vanasse, M. A.
1986-01-01
Automatic-control system for radio-frequency (RF) induction brazing of metal tubing reduces probability of operator errors, increases safety, and ensures high-quality brazed joints. Unit combines functions of gas control and electric-power control. Minimizes unnecessary flow of argon gas into work area and prevents electrical shocks from RF terminals. Controller will not allow power to flow from RF generator to brazing head unless work has been firmly attached to head and has actuated micro-switch. Potential shock hazard eliminated. Flow of argon for purging and cooling must be turned on and adjusted before brazing power applied. Provision ensures power not applied prematurely, causing damaged work or poor-quality joints. Controller automatically turns off argon flow at conclusion of brazing so potentially suffocating gas does not accumulate in confined areas.
Test of an argon cusp plasma for tin LPP power scaling
NASA Astrophysics Data System (ADS)
McGeoch, Malcolm W.
2015-03-01
Scaling the power of the tin droplet laser-produced-plasma (LPP) extreme ultraviolet (EUV) source to 500W has eluded the industry after a decade of effort. In 2014 we proposed [2] a solution: placing the laser-plasma interaction region within an argon plasma in a magnetic cusp. This would serve to ionize tin atoms and guide them to a large area annular beam dump. We have since demonstrated the feasibility of this approach. We present first results from a full-scale test plasma at power levels relevant to the generation of at least 200W, showing both that the argon cusp plasma is very stable, and that its geometrical properties are ideal for the transport of exhaust power and tin to the beam dump.
Electron kinetics in atmospheric-pressure argon and nitrogen microwave microdischarges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levko, Dmitry; Raja, Laxminarayan L.
2016-04-28
Electron kinetics in atmospheric-pressure argon and nitrogen microwave (4 GHz) microdischarges is studied using a self-consistent one-dimensional Particle-in-Cell Monte Carlo Collisions model. The reversal of electric field (i.e., inverted sheath formation) is obtained in nitrogen and is not obtained in argon. This is explained by the different energy dependencies of electron-neutral collision cross sections in atomic and molecular gases and, as a consequence, different drag force acting on electrons. A non-local behavior of electron energy distribution function is obtained in both gases owing to electrons are generated in the plasma sheath. In both gases, electron energy relaxation length is comparable withmore » the interelectrode gap, and therefore, they penetrate the plasma bulk with large energies.« less
[Plasma temperature of white-eye hexagonal pattern in dielectric barrier discharge].
Zhao, Yang; Dong, Li-fang; Fu, Hong-yan
2015-01-01
By using the water-electrode discharge experimental setup, the white-eye hexagonal pattern is firstly observed and investigated in the dielectric barrier discharge with the mixture of argon and air whose content can be varied whenever necessary, and the study shows that the white-eye cell is an interleaving of three different hexagonal sub-structures: the spot, the ring, and the halo. The white-eye hexagonal pattern has the excellent discharge stability and sustainability during the experiment. Pictures recorded by ordinary camera with long exposure time in the same argon content condition show that the spot, the ring, and the halo of the white-eye hexagonal pattern have different brightness, which may prove that their plasma states are different. And, it is worth noting that there are obvious differences not only on the brightness but also on the color of the white-eye cell in conditions of different argon content, which shows that its plasma state also changed with the variation of the argon content. The white-eye hexagonal pattern is observed at a lower applied voltage so that the temperature of the water electrodes almost keeps unchanged during the whole experiment, which is advantageous for the long term stable measurement. The plasma state will not be affected by the temperature of the electrodes during the continuous discharge. Based on the above phenomena, plasma temperatures of the spot, the ring, and the halo in white-eye hexagonal pattern including molecule vibrational temperature and variations of electron density at different argon content are investigated by means of optical emission spectroscopy (OES). The emission spectra of the N2 second positive band(C3Πu-->B3Πg)are measured, and the molecule vibrational temperature of the spot, the ring, and the halo of the white-eye hexagonal pattern are calculated by the emission intensities. Furthermore, emission spectra of Ar I (2P2-->1S5)is collected and the changes of its width with different argon content are used to estimate the variations of electron density of the spot, the ring, and the halo of the white-eye hexagonal pattern. In the same argon content condition, the molecule vibrational temperatures of halo, ring, and spot in the white-eye hexagonal pattern are in descending order, while the electron densities of halo, ring, and spot are in ascending order. With argon content increasing from 70% to 90%, both the molecule vibrational temperature and the electron density of the spot increase, while both of them of the halo decrease. And the molecule vibrational temperature of the ring keeps constant, while its electron density decreases. The experimental results indicate that the plasma state of the spot, the halo and the ring in a white-eye cell of the white-eye hexagonal pattern is different. These results are of great importance to the investigation of the multilayer structure of the patterns in dielectric barrier discharge and applications in industry.
Microstructures and Argon age dating
NASA Astrophysics Data System (ADS)
Forster, Marnie; Fitz Gerald, John; Lister, Gordon
2010-05-01
Microstructures can be dated using 40Ar/39Ar geochronology, but certain conditions apply. In particular the nature of the physical processes that took place during development of need be identified, and the pattern of gas release (and/or retention) during their evolution in nature, and subsequently in the mass spectrometer, during the measurement process. Most researchers cite temperature as the sole variable of importance. There is a belief that there is a single "closure temperature" or a "closure interval" above which the mineral is incapable of retaining radiogenic argon. This is a false conception. Closure is practically relevant only in circumstances that see a rock cooled relatively rapidly from temperatures that were high enough to prevent significant accumulation of radiogenic argon, to temperatures below which there is insignificant loss of radiogenic argon through the remainder of the geological history. These conditions accurately apply only to a limited subset - for example to rocks that cool rapidly from a melt and thereafter remain at or close to the Earth's surface, without subsequent ingress of fluids that would cause alteration and modification of microstructure. Some minerals in metamorphic rocks might display such "cooling ages" but in principle these data are difficult to interpret since they depend on the rate of cooling, the pressures that applied, and the subsequent geological history. Whereas the science of "cooling ages" is relatively well understood, the science of the Argon Partial Retention Zone is in its infancy. In the Argon PRZ it is evident that ages should (and do) show a strong correlation with microstructure. The difficulty is that, since diffusion of Argon is simultaneously multi-path and multi-scale, it is difficult to directly interrogate the distinct reservoirs that store gas populations and thus the age information that can be recorded as to the multiple events during the history of an individual microstructure. Laser methods invariably record mixing ages, since the spot sizes are large. Carefully designed furnace step-heating experiments on the other hand seem well capable of sequentially extracting ages from different microstructural reservoirs, and this can be tested by comparing samples with different proportions of these microstructures. Here we examine the role of microstructure in Argon ‘age dating' by comparing and contrasting observed measurements with theoretical predictions developed on the basis of modelling and simulation of the effects of multi-path and multi-scale diffusion. We analyse these results in the context of microstructures observed in white micas and K-feldspar, at both the scale of the optical microscope as well as utilising electron microscopy. Examples from three different tectonic settings will be provided to illustrate the effect of the different variables that apply: a) the extensional South Cyclades Shear Zone, Greece; b) granitoids exhumed from ultra-high-pressures in the Dora Maira, Italy; and c) leucogranites shed from the Ladakh Batholith into the Indus Formation, NW India.
NASA Astrophysics Data System (ADS)
Naghshara, H.; Sobhanian, S.; Khorram, S.; Sadeghi, N.
2011-01-01
In a dc-magnetron discharge with argon feed gas, densities of copper atoms in the ground state Cu(2S1/2) and metastable state Cu*(2D5/2) were measured by the resonance absorption technique, using a commercial hollow cathode lamp as light source. The operating conditions were 0.3-14 µbar argon pressure and 10-200 W magnetron discharge power. The deposition rate of copper in a substrate positioned at 18 cm from the target was also measured with a quartz microbalance. The gas temperature, in the range 300-380 K, was deduced from the emission spectral profile of N2(C 3Πu - B 3Πg) 0-0 band at 337 nm when trace of nitrogen was added to the argon feed gas. The isotope-shifts and hyperfine structures of electronic states of Cu have been taken into account to deduce the emission and absorption line profiles, and hence for the determination of atoms' densities from the measured absorption rates. To prevent error in the evaluation of Cu density, attributed to the line profile distortion by auto-absorption inside the lamp, the lamp current was limited to 5 mA. Density of Cu(2S1/2) atoms and deposition rate both increased with the enhanced magnetron discharge power. But at fixed power, the copper density augmented with argon pressure whereas the deposition rate followed the opposite trend. Whatever the gas pressure, the density of Cu*(2D5/2) metastable atoms remained below the detection limit of 1 × 1010 cm-3 for magnetron discharge powers below 50 W and hence increased much more rapidly than the density of Cu(2S1/2) atoms, over passing this later at some discharge power, whose value decreases with increasing argon pressure. This behaviour is believed to result from the enhancement of plasma density with increasing discharge power and argon pressure, which would increase the excitation rate of copper into metastable states. At fixed pressure, the deposition rate followed the same trend as the total density of copper atoms in the ground and metastable states. Two important conclusions of this work are (i) copper atoms sputtered from the target under ion bombardment are almost all in the ground state Cu(2S1/2) and hence in the plasma volume they can be excited into the metastable states; (ii) all atoms in the long-lived ground and metastable states contribute to the deposition of copper layer on the substrate.
Hypoxia, gas narcosis, and metabolic response to argon and nitrous oxide
NASA Technical Reports Server (NTRS)
1972-01-01
Studies of the mechanism of inert gas influence on metabolism are reported. The studies reported include: metabolic response of hamsters to argon and nitrous oxide, membrane fatty acids and susceptability to narcotic gas influence, narcosis-induced histotoxic hypoxia, biochemical study of inert gas narcosis, hypoxia-induced protection against cardiovascular deterioration in the weightless state, and acute metabolic and physiologic response of goats to narcosis.
Steel refining possibilities in LF
NASA Astrophysics Data System (ADS)
Dumitru, M. G.; Ioana, A.; Constantin, N.; Ciobanu, F.; Pollifroni, M.
2018-01-01
This article presents the main possibilities for steel refining in Ladle Furnace (LF). These, are presented: steelmaking stages, steel refining through argon bottom stirring, online control of the bottom stirring, bottom stirring diagram during LF treatment of a heat, porous plug influence over the argon stirring, bottom stirring porous plug, analysis of porous plugs disposal on ladle bottom surface, bottom stirring simulation with ANSYS, bottom stirring simulation with Autodesk CFD.
Observation of Quartz Cathode-Luminescence in a Low Pressure Plasma Discharge
NASA Technical Reports Server (NTRS)
Foster, John E.
2004-01-01
Intense, steady-state cathode-luminescence has been observed from exposure of quartz powder to a low pressure rf-excited argon plasma discharge. The emission spectra (400 to 850 nm) associated with the powder luminescence were documented as a function of bias voltage using a spectrometer. The emission was broad-band, essentially washing out the line spectra features of the argon plasma discharge.
NASA Astrophysics Data System (ADS)
Lovera, Oscar M.; Harrison, T. Mark; Boehnke, Patrick
2015-02-01
Cassata and Renne (2013) is a data-rich paper potentially providing opportunities to systematically test long-standing models of argon diffusion behavior in feldspars and we congratulate them on a heroic achievement. That said, several of their interpretations are highly problematic due to misconceptions of both the nature of their sample and diffusion modeling.
Diamond film growth argon-carbon plasmas
Gruen, D.M.; Krauss, A.R.; Liu, S.Z.; Pan, X.Z.; Zuiker, C.D.
1998-12-15
A method and system are disclosed for manufacturing diamond film. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrogen and hydrocarbon and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous and deposition of a diamond film on a substrate. 29 figs.
Effect of low electric fields on alpha scintillation light yield in liquid argon
NASA Astrophysics Data System (ADS)
Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Asner, D. M.; Back, H. O.; Baldin, B.; Biery, K.; Bocci, V.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Caravati, M.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cicalò, C.; Cocco, A. G.; Covone, G.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Dionisi, C.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giagu, S.; Giganti, C.; Giovanetti, G. K.; Goretti, A. M.; Granato, F.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, A.; James, I.; Johnson, T. N.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Loer, B.; Lombardi, P.; Longo, G.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Milincic, R.; Miller, J. D.; Montanari, D.; Monte, A.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Navrer Agasson, A.; Odrowski, S.; Oleinik, A.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeti, M.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Sands, W.; Savarese, C.; Schlitzer, B.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Verducci, M.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xiao, X.; Xu, J.; Yang, C.; Zhong, W.; Zhu, C.; Zuzel, G.
2017-01-01
Measurements were made of scintillation light yield of alpha particles from the 222Rn decay chain within the DarkSide-50 liquid argon time projection chamber. The light yield was found to increase as the applied electric field increased, with alphas in a 200 V/cm electric field exhibiting a ~2% increase in light yield compared to alphas in no field.
NASA Technical Reports Server (NTRS)
Ramsey, W. D.
1978-01-01
THe original 12 cm hexagonal magneto-electrostatic containment discharge chamber has been optimized for argon and xenon operation. Argon mass utilization efficiencies of 65 to 77 percent were achieved at keeper-plus-main discharge energy consumptions of 200 to 458 eV/ion, respectively. Xenon performance of 84 to 96 percent mass utilization was realized at 203 to 350 eV/ion. The optimization process and test results are discussed.
Role of argon laser as an adjunctive therapy for treatment of resistant infected corneal ulcers
Khater, Mohammad M; Selima, Adel A; El-Shorbagy, Mohammad S
2014-01-01
Purpose To evaluate the role of argon laser as an adjunctive therapy in ten patients with resistant infected corneal ulcers with or without hypopyon. Methods The study included 20 patients, split into two groups of ten, with resistant infected corneal ulcers with or without hypopyon. One group was considered as the control group and treated with local and systemic specific antimicrobial drugs guided with culture and sensitivity tests. The other group started with the same specific therapy as the control group for 1 week with no obvious improvement and then was further treated with argon laser. The ten patients in the control group included five cases of fungal ulcers, three mixed (fungal and bacterial) ulcers, and two viral ulcers. The ten patients in the other group included three cases of fungal ulcers, three mixed (fungal and viral) ulcers, three viral ulcers, and one bacterial ulcer as proven with microbial culture and sensitivity tests. Eight cases of the control group and seven cases of the other group were associated with hypopyon. Before laser treatment, a drop of benoxinate hydrochloride 0.4% and a single drop of fluorescein sodium 0.25% were instilled. Argon laser irradiation of the affected cornea was performed using an argon 532 nm wavelength (Carl Zeiss LSL 532s AG; Carl Zeiss Meditec AG, Jena, Germany). A spot size of 500 μm, pulse duration of 0.2 seconds, and power of 900 mW were used. All cases were followed up for 3 months after healing was achieved. Results During the first 4 weeks after laser treatment, all patients showed complete healing of the epithelial defect and resolution of stromal infiltration with no adverse effects. In the control group, four cases needed an amniotic membrane graft due to thinning and the other six cases were healed in a duration that ranged from 3 to 7 weeks. Conclusion Argon laser phototherapy is useful as an adjunctive treatment for resistant infected corneal ulcers. More cases are needed to get more reliable results and to confirm our findings. PMID:24920878
Role of argon laser as an adjunctive therapy for treatment of resistant infected corneal ulcers.
Khater, Mohammad M; Selima, Adel A; El-Shorbagy, Mohammad S
2014-01-01
To evaluate the role of argon laser as an adjunctive therapy in ten patients with resistant infected corneal ulcers with or without hypopyon. The study included 20 patients, split into two groups of ten, with resistant infected corneal ulcers with or without hypopyon. One group was considered as the control group and treated with local and systemic specific antimicrobial drugs guided with culture and sensitivity tests. The other group started with the same specific therapy as the control group for 1 week with no obvious improvement and then was further treated with argon laser. The ten patients in the control group included five cases of fungal ulcers, three mixed (fungal and bacterial) ulcers, and two viral ulcers. The ten patients in the other group included three cases of fungal ulcers, three mixed (fungal and viral) ulcers, three viral ulcers, and one bacterial ulcer as proven with microbial culture and sensitivity tests. Eight cases of the control group and seven cases of the other group were associated with hypopyon. Before laser treatment, a drop of benoxinate hydrochloride 0.4% and a single drop of fluorescein sodium 0.25% were instilled. Argon laser irradiation of the affected cornea was performed using an argon 532 nm wavelength (Carl Zeiss LSL 532s AG; Carl Zeiss Meditec AG, Jena, Germany). A spot size of 500 μm, pulse duration of 0.2 seconds, and power of 900 mW were used. All cases were followed up for 3 months after healing was achieved. During the first 4 weeks after laser treatment, all patients showed complete healing of the epithelial defect and resolution of stromal infiltration with no adverse effects. In the control group, four cases needed an amniotic membrane graft due to thinning and the other six cases were healed in a duration that ranged from 3 to 7 weeks. Argon laser phototherapy is useful as an adjunctive treatment for resistant infected corneal ulcers. More cases are needed to get more reliable results and to confirm our findings.
Investigations on neutron irradiated 3D carbon fibre reinforced carbon composite material
NASA Astrophysics Data System (ADS)
Venugopalan, Ramani; Alur, V. D.; Patra, A. K.; Acharya, R.; Srivastava, D.
2018-04-01
As against conventional graphite materials carbon-carbon (C/C) composite materials are now being contemplated as the promising candidate materials for the high temperature and fusion reactor owing to their high thermal conductivity and high thermal resistance, better mechanical/thermal properties and irradiation stability. The current need is for focused research on novel carbon materials for future new generation nuclear reactors. The advantage of carbon-carbon composite is that the microstructure and the properties can be tailor made. The present study encompasses the irradiation of 3D carbon composite prepared by reinforcement using PAN carbon fibers for nuclear application. The carbon fiber reinforced composite was subjected to neutron irradiation in the research reactor DHRUVA. The irradiated samples were characterized by Differential Scanning Calorimetry (DSC), small angle neutron scattering (SANS), XRD and Raman spectroscopy. The DSC scans were taken in argon atmosphere under a linear heating program. The scanning was carried out at temperature range from 30 °C to 700 °C at different heating rates in argon atmosphere along with reference as unirradiated carbon composite. The Wigner energy spectrum of irradiated composite showed two peaks corresponding to 200 °C and 600 °C. The stored energy data for the samples were in the range 110-170 J/g for temperature ranging from 30 °C to 700 °C. The Wigner energy spectrum of irradiated carbon composite did not indicate spontaneous temperature rise during thermal annealing. Small angle neutron scattering (SANS) experiments have been carried out to investigate neutron irradiation induced changes in porosity of the composite samples. SANS data were recorded in the scattering wave vector range of 0.17 nm-1 to 3.5 nm-1. Comparison of SANS profiles of irradiated and unirradiated samples indicates significant change in pore morphology. Pore size distributions of the samples follow power law size distribution with different exponent. Narrowing of SANS profile of the irradiated sample indicates creation of significant number of larger pores due to neutron irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Shu-Hua; Liu, Xiang-Yang; Fang, Qiu
2015-11-21
In this work, we have first employed the combined quantum mechanics/molecular mechanics (QM/MM) method to study the photodissociation mechanism of thioacetic acid CH{sub 3}C(O)SH in the S{sub 1}, T{sub 1}, and S{sub 0} states in argon matrix. CH{sub 3}C(O)SH is treated quantum mechanically using the complete active space self-consistent field and complete active space second-order perturbation theory methods; argon matrix is described classically using Lennard-Jones potentials. We find that the C-S bond fission is predominant due to its small barriers of ca. 3.0 and 1.0 kcal/mol in the S{sub 1} and T{sub 1} states. It completely suppresses the nearby C—Cmore » bond fission. After the bond fission, the S{sub 1} radical pair of CH{sub 3}CO and SH can decay to the S{sub 0} and T{sub 1} states via internal conversion and intersystem crossing, respectively. In the S{sub 0} state, the radical pair can either recombine to form CH{sub 3}C(O)SH or proceed to form molecular products of CH{sub 2}CO and H{sub 2}S. We have further employed our recently developed QM/MM generalized trajectory-based surface-hopping method to simulate the photodissociation dynamics of CH{sub 3}C(O)SH. In 1 ps dynamics simulation, 56% trajectories stay at the Franck-Condon region; the S{sub 1} C—S bond fission takes place in the remaining 44% trajectories. Among all nonadiabatic transitions, the S{sub 1} → S{sub 0} internal conversion is major (55%) but the S{sub 1} → T{sub 1} intersystem crossing is still comparable and cannot be ignored, which accounts for 28%. Finally, we have found a radical channel generating the molecular products of CH{sub 2}CO and H{sub 2}S, which is complementary to the concerted molecular channel. The present work sets the stage for simulating photodissociation dynamics of similar thio-carbonyl systems in matrix.« less
NASA Astrophysics Data System (ADS)
Fang, Zhi; Shao, Tao; Wang, Ruixue; Yang, Jing; Zhang, Cheng
2016-04-01
The dielectric barrier discharge generated in argon/oxygen mixtures at atmospheric pressure is investigated, and the effect of oxygen content on discharge characteristics at applied voltage of 4.5 kV is studied by means of electrical measurements and optical diagnostics. The results show that the filaments in the discharge regime become more densely packed with the increasing in the oxygen content, and the distribution of the filaments is more uniform in the gap. An increase in the oxygen content results in a decrease in the average power consumed and transported charges, while there exists an optimal value of oxygen content for the production of oxygen radicals. The maximal yield of oxygen radicals is obtained in mixtures of argon with 0.3% oxygen addition, and the oxygen radicals then decrease with the further increase in the oxygen content. The oxygen/argon plasma is employed to modify surface hydrophilicity of the PET films to estimate the influence of oxygen content on the surface treatment, and the static contact angles before and after the treatments are measured. The lowest contact angle is obtained at a 0.3% addition of oxygen to argon, which is in accordance with the optimum oxygen content for oxygen radicals generation. The electron density and electron temperature are estimated from the measured current and optical emission spectroscopy, respectively. The electron density is found to reduce significantly at a higher oxygen content due to the increased electron attachment, while the estimated electron temperature do not change apparently with the oxygen content. Contribution to the Topical Issue "Recent Breakthroughs in Microplasma Science and Technology", edited by Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu.
Effect of dry air on interface smoothening in reactive sputter deposited Co/Ti multilayer
NASA Astrophysics Data System (ADS)
Biswas, A.; Porwal, A.; Bhattacharya, Debarati; Prajapat, C. L.; Ghosh, Arnab; Nand, Mangla; Nayak, C.; Rai, S.; Jha, S. N.; Singh, M. R.; Bhattacharyya, D.; Basu, S.; Sahoo, N. K.
2017-09-01
Top surface roughness and interface roughness are one of the key elements which determine the performance of X-ray and neutron thin film multilayer devices. It has been observed that by mixing air with argon in sputtering ambience during deposition of Co layers, polarized neutron reflectivity (PNR) of Co/Ti supermirror polarizers can be improved substantially. Cross-sectional HRTEM measurement reveals that sharper interfaces in the supermirror can be achieved in case of deposition of the multilayer under mixed ambience of argon and air. In order to investigate this interface modification mechanism further, in this communication two sets of tri-layer Co/Ti/Co samples and 20-layer Co/Ti periodic multilayer samples have been prepared; in one set all the layers are deposited only under argon ambience and in the other set, Co layers are deposited under a mixed ambience of argon and air. These samples have been characterized by measuring specular and non-specular X-ray reflectivities (GIXR) with X-rays of 1.54 Å wavelength and polarized neutron reflectivity (PNR) with neutron of 2.5 Å wavelength at grazing angle of incidence. It has been observed that the X-ray and neutron specular reflectivities at Bragg peaks of 20 layer periodic multilayer increase when Co layers are deposited under mixed ambience of argon and air. The detail information regarding the effect of air on the interfaces and magnetic properties has been obtained by fitting the measured spectra. The above information has subsequently been supplemented by XRD and magnetic measurements on the samples. XPS and XANES measurements have also been carried out to investigate whether cobalt oxide or cobalt nitride layers are being formed due to use of air in sputtering ambience.
Pate, S. F.; Wester, T.; Bugel, L.; ...
2018-02-28
We present a model for the Global Quantum Efficiency (GQE) of the MicroBooNE optical units. An optical unit consists of a flat, circular acrylic plate, coated with tetraphenyl butadiene (TPB), positioned near the photocathode of a 20.2-cm diameter photomultiplier tube. The plate converts the ultra-violet scintillation photons from liquid argon into visible-spectrum photons to which the cryogenic phototubes are sensitive. The GQE is the convolution of the efficiency of the plates that convert the 128 nm scintillation light from liquid argon to visible light, the efficiency of the shifted light to reach the photocathode, and the efficiency of the cryogenic photomultiplier tube. We develop a GEANT4-based model of the optical unit, based on first principles, and obtain the range of probable values for the expected number of detected photoelectrons (more » $$N_{\\rm PE}$$) given the known systematic errors on the simulation parameters. We compare results from four measurements of the $$N_{\\rm PE}$$ determined using alpha-particle sources placed at two distances from a TPB-coated plate in a liquid argon cryostat test stand. We also directly measured the radial dependence of the quantum efficiency, and find that this has the same shape as predicted by our model. Our model results in a GQE of $$0.0055\\pm0.0009$$ for the MicroBooNE optical units. While the information shown here is MicroBooNE specific, the approach to the model and the collection of simulation parameters will be widely applicable to many liquid-argon-based light collection systems.« less
NASA Astrophysics Data System (ADS)
Gurusinghe, Ranil M.; Tubergen, Michael
2015-06-01
A mini-cavity microwave spectrometer was used to record the rotational spectra arising from 2-phenylethyl methyl ether and its weakly bonded argon complex in the frequency range of 10.5 - 22 GHz. Rotational spectra were found for two stable conformations of the monomer: anti-anti and gauche-anti, which are 1.4 kJ mol-1 apart in energy at wB97XD/6-311++G(d,p) level. Doubled rotational transitions, arising from internal motion of the methyl group, were observed for both conformers. The program XIAM was used to fit the rotational constants, centrifugal distortion constants, and barrier to internal rotation to the measured transition frequencies of the A and E internal rotation states. The best global fit values of the rotational constants for the anti-anti conformer are A= 3799.066(3) MHz, B= 577.95180(17) MHz, C= 544.7325(3) MHz and the A state rotational constants of the gauche-anti conformer are A= 2676.1202(7) MHz, B= 760.77250(2) MHz, C= 684.78901(2) MHz. The rotational spectrum of 2-phenylethyl methyl ether - argon complex is consistent with the geometry where argon atom lies above the plane of the benzene moiety of gauche-anti conformer. Tunneling splittings were too small to resolve within experimental accuracy, likely due to an increase in three fold potential barrier when the argon complex is formed. Fitted rotational constants are A= 1061.23373(16) MHz, B= 699.81754(7) MHz, C= 518.33553(7) MHz. The lowest energy solvated ether - water complex with strong intermolecular hydrogen bonding has been identified theoretically. Progress on the assignment of the water complex will also be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pate, S. F.; Wester, T.; Bugel, L.
We present a model for the Global Quantum Efficiency (GQE) of the MicroBooNE optical units. An optical unit consists of a flat, circular acrylic plate, coated with tetraphenyl butadiene (TPB), positioned near the photocathode of a 20.2-cm diameter photomultiplier tube. The plate converts the ultra-violet scintillation photons from liquid argon into visible-spectrum photons to which the cryogenic phototubes are sensitive. The GQE is the convolution of the efficiency of the plates that convert the 128 nm scintillation light from liquid argon to visible light, the efficiency of the shifted light to reach the photocathode, and the efficiency of the cryogenic photomultiplier tube. We develop a GEANT4-based model of the optical unit, based on first principles, and obtain the range of probable values for the expected number of detected photoelectrons (more » $$N_{\\rm PE}$$) given the known systematic errors on the simulation parameters. We compare results from four measurements of the $$N_{\\rm PE}$$ determined using alpha-particle sources placed at two distances from a TPB-coated plate in a liquid argon cryostat test stand. We also directly measured the radial dependence of the quantum efficiency, and find that this has the same shape as predicted by our model. Our model results in a GQE of $$0.0055\\pm0.0009$$ for the MicroBooNE optical units. While the information shown here is MicroBooNE specific, the approach to the model and the collection of simulation parameters will be widely applicable to many liquid-argon-based light collection systems.« less
NASA Astrophysics Data System (ADS)
Uunk, Bertram; Postma, Onno; Wijbrans, Jan; Brouwer, Fraukje
2017-04-01
Metamorphic minerals and veins commonly trap attending hydrous fluids in fluid inclusions, which yield a wealth of information on the history of the hosting metamorphic system. When these fluids are sufficiently saline, the KCl in the inclusions can be used as a K/Ar geochronologic system, potentially dating inclusion incorporation. Whilst primary fluid inclusions (PFIs) can date fluid incorporation during mineral or vein growth, secondary fluid inclusion trails (SFIs) can provide age constraints on later fluid flow events. At VU Amsterdam, a new in-vacuo crushing apparatus has been designed to extract fluid inclusions from minerals for 40Ar/39Ar analysis. Separates are crushed inside a crusher tube connected to a purification line and a quadrupole mass spectrometer. In-vacuo crushing is achieved by lifting and dropping a steel pestle using an externally controlled magnetic field. As the gas can be analyzed between different crushing steps, the setup permits stepwise crushing experiments. Additionally, crushed powder can be heated by inserting the crusher tube in an externally controlled furnace. Dating by 40Ar/39Ar stepwise crushing has the added advantage that, during neutron irradiation to produce 39Ar from 39K, 38Ar and 37Ar are also produced from 38Cl and 40Ca, respectively. Simultaneous analysis of these argon isotopes permits constraining the chemistry of the argon source sampled during the experiment. This allows a distinction between different fluid or crystal lattice sources. Garnet from three samples of the HP metamorphic Cycladic Blueschist Unit on Syros, Greece was stepwise crushed to obtain fluid inclusion ages. Initial steps for all three experiments yield significant components of excess argon, which are interpreted to originate from grain boundary fluids and secondary fluid inclusions trails. During subsequent steps, age results stabilize to a plateau age. One garnet from North Syros yields an unusually old 80 Ma plateau age. However, isochrons indicate the presence of excess argon in the PFIs and isochron ages overlap with other isotopic constraints on the age of garnet growth during eclogite metamorphism (55-50 Ma) in the underlying metabasite. Garnet from two samples from the center of Syros yields younger ages overlapping with greenschist overprinting (25-30 Ma). Further studies will indicate whether these younger ages reflect a young garnet growth age or a young fluid flow event affecting older garnet crystals. The stepwise crushing and heating approach shows to be effective in dating fluid inclusions in natural mineral systems. As many metamorphic processes occur under influence or in the presence of fluids, this method should greatly expand our possibilities to date crustal processes.
In search of the noble gas 3.52 Ga atmospheric signatures
NASA Astrophysics Data System (ADS)
Pujol, M.; Marty, B.; Philippot, P.
2008-12-01
The isotopic signatures of noble gases in the Present-day mantle and in the atmosphere permit exceptional insight into the evolution of these reservoirs through time ([1]). However, related exchange models are under- constrained and would require direct measurements of the atmospheric composition long ago, e.g., in the Archaean. Drilling in the the 3.52 Ga chert-barite ([2]) of the Dresser formation(Pilbara Drilling Project) , North Pole, Pilbara craton (Western Australia), led to recovery of exceptionally fresh samples preserving primary fluid inclusions unaffected by surface weathering. The whole formation is considered to be an already established basin when hydrothermal processes started. The chemical composition of primary fluid inclusions trapped in hydrothermal quartz from vacuolar komatiitic basalt from 110 m depth were determined by synchrotron X-ray microfluorescence (ESRF, Grenoble,France). Data show that fluids are relatively homogenous, consisting of a Ba-rich fluid and a Fe (+Ba)-rich fluid of hydrothermal origin as concluded by Foriel et al.([3]). The isotopic compositions of xenon and argon trapped in these fluids were measured by mass spectrometry following vacuum crushing. The three argon isotopes show a homogeneous signature quite different from present-day Earth atmosphere but we cannot exclude the possibility that secondary nuclear reactions produced these anomalies. Despite this, the Xe isotopic trends indicate a less radiogenic signature than the Present-day atmosphere, and probably represent a remnant of the Archaean atmosphere. If this xenon composition is primitive then it implies that there is no cosmogenic production through time. However, argon ratios could be explained by cosmogenic production which implies significant surface exposure times. Cosmogenic production will produce correlated argon and xenon isotope signatures. Therefore it is necessary to differentiate primary from secondary composition. To investigate the effects of these nuclear reactions on Xe isotope production, barite from 30m shallower depth in the same core were analyzed. Variable excesses can be linked to spallogenic and cosmogenic reactions ([4] [5] [6]) which allow the primitive Xe isotopic signature to be isolated from subsequent secondary production. Models of the archaean atmospheric noble gas signature can thereby be compared with different theories on primitive atmospheric composition. [1] Staudacher T. Allègre C.J. (1982) EPSL 60, p 389-406 [2] Van Kranendonk MJ., Hickman A.H., Williams I.R. and Nijman W. (2001) Rec.-Geol. Surv. West. Aust. 2001/9, 134 [3] Foriel J., Philippot P., Rey P., Somogyi A., Banks D. and Ménez B. (2004) EPSL, 228, 451-463 [4]Srinivasan B. (1976) EPSL, 31, 129-141 [5]Charalambus S. (1971) Nuclear Physics, A166, 145 [6]Meshik A. P., Hohenberg C. M., Pravdivtseva O. V. and Kapusta Y. (2001) Phys. Rev., C 64, 035205-1 035205-6
Analysis of Alpha Backgrounds in DarkSide-50
NASA Astrophysics Data System (ADS)
Monte, Alissa; DarkSide Collaboration
2017-01-01
DarkSide-50 is the current phase of the DarkSide direct dark matter search program, operating underground at the Laboratori Nazionali del Gran Sasso in Italy. The detector is a dual-phase argon Time Projection Chamber (TPC), designed for direct detection of Weakly Interacting Massive Particles, and housed within an active veto system of liquid scintillator and water Cherenkov detectors. Since switching to a target of low radioactivity argon extracted from underground sources in April, 2016, the background is no longer dominated by naturally occurring 39Ar. However, alpha backgrounds from radon and its daughters remain, both from the liquid argon bulk and internal detector surfaces. I will present details of the analysis used to understand and quantify alpha backgrounds, as well as to understand other types of radon contamination that may be present, and our sensitivity to them.
Tensile strength of laser welded cobalt-chromium alloy with and without an argon atmosphere.
Tartari, Anna; Clark, Robert K F; Juszczyk, Andrzej S; Radford, David R
2010-06-01
The tensile strength and depth of weld of two cobalt chromium alloys before and after laser welding with and without an argon gas atmosphere were investigated. Using two cobalt chromium alloys, rod shaped specimens (5 cm x 1.5 mm) were cast. Specimens were sand blasted, sectioned and welded with a pulsed Nd: YAG laser welding machine and tested in tension using an Instron universal testing machine. A statistically significant difference in tensile strength was observed between the two alloys. The tensile strength of specimens following laser welding was significantly less than the unwelded controls. Scanning electron microscopy showed that the micro-structure of the cast alloy was altered in the region of the weld. No statistically significant difference was found between specimens welded with or without an argon atmosphere.
Atomistic study of the graphene nanobubbles
NASA Astrophysics Data System (ADS)
Iakovlev, Evgeny; Zhilyaev, Petr; Akhatov, Iskander
2017-11-01
A two-dimensional (2D) heterostructures can be created using 2D crystals stacking method. Substance can be trapped between the layers which leads to formation of the surface nanobubbles. We study nanobubbles trapped between graphene layers with argon atoms inside using molecular dynamics approach. For bubbles with radius in range 7-34 nm the solid close-packed state of argon is found, although according to bulk argon phase diagram the fluid phase must be observed. The universal shape scaling (constant ratio of height to radius), which is found experimentally and proved by the theory of elasticity of membranes, is also observed in our atomistic simulations. An unusual pancake shape (extremely small height to radius ratio) is found for smallest nanobubble with radius 7 nm. The nanobubbles with similar shape were experimentally observed at the interface between water and hydrophobic surface.
NASA Technical Reports Server (NTRS)
Perkins, R. A.; Cieszkiewicz, M. T.
1991-01-01
Experimental measurements of thermal conductivity and thermal diffusivity obtained with a transient hot-wire apparatus are reported for three mixtures of nitrogen, oxygen, and argon. Values of the specific heat, Cp, are calculated from these measured values and the density calculated with an equation of state. The measurements were made at temperatures between 65 and 303 K with pressures between 0.1 and 70 MPa. The data cover the vapor, liquid, and supercritical gas phases for the three mixtures. The total reported points are 1066 for the air mixture (78.11 percent nitrogen, 20.97 percent oxygen, and 0.92 percent argon), 1058 for the 50 percent nitrogen, 50 percent oxygen mixture, and 864 for the 25 percent nitrogen, 75 oxygen mixture. Empirical thermal conductivity correlations are provided for the three mixtures.
Pettigrew, Katherine A; Long, Jeffrey W; Carpenter, Everett E; Baker, Colin C; Lytle, Justin C; Chervin, Christopher N; Logan, Michael S; Stroud, Rhonda M; Rolison, Debra R
2008-04-01
Using two-step (air/argon) thermal processing, sol-gel-derived nickel-iron oxide aerogels are transformed into monodisperse, networked nanocrystalline magnetic oxides of NiFe(2)O(4) with particle diameters that can be ripened with increasing temperature under argon to 4.6, 6.4, and 8.8 nm. Processing in air alone yields poorly crystalline materials; heating in argon alone leads to single phase, but diversiform, polydisperse NiFe(2)O(4), which hampers interpretation of the magnetic properties of the nanoarchitectures. The two-step method yields an improved model system to study magnetic effects as a function of size on the nanoscale while maintaining the particles within the size regime of single domain magnets, as networked building blocks, not agglomerates, and without stabilizing ligands capping the surface.
Coats' disease with macular oedema responsive to aflibercept and argon laser.
Guixeres Esteve, M C; Pardo Saiz, A O
2017-07-01
A 14 year-old boy with Coats' disease in his right eye, presented with a visual acuity (VA) of 0.1, micro-aneurysms, exudates, a macular oedema of 959 microns, and peripheral telangiectasias. After 12 months follow-up with 6 ranibizumab injections and 3 sessions of argon laser photocoagulation, the macular oedema remained and VA was 0.2. Following 4 aflibercept injections and another 2 laser sessions, he had a good foveal slope and a VA of 0.5, with no recurrences in the last 12 months. Treatment with aflibercept and argon laser was effective in our patient with stage 2B Coats' disease and macular oedema unresponsive to ranibizumab. Copyright © 2016 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.
Kang, Wei; Zhao, Shijun; Zhang, Shen; Zhang, Ping; Chen, Q. F.; He, Xian-Tu
2016-01-01
Mott effect, featured by a sharp increase of ionization, is one of the unique properties of partially ionized plasmas, and thus of great interest to astrophysics and inertial confinement fusion. Recent experiments of single bubble sonoluminescence (SBSL) revealed that strong ionization took place at a density two orders lower than usual theoretical expectation. We show from the perspective of electronic structures that the strong ionization is unlikely the result of Mott effect in a pure argon plasma. Instead, first-principles calculations suggest that other ion species from aqueous environments can energetically fit in the gap between the continuum and the top of occupied states of argon, making the Mott effect possible. These results would help to clarify the relationship between SBSL and Mott effect, and further to gain an better understanding of partially ionized plasmas. PMID:26853107
Potassium-argon (argon-argon), structural fabrics
Cosca, Michael A.; Rink, W. Jack; Thompson, Jereon
2014-01-01
Definition: 40Ar/39Ar geochronology of structural fabrics: The application of 40Ar/39Ar methods to date development of structural fabrics in geologic samples. Introduction: Structural fabrics develop during rock deformation at variable pressures (P), temperatures (T), fluid compositions (X), and time (t). Structural fabrics are represented in rocks by features such as foliations and shear zones developed at the mm to km scale. In ideal cases, the P-T-X history of a given structural fabric can be constrained using stable isotope, cation exchange, and/or mineral equilibria thermobarometry (Essene 1989). The timing of structural fabric development can be assessed qualitatively using geologic field observations or quantitatively using isotope-based geochronology. High-precision geochronology of the thermal and fluid flow histories associated with structural fabric development can answer fundamental geologic questions including (1) when hydrothermal fluids transported and deposited ore minerals, ...
NASA Astrophysics Data System (ADS)
Zhao, L.; Boehmer, H.; Edrich, D.; Heidbrink, W. W.; McWilliams, R.; Leneman, D.
2002-11-01
To measure the fast-ion transport as a function of gyroradius, a 3-cm diameter, 17 MHz, ˜ 80 W, ˜ 3 mA, argon source is under development for use in the LArge Plasma Device (LAPD). In tests on the Irvine Mirror, the source performs reliably when oriented either parallel to the magnetic field or at an oblique angle and in either a CW or pulsed mode of operation. A radial energy analyzer measures the profile of the 200-500 eV beam. Laser-induced fluorescence (LIF) of cold 3d^2G_9/2 argon metastables excited by the source is readily measured but the hot argon ions in the beam itself are more difficult to detect. In preliminary tests on LAPD, the source operated successfully. Planned physics experiments include measurements of collisional fast-ion diffusion and fluctuation-induced transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaques, A.
The data presented in these tables were gathered with the use of the Fortran program FLUIDS which was provided by the National Bureau of Standards. Fluid properties at transitional boundaries and points are those obtained with the best fit equation or formula for that particular fluid. Consequently, at such divergent points as the triple and critical points, the accuracy of the properties given by FLUIDS can be off up to 10% in some cases. In listing the critical and triple point conditions within, values were taken from the National Bureau of Standards' publication ''Thermodynamic Properties of Argon'', not from FLUIDS.more » Outside of these two points, however, the error in FLUIDS is minimal, thus all other data in these tables were obtained through FLUIDS. The Temperature-Entropy Chart for Argon is also taken from NBS' ''Thermodynamic Properties of Argon''.« less
NASA Astrophysics Data System (ADS)
Rosén, Johanna; Anders, André; Mráz, Stanislav; Atiser, Adil; Schneider, Jochen M.
2006-06-01
The charge-state-resolved ion energy distributions (IEDs) in filtered aluminum vacuum arc plasmas were measured and analyzed at different oxygen and argon pressures in the range of 0.5-8.0 mTorr. A significant reduction of the ion energy was detected as the pressure was increased, most pronounced in an argon environment and for the higher charge states. The corresponding average charge state decreased from 1.87 to 1.0 with increasing pressure. The IEDs of all metal ions in oxygen were fitted with shifted Maxwellian distributions. The results show that it is possible to obtain a plasma composition with a narrow charge-state distribution as well as a narrow IED. These data may enable tailoring thin film properties through selecting growth conditions that are characterized by predefined charge state and energy distributions.