Science.gov

Sample records for argon metastable number

  1. Argon metastable production in argon-helium microplasmas

    NASA Astrophysics Data System (ADS)

    Hoskinson, Alan R.; Gregorío, José; Hopwood, Jeffrey; Galbally-Kinney, Kristin; Davis, Steven J.; Rawlins, Wilson T.

    2016-06-01

    Microwave resonator-driven microplasmas are a promising technology for generating the high density of rare-gas metastable states required for optically pumped rare gas laser systems. We measure the density of argon 1s5 states (Paschen notation) in argon-helium plasmas between 100 Torr and atmospheric pressure using diode laser absorption. The metastable state density is observed to rise with helium mole fraction at lower pressures but to instead fall slightly when tested near atmospheric pressure. A 0-D model of the discharge suggests that these distinct behaviors result from the discharge being diffusion-controlled at lower pressures, but with losses occurring primarily through dissociative recombination at high pressures. In all cases, the argon metastable density falls sharply when the neutral argon gas fraction is reduced below approximately 2%.

  2. Dissociation-excitation reactions of argon metastables with carbon dioxide.

    NASA Technical Reports Server (NTRS)

    Starr, W. L.

    1971-01-01

    Results of a study showing that a metastable argon-carbon dioxide reaction results in dissociation of carbon dioxide and electronic excitation of one of the products, carbon monoxide or oxygen. A flow system using a 2450-MHz discharge was used to produce metastable argon atoms. Metastable argon in the afterglow was confirmed by adding nitrogen to the afterglow. Without addition of carbon dioxide no argon line emission, or any other emission, is observed from the reaction zone. Absence of argon line emission produced by recombination indicates the absence of charged species.

  3. Excitation of metastable argon and helium atoms by electron impact

    NASA Technical Reports Server (NTRS)

    Borst, W. L.

    1974-01-01

    Using a time-of-flight method, the excitation of argon and helium metastables by electron impact is investigated in the energy range from threshold to about 50 eV. The secondary-electron yields of the metastable detector used are reviewed in detail. The effect of metastable recoil is also discussed. Comparisons with data from other investigators are presented.

  4. Argon metastable dynamics and lifetimes in a direct current microdischarge

    SciTech Connect

    Stefanović, Ilija; Kuschel, Thomas; Schröter, Sandra; Böke, Marc

    2014-09-21

    In this paper we study the properties of a pulsed dc microdischarge with the continuous flow of argon. Argon metastable lifetimes are measured by tunable diode laser absorption spectroscopy (TDLAS) and are compared with calculated values which yield information about excitation and de-excitation processes. By increasing the gas flow-rate about 5 times from 10 to 50 sccm, the Ar{sup m} lifetime increases from 1 to 5 μs due to the reduction of metastable quenching with gas impurities. Optical emission spectroscopy reveals nitrogen and water molecules as the main gas impurities. The estimated N₂ density [N₂]=0.1% is too low to explain the measured metastable lifetimes. Water impurity was found to be the main de-excitation source of argon metastable atoms due to high quenching coefficients. The water impurity level of [H₂O]=0.15% to 1% is sufficient to bring calculated metastable lifetimes in line with experiments. The maximum value of water content in the discharge compared to the argon atoms is estimated to approximately 6%, due to the large surface to volume ratio of the microdischarge. The current pulse releases the water molecules from the electrode surface and they are either re-adsorbed in the time between 0.4 ms for [H₂O]=1% and 2.6 ms for [H₂O]=0.15% or pumped out of the discharge with the speed equal to the gas flow-rate. Depending on its partial pressure, the water impurity re-adsorption time is of the order of magnitude or less then the argon gas residence time.

  5. Distribution of metastable argon atoms in the modified Grimm-type electrical discharge

    NASA Astrophysics Data System (ADS)

    Ferreira, N. P.; Strauss, J. A.; Human, H. G. C.

    The absorbance by metastable argon atoms of the Ar 696.543 nm line in the modified Grimm-type electrical discharge source was measured at different discharge conditions and at distances varying from 0.25 to 6 mm from the cathode. A uranium/argon hollow cathode lamp was used as primary source, which gave an argon gas temperature of 850 K when run at 12 mA. A maximum absorbance of 0.57 was found 3 mm from the cathode at 600 V, 80 mA. The magnitude of absorbance increases with discharge current while the position of maximum absorbance shifts away from the cathode with increase in discharge voltage. The quenching of metastable atoms by nitrogen is demonstrated. The spatial distribution of the intensity of four different types of spectral lines is shown. The approximate number densities of the different particles are 10 12cm -3 for metastable argon atoms, 10 16cm -3 for neutral argon atoms, 10 13 cm -3 for sputtered copper atoms and 10 14cm -3for electrons.

  6. Interactions of Rubidium and Metastable Argon at Ultracold Temperatures

    NASA Astrophysics Data System (ADS)

    Shaffer, M. K.

    2005-05-01

    We are investigating the interaction between ultracold rubidium (Rb) and ultracold metastable argon (Ar*) simultaneously confined in a dual species magneto-optical trap (MOT). We will report on recent quantitative measurements of the inter-species trap loss coefficients and present our preliminary results on photoassociative spectra of the Rb-Ar* complex. We will also report on studies of Penning and associative ionization in the MOT using a modified residual gas analyzer (RGA) as a detector. Finally, we will discuss the prospects for producing and spatially confining ultracold ground state RbAr, a weakly-bound van der Waals molecule. Support provided by the National Science Foundation and the Office of Naval Research.

  7. The role of carrier gases in the production of metastable argon atoms in an RF discharge.

    SciTech Connect

    Rudinger, K.; Lu, Z. T.; Mueller, P.; Physics

    2009-03-01

    We investigate the role of carrier gases in the production of metastable argon atoms in a rf-driven discharge. The effects of different carrier gases (krypton, xenon, neon, and helium), carrier gas pressures, and rf discharge powers are examined. A xenon carrier gas provides the greatest metastable population of argon, yielding an optimal fractional metastable population of argon (Ar*/Ar) of 2 x 10{sup -4} at 0.2 mTorr of xenon gas. The optimal krypton configuration yields 60% of the xenon-supported population at 1.5 times higher pressure. Neon and helium perform considerably worse probably due to their higher ionization potentials.

  8. Effects of metastable species in helium and argon atmospheric pressure plasma jets (APPJs) on inactivation of periodontopathogenic bacteria

    NASA Astrophysics Data System (ADS)

    Yoon, Sung-Young; Kim, Kyoung-Hwa; Seol, Yang-Jo; Kim, Su-Jeong; Bae, Byeongjun; Huh, Sung-Ryul; Kim, Gon-Ho

    2016-05-01

    The helium and argon have been widely used as discharge gases in atmospheric pressure plasma jets (APPJs) for bacteria inactivation. The APPJs show apparent different in bullet propagation speed and bacteria inactivation rate apparently vary with discharge gas species. This work shows that these two distinctive features of APPJs can be linked through one factor, the metastable energy level. The effects of helium and argon metastable species on APPJ discharge mechanism for reactive oxygen nitrogen species (RONS) generation in APPJs are investigated by experiments and numerical estimation. The discharge mechanism is investigated by using the bullet velocity from the electric field which is obtained with laser induced fluorescence (LIF) measurement. The measured electric field also applied on the estimation of RONS generation, as electron energy source term in numerical particle reaction. The estimated RONS number is verified by comparing NO and OH densities to the inactivation rate of periodontitis bacteria. The characteristic time for bacteria inactivation of the helium-APPJ was found to be 1.63 min., which is significantly less than that of the argon-APPJ, 12.1 min. In argon-APPJ, the argon metastable preserve the energy due to the lack of the Penning ionization. Thus the surface temperature increase is significantly higher than helium-APPJ case. It implies that the metastable energy plays important role in both of APPJ bullet propagation and bacteria inactivation mechanism.

  9. Normal and abnormal evolution of argon metastable density in high-density plasmas

    SciTech Connect

    Seo, B. H.; Kim, J. H.; You, S. J.

    2015-05-15

    A controversial problem on the evolution of Ar metastable density as a function of electron density (increasing trend versus decreasing trend) was resolved by discovering the anomalous evolution of the argon metastable density with increasing electron density (discharge power), including both trends of the metastable density [Daltrini et al., Appl. Phys. Lett. 92, 061504 (2008)]. Later, by virtue of an adequate physical explanation based on a simple global model, both evolutions of the metastable density were comprehensively understood as part of the abnormal evolution occurring at low- and high-density regimes, respectively, and thus the physics behind the metastable evolution has seemed to be clearly disclosed. In this study, however, a remarkable result for the metastable density behavior with increasing electron density was observed: even in the same electron density regime, there are both normal and abnormal evolutions of metastable-state density with electron density depending on the measurement position: The metastable density increases with increasing electron density at a position far from the inductively coupled plasma antenna but decreases at a position close to the antenna. The effect of electron temperature, which is spatially nonuniform in the plasma, on the electron population and depopulation processes of Argon metastable atoms with increasing electron density is a clue to understanding the results. The calculated results of the global model, including multistep ionization for the argon metastable state and measured electron temperature, are in a good agreement with the experimental results.

  10. Anomalous optogalvanic line shapes of argon metastable transitions in a hollow cathode lamp

    NASA Technical Reports Server (NTRS)

    Ruyten, W. M.

    1993-01-01

    Anomalous optogalvanic line shapes were observed in a commercial hollow cathode lamp containing argon buffer gas. Deviations from Gaussian line shapes were particularly strong for transitions originating from the 3P2 metastable level of argon. The anomalous line shapes can be described reasonably well by the assumption that two regions in the discharge are excited simultaneously, each giving rise to a purely Gaussian line shape, but with different polarities, amplitudes, and linewidths.

  11. Effects of argon gas pressure on its metastable-state density in high-density plasmas

    SciTech Connect

    Seo, B. H.; Kim, J. H.; You, S. J.

    2015-05-15

    The effect of argon gas pressure on its metastable density in inductively coupled plasmas (ICPs) is investigated by using the laser-induced fluorescence method. Our results show that the metastable-state density of argon varies with the gas pressure depending on the measurement position; the density decreases with the pressure at a position far from the ICP antenna, whereas it increases with the pressure at a position near the antenna. This contrast in the metastable-state density trend with the pressure is explained by considering the electron temperature variations at the two measurement positions. The theoretical interpretation and calculation using a global model are also addressed in detail in this paper.

  12. A simple velocity-tunable pulsed atomic source of slow metastable argon

    NASA Astrophysics Data System (ADS)

    Taillandier-Loize, T.; Aljunid, S. A.; Correia, F.; Fabre, N.; Perales, F.; Tualle, J. M.; Baudon, J.; Ducloy, M.; Dutier, G.

    2016-04-01

    A pulsed beam of metastable argon atoms having a low tunable velocity (10 to 150 m s-1) is produced with a very substantial brightness (9  ×  108Ar* s-1 sr-1). The present original experimental configuration leads to a variable velocity dispersion that can be smaller than the standard Brownian one. This behaviour, analysed using Monte Carlo simulations, exhibits momentum stretching (heating) or narrowing (cooling) entirely due to a subtle combination of Doppler and Zeeman effects.

  13. Kinetic simulations of argon dusty plasma afterglow including metastable atom kinetics

    SciTech Connect

    Alexandrov, A. L. Schweigert, I. V.; Ariskin, D. A.

    2013-04-15

    The afterglow of a dusty plasma of rf discharge in argon is simulated by the particle-in-cell-Monte Carlo collision (PIC-MCC) method. The experimental observation that heavy dust contamination of plasma leads to an anomalous increase in the electron density at the beginning of afterglow is explained by release of electrons from the dust surface. Under the assumption that the floating potential of particles is in equilibrium with plasma conditions, the fast cooling of electrons in afterglow plasma due to a rapid escape of hot electrons from the volume leads to a decrease in the magnitude of the floating potential and hence to a loss of charge by dust. The intensive desorption of electrons from nanoparticles is the origin of anomalous behavior of the electron density. At the next stage of afterglow, when the electrons become cool, the plasma decay is defined by ambipolar diffusion. The effect of metastable argon atoms is also considered. Additional ionization due to metastable atom collisions affects the electron temperature but does not change the behavior of the electron density qualitatively.

  14. An investigation into the role of metastable argon atoms in the afterglow plasma of a low pressure discharge

    NASA Astrophysics Data System (ADS)

    Strauss, J. A.; Ferreira, N. P.; Human, H. G. C.

    An investigation into the behaviour of metastable argon atoms in a low pressure (250 Pa) pulsed electrical discharge was undertaken in an effort to find the cause of the persisting emission from sputtered metal atoms in the afterglow of an atomic fluorimeter. Results obtained by time-resolved emission and absorption measurements of several argon and copper spectral lines indicate that low energy electrons in the afterglow are converted to high energy electrons via the recombination of electrons with argon ions and the subsequent collisions of pairs of metastable argon atoms. The high energy electrons excite the sputtered metal atoms to give rise to a slow decaying emission tail in the afterglow. A probable change in the electron energy distribution in the afterglow may also have an effect on the observed emission. This phenomenon may be reduced by the use of a suitable quenching gas.

  15. Determination of the coefficient of reflection of metastable argon atoms from the discharge tube wall

    SciTech Connect

    Grigorian, G. M.; Dyatko, N. A.; Kochetov, I. V.

    2015-05-15

    Radial profiles of the density of metastable atoms Ar({sup 3}P{sub 2}) in the positive column of a dc glow discharge in argon were measured. Gas-discharge glass tubes with clean inner surfaces and surfaces covered with a carbonitride or carbon film were utilized. The parameters of the discharge plasma under experimental conditions were calculated in the framework of a one-dimensional (along the tube radius) discharge model. The coefficient K of reflection of Ar({sup 3}P{sub 2}) atoms from the tube wall was estimated by comparing the measured and calculated density profiles. It is found that, for a clean tube wall, the coefficient of reflection is K = 0.4 ± 0.2, whereas for a wall covered with a carbonitride or carbon film, it is K < 0.2.

  16. On the Role of Metastable Argon in Cold Atmospheric Pressure Plasma Jets with Shielding Gas Device

    NASA Astrophysics Data System (ADS)

    Schmidt-Bleker, Ansgar; Winter, Jorn; Sousa, Joao Santos; Puech, Vincent; Weltmann, Klaus-Dieter; Reuter, Stephan; ZIK plasmatis at the INP Greifswald e. V. Team; Laboratoire de Physique des Gaz et des Plasmas (LPGP), CNRS; Université Paris-Sud Team

    2014-10-01

    Shielding gas devices are a valuable tool for controlling the reactive species output of Cold Atmospheric Pressure Plasma (CAPP) Jets for biomedical applications. In this work we investigate the effect of different shielding gas compositions using a CAPP jet (kinpen) operated with argon. As shielding gas various mixtures of N2 and O2 are used. Metastable argon (Ar*) has been quantified using laser absorption spectroscopy and was identified as an important energy carrier in the CAPP jets effluent. The Ar* excitation dynamics was studied using phase resolve optical emission spectroscopy. Based on these findings a kinetic model for the gas phase chemistry has been developed that uses the Ar* density and dynamics as input and yields densities of O3, NO2, HNO2, HNO3, N2O5, H2O2 and N2O produced by the CAPP jet for different shielding gas compositions. The results are in good agreement with Fourier-Transform Infrared Spectroscopy measurements on these species. Authors gratefully acknowledge the funding by German Federal Ministry of Education a Research (BMBF) (Grant # 03Z2DN12).

  17. Measurements of the populations of metastable and resonance levels in the plasma of an RF capacitive discharge in argon

    SciTech Connect

    Vasilieva, A. N.; Voloshin, D. G.; Kovalev, A. S. Kurchikov, K. A.

    2015-05-15

    The behavior of the populations of two metastable and two lower resonance levels of argon atoms in the plasma of an RF capacitive discharge was studied. The populations were measured by two methods: the method of emission self-absorption and the method based on measurements of the intensity ratios of spectral lines. It is shown that the populations of resonance levels increase with increasing power deposited in the discharge, whereas the populations of metastable levels is independent of the RF power. The distribution of the populations over energy levels is not equilibrium under these conditions. The population kinetics of argon atomic levels in the discharge plasma is simulated numerically. The distribution function of plasma electrons recovered from the measured populations of atomic levels and numerical simulations is found to be non-Maxwellian.

  18. Metastable argon atom density in complex argon/acetylene plasmas determined by means of optical absorption and emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Sushkov, Vladimir; Herrendorf, Ann-Pierra; Hippler, Rainer

    2016-10-01

    Optical emission and absorption spectroscopy has been utilized to investigate the instability of acetylene-containing dusty plasmas induced by growing nano-particles. The density of Ar(1s5) metastable atoms was derived by two methods: tunable diode laser absorption spectroscopy and with the help of the branching ratio method of emitted spectral lines. Results of the two techniques agree well with each other. The density of Ar(1s3) metastable atoms was also measured by means of optical emission spectroscopy. The observed growth instability leads to pronounced temporal variations of the metastable and other excited state densities. An analysis of optical line ratios provides evidence for a depletion of free electrons during the growth cycle but no indication for electron temperature variations.

  19. FPGA Implementation of Metastability-Based True Random Number Generator

    NASA Astrophysics Data System (ADS)

    Hata, Hisashi; Ichikawa, Shuichi

    True random number generators (TRNGs) are important as a basis for computer security. Though there are some TRNGs composed of analog circuit, the use of digital circuits is desired for the application of TRNGs to logic LSIs. Some of the digital TRNGs utilize jitter in free-running ring oscillators as a source of entropy, which consume large power. Another type of TRNG exploits the metastability of a latch to generate entropy. Although this kind of TRNG has been mostly implemented with full-custom LSI technology, this study presents an implementation based on common FPGA technology. Our TRNG is comprised of logic gates only, and can be integrated in any kind of logic LSI. The RS latch in our TRNG is implemented as a hard-macro to guarantee the quality of randomness by minimizing the signal skew and load imbalance of internal nodes. To improve the quality and throughput, the output of 64-256 latches are XOR'ed. The derived design was verified on a Xilinx Virtex-4 FPGA (XC4VFX20), and passed NIST statistical test suite without post-processing. Our TRNG with 256 latches occupies 580 slices, while achieving 12.5Mbps throughput.

  20. Measurements of population densities of metastable and resonant levels of argon using laser induced fluorescence

    SciTech Connect

    Nikolić, M.; Newton, J.; Sukenik, C. I.; Vušković, L.; Popović, S.

    2015-01-14

    We present a new approach to measure population densities of Ar I metastable and resonant excited states in low temperature Ar plasmas at pressures higher than 1 Torr. This approach combines the time resolved laser induced fluorescence technique with the kinetic model of Ar. The kinetic model of Ar is based on calculating the population rates of metastable and resonant levels by including contributions from the processes that affect population densities of Ar I excited states. In particular, we included collisional quenching processes between atoms in the ground state and excited states, since we are investigating plasma at higher pressures. We also determined time resolved population densities of Ar I 2 p excited states by employing optical emission spectroscopy technique. Time resolved Ar I excited state populations are presented for the case of the post-discharge of the supersonic flowing microwave discharge at pressures of 1.7 and 2.3 Torr. The experimental set-up consists of a pulsed tunable dye laser operating in the near infrared region and a cylindrical resonance cavity operating in TE{sub 111} mode at 2.45 GHz. Results show that time resolved population densities of Ar I metastable and resonant states oscillate with twice the frequency of the discharge.

  1. Rydberg state, metastable, and electron dynamics in the low-pressure argon afterglow

    NASA Astrophysics Data System (ADS)

    Tsankov, Tsanko V.; Johnsen, Rainer; Czarnetzki, Uwe

    2015-12-01

    In this work a time-dependent collisional-radiative model for recombining plasmas is developed. It tracks the collisional and radiative capture of electrons into highly-excited (Rydberg) states and their consecutive deexcitation through collisions and radiation to the ground or the metastable state. The model allows the calculation of the net recombination rate and the electron energy gain by recombination. It is coupled to the volume-averaged balance equations for the electron density and temperature. The numerical solution of these equations includes a model for the diffusion cooling of the electrons (Celik et al 2012 Phys. Rev. E 85 046407) and a simplified model for the gas cooling. Using as only input the experimentally determined initial values of the electron density and temperature, gas temperature and metastable density, the temporal evolution of all parameters in the afterglow is calculated and compared with measurements. The results reproduce very well the measured quantities (electron density, light emission and metastable density) without the need to invoke adjustable parameters. This gives confidence in the validity of the model that allows it to be used not only to deepen the understanding of afterglow plasmas but also to tailor their properties as required for applications. The analysis of the model results further shows that gas heating and cooling must be explicitly taken into account to reproduce experimental observations. The electron heating by recombination is another process that is important for the good agreement. Both of these effects were largely ignored in previous works on afterglows.

  2. Are the argon metastables important in high power impulse magnetron sputtering discharges?

    SciTech Connect

    Gudmundsson, J. T.; Lundin, D.; Minea, T. M.; Stancu, G. D.; Brenning, N.

    2015-11-15

    We use an ionization region model to explore the ionization processes in the high power impulse magnetron sputtering (HiPIMS) discharge in argon with a titanium target. In conventional dc magnetron sputtering (dcMS), stepwise ionization can be an important route for ionization of the argon gas. However, in the HiPIMS discharge stepwise ionization is found to be negligible during the breakdown phase of the HiPIMS pulse and becomes significant (but never dominating) only later in the pulse. For the sputtered species, Penning ionization can be a significant ionization mechanism in the dcMS discharges, while in the HiPIMS discharge Penning ionization is always negligible as compared to electron impact ionization. The main reasons for these differences are a higher plasma density in the HiPIMS discharge, and a higher electron temperature. Furthermore, we explore the ionization fraction and the ionized flux fraction of the sputtered vapor and compare with recent experimental work.

  3. Correlating metastable-atom density, reduced electric field, and electron energy distribution in the post-transient stage of a 1-Torr argon discharge

    NASA Astrophysics Data System (ADS)

    Franek, J. B.; Nogami, S. H.; Demidov, V. I.; Koepke, M. E.; Barnat, E. V.

    2015-06-01

    Temporal measurement of electron density, metastable-atom density, and reduced electric field are used to infer the dynamic behavior of the excitation rates describing electron-atom collision-induced excitation in the positive column of a 1 Torr argon plasma by invoking plausible assumptions regarding the shape of the electron energy distribution function performed in Adams et al (2012 Phys. Plasmas 19 023510). These inferred rates are used to predict the 420.1 nm to 419.8 nm argon emission ratio, which agree with experimental results when the assumptions are applicable. Thus the observed emission ratio is demonstrated to be dependent on the metastable-atom density, electron density, and reduced electric field. The established confidence in the validity of this emission-line-ratio model allows us to predict metastable argon-atom density during the post-transient phase of the pulse as suggested by De Joseph et al (2005 Phys. Rev. E 72 036410). Similar inferences of electron density and reduced electric field based on readily available diagnostic signatures may also be afforded by this model.

  4. Experimental and theoretical study of the radial distribution of Ar(3P0) metastable atoms in a dc glow discharge in argon

    NASA Astrophysics Data System (ADS)

    Grigorian, G. M.; Dyatko, N. A.; Kochetov, I. V.

    2015-11-01

    Radial distributions of the number density of metastable Ar(3P0) atoms in the positive column of a dc glow discharge in argon were studied both experimentally and theoretically in a wide range of gas pressures (0.1-7 Torr) and discharge currents (10-50 mA). In experiments, glass discharge tubes 4 cm in diameter with clean inner surfaces and surfaces covered with a carbonitride or carbon film were utilized. Measurements were performed using an optical absorption technique known as the method of two identical tubes. Theoretical studies of the discharge plasma parameters under experimental conditions were carried out in the framework of a 1D (along the tube radius) discharge model. By a comparison of radial profiles measured and calculated at a gas pressure of 0.1 Torr the probability of elastic (without quenching) reflection of Ar(3P0) atoms from the tube wall was estimated. For a clean tube wall, this probability is about 0.5  ±  0.3, whereas for a wall covered with a carbonitride or carbon film, it is about zero.

  5. An investigation of Ar metastable state density in low pressure dual-frequency capacitively coupled argon and argon-diluted plasmas

    SciTech Connect

    Liu, Wen-Yao; Xu, Yong Peng, Fei; Guo, Qian; Li, Xiao-Song; Zhu, Ai-Min; Liu, Yong-Xin; Wang, You-Nian

    2015-01-14

    An tunable diode laser absorption spectroscopy has been used to determine the Ar*({sup 3}P{sub 2}) and Ar*({sup 3}P{sub 0}) metastable atoms densities in dual-frequency capacitively coupled plasmas. The effects of different control parameters, such as high-frequency power, gas pressure and content of Ar, on the densities of two metastable atoms and electron density were discussed in single-frequency and dual-frequency Ar discharges, respectively. Particularly, the effects of the pressure on the axial profile of the electron and Ar metastable state densities were also discussed. Furthermore, a simple rate model was employed and its results were compared with experiments to analyze the main production and loss processes of Ar metastable states. It is found that Ar metastable state is mainly produced by electron impact excitation from the ground state, and decayed by diffusion and collision quenching with electrons and neutral molecules. Besides, the addition of CF{sub 4} was found to significantly increase the metastable destruction rate by the CF{sub 4} quenching, especially for large CF{sub 4} content and high pressure, it becomes the dominant depopulation process.

  6. Populations of metastable and resonant argon atoms in radio frequency magnetron plasmas used for deposition of indium-zinc-oxide films

    SciTech Connect

    Maaloul, L.; Morel, S.; Stafford, L.

    2012-03-15

    This work reports optical absorption spectroscopy measurements of the number density of Ar atoms in resonant ({sup 3}P{sub 1}, {sup 1}P{sub 1}) and metastable ({sup 3}P{sub 2}, {sup 3}P{sub 0}) states in rf magnetron sputtering plasmas used for the deposition of ZnO-based thin films. While the density of Ar {sup 3}P{sub 2} and {sup 3}P{sub 0} was fairly independent of pressure in the range of experimental conditions investigated, the density of Ar {sup 3}P{sub 1} and {sup 1}P{sub 1} first sharply increased with pressure and then reached a plateau at values close to those of the {sup 3}P{sub 2} and {sup 3}P{sub 0} levels at pressures above about 50 mTorr. At such pressures, ultraviolet radiation from resonant states becomes trapped such that these levels behave as metastable states. For a self-bias voltage of -115 V and pressures in the 5-100 mTorr range, similar number densities of Ar resonant and metastable atoms were obtained for Zn, ZnO, and In{sub 2}O{sub 3} targets, suggesting that, over the range of experimental conditions investigated, collisions between these excited species and sputtered Zn, In, and O atoms played only a minor role on the discharge kinetics. The metastable-to-ground state number density ratios were also fitted to the predictions of a global model using the average electron temperature, T{sub e}, as the only adjustable parameter. For all targets examined, the values of T{sub e} deduced from this method were in excellent agreement with those obtained from Langmuir probe measurements.

  7. Argon metastables in HiPIMS: validation of the ionization region model by direct comparison to time resolved tunable diode-laser diagnostics

    NASA Astrophysics Data System (ADS)

    Stancu, G. D.; Brenning, N.; Vitelaru, C.; Lundin, D.; Minea, T.

    2015-08-01

    The volume plasma interactions of high power impulse magnetron sputtering (HiPIMS) discharges operated with a Ti target is analyzed in detail by combining time-resolved diagnostics with modeling of plasma kinetics. The model employed is the ionization region model (IRM) with an improved and detailed treatment of the kinetics of the argon metastable (Arm) state, called m-IRM. The diagnostics used is tunable diode-laser absorption spectroscopy (TD-LAS) of the Arm state, which gives the line-of-sight density integrated along the laser path parallel to the target surface. The TD-LAS recordings exhibit quite complex temporal evolutions Arm(t), with distinct features that are shown to reflect the time evolution of the plasma (the electron density and temperature), and of the argon gas (gas rarefaction and refill). The Arm(t) function is thus a tracer for the most important aspects of internal discharge physics, and therefore suitable for model testing and validation. The IRM model is constructed to be locked to obey specific experimental macroscopic discharge parameters, specifically the discharge current ID(t) and the voltage UD(t). It has to this purpose been run with the appropriate process gas pressures (from 0.67 to 2.67 Pa), with the experimentally applied voltage pulse profiles UD(t), and with the resulting current pulse profiles ID(t) (with maxima from 0.5 to 70 A). It is shown that the model reproduces the features in the TD-LAS measurements: both the Arm(t) evolution in single pulses, and how the pulse shapes change with gas pressure and with pulse amplitude. The good agreement between the measurements and model output is in this work taken to validate the basic assumptions of the m-IRM. In addition, the m-IRM results have been used to unravel the connections between volume plasma kinetics and various features recorded in the TD-LAS measurement, and to generalize the foremost characteristics of the studied discharges.

  8. Comparison of surface vacuum ultraviolet emissions with resonance level number densities. I. Argon plasmas

    SciTech Connect

    Boffard, John B. Lin, Chun C.; Culver, Cody; Wang, Shicong; Wendt, Amy E.; Radovanov, Svetlana; Persing, Harold

    2014-03-15

    Vacuum ultraviolet (VUV) photons emitted from excited atomic states are ubiquitous in material processing plasmas. The highly energetic photons can induce surface damage by driving surface reactions, disordering surface regions, and affecting bonds in the bulk material. In argon plasmas, the VUV emissions are due to the decay of the 1s{sub 4} and 1s{sub 2} principal resonance levels with emission wavelengths of 104.8 and 106.7 nm, respectively. The authors have measured the number densities of atoms in the two resonance levels using both white light optical absorption spectroscopy and radiation-trapping induced changes in the 3p{sup 5}4p→3p{sup 5}4s branching fractions measured via visible/near-infrared optical emission spectroscopy in an argon inductively coupled plasma as a function of both pressure and power. An emission model that takes into account radiation trapping was used to calculate the VUV emission rate. The model results were compared to experimental measurements made with a National Institute of Standards and Technology-calibrated VUV photodiode. The photodiode and model results are in generally good accord and reveal a strong dependence on the neutral gas temperature.

  9. Metastable helium Bose-Einstein condensate with a large number of atoms

    SciTech Connect

    Tychkov, A. S.; Jeltes, T.; McNamara, J. M.; Tol, P. J. J.; Herschbach, N.; Hogervorst, W.; Vassen, W.

    2006-03-15

    We have produced a Bose-Einstein condensate of metastable helium ({sup 4}He*) containing over 1.5x10{sup 7} atoms, which is a factor of 25 higher than previously achieved. The improved starting conditions for evaporative cooling are obtained by applying one-dimensional Doppler cooling inside a magnetic trap. The same technique is successfully used to cool the spin-polarized fermionic isotope ({sup 3}He*), for which thermalizing collisions are highly suppressed. Our detection techniques include absorption imaging, time-of-flight measurements on a microchannel plate detector, and ion counting to monitor the formation and decay of the condensate.

  10. Nitrogen metastable (N2(A3 Σu + )) in a cold argon atmospheric pressure plasma jet: Shielding and gas composition

    NASA Astrophysics Data System (ADS)

    Iseni, Sylvain; Bruggeman, Peter J.; Weltmann, Klaus-Dieter; Reuter, Stephan

    2016-05-01

    N 2 ( A 3 Σu + ) metastable species are detected and measured in a non-equilibrium atmospheric pressure plasma jet by laser induced fluorescence. A shielding device is used to change the ambient conditions additionally to the feeding gas composition. Varying the amount of N2 and air admixed to the feeding gas as well as changing the shielding gas from N2 to air reveals that the highest N 2 ( A 3 Σu + ) is achieved in the case of air admixtures in spite of the enhanced collisional quenching due to the presence of O2. The reasons for these observations are discussed in detail.

  11. Deactivation of krypton atoms in the metastable 5s({sup 3}P{sub 2}) state in collisions with krypton and argon atoms

    SciTech Connect

    Zayarnyi, D A; L'dov, A Yu; Kholin, I V

    2009-09-30

    The collision deactivation of the metastable 5s[3/2]{sub 2}{sup o}({sup 3}P{sub 2}) state of krypton atoms is studied by the absorption probe method in electron-beam-excited high-pressure Ar-Kr mixtures with a low krypton content. The rate constants of plasma-chemical reactions Kr* + Kr + Ar {yields} Kr{sub 2}* + Ar [(4.1{+-}0.4)x10{sup -33} cm{sup 6} s{sup -1}] and Kr* + 2Ar {yields} ArKr* + Ar (less than 10{sup -35} cm{sup 6} s{sup -1}) are measured for the first time and the rate constant of the reaction Kr* + Ar {yields} products + Ar [(3.8{+-}0.4)x10{sup -15} cm{sup 3} s{sup -1}] is refined. (active media)

  12. Trapping cold ground state argon atoms.

    PubMed

    Edmunds, P D; Barker, P F

    2014-10-31

    We trap cold, ground state argon atoms in a deep optical dipole trap produced by a buildup cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of cotrapped metastable argon atoms and determine an elastic cross section. Using a type of parametric loss spectroscopy we also determine the polarizability of the metastable 4s[3/2](2) state to be (7.3±1.1)×10(-39)  C m(2)/V. Finally, Penning and associative losses of metastable atoms in the absence of light assisted collisions, are determined to be (3.3±0.8)×10(-10)  cm(3) s(-1).

  13. Lunar exospheric argon modeling

    NASA Astrophysics Data System (ADS)

    Grava, Cesare; Chaufray, J.-Y.; Retherford, K. D.; Gladstone, G. R.; Greathouse, T. K.; Hurley, D. M.; Hodges, R. R.; Bayless, A. J.; Cook, J. C.; Stern, S. A.

    2015-07-01

    Argon is one of the few known constituents of the lunar exosphere. The surface-based mass spectrometer Lunar Atmosphere Composition Experiment (LACE) deployed during the Apollo 17 mission first detected argon, and its study is among the subjects of the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) and Lunar Atmospheric and Dust Environment Explorer (LADEE) mission investigations. We performed a detailed Monte Carlo simulation of neutral atomic argon that we use to better understand its transport and storage across the lunar surface. We took into account several loss processes: ionization by solar photons, charge-exchange with solar protons, and cold trapping as computed by recent LRO/Lunar Orbiter Laser Altimeter (LOLA) mapping of Permanently Shaded Regions (PSRs). Recycling of photo-ions and solar radiation acceleration are also considered. We report that (i) contrary to previous assumptions, charge exchange is a loss process as efficient as photo-ionization, (ii) the PSR cold-trapping flux is comparable to the ionization flux (photo-ionization and charge-exchange), and (iii) solar radiation pressure has negligible effect on the argon density, as expected. We determine that the release of 2.6 × 1028 atoms on top of a pre-existing argon exosphere is required to explain the maximum amount of argon measured by LACE. The total number of atoms (1.0 × 1029) corresponds to ∼6700 kg of argon, 30% of which (∼1900 kg) may be stored in the cold traps after 120 days in the absence of space weathering processes. The required population is consistent with the amount of argon that can be released during a High Frequency Teleseismic (HFT) Event, i.e. a big, rare and localized moonquake, although we show that LACE could not distinguish between a localized and a global event. The density of argon measured at the time of LACE appears to have originated from no less than four such episodic events. Finally, we show that the extent of the PSRs that trap

  14. Thermophysical properties of argon

    SciTech Connect

    Jaques, A.

    1988-02-01

    The entire report consists of tables of thermodynamic properties (including sound velocity, thermal conductivity and diffusivity, Prandtl number, density) of argon at 86 to 400/degree/K, in the form of isobars over 0.9 to 100 bars. (DLC)

  15. Absolute number density calibration of the absorption by ground-state lead atoms of the 283. 3-nm resonance line from a high-intensity lead hollow cathode lamp and the calculated effect of argon pressures

    SciTech Connect

    Simons, J.W.; McClean, R.E. ); Oldenborg, R.C. )

    1991-03-21

    The absolute number density calibration for the absorption by ground-state lead atoms of the 283.3-nm resonance line from a high-intensity lead hollow cathode lamp (Photron superlamp) is determined and found to be the same as that of a standard hollow cathode lamp. Comparisons of the calibrations to theoretical calculations are found to be quite satisfactory. The effects of argon pressures in the absorption cell on the calibration are examined theoretically by using a simple Lorentzian broadening and shifting model. These calculations show the expected reduction in sensitivity and increasing linearity of Beer-Lambert plots with increasing argon pressure.

  16. Study of argon flowing afterglow with nitrogen injection

    SciTech Connect

    Mazánková, V.; Krčma, F.; Trunec, D.

    2013-10-28

    In this work, the reaction kinetics in argon flowing afterglow with nitrogen addition was studied by optical emission spectroscopy. The DC flowing post-discharge in pure argon was created in quartz tube at the total gas pressure of 1000 Pa and discharge power of 60 W. The nitrogen was added into the afterglow at the distance of 9 cm behind the active discharge. The optical emission spectra were measured along the flow tube. The argon spectral lines and after nitrogen addition also nitrogen second positive system (SPS) were identified in the spectra. The measurement of spatial dependence of SPS intensity showed a very slow decay of the intensity and the decay rate did not depend on the nitrogen concentration. In order to explain this behavior a kinetic model for reaction in afterglow was developed. This model showed that C {sup 3}Π{sub u} state of molecular nitrogen, which is the upper state of SPS emission, is produced by excitation transfer from argon metastables to nitrogen molecules. However, the argon metastables are also produced at Ar{sub 2}{sup +} ion recombination with electrons and this limits the decay of argon metastable concentration and it results in very slow decay of SPS intensity.

  17. Bustling argon: biological effect.

    PubMed

    Ye, Zhouheng; Zhang, Rongjia; Sun, Xuejun

    2013-10-03

    Argon is a noble gas in group 18 of the periodic table. Certificated to exist in air atmosphere merely one century ago, discovery of argon shows interesting stories of researching and exploring. It was assumed to have no chemical activity. However, argon indeed present its biological effect on mammals. Narcotic effect of argon in diving operation and neur-protective function of argon in cerebral injury demonstrate that argon has crucial effect and be concentrated on is necessary. Furthermore, consider to be harmless to human, argon clinical application in therapy would be another option.

  18. Bustling argon: biological effect

    PubMed Central

    2013-01-01

    Argon is a noble gas in group 18 of the periodic table. Certificated to exist in air atmosphere merely one century ago, discovery of argon shows interesting stories of researching and exploring. It was assumed to have no chemical activity. However, argon indeed present its biological effect on mammals. Narcotic effect of argon in diving operation and neur-protective function of argon in cerebral injury demonstrate that argon has crucial effect and be concentrated on is necessary. Furthermore, consider to be harmless to human, argon clinical application in therapy would be another option. PMID:24088583

  19. The metastable brain.

    PubMed

    Tognoli, Emmanuelle; Kelso, J A Scott

    2014-01-01

    Neural ensembles oscillate across a broad range of frequencies and are transiently coupled or "bound" together when people attend to a stimulus, perceive, think, and act. This is a dynamic, self-assembling process, with parts of the brain engaging and disengaging in time. But how is it done? The theory of Coordination Dynamics proposes a mechanism called metastability, a subtle blend of integration and segregation. Tendencies for brain regions to express their individual autonomy and specialized functions (segregation, modularity) coexist with tendencies to couple and coordinate globally for multiple functions (integration). Although metastability has garnered increasing attention, it has yet to be demonstrated and treated within a fully spatiotemporal perspective. Here, we illustrate metastability in continuous neural and behavioral recordings, and we discuss theory and experiments at multiple scales, suggesting that metastable dynamics underlie the real-time coordination necessary for the brain's dynamic cognitive, behavioral, and social functions.

  20. The metastable brain.

    PubMed

    Tognoli, Emmanuelle; Kelso, J A Scott

    2014-01-01

    Neural ensembles oscillate across a broad range of frequencies and are transiently coupled or "bound" together when people attend to a stimulus, perceive, think, and act. This is a dynamic, self-assembling process, with parts of the brain engaging and disengaging in time. But how is it done? The theory of Coordination Dynamics proposes a mechanism called metastability, a subtle blend of integration and segregation. Tendencies for brain regions to express their individual autonomy and specialized functions (segregation, modularity) coexist with tendencies to couple and coordinate globally for multiple functions (integration). Although metastability has garnered increasing attention, it has yet to be demonstrated and treated within a fully spatiotemporal perspective. Here, we illustrate metastability in continuous neural and behavioral recordings, and we discuss theory and experiments at multiple scales, suggesting that metastable dynamics underlie the real-time coordination necessary for the brain's dynamic cognitive, behavioral, and social functions. PMID:24411730

  1. A DSMC Study of Low Pressure Argon Discharge

    NASA Technical Reports Server (NTRS)

    Hash, David B.; Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    Work toward a self-consistent plasma simulation using the DSMC (Direct Simulation Monte Carlo) method for examination of the flowfields of low-pressure high density plasma reactors is presented. Presently, DSMC simulations for these applications involve either treating the electrons as a fluid or imposing experimentally determined values for the electron number density profile. In either approach, the electrons themselves are not physically simulated. Self-consistent plasma DSMC simulations have been conducted for aerospace applications but at a severe computational cost due in part to the scalar architectures on which the codes were employed. The present work attempts to conduct such simulations at a more reasonable cost using a plasma version of the object-oriented parallel Cornell DSMC code, MONACO, on an IBM SP-2. Due to availability of experimental data, the GEC reference cell is chosen to conduct preliminary investigations. An argon discharge is chosen to conduct preliminary investigations. An argon discharge is examined thus affording a simple chemistry set with eight gas-phase reactions and five species: Ar, Ar(+), Ar(*), Ar(sub 2), and e where Ar(*) is a metastable.

  2. Metal-atom fluorescence from the quenching of metastable rare gases by metal carbonyls

    SciTech Connect

    Hollingsworth, W.E.

    1982-11-01

    A flowing afterglow apparatus was used to study the metal fluorescence resulting from the quenching of metastable rare-gas states by metal carbonyls. The data from the quenching or argon, neon, and helium by iron and nickel carbonyl agreed well with a restricted degree of freedom model indicating a concerted bond-breaking dissociation.

  3. Digital Synchronizer without Metastability

    NASA Technical Reports Server (NTRS)

    Simle, Robert M.; Cavazos, Jose A.

    2009-01-01

    A proposed design for a digital synchronizing circuit would eliminate metastability that plagues flip-flop circuits in digital input/output interfaces. This metastability is associated with sampling, by use of flip-flops, of an external signal that is asynchronous with a clock signal that drives the flip-flops: it is a temporary flip-flop failure that can occur when a rising or falling edge of an asynchronous signal occurs during the setup and/or hold time of a flip-flop. The proposed design calls for (1) use of a clock frequency greater than the frequency of the asynchronous signal, (2) use of flip-flop asynchronous preset or clear signals for the asynchronous input, (3) use of a clock asynchronous recovery delay with pulse width discriminator, and (4) tying the data inputs to constant logic levels to obtain (5) two half-rate synchronous partial signals - one for the falling and one for the rising edge. Inasmuch as the flip-flop data inputs would be permanently tied to constant logic levels, setup and hold times would not be violated. The half-rate partial signals would be recombined to construct a signal that would replicate the original asynchronous signal at its original rate but would be synchronous with the clock signal.

  4. Desensitization of metastable intermolecular composites

    DOEpatents

    Busse, James R.; Dye, Robert C.; Foley, Timothy J.; Higa, Kelvin T.; Jorgensen, Betty S.; Sanders, Victor E.; Son, Steven F.

    2011-04-26

    A method to substantially desensitize a metastable intermolecular composite material to electrostatic discharge and friction comprising mixing the composite material with an organic diluent and removing enough organic diluent from the mixture to form a mixture with a substantially putty-like consistency, as well as a concomitant method of recovering the metastable intermolecular composite material.

  5. Behavior of Excited Argon Atoms in Inductively Driven Plasmas

    SciTech Connect

    HEBNER,GREGORY A.; MILLER,PAUL A.

    1999-12-07

    Laser induced fluorescence has been used to measure the spatial distribution of the two lowest energy argon excited states, 1s{sub 5} and 1s{sub 4}, in inductively driven plasmas containing argon, chlorine and boron trichloride. The behavior of the two energy levels with plasma conditions was significantly different, probably because the 1s{sub 5} level is metastable and the 1s{sub 4} level is radiatively coupled to the ground state but is radiation trapped. The argon data is compared with a global model to identify the relative importance of processes such as electron collisional mixing and radiation trapping. The trends in the data suggest that both processes play a major role in determining the excited state density. At lower rfpower and pressure, excited state spatial distributions in pure argon were peaked in the center of the discharge, with an approximately Gaussian profile. However, for the highest rfpowers and pressures investigated, the spatial distributions tended to flatten in the center of the discharge while the density at the edge of the discharge was unaffected. The spatially resolved excited state density measurements were combined with previous line integrated measurements in the same discharge geometry to derive spatially resolved, absolute densities of the 1s{sub 5} and 1s{sub 4} argon excited states and gas temperature spatial distributions. Fluorescence lifetime was a strong fi.mction of the rf power, pressure, argon fraction and spatial location. Increasing the power or pressure resulted in a factor of two decrease in the fluorescence lifetime while adding Cl{sub 2} or BCl{sub 3} increased the fluorescence lifetime. Excited state quenching rates are derived from the data. When Cl{sub 2} or BCl{sub 3} was added to the plasma, the maximum argon metastable density depended on the gas and ratio. When chlorine was added to the argon plasma, the spatial density profiles were independent of chlorine fraction. While it is energetically possible for

  6. Cellular folding pathway of a metastable serpin.

    PubMed

    Chandrasekhar, Kshama; Ke, Haiping; Wang, Ning; Goodwin, Theresa; Gierasch, Lila M; Gershenson, Anne; Hebert, Daniel N

    2016-06-01

    Although proteins generally fold to their thermodynamically most stable state, some metastable proteins populate higher free energy states. Conformational changes from metastable higher free energy states to lower free energy states with greater stability can then generate the work required to perform physiologically important functions. However, how metastable proteins fold to these higher free energy states in the cell and avoid more stable but inactive conformations is poorly understood. The serpin family of metastable protease inhibitors uses large conformational changes that are downhill in free energy to inhibit target proteases by pulling apart the protease active site. The serpin antithrombin III (ATIII) targets thrombin and other proteases involved in blood coagulation, and ATIII misfolding can thus lead to thrombosis and other diseases. ATIII has three disulfide bonds, two near the N terminus and one near the C terminus. Our studies of ATIII in-cell folding reveal a surprising, biased order of disulfide bond formation, with early formation of the C-terminal disulfide, before formation of the N-terminal disulfides, critical for folding to the active, metastable state. Early folding of the predominantly β-sheet ATIII domain in this two-domain protein constrains the reactive center loop (RCL), which contains the protease-binding site, ensuring that the RCL remains accessible. N-linked glycans and carbohydrate-binding molecular chaperones contribute to the efficient folding and secretion of functional ATIII. The inability of a number of disease-associated ATIII variants to navigate the folding reaction helps to explain their disease phenotypes. PMID:27222580

  7. Complexity, Metastability and Nonextensivity

    NASA Astrophysics Data System (ADS)

    Beck, C.; Benedek, G.; Rapisarda, A.; Tsallis, C.

    Work and heat fluctuations in systems with deterministic and stochastic forces / E. G. D. Cohen and R. Van Zon -- Is the entropy S[symbol] extensive or nonextensive? / C. Tsallis -- Superstatistics: recent developments and applications / C. Beck -- Two stories outside Boltzmann-Gibbs statistics: Mori's Q-phase transitions and glassy dynamics at the onset of chaos / A. Robledo, F. Baldovin and E. Mayoral -- Time-averages and the heat theorem / A. Carati -- Fundamental formulae and numerical evidences for the central limit theorem in Tsallis statistics / H. Suyari -- Generalizing the Planck distribution / A. M. C. Soma and C. Tsallis -- The physical roots of complexity: renewal or modulation? / P. Grigolini -- Nonequivalent ensembles and metastability / H. Touchette and R. S. Ellis -- Statistical physics for cosmic structures / L. Pietronero and F. Sylos Labini -- Metastability and anomalous behavior in the HMF model: connections to nonextensive thermodynamics and glassy dynamics / A. Pluchino, A. Rapisarda and V. Latora -- Vlasov analysis of relaxation and meta-equilibrium / C. Anteneodo and R. O. Vallejos -- Weak chaos in large conservative systems - infinite-range coupled standard maps / L. G. Moyano, A. P. Majtey and C. Tsallis -- Deterministc aging / E. Barkai -- Edge of chaos of the classical kicked top map: sensitivity to initial conditions / S. M. Duarte Queirós and C. Tsallis -- What entropy at the edge of chaos? / M. Lissia, M. Coraddu and R. Tonelli -- Fractal growth of carbon schwarzites / G. Benedek ... [et al.] -- Clustering and interface propagation in interacting particle dynamics / A. Provata and V. K. Noussiou -- Resonant activation and noise enhanced stability in Josephson junctions / A. L. Pankratov and B. Spagnolo -- Symmetry breaking induced directed motions / C.-H. Chang and T. Y. Tsong -- General theory of Galilean-invariant entropic lattic Boltzmann models / B. M. Boghosian -- Unifying approach to the jamming transition in granular media and

  8. A DSMC Study of Low Pressure Argon Discharge

    NASA Astrophysics Data System (ADS)

    Hash, David; Meyyappan, M.

    1997-10-01

    Work toward a self-consistent plasma simulation using the DSMC method for examination of the flowfields of low-pressure high density plasma reactors is presented. Presently, DSMC simulations for these applications involve either treating the electrons as a fluid or imposing experimentally determined values for the electron number density profile. In either approach, the electrons themselves are not physically simulated. Self-consistent plasma DSMC simulations have been conducted for aerospace applications but at a severe computational cost due in part to the scalar architectures on which the codes were employed. The present work attempts to conduct such simulations at a more reasonable cost using a plasma version of the object-oriented parallel Cornell DSMC code, MONACO, on an IBM SP-2. Due the availability of experimental data, the GEC reference cell is chosen to conduct preliminary investigations. An argon discharge is examined thus affording a simple chemistry set with eight gas-phase reactions and five species: Ar, Ar^+, Ar^*, Ar_2, and e where Ar^* is a metastable.

  9. Electron Density Measurement of Argon Containing Plasmas by Saturation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nishiyama, S.; Wang, H.; Tomioka, S.; Sasaki, K.

    2014-10-01

    Langmuir probes are widely used for electron density measurements in plasmas. However, the use of a conventional probe should be avoided in a plasma which needs high purity because of the possibility of contamination. Optical measurements are suitable for these plasmas. In this work, we applied saturation spectroscopy to the electron density measurement. The peak height of the saturation spectrum is affected by the relaxation frequency of the related energy levels. In the case of the metastable levels of argon, the electron impact quenching rate, which is proportional to the electron density, is the dominant factor. In our experiments, an inductively coupled plasma source and a tunable cw diode laser were used. The frequency of the laser was scanned over the Doppler width of the 4 s[3/ 2 ] 2 o - 4 p[ 3 / 2 ] 2 (763.51 nm) transition. The experimental saturation spectrum was composed of a sharp Lorentzian peak and a broad base component, which was caused by velocity changing collisions. We deduced a new relationship between the saturation parameter and the measured saturated absorption spectrum with considering velocity changing collisions. We confirmed a linear relationship, which was expected theoretically, between the inverse of the saturation parameter and the electron density. Part of this work is supported by JSPS KAKENHI Grant Number 24540529.

  10. Argon clusters embedded in helium nanodroplets.

    PubMed

    da Silva, Filipe Ferreira; Bartl, Peter; Denifl, Stephan; Echt, Olof; Märk, Tilmann D; Scheier, Paul

    2009-11-14

    Electron impact ionization of argon clusters embedded in helium droplets is investigated. Superior mass resolution makes it possible to distinguish between nominally isobaric cluster ions. An abundance maximum for ArHe(12)(+) is unambiguously confirmed; the spectra also prove the formation of Ar(2)He(n)(+) complexes that had been claimed to fragment into pure Ar(2)(+). Distributions of larger argon cluster ions containing up to 60 atoms closely resemble distributions observed upon electron impact or photoionization of bare argon clusters; caging and evaporative cooling provided by the helium matrix do not suffice to quench fragmentation of the nascent argon cluster ions. Intriguing abundance anomalies are observed in distributions of argon cluster ions that contain water, nitrogen or oxygen impurities. The strong abundance of Ar(55)H(2)O(+), Ar(54)O(2)(+) and Ar(54)N(2)(+) contrasts with the virtual absence of slightly larger cluster ions containing the corresponding impurities. The features are probably related to enhanced cluster ion stability upon closure of the second icosahedral shell but the difference in magic numbers (54 versus 55) and the well-known reactivity of charged argon-nitrogen complexes suggest structural differences. PMID:19851558

  11. Depleted Argon from Underground Sources

    SciTech Connect

    Back, H. O.; Galbiati, C.; Goretti, A.; Loer, B.; Montanari, D.; Mosteiro, P.; Alexander, T.; Alton, A.; Rogers, H.; Kendziora, C.; Pordes, S.

    2011-04-27

    Argon is a strong scintillator and an ideal target for Dark Matter detection; however {sup 39}Ar contamination in atmospheric argon from cosmic ray interactions limits the size of liquid argon dark matter detectors due to pile-up. Argon from deep underground is depleted in {sup 39}Ar due to the cosmic ray shielding of the earth. In Cortez, Colorado, a CO{sub 2} well has been discovered to contain approximately 600 ppm of argon as a contamination in the CO{sub 2}. We first concentrate the argon locally to 3% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation, and then the N{sub 2} and He will be removed by continuous distillation to purify the argon. We have collected 26 kg of argon from the CO{sub 2} facility and a cryogenic distillation column is under construction at Fermilab to further purify the argon.

  12. Depleted Argon from Underground Sources

    NASA Astrophysics Data System (ADS)

    Back, H. O.; Alexander, T.; Alton, A.; Galbiati, C.; Goretti, A.; Kendziora, C.; Loer, B.; Montanari, D.; Mosteiro, P.; Pordes, S.; Rogers, H.

    2011-04-01

    Argon is a strong scintillator and an ideal target for Dark Matter detection; however 39Ar contamination in atmospheric argon from cosmic ray interactions limits the size of liquid argon dark matter detectors due to pile-up. Argon from deep underground is depleted in 39Ar due to the cosmic ray shielding of the earth. In Cortez, Colorado, a CO2 well has been discovered to contain approximately 600 ppm of argon as a contamination in the CO2. We first concentrate the argon locally to 3% in an Ar, N2, and He mixture, from the CO2 through chromatographic gas separation, and then the N2 and He will be removed by continuous distillation to purify the argon. We have collected 26 kg of argon from the CO2 facility and a cryogenic distillation column is under construction at Fermilab to further purify the argon.

  13. Slow metastable atomic hydrogen beam by optical pumping

    NASA Astrophysics Data System (ADS)

    Harvey, K. C.

    1982-05-01

    A beam source of atomic hydrogen is described which produces metastable atoms in the 2S1/2 state by optical pumping. A beam flux of 1016 atoms/s is generated in the ground state. The atoms in the beam pass in front of a lamp producing Lyman-β (1026 Å) radiation, where some of them are excited to the 3P level and cascade with a branching ratio of 12% to the 2S1/2 state. The number of metastable atoms produced is measured by quenching them with an electric field and detecting the emitted Lyman-α (1216 Å) radiation. Beams of 106 metastable atoms/s were obtained. Using the Bethe-Lamb theory for the quenching process, a metastable beam effective temperature of 100 K was measured.

  14. Modulated voltage metastable ionization detector

    NASA Technical Reports Server (NTRS)

    Carle, G. C.; Kojiro, D. R.; Humphrey, D. E. (Inventor)

    1985-01-01

    The output current from a metastable ionization detector (MID) is applied to a modulation voltage circuit. An adjustment is made to balance out the background current, and an output current, above background, is applied to an input of a strip chart recorder. For low level concentrations, i.e., low detected output current, the ionization potential will be at a maximum and the metastable ionization detector will operate at its most sensitive level. When the detected current from the metastable ionization detector increases above a predetermined threshold level, a voltage control circuit is activated which turns on a high voltage transistor which acts to reduce the ionization potential. The ionization potential applied to the metastable ionization detector is then varied so as to maintain the detected signal level constant. The variation in ionization potential is now related to the concentration of the constituent and a representative amplitude is applied to another input of said strip chart recorder.

  15. SLD liquid argon calorimeter

    SciTech Connect

    Vella, E.; SLD Collaboration

    1992-10-01

    The liquid argon calorimeter (LAC) of the SLD detector is a parallel plate -- liquid argon sampling calorimeter, used to measure particle energies in Z{sup 0} decays at the Stanford Linear Collider. The LAC module design is based on a unique projective tower structure, in which lead plates and segmented lead tiles serve both as absorbers and electrodes. The LAC front end electronics incorporates several novel features, including extensive multiplexing and optical fiber readout, which take advantage of the low SLC beam crossing frequency. The operational performance of the LAC during the recently completed SLD physics run (which recorded over 10,000 Z{sup 0} events) is discussed.

  16. SLD liquid argon calorimeter

    SciTech Connect

    Vella, E.

    1992-10-01

    The liquid argon calorimeter (LAC) of the SLD detector is a parallel plate -- liquid argon sampling calorimeter, used to measure particle energies in Z[sup 0] decays at the Stanford Linear Collider. The LAC module design is based on a unique projective tower structure, in which lead plates and segmented lead tiles serve both as absorbers and electrodes. The LAC front end electronics incorporates several novel features, including extensive multiplexing and optical fiber readout, which take advantage of the low SLC beam crossing frequency. The operational performance of the LAC during the recently completed SLD physics run (which recorded over 10,000 Z[sup 0] events) is discussed.

  17. Pressure dependence of prototype structures of metastable niobium oxides

    NASA Astrophysics Data System (ADS)

    Obara, Kozo

    1993-03-01

    Faculty of Engineering, Kagoshima University, Korimoto, 1-21-40, Kagoshima 890, Japan Pressure dependences of prototypes of nonstoichiometric metastable niobium oxides formed by a magnetron sputtering system were investigated. The morphology of derived crystals depended strongly on the argon pressure. At argon pressure PAr< 0.2 Torr, thin microcrystals with five types of superlattice structures were derived. Observed lattice constants were transformed into one another by simple lattice deformations within 1% error. All types of superlattice structures were related to the cubic lattice a0 = 3.22 Å. At PAr > 0.3 Torr, metastable niobium oxide super-fine particles with a cubic lattice constant a = 3.44 Å were obtained. Unique relationships between lattice constants were found on the oxidized niobium super-fine particles, NbO and NbO2 formed above 0.3 Torr within 0.5% error. In this case, the lattice structure with a = 3.44 ,Å (BCC) is related to all structures. These lattices a0 = 3.22 ,Å and a = 3.44 Å seem to be the prototypes at PAr ≤ 0.2 Torr and PAr ≥ 0.3 Tort, respectively. These structural changes due to pressure difference depend on the density and the enthalpy of vacancies in as-grown crystals. The density of vacancies is related to the condensation rate of the crystals.

  18. Pulsed discharge production Ar* metastables

    NASA Astrophysics Data System (ADS)

    Han, Jiande; Heaven, Michael C.; Emmons, Daniel; Perram, Glen P.; Weeks, David E.; Bailey, William F.

    2016-03-01

    The production of relatively high densities of Ar* metastables (>1012 cm-3) in Ar/He mixtures, at total pressures close to 1 atm, is essential for the efficient operation of an optically pumped Ar* laser. We have used emission spectroscopy and diode laser absorption spectroscopy measurements to observe the production and decay of Ar* in a parallel plate pulsed discharge. With discharge pulses of 1 μs duration we find that metastable production is dominated by processes occurring within the first 100 ns of the gas break-down. Application of multiple, closely spaced discharge pulses yields insights concerning conditions that favor metastable production. This information has been combined with time-resolved measurements of voltage and current. The experimental results and preliminary modeling of the discharge kinetics are presented.

  19. Simultaneous magneto-optical trapping of a boson-fermion mixture of metastable helium atoms.

    PubMed

    Stas, R J W; McNamara, J M; Hogervorst, W; Vassen, W

    2004-07-30

    We simultaneously confine fermionic metastable 3He atoms and bosonic metastable 4He atoms in a magneto-optical trap. The trapped clouds, containing up to 1.5 x 10(8) atoms of each isotope, are characterized by measuring ions and metastable helium atoms escaping from the trap. Optical pumping of 3He atoms to a nontrapped hyperfine state is investigated and it is shown that large atom numbers can be confined without additional repumping lasers. Unique possibilities for quantum degeneracy experiments with mixtures of spin-polarized metastable 3He and 4He atoms are indicated.

  20. Isentropic Compression of Argon

    SciTech Connect

    H. Oona; J.C. Solem; L.R. Veeser, C.A. Ekdahl; P.J. Rodriquez; S.M. Younger; W. Lewis; W.D. Turley

    1997-08-01

    We are studying the transition of argon from an insulator to a conductor by compressing the frozen gas isentropically to pressures at which neighboring atomic orbitals overlap sufficiently to allow some electron motion between atoms. Argon and the other rare gases have closed electron shells and therefore remain montomic, even when they solidify. Their simple structure makes it likely that any measured change in conductivity is due to changes in the atomic structure, not in molecular configuration. As the crystal is compressed the band gap closes, allowing increased conductivity. We have begun research to determine the conductivity at high pressures, and it is our intention to determine the compression at which the crystal becomes a metal.

  1. On a 'metastable' plasma

    SciTech Connect

    Andreev, Stepan N; Rukhadze, Anri A; Samokhin, A A

    2001-09-30

    Attention is drawn to the insufficient validity of a number of conclusions concerning the fundamentals of statistical physics made in a paper of A M Tkachev and S I Yakovlenko [Quantum Electron. 30 1077 (2000)] (discussion)

  2. Argon Purification Reference and Recommendation

    SciTech Connect

    Wu, J.; /Fermilab

    1991-05-23

    This engineering note is a reference for future consideration on the purification of argon. The original concern was for the possibility of argon contamination from components in the cryostats over long-term storage. An argon purification system could also be useful for purifying the contents of the argon dewar. The general conclusion is that most of the systems researched are too expensive at this time, but the recommended choice would be Centorr Furnaces. There were three basic types of purification systems which were to be considered. The first was the molecular sieve. This method would have been the preferred one, because it was claimed that it could purify liquid argon, removing liquid oxygen from the argon. However, none of the commercial companies researched provided this type of purification for use with liquid argon. Most companies said that this type of purification was impossible, and tests at IB-4 confirmed this. The second system contained a copper oxide to remove gaseous oxygen from argon gas. The disadvantage of this system wass that the argon had to be heated to a gas, and then cooled back down to liquid. The third system was similar to the second, except that it used tungsten or another material like titanium. This system also needed to heat the argon to gas, however the advantage of this system was that it supposedly removed all contaminants, that is, everything except for inert gases. Of the three systems, the third is the type manufactured by Centorr Furnaces, which uses a titanium charge.

  3. Role of metastable atoms in the propagation of atmospheric pressure dielectric barrier discharge jets

    SciTech Connect

    Li Qing; Zhu Ximing; Li Jiangtao; Pu Yikang

    2010-02-15

    In the experiment of plasma jets generated in a tube dielectric barrier discharge configuration, three distinguishable modes, namely, laminar, transition, and turbulent jet modes, have been identified. Flows of helium, neon, and argon gases shared the hydrodynamic law when their plasma jets spraying into ambient air of atmospheric pressure and room temperature. Aiming to reveal the basic processes, we propose that plasma jet length is mainly determined by reactions involving metastable atoms. These processes are responsible for the variation in plasma jet length versus gas flow rate and working gas species. To investigate this proposal in detail, we have obtained three significant experimental results, i.e., (1) the plasma jet lengths of helium, neon, and argon are different; (2) the plasma jet length of krypton slightly changes with gas flow rate, with three modes indistinguishable; and (3) there are large differences between optical emission spectra of helium, neon, argon, and krypton flow gases. These observations are in good agreement with our proposal.

  4. Electron beam-generated Ar/N2 plasmas: The effect of nitrogen addition on the brightest argon emission lines

    NASA Astrophysics Data System (ADS)

    Lock, E. H.; Petrova, Tz. B.; Petrov, G. M.; Boris, D. R.; Walton, S. G.

    2016-04-01

    The effect of nitrogen addition on the emission intensities of the brightest argon lines produced in a low pressure argon/nitrogen electron beam-generated plasmas is characterized using optical emission spectroscopy. In particular, a decrease in the intensities of the 811.5 nm and 763.5 nm lines is observed, while the intensity of the 750.4 nm line remains unchanged as nitrogen is added. To explain this phenomenon, a non-equilibrium collisional-radiative model is developed and used to compute the population of argon excited states and line intensities as a function of gas composition. The results show that the addition of nitrogen to argon modifies the electron energy distribution function, reduces the electron temperature, and depopulates Ar metastables in exchange reactions with electrons and N2 molecules, all of which lead to changes in argon excited states population and thus the emission originating from the Ar 4p levels.

  5. The Argon Geochronology Experiment (AGE)

    NASA Technical Reports Server (NTRS)

    Swindle, T. D.; Bode, R.; Fennema, A.; Chutjian, A.; MacAskill, J. A.; Darrach, M. R.; Clegg, S. M.; Wiens, R. C.; Cremers, D.

    2006-01-01

    This viewgraph presentation reviews the Argon Geochronology Experiment (AGE). Potassium-Argon dating is shown along with cosmic ray dating exposure. The contents include a flow diagram of the Argon Geochronology Experiment, and schematic diagrams of the mass spectrometer vacuum system, sample manipulation mechanism, mineral heater oven, and the quadrupole ion trap mass spectrometer. The Laser-Induced Breakdown Spectroscopy (LIBS) Operation with elemental abundances is also described.

  6. Isentropic compression of argon

    SciTech Connect

    Veeser, L.R.; Ekdahl, C.A.; Oona, H.

    1997-06-01

    The compression was done in an MC-1 flux compression (explosive) generator, in order to study the transition from an insulator to a conductor. Since conductivity signals were observed in all the experiments (except when the probe is removed), both the Teflon and the argon are becoming conductive. The conductivity could not be determined (Teflon insulation properties unknown), but it could be bounded as being {sigma}=1/{rho}{le}8({Omega}cm){sub -1}, because when the Teflon breaks down, the dielectric constant is reduced. The Teflon insulator problem remains, and other ways to better insulate the probe or to measure the conductivity without a probe is being sought.

  7. Metastable Phases in Ice Clouds

    NASA Astrophysics Data System (ADS)

    Weiss, Fabian; Baloh, Philipp; Kubel, Frank; Hoelzel, Markus; Parker, Stewart; Grothe, Hinrich

    2014-05-01

    Polar Stratospheric Clouds and Cirrus Clouds contain both, pure water ice and phases of nitric acid hydrates. Preferentially for the latter, the thermodynamically stable phases have intensively been investigated in the past (e.g. nitric acid trihydrate, beta-NAT). As shown by Peter et al. [1] the water activity inside clouds is higher than expected, which might be explained by the presence of metastable stable phases (e.g. cubic ice). However, also metastable nitric acid hydrates might be important due to the inherent non-equilibrium freezing conditions in the upper atmosphere. The delta ice theory of Gao et al. [2] presents a model approach to solve this problem by involving both metastable ice and NAT as well. So it is of high interest to investigate the metastable phase of NAT (i.e. alpha-NAT), the structure of which was unknown up to the presence. In our laboratory a production procedure for metastable alpha-NAT has been developed, which gives access to neutron diffraction and X-ray diffraction measurements, where sample quantities of several Gramm are required. The diffraction techniques were used to solve the unknown crystalline structure of metastable alpha-NAT, which in turn allows the calculation of the vibrational spectra, which have also been recorded by us in the past. Rerefences [1] Peter, T., C. Marcolli, P. Spichtinger, T. Corti, M. B. Baker, and T. Koop. When dry air is too humid. Science, 314:1399-1402, 2006. [2] Gao, R., P. Popp, D. Fahey, T. Marcy, R. L. Herman, E. Weinstock, D. Baumgardener, T. Garrett, K. Rosenlof, T. Thompson, T. P. Bui, B. Ridley, S. C. Wofsy, O. B. Toon, M. Tolbert, B. Kärcher, Th. Peter, P. K. Hudson, A. Weinheimer, and A. Heymsfield. Evidence That Nitric Acid Increases Relative Humidity in Low-Temperature Cirrus Clouds, Science, 303:516-520, 2004. [3] Tizek, H., E. Knözinger, and H. Grothe. Formation and phase distribution of nitric acid hydrates in the mole fraction range xHNO3<0.25: A combined XRD and IR study, PCCP, 6

  8. Classification of knotted tori in 2-metastable dimension

    SciTech Connect

    Cencelj, Matija; Repovs, Dusan; Skopenkov, Mihail B

    2012-11-30

    This paper is devoted to the classical Knotting Problem: for a given manifold N and number m describe the set of isotopy classes of embeddings N{yields}S{sup m}. We study the specific case of knotted tori, that is, the embeddings S{sup p} Multiplication-Sign S{sup q}{yields}S{sup m}. The classification of knotted tori up to isotopy in the metastable dimension range m {>=} p + 3/2q + 2, p{<=}q, was given by Haefliger, Zeeman and A. Skopenkov. We consider the dimensions below the metastable range and give an explicit criterion for the finiteness of this set of isotopy classes in the 2-metastable dimension. Bibliography: 35 titles.

  9. Influence of metastable atoms in the simulation of hollow cathode discharge

    SciTech Connect

    He, Shoujie; Liu, Shumin; Jing, Ha; Ouyang, Jiting

    2013-12-15

    The characteristics of hollow cathode discharge are investigated by using two-dimensional fluid model combined with a transport model for metastable atoms (F-M model) in argon. It shows that the stepwise ionization is one of main important mechanism for electrons production. The distribution of electric potential, density of electrons, ions, and metastable atoms are calculated with a pressure of 10 Torr and a voltage of 250 V. The peak density of electron and ion is 1.2×10{sup 13} cm{sup −3}, and the peak density of metastable atoms is 3.5×10{sup 13} cm{sup −3}. The results obtained in F-M model are compared with that in fluid model (without metastable atoms involved). Metastable atoms are found to play an important role in the discharge. In addition, with the increase of pressure and voltage, the percentage of stepwise ionization in the total ionization increase, and the difference of discharge characteristics simulated by these two kinds of models rises.

  10. Using argon laser blue light reduces ophthalmologists' color contrast sensitivity. Argon blue and surgeons' vision

    SciTech Connect

    Berninger, T.A.; Canning, C.R.; Guenduez, K.St.; Strong, N.; Arden, G.B. )

    1989-10-01

    Color contrast sensitivity was measured in laser operators before and after laser use. After argon blue-green laser treatment sessions, sensitivity was reduced for colors lying along a tritan color-confusion line for several hours. This acute effect is due to specular flash-backs from the aiming beam off the surface of the contact lens. It is caused only by argon 488-nm light, when the aiming beam intensity is high. In addition, a correlation has been demonstrated between the number of years of laser experience and a chronic reduction in tritan color contrast sensitivity. It is suggested that repeated acute changes caused by the argon lasers may cause cumulative effects and produce a chronic threshold elevation. A simple method of eliminating the acute effect is documented.

  11. Metastable Metal Hydrides for Hydrogen Storage

    DOE PAGESBeta

    Graetz, Jason

    2012-01-01

    The possibility of using hydrogen as a reliable energy carrier for both stationary and mobile applications has gained renewed interest in recent years due to improvements in high temperature fuel cells and a reduction in hydrogen production costs. However, a number of challenges remain and new media are needed that are capable of safely storing hydrogen with high gravimetric and volumetric densities. Metal hydrides and complex metal hydrides offer some hope of overcoming these challenges; however, many of the high capacity “reversible” hydrides exhibit a large endothermic decomposition enthalpy making it difficult to release the hydrogen at low temperatures. Onmore » the other hand, the metastable hydrides are characterized by a low reaction enthalpy and a decomposition reaction that is thermodynamically favorable under ambient conditions. The rapid, low temperature hydrogen evolution rates that can be achieved with these materials offer much promise for mobile PEM fuel cell applications. However, a critical challenge exists to develop new methods to regenerate these hydrides directly from the reactants and hydrogen gas. This spotlight paper presents an overview of some of the metastable metal hydrides for hydrogen storage and a few new approaches being investigated to address the key challenges associated with these materials.« less

  12. Effect of secondary emission on the argon plasma afterglow with large dust density

    SciTech Connect

    Denysenko, I. B.; Azarenkov, N. A.; Burmaka, G. P.; Stefanović, I.

    2015-02-15

    A zero-dimensional, space-averaged model for argon plasma afterglow with large dust density is developed. In the model, three groups of electrons in the plasma afterglow are assumed: (i) thermal electrons with Maxwellian distribution, (ii) energetic electrons generated by metastable-metastable collisions (metastable pooling), and (iii) secondary electrons generated at collisions of ions with the electrodes, which have sufficiently large negative voltages in the afterglow. The model calculates the time-dependencies for electron densities in plasma afterglow based on experimental decay times for metastable density and electrode bias. The effect of secondary emission on electron density in the afterglow is estimated by varying secondary emission yields. It is found that this effect is less important than metastable pooling. The case of dust-free plasma afterglow is considered also, and it is found that in the afterglow the effect of secondary emission may be more important than metastable pooling. The secondary emission may increase thermal electron density n{sub e} in dust-free and dusty plasma afterglows on a few ten percentages. The calculated time dependencies for n{sub e} in dust-free and dusty plasma afterglows describe well the experimental results.

  13. Argon Welding Inside A Workpiece

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E.

    1988-01-01

    Canopies convert large hollow workpiece into inert-gas welding chamber. Large manifold serves welding chamber for attachment of liner parts in argon atmosphere. Every crevice, opening and passageway provided with argon-rich environment. Weld defects and oxidation dramatically reduced; also welding time reduced.

  14. Demonstration of a diode-pumped metastable Ar laser.

    PubMed

    Han, Jiande; Glebov, Leonid; Venus, George; Heaven, Michael C

    2013-12-15

    Pulsed lasing from optically pumped rare gas metastable atoms (Ne, Ar, Kr, and Xe) has been demonstrated previously. The laser relies on a three-level scheme, which involves the (n+1)p[5/2](3) and (n+1)p[1/2](1) states from the np(5)(n+1)p electronic configuration and the metastable (n+1)s[3/2](2) level of the np(5)(n+1)s configuration (Racah notation). Population inversions were achieved using relaxation from ((n+1)p[5/2](3) to (n+1)p[1/2](1) induced by collisions with helium or argon at pressures near 1 atm. Pulsed lasing was easily achieved using the high instantaneous pump intensities provided by a pulsed optical parametric oscillator excitation laser. In the present study we examine the potential for the development of a continuous wave (CW) optically pumped Ar laser. We report lasing of the 4p[1/2](1)→4s[3/2](2) (912.547 nm) transition following CW diode laser excitation of the 4p[5/2](3)←4s[3/2](2) line (811.754 nm). A pulsed discharge was used to generate Ar 4s[3/2](2), and the time-resolved lasing kinetics provide insights concerning the radiative and collisional relaxation processes. PMID:24343016

  15. Broadening and Shift of the 3p54p-3p54d Argon Spectral Lines in Pure Argon, Argon-Neon and Argon-Helium Mixtures

    NASA Astrophysics Data System (ADS)

    Wawrzynski, J.; Wolnikowski, J.

    1986-02-01

    Low pressure broadening and shift of four spectral lines of argon, 591.2, 687.1, 693.7 and 737.2 nm have been investigated. The values of the pressure broadening and shift coefficients for argon-argon, argon-neon and argon-helium interactions in the glow discharge are determined. For all lines in the pure argon a red shift and in the argon-helium mixture a blue shift has been found. In the argon-neon mixture the shifts of these lines are small and have different signs.

  16. Argon Excluder Foam Compression Data

    SciTech Connect

    Clark, D.; /Fermilab

    1991-07-25

    The argon excluder is designed to reduce the media density of the dead space between the internal modules of the end calorimeters and the concave convex head to less than that of argon. The design of the excluder includes a thin circular stainless steel plate welded to the inner side of the convex pressure vessel head at a radius of 26 and 15/16 inches. It is estimated that this plate will experience a pressure differential of approximately 40 pounds per square inch. A inner foam core is incorporated into the design of the excluder as structural support. This engineering note outlines the compression data for the foam used in the north end calorimeter argon excluder. Four test samples of approximately the same dimensions were cut and machined from large blocks of the poured foam. Two of these test samples were then subjected to varying compression magnitudes until failure. For this test failure was taken to mean plastic yielding or the point at which deformation increases without a corresponding increase in loading. The third sample was subjected to a constant compressive stress for an extended period of time, to identify any 'creeping' effects. Finally, the fourth sample was cooled to cryogenic temperatures in order to determine the coefficient of thermal expansion. The compression test apparatus consisted of a state of the art INSTROM coupled with a PC workstation. The tests were run at a constant strain rate with discrete data taken at 500 millisecond intervals. The sample data is plotted as a stress strain diagram in the results. The first test was run on sample number one at a compression rate of 0.833 mills or equivalently a strain rate of 3.245 x 10{sup -4} mil/mills. The corresponding stress was then calculated from the force measured divided by the given initial area. The test was run for thirty minutes until the mode of failure, plastic yielding, was reached. The second test was run as a check of the first using sample number two, and likewise was

  17. Depleted argon from underground sources

    SciTech Connect

    Back, H.O.; Alton, A.; Calaprice, F.; Galbiati, C.; Goretti, A.; Kendziora, C.; Loer, B.; Montanari, D.; Mosteiro, P.; Pordes, S.; /Fermilab

    2011-09-01

    Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic {sup 39}Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in {sup 39}Ar. In Cortez Colorado a CO{sub 2} well has been discovered to contain approximately 500ppm of argon as a contamination in the CO{sub 2}. In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation. The N{sub 2} and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification.

  18. Depleted Argon from Underground Sources

    NASA Astrophysics Data System (ADS)

    Back, H. O.; Alton, A.; Calaprice, F.; Galbiati, C.; Goretti, A.; Kendziora, C.; Loer, B.; Montanari, D.; Mosteiro, P.; Pordes, S.

    Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic 39Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in 39Ar. In Cortez Colorado a CO2 well has been discovered to contain approximately 500 ppm of argon as a contamination in the CO2. In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N2, and He mixture, from the CO2 through chromatographic gas separation. The N2 and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification.

  19. Optically enhanced production of metastable xenon.

    PubMed

    Hickman, G T; Franson, J D; Pittman, T B

    2016-09-15

    Metastable states of noble gas atoms are typically produced by electrical discharge techniques or "all-optical" excitation methods. Here we combine electrical discharges with optical pumping to demonstrate "optically enhanced" production of metastable xenon (Xe*). We experimentally measure large increases in Xe* density with relatively small optical control field powers. This technique may have applications in systems where large metastable state densities are desirable. PMID:27628400

  20. New treatment of quantum metastability

    NASA Astrophysics Data System (ADS)

    Defendi, Antonio; Roncadelli, Marco

    1995-02-01

    We explore the implications of the recently proposed Langevin quantization for quantum metastability, working within the semiclassical approximation. As far as we can see, the present treatment is simpler and more straightforward than the path integral approach. Indeed, no extra trick is needed and the correct result follows at once - as a consequence of general principles - from the representation of the propagator supplied by the Langevin quantization. Moreover, the imaginary part of the semiclassical propagator emerges naturally form the formalism and no analytic continuation has to be performed in order to make sense out of a divergent expression. Further applications of the strategy discussed in this Letter are pointed out.

  1. Geometrically induced metastability and holography

    SciTech Connect

    Aganagic, Mina; Aganagic, Mina; Beem, Christopher; Seo, Jihye; Vafa, Cumrun

    2006-10-23

    We construct metastable configurations of branes and anti-branes wrapping 2-spheres inside local Calabi-Yau manifolds and study their large N duals. These duals are Calabi-Yau manifolds in which the wrapped 2-spheres have been replaced by 3-spheres with flux through them, and supersymmetry is spontaneously broken. The geometry of the non-supersymmetric vacuum is exactly calculable to all orders of the't Hooft parameter, and to the leading order in 1/N. The computation utilizes the same matrix model techniques that were used in the supersymmetric context. This provides a novel mechanism for breaking supersymmetry in the context of flux compactifications.

  2. Probing Metastability at the LHC

    SciTech Connect

    Clavelli, L.

    2010-02-10

    Current attempts to understand supersymmetry (susy) breaking are focused on the idea that we are not in the ground state of the universe but, instead, in a metastable state that will ultimately decay to an exactly susy ground state. It is interesting to ask how experiments at the Large Hadron Collider (LHC) will shed light on the properties of this future supersymmetric universe. In particular we ask how we can determine whether this final state has the possibility of supporting atoms and molecules in a susy background.

  3. The Liquid Argon Purity Demonstrator

    SciTech Connect

    Adamowski, M.; Carls, B.; Dvorak, E.; Hahn, A.; Jaskierny, W.; Johnson, C.; Jostlein, H.; Kendziora, C.; Lockwitz, S.; Pahlka, B.; Plunkett, R.; Pordes, S.; Rebel, B.; Schmitt, R.; Stancari, M.; Tope, T.; Voirin, E.; Yang, T.

    2014-07-01

    The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to the cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.

  4. Desensitization and recovery of metastable intermolecular composites

    DOEpatents

    Busse, James R.; Dye, Robert C.; Foley, Timothy J.; Higa, Kelvin T.; Jorgensen, Betty S.; Sanders, Victor E.; Son, Steven F.

    2010-09-07

    A method to substantially desensitize a metastable intermolecular composite material to electrostatic discharge and friction comprising mixing the composite material with an organic diluent and removing enough organic diluent from the mixture to form a mixture with a substantially putty-like consistency, as well as a concomitant method of recovering the metastable intermolecular composite material.

  5. Formation of metastable phases by spinodal decomposition

    NASA Astrophysics Data System (ADS)

    Alert, Ricard; Tierno, Pietro; Casademunt, Jaume

    2016-10-01

    Metastable phases may be spontaneously formed from other metastable phases through nucleation. Here we demonstrate the spontaneous formation of a metastable phase from an unstable equilibrium by spinodal decomposition, which leads to a transient coexistence of stable and metastable phases. This phenomenon is generic within the recently introduced scenario of the landscape-inversion phase transitions, which we experimentally realize as a structural transition in a colloidal crystal. This transition exhibits a rich repertoire of new phase-ordering phenomena, including the coexistence of two equilibrium phases connected by two physically different interfaces. In addition, this scenario enables the control of sizes and lifetimes of metastable domains. Our findings open a new setting that broadens the fundamental understanding of phase-ordering kinetics, and yield new prospects of applications in materials science.

  6. Formation of metastable phases by spinodal decomposition

    PubMed Central

    Alert, Ricard; Tierno, Pietro; Casademunt, Jaume

    2016-01-01

    Metastable phases may be spontaneously formed from other metastable phases through nucleation. Here we demonstrate the spontaneous formation of a metastable phase from an unstable equilibrium by spinodal decomposition, which leads to a transient coexistence of stable and metastable phases. This phenomenon is generic within the recently introduced scenario of the landscape-inversion phase transitions, which we experimentally realize as a structural transition in a colloidal crystal. This transition exhibits a rich repertoire of new phase-ordering phenomena, including the coexistence of two equilibrium phases connected by two physically different interfaces. In addition, this scenario enables the control of sizes and lifetimes of metastable domains. Our findings open a new setting that broadens the fundamental understanding of phase-ordering kinetics, and yield new prospects of applications in materials science. PMID:27713406

  7. Metastable Tight Knots in DNA

    NASA Astrophysics Data System (ADS)

    Dai, Liang; Renner, C. Benjamin; Doyle, Patrick

    2015-03-01

    Knotted structures can spontaneously occur in polymers such as DNA and proteins, and the formation of knots affects biological functions, mechanical strength and rheological properties. In this work, we calculate the equilibrium size distribution of trefoil knots in linear DNA using off-lattice simulations. We observe metastable knots on DNA, as predicted by Grosberg and Rabin. Furthermore, we extend their theory to incorporate the finite width of chains and show an agreement between our simulations and the modified theory for real chains. Our results suggest localized knots spontaneously occur in long DNA and the contour length in the knot ranges from 600 to 1800 nm. This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's research program in BioSystems and Micromechanics, the National Science Foundation (Grant No. 1335938).

  8. Atom lithography with metastable helium

    SciTech Connect

    Allred, Claire S.; Reeves, Jason; Corder, Christopher; Metcalf, Harold

    2010-02-15

    A bright metastable helium (He*) beam is collimated sequentially with the bichromatic force and three optical molasses velocity compression stages. Each He* atom in the beam has 20 eV of internal energy that can destroy a molecular resist assembled on a gold coated silicon wafer. Patterns in the resist are imprinted onto the gold layer with a standard selective etch. Patterning of the wafer with the He{sup *} was demonstrated with two methods. First, a mesh was used to protect parts of the wafer making an array of grid lines. Second, a standing wave of {lambda}=1083 nm light was used to channel and focus the He* atoms into lines separated by {lambda}/2. The patterns were measured with an atomic force microscope establishing an edge resolution of 80 nm. Our results are reliable and repeatable.

  9. Stable 811.53 nm diode laser pump source for optically pumped metastable Ar laser

    NASA Astrophysics Data System (ADS)

    Gao, Jun; Zuo, Duluo; Zhao, Jun; Li, Bin; Yu, Anlan; Wang, Xinbing

    2016-10-01

    A stable external cavity diode laser coupled with volume Bragg grating for metastable argon atoms pumping is presented. The measured maximum output power of the continuous wave is 6.5 W when the spectral width (FWHM) is less than 21 pm around 811.53 nm and the power efficiency is 68%. The tuning range of the emission wavelength is bigger than 270 pm. The calculated deviation in relative absorption efficiency caused by the fluctuations of wavelength and power is less than 4%.

  10. Breaking of a metastable string at finite temperature

    SciTech Connect

    Monin, A.; Voloshin, M. B.

    2008-12-15

    We consider the phase transition of a string with tension {epsilon}{sub 1} to a string with a smaller tension {epsilon}{sub 2} at finite temperature. For sufficiently small temperatures the transition proceeds through thermally catalyzed quantum tunneling, and we calculate in arbitrary number of dimensions the thermal catalysis factor. At {epsilon}{sub 2}=0 the found formula for the decay rate also describes a breakup of a metastable string into two pieces.

  11. Primary populations of metastable antiprotonic (4)He and (3)He atoms.

    PubMed

    Hori, M; Eades, J; Hayano, R S; Ishikawa, T; Sakaguchi, J; Tasaki, T; Widmann, E; Yamaguchi, H; Torii, H A; Juhász, B; Horváth, D; Yamazaki, T

    2002-08-26

    Initial distributions of metastable antiprotonic (4)He and (3)He atoms over principal (n) and angular momentum (l) quantum numbers have been deduced using laser spectroscopy experiments. The regions n = 37-40 and n = 35-38 in the two atoms account for almost all of the observed fractions [(3.0 +/- 0.1)% and (2.4 +/- 0.1)%] of antiprotons captured into metastable states. PMID:12190401

  12. Detection of sputtered metastable atoms by autoionization

    SciTech Connect

    Wucher, A.; Berthold, W.; Oechsner, H.; Franzreb, K.

    1994-03-01

    We report on a scheme for the detection of sputter-generated metastable atoms that is based on the resonant excitation of an autoionizing state by single-photon absorption from a tunable laser. Using this technique, sputtered silver atoms ejected in the metastable 4{ital d}{sup 9}5{ital s}{sup 2}{ital D}{sub 5/2} state with an excitation energy of 3.75 eV have been detected. This represents the highest excitation energy of sputtered metastable atoms observed so far.

  13. Role of Metastable Pitting in Crevices on Crevice Stabilization in Alloys 625 and 22

    SciTech Connect

    B.A. Kehler; J.R. Scully

    2005-01-11

    The metastable pitting behavior inside crevices of alloys 625 and 22 was examined to obtain insight into differences in crevice corrosion susceptibility between alloys 625 and 22. Metastable corrosion event rates recorded as current-time transients were found to increase with increasing applied potential and temperature for both alloys. However, the increase was more significant for 625 as compared to alloy 22 and the cumulative number of events was greater. A strong correlation was obtained between the increase in event rates and decrease in crevice stabilization potential with temperature. Metastable peak heights, values for peak integrated charge, and current/pit depth (I/r) ratios were not strongly affected by these driving forces. The alloying content in alloy 22, traced to increased molybdenum (Mo) and tungsten (W), was rationalized to decrease the metastable event rate and hence, the cumulative number of events after a given time. However, metastable peak heights, values for peak integrated charge, and I/r ratios, as well as metastable peak shapes associated with individual events, were not strongly affected by alloy type in the narrow range of Mo contents explored here. Observed differences in resistance to crevice corrosion stabilization are rationalized to depend on differences in the cumulative number of metastable events occurring sufficiently close in space and time to contribute to the development of a critical crevice chemistry at specific depths in a crevice. The properties of individual events did not have a significant effect. Stable crevice corrosion eventually occurred at the sites where a row of metastable pits formed at a critical distance from the crevice mouth. This row of pit sites focused acidification, which contributed to local depassivation.

  14. Metastability of a Supercompressed Fluid Monolayer

    PubMed Central

    Smith, Ethan C.; Crane, Jonathan M.; Laderas, Ted G.; Hall, Stephen B.

    2003-01-01

    Previous studies showed that monomolecular films of extracted calf surfactant collapse at the equilibrium spreading pressure during quasi-static compressions but become metastable at much higher surface pressures when compressed faster than a threshold rate. To determine the mechanism by which the films become metastable, we studied single-component films of 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC). Initial experiments confirmed similar metastability of POPC if compressed above a threshold rate. Measurements at different surface pressures then showed that rates of collapse, although initially increasing above the equilibrium spreading pressure, reached a sharply defined maximum and then slowed considerably. When heated, rapidly compressed films recovered their ability to collapse with no discontinuous change in area, arguing that the metastability does not reflect transition of the POPC film to a new phase. These observations indicate that in several respects, the supercompression of POPC monolayers resembles the supercooling of three-dimensional liquids toward a glass transition. PMID:14581205

  15. Ozone-stimulated emission due to atomic oxygen population inversions in an argon microwave plasma torch

    SciTech Connect

    Lukina, N. A.; Sergeichev, K. F.

    2008-06-15

    It is shown that, in a microwave torch discharge in an argon jet injected into an oxygen atmosphere at normal pressure, quasi-resonant energy transfer from metastable argon atoms to molecules of oxygen and ozone generated in the torch shell and, then, to oxygen atoms produced via the dissociation of molecular oxygen and ozone leads to the inverse population of metastable levels of atomic oxygen. As a result, the excited atomic oxygen with population inversions becomes a gain medium for lasing at wavelengths of 844.6 and 777.3 nm (the 3{sup 3}P-3{sup 3}S and 3{sup 5}P-3{sup 5}S transitions). It is shown that an increase in the ozone density is accompanied by an increase in both the lasing efficiency at these wavelength and the emission intensity of the plasma-forming argon at a wavelength of 811.15 nm (the {sup 2}P{sup 0}4s-{sup 2}P{sup 0}4p transition). When the torch operates unstably, the production of singlet oxygen suppresses ozone generation; as a result, the lasing effect at these wavelengths disappears.

  16. Metastable States of small-molecule solutions.

    PubMed

    He, Guangwen; Tan, Reginald B H; Kenis, Paul J A; Zukoski, Charles F

    2007-12-27

    Metastable states such as gels and glasses that are commonly seen in nanoparticle suspensions have found application in a wide range of products including toothpaste, hand cream, paints, and car tires. The equilibrium and metastable state behavior of nanoparticle suspensions are often described by simple fluid models where particles are treated as having hard cores and interacting with short-range attractions. Here we explore similar models to describe the presence of metastable states of small-molecule solutions. We have recently shown that the equilibrium solubilities of small hydrogen-bonding molecules and nanoparticles fall onto a corresponding-states solubility curve suggesting that with similar average strengths of attraction these molecules have similar solubilities. This observation implies that metastable states in small-molecule solutions may be found under conditions similar to those where metastable states are observed in nanoparticle and colloidal suspensions. Here we seek confirmation of this concept by exploring the existence of metastable states in solutions of small molecules.

  17. Supersonic Argon Flow In An Arc Plasma Source

    SciTech Connect

    Izrar, B.; Dudeck, M.; Andre, P.; Elchinger, M. F.; Aubreton, J.

    2006-01-15

    The plasma properties inside a D.C. arc-jet operating with argon is analysed by means of a continuum description taking into account non equilibrium ionization processes and dissipative effects. The relaxation of the different physical processes inside the nozzle and the evolution of the Mach number are aanalysed.

  18. Attainable superheat of argon-helium, argon-neon solutions.

    PubMed

    Baidakov, Vladimir G; Kaverin, Aleksey M; Andbaeva, Valentina N

    2008-10-16

    The method of lifetime measurement has been used to investigate the kinetics of spontaneous boiling-up of superheated argon-helium and argon-neon solutions. Experiments were made at a pressure of p = 1.5 MPa and concentrations up to 0.33 mol% in the range of nucleation rates from 10 (4) to 10 (8) s (-1) m (-3). The homogeneous nucleation regime has been distinguished. With good agreement between experimental data and homogeneous nucleation theory in temperature and concentration dependences of the nucleation rate, a systematic underestimation by 0.25-0.34 K has been revealed in superheat temperatures over the saturated line attained by experiment as compared with theoretical values calculated in a macroscopic approximation. The revealed disagreement between theory and experiment is connected with the dependence of the properties of new-phase nuclei on their size.

  19. Use of propane as a quench gas in argon-filled proportional counters and comparison with other quench gases

    NASA Technical Reports Server (NTRS)

    Agrawal, P. C.; Ramsey, B. D.

    1988-01-01

    An experimental investigation of propane and six other quench gases was carried out in argon-filled proportional counters. The objective of the study was to find the best gas mixture for optimizing the gas gain and the energy resolution as well as to understand the role of the ionization potential of quench gases in determining these parameters. It was found that the best gas gains and energy resolutions are obtained with propane, ethane, and isobutane in that order. The ionization potentials of these three lie below the argon metastable potentials and have the lowest value of resonance defect compared to the other quench gases. The better results obtained with these mixtures can be explained by an increased ionization yield resulting from the Penning effect. Propylene and trans-2-butene give inferior performance compared to the above three gases. Methane and carbon dioxide, the most commonly used quench gases in the argon-filled detectors, provide the worst results.

  20. Optical Forces on Metastable Helium

    NASA Astrophysics Data System (ADS)

    Corder, Christopher Scott

    Optical forces using lasers allow precise control over the motion of atoms. The bichromatic optical force (BF) is unique in its large magnitude and velocity range, arising from the absorption and stimulated emission processes. These properties were used to transversely collimate a beam of metastable helium (He*) using the 23S - 23P transition. The collimation created a very bright beam of He*, allowing experiments of neutral atom lithography. The He* beam was used to pattern material surfaces using a resist-based lithography technique, where the pattern was determined by either mechanical or optical masks. The optical masks produced features with a separation of half the wavelength of the light used. Patterning was successfully demonstrated with both IR and UV optical masks. The etched pattern resolution was ˜ 100 nm and limited by the material surface. Further experiments were performed studying the ability of the bichromatic force to cool. The finite velocity range of the BF allows estimation of a characteristic cooling time which is independent of the excited state lifetime, only depending on the atomic mass and optical transition energy. Past experiments, including the helium collimation used for neutral atom lithography, have demonstrated that the BF can collimate and longitudinally slow atomic beams, but required long interaction times that included many spontaneous emission (SE) events. The effect of SE can be mitigated, and is predicted to not be necessary for BF cooling. Since the BF cooling time is not related to the excited state lifetime, a transition can be chosen such that the cooling time is shorter than the SE cycle time, allowing direct laser cooling on atoms and molecules that do not have cycling transitions. Experiments using the helium 2 3S-3P transition were chosen because the BF cooling time (285 ns) is on the order of the average SE cycle time (260 ns). Numerical simulations of the experimental system were run predicting compression of the

  1. Argon laser photocoagulation in the dog stomach.

    PubMed Central

    Bown, S G; Salmon, P R; Kelly, D F; Calder, B M; Pearson, H; Weaver, B M; Read, A E

    1979-01-01

    Laser photocoagulation is one of a number of methods currently under investigation for the endoscopic treatment of gastrointestinal haemorrhage. The Argon ion and Neodymium Yttrium Aluminium Garnet (Nd YAG) lasers are theoretically suitable as the beam from each may be transmitted via a flexible fibre. Argon laser photocoagulation has been shown to be effective and we have elucidated which factors determine its safety and efficacy. Studies on normal canine gastric mucosa showed that the depth of tissue damage depended chiefly on the total incident laser energy on any one spot, and that below 50 J the risk of perforation was extremely low. The energy density was much less important. The haemostatic effect depended more on the laser power. In artificial bleeding gastric ulcers in heparinised dogs the most effective level was 7--9 W, at which 22 out of 23 ulcers (96%) stopped bleeding completely, compared with one out of 12 controls. Photocoagulation was achieved in these cases with energies well within the safe limits. The procedure was effective endoscopically, and these results justify early clinical studies in man. PMID:573722

  2. Incompatible Sets of Gradients and Metastability

    NASA Astrophysics Data System (ADS)

    Ball, J. M.; James, R. D.

    2015-12-01

    We give a mathematical analysis of a concept of metastability induced by incompatibility. The physical setting is a single parent phase, just about to undergo transformation to a product phase of lower energy density. Under certain conditions of incompatibility of the energy wells of this energy density, we show that the parent phase is metastable in a strong sense, namely it is a local minimizer of the free energy in an L 1 neighbourhood of its deformation. The reason behind this result is that, due to the incompatibility of the energy wells, a small nucleus of the product phase is necessarily accompanied by a stressed transition layer whose energetic cost exceeds the energy lowering capacity of the nucleus. We define and characterize incompatible sets of matrices, in terms of which the transition layer estimate at the heart of the proof of metastability is expressed. Finally we discuss connections with experiments and place this concept of metastability in the wider context of recent theoretical and experimental research on metastability and hysteresis.

  3. The spatio-temporal distribution of He (23S1) metastable atoms in a MHz-driven helium plasma jet is influenced by the oxygen/nitrogen ratio of the surrounding atmosphere

    NASA Astrophysics Data System (ADS)

    Winter, J.; Santos Sousa, J.; Sadeghi, N.; Schmidt-Bleker, A.; Reuter, S.; Puech, V.

    2015-04-01

    The density of helium He (23S1) metastable atoms is measured in a 1.6 mm diameter MHz-driven atmospheric pressure helium plasma jet by laser absorption spectroscopy with spatial and temporal resolution. The surrounding atmosphere of the jet is varied from pure oxygen to pure nitrogen with a gas shielding device. The highest metastable density of 1.3 × 1013 cm-3 is obtained in the center of the jet close to the nozzle exit at normal atmospheric air conditions. Within 0.3 mm in the radial direction and 2 mm in the axial direction, the He metastable density drops below the detection limit. The obtained He metastable lifetime is almost independent of the shielding gas composition. By analyzing the diffusion of shielding gas species into the effluent it is concluded that their density is too low to explain the observed He metastable lifetime. Instead, impurities from the feed gas, especially water molecules, are more likely to be responsible. However, a drastic change in metastable He density is observed when decreasing the amount of oxygen in the shielding gas. The lower the oxygen amount, the lower the metastable He density. For pure nitrogen, no He metastables are detected at all. By exchanging nitrogen with argon, a similar behavior is observed. Thus, it is concluded that it is the absence of ambient oxygen rather than the elevated presence of nitrogen, which is responsible for the observed decrease in the He (23S1) density.

  4. Theoretical study of phase transition, surface tension, and nucleation rate predictions for argon.

    PubMed

    Zhou, Di; Zeng, Ming; Mi, Jianguo; Zhong, Chongli

    2011-01-13

    In this work, a weighted density functional theory has been used to study the equilibrium and metastable processes for argon. In the theoretical approach, the two- and three-body interactions of the fluid molecules are considered simultaneously, and the renormalization group transformation is applied to address the long-range fluctuations inside the critical region. The global phase equilibria, planar and curvature-dependent surface tensions, critical radius, and nucleation rates of argon are investigated systematically. The results are in good agreement with the experimental data. Meanwhile, this work applies a methodology for calculating the curved surface tension in local supersaturated environments, showing that the Tolman length is negligible far from the critical region. Near the critical point, however, the Tolman length becomes positive and appears to diverge.

  5. Metastability in the evolution of triple systems

    NASA Astrophysics Data System (ADS)

    Martynova, A. I.; Orlov, V. V.; Rubinov, A. V.

    2003-10-01

    The dynamical evolution of 15000 equal-mass triple systems with zero initial velocities (the free-fall three-body problem) is considered. The equations of motion are numerically integrated using regularization of binary and triple encounters. We find 170 triple systems which reach a state where the motions take place within a limited region of phase space during a long time. These regions are concentrated in the zones of regular motions in the vicinities of stable periodic orbits: the von Schubart orbit in the rectilinear problem, the Broucke orbit in the isosceles problem, and the `Eight' orbit. The classification of such metastable orbits is suggested. A change of the types is found during the dynamical evolution of some metastable systems. The triple system leaves the metastable regime after some time, and its evolution is finished by the escape of one body.

  6. Multistability with a Metastable Mixed State

    NASA Astrophysics Data System (ADS)

    Sneppen, Kim; Mitarai, Namiko

    2012-09-01

    Complex dynamical systems often show multiple metastable states. In macroevolution, such behavior is suggested by punctuated equilibrium and discrete geological epochs. In molecular biology, bistability is found in epigenetics and in the many mutually exclusive states that a human cell can take. Sociopolitical systems can be single-party regimes or a pluralism of balancing political fractions. To introduce multistability, we suggest a model system of D mutually exclusive microstates that battle for dominance in a large system. Assuming one common intermediate state, we obtain D+1 metastable macrostates for the system, one of which is a self-reinforced mixture of all D+1 microstates. Robustness of this metastable mixed state increases with diversity D.

  7. Metastable Detection Using Cold Solid Matrices

    NASA Astrophysics Data System (ADS)

    McConkey, William; Kedzierski, Wladek; Alsaiari, Fatimah

    2016-05-01

    Metastable particles produced in the interaction of electrons of carefully controlled energy with thermal gaseous target beams in a crossed beam set-up have been studied in the energy range from threshold to 300 eV. The e-beam is pulsed and the metastables produced drift to a solid nitrogen or rare gas detector held at 10 K. Here they form excimers which immediately radiate. The resultant photons are detected using a photomultiplier-filter combination. Time-of-flight techniques are used to separate these photons from prompt photons produced in the initial electron collision. With N2 as both target and detection matrix, the excimer emission is strongest in the green but still significant in the red spectral region. Excitation functions will be presented together with threshold measurements. These help to identify the metastable states being observed and the excitation mechanisms which are responsible. The authors thank NSERC and CFI (Canada) for financial support.

  8. Kinetic Trapping of Metastable Amino Acid Polymorphs

    PubMed Central

    2015-01-01

    Second harmonic generation (SHG) microscopy measurements indicate that inkjet-printed racemic solutions of amino acids can produce nanocrystals trapped in metastable polymorph forms upon rapid solvent evaporation. Polymorphism impacts the composition, distribution, and physico-kinetic properties of organic solids, with energetic arguments favoring the most stable polymorph. In this study, unfavored noncentrosymmetric crystal forms were observed by SHG microscopy. Polarization-dependent SHG measurement and synchrotron X-ray microdiffraction analysis of individual printed drops are consistent with formation of homochiral crystal production. Fundamentally, these results provide evidence supporting the ubiquity of Ostwald’s Rule of Stages, describing the hypothesized transitioning of crystals between metastable polymorphic forms in the early stages of crystal formation. Practically, the presence of homochiral metastable forms has implications on chiral resolution and on solid form preparations relying on rapid solvent evaporation. PMID:24451055

  9. Modeling the metastable dynamics of correlated structures

    PubMed Central

    Shakirov, Alexey M.; Tsibulsky, Sergey V.; Antipov, Andrey E.; Shchadilova, Yulia E.; Rubtsov, Alexey N.

    2015-01-01

    Metastable quantum dynamics of an asymmetric triangular cluster that is coupled to a reservoir is investigated. The dynamics is governed by bath-mediated transitions, which in part require a thermal activation process. The decay rate is controlled by tuning the excitation spectrum of the frustrated cluster. We use the master equation approach and construct transition operators in terms of many-body states. We analyze dynamics of observables and reveal metastability of an excited state and of a magnetically polarized ground state. PMID:25623327

  10. On the Destabilization of Metastable Solid He

    NASA Astrophysics Data System (ADS)

    Souris, F.; Qu, A.; Dupont-Roc, J.; Grucker, J.; Jacquier, Ph.

    2015-06-01

    Recently, a metastable state of solid He has been produced by locally lowering the density of the solid below the melting density using a focused acoustic wave pulse. An unexpected instability of the solid has been found about 4 bar below the melting line. This paper reports on experiments precisely localizing in time the instability birth within the acoustic pulse. It is found that, as expected, the instability always appears during a depression swing of the wave. However a metastability pressure limit does not emerge clearly. Total stress duration seems also to play a role in the instability triggering, suggesting a fatigue effect.

  11. Interplay of strong chemical bonds and the repulsive Coulomb force in the metastable states of triply ionized homonuclear molecules: A theoretical study of N23+ and O23+

    NASA Astrophysics Data System (ADS)

    Imamura, Yutaka; Hatsui, Takaki

    2012-01-01

    We have studied metastable electronic states of trication molecules for N23+ and O23+ using the internally contracted multireference configuration interaction method with single and double excitations (icMRCISD). The metastable ground state for O23+ and metastable excited state for N23+ were obtained with the barriers of approximately 1.5 and 13.0 kcal/mol, respectively, although those metastable states were not found in previous calculations. The analysis on occupation numbers of natural orbitals demonstrates that the two metastable states are formed owing to the balance between the reduction of cationic Coulomb repulsion and the weakening of the chemical bonds. We have proposed to measure these metastable states by short-wavelength free-electron lasers (sFELs) that have the potential to produce excited states of multiply charged molecules.

  12. Observation of Metastable Structural Excitations and Concerted Atomic Motions on a Crystal Surface

    NASA Astrophysics Data System (ADS)

    Hwang, Ing-Shouh; Golovchenko, Jene

    1992-11-01

    The addition of a small number of lead atoms to a germanium(111) surface reduces the energy barrier for activated processes, and with a tunneling microscope it is possible to observe concerted atomic motions and metastable structures on this surface near room temperature. The formation and annihilation of these metastable structural surface excitations is associated with the shift in position of large numbers of germanium surface atoms along a specific row direction like beads on an abacus. The effect provides a mechanism for understanding the transport of atoms on a semiconductor surface.

  13. Optical production of metastable rare gases.

    SciTech Connect

    Young, L.; Yang, D.; Dunford, R.; Chemistry; Peking Univ.

    2002-01-01

    We have investigated a new scheme for excitation of the 5s, J = 2 metastable level of Kr (5s[3/2]J = 2) which can be readily extended to other rare gases. In the scheme, an ultraviolet (UV) lamp is used to create a population of Kr atoms in the 5s[3/2]J = 1 level in a gas cell. The excited atoms are then pumped to the 5p[3/2]J = 2 level, using 819 nm light from a Ti:sapphire laser, from which they decay to the metastable state with a branching ratio of 77%. We made two striking observations: (1) the laser power required to saturate the second step decreases markedly as a function of gas cell pressure, and (2) the UV photon flux is converted with very high efficiency (approx10%) to metastable atom flux. A Monte Carlo study of the scattering of UV photons in the cell reproduces the trends observed. The understanding achieved points to the design of a higher flux source of metastable atoms.

  14. Reheating metastable O'Raifeartaigh models

    SciTech Connect

    Fox, Patrick; Craig, Nathaniel J.; Fox, Patrick J.; Wacker, Jay G.

    2006-11-01

    In theories with multiple vacua, reheating to a temperature greater than the height of a barrier can stimulate transitions from a desirable metastable vacuum to a lower energy state. We discuss the constraints this places on various theories and demonstrate that in a class of supersymmetric models this transition does not occur even for arbitrarily high reheating temperature.

  15. Reheating Metastable O'Raifeartaigh Models

    SciTech Connect

    Craig, Nathaniel J.; Fox, Patrick J.; Wacker, Jay G.

    2006-12-05

    In theories with multiple vacua, reheating to a temperature greater than the height of a barrier can stimulate transitions from a desirable metastable vacuum to a lower energy state. We discuss the constraints this places on various theories and demonstrate that in a class of supersymmetric models this transition does not occur even for arbitrarily high reheating temperature.

  16. Reheating Metastable O'Raifeartaigh Models

    SciTech Connect

    Craig, Nathaniel J.; Fox, Patrick J.; Wacker, Jay G.; /SLAC /Stanford U., ITP

    2006-12-13

    In theories with multiple vacua, reheating to a temperature greater than the height of a barrier can stimulate transitions from a desirable metastable vacuum to a lower energy state. We discuss the constraints this places on various theories and demonstrate that in a class of supersymmetric models this transition does not occur even for arbitrarily high reheating temperature.

  17. Liquid Argon Calorimetry for ATLAS

    NASA Astrophysics Data System (ADS)

    Robinson, Alan

    2008-05-01

    This summer, the largest collaborative physics project since the Manhattan project will go online. One of four experiments for the Large Hadron Collider at CERN in Geneva, ATLAS, employs over 2000 people. Canadians have helped design, construct, and calibrate the liquid argon calorimeters for ATLAS to capture the products of the high energy collisions produced by the LHC. From an undergraduate's perspective, explore how these calorimeters are made to handle their harsh requirement. From nearly a billion proton-proton collisions a second, physicists hope to discover the Higgs boson and other new fundamental particles.

  18. Liquid argon Time Projection Chamber

    SciTech Connect

    Doe, P.J.; Mahler, H.J.; Chen, H.H.

    1984-01-01

    The principal features of the liquid argon TPC are outlined and the status of development efforts, particularly at UCI, are discussed. Technical problems associated with liquid TPC's are: the liquid must be maintained at a high level of purity to enable long distance drifting of ionization electrons, and the signal size is small due to the absence of practical charge multiplication as found in gas chambers. These problems have been largely resolved in studies using small (1 to 100 l) detectors, thus allowing a realistic consideration of the physics potential of such devices.

  19. Calibration of Electric Field Induced Energy Level Shifts in Argon

    NASA Astrophysics Data System (ADS)

    Hebner, Greg

    1999-10-01

    Argon is a commonly used gas in a number of discharges. As such it is an ideal candidate for spectroscopic based electric field measurements within the sheath and bulk discharge regions. Recently, measurements demonstrated the use of the Stark induced shifts of high lying energy levels in Argon to make spatially and temporally resolved electric field measurements [1]. However, that method relied on the cross calibration of known and calculable shifts in helium discharges to calibrate, in-situ, the energy level shifts in Argon. This poster shows the use of an atomic beam system to calibrate the electric field induced shift of high lying energy levels directly. In addition, data on very high lying argon levels, up to the 20 F manifold, were obtained. Comparison of our electric field induced energy level shift calibration curves with previous work will be shown. The possibility of using this system to calibrate energy level shifts in other gases of technological interest to the microelectronics and lighting industry will be discussed. [1]. J. B. Kim, K. Kawamura, Y. W. Choi, M. D. Bowden, K. Muraoka and V. Helbig, IEEE Transactions on Plasma Science, 26(5), 1556 (1998). This work was performed at Sandia National Laboratories and supported by the United States Department of Energy (DE-AC04-94AL85000).

  20. A method for gas analysis in nonlocal plasma of a short argon microdischarge

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Anatoly; Stefanova, Margarita; Pramatarov, Petko

    2013-09-01

    Recently developed collisional electron spectroscopy (CES) method allows identification of gas impurities in a main gas in nonlocal plasma, where the different groups of electrons do not relax in energy by collisions in the volume and behave independently of each other. The fast electrons, released in processes of Penning ionization of the impurity particles by main gas metastable atoms, give narrow peaks in the EEDF near the energy of their appearance. Selective registration of groups of fast nonlocal electrons created in Penning ionization of the impurity atoms or molecules by metastable argon atoms is carried out. Argon is used as a main gas. The negative glow plasma of a short dc microdischarge at medium pressures is used as most suitable medium for nonlocal formation of the EEDF. Penning reactions with known gas impurities and sputtered cathode metal atoms are registered. The obtained maxima in the EEDF appear at the characteristic energies corresponding to the expected maxima for penning electrons of the known gas impurities used. This experiment contributes to the development of new microdischarge gas analyzer for gas impurities detection, whose dimensions can be dramatically reduced, compared to the exciting devices. AAK thanks FZP and SPbSU for support.

  1. Argon recovery from hydrogen depleted ammonia plant purge gas using a HARP Plant

    SciTech Connect

    Krishnamurthy, R.; Lerner, S.L.; Maclean, D.L.

    1987-01-01

    A number of ammonia plants employ membranes or cryogenic hydrogen recovery units to separate hydrogen contained in the purge gas for recycle to the ammonia synthesis loop. The resulting hydrogen depleted purge gas, which is usually used for fuel, is an attractive source of argon. This paper presents the novel features of a process which employs a combination of pressure swing adsorption (PSA) and cryogenic technology to separate the argon from this hydrogen depleted purge gas stream. This new proprietary Hybrid Argon Recovery Progress (HARP) plant is an effective alternative to a conventional all-cryogenic plant.

  2. Control of switching between metastable superconducting states in δ-MoN nanowires

    PubMed Central

    Buh, Jože; Kabanov, Viktor; Baranov, Vladimir; Mrzel, Aleš; Kovič, Andrej; Mihailovic, Dragan

    2015-01-01

    The superconducting state in one-dimensional nanosystems is very delicate. While fluctuations of the phase of the superconducting wave function lead to the spontaneous decay of persistent supercurrents in thin superconducting wires and nanocircuits, discrete phase-slip fluctuations can also lead to more exotic phenomena, such as the appearance of metastable superconducting states in current-bearing wires. Here we show that switching between different metastable superconducting states in δ-MoN nanowires can be very effectively manipulated by introducing small amplitude electrical noise. Furthermore, we show that deterministic switching between metastable superconducting states with different numbers of phase-slip centres can be achieved in both directions with small electrical current pulse perturbations of appropriate polarity. The observed current-controlled bi-stability is in remarkable agreement with theoretically predicted trajectories of the system switching between different limit cycle solutions of a model one-dimensional superconductor. PMID:26687762

  3. Argon purge gas cooled by chill box

    NASA Technical Reports Server (NTRS)

    Spiro, L. W.

    1966-01-01

    Cooling argon purge gas by routing it through a shop-fabricated chill box reduces charring of tungsten inert gas torch head components. The argon gas is in a cooled state as it enters the torch and prevents buildup of char caused by the high concentrations of heat in the weld area during welding operations.

  4. Spontaneous SUSY breaking with anomalous U(1) symmetry by meta-stable vacuum

    SciTech Connect

    Nishino, Hiroyuki

    2008-11-23

    We will discuss a SUSY breaking model with anomalous U(1) symmetry. We discard R-symmetry and allow non-renormalizable terms for the model. It will be shown that certain class of models, where the number of positively charged fields is larger than that of negatively charged fields, can have meta-stable SUSY breaking vacuum.

  5. Short-range Ising spin glasses: The metastate interpretation of replica symmetry breaking

    NASA Astrophysics Data System (ADS)

    Read, N.

    2014-09-01

    Parisi's formal replica-symmetry-breaking (RSB) scheme for mean-field spin glasses has long been interpreted in terms of many pure states organized ultrametrically. However, the early version of this interpretation, as applied to the short-range Edwards-Anderson model, runs into problems because as shown by Newman and Stein (NS) it does not allow for chaotic size dependence, and predicts non-self-averaging that cannot occur. NS proposed the concept of the metastate (a probability distribution over infinite-size Gibbs states in a given sample that captures the effects of chaotic size dependence) and a nonstandard interpretation of the RSB results in which the metastate is nontrivial and is responsible for what was called non-self-averaging. In this picture, each state drawn from the metastate has the ultrametric properties of the old theory, but when the state is averaged using the metastate, the resulting mixed state has little structure. This picture was constructed so as to agree both with the earlier RSB results and with rigorous results. Here we use the effective field theory of RSB, in conjunction with the rigorous definitions of pure states and the metastate in infinite-size systems, to show that the nonstandard picture follows directly from the RSB mean-field theory. In addition, the metastate-averaged state possesses power-law correlations throughout the low-temperature phase; the corresponding exponent ζ takes the value 4 according to the field theory in high dimensions d, and describes the effective fractal dimension of clusters of spins. Further, the logarithm of the number of pure states in the decomposition of the metastate-averaged state that can be distinguished if only correlations in a window of size W can be observed is of order Wd -ζ. These results extend the nonstandard picture quantitatively; we show that arguments against this scenario are inconclusive. More generally, in terms of Parisi's function q (x), if q(0)≠∫01dxq(x ), then the

  6. Metastable dynamics in heterogeneous neural fields

    PubMed Central

    Schwappach, Cordula; Hutt, Axel; beim Graben, Peter

    2015-01-01

    We present numerical simulations of metastable states in heterogeneous neural fields that are connected along heteroclinic orbits. Such trajectories are possible representations of transient neural activity as observed, for example, in the electroencephalogram. Based on previous theoretical findings on learning algorithms for neural fields, we directly construct synaptic weight kernels from Lotka-Volterra neural population dynamics without supervised training approaches. We deliver a MATLAB neural field toolbox validated by two examples of one- and two-dimensional neural fields. We demonstrate trial-to-trial variability and distributed representations in our simulations which might therefore be regarded as a proof-of-concept for more advanced neural field models of metastable dynamics in neurophysiological data. PMID:26175671

  7. Metastable structure of Li13Si4

    NASA Astrophysics Data System (ADS)

    Gruber, Thomas; Bahmann, Silvia; Kortus, Jens

    2016-04-01

    The Li13Si4 phase is one out of several crystalline lithium silicide phases, which is a potential electrode material for lithium ion batteries and contains a high theoretical specific capacity. By means of ab initio methods like density functional theory (DFT) many properties such as heat capacity or heat of formation can be calculated. These properties are based on the calculation of phonon frequencies, which contain information about the thermodynamical stability. The current unit cell of "Li13Si4" given in the ICSD database is unstable with respect to DFT calculations. We propose a modified unit cell that is stable in the calculations. The evolutionary algorithm EVO found a structure very similar to the ICSD one with both of them containing metastable lithium positions. Molecular dynamic simulations show a phase transition between both structures where these metastable lithium atoms move. This phase transition is achieved by a very fast one-dimensional lithium diffusion and stabilizes this phase.

  8. Universal metastability of sickle hemoglobin polymerization

    NASA Astrophysics Data System (ADS)

    Weng, Weijun

    Sickle hemoglobin (HbS) is a natural mutation of the normal hemoglobin (HbA) found in the red blood cells of human body. Polymerization of HbS occurs when the concentration of deoxyHbS exceeds a well-defined solubility, which is the underlying cause of the Sickle Cell Disease. It has long been assumed that thermodynamic equilibrium is reached when polymerization comes to an end. However, in this thesis we demonstrate that in confined volume as well as in bulk solution, HbS polymerization terminates prematurely, leaving the solution in a metastable state. A newly developed Reservoir method as well as modulated excitation method were adopted for the study. This discovery of universal metastability gives us new insights into understanding the mechanism of sickle cell disease.

  9. Metastable dynamics in heterogeneous neural fields.

    PubMed

    Schwappach, Cordula; Hutt, Axel; Beim Graben, Peter

    2015-01-01

    We present numerical simulations of metastable states in heterogeneous neural fields that are connected along heteroclinic orbits. Such trajectories are possible representations of transient neural activity as observed, for example, in the electroencephalogram. Based on previous theoretical findings on learning algorithms for neural fields, we directly construct synaptic weight kernels from Lotka-Volterra neural population dynamics without supervised training approaches. We deliver a MATLAB neural field toolbox validated by two examples of one- and two-dimensional neural fields. We demonstrate trial-to-trial variability and distributed representations in our simulations which might therefore be regarded as a proof-of-concept for more advanced neural field models of metastable dynamics in neurophysiological data. PMID:26175671

  10. New metastable states in supercritical QED

    SciTech Connect

    Hirata, Y.S.; Minakata, H.

    1989-05-01

    It is shown that new metastable charge-neutral states exist in the supercritical phase of QED around a large-Z nucleus. They are the vibration modes of the induced electron cloud and therefore do not exist in the normal phase. Under the adiabatic approximation it is argued that the states mimic the stable particle states and may be responsible for the peak structure in e/sup +/e/sup -/ spectra found in heavy-ion-collision experiments.

  11. Optimized Markov state models for metastable systems

    NASA Astrophysics Data System (ADS)

    Guarnera, Enrico; Vanden-Eijnden, Eric

    2016-07-01

    A method is proposed to identify target states that optimize a metastability index amongst a set of trial states and use these target states as milestones (or core sets) to build Markov State Models (MSMs). If the optimized metastability index is small, this automatically guarantees the accuracy of the MSM, in the sense that the transitions between the target milestones is indeed approximately Markovian. The method is simple to implement and use, it does not require that the dynamics on the trial milestones be Markovian, and it also offers the possibility to partition the system's state-space by assigning every trial milestone to the target milestones it is most likely to visit next and to identify transition state regions. Here the method is tested on the Gly-Ala-Gly peptide, where it is shown to correctly identify the expected metastable states in the dihedral angle space of the molecule without a priori information about these states. It is also applied to analyze the folding landscape of the Beta3s mini-protein, where it is shown to identify the folded basin as a connecting hub between an helix-rich region, which is entropically stabilized, and a beta-rich region, which is energetically stabilized and acts as a kinetic trap.

  12. Detonation of Meta-stable Clusters

    SciTech Connect

    Kuhl, Allen; Kuhl, Allen L.; Fried, Laurence E.; Howard, W. Michael; Seizew, Michael R.; Bell, John B.; Beckner, Vincent; Grcar, Joseph F.

    2008-05-31

    We consider the energy accumulation in meta-stable clusters. This energy can be much larger than the typical chemical bond energy (~;;1 ev/atom). For example, polymeric nitrogen can accumulate 4 ev/atom in the N8 (fcc) structure, while helium can accumulate 9 ev/atom in the excited triplet state He2* . They release their energy by cluster fission: N8 -> 4N2 and He2* -> 2He. We study the locus of states in thermodynamic state space for the detonation of such meta-stable clusters. In particular, the equilibrium isentrope, starting at the Chapman-Jouguet state, and expanding down to 1 atmosphere was calculated with the Cheetah code. Large detonation pressures (3 and 16 Mbar), temperatures (12 and 34 kilo-K) and velocities (20 and 43 km/s) are a consequence of the large heats of detonation (6.6 and 50 kilo-cal/g) for nitrogen and helium clusters respectively. If such meta-stable clusters could be synthesized, they offer the potential for large increases in the energy density of materials.

  13. Stochastic basins of attraction for metastable states

    NASA Astrophysics Data System (ADS)

    Serdukova, Larissa; Zheng, Yayun; Duan, Jinqiao; Kurths, Jürgen

    2016-07-01

    Basin of attraction of a stable equilibrium point is an effective concept for stability analysis in deterministic systems; however, it does not contain information on the external perturbations that may affect it. Here we introduce the concept of stochastic basin of attraction (SBA) by incorporating a suitable probabilistic notion of basin. We define criteria for the size of the SBA based on the escape probability, which is one of the deterministic quantities that carry dynamical information and can be used to quantify dynamical behavior of the corresponding stochastic basin of attraction. SBA is an efficient tool to describe the metastable phenomena complementing the known exit time, escape probability, or relaxation time. Moreover, the geometric structure of SBA gives additional insight into the system's dynamical behavior, which is important for theoretical and practical reasons. This concept can be used not only in models with small noise intensity but also with noise whose amplitude is proportional or in general is a function of an order parameter. As an application of our main results, we analyze a three potential well system perturbed by two types of noise: Brownian motion and non-Gaussian α-stable Lévy motion. Our main conclusions are that the thermal fluctuations stabilize the metastable system with an asymmetric three-well potential but have the opposite effect for a symmetric one. For Lévy noise with larger jumps and lower jump frequencies ( α = 0.5 ) metastability is enhanced for both symmetric and asymmetric potentials.

  14. Stochastic basins of attraction for metastable states.

    PubMed

    Serdukova, Larissa; Zheng, Yayun; Duan, Jinqiao; Kurths, Jürgen

    2016-07-01

    Basin of attraction of a stable equilibrium point is an effective concept for stability analysis in deterministic systems; however, it does not contain information on the external perturbations that may affect it. Here we introduce the concept of stochastic basin of attraction (SBA) by incorporating a suitable probabilistic notion of basin. We define criteria for the size of the SBA based on the escape probability, which is one of the deterministic quantities that carry dynamical information and can be used to quantify dynamical behavior of the corresponding stochastic basin of attraction. SBA is an efficient tool to describe the metastable phenomena complementing the known exit time, escape probability, or relaxation time. Moreover, the geometric structure of SBA gives additional insight into the system's dynamical behavior, which is important for theoretical and practical reasons. This concept can be used not only in models with small noise intensity but also with noise whose amplitude is proportional or in general is a function of an order parameter. As an application of our main results, we analyze a three potential well system perturbed by two types of noise: Brownian motion and non-Gaussian α-stable Lévy motion. Our main conclusions are that the thermal fluctuations stabilize the metastable system with an asymmetric three-well potential but have the opposite effect for a symmetric one. For Lévy noise with larger jumps and lower jump frequencies ( α=0.5) metastability is enhanced for both symmetric and asymmetric potentials. PMID:27475077

  15. Isomerization dynamics and thermodynamics of ionic argon clusters

    NASA Astrophysics Data System (ADS)

    Calvo, F.; Gadéa, F. X.; Lombardi, A.; Aquilanti, V.

    2006-09-01

    The dynamics and thermodynamics of small Arn+ clusters, n =3, 6, and 9, are investigated using molecular dynamics (MD) and exchange Monte Carlo (MC) simulations. A diatomic-in-molecule Hamiltonian provides an accurate model for the electronic ground state potential energy surface. The microcanonical caloric curves calculated from MD and MC methods are shown to agree with each other, provided that the rigorous conservation of angular momentum is accounted for in the phase space density of the MC simulations. The previously proposed projective partition of the kinetic energy is used to assist MD simulations in interpreting the cluster dynamics in terms of inertial, internal, and external modes. The thermal behavior is correlated with the nature of the charged core in the cluster by computing a dedicated charge localization order parameter. We also perform systematic quenches to establish a connection with the various isomers. We find that the Ar3+ cluster is very stable in its linear ground state geometry up to about 300K, and then isomerizes to a T-shaped isomer in which a quasineutral atom lies around a charged dimer. In Ar6+ and Ar9+, the covalent trimer core is solvated by neutral atoms, and the weakly bound solvent shell melts at much lower energies, occasionally leading to a tetramer or pentamer core with weakly charged extremities. At high energies the core itself becomes metastable and the cluster transforms into Ar2+ solvated by a fluid of neutral argon atoms.

  16. Metastable Equilibria Among Aqueous Organic Compounds

    NASA Astrophysics Data System (ADS)

    Shock, E.; Shipp, J.; Yang, Z.; Gould, I. R.

    2011-12-01

    Metastable equilibrium states exist when reactions among a subset of compounds in a chemical system are reversible even though other irreversible reactions exist in the same system. The existence of metastable equilibrium among organic compounds was initially detected by comparing ratios of organic acid concentrations reported for oil-field brines (Shock, 1988, Geology 16, 886-890; Shock, 1989, Geology 17, 572-573), and calculating the same ratios for likely oxidation states determined by mineral assemblages and mixtures of hydrocarbons in coexisting petroleum (Shock, 1994, in: The Role of Organic Acids in Geological Processes, Springer). This led to the notion of extending the concept of metastable equilibrium states to explicitly account for petroleum compositions (Helgeson et al., 1993, GCA, 57, 3295-3339), which eventually yielded the concept of hydrolytic disproportionation of kerogens to produce petroleum and CO2(g) (Helgeson et al., 2009, GCA, 73, 594-695). Experimental tests of metastable equilibrium among organic compounds began with the identification of reversible reactions between alkanes and alkenes that are dependent on the H2 fugacity of the experimental system (Seewald, 1994, Nature 370, 285-287). These were followed with a comprehensive series of long-term experiments leading to the hypothesis that reversible reactions include alkanes, alkenes, alcohol, aldehydes, ketones and carboxylic acids (e.g., Seewald, 2001, GCA 65, 1641-1664; 2003, Nature 426, 327-333; McCollom & Seewald, 2003, GCA 67, 3645-3664). We have conducted sets of hydrothermal organic transformation experiments that test the extent to which these reactions are indeed reversible using aromatic and cyclic compounds. Results demonstrate reversibility for reactions among dibenzyl ketone, 1,3-diphenyl-2-propanol, 1,3-diphenylpropene and 1,3-diphenylpropane, as well as among methylcyclohexanes, methylcyclohexenes, methylcyclohexanols, methylcyclohexanones and methylcyclohexadienes. The

  17. Argon-39 Background in DUNE Photon Detectors

    NASA Astrophysics Data System (ADS)

    Sinev, Gleb; DUNE Collaboration

    2016-03-01

    The Deep Underground Neutrino Experiment (DUNE) is a 40-kt liquid argon detector that will be constructed 5000 ft underground in the Sanford Underground Research Facility in order to study neutrino and proton decay physics. Instrumenting liquid argon with photon detectors to record scintillation in addition to the ionization signal can significantly improve time and energy resolution of the experiment. Argon produces light with wavelength of 128 nm. The reference design for the photon detectors includes acrylic bars covered in wavelength shifter, where the scintillation light can be captured and reemitted with longer wavelengths, then detected using silicon photomultipliers. Radiological backgrounds may noticeably deteriorate the photon detection system performance, especially for low-energy interactions. A particularly important background comes from argon-39 decays, because argon-39 is present in natural argon that will be used in DUNE and the background rate increases with the size of the experiment. The effect of the argon-39 background has been studied and is presented in this talk.

  18. The interaction of the theophylline metastable phase with water vapor

    NASA Astrophysics Data System (ADS)

    Matvienko, A. A.; Boldyrev, V. V.; Sidel'Nikov, A. A.; Chizhik, S. A.

    2008-07-01

    The conditions of hydration of the stable and metastable theophylline phases were determined. Two-phase metastable phase/monohydrate and stable phase/monohydrate equilibrium pressures were measured at 25, 30, and 35°C. The metastable phase began to react with water vapor at lower relative humidities than the stable phase. Processes that occurred with the metastable and stable theophylline phases over various water pressure ranges were considered. The metastable phase exhibited an unusual behavior at 25°C and relative humidity 47%. At constant water vapor pressure and temperature, theophylline was initially hydrated and then lost water and again became anhydrous. Two consecutive processes occurred in the system, the formation of theophylline monohydrate from the metastable phase and its decomposition to the stable phase. The ratio between the rates of these processes determined the content of the monohydrate at the given time moment.

  19. The Use of Microelectrodes in the Study of the Effects of Electrolyte Composition, Potential and Metallurgical Condition on Nucleation and Metastable Pitting of Stainless Steel 316

    SciTech Connect

    Ilevbare, G O; Burstein, G T

    2004-09-23

    The study of stainless steel 316 has been undertaken in electrolytes containing various concentrations of chloride (Cl{sup -}) and perchlorate (ClO{sub 4}{sup -}) ions. The concentration of Cl{sup -} and ClO{sub 4}{sup -} in these electrolytes varied between 0.025 and 0.1 M in a variety of combinations. Results showed that the total number of nucleation and metastable pitting events increased as [Cl{sup -}] and potential increased. However, the percentage propagation rate of metastable pits from nucleations increased. The data also showed that the metallurgical condition of the specimen affected the number of nucleations and metastable pits generated.

  20. THE USE OF MICROELECTRODES IN THE STUDY OF THE EFFECTS OF ELECTROLYTE COMPOSITION, POTENTIAL AND METALLURGICAL CONDITION ON NUCLEATION AND METASTABLE PITTING OF STAINLESS STEEL 316

    SciTech Connect

    Ilevbare, G O; Burstein, G T

    2004-09-23

    The study of stainless steel 316 has been undertaken in electrolytes containing various concentrations of chloride (Cl{sup -}) and perchlorate (ClO{sub 4}{sup -}) ions. The concentration of Cl{sup -} and ClO{sub 4}{sup -} in these electrolytes varied between 0.025 and 0.1 M in a variety of combinations. Results showed that the total number of nucleation and metastable pitting events increased as [Cl{sup -}] and potential increased. However, the percentage propagation rate of metastable pits from nucleations increased. The data also showed that the metallurgical condition of the specimen affected the number of nucleations and metastable pits generated.

  1. Noise signatures of metastable resistivity states in ferromagnetic insulating manganite

    SciTech Connect

    Przybytek, J.; Fink-Finowicki, J.; Puźniak, R.; Markovich, V.; Jung, G.

    2015-07-28

    Pronounced noise signatures enabling one to discriminate metastable resistivity states in La{sub 0.86}Ca{sub 0.14}MnO{sub 3} single crystals have been observed. The normalized noise spectra for metastable resisitivity differ both in shape and magnitude, indicating that the metastable state is associated with transition of the electronic system into another local minimum of the potential landscape. Such scenario is consistent with freezing of the electronic system into a Coulomb glass state.

  2. 21 CFR 868.1075 - Argon gas analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Argon gas analyzer. 868.1075 Section 868.1075 Food... DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1075 Argon gas analyzer. (a) Identification. An argon gas analyzer is a device intended to measure the concentration of argon in a gas mixture to aid...

  3. 21 CFR 868.1075 - Argon gas analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Argon gas analyzer. 868.1075 Section 868.1075 Food... DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1075 Argon gas analyzer. (a) Identification. An argon gas analyzer is a device intended to measure the concentration of argon in a gas mixture to aid...

  4. 21 CFR 868.1075 - Argon gas analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Argon gas analyzer. 868.1075 Section 868.1075 Food... DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1075 Argon gas analyzer. (a) Identification. An argon gas analyzer is a device intended to measure the concentration of argon in a gas mixture to aid...

  5. 21 CFR 868.1075 - Argon gas analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Argon gas analyzer. 868.1075 Section 868.1075 Food... DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1075 Argon gas analyzer. (a) Identification. An argon gas analyzer is a device intended to measure the concentration of argon in a gas mixture to aid...

  6. Flexible Support Liquid Argon Heat Intercept

    SciTech Connect

    Rudland, D.L.; /Fermilab

    1987-05-18

    A device in the flexible support system for the Central Calorimeter is the Liquid Argon Heat Intercept. The purpose of this apparatus is to intercept heat outside the inner vessel so that bubbles do not form inside. If bubbles did happen to form inside the vessel, they would cause an electric arc between the read-out board and the absorption plates, thus destroying the pre-amplifier. Since this heat intercept is located in the center of the flexible support, it must also support the load of the Central Caloimeter. Figure 1 shows how the intercept works. The subcooled liquid argon is driven through a 1/4-inch x 0.049-inch w tube by hydrostatic pressure. the ambient heat boils the subcooled argon. The gaseous argon flows through the tube and is condensed at the top of the vessel by a 100 kW cooling coil. This process is rpesent in all four flexible support systems.

  7. Clinical periodontics with the argon laser

    NASA Astrophysics Data System (ADS)

    Finkbeiner, R. L.

    1995-04-01

    The argon laser has proven to be a valuable tool for the thermodynamic debridement of the periodontal lesion, incisions and tissue fusion. Illustrations of clinical applications and discussion of laser parameters will be provided.

  8. Transient Cognitive Dynamics, Metastability, and Decision Making

    PubMed Central

    Rabinovich, Mikhail I.; Huerta, Ramón; Varona, Pablo; Afraimovich, Valentin S.

    2008-01-01

    The idea that cognitive activity can be understood using nonlinear dynamics has been intensively discussed at length for the last 15 years. One of the popular points of view is that metastable states play a key role in the execution of cognitive functions. Experimental and modeling studies suggest that most of these functions are the result of transient activity of large-scale brain networks in the presence of noise. Such transients may consist of a sequential switching between different metastable cognitive states. The main problem faced when using dynamical theory to describe transient cognitive processes is the fundamental contradiction between reproducibility and flexibility of transient behavior. In this paper, we propose a theoretical description of transient cognitive dynamics based on the interaction of functionally dependent metastable cognitive states. The mathematical image of such transient activity is a stable heteroclinic channel, i.e., a set of trajectories in the vicinity of a heteroclinic skeleton that consists of saddles and unstable separatrices that connect their surroundings. We suggest a basic mathematical model, a strongly dissipative dynamical system, and formulate the conditions for the robustness and reproducibility of cognitive transients that satisfy the competing requirements for stability and flexibility. Based on this approach, we describe here an effective solution for the problem of sequential decision making, represented as a fixed time game: a player takes sequential actions in a changing noisy environment so as to maximize a cumulative reward. As we predict and verify in computer simulations, noise plays an important role in optimizing the gain. PMID:18452000

  9. Stability and metastability of bromine clathrate polymorphs.

    PubMed

    Nguyen, Andrew H; Molinero, Valeria

    2013-05-23

    Clathrate hydrates are crystals in which water forms a network of fully hydrogen-bonded polyhedral cages that contain small guests. Clathrate hydrates occur mostly in two cubic crystal polymorphs, sI and sII. Bromine is one of two guests that yield a hydrate with the tetragonal structure (TS), the topological dual of the Frank-Kasper σ phase. There has been a long-standing disagreement on whether bromine hydrate also forms metastable sI and sII crystals. To date there are no data on the thermodynamic range of stability (e.g., the melting temperatures) of the metastable polymorphs. Here we use molecular dynamics simulations with the coarse-grained model of water mW to (i) investigate the thermodynamic stability of the empty and guest-filled the sI, sII, TS, and HS-I hydrate polymorphs, (ii) develop a coarse-grained model of bromine compatible with mW water, and (iii) evaluate the stability of the bromine hydrate polymorphs. The mW model predicts the same relative energy of the empty clathrate polymorphs and the same phase diagram as a function of water-guest interaction than the fully atomistic TIP4P water model. There is a narrow region in water-guest parameter space for which TS is marginally more stable than sI or sII. We parametrize a coarse-grained model of bromine compatible with mW water and use it to determine the order of stability of the bromine hydrate polymorphs. The melting temperatures of the bromine hydrate polymorphs predicted by the coarse-grained model are 281 ± 1 K for TS, 279 ± 1 K for sII, and 276 ± 1 K for sI. The closeness of the melting temperatures supports the plausibility of formation of metastable sII and sI bromine hydrates.

  10. Metastable feshbach molecules in high rotational states.

    PubMed

    Knoop, S; Mark, M; Ferlaino, F; Danzl, J G; Kraemer, T; Nägerl, H-C; Grimm, R

    2008-02-29

    We experimentally demonstrate Cs2 Feshbach molecules well above the dissociation threshold, which are stable against spontaneous decay on the time scale of 1 s. An optically trapped sample of ultracold dimers is prepared in a high rotational state and magnetically tuned into a region with a negative binding energy. The metastable character of these molecules arises from the large centrifugal barrier in combination with negligible coupling to states with low rotational angular momentum. A sharp onset of dissociation with increasing magnetic field is mediated by a crossing with a lower rotational dimer state and facilitates dissociation on demand with a well-defined energy. PMID:18352621

  11. Noise-induced metastability in biochemical networks.

    PubMed

    Biancalani, Tommaso; Rogers, Tim; McKane, Alan J

    2012-07-01

    Intracellular biochemical reactions exhibit a rich dynamical phenomenology which cannot be explained within the framework of mean-field rate equations and additive noise. Here, we show that the presence of metastable states and radically different time scales are general features of a broad class of autocatalytic reaction networks, and that this fact may be exploited to gain analytical results. The latter point is demonstrated by a treatment of the paradigmatic Togashi-Kaneko reaction, which has resisted theoretical analysis for the last decade.

  12. Metastability in spin-polarized Fermi gases.

    PubMed

    Liao, Y A; Revelle, M; Paprotta, T; Rittner, A S C; Li, Wenhui; Partridge, G B; Hulet, R G

    2011-09-30

    We study the role of particle transport and evaporation on the phase separation of an ultracold, spin-polarized atomic Fermi gas. We show that the previously observed deformation of the superfluid paired core is a result of evaporative depolarization of the superfluid due to a combination of enhanced evaporation at the center of the trap and the inhibition of spin transport at the normal-superfluid phase boundary. These factors contribute to a nonequilibrium jump in the chemical potentials at the phase boundary. Once formed, the deformed state is highly metastable, persisting for times of up to 2 s. PMID:22107209

  13. Metastable phase formation in undercooled liquid lead alloys

    NASA Technical Reports Server (NTRS)

    Fecht, Hans J.

    1991-01-01

    During non-equilibrium processes metastable phases are formed instead of stable phases due to the operation of various kinetic or structural constraints. By removing the most effective nucleation sites for the stable phase using emulsified droplet samples, stable phase formation can be prohibited in a broad range of undercooling and the phase space available in the metastable regime can be mapped out. With this method the thermodynamic properties of the undercooled liquid and the metastable phase boundaries corresponding to reversible metastable (solid + liquid) phase equilibria are examined from experimental data. The analysis reveals important implications for the nucleation kinetics and the choice of the kinetically most favored solidification path.

  14. Excimer emission from microhollow cathode argon discharges

    NASA Astrophysics Data System (ADS)

    Moselhy, Mohamed; Petzenhauser, Isfried; Frank, Klaus; Schoenbach, Karl H.

    2003-12-01

    Microhollow cathode discharges (MHCDs) operated in rare gases are sources of intense excimer emission. Of particular interest is argon, because of its relatively low cost and the short wavelength (128 nm) of its excimer emission. The measured internal efficiency, obtained in static argon at atmospheric pressure, was found to be on the order of 1%. Flowing argon through a direct current (DC) MHCD at atmospheric pressure caused the argon excimer internal efficiency to increase to 6%, indicating that the low efficiency in static argon is mainly due to impurities. Applying 10 ns pulses to the DC plasma resulted in an increase in excimer power from 30 mW DC to 180 mW peak power, at an efficiency of 5-6%. The increase in excimer power correlates with an increase in the electron density. For DC operation, electron densities of 1015 cm-3 were measured in atmospheric pressure argon micro-plasmas, which increased to values beyond 1016 cm-3 for nanosecond pulsed operation. This increase in electron density and excimer power is due to pulsed electron heating, an effect that has allowed us to raise the mean electron energy from 1 eV, for DC operation, to 2.25 eV in the pulsed mode.

  15. MARLEY: Model of Argon Reaction Low Energy Yields

    NASA Astrophysics Data System (ADS)

    Gardiner, Steven; Bilton, Kyle; Grant, Christopher; Pantic, Emilija; Svoboda, Robert

    2015-10-01

    Core-collapse supernovae are sources of tremendous numbers of neutrinos with energies of up to about 50 MeV. In recent years, there has been growing interest in building detectors that are sensitive to supernova neutrinos. Such detectors can provide information about the initial stages of stellar collapse, early warning signals for light emission from supernovae, and opportunities to study neutrino oscillation physics over astronomical distances. In an effort to enable supernova neutrino detection in next-generation experiments like DUNE, the CAPTAIN collaboration plans to make the first direct measurement of cross sections for neutrino interactions on argon in the supernova energy regime. To help predict neutrino event signatures in the CAPTAIN liquid argon time projection chamber (LArTPC), we have developed a first-of-its-kind Monte Carlo event generator called MARLEY (Model of Argon Reaction Low Energy Yields). This generator attempts to model the complicated nuclear structure dependence of low-energy neutrino-nucleus reactions in sufficient detail for use in LArTPC simulations. In this talk we present some preliminary results calculated using MARLEY and discuss how the current version of the generator may be improved and expanded.

  16. Argon Collection And Purification For Proliferation Detection

    SciTech Connect

    Achey, R.; Hunter, D.

    2015-10-09

    In order to determine whether a seismic event was a declared/undeclared underground nuclear weapon test, environmental samples must be taken and analyzed for signatures that are unique to a nuclear explosion. These signatures are either particles or gases. Particle samples are routinely taken and analyzed under the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) verification regime as well as by individual countries. Gas samples are analyzed for signature gases, especially radioactive xenon. Underground nuclear tests also produce radioactive argon, but that signature is not well monitored. A radioactive argon signature, along with other signatures, can more conclusively determine whether an event was a nuclear test. This project has developed capabilities for collecting and purifying argon samples for ultra-low-background proportional counting. SRNL has developed a continuous gas enrichment system that produces an output stream containing 97% argon from whole air using adsorbent separation technology (the flow diagram for the system is shown in the figure). The vacuum swing adsorption (VSA) enrichment system is easily scalable to produce ten liters or more of 97% argon within twelve hours. A gas chromatographic separation using a column of modified hydrogen mordenite molecular sieve has been developed that can further purify the sample to better than 99% purity after separation from the helium carrier gas. The combination of these concentration and purification systems has the capability of being used for a field-deployable system for collecting argon samples suitable for ultra-low-background proportional counting for detecting nuclear detonations under the On-Site Inspection program of the CTBTO verification regime. The technology also has applications for the bulk argon separation from air for industrial purposes such as the semi-conductor industry.

  17. New Measurement of ^39Ar in Underground Argon with a Low Background Liquid Argon Detector

    NASA Astrophysics Data System (ADS)

    Xu, Jingke

    2012-03-01

    A low background liquid argon detector has been developed for sensitive measurements of the beta radioactive ^39Ar in argon from underground sources. The measurement is motivated by the need to improve on earlier studies that showed no sign of ^39Ar in certain sources of underground argon, but with a limited sensitivity of ˜ 5% relative to ^39Ar in atmospheric argon[1]. We will report preliminary measurements taken with the low background detector that was commissioned and operated at the Kimballton Underground Research Facility (KURF) in Virginia. A combination of passive and active background reduction techniques resulted in a very low background and a null result with sensitivity to ^39Ar less than 1% of atmospheric. The results confirm that underground argon is well suited for direct detection of dark matter WIMPs. [4pt] [1] D. Acosta-Kane et al., Nucl. Instr. Meth. A 587:46 (2008)

  18. Metastable isomers - A new class of interstellar molecules

    NASA Technical Reports Server (NTRS)

    Green, S.; Herbst, E.

    1979-01-01

    The abundances of a variety of metastable isomers of small organic molecules, analogous to HNC/HCN, in dense interstellar clouds are considered. These metastable species, some of which are thought to exist as intermediates in laboratory organic chemical reactions, are of considerable interest to chemists. Current ideas of gas-phase, ion-molecule chemistry are utilized to demonstrate that such metastable species should often be present in dense clouds in sufficient abundance to be observed. Unfortunately, the spectral constants of metastable isomers have rarely been determined in the laboratory, and quantum chemical calculations of a varying degree of accuracy must be utilized; results are included of some new quantum chemical calculations. The interstellar chemistry and expected microwave spectra of a representative sample of possibly important interstellar metastable isomers are discussed.

  19. Argon isotopic zoning in mantle phlogopite

    SciTech Connect

    Phillips, D.; Onstott, T.C.

    1988-06-01

    Incremental-heating and laser-probe /sup 40/Ar//sup 39/Ar analyses were performed on phlogopite extracted from a garnet-lherzolite mantle nodule entrained by the Precambrian (1200 Ma) Premier kimberlite, South Africa. The spatial resolution of the laser probe has enabled the characterization of argon isotopic zoning in a single phlogopite grain. An apparent age contour map records lower ages (1.2 Ga) along grain margins and high apparent ages (up to 2.4 Ga) at the core. The latter ages are caused by excess argon contamination and subsequent partial diffusive loss, and have no age significance. Comparison with step-heating results indicates that argon spatial distributions inferred from in-vacuo step-heating experiments are, at best, grossly approximate. Variations in the laser-probe apparent ages were observed only laterally across the phlogopite cleavage surface, indicating that argon transport occurs preferentially along phlogopite cleavage planes. Age profiles, when modeled using one-dimensional radial geometry (cylindrical coordinates), do not conform to classical Fick's law diffusion, suggesting that the characteristic dimension of diffusion for argon in phlogopite may be highly variable within individual grains.

  20. Metastable Atom Detection Using Solid N2

    NASA Astrophysics Data System (ADS)

    McConkey, William; Kedzierski, Wladek; Lukic, Dragan

    2014-05-01

    Over the years our laboratory has been a center for the use of rare-gas matrices at temperatures below 70K in the detection and study of low energy atomic and molecular metastable particles [see Kedzierski et al., Can J Phys, 91, 1044, (2013) for Refs]. Recently we have extended this work to study the use of a solid nitrogen matrix at temperatures below 35K as a detector of O(1S) atoms. This proves to be at least as sensitive as any rare gas matrix though the lifetime of the excimer formed in the matrix is somewhat longer (~ 20 μs) than what is observed in a Xe matrix for example. The detailed performance of the detector as a function of temperature and other parameters will be presented at the conference. The authors thank NSERC and CFI, (Canada), for financial support.

  1. Electrostatic trapping of metastable NH molecules

    SciTech Connect

    Hoekstra, Steven; Metsaelae, Markus; Zieger, Peter C.; Scharfenberg, Ludwig; Gilijamse, Joop J.; Meijer, Gerard; Meerakker, Sebastiaan Y. T. van de

    2007-12-15

    We report on the Stark deceleration and electrostatic trapping of {sup 14}NH (a{sup 1}{delta}) radicals. In the trap, the molecules are excited on the spin-forbidden A{sup 3}{pi}<-a{sup 1}{delta} transition and detected via their subsequent fluorescence to the X{sup 3}{sigma}{sup -} ground state. The 1/e trapping time is 1.4{+-}0.1 s, from which a lower limit of 2.7 s for the radiative lifetime of the a{sup 1}{delta}, v=0, J=2 state is deduced. The spectral profile of the molecules in the trapping field is measured to probe their spatial distribution. Electrostatic trapping of metastable NH followed by optical pumping of the trapped molecules to the electronic ground state is an important step toward accumulation of these radicals in a magnetic trap.

  2. Simulation of metastable CL-20 cluster structures

    NASA Astrophysics Data System (ADS)

    Degtyarenko, N. N.; Katin, K. P.; Maslov, M. M.

    2014-07-01

    Ensembles of C6H6N12O12 (CL-20) clusters with different types of intercluster bonds have been studied theoretically. The stability of such cluster has been investigated and the heights of potential barriers preventing their decomposition or isomerization have been determined by means of quantum-mechanical calculations based on the density functional theory and nonorthogonal tight-binding model. From the analysis of molecular dynamics data and potential energy hypersurface of these metastable configurations, it has been established that dimers and tetramers of CL-20 clusters are characterized by sufficiently high kinetic stability, which suggests the theoretical possibility of creation of high-energy covalent crystals on their basis.

  3. Metastable orientational order of colloidal discoids

    PubMed Central

    Hsiao, Lilian C.; Schultz, Benjamin A.; Glaser, Jens; Engel, Michael; Szakasits, Megan E.; Glotzer, Sharon C.; Solomon, Michael J.

    2015-01-01

    The interplay between phase separation and kinetic arrest is important in supramolecular self-assembly, but their effects on emergent orientational order are not well understood when anisotropic building blocks are used. Contrary to the typical progression from disorder to order in isotropic systems, here we report that colloidal oblate discoids initially self-assemble into short, metastable strands with orientational order—regardless of the final structure. The model discoids are suspended in a refractive index and density-matched solvent. Then, we use confocal microscopy experiments and Monte Carlo simulations spanning a broad range of volume fractions and attraction strengths to show that disordered clusters form near coexistence boundaries, whereas oriented strands persist with strong attractions. We rationalize this unusual observation in light of the interaction anisotropy imparted by the discoids. These findings may guide self-assembly for anisotropic systems in which orientational order is desired, such as when tailored mechanical properties are sought. PMID:26443082

  4. Metastable cosmic strings in realistic models

    SciTech Connect

    Holman, R.; Hsu, S.; Vachaspati, T.; Watkins, R. |

    1992-11-01

    The stability of the electroweak Z-string is investigated at high temperatures. The results show that, while finite temperature corrections can improve the stability of the Z-string, their effect is not strong enough to stabilize the Z-string in the standard electroweak model. Consequently, the Z-string will be unstable even under the conditions present during the electroweak phase transition. Phenomenologically viable models based on the gauge group SU(2){sub L} {times} SU(2) {sub R} {times} U(1){sub B-L} are then considered, and it is shown that metastable strings exist and are stable to small perturbations for a large region of the parameter space for these models. It is also shown that these strings are superconducting with bosonic charge carriers. The string superconductivity may be able to stabilize segments and loops against dynamical contraction. Possible implications of these strings for cosmology are discussed.

  5. Metastable cosmic strings in realistic models

    SciTech Connect

    Holman, R. . Dept. of Physics); Hsu, S. . Lyman Lab. of Physics); Vachaspati, T. . Dept. of Physics and Astronomy); Watkins, R. Fermi National Accelerator Lab., Batavia, IL )

    1992-01-01

    The stability of the electroweak Z-string is investigated at high temperatures. The results show that, while finite temperature corrections can improve the stability of the Z-string, their effect is not strong enough to stabilize the Z-string in the standard electroweak model. Consequently, the Z-string will be unstable even under the conditions present during the electroweak phase transition. Phenomenologically viable models based on the gauge group SU(2)[sub L] [times] SU(2) [sub R] [times] U(1)[sub B-L] are then considered, and it is shown that metastable strings exist and are stable to small perturbations for a large region of the parameter space for these models. It is also shown that these strings are superconducting with bosonic charge carriers. The string superconductivity may be able to stabilize segments and loops against dynamical contraction. Possible implications of these strings for cosmology are discussed.

  6. Selective removal of either metastable species from a mixed 3P 0,2 rare-gas metastable beam

    NASA Technical Reports Server (NTRS)

    Dunning, F. B.; Cook, T. B.; West, W. P.; Stebbings, R. F.

    1975-01-01

    A tunable CW laser has been used to selectively remove either of the two metastable species, 3P 0,2, which are initially present in a neon metastable beam. The method is applicable to other rare gases and provides the opportunity for separate investigation of effects due to atoms in either the 3P 0 or 3P 2 state.

  7. D0 Control Room Argon Test Cell Placement

    SciTech Connect

    Michael, J.; /Fermilab

    1991-04-01

    Due to the need of maintaining and providing high purity argon for the D0 experiment. it is necessary to have a purity verifying device readUy aVailable. The testing eqUipment used by the D0 cryo group is called the Argon Test Cell (ATC). It operates by taking a sample of the argon to be tested and running it through a test cell for purity determination. LiqUid nitrogen cooling loops are used to to keep the argon cold during the testing. The initial placement of the ATC was outside of the D0 Cryo Control Room. This was not a favorable place. mainly because of exposure to the elements on the operators and the device. A plan was made to move the ATe from outside to inside the control room. This would allow security. favorable environment conditions. and general overall improved access and operability. Havtng the ATC inside causes some concern over some issues. It is true that the ATC employs cryogenic piping components. so there is an ODH possibility ifthose components were to faU and leak. However. there are ways by which we can determine the ODH class fairly easily. Using the methods outlined in D0 EN-229. the components of the cryogenic pipelines are summed and grouped according to failure possibility and likely leakage upon failure. (Note that this is the reason that one type of component may be listed a multiple number of times in the appendix spreadsheet, as the different components have different possible leak rates. depending on position or size. etc.). The result is an ODH class 0. since the fatality rate has to be above 10{sup -7} for a hazard condition to be present. The fatality rates in this analysis only come within an order of magnitude of this safety limit due to using conservative estimates. Note that the 130 scfm fan must be active for the ODH status to remain O. The control room ventilation is on emergency power. An alarm attached to the fan will notify the operators of fan failure. but both the fan and the alarm can be turned off when they are not

  8. The CAPTAIN liquid argon neutrino experiment

    SciTech Connect

    Liu, Qiuguang

    2015-01-01

    The CAPTAIN liquid argon experiment is designed to make measurements of scientific importance to long-baseline neutrino physics and physics topics that will be explored by large underground detectors. The experiment employs two detectors – a primary detector with approximately 10-ton of liquid argon that will be deployed at different facilities for physics measurements and a prototype detector with 2-ton of liquid argon for configuration testing. The physics programs for CAPTAIN include measuring neutron interactions at Los Alamos Neutron Science Center, measuring neutrino interactions in medium energy regime (1.5–5 GeV) at Fermilab's NuMI beam, and measuring neutrino interactions in low energy regime (< 50 MeV) at stopped pion sources for supernova neutrino studies.

  9. High-pressure stabilization of argon fluorides.

    PubMed

    Kurzydłowski, Dominik; Zaleski-Ejgierd, Patryk

    2016-01-28

    On account of the rapid development of noble gas chemistry in the past half-century both xenon and krypton compounds can now be isolated in macroscopic quantities. The same does not hold true for the next lighter group 18 element, argon, which forms only isolated molecules stable solely in low temperature matrices or supersonic jet streams. Here we present theoretical investigations into a new high-pressure reaction pathway, which enables synthesis of argon fluorides in bulk and at room temperature. Our hybrid DFT calculations (employing the HSE06 functional) indicate that above 60 GPa ArF2-containing molecular crystals can be obtained by a reaction between argon and molecular fluorine. PMID:26742478

  10. The CAPTAIN liquid argon neutrino experiment

    DOE PAGESBeta

    Liu, Qiuguang

    2015-01-01

    The CAPTAIN liquid argon experiment is designed to make measurements of scientific importance to long-baseline neutrino physics and physics topics that will be explored by large underground detectors. The experiment employs two detectors – a primary detector with approximately 10-ton of liquid argon that will be deployed at different facilities for physics measurements and a prototype detector with 2-ton of liquid argon for configuration testing. The physics programs for CAPTAIN include measuring neutron interactions at Los Alamos Neutron Science Center, measuring neutrino interactions in medium energy regime (1.5–5 GeV) at Fermilab's NuMI beam, and measuring neutrino interactions in low energymore » regime (< 50 MeV) at stopped pion sources for supernova neutrino studies.« less

  11. Characterization of argon direct-current glow discharge with a longitudinal electric field applied at ambient air

    PubMed Central

    Jiang, Weiman; Tang, Jie; Wang, Yishan; Zhao, Wei; Duan, Yixiang

    2014-01-01

    A direct-current-driven plasma jet is developed by applying a longitudinal electric field on the flowing argon at ambient air. This plasma shows a torch shape with its cross-section increased from the anode to the cathode. Comparison with its counterparts indicates that the gas flow plays a key role in variation of the plasma structure and contributes much to enlarging the plasma volume. It is also found that the circular hollow metal base promotes generation of plasma with a high-power volume density in a limited space. The optical emission spectroscopy (OES) diagnosis indicates that the plasma comprises many reactive species, such as OH, O, excited N2, and Ar metastables. Examination of the rotational and vibrational temperature indicates that the plasma is under nonequilibrium condition and the excited species OH(A 2Σ+), O(5P), and N2(C 3Πu) are partly generated by energy transfer from argon metastables. The spatially resolved OES of plasma reveals that the negative glow, Faraday dark space, and positive column are distributed across the gas gap. The absence of the anode glow is attributed to the fact that many electrons in the vicinity of the anode follow ions into the positive column due to the ambipolar diffusion in the flowing gas. PMID:25205176

  12. Excimer Emission from Argon Microhollow Cathode Discharges

    NASA Astrophysics Data System (ADS)

    Moselhy, Mohamed; Schoenbach, Karl H.

    2002-10-01

    Excimer emission from direct current microhollow cathode discharges had been studied for rare gases and mixtures of rare gases and halides as working gases [1]. In static xenon, the dc efficiency was measured as 6%-9%. In static argon, however, the efficiency is only on the order of 1%. This relatively low value was found to be due to excimer quenching processes caused by impurities. By flowing the argon, rather than operating under static conditions we could increase the efficiency to 6%. Applying a 10 ns pulse of 600 V to the DC discharge in argon resulted in an increased intensity by a factor of six. The decay time for argon excimer emission was found to be 500 ns, indicating that quenching processes even with purging of the discharge chamber are still more effective by a factor of six in depopulating the excimer level than excimer radiation. The major quenching effect is based on resonant energy transfer from the argon excimer to atomic oxygen [2]. The addition of small amounts of oxygen allowed us therefore to convert the argon excimer emission centered at 128 nm into narrowband emission at 130.4 nm (oxygen triplet) with an optical power of up to 13 mW.This material was supported by NSF (CTS-0078618).[1] Karl H. Schoenbach, Ahmed El-Habachi, Mohamed M. Moselhy, Wenhui Shi, and Robert H. Stark, Physics of Plasmas 7, 2186 (2000). [2] M. Moselhy, R.H. Stark, K.H. Schoenbach, and U. Kogelschatz, Appl. Phys. Lett. 78, 880 (2001).

  13. Solid-liquid phase transition in argon

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Tang, H. T.

    1978-01-01

    Starting from the Lennard-Jones interatomic potential, a modified cell theory has been used to describe the solid-liquid phase transition in argon. The cell-size variations may be evaluated by a self-consistent condition. With the inclusion of cell-size variations, the transition temperature, the solid and liquid densities, and the liquid-phase radial-distribution functions have been calculated. These ab initio results are in satisfactory agreement with molecular-dynamics calculations as well as experimental data on argon.

  14. Energy of the quasifree electron in argon and krypton

    SciTech Connect

    Evans, C.M.; Findley, G.L.

    2005-08-15

    Field ionization measurements of CH{sub 3}I and C{sub 2}H{sub 5}I dopant high-n molecular Rydberg states in argon and krypton perturbers are presented as a function of perturber number density along various isotherms up to the density of the triple point liquid. Using these data, a new local Wigner-Seitz model for the density-dependent energy V{sub 0}({rho}{sub P}) of a quasifree electron in argon and krypton is developed. This model, which contains only one adjustable parameter, uses a local Wigner-Seitz radius derived from the local number density rather than from the bulk number density, includes a statistical mechanical calculation of both the ion/medium polarization energy and the electron/medium polarization energy, and includes the thermal kinetic energy of the quasifree electron. Using this model, V{sub 0}({rho}{sub P}) and the perturber-induced energy shift of the dopant ionization potential {delta}{sub D}({rho}{sub P}) are calculated to within {+-}0.1% of experiment. Previously reported V{sub 0}({rho}{sub P}) data for xenon are also shown to be interpretable within this new model.

  15. Enhancement of stability in systems with metastable states

    SciTech Connect

    Spagnolo, B.; Augello, G.; Pizzolato, N.; Valenti, D.; Fiasconaro, A.

    2007-12-06

    The investigation of noise-induced phenomena in far from equilibrium systems is one of the approach used to understand the behaviour of physical and biological complex systems. Metastability is a generic feature of many nonlinear systems, and the problem of the lifetime of metastable states involves fundamental aspects of nonequilibrium statistical mechanics. The enhancement of the life-time of metastable states through the noise enhanced stability effect and the role played by the resonant activation phenomenon will be discussed in models of interdisciplinary physics: (i) Ising model (ii) Josephson junction; (iii) stochastic FitzHugh-Nagumo model; (iv) a population dynamics model, and (v) a market model with stochastic volatility.

  16. Study of a contracted glow in low-frequency plasma-jet discharges operating with argon

    SciTech Connect

    Minotti, F.; Giuliani, L.; Xaubet, M.; Grondona, D.

    2015-11-15

    In this work, we present an experimental and theoretical study of a low frequency, atmospheric plasma-jet discharge in argon. The discharge has the characteristics of a contracted glow with a current channel of submillimeter diameter and a relatively high voltage cathode layer. In order to interpret the measurements, we consider the separate modeling of each region of the discharge: main channel and cathode layer, which must then be properly matched together. The main current channel was modeled, extending a previous work, as similar to an arc in which joule heating is balanced by lateral heat conduction, without thermal equilibrium between electrons and heavy species. The cathode layer model, on the other hand, includes the emission of secondary electrons by ion impact and by additional mechanisms, of which we considered emission due to collision of atoms excited at metastable levels, and field-enhanced thermionic emission (Schottky effect). The comparison of model and experiment indicates that the discharge can be effectively sustained in its contracted form by the secondary electrons emitted by collision of excited argon atoms, whereas thermionic emission is by far insufficient to provide the necessary electrons.

  17. Study of a contracted glow in low-frequency plasma-jet discharges operating with argon

    NASA Astrophysics Data System (ADS)

    Minotti, F.; Giuliani, L.; Xaubet, M.; Grondona, D.

    2015-11-01

    In this work, we present an experimental and theoretical study of a low frequency, atmospheric plasma-jet discharge in argon. The discharge has the characteristics of a contracted glow with a current channel of submillimeter diameter and a relatively high voltage cathode layer. In order to interpret the measurements, we consider the separate modeling of each region of the discharge: main channel and cathode layer, which must then be properly matched together. The main current channel was modeled, extending a previous work, as similar to an arc in which joule heating is balanced by lateral heat conduction, without thermal equilibrium between electrons and heavy species. The cathode layer model, on the other hand, includes the emission of secondary electrons by ion impact and by additional mechanisms, of which we considered emission due to collision of atoms excited at metastable levels, and field-enhanced thermionic emission (Schottky effect). The comparison of model and experiment indicates that the discharge can be effectively sustained in its contracted form by the secondary electrons emitted by collision of excited argon atoms, whereas thermionic emission is by far insufficient to provide the necessary electrons.

  18. Measurement of the metastable lifetime for the 2s^2 2p^2 ^1So level in O^2+

    NASA Technical Reports Server (NTRS)

    Smith, S. J.; Cadez, I.; Chutjian, A.; Niimura, M.

    2004-01-01

    The radiative lifetime of the 1S0 level was found to be 540 +/- 27 ms. This is in good agreement with a previous measurement and with a number of theoretical calculations. Metastable lifetimes, when combined with collisional excitation rates, can provide a diagnostic for electron density Ne in a stellar or solar plasma.

  19. SLD liquid argon calorimeter prototype test results

    SciTech Connect

    Dubois, R.; Eigen, G.; Au, Y.; Sleeman, J.; Breidenbach, M.; Brau, J.; Ludgate, G.A.; Oram, C.J.; Cook, V.; Johnson, J.

    1985-10-01

    The results of the SLD test beam program for the selection of a calorimeter radiator composition within a liquid argon system are described, with emphasis on the study of the use of uranium to obtain equalization of pion and electron responses.

  20. Diffusion of cyclooctane (1); argon (2)

    NASA Astrophysics Data System (ADS)

    Winkelmann, J.

    This document is part of Subvolume A `Gases in Gases, Liquids and their Mixtures' of Volume 15 `Diffusion in Gases, Liquids and Electrolytes' of Landolt-Börnstein Group IV `Physical Chemistry'. It is part of the chapter of the chapter `Diffusion in Pure Gases' and contains data on diffusion of (1) cyclooctane; (2) argon

  1. Diamond film growth argon-carbon plasmas

    DOEpatents

    Gruen, Dieter M.; Krauss, Alan R.; Liu, Shengzhong; Pan, Xianzheng; Zuiker, Christopher D.

    1998-01-01

    A method and system for manufacturing diamond film. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrogen and hydrocarbon and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous and deposition of a diamond film on a substrate.

  2. Argon Dewar Required Relief Flow Capacity

    SciTech Connect

    Fitzpatrick, J.B.; /Fermilab

    1987-09-28

    This report calculates the required fire relief valve flow capacity, the required vaporizer failure relief valve flow capacity, and the required loss of vacuum relief valve flow capacity of the liquid argon storage tank in use at the D-Zero site.

  3. Thermal evolution of Venus with argon degassing

    NASA Astrophysics Data System (ADS)

    O'Rourke, Joseph G.; Korenaga, Jun

    2015-11-01

    Decades-old measurements of atmospheric and elemental surface composition constrain the history of Venus. In this study, we search for a model featuring continuous evolution in the stagnant-lid regime that predicts the present-day atmospheric mass of radiogenic argon and satisfies the other available constraints. For comparison, we also consider the end-member scenario of a single catastrophic resurfacing event. Thermal evolution simulations are performed that track the mass transport of argon and potassium and include a simple model of upwelling mantle plumes. Sensitivity analyses and linear regression are used to quantify the range of initial conditions that will produce desired values for key model output parameters. Decompression melting of passively upwelling mantle causes considerable mantle processing and crustal growth during the early evolution of Venus. Mantle plumes have negligible effects on recent crustal production, but may be important to local surface features. For a wide range of initial conditions, continuous evolution in the stagnant-lid regime predicts the correct amount of argon degassing, along with the absence of a global magnetic field, crustal and lithosphere thicknesses matching modern estimates, and volcanism consistent with the cratering record. Argon degassing does not uniquely constrain mantle dynamics, but the success of simple stagnant-lid models diminishes the need to invoke dramatic changes like catastrophic resurfacing.

  4. Argon frost continuous cryopump for fusion applications

    SciTech Connect

    Foster, C.A.; McCurdy, H.C.

    1993-12-01

    A cryopumping system based on the snail continuous cryopump concept is being developed for fusion applications under a DOE SBIR grant. The primary pump is a liquid helium cooled compound pump designed to continuously pump and fractionate deuterium/tritium and helium. The D/T pumping stage is a 500 mm bore cryocondensation pump with a nominal pumping speed of 45,000 L/s. It will be continuously regenerated by a snail regeneration by head every 12 minutes. Continuous regeneration will dramatically reduce the vulnerable tritium inventory in a fusion reactor. Operating at an inlet pressure of 1 millitorr, eight of these pumps could pump the projected D/T flow in the ITER CDA design while reducing the inventory of tritium in the pumping system from 630 to 43 grams. The helium fraction will be pumped in a compound argon frost stage. This stage will also operate continuously with a snail regeneration head. In addition the argon spray head will be enclosed inside the snail, thereby removing gaseous argon from the process chamber. Since the cryocondensation stage will intercept over 90% of the D/T/H steam, a purified stream from this stage could be directly reinjected into the plasma as gas or pellets, thereby bypassing the isotope separation system and further simplifying the fuel cycle. Experiments were undertaken in Phase I which demonstrated continuous cryosorption pumping of hydrogen on CO{sub 2} and argon frosts. The pumping system and its relevance to fusion reactor pumping will be discussed.

  5. Antiapoptotic activity of argon and xenon.

    PubMed

    Spaggiari, Sabrina; Kepp, Oliver; Rello-Varona, Santiago; Chaba, Kariman; Adjemian, Sandy; Pype, Jan; Galluzzi, Lorenzo; Lemaire, Marc; Kroemer, Guido

    2013-08-15

    Although chemically non-reactive, inert noble gases may influence multiple physiological and pathological processes via hitherto uncharacterized physical effects. Here we report a cell-based detection system for assessing the effects of pre-defined gas mixtures on the induction of apoptotic cell death. In this setting, the conventional atmosphere for cell culture was substituted with gas combinations, including the same amount of oxygen (20%) and carbon dioxide (5%) but 75% helium, neon, argon, krypton, or xenon instead of nitrogen. The replacement of nitrogen with noble gases per se had no effects on the viability of cultured human osteosarcoma cells in vitro. Conversely, argon and xenon (but not helium, neon, and krypton) significantly limited cell loss induced by the broad-spectrum tyrosine kinase inhibitor staurosporine, the DNA-damaging agent mitoxantrone and several mitochondrial toxins. Such cytoprotective effects were coupled to the maintenance of mitochondrial integrity, as demonstrated by means of a mitochondrial transmembrane potential-sensitive dye and by assessing the release of cytochrome c into the cytosol. In line with this notion, argon and xenon inhibited the apoptotic activation of caspase-3, as determined by immunofluorescence microscopy coupled to automated image analysis. The antiapoptotic activity of argon and xenon may explain their clinically relevant cytoprotective effects. PMID:23907115

  6. Antiapoptotic activity of argon and xenon.

    PubMed

    Spaggiari, Sabrina; Kepp, Oliver; Rello-Varona, Santiago; Chaba, Kariman; Adjemian, Sandy; Pype, Jan; Galluzzi, Lorenzo; Lemaire, Marc; Kroemer, Guido

    2013-08-15

    Although chemically non-reactive, inert noble gases may influence multiple physiological and pathological processes via hitherto uncharacterized physical effects. Here we report a cell-based detection system for assessing the effects of pre-defined gas mixtures on the induction of apoptotic cell death. In this setting, the conventional atmosphere for cell culture was substituted with gas combinations, including the same amount of oxygen (20%) and carbon dioxide (5%) but 75% helium, neon, argon, krypton, or xenon instead of nitrogen. The replacement of nitrogen with noble gases per se had no effects on the viability of cultured human osteosarcoma cells in vitro. Conversely, argon and xenon (but not helium, neon, and krypton) significantly limited cell loss induced by the broad-spectrum tyrosine kinase inhibitor staurosporine, the DNA-damaging agent mitoxantrone and several mitochondrial toxins. Such cytoprotective effects were coupled to the maintenance of mitochondrial integrity, as demonstrated by means of a mitochondrial transmembrane potential-sensitive dye and by assessing the release of cytochrome c into the cytosol. In line with this notion, argon and xenon inhibited the apoptotic activation of caspase-3, as determined by immunofluorescence microscopy coupled to automated image analysis. The antiapoptotic activity of argon and xenon may explain their clinically relevant cytoprotective effects.

  7. Hydrodynamic Simulations of Gaseous Argon Shock Experiments

    NASA Astrophysics Data System (ADS)

    Garcia, Daniel; Dattelbaum, Dana; Goodwin, Peter; Morris, John; Sheffield, Stephen; Burkett, Michael

    2015-06-01

    The lack of published Argon gas shock data motivated an evaluation of the Argon Equation of State (EOS) in gas phase initial density regimes never before reached. In particular, these regimes include initial pressures in the range of 200-500 psi (0.025 - 0.056 g/cc) and initial shock velocities around 0.2 cm/ μs. The objective of the numerical evaluation was to develop a physical understanding of the EOS behavior of shocked and subsequently multiply re-shocked Argon gas initially pressurized to 200-500 psi through Pagosa numerical hydrodynamic simulations utilizing the SESAME equation of state. Pagosa is a Los Alamos National Laboratory 2-D and 3-D Eulerian hydrocode capable of modeling high velocity compressible flow with multiple materials. The approach involved the use of gas gun experiments to evaluate the shock and multiple re-shock behavior of pressurized Argon gas to validate Pagosa simulations and the SESAME EOS. Additionally, the diagnostic capability within the experiments allowed for the EOS to be fully constrained with measured shock velocity, particle velocity and temperature. The simulations demonstrate excellent agreement with the experiments in the shock velocity/particle velocity space, but note unanticipated differences in the ionization front temperatures.

  8. Multishock Compression Properties of Warm Dense Argon

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Chen, Qifeng; Yunjun, Gu; Li, Zhiguo; Shen, Zhijun

    2015-10-01

    Warm dense argon was generated by a shock reverberation technique. The diagnostics of warm dense argon were performed by a multichannel optical pyrometer and a velocity interferometer system. The equations of state in the pressure-density range of 20-150 GPa and 1.9-5.3 g/cm3 from the first- to fourth-shock compression were presented. The single-shock temperatures in the range of 17.2-23.4 kK were obtained from the spectral radiance. Experimental results indicates that multiple shock-compression ratio (ηi = ρi/ρ0) is greatly enhanced from 3.3 to 8.8, where ρ0 is the initial density of argon and ρi (i = 1, 2, 3, 4) is the compressed density from first to fourth shock, respectively. For the relative compression ratio (ηi’ = ρi/ρi-1), an interesting finding is that a turning point occurs at the second shocked states under the conditions of different experiments, and ηi’ increases with pressure in lower density regime and reversely decreases with pressure in higher density regime. The evolution of the compression ratio is controlled by the excitation of internal degrees of freedom, which increase the compression, and by the interaction effects between particles that reduce it. A temperature-density plot shows that current multishock compression states of argon have distributed into warm dense regime.

  9. Multishock Compression Properties of Warm Dense Argon.

    PubMed

    Zheng, Jun; Chen, Qifeng; Yunjun, Gu; Li, Zhiguo; Shen, Zhijun

    2015-01-01

    Warm dense argon was generated by a shock reverberation technique. The diagnostics of warm dense argon were performed by a multichannel optical pyrometer and a velocity interferometer system. The equations of state in the pressure-density range of 20-150 GPa and 1.9-5.3 g/cm(3) from the first- to fourth-shock compression were presented. The single-shock temperatures in the range of 17.2-23.4 kK were obtained from the spectral radiance. Experimental results indicates that multiple shock-compression ratio (ηi = ρi/ρ0) is greatly enhanced from 3.3 to 8.8, where ρ0 is the initial density of argon and ρi (i = 1, 2, 3, 4) is the compressed density from first to fourth shock, respectively. For the relative compression ratio (ηi' = ρi/ρi-1), an interesting finding is that a turning point occurs at the second shocked states under the conditions of different experiments, and ηi' increases with pressure in lower density regime and reversely decreases with pressure in higher density regime. The evolution of the compression ratio is controlled by the excitation of internal degrees of freedom, which increase the compression, and by the interaction effects between particles that reduce it. A temperature-density plot shows that current multishock compression states of argon have distributed into warm dense regime. PMID:26515505

  10. Keeping argon under a graphene lid-Argon intercalation between graphene and nickel(111)

    NASA Astrophysics Data System (ADS)

    Späth, Florian; Gotterbarm, Karin; Amende, Max; Bauer, Udo; Gleichweit, Christoph; Höfert, Oliver; Steinrück, Hans-Peter; Papp, Christian

    2016-01-01

    We report on the intercalation of graphene grown on a Ni(111) crystal with argon. Argon is implanted in the Ni(111) crystal by ion bombardment before graphene growth, and diffuses to the surface during the growth of graphene at elevated temperatures. Graphene acts as an atomically thin barrier and keeps the argon underneath. We investigated this system with high resolution X-ray photoelectron spectroscopy. From our experiments we determined the mean quantities of argon under graphene. From our analysis, a simple model to determine the pressure under the graphene layer is presented. In our measurements, we find an increased thermal stability of the intercalated graphene as compared to non-intercalated graphene on Ni(111).

  11. Model reduction for slow–fast stochastic systems with metastable behaviour

    SciTech Connect

    Bruna, Maria; Chapman, S. Jonathan; Smith, Matthew J.

    2014-05-07

    The quasi-steady-state approximation (or stochastic averaging principle) is a useful tool in the study of multiscale stochastic systems, giving a practical method by which to reduce the number of degrees of freedom in a model. The method is extended here to slow–fast systems in which the fast variables exhibit metastable behaviour. The key parameter that determines the form of the reduced model is the ratio of the timescale for the switching of the fast variables between metastable states to the timescale for the evolution of the slow variables. The method is illustrated with two examples: one from biochemistry (a fast-species-mediated chemical switch coupled to a slower varying species), and one from ecology (a predator–prey system). Numerical simulations of each model reduction are compared with those of the full system.

  12. Model of a stationary microwave argon discharge at atmospheric pressure

    SciTech Connect

    Zhelyazkov, I.; Pencheva, M.; Benova, E.

    2008-03-19

    The many applications of microwave gas discharges at atmospheric pressure in various fields of science, technology and medicine require an adequate model of these discharges. Such a model is based on the electromagnetic wave's propagation properties and on the elementary processes in the discharge bulk. In contrast to the microwave discharges at low-gas pressures, where many elementary processes might be ignored because of their negligible contribution to the electron and heavy particle's balance equations, for such discharges at atmospheric pressure the consideration of a large number of collisional processes is mandatory. For the build of a successful discharge-column model one needs three important quantities, notably the power {theta} necessary for sustaining an electron - ion pair, electron - neutral collision frequency for momentum transfer v{sub en}, and gas temperature T{sub g}. The first two key parameters are obtained by a collisional-radiative model of the argon at atmospheric pressure, while the microwave frequency {omega}/2{pi} = 2.45 GHz, plasma column radius R, gas pressure p and gas temperature T{sub g} are fixed external parameters determined by the experimental conditions. Here, we present a model of a capillary argon microwave plasma column with a length L {approx_equal} 14 cm, sustained by wave power of 110 W - the model yields the longitudinal distributions of the plasma density, expended wave power, wave electric field magnitude, and complex wave number.

  13. 46 CFR 151.50-36 - Argon or nitrogen.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Argon or nitrogen. 151.50-36 Section 151.50-36 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-36 Argon or nitrogen. (a) A cargo tank that contains argon or nitrogen and that has a maximum allowable working pressure of 172 kPa...

  14. 46 CFR 151.50-36 - Argon or nitrogen.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Argon or nitrogen. 151.50-36 Section 151.50-36 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-36 Argon or nitrogen. (a) A cargo tank that contains argon or nitrogen and that has a maximum allowable working pressure of 172 kPa...

  15. 46 CFR 151.50-36 - Argon or nitrogen.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Argon or nitrogen. 151.50-36 Section 151.50-36 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-36 Argon or nitrogen. (a) A cargo tank that contains argon or nitrogen and that has a maximum allowable working pressure of 172 kPa...

  16. 46 CFR 151.50-36 - Argon or nitrogen.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Argon or nitrogen. 151.50-36 Section 151.50-36 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-36 Argon or nitrogen. (a) A cargo tank that contains argon or nitrogen and that has a maximum allowable working pressure of 172 kPa...

  17. 46 CFR 151.50-36 - Argon or nitrogen.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Argon or nitrogen. 151.50-36 Section 151.50-36 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-36 Argon or nitrogen. (a) A cargo tank that contains argon or nitrogen and that has a maximum allowable working pressure of 172 kPa...

  18. Argon laser treatment of strawberry hemangioma in infancy.

    PubMed

    Achauer, B M; Vander Kam, V M

    1985-11-01

    Argon laser therapy is effective for removing port-wine stains and for reducing cutaneous vascular and pigmented lesions. Strawberry hemangiomas, being much thicker lesions than port-wine stains, were considered not appropriate for argon laser treatment. Using argon laser therapy in 13 cases of strawberry hemangioma, we achieved poor to dramatic results. PMID:4082569

  19. Conversion of an atomic to a molecular argon ion and low pressure argon relaxation

    NASA Astrophysics Data System (ADS)

    M, N. Stankov; A, P. Jovanović; V, Lj Marković; S, N. Stamenković

    2016-01-01

    The dominant process in relaxation of DC glow discharge between two plane parallel electrodes in argon at pressure 200 Pa is analyzed by measuring the breakdown time delay and by analytical and numerical models. By using the approximate analytical model it is found that the relaxation in a range from 20 to 60 ms in afterglow is dominated by ions, produced by atomic-to-molecular conversion of Ar+ ions in the first several milliseconds after the cessation of the discharge. This conversion is confirmed by the presence of double-Gaussian distribution for the formative time delay, as well as conversion maxima in a set of memory curves measured in different conditions. Finally, the numerical one-dimensional (1D) model for determining the number densities of dominant particles in stationary DC glow discharge and two-dimensional (2D) model for the relaxation are used to confirm the previous assumptions and to determine the corresponding collision and transport coefficients of dominant species and processes. Project supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. ON171025).

  20. On the OES line-ratio technique in argon and argon-containing plasmas

    NASA Astrophysics Data System (ADS)

    Siepa, Sarah; Danko, Stephan; Tsankov, Tsanko V.; Mussenbrock, Thomas; Czarnetzki, Uwe

    2014-11-01

    Optical emission spectroscopy is used to investigate capacitively coupled argon and argon-hydrogen-silane plasmas. The argon collisional-radiative model (CRM) used to extract the electron density and temperature from the spectra is presented. The electron energy distribution function, which is an input parameter to the model, is discussed in detail. Its strong variation with pressure is found to significantly influence the results for the (effective) temperature. For the analysis of the spectra the common line-ratio technique is applied. Special attention is paid to the choice of lines and a pair of line-ratios for optimum accuracy is suggested. For the argon gas mixture at high partial pressure of the admixed molecular gases the CRM reduces to a corona-like model, extended by a quenching term. The line-ratio method is found to fail under these conditions due to the strong depopulation of the argon 1s states. As a consequence, individual line intensities have to be used and an absolute calibration is required. An easy calibration method, which relies on the results obtained by the line-ratio method in pure argon, is proposed and applied.

  1. Metastable Polymerization of Sickle Hemoglobin in Droplets

    PubMed Central

    Aprelev, Alexey; Weng, Weijun; Zakharov, Mikhail; Rotter, Maria; Yosmanovich, Donna; Kwong, Suzanna; Briehl, Robin W.; Ferrone, Frank A.

    2007-01-01

    Sickle cell disease arises from a genetic mutation of one amino acid in each of the two hemoglobin β chains, leading to the polymerization of hemoglobin in the red cell upon deoxygenation, and is characterized by vascular crises and tissue damage due to the obstruction of small vessels by sickled cells. It has been an untested assumption that, in red cells that sickle, the growing polymer mass would consume monomers until the thermodynamically well-described monomer solubility was reached. By photolyzing droplets of sickle hemoglobin suspended in oil we find that polymerization does not exhaust the available store of monomers, but stops prematurely, leaving the solutions in a supersaturated, metastable state typically 20% above solubility at 37°C, though the particular values depend on the details of the experiment. We propose that polymer growth stops because the growing ends reach the droplet edge, whereas new polymer formation is thwarted by long nucleation times, since the hemoglobin concentration is lowered by depletion of monomers into the polymers that have formed. This finding suggests a new aspect to the pathophysiology of sickle cell disease, namely, that cells deoxygenated in the microcirculation are not merely undeformable, but will actively wedge themselves tightly against the walls of the microvasculature by a ratchet-like mechanism driven by the supersaturated solution. PMID:17493634

  2. Multistage Zeeman deceleration of metastable neon

    SciTech Connect

    Wiederkehr, Alex W.; Motsch, Michael; Hogan, Stephen D.; Andrist, Markus; Schmutz, Hansjuerg; Lambillotte, Bruno; Agner, Josef A.; Merkt, Frederic

    2011-12-07

    A supersonic beam of metastable neon atoms has been decelerated by exploiting the interaction between the magnetic moment of the atoms and time-dependent inhomogeneous magnetic fields in a multistage Zeeman decelerator. Using 91 deceleration solenoids, the atoms were decelerated from an initial velocity of 580 m/s to final velocities as low as 105 m/s, corresponding to a removal of more than 95% of their initial kinetic energy. The phase-space distribution of the cold, decelerated atoms was characterized by time-of-flight and imaging measurements, from which a temperature of 10 mK was obtained in the moving frame of the decelerated sample. In combination with particle-trajectory simulations, these measurements allowed the phase-space acceptance of the decelerator to be quantified. The degree of isotope separation that can be achieved by multistage Zeeman deceleration was also studied by performing experiments with pulse sequences generated for {sup 20}Ne and {sup 22}Ne.

  3. Propagation studies of metastable intermolecular composites (MIC).

    SciTech Connect

    Son, S. F.; Busse, J. R.; Asay, B. W.; Peterson, P. D.; Mang, J. T.; Bockmon, B.; Pantoya, M.

    2002-01-01

    Thermite materials are attractive energetic materials because the reactions are highly exothermic, have high energy densities, and high temperatures of combustion. However, the application of thermite materials has been limited because of the relative slow release of energy compared to other energetic materials. Engineered nano-scale composite energetic materials, such as Al/MoO{sub 3}, show promise for additional energetic material applications because they can react very rapidly. The composite material studied in this work consists of tailored, ultra-fine grain (30-200 nm diameter) aluminum particles that dramatically increase energy release rates of these thermite materials. These reactant clusters of fuel and oxidizer particles are in nearly atomic scale proximity to each other but are constrained from reaction until triggered. Despite the growing importance of nano-scale energetic materials, even the most basic combustion characteristics of these materials have not been thoroughly studied. This paper reports initial studies of the ignition and combustion of metastable intermolecular composites (MIC) materials. The goals were lo obtain an improved understanding of flame propagation mechanisms and combustion behaviors associated with nano-structured energetic materials. Information on issues such as reaction rate and behavior as a function of composition (mixture ratio), initial static charge, and particle size are essential and will allow scientists to design applications incorporating the benefits of these compounds. The materials have been characterized, specifically focusing on particle size, shape, distribution and morphology.

  4. Fast-imaging and spectroscopic analysis of atmospheric argon streamers for large gap arc breakdown

    NASA Astrophysics Data System (ADS)

    Pachuilo, Michael; Stefani, Francis; Bengtson, Roger; Raja, Laxminarayan

    2014-10-01

    A non-equilibrium plasma source has been developed to assist in the low-voltage arc breakdown of large electrode gaps. The source consists of a dielectric embedded wire helically wound around a confining cylindrical quartz chamber. Annular electrodes cap the ends of the quartz chamber. An argon feed gas is used to provide a uniform environment and exhausts to ambient atmospheric conditions. A negative polarity 50 kV trigger pulse is applied to the embedded trigger wire to initiate the arc breakdown. Application of the trigger pulse produces a localized coronal discharges along the inner surface of the quartz tube. The corona provides seed electrons through which streamers propagate from one of the main discharge electrode along the quartz surface until it reaches the opposite electrode to bridge the gap. Once the gap is bridged a spark over occurs and robust arc discharge is formed in the chamber volume. Fast imaging of the streamer propagation establishes its velocity in the range of ~ 100 km/s. Spectroscopy of the streamer discharge in atmospheric argon has been conducted and electron temperature and number density estimated from a collision radiative model. Argon spectrum is dominated by neutral argon lines in the 650--950 nm range, and singly ionized argon lines are observed in the ultra-violet to near UV (300--400 nm). Research was performed in connection with AFOSR Contract FA9550-11-1-0062.

  5. Towards a Theory of Metastability in Open Quantum Dynamics.

    PubMed

    Macieszczak, Katarzyna; Guţă, Mădălin; Lesanovsky, Igor; Garrahan, Juan P

    2016-06-17

    By generalizing concepts from classical stochastic dynamics, we establish the basis for a theory of metastability in Markovian open quantum systems. Partial relaxation into long-lived metastable states-distinct from the asymptotic stationary state-is a manifestation of a separation of time scales due to a splitting in the spectrum of the generator of the dynamics. We show here how to exploit this spectral structure to obtain a low dimensional approximation to the dynamics in terms of motion in a manifold of metastable states constructed from the low-lying eigenmatrices of the generator. We argue that the metastable manifold is in general composed of disjoint states, noiseless subsystems, and decoherence-free subspaces.

  6. Rates and mechanisms of metastable deactivation over surfaces

    NASA Astrophysics Data System (ADS)

    Rawlins, W. T.; Marinelli, W. J.; Woodward, A. M.; Kaufman, D.; Upschulte, B. L.

    1991-02-01

    The objective of this project was to investigate mechanisms of energy disposal in the quenching of rare gas and molecular metastable species upon collisions with practical surfaces representative of plasma reactors. An apparatus was designed and constructed to generate a molecular beam of selected metastable species (He*, Ar*, N2*) and impinge the beam on clean or gas-dosed surfaces in an ultra high vacuum (UHV) chamber. The metastables were generated in a discharge-flow reactor, sampled and skimmed into a molecular beam, and directed into the UHV target chamber via two-stage differential pumping. A hemispherical, retarding potential electron energy analyzer was used to measure production rates and energy distributions of electrons ejected from the surface via the Penning ionization and Auger neutralization quenching mechanisms. The absence of significant electron ejection from metastable impingement is quite unexpected in light of previous investigations of this process for polished, high-purity, oriented single crystals.

  7. The Importance of Kinetic Metastability: Some Common Everyday Examples

    ERIC Educational Resources Information Center

    Jensen, William B.

    2015-01-01

    The importance of kinetic metastability is illustrated in detail using several common household products and recommendations are made for how this important and widespread, but often neglected, phenomenon can be more effectively presented in the introductory chemistry textbook.

  8. Metastable states in the Cd-As system

    SciTech Connect

    Nipan, G.D.; Grinberg, Ya.Kh.; Lazarev, V.B.

    1988-03-01

    Attempts to explain the appearance of metastable states in the system Cd-As have thus far been based only on thermographic experiments. In this work paths for metastable crystallization of cadmium arsenides in the phase space p-T-x are studied. The metastable diagrams were constructed using fragment of p-T and T-x projections of the p-T-x phase diagram. Thermodynamic analysis shows that metastable states of two types can be expected in the system Cd-As: (I) crystallization of Ca/sub 3/As/sub 2/ and arsenic instead of the equilibrium crystallization of CdAs/sub 2/; (II) crystallization of CdAs and arsenic or Cd/sub 3/As/sub 2/ instead of the formation of CdAs/sub 2/.

  9. Melting of “non-magic” argon clusters and extrapolation to the bulk limit

    SciTech Connect

    Senn, Florian Wiebke, Jonas; Schumann, Ole; Gohr, Sebastian; Schwerdtfeger, Peter; Pahl, Elke

    2014-01-28

    The melting of argon clusters Ar{sub N} is investigated by applying a parallel-tempering Monte Carlo algorithm for all cluster sizes in the range from 55 to 309 atoms. Extrapolation to the bulk gives a melting temperature of 85.9 K in good agreement with the previous value of 88.9 K using only Mackay icosahedral clusters for the extrapolation [E. Pahl, F. Calvo, L. Koči, and P. Schwerdtfeger, “Accurate melting temperatures for neon and argon from ab initio Monte Carlo simulations,” Angew. Chem., Int. Ed. 47, 8207 (2008)]. Our results for argon demonstrate that for the extrapolation to the bulk one does not have to restrict to magic number cluster sizes in order to obtain good estimates for the bulk melting temperature. However, the extrapolation to the bulk remains a problem, especially for the systematic selection of suitable cluster sizes.

  10. Melting of "non-magic" argon clusters and extrapolation to the bulk limit.

    PubMed

    Senn, Florian; Wiebke, Jonas; Schumann, Ole; Gohr, Sebastian; Schwerdtfeger, Peter; Pahl, Elke

    2014-01-28

    The melting of argon clusters ArN is investigated by applying a parallel-tempering Monte Carlo algorithm for all cluster sizes in the range from 55 to 309 atoms. Extrapolation to the bulk gives a melting temperature of 85.9 K in good agreement with the previous value of 88.9 K using only Mackay icosahedral clusters for the extrapolation [E. Pahl, F. Calvo, L. Koči, and P. Schwerdtfeger, "Accurate melting temperatures for neon and argon from ab initio Monte Carlo simulations," Angew. Chem., Int. Ed. 47, 8207 (2008)]. Our results for argon demonstrate that for the extrapolation to the bulk one does not have to restrict to magic number cluster sizes in order to obtain good estimates for the bulk melting temperature. However, the extrapolation to the bulk remains a problem, especially for the systematic selection of suitable cluster sizes. PMID:25669541

  11. Discovery of a metastable Al20Sm4 phase

    DOE PAGESBeta

    Ye, Z.; Zhang, F.; Sun, Y.; Mendelev, M. I.; Ott, R. T.; Park, E.; Besser, M. F.; Kramer, M. J.; Ding, Z.; Wang, C. -Z.; et al

    2015-03-09

    In this study, we present an efficient genetic algorithm, integrated with experimental diffraction data, to solve a nanoscale metastable Al20Sm4 phase that evolves during crystallization of an amorphous magnetron sputtered Al90Sm10 alloy. The excellent match between calculated and experimental X-ray diffraction patterns confirms an accurate description of this metastable phase. Molecular dynamic simulations of crystal growth from the liquid phase predict the formation of disordered defects in the devitrified crystal.

  12. Preferential site occupancy observed in coexpanded argon-krypton clusters

    SciTech Connect

    Lundwall, M.; Bergersen, H.; Lindblad, A.; Oehrwall, G.; Svensson, S.; Bjoerneholm, O.; Tchaplyguine, M.

    2006-10-15

    Free heterogeneous argon-krypton clusters have been produced by coexpansion and investigated by means of x-ray photoelectron spectroscopy. By examining cluster surface and bulk binding energy shifts, relative intensities, and peak widths, we show that in the mixed argon-krypton clusters the krypton atoms favor the bulk and argon atoms are pushed to the surface. Furthermore, we show that krypton atoms in the surface layer occupy high-coordination sites and that heterogeneous argon-krypton clusters produced by coexpansion show the same surface structure as argon host clusters doped with krypton. These observations are supported by site-dependent calculations of chemical shifts.

  13. Metastable NAT in Ice-Clouds

    NASA Astrophysics Data System (ADS)

    Weiss, Fabian; Kubel, Frank; Gálvez, Óscar; Hoelzel, Markus; Parker, Stewart F.; Iannarelli, Riccardo; Rossi, Michel J.; Grothe, Hinrich

    2015-04-01

    Polar Stratospheric Clouds and Cirrus Clouds contain, besides pure water ice, a rather large fraction of various hydrates. These are very important for the formation of the cloud, which is a yet not well understood process. We recently solved the structure of a metastable NAT phase (alpha-NAT), we believe to not only be present, but playing a major role in the formation of clouds. On the basis of previous work on this phase by Grothe et al. [1], we enhanced the production of alpha-NAT to the point, where we could produce enough sample to do neutron diffraction. This enabled us to solve the structure. Our quantum mechanical calculations, using this newly found structure, show a large affinity towards water-ice. With this in mind, we interlaced our results with the experiments of R. Iannarelli [2] to derive a new 3-step NAT-formation mechanism in ice-clouds, which could explain some of the observed kinetics better than the mechanism postulated in Zondlo et al. [3]. 1. Grothe, H., Tizek, H., Waller, D. & Stokes, D. The crystallization kinetics and morphology of nitric acid trihydrate. Phys. Chem. Chem. Phys., 8, 2232-2239 (2006) 2. Iannarelli, R. Multidiagnostic Observations on HCl and HNO3 Hydrate Films in the Temperature Range 170-205K: A Kinetic Study. PhD Thesis 21791, ETH Zürich, (2013). 3. Zondlo, M.A., Hudson, P.K., Prenni A.J. & Tolbert, M.A. Chemistry and microphysics of polar stratospheric clouds and Cirrus clouds. Ann. Rev. Phys. Chem., 51, 473-499 (2000).

  14. Structural Studies of Metastable and Ground State Vortex Lattice Domains in MgB2

    NASA Astrophysics Data System (ADS)

    de Waard, E. R.; Kuhn, S. J.; Rastovski, C.; Eskildsen, M. R.; Leishman, A.; Dewhurst, C. D.; Debeer-Schmitt, L.; Littrell, K.; Karpinski, J.; Zhigadlo, N. D.

    2015-03-01

    Small-angle neutron scattering (SANS) studies of the vortex lattice (VL) in the type-II superconductor MgB2 have revealed an unprecedented degree of metastability that is demonstrably not due to vortex pinning, [C. Rastovski et al . , Phys. Rev. Lett. 111, 107002 (2013)]. Application of an AC magnetic field to drive the VL to the ground state revealed a two-step power law behavior, indicating a slow nucleation of ground state domains followed by a faster growth. The dependence on the number of applied AC cycles is reminiscent of jamming of soft, frictionless spheres. Here, we report on detailed structural studies of both metastable and ground state VL domains. These include measurements of VL correlation lengths as well as spatially resolved SANS measurements showing the VL domain distribution within the MgB2 single crystal. We discuss these results and how they may help to resolve the mechanism responsible for stabilizing the metastable VL phases. This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Award DE-FG02-10ER46783.

  15. Estimation of sputtering rate by bombardment with argon gas ions

    NASA Astrophysics Data System (ADS)

    Okajima, Yoshiaki

    1980-01-01

    The sputtering rates of single-crystal Si and polycrystalline Ag, Cu, Ni, Ti, and Al were measured. These target materials were bombarded with argon ions accelerated at 10 kV. The sputtered depth after a given interval of bombardment was greatest for Ag, and decreased for the other materials in the following order: Cu, Ni, Ti, Si, and Al. The difference in the sputtering rates of these target materials was investigated on the basis of their binding energies, and the following expression for sputtering rate was obtained experimentally, Sr=K (I/D)(M/Ec)k, where Sr is the sputtering rate, I is the current density of incident argon ions, and D, M, and Ec are the atomic concentration, mass number, and cohesive energy of a target material, respectively. K and k are constants. Sputtering yield (Sy) can be written Sy=K' (M/Ec)k. The result was compared with experimental data of many target materials already reported. These results were used to estimate the sputtered depth after a given interval in the practical analyses using ion bombardment.

  16. Photoassociative Spectroscopy of Ultracold Argon and Krypton

    NASA Astrophysics Data System (ADS)

    Omar, M. K.; Williams, W. D.; Sukenik, C. I.

    2016-05-01

    We report on photoassociative spectroscopy experiments performed separately on ultracold 40 Ar and ultracold 84 Kr with the spectroscopy laser tuned around the trapping transition for each species (ns[ 3 / 2 ] 2 --> np[ 5 / 2 ] 3 where n = 4 for argon and n = 5 for krypton). Previous studies in argon observed several discrete features in the spectrum that have now been positively identified as arising from otherwise undetectable frequency sidebands on the spectroscopy laser and not from molecular structure. Spectra have been taken over a range of laser intensities and show a broad (several GHz) signature of single photon photo-association, but with no individual vibrational levels resolved. We will discuss our results and compare our spectra to those obtained in ultracold, noble gas photoassociative spectroscopy experiments conducted by other groups in recent years. Supported in part by the National Science Foundation, Award, No. PHY-0855290.

  17. Argon ion pollution of the magnetosphere

    NASA Technical Reports Server (NTRS)

    Lopez, R. E.

    1985-01-01

    Construction of a Solar Power Satellite (SPS) would require the injection of large quantities of propellant to transport material from Low Earth Orbit (LEO) to the construction site at Geostationary Earth Orbit (GEO). This injection, in the form of approx 10 to the 32nd power, 2 KeV argon ions (and associated electrons) per SPS, is comparable to the content of the plasmasphere (approx 10 to the 31st power ions). In addition to the mass deposited, this represents a considerable injection of energy. The injection is examined in terms of a simple model for the expansion of the beam plasma. General features of the subsequent magnetospheric convection of the argon are also examined.

  18. Diamond film growth argon-carbon plasmas

    DOEpatents

    Gruen, D.M.; Krauss, A.R.; Liu, S.Z.; Pan, X.Z.; Zuiker, C.D.

    1998-12-15

    A method and system are disclosed for manufacturing diamond film. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrogen and hydrocarbon and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous and deposition of a diamond film on a substrate. 29 figs.

  19. An impact hypothesis for Venus argon anomalies

    NASA Astrophysics Data System (ADS)

    Kaula, W. M.; Newman, W. I.

    1997-03-01

    The Ar-36+38 argon-excess anomally of Venus has been hypothesized to have its origin in the impact of an outer solar system body of about 100-km diameter. A critical evaluation is made of this hypothesis and its competitors; it is judged that its status must for the time being remain one of 'Sherlock Holmes' type, in that something so improbable must be accepted when all alternatives are eliminated.

  20. Current and future liquid argon neutrino experiments

    SciTech Connect

    Karagiorgi, Georgia S.

    2015-05-15

    The liquid argon time projection chamber (LArTPC) detector technology provides an opportunity for precision neutrino oscillation measurements, neutrino cross section measurements, and searches for rare processes, such as SuperNova neutrino detection. These proceedings review current and future LArTPC neutrino experiments. Particular focus is paid to the ICARUS, MicroBooNE, LAr1, 2-LArTPC at CERN-SPS, LBNE, and 100 kton at Okinoshima experiments.

  1. Multishock Compression Properties of Warm Dense Argon

    PubMed Central

    Zheng, Jun; Chen, Qifeng; Yunjun, Gu; Li, Zhiguo; Shen, Zhijun

    2015-01-01

    Warm dense argon was generated by a shock reverberation technique. The diagnostics of warm dense argon were performed by a multichannel optical pyrometer and a velocity interferometer system. The equations of state in the pressure-density range of 20–150 GPa and 1.9–5.3 g/cm3 from the first- to fourth-shock compression were presented. The single-shock temperatures in the range of 17.2–23.4 kK were obtained from the spectral radiance. Experimental results indicates that multiple shock-compression ratio (ηi = ρi/ρ0) is greatly enhanced from 3.3 to 8.8, where ρ0 is the initial density of argon and ρi (i = 1, 2, 3, 4) is the compressed density from first to fourth shock, respectively. For the relative compression ratio (ηi’ = ρi/ρi-1), an interesting finding is that a turning point occurs at the second shocked states under the conditions of different experiments, and ηi’ increases with pressure in lower density regime and reversely decreases with pressure in higher density regime. The evolution of the compression ratio is controlled by the excitation of internal degrees of freedom, which increase the compression, and by the interaction effects between particles that reduce it. A temperature-density plot shows that current multishock compression states of argon have distributed into warm dense regime. PMID:26515505

  2. DIET of metastable Kr ∗ atoms via electron resonances in Kr/Ar alloy films

    NASA Astrophysics Data System (ADS)

    Bass, A. D.; Vichnevetski, E.; Sanche, L.

    2000-04-01

    We report the electron-stimulated desorption of metastable Kr ∗ atoms from films containing both argon and krypton. When Ar/Kr alloy films are deposited on a platinum surface, a narrow resonance feature is seen in the desorption yield at an incident electron energy of 10 eV; i.e., about 0.5 eV below the energy of the lowest bulk exciton states of the alloy. Desorption at 10 eV requires that krypton atoms be in close proximity to the platinum substrate since the resonance disappears when alloy films are deposited on a crystalline n-hexane film. Time-of-flight measurements show that the kinetic energies of desorbed krypton atoms are similar at incident electron energies of 10.1 eV and 15 eV, and indicate a similar mechanism for desorption at these energies. We attribute the new desorption feature to formation of a Kr - anionic state of the film (electron-exciton complex) which is transformed into a Kr ∗ exciton by electron transfer into the metal. Desorption proceeds following exciton trapping at the film/vacuum interface.

  3. Distribution and Abundance of Mars' Atmospheric Argon

    NASA Technical Reports Server (NTRS)

    Sprague, A. L.; Boynton, W. V.; Kerry, K. E.; Nelli, Steven; Murphy, Jim; Reedy, R. C.; Metzger, A. E.; Hunten, D. M.; Janes, K. D.; Crombie, M. K.

    2005-01-01

    One and one half Mars years (MY 26 and 27) of atmospheric Argon measurements are described and studied in the context of understanding how Argon, a minor constituent of Mars atmosphere that does not condense at Mars temperatures, can be used to study martian circulation and dynamics. Argon data are from the 2001 Mars Odyssey Gamma Subsystem (GS) of the suite of three instruments comprising the Gamma Ray Spectrometer (GRS). A comprehensive data analysis including gamma-ray production and attenuation by the atmosphere is included. Of particular interest is the enhanced abundance of Ar over the observed Ar abundance at lower latitudes at south (up to a factor of 10) and north (up to a factor of 4) polar regions during winter. Calibration of the measurements to actual Ar abundance is possible because GS measurements cover the same latitude and season as measurements made by the gas chromatograph mass spectrometer (GCMS) on Viking Landers 1 and 2 (VL1 and VL2). [2].

  4. Extended Neural Metastability in an Embodied Model of Sensorimotor Coupling

    PubMed Central

    Aguilera, Miguel; Bedia, Manuel G.; Barandiaran, Xabier E.

    2016-01-01

    The hypothesis that brain organization is based on mechanisms of metastable synchronization in neural assemblies has been popularized during the last decades of neuroscientific research. Nevertheless, the role of body and environment for understanding the functioning of metastable assemblies is frequently dismissed. The main goal of this paper is to investigate the contribution of sensorimotor coupling to neural and behavioral metastability using a minimal computational model of plastic neural ensembles embedded in a robotic agent in a behavioral preference task. Our hypothesis is that, under some conditions, the metastability of the system is not restricted to the brain but extends to the system composed by the interaction of brain, body and environment. We test this idea, comparing an agent in continuous interaction with its environment in a task demanding behavioral flexibility with an equivalent model from the point of view of “internalist neuroscience.” A statistical characterization of our model and tools from information theory allow us to show how (1) the bidirectional coupling between agent and environment brings the system closer to a regime of criticality and triggers the emergence of additional metastable states which are not found in the brain in isolation but extended to the whole system of sensorimotor interaction, (2) the synaptic plasticity of the agent is fundamental to sustain open structures in the neural controller of the agent flexibly engaging and disengaging different behavioral patterns that sustain sensorimotor metastable states, and (3) these extended metastable states emerge when the agent generates an asymmetrical circular loop of causal interaction with its environment, in which the agent responds to variability of the environment at fast timescales while acting over the environment at slow timescales, suggesting the constitution of the agent as an autonomous entity actively modulating its sensorimotor coupling with the world. We

  5. The response of the inductively coupled argon plasma to solvent plasma load: spatially resolved maps of electron density obtained from the intensity of one argon line

    NASA Astrophysics Data System (ADS)

    Weir, D. G. J.; Blades, M. W.

    1994-12-01

    A survey of spatially resolved electron number density ( ne) in the tail cone of the inductively coupled argon plasma (ICAP) is presented: all of the results of the survey have been radially inverted by numerical, asymmetric Abel inversion. The survey extends over the entire volume of the plasma beyond the exit of the ICAP torch; It extends over distances of z = 5-25 mm downstream from the induction coil, and over radial distances of ± 8 mm from the discharge axis. The survey also explores a range of inner argon flow rates ( QIN), solvent plasma load ( Qspl) and r.f. power: moreover, it explores loading by water, methanol and chloroform. Throughout the survey, ne was determined from the intensity of one, optically thin argon line, by a method which assumes that the atomic state distribution function (ASDF) for argon lies close to local thermal equilibrium (LTE). The validity of this assumption is reviewed. Also examined are the discrepancies between ne from this method and ne from Stark broadening measurements. With the error taken into account, the results of the survey reveal how time averaged values of ne in the ICAP respond over an extensive, previously unexplored range of experimental parameters. Moreover, the spatial information lends insight into how the thermal conditions and the transport of energy respond. Overall, the response may be described in terms of energy consumption along the axial channel and thermal pinch within the induction region. The predominating effect depends on the solvent plasma load, the solvent composition, the robustness of the discharge, and the distribution of solvent material over the argon stream.

  6. Stable and Metastable Equilibria in the Pb-Cd System

    NASA Astrophysics Data System (ADS)

    Chuang, Ying-Yu; Paik, J.-S.; Zhang, C.; Perepezko, J. H.; Chang, Y. A.

    2013-07-01

    Thermodynamic and phase diagram data in the Pb-Cd system are reevaluated. A substitutional solution model is used for the liquid and fcc and hcp phases. The stable and metastable equilibria of this system are calculated using the thermodynamic equations derived from equilibrium data. Besides the well-established eutectic reaction at 521 K (248 °C), one stable monotectic reaction at 548 K (275 °C) is found due to the existence of a stable liquid miscibility gap. The stable monotectic reaction has been missed in all previous evaluations. Experimental verifications of the stable and metastable phase equilibria are provided using droplet samples and undercooled liquid alloys. A differential thermal analysis (DTA) method is applied to determine the phase reaction temperatures using both traditional heating and cooling processes and a specially designed cycling process. Additional microstructural evidence is used to elucidate the nature of the phase reactions. The refined thermodynamic descriptions are based upon both the thermochemical and phase diagram stable and metastable data. The agreement between the calculated and experimental data is good. All experimental stable and metastable results are well explained by the new Pb-Cd phase diagram calculations within the experimental accuracy limits. Combined experimental and thermodynamic modeling procedures developed for determining the stable and metastable phase equilibria yield a highly reliable overall phase diagram assessment and a quantitative basis for the interpretation of non-equilibrium solidification processing.

  7. Argon blocks the expression of locomotor sensitization to amphetamine through antagonism at the vesicular monoamine transporter-2 and mu-opioid receptor in the nucleus accumbens

    PubMed Central

    David, H N; Dhilly, M; Degoulet, M; Poisnel, G; Meckler, C; Vallée, N; Blatteau, J-É; Risso, J-J; Lemaire, M; Debruyne, D; Abraini, J H

    2015-01-01

    We investigated the effects of the noble gas argon on the expression of locomotor sensitization to amphetamine and amphetamine-induced changes in dopamine release and mu-opioid neurotransmission in the nucleus accumbens. We found (1) argon blocked the increase in carrier-mediated dopamine release induced by amphetamine in brain slices, but, in contrast, potentiated the decrease in KCl-evoked dopamine release induced by amphetamine, thereby suggesting that argon inhibited the vesicular monoamine transporter-2; (2) argon blocked the expression of locomotor and mu-opioid neurotransmission sensitization induced by repeated amphetamine administration in a short-term model of sensitization in rats; (3) argon decreased the maximal number of binding sites and increased the dissociation constant of mu-receptors in membrane preparations, thereby indicating that argon is a mu-receptor antagonist; (4) argon blocked the expression of locomotor sensitization and context-dependent locomotor activity induced by repeated administration of amphetamine in a long-term model of sensitization. Taken together, these data indicate that argon could be of potential interest for treating drug addiction and dependence. PMID:26151922

  8. Argon blocks the expression of locomotor sensitization to amphetamine through antagonism at the vesicular monoamine transporter-2 and mu-opioid receptor in the nucleus accumbens.

    PubMed

    David, H N; Dhilly, M; Degoulet, M; Poisnel, G; Meckler, C; Vallée, N; Blatteau, J-É; Risso, J-J; Lemaire, M; Debruyne, D; Abraini, J H

    2015-01-01

    We investigated the effects of the noble gas argon on the expression of locomotor sensitization to amphetamine and amphetamine-induced changes in dopamine release and mu-opioid neurotransmission in the nucleus accumbens. We found (1) argon blocked the increase in carrier-mediated dopamine release induced by amphetamine in brain slices, but, in contrast, potentiated the decrease in KCl-evoked dopamine release induced by amphetamine, thereby suggesting that argon inhibited the vesicular monoamine transporter-2; (2) argon blocked the expression of locomotor and mu-opioid neurotransmission sensitization induced by repeated amphetamine administration in a short-term model of sensitization in rats; (3) argon decreased the maximal number of binding sites and increased the dissociation constant of mu-receptors in membrane preparations, thereby indicating that argon is a mu-receptor antagonist; (4) argon blocked the expression of locomotor sensitization and context-dependent locomotor activity induced by repeated administration of amphetamine in a long-term model of sensitization. Taken together, these data indicate that argon could be of potential interest for treating drug addiction and dependence. PMID:26151922

  9. Argon blocks the expression of locomotor sensitization to amphetamine through antagonism at the vesicular monoamine transporter-2 and mu-opioid receptor in the nucleus accumbens.

    PubMed

    David, H N; Dhilly, M; Degoulet, M; Poisnel, G; Meckler, C; Vallée, N; Blatteau, J-É; Risso, J-J; Lemaire, M; Debruyne, D; Abraini, J H

    2015-07-07

    We investigated the effects of the noble gas argon on the expression of locomotor sensitization to amphetamine and amphetamine-induced changes in dopamine release and mu-opioid neurotransmission in the nucleus accumbens. We found (1) argon blocked the increase in carrier-mediated dopamine release induced by amphetamine in brain slices, but, in contrast, potentiated the decrease in KCl-evoked dopamine release induced by amphetamine, thereby suggesting that argon inhibited the vesicular monoamine transporter-2; (2) argon blocked the expression of locomotor and mu-opioid neurotransmission sensitization induced by repeated amphetamine administration in a short-term model of sensitization in rats; (3) argon decreased the maximal number of binding sites and increased the dissociation constant of mu-receptors in membrane preparations, thereby indicating that argon is a mu-receptor antagonist; (4) argon blocked the expression of locomotor sensitization and context-dependent locomotor activity induced by repeated administration of amphetamine in a long-term model of sensitization. Taken together, these data indicate that argon could be of potential interest for treating drug addiction and dependence.

  10. Comparing the equivalent particle number density distribution of gas and plasma flow fields.

    PubMed

    Chen, Yun-yun; Zhang, Ying-ying; Zhang, Cheng-yi; Li, Zhen-hua

    2013-04-20

    In this paper, the equivalent particle number density distribution of gas and plasma flow fields is investigated. For the purpose of facilitating comparison, argon gas and argon arc plasma are chosen as practical examples for experiment. The equivalent particle number density distributions of the argon gas and argon arc plasma are reconstructed from the experimentally measured refractive index distributions obtained by moiré tomography, while five cross sections, which are 7, 8.5, 10, 11.5, and 13 mm away from the jet nozzle are chosen for practical calculation and comparison. In experiment, the probe wavelength and the export pressure of argon gas and argon arc plasma are the same. The experimental results manifest that (1) the equivalent particle number density decreases with the distance away from the jet nozzle of the gas flow field, while (2) the equivalent particle number density of the plasma flow field has a different variation. Finally, the experimental results are theoretically explained and analyzed.

  11. Long-Lived Metastable bcc Phase during Ordering of Micelles

    NASA Astrophysics Data System (ADS)

    Bang, Joona; Lodge, Timothy P.

    2005-03-01

    We report a metastable bcc phase that intervenes between a disordered micellar suspension and an fcc crystal in a block copolymer solution. A symmetric poly(styrene-b-isoprene) diblock copolymer in the isoprene-selective solvent squalane at a volume fraction of 0.20 was investigated using small angle x-ray scattering and rheology. Upon heating, the metastable bcc phase nucleates first, and then transforms over the course of hours to the stable fcc phase. At still higher temperatures the fcc phase transforms to an equilibrium bcc phase. The metastability of the bcc phase was confirmed by oscillatory shear and annealing using small angle x-ray scattering. These results constitute an interesting experimental manifestation of Ostwald's step rule, and also support recent theory and simulation results whereby bcc nucleates more readily from a melt of spheres.

  12. Degenerate Bose-Fermi Mixture of Metastable Atoms

    SciTech Connect

    McNamara, J. M.; Jeltes, T.; Tychkov, A. S.; Hogervorst, W.; Vassen, W.

    2006-08-25

    We report the observation of simultaneous quantum degeneracy in a dilute gaseous Bose-Fermi mixture of metastable atoms. Sympathetic cooling of helium-3 (fermion) by helium-4 (boson), both in the lowest triplet state, allows us to produce ensembles containing more than 10{sup 6} atoms of each isotope at temperatures below 1 {mu}K, and achieve a fermionic degeneracy parameter of T/T{sub F}=0.45. Because of their high internal energy, the detection of individual metastable atoms with subnanosecond time resolution is possible, permitting the study of bosonic and fermionic quantum gases with unprecedented precision. This may lead to metastable helium becoming the mainstay of quantum atom optics.

  13. An efficient magneto-optical trap of metastable krypton atoms.

    PubMed

    Cheng, C-F; Jiang, W; Yang, G-M; Sun, Y-R; Pan, H; Gao, Y; Liu, A-W; Hu, S-M

    2010-12-01

    We report a magneto-optical trap of metastable krypton atoms with a trap loading rate of 3×10(11) atoms/s and a trap capture efficiency of 3×10(-5). The system starts with an atomic beam of metastable krypton produced in a liquid-nitrogen cooled, radio-frequency driven discharge. The metastable beam flux emerging from the discharge is 1.5×10(14) atoms/s/sr. The flux in the forward direction is enhanced by a factor of 156 with transverse laser cooling. The atoms are then slowed inside a Zeeman slower before captured by a magneto-optic trap. The trap efficiency can be further improved, possibly to the 10(-2) level, by gas recirculation. Such an atom trap is useful in trace analysis applications where available sample size is limited.

  14. Metastable Aluminum Atoms Floating on the Surface of Helium Nanodroplets.

    PubMed

    Jeffs, Jay; Besley, Nicholas A; Stace, Anthony J; Sarma, Gautam; Cunningham, Ethan M; Boatwright, Adrian; Yang, Shengfu; Ellis, Andrew M

    2015-06-12

    Metal atoms have proved to be sensitive probes of the properties of superfluid helium nanodroplets. To date, all experiments on the doping of helium droplets have concentrated on the attachment of metal atoms in their ground electronic states. Here we report the first examples of metal atoms in excited states becoming attached to helium nanodroplets. The atoms in question are aluminum, and they have been generated by laser ablation in a metastable quartet state, which attaches to and remains on the surface of helium droplets. Evidence for a surface location comes from electronic spectra, which consist of very narrow absorption profiles that show very small spectral shifts. Supporting ab initio calculations show there to be an energy incentive for a metastable Al atom to remain on the surface of a helium droplet rather than move to the interior. The results suggest that helium droplets may provide a method for the capture and transport of metastable excited atomic and molecular species.

  15. Metastable Lennard-Jones fluids. III. Bulk viscosity.

    PubMed

    Baidakov, Vladimir G; Protsenko, Sergey P

    2014-09-21

    The method of equilibrium molecular-dynamics simulation in combination with the Green-Kubo formula has been used to calculate the bulk viscosity of a Lennard-Jones fluid. Calculations have been made at temperatures 0.4 ≤ k(B)T/ɛ ≤ 2.0 and densities 0.0075 ≤ ρσ(3) ≤ 1.2 at 116 stable and 106 metastable states of liquid and gas. The depth of penetration into the region of metastable states was limited by spontaneous nucleation. In the region of stable states the data obtained are compared with the results of previous investigations. It has been established that the system transition across the lines of liquid-gas and liquid-crystal phase equilibrium and penetration into the metastable regions of liquid and gas are connected with increasing bulk viscosity. The behavior of bulk viscosity close to the spinodal of a superheated liquid and supersaturated vapor is discussed. PMID:25240360

  16. Visible light responsive systems based on metastable-state photoacids

    NASA Astrophysics Data System (ADS)

    Liao, Yi

    2015-09-01

    Proton transfer is one of the most fundamental processes in nature. Metastable-state photoacids can reversibly generate a large proton concentration under visible light with moderate intensity. which provides a general approach to control various proton transfer processes. Several applications of mPAHs have been demonstrated recently including control of acid-catalyzed reactions, volume-change of hydrogels, polymer conductivity, bacteria killing, odorant release, and color change of materials. They have also been utilized to control supramolecular assemblies, molecular switches, microbial fuel cells and cationic sensors. In this talk, the mechanism, structure design, and applications of metastable-state photoacids are introduced. Recent development of different types of metastable-state photoacids is presented. Challenges and future work are also discussed.

  17. Metastable Lennard-Jones fluids. III. Bulk viscosity.

    PubMed

    Baidakov, Vladimir G; Protsenko, Sergey P

    2014-09-21

    The method of equilibrium molecular-dynamics simulation in combination with the Green-Kubo formula has been used to calculate the bulk viscosity of a Lennard-Jones fluid. Calculations have been made at temperatures 0.4 ≤ k(B)T/ɛ ≤ 2.0 and densities 0.0075 ≤ ρσ(3) ≤ 1.2 at 116 stable and 106 metastable states of liquid and gas. The depth of penetration into the region of metastable states was limited by spontaneous nucleation. In the region of stable states the data obtained are compared with the results of previous investigations. It has been established that the system transition across the lines of liquid-gas and liquid-crystal phase equilibrium and penetration into the metastable regions of liquid and gas are connected with increasing bulk viscosity. The behavior of bulk viscosity close to the spinodal of a superheated liquid and supersaturated vapor is discussed.

  18. Energetic Metastable Oxygen and Nitrogen Atoms in the Terrestrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Kharchenko, Vasili; Dalgarno, A.

    2005-01-01

    This report summarizes our research performed under NASA Grant NAG5-11857. The three-year grant have been supported by the Geospace Sciences SR&T program. We have investigated the energetic metastable oxygen and nitrogen atoms in the terrestrial stratosphere, mesosphere and thermosphere. Hot atoms in the atmosphere are produced by solar radiation, the solar wind and various ionic reactions. Nascent hot atoms arise in ground and excited electronic states, and their translational energies are larger by two - three orders of magnitude than the thermal energies of the ambient gas. The relaxation kinetics of hot atoms determines the rate of atmospheric heating, the intensities of aeronomic reactions, and the rate of atom escape from the planet. Modeling of the non-Maxwellian energy distributions of metastable oxygen and nitrogen atoms have been focused on the determination of their impact on the energetics and chemistry of the terrestrial atmosphere between 25 and 250 km . At this altitudes, we have calculated the energy distribution functions of metastable O and N atoms and computed non-equilibrium rates of important aeronomic reactions, such as destruction of the water molecules by O(1D) atoms and production of highly excited nitric oxide molecules. In the upper atmosphere, the metastable O(lD) and N(2D) play important role in formation of the upward atomic fluxes. We have computed the upward fluxes of the metastable and ground state oxygen atoms in the upper atmosphere above 250 km. The accurate distributions of the metastable atoms have been evaluated for the day and night-time conditions.

  19. Study of argon-oxygen flowing afterglow

    NASA Astrophysics Data System (ADS)

    Mazánková, V.; Trunec, D.; Navrátil, Z.; Raud, J.; Krčma, F.

    2016-06-01

    The reaction kinetics in argon-oxygen flowing afterglow (post-discharge) was studied using NO titration and optical emission spectroscopy. The flowing DC post-discharge in argon-oxygen mixture was created in a quartz tube at the total gas pressure of 1000 Pa and discharge power of 90 W. The O(3P) atom concentration was determined by NO titration at different places along the flow tube. The optical emission spectra were also measured along the flow tube. Argon spectral lines, oxygen lines at 777 nm and 844.6 nm and atmospheric A-band of {{\\text{O}}2} were identified in the spectra. Rotational temperature of {{\\text{O}}2} was determined from the oxygen atmospheric A-band and also the outer wall temperature of the flow tube was measured by a thermocouple and by an IR thermometer. A zero-dimensional kinetic model for the reactions in the afterglow was developed. This model allows the time dependencies of particle concentrations and of gas temperature to be calculated. The wall recombination probability for O(3P) atoms {γ\\text{O≤ft(\\text{P}\\right)}}=≤ft(1.63+/- 0.06\\right)× {{10}-3} and wall deactivation probability for {{\\text{O}}2} (b {{}1}Σ\\text{g}+ ) molecules {γ{{\\text{O}2}≤ft(\\text{b}\\right)}}=≤ft(1.7+/- 0.1\\right)× {{10}-3} were determined from the fit of model results to experimental data. Sensitivity analysis was applied for the analysis of kinetic model in order to reveal the most important reactions in the model. The calculated gas temperature increases in the afterglow and then decreases at later afterglow times after reaching the maximum. This behavior is in good agreement with the spatial rotational temperature dependence. A similar trend was also observed at outer wall temperature measurement.

  20. Origin of photoinduced metastable defects in amorphous chalcogenides

    NASA Astrophysics Data System (ADS)

    Shimakawa, K.; Inami, S.; Kato, T.; Elliott, S. R.

    1992-10-01

    Prolonged exposure to band-gap light decreases the photoconductivity of annealed films of amorphous chalcogenides (As2S3, As3S7, AsS, As2Se3, GeS2, GeSe2, and GeSe). This can be attributed to photoinduced metastable defects, which could act as additional trapping and/or recombination centers. These metastable centers are removed by annealing near the glass transition temperature. The kinetics of the temporal change of photocurrent during illumination are discussed in a model of defect-conserved bond switching.

  1. Metastable states of plasma particles close to a charged surface

    SciTech Connect

    Shavlov, A. V.; Dzhumandzhi, V. A.

    2015-09-15

    The free energy of the plasma particles and the charged surface that form an electroneutral system is calculated on the basis of the Poisson-Boltzmann equation. It is shown that, owing to correlation of light plasma particles near the charged surface and close to heavy particles of high charge, there can be metastable states in plasma. The corresponding phase charts of metastable states of the separate components of plasma, and plasma as a whole, are constructed. These charts depend on temperature, the charge magnitude, the size of the particles, and the share of the charge of the light carriers out of the total charge of the plasma particles.

  2. Selective crystallization of metastable phase of acetaminophen by ultrasonic irradiation

    NASA Astrophysics Data System (ADS)

    Mori, Yoichiro; Maruyama, Mihoko; Takahashi, Yoshinori; Ikeda, Kenji; Fukukita, Suguru; Yoshikawa, Hiroshi Y.; Okada, Shino; Adachi, Hiroaki; Sugiyama, Shigeru; Takano, Kazufumi; Murakami, Satoshi; Matsumura, Hiroyoshi; Inoue, Tsuyoshi; Yoshimura, Masashi; Mori, Yusuke

    2015-06-01

    A new method for selective crystallization of the metastable phase (form II) of acetaminophen is described. To obtain form II, we prepared a highly supersaturated solution (σI = 3.7) and then applied ultrasonic irradiation at different frequencies. Without ultrasonic irradiation, spontaneous crystallization did not occur within one month in the highly supersaturated condition (σI = 3.7). When ultrasonic irradiation at 28 kHz was applied, form II preferentially crystallized. Therefore, we conclude that ultrasonic irradiation can be an effective technique for selectively crystallizing the metastable phase.

  3. Strong attraction between charged spheres due to metastable ionized states

    PubMed

    Messina; Holm; Kremer

    2000-07-24

    We report a mechanism which can lead to long-range attractions between like-charged spherical macroions, stemming from the existence of metastable ionized states. We show that the ground state of a single highly charged colloid plus a few excess counterions is overcharged. For the case of two highly charged macroions in their neutralizing divalent counterion solution we demonstrate that, in the regime of strong Coulomb coupling, the counterion clouds are very likely to be unevenly distributed, leading to one overcharged and one undercharged macroion. This long-living metastable configuration in turn leads to a long-range Coulomb attraction.

  4. Selective detection of singlet gerade metastable states of N2

    NASA Astrophysics Data System (ADS)

    Kedzierski, W.; McConkey, J. W.

    2016-07-01

    Metastable N2 molecules produced by electron impact on N2 are detected using a unique solid nitrogen matrix detector. The time-of-flight system is shown to be selectively sensitive to a1Πg and 1Σg+ or 1Γg metastable species. The latter species had been identified theoretically previously but was detected experimentally for the first time in the present investigation. Their identification and excitation as a function of electron energy from threshold to 300 eV are presented. Comparison is made with the data obtained by other techniques.

  5. Metastable bcc phase formation in the Nb-Cr system

    SciTech Connect

    Thoma, D.J.; Schwarz, R.B.; Perepezko, J.H.; Plantz, D.H.

    1993-08-01

    Extended metastable bcc solid solutions of Nb-Xat.%Cr (X = 35, 50, 57, 77, 82, and 94) were synthesized by two-anvil splat-quenching. In addition, bcc (Nb-67at.%Cr) was prepared by mechanically alloying mixtures of niobium and chromium powders. The lattice parameters were measured by X-ray diffraction and the Young`s moduli were measured by low-load microindentation. The composition dependence of the lattice parameters and elastic moduli show a positive deviation with respect to a rule of mixtures. During continuous heating at 15C/min., the metastable precursor bcc phases decomposed at temperatures above 750C to uniformly refined microstructures.

  6. Sensitivity of Granular Force Chain Orientation to Disorder-Induced Metastable Relaxation.

    PubMed

    Iikawa, N; Bandi, M M; Katsuragi, H

    2016-03-25

    A two-dimensional system of photoelastic disks subject to vertical tapping against gravity was experimentally monitored from ordered to disordered configurations by varying bidispersity. The packing fraction ϕ, coordination number Z, and an appropriately defined force-chain orientational order parameter S all exhibit as similar sharp transition with a small increase in disorder. A measurable change in S, but not ϕ and Z, was detected under tapping. We find disorder-induced metastability does not show configurational relaxation, but can be detected via force-chain reorientations.

  7. Evaporative cooling of metastable helium in the multi-partial-wave regime

    SciTech Connect

    Nguyen, Scott V.; Doret, S. Charles; Connolly, Colin B.; Michniak, Robert A.; Doyle, John M.; Ketterle, Wolfgang

    2005-12-15

    Metastable helium is buffer gas cooled, magnetically trapped, and evaporatively cooled in large numbers. 10{sup 11} {sup 4}He{sup *} atoms are trapped at an initial temperature of 400 mK and evaporatively cooled into the ultracold regime, resulting in a cloud of 2{+-}0.5x10{sup 9} atoms at 1.4{+-}0.2 mK. Efficient evaporation indicates low collisional loss for {sup 4}He{sup *} in both the ultracold and multi-partial-wave regime, in agreement with theory.

  8. Numerical Study of the Structure of Metastable Configurations for the Thomson Problem

    NASA Astrophysics Data System (ADS)

    Bondarenko, A. N.; Bugueva, T. V.; Kozinkin, L. A.

    2016-05-01

    A numerical method is proposed for solving the Thomson problem - finding stable positions for a system of N point charges distributed on a sphere that minimize the potential energy of the system. The behavior of this system is essentially nonlinear, and the number of metastable structures grows exponentially with N. This makes the problem of finding all stable configurations extremely difficult. The results of testing of the developed algorithm and of numerical study of the properties of the local potential energy minima for a system of point charges are presented.

  9. Human metastable epiallele candidates link to common disorders.

    PubMed

    Harris, R Alan; Nagy-Szakal, Dorottya; Kellermayer, Richard

    2013-02-01

    Metastable epialleles (MEs) are mammalian genomic loci where epigenetic patterning occurs before gastrulation in a stochastic fashion leading to systematic interindividual variation within one species. Importantly, periconceptual nutritional influences may modulate the establishment of epigenetic changes, such as DNA methylation at MEs. Based on these characteristics, we exploited Infinium HumanMethylation450 BeadChip kits in a 2-tissue parallel screen on peripheral blood leukocyte and colonic mucosal DNA from 10 children without identifiable large intestinal disease. This approach led to the delineation of 1776 CpG sites meeting our criteria for MEs, which associated with 1013 genes. The list of ME candidates exhibited overlaps with recently identified human genes (including CYP2E1 and MGMT, where methylation has been associated with Parkinson disease and glioblastoma, respectively) in which perinatal DNA methylation levels where linked to maternal periconceptual nutrition. One hundred 18 (11.6%) of the ME candidates overlapped with genes where DNA methylation correlated (r > 0.871; p < 0.055) with expression in the colon mucosa of 5 independent control children. Genes involved in homophilic cell adhesion (including cadherin-associated genes) and developmental processes were significantly overrepresented in association with MEs. Additional filtering of gene expression-correlated MEs defined 35 genes, associated with 2 or more CpG sites within a 10 kb genomic region, fulfilling the ME criteria. DNA methylation changes at a number of these genes have been linked to various forms of human disease, including cancers, such as asthma and acute myeloid leukemia (ALOX12), gastric cancer (EBF3), breast cancer (NAV1), colon cancer and acute lymphoid leukemia (KCNK15), Wilms tumor (protocadherin gene cluster; PCDHAs) and colorectal cancer (TCERG1L), suggesting a potential etiologic role for MEs in tumorigenesis and underscoring the possible developmental origins of these

  10. Dendritic microstructure in argon atomized superalloy powders

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Kumar, Mahundra

    1986-01-01

    The dendritic microstructure of atomized nickel base superalloy powders (Ni-20 pct Cr, NIMONIC-80A, ASTROALOY, and ZHS6-K) was studied. Prealloyed vacuum induction melted ingots were argon-atomized, the powders were cooled to room temperature, and various powder-size fractions were examined by optical metallography. Linear correlations were obtained for the powder size dependence of the secondary dendrite arm spacing, following the expected d-alpha (R) to the m power dependence on the particle size for all four superalloy compositions. However, the Ni-20 pct Cr alloy, which had much coarser arm spacing as compared to the other three alloys, had a much larger value of m.

  11. [Temperature measurement of DC argon plasma jet].

    PubMed

    Yan, Jian-Hua; Pan, Xin-Chao; Ma, Zeng-Yi; Tu, Xin; Cen, Ke-Fa

    2008-01-01

    The electron temperature of DC arc plasma jet is an important parameter, which determines the characteristics of plasma jet. The measurement of emission spectrum was performed to obtain the spectral intensities of some Ar lines and the method of diagrammatic view of Boltzmann was adopted to calculate the electron temperature. The results indicated that the electron temperature dropped at different speed along with the axes of the plasma jet and rose rapidly when the current was increased, and it also rose when the flowrate of argon was increased.

  12. Resonantly-enhanced harmonic generation in Argon.

    PubMed

    Ackermann, P; Münch, H; Halfmann, T

    2012-06-18

    We present systematic investigations of harmonic generation in Argon, driven in the vicinity of a five-photon resonance by intense, tunable picosecond radiation pulses. When properly matching the laser frequency with the Stark-shifted multi-photon resonance, we observe a pronounced enhancement not only of the 5th, but also the 7th and 9th harmonic of the driving laser (i.e. at orders higher than the involved multi-photon resonance). We study the harmonic yield at different intensities and wavelengths of the driving laser to determine optimal conditions for resonantly-enhanced harmonic generation.

  13. Light-induced excess conductivity and the role of argon in the deposition of doping-modulated amorphous silicon superlattices

    SciTech Connect

    Su, F.C.; Levine, S.; Vanier, P.E.; Kampas, F.J.

    1985-01-01

    Amorphous semiconductor superlattice structures consisting of alternating n-type and p-type doped layers of hydrogenated amorphous silicon (a-Si:H) have been made by silane glow discharge in a single chamber system. These multilayered films show the novel phenomenon of light-induced excess conductivity (LEC) associated with a metastable state having a lifetime of order of days. This report shows that the LEC effect is quite dependent on the specific details of the deposition parameters, namely dilution of the silane with inert gas, substrate temperature and layer thickness. In order to investigate the origin of the LEC effect, argon dilution was used for specific regions of the structure. This experiment shows that the slow states are distributed throughout the layers, and are not concentrated at the interfaces.

  14. Characterization of an atmospheric double arc argon-nitrogen plasma source

    SciTech Connect

    Tu, X.; Cheron, B. G.; Yan, J. H.; Yu, L.; Cen, K. F.

    2008-05-15

    In the framework of studies devoted to hazardous waste destruction, an original dc double anode plasma torch has been designed and tested, which produces an elongated, weak fluctuation and reproducible plasma jet at atmospheric pressure. The arc instabilities and dynamic behavior of the double arc argon-nitrogen plasma jet are investigated through the oscillations of electrical signals by combined means of fast Fourier transform and Wigner distribution. In our experiment, the restrike mode is identified as the typical fluctuation behavior in an argon-nitrogen plasma jet. The Fourier spectra and Wigner distributions exhibit two characteristic frequencies of 150 Hz and 4.1 kHz, which reveals that the nature of fluctuations in the double arc argon-nitrogen plasma can be ascribed to the undulation of the power supply and both arc roots motion on the anode channels. In addition, the microscopic properties of the plasma jet inside and outside the arc chamber are investigated by means of optical emission spectroscopy, which yields excitation, electronic, rotational, and vibrational temperatures, as well as the electron number density. The results allow us to examine the validity criteria of a local thermodynamic equilibrium (LTE) state in the plasma arc. The measured electron densities are in good agreement with those calculated from the LTE model, which indicates that the atmospheric double arc argon-nitrogen plasma in the core region is close to the LTE state under our experimental conditions.

  15. Ionizing shocks in argon. Part I: Collisional-radiative model and steady-state structure

    SciTech Connect

    Kapper, M. G.; Cambier, J.-L.

    2011-06-01

    A detailed collisional-radiative model is developed and coupled with a single-fluid, two-temperature convection model for the transport of shock-heated argon. The model is used in a systematic approach to examine the effects of the collision cross sections on the shock structure, including the relaxation layer and subsequent radiative-cooling regime. We present a comparison with previous experimental results obtained at the University of Toronto's Institute of Aerospace Studies and the Australian National University, which serve as benchmarks to the model. It is shown here that ionization proceeds via the ladder-climbing mechanism, in which the upper levels play a dominant role as compared to the metastable states. Taking this into account, the present model is able to accurately reproduce the metastable populations in the relaxation zone measured in previous experiments, which is not possible with a two-step model. Our numerical results of the radiative-cooling region are in close agreement with experiments and have been obtained without having to consider radiative transport. In particular, it found that spontaneous emission involving the upper levels together with Bremsstrahlung emission account for nearly all radiative losses; all other significant radiative processes, resulting in transitions into the ground-state, are mostly self-absorbed and have a lesser impact. The effects of electron heat conduction are also considered and shown to have a large impact on the electron-priming region immediately behind the shock front; however, the overall effect on the induction length, i.e., the distance between the shock front and the electron avalanche, is small.

  16. Analysis of the 222Rn concentration in argon and a purification technique for gaseous and liquid argon.

    PubMed

    Simgen, H; Zuzel, G

    2009-05-01

    We present an investigation of the (222)Rn concentration in argon with ultra-low background proportional counters. Argon purification tests by means of cryo-adsorption of radon on activated carbon were performed. For gaseous argon the purification process was found to be very efficient. Also in liquid phase the (222)Rn concentration could be reduced significantly, however, the efficiency is lower than in the gas phase. We also have analyzed the initial (222)Rn concentrations in commercial liquid argon. It was found to be significantly higher than in liquid nitrogen.

  17. Dynamics of recurrent neural networks with delayed unreliable synapses: metastable clustering.

    PubMed

    Friedrich, Johannes; Kinzel, Wolfgang

    2009-08-01

    The influence of unreliable synapses on the dynamic properties of a neural network is investigated for a homogeneous integrate-and-fire network with delayed inhibitory synapses. Numerical and analytical calculations show that the network relaxes to a state with dynamic clusters of identical size which permanently exchange neurons. We present analytical results for the number of clusters and their distribution of firing times which are determined by the synaptic properties. The number of possible configurations increases exponentially with network size. In addition to states with a maximal number of clusters, metastable ones with a smaller number of clusters survive for an exponentially large time scale. An externally excited cluster survives for some time, too, thus clusters may encode information.

  18. Electron scattering and transport in liquid argon

    SciTech Connect

    Boyle, G. J.; Cocks, D. G.; White, R. D.; McEachran, R. P.

    2015-04-21

    The transport of excess electrons in liquid argon driven out of equilibrium by an applied electric field is revisited using a multi-term solution of Boltzmann’s equation together with ab initio liquid phase cross-sections calculated using the Dirac-Fock scattering equations. The calculation of liquid phase cross-sections extends previous treatments to consider multipole polarisabilities and a non-local treatment of exchange, while the accuracy of the electron-argon potential is validated through comparison of the calculated gas phase cross-sections with experiment. The results presented highlight the inadequacy of local treatments of exchange that are commonly used in liquid and cluster phase cross-section calculations. The multi-term Boltzmann equation framework accounting for coherent scattering enables the inclusion of the full anisotropy in the differential cross-section arising from the interaction and the structure factor, without an a priori assumption of quasi-isotropy in the velocity distribution function. The model, which contains no free parameters and accounts for both coherent scattering and liquid phase screening effects, was found to reproduce well the experimental drift velocities and characteristic energies.

  19. Cyclic cosmology, conformal symmetry and the metastability of the Higgs

    NASA Astrophysics Data System (ADS)

    Bars, Itzhak; Steinhardt, Paul J.; Turok, Neil

    2013-10-01

    Recent measurements at the LHC suggest that the current Higgs vacuum could be metastable with a modest barrier (height ( GeV)4) separating it from a ground state with negative vacuum density of order the Planck scale. We note that metastability is problematic for standard bang cosmology but is essential for cyclic cosmology in order to end one cycle, bounce, and begin the next. In this Letter, motivated by the approximate scaling symmetry of the standard model of particle physics and the primordial large-scale structure of the universe, we use our recent formulation of the Weyl-invariant version of the standard model coupled to gravity to track the evolution of the Higgs in a regularly bouncing cosmology. We find a band of solutions in which the Higgs field escapes from the metastable phase during each big crunch, passes through the bang into an expanding phase, and returns to the metastable vacuum, cycle after cycle after cycle. We show that, due to the effect of the Higgs, the infinitely cycling universe is geodesically complete, in contrast to inflation.

  20. Global segregation of cortical activity and metastable dynamics

    PubMed Central

    Stratton, Peter; Wiles, Janet

    2015-01-01

    Cortical activity exhibits persistent metastable dynamics. Assemblies of neurons transiently couple (integrate) and decouple (segregate) at multiple spatiotemporal scales; both integration and segregation are required to support metastability. Integration of distant brain regions can be achieved through long range excitatory projections, but the mechanism supporting long range segregation is not clear. We argue that the thalamocortical matrix connections, which project diffusely from the thalamus to the cortex and have long been thought to support cortical gain control, play an equally-important role in cortical segregation. We present a computational model of the diffuse thalamocortical loop, called the competitive cross-coupling (CXC) spiking network. Simulations of the model show how different levels of tonic input from the brainstem to the thalamus could control dynamical complexity in the cortex, directing transitions between sleep, wakefulness and high attention or vigilance. The model also explains how mutually-exclusive activity could arise across large portions of the cortex, such as between the default-mode and task-positive networks. It is robust to noise but does not require noise to autonomously generate metastability. We conclude that the long range segregation observed in brain activity and required for global metastable dynamics could be provided by the thalamocortical matrix, and is strongly modulated by brainstem input to the thalamus. PMID:26379514

  1. Metastable Oxygen Production by Electron-Impact of Oxygen

    NASA Astrophysics Data System (ADS)

    Hein, Jeffrey; Johnson, Paul; Kanik, Isik; Malone, Charles

    2014-05-01

    Electron-impact excitation processes involving atomic and molecular oxygen are important in atmospheric interactions. The production of long-lived metastable O(1S) and O(1D) through electron impact of atomic O and molecular O2 play a significant role in the dynamics of oxygen-containing atmospheres (Earth, Europa, Io). Emissions from metastable O (1S --> 1D) produce the well-recognized green light from terrestrial aurora. Electron-impact excitation to 1S and 1D are sensitive channels for determining energy partitioning and dynamics from space weather. Electron-impact excitation cross sections determined through fundamental experimental studies are necessary for modeling of natural phenomena and observation data. The detection of metastable states in laboratory experiments requires a novel approach, since typical detection techniques (e.g., fluorescence by radiative de-excitation) cannot be performed due to the long-lived nature of the excited species. In this work, metastable O is produced through electron impact, and is incident on a cryogenically cooled rare gas matrix. The excimer production and subsequent rapid radiative de-excitation provides measurable signal that is directly related to the originating electron-impact excitation process.

  2. Global segregation of cortical activity and metastable dynamics.

    PubMed

    Stratton, Peter; Wiles, Janet

    2015-01-01

    Cortical activity exhibits persistent metastable dynamics. Assemblies of neurons transiently couple (integrate) and decouple (segregate) at multiple spatiotemporal scales; both integration and segregation are required to support metastability. Integration of distant brain regions can be achieved through long range excitatory projections, but the mechanism supporting long range segregation is not clear. We argue that the thalamocortical matrix connections, which project diffusely from the thalamus to the cortex and have long been thought to support cortical gain control, play an equally-important role in cortical segregation. We present a computational model of the diffuse thalamocortical loop, called the competitive cross-coupling (CXC) spiking network. Simulations of the model show how different levels of tonic input from the brainstem to the thalamus could control dynamical complexity in the cortex, directing transitions between sleep, wakefulness and high attention or vigilance. The model also explains how mutually-exclusive activity could arise across large portions of the cortex, such as between the default-mode and task-positive networks. It is robust to noise but does not require noise to autonomously generate metastability. We conclude that the long range segregation observed in brain activity and required for global metastable dynamics could be provided by the thalamocortical matrix, and is strongly modulated by brainstem input to the thalamus.

  3. Metastable atom probe for measuring electron beam density profiles

    NASA Technical Reports Server (NTRS)

    Lockhart, J. M.; Zorn, J. C.

    1972-01-01

    Metastable atom probe was developed for measuring current density in electron beam as function of two arbitrary coordinates, with spatial resolution better than 0.5 mm. Probe shows effects of space charge, magnetic fields, and other factors which influence electron current density, but operates with such low beam densities that introduced perturbation is very small.

  4. Expression analysis following argon treatment in an in vivo model of transient middle cerebral artery occlusion in rats

    PubMed Central

    2014-01-01

    Background Argon treatment following experimental neurotrauma has been found neuroprotective in an array of in vivo and in vitro models. The inherent cellular and molecular mechanisms are still unknown. We seeked to shed light on these processes by examinig the cellular distribution and the expression of inflammatory markers and growth factors in argon treated brain tissue. Methods Male adult Sprague-Dawley rats were randomly assigned to one of the study groups: sham surgery + placebo, sham surgery + argon, tMCAO + placebo, and tMCAO + argon. Animals underwent 2 h-transient middle cerebral artery occlusion (tMCAO) using the endoluminal thread model or sham surgery without tMCAO. After the first hour of tMCAO or sham surgery a 1 h inhalative argon (50% argon/50% O2) or placebo (50% N2/50% O2) treatment was performed. Brains were removed and evaluated after 24 h. RealTime-PCR was performed from biopsies of the penumbra and contralateral corresponding regions. Paraffin sections were immunostained with antibodies against GFAP, NeuN, and Iba1. Cell counts of astrocytes, neurons and microglia in different cortical regions were performed in a double-blinded manner. Results Fifteen animals per tMCAO group and twelve sham + placebo respectively eleven sham + argon animals completed the interventional procedure. We identified several genes (IL-1β, IL-6, iNOS, TGF-β, and NGF) whose transcription was elevated 24 h after the study intervention, and whose expression levels significantly differed between argon treatment and placebo following tMCAO. Except for the core region of ischemia, cell numbers were comparable between different treatment groups. Conclusion In our study, we found an elevated expression of several inflammatory markers and growth factors following tMCAO + argon compared to tMCAO + placebo. Although conflicting the previously described neuroprotective effects of argon following experimental ischemia, these findings might

  5. Nucleation of metastable aragonite CaCO3 in seawater

    DOE PAGESBeta

    Sun, Wenhao; Jayaraman, Saivenkataraman; Chen, Wei; Persson, Kristin A.; Ceder, Gerbrand

    2015-03-04

    Predicting the conditions in which a compound adopts a metastable structure when it crystallizes out of solution is an unsolved and fundamental problem in materials synthesis, and one which, if understood and harnessed, could enable the rational design of synthesis pathways toward or away from metastable structures. Crystallization of metastable phases is particularly accessible via low-temperature solution-based routes, such as chimie douce and hydrothermal synthesis, but although the chemistry of the solution plays a crucial role in governing which polymorph forms, how it does so is poorly understood. Here, we demonstrate an ab initio technique to quantify thermodynamic parameters ofmore » surfaces and bulks in equilibrium with an aqueous environment, enabling the calculation of nucleation barriers of competing polymorphs as a function of solution chemistry, thereby predicting the solution conditions governing polymorph selection. We apply this approach to resolve the long-standing “calcite–aragonite problem”––the observation that calcium carbonate precipitates as the metastable aragonite polymorph in marine environments, rather than the stable phase calcite––which is of tremendous relevance to biomineralization, carbon sequestration, paleogeochemistry, and the vulnerability of marine life to ocean acidification. We identify a direct relationship between the calcite surface energy and solution Mg–Ca ion concentrations, showing that the calcite nucleation barrier surpasses that of metastable aragonite in solutions with Mg:Ca ratios consistent with modern seawater, allowing aragonite to dominate the kinetics of nucleation. Our ability to quantify how solution parameters distinguish between polymorphs marks an important step toward the ab initio prediction of materials synthesis pathways in solution.« less

  6. Nucleation of metastable aragonite CaCO3 in seawater

    PubMed Central

    Sun, Wenhao; Jayaraman, Saivenkataraman; Chen, Wei; Persson, Kristin A.; Ceder, Gerbrand

    2015-01-01

    Predicting the conditions in which a compound adopts a metastable structure when it crystallizes out of solution is an unsolved and fundamental problem in materials synthesis, and one which, if understood and harnessed, could enable the rational design of synthesis pathways toward or away from metastable structures. Crystallization of metastable phases is particularly accessible via low-temperature solution-based routes, such as chimie douce and hydrothermal synthesis, but although the chemistry of the solution plays a crucial role in governing which polymorph forms, how it does so is poorly understood. Here, we demonstrate an ab initio technique to quantify thermodynamic parameters of surfaces and bulks in equilibrium with an aqueous environment, enabling the calculation of nucleation barriers of competing polymorphs as a function of solution chemistry, thereby predicting the solution conditions governing polymorph selection. We apply this approach to resolve the long-standing “calcite–aragonite problem”––the observation that calcium carbonate precipitates as the metastable aragonite polymorph in marine environments, rather than the stable phase calcite––which is of tremendous relevance to biomineralization, carbon sequestration, paleogeochemistry, and the vulnerability of marine life to ocean acidification. We identify a direct relationship between the calcite surface energy and solution Mg–Ca ion concentrations, showing that the calcite nucleation barrier surpasses that of metastable aragonite in solutions with Mg:Ca ratios consistent with modern seawater, allowing aragonite to dominate the kinetics of nucleation. Our ability to quantify how solution parameters distinguish between polymorphs marks an important step toward the ab initio prediction of materials synthesis pathways in solution. PMID:25739963

  7. 21 CFR 868.1075 - Argon gas analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Argon gas analyzer. 868.1075 Section 868.1075 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1075 Argon gas analyzer. (a) Identification....

  8. Performance and technical challenges of liquid argon detectors

    SciTech Connect

    Rebel, Brian; /Fermilab

    2011-01-01

    Liquid argon time projection chambers offer the possibility of incredible resolution of particle interactions. This review outlines the ongoing research and development towards the realization of a multi-kiloton scale detector. The ICARUS and ArgoNeuT experiments which make use of liquid argon time projection chamber technology are also described.

  9. Argon gas: a potential neuroprotectant and promising medical therapy.

    PubMed

    Nowrangi, Derek S; Tang, Jiping; Zhang, John H

    2014-02-17

    Argon is a noble gas element that has demonstrated narcotic and protective abilities that may prove useful in the medical field. The earliest records of argon gas have exposed its ability to exhibit narcotic symptoms at hyperbaric pressures greater than 10 atmospheres with more recent evidence seeking to display argon as a potential neuroprotective agent. The high availability and low cost of argon provide a distinct advantage over using similarly acting treatments such as xenon gas. Argon gas treatments in models of brain injury such as in vitro Oxygen-Glucose-Deprivation (OGD) and Traumatic Brain Injury (TBI), as well as in vivo Middle Cerebral Artery Occlusion (MCAO) have largely demonstrated positive neuroprotective behavior. On the other hand, some warning has been made to potential negative effects of argon treatments in cases of ischemic brain injury, where increases of damage in the sub-cortical region of the brain have been uncovered. Further support for argon use in the medical field has been demonstrated in its use in combination with tPA, its ability as an organoprotectant, and its surgical applications. This review seeks to summarize the history and development of argon gas use in medical research as mainly a neuroprotective agent, to summarize the mechanisms associated with its biological effects, and to elucidate its future potential.

  10. Improved installation prototype for measurement of low argon-37 activity

    NASA Astrophysics Data System (ADS)

    Pakhomov, Sergei; Dubasov, Yuri

    2015-04-01

    On-site Inspection (OSI) is a key element of verification of State Parties' compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). An on-site inspection is launched to establish whether or not a nuclear explosion has been carried out. One of the most significant evidence of n underground nuclear explosion (UNE) is detection above background concentrations of argon-37 in near surface air. Argon-37 is formed in large amounts at interaction of neutrons of UNE with the potassium which is a part of the majority of rocks. Its estimated contents for the 100th days after explosion with a energy of 1000 t of TNT near a surface can vary from 1 to 1000 mBq/m3. The background concentrations of argon-37 in subsoil air vary 1 do100 mBq/m3. Traditionally, for argon-37 activity measurement the gas-proportional counters are used. But at Khlopin Radium institute the developments of the new type of highly sensitive and low-background installation capable to provide the required range of measurements of the argon-37 concentration are conducted. The liquid scintillation method of the registration of the low-energetic argon-37 electrons is the basic installation principle and as scintillator, the itself condensed air argon sample is used. Registration of scintillations of liquid argon is made by means of system from 3 PMT which cathodes are cooled near to the temperature of liquid nitrogen together with the measuring chamber in which placed the quartz glass ampule, containing the measured sample of the liquefied argon. For converse the short wavelength photons (λ = 127 nm) of liquid argon scintillations to more long-wave, corresponding to the range of PMT sensitivity, the polymer film with tetra-phenyl-butadiene (TPB) is provided. Even the insignificant impurities of nitrogen, oxygen and others gaseous in the liquid argon samples can to cause the quenching of scintillation, especially their slow components. To account this effect and it influence on change of registration

  11. Effect of Emergency Argon on FCF Operational Incidents

    SciTech Connect

    Charles Solbrig

    2011-12-01

    The following report presents analyses of operational incidents which are considered in the safety analysis of the FCF argon cell and the effect that the operability of the emergency argon system has on the course of these incidents. The purpose of this study is to determine if the emergency argon system makes a significant difference in ameliorating the course of these incidents. Six incidents were considered. The following three incidents were analyzed. These are: 1. Cooling failing on 2. Vacuum Pump Failing on 3. Argon Supplies Failing on. In the remaining three incidents, the emergency argon supply would have no effect on the course of these transients since it would not come on during these incidents. The transients are 1. Loss of Cooling 2. Loss of power (Differs from above by startup delay till the Diesel Generators come on.) 3. Cell rupture due to an earthquake or other cause. The analyses of the first three incidents are reported on in the next three sections. This report is issued realizing the control parameters used may not be optimum, and additional modeling must be done to model the inertia of refrigeration system, but the major conclusion concerning the need for the emergency argon system is still valid. The timing of some events may change with a more accurate model but the differences between the transients with and without emergency argon will remain the same. Some of the parameters assumed in the analyses are Makeup argon supply, 18 cfm, initiates when pressure is = -6 iwg., shuts off when pressure is = -3.1 iwg. 170,000 ft3 supply. Min 1/7th always available, can be cross connected to HFEF argon supply dewar. Emergency argon supply, 900 cfm, initiates when pressure is = -8 iwg. shuts off when pressure is =-4 iwg. reservoir 220 ft3, refilled when tank farm pressure reduces to 1050 psi which is about 110 ft3.

  12. Stochastic Tunneling and Metastable States During the Somatic Evolution of Cancer

    PubMed Central

    Ashcroft, Peter; Michor, Franziska; Galla, Tobias

    2015-01-01

    Tumors initiate when a population of proliferating cells accumulates a certain number and type of genetic and/or epigenetic alterations. The population dynamics of such sequential acquisition of (epi)genetic alterations has been the topic of much investigation. The phenomenon of stochastic tunneling, where an intermediate mutant in a sequence does not reach fixation in a population before generating a double mutant, has been studied using a variety of computational and mathematical methods. However, the field still lacks a comprehensive analytical description since theoretical predictions of fixation times are available only for cases in which the second mutant is advantageous. Here, we study stochastic tunneling in a Moran model. Analyzing the deterministic dynamics of large populations we systematically identify the parameter regimes captured by existing approaches. Our analysis also reveals fitness landscapes and mutation rates for which finite populations are found in long-lived metastable states. These are landscapes in which the final mutant is not the most advantageous in the sequence, and resulting metastable states are a consequence of a mutation–selection balance. The escape from these states is driven by intrinsic noise, and their location affects the probability of tunneling. Existing methods no longer apply. In these regimes it is the escape from the metastable states that is the key bottleneck; fixation is no longer limited by the emergence of a successful mutant lineage. We used the so-called Wentzel–Kramers–Brillouin method to compute fixation times in these parameter regimes, successfully validated by stochastic simulations. Our work fills a gap left by previous approaches and provides a more comprehensive description of the acquisition of multiple mutations in populations of somatic cells. PMID:25624316

  13. Kinetic modeling of evolution of 3 + 1:Resonance enhanced multiphoton ionization plasma in argon at low pressures

    SciTech Connect

    Tholeti, Siva Sashank; Alexeenko, Alina A.; Shneider, Mikhail N.

    2014-06-15

    We present numerical kinetic modeling of generation and evolution of the plasma produced as a result of resonance enhanced multiphoton ionization (REMPI) in Argon gas. The particle-in-cell/Monte Carlo collision (PIC/MCC) simulations capture non-equilibrium effects in REMPI plasma expansion by considering the major collisional processes at the microscopic level: elastic scattering, electron impact ionization, ion charge exchange, and recombination and quenching for metastable excited atoms. The conditions in one-dimensional (1D) and two-dimensional (2D) formulations correspond to known experiments in Argon at a pressure of 5 Torr. The 1D PIC/MCC calculations are compared with the published results of local drift-diffusion model, obtained for the same conditions. It is shown that the PIC/MCC and diffusion-drift models are in qualitative and in reasonable quantitative agreement during the ambipolar expansion stage, whereas significant non-equilibrium exists during the first few 10 s of nanoseconds. 2D effects are important in the REMPI plasma expansion. The 2D PIC/MCC calculations produce significantly lower peak electron densities as compared to 1D and show a better agreement with experimentally measured microwave radiation scattering.

  14. Kinetic modeling of evolution of 3 + 1:Resonance enhanced multiphoton ionization plasma in argon at low pressures

    NASA Astrophysics Data System (ADS)

    Tholeti, Siva Sashank; Shneider, Mikhail N.; Alexeenko, Alina A.

    2014-06-01

    We present numerical kinetic modeling of generation and evolution of the plasma produced as a result of resonance enhanced multiphoton ionization (REMPI) in Argon gas. The particle-in-cell/Monte Carlo collision (PIC/MCC) simulations capture non-equilibrium effects in REMPI plasma expansion by considering the major collisional processes at the microscopic level: elastic scattering, electron impact ionization, ion charge exchange, and recombination and quenching for metastable excited atoms. The conditions in one-dimensional (1D) and two-dimensional (2D) formulations correspond to known experiments in Argon at a pressure of 5 Torr. The 1D PIC/MCC calculations are compared with the published results of local drift-diffusion model, obtained for the same conditions. It is shown that the PIC/MCC and diffusion-drift models are in qualitative and in reasonable quantitative agreement during the ambipolar expansion stage, whereas significant non-equilibrium exists during the first few 10 s of nanoseconds. 2D effects are important in the REMPI plasma expansion. The 2D PIC/MCC calculations produce significantly lower peak electron densities as compared to 1D and show a better agreement with experimentally measured microwave radiation scattering.

  15. Vascular Welding Using The Argon Laser

    NASA Astrophysics Data System (ADS)

    White, Rodney A.; Donayre, Carlos; Kopchok, George; White, Geoffrey; Abergel, R. Patrick; Lyons, Richard; Klein, Stanley; Dwyer, Richard; Uitto, Jouni

    1987-03-01

    This study compared the histology, biochemistry, and tensile strength of laser welded and sutured canine venotomies, arteriotomies and arteriovenous fistulas. Bilateral femoral, carotid or jugular vessels were studied with one repair (control) closed with interrupted 6-0 polypropylene sutures, and the contralatral repair (experimental) welded with the argon laser. Specimens were examined at weekly intervals from 1 to 4 weeks for each type of repair and evaluated histologically by hematoxylineosin, elastin and trichrome stains, biochemically by the formation of [3H] hyaroxyproline as an index of collagen synthesis, ana mechanically by tensile strength determinations. At removal, all experimental closures were patent without hematomas, aneurysms or luminal dilatation. Histologic and biochemical examination and tensile strength determinations suggest that laser welaing may be an alternative to sutures for repair of large diameter venotomies, arteriotomies and arteriovenous fistulas, as they heal comparable to suture repairs up to 4 weeks postoperatively.

  16. Merging of High Speed Argon Plasma Jets

    NASA Astrophysics Data System (ADS)

    Case, Andrew; Messer, Sarah; Brockington, Sam; Wu, Lin-Chun; Witherspoon, F. Douglas

    2012-10-01

    Formation of an imploding plasma liner for the Plasma Liner Experiment (PLX) requires individual plasma jets to merge into a uniform shell of plasma converging on the target region. Understanding dynamics of the merging process requires knowledge of the plasma phenomena involved. We present here results from the study of the merging of six plasma jets in three dimensional geometry. The experiments were performed using HyperV Technologies Corp. one centimeter MiniRailguns using a preionized Argon plasma armature on a vacuum chamber designed to partially reproduce the port geometry of the PLX vacuum chamber. Diagnostics include fast imaging, spectroscopy, interferometry, fast pressure probes, B-dot probes, and high speed spatially resolved photodiodes, permitting measurements of plasma density, temperature, velocity, stagnation pressure, and magnetic field. These experimental results are compared with simulation results from the LSP 3D hybrid PIC code.

  17. Merging of high speed argon plasma jets

    NASA Astrophysics Data System (ADS)

    Case, A.; Messer, S.; Brockington, S.; Wu, L.; Witherspoon, F. D.; Elton, R.

    2013-01-01

    Formation of an imploding plasma liner for the plasma liner experiment (PLX) requires individual plasma jets to merge into a quasi-spherical shell of plasma converging on the origin. Understanding dynamics of the merging process requires knowledge of the plasma phenomena involved. We present results from the study of the merging of three plasma jets in three dimensional geometry. The experiments were performed using HyperV Technologies Corp. 1 cm Minirailguns with a preionized argon plasma armature. The vacuum chamber partially reproduces the port geometry of the PLX chamber. Diagnostics include fast imaging, spectroscopy, interferometry, fast pressure probes, B-dot probes, and high speed spatially resolved photodiodes, permitting measurements of plasma density, temperature, velocity, stagnation pressure, magnetic field, and density gradients. These experimental results are compared with simulation results from the LSP 3D hybrid PIC code.

  18. Explosive cavitation in superheated liquid argon.

    PubMed

    Vinogradov, V E; Pavlov, P A; Baidakov, V G

    2008-06-21

    The kinetics of explosive boiling-up of liquid argon has been investigated at negative pressures created by the reflection of a compression pulse 3-5 mus long from the free surface of a liquid by the method of liquid pulse heating on a thin platinum wire (with a rate of temperature increase of about 1 Kmus). The limiting superheats T(*) (stretches p(*)), the effective nucleation rate J(*), and the derivative G(T)=(d ln JdT)(T=T(*) ) have been determined by experimental data on the thermal perturbation of a wire probe and the results of solution of the problem on the initial stage of explosive boiling-up of a liquid. The experimental data are compared with homogeneous nucleation theory. PMID:18570511

  19. Argon laser treatment of radiation proctitis

    SciTech Connect

    O'Connor, J.J.

    1989-06-01

    Radiation therapy for malignant gynecologic disease and prostatic cancer has resulted in increased survival and cure rates. This modality has unfortunately produced debilitating radiation proctitis. Recently, five patients were seen with continuous rectal bleeding secondary to radiation disease of the rectum. Four of these patients were women who were being treated for cervical carcinoma and one was a man with prostatic cancer. These patients were refractory to steroid retention enemas, iron therapy, and benproperine enema therapy. Treatment was accomplished using the argon laser with a 300-micron fiber passed via flexible fiberoptic sigmoidoscope. The most proximal areas were treated first. One and a half watts at 0.5 pulses was used. Up to 50 pulses were delivered per therapy session. The fiber was placed in contact with the lesion and circumferentially for 0.5 cm surrounding each suspected area. Bleeding stopped in the four women after two sessions and in the man after four sessions.

  20. Review of metastable states in heavy nuclei.

    PubMed

    Dracoulis, G D; Walker, P M; Kondev, F G

    2016-07-01

    The structure of nuclear isomeric states is reviewed in the context of their role in contemporary nuclear physics research. Emphasis is given to high-spin isomers in heavy nuclei, with [Formula: see text]. The possibility to exploit isomers to study some of the most exotic nuclei is a recurring theme. In spherical nuclei, the role of octupole collectivity is discussed in detail, while in deformed nuclei the limitations of the K quantum number are addressed. Isomer targets and isomer beams are considered, along with applications related to energy storage, astrophysics, medicine, and experimental advances. PMID:27243336

  1. Review of metastable states in heavy nuclei

    NASA Astrophysics Data System (ADS)

    Dracoulis, G. D.; Walker, P. M.; Kondev, F. G.

    2016-07-01

    The structure of nuclear isomeric states is reviewed in the context of their role in contemporary nuclear physics research. Emphasis is given to high-spin isomers in heavy nuclei, with A≳ 150 . The possibility to exploit isomers to study some of the most exotic nuclei is a recurring theme. In spherical nuclei, the role of octupole collectivity is discussed in detail, while in deformed nuclei the limitations of the K quantum number are addressed. Isomer targets and isomer beams are considered, along with applications related to energy storage, astrophysics, medicine, and experimental advances.

  2. Comparison between modeled and experimental emission rates in ASTRAL argon plasmas.

    NASA Astrophysics Data System (ADS)

    Munoz, J.; Boivin, R.; Gardner, A.; Kamar, O.; Loch, S.; Ballance, C.

    2007-11-01

    Argon emission rate coefficients are measured in the ASTRAL helicon plasma source using a 0.33 m scanning monochromator and a CCD camera. ASTRAL produces bright intense Ar plasmas with the following parameters: ne = 10^12 - 10^13 cm-3 and Te = 2 - 10 eV, B-field <= 1.3 kGauss, rf power <= 2 kWatt. A rf compensated Langmuir probe is used to measure Te and ne. In this experiment Ar I, Ar II and Ar III transitions are monitored as a function of Te while ne is kept constant. Thus, experimental emission rates are obtained as a function of Te and compared to theoretical predictions. Using the ADAS suite of codes, we present spectral modeling of Ar plasmas produced in the ASTRAL helicon plasma source. Recent R-matrix electron-impact excitation data are combined with a new R-matrix calculation that includes pseudo-states contributions. Our collisional-radiative formalism assumes that the excited levels are in quasi-static equilibrium with the ground and metastable populations. Good to excellent agreement has been obtained by including Te and ne profiles in the modeling. The experiment-theory comparison confirms that Te is the dominant parameters in determining the emission rate coefficients in these plasmas.

  3. Ultra-Low Power Cross-Phase Shifts using Metastable Xenon in a High-Finesse Cavity

    NASA Astrophysics Data System (ADS)

    Hickman, Garrett; Pittman, Todd; Franson, James

    Many important applications in quantum information and quantum communications make use of weak single-photon nonlinearities. These nonlinearities have been produced using a number of methods, but they generally require a complicated experimental setup. We demonstrate a relatively simple system for producing ultra-low power cross-phase modulation, by using metastable xenon as the nonlinear medium within an optical cavity. Using metastable xenon prevents the degradation of optical surfaces which typically occurs with the use of alkali vapors such as rubidium. We produce phase shifts of up to 10 mrad using 4.5-fJ control pulses. We discuss the performance of this system and outline the planned improvements that will allow the cavity to produce single-photon phase shifts on the order of 1 mrad. This work was supported in part by DARPA DSO Grant No. W31P4Q-12-1-0015 and by NSF Grant No. PHY-1402708.

  4. Theoretical investigation of the effect of hydrogen addition on the formation and properties of soliton in direct current argon plasma

    NASA Astrophysics Data System (ADS)

    Saikia, P.; Goswami, K. S.; Saikia, B. K.

    2014-03-01

    In this study the effect of hydrogen addition on the formation and properties of soliton in direct-current (DC) argon plasma is theoretically investigated. By coupling fluid equations with Poisons equation for such multi-component plasma, the Mach number and amplitude of the soliton are determined following pseudo potential method. Addition of hydrogen in argon discharge leads to the decrease of electron, Ar+ ion density while a reverse trend was observed for ArH+ and hydrogen like ions. It was found that presence of hydrogen like ions in argon plasma affects the formation of soliton with its amplitude significantly decreases as concentration of hydrogen increases. On the other hand, increase in ion to electron temperature ratios of the lighter ions in the discharge also has a significant influence on the amplitude and formation of soliton. The inverse relation between solitons width and amplitude is found to be consistent for the entire range of study.

  5. Theoretical investigation of the effect of hydrogen addition on the formation and properties of soliton in direct current argon plasma

    SciTech Connect

    Saikia, P. Goswami, K. S.; Saikia, B. K.

    2014-03-15

    In this study the effect of hydrogen addition on the formation and properties of soliton in direct-current (DC) argon plasma is theoretically investigated. By coupling fluid equations with Poisons equation for such multi-component plasma, the Mach number and amplitude of the soliton are determined following pseudo potential method. Addition of hydrogen in argon discharge leads to the decrease of electron, Ar{sup +} ion density while a reverse trend was observed for ArH{sup +} and hydrogen like ions. It was found that presence of hydrogen like ions in argon plasma affects the formation of soliton with its amplitude significantly decreases as concentration of hydrogen increases. On the other hand, increase in ion to electron temperature ratios of the lighter ions in the discharge also has a significant influence on the amplitude and formation of soliton. The inverse relation between solitons width and amplitude is found to be consistent for the entire range of study.

  6. Extreme argon purity in a large, non-evacuated cryostat

    SciTech Connect

    Tope, Terry; Adamowski, Mark; Carls, B.; Hahn, A.; Jaskierny, W.; Jostlein, H.; Kendziora, C.; Lockwitz, S.; Pahlka, B.; Plunkett, R.; Pordes, S.; Rebel, B.; Schmitt, R.; Skup, E.; Stancari, M.; Yang, T.

    2014-01-29

    Liquid Argon Time Projection Chambers (LArTPCs) show promise as scalable devices for the large detectors needed for long-baseline neutrino oscillation physics. Over the last several years at Fermilab a staged approach to developing the technology for large detectors has been developed. The TPC detectors require ultra-pure liquid argon with respect to electronegative contaminants such as oxygen and water. The tolerable electronegative contamination level may be as pure as 60 parts per trillion of oxygen. Three liquid argon cryostats operated at Fermilab have achieved the extreme purity required by TPCs. These three cryostats used evacuation to remove atmospheric contaminants as the first purification step prior to filling with liquid argon. Future physics experiments may require very large detectors with tens of kilotonnes of liquid argon mass. The capability to evacuate such large cryostats adds significant cost to the cryostat itself in addition to the cost of a large scale vacuum pumping system. This paper describes a 30 ton liquid argon cryostat at Fermilab which uses purging to remove atmospheric contaminants instead of evacuation as the first purification step. This cryostat has achieved electronegative contamination levels better than 60 parts per trillion of oxygen equivalent. The results of this liquid argon purity demonstration will strongly influence the design of future TPC cryostats.

  7. Load on Trough Bellows Following an Argon Spill

    SciTech Connect

    Chess, K.; /Fermilab

    1988-07-12

    In the case of a gross argon spill from the DO detector, the liquid argon is caught in three plenums. These plenums are to be connected by bellows to make a horizontal trough open at one end for removing the argon. The design of these bellows is dependent on the maximum argon load they must carry. Bellows to connect the three argon-catching plenums in the DO detector must be able to carry at least 92 lbs of argon when closed and 231 lbs when open, plus the load due to argon in the convolutions. Examples of such loads and the method for their calculations are contained in the Discussion. It should be noted that a set of assumptions was used in these calculations. First, we considered a uniform channel and uniform flow. Second, we used a value for Manning's n meant for a similar, but not exactly the same, case. Finally, we were forced to define an average depth, d, to be used to state the hydraulic radius, R, and area of flow, A. These facts may warrant consideration in future calculations.

  8. On the difference between breakdown and quench voltages of argon plasma and its relation to 4p–4s atomic state transitions

    SciTech Connect

    Forati, Ebrahim Piltan, Shiva; Sievenpiper, Dan

    2015-02-02

    Using a relaxation oscillator circuit, breakdown (V{sub BD}) and quench (V{sub Q}) voltages of a DC discharge microplasma between two needle probes are measured. High resolution modified Paschen curves are obtained for argon microplasmas including a quench voltage curve representing the voltage at which the plasma turns off. It is shown that for a point to point microgap (e.g., the microgap between two needle probes) which describes many realistic microdevices, neither Paschen's law applies nor field emission is noticeable. Although normally V{sub BD} > V{sub Q,} it is observed that depending on environmental parameters of argon, such as pressure and the driving circuitry, plasma can exist in a different state with equal V{sub BD} and V{sub Q.} Using emission line spectroscopy, it is shown that V{sub BD} and V{sub Q} are equal if the atomic excitation by the electric field dipole moment dominantly leads to one of the argon's metastable states (4P{sub 5} in our study)

  9. Low Temperature Atmospheric Argon Plasma: Diagnostics and Medical Applications

    NASA Astrophysics Data System (ADS)

    Ermolaeva, Svetlana; Petrov, Oleg; Zigangirova, Nailya; Vasiliev, Mikhail; Sysolyatina, Elena; Antipov, Sergei; Alyapyshev, Maxim; Kolkova, Natalia; Mukhachev, Andrei; Naroditsky, Boris; Shimizu, Tetsuji; Grigoriev, Anatoly; Morfill, Gregor; Fortov, Vladimir; Gintsburg, Alexander

    This study was devoted to diagnostic of low temperature plasma produced by microwave generator and investigation of its bactericidal effect against bacteria in biofilms and within eukaryotic cells. The profile of gas temperature near the torch outlet was measured. The spectrum in a wide range of wavelengths was derived by the method of optical emission spec-troscopy. Probe measurements of the floating potential of plasma were car-ried out. The estimation and adaptation of parameters of plasma flow (tem-perature, velocity, ion number density) according to medico-technical requirements were produced. The model of immersed surface-associated biofilms formed by Gram-negative bacteria, Pseudomonas aeruginosa and Burkholderia cenocepacia, and Gram-positive bacteria, Staphylococcus aureus, was used to assess bactericidal effects of plasma treatment. Reduction in the concentration of live bacteria in biofilms treated with plasma for 5 min was demonstrated by measuring Live/Dead fluorescent labeling and using direct plating. The intracellular infection model with the pathogenic bacterium, Chlamydia trachomatis, was used to study the efficacy of microwave argon plasma against intracellular parasites. A 2 min plasma treatment of mouse cells infected with C. trachomatis reduced infectious bacteria by a factor of 2×106. Plasma treatment diminished the number of viable host cells by about 20%. When the samples were covered with MgF2 glass to obstruct active particles and UV alone was applied, the bactericidal effect was re-duced by 5×104 fold compared to the whole plasma.

  10. Cooperative photoinduced metastable phase control in strained manganite films

    NASA Astrophysics Data System (ADS)

    Zhang, Jingdi; Tan, Xuelian; Liu, Mengkun; Teitelbaum, S. W.; Post, K. W.; Jin, Feng; Nelson, K. A.; Basov, D. N.; Wu, Wenbin; Averitt, R. D.

    2016-09-01

    A major challenge in condensed-matter physics is active control of quantum phases. Dynamic control with pulsed electromagnetic fields can overcome energetic barriers, enabling access to transient or metastable states that are not thermally accessible. Here we demonstrate strain-engineered tuning of La2/3Ca1/3MnO3 into an emergent charge-ordered insulating phase with extreme photo-susceptibility, where even a single optical pulse can initiate a transition to a long-lived metastable hidden metallic phase. Comprehensive single-shot pulsed excitation measurements demonstrate that the transition is cooperative and ultrafast, requiring a critical absorbed photon density to activate local charge excitations that mediate magnetic-lattice coupling that, in turn, stabilize the metallic phase. These results reveal that strain engineering can tune emergent functionality towards proximal macroscopic states to enable dynamic ultrafast optical phase switching and control.

  11. Homonuclear ionizing collisions of laser-cooled metastable helium atoms

    SciTech Connect

    Stas, R. J. W.; McNamara, J. M.; Hogervorst, W.; Vassen, W.

    2006-03-15

    We present a theoretical and experimental investigation of homonuclear ionizing collisions of laser-cooled metastable (2 {sup 3}S{sub 1}) helium atoms, considering both the fermionic {sup 3}He and bosonic {sup 4}He isotopes. The theoretical description combines quantum threshold behavior, Wigner's spin-conservation rule, and quantum-statistical symmetry requirements in a single-channel model, complementing a more complete close-coupling theory that has been reported for collisions of metastable {sup 4}He atoms. The model is supported with measurements (in the absence of light fields) of ionization rates in magneto-optically trapped samples that contain about 3x10{sup 8} atoms of a single isotope. The ionization rates are determined from measurements of trap loss due to light-assisted collisions combined with comparative measurements of the ion production rate in the absence and presence of trapping light. Theory and experiment show good agreement.

  12. Geometric phases causing lifetime modifications of metastable states of hydrogen

    NASA Astrophysics Data System (ADS)

    Trappe, Martin-Isbjörn; Augenstein, Peter; DeKieviet, Maarten; Gasenzer, Thomas; Nachtmann, Otto

    2016-04-01

    Externally applied electromagnetic fields in general have an influence on the width of atomic spectral lines. The decay rates of atomic states can also be affected by the geometry of an applied field configuration giving rise to an imaginary geometric phase. A specific chiral electromagnetic field configuration is presented which geometrically modifies the lifetimes of metastable states of hydrogen. We propose to extract the relevant observables in a realistic longitudinal atomic beam spin-echo apparatus which allows the initial and final fluxes of the metastable atoms to be compared with each other interferometrically. A geometry-induced change in lifetimes at the 5%-level is found, an effect large enough to be observed in an available experiment.

  13. Dependence of stability of metastable superconductors on copper fraction

    SciTech Connect

    Elrod, S. A.; Lue, J. W.; Miller, J. R.; Dresner, L.

    1980-12-01

    The stability of composite superconductors operating in the metastable regime depends upon such factors as matrix resistivity, cooled surface dimensions, fraction of critical current, and volume fraction of stabilizer. By assuming constant thermophysical properties, we developed analytic expressions for the energy and voltage of the minimum propagating zone (MPZ). With other factors held constant, these expressions have been used to predict composite superconductor stability as a function of copper fraction: lower copper fractions lead to higher MPZ energies. MPZ voltages have been measured for three NbTi/Cu composites having different copper fractions and different critical current densities for several magnetic fields and transport currents. Experimental MPZ voltages have been used to calculate an effective heat transfer coefficient, which is subsequently used to calculate the MPZ energy. The experimental MPZ energies support the theoretical expectation that lower copper fractions lead to higher stability in the metastable regime.

  14. Selective formation of metastable ferrihydrite in the chiton tooth.

    PubMed

    Gordon, Lyle M; Román, Jessica K; Everly, R Michael; Cohen, Michael J; Wilker, Jonathan J; Joester, Derk

    2014-10-20

    Metastable precursors are thought to play a major role in the ability of organisms to create mineralized tissues. Of particular interest are the hard and abrasion-resistant teeth formed by chitons, a class of rock-grazing mollusks. The formation of chiton teeth relies on the precipitation of metastable ferrihydrite (Fh) in an organic scaffold as a precursor to magnetite. In vitro synthesis of Fh under physiological conditions has been challenging. Using a combination of X-ray absorption and electron paramagnetic resonance spectroscopy, we show that, prior to Fh formation in the chiton tooth, iron ions are complexed by the organic matrix. In vitro experiments demonstrate that such complexes facilitate the formation of Fh under physiological conditions. These results indicate that acidic molecules may be integral to controlling Fh formation in the chiton tooth. This biological approach to polymorph selection is not limited to specialized proteins and can be expropriated using simple chemistry.

  15. Selective formation of metastable ferrihydrite in the chiton tooth.

    PubMed

    Gordon, Lyle M; Román, Jessica K; Everly, R Michael; Cohen, Michael J; Wilker, Jonathan J; Joester, Derk

    2014-10-20

    Metastable precursors are thought to play a major role in the ability of organisms to create mineralized tissues. Of particular interest are the hard and abrasion-resistant teeth formed by chitons, a class of rock-grazing mollusks. The formation of chiton teeth relies on the precipitation of metastable ferrihydrite (Fh) in an organic scaffold as a precursor to magnetite. In vitro synthesis of Fh under physiological conditions has been challenging. Using a combination of X-ray absorption and electron paramagnetic resonance spectroscopy, we show that, prior to Fh formation in the chiton tooth, iron ions are complexed by the organic matrix. In vitro experiments demonstrate that such complexes facilitate the formation of Fh under physiological conditions. These results indicate that acidic molecules may be integral to controlling Fh formation in the chiton tooth. This biological approach to polymorph selection is not limited to specialized proteins and can be expropriated using simple chemistry. PMID:25196134

  16. Metastable Amyloid Phases and their Conversion to Mature Fibrils

    NASA Astrophysics Data System (ADS)

    Muschol, Martin; Miti, Tatiana; Mulaj, Mentor; Schmit, Jeremy

    Self-assembly of proteins into amyloid fibrils plays a key role in both functional biological responses and pathogenic disorders which include Alzheimer's disease and type II diabetes. Amyloid fibril assembly frequently generates compact oligomeric and curvilinear polymeric intermediates which are implicated to be toxic to cells. Yet, the relation between these early-stage oligomeric aggregates and late-stage rigid fibrils, which are the hallmark structure of amyloid plaques, has remained unclear. Our measurements indicate that lysozyme amyloid oligomers and their curvilinear fibrils only form after crossing a salt and protein concentration dependent threshold. These oligomeric aggregates are structurally distinct from rigid fibrils and are metastable against nucleation and growth of rigid fibrils. Our experimental transition boundaries match well with colloidal model predictions accounting for salt-modulated charge repulsion. We also report our preliminary findings on the mechanism by which these metastable oligomeric phases are converted into stable amyloid fibrils.

  17. Cooperative photoinduced metastable phase control in strained manganite films.

    PubMed

    Zhang, Jingdi; Tan, Xuelian; Liu, Mengkun; Teitelbaum, S W; Post, K W; Jin, Feng; Nelson, K A; Basov, D N; Wu, Wenbin; Averitt, R D

    2016-09-01

    A major challenge in condensed-matter physics is active control of quantum phases. Dynamic control with pulsed electromagnetic fields can overcome energetic barriers, enabling access to transient or metastable states that are not thermally accessible. Here we demonstrate strain-engineered tuning of La2/3Ca1/3MnO3 into an emergent charge-ordered insulating phase with extreme photo-susceptibility, where even a single optical pulse can initiate a transition to a long-lived metastable hidden metallic phase. Comprehensive single-shot pulsed excitation measurements demonstrate that the transition is cooperative and ultrafast, requiring a critical absorbed photon density to activate local charge excitations that mediate magnetic-lattice coupling that, in turn, stabilize the metallic phase. These results reveal that strain engineering can tune emergent functionality towards proximal macroscopic states to enable dynamic ultrafast optical phase switching and control. PMID:27400387

  18. Deexcitation mechanisms in metastable He-surface collisions

    NASA Astrophysics Data System (ADS)

    Conrad, H.; Ertl, G.; Küppers, J.; Sesselman, W.; Haberland, H.

    1980-11-01

    Electron emission caused by impact of metastable He atoms on surfaces can either proceed by a two-stage resonance ionization + Auger neutralisation (RI + AN) or by a one-stage Auger deexcitation (AD or Penning ionization) mechanism. The RI + AN mechanism will dominate with clean transition metal surfaces and may be suppressed for example by lowering the local work function as demonstrated for K and Cs adlayers.

  19. Measurement of sodium-argon cluster ion recombination by coherent microwave scattering

    SciTech Connect

    Wu Yue; Sawyer, Jordan; Zhang Zhili; Shneider, Mikhail N.; Viggiano, Albert A.

    2012-03-12

    This present work demonstrates a non-intrusive measurement of the rate constant for sodium-argon cluster ions (Na{sup +}{center_dot}Ar) recombining with electrons. The measurements begin with resonance enhanced multi-photon ionization of the Na followed by coherent microwave scattering (radar) to monitor the plasma density. The Na{sup +}{center_dot}Ar adduct was formed in a three-body reaction. The plasma decay due to recombination reactions was monitored as a function of time and modeled to determine the rate constant. At 473 K, the rate constant is 1.8{sub -0.5}{sup +0.7}x10{sup -6}cm{sup 3}/s in an argon buffer at 100 Torr and initial Na number density of 5.5 x 10{sup 10} cm{sup -3}.

  20. A Metastate HMM with Application to Gene Structure Identification in Eukaryotes

    NASA Astrophysics Data System (ADS)

    Winters-Hilt, Stephen; Baribault, Carl

    2010-12-01

    We introduce a generalized-clique hidden Markov model (HMM) and apply it to gene finding in eukaryotes ( C. elegans). We demonstrate a HMM structure identification platform that is novel and robustly-performing in a number of ways. The generalized clique HMM begins by enlarging the primitive hidden states associated with the individual base labels (as exon, intron, or junk) to substrings of primitive hidden states, or footprint states, having a minimal length greater than the footprint state length. The emissions are likewise expanded to higher order in the fundamental joint probability that is the basis of the generalized-clique, or "metastate", HMM. We then consider application to eukaryotic gene finding and show how such a metastate HMM improves the strength of coding/noncoding-transition contributions to gene-structure identification. We will describe situations where the coding/noncoding-transition modeling can effectively recapture the exon and intron heavy tail distribution modeling capability as well as manage the exon-start needle-in-the-haystack problem. In analysis of the C. elegans genome we show that the sensitivity and specificity (SN,SP) results for both the individual-state and full-exon predictions are greatly enhanced over the standard HMM when using the generalized-clique HMM.

  1. Precision Spectroscopy in Cold Molecules: The Lowest Rotational Interval of He2 + and Metastable He2

    NASA Astrophysics Data System (ADS)

    Jansen, Paul; Semeria, Luca; Hofer, Laura Esteban; Scheidegger, Simon; Agner, Josef A.; Schmutz, Hansjürg; Merkt, Frédéric

    2015-09-01

    Multistage Zeeman deceleration was used to generate a slow, dense beam of translationally cold He2 molecules in the metastable a 3Σu+ state. Precision measurements of the Rydberg spectrum of these molecules at high values of the principal quantum number n have been carried out. The spin-rotational state selectivity of the Zeeman-deceleration process was exploited to reduce the spectral congestion, minimize residual Doppler shifts, resolve the Rydberg series around n =200 and assign their fine structure. The ionization energy of metastable He2 and the lowest rotational interval of the X+ 2Σu+ (ν+=0 ) ground state of 4He2+ have been determined with unprecedented precision and accuracy by Rydberg-series extrapolation. Comparison with ab initio predictions of the rotational energy level structure of 4He2+ [W.-C. Tung, M. Pavanello, and L. Adamowicz, J. Chem. Phys. 136, 104309 (2012)] enabled us to quantify the magnitude of relativistic and quantum-electrodynamics contributions to the fundamental rotational interval of He2+ .

  2. Metastable atom-activated dissociation mass spectrometry of phosphorylated and sulfonated peptides in negative ion mode.

    PubMed

    Cook, Shannon L; Jackson, Glen P

    2011-06-01

    The dissociation behavior of phosphorylated and sulfonated peptide anions was explored using metastable atom-activated dissociation mass spectrometry (MAD-MS) and collision-induced dissociation (CID). A beam of high kinetic energy helium (He) metastable atoms was exposed to isolated phosphorylated and sulfonated peptides in the 3- and 2- charge states. Unlike CID, where phosphate losses are dominant, the major dissociation channels observed using MAD were C(α) - C peptide backbone cleavages and neutral losses of CO(2), H(2)O, and [CO(2) + H(2)O] from the charge reduced (oxidized) product ion, consistent with an electron detachment dissociation (EDD) mechanism such as Penning ionization. Regardless of charge state or modification, MAD provides ample backbone cleavages with little modification loss, which allows for unambiguous PTM site determination. The relative abundance of certain fragment ions in MAD is also demonstrated to be somewhat sensitive to the number and location of deprotonation sites, with backbone cleavage somewhat favored adjacent to deprotonated sites like aspartic acid residues. MAD provides a complementary dissociation technique to CID, ECD, ETD, and EDD for peptide sequencing and modification identification. MAD offers the unique ability to analyze highly acidic peptides that contain few to no basic amino acids in either negative or positive ion mode.

  3. Dynamic and Structural Studies of Metastable Vortex Lattice Domains in MgB2

    NASA Astrophysics Data System (ADS)

    de Waard, E. R.; Kuhn, S. J.; Rastovski, C.; Eskildsen, M. R.; Leishman, A.; Dewhurst, C. D.; Debeer-Schmitt, L.; Littrell, K.; Karpinski, J.; Zhigadlo, N. D.

    Small-angle neutron scattering (SANS) studies of the vortex lattice (VL) in the type-II superconductor MgB2 have revealed an unprecedented degree of metastability that is demonstrably not due to vortex pinning, [C. Rastovski et al . , Phys. Rev. Lett. 111, 107002 (2013)]. The VL can be driven to the GS through successive application of an AC magnetic field. Here we report on detailed studies of the transition kinetics and structure of the VL domains. Stroboscopic studies of the transition revealed a stretched exponential decrease of the metastable volume fraction as a function of the number of applied AC cycles, with subtle differences depending on whether the AC field is oriented parallel or perpendicular to the DC field used to create the VL. We speculate the slower transition kinetics for the transverse AC field may be due to vortex cutting. Spatial studies include scanning SANS measurements showing the VL domain distribution within the MgB2 single crystal as well as measurements of VL correlation lengths. This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Award DE-FG02-10ER46783.

  4. Precision Spectroscopy in Cold Molecules: The Lowest Rotational Interval of He_{2}^{+} and Metastable He_{2}.

    PubMed

    Jansen, Paul; Semeria, Luca; Hofer, Laura Esteban; Scheidegger, Simon; Agner, Josef A; Schmutz, Hansjürg; Merkt, Frédéric

    2015-09-25

    Multistage Zeeman deceleration was used to generate a slow, dense beam of translationally cold He_{2} molecules in the metastable a ^{3}Σ_{u}^{+} state. Precision measurements of the Rydberg spectrum of these molecules at high values of the principal quantum number n have been carried out. The spin-rotational state selectivity of the Zeeman-deceleration process was exploited to reduce the spectral congestion, minimize residual Doppler shifts, resolve the Rydberg series around n=200 and assign their fine structure. The ionization energy of metastable He_{2} and the lowest rotational interval of the X^{+} ^{2}Σ_{u}^{+} (ν^{+}=0) ground state of ^{4}He_{2}^{+} have been determined with unprecedented precision and accuracy by Rydberg-series extrapolation. Comparison with ab initio predictions of the rotational energy level structure of ^{4}He_{2}^{+} [W.-C. Tung, M. Pavanello, and L. Adamowicz, J. Chem. Phys. 136, 104309 (2012)] enabled us to quantify the magnitude of relativistic and quantum-electrodynamics contributions to the fundamental rotational interval of He_{2}^{+}. PMID:26451553

  5. Statics, metastable states, and barriers in protein folding: A replica variational approach

    NASA Astrophysics Data System (ADS)

    Takada, Shoji; Wolynes, Peter G.

    1997-04-01

    Protein folding is analyzed using a replica variational formalism to investigate some free energy landscape characteristics relevant for dynamics. A random contact interaction model that satisfies the minimum frustration principle is used to describe the coil-globule transition (characterized by TCG), glass transitions (by TA and TK), and folding transition (by TF). Trapping on the free energy landscape is characterized by two characteristic temperatures, one dynamic (TA) and the other static [TK (TA>TK)], which are similar to those found in mean field theories of the Potts glass. (i) Above TA, the free energy landscape is monotonous and the polymer is melted both dynamically and statically. (ii) Between TA and TK, the melted phase is still dominant thermodynamically, but frozen metastable states, exponentially large in number, appear. (iii) A few lowest minima become thermodynamically dominant below TK, where the polymer is totally frozen. In the temperature range between TA and TK, barriers between metastable states are shown to grow with decreasing temperature, suggesting super-Arrhenius behavior in a sufficiently large system. Due to evolutionary constraints on fast folding, the folding temperature TF is expected to be higher than TK, but may or may not be higher than TA. Diverse scenarios of the folding kinetics are discussed based on phase diagrams that take into account the dynamical transition, as well as the static ones.

  6. Metastable growth of pure wurtzite InGaAs microstructures.

    PubMed

    Ng, Kar Wei; Ko, Wai Son; Lu, Fanglu; Chang-Hasnain, Connie J

    2014-08-13

    III-V compound semiconductors can exist in two major crystal phases, namely, zincblende (ZB) and wurtzite (WZ). While ZB is thermodynamically favorable in conventional III-V epitaxy, the pure WZ phase can be stable in nanowires with diameters smaller than certain critical values. However, thin nanowires are more vulnerable to surface recombination, and this can ultimately limit their performances as practical devices. In this work, we study a metastable growth mechanism that can yield purely WZ-phased InGaAs microstructures on silicon. InGaAs nucleates as sharp nanoneedles and expand along both axial and radial directions simultaneously in a core-shell fashion. While the base can scale from tens of nanometers to over a micron, the tip can remain sharp over the entire growth. The sharpness maintains a high local surface-to-volume ratio, favoring hexagonal lattice to grow axially. These unique features lead to the formation of microsized pure WZ InGaAs structures on silicon. To verify that the WZ microstructures are truly metastable, we demonstrate, for the first time, the in situ transformation from WZ to the energy-favorable ZB phase inside a transmission electron microscope. This unconventional core-shell growth mechanism can potentially be applied to other III-V materials systems, enabling the effective utilization of the extraordinary properties of the metastable wurtzite crystals.

  7. Thermal beam of metastable krypton atoms produced by optical excitation

    SciTech Connect

    Ding, Y.; Hu, S.-M.; Bailey, K.; Davis, A. M.; Dunford, R. W.; Lu, Z.-T.; O'Connor, T. P.; Young, L.

    2007-02-15

    A room-temperature beam of krypton atoms in the metastable 5s[3/2]{sub 2} level is demonstrated via an optical excitation method. A Kr-discharge lamp is used to produce vacuum ultraviolet photons at 124 nm for the first-step excitation from the ground level 4p{sup 6} {sup 1}S{sub 0} to the 5s[3/2]{sub 1} level. An 819 nm Ti:sapphire laser is used for the second-step excitation from 5s[3/2]{sub 1} to 5s[3/2]{sub 2} followed by a spontaneous decay to the 5s[3/2]{sub 2} metastable level. A metastable atomic beam with an angular flux density of 3x10{sup 14} s{sup -1} sr{sup -1} is achieved at the total gas flow rate of 0.01 cm{sup 3}/s at STP (or 3x10{sup 17} at./s). The dependences of the flux on the gas flow rate, laser power, and lamp parameters are investigated.

  8. Detecting vapour bubbles in simulations of metastable water.

    PubMed

    González, Miguel A; Menzl, Georg; Aragones, Juan L; Geiger, Philipp; Caupin, Frederic; Abascal, Jose L F; Dellago, Christoph; Valeriani, Chantal

    2014-11-14

    The investigation of cavitation in metastable liquids with molecular simulations requires an appropriate definition of the volume of the vapour bubble forming within the metastable liquid phase. Commonly used approaches for bubble detection exhibit two significant flaws: first, when applied to water they often identify the voids within the hydrogen bond network as bubbles thus masking the signature of emerging bubbles and, second, they lack thermodynamic consistency. Here, we present two grid-based methods, the M-method and the V-method, to detect bubbles in metastable water specifically designed to address these shortcomings. The M-method incorporates information about neighbouring grid cells to distinguish between liquid- and vapour-like cells, which allows for a very sensitive detection of small bubbles and high spatial resolution of the detected bubbles. The V-method is calibrated such that its estimates for the bubble volume correspond to the average change in system volume and are thus thermodynamically consistent. Both methods are computationally inexpensive such that they can be used in molecular dynamics and Monte Carlo simulations of cavitation. We illustrate them by computing the free energy barrier and the size of the critical bubble for cavitation in water at negative pressure. PMID:25399176

  9. Study on the metastable zone width of ketoprofen.

    PubMed

    Lu, Ying Hong; Ching, Chi Bun

    2006-05-01

    With increasing awareness for the need of pure enantiomer drugs, strong emphasis has been focused on the research of chiral drug separation. Compared with other separation methods, crystallization is a simple and economical method, and the metastable zone width (MSZW) is a very important factor for the entire crystallization process. In this paper, the effects of the metastable zones of (R,S)- and (S)-ketoprofen and a 0.94 mole fraction of (S)-ketoprofen in order to enhance the MSZW were studied. Four main factors were studied, namely, temperature, cooling rate, stirring rate, and volume ratio of mixed solvent (water/ethanol). Through the L9 fractional experiment design, it was observed that all samples' MSZWs would increase with an increase in cooling rate and decrease with an increase in the ethanol volume ratio and temperature. The ethanol ratio may have the strongest effect on the process and can greatly enhance the metastable zone, and the other three factors influence the MSZW only slightly. In conclusion, the these four factors for enhancing MSZW have been optimized: water-to-ethanol volume ratio, 1:0.6; temperature, 20 degrees C; stirring rate, 700 rpm; and cooling rate, 12.0 degrees C/h. All of these results will be helpful for the following chiral separation of ketoprofen by crystallization. PMID:16521089

  10. Metastable Oxygen Production by Electron-Impact of Oxygen

    NASA Astrophysics Data System (ADS)

    Hein, J. D.; Malone, C. P.; Johnson, P. V.; Kanik, I.

    2014-12-01

    Electron-impact excitation processes involving atomic and molecular oxygen are important in atmospheric interactions. The production of long-lived metastable O(1S) and O(1D) through electron impact of oxygen-containing molecules plays a significant role in the dynamics of planetary atmospheres (Earth, Mars, Europa, Io, Enceladus) and cometary bodies (Hale-Bopp). The electron-impact excitation channels to O(1S) and O(1D) are important for determining energy partitioning and dynamics. To reliably model natural phenomena and interpret observational data, the accurate determination of underlying collision processes (cross sections, dissociation dynamics) through fundamental experimental studies is essential. The detection of metastable species in laboratory experiments requires a novel approach. Typical radiative de-excitation detection techniques cannot be performed due to the long-lived nature of excited species, and conventional particle detectors are insensitive to the low internal energies O(1S) and O(1D). We have recently constructed an apparatus to detect and characterize metastable oxygen production by electron impact using the "rare gas conversion technique." Recent results will be presented, including absolute excitation functions for target gases O2, CO, CO2, and N2O. This work was performed at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Financial support through NASA's OPR, PATM, and MFRP programs, as well as the NASA Postdoctoral Program (NPP) are gratefully acknowledged.

  11. Metastable pitting of carbon steel under potentiostatic control

    SciTech Connect

    Cheng, Y.F.; Luo, J.L.

    1999-03-01

    The metastable pitting of A516-70 carbon steel was studied under potentiostatic control in solutions containing chloride ions. It was shown that there were different current fluctuation patterns and spectral slopes, that is, roll-off slopes, in passivity, general corrosion, and metastable pitting. Pits were often covered by a deposit which played an important role in the current fluctuation, with a quick current rise followed by a slow drop. There was a transitional potential (about 0 mV vs Ag/AgCl electrode) below which the metastable pitting initiation rate increased with the potential, because more sites would be activated. Above the transitional potential, the decay of the pitting occurrence rate with increased potential was due to the elimination of available pit sites. When the applied potential was between {minus}50 and 100 mV, pit growth kinetics was controlled by the potential drop through the deposit over the pit mouth. The potential dependence of repassivation time was mainly due to the effect of applied potential on the deposit over the pit mouth. There seemed to be good agreement between the calculated pit size and the measured values by optical microphotography. The assumption of hemispherical pit geometry was reasonable in calculating the pit radii.

  12. Detecting vapour bubbles in simulations of metastable water

    SciTech Connect

    González, Miguel A.; Abascal, Jose L. F.; Valeriani, Chantal E-mail: cvaleriani@quim.ucm.es; Menzl, Georg; Geiger, Philipp; Dellago, Christoph E-mail: cvaleriani@quim.ucm.es; Aragones, Juan L.; Caupin, Frederic

    2014-11-14

    The investigation of cavitation in metastable liquids with molecular simulations requires an appropriate definition of the volume of the vapour bubble forming within the metastable liquid phase. Commonly used approaches for bubble detection exhibit two significant flaws: first, when applied to water they often identify the voids within the hydrogen bond network as bubbles thus masking the signature of emerging bubbles and, second, they lack thermodynamic consistency. Here, we present two grid-based methods, the M-method and the V-method, to detect bubbles in metastable water specifically designed to address these shortcomings. The M-method incorporates information about neighbouring grid cells to distinguish between liquid- and vapour-like cells, which allows for a very sensitive detection of small bubbles and high spatial resolution of the detected bubbles. The V-method is calibrated such that its estimates for the bubble volume correspond to the average change in system volume and are thus thermodynamically consistent. Both methods are computationally inexpensive such that they can be used in molecular dynamics and Monte Carlo simulations of cavitation. We illustrate them by computing the free energy barrier and the size of the critical bubble for cavitation in water at negative pressure.

  13. Detecting vapour bubbles in simulations of metastable water.

    PubMed

    González, Miguel A; Menzl, Georg; Aragones, Juan L; Geiger, Philipp; Caupin, Frederic; Abascal, Jose L F; Dellago, Christoph; Valeriani, Chantal

    2014-11-14

    The investigation of cavitation in metastable liquids with molecular simulations requires an appropriate definition of the volume of the vapour bubble forming within the metastable liquid phase. Commonly used approaches for bubble detection exhibit two significant flaws: first, when applied to water they often identify the voids within the hydrogen bond network as bubbles thus masking the signature of emerging bubbles and, second, they lack thermodynamic consistency. Here, we present two grid-based methods, the M-method and the V-method, to detect bubbles in metastable water specifically designed to address these shortcomings. The M-method incorporates information about neighbouring grid cells to distinguish between liquid- and vapour-like cells, which allows for a very sensitive detection of small bubbles and high spatial resolution of the detected bubbles. The V-method is calibrated such that its estimates for the bubble volume correspond to the average change in system volume and are thus thermodynamically consistent. Both methods are computationally inexpensive such that they can be used in molecular dynamics and Monte Carlo simulations of cavitation. We illustrate them by computing the free energy barrier and the size of the critical bubble for cavitation in water at negative pressure.

  14. Detecting vapour bubbles in simulations of metastable water

    NASA Astrophysics Data System (ADS)

    González, Miguel A.; Menzl, Georg; Aragones, Juan L.; Geiger, Philipp; Caupin, Frederic; Abascal, Jose L. F.; Dellago, Christoph; Valeriani, Chantal

    2014-11-01

    The investigation of cavitation in metastable liquids with molecular simulations requires an appropriate definition of the volume of the vapour bubble forming within the metastable liquid phase. Commonly used approaches for bubble detection exhibit two significant flaws: first, when applied to water they often identify the voids within the hydrogen bond network as bubbles thus masking the signature of emerging bubbles and, second, they lack thermodynamic consistency. Here, we present two grid-based methods, the M-method and the V-method, to detect bubbles in metastable water specifically designed to address these shortcomings. The M-method incorporates information about neighbouring grid cells to distinguish between liquid- and vapour-like cells, which allows for a very sensitive detection of small bubbles and high spatial resolution of the detected bubbles. The V-method is calibrated such that its estimates for the bubble volume correspond to the average change in system volume and are thus thermodynamically consistent. Both methods are computationally inexpensive such that they can be used in molecular dynamics and Monte Carlo simulations of cavitation. We illustrate them by computing the free energy barrier and the size of the critical bubble for cavitation in water at negative pressure.

  15. Metastable charged sparticles and the cosmological {sup 7}Li problem

    SciTech Connect

    Cyburt, Richard H.; Ellis, John; Luo, Feng; Fields, Brian D.; Olive, Keith A.; Spanos, Vassilis C. E-mail: John.Ellis@cern.ch E-mail: feng.luo@kcl.ac.uk E-mail: spanos@inp.demokritos.gr

    2012-12-01

    We consider the effects of metastable charged sparticles on Big-Bang Nucleosynthesis (BBN), including bound-state reaction rates and chemical effects. We make a new analysis of the bound states of negatively-charged massive particles with the light nuclei most prominent in BBN, and present a new code to track their abundances, paying particular attention to that of {sup 7}Li. Assuming, as an example, that the gravitino is the lightest supersymmetric particle (LSP), and that the lighter stau slepton, τ-tilde {sub 1}, is the metastable next-to-lightest sparticle within the constrained minimal supersymmetric extension of the Standard Model (CMSSM), we analyze the possible effects on the standard BBN abundances of τ-tilde {sub 1} bound states and decays for representative values of the gravitino mass. Taking into account the constraint on the CMSSM parameter space imposed by the discovery of the Higgs boson at the LHC, we delineate regions in which the fit to the measured light-element abundances is as good as in standard BBN. We also identify regions of the CMSSM parameter space in which the bound state properties, chemistry and decays of metastable charged sparticles can solve the cosmological {sup 7}Li problem.

  16. Stable, Metastable, and Kinetically Trapped Amyloid Aggregate Phases

    PubMed Central

    2015-01-01

    Self-assembly of proteins into amyloid fibrils plays a key role in a multitude of human disorders that range from Alzheimer’s disease to type II diabetes. Compact oligomeric species, observed early during amyloid formation, are reported as the molecular entities responsible for the toxic effects of amyloid self-assembly. However, the relation between early-stage oligomeric aggregates and late-stage rigid fibrils, which are the hallmark structure of amyloid plaques, has remained unclear. We show that these different structures occupy well-defined regions in a peculiar phase diagram. Lysozyme amyloid oligomers and their curvilinear fibrils only form after they cross a salt and protein concentration-dependent threshold. We also determine a boundary for the onset of amyloid oligomer precipitation. The oligomeric aggregates are structurally distinct from rigid fibrils and are metastable against nucleation and growth of rigid fibrils. These experimentally determined boundaries match well with colloidal model predictions that account for salt-modulated charge repulsion. The model also incorporates the metastable and kinetic character of oligomer phases. Similarities and differences of amyloid oligomer assembly to metastable liquid–liquid phase separation of proteins and to surfactant aggregation are discussed. PMID:25469942

  17. Metastable charge-transfer state of californium(iii) compounds.

    PubMed

    Liu, Guokui; Cary, Samantha K; Albrecht-Schmitt, Thomas E

    2015-06-28

    Among a series of anomalous physical and chemical properties of Cf(iii) compounds revealed by recent investigations, the present work addresses the characteristics of the optical spectra of An(HDPA)3·H2O (An = Am, Cm, and Cf), especially the broadband photoluminescence from Cf(HDPA)3·H2O induced by ligand-to-metal charge transfer (CT). As a result of strong ion-ligand interactions and the relative ease of reducing Cf(iii) to Cf(ii), a CT transition occurs at low energy (<3 eV) via the formation of a metastable Cf(ii) state. It is shown that the systematic trend in CT transitions of the lanthanide series is not paralleled by actinide elements lighter than Cf(iii), and californium represents a turning point in the periodicity of the actinide series. Analyses and modeling of the temperature-dependent luminescence dynamics indicate that the metastable Cf(ii) charge-transfer state undergoes radiative and non-radiative relaxations. Broadening of the CT transition arises from strong vibronic coupling and hole-charge interactions in the valence band. The non-radiative relaxation of the metastable CT state results from a competition between phonon-relaxation and thermal tunneling that populates the excited states of Cf(iii).

  18. Emission Rates in ASTRAL Argon Plasmas.

    NASA Astrophysics Data System (ADS)

    Kamar, Ola; Boivin, Robert; Loch, Stuart; Munoz, Jorge; Ballance, Connor

    2006-10-01

    Relative Emission rates measured in the ASTRAL (Auburn Steady sTate Research fAciLity) helicon plasma source are compared to theoretical predictions. A spectrometer which features a 0.33 m Criss-Cross Scanning monochromator and a CCD camera is used for this study. ASTRAL produces bright intense Ar plasmas with the following parameters: ne = 10^12 to 10^13 cm-3 and Te = 2 to 10 eV. A rf compensated Langmuir probe is used to measure Te and ne. In a first series of experiment Ar I, Ar II and Ar III transitions are monitored as a function of plasma density and this for constant electron temperature. In the second series of experiments, the same transitions are observed as a function of Te while ne is this time kept constant. Observations revealed that Te is by far the most significant parameter affecting the emission rate coefficients in the ASTRAL plasma. The spectroscopy measurements are compared with spectral modeling from the ADAS suite of codes. Our collisional-radiative formalism assumes that the excited levels are in quasi-static equilibrium with the ground and metastable populations. We use existing standard R-matrix electron-impact excitation data in our modeling, and assess this dataset against the results from a new R-matrix with pseudo-states calculation.

  19. A strategy to explore stable and metastable ordered phases of block copolymers.

    PubMed

    Xu, Weiquan; Jiang, Kai; Zhang, Pingwen; Shi, An-Chang

    2013-05-01

    Block copolymers with their rich phase behavior and ordering transitions have become a paradigm for the study of structured soft materials. A major challenge in the study of the phase behavior of block copolymers is to obtain different stable and metastable phases of the system. A strategy to discover complex ordered phases of block copolymers within the self-consistent field theory framework is developed by a combination of fast algorithms and novel initialization procedures. This strategy allows the generation of a large number of candidate structures, which can then be used to construct phase diagrams. Application of the strategy is illustrated using ABC star triblock copolymers as an example. A large number of candidate structures, including many three-dimensionally ordered phases, of the system are obtained and categorized. A phase diagram is constructed for symmetrically interacting ABC star triblock copolymers. PMID:23551204

  20. Venous gas embolism associated with argon-enhanced coagulation of the liver.

    PubMed

    Palmer, M; Miller, C W; van Way, C W; Orton, E C

    1993-01-01

    Argon-enhanced coagulation (AEC) is a method for operative coagulation of tissues that utilizes a jet of argon gas encompassing an electrofulguration arc. Concern has been raised that the argon jet may produce harmful venous gas embolization. Two questions were addressed by this study. First, does AEC result in generation of venous gas emboli, and if so, what is the influence of gas flow rate and coagulation power on the amount of gas emboli generated? Second, does the amount of venous gas emboli generated by AEC produce harmful hemodynamic effects? Two AEC units were evaluated during coagulation of cut sections of the liver in pigs. The number of gas emboli generated was measured by an ultrasonic Doppler flow cuff placed around the caudal vena cava. Hemodynamic variables measured following AEC included systemic and pulmonary arterial pressure, pulmonary wedge pressure, and cardiac output by thermodilution. Venous gas emboli were produced during AEC of the liver. The number of gas emboli generated increased with increasing gas flow rates, but was not affected by coagulation power. No change in any of the measured hemodynamic variables was observed following AEC of the liver. The following recommendations were made: (1) Surgeons using AEC should select an argon flow rate as low as feasible to clear a bleeding tissue surface of blood and debris. (2) Although AEC seems to be associated with tolerable amounts of venous gas embolism, surgeons and anesthesiologists should be aware that the potential for harmful venous gas embolism exists. (3) In patients where extensive use of AEC is planned, appropriate monitoring and precautions for gas embolism should be undertaken.

  1. Initial DAB Argon Storage Dewar Leakage

    SciTech Connect

    Dixon, K.; /Fermilab

    1990-05-30

    Any detectable leakage emanating from the argon storage dewar is undesirable; not only from a safety standpoint (eg, cryogenic burns, asphyxiation, etc.), but also small amounts of air back diffusing through leaks can render the argon unsuitable for the future physics experiments to take place within the cryostats. Whereas leakage through some of the control and manually operated valves on the dewar does not necessarily infroduce any of the above hazards directly, it could be high enough to be an economical, and perhaps an operational nuisance. Contained in the following is a compilation of the final leakage rates associated with the dewar during the period of January through May of 1990 and the raw data from which they were derived from. Also contained is a calculation of the total maximum allowable leakage rate int%ut of the dewar. The general strategy employed while leak checking the dewar was to eliminate all leaks found which could be relatively easily stopped and to reduce the more difficult ones to an acceptable level. Leakage past the seats/plugs of control and main relief valves in addition to leakage past the ball seals in the diverter valve fell into the latter category. Helium mass spectrometer leak detector (HMSLD), rate of rise (ROR) method, and throughput calculations based on effective pumping speeds were the means used to determine leakage rates. Usually the HMSLD method was used to detect the numerous smaller leaks (1 OE-S to 1 OE-1 0 std eels) which were eventually stopped by thread tightening, gasket replacement. redesign, etc. The ROR method helped measure the leakage past valve plugs and establish outgassing rates for volumes deemed as being tight; ie, no detectable leakage using the HMSLD. The throughput calculation was used only to determine the relatively large leak past the plug/seat of the vaporizer valve. A sample calculation of each leakage rate determining method is attached to this note. All leakage rates are given for helium gas at

  2. The interaction of an atmospheric pressure plasma jet using argon or argon plus hydrogen peroxide vapour addition with bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Deng, San-Xi; Cheng, Cheng; Ni, Guo-Hua; Meng, Yue-Dong; Chen, Hua

    2010-10-01

    This paper reports that an atmospheric pressure dielectric barrier discharge plasma jet, which uses argon or argon + hydrogen peroxide vapour as the working gas, is designed to sterilize the bacillus subtilis. Compared with the pure argon plasma, the bacterial inactivation efficacy has a significant improvement when hydrogen peroxide vapour is added into the plasma jet. In order to determine which factors play the main role in inactivation, several methods are used, such as determination of optical emission spectra, high temperature dry air treatment, protein leakage quantification, and scanning electron microscope. These results indicate that the possible inactivation mechanisms are the synergistic actions of chemically active species and charged species.

  3. The Mysterious Case of the Solar Argon Abundance Near Sunspots in Flares

    NASA Astrophysics Data System (ADS)

    Doschek, George A.; Warren, Harry

    2016-05-01

    Recently Doschek et al. (2015, ApJL, 808, L7) reported on an observation of an enhancement of the abundance of Ar XIV relative to Ca XIV of about a factor of 30 near a sunspot during a flare, observed in spectra recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft. This enhancement yields an argon/calcium abundance ratio 7 times greater than expected from the photospheric abundances. Such a large abundance anomaly is unprecedented in the solar atmosphere. We interpreted this result as due to an inverse First Ionization Potential (FIP) effect. Argon is a high-FIP element and calcium is a low-FIP element. In the published work two lines of Ar XIV were observed and one line was tentatively identified as an Ar XI line. The number of argon lines was limited by the limitations of the flare study that was executed. In this paper we report observing a similar enhancement in a full-CCD EIS flare spectrum in argon lines with reasonable statistics and lack of blending that lie within the EIS wavelength ranges. The observed lines include two Ar XI lines, four Ar XIII lines, six Ar XIV lines, and one Ar XV line. The enhancement is far less than reported in Doschek et al. (2015) but exhibits similar morphology. The argon abundance is close to a photospheric abundance in the enhanced area, and is only marginally an inverse FIP effect. However, as for the published cases, this newly discovered enhancement occurs in association with a sunspot in a small area only a few arcsec in size and therefore we feel it is produced by the same physics that produced the strong inverse FIP case. There is no enhancement effect observed in the normally high-FIP sulfur and oxygen line ratios relative to lines of low-FIP elements available to EIS. Calculations of path lengths in the strongest enhanced area in Doschek et al. (2015) indicate that the argon/calcium enhancement is due to a depletion of low-FIP elements. This work is supported by a NASA Hinode grant.

  4. Metastable Defects in Tritiated Amorphous Silicon

    SciTech Connect

    Ju, T.; Whitaker, J.; Zukotynski, S.; Kherani, N.; Taylor, P. C.; Stradins, P.

    2007-01-01

    The appearance of optically or electrically induced defects in hydrogenated amorphous silicon (a-Si:H), especially those that contribute to the Staebler-Wronski effect, has been the topic of numerous studies, yet the mechanism of defect creation and annealing is far from clarified. We have been observing the growth of defects caused by tritium decay in tritiated a Si-H instead of inducing defects optically. Tritium decays to {sup 3}He, emitting a beta particle (average energy of 5.7 keV) and an antineutrino. This reaction has a half-life of 12.5 years. In these 7 at.% tritium-doped a-Si:H samples each beta decay will create a defect by converting a bonded tritium to an interstitial helium, leaving behind a silicon dangling bond. We use ESR (electron spin resonance) and PDS( photothermal deflection spectroscopy) to track the defects. First we annealed these samples, and then we used ESR to determine the initial defect density around 10{sup 16} to 10{sup 17}/cm{sup 3}, which is mostly a surface spin density. After that we have kept the samples in liquid nitrogen for almost two years. During the two years we have used ESR to track the defect densities of the samples. The defect density increases without saturation to a value of 3 x 10{sup 19}/cm{sup 3} after two years, a number smaller than one would expect if each tritium decay were to create a silicon dangling bond (2 x 10{sup 20}/cm{sup 3}). This result suggests that there might be either an annealing process that remains at liquid nitrogen temperature, or tritium decay in clustered phase not producing a dangling bond due to bond reconstruction and emission of the hydrogen previously paired to Si-bonded tritium atom. After storage in liquid nitrogen for two years, we have annealed the samples. We have stepwise annealed one sample at temperatures up to 200, where all of the defects from beta decay are annealed out, and reconstructed the annealing energy distribution. The second sample, which was grown at 150, has

  5. Electrostatic levitation studies of supercooled liquids and metastable solid phases

    NASA Astrophysics Data System (ADS)

    Rustan, Gustav Errol

    A new laboratory has been developed at Iowa State University (ISU) to be used for the study of high temperature liquids and solids, with particular focus on the supercooling of liquids and their metastable solidification products. This new laboratory employs the electrostatic levitation (ESL) technique, in which a charged sample is suspended between a set of electrodes to achieve non-contact handling. Owing to the elimination of a crucible, high temperature processing of samples can be achieved with reduced levels of contamination and heterogeneous nucleation. Because of the reduction in heterogeneous nucleation, samples can be supercooled well below their equilibrium melting temperature, opening the door to a wide range of measurements on supercooled liquids. Measurements methods have been implemented for the characterization of thermophysical properties such as: volume/density, ratio of specific heat to total hemispherical emissivity, surface tension, viscosity, electrical resistivity, and magnetic susceptibility. For measurements of electrical resistivity and magnetic susceptibility, a new method has been developed at ISU based on the tunnel diode oscillator (TDO) technique. The TDO technique uses the negative differential resistance of a tunnel diode to drive an LC tank circuit into self-sustained oscillation at the resonant LC frequency. The LC tank is inductively coupled to the samples under study, and changes in the electrical resistivity or magnetic susceptibility of the sample are manifested as changes in the resonant frequency. By measuring the frequency shifts of the TDO, insights can be made into changes in the material's electrical and magnetic properties. This method has been validated by performing resistivity measurements on a sample of high purity Zr, and by performing measurements on the ferromagnetic transition in a low-carbon steel ball bearing. In addition to the development of the laboratory and its supporting instrumentation, an effort has

  6. Argon beam coagulation in foot and ankle surgery.

    PubMed

    Adams, Melissa L; Steinberg, John S

    2011-01-01

    In this brief report, we introduce the principles, indications, advantages, disadvantages, and surgical techniques involved in the use of argon beam coagulation in foot and ankle surgery. PMID:21907597

  7. Study of nuclear recoils in liquid argon with monoenergetic neutrons

    NASA Astrophysics Data System (ADS)

    Regenfus, C.; Allkofer, Y.; Amsler, C.; Creus, W.; Ferella, A.; Rochet, J.; Walter, M.

    2012-07-01

    In the framework of developments for liquid argon dark matter detectors we assembled a laboratory setup to scatter neutrons on a small liquid argon target. The neutrons are produced mono-energetically (Ekin = 2.45 MeV) by nuclear fusion in a deuterium plasma and are collimated onto a 3" liquid argon cell operating in single-phase mode (zero electric field). Organic liquid scintillators are used to tag scattered neutrons and to provide a time-of-flight measurement. The setup is designed to study light pulse shapes and scintillation yields from nuclear and electronic recoils as well as from alpha particles at working points relevant for dark matter searches. Liquid argon offers the possibility to scrutinise scintillation yields in noble liquids with respect to the population strength of the two fundamental excimer states. Here we present experimental methods and first results from recent data towards such studies.

  8. Electron avalanches in liquid argon mixtures

    SciTech Connect

    Kim, J.G.; Dardin, S.M.; Kadel, R.W.; Kadyk, J.A.; Wenzel, W.B.; Peskov, V.

    2004-03-19

    We have observed stable avalanche gain in liquid argon when mixed with small amounts of xenon in the high electric field (>7 MV/cm) near the point of a chemically etched needle in a point-plane geometry. We identify two gain mechanisms, one pressure dependent, and the other independent of the applied pressure. We conclude that the pressure dependent signals are from avalanche gain in gas bubbles at the tip of the needle, while the pressure independent pulses are from avalanche gain in liquid. We measure the decay time spectra of photons from both types of avalanches. The decay times from the pressure dependent pulses decrease (increase) with the applied pressure (high voltage), while the decay times from the pressure independent pulses are approximately independent of pressure or high voltage. For our operating conditions, the collected charge distribution from avalanches is similar for 60 keV or 122 keV photon sources. With krypton additives, instead of Xe, we measure behavior consistent with only the pressure dependent pulses. Neon and TMS were also investigated as additives, and designs for practical detectors were tested.

  9. Argon z-pinch implosions on Phoenix

    SciTech Connect

    Fisher, A.; Peterson, G.; Nolting, E.

    1995-12-31

    Upgrades to the Phoenix front end have resulted in a three-fold increase in Argon K-shell x-ray yields. Lack of a transit time isolator between the center conductor and ground necessitated powering the gas-puff hardware with batteries and supplying control via fiber optic cables. A simple gas flow model was developed to optimize the valve/nozzle design. The gas-puff valve and nozzle were modified to produce a 250-{micro}s density rise time. This short rise-time allowed firing on the gas plateau which improved reproducibility. Front end power flow was improved by opening the MITL from 8 to 10-mm and by increasing the dog-leg at the nozzle to obstruct UV light. The highest yield shots were achieved with a 4-cm long load using a 3.5-cm mean diameter nozzle with a mean inward tilt of 13.75 degrees. X-ray pulse widths ranged between 7--15 ns and x-ray pinhole photos suggest uniform assembly on axis. Results and documentation of the Phoenix upgrades are presented.

  10. Common Blepharitis Related to Phthiriasis Palpebrarum: Argon Laser Phototherapy.

    PubMed

    Sundu, Cem; Dinç, Erdem; Kurtuluş, Umut Can; Yıldırım, Özlem

    2015-09-01

    A 42-year-old woman was admitted to Mersin University, Department of Ophthalmology Clinic with itching and burning sensation of the right eye for 3 weeks. In her slit-lamp examination, nits and lice, attached to the upper and lower eyelashes of her right eye, were observed. Lice and nits were destroyed by argon laser phototherapy and were removed with the help of a fine forceps thereafter. Argon laser phototherapy is a quick, effective, and safe treatment modality for phthiriasis palpebrarum.

  11. Multiple deaths from argon contamination of hospital oxygen supply.

    PubMed

    Smith, F P

    1987-07-01

    During the course of routine hospital surgical procedures, three patients lapsed into hypoxic cyanosis. Two expired immediately, another after four days of coma. Investigation of the hospital's central liquid oxygen tank revealed that it had been refilled recently and was labelled both "oxygen" and "argon." Mass spectrometric analysis of gas sampled from the questioned tank revealed a predominance of argon. A discussion of the sampling technique, method of analysis, role of the criminalist, and causes of this accident is presented.

  12. A study of the trace 39Ar content in argon from deep underground sources

    NASA Astrophysics Data System (ADS)

    Xu, J.; Calaprice, F.; Galbiati, C.; Goretti, A.; Guray, G.; Hohman, T.; Holtz, D.; Ianni, An.; Laubenstein, M.; Loer, B.; Love, C.; Martoff, C. J.; Montanari, D.; Mukhopadhyay, S.; Nelson, A.; Rountree, S. D.; Vogelaar, R. B.; Wright, A.

    2015-06-01

    The discovery of argon from deep underground sources with significantly less 39Ar than atmospheric argon was an important step in the development of direct dark matter detection experiments using argon as the active target. We report on the design and operation of a low-background single-phase liquid argon detector that was built to study the 39Ar content of this underground argon. Underground argon from the Kinder Morgan CO2 plant in Cortez, Colorado was determined to have less than 0.65% of the 39Ar activity in atmospheric argon, or 6.6 mBq/kg specific 39Ar activity.

  13. Neuroprotective therapy for argon-laser-induced retinal injury

    NASA Astrophysics Data System (ADS)

    Belkin, Michael; Rosner, Mordechai; Solberg, Yoram; Turetz, Yosef

    1999-06-01

    Laser photocoagulation treatment of the central retina is often complicated by an immediate side effect of visual impairment, caused by the unavoidable laser-induced destruction of the normal tissue lying adjacent to the lesion and not affected directly by the laser beam. Furthermore, accidental laser injuries are at present untreatable. A neuroprotective therapy for salvaging the normal tissue might enhance the benefit obtained from treatment and allow safe perifoveal photocoagulation. We have developed a rat model for studying the efficacy of putative neuroprotective compounds in ameliorating laser-induced retinal damage. Four compounds were evaluated: the corticosteroid methylprednisolone, the glutamate-receptor blocker MK-801, the anti-oxidant enzyme superoxide dismutase, and the calcim-overload antagonist flunarizine. The study was carried out in two steps: in the first, the histopathological development of retinal laser injuries was studied. Argon laser lesions were inflicted in the retinas of 18 pigmented rats. The animals were sacrificed after 3, 20 or 60 days and their retinal lesions were evaluated under the light microscope. The laser injury mainly involved the outer layers of the retina, where it destroyed significant numbers of photoreceptor cells. Over time, evidence of two major histopathological processes was observed: traction of adjacent nomral retinal cells into the central area of the lesion forming an internal retinal bulging, and a retinal pigmented epithelial proliferative reaction associated with subretinal neovascularization and invations of the retinal lesion site by phagocytes. The neuroprotective effects of each of the four compounds were verified in a second step of the study. For each drug tested, 12 rats were irradiated wtih argon laser inflictions: six of them received the tested agent while the other six were treated with the corresponding vehicle. Twenty days after laser expsoure, the rats were sacrificed and their lesions were

  14. Coherent set of electron cross sections for argon

    NASA Astrophysics Data System (ADS)

    Alves, L. L.; Ferreira, C. M.

    2011-10-01

    This paper presents a coherent set of electron impact cross sections for argon (elastic momentum-transfer, inelastic for the excitation of 37 levels Ar(4s,4p,3d,5p,4d,6s) and ionization), which was recently uploaded onto the LXcat IST-Lisbon database. The cross section set was validated by comparing calculated swarm parameters (electron mobility and characteristic energy) and rate coefficients (Townsend ionization coefficient and direct + cascade excitation coefficients to the 4s and 4p states) with available experimental data, for E / N = 10-4 - 100 Td and Tg = 300, 77 K. The validation procedure involves the solution to the homogeneous two-term electron Boltzmann equation, resorting to three different solvers: (i) IST-Lisbon's (ii) BOLSIG+ (v1.2) with LXcat; (iii) BOLSIG+ (v1.23). The results obtained with these solvers are compared to evidence the importance of certain numerical features related with both the energy-grid (number of points, grid-type and maximum energy value) and the interpolation scheme adopted for the cross sections. In particular, the latter can cause a 6% variation on the values of swarm parameters at intermediate E/Ns.

  15. Effects of argon gas flow rate on laser-welding.

    PubMed

    Takayama, Yasuko; Nomoto, Rie; Nakajima, Hiroyuki; Ohkubo, Chikahiro

    2012-01-01

    The purpose of this study was to evaluate the effects of the rate of argon gas flow on joint strength in the laser-welding of cast metal plates and to measure the porosity. Two cast plates (Ti and Co-Cr alloy) of the same metal were abutted and welded together. The rates of argon gas flow were 0, 5 and 10 L/min for the Co-Cr alloy, and 5 and 10 L/min for the Ti. There was a significant difference in the ratio of porosity according to the rate of argon gas flow in the welded area. Argon shielding had no significant effect on the tensile strength of Co-Cr alloy. The 5 L/min specimens showed greater tensile strength than the 10 L/min specimens for Ti. Laser welding of the Co-Cr alloy was influenced very little by argon shielding. When the rate of argon gas flow was high, joint strength decreased for Ti.

  16. A steerable UV laser system for the calibration of liquid argon time projection chambers

    NASA Astrophysics Data System (ADS)

    Ereditato, A.; Kreslo, I.; Lüthi, M.; von Rohr, C. Rudolf; Schenk, M.; Strauss, T.; Weber, M.; Zeller, M.

    2014-11-01

    A number of liquid argon time projection chambers (LAr TPCs) are being built or are proposed for neutrino experiments on long- and short baseline beams. For these detectors, a distortion in the drift field due to geometrical or physics reasons can affect the reconstruction of the events. Depending on the TPC geometry and electric drift field intensity, this distortion could be of the same magnitude as the drift field itself. Recently, we presented a method to calibrate the drift field and correct for these possible distortions. While straight cosmic ray muon tracks could be used for calibration, multiple coulomb scattering and momentum uncertainties allow only a limited resolution. A UV laser instead can create straight ionization tracks in liquid argon, and allows one to map the drift field along different paths in the TPC inner volume. Here we present a UV laser feed-through design with a steerable UV mirror immersed in liquid argon that can point the laser beam at many locations through the TPC. The straight ionization paths are sensitive to drift field distortions, a fit of these distortion to the linear optical path allows to extract the drift field, by using these laser tracks along the whole TPC volume one can obtain a 3D drift field map. The UV laser feed-through assembly is a prototype of the system that will be used for the MicroBooNE experiment at the Fermi National Accelerator Laboratory (FNAL).

  17. Theoretical Study of Plasma Parameters Dependence on Gas Temperature in an Atmospheric Pressure Argon Microwave Discharge

    SciTech Connect

    Pencheva, M.; Benova, E.; Zhelyazkov, I.

    2008-03-19

    The gas temperature is an important parameter in many applications of atmospheric pressure microwave discharges (MW). That is why it is necessary to study the influence of that temperature on the plasma characteristics. Our investigation is based on a self-consistent model including the wave electrodynamics and gas-discharge kinetics. We adopt a blocks' energy structure of the argon excited atom. More specifically, we consider 7 different blocks of states, namely 4s, 4p, 3d, 5s, 5p, 4d, and 6s. Each block k is characterized by its effective energy uk (derived as an average energy of all levels in the block), as well as its effective g-factor and population. The argon dimmer, atomic and molecular ions are also taken into account in the model. We solve the Boltzmann equation in order to get the electron energy distribution function and the necessary rate constants of the elementary processes. The collisional-radiative part of the model is based on 87 processes. As a result we obtain the electron and ions' number densities, mean electron energy, mean power for sustaining an electron--ion pair in the discharge bulk, as well as the population of the excited blocks of states of the argon atom as functions of the gas temperature.

  18. Two cases of suicide by asphyxiation due to helium and argon.

    PubMed

    Musshoff, Frank; Hagemeier, Lars; Kirschbaum, Katrin; Madea, Burkhard

    2012-11-30

    Numerous death cases due to suffocation in a toxic or oxygen deficient gas atmosphere have been described in the literature, but unfortunately especially cases involving inert gases like helium are often presented without detailed toxicological findings. Observations on two suicides are reported, one by helium and the other by argon inhalation. During autopsies gas samples from the lungs were collected directly into headspace vials by a procedure ensuring minimal loss and dilution. Qualitative gas analyses were performed using headspace gas chromatography-mass spectrometry (HS-GC/MS). For carrier gas the commonly used helium was replaced by hydrogen. Qualitative positive results were obtained in the argon case, but the case involving helium revealed negative findings. The use of HS-GC/MS enables in principle to detect inert gases like argon or helium. However, a number of factors may later influence the results as, e.g. a longer period of time between death and sampling or pre-analytical artefacts during sampling of such highly volatile substances. In absence of analytical data supporting helium exposure, the causes of death in the actual cases were found to be asphyxia and in both cases the manner was suicide.

  19. Concerning Apparent Similarity of Structures of Fluoropolymer Surfaces Exposed to an Argon Plasma or Argon Ion Beam

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Covington, M. Alan (Technical Monitor)

    1995-01-01

    X-ray photoelectron spectroscopy (XPS) C(sub 1s) spectra of fluoropolymers exposed to either an argon plasma or argon ion beam show remarkable similarity, implying that the surface-modification reactions for these two processes likely proceed through comparable mechanisms, revolving predominantly ion-surface interactions. The importance of working with a monochromatized x-ray source for XPS analysis of the surface-modified fluoropolymers is once again emphasized.

  20. Electron densities and energies of a guided argon streamer in argon and air environments

    NASA Astrophysics Data System (ADS)

    Hübner, S.; Hofmann, S.; van Veldhuizen, E. M.; Bruggeman, P. J.

    2013-12-01

    In this study we report the temporally and spatially resolved electron densities and mean energies of a guided argon streamer in ambient argon and air obtained by Thomson laser scattering. The plasma is driven by a positive monopolar 3.5 kV pulse, with a pulse width of 500 ns and a frequency of 5 kHz which is synchronized with the high repetition rate laser system. This configuration enables us to use the spatial and temporal stability of the guided streamer to accumulate a multitude of laser/plasma shots by a triple grating spectrometer equipped with an ICCD camera and to determine the electron parameters. We found a strong initial ne-overshoot with a maximum of 7 × 1019 m-3 and a mean electron energy of 4.5 eV. This maximum is followed by a fast decay toward the streamer channel. Moreover, a 2D distribution of the electron density is obtained which exhibits a peculiar mushroom-like shape of the streamer head with a diameter significantly larger than that of the emission profile. A correlation of the width of the streamer head with the expected pre-ionization channel is found.

  1. Argon and argon-oxygen glow discharge cleaning of the Main Ring beam pipe

    SciTech Connect

    Trbojevic, D.; Pastore, N.

    1989-02-15

    This report presents the experimental results from the argon and argon-oxygen gas mixture glow discharge in the Main Ring beam pipe and is a follow-up to the proposal for vacuum improvements of the Main Ring magnets and straight sections and the warm Tevatron straight sections. Glow discharge was used in the experiment in order to clean the vacuum system instead of bakeout which could only be performed with great difficulty or not at all. It is a relatively simple and very effective method. The glow discharge occurs under specific gas pressures (10--120 mTorr) and current flows (10/sup /minus/5/ /minus/ 10/sup /minus/1/ A) through gas excitation and formation of plasma conditions. Deexcitation of the gas molecules produces visible light. Several mechanisms have been proposed to explain the glow discharge cleaning process. Ions can sputter adsorbed molecules or atoms at the cathode surface and even produce lattice damage extending several monolayers below the surface. The glow discharge has already been extensively used for vacuum improvements in accelerators. 9 refs.

  2. Characterization of atmospheric pressure microplasma produced from argon and a mixture of argon-ethylenediamine

    NASA Astrophysics Data System (ADS)

    Bashir, M.; Rees, Julia M.; Bashir, S.; Zimmerman, William B.

    2014-06-01

    A non-thermal atmospheric pressure microplasma generated from pure argon (Ar) and a mixture of argon-ethylenediamine vapors (Ar/EDA) has been characterized in this study. A sinusoidal power supply operating at 30 kHz was used to excite microplasma in a rectangular borosilicate glass capillary (4×0.4 mm). The monomer EDA was mixed with Ar in order to perform plasma polymerization inside the microchannel. The analyses were made by measuring spectroscopic and electrical parameters of the discharge. The effects of EDA mixing on plasma parameters such as electron, excitation and rotational temperatures during the process of surface coating of the microchannel were investigated. These parameters play an important role in the deposition process. The plasma temperatures estimated through spectroscopic measurement were found in the sequence Te>Texc>Tvib>Trot, which indicated the non-thermal characteristics of the proposed DBD microplasma. The parameters of the Ar discharge were also numerically computed using plasma simulations. The numerical predictions of electron temperature (2D simulations) and electron density (3D simulations) were found to be in close agreement to those estimated through experiments.

  3. Dissociation of CH4 by electron impact: Production of metastable hydrogen and carbon fragments

    NASA Technical Reports Server (NTRS)

    Finn, T. G.; Carnahan, B. L.; Zipf, E. C.

    1974-01-01

    Metastable fragments produced by electron impact excitation of CH4 have been investigated for incident electron energies from threshold to 300 eV. Only metastable hydrogen and carbon atoms were observed. Onset energies for the production of metastable hydrogen atoms were observed at electron impact energies of 22.0 + or - .5 eV, 25.5 + or - .6 eV, 36.7 + or - .6 eV and 66 + or - 3 eV, and at 26.6 + or - .6 eV for the production of metastable carbon atoms. Most of the fragments appear to have been formed in high-lying Rydberg states. The total metastable hydrogen cross section reaches a maximum value of approximately 1 X 10 to the minus 18th power sq cm at 100 eV. At the same energy, the metastable carbon cross section is 2 x 10 to the minus 19th power sq cm.

  4. Metastable Eutectic Equilibrium in Natural Environments: Recent Developments and Research Opportunities

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Fans J. M.; Nuth, Joseph A., II; Jablonska, Mariola; Karner, James M.

    2000-01-01

    Chemical ordering at metastable eutectics was recognized in non-equilibrium gas-to- solid condensation experiments to constrain 'silicate' dust formation in O-rich circumstellar environments. The predictable metastable eutectic behavior successfully predicted the observed ferromagnesiosilica, compositions of circumstellar dust, presolar and solar nebula grains in the matrix of the collected aggregate IDPs. Many of the experimentally determined metastable eutectic solids match the fundamental building blocks of common rock-forming layer silicates: this could have implications for the origin of Life. The physical conditions conducive to metastable eutectic behavior, i.e. high temperature and (ultra)fast quenching, lead to unique amorphous, typically nano- to micrometer-sized, materials. The new paradigm of metastable eutectic behavior opens the door to new and exciting research opportunities in uncovering the many implications of these unique amorphous and typically nano- to micrometer-sized, metastable eutectic materials.

  5. Metastable Eutectic Equilibrium in Natural Environments: Recent Development and Research Opportunities

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.; Nuth, Joseph A., III; Jablonska, Mariola; Karner, James M.

    2000-01-01

    Chemical ordering at metastable eutectics was recognized in non-equilibrium gas-to- solid condensation experiments to constrain 'silicate' dust formation in O-rich circumstellar environments. The predictable metastable eutectic behavior successfully predicted the observed ferromagnesiosilica compositions of circumstellar dust presolar and solar nebula grains in the matrix of the collected aggregate IDPs (Interplanetary Dust Particles). Many of the experimentally determined metastable eutectic solids match the fundamental building blocks of common rock-forming layer silicates: this could have implications for the origin of Life. The physical conditions conducive to metastable eutectic behavior, i.e. high temperature and (ultra) fast quenching, lead to unique amorphous, typically nano- to micrometer-sized, materials. The new paradigm of metastable eutectic behavior opens the door to new and exciting research opportunities in uncovering the many implications of these unique amorphous, and typically nano-to micrometer-sized, metastable eutectic materials.

  6. PREFACE The 13th International Conference on Rapidly Quenched and Metastable Materials

    NASA Astrophysics Data System (ADS)

    Schultz, Ludwig; Eckert, Jürgen; Battezzati, Livio; Stoica, Mihai

    2009-01-01

    The 13th International Conference on Rapidly Quenched and Metastable Materials (RQ13) took place in Dresden, Germany, 24-29 August 2008. It belongs to the triennial series of RQ meetings with a long tradition, starting in 1970 - Brela, 1975 - Boston, 1978 - Brighton, 1981 - Sendai, 1984 - Würzburg, 1987 - Montreal, 1990 - Stockholm, 1993 - Sendai, 1996 - Bratislava, 1999 - Bangalore, 2002 - Oxford, 2005 - Jeju Island. RQ13 was hosted by the Leibniz Institute of Solid State and Materials Research, IFW Dresden. Research on rapidly quenched and metastable materials is stimulated by the high demand for new materials with unique mechanical, chemical and physical properties. Topics of RQ13 conference have fallen into three parts: synthesis and processing, materials and properties, and applications of rapidly quenched and metastable materials. These topics cover exiting developments from the traditional field of rapidly quenched metals to newly emerging areas such as bulk metallic glasses and nanostructured materials. As such, the presentations reported on recent experimental and theoretical achievements in the fields of metastable materials, quasicrystals, nanometer-scale materials, magnetic materials, metallic glasses, solid state reaction, undercooling and modeling. As in the previous proceedings (RQ12), the largest number of papers is dedicated to bulk metallic glasses and magnetic materials. With respect to property characterization and applications, there are great attempts for use and application of these materials, particularly for bulk metallic glasses, as well as for further design and optimization of properties. The RQ13 conference attracted a total of 381 abstracts submitted by scientists from 38 different countries. The conference included 8 plenary talks and 25 invited keynote talks. In addition, 163 regular oral contributions were presented and more than 180 posters were presented. It was a particular highlight of the conference that Dr Ho Sou Chen was

  7. Measurements of the ratio between the transverse diffusion coefficient and the mobility for argon ions in argon

    NASA Astrophysics Data System (ADS)

    Stefánsson, Thórarinn; Skullerud, H. R.

    1999-03-01

    The ratio 0953-4075/32/5/001/img1 between the transverse diffusion coefficient and the mobility for 0953-4075/32/5/001/img2 ions in argon has been determined from directly measured transverse current density distribution profiles of mass-analysed ions, as a function of the ratio 0953-4075/32/5/001/img3 between the electric field and the gas number density in the interval 0953-4075/32/5/001/img4 Td, at gas temperature T = 294 K using a variable-length drift tube mass spectrometer. The error (two standard deviations) in the results is believed to be less than 0953-4075/32/5/001/img5% for 0953-4075/32/5/001/img6 Td, thereafter gradually increasing to 0953-4075/32/5/001/img7% at 4000 Td. The results are compared with moment theory calculations based on an analytical four-parameter model potential. The agreement between measured and calculated values is very good except at the highest 0953-4075/32/5/001/img3-values.

  8. Light induced metastable state of silver nitroprusside probed by Raman spectroscopy

    SciTech Connect

    Ghalsasi, Pallavi; Ghalsasi, Prasanna; Thomas, A.; Muthu, D. V. S.; Sood, A. K.

    2015-06-24

    Low temperature Raman spectroscopic measurements on silver nitroprusside (AgNP), Ag{sub 2}[Fe(CN){sub 5}NO] powders display reversible features of a partially converted metastable state. The results are compared with similarly observed metastable state in case of sodium nitroprusside (NaNP) and the differences have been discussed in terms of possible resistance to metastable state formation offered by silver atoms on the basis of hard soft acid base (HSAB) theory.

  9. Metastable hydronium ions in UV-irradiated ice

    SciTech Connect

    Moon, Eui-Seong; Kang, Heon

    2012-11-28

    We show that the irradiation of UV light (10-11 eV) onto an ice film produces metastable hydronium (H{sub 3}O{sup +}) ions in the ice at low temperatures (53-140 K). Evidence of the presence of metastable hydronium ions was obtained by experiments involving adsorption of methylamine onto UV-irradiated ice films and hydrogen-deuterium (H/D) isotopic exchange reaction. The methylamine adsorption experiments showed that photogenerated H{sub 3}O{sup +} species transferred a proton to the methylamine arriving at the ice surface, thus producing the methyl ammonium ion, which was detected by low energy sputtering method. The H{sub 3}O{sup +} species induced the H/D exchange of water, which was monitored through the detection of water isotopomers on the surface by using the Cs{sup +} reactive ion scattering method. Thermal and temporal stabilities of H{sub 3}O{sup +} and its proton migration activity were examined. The lifetime of the hydronium ions in the amorphized ice was greater than 1 h at {approx}53 K and decreased to {approx}5 min at 140 K. Interestingly, a small portion of hydronium ions survived for an extraordinarily long time in the ice, even at 140 K. The average migration distance of protons released from H{sub 3}O{sup +} in the ice was estimated to be about two water molecules at {approx}54 K and about six molecules at 100 K. These results indicate that UV-generated hydronium ions can be efficiently stabilized in low-temperature ice. Such metastable hydronium ions may play a significant role in the acid-base chemistry of ice particles in interstellar clouds.

  10. Metastable hydronium ions in UV-irradiated ice.

    PubMed

    Moon, Eui-Seong; Kang, Heon

    2012-11-28

    We show that the irradiation of UV light (10-11 eV) onto an ice film produces metastable hydronium (H(3)O(+)) ions in the ice at low temperatures (53-140 K). Evidence of the presence of metastable hydronium ions was obtained by experiments involving adsorption of methylamine onto UV-irradiated ice films and hydrogen-deuterium (H∕D) isotopic exchange reaction. The methylamine adsorption experiments showed that photogenerated H(3)O(+) species transferred a proton to the methylamine arriving at the ice surface, thus producing the methyl ammonium ion, which was detected by low energy sputtering method. The H(3)O(+) species induced the H∕D exchange of water, which was monitored through the detection of water isotopomers on the surface by using the Cs(+) reactive ion scattering method. Thermal and temporal stabilities of H(3)O(+) and its proton migration activity were examined. The lifetime of the hydronium ions in the amorphized ice was greater than 1 h at ∼53 K and decreased to ∼5 min at 140 K. Interestingly, a small portion of hydronium ions survived for an extraordinarily long time in the ice, even at 140 K. The average migration distance of protons released from H(3)O(+) in the ice was estimated to be about two water molecules at ∼54 K and about six molecules at 100 K. These results indicate that UV-generated hydronium ions can be efficiently stabilized in low-temperature ice. Such metastable hydronium ions may play a significant role in the acid-base chemistry of ice particles in interstellar clouds.

  11. Metastable hydronium ions in UV-irradiated ice

    NASA Astrophysics Data System (ADS)

    Moon, Eui-Seong; Kang, Heon

    2012-11-01

    We show that the irradiation of UV light (10-11 eV) onto an ice film produces metastable hydronium (H3O+) ions in the ice at low temperatures (53-140 K). Evidence of the presence of metastable hydronium ions was obtained by experiments involving adsorption of methylamine onto UV-irradiated ice films and hydrogen-deuterium (H/D) isotopic exchange reaction. The methylamine adsorption experiments showed that photogenerated H3O+ species transferred a proton to the methylamine arriving at the ice surface, thus producing the methyl ammonium ion, which was detected by low energy sputtering method. The H3O+ species induced the H/D exchange of water, which was monitored through the detection of water isotopomers on the surface by using the Cs+ reactive ion scattering method. Thermal and temporal stabilities of H3O+ and its proton migration activity were examined. The lifetime of the hydronium ions in the amorphized ice was greater than 1 h at ˜53 K and decreased to ˜5 min at 140 K. Interestingly, a small portion of hydronium ions survived for an extraordinarily long time in the ice, even at 140 K. The average migration distance of protons released from H3O+ in the ice was estimated to be about two water molecules at ˜54 K and about six molecules at 100 K. These results indicate that UV-generated hydronium ions can be efficiently stabilized in low-temperature ice. Such metastable hydronium ions may play a significant role in the acid-base chemistry of ice particles in interstellar clouds.

  12. Metastable Features of Economic Networks and Responses to Exogenous Shocks

    PubMed Central

    Hosseiny, Ali; Bahrami, Mohammad; Palestrini, Antonio; Gallegati, Mauro

    2016-01-01

    It is well known that a network structure plays an important role in addressing a collective behavior. In this paper we study a network of firms and corporations for addressing metastable features in an Ising based model. In our model we observe that if in a recession the government imposes a demand shock to stimulate the network, metastable features shape its response. Actually we find that there exists a minimum bound where any demand shock with a size below it is unable to trigger the market out of recession. We then investigate the impact of network characteristics on this minimum bound. We surprisingly observe that in a Watts-Strogatz network, although the minimum bound depends on the average of the degrees, when translated into the language of economics, such a bound is independent of the average degrees. This bound is about 0.44ΔGDP, where ΔGDP is the gap of GDP between recession and expansion. We examine our suggestions for the cases of the United States and the European Union in the recent recession, and compare them with the imposed stimulations. While the stimulation in the US has been above our threshold, in the EU it has been far below our threshold. Beside providing a minimum bound for a successful stimulation, our study on the metastable features suggests that in the time of crisis there is a “golden time passage” in which the minimum bound for successful stimulation can be much lower. Hence, our study strongly suggests stimulations to arise within this time passage. PMID:27706166

  13. Photoionization of Fe7+ from the ground and metastable states

    NASA Astrophysics Data System (ADS)

    Tayal, S. S.; Zatsarinny, O.

    2015-01-01

    The B -spline Breit-Pauli R -matrix method is used to investigate the photoionization of Fe7 + from the ground and metastable states in the energy region from ionization thresholds to 172 eV. The present calculations were designed to resolve the large discrepancies between recent measurements and available theoretical results. The multiconfiguration Hartree-Fock method in connection with B -spline expansions is employed for an accurate representation of the initial- and final-state wave functions. The close-coupling expansion includes 99 fine-structure levels of the residual Fe8 + ion in the energy region up to 3 s23 p54 s states. It includes levels of the 3 s23 p6,3 s23 p53 d ,3 s23 p54 s , and 3 s 3 p63 d configurations and some levels of the 3 s23 p43 d2 configuration which lie in the energy region under investigation. The present photoionization cross sections in the length and velocity formulations exhibit excellent agreement. The present photoionization cross sections agree well with the Breit-Pauli R -matrix calculation by Sossah et al. and the TOPbase data in the magnitude of the background nonresonant cross sections but show somewhat richer resonance structures, which qualitatively agree with the measurements. The calculated cross sections, however, are several times lower than the measured cross sections, depending upon the photon energy. The cross sections for photoionization of metastable states were found to have approximately the same magnitude as the cross sections for photoionization of the ground state, thereby the presence of metastable states in the ion beam may not be the reason for the enhancement of the measured cross sections.

  14. Molecular dynamics prediction and experimental evidence for density of normal and metastable liquid zirconium

    NASA Astrophysics Data System (ADS)

    Wang, H. P.; Yang, S. J.; Hu, L.; Wei, B.

    2016-06-01

    The density of normal and metastable undercooled liquid zirconium was predicted by performing molecular dynamics calculation with a system consisting of 4000 atoms and measured by electrostatic levitation experiments. The results show that the density increases linearly with the descending of temperature, including a maximum undercooling of 928 K. The density is 6.00 g cm-3 at the melting temperature, which agrees well with the experimental result of 6.06 g cm-3. Furthermore, the atomic number is increased to 32,000 on the basis of 4000 atoms and there appears only 0.02% difference. Besides, the pair distribution function was applied to display the atomic structure, which indicates the liquid structure change occurs at the first neighbor distance.

  15. Metastable fcc-Fe film epitaxially grown on Cu(100) single-crystal underlayer

    NASA Astrophysics Data System (ADS)

    Ohtake, Mitsuru; Shimamoto, Kohei; Futamoto, Masaaki

    2013-05-01

    Fe film of 40 nm thickness is prepared on fcc-Cu(100) single-crystal underlayer at room temperature by ultra-high vacuum molecular beam epitaxy. The film growth and the detailed structure are investigated by reflection high-energy electron diffraction, cross-sectional high-resolution transmission electron microscopy (HR-TEM), and x-ray diffraction (XRD). An Fe single-crystal with metastable fcc structure nucleates on the underlayer. The HR-TEM shows that fcc lattice is formed from the Fe/Cu interface up to the film surface. A large number of misfit dislocations are introduced around the Fe/Cu interface due to an accommodation of lattice mismatch. Dislocations exist up to the film near surface. The lattice constant is estimated by XRD to be a = 0.3607 nm. The film shows a ferromagnetic property, which reflects the property of fcc-Fe crystal with high-spin ferromagnetic state.

  16. Shear-induced metastable states of end-grafted polystyrene

    SciTech Connect

    Sasa, Leslie A.; Yearley, Eric J.; Jablin, Michael S.; Majewski, Jaroslaw; Hjelm, Rex P.; Gilbertson, Robert D.; Lavine, Adrienne S.

    2011-08-15

    The in situ molecular scale response of end-grafted polystyrene to shear against a deuterated polystyrene melt was investigated with neutron reflectometry. The derived grafted polystyrene density profiles showed that the grafted polystyrene was retained on the quartz wafer during the measurements. The profiles suggested that the end-grafted polystyrene response to shear results in a series of metastable states, rather than equilibrium states assumed in the current theory. Except for some possible extension and/or contraction of the grafted polystyrene with shear, there was no obvious correlation between the grafted polymer structure and the shear thinning behavior observed in these samples.

  17. Origin of metastable knots in single flexible chains.

    PubMed

    Dai, Liang; Renner, C Benjamin; Doyle, Patrick S

    2015-01-23

    Recent theoretical progress has explained the physics of knotting of semiflexible polymers, yet knotting of flexible polymers is relatively unexplored. We herein develop a new theory for the size distribution of knots on a flexible polymer and the existence of metastable knots. We show the free energy of a flexible molecule in a tube can be mapped to quantitatively reproduce the free energy distribution of a knot on a flexible chain. The size distribution of knots on flexible chains is expected to be universal and might be observed at a macroscopic scale, such as a string of hard balls. PMID:25659023

  18. Investigating the Metastability of Clathrate Hydrates for Energy Storage

    SciTech Connect

    Koh, Carolyn Ann

    2014-11-18

    Important breakthrough discoveries have been achieved from the DOE award on the key processes controlling the synthesis and structure-property relations of clathrate hydrates, which are critical to the development of clathrate hydrates as energy storage materials. Key achievements include: (i) the discovery of key clathrate hydrate building blocks (stable and metastable) leading to clathrate hydrate nucleation and growth; (ii) development of a rapid clathrate hydrate synthesis route via a seeding mechanism; (iii) synthesis-structure relations of H2 + CH4/CO2 binary hydrates to control thermodynamic requirements for energy storage and sequestration applications; (iv) discovery of a new metastable phase present during clathrate hydrate structural transitions. The success of our research to-date is demonstrated by the significant papers we have published in high impact journals, including Science, Angewandte Chemie, J. Am. Chem. Soc. Intellectual Merits of Project Accomplishments: The intellectual merits of the project accomplishments are significant and transformative, in which the fundamental coupled computational and experimental program has provided new and critical understanding on the key processes controlling the nucleation, growth, and thermodynamics of clathrate hydrates containing hydrogen, methane, carbon dioxide, and other guest molecules for energy storage. Key examples of the intellectual merits of the accomplishments include: the first discovery of the nucleation pathways and dominant stable and metastable structures leading to clathrate hydrate formation; the discovery and experimental confirmation of new metastable clathrate hydrate structures; the development of new synthesis methods for controlling clathrate hydrate formation and enclathration of molecular hydrogen. Broader Impacts of Project Accomplishments: The molecular investigations performed in this project on the synthesis (nucleation & growth)-structure-stability relations of clathrate

  19. Anomalous slowing down in the metastable liquid of hard spheres

    NASA Astrophysics Data System (ADS)

    Dzugutov, M.

    2002-03-01

    It is demonstrated that a straightforward extension of the Arrhenius law accurately describes diffusion in the thermodynamically stable liquid of hard spheres. A sharp negative deviation from this behavior is observed as the liquid is compressed beyond its stability limit. This dynamical anomaly can be compared with the nonlinear slowing down characteristic of the supercooled dynamics regime in liquids with continuous interaction. It is suggested that the observed dynamical transition is caused by long-time decomposition of the configuration space. This interpretation is corroborated by the observation of characteristic anomalies in the geometry of a particle trajectory in the metastable domain.

  20. Measurement of a metastability-exchange cross section in krypton

    SciTech Connect

    Brechignac, C.; Vetter, R.

    1980-08-01

    The metastability-exchange cross section between (/sup 3/P/sub 2/)Kr atoms and (/sup 1/S/sub 0/)Kr atoms is measured by means of a two-laser saturated-absorption experiment performed on the lambda=557-nm transition. A study of velocity changes occurring in pure /sup 86/Kr and in (/sup 86/Kr--/sup 78/Kr) discharges leads to a value for the cross section Q75=(plus-or-minus10) A/sup 2/.

  1. Light-induced metastable structural changes in hydrogenated amorphous silicon

    SciTech Connect

    Fritzsche, H.

    1996-09-01

    Light-induced defects (LID) in hydrogenated amorphous silicon (a-Si:H) and its alloys limit the ultimate efficiency of solar panels made with these materials. This paper reviews a variety of attempts to find the origin of and to eliminate the processes that give rise to LIDs. These attempts include novel deposition processes and the reduction of impurities. Material improvements achieved over the past decade are associated more with the material`s microstructure than with eliminating LIDs. We conclude that metastable LIDs are a natural by-product of structural changes which are generally associated with non-radiative electron-hole recombination in amorphous semiconductors.

  2. Measurement of Metastable Lifetimes of Highly-Charged Ions

    NASA Technical Reports Server (NTRS)

    Smith, Steven J.; Chutjian, A.; Lozano, J.

    2002-01-01

    The present work is part of a series of measurements of metastable lifetimes of highly-charged ions (HCIs) which contribute to optical absorption, emission and energy balance in the Interstellar Medium (ISM), stellar atmospheres, etc. Measurements were carried out using the 14-GHz electron cyclotron resonance ion source (ECRIS) at the JPL HCI facility. The ECR provides useful currents of charge states such as C(sup(1-6)+), Mg(sup(1-6)+) and Fe(sup(1-17)+). In this work the HCI beam is focused into a Kingdon electrostatic ion trap for measuring lifetimes via optical decays.

  3. Assessing a candidate IIA dual to metastable supersymmetry-breaking

    NASA Astrophysics Data System (ADS)

    Giecold, Gregory; Goi, Enrico; Orsi, Francesco

    2012-02-01

    We analyze the space of linearized non-supersymmetric deformations around a IIA solution found by Cvetič, Gibbons, Lü and Pope (CGLP) in hep-th/0101096. We impose boundary conditions aimed at singling out among those perturbations the ones describing the backreaction of anti-D2 branes on the CGLP background. The corresponding supergravity solution is a would-be dual to a metastable supersymmetry-breaking state. However, it turns out that this candidate bulk solution is inevitably riddled with IR divergences of its flux densities and action, whose physical meaning and implications for models of string cosmology call for further investigation.

  4. Cognitive Flexibility through Metastable Neural Dynamics Is Disrupted by Damage to the Structural Connectome.

    PubMed

    Hellyer, Peter J; Scott, Gregory; Shanahan, Murray; Sharp, David J; Leech, Robert

    2015-06-17

    Current theory proposes that healthy neural dynamics operate in a metastable regime, where brain regions interact to simultaneously maximize integration and segregation. Metastability may confer important behavioral properties, such as cognitive flexibility. It is increasingly recognized that neural dynamics are constrained by the underlying structural connections between brain regions. An important challenge is, therefore, to relate structural connectivity, neural dynamics, and behavior. Traumatic brain injury (TBI) is a pre-eminent structural disconnection disorder whereby traumatic axonal injury damages large-scale connectivity, producing characteristic cognitive impairments, including slowed information processing speed and reduced cognitive flexibility, that may be a result of disrupted metastable dynamics. Therefore, TBI provides an experimental and theoretical model to examine how metastable dynamics relate to structural connectivity and cognition. Here, we use complementary empirical and computational approaches to investigate how metastability arises from the healthy structural connectome and relates to cognitive performance. We found reduced metastability in large-scale neural dynamics after TBI, measured with resting-state functional MRI. This reduction in metastability was associated with damage to the connectome, measured using diffusion MRI. Furthermore, decreased metastability was associated with reduced cognitive flexibility and information processing. A computational model, defined by empirically derived connectivity data, demonstrates how behaviorally relevant changes in neural dynamics result from structural disconnection. Our findings suggest how metastable dynamics are important for normal brain function and contingent on the structure of the human connectome.

  5. Cognitive Flexibility through Metastable Neural Dynamics Is Disrupted by Damage to the Structural Connectome

    PubMed Central

    Hellyer, Peter J.; Scott, Gregory; Shanahan, Murray; Sharp, David J.

    2015-01-01

    Current theory proposes that healthy neural dynamics operate in a metastable regime, where brain regions interact to simultaneously maximize integration and segregation. Metastability may confer important behavioral properties, such as cognitive flexibility. It is increasingly recognized that neural dynamics are constrained by the underlying structural connections between brain regions. An important challenge is, therefore, to relate structural connectivity, neural dynamics, and behavior. Traumatic brain injury (TBI) is a pre-eminent structural disconnection disorder whereby traumatic axonal injury damages large-scale connectivity, producing characteristic cognitive impairments, including slowed information processing speed and reduced cognitive flexibility, that may be a result of disrupted metastable dynamics. Therefore, TBI provides an experimental and theoretical model to examine how metastable dynamics relate to structural connectivity and cognition. Here, we use complementary empirical and computational approaches to investigate how metastability arises from the healthy structural connectome and relates to cognitive performance. We found reduced metastability in large-scale neural dynamics after TBI, measured with resting-state functional MRI. This reduction in metastability was associated with damage to the connectome, measured using diffusion MRI. Furthermore, decreased metastability was associated with reduced cognitive flexibility and information processing. A computational model, defined by empirically derived connectivity data, demonstrates how behaviorally relevant changes in neural dynamics result from structural disconnection. Our findings suggest how metastable dynamics are important for normal brain function and contingent on the structure of the human connectome. PMID:26085630

  6. Cognitive Flexibility through Metastable Neural Dynamics Is Disrupted by Damage to the Structural Connectome.

    PubMed

    Hellyer, Peter J; Scott, Gregory; Shanahan, Murray; Sharp, David J; Leech, Robert

    2015-06-17

    Current theory proposes that healthy neural dynamics operate in a metastable regime, where brain regions interact to simultaneously maximize integration and segregation. Metastability may confer important behavioral properties, such as cognitive flexibility. It is increasingly recognized that neural dynamics are constrained by the underlying structural connections between brain regions. An important challenge is, therefore, to relate structural connectivity, neural dynamics, and behavior. Traumatic brain injury (TBI) is a pre-eminent structural disconnection disorder whereby traumatic axonal injury damages large-scale connectivity, producing characteristic cognitive impairments, including slowed information processing speed and reduced cognitive flexibility, that may be a result of disrupted metastable dynamics. Therefore, TBI provides an experimental and theoretical model to examine how metastable dynamics relate to structural connectivity and cognition. Here, we use complementary empirical and computational approaches to investigate how metastability arises from the healthy structural connectome and relates to cognitive performance. We found reduced metastability in large-scale neural dynamics after TBI, measured with resting-state functional MRI. This reduction in metastability was associated with damage to the connectome, measured using diffusion MRI. Furthermore, decreased metastability was associated with reduced cognitive flexibility and information processing. A computational model, defined by empirically derived connectivity data, demonstrates how behaviorally relevant changes in neural dynamics result from structural disconnection. Our findings suggest how metastable dynamics are important for normal brain function and contingent on the structure of the human connectome. PMID:26085630

  7. Evolution of Martian atmospheric argon: Implications for sources of volatiles

    NASA Astrophysics Data System (ADS)

    Hutchins, Kevin S.; Jakosky, Bruce M.

    We have examined processes affecting isotopes of argon (36Ar, 38Ar, 40Ar) in order to determine important atmospheric sources and sinks. Our simple model for argon evolution incorporates production of radiogenic argon in the mantle, outgassing of all argon species by extrusive and intrusive volcanism, and loss to space by knock-on sputtering above the exobase. Sputtering has been shown previously to be an important loss process for atmospheric species, especially isotopes of noble gases, which have few other mechanisms of escape. The integrated evolution of argon (36Ar, 38Ar, and 40Ar, respectively) is modeled in terms of these variables: (1) the planetary concentration of potassium, (2) the fraction of juvenile argon released catastrophically during the first 600 Myr., (3) potential variation in the time-history of sputtering loss from that suggested by Luhmann et al. [1992], and (4) the volume of total outgassing to the surface as compared to outgassing contributed by volcanic release. Our results indicate that Mars has lost between 85-95% of 36Ar and 70-88% of outgassed 40Ar. Due to this substantial loss, the planet must have outgassed the equivalent of between 10 and 100 times the total volume of gases released by extrusive and intrusive volcanics. This indicates that volcanic outgassing, alone, is insufficient to explain the present-day abundances of 36Ar and 40Ar in the Martian atmosphere. Similar calculations for 20Ne suggest outgassed volumes of between 100 and 1800 times in excess of that due to volcanism. This results in a distinct Ne/Ar elemental fractionation, with a preference for outgassing argon, of the order of 10 to 17. Although the results must be evaluated within the model uncertainties, the results are compelling in that they unequivocally show the existence of additional sources of atmospheric volatiles and helps define a means to identify them.

  8. Anomalous Behavior Observed upon Annealing and Photodetachment of Anionic Copper Carbonyl Clusters in Argon Matrices

    NASA Astrophysics Data System (ADS)

    Ludwig, Ryan M.; Moore, David T.

    2014-06-01

    Using matrix isolation FTIR, we have observed the formation of anionic copper carbonyl complexes [Cu(CO)n]- (n=1-3) following co-deposition of Cu- and counter-cations (Ar+ or Kr+) into argon matrices doped with CO. When the deposition is carried out at 20 K, weak bands corresponding to the neutral copper carbonyl complexes Cu(CO)n (n=1-3) are also observed, and these grow in steadily as the matrix is annealed up to 30 K. This is in contrast to what is observed at 10 K (c.f. ISMS 2014 abstract #P631), where no appreciable neutral bands are observed, and indicates that some neutralization occurs during the formation of the complexes in the 20 K matrix. In addition, sharp peaks not previously observed grow in around the anionic bands upon annealing to 30 K; this is somewhat odd, since annealing typically simplifies the spectra of matrix samples as kinetically trapped metastable species relax to more stable forms. In this case, higher-resolution (0.125 wn) spectra reveal considerable new fine structure, with 5 and 20 peaks appearing in the regions of the mono- and tricarbonyl anions, respectively, each of which nominally has but a single IR-active CO-stretching mode. These new features are tentatively assigned (at least in part) to electric-field-induced splitting arising from long-range interactions with cationic species in the matrix. A second anomalous feature of these spectra is that, upon photodetachment, several new bands are observed in the region of the neutral copper carbonyl species. Upon annealing these bands then disappear, with concomitant growth of the expected neutral bands. This behavior raises the exciting possibility that these transient bands represent metastable "vertical detachment products", where the neutral species has been kinetically trapped by the matrix in the geometry of the anion. Evidence supporting this interpretation will be presented. Funding support from NSF CAREER Award CHE-0955637 is gratefully acknowledged Ryan M. Ludwig and David

  9. On the plasma chemistry of a cold atmospheric argon plasma jet with shielding gas device

    NASA Astrophysics Data System (ADS)

    Schmidt-Bleker, Ansgar; Winter, Jörn; Bösel, André; Reuter, Stephan; Weltmann, Klaus-Dieter

    2016-02-01

    A novel approach combining experimental and numerical methods for the study of reaction mechanisms in a cold atmospheric \\text{Ar} plasma jet is introduced. The jet is operated with a shielding gas device that produces a gas curtain of defined composition around the plasma plume. The shielding gas composition is varied from pure {{\\text{N}}2} to pure {{\\text{O}}2} . The density of metastable argon \\text{Ar}≤ft(4\\text{s}{{,}3}{{\\text{P}}2}\\right) in the plasma plume was quantified using laser atom absorption spectroscopy. The density of long-living reactive oxygen and nitrogen species (RONS), namely {{\\text{O}}3} , \\text{N}{{\\text{O}}2} , \\text{NO} , {{\\text{N}}2}\\text{O} , {{\\text{N}}2}{{\\text{O}}5} and {{\\text{H}}2}{{\\text{O}}2} , was quantified in the downstream region of the jet in a multipass cell using Fourier-transform infrared spectroscopy (FTIR). The jet produces a turbulent flow field and features guided streamers propagating at several \\text{km}~{{\\text{s}}-1} that follow the chaotic argon flow pattern, yielding a plasma plume with steep spatial gradients and a time dependence on the \\text{ns} scale while the downstream chemistry unfolds within several seconds. The fast and highly localized electron impact reactions in the guided streamer head and the slower gas phase reactions of neutrals occurring in the plasma plume and experimental apparatus are therefore represented in two separate kinetic models. The first electron impact reaction kinetics model is correlated to the LAAS measurements and shows that in the guided streamer head primary reactive oxygen and nitrogen species are dominantly generated from \\text{Ar}≤ft(4\\text{s}{{,}3}{{\\text{P}}2}\\right) . The second neutral species plug-flow model hence uses an \\text{Ar}≤ft(4\\text{s}{{,}3}{{\\text{P}}2}\\right) source term as sole energy input and yields good agreement with the RONS measured by FTIR spectroscopy.

  10. A new nanoscale metastable iron phase in carbon steels

    PubMed Central

    Liu, Tianwei; Zhang, Danxia; Liu, Qing; Zheng, Yanjun; Su, Yanjing; Zhao, Xinqing; Yin, Jiang; Song, Minghui; Ping, Dehai

    2015-01-01

    Metastable ω phase is common in body-centred cubic (bcc) metals and alloys, including high-alloying steels. Recent theoretical calculations also suggest that the ω structure may act as an intermediate phase for face-centred cubic (fcc)-to-bcc transformation. Thus far, the role of the ω phase played in fcc-bcc martensitic transformation in carbon steels has not been reported. In previous investigations on martensitic carbon steels, extra electron diffraction spots were frequently observed by transmission electron microscopy (TEM), and these spots were historically ascribed to the diffraction arising from either internal twins or carbides. In this paper, an intensive TEM investigation revealed that the extra spots are in fact attributed to the metastable ω phase in particle-like morphology with an overall size of several or dozens of nanometres. The strict orientation relationships between the ω phase and the ferrite matrix are in good agreement with those of the hexagonal (P6/mmm) ω phase in other bcc metals and alloys. The identification of the ω phase as well as the extra diffraction spots might provide a clue to help understand the physical mechanism of martensitic transformation in steels. PMID:26503890

  11. Metastable Lennard-Jones fluids. II. Thermal conductivity.

    PubMed

    Baidakov, Vladimir G; Protsenko, Sergey P

    2014-06-01

    The method of equilibrium molecular dynamics with the use of the Green-Kubo formalism has been used to calculate the thermal conductivity λ in stable and metastable regions of a Lennard-Jones fluid. Calculations have been made in the range of reduced temperatures 0.4 ≤ T* = k(b)T/ε ≤ 2.0 and densities 0.01 ≤ ρ* = ρσ³ ≤ 1.2 on 15 isotherms for 234 states, 130 of which refer to metastable regions: superheated and supercooled liquids, supersaturated vapor. Equations have been built up which describe the dependence of the regular part of the thermal conductivity on temperature and density, and also on temperature and pressure. It has been found that in (p, T) variables in the region of a liquid-gas phase transition a family of lines of constant value of excess thermal conductivity Δλ = λ - λ0, where λ0 is the thermal conductivity of a dilute gas, has an envelope which coincides with the spinodal. Thus, at the approach to the spinodal of a superheated liquid and supersaturated vapor (∂Δλ/∂p)T → ∞, (∂Δλ/∂T)p → ∞. PMID:24908025

  12. Deactivation of metastable single-crystal silicon hyperdoped with sulfur

    SciTech Connect

    Simmons, C. B.; Akey, Austin J.; Sullivan, Joseph T.; Buonassisi, Tonio; Krich, Jacob J.; Recht, Daniel; Aziz, Michael J.

    2013-12-28

    Silicon supersaturated with sulfur by ion implantation and pulsed laser melting exhibits broadband optical absorption of photons with energies less than silicon's band gap. However, this metastable, hyperdoped material loses its ability to absorb sub-band gap light after subsequent thermal treatment. We explore this deactivation process through optical absorption and electronic transport measurements of sulfur-hyperdoped silicon subject to anneals at a range of durations and temperatures. The deactivation process is well described by the Johnson-Mehl-Avrami-Kolmogorov framework for the diffusion-mediated transformation of a metastable supersaturated solid solution, and we find that this transformation is characterized by an apparent activation energy of E{sub A}=1.7 ± 0.1 eV. Using this activation energy, the evolution of the optical and electronic properties for all anneal duration-temperature combinations collapse onto distinct curves as a function of the extent of reaction. We provide a mechanistic interpretation of this deactivation based on short-range thermally activated atomic movements of the dopants to form sulfur complexes.

  13. Metastable states in calcium phosphate - aqueous phase equilibrations

    NASA Astrophysics Data System (ADS)

    Driessens, F. C. M.; Verbeeck, R. M. H.

    1981-05-01

    A critical evaluation of the literature reveals that during equilibration of well crystallized hydroxyapatite in aqueous solutions metastable states can occur. They are characterized by a persistent supersaturation with respect to hydroxyapatite and a systematical dependence of the ion activity product of this compound on the solution composition. For products synthesized by thermal treatment it is known that they are transformed into oxyhydroxyapatite so that the theoretical solubility behaviour could be predicted from the extrapolated value of the free energy of oxyapatite at room temperature: the negative logarithm of the ionic product for hydroxyapatite should become close to that of oxyapatite during equilibration. The discrepancy with experimental data is probably due to the formation of thin layers seeming dicalcium phosphate dihydrate, octocalcium phosphate or defective hydroxyapatite as coatings on the apatite crystals. This is derived from the apparent Ca/P ratio of the solubility controlling phase. According to chemical potential plots this apparent Ca/P ratio can have values close to 1, 1.33, 1.50 or 1.67. The aqueous solutions are clearly undersaturated with respect to the more acidic calcium phosphates so that the coatings must deviate from the compositions of these compounds in their pure state. The formation of these metastable states during equilibration of oxyhydroxyapatites is compared with others occuring during precipitation and crystal growth of calcium phosphates. A model is proposed which explains the observations qualitatively.

  14. Metastable Lennard-Jones fluids. I. Shear viscosity.

    PubMed

    Baidakov, Vladimir G; Protsenko, Sergey P; Kozlova, Zaliya R

    2012-10-28

    Molecular dynamics methods have been employed to calculate the coefficient of shear viscosity η(s)* of a Lennard-Jones fluid. Calculations have been performed in the range of reduced temperatures 0.4 ≤ k(B)T/ε ≤ 2.0 and densities 0.01 ≤ ρσ(3) ≤ 1.2. Values of η(s)* have been obtained for 217 states, 99 of which refer to metastable liquid and gas regions. The results of calculating η(s)* for thermodynamically stable states are in satisfactory agreement with the data of earlier investigations. An equation has been obtained which describes the temperature and density dependence of the coefficient of shear viscosity in stable and metastable regions of the phase diagram up to the boundaries of spontaneous nucleation. The behavior of the coefficient of shear viscosity close to the spinodal of a superheated liquid and supersaturated vapor is discussed and the applicability of the Stokes-Einstein relation at high supercoolings of the liquid phase is examined.

  15. Characteristics of Knock in Hydrogen-Oxygen-Argon SI Engine

    SciTech Connect

    Killingsworth, N; Rapp, V; Flowers, D; Aceves, S; Chen, J; Dibble, R

    2010-02-23

    A promising approach for improving the efficiency of internal combustion engines is to employ a working fluid with a high specific heat ratio such as the noble gas argon. Moreover, all harmful emissions are eliminated when the intake charge is composed of oxygen, nonreactive argon, and hydrogen fuel. Previous research demonstrated indicated thermal efficiencies greater than 45% at 5.5 compression ratio in engines operating with hydrogen, oxygen, and argon. However, knock limits spark advance and increasing the efficiency further. Conditions under which knock occurs in such engines differs from typical gasoline fueled engines. In-cylinder temperatures using hydrogen-oxygen-argon are higher due to the high specific heat ratio and pressures are lower because of the low compression ratio. Better understanding of knock under these conditions can lead to operating strategies that inhibit knock and allow operation closer to the knock limit. In this work we compare knock with a hydrogen, oxygen, and argon mixture to that of air-gasoline mixtures in a variable compression ratio cooperative fuels research (CFR) engine. The focus is on stability of knocking phenomena, as well as, amplitude and frequency of the resulting pressure waves.

  16. Metastable phase diagram: tool to quantified degree of undercooling

    NASA Astrophysics Data System (ADS)

    Faure, F.; Tissandier, L.

    2012-12-01

    The majority of volcanic rocks display textures that evidence disequilibrium features such as glasses or crystals with rapid growth morphologies. Disequilibrium textures are generally interpreted as resulting from high degrees of magma undercooling (-ΔT). By definition, -ΔT corresponds to the difference between the liquidus temperature and the actual temperature. However the liquidus temperature evolves during crystallization due to the continuous change in the chemical composition of the residual liquid. This has led to consideration of a nominal degree of undercooling (-ΔTn) in dynamic crystallization experiments performed in high disequilibrium conditions, i.e. with rapid cooling rates. The parameter -ΔTn is defined as the temperature difference between the liquidus temperature of the initial composition and the temperature at the end of the experiment (Kirkpatrick et al. 1981; Faure et al. 2003), however it is clearly an oversimplification when cooling rates are relatively slow and it does not correspond to the real degree of undercooling (-ΔTr). On the other hand, the use of phase diagrams to constrain the chemical compositions of these unequilibrated phases is futile as classical phase diagrams, i.e. equilibrium diagrams, never show the metastable prolongations. In order to overcome this problem, we propose a method based on magmatic inclusions for determining the metastable prolongations of liquidus surfaces below the solidus and we test this method with a simplified chemical CMAS system. Dynamic crystallization experiments were performed at atmospheric pressure and a low cooling rate (2°C/h). Experiments were quenched at various temperatures, above and below the theoretical solidus. Olivine is the liquidus phase and the mesostasis may exhibit a second phase corresponding to a metastable Al-rich pyroxene. Olivine crystal morphologies evolve from polyhedral to skeletal depending on the quenching temperature. Whatever this temperature, the chemical

  17. Infrared spectra and electronic structure calculations for NN complexes with U, UN, and NUN in solid argon, neon, and nitrogen.

    PubMed

    Andrews, Lester; Wang, Xuefeng; Gong, Yu; Kushto, Gary P; Vlaisavljevich, Bess; Gagliardi, Laura

    2014-07-17

    Reactions of laser-ablated U atoms with N2 molecules upon codeposition in excess argon or neon at 4 K gave intense NUN and weak UN absorptions. Annealing produced progressions of new absorptions for the UN2(N2)1,2,3,4,5 and UN(N2)1,2,3,4,5,6 complexes. The neon-to-argon matrix shift decreases with increasing NN ligation and therefore the number of noble gas atoms left in the primary coordination sphere around the NUN molecule. Small matrix shifts are observed when the secondary coordination layers around the primary UN2(N2)1,2,3,4,5 and UN(N2)1,2,3,4,5,6 complexes are changed from neon-to-argon to nitrogen. Electronic structure, energy, and frequency calculations provide support for the identification of these complexes and the characterization of the N≡U≡N and U≡N core molecules as terminal uranium nitrides. Codeposition of U with pure nitrogen produced the saturated U(NN)7 complex, which UV irradiation converted to the NUN(NN)5 complex with slightly lower frequencies than found in solid argon.

  18. Rare transitions between metastable states in the stochastic Chaffee-Infante equation.

    NASA Astrophysics Data System (ADS)

    Rolland, Joran; Bouchet, Freddy; Simonnet, Eric

    2015-04-01

    We present a numerical and theoretical study of the transitions in the Stochastic one dimensional Chaffee-Infante equation. The one dimensional Chaffee-Infante equation, also know as the Ginzburg-Landau or Allen-Cahn equation in physics, is the prototype equation for bistability in extended systems. As such, it is the perfect model equation for the test of numerical or theoretical methods intended at investigating metastability in more complex stochastic partial differential equations ; typically those arising in oceanicl fluid dynamics. Among other examples, one can think of the alternance of meander paths of the Kuroshio current near Japan, or the switching of the thermohaline circulation in the north Atlantic ocean. The reactive trajectories, the realisations of the dynamics that actually evolve from one metastable state to the other, are the central events in such studies. The novelty and originality of our approach is the combination of theoretical approaches with a novel numerical method, Adaptive Multilevel Splitting (AMS), for the computation of the full distribution of reactive trajectories and all the properties of the rare transitions. AMS is a mutation selection/selection algorithm that uses N clones dynamics of the system of interest, and only requires N|ln(α)| iterations. Meanwhile several 1/α realisations are required for a direct numerical simulation (with α the probability of observing a transition). It thus becomes a very powerful method when the noise amplitude and therefore α goes to zero. We used the algorithm to compute the properties (escape probability, mean first passage time, average duration of reactive trajectories, number of fronts etc.) of the transition in the full parameter space (L,β) (with L the size of the system and β the inverse of the noise amplitude). There is an excelent quantitative agreement with the various theoretical approaches of the study of metastability. All of them are asymptotic and therefore concern only

  19. Coherent anti-Stokes Raman spectroscopic measurement of air entrainment in argon plasma jets

    SciTech Connect

    Fincke, J.R.; Rodriquez, R.; Pentecost, C.G.

    1990-01-01

    The concentration and temperature of air entrained into an argon plasma jet has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition to turbulence occurs, air is rapidly entrained into the jet core. The location of the transition region is thought to be driven by the rapid cooling of the jet and the resulting increase in Reynolds number. 8 refs., 6 figs.

  20. Coherent anti-Stokes Raman spectroscopic measurement of air entrainment in argon plasma jets

    NASA Astrophysics Data System (ADS)

    Fincke, J. R.; Rodriquez, R.; Pentecost, C. G.

    The concentration and temperature of air entrained into an argon plasma jet has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition to turbulence occurs, air is rapidly entrained into the jet core. The location of the transition region is thought to be driven by the rapid cooling of the jet and the resulting increase in Reynolds number.

  1. Laser-induced surface modification of metals and alloys in liquid argon medium

    NASA Astrophysics Data System (ADS)

    Kazakevich, V. S.; Kazakevich, P. V.; Yaresko, P. S.; Kamynina, D. A.

    2016-08-01

    Micro and nanostructuring of metals and alloys surfaces (Ti, Mo, Ni, T30K4) was considered by subnanocosecond laser radiation in stationary and dynamic mode in the liquid argon, ethanol and air. Depending of structures size on the samples surface from the energy density and the number of pulses were built. Non-periodic (NSS) and periodic (PSS) surface structures with periods about λ-λ/2 were obtained. PSS formation took place as at the target surface so at the NSS surface.

  2. Preliminary report on the influence of an argon laser on electrophysiology of cochlea in guinea pigs

    NASA Astrophysics Data System (ADS)

    Michalski, Wojciech; Dziewiszek, Wojciech

    1997-10-01

    A small electrical potential generated by cochlear, when the ear is stimulated by sound, has been used to estimate the influence of the argon laser on cochlear activity in guinea pigs. The detected potentials were recorded prior to, during and after laser irradiation of bone of cochlear, Laser pulses of 0.5-1 s duration and peak power of 100-660 mW were used in the experiment. The number of pulses in the series and the time interval between single laser pulses were varied, too. Depending on the laser irradiation parameters the values of CM returned or no to the pre-impact value.

  3. A Large Liquid Argon TPC for Off-axis NuMI Neutrino Physics

    SciTech Connect

    Menary, Scott

    2006-07-11

    The ICARUS collaboration has shown the power of the liquid argon time projection chamber (LArTPC) technique to image events with bubble-chamber-like quality. I will describe a proposed long-baseline {nu}e appearance experiment utilizing a large ({>=} 15 kton1) LArTPC placed off-axis of Fermilab's NuMI {nu}{mu} beam. The total LArTPC program as it presently stands, which includes a number of smaller R and D projects designed to examine the key design issues, will be outlined.

  4. Optogalvanic spectrum of argon in the visible wavelength region 4150-6700 A

    NASA Technical Reports Server (NTRS)

    Reddy, B. R.; Venkateswarlu, P.; George, M. C.

    1990-01-01

    Optogalvanic spectrum of argon has been investigated in the visible wavelength region 4150-6700 A by axially irradiating a hollow cathodic discharge with an excimer pumped dye laser. About 180 transitions have been recorded and a majority of them have been identified using the Jl-coupling scheme. The optogalvanic spectrum in the regions 4300-5300 and 6010-6700 A is being reported in detail for the first time. The optogalvanic signal intensities are found to agree with atomic transition probabilities. A technique has been discussed to record a maximum number of transitions in optogalvanic effect.

  5. Argon-40: excess in submarine pillow basalts from kilauea volcano, hawaii.

    PubMed

    Dalrymple, G B; Moore, J G

    1968-09-13

    Submarine pillow basalts from Kilauea Volcano contain excess radiogenic argon-40 and give anomalously high potassium-argon ages. Glassy rims of pillows show a systematic increase in radiogenic argon-40 with depth, and a pillow from a depth of 2590 meters shows a decrease in radiogenic argon40 inward from the pillow rim. The data indicate that the amount of excess radiogenic argon-40 is a direct function of both hydrostatic pressure and rate of cooling, and that many submarine basalts are not suitable for potassium-argon dating. PMID:17812284

  6. Argon-40: Excess in submarine pillow basalts from Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Brent, Dalrymple G.; Moore, J.G.

    1968-01-01

    Submarine pillow basalts from Kilauea Volcano contain excess radiogenic argon-40 and give anomalously high potassium-argon ages. Glassy rims of pillows show a systematic increase in radiogenic argon-40 with depth, and a pillow from a depth of 2590 meters shows a decrease in radiogenic argon-40 inward from the pillow rim. The data indicate that the amount of excess radiogenic argon-40 is a direct function of both hydrostatic pressure and rate of cooling, and that many submarine basalts are not suitable for potassium-argon dating.

  7. On the electric breakdown in liquid argon at centimeter scale

    NASA Astrophysics Data System (ADS)

    Auger, M.; Blatter, A.; Ereditato, A.; Goeldi, D.; Janos, S.; Kreslo, I.; Luethi, M.; von Rohr, C. Rudolf; Strauss, T.; Weber, M. S.

    2016-03-01

    We present a study on the dependence of electric breakdown discharge properties on electrode geometry and the breakdown field in liquid argon near its boiling point. The measurements were performed with a spherical cathode and a planar anode at distances ranging from 0.1 mm to 10.0 mm. A detailed study of the time evolution of the breakdown volt-ampere characteristics was performed for the first time. It revealed a slow streamer development phase in the discharge. The results of a spectroscopic study of the visible light emission of the breakdowns complement the measurements. The light emission from the initial phase of the discharge is attributed to electro-luminescence of liquid argon following a current of drifting electrons. These results contribute to set benchmarks for breakdown-safe design of ionization detectors, such as Liquid Argon Time Projection Chambers (LAr TPC).

  8. New statistical boundary conditions for argon-tungsten interactions.

    PubMed

    Ozhgibesov, M S; Leu, T S; Cheng, C H; Utkin, A V

    2012-09-01

    In this study, scattering processes of argon beam impinging on tungsten surface are investigated numerically by applying molecular dynamics (MD) simulations. Energy transfer, momentum change, and scattering processes of argon gas atoms from W(110) surface are discussed. A new model of argon-tungsten (Ar-W) interaction is proposed. Based on the new proposed model, one can simplify the boundary conditions of this problem. The new boundary conditions are proved to be in line with previous experimental and theoretical results. This paper demonstrates how to proceed normalization and further conversion of the MD simulation results into boundary conditions. Application of the new proposed boundary conditions for Ar-W interactions provides a significant speedup of computations.

  9. Krypton and argon laser photocoagulation effects in subretinal hemorrhage.

    PubMed

    Chino, K; Ohki, R; Noyori, K

    1986-01-01

    Previous studies suggested that krypton laser photocoagulation was more effective in the treatment of macular diseases than argon laser. Furthermore, it could perform photocoagulation more effectively in some lesions with subretinal hemorrhage, because the krypton laser beam was poorly absorbed by hemoglobin. In the present experiment, hemorrhagic retinal detachment was produced in monkey eyes with Q-switched Nd-YAG laser, and 4 weeks later photocoagulation was performed with krypton and argon lasers to compare the differences in the effects of these two lasers. When the subretinal hemorrhage and a heavy coagulation effect was produced in the detached retina, but no coagulation effects were observed in the choroid. Krypton laser beam could go through the hemorrhage and certain coagulation effects were observed in the choroid and the detached retina. It is suggested that krypton laser photocoagulation is more effective in the lesions behind subretinal hemorrhages than photocoagulation with argon laser.

  10. Early Clinical Experience With Argon Ion Laser Endarterectomy

    NASA Astrophysics Data System (ADS)

    Eugene, John; Baribeau, Yvon; Ott, Richard A.; McColgan, Stephen J.; Berns, Michael W.

    1989-09-01

    This report describes our progress in the development of argon ion laser endarterectomy for arteriosclerotic cardiovascular disease. Nine patients underwent 10 vascular reconstructions for claudication (6), rest pain (1), and gangrene (2). There was 1 aortoiliac endarterectomy, 6 superficial femoral artery endarterectomies, 1 profunda femoris endarterectomy and 2 popliteal endarterectomies. The reconstructions were 6 cm to 60 cm in length. The operations were performed using low power argon ion laser radiation, 1.0 W. All patients experienced symptomatic relief and had palpable pulses postoperatively. There were no perforations and there were no injuries to surrounding tissues from laser radiation. Surgical complications occurred and these were technical problems that should be eliminated from the operation with further developments. The early clinical results show that laser endarterectomy can be performed for peripheral vascular reconstruction using low power argon ion laser radiation.

  11. The influence of resonance radiation transport on the contraction of a glow discharge in argon

    NASA Astrophysics Data System (ADS)

    Golubovskii, Yu B.; Maiorov, V. A.

    2015-04-01

    The role of resonance radiation transport in the contraction of a positive column in an argon glow discharge is studied numerically. The theory is based on the self-consistent solution of the ambipolar diffusion equation for electrons, the diffusion equation for metastable atoms and the Biberman-Holstein equation for resonance atoms. To calculate the ionization and excitation rates, the Boltzmann equation is solved in a local approximation taking into account elastic, inelastic and electron-electron collisions. A solution method for a boundary problem is developed which allows one to obtain a hysteresis of the parameters during a continuous transition from a diffuse mode to a contracted mode through an unstable branch. At small currents there is a diffuse discharge where the role of radiation transport is inessential because the radial distributions of electrons and excited atoms are close to the fundamental modes of the corresponding equations. Under these conditions, the traditional approximation of ‘effective lifetime’ is accurate enough. For a contracted discharge, this approximation is not applicable because the higher diffusion and radiation modes play a notable role and a more strict description of radiation transport is required. It is shown that, when radiation transport is taken into account, the width of a filament in a contracted discharge significantly exceeds that obtained in the traditional ‘effective lifetime’ approximation. The critical current, when the discharge abruptly turns into a contracted mode, is shifted towards higher current values. The results obtained in this paper can also relate to a discharge in other inert gases.

  12. METHODOLOGICAL NOTES: Metastable phases, phase transformations, and phase diagrams in physics and chemistry

    NASA Astrophysics Data System (ADS)

    Brazhkin, Vadim V.

    2006-07-01

    Concepts of a 'phase' and a 'phase transition' are discussed for stable and metastable states of matter. While condensed matter physics primarily considers equilibrium states and treats metastable phases as exceptions, organic chemistry overwhelmingly deals with metastable states. It is emphasized that many simple light-element compounds — including most hydrocarbons; nitrogen oxides, hydrides, and carbides; carbon monoxide CO; alcohols and glycerin — are also metastable at normal pressure in the sense that they do not correspond to a minimum Gibbs free energy for a given chemical composition. At moderate temperatures and pressures, the phase transformations for these metastable phases are reversible with the fulfilment of all laws of equilibrium thermodynamics over the entire range of experimentally accessible times. At sufficiently high pressures (> 1-10 GPa), most of the metastable molecular phases irreversibly transform to lower-energy polymer phases, stable or metastable. These transitions do not correspond to the equality of the Gibbs free energy for the involved phases before and after the transition and so they are not first-order in the 'classical' sense. At normal pressure, the resulting polymer phases can exist at temperatures above the melting point of the original metastable molecular phase, as the examples of polyethylene and polymerized CO dramatically illustrate. As pressure is increased further to 20-50 GPa, the PV contribution to Gibbs free energy gives rise to stable high-density atomic phases. Many of the intermediate-energy polymer phases can likely be synthesized by methods of 'classical' chemistry at normal pressure.

  13. Meta-stable Supersymmetry Breaking in an N = 1 Perturbed Seiberg-Witten Theory

    SciTech Connect

    Sasaki, Shin; Arai, Masato; Montonen, Claus; Okada, Nobuchika

    2008-11-23

    In this contribution, we discuss the possibility of meta-stable supersymmetry (SUSY) breaking vacua in a perturbed Seiberg-Witten theory with Fayet-Iliopoulos (FI) term. We found meta-stable SUSY breaking vacua at the degenerated dyon and monopole singular points in the moduli space at the nonperturbative level.

  14. High time resolution laser induced fluorescence in pulsed argon plasma

    SciTech Connect

    Biloiu, Ioana A.; Sun Xuan; Scime, Earl E.

    2006-10-15

    A submillisecond time resolution laser induced fluorescence (LIF) method for obtaining the temporal evolution of the ion velocity distribution function in pulsed argon plasma is presented. A basic LIF system that employs a continuous laser wave pumping and lock-in aided detection of the subsequent fluorescence radiation is modified by addition of a high frequency acousto-optic modulator to provide measurements of the ion flow velocity and ion temperature in a helicon generated pulsed argon plasma with temporal resolutions as high as 30 {mu}s.

  15. Mechanisms underlying strong-field double ionization of argon dimers

    SciTech Connect

    Manschwetus, B.; Rottke, H.; Steinmeyer, G.; Sandner, W.; Foucar, L.; Czasch, A.; Schmidt-Boecking, H.

    2010-07-15

    We investigate double ionization of argon dimers in high-intensity ultrashort Ti:sapphire laser pulses. We are able to identify several strong-field excitation pathways of the dimer that terminate in atomic ion pairs from a Coulomb explosion. The explosion starts from two-site double-ionized dimers and from one-site double-ionized ones after radiative charge transfer at small internuclear separation. One-site double ionization is accomplished by laser-induced charge transfer in the high-intensity laser pulse following two-site double ionization. The highest energy ion pairs we observed can be attributed to ''frustrated triple ionization'' of the argon dimer.

  16. Properties of radio-frequency heated argon confined uranium plasmas

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Pure uranium hexafluoride (UF6) was injected into an argon confined, steady state, rf-heated plasma within a fused silica peripheral wall test chamber. Exploratory tests conducted using an 80 kW rf facility and different test chamber flow configurations permitted selection of the configuration demonstrating the best confinement characteristics and minimum uranium compound wall coating. The overall test results demonstrated applicable flow schemes and associated diagnostic techniques were developed for the fluid mechanical confinement and characterization of uranium within an rf plasma discharge when pure UF6 is injected for long test times into an argon-confined, high-temperature, high-pressure, rf-heated plasma.

  17. Common Blepharitis Related to Phthiriasis Palpebrarum: Argon Laser Phototherapy.

    PubMed

    Sundu, Cem; Dinç, Erdem; Kurtuluş, Umut Can; Yıldırım, Özlem

    2015-09-01

    A 42-year-old woman was admitted to Mersin University, Department of Ophthalmology Clinic with itching and burning sensation of the right eye for 3 weeks. In her slit-lamp examination, nits and lice, attached to the upper and lower eyelashes of her right eye, were observed. Lice and nits were destroyed by argon laser phototherapy and were removed with the help of a fine forceps thereafter. Argon laser phototherapy is a quick, effective, and safe treatment modality for phthiriasis palpebrarum. PMID:26470938

  18. Argon Triple Point for Long-Stem SPRTs: Thermal Behavior

    NASA Astrophysics Data System (ADS)

    Dobre, M.; Didialaoui, I.; Hermier, Y.

    2011-08-01

    A new device for an ITS-90 triple-point-of-argon realization has been designed at LNE-CNAM. It follows the widely used principle of the cryogenic Dewar filled with pressurized liquid nitrogen, but the new construction achieves better temperature stability at the level of the argon cell. A new pressure regulation, controlled directly by a nitrogen temperature measurement, solves the problem of the influence of atmospheric-pressure variations. The paper presents the new device and the thermal tests conducted in order to optimize the pressure regulation.

  19. Plasma characteristics of argon glow discharge produced by AC power supply operating at low frequencies

    SciTech Connect

    Kongpiboolkid, Watcharapon; Mongkolnavin, Rattachat

    2015-04-24

    Non-thermal properties of Argon glow discharge operating with various operating pressures were measured and presented in this work. The Argon plasma is produced by a parallel conducting electrodes coupling with a high voltage AC power supply. The power supply can generate high AC voltage at various frequencies. The frequencies for the operation are in the range of a few kHz. The system is capable of generating electric field between the two metal electrodes discharge system. The characteristics of plasma produced were measured by optical emission spectroscopy (OES) technique where electron temperature (T{sub e}) and electron number density (n{sub e}) can be determined by line intensity ratio method. The value of electron number density was then determined from the Saha-Eggert equation. Our results show that the electron number density of the discharge obtained is of the order of 10{sup −17} − 10{sup −18} m{sup −3} where the electron temperature is between 1.00−2.00 eV for various operating frequencies used which are in good agreement with similar results published earlier.

  20. Stability of metastable vacua in gauge mediated SUSY breaking models with ultra light gravitino

    NASA Astrophysics Data System (ADS)

    Hisano, Junji; Nagai, Minoru; Senami, Masato; Sugiyama, Shohei

    2008-01-01

    Recently Murayama and Nomura proposed a simple scheme to construct the gauge mediation models, using metastable supersymmetry breaking vacua. It has a possibility to predict the ultra light gravitino mass m3 / 2 ≲ 16 eV, while such a light gravitino may destabilize the metastable vacua. We investigate stability of the metastable vacuum of their model. The transition rate from the false vacuum to true ones is evaluated by numerical calculation, including the Coleman-Weinberg potential destabilizing the metastable vacuum. It is found that when the messenger sector is minimal, stability of the metastable vacuum imposes an upperbound on squark mass Mq˜ for the ultra light gravitino as Mq˜ ≲ 1800 GeV at most. Squarks with this mass may be found in the LHC experiments.

  1. Metastable configurations of a finite-size chain of classical spins within the one-dimensional chiral XY-model

    NASA Astrophysics Data System (ADS)

    Popov, Alexander P.; Gloria Pini, Maria; Rettori, Angelo

    2016-03-01

    The metastable states of a finite-size chain of N classical spins described by the chiral XY-model on a discrete one-dimensional lattice are calculated by means of a general theoretical method recently developed by one of us. This method allows one to determine all the possible equilibrium magnetic states in an accurate and systematic way. The ground state of a chain consisting of N classical XY spins is calculated in the presence of (i) a symmetric ferromagnetic exchange interaction, favoring parallel alignment of nearest neighbor spins, (ii) a uniaxial anisotropy, favoring a given direction in the film plane, and (iii) an antisymmetric Dzyaloshinskii-Moriya interaction (DMI), favoring perpendicular alignment of nearest neighbor spins. In addition to the ground state with a non-uniform helical spin arrangement, which originates from the energy competition in the finite-size chain with open boundary conditions, we have found a considerable number of higher-energy equilibrium states. In the investigated case of a chain with N=10 spins and a DMI much smaller than the in-plane uniaxial anisotropy, it turns out that a metastable (unstable) state of the finite chain is characterized by a configuration where none (at least one) of the inner spins is nearly parallel to the hard axis. The role of the DMI is to establish a unique rotational sense for the helical ground state. Moreover, the number of both metastable and unstable equilibrium states is doubled with respect to the case of zero DMI. This produces modifications in the Peierls-Nabarro potential encountered by a domain wall during its displacement along the discrete spin chain.

  2. Radiation-sustained nanocluster metastability in oxide dispersion strengthened materials

    NASA Astrophysics Data System (ADS)

    Ribis, J.; Bordas, E.; Trocellier, P.; Serruys, Y.; de Carlan, Y.; Legris, A.

    2015-12-01

    ODS materials constitute a new promising class of structural materials for advanced fission and fusion energy application. These Fe-Cr based ferritic steels contain ultra-high density of dispersion-strengthening nanoclusters conferring excellent mechanical properties to the alloy. Hence, guarantee the nanocluster stability under irradiation remain a critical issue. Nanoclusters are non-equilibrium multicomponent compounds (YTiCrO) forming through a complex nucleation pathway during the elaboration process. In this paper, it is proposed to observe the response of these nanoclusters when the system is placed far from equilibrium by means of ion beam. The results indicate that the Y, Ti, O and Cr atoms self-organized so that nanoclusters coarsened but maintain their non-equilibrium chemical composition. It is discussed that the radiation-sustained nanocluster metastability emerges from cooperative effects: radiation-induced Ostwald ripening, permanent creation of vacancies in the clusters, and fast Cr diffusion mediated by interstitials.

  3. Coexistence of multiple metastable polytypes in rhombohedral bismuth

    PubMed Central

    Shu, Yu; Hu, Wentao; Liu, Zhongyuan; Shen, Guoyin; Xu, Bo; Zhao, Zhisheng; He, Julong; Wang, Yanbin; Tian, Yongjun; Yu, Dongli

    2016-01-01

    Derivative structural polytypes coexisting with the rhombohedral A7 structure of elemental bismuth (Bi) have been discovered at ambient condition, based on microstructure analyses of pure Bi samples treated under high pressure and high temperature conditions. Three structures with atomic positions close to those of the A7 structure have been identified through first-principles calculations, showing these polytypes energetically comparable to the A7 structure under ambient condition. Simulated diffraction data are in excellent agreement with the experimental observations. We argue that previously reported some variations of physical properties (e.g., density, electrical conductivity, and magnetism) in bismuth could be due to the formation of these polytypes. The coexistence of metastable derivative structural polytypes may be a widely occurring phenomenon in other elemental materials. PMID:26883895

  4. Heteronuclear ionizing collisions between laser-cooled metastable helium atoms

    SciTech Connect

    McNamara, J. M.; Stas, R. J. W.; Hogervorst, W.; Vassen, W.

    2007-06-15

    We have investigated cold ionizing heteronuclear collisions in dilute mixtures of metastable (2 {sup 3}S{sub 1}) {sup 3}He and {sup 4}He atoms, extending our previous work on the analogous homonuclear collisions [R. J. W. Stas et al., Phys. Rev. A 73, 032713 (2006)]. A simple theoretical model of such collisions enables us to calculate the heteronuclear ionization rate coefficient, for our quasiunpolarized gas, in the absence of resonant light (T=1.2 mK): K{sub 34}{sup (th)}=2.4x10{sup -10} cm{sup 3}/s. This calculation is supported by a measurement of K{sub 34} using magneto-optically trapped mixtures containing about 1x10{sup 8} atoms of each species, K{sub 34}{sup (exp)}=2.5(8)x10{sup -10} cm{sup 3}/s. Theory and experiment show good agreement.

  5. Supersymmetry breaking metastable vacua in runaway quiver gauge theories

    NASA Astrophysics Data System (ADS)

    García-Etxebarria, Inaki; Saad, Fouad; M. Uranga, Angel

    2007-05-01

    In this paper we consider quiver gauge theories with fractional branes whose infrared dynamics removes the classical supersymmetric vacua (DSB branes). We show that addition of flavors to these theories (via additional non-compact branes) leads to local meta-stable supersymmetry breaking minima, closely related to those of SQCD with massive flavors. We simplify the study of the one-loop lifting of the accidental classical flat directions by direct computation of the pseudomoduli masses via Feynman diagrams. This new approach allows to obtain analytic results for all these theories. This work extends the results for the dP1 theory in hep-th/0607218. The new approach allows to generalize the computation to general examples of DSB branes, and for arbitrary values of the superpotential couplings.

  6. Waveform effects of a metastable olivine tongue in subducting slabs

    NASA Technical Reports Server (NTRS)

    Vidale, John E.; Williams, Quentin; Houston, Heidi

    1991-01-01

    Velocity models of subducting slabs with a kinetically-depressed olivine to beta- and gamma-spinel transition are constructed, and the effect that such structures would have on teleseismic P waveforms are examined using a full-wave finite-difference method. These 2D calculations yielded waveforms at a range of distances in the downdip direction. The slab models included a wedge-shaped, low-velocity metastable olivine tongue (MOTO) to a depth of 670 km, as well as a plausible thermal anomaly; one model further included a 10-km-thick fast layer on the surface of the slab. The principal effect of MOTO is to produce grazing reflections at wide angles off the phase boundary, generating a secondary arrival 0 to 4 seconds after the initial arrival depending on the take-off angle. The amplitude and timing of this feature vary with the lateral location of the seismic source within the slab cross-section.

  7. Ferromagnetism in layered metastable 1T-CrTe2.

    PubMed

    Freitas, Daniele C; Weht, Ruben; Sulpice, André; Remenyi, Gyorgy; Strobel, Pierre; Gay, Frédéric; Marcus, Jacques; Núñez-Regueiro, Manuel

    2015-05-01

    We have synthesized for the first time the metastable compound 1T-CrTe2. We have done its complete structural characterization and measured its magnetization, specific heat and electrical resistivity between 4 and 330 K. We have also performed detailed band structure calculations. We have found that it crystallizes in the CdI2 structure type and that its electrical resistance follows a metallic behaviour below room temperature. Its magnetization and specific heat curves show that the compound has a transition to a ferromagnetic state at TC = 310 K, with the magnetic moments ordered parallel to the basal plane. From the specific heat measurements and the ferromagnetic solutions obtained from our DFT calculations, we conclude that the ferromagnetism is of itinerant nature. PMID:25872783

  8. Dynamic control of metastable remanent states in mesoscale magnetic elements

    SciTech Connect

    Ding, J.; Jain, S.; Pearson, J. E.; Novosad, V.; Lendinez, S.; Khovaylo, V.

    2015-05-07

    The formation of the vortex-antivortex-vortex (v-av-v) metastable remanent states in elongated magnetic elements have been systematically investigated using micromagnetic modeling. It is demonstrated that the v-av-v magnetization pattern can be effectively stabilized by exciting the single vortex state with an external RF field. Furthermore, we show that a set of different polarity combinations of the vortex cores can be achieved by adjusting the frequency and amplitude of the excitation field. The corresponding dynamic response in time- and frequency-domain has also been presented. Owing to the diversity of the collective modes with different vortex-antivortex combinations, this system may open promising perspectives in the area of spin transfer torque oscillators.

  9. Metastable nanosized aluminum powder as a reactant in energetic formulations

    SciTech Connect

    Katz, J.; Tepper, F.; Ivanov, G.V.; Lerner, M.I.; Davidovich, V.

    1998-12-01

    Aluminum powder is an important ingredient in many propellant, explosives and pyrotechnic applications. The production of nanosized aluminum powder by the electroexplosion of metal wire has been practices in the former USSR since the mid 1970`s. Differential scanning calorimetry, differential thermal analysis and x-ray phase analysis was performed on aluminum powder both before and after air passivation, as well as aluminum that was protected under kerosene, pentane, toluene and hexane. Earlier Soviet reports of unexplained thermal releases and metastable behavior have been investigated. Anomalous behavior previously reported included phase transformations at temperatures far below melting with the release of heat and chemoluminescence and self sintering of particles with a heat release large enough to melt the powders.

  10. Two-color magneto-optical trap for metastable helium

    SciTech Connect

    Tychkov, A.S.; Koelemeij, J.C.J.; Jeltes, T.; Hogervorst, W.; Vassen, W.

    2004-05-01

    We describe a powerful scheme which combines laser cooling on two transitions of metastable helium to obtain a high phase-space density. By running a sequence of a large 1083 nm magneto-optical trap (MOT) and a compressed 389 nm MOT, a density increase of more than one order of magnitude is achieved within 5 ms. After compression, 8x10{sup 8} atoms at a central density of 5x10{sup 10} cm{sup -3} remain, while the temperature of the cloud has been reduced from 1 mK to 0.4 mK. The resulting phase-space density (4.1x10{sup -6}) is more than one order of magnitude higher than what we achieved by 1083 nm laser cooling only.

  11. A Gravity Dual of Metastable Dynamical Supersymmetry Breaking

    SciTech Connect

    DeWolfe, Oliver; Kachru, Shamit; Mulligan, Michael; /Stanford U., Phys. Dept. /SLAC

    2008-02-04

    Metastable, supersymmetry-breaking configurations can be created in flux geometries by placing antibranes in warped throats. Via gauge/gravity duality, such configurations should have an interpretation as supersymmetry-breaking states in the dual field theory. In this paper, we perturbatively determine the asymptotic supergravity solutions corresponding to D3-brane probes placed at the tip of the cascading warped deformed conifold geometry, which is dual to an SU(N+M) x SU(N) gauge theory. The backreaction of the antibranes has the effect of introducing imaginary anti-self-dual flux, squashing the compact part of the space and forcing the dilaton to run. Using the generalization of holographic renormalization to cascading geometries, we determine the expectation values of operators in the dual field theory in terms of the asymptotic values of the supergravity fields.

  12. Times of metastable droplet relaxation to equilibrium states

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.; Komarov, V. N.; Zaitseva, E. S.

    2016-10-01

    Times of metastable droplet relaxation to their equilibrium state are calculated at saturated vapor pressures, depending on the droplet size. It is shown that for small droplets with radius R = 6 molecular diameters (or ~2 nm) the relaxation times are ~1 ns (which is comparable to the characteristic flight times of rarefied gas molecules). For large droplets with radius R ~ 800 molecular diameters, the relaxation times are as long as 10 μs. At a fixed droplet radius (6 ≤ R ≤ 800), the range of variation in relaxation time from the melting point to the critical temperature does not exceed one order of magnitude: the lower the temperature, the slower the relaxation process.

  13. Collisional properties of cold spin-polarized metastable neon atoms.

    PubMed

    Spoden, P; Zinner, M; Herschbach, N; van Drunen, W J; Ertmer, W; Birkl, G

    2005-06-10

    We measure the rates of elastic and inelastic two-body collisions of cold spin-polarized neon atoms in the metastable 3P2 state for 20Ne and 22Ne in a magnetic trap. From particle loss, we determine the loss parameter of inelastic collisions beta=6.5(18) x 10(-12) cm(3) s(-1) for 20Ne and beta=1.2(3) x 10(-11) cm(3) s(-1) for 22Ne. These losses are caused by ionizing (i.e., Penning) collisions and occur less frequently than for unpolarized atoms. This proves the suppression of Penning ionization due to spin polarization. From cross-dimensional relaxation measurements, we obtain elastic scattering lengths of a=-180(40)a(0) for 20Ne and a = +150(+80)(-50)a(0) for 22Ne, where a(0)=0.0529 nm.

  14. Metastable γ-FeNi nanostructures with tunable Curie temperature

    NASA Astrophysics Data System (ADS)

    Miller, K. J.; Sofman, M.; McNerny, K.; McHenry, M. E.

    2010-05-01

    We report on new metastable γ-FeNi nanoparticles produced by mechanical alloying of melt-spun ribbon using a high energy ball mill followed by a solution annealing treatment in the γ-phase region and water quenching in of the face-centered cubic γ-phase. In the Fe-Ni phase diagram there is a strong compositional dependence of the Curie temperature, Tc, on composition in the γ-phase. This work studies the stabilization of γ-phase nanostructures and the compositional tuning of Tc in Fe-Ni alloys which can have important ramifications on the self-regulated heating of magnetic nanoparticles in temperature ranges of interest for applications in polymer curing and cancer thermotherapies. To date we have achieved Curie temperatures as low as 120 °C by this method.

  15. Miniature metastable ionization detectors for exobiology flight experiments

    NASA Technical Reports Server (NTRS)

    Woeller, F. H.

    1986-01-01

    The Metastable Ionization Detector (MID) is three orders of magnitude more sensitive than the thermal conductivity detectors used on previous flight instruments. The miniature MID provides scientists with a much smaller and highly sensitive detector for flight gas chromatographs. A miniature MID featuring an unconventional triaxial electrode configuration was developed and used routinely in the laboratory. Although much smaller and lighter than the commercial MID, its performance characteristics parallel those of the traditional design. The detector is compatible with the modulated voltage circuitry, also developed here, and thus can perform over an expanded response range of more than 7 orders magnitude. A micro volume version of a miniature MID, with an internal volume of less than 8 microliter, was recently designed is now being tested. The micro volume MID uses carrier gas flow rates of approx. 2cc/min thus eliminating the need for makeup gas when capillary columns are used.

  16. Dynamic metastability in the two-dimensional Potts ferromagnet.

    PubMed

    Ibáñez Berganza, Miguel; Petri, Alberto; Coletti, Pietro

    2014-05-01

    We investigate the nonequilibrium dynamics of the two-dimensional (2D) Potts model on the square lattice after a quench below the discontinuous transition point. By means of numerical simulations of systems with q=12, 24, and 48, we observe the onset of a stationary regime below the temperature-driven transition, in a temperature interval decreasing with the system size and increasing with q. These results obtained dynamically agree with those obtained from the analytical continuation of the free energy [J. L. Meunier and A. Morel, Eur. Phys. J. B 13, 341 (2000)], from which metastability in the 2D Potts model results to be a finite-size effect. PMID:25353747

  17. Ferromagnetism in layered metastable 1T-CrTe2

    NASA Astrophysics Data System (ADS)

    Freitas, Daniele C.; Weht, Ruben; Sulpice, André; Remenyi, Gyorgy; Strobel, Pierre; Gay, Frédéric; Marcus, Jacques; Núñez-Regueiro, Manuel

    2015-05-01

    We have synthesized for the first time the metastable compound 1T-CrTe2. We have done its complete structural characterization and measured its magnetization, specific heat and electrical resistivity between 4 and 330 K. We have also performed detailed band structure calculations. We have found that it crystallizes in the CdI2 structure type and that its electrical resistance follows a metallic behaviour below room temperature. Its magnetization and specific heat curves show that the compound has a transition to a ferromagnetic state at TC = 310 K, with the magnetic moments ordered parallel to the basal plane. From the specific heat measurements and the ferromagnetic solutions obtained from our DFT calculations, we conclude that the ferromagnetism is of itinerant nature.

  18. Metastable Frenkel Pair Defect in Graphite: Source of Wigner Energy?

    NASA Astrophysics Data System (ADS)

    Ewels, C. P.; Telling, R. H.; El-Barbary, A. A.; Heggie, M. I.; Briddon, P. R.

    2003-07-01

    The atomic processes associated with energy storage and release in irradiated graphite have long been subject to untested speculation. We examine structures and recombination routes for interstitial-vacancy (I-V) pairs in graphite. Interaction results in the formation of a new metastable defect (an intimate I-V pair) or a Stone-Wales defect. The intimate I-V pair, although 2.9eV more stable than its isolated constituents, still has a formation energy of 10.8eV. The barrier to recombination to perfect graphite is calculated to be 1.3eV, consistent with the experimental first Wigner energy release peak at 1.38eV. We expect similar defects to form in carbon nanostructures such as nanotubes, nested fullerenes, and onions under irradiation.

  19. Plasma of Argon Affects the Earliest Biological Response of Different Implant Surfaces: An In Vitro Comparative Study.

    PubMed

    Canullo, L; Genova, T; Tallarico, M; Gautier, G; Mussano, F; Botticelli, D

    2016-05-01

    The aim of this in vitro study was to evaluate the early cell response and protein adsorption elicited by the argon plasma treatment of different commercially available titanium surfaces via a chair-side device. Sterile disks made of grade 4 titanium (n= 450, 4-mm diameter) with 3 surface topographies (machined, plasma sprayed, and zirconia blasted and acid etched) were allocated to receive 4 testing treatments (2% and 10% protein adsorption and cell adhesion with MC3T3-E1 and MG-63). Furthermore, the specimens were divided to undergo 1) argon plasma treatment (10 W, 1 bar for 12 min) in a plasma reactor, 2) ultraviolet (UV) light treatment for 2 h (positive control group), or 3) no treatment (control group). Pretreatment surface analyses based on a scanning electron microscope and profilometer images were also performed. Profilometric analysis demonstrated that the evaluated specimens perfectly suit the standard parameters. The use of argon plasma was capable of affecting the quantity of proteins adsorbed on the different surfaces, notwithstanding their roughness or topographic features at a low fetal bovine serum concentration (2%). UV light treatment for 2 h attained similar results. Moreover, both the plasma of argon and the UV light demonstrated a significant increase in the number of osteoblasts adherent at 10 min in all tested surfaces. Within its limitations, this in vitro study highlights the potential biological benefits of treating implant surfaces with plasma of argon or UV, irrespective of the roughness of the titanium surface. However, in vivo experiments are needed to confirm these preliminary data and settle the rationale of a treatment that might be clinically relevant in case of bone-reparative deficiencies.

  20. Plasma of Argon Affects the Earliest Biological Response of Different Implant Surfaces: An In Vitro Comparative Study.

    PubMed

    Canullo, L; Genova, T; Tallarico, M; Gautier, G; Mussano, F; Botticelli, D

    2016-05-01

    The aim of this in vitro study was to evaluate the early cell response and protein adsorption elicited by the argon plasma treatment of different commercially available titanium surfaces via a chair-side device. Sterile disks made of grade 4 titanium (n= 450, 4-mm diameter) with 3 surface topographies (machined, plasma sprayed, and zirconia blasted and acid etched) were allocated to receive 4 testing treatments (2% and 10% protein adsorption and cell adhesion with MC3T3-E1 and MG-63). Furthermore, the specimens were divided to undergo 1) argon plasma treatment (10 W, 1 bar for 12 min) in a plasma reactor, 2) ultraviolet (UV) light treatment for 2 h (positive control group), or 3) no treatment (control group). Pretreatment surface analyses based on a scanning electron microscope and profilometer images were also performed. Profilometric analysis demonstrated that the evaluated specimens perfectly suit the standard parameters. The use of argon plasma was capable of affecting the quantity of proteins adsorbed on the different surfaces, notwithstanding their roughness or topographic features at a low fetal bovine serum concentration (2%). UV light treatment for 2 h attained similar results. Moreover, both the plasma of argon and the UV light demonstrated a significant increase in the number of osteoblasts adherent at 10 min in all tested surfaces. Within its limitations, this in vitro study highlights the potential biological benefits of treating implant surfaces with plasma of argon or UV, irrespective of the roughness of the titanium surface. However, in vivo experiments are needed to confirm these preliminary data and settle the rationale of a treatment that might be clinically relevant in case of bone-reparative deficiencies. PMID:26848069

  1. Fast neutron spectroscopy with tensioned metastable fluid detectors

    NASA Astrophysics Data System (ADS)

    Grimes, T. F.; Taleyarkhan, R. P.

    2016-09-01

    This paper describes research into development of a rapid-turnaround, neutron-spectroscopy capable (gamma-beta blind), high intrinsic efficiency sensor system utilizing the tensioned metastable fluid detector (TMFD) architecture. The inability of prevailing theoretical models (developed successfully for the classical bubble chamber) to adequately predict detection thresholds for tensioned metastable fluid conditions is described. Techniques are presented to overcome these inherent shortcomings, leading thereafter, to allow successful neutron spectroscopy using TMFDs - via the newly developed Single Atom Spectroscopy (SAS) approach. SAS also allows for a unique means for rapidly determining neutron energy thresholds with TMFDs. This is accomplished by simplifying the problem of determining Cavitation Detection Events (CDEs) arising from neutron interactions with one in which several recoiling atom species contribute to CDEs, to one in which only one dominant recoil atom need be considered. The chosen fluid is Heptane (C7H16) for which only recoiling C atoms contribute to CDEs. Using the SAS approach, the threshold curve for Heptane was derived using isotope neutron source data, and then validated against experiments with mono-energetic (2.45/14 MeV) neutrons from D-D and D-T accelerators. Thereafter the threshold curves were used to produce the response matrix for various geometries. The response matrices were in turn combined with experimental data to recover the continuous spectra of fission (Cf-252) and (α,n) Pu-Be isotopic neutron sources via an unfolding algorithm. A generalized algorithm is also presented for performing neutron spectroscopy using any other TMFD fluid that meets the SAS approach assumptions.

  2. Light-induced metastable states in ferroelectric oxides

    NASA Astrophysics Data System (ADS)

    Liu, G. K.; Vikhnin, V. S.; Kapphan, S. E.

    2007-07-01

    New Raman scattering lines (at 463 cm-1 and at 156 cm-1) induced by strong enough optical pumping in nominally pure KTaO3 crystals are manifested. The model of such effect is proposed. This model is based on the light-induced formation of metastable polar clusters constructed from bi-polaronic excitons - Charge Transfer Vibronic Excitons (CTVEs) with their high degree alignment. The CTVEs are caused by photo-carriers with high local concentration which are trapped to local potential wells related with long-range defect fields. CTVE formation are realized in these potential wells due to significant easing of charge transfer fluctuations induced by photo-carrier screening effects. This model is effective also for explanation of giant dielectric constant inducing by strong illumination which was detected recently in KTaO3 and SrTiO3 by Japanese investigators [M. Takesada, T. Yagi, M. Itoh, S. Koshihara, J. Phys. Soc. Jpn. 72 (2003) 37; T. Hasegawa, S. Mouri, Y. Yamada, K. Tanaka, J. Phys. Soc. Jpn. 72 (2003) 41; I. Katayama, Y. Ichikawa, K. Tanaka, Phys. Rev. B 67 (2003) 100102(R)]. Another aspect of the present study was specific recombination luminescence of CTVEs which was investigated here with respect to the influence of additional IR pumping. The present investigation has led to experimental evidence of new, mainly non-linear CTVE with good defined metastable behavior. Such an essentially anharmonic CTVE with respect to charge transfer and lattice displacements was predicted recently in our work [V.S. Vikhnin, Solid State Commun. 127 (2003) 283]. Here, we present experimental evidence of the existence of a new type of exciton state.

  3. Atomic data generation and collisional radiative modeling of argon II, argon III, and neon I for laboratory and astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Munoz Burgos, Jorge Manuel

    Accurate knowledge of atomic processes plays a key role in modeling the emission in laboratory as well as in astrophysical plasmas. These processes are included in a collisional-radiative model and the results are compared with experimental measurements for Ar and Ne ions from the ASTRAL (Auburn Steady sTate Research fAciLity) experiment. The accuracy of our model depends upon the quality of the atomic data we use. Atomic data for near neutral systems present a challenge due to the low accuracy of perturbative methods for these systems. In order to improve our model we rely on non-perturbative methods such as R - Matrix and RMPS ( R -Matrix with Pseudo-States) to include correlation in the collision cross-sections. In the case of Ar + we compared R -Matrix electron-impact excitation data against the results from a new RMPS calculation. The aim was to assess the effects of continuum-coupling effects on the atomic data and the resulting spectrum. We do our spectral modeling using the ADAS suite of codes. Our collisional-radiative formalism assumes that the excited levels are in quasi- static equilibrium with the ground and metastable populations. In our model we allow for N e and T e variation along the line of sight by fitting our densities and temperature profiles with those measured within the experiment. The best results so far have been obtained by the fitting of the experimental temperature and density profiles with Gaussian and polynomial distribution functions. The line of sight effects were found to have a significant effect on the emission modeling. The relative emission rates were measured in the ASTRAL helicon plasma source. A spectrometer which features a 0.33 m Criss-Cross Scanning monochromator and a CCD camera is used for this study. ASTRAL produces bright intense Ar and Ne plasmas with n e = 10 11 to 10 13 cm -3 and T e = 2 to 10 eV. A series of 7 large coils produce an axial magnetic field up to 1.3 kGauss. A fractional helix antenna is used to

  4. Atomic data generation and collisional radiative modeling of argon II, argon III, and neon I for laboratory and astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Munoz Burgos, Jorge Manuel

    Accurate knowledge of atomic processes plays a key role in modeling the emission in laboratory as well as in astrophysical plasmas. These processes are included in a collisional-radiative model and the results are compared with experimental measurements for Ar and Ne ions from the ASTRAL (Auburn Steady sTate Research fAciLity) experiment. The accuracy of our model depends upon the quality of the atomic data we use. Atomic data for near neutral systems present a challenge due to the low accuracy of perturbative methods for these systems. In order to improve our model we rely on non-perturbative methods such as R - Matrix and RMPS ( R -Matrix with Pseudo-States) to include correlation in the collision cross-sections. In the case of Ar + we compared R -Matrix electron-impact excitation data against the results from a new RMPS calculation. The aim was to assess the effects of continuum-coupling effects on the atomic data and the resulting spectrum. We do our spectral modeling using the ADAS suite of codes. Our collisional-radiative formalism assumes that the excited levels are in quasi- static equilibrium with the ground and metastable populations. In our model we allow for N e and T e variation along the line of sight by fitting our densities and temperature profiles with those measured within the experiment. The best results so far have been obtained by the fitting of the experimental temperature and density profiles with Gaussian and polynomial distribution functions. The line of sight effects were found to have a significant effect on the emission modeling. The relative emission rates were measured in the ASTRAL helicon plasma source. A spectrometer which features a 0.33 m Criss-Cross Scanning monochromator and a CCD camera is used for this study. ASTRAL produces bright intense Ar and Ne plasmas with n e = 10 11 to 10 13 cm -3 and T e = 2 to 10 eV. A series of 7 large coils produce an axial magnetic field up to 1.3 kGauss. A fractional helix antenna is used to

  5. Effects of argon laser curing on dentin shear bond strengths

    NASA Astrophysics Data System (ADS)

    Powell, G. L.; Blankenau, Richard J.

    1996-04-01

    Previous studies have demonstrated the ability of the argon laser to polymerize light activated materials and improve enamel shear bond strengths. This study was conducted to evaluate the effects of the argon laser on dentin shear bond strengths of current dentin bonding systems. Argon laser (HGM Model 8) at 231 mw and 280 mw, 5 second bonding agent, 10 seconds composite and a conventional curing light (Translux EC/Kulzer) at 10 seconds bonding agent, 20 second composite were used to polymerize samples of dentin bonding systems: Scotchbond Multi-Purpose Plus (3M) and Prime Bond (Dentsply/Caulk), both with TPH (Dentsply/Caulk) composite. A flat dentin bonding site (600 grit) was prepared on the buccal surface of extracted human teeth. Twelve samples were made for each set of parameters for both laser and conventional light totaling 60 samples. Samples were stored in distilled water in light- proof containers for 24 hours at 37 degree(s)C. Shear bond strengths (MPa) were determined for each sample on the Instron testing machine. Mean values were calculated for each set of data and ANOVA with Fisher PLSD were used for statistical analysis. The argon laser provided bond strengths that were 21 - 24% greater than those of the conventional curing light system.

  6. Thermophysical properties of multi-shock compressed dense argon.

    PubMed

    Chen, Q F; Zheng, J; Gu, Y J; Chen, Y L; Cai, L C; Shen, Z J

    2014-02-21

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ∼6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.

  7. Optical emission spectroscopy of argon and hydrogen-containing plasmas

    NASA Astrophysics Data System (ADS)

    Siepa, Sarah; Danko, Stephan; Tsankov, Tsanko V.; Mussenbrock, Thomas; Czarnetzki, Uwe

    2015-09-01

    Optical emission spectroscopy (OES) on neutral argon is applied to investigate argon, hydrogen and hydrogen-silane plasmas. The spectra are analyzed using an extensive collisional-radiative model (CRM), from which the electron density and the electron temperature (or mean energy) can be calculated. The CRM also yields insight into the importance of different excited species and kinetic processes. The OES measurements are performed on pure argon plasmas at intermediate pressure. Besides, hydrogen and hydrogen-silane plasmas are investigated using argon as a trace gas. Especially for the gas mixture discharges, CRMs for low and high pressure differ substantially. The commonly used line-ratio technique is found to lose its sensitivity for gas mixture discharges at higher pressure. A solution using absolutely calibrated line intensities is proposed. The effect of radiation trapping and the shape of the electron energy distribution function on the results are discussed in detail, as they have been found to significantly influence the results. This work was supported by the Ruhr University Research School PLUS, funded by Germany's Excellence Initiative [DFG GSC 98/3].

  8. The ATLAS Liquid Argon Calorimeter: Construction, Integration, Commissioning

    SciTech Connect

    Aleksa, Martin

    2006-10-27

    The ATLAS liquid argon (LAr) calorimeter system consists of an electromagnetic barrel calorimeter and two end caps with electromagnetic, hadronic and forward calorimeters. The liquid argon sampling technique, with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the end cap (EMEC). The hadronic end cap calorimeter (HEC) uses a copper-liquid argon sampling technique with flat plate geometry and is subdivided in depth in two wheels per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules employing cylindrical electrodes with thin liquid argon gaps.The construction of the full calorimeter system is complete since mid-2004. Production modules constructed in the home institutes were integrated into wheels at CERN in 2003-2004, and inserted into the three cryostats. They passed their first complete cold test before the lowering into the ATLAS cavern. Results of quality checks (e.g. electrical, mechanical, ...) performed on all the 190304 read-out channels after cool down will be reported. End 2004 the ATLAS barrel electromagnetic (EM) calorimeter was installed in the ATLAS cavern and since summer 2005 the front-end electronics are being connected and tested. Results of this first commissioning phase will be shown to demonstrate the high standards of quality control for our detectors.

  9. Operation of a liquid argon time projection chamber

    SciTech Connect

    Mahler, H.J.; Chen, H.H.; Doe, P.J.

    1983-02-01

    For the first time, the operation of a three-dimensional liquid argon time projection chamber has been demonstrated. This was accomplished in a 50 liter test detector using a readout plane with a woven structure etched on a PC-board.

  10. Radiative Properties of Argon Gas-Puff Implosions on COBRA

    NASA Astrophysics Data System (ADS)

    Ouart, Nicholas; Qi, Niansheng; de Grouchy, Phil; Shelkovenko, Tatiana; Pikuz, Sergei; Giuliani, John; Dasgupta, Arati; Apruzese, John; Clark, Robert; Hammer, David; Kusse, Bruce

    2015-11-01

    Gas-puff Z-pinch experiments were performed on the 1 MA COBRA pulsed power generator at Cornell University. The gas puffs were injected into the load region from a triple nozzle. The load region had an anode-cathode gap of 2.5 cm. The standard diagnostics on COBRA include time-integrated pinhole cameras, a time-integrated axially resolved x-ray spectrometer, filtered photo-conducting detectors, and time-gated XUV cameras. We will focus mainly on results from pinhole images and x-ray spectra from argon gas puffs including some with a SO2 dopant. The x-ray time-integrated pinhole images feature a tight axially uniform plasma column with a diameter of approximately 1 mm for argon gas implosion. The x-ray spectrometer used mica crystals (2d =19.84 Å) and captured the argon K-shell radiation from different crystal reflections. A 1-D multi-zone argon and sulfur non-LTE kinetics code with radiation transport is used to model the K-shell emission for the purpose of inferring the plasma conditions and the interaction of gas from the inner annulus with the central jet. This work is supported by DOE/NNSA.

  11. Tin LPP plasma control in the argon cusp source

    NASA Astrophysics Data System (ADS)

    McGeoch, Malcolm W.

    2016-03-01

    The argon cusp plasma has been introduced [1,2] for 500W class tin LPP exhaust control in view of its high power handling, predicted low tin back-scatter from a beam dump, and avoidance of hydrogen usage. The physics of tin ion control by a plasma is first discussed. Experimentally, cusp stability and exhaust disc geometry have previously been proved at full scale [2], the equivalent of 300W-500W usable EUV. Here we verify operation of the plasma barrier that maintains a high argon density next to the collector, for its protection, and a low density in the long path toward the intermediate focus, for efficiency. A pressure differential of 2Pa has been demonstrated in initial work. Other aspects of tin LPP plasma control by the cusp have now been demonstrated using tin ions from a low Hz 130mJ CO2 laser pulse onto a solid tin surface at the cusp center. Plasma is rejected at the <0.5% level at the collector mirror location using the cusp magnetic field alone. Plasma also is rejected using a low argon density (<1x1014cm-3). We have measured the tin ion flow pattern toward the large area annular beam dump. Scaling of the cusp design to match a specified exhaust power is discussed. In view of this work, argon cusp exhaust control appears to be very promising for 500W class tin LPP sources.

  12. Thermophysical properties of multi-shock compressed dense argon

    SciTech Connect

    Chen, Q. F. Zheng, J.; Gu, Y. J.; Chen, Y. L.; Cai, L. C.; Shen, Z. J.

    2014-02-21

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ∼6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.

  13. Experimental and numerical study of high intensity argon cluster beams

    SciTech Connect

    Korobeishchikov, N. G.; Kalyada, V. V.; Shmakov, A. A.; Zarvin, A. E.; Skovorodko, P. A.

    2014-12-09

    Experimental and numerical investigations of expansion of argon with homogeneous condensation in supersonic conical nozzle and in free jet behind it were carried out. Optimal parameters (stagnation pressure, nozzle-skimmer distance) for the formation of cluster beam with maximum intensity were determined. Two available models for nonequilibrium nucleation were tested. The numerical results are in satisfactory agreement with the measured data.

  14. Cryogenic Tests of the ATLAS Liquid Argon Calorimeter

    SciTech Connect

    Bremer, J.; Fabre, C.; Passardi, G.; Chalifour, M.

    2006-04-27

    The ATLAS liquid argon calorimeter consists of the barrel and two end-cap detectors housed in three independent cryostats filled with a total volume of 78 m3 of liquid argon. During cool-down the temperature differences in the composite structure of the detectors must be kept within strict limits to avoid excessive mechanical stresses and relative displacements. During normal operation the formation of gas bubbles, which are detrimental to the functioning of the detector, must be prevented and temperature gradients of less than 0.7 K across the argon bath are mandatory due to the temperature dependence of the energy measurements. Between April 2004 and May 2005 the barrel (120 t) and one end-cap (219 t) underwent qualification tests at the operating temperature of 87.3 K using a dedicated test facility at ground level. These tests provided a validation of the cooling methods to be adopted in the final underground configuration. In total 6.9 GJ and 15.7 GJ were extracted from the calorimeters and a temperature uniformity of the argon bath of less than 0.4 K was achieved.

  15. Thermophysical properties of multi-shock compressed dense argon.

    PubMed

    Chen, Q F; Zheng, J; Gu, Y J; Chen, Y L; Cai, L C; Shen, Z J

    2014-02-21

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ∼6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models. PMID:24559345

  16. 21 CFR 874.4490 - Argon laser for otology, rhinology, and laryngology.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Argon laser for otology, rhinology, and laryngology. 874.4490 Section 874.4490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... Argon laser for otology, rhinology, and laryngology. (a) Identification. The argon laser device for...

  17. Argon and neon in Galactic nebulae

    NASA Technical Reports Server (NTRS)

    Simpson, Janet P.; Bregman, Jesse D.; Dinerstein, H. L.; Lester, Dan F.; Rank, David M.; Witteborn, F. C.; Wooden, D. H.

    1995-01-01

    KAO observations of the 6.98 micron line of (Ar II), and KAO and ground-based observations of the 8.99 micron line of (Ar III) and the 12.8 micron line of (Ne II) are presented for a number of Galactic H II regions and planetary nebulae.

  18. Calibration of a Noble Gas Mass Spectrometer with an Atmospheric Argon Standard (Invited)

    NASA Astrophysics Data System (ADS)

    Prasad, V.; Grove, M.

    2009-12-01

    Like other mass spectrometers, gas source instruments are very good at precisely measuring isotopic ratios but need to be calibrated with a standard to be accurate. The need for calibration arises due to the complicated ionization process which inefficiently and differentially creates ions from the various isotopes that make up the elemental gas. Calibration of the ionization process requires materials with well understood isotopic compositions as standards. Our project goal was to calibrate a noble gas (Noblesse) mass spectrometer with a purified air sample. Our sample obtained from Ocean Beach in San Francisco was under known temperature, pressure, volume, humidity. We corrected the pressure for humidity and used the ideal gas law to calculate the number of moles of argon gas. We then removed all active gasses using specialized equipment designed for this purpose at the United States Geological Survey. At the same time, we measured the volume ratios of various parts of the gas extraction line system associated with the Noblesse mass spectrometer. Using this data, we calculated how much Ar was transferred to the reservoir from the vacuum-sealed vial that contained the purified gas standard. Using similar measurements, we also calculated how much Ar was introduced into the extraction line from a pipette system and how much of this Ar was ultimately expanded into the Noblesse mass spectrometer. Based upon this information, it was possible to calibrate the argon sensitivity of the mass spectrometer. From a knowledge of the isotopic composition of air, it was also possible to characterize how ionized argon isotopes were fractionated during analysis. By repeatedly analyzing our standard we measured a 40Ar Sensitivity of 2.05 amps/bar and a 40Ar/36Ar ratio of 309.2 on the Faraday detector. In contrast, measurements carried out by ion counting using electron multipliers yield a value (296.8) which is much closer to the actual atmospheric 40Ar/36Ar value of 295.5.

  19. Metastable Changes to the Temperature Coefficients of Thin-Film Photovoltaic Modules

    SciTech Connect

    Deceglie, M. G.; Silverman, T. J.; Marion, B.; Kurtz, S. R.

    2014-07-01

    Transient changes in the performance of thin-film modules with light exposure are a well-known and widely reported phenomenon. These changes are often the result of reversible metastabilities rather than irreversible changes. Here we consider how these metastable changes affect the temperature dependence of photovoltaic performance. We find that in CIGS modules exhibiting a metastable increase in performance with light exposure, the light exposure also induces an increase in the magnitude of the temperature coefficient. It is important to understand such changes when characterizing temperature coefficients and when analyzing the outdoor performance of newly installed modules.

  20. Scattering of H(1s) off metastable helium atom at thermal energies

    SciTech Connect

    Sinha, Prabal K.; Ghosh, A. S.

    2006-06-15

    Quantal calculations for scattering of ground-state antihydrogen by metastable (n=2S) helium atoms have been performed using the nonadiabatic, atomic orbital expansion technique at thermal energies. The zero-energy elastic cross sections of the present systems are much greater than the corresponding value for the ground-state helium target. The low-energy elastic cross section for the singlet metastable helium [He(2 {sup 1}S)] target is higher than the corresponding value when the target is in the metastable triplet state [He(2 {sup 3}S)].

  1. Metastable crystalline AuGe catalysts formed during isothermal germanium nanowire growth.

    PubMed

    Gamalski, A D; Tersoff, J; Sharma, R; Ducati, C; Hofmann, S

    2012-06-22

    We observe the formation of metastable AuGe phases without quenching, during strictly isothermal nucleation and growth of Ge nanowires, using video-rate lattice-resolved environmental transmission electron microscopy. We explain the unexpected formation of these phases through a novel pathway involving changes in composition rather than temperature. The metastable catalyst has important implications for nanowire growth, and more broadly, the isothermal process provides both a new approach to growing and studying metastable phases, and a new perspective on their formation.

  2. Metastable olivine wedge beneath northeast China and its applications

    NASA Astrophysics Data System (ADS)

    Jiang, G.; Zhao, D.; Zhang, G.

    2013-12-01

    When the Pacific slab subducted into the mantle transition zone, there might exist a metastable olivine wedge (MOW) inside the slab due to the phase transition. Lots of researchers have adopted such various methods to detect the characteristics of this MOW as the forward modeling of travel times, shear wave amplitude patterns, teleseismic P wave coda, receiver function imaging, thermodynamic simulation and so on. Almost all results could be more or less affected by the source, the receiver and/or the velocity model passed through by the seismic rays. In this study, we have used 21 deep earthquakes, greater than 400 km and locating beneath northeast China, to study the velocity within the MOW. For more precisions, we have done further modifications in two ways based on our previous studies. (1) Double-difference location method is used to relocate all events with an error of 1-2 km with the data recorded by stations both at northeast China and at Japan. All relocated events locate in a zone about 30 km away from the upper boundary of Pacific slab. (2) Double residual travel times, generated by an event-pair at a common station at only Japan, are used to constrain the velocity anomaly rather than the residuals themselves. As a result, we have found that an ultra-lower velocity zone (ULVZ), averagely -7% relative to the iasp91 model, exists within the subducted Pacific slab around the deep earthquakes, which might be represented as the metastable olivine wedge. Because of the lower-velocity corresponding to the lower-density, the MOW would provide upward buoyancy forces which might prevent the slab from free subduction into the mantle transition zone. This feed-back mechanism of MOW to the slab is called ';parachute-effect', which is characterized by other researchers. In addition, the existence of the ULVZ or the MOW in the slab may supply a possible mechanism for triggering deep earthquakes, called ';phase transformation faulting', which was already proposed few

  3. The investigation of argon diffusion in phlogopite under high pressure conditions

    NASA Astrophysics Data System (ADS)

    Yudin, Denis; Korzhova, Sophia; Travin, Alexey; Zhimulev, Egor; Murzintsev, Nikolay; Moroz, Tatiana

    2014-05-01

    The present study deals with assessment of pressure effect on the mechanism of bleeding an argon from mica at high temperatures and pressures. The influence of pressure on the diffusion of argon in crustal conditions is not significant (Harrison et al., 2009), while in the mantle conditions, should be significant. The authors suggest that the findings will help to better understand the behavior of K/Ar isotopic system in mica under the lower crust and mantle, including xenoliths transport by kimberlite melt. The experiment was made by using high-pressure spacer "split-sphere" (BARS - 300). Phlogopite from veins cutting metamorphic rocks from the Sludyanka number 2 quarry was used as a testing material. Inclusions of other minerals were not found in the original phlogopite crystal. Chemical composition of phlogopite is homogeneous. 8 experiments was made at a constant pressure of 30 kbar and different temperature and duration: 20 degrees Celsius, 20 minutes; 700 degrees Celsius, 20 minutes; 800 degrees Celsius, 10 minutes; 800 degrees Celsius, 20 minutes; 800 degrees Celsius, 30 minutes; 900 degrees Celsius, 20 minutes; 1000 degrees Celsius, 20 minutes; 1100 degrees Celsius, 20 minutes. According the results of SEM-observation, there is no signs of recrystallization and solid state transformations and melting of phlogopite. It's chemical composition is identical to that of the original phlogopite. Diffractograms of phlogopites after the experiments are similar to the diffractograms of the original phlogopites. Research results of IR spectroscopy, together with the results of SEM and microprobe analysis suggest that phlogopite dehydroxylation in the temperature range T = 700-900 degrees Celsius was negligible. Numerical simulation of the behavior of radiogenic argon in phlogopite at high temperatures and pressure was performed using «Diffarg» software finite differences algorithm, based on the mechanism of bulk thermally activated diffusion (Wheeler, 1996). The

  4. Observation of well-ordered metastable vortex lattice phases in superconducting MgB2 using small-angle neutron scattering.

    PubMed

    Das, P; Rastovski, C; O'Brien, T R; Schlesinger, K J; Dewhurst, C D; DeBeer-Schmitt, L; Zhigadlo, N D; Karpinski, J; Eskildsen, M R

    2012-04-20

    The vortex lattice (VL) symmetry and orientation in clean type-II superconductors depends sensitively on the host material anisotropy, vortex density and temperature, frequently leading to rich phase diagrams. Typically, a well-ordered VL is taken to imply a ground-state configuration for the vortex-vortex interaction. Using neutron scattering we studied the VL in MgB(2) for a number of field-temperature histories, discovering an unprecedented degree of metastability in connection with a known, second-order rotation transition. This allows, for the first time, structural studies of a well-ordered, nonequilibrium VL. While the mechanism responsible for the longevity of the metastable states is not resolved, we speculate it is due to a jamming of VL domains, preventing a rotation to the ground-state orientation.

  5. Observation of Well-ordered Metastable Vortex Lattice Phases in Superconducting MgB2 Using Small-Angle Neutron Scattering

    SciTech Connect

    Das, Pinaki; Rastovski, Catherine; O'Brien, Timothy; Schlesinger, Kimberly; Dewhurst, Charles; Debeer-Schmitt, Lisa M; Zhigadlo, Nikolai; Karpinski, Janusz; Eskildsen, Morten

    2012-01-01

    The vortex lattice (VL) symmetry and orientation in clean type-II superconductors depends sensitively on the host material anisotropy, vortex density and temperature, frequently leading to rich phase diagrams. Typically, a well-ordered VL is taken to imply a ground-state configuration for the vortex-vortex interaction. Using neutron scattering we studied the VL in MgB2 for a number of field-temperature histories, discovering an unprecedented degree of metastability in connection with a known, second-order rotation transition. This allows, for the first time, structural studies of a well-ordered, nonequilibrium VL. While the mechanism responsible for the longevity of the metastable states is not resolved, we speculate it is due to a jamming of VL domains, preventing a rotation to the ground-state orientation.

  6. Energy spectrum of argon ions emitted from Filippov type Sahand plasma focus.

    PubMed

    Mohammadnejad, M; Pestehe, S J; Mohammadi, M A

    2013-07-01

    The energy and flux of the argon ions produced in Sahand plasma focus have been measured by employing a well-designed Faraday cup. The secondary electron emission effects on the ion signals are simulated and the dimensions of Faraday cup are optimized to minimize these effects. The measured ion energy spectrum is corrected for the ion energy loss and charge exchange in the background gas. The effects of the capacitor bank voltage and working gas pressure on the ion energy spectrum are also investigated. It has been shown that the emitted ion number per energy increases as the capacitor bank voltage increases. Decreasing the working gas pressure leads to the increase in the number of emitted ion per energy. PMID:23902061

  7. Energy spectrum of argon ions emitted from Filippov type Sahand plasma focus

    SciTech Connect

    Mohammadnejad, M.; Pestehe, S. J.; Mohammadi, M. A.

    2013-07-15

    The energy and flux of the argon ions produced in Sahand plasma focus have been measured by employing a well-designed Faraday cup. The secondary electron emission effects on the ion signals are simulated and the dimensions of Faraday cup are optimized to minimize these effects. The measured ion energy spectrum is corrected for the ion energy loss and charge exchange in the background gas. The effects of the capacitor bank voltage and working gas pressure on the ion energy spectrum are also investigated. It has been shown that the emitted ion number per energy increases as the capacitor bank voltage increases. Decreasing the working gas pressure leads to the increase in the number of emitted ion per energy.

  8. Energy spectrum of argon ions emitted from Filippov type Sahand plasma focus

    NASA Astrophysics Data System (ADS)

    Mohammadnejad, M.; Pestehe, S. J.; Mohammadi, M. A.

    2013-07-01

    The energy and flux of the argon ions produced in Sahand plasma focus have been measured by employing a well-designed Faraday cup. The secondary electron emission effects on the ion signals are simulated and the dimensions of Faraday cup are optimized to minimize these effects. The measured ion energy spectrum is corrected for the ion energy loss and charge exchange in the background gas. The effects of the capacitor bank voltage and working gas pressure on the ion energy spectrum are also investigated. It has been shown that the emitted ion number per energy increases as the capacitor bank voltage increases. Decreasing the working gas pressure leads to the increase in the number of emitted ion per energy.

  9. Thermal Conductivity of Metastable States of Simple Alcohols

    NASA Astrophysics Data System (ADS)

    Krivchikov, A. I.; Korolyuk, O. A.; Sharapova, I. V.; Romantsova, O. O.; Bermejo, F. J.; Cabrillo, C.; Bustinduy, I.; González, M. A.

    The thermal conductivity κ(T) of glassy and supercooled liquid methanol, ethanol and of 1-propanol has been measured under equilibrium vapor pressure in temperature interval from 2 K to 160 K by the steady-state method. The metastable orientationally disordered crystal of ethyl alcohol is found to exhibit a temperature dependence of κ(T) that is remarkably close to that of the fully amorphous solid, especially at low temperatures. In the case of propyl alcohol, our results emphasize the role played by internal molecular degrees of freedom as sources of strong resonant phonon scattering. For all samples here explored, the glass-like behavior of κ(T) is described at the phenomenological level using the model of soft potentials. The thermal transport is then understood in terms of a competition between phonon-assisted and diffusive transport effects. The thermal conductivity κ is thus a sum of two contributions: κ = κI + κII, where κI is the acoustic phonon component dependent on the translational and orientational ordering of molecules, κII — is the phonon diffusion component corresponding to a non — acoustic phonon heat transfer in accordance with the Cahill — Pohl model.

  10. Interactions between bosonic and fermionic metastable He atoms

    NASA Astrophysics Data System (ADS)

    Babb, J. F.

    2005-05-01

    Mixtures of spin-polarized metastable ^3He atoms and ^4He atoms are unique systems of current interest for studies of ultra-cold gases. The s-wave scattering length for collisions of ^4He atoms was measured to be ^4-4a=11.3 nm (+2.5,-1 nm) [1] and recent calculations find 8<^4-4a<12 nm [2]. The scattering length ^3-4a for fermion-boson collisions is presently indeterminate in sign and magnitude, but it has been predicted to fall in the ranges ^3-4a<-25 nm or ^3-4a>46 nm [2,3]. In this talk, with regard to improving the theoretical value of ^3-4a, the data characterizing ^3He(2,^3S)--^4He(2,^3S) interactions primarily in the molecular ^5σg^+ state are reevaluated and additional calculations are presented. Supported in part by the NSF. [1] S. Seidelin, et al., Phys. Rev. Lett. 93 (2004), 090409. [2] A. S. Dickinson, F. X. Gad'ea, and T. Leininger, J. Phys. B 37 (2004), 587. [3] R. J. W. Stas, J. M. McNamara, W. Hogervorst, and W. Vassen, Phys. Rev. Lett. 93 (2004), 053001.

  11. Metastability in plyometric training on unstable surfaces: a pilot study

    PubMed Central

    2014-01-01

    Background In the past, plyometric training (PT) has been predominantly performed on stable surfaces. The purpose of this pilot study was to examine effects of a 7-week lower body PT on stable vs. unstable surfaces. This type of exercise condition may be denoted as metastable equilibrium. Methods Thirty-three physically active male sport science students (age: 24.1 ± 3.8 years) were randomly assigned to a PT group (n = 13) exercising on stable (STAB) and a PT group (n = 20) on unstable surfaces (INST). Both groups trained countermovement jumps, drop jumps, and practiced a hurdle jump course. In addition, high bar squats were performed. Physical fitness tests on stable surfaces (hexagonal obstacle test, countermovement jump, hurdle drop jump, left-right hop, dynamic and static balance tests, and leg extension strength) were used to examine the training effects. Results Significant main effects of time (ANOVA) were found for the countermovement jump, hurdle drop jump, hexagonal test, dynamic balance, and leg extension strength. A significant interaction of time and training mode was detected for the countermovement jump in favor of the INST group. No significant improvements were evident for either group in the left-right hop and in the static balance test. Conclusions These results show that lower body PT on unstable surfaces is a safe and efficient way to improve physical performance on stable surfaces. PMID:25089202

  12. James Franck and the Experimental Discovery of Metastable States

    NASA Astrophysics Data System (ADS)

    Gearhart, Clayton

    2016-03-01

    In 1913 and 1914, James Franck and Gustav Hertz published their experiments on inelastic collisions of slow electrons with helium and mercury vapor atoms. Famously, they thought they were measuring ionization energies, and not, as we understand it today, excitation energies. Franck and Hertz shortly found themselves in the army, and neither resumed experimental work until after the Great War. Nevertheless, these questions were cleared up over the course of the war, primarily through the work of experimentalists in North America, who remeasured the ionization energy of mercury and showed that Franck and Hertz had not detected ionization. After the war, Franck returned to experiments on and theoretical analyses of the collisions of slow electrons with helium atoms, in competition with others in England and America. This time, Franck and his associates were able to measure the ionization energy, and, in the process, to throw new light on the non-combining singlet and ``doublet'' (later found to be triplet) spectral series in helium. They also proposed for the first time the existence of metastable states, first in helium, and later in mercury and other elements, at a time when selection rules and theories of transition probabilities were in their infancy.

  13. Metastable sound speed in gas-liquid mixtures

    NASA Technical Reports Server (NTRS)

    Bursik, J. W.; Hall, R. M.

    1979-01-01

    A new method of calculating speed of sound for two-phase flow is presented. The new equation assumes no phase change during the propagation of an acoustic disturbance and assumes that only the total entropy of the mixture remains constant during the process. The new equation predicts single-phase values for the speed of sound in the limit of all gas or all liquid and agrees with available two-phase, air-water sound speed data. Other expressions used in the two-phase flow literature for calculating two-phase, metastable sound speed are reviewed and discussed. Comparisons are made between the new expression and several of the previous expressions -- most notably a triply isentropic equation as used, a triply isentropic equation as used, among others, by Karplus and by Wallis. Appropriate differences are pointed out and a thermodynamic criterion is derived which must be satisfied in order for the triply isentropic expression to be thermodynamically consistent. This criterion is not satisfied for the cases examined, which included two-phase nitrogen, air-water, two-phase parahydrogen, and steam-water. Consequently, the new equation derived is found to be superior to the other equations reviewed.

  14. The metastable dynamo model of stellar rotational evolution

    SciTech Connect

    Brown, Timothy M.

    2014-07-10

    This paper introduces a new empirical model for the rotational evolution of Sun-like stars—those with surface convection zones and non-convective interior regions. Previous models do not match the morphology of observed (rotation period)-color diagrams, notably the existence of a relatively long-lived 'C-sequence' of fast rotators first identified by Barnes. This failure motivates the Metastable Dynamo Model (MDM) described here. The MDM posits that stars are born with their magnetic dynamos operating in a mode that couples very weakly to the stellar wind, so their (initially very short) rotation periods at first change little with time. At some point, this mode spontaneously and randomly changes to a strongly coupled mode, the transition occurring with a mass-dependent lifetime that is of the order of 100 Myr. I show that with this assumption, one can obtain good fits to observations of young clusters, particularly for ages of 150-200 Myr. Previous models and the MDM both give qualitative agreement with the morphology of the slower-rotating 'I-sequence' stars, but none of them have been shown to accurately reproduce the stellar-mass-dependent evolution of the I-sequence stars, especially for clusters older than a few hundred million years. I discuss observational experiments that can test aspects of the MDM, and speculate that the physics underlying the MDM may be related to other situations described in the literature, in which stellar dynamos may have a multi-modal character.

  15. Gain and lasing of optically pumped metastable rare gas atoms

    NASA Astrophysics Data System (ADS)

    Han, Jiande; Heaven, Michael C.

    2012-11-01

    Optically pumped atomic gas lasers are currently being developed in several laboratories. The objective is to construct high-powered lasers that also exhibit excellent beam quality. This is achieved by using the gas laser medium to phase combine the outputs from multiple solid state lasers. To date, the focus has been on optically pumped alkali vapor lasers. Considerable progress has been made, but there are technical challenges associated with the reactivity of the metal atoms. Rare gas atoms (Rg) excited to the np5(n+1)s 3P2 configuration are metastable and have spectral properties that are closely similar to those of the alkali metals. In principle, optically pumped lasers could be constructed using excitation of the np5(n+1)p <-- np5(n+1)s transitions. We have demonstrated this potential by observing gain and lasing for optically pumped Ne*, Ar*, Kr* and Xe*. Three-level lasing schemes were used, with He or Ar as the collisional energy transfer agent that established the population inversion. These laser systems have the advantage using inert reagents that are gases at room temperature.

  16. Gain and Lasing of Optically Pumped Metastable Rare Gas Atoms

    NASA Astrophysics Data System (ADS)

    Han, Jiande; Heaven, Michael C.

    2012-06-01

    In recent years there have been concerted efforts to develop high energy diode-pumped alkali vapor lasers (DPAL). These hybrid gas phase / solid state laser systems offer possibilities for constructing high-powered lasers that have high beam quality. DPAL's utilize excitation of the alkali metal 2P3/2 ← 2S1/2 transition, followed by collisional relaxation and lasing on the 2P1/2 → 2S1/2 line. Considerable progress has been made, but there are technical challenges associated with the reactivity of the metal atoms. Rare gas atoms (Rg) excited to the n{p}5(n+1){s} 3P2 configuration are metastable and have spectral properties that are closely similar to those of the alkali metals. In principle, optically pumped lasers could be constructed using excitation of the n{p}5(n+1){p} ← n{p}5(n+1){s} transitions. We have recently demonstrated gain and lasing for optically pumped Ar*, Kr* and Xe*. Three-level lasing schemes were used, with He as the collisional energy transfer agent that established the population inversion. These laser systems have the advantage using inert reagents that are gases at room temperature.

  17. Magneto-optical trap for metastable helium at 389 nm

    SciTech Connect

    Koelemeij, J.C.J.; Stas, R.J.W.; Hogervorst, W.; Vassen, W.

    2003-05-01

    We have constructed a magneto-optical trap (MOT) for metastable triplet helium atoms utilizing the 2 {sup 3}S{sub 1}{yields}3 {sup 3}P{sub 2} line at 389 nm as the trapping and cooling transition. The far-red-detuned MOT (detuning {delta}=-41 MHz) typically contains few times 10{sup 7} atoms at a relatively high ({approx}10{sup 9} cm{sup -3}) density, which is a consequence of the large momentum transfer per photon at 389 nm and a small two-body loss rate coefficient (2x10{sup -10} cm{sup 3}/s<{beta}<1.0x10{sup -9} cm{sup 3}/s). The two-body loss rate is more than five times smaller than in a MOT on the commonly used 2 {sup 3}S{sub 1}{yields}2 {sup 3}P{sub 2} line at 1083 nm. Furthermore, laser cooling at 389 nm results in temperatures somewhat lower than those achieved using 1083 nm. The 389-nm MOT exhibits small losses due to two-photon ionization, which have been investigated as well.

  18. Formation of metastable excited states during sputtering of transition metals

    SciTech Connect

    Wucher, A.; Sroubek, Z.

    1997-01-01

    We propose a simple model which treats the formation of metastable excited neutral atoms during sputtering of a transition metal as a two step process. First, the energy deposited into the electronic system of the solid by electronic energy losses of all moving particles in the collision cascade is considered to lead to a locally altered equilibrium electronic state of the solid. It is found that this step is dominated by collective interaction with the conduction band electrons rather than by electron promotion in binary atom-atom collisions. Second, sputtered excited atoms are assumed to be formed by resonant neutralization of excited ions (reflecting the altered equilibrium state) while crossing the surface. It is shown that this model explains the total as well as the velocity dependent excitation probability observed in recent experiments on sputtered neutral silver atoms, which cannot be understood in terms of existing theories describing the formation of excited states in sputtering. {copyright} {ital 1996} {ital The American Physical Society}

  19. One Sequence, Two Folds: A Metastable Structure of CD2

    NASA Astrophysics Data System (ADS)

    Murray, Alison J.; Lewis, Sally J.; Barclay, A. Neil; Brady, R. Leo

    1995-08-01

    When expressed as part of a glutathione S-transferase fusion protein the NH_2-terminal domain of the lymphocyte cell adhesion molecule CD2 is shown to adopt two different folds. The immunoglobulin superfamily structure of the major (85%) monomeric component has previously been determined by both x-ray crystallography and NMR spectroscopy. We now describe the structure of a second, dimeric, form present in about 15% of recombinant CD2 molecules. After denaturation and refolding in the absence of the fusion partner, dimeric CD2 is converted to monomer, illustrating that the dimeric form represents a metastable folded state. The crystal structure of this dimeric form, refined to 2.0-Å resolution, reveals two domains with overall similarity to the IgSF fold found in the monomer. However, in the dimer each domain is formed by the intercalation of two polypeptide chains. Hence each domain represents a distinct folding unit that can assemble in two different ways. In the dimer the two domains fold around a hydrophilic interface believed to mimic the cell adhesion interaction at the cell surface, and the formation of dimer can be regulated by mutating single residues at this interface. This unusual misfolded form of the protein, which appears to result from inter- rather than intramolecular interactions being favored by an intermediate structure formed during the folding process, illustrates that evolution of protein oligomers is possible from the sequence for a single protein domain.

  20. Meta-stability of Crystalline Thin-Film Photovoltaic Modules

    NASA Astrophysics Data System (ADS)

    Petersen, Chad

    Given the growing market in solar energy, specifically by the thin-film technologies, it is imperative that adequate and accurate standards be developed for these newer photovoltaic devices. Cadmium Telluride, CdTe, one of the major players in the thin-film PV industry is currently rated and certified using standards that have been developed under the context of older technologies. The behavior of CdTe has been shown to be unique enough to suggesting that standards be revised. In this research, methods built on previous industry and independent studies are used to identify these unique behaviors. As well new methods are developed to further characterize CdTe modules in the context of current standards. Clear transient and meta-stable behavior is identified across modules from four different commercial manufacturers. Conclusions drawn from this study show illumination and temperature hysteresis effects on module ratings. Furthermore, suggestions for further study are given that could be used to define parameters for any reexamination of module standards.

  1. Season of conception in rural Gambia affects DNA methylation at putative human metastable epialleles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Throughout most of the mammalian genome, genetically regulated developmental programming establishes diverse yet predictable epigenetic states across differentiated cells and tissues. At metastable epialleles (MEs), conversely, epigenotype is established stochastically in the early embryo then maint...

  2. Investigation of slective laser melting of mecanically alloyed metastable Al5Fe2 powder

    NASA Astrophysics Data System (ADS)

    Montiel, Hugo

    Selective Laser Melting (SLM), an Additive Manufacturing (AM) technology, enables the production of complex structured metal products. Aluminum alloys are used in SLM as high-strength lightweight materials for weight reduction in structural components. Previous investigations report high laser powers (300 W) and slow scanning speeds (500 mm/s) to process aluminum alloys under SLM. This research investigates the SLM processing of Al-Fe alloy by utilizing metastable Al5Fe2 powder system produced by mechanical alloying. Metastable systems are thermodynamically activated with internal energy that can generate an energy shortcut when processing under SLM. The optimum laser power, scan speeds and scan distances were investigated by test series experiments. Results indicate that metastable Al5Fe2 alloy can be processed and stabilized under a 200 W laser scanning and a relative high scanning speed of 1000 mm/s. Thus, the internal energy of metastable powder contributes in reducing laser energy for SLM process for Al alloys.

  3. Illumination-induced metastable polaron-supporting state in poly( p -phenylene vinylene) films

    NASA Astrophysics Data System (ADS)

    Drori, T.; Gershman, E.; Sheng, C. X.; Eichen, Y.; Vardeny, Z. V.; Ehrenfreund, E.

    2007-07-01

    We found an illumination-induced metastable polaron-supporting state in films of a soluble derivative of poly- p -phenylene vinylene (MEH-PPV). Pristine, nonilluminated MEH-PPV polymer films do not show long-lived photogenerated polarons. Prolonged UV illumination, however, is found to induce a reversible, metastable state characterized by its ability to support abundant long-lived photogenerated polarons. In the dark, the illumination-induced metastable state reverts back to the state of the original MEH-PPV within about 30min at room temperature. Relying on the well-established ubiquitous reversible photoinduced cyclization of diarylethenes into dihyrophenanthrene derivatives, we propose a reversible mechanism in which UV illumination transforms cis native defects in the polymer chains into metastable deep traps that substantially increase the photogenerated polaron lifetime in the film.

  4. An experimental verification of a criterion for forming metastable phases in containerless solidification

    SciTech Connect

    Kuribayashi, K.; Inatomi, Y.; Kumar, M. S. Vijaya

    2015-04-21

    On the thermodynamic condition for forming a metastable phase from undercooled melt in a containerless state, we had proposed a criterion that crystals will preferentially form if they have a smaller entropy of fusion than the entropy of fusion of equilibrium crystals (Kuribayashi et al., Mater. Sci. Eng., A 449–451, 675 (2007)). This criterion is proposed for being applied to materials that exhibit a faceted interface, such as semiconductors and oxides. However, no experimental data that support this criterion have been obtained. From this point, we used an aerodynamic levitator as a tool for forming metastable phases from undercooled melt and verified the above-mentioned criterion using LnFeO{sub 3} (Ln: lanthanide and Y) as the model material. In addition, the condition for double recalescence, which corresponds to forming metastable phases and stable phases, was discussed in terms of competitive 2D isomorphic nucleation of the metastable phase and 3D polymorphic nucleation of the stable phase.

  5. Maternal nutrition at conception modulates DNA methylation of human metastable epialleles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In experimental animals, maternal diet during the periconceptional period influences the establishment of DNA methylation at metastable epialleles in the offspring, with permanent phenotypic consequences. Pronounced naturally occurring seasonal differences in the diet of rural Gambian women allowed ...

  6. ATOMIC AND MOLECULAR PHYSICS: Coupled-Channels Optical Calculation for Electron Scattering from Metastable Helium

    NASA Astrophysics Data System (ADS)

    Wang, Yuan-Cheng; Zhou, Ya-Jun; Cheng, Yong-Jun; Ma, Jia

    2009-08-01

    Coupled-channels optical calculations for total and resonance excitation integral cross sections for electron scattering on the metastable level 21,3 S of helium are presented. The results are in agreement with other theoretical and experimental data.

  7. Equilibrium properties of transition-metal ion-argon clusters via simulated annealing

    NASA Technical Reports Server (NTRS)

    Asher, Robert L.; Micha, David A.; Brucat, Philip J.

    1992-01-01

    The geometrical structures of M(+) (Ar)n ions, with n = 1-14, have been studied by the minimization of a many-body potential surface with a simulated annealing procedure. The minimization method is justified for finite systems through the use of an information theory approach. It is carried out for eight potential-energy surfaces constructed with two- and three-body terms parametrized from experimental data and ab initio results. The potentials should be representative of clusters of argon atoms with first-row transition-metal monocations of varying size. The calculated geometries for M(+) = Co(+) and V(+) possess radial shells with small (ca. 4-8) first-shell coordination number. The inclusion of an ion-induced-dipole-ion-induced-dipole interaction between argon atoms raises the energy and generally lowers the symmetry of the cluster by promoting incomplete shell closure. Rotational constants as well as electric dipole and quadrupole moments are quoted for the Co(+) (Ar)n and V(+) (Ar)n predicted structures.

  8. A Mach 6 external nozzle experiment with Argon-Freon exhaust simulation

    NASA Technical Reports Server (NTRS)

    Pittman, James L.

    1989-01-01

    A scramjet exhaust simulation technique for hypersonic wind tunnel testing has been developed. Mixtures of Argon and Freon correctly match the inviscid simulation parameters of Mach number, static-pressure ratio, and the ratio of specific heats at the combustor exit location; this simulation is accomplished at significantly reduced temperatures and without combustion. An investigation of nozzle parametrics in a Mach 6 freestream showed that the external nozzle ramp angle, the cowl trailing-edge angle, an external nozzle flow fence and the nozzle static-pressure ratio significantly affected the external nozzle thrust and pitching moment as measured by the integration of surface-pressure data. A comparison of Argon-Freon and air exhaust simulation showed that the external nozzle thrust and pitching moment were in error by roughly a factor of 2 using air due to the incorrect match of the ratio of specific heats. An assessment of two-dimensional Euler and Navier-Stokes codes for predicting external nozzle aerodynamic characteristics was made by comparing computed and experimental results.

  9. IR spectroscopy of α- and β-protonated pyrrole via argon complex photodissociation.

    PubMed

    Mosley, J D; Ricks, A M; Schleyer, P v R; Wu, J I; Duncan, M A

    2012-10-01

    Protonated pyrrole cations are produced in a pulsed discharge/supersonic expansion source, mass-selected in a time-of-flight spectrometer, and studied with infrared photodissociation spectroscopy. Vibrational spectra in both the fingerprint and C-H/N-H stretching regions are obtained using the method of tagging with argon. Sharp vibrational structure is compared to IR spectra predicted by theory for the possible α-, β-, and N-protonated structures. The spectral differences among these isomers are much larger than the frequency shifts due to argon attachment at alternative sites. Though α-protonation predominates thermodynamically, the kinetically favored β-protonated species is also observed for the first time (in 3-4 times lower abundance under the conditions employed here). Theoretical investigations attribute the greater stability of α-protonated pyrrole to topological charge stabilization, rather than merely to the greater number of resonance contributors. The far-IR pattern of protonated pyrrole does not match the interstellar UIR bands.

  10. Metastability of anatase: size dependent and irreversible anatase-rutile phase transition in atomic-level precise titania

    PubMed Central

    Satoh, Norifusa; Nakashima, Toshio; Yamamoto, Kimihisa

    2013-01-01

    Since crystal phase dominantly affects the properties of nanocrystals, phase control is important for the applications. To demonstrate the size dependence in anatase-rutile phase transition of titania, we used quantum-size titania prepared from the restricted number of titanium ions within dendrimer templates for size precision purposes and optical wave guide spectroscopy for the detection. Contrary to some theoretical calculations, the observed irreversibility in the transition indicates the metastablity of anatase; thermodynamics cannot explain the formation of metastable states. Therefore, we take into account the kinetic control polymerization of TiO6 octahedral units to explain how the crystal phase of the crystal-nucleus-size titania is dependent on which coordination sites, cis- or trans-, react in the TiO6 octahedra, suggesting possibilities for the synthetic phase control of nanocrystals. In short, the dendrimer templates give access to crystal nucleation chemistry. The paper will also contribute to the creation of artificial metastable nanostructures with atomic-level precision. PMID:23743571

  11. A transcriptional signature of Alzheimer’s disease is associated with a metastable subproteome at risk for aggregation

    PubMed Central

    Ciryam, Prajwal; Kundra, Rishika; Freer, Rosie; Morimoto, Richard I.; Dobson, Christopher M.; Vendruscolo, Michele

    2016-01-01

    It is well-established that widespread transcriptional changes accompany the onset and progression of Alzheimer’s disease. Because of the multifactorial nature of this neurodegenerative disorder and its complex relationship with aging, however, it remains unclear whether such changes are the result of nonspecific dysregulation and multisystem failure or instead are part of a coordinated response to cellular dysfunction. To address this problem in a systematic manner, we performed a meta-analysis of about 1,600 microarrays from human central nervous system tissues to identify transcriptional changes upon aging and as a result of Alzheimer’s disease. Our strategy to discover a transcriptional signature of Alzheimer’s disease revealed a set of down-regulated genes that encode proteins metastable to aggregation. Using this approach, we identified a small number of biochemical pathways, notably oxidative phosphorylation, enriched in proteins vulnerable to aggregation in control brains and encoded by genes down-regulated in Alzheimer’s disease. These results suggest that the down-regulation of a metastable subproteome may help mitigate aberrant protein aggregation when protein homeostasis becomes compromised in Alzheimer’s disease. PMID:27071083

  12. The Dependence of Isothermal ω Precipitation on the Quenching Rate in a Metastable β-Ti Alloy

    PubMed Central

    Chen, Jing; Xiao, Wenlong; Dargusch, Matthew Simon; Ma, Chaoli

    2015-01-01

    The precipitation behavior of the α strengthening phase in metastable β-Ti alloys is highly dependent on heat treatment parameters such as quenching rate, heating rate and ageing temperature. In this paper we have investigated the influence of quenching rate on the formation of isothermal ω precipitates that have been regarded as potent nucleant sites for α precipitation. The results show that the β-solutionized alloy contains a β matrix with a layer structured morphology. Regular atomic movement of the (002)β plane along the <002> direction was observed in the alloy. The increase in quenching rate refines the thickness of layers, subsequently influencing the nucleation and growth of isothermal ω precipitates after ageing treatment. The high quenching rate promotes the occurrence of ω precipitation, broadens the stage of ω precipitation and increases the number density of ω precipitates. Since the isothermal ω phase provides a heterogeneous nucleation site for α precipitates, it is inferred that the quenching rate may indirectly influence the mechanical properties of metastable β-Ti alloy. PMID:26449879

  13. Current to Pressure Transducers for the Argon & Nitrogen Dewars

    SciTech Connect

    Serges, T.J.; /Fermilab

    1988-08-25

    A current to pressure (I/P) transducer will be used in the D-Zero piping system. The transducer is necessary to precisely control the control valve positioners located at the argon and nitrogen dewars. A 4-20 rnA signal will come from the PLC function of the TI565. This electric signal must be converted by the transducer to a pneumatic signal of 3-15 psi which will position the actuator. By doing this, the valve can be opened or closed to any adjusted amount from the control room or a remote I/P controller. A total of 9 transducers will be used at the dewars. The nitrogen dewar will have 3 that are located outside and will have to be weatherproof. The argon dewar will have 6, located inside, that will have to be explosion proof or intrinsically safe.

  14. Trimming a Metallic Biliary Stent Using an Argon Plasma Coagulator

    SciTech Connect

    Rerknimitr, Rungsun Naprasert, Pisit; Kongkam, Pradermchai; Kullavanijaya, Pinit

    2007-06-15

    Background. Distal migration is one of the common complications after insertion of a covered metallic stent. Stent repositioning or removal is not always possible in every patient. Therefore, trimming using an argon plasma coagulator (APC) may be a good alternative method to solve this problem. Methods. Metallic stent trimming by APC was performed in 2 patients with biliary Wallstent migration and in another patient with esophageal Ultraflex stent migration. The power setting was 60-100 watts with an argon flow of 0.8 l/min. Observations. The procedure was successfully performed and all distal parts of the stents were removed. No significant collateral damage to the nearby mucosa was observed. Conclusions. In a patient with a distally migrated metallic stent, trimming of the stent is possible by means of an APC. This new method may be applicable to other sites of metallic stent migration.

  15. Treatment of facial vascular lesions with an argon laser

    NASA Astrophysics Data System (ADS)

    Szymanczyk, Jacek; Golebiowska, Aleksandra; Michalska, I.

    1996-03-01

    Two-hundred-ninety-six patients with various vascular lesions of the face have been treated with argon laser LAK-1 in the Department of Dermatology Warsaw Medical Academy since April 1992. The diagnosis of the treated lesions was port-wine stains, multiple telangiectasiae and small, most often induced by trauma hemangioma cavernosum of the lip. Best results were achieved in the patients with small hemangiomas cavernosum of the lip and multiple telangiectasiae on the face. Cure rate in this group was 100%. In 112 port-wine stain cases fading of 50 - 75% comparing with the adjacent skin was achieved. With stress, the argon laser therapy is a method of choice for the treatment of hemangioma cavernosum, port-wine stains and multiple teleagiectasiae of the face.

  16. The Liquid Argon Calorimeter system for the SLC Large Detector

    SciTech Connect

    Haller, G.M.; Fox, J.D.; Smith, S.R.

    1988-09-01

    In this paper the physical packaging and the logical organization of the Liquid Argon Calorimeter (LAC) electronics system for the Stanford Linear Collider Large Detector (SLD) at SLAC are described. This system processes signals from approximately 44,000 calorimeter towers and is unusual in that most electronic functions are packaged within the detector itself as opposed to an external electronics support rack. The signal path from the towers in the liquid argon through the vacuum to the outside of the detector is explained. The organization of the control logic, analog electronics, power regulation, analog-to-digital conversion circuits, and fiber optic drivers mounted directly on the detector are described. Redundancy considerations for the electronics and cooling issues are discussed. 12 refs., 5 figs.

  17. Breakdown voltage of metal-oxide resistors in liquid argon

    SciTech Connect

    Bagby, L. F.; Gollapinni, S.; James, C. C.; Jones, B. J.P.; Jostlein, H.; Lockwitz, S.; Naples, D.; Raaf, J. L.; Rameika, R.; Schukraft, A.; Strauss, T.; Weber, M. S.; Wolbers, S. A.

    2014-11-07

    We characterized a sample of metal-oxide resistors and measured their breakdown voltage in liquid argon by applying high voltage (HV) pulses over a 3 second period. This test mimics the situation in a HV-divider chain when a breakdown occurs and the voltage across resistors rapidly rise from the static value to much higher values. All resistors had higher breakdown voltages in liquid argon than their vendor ratings in air at room temperature. Failure modes range from full destruction to coating damage. In cases where breakdown was not catastrophic, subsequent breakdown voltages were lower in subsequent measuring runs. One resistor type withstands 131 kV pulses, the limit of the test setup.

  18. Evaporation and condensation at a liquid surface. I. Argon

    NASA Astrophysics Data System (ADS)

    Yasuoka, Kenji; Matsumoto, Mitsuhiro; Kataoka, Yosuke

    1994-11-01

    Molecular dynamics computer simulations were carried out to investigate the dynamics of evaporation and condensation for argon at the temperature of 80 and 100 K. From the decrease of the survival probability of vapor molecules, the ratio of self reflection to collision is estimated to be 12%-15%, only weakly dependent on the temperature. This suggests that argon vapor molecules are in the condition of almost complete capture, and the condensation is considered to be a barrierless process. The total ratio of reflection which is evaluated with the flux correlation of condensation and evaporation is 20% at both temperature. The difference between these two ratios of reflection is ascribed to a phenomenon that vapor molecules colliding with the surface drive out other liquid molecules. This molecule exchange at the surface is as important as the self-reflection, and the conventional picture of condensation as a unimolecular chemical reaction is not appropriate.

  19. Argon-assisted growth of epitaxial graphene on Cu(111)

    NASA Astrophysics Data System (ADS)

    Robinson, Zachary R.; Tyagi, Parul; Mowll, Tyler R.; Ventrice, Carl A., Jr.; Hannon, James B.

    2012-12-01

    The growth of graphene by catalytic decomposition of ethylene on Cu(111) in an ultrahigh vacuum system was investigated with low-energy electron diffraction, low-energy electron microscopy, and atomic force microscopy. Attempts to form a graphene overlayer using ethylene at pressures as high as 10 mTorr and substrate temperatures as high as 900 ∘C resulted in almost no graphene growth. By using an argon overpressure, the growth of epitaxial graphene on Cu(111) was achieved. The suppression of graphene growth without the use of an argon overpressure is attributed to Cu sublimation at elevated temperatures. During the initial stages of growth, a random distribution of rounded graphene islands is observed. The predominant rotational orientation of the islands is within ±1∘ of the Cu(111) substrate lattice.

  20. Near infrared photodissociation spectra of the aniline +-argon ionic complexes

    NASA Astrophysics Data System (ADS)

    Pino, T.; Douin, S.; Boudin, N.; Bréchignac, Ph.

    2006-02-01

    The near infrared spectra of the ionic complexes aniline(NH 2) +-argon and aniline(ND 2) +-argon have been measured by laser photodissociation spectroscopy. The bands observed from 10 500 to 13 500 cm -1 have been assigned to the D1(A˜2A2)←D0(X˜2B1) electronic transition within the solvated chromophore. They are characterized by a long vibrational progression involving the 6a mode. On the basis of CASSCF calculations, a large change of geometry along this coordinate is found while the amino group remains in the ring plane. Therefore, a change of the conjugation of the ring rather than a charge transfer is inferred. This is thought to be the origin of the extent of the progression.

  1. Multiwalled carbon nanotubes as masks against carbon and argon irradiation. A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Denton, Cristian D.; Moreno-Marín, Juan Carlos; Heredia-Avalos, Santiago

    2016-04-01

    Experiments showed that multiwalled carbon nanotubes (MWCNT) can be used as masks against irradiation to create metallic nanowires in a substrate. In order to understand the limitations of this application, it is interesting to know the energy and number of carbon atoms emerging from the MWCNT after the irradiation and how the structure of the MWCNT is modified. Using a molecular dynamics code that we have previously developed, we have simulated the continuous irradiation of MWCNT with carbon and argon projectiles. We have obtained that the use of carbon instead of argon to irradiate the MWCNT increases de effectiveness of the MWCNTs as masks, due to the ability of the carbon projectiles to be part of the MWCNT structure and partially mend the damage produced during irradiation. We have analyzed the number, energy, and spatial distribution of the recoils generated during irradiation and the change of the MWCNT structure as a function of the incident energy (100 and 500 eV), fluence (up to 4.5 ·1015ions /cm2), and number of shells (up to 5-shells) of the MWCNT. These results determine the effectiveness of MWCNT as a mask, being useful to understand whether the atoms emerging from the MWCNT produce damage in the substrate or not. We find that for carbon projectiles the efficiency of MWCNT as masks does not depend much on the fluence, but on the number of nanotube shells and projectile incident energy. On the other hand, for a given nanotube and fluence, we observe a threshold incident energy below which the nanotube acts as a perfect mask.

  2. Meta-Stable Vacua and D-Branes at the Conifold

    SciTech Connect

    Argurio, Riccardo; Bertolini, Matteo; Kachru, Shamit

    2008-07-28

    We study gauge theories arising on D-branes on quotients of the conifold. They exhibit meta-stable SUSY breaking along the lines of the model by Intriligator, Seiberg and Shih. We propose a candidate for the extrapolation to large't Hooft coupling of the meta-stable state. It involves anti D3-branes in a smooth gravity dual of a cascading gauge theory.

  3. Asynchronous inputs and flip-flop metastability in the CLAS trigger at CEBAF

    SciTech Connect

    Doughty, D.C. Jr.; Lemon, S. ); Bonneau, P. )

    1993-08-01

    The impact of flip-flop metastability on the pipelined trigger for the CLAS detector at CEBAF has been studied. The authors find that the newest ECL flip-flops (ECLinPS) are much faster than older families (10H) at resolving the metastable condition. This will allow their use in systems with asynchronous inputs without an extra stage of synchronizing flip-flops.

  4. Asynchronous inputs and flip-flop metastability in the CLAS trigger at CEBAF

    SciTech Connect

    Dave Doughty; S. Lemon; P. Bonneau

    1992-10-01

    The impact of flip-flop metastability on the pipelined trigger for the CLAS detector at CEBAF (Continuous Electron Beam Accelerator Facility) has been studied. It is found that the newest ECL (emitter coupled logic) flip-flops (ECLinPS) are much faster than older families at resolving the metastable condition. This will allow their use in systems with asynchronous inputs without an extra stage of synchronizing flip-flops.

  5. Discovery of a metastable Al{sub 20}Sm{sub 4} phase

    SciTech Connect

    Ye, Z. E-mail: kmh@ameslab.gov; Zhang, F.; Mendelev, M. I.; Ott, R. T.; Park, E.; Besser, M. F.; Kramer, M. J.; Wang, C.-Z.; Sun, Y.; Ding, Z.; Ho, K.-M. E-mail: kmh@ameslab.gov

    2015-03-09

    We present an efficient genetic algorithm, integrated with experimental diffraction data, to solve a nanoscale metastable Al{sub 20}Sm{sub 4} phase that evolves during crystallization of an amorphous magnetron sputtered Al{sub 90}Sm{sub 10} alloy. The excellent match between calculated and experimental X-ray diffraction patterns confirms an accurate description of this metastable phase. Molecular dynamic simulations of crystal growth from the liquid phase predict the formation of disordered defects in the devitrified crystal.

  6. Spectroscopy of Argon Excited in an Electron Beam Ion Trap

    SciTech Connect

    Trabert, E

    2005-04-18

    Argon is one of the gases best investigated and most widely used in plasma discharge devices for a multitude of applications that range from wavelength reference standards to controlled fusion experiments. Reviewing atomic physics and spectroscopic problems in various ionization stages of Ar, the past use and future options of employing an electron beam ion trap (EBIT) for better and more complete Ar data in the x-ray, EUV and visible spectral ranges are discussed.

  7. Rayleigh scattering from argon clusters in a planar expansion

    SciTech Connect

    DeArmond, F. M.; Suelzer, J.; Masters, M. F.

    2008-05-01

    Rayleigh scattering is presented as evidence for the presence of large argon clusters formed in a planar expansion. Based on the observed scattering signal, the dependence of mean cluster size on stagnation pressure is {proportional_to}P{sub 0}{sup 3.38}. This is in contrast to the dependence of the mean cluster size on stagnation pressure for a symmetric expansion of {proportional_to}P{sub 0}{sup 2.29}.

  8. Low intensity argon laser coagulation in central serous retinopathy (csr).

    PubMed

    Greite, J H; Birngruber, R

    1975-01-01

    Mechanisms of light coagulation effects in RPE and detached retina are discussed. 25 cases of CSR are presented in which the leaking point in the RPE was coagulated with an argon laser coagulator, the exposure parameters being set to avoid a whitening of the retina. The results suggest that the retinal whitening and consequently retinal damage does not constitute a criterium for coagulation effectiveness in CSR.

  9. Space-charge effects in liquid argon ionization chambers

    NASA Astrophysics Data System (ADS)

    Rutherfoord, J. P.; Walker, R. B.

    2015-03-01

    We have uniformly irradiated liquid argon ionization chambers with betas from high-activity 90Sr sources. The radiation environment is similar to that in the liquid argon calorimeters which are part of the ATLAS detector installed at CERN's Large Hadron Collider (LHC). We measured the resulting ionization current over a wide range of applied potential for two different source activities and for three different chamber gaps. These studies provide operating experience at exceptionally high ionization rates. In particular they indicate a stability at the 0.1% level for these calorimeters over years of operation at the full LHC luminosity when operated in the normal mode at an electric field E = 1.0 kV / mm. We can operate these chambers in the normal mode or in the space-charge limited regime and thereby determine the transition point between the two. This transition point is parameterized by a positive argon ion mobility of μ+ = 0.08 ± 0.02mm2 / V s at a temperature of 88.0±0.5 K and at a pressure of 1.02±0.02 bar. In the space-charge limited regime the ionization currents are degraded and show signs of instability. At the highest electric fields in our study (6.7 kV/mm) the ionization current is still slowly rising with increasing electric field.

  10. ARAPUCA a new device for liquid argon scintillation light detection

    NASA Astrophysics Data System (ADS)

    Machado, A. A.; Segreto, E.

    2016-02-01

    We present a totally innovative device for the detection of liquid argon scintillation light, that has been named ARAPUCA (Argon R&D Advanced Program at UniCAmp). It is composed of a passive light collector and of active devices. The latters are standard SiPMs that operate at liquid argon temperature, while the passive collector is based on a new technology, never explored in this field before. It is a photon trap, that allows to collect light with extremely high efficiency. The total detection efficiency of the device can be tuned by modifying the ratio between the area of the active devices (SiPM) and the area of the optical window. For example, it will allow to reach a detection efficiency at the level of 1% on a surface of 50 × 50 cm2 with an active coverage of 2 × 2 cm2 (two/three large area SiPM). It is also a cheap device, since the major part of its cost is represented by the active devices. For these reason this appears to be the ideal device for scintillation light detection in large Time Projection Chambers. With appropriate modifications it can be used also in next generation Dark Matter detectors.

  11. The Deap-Clean 3600 KG Liquid-Argon Detector

    NASA Astrophysics Data System (ADS)

    Jillings, C. J.

    2009-09-01

    DEAP-CLEAN 3600 is a proposed single-phase liquid-argon for WIMP dark matter with a fiducial mass of 1000 kg of a total 3600 kg liquid argon. The principle effort of design is background reduction to an expected background rate < 1 tonne-1 year-1. This paper discusses the DEAP-CLEAN program and then focuses on two important backgrounds. First, energetic electrons from 39Ar in the detector volume are reduced with pulse-shape discrimination. Analysis of the time-distribution of light within events is predicted to remove all electrons from the data sample with leakage < 1 × 10- while rejecting fewer than 50% of nuclear-recoil events. Our current measured limit for electron leakage is < 6 × 10-8 and is statistics limited. Second, surface-alpha contamination from 222Rn daughters that plate out on the acrylic walls is reduced using a novel resurfacing system that operates in vacuum before fill with argon. This resurfacer removes approximately 10 microns of acrylic material and applies a wavelength-shifting compound.

  12. Energy and charge transfer in ionized argon coated water clusters

    SciTech Connect

    Kočišek, J. E-mail: michal.farnik@jh-inst.cas.cz Lengyel, J.; Fárník, M. E-mail: michal.farnik@jh-inst.cas.cz; Slavíček, P. E-mail: michal.farnik@jh-inst.cas.cz

    2013-12-07

    We investigate the electron ionization of clusters generated in mixed Ar-water expansions. The electron energy dependent ion yields reveal the neutral cluster composition and structure: water clusters fully covered with the Ar solvation shell are formed under certain expansion conditions. The argon atoms shield the embedded (H{sub 2}O){sub n} clusters resulting in the ionization threshold above ≈15 eV for all fragments. The argon atoms also mediate more complex reactions in the clusters: e.g., the charge transfer between Ar{sup +} and water occurs above the threshold; at higher electron energies above ∼28 eV, an excitonic transfer process between Ar{sup +}* and water opens leading to new products Ar{sub n}H{sup +} and (H{sub 2}O){sub n}H{sup +}. On the other hand, the excitonic transfer from the neutral Ar* state at lower energies is not observed although this resonant process was demonstrated previously in a photoionization experiment. Doubly charged fragments (H{sub 2}O){sub n}H{sub 2}{sup 2+} and (H{sub 2}O){sub n}{sup 2+} ions are observed and Intermolecular Coulomb decay (ICD) processes are invoked to explain their thresholds. The Coulomb explosion of the doubly charged cluster formed within the ICD process is prevented by the stabilization effect of the argon solvent.

  13. Argon laser-assisted treatment of benign eyelid lesions.

    PubMed

    Korkmaz, Şafak; Ekici, Feyzahan; Sül, Sabahattin

    2015-02-01

    We investigated the treatment of benign eyelid lesions with argon laser as an alternative therapy to surgical excision. The charts of 73 patients with 95 lesions treated with argon laser photocoagulation were reviewed retrospectively. In all patients, the procedure was performed for cosmetic reasons. The laser spot size ranged from 50 to 200 μm, the power varied from 300 to 700 mW, and the exposure time ranged between 0.1 and 0.2 s. The lesions were mostly located on the upper eyelid (66%); the lid margin was involved in 30 cases. The mean follow-up time was 7.2 ± 3.5 months (range 3-15 months). A histopathological diagnosis was confirmed for 81 lesions (85.3%). All patients were satisfied with the cosmetic result. No intraoperative complications occurred, and none of the patients complained of pain during laser application. All wounds epithelialized in 3-4 weeks with skin that appeared normal. Hypopigmentation of the treated areas were observed in three cases. No recurrence occurred during the follow-up period. Argon laser-assisted benign eyelid tumor excision is a useful, cheap, accessible, and well-tolerated alternative to traditional surgery.

  14. Insights into discharge argon-mediated biofilm inactivation.

    PubMed

    Traba, Christian; Chen, Long; Liang, Danni; Azzam, Robin; Liang, Jun F

    2013-01-01

    Formation of bacterial biofilms at solid-liquid interfaces creates numerous problems in biomedical sciences. Conventional sterilization and decontamination methods are not suitable for new and more sophisticated biomaterials. In this paper, the efficiency and effectiveness of gas discharges in the inactivation and removal of biofilms on biomaterials were studied. It was found that although discharge oxygen, nitrogen and argon all demonstrated excellent antibacterial and antibiofilm activity, gases with distinct chemical/physical properties underwent different mechanisms of action. Discharge oxygen- and nitrogen-mediated decontamination was associated with strong etching effects, which can cause live bacteria to relocate thus spreading contamination. On the contrary, although discharge argon at low powers maintained excellent antibacterial ability, it had negligible etching effects. Based on these results, an effective decontamination approach using discharge argon was established in which bacteria and biofilms were killed in situ and then removed from the contaminated biomaterials. This novel procedure is applicable for a wide range of biomaterials and biomedical devices in an in vivo and clinical setting.

  15. Metastable bcc phase formation in the Nb-Cr-Ti system

    SciTech Connect

    Thoma, D.J.; Perepezko, J.H.

    1994-08-01

    Metastable disordered bcc phases have been formed from the melt in the Nb-Cr-Ti system where primary Laves phases would develop under equilibrium solidification conditions. Three vertical temperature-composition sections in the ternary system incorporating NbCr, were evaluated: the Nb-Cr binary, the TiCr{sub 2}-NbCr{sub 2} isoplethal section, and the NbCr{sub 2}-Ti plethal section. In the rapid solidification of NbCr{sub 2}, metastable bcc phase formation was not observed, but deviations from NbCr{sub 2} stoichiometry or alloying with Ti was found to promote bcc phase formation by decreasing the required liquid undercooling to reach the metastable bcc liquidus and solidus. The metastable phases were characterized through x-ray diffraction (XRD), and systematic deviations from Vegard`s Rule have been defined in the three plethal sections. The metastable bcc phases decompose at temperatures >800{degrees}C to uniformly refined microstructures. As a result, novel microstructural tailoring schemes are possible through the metastable precursor microstructures.

  16. Kinetics of metastable He atom at middle pressure in micro hollow cathode discharge

    NASA Astrophysics Data System (ADS)

    Inoue, Mari; Ohta, Takayuki; Kanae, Tsuyoshi; Ito, Masafumi; Hori, Masaru

    2011-10-01

    Hollow cathode discharges has been studied as light sources. Conventional hollow cathode discharges has been operated in low pressure, while micro hollow cathode discharge in near atmospheric pressure. In this study, the behavior of metastable He atoms (23S1-23P0 ; 1082.909 nm) in micro hollow cathode discharge in the middle range of the pressure from 5 to 30 kPa were fundamentally studied. The translational temperature and density of metastable He atoms were measured by diode laser absorption spectroscopy. The spectral line profile was analyzed and the pressure-broadening effect was investigated. The absorption profile of metastable He atoms was obtained by scanning the wavelength of the diode laser. The absorption profile of metastable He atoms shits from a Gaussian to Voigt profile at around pressure of 10 kPa. The metastable He atoms temperatures were estimated to be 900 to 1150 K, and the densities were measured to be 1.3 x 1013 cm-3 to 7.6 x 1012 cm-3 in the range of 5 to 30 kPa. The translational temperatures and densities of metastable He atoms were decreased with increasing pressure below 10 kPa, on the other hand, increased with increasing pressure in the range from 10 to 30 kPa.

  17. Metastable helium atom density in a single electrode atmospheric plasma jet during sample treatment

    NASA Astrophysics Data System (ADS)

    Zaplotnik, R.; Bišćan, M.; Popović, D.; Mozetič, M.; Milošević, S.

    2016-06-01

    The metastable He atoms play an important role in atmospheric pressure plasma jet (APPJ) chemistry processes and in the plasma generation. This work presents cavity ring-down spectroscopy (CRDS) investigation of metastable helium atom (2{{3}}{{S}1} ) densities in a single electrode APPJ during sample treatment. A spatially resolved density distribution of a free jet (without sample) was measured at a He flow rate of 2 slm. The maximum measured density of a free jet was around 7× {{10}11} cm‑3. With the insertion of a sample the densities increased up to 10 times. Helium metastable atoms, in a single electrode helium APPJ (2 slm, ≈2.5 kV, pulsed DC, 10 kHz repetition rate), decayed exponentially with a mean lifetime of 0.27+/- 0.03 μs. Eight different samples of the same sizes but different conductivities were used to investigate the influence of a sample material on the He metastable densities. The correlation between sample conductivities and metastable He densities above the sample surface was found. Metastable He density can also be further increased with decreasing sample distance, increasing conductive sample surface area and by increasing He flow.

  18. Quench-Condensed Microalloyed Particles: a Microscopic View of Solid Solubility and Metastability

    NASA Astrophysics Data System (ADS)

    Lamberti, Vincent Edward

    Solid solubility and metastability in noble-metal and iron-silver alloys have been studied from the perspective of microalloyed particles. Samples were obtained through a novel, gram-scale technique that consisted of cocondensation of two elemental metal vapors with a large excess of inert gas on the reaction surface of a rotating cryostat at 77 K. This technique permitted greater control of both particle size and composition than conventional gas aggregation methods. The chemical and physical characteristics of the microalloys have been elaborated through chemical analysis, x-ray diffraction, electron microscopy, temperature-programmed mass spectrometry, EXAFS, XPS and Moessbauer spectroscopy. Electron microscopy indicated the microstructures of copper-gold and copper-silver microalloys prepared in sulfur hexafluoride to consist of discrete collections of crystallites suspended in amorphous "baths". The average dimensions of the crystallites were <100 A, while the aggregates spanned hundreds of nanometers. The microstructures of both systems were metastable. The EXAFS of a copper-silver microalloy showed it to be stiffer, as well as more disordered, than a homometallic copper product. The EXAFS also showed no detectable Cu-Ag contacts, but suggested the existence (through a "missing-atom" effect) of a large number of disordered copper sites. Moessbauer spectra of an iron -silver microalloy prepared in xenon revealed the presence of a superparamagnetic alloy phase characterized by a blocking temperature of approximately 45 K. Cocondensations of iron vapor with excess sulfur hexafluoride produced ultrafine (dimensions ~ 100 A), amorphous particles that were decorated with a -CF_{2^-} polymer. The formation of the polymer was attributed to reaction of the iron with the matrix and adventitious organic compounds--that is, to activation of S-F and C-H bonds. Matrix isolation experiments indicated that, although inert in their ground-state configuration, photoexcited (4p

  19. Lifetimes of metastable ion clouds in a Paul trap: Power-law scaling

    NASA Astrophysics Data System (ADS)

    Weiss, D. K.; Nam, Y. S.; Blümel, R.

    2016-04-01

    It is well known that ions stored in a Paul trap, one of the most versatile tools in atomic, molecular, and optical (AMO) physics, may undergo a transition from a disordered cloud state to a geometrically well-ordered crystalline state, the Wigner crystal. In this paper we predict that close to the transition, the average lifetime τ¯m of the metastable cloud follows a power law, τ¯m˜(γ-γc) -β , where γc is the value of the damping constant at which the transition occurs. The exponent β depends on the trap control parameter q , but is independent of both the number of particles N stored in the trap and the trap control parameter a , which determines the shape (oblate, prolate, or spherical) of the ion cloud. In addition, we find that for given a and q , γc scales approximately like γc=C ln[ln(N ) ] +D as a function of N , where C and D are constants. Our predictions may be tested experimentally with equipment already available at many AMO laboratories. In addition to their importance in AMO trap physics, we also discuss possible applications of our results to other periodically driven many-particle systems, such as, e.g., particle accelerator beams, and, based on our trap results, conjecture that power laws characterize the phase transition to the Wigner crystal in all such systems.

  20. Coqblin-Schrieffer model for an ultracold gas of ytterbium atoms with metastable state

    NASA Astrophysics Data System (ADS)

    Kuzmenko, Igor; Kuzmenko, Tetyana; Avishai, Yshai; Jo, Gyu-Boong

    2016-03-01

    Motivated by the impressive recent advance in manipulating cold ytterbium atoms, we explore and substantiate the feasibility of realizing the Coqblin-Schrieffer model in a gas of cold fermionic 173Yb atoms. Making use of different AC polarizabillity of the electronic ground state (electronic configuration S10) and the long lived metastable state (electronic configuration P30), it is substantiated that the latter can be localized and serve as a magnetic impurity while the former remains itinerant. The exchange mechanism between the itinerant S10 and the localized P30 atoms is analyzed and shown to be antiferromagnetic. The ensuing SU(6) symmetric Coqblin-Schrieffer Hamiltonian is constructed, and, using the calculated exchange constant J , perturbative renormalization group (RG) analysis yields the Kondo temperature TK that is experimentally accessible. A number of thermodynamic measurable observables are calculated in the weak-coupling regime T >TK (using perturbative RG analysis) and in the strong-coupling regime T